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Preface

This volume contains the papers presented at ITP 2010: the First International
Conference on Interactive Theorem Proving. It was held during July 11–14, 2010
in Edinburgh, Scotland as part of the Federated Logic Conference (FLoC, July
9–21, 2010) alongside the other FLoC conferences and workshops.

ITP combines the communities of two venerable meetings: the TPHOLs con-
ference and the ACL2 workshop. The former conference originated in 1988 as
a workshop for users of the HOL proof assistant. The first two meetings were
at the University of Cambridge, but afterwards they were held in a variety of
venues. By 1992, the workshop acquired the name Higher-Order Logic Theorem
Proving and Its Applications. In 1996, it was christened anew as Theorem Prov-
ing in Higher-Order Logics, TPHOLs for short, and was henceforth organized as
a conference. Each of these transitions broadened the meeting’s scope from the
original HOL system to include other proof assistants based on forms of higher-
order logic, including Coq, Isabelle and PVS. TPHOLs has regularly published
research done using ACL2 (the modern version of the well-known Boyer-Moore
theorem prover), even though ACL2 implements a unique computational form
of first-order logic. The ACL2 community has run its own series of workshops
since 1999. By merging TPHOLs with the ACL2 workshop, we include a broader
community of researchers who work with interactive proof tools.

With our enlarged community, it was not surprising that ITP attracted a
record-breaking 74 submissions, each of which was reviewed by at least three
Programme Committee members. The Programme Committee accepted 33 pa-
pers and asked two leading researchers, Gerwin Klein and Benjamin Pierce, to
present invited lectures about their work. We were able to assemble a strong
programme covering topics such as counter-example generation, hybrid system
verification, translations from one formalism to another, and cooperation be-
tween tools. Several verification case studies were presented, with applications
to computational geometry, unification, real analysis, etc. The tool used most in
the presented papers was Coq, followed by Isabelle/HOL.

Of the 33 accepted papers, five were “proof pearls” (concise and elegant
worked examples) and three were “rough diamonds” (promising ideas in an early
form). All 33 papers are included in these proceedings; unlike with TPHOLs,
there are no separate proceedings consisting of “Track B” papers.

We would like to thank Moshe Vardi (FLoC General Chair), Leonid Libkin
and Gordon Plotkin (FLoC Co-chairs), and the other members of the FLoC Or-
ganizing Committee. David Aspinall took care of ITP local arrangements, while
Michael Norrish looked after ITP’s satellite workshops. We gratefully knowledge
the generous support of FLoC’s sponsors: the EPSRC (the UK’s Engineering
and Physical Sciences Research Council), NSF (the US National Science Founda-
tion), the Association for Symbolic Logic, CADE Inc. (Conference on Automated
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Deduction), Hewlett-Packard Corporation, Microsoft Research, Google Inc., and
Intel Corporation.

Every aspect of the editorial process, including the production of these pro-
ceedings, was facilitated by the EasyChair conference management system. We
are grateful to the EasyChair team, Andrei Voronkov and Bartek Klin, for their
advice and for fixing problems quickly as they arose. We are grateful to Springer
for publishing these proceedings, as they have done for TPHOLs and its prede-
cessors since 1993.

Next year’s conference, ITP 2011, will be held at the Radboud University
Nijmegen, The Netherlands. This site was chosen by a ballot of the interactive
theorem proving research community.

This volume is dedicated to Susan Paulson, the second editor’s wife, who went
into hospital around the time that these proceedings were being assembled. She
had been struggling with cancer for several years. As of this writing, she was not
expected to live long enough to see this volume in print.

April 2010 Matt Kaufmann
Lawrence Paulson
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Formal Study of Plane Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . 211
Jean-François Dufourd and Yves Bertot

Reasoning with Higher-Order Abstract Syntax and Contexts:
A Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Amy Felty and Brigitte Pientka

A Trustworthy Monadic Formalization of the ARMv7 Instruction Set
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Anthony Fox and Magnus O. Myreen

Automated Machine-Checked Hybrid System Safety Proofs . . . . . . . . . . . . 259
Herman Geuvers, Adam Koprowski, Dan Synek, and
Eelis van der Weegen

Coverset Induction with Partiality and Subsorts: A Powerlist Case
Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Joe Hendrix, Deepak Kapur, and José Meseguer
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A Formally Verified OS Kernel. Now What?

Gerwin Klein

NICTA�, Australia
School of Computer Science and Engineering, UNSW, Sydney, Australia

gerwin.klein@nicta.com.au

Abstract. Last year, the L4.verified project produced a formal, machine-
checked Isabelle/HOL proof that the C code of the seL4 OS microkernel
correctly implements its abstract implementation. In my presentation
I will summarise the proof together with its main implications and as-
sumptions, I will describe in which kinds of systems this formally verified
kernel can be used for gaining assurance on overall system security, and
I will explore further future research directions that open up with a for-
mally verified OS kernel.

1 A Formally Verified OS Kernel

Last year, we reported on the full formal verification of the seL4 microkernel
from a high-level model down to very low-level C code [5].

To build a truly trustworthy system, one needs to start at the operating system
(OS) and the most critical part of the OS is its kernel. The kernel is defined as
the software that executes in the privileged mode of the hardware, meaning that
there can be no protection from faults occurring in the kernel, and every single
bug can potentially cause arbitrary damage. The kernel is a mandatory part of a
system’s trusted computing base (TCB)—the part of the system that can bypass
security [9]. Minimising this TCB is the core concept behind microkernels, an
idea that goes back 40 years.

A microkernel, as opposed to the more traditional monolithic design of con-
temporary mainstream OS kernels, is reduced to just the bare minimum of code
wrapping hardware mechanisms and needing to run in privileged mode. All OS
services are then implemented as normal programs, running entirely in (unpriv-
ileged) user mode, and therefore can potentially be excluded from the TCB.
Previous implementations of microkernels resulted in communication overheads
that made them unattractive compared to monolithic kernels. Modern design
and implementation techniques have managed to reduced this overhead to very
competitive limits.

A microkernel makes the trustworthiness problem more tractable. A well-
designed high-performance microkernel, such as the various representatives of
the L4 microkernel family, consists of the order of 10,000 lines of code (10 kloc).

� NICTA is funded by the Australian Government as represented by The Department
of Broadband, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program.

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 1–7, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 G. Klein

We have demonstrated that with modern techniques and careful design, an OS
microkernel is entirely within the realm of full formal verification.

The approach we used was interactive, machine-assisted and machine-checked
proof. Specifically, we used the theorem prover Isabelle/HOL [8]. Formally, our
correctness statement is classic refinement: all possible behaviours of the C im-
plementation are already contained in the behaviours of the abstract specifi-
cation. The C code of the seL4 kernel is directly and automatically translated
into Isabelle/HOL. The correctness theorem connects our abstract Isabelle/HOL
specification of kernel behaviour with the C code. The main assumptions of the
proof are correctness of the C compiler and linker, assembly code, hardware, and
boot code.

In my presentation I will give an overview of this proof and reflect on some of
the lessons learned in this project. For instance, one question with any verifica-
tion is: what does the specification say, what level of detail does it contain, and
why?

The current abstract specification of the seL4 kernel was written with the
following goals:

– abstract from data structures and implementation, aim to specify what, not
how;

– have enough detail for functional correctness proofs of applications on top
of seL4;

– have enough detail for users to understand results, error conditions and error
codes

Especially the latter two goals mean that the abstraction level of this specifica-
tion is at points lower than one might wish for a specification. For instance, to
be able to show functional correctness of code on top of seL4, we do not want
to use nondeterminism too liberally in the specification. If the kernel is allowed
to do either A or B nondeterministically for a certain system call, then user
programs will always need to handle both cases, even though in the implementa-
tion it will usually be possible (and desired) to predict which case is taken. We
have therefore usually tried to include enough data in the abstract specification
layer to precisely predict kernel behaviour. This draws a small number of rather
arcane implementation details to a high specification level. In hindsight it is pre-
cisely these cases that users of the kernel now find hard to understand and that
are candidates for future evolvement and simplification of the seL4 API. Some
of these were eliminated in early API iterations (precisely to achieve an nicer
specification), but others were deemed too hard or necessary at the time.

An area where nondeterminism is more reasonable is the pure indication of
failure due to implementation restrictions not visible at an abstract level. In seL4
this would mean the system call either fully succeeds or has no effect and returns
with an error code. This is significantly simpler to handle for the user than two
different behaviours with state change. On the other hand, this means for user
programs that such system calls will always need error handling code. Hence,
there is still a trade-off to be made between predictive precision and elegant
abstraction.
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Another way to achieve more abstraction is to focus on specific aspects of the
system. We have previously published different versions of a high-level access
control model of seL4 [3,2]. These models abstract from message passing, memory
content, and nearly all other behaviour of the system. They only record which
objects have access to which capabilities. This in turn determines which system
calls a thread may perform and which objects it may access. If system calls and
capabilities are additionally tagged with information flow attributes, it becomes
possible to reason about the authorised information flow behaviour of a system
without knowing its full functional behaviour.

Another potential abstraction of the kernel may be purely its message passing
behaviour, possibly ignoring or disabling shared memory. This could be used to
implement abstract communication formalisms such as the pi calculus.

2 What Now?

This section gives an overview of our current work on top of the seL4 kernel.
The main, long-term aim of this work is to produce code-level formal security

proofs for large systems on the order of 1 million lines of code or more. The key
idea of microkernel-based designs is to drastically reduce the trusted computing
base of a system. If the system architecture explicitly takes security boundaries
into account, as for example in MILS (Multiple Independent Levels of Security
or Safety) systems [1], and these security boundaries are adequately enforced by
the underlying OS kernel, it should be possible to reduce the amount of code
that needs to be formally verified to a manageable size of a few thousand or
maybe only a few hundred lines of code.

For an initial case study, we have confirmed that this is possible and feasible.
The case study is a small network switching device that gives a front-end terminal
access to either of two back-end networks. The job of the switch is to make sure
that no data travels between the back-end networks through the switch. It is
Ok for data to travel through the terminal. In this case study the user and the
front-end terminal are trusted to do the right thing.

A simple Linux-based switch with web interface and user authentication will
at least include the Linux kernel, a web server, and a full network stack. This
already brings us into the area of millions of lines of code.

With the seL4 kernel as the bottom layer and the right architecture, we man-
aged to isolate the security critical part into one small component with less
than 2,000 lines of code. The component starts and stops Linux instances that
do the actual authentication and network routing/switching work. Security is
achieved by using seL4’s fine-grained access control mechanism to restrict the
Linux instances sufficiently such that they do not need to be trusted for the
information flow property above to be true. 2,000 lines of code are small enough
to be formally verified, and we have already formalised and verified the access
control aspect of this trusted component as well as of the entire system. This
proof shows that the modelled high-level behaviour of the trusted component
achieves the security property and it shows that this component is indeed the
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only trusted component of the system — all other components are assumed to
try anything in their power to subvert the system.

We conducted the above proof in Isabelle/HOL. It took about 1 month of
work for one person relatively new to Isabelle. We also tried the same proof
in the SPIN model checker. The same person, reasonably experienced in SPIN,
took about half a week to achieve the same result. This is encouraging, because
it means that at least the high-level problem could be solved automatically and
even the interactive proof was not very time consuming. On the other hand, even
for this small system, we found it necessary to simplify and change the model to
avoid state explosion in the model checker. This does not necessarily mean that
SPIN would not be able to solve larger systems (our security model may just
not be very suitable for model checking), but it does indicate that the process
of connecting this high-level model to code will not be straight-forward.

The initial Isabelle model tried to be a faithful abstraction of the access con-
trol content of the actual system with a straightforward path to code refinement
for the trusted component. The SPIN model needed custom abstractions and
simplifications that (we think) were justified, but that do not have a straightfor-
ward refinement path to code any more. An interesting direction for future work
will be to see if such simplifications can be automated and justified automatically
by Isabelle/HOL proof.

To connect this high-level model and proof to code, the following challenges
are still open: we need to show that the seL4 kernel actually implements the
access control model we used in the proof and we need to show that the C
code of the trusted component implements the access control behaviour that we
modelled.

3 What Else?

The previous section gave a broad outline of our current research agenda. Of
course, there are further useful and interesting things to be done with a formally
verified OS kernel. In this section, I explore two of them.

Verified Compiler

The arguably strongest assumption of our functional correctness proof is trusting
the compiler to translate seL4 correctly. We are using standard gcc for the ARM
platform with optimisations. While it is almost certain that there are bugs in
this version of gcc, there is sufficient hope that this particular program (seL4)
does not expose them, because the seL4 implementation is sticking to well-tested
parts of the C language.

Nonetheless, it would be appealing to use a verified compiler on the source
code of seL4, even if it is not as strongly optimising as gcc. The obvious candidate
is the CompCert project by Leroy et al [6]: an optimising C compiler, formally
verified in Coq, with ARM as one possible back-end. We have not yet spent seri-
ous effort trying to use this compiler on the seL4 source, but initial investigations
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show that there will be a number of challenges. The main ones are: different theo-
rem provers, different memory models, and different C language subsets. Firstly,
our proof is in Isabelle/HOL, the CompCert proof is in Coq. While it should
in principle be possible to transform the proof in one system into the other, in
practice both proofs are very large and an automatic transformation will quickly
run into technical difficulties. Secondly, while the memory models for C used
in either project are morally very close, they are technically different and it is
not immediately clear how the correctness statement in one translates into the
other. And finally, the C language subset used in seL4 contains features that are
not strictly supported by the C standard, but are nonetheless used for kernel
programming. Not all of these are covered by the CompCert compiler which is
targeted more at user programs. All of these can be overcome in principle, but
they will require significant effort. Even if the formalisms were not adjusted to
fully fit together and the connection would therefore remain informal, one would
arguably still achieve a higher level of trustworthiness by running the seL4 source
through a verified compiler.

A different, similarly promising approach is the one of Slind et al [7], where
the compilation process happens directly in the theorem prover. For our case the
approach would probably have to be fully re-implemented in Isabelle/HOL and
targeted to the SIMPL intermediate language [10] that is also the target of our
parser from C into Isabelle. Performing the compilation and its correctness proof
fully inside the theorem prover would have the advantage that it neatly removes
the translation step from C to Isabelle from the trusted computing base. The
concrete C program would merely remain a convenient syntactic representation.
The actual translation would take the same formal artefact in Isabelle/HOL as
source that our kernel correctness proof has as a basis. Depending on how far
one would drive this approach, one could add custom compiler optimisations
to particular parts of the kernel and the final product could eventually be the
stream of bytes that makes up the boot image that is transferred to hardware.
This would reduce the trusted part to an accurate assembly level model of the
target platform — something which has already been achieved in the HOL4
prover [4].

High-Level Language Runtimes

While C is still the most widely used language in embedded and OS programming,
formal C verification is far for pleasant. There are various higher-level, type safe
programming languages that offer themselves more readily to formal verification.
The price is not necessarily just performance, but usually also a language runtime
system (memory allocation, garbage collection, etc) that is larger and arguably
more complex than the whole microkernel.

This should not stop us from implementing these language runtimes on top
of seL4. For one, just because they are bigger and more complex, they are not
necessarily harder to verify themselves. And, even if we do not verify the language
runtime, we still get the benefit of one well-tested and often-reused component
that could be isolated from other parts of the system using seL4 mechanisms
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and that will still provide us with the productivity and reasoning benefits of a
high-level language.

Two language runtimes specifically come to mind: Haskell and JVM. Haskell
(or ML), because we have made good experiences in the past with verifying
large programs (e.g. the seL4 kernel) that make use of a significant subset of
Haskell language features and JVM, because the JVM is arguably the most well-
studied and well-formalised mainstream programming languages currently in use.
The JVM has existing implementations that are certified to the highest level of
Common Criteria. This means it is clear in principle how a fully verified JVM
implementation and runtime can be produced.

We have conducted initial successful experiments with a Haskell runtime on
top of seL4. It executes normal compiled Haskell programs that do not make use
of higher-level OS services (which seL4 does not provide). It also provides a direct
Haskell interface to all relevant seL4 system calls. Producing a formally verified
Haskell runtime still poses a significant research challenge, but seL4 offers itself
as the perfect basis for it. Given the abstract seL4 specification, it is one that
could be taken on by a third party.

Acknowledgements. The security proof mentioned above was conducted almost
entirely by David Greenaway with minor contributions from June Andronick,
Xin Gao, and myself. The following people have contributed to the verification
and/or design and implementation of seL4 (in alphabetical order): June Andron-
ick, Timothy Bourke, Andrew Boyton, David Cock, Jeremy Dawson, Philip Der-
rin Dhammika Elkaduwe, Kevin Elphinstone, Kai Engelhardt, Gernot Heiser,
Gerwin Klein, Rafal Kolanski, Jia Meng, Catherine Menon, Michael Norrish,
Thomas Sewell, David Tsai, Harvey Tuch, and Simon Winwood.
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A View from the Trenches

Benjamin C. Pierce
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Abstract. Ambitious experiments using proof assistants for program-
ming language research and teaching are all the rage. In this talk, I’ll
report on one now underway at the University of Pennsylvania and sev-
eral other places: a one-semester graduate course in the theory of pro-
gramming languages presented entirely—every lecture, every homework
assignment—in Coq. This course is now in its third iteration, the course
materials are becoming fairly mature, and we’ve got quite a bit of ex-
perience with what works and what doesn’t. I’ll try to give a sense of
what the course is like for both instructors and students, describe some
of the most interesting challenges, and explain why I now believe such
machine-assisted courses are the way of the future.
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A Certified Denotational Abstract Interpreter�
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Abstract. Abstract Interpretation proposes advanced techniques for
static analysis of programs that raise specific challenges for machine-
checked soundness proofs. Most classical dataflow analysis techniques it-
erate operators on lattices without infinite ascending chains. In contrast,
abstract interpreters are looking for fixpoints in infinite lattices where
widening and narrowing are used for accelerating the convergence. Smart
iteration strategies are crucial when using such accelerating operators
because they directly impact the precision of the analysis diagnostic. In
this paper, we show how we manage to program and prove correct in
Coq an abstract interpreter that uses iteration strategies based on pro-
gram syntax. A key component of the formalization is the introduction
of an intermediate semantics based on a generic least-fixpoint operator
on complete lattices and allows us to decompose the soundness proof in
an elegant manner.

1 Introduction

Static program analysis is a fully automatic technique for proving properties
about the behaviour of a program without actually executing it. Static analy-
sis is becoming an important part of modern software design, as it allows to
screen code for potential bugs, security vulnerabilities or unwanted behaviours.
A significant example is the state-of-the-art Astrée static analyser for C [7]
which has proven some critical safety properties for the primary flight control
software of the Airbus A340 fly-by-wire system. Taking note of such a suc-
cess, the next question is: should we completely trust the analyser? In spite
of the nice mathematical theory of program analysis and the solid algorithmic
techniques available one problematic issue persists, viz., the gap between the
analysis that is proved correct on paper and the analyser that actually runs
on the machine. To eliminate this gap, it is possible to merge both the anal-
yser implementation and the soundness proof into the same logic of a proof
assistant. This gives raise to the notion of certified static analysis, i.e. an anal-
ysis whose implementation has been formally proved correct using a proof
assistant.

There are three main kinds of potential failures in a static analyser. The first
one is (un)soundness, i.e. when the analyser guarantees that a program is safe
but it is not. The second one deals with termination, when the analyser loops for
� Work partially supported by ANR-U3CAT grant and FNRAE ASCERT grant.

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 9–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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some entries. The third one is the problem of precision: given a choice of value
approximation, the analyser may not make optimal choices when approximating
some operations. For instance, a sign analyser that approximates the multipli-
cation of two strictly positive values by the property “to be positive” is sound
be not optimal since the best sound property is “to be strictly positive”.1 Only
the first kind of failure is really critical. However, revealing the other bugs too
late during a validation campaign may compromise the availability of the safety
critical system that has to be validated in due time.

In this paper we focus on the two first classes of potential failures, that is
we prove the semantic soundness of an abstract interpreter and addresses the
termination problem for a challenging fixpoint iteration scheme. Most classical
dataflow analysis techniques look for the least solution of dataflow (in)equation
systems by computing the successive iterates of a function from a bottom el-
ement, in a lattice without infinite ascending chains. When each equation is
defined by means of monotone operators, such a computation always termi-
nates on an optimal solution, i.e. the least element of the lattice that satisfies all
(in)equations. In contrast, abstract intepreters are generally looking for fixpoints
in infinite lattices, where widening and narrowing operators are used for ensur-
ing and accelerating the convergence. Smart iteration strategies are crucial when
using such accelerating operators because they directly impact the precision of
the analysis diagnostic.

This article shows how we manage to program and prove correct in Coq an
abstract interpreter that uses iteration strategies based on program syntax. The
purpose of the current paper is not to define widening/narrowing operators but
rather use them with the right iteration strategy. We focus on a small impera-
tive language and consider abstact interpreters that automatically infer sound
invariants at each program point of a program.

Our main contribution is an elegant embedding of the Abstract Interpreta-
tion (AI) proof methodology: as far as we know, this is the first time the slogan
“my abstract interpreter is correct by construction” is turned into a precise
machine-checked proof. A key component of the formalization is the introduc-
tion of an intermediate semantics with respect to which the soundness of the
analyser is easily proved (hence the term by construction). The most difficult
part arises when formally linking this semantics with a standard one.

The paper is organized as follows. Section 2 introduces the problem of it-
eration strategies for fixpoint approximation by widening/narrowing. Section 3
briefly presents the syntax and the standard semantics of our While language.
Section 4 describes the lattice theory components that are necessary for the
definition of the intermediate collecting semantics described in Section 5. Sec-
tion 6 presents the abstract interpreter together with its modular architecture.
Then, we conclude after a discussion of related work. Except in Section 2, all
formal definitions in this paper are given in Coq syntax. We heavily rely on the
new type classes features [17] in order to use concise overloaded notations that

1 This kind of “bug” is sometimes a feature in order to find a pragmatic balance
between precision and algorithmic complexity.
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should allow the reader to understand the formal definitions without much Coq

knowledge.

2 Static Analysis with Convergence Acceleration by
Widening/Narrowing

In this section, we illustrate with a simple program example the static analysis
techniques that we consider. The target language is a minimalistic imperative
language whose syntax is given in Section 3. The program given on Figure 1a
is the core of a two-dimensional array scan with two nested loops of indexes i

and j. To each program point pc in {1..5} a pair of two intervals Ipc and Jpc

is associated, each one corresponding to an over-approximation of the possible
values of variables i and j at point pc.

i = 0; j = 0;
1: while j < 10 {

i = 0;
2: while i < 10 {

i = i + 1;
3: };

j = j + 1;
4: };
5:

(a) Program code

(I1, J1) = ([0; 0], [0; 0]) � (I4, J4)

(I2, J2) = ([0; 0], J1 ∩ [−∞; 9]) � (I3, J3)

(I3, J3) = (incr�(I2), J2)

(I4, J4) = (I2 ∩ [10; +∞], incr�(J2))

(I5, J5) = (I1, J1 ∩ [10; +∞])

(b) Analysis equations

Fig. 1. An example of interval analysis

The analysis is specified by mutually recursive equations relating the inter-
vals to each other. Figure 1b lists the equations corresponding to our example.
The domain of intervals is equipped with a special bottom element ⊥, and ab-
stract operators like intersection (∩), convex union (�) or abstract incremen-
tation (incr� defined by incr�([a, b]) = [a + 1, b + 1] and extended naturally to
infinite values). These equations can be summarized as X = F (X), where X
denotes the vector (X1, X2, X3, X4, X5) and each Xi denotes a pair of intervals.
The components of F will be denoted by Fi, i ∈ {1..5} in the rest of this section.

The set of intervals on integers forms a lattice ordered by inclusion, where the
lub and glb operators are the convex union and intersection, respectively. Ideally,
the result of the analysis should be the least fixpoint of the set of equations.
However, the lattice of intervals is of infinite height, which generally prevents
us from computing a solution in finite time with a simple Kleene iteration. For
instance, ∅ ⊂ [0, 0] ⊂ [0, 1] ⊂ [0, 2] ⊂ · · · ⊂ [0, n] ⊂ . . . is an infinite increasing
chain. Instead of computing a least fixpoint, we can accommodate ourselves with
an over-approximation, keeping correction in mind, but losing optimality.
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The solution proposed by P. and R. Cousot [6] consists in accelerating the
ascending iteration, thus reaching a post-fixpoint, but not necessarily the least
one. This is done by using a binary widening operator �, that extrapolates both
of its arguments, and use an iteration of the following form: x0 = ⊥, xn+1 =
xn�f(xn). Intuitively, at the n-th iteration, the n-th iterate of the function is
compared to the preceeding value, in order to conjecture some possible over-
approximation of the limit of the iteration sequence. In the infinite chain above,
we would like to replace interval [0, n] by [0, +∞] after a finite (preferably small)
number of iterations. We would like for instance that [0, 1]�[0, 2] = +∞.

When a post-fixpoint is reached, a new iteration starting from this point may
give a better solution, closer to the least fixpoint. The same termination issues
appear, and may be treated by the use of a narrowing operator Δ.

The equations of the analysis are thus augmented with a set W of program
points where widenings or narrowings are performed. We now have to determine
a strategy for computing a fixpoint, i.e. an oracle for choosing an equation during
the following standard chaotic iteration.

– Start with X = (⊥,⊥,⊥,⊥,⊥).
– Repeat until a post-fixpoint is reached the following steps

• Choose (oracle) a point pc,
• if pc is a widening/narrowing point, replace Xpc by Xpc�Fpc(X) other-

wise by Xpc � Fpc(X).
– Repeat until stabilization the following steps

• Choose (oracle) a point pc,
• if pc is a widening/narrowing point, replace Xpc by XpcΔFpc(X) other-

wise by Xpc 	 Fpc(X).

Several technical difficulties appear with iteration strategies. First, widening/-
narrowing points must be placed in order to cover all equations dependency
cycles, otherwise the iteration may not terminate. On the contrary, using too
many points may decrease the precision of the final result. Secondly, the itera-
tion strategy (oracle) has a direct impact on the precision of the result because
of the non-monotone nature of widening/narrowing operators.

To illustrate these points, let us consider two strategies for our analysis exam-
ple. Both strategies have widening/narrowing points at 1 and 2, the loop entries.
The first one examines all equations in sequence with order 1 2 3 4 5 until sta-
bilization. The second one has an inner iteration: it waits until the inner loop
(2 3)∗ stabilizes before computing equations 4 and 5. Results are displayed in
Figure 2.

We give for each strategy the details of the ascending iteration with widening
for points 1 and 2, and the final result after widening and narrowing iterations
for all control points. This example shows the importance of choosing a good
strategy: the second strategy which includes an “inner” iteration between points
2 and 3 yields a more precise result. This comes from the widenings performed
at point 2: with strategy (1 2 3 4 5)∗ (Figure 2a), a widening is performed at the
second iteration round on both variables i and j; as J2 depends on J1 computed
in the same round, J2 is “widened” to [0, +∞], even if the inner loop only affects
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Ascending iteration for points 1 and 2

iteration round 1 2 3

I1 [0, 0] [0, 0] [0, +∞]
J1 [0, 0] [0, +∞] [0, +∞]

I2 [0, 0] [0, +∞] [0, +∞]
J2 [0, 0] [0, +∞] [0, +∞]

Post-fixpoint after ascending and descending iterations

I1 = [0, 10] I2 = [0, 10] I3 = [1, 10] I4 = [10, 10] I5 = [0, 10]
J1 = [0, +∞] J2 = [0, +∞] J3 = [0, +∞] J4 = [1, +∞] J5 = [10, +∞]

(a) Strategy (1 2 3 4 5)∗

Ascending iteration for points 1 and 2

iteration round 1 2 3 4 5

I1 [0, 0] [0, 0] [0, 0] [0, +∞] [0, +∞]
J1 [0, 0] [0, 0] [0, 0] [0, +∞] [0, +∞]

I2 [0, 0] [0, +∞] [0, +∞] [0, +∞] [0, +∞]
J2 [0, 0] [0, 0] [0, 0] [0, 9] [0, 9]

Post-fixpoint after ascending and descending iterations

I1 = [0, 10] I2 = [0, 10] I3 = [1, 10] I4 = [10, 10] I5 = [0, 10]
J1 = [0, 10] J2 = [0, 9] J3 = [0, 9] J4 = [1, 10] J5 = [10, 10]

(b) Strategy (1 (2 3)∗ 4 5)∗

Fig. 2. Example of iteration strategies

i; on the contrary, with strategy (1 (2 3)∗ 4 5)∗ (Figure 2b), the value of J1 is not
modified along the inner iteration (2 3)∗, so that J2 is not “widened” too early.

Strategy (1 (2 3)∗ 4 5)∗ is not taken at random: it exactly follows the syntactic
structure of the program, computing fixpoints as would a denotational semantics
do. This is why we consider this kind of strategy in this paper.

3 Language Syntax and Operational Semantics

The analyser we formalize here is taken from an analysis previously designed by
Cousot [5]. We consider a minimal While language whose concrete Coq syntax
is given below. Programs are labelled2 with elements of type word, which plays
a special role in all our development. It is the type of Coq binary numbers with
at most 32 bits and is hence inhabited with a finite number of objects. This
property is crucial in order to ensure termination of fixpoint iteration on arrays
indexed by keys of type word (cf. Section 6). A program is made from a main
instruction, an end label and a set of local variables. The syntax of instructions
contains assignments of a variable by a numeric expression, conditionals, while
loops.

2 Contrary to the example given in Section 2, we give a label to each instruction.
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Definition var := word.
Definition pp := word.
Inductive op := Add | Sub | Mult.
Inductive expr :=
Const (n:Z) | Unknown | Var (x:var) | Numop (o:op)(e1 e2:expr).

Inductive comp := Eq | Lt.
Inductive test :=
| Numcomp (c:comp) (e1 e2:expr) | Not (t:test)
| And (t1 t2:test) | Or (t1 t2:test).
Inductive instr :=

Assign (p:pp) (x:var) (e:expr) | Skip (p:pp)
| Assert (p:pp) (t:test) | If (p:pp) (t:test) (b1 b2:instr)
| While (p:pp) (t:test) (b:instr) | Seq (i1:instr) (i2:instr).
Record program := { p_instr:instr; p_end: pp; vars: list var }.

We give to this language a straightforward small-step operational semantics. An
environment maps variable names to numerical values. A configuration is either
a final environment or an intermediate configuration. The operational semantics
takes the form of a judgment (sos p k (i,ρ) s) that reads as follows: for a
program p there is a one-step transition between an intermediate configuration
(i,ρ) (an instruction and an environment) towards configuration s. Predicate
(subst ρ1 x n ρ2) expresses that the environment ρ2 is the result of the sub-
stitution of x by n in ρ1. The element k records the kind of transition that is
taken. It is a technical trick that will be used and explained later in Section 5.
At last, we build the reflexive transitive closure sos_star of sos.

Definition env := var → Z.
Inductive config := Final (ρ:env) | Inter (i:instr) (ρ:env).
Inductive sos (p:program) : Kind → (instr*env) → config → Prop :=
| sos_assign : ∀ l x e n ρ1 ρ2,
sem_expr p ρ1 e n → subst ρ1 x n ρ2 → In x (vars p) →
sos p (KAssign x e) (Assign l x e,ρ1) (Final ρ2)

[...]
| sos_while_true : ∀ l t b ρ,

sem_test p ρ t true →
sos p (KAssert t) (While l t b,ρ) (Inter (Seq b (While l t b)) ρ)

| sos_while_false : ∀ l t b ρ,
sem_test p ρ t false →
sos p (KAssert (Not t)) (While l t b,ρ) (Final ρ)

| sos_seq1 : ∀ k i1 i2 ρ ρ’,
sos p k (i1,ρ) (Final ρ’) →
sos p (KSeq1 i (first i2)) (Seq i1 i2,ρ) (Inter i2 ρ’)

| sos_seq2 : ∀ k i1 i1’ i2 ρ ρ’,
sos p k (i1,ρ) (Inter i1’ ρ’) →
sos p (KSeq2 k) (Seq i1 i2,ρ) (Inter (Seq i1’ i2) ρ’).

Inductive sos_star (p:program) : (instr*env) → config → Prop :=
| sos_star0 : ∀ i ρ, sos_star p (i,ρ) (Inter i ρ)
| sos_star1 : ∀ k s1 s2, sos p k s1 s2 → sos_star p s1 s2
| sos_trans : ∀ k s1 i ρ s3,

sos p k s1 (Inter i ρ) → sos_star p (i,ρ) s3 → sos_star p s1 s3.
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The soundness theorem of the analyser is expressed in terms of labelled reach-
able states in (pp * env). A special label p_end is attached to final environ-
ments. Function first recursively computes the left-most label of an instruction.

Inductive reachable_sos (p:program) : pp*env → Prop :=
| reachable_sos_intermediate : ∀ ρ0 i ρ,

sos_star p (p_instr p,ρ0) (Inter i ρ) →
reachable_sos p (first i,ρ)

| reachable_sos_final : ∀ ρ0 ρ,
sos_star p (p_instr p,ρ0) (Final ρ) →
reachable_sos p (p_end p,ρ).

4 Lattice Theory Intermezzo

Abstract Interpretation heavily relies on lattice theory to formalize semantic
notions and approximation of properties. In order to define the suitable interme-
diate semantics on our While language in the next section, we need to define
a least fixpoint operator that is defined on complete lattices. We then introduce
several packed structures for equivalence relations, partial orders and complete
lattices. We use here type classes that give elegant notations for defining Coq

records with implicit arguments facilities. Coercions are also introduced in order
to define (Equiv.t A) as subclass of (Poset.t A) (notation :> in the field eq of
the class type Poset.t) and view subset components of type subset A as sim-
ple predicates on A (command Coercion charact : subset >->Funclass).
Some parameters are given with curly braces ‘{...} in order to declare them
as implicit. All these features make the formal definition far more elegant and
concise. For example, in the type declaration of the field join_bound, the term
subset A hides an object (Poset.eq A porder) of type (Equiv.t A) which
is automatically taken from the field porder : Poset.t A of the class type
CompleteLattice.t and the coercion between (Equiv.t A) and (Poset.t A).

We also introduce definitions for lattices (type class Lattice.t) with the
corresponding overloaded symbols ⊥, 
, 	, � but do not show them here, due
to space constraints.

Module Equiv.
Class t (A:Type) : Type :=
{ eq : A → A → Prop;
refl : ∀ x, eq x x; sym : [...]; trans : [...] }.

End Equiv.
Notation "x == y" := (Equiv.eq x y) (at level 40).

Module Poset.
Class t A : Type :=
{ eq :> Equiv.t A;
order : A → A → Prop;
refl : [...]; antisym : [...]; trans : [...] }.

End Poset.
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Notation "x � y" := (Poset.order x y) (at level 40).

Class subset A ‘{Equiv.t A} : Type := SubSet {
charact : A → Prop;
subset_comp_eq : ∀ x y:A, x==y → charact x → charact y}.

Coercion charact : subset >-> Funclass.

Module CompleteLattice.
Class t (A:Type) : Type := {
porder :> Poset.t A;
join : subset A → A;
join_bound : ∀x:A, ∀f:subset A, f x → x � join f;
join_lub : ∀f:subset A, ∀z,(∀ x:A, f x → x � z) → join f � z;}.

End CompleteLattice.

Several canonical structures can be defined for these types. They will be au-
tomatically introduced by the inference system when objects of these types will
be wanted by the type checker.

Notation "’P’ A" := (A → Prop) (at level 10).
Instance PowerSetCL A : CompleteLattice.t (P A) := [...]
Instance PointwiseCL A L ‘{CompleteLattice.t L} :

CompleteLattice.t (A → L) := [...]

Monotone functions are defined with a dependent pair and a coercion.

Class monotone A ‘{Poset.t A} B ‘{Poset.t B} : Type := Mono {
mon_func : A → B;
mon_prop : ∀ a1 a2, a1 � a2 → (mon_func a1) � (mon_func a2)}.

Coercion mon_func : monotone >-> Funclass.

We finish this section with the classical Knaster-Tarski theorem.

Definition lfp ‘{CompleteLattice.t L} (f:monotone L L) : L :=
CompleteLattice.meet (PostFix f).

Section KnasterTarski.
Variable L : Type.
Variable CL : CompleteLattice.t L.
Variable f : monotone L L.
Lemma lfp_fixpoint : f (lfp f) == lfp f. [...]
Lemma lfp_least_fixpoint : ∀ x, f x == x → lfp f � x. [...]
Lemma lfp_postfixpoint : f (lfp f) � lfp f. [...]
Lemma lfp_least_postfixpoint : ∀x, f x � x → lfp f � x. [...]

End KnasterTarski.

5 An Intermediate Collecting Semantics

We now reach the most technical part of our work. One specific feature of the AI
methodology is to give program semantics and program static analyses the same
shape. To that purpose, a collecting semantics is used instead of the standard
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semantics. Its purpose is still to express the dynamic behaviour of programs but
it takes a form closer to that of a static analysis, namely being expressed as a
least fixpoint of an equation system. In this work, we want to certify an abstract
interpreter that inductively follows the syntax of programs and iterates each loop
until convergence. We will thus introduce a collecting semantics that follows the
same strategy, but computes on concrete properties.

In all this section we fix a program prog:program. We first introduce three
semantic operators. Operator assign is the strongest post-condition of the as-
signment of a variable by an expression. Operator assert is the strongest post-
condition of a test. The collecting semantics binds each program point to a
property over reachable environments so that the semantic domain for this se-
mantics is pp →P(A). An element in this domain can be updated with the
function Esubst. Note that it is a weak update since we take the union with the
previous value.

Definition assign (x:var) (e:expr) (E:P(env)) : P(env) :=
fun ρ => ∃ρ’, ∃n, E ρ’ ∧ sem_expr prog ρ’ e n ∧ subst ρ’ x n ρ.

Definition assert (t:test) (E:P(env)) : P(env) :=
fun ρ => E ρ ∧ sem_test prog ρ t true.

Definition Esubst ‘(f:pp → P(A)) (k:pp) (v:P(A)) : pp → P(A) :=
fun k’ => if pp_eq k’ k then (f k) � v else f k’.

Notation "f +[ x 
→ v ]" := (Esubst f x v) (at level 100).

The collecting semantics is then defined by induction on the program syntax.
Function (Collect i l) computes for an instruction i and a label l, a mono-
tone predicate transformer such that for each initial property Env:P(env), all
states (l’,ρ) that are reachable by the execution of i from a state in Env, sat-
isfy (Collect i l Env l’ ρ) where l’ is either a label in i or is equal to l.
The label l should represent the next label after i in the whole program. The
monotony property of this predicate transformer returned by (Collect i l) is
crucial if want to be able to use the lfp operator of the previous section that
takes only monotone functions as argument. For each instruction, we hence build
a term of the form (Mono F _) with F a function and _ a “hole” for the proof
that ensures the monotony of F. All these holes give rise to proof obligations that
are generated by the Program mechanism and must be interactively discharged
after the definition of Collect.

Program Fixpoint Collect (i:instr) (l:pp):
monotone (P(env)) (pp → P(env)) :=

match i with
| Skip p => Mono (fun Env => ⊥ +[p 
→ Env] +[l 
→ Env]) _
| Assign p x e =>
Mono (fun Env => ⊥ +[p 
→ Env] +[l 
→ assign x e Env]) _

| Assert p t =>
Mono (fun Env => ⊥ +[p 
→ Env] +[l 
→ assert t Env]) _

| If p t i1 i2 =>
Mono (fun Env =>

let C1 := Collect i1 l (assert t Env) in
let C2 := Collect i2 l (assert (Not t) Env) in
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(C1 � C2) +[p 
→ Env]) _
| While p t i =>
Mono (fun Env =>

let I:P(env) := lfp (iter Env (Collect i p) t p) in
(Collect i p (assert t I))

+[p 
→ I] +[l 
→ assert (Not t) I]) _
| Seq i1 i2 =>
Mono (fun Env => let C := (Collect i1 (first i2) Env) in

C � (Collect i2 l (C (first i2)))) _
end.

The While instruction is the most complex case. It requires to compute a
predicate I:P(env) that is a loop invariant bound to the label p. It is the least
fixpoint of the monotone operator iter defined below.

Program Definition iter (Env:P(env))
(F:monotone (P(env)) (pp → P(env)))
(t:test) (l:pp) : monotone (P(env)) (P(env)) :=
(Mono (fun X => Env � (F (assert t X) l)) _).

We hence compute the least fixpoint I of the following equation:

I == Env � (Collect i p (assert t I) p)

The invariant is the union of the initial environment (at the entry of the loop) and
the result of the transformation of I by two predicate transformers: assert t

takes into account the entry in the loop, and the recursive call to (Collect i p)

collects all the reachable environments during the execution of the loop body i

and select those that are bound to the label p at the loop header.
Such a semantics is sometimes taken as standard in AI works but here, we

precisely prove its relationship with the more standard semantics of Section 3.
For that purpose, we establish the following theorem.

Theorem sos_star_implies_Collect : ∀ i1 ρ1 s2,
sos_star prog (i1,ρ1) s2 →
match s2 with

| Inter i2 ρ2 => ∀l:pp, ∀Env:P(env),
Env ρ1 → Collect i1 l Env (first i2) ρ2

| Final ρ2 => ∀l:pp, ∀Env:P(env),
Env ρ1 → Collect i1 l Env l ρ2

end.

This theorem is proved by induction on the hypothesis sos_star prog s1 s2.
The first case corresponds to s2=Inter i1 ρ1 and is proved thanks using the
fact that Collect is extensive.

Lemma Collect_extensive : ∀ i, ∀ Env:P(env), ∀l,
Env � Collect i l Env (first i).

The second case corresponds to sos prog s1 s2. It is proved thanks to the
following lemma.
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Lemma sos_implies_Collect : ∀ k i1 ρ1 s2,
sos prog k (i1,ρ1) s2 →
match s2 with

| Inter i2 ρ2 => ∀l:pp, ∀Env:P(env),
Env ρ1 → Collect i1 l Env (first i2) ρ2

| Final ρ2 => ∀l:pp, ∀Env:P(env),
Env ρ1 → Collect i1 l Env l ρ2

end.

The last case corresponds to the existence of an intermediate state (i,ρ) such
that sos prog k (i1, ρ1) (Inter i ρ) and sos_star prog (i, ρ) s2 and
the induction hypothesis holds for (Collect i). In order to connect this in-
duction hypothesis with the goal that deals with (Collect i1), we prove the
following lemma.

Lemma sos_transfer_incl : ∀ k i1 ρ1 i2 ρ2,
sos prog k (i1,ρ1) (Inter i2 ρ2) →
∀Env:P(env), ∀l_end,
Collect i2 l_end (transfer k Env) � Collect i1 l_end Env.

Here (transfer k) is a suitable predicate transformer such that the following
lemma holds.

Lemma sos_transfer : ∀ k i1 ρ1 s2,
sos prog k (i1,ρ1) s2 →
match s2 with

| Inter i2 ρ2 => ∀Env:P(env), Env ρ1 → (transfer k Env) ρ2
| Final ρ2 => ∀Env:P(env), Env ρ1 → (transfer k Env) ρ2

end.

It is defined by the following recursive function using the information k:Kind

that we have attached to each semantic rule in Section 3.

Fixpoint transfer (k:Kind) (Env:P(env)) : P(env) :=
match k with
| KAssign x e => assign x e Env
| KSkip => Env
| KAssert t => assert t Env
| KSeq1 i l => Collect i l Env l
| KSeq2 k => transfer k Env

end.

This ends the proof of theorem sos_star_implies_Collect, from which we
can easily deduce that each reachable state in the standard semantics is reachable
with respect to the collecting semantics.

Definition reachable_collect (p:program) (s:pp*env) : Prop :=
let (k,env) := s in Collect p (p_instr p) (p_end p) (�) k env.

Theorem reachable_sos_implies_reachable_collect :
∀ p s, reachable_sos p s → reachable_collect p s.



20 D. Cachera and D. Pichardie

6 A Certified Abstract Interpreter

We now design an abstract interpreter that, instead of executing a program on
environment properties as the previous collecting semantics do, computes on an
abstract domain with a lattice structure. Such a structure is modelled with a type
class AbLattice.t that packs the same standard components as in Lattice.t

but also decidable tests for equality and partial order, and widening/narrowing
operators. It is equipped with overloaded notations ��, 	�, ��, ⊥�. This abstract
lattice structure has been presented in an earlier paper [14]. The lattice signa-
ture contains a well-foundedness proof obligation which ensures termination of
a generic post-fixpoint iteration algorithm.

Definition approx_lfp : ∀ ‘{AbLattice.t t}, (t → t) → t := [...]
Lemma approx_lfp_is_postfixpoint : ∀ ‘{AbLattice.t t} (f:t → t),

f (approx_lfp f) �� (approx_lfp f).

A library is provided to build complex lattice objects with various functors for
products, sums, lists and arrays [14]. Arrays are defined by means of binary trees
whose keys are elements of type word. The corresponding functor ArrayLattice
given below relies on the finiteness of word to prove the convergence of the
pointwise widening/narrowing operators on arrays.

Instance ArrayLattice t ‘{L:AbLattice.t t}: AbLattice.t(array t).

We connect concrete and abstract lattices with concretization functions that
enjoy a monotony property together with a meet morphism property. This for-
malization choice is motivated by our previous study of embedding AI framework
in the constructive logic of Coq [13].

Module Gamma.
Class t a A ‘{Lattice.t a} ‘{AbLattice.t A} : Type := {

γ : A → a;

γ_monotone : ∀ N1 N2:A, N1 �� N2 → γ N1 � γ N2;

γ_meet_morph : ∀ N1 N2:A, γ N1  γ N2 � γ (N1 � N2)
}.
End Gamma.
Coercion Gamma.γ : Gamma.t >-> Funclass.

Using the new Coq type class feature we have extended our previous lattice
library with concretization functors in order to build concretization operators
in a modular fashion. We show below the signature of the array functor. This
kind of construction was difficult with Coq modules that are not first class
citizens, whereas it is often necessary to let concretizations depend on elements
as programs.

Instance GammaFunc ‘{Gamma.t a A} : Gamma.t (word → a)(array A).

Our abstract interpreter is parameterized with respect to an abstraction of
program environments given below. The structure encloses a concretization oper-
ator mapping environment properties to an abstract lattice, two correct approx-
imations of the predicate transformers Collect.assign and Collect.assert

defined in Section 5, and an approximation of the “don’t know” predicate.
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Module AbEnv.
Class t ‘(L:AbLattice.t A) (p:program) : Type := {

gamma :> Gamma.t (P env) A;
assign : var → expr → A → A;
assign_correct : ∀ x e,
(Collect.assign p x e) ◦ gamma � gamma ◦ (assign x e);

assert : test → A → A;
assert_correct : ∀ t,
(Collect.assert p t) ◦ gamma � gamma ◦ (assert t);

top : A;
top_correct : � � gamma top

}.
End AbEnv.

The abstract interpreter AbSem is then defined in a section where we fix a
program and an abstraction of program environments. Its definition perfectly
mimics the collecting semantics. We use the abstract counterpart F +[p 
→Env]�

of the operator Esubst that has been defined in Section 5. The main difference
is found for the While instruction where we don’t use a least fixpoint operator
but the generic post-fixpoint solver approx_lfp.

Section prog.
Variable (t : Type) (L : AbLattice.t t)

(prog : program) (Ab : AbEnv.t L prog).

Fixpoint AbSem (i:instr) (l:pp) : t → array t :=
match i with

| Skip p => fun Env => ⊥� +[p 
→ Env]� +[l 
→ Env]�

| Assign p x e =>

fun Env => ⊥� +[p 
→ Env]� +[l 
→ Ab.assign Env x e] �

| Assert p t =>

fun Env => ⊥� +[p 
→ Env]� +[l 
→ Ab.assert t Env]�

| If p t i1 i2 => fun Env =>
let C1 := AbSem i1 l (Ab.assert t Env) in
let C2 := AbSem i2 l (Ab.assert (Not t) Env) in

(C1 �� C2) +[p 
→ Env]�

| While p t i => fun Env =>

let I := approx_lfp (fun X => Env ��

(get (AbSem i p (Ab.assert t X)) p)) in

(AbSem i p (Ab.assert t I))+[p 
→ I]�+[l 
→ Ab.assert (Not t) I] �

| Seq i1 i2 => fun Env =>
let C := (AbSem i1 (first i2) Env) in

C �� (AbSem i2 l (get C (first i2)))
end.

This abstract semantics is then proved correct with respect to the collecting
semantics Collect and the canonical concretization operator on arrays. The
proof is particularly easy because Collect and AbSem share the same shape.

Definition γ : Gamma.t (word → P(env)) (array t) := GammaFunc.
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Lemma AbSem_correct : ∀ i l_end Env,
Collect prog i l_end (Ab.γ Env) � γ (AbSem i l_end Env).

At last we define the program analyser and prove that it computes an over-
approximation of the reachable states of a program. This a direct consequence
of the previous lemma. Note that this final theorem deals with the standard
operational semantics proposed in Section 3. The collecting semantics in only
used as an intermediate step in the proof.

Definition analyse : array t :=
AbSem prog.(p_instr) prog.(p_end) (Ab.top).

Theorem analyse_correct : ∀ k env,
reachable_sos prog (k,env) → Ab.γ (get analyse k) env.

In order to instantiate the environment abstraction, we provide a functor that
builds a non-relational abstraction from any numerical abstraction by binding a
numerical abstraction to each program variable.

Instance EnvNotRelational ‘(NumAbstraction.t L) (p:program) :
AbEnv.t (ArrayLattice L) p.

Due to the lack of space, the type NumAbstraction.t is not described in this
paper. We have instantiated it with interval, sign and congruence abstractions.
The different instances of the analyser can be extracted to Ocaml code and run
on program examples3.

7 Related Work

The analyser we have formalized here is taken from lecture notes by Patrick
Cousot [5,4]. We follow only partly his methodology here. Like him, we rely on a
collecting semantics which gives a suitable semantic counterpart to the abstract
interpreter. This semantics requires elements of lattice theory that, as we have
demonstrated, fit well in the Coq proof assistant. One first difference is that
we don’t take this collecting semantics as standard but formally link it with a
standard small-step semantics. A second difference concerns the proof technique.
Cousot strives to manipulate Galois connections, which are the standard abstract
interpretation constructs used for designing abstract semantics. Given a concrete
lattice of program properties and an abstract lattice (on which the analyser
effectively computes), a pair of operators (α, γ) is introduced such that α(P )
provides the best abstraction of a concrete property P , and γ(P �) is the least
upper bound of the concrete properties that can be soundly approximated by the
abstract element P �. With such a framework it is possible to express the most
precise correct abstract operator f � = α ◦ f ◦ γ for a concrete f . Patrick Cousot
in another set of lecture notes [5] performs a systematic derivation of abstract
transfers functions from specifications of the form α◦f ◦γ. We did not follow this
kind of symbolic manipulations here because they will require much proof effort:
each manipulation of α requires to prove a property of optimal approximation.
3 The Coq development is available at
http://irisa.fr/celtique/pichardie/ext/itp10
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This is only useful for tracking the third category of static analysis failures we
have mentioned in the introduction of this paper.

Our abstract interpreter may appear as a toy example but it is often pre-
sented [16] as the core of the Astrée static analyser for C [7]. The same iter-
ation strategy is used and the restrictions on the C language that are common
in many critical embedded systems (no recursion, restricted use of pointers) al-
low Astrée to concentrate mainly on While static analysis techniques. We are
currently studying how we might formally link our current abstract interpreter
with the formal semantics [3] of the CompCert project. This project is dedicated
to the certification of a realistic optimizing C compiler and has so far [10] only
be interested in data flow analyses without widening/narrowing techniques.

The While language has been the subject of several machine-checked se-
mantics studies [8,12,2,9] but few have studied the formalization of abstract
interpretation techniques. A more recent approach in the field of semantics for-
malization is the work of Benton et al. [1] which gives a Coq formalization of
cpos and of the denotational semantics of a simple functional language. A first
attempt of a certified abstract interpreter with widening/narrowing iteration
techniques has been proposed by Pichardie [13]. In this previous work, the anal-
yser was directly generating an (in)equation system that was solved with a naive
round-robin strategy as in Figure 2a. The soundness proof was performed with
respect to an ad-hoc small-step semantics. Bertot [2] has formalized an abstract
interpreter whose iteration strategy is similar to ours. His proof methodology dif-
fers from the traditional AI approach since the analyser is proved correct with
respect to a weakest-precondition calculus. The convergence technique is more
ad hoc than the standard widening/narrowing approach we follow. We believe
the inference capability of the abstract interpreters are similar but again, our
approach follows more closely the AI methodology with generic interfaces for
abstraction environments and lattice structures with widening/narrowing. We
hence demonstrate that the Coq proof assistant is able to follow more closely
the textbook approach.

8 Conclusion and Perspectives

We have presented a certified abstract interpreter for a While language which
is able to automatically infer program invariants. We have in particular studied
the syntax-directed iteration strategy that is used in the Astrée tool. A similar
interpreter had been proposed earlier [2] but our approach follows more closely
the AI methodology. The key ingredient of the formalization is an intermedi-
ate collecting semantics which is proved conservative with respect to a classical
structural operational semantics [15].

The current work is a first step towards a global objective of putting in the
Coq proof assistant most of the advanced static analysis techniques that are used
in an analyser like Astrée. We could enhance it by function calls, that would be
very easy to handle if we avoid recursion: as our abstract interpreter is denota-
tional, i.e. is able to take any abstract property as input of a block and compute
a sound over-approximation of the states reachable from it. In this work we have
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computed an invariant for each program point but Astrée spares some com-
putations keeping as few invariants as possible during iteration, and we should
also consider that approach. These topics only concern the generic interpreter
but we will have to combine this core interpreter with suitable abstract domains
like octogons for floating-point arithmetic [11] or fine trace abstractions [16].
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11. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

12. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing 10, 171–186 (1998)

13. Pichardie, D.: Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés. PhD thesis, Université Rennes 1 (2005) (in french)
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Abstract. This paper presents a formal proof of Vitali’s theorem that
not all sets of real numbers can have a Lebesgue measure, where the
notion of “measure” is given very general and reasonable constraints. A
careful examination of Vitali’s proof identifies a set of axioms that are
sufficient to prove Vitali’s theorem, including a first-order theory of the
reals as a complete, ordered field, “enough” sets of reals, and the axiom
of choice. The main contribution of this paper is a positive demonstration
that the axioms and inference rules in ACL2(r), a variant of ACL2 with
support for nonstandard analysis, are sufficient to carry out this proof.

1 Introduction

The notion of Lebesgue measure, reviewed in section 2, generalizes the concept
of length for sets of real numbers. It is a surprising result in real analysis that
not all sets of real numbers can be adequately assigned a measure, provided that
the notion of “measure” conforms to some reasonable constraints, such as the
measure defined by Lebesgue. This paper presents a formal proof of this result,
which is due to Vitali.

The formal proof is carried out in ACL2(r), a variant of ACL2 that offers sup-
port for nonstandard analysis. Although ACL2(r) adds built-in support for key
concepts from nonstandard analysis, such as “classical” and “standard part”,
it retains the strengths and limitations of ACL2. In particular, it is a strictly
first-order theory, with only limited support for quantifiers. One important log-
ical feature of ACL2 and ACL2(r) is the introduction of constrained functions,
which allows these theorem provers to reason about classes of functions, e.g.,
all continuous functions, in a strictly first-order setting. This is similar to the
mathematical practice of reasoning about a generic continuous function, in or-
der to establish a theorem that applies to all continuous functions. Moreover,
ACL2 and ACL2(r) support a definition principle that allows the introduction
of “choice” functions via a Skolem axiom. This powerful definitional principle
works as follows. Let φ be a formula whose only free variables are v, x1, x2, . . . ,
xn. The Skolem axiom introducing f from φ with respect to v is

φ ⇒ let v = f(x1, x2, . . . , xn) in φ
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What this axiom states is that the function f can “choose” an appropriate v for
a given x1, x2, . . . , xn, provided such a choice is at all possible. This principle
was recently “strengthened” in ACL2, and the strong version of this principle
takes the place of the Axiom of Choice in the formal proof of Vitali’s Theorem.
We do not believe that this proof could have been carried out using the original
version of this definitional principle. Perhaps surprisingly, these two definitional
principles are conservative in the logic of ACL2. This logic is precisely described
in [7,3].

The paper is organized as follows. In section 2, we review the notion of
Lebesgue measure, and we discuss the properties that a “reasonable” measure
should have. This is followed by a review of Vitali’s theorem in section 3. This
is followed by a more introspective consideration of Vitali’s proof. In section 4,
we consider the key logical arguments that make up Vitali’s proof and demon-
strate how these have been formalized in ACL2(r). Note that this paper is self-
contained. In particular, we do not assume that the reader is intimately familiar
with Lebesgue measure, nonstandard analysis, or ACL2(r). Rather, we present
the necessary background as it is needed.

2 Lebesgue Measure

The length of an interval of real numbers is the difference of the endpoints of the
interval. Intervals include open, closed, and half-open intervals, with their usual
meaning: (a, b), [a, b], (a, b], and [a, b). Lebesgue measure extends the notion of
length to more complicated sets than intervals.

One way to extend this notion is to introduce some “infinite” reals. The ex-
tended reals add the “numbers” +∞ and −∞ to the set of reals. These numbers
are introduced so that they generalize the arithmetic and comparison operations
in the obvious way. For example, x < +∞ for any x other than +∞. Similarly,
x + ∞ = ∞ for any x other than −∞; the sum (+∞) + (−∞) is not defined.

The other way in which the Lebesgue measure m(S) extends the notion of
length is to consider the measure of sets S that are not intervals. Lebesgue
developed this notion by considering the sum of the length of sets of intervals
that completely cover S. The details of that construction are not necessary for
the remainder of this paper, but the interested reader is referred to [9].

2.1 Properties of an Ideal Measure

Ideally, the Lebesgue measure m should have the following properties:

1. m(S) is a nonnegative extended real number, for each set of real numbers;
2. for an interval I, m(I) = length(I);
3. m is countably additive: if 〈Sn〉 is a sequence of disjoint sets for which m is

defined, then m (
⋃

Sn) =
∑

m(Sn);
4. m is translation invariant: if S is a set of reals for which m is defined and r is

a real number, let S + r be the set {s + r | s ∈ S}. Then m(S + r) = m(S).
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5. m is finitely additive: if S1 and S2 are disjoint sets, for which m is defined,
then m(S1 ∪ S2) = m(S1) + m(S2).

6. m is monotonic: if S1 ⊆ S2 are sets for which m is defined, then m(S1) ≤
m(S2).

The last two properties can be derived from the previous ones.
Although these properties seem quite reasonable, they are contradictory. For

instance, if properties (2)-(4) hold, then using the axiom of choice, a set (called V
below) of real numbers can be constructed that cannot have Lesbegue measure,
thus property (1) is violated. Such sets are called non-measurable sets.

3 Vitali’s Theorem

Given a set S, a σ-algebra is a set of subsets of S that is closed under complements
relative to S, finite unions, and countable unions. That is, if A is a σ-algebra of
subsets of the set S, then

∅ ∈ A
if A ∈ A, then S − A ∈ A,
if A ∈ A and B ∈ A, then A ∪ B ∈ A, and
if 〈Ai〉 is a sequence of sets in A, then

⋃∞
i=0 Ai ∈ A.

By DeMorgan’s Laws, a σ-algebra is closed under finite and countable intersec-
tions.

In the sequel, let Q be the set of all rationals and R be the set of all reals.

Definition 1 (Vitali’s Set V). Let E be the equivalence relation defined by

xEy ⇔ x, y ∈ [0, 1) ∧ x − y ∈ Q.

By the Axiom of Choice, there is a set V that contains exactly one element from
each equivalence class.

This definition of the set V is essentially due to Vitali [11], who also showed that
V is not Lebesgue measurable.

Theorem 1. If m is a countably additive, translation invariant measure de-
fined on a σ-algebra containing the intervals and the set V (defined above), then
m([0, 1)) is either 0 or infinite.

Proof. V ⊆ [0, 1) has the property that for each x ∈ [0, 1) there is a unique
y ∈ V and a unique q ∈ Q such that x = y + q.

Consider two cases.

– Case 1. m(V ) = 0.
Since [0, 1) ⊆ ⋃{V + q | q ∈ Q},

m([0, 1)) ≤ m
(⋃

{V + q | q ∈ Q}
)
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=
∑
q∈Q

m(V + q)

=
∑
q∈Q

m(V )

=
∑
q∈Q

0

= 0.

– Case 2. m(V ) > 0.
Since

m
(⋃

{V + q | 0 ≤ q < 1 ∧ q ∈ Q}
)

=
∑

q∈[0,1)∩Q

m(V + q)

=
∑

q∈[0,1)∩Q

m(V )

= +∞
and

⋃{V + q | 0 ≤ q < 1 ∧ q ∈ Q} ⊆ [0, 2),

+∞ = m
(⋃

{V + q | 0 ≤ q < 1 ∧ q ∈ Q}
)

≤ m([0, 2)).

Thus

+∞ = m([0, 2))
= m([0, 1)) + m([1, 2))
= m([0, 1)) + m([0, 1) + 1)
= m([0, 1)) + m([0, 1))
= 2 · m([0, 1))

and so m([0, 1)) = +∞.

Thus the set V cannot be Lebesque measurable, for otherwise

m([0, 1)) �= 1 = length([0, 1)).

	�
We emphasize that we have not developed Lebesgue measure. Peter Loeb[5]
found a way to use nonstandard analysis to develop Lebesgue measure on the
set of standard real numbers.

4 What Is Needed for the Proof

In order to carry out Vitali’s proof, we must have a significant logical machinery
in place. First of all, we must have a theory of the real numbers, at least enough
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to formalize the reals as a complete, ordered field. Second, we must be able
to reason about sets of reals. A complete set theory is not necessary, however.
Only enough set theory to construct and manipulate V is required. Finally, the
construction of V depends on the Axiom of Choice, so something similar to it
must be available. In this section, we show how the logical machinery of ACL2(r)
addresses these requirements.

4.1 First-Order Theory of the Reals

ACL2(r) introduces the real numbers using nonstandard analysis. A full treat-
ment of nonstandard analysis can be found in [8], and the formalization of non-
standard analysis in ACL2(r) in [4]. In the following paragraphs, we present a
brief description of nonstandard analysis in ACL2(r), for the benefit of readers
who are unfamiliar with either.

In nonstandard analysis, the integers are classified as either standard or non-
standard. All of the familiar integers happen to be standard ; however, there is at
least one nonstandard integer N . Necessarily, ±N , ±(N ± 1), . . .±(N ± k) are
all nonstandard for any standard integer k. But notice that if k is nonstandard,
N − k may well be standard, e.g., when k = N . A number is called i-large if its
magnitude is larger than any standard integer. The notion of i-large captures in
a formal sense the intuitive notion of an “infinite” integer. An important fact is
that all algebraic properties of the integers hold among both the standard and
nonstandard integers.

These notions are easily extended to the reals. There are i-large reals, such
as N ,

√
N , eN , etc. Consequently, there are also non-zero reals with magnitude

smaller than any standard real, such as 1/N . Such reals are called i-small and
correspond with the intuitive notion of “infinitesimal.” Note that the only stan-
dard number that is also i-small is zero. A number that is not i-large is called
i-limited. All standard numbers are i-limited, as are all i-small numbers, as is
the sum of any two i-limited numbers. Note that the nonstandard integers are
precisely the i-large integers.

Two numbers are considered i-close if their difference is i-small. We write
x ≈ y to mean that x is i-close to y. Every i-limited number x is i-close to a
standard real, so it can be written as x = σ(x) + ε, where σ(x) is standard and
ε is i-small. We call σ(x) the standard part of x. Note that an i-limited number
x can be i-close to only one standard number, so standard part is well defined.
We note that the standard part function takes the place of least upper bounds
and completeness of the reals in many arguments in analysis. Specifically, we use
this notion for summing infinite series.

While there is much more to nonstandard analysis in ACL2(r), the notions
above will be sufficient for the remainder of this paper. Before moving on to other
aspects of the proof, however, it is beneficial to address alternative viewpoints
of nonstandard analysis. One viewpoint holds that “standard” is a new property
of numbers, one that cannot be captured in regular analysis. In this viewpoint,
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operations such as + and − are effectively unchanged, and they still operate over
the same set of reals as before. An alternative viewpoint is that nonstandard
analysis extends the real number line by introducing both infinitely small and
infinitely large numbers, much in the same way that the reals can be constructed
from the rationals.

These two viewpoints can be reconciled. For clarity, we refer to the traditional
reals as “the reals” and the extended reals as “the hyperreals”. In the first
viewpoint, the set R corresponds to the hyperreals, and the reals are the elements
of R that happen to be standard. In the second viewpoint, the set R denotes the
reals (as usual), which are all standard, and the hyperreals are denoted by R∗.
ACL2(r) adopts the first viewpoint, so the predicate (REALP X) is true for any
hyperreal X.

4.2 Sets of Reals

In this section we describe how we represent sets of reals in ACL2(r).
Some sets are represented by designated ACL2(r) λ-expressions. Each such

λ-expression, Λ, represents the set of all ACL2(r) objects, a, for which the λ-
application (Λ a) evaluates to an ACL2(r) object other than NIL.

For example, the empty set ∅ is represented by the ACL2(r) λ-expression

(LAMBDA (X) (NOT (EQUAL X X))).

and the interval [0, 1) is represented by the expression

(LAMBDA (X)
( (LAMBDA (A B X)

(AND (REALP X)
(AND (<= A X)

(< X B))))
’0
’1
X )).

Note that these are simply ACL2(r) literal constants—not functions. To treat
them as functions, they are passed as arguments to an evaluator that mimics
their execution. Evaluators can be defined in ACL2 and ACL2(r) for any finite
set of previously defined functions. We defined an evaluator that knows about
functions such as and, +, realp, <, and more specialized functions such as Vp
and Seq1 which are useful in the construction of V .

Once the evaluator is defined, it is almost mechanical to define functions to
test for set membership, union, intersection, etc. The test for membership calls
the evaluator, while the set operations manipulate the λ-expressions. Note that
these functions operate over the hyperreals, since ACL2(r) interprets REALP as
a recognizer for the hyperreals. However, parts of the argument are restricted
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to the reals, so we also defined membership predicates and set operations that
interpret the expressions as ranging only over the (standard) reals1.

We mention in passing that the definition of the set equality and subset pred-
icates make use of the ACL2’s limited support for quantification. This support is
based on the idea of Skolem functions (which find either a witness or a counterex-
ample to model ∃ and ∀). We will discuss these functions later, in the context
of the Axiom of Choice.

We turn our attention now to the definition of countably infinite unions and
intersections. Let Φ be a λ-expression, defining a unary function, whose do-
main includes the standard nonnegative integers, and whose range consists of
λ-expressions, like those discussed above, that define sets. Then Φ enumerates a
countable collection of sets. Let

⋃
Φ be the union, over all standard nonnegative

integers, k, of the sets represented by the evaluation of the λ-applications, (Φ k).
We can represent

⋃
Φ in our set notation as follows. First, consider

⋃
n Φ,

defined as the union of the sets (Φ k) for integer k up to n. Then
⋃

n Φ can
be represented as a λ-expression that encodes a disjunction of the (Φ k). Now
suppose that n is an i-large integer. Then

⋃
n Φ amounts to a λ-expression con-

taining an “infinite” disjunction, and this is what we use to represent
⋃

Φ. In
particular, let M be the set of standard nonnegative integers. Then ACL2(r) can
prove that for standard x, x is a member of

⋃
Φ if and only if ∃k ∈ M such that

x is a member of the evaluation of the application (Φ k).
Notice that we don’t quite have a σ-algebra of sets: We cannot form “infinite”

unions of “infinite” unions. That is “infinite” unions are not allowed to be in
the range of the λ-expression Φ. Nevertheless, enough sets exist to carry out the
proof.

Since ACL2(r) is first-order, it is not possible in ACL2(r) to quantify over
arbitrary σ-algebras and measures. However, we do have the ability to refer
explicitly to many sets, including intervals and the set V , via their λ-expression
definitions. Moreover, set operations including translations, unions, and even
countable unions can all be done by manipulating such definitions.

Recall that ACL2(r) allows constrained functions. So a function m can be
consistently constrained to satisfy versions of the required measure axioms that
explicitly refer to λ definitions of sets.

For example, m can be constrained to satisfy axioms such as

– If S is the λ definition of a set of (standard) real numbers, then m(S) is a
nonnegative extended (standard) real.

– m is finitely and countably additive for definable sets of standard reals.
– m is translation invariant on definable sets of standard reals.

This means that the version of Theorem 1 that we actually prove can be formally
stated as follows:
1 Readers familiar with ACL2(r) may note that evaluators cannot be defined over the

function standardp, due to limitations regarding recursion in the current version
of ACL2(r). Defining different set operations so that REALP can be interpreted as a
recognizer either for the reals or hyperreals solves this difficulty.
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Theorem 2. If m is a finitely and countably additive, translation invariant mea-
sure defined on a σ-algebra containing the λ-definable sets of standard reals, then
m([0, 1)) is either 0 or infinite.

Since m is constrained, we cannot explicitly state the theorem in ACL2(r), but
we can, indeed, carry out the proof!

4.3 The Axiom of Choice

The Axiom of Choice postulates[6]: For every set S of nonempty sets, there is a
function f such that for each set s ∈ S, f(s) ∈ s. Such a function f is called a
choice function for S.

ACL2(r) implements first-order quantification by axiomatizing Skolem func-
tions. That is, by suitably generalizing the following: ∃yϕ(x, y) is defined to be
ϕ(x, f(x)), where x is the free variable in ∃yϕ(x, y) and the Skolem function f
is a new function symbol satisfying the new Skolem axiom ϕ(x, y) → ϕ(x, f(x)).
The Skolem axiom means that the Skolem function can be viewed as a choice
function: f(x) chooses a value so that ϕ(x, f(x) will be true, if such a value
exists.

ACL2(r) explicitly implements Skolem functions as choice functions. One ap-
plication of choice functions is the selection of a canonical element from each
member of an equivalence class, as is done in Vitali’s definition of the set V .
However, before ACL2 version 3.1, this was not possible in ACL2.

Some of the discussions at recent ACL2 Workshops centered around this lim-
itation of ACL2, and ACL2 was modified as a result of these discussions. To
understand the precise limitation, consider an equivalence relation E. The fol-
lowing ACL2 event picks an equivalent y for each x:

(defchoose E-selector-weak (x) (y)
(E x y))

So (E-selector-weak x) is always E-equivalent to x. However, suppose that x1
is E-equivalent to x2. Then ACL2 does not guarantee any relationship between
(E-selector-weak x1) and (E-selector-weak x2). Hence E-selector-weak
cannot be used to select a canonical member from each E-equivalence class.

The solution was to create a stronger defchoose function in ACL2, and this
is done with the :strengthen keyword. In particular, the following defchoose
does select a canonical element from each class:

(defchoose E-selector (x) (y)
(E x y)
:strengthen t)

Now, if x1 is E-equivalent to x2, then (E-selector x1) is guaranteed to be
equal to (E-selector x2). So the range of E-selector is the set of canonical
elements from the equivalence classes, as needed in the definition of Vitali’s set
V .
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It would be easy to formalize the canonicalizing behavior of E-selector in
a higher-order logic, but it requires a little care to do so in first-order logic.
The :strengthen option formalizes this by adding one more constraint on the
choice function E-selector. In particular, the defchoose function introduces
the following constraining axioms:

– If there is any x such that (E xy) is true, then (E (E-selector y) y) is also
true.

– For all possible y1, at least one of the following must hold:
• (E-selector y) = (E-selector y1).
• (E (E-selector y) y) is true, but (E (E-selector y) y1) is false.
• (E (E-selector y1) y1) is true, but (E (E-selector y1) y) is false.

These axioms guarantee that E-selector chooses the same canonical value for
each y any given equivalence class.

We do not believe that V could have been defined before the introduction of
:strengthen into ACL22. Specifically, we believe that without :strengthen,
ACL2 does not have enough logical firepower to carry out many arguments that
depend on the Axiom of Choice. However, even without :strengthen, ACL2
was able to prove some consequences of the Axiom of Choice that are strictly
weaker than the Axiom. One of these is the Principle of Dependent Choices[6].

Definition 2 (Principle of Dependent Choices). If ρ is a binary relation on
a nonempty set S such that for every x ∈ S there is a y ∈ S with xρy, then there
is a sequence 〈xn〉 of elements from S such that x0ρx1, x1ρx2, . . . , xnρxn+1, . . ..

We have proved a version of Dependent Choices in ACL2(r) just using the orig-
inal Skolem axioms for choice functions, without the strengthening used to es-
tablish that choice functions can be made to select unique representatives from
equivalence classes[1].

It is noteworthy, however, that Solovay[10] has shown that there is a model of
set theory that satisfies the Principle of Dependent Choices, but in which every
set of real numbers is Lebesgue measurable.

Moreover, the Principle of Dependent Choices is enough to make it possible
to define a satisfactory Lebesgue measure[6]. Dependent Choices ensures, for
example, that the set of all real numbers is not the countable union of countable
sets and allows proofs of all the “positive” properties, desired by the analysts,
of Lebesgue measure.

5 Conclusions

This paper described a formal proof of Vitali’s Theorem. The proof depends on
three pillars:

– A first-order theory of the reals, as provided by nonstandard analysis in
ACL2(r).

2 In fact, it was precisely this introduction that motivated our current work.
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File Definitions Theorems Hints
Analysis fundamentals 17 76 46
Extended reals 10 45 8
Enumeration of rationals 14 64 37
Set Support 50 146 70
Vitali’s Construction 3 12 6
Vitali’s Proof 0 81 57
Dependent choices 6 4 0

Fig. 1. Effort of work

– A theory of sets sufficient to reason about countable unions of sets of reals.
This theory could take many forms, but we chose a representation based on
unary λ-expressions and an evaluator that interprets those expressions.

– The Axiom of Choice, which was simulated using Skolem choice functions in
ACL2(r).

The third pillar is the most surprising, since it depends on the :strengthen
feature of Skolem functions, which was only recently introduced into ACL2.

Figure 1 gives an idea of the effort to formalize Vitali’s Theorem. The complete
ACL2 proof scripts are available from the authors, and they will be added to
the ACL2-Books Repository [2].

References

1. Cowles, J.: ACL2 book: Principle of dependent choices. Formal proof script avail-
able from author (2010)

2. Davis, J.: Acl2-books repository. Presented at the ACL2 Workshop (2009)
3. Gamboa, R., Cowles, J.: Theory extension in ACL2(r). Journal of Automated Rea-

soning (May 2007)
4. Gamboa, R., Kaufmann, M.: Nonstandard analysis in ACL2. Journal of Automated

Reasoning 27(4), 323–351 (2001)
5. Goldblatt, R.: Lectures on the Hyperreals: An Introduction to Nonstandard Anal-

ysis, ch. 16. Springer, Heidelberg (1998)
6. Jech, T.J.: The Axiom of Choice, vol. 75. North-Holland Publishing Company,

Amsterdam (1973)
7. Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic.

Journal of Automated Reasoning 26(2), 161–203 (2001)
8. Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bulletin

of the American Mathematical Society 83, 1165–1198 (1977)
9. Royden, H.L.: Real Analysis, 2nd edn. Macmillan, Basingstoke (1968)

10. Solovay, R.M.: A model of set theory in which every set of reals is Lebesgue mea-
surable. Annals of Mathematics 92, 1–56 (1970)

11. Vitali, G.: Sul problema della mesura dei gruppi di una retta (1905)



A New Foundation for Nominal Isabelle

Brian Huffman1 and Christian Urban2

1 Portland State University
2 Technical University of Munich

Abstract. Pitts et al introduced a beautiful theory about names and binding
based on the notions of permutation and support. The engineering challenge is
to smoothly adapt this theory to a theorem prover environment, in our case Is-
abelle/HOL. We present a formalisation of this work that differs from our earlier
approach in two important respects: First, instead of representing permutations
as lists of pairs of atoms, we now use a more abstract representation based on
functions. Second, whereas the earlier work modeled different sorts of atoms us-
ing different types, we now introduce a unified atom type that includes all sorts
of atoms. Interestingly, we allow swappings, that is permutations build from two
atoms, to be ill-sorted. As a result of these design changes, we can iron out incon-
veniences for the user, considerably simplify proofs and also drastically reduce
the amount of custom ML-code. Furthermore we can extend the capabilities of
Nominal Isabelle to deal with variables that carry additional information. We end
up with a pleasing and formalised theory of permutations and support, on which
we can build an improved and more powerful version of Nominal Isabelle.

1 Introduction

Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem prover provid-
ing a proving infrastructure for convenient reasoning about programming languages.
It has been used to formalise an equivalence checking algorithm for LF [11], Typed
Scheme [10], several calculi for concurrency [1] and a strong normalisation result for
cut-elimination in classical logic [13]. It has also been used by Pollack for formalisa-
tions in the locally-nameless approach to binding [9].

At its core Nominal Isabelle is based on the nominal logic work of Pitts et al [5,8].
The most basic notion in this work is a sort-respecting permutation operation defined
over a countably infinite collection of sorted atoms. The atoms are used for representing
variables that might be bound. Multiple sorts are necessary for being able to represent
different kinds of variables. For example, in the language Mini-ML there are bound term
variables and bound type variables; each kind needs to be represented by a different sort
of atoms.

Unfortunately, the type system of Isabelle/HOL is not a good fit for the way atoms
and sorts are used in the original formulation of the nominal logic work. Therefore it
was decided in earlier versions of Nominal Isabelle to use a separate type for each sort
of atoms and let the type system enforce the sort-respecting property of permutations.
Inspired by the work on nominal unification [12], it seemed best at the time to also
implement permutations concretely as lists of pairs of atoms. Thus Nominal Isabelle
used the two-place permutation operation with the generic type
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c© Springer-Verlag Berlin Heidelberg 2010
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· :: (α × α) list ⇒ β ⇒ β

where α stands for the type of atoms and β for the type of the objects on which the
permutation acts. For atoms of type α the permutation operation is defined over the
length of lists as follows

[] · c = c (a b)::π · c =

⎧⎪⎨
⎪⎩

a if π · c = b

b if π · c = a

π · c otherwise

(1)

where we write (a b) for a swapping of atoms a and b. For atoms of different type, the

permutation operation is defined as π · c
def
= c.

With the list representation of permutations it is impossible to state an “ill-sorted”
permutation, since the type system excludes lists containing atoms of different type.
Another advantage of the list representation is that the basic operations on permutations
are already defined in the list library: composition of two permutations (written @ )
is just list append, and inversion of a permutation (written −1) is just list reversal. A
disadvantage is that permutations do not have unique representations as lists; we had to
explicitly identify permutations according to the relation

π1 ∼ π2
def
= ∀ a. π1 · a = π2 · a (2)

When lifting the permutation operation to other types, for example sets, functions and
so on, we needed to ensure that every definition is well-behaved in the sense that it
satisfies the following three permutation properties:

i) [] · x = x
ii) (π1 @ π2) · x = π1 · (π2 · x)

iii) if π1 ∼ π2 then π1 · x = π2 · x
(3)

From these properties we were able to derive most facts about permutations, and the
type classes of Isabelle/HOL allowed us to reason abstractly about these three proper-
ties, and then let the type system automatically enforce these properties for each type.

The major problem with Isabelle/HOL’s type classes, however, is that they support
operations with only a single type parameter and the permutation operations · used
above in the permutation properties contain two! To work around this obstacle, Nom-
inal Isabelle required the user to declare up-front the collection of all atom types, say
α1,. . . ,αn. From this collection it used custom ML-code to generate n type classes cor-
responding to the permutation properties, whereby in these type classes the permutation
operation is restricted to

· :: (αi × αi) list ⇒ β ⇒ β

This operation has only a single type parameter β (the αi are the atom types given by
the user).
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While the representation of permutations-as-lists solved the “sort-respecting”
requirement and the declaration of all atom types up-front solved the problem with
Isabelle/HOL’s type classes, this setup caused several problems for formalising the
nominal logic work: First, Nominal Isabelle had to generate n2 definitions for the per-
mutation operation over n types of atoms. Second, whenever we need to generalise
induction hypotheses by quantifying over permutations, we have to build cumbersome
quantifications like

∀π1 . . . ∀πn. . . .

where the πi are of type (αi × αi) list. The reason is that the permutation operation
behaves differently for every αi. Third, although the notion of support

supp :: β ⇒ α set

which we will define later, has a generic type α set, it cannot be used to express the
support of an object over all atoms. The reason is again that support can behave differ-
ently for each αi. This problem is annoying, because if we need to know in a statement
that an object, say x, is finitely supported we end up with having to state premises of
the form

finite ((supp x) :: α1 set) , . . . , finite ((supp x) :: αn set) (4)

Sometimes we can avoid such premises completely, if x is a member of a finitely sup-
ported type. However, keeping track of finitely supported types requires another n type
classes, and for technical reasons not all types can be shown to be finitely supported.

The real pain of having a separate type for each atom sort arises, however, from
another permutation property

iv) π1 · (π2 · x) = (π1 · π2) · (π1 · x)

where permutation π1 has type (α × α) list, π2 type (α ′ × α ′) list and x type β.
This property is needed in order to derive facts about how permutations of different
types interact, which is not covered by the permutation properties i-iii shown in (3).
The problem is that this property involves three type parameters. In order to use again
Isabelle/HOL’s type class mechanism with only permitting a single type parameter,
we have to instantiate the atom types. Consequently we end up with an additional n2

slightly different type classes for this permutation property.
While the problems and pain can be almost completely hidden from the user in the

existing implementation of Nominal Isabelle, the work is not pretty. It requires a large
amount of custom ML-code and also forces the user to declare up-front all atom-types
that are ever going to be used in a formalisation. In this paper we set out to solve
the problems with multiple type parameters in the permutation operation, and in this
way can dispense with the large amounts of custom ML-code for generating multiple
variants for some basic definitions. The result is that we can implement a pleasingly
simple formalisation of the nominal logic work.

Contributions of the paper: Using a single atom type to represent atoms of dif-
ferent sorts and representing permutations as functions are not new ideas. The main
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contribution of this paper is to show an example of how to make better theorem proving
tools by choosing the right level of abstraction for the underlying theory—our design
choices take advantage of Isabelle’s type system, type classes, and reasoning infrastruc-
ture. The novel technical contribution is a mechanism for dealing with “Church-style”
lambda-terms [4] and HOL-based languages [7] where variables and variable binding
depend on type annotations.

2 Sorted Atoms and Sort-Respecting Permutations

In the nominal logic work of Pitts, binders and bound variables are represented by
atoms. As stated above, we need to have different sorts of atoms to be able to bind dif-
ferent kinds of variables. A basic requirement is that there must be a countably infinite
number of atoms of each sort. Unlike in our earlier work, where we identified each sort
with a separate type, we implement here atoms to be

datatype atom = Atom string nat

whereby the string argument specifies the sort of the atom.1 (The use type string is
merely for convenience; any countably infinite type would work as well.) We have an
auxiliary function sort that is defined as sort (Atom s i) = s, and we clearly have for
every finite set X of atoms and every sort s the property:

Proposition 1. If finite X then there exists an atom a such that sort a = s and a /∈ X.

For implementing sort-respecting permutations, we use functions of type atom ⇒ atom
that i) are bijective; ii) are the identity on all atoms, except a finite number of them; and
iii) map each atom to one of the same sort. These properties can be conveniently stated
for a function π as follows:

i) bij π ii) finite {a | π a �= a} iii) ∀ a. sort (π a) = sort a (5)

Like all HOL-based theorem provers, Isabelle/HOL allows us to introduce a new type
perm that includes just those functions satisfying all three properties. For example the
identity function, written id, is included in perm. Also function composition, written
◦ , and function inversion, given by Isabelle/HOL’s inverse operator and written

inv , preserve the properties i-iii.
However, a moment of thought is needed about how to construct non-trivial permu-

tations. In the nominal logic work it turned out to be most convenient to work with
swappings, written (a b). In our setting the type of swappings must be

( ) :: atom ⇒ atom ⇒ perm

but since permutations are required to respect sorts, we must carefully consider what
happens if a user states a swapping of atoms with different sorts. In earlier versions
of Nominal Isabelle, we avoided this problem by using different types for different

1 A similar design choice was made by Gunter et al [6] for their variables.
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sorts; the type system prevented users from stating ill-sorted swappings. Here, however,
definitions such as2

(a b)
def
= λc. if a = c then b else (if b = c then a else c)

do not work in general, because the type system does not prevent a and b from having
different sorts—in which case the function would violate property iii. We could make
the definition of swappings partial by adding the precondition sort a = sort b, which
would mean that in case a and b have different sorts, the value of (a b) is unspeci-
fied. However, this looked like a cumbersome solution, since sort-related side condi-
tions would be required everywhere, even to unfold the definition. It turned out to be
more convenient to actually allow the user to state “ill-sorted” swappings but limit their
“damage” by defaulting to the identity permutation in the ill-sorted case:

(a b)
def
= if (sort a = sort b)

then λc. if a = c then b else (if b = c then a else c)
else id

(6)

This function is bijective, the identity on all atoms except a and b, and sort respecting.
Therefore it is a function in perm.

One advantage of using functions instead of lists as a representation for permutations
is that for example the swappings

(a b) = (b a) (a a) = id (7)

are equal. We do not have to use the equivalence relation shown in (2) to identify
them, as we would if they had been represented as lists of pairs. Another advantage of
the function representation is that they form a (non-commutative) group, provided we
define

0
def
= id π1 + π2

def
= π1 ◦ π2 −π

def
= inv π π1 − π2

def
= π1 + −π2

and verify the simple properties

π1 + π2 + π3 = π1 + (π2 + π3) 0 + π = π π + 0 = π −π + π = 0

Again this is in contrast to the list-of-pairs representation which does not form a group.
The technical importance of this fact is that we can rely on Isabelle/HOL’s existing
simplification infrastructure for groups, which will come in handy when we have to
do calculations with permutations. Note that Isabelle/HOL defies standard conventions
of mathematical notation by using additive syntax even for non-commutative groups.
Obviously, composition of permutations is not commutative in general—π1 + π2 �= π2
+ π1. But since the point of this paper is to implement the nominal theory as smoothly
as possible in Isabelle/HOL, we tolerate the non-standard notation in order to reuse the
existing libraries.

By formalising permutations abstractly as functions, and using a single type for all
atoms, we can now restate the permutation properties from (3) as just the two equations

2 To increase legibility, we omit here and in what follows the Rep perm and Abs perm wrappers
that are needed in our implementation since we defined permutation not to be the full function
space, but only those functions of type perm satisfying properties i-iii.
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i) 0 · x = x
ii) (π1 + π2) · x = π1 · π2 · x

(8)

in which the permutation operations are of type perm ⇒ β ⇒ β and so have only
a single type parameter. Consequently, these properties are compatible with the one-
parameter restriction of Isabelle/HOL’s type classes. There is no need to introduce a
separate type class instantiated for each sort, like in the old approach.

The next notion allows us to establish generic lemmas involving the permutation
operation.

Definition 1. A type β is a permutation type if the permutation properties in (8) are
satisfied for every x of type β.

First, it follows from the laws governing groups that a permutation and its inverse cancel
each other. That is, for any x of a permutation type:

π · (−π) · x = x (−π) · π · x = x (9)

Consequently, in a permutation type the permutation operation π · is bijective, which
in turn implies the property

π · x = π · y if and only if x = y. (10)

In order to lift the permutation operation to other types, we can define for:

atoms: π · a
def
= π a

functions: π · f
def
= λx. π · (f ((−π) · x))

permutations: π · π ′ def
= π + π ′− π

sets: π · X
def
= {π · x | x ∈ X}

booleans: π · b
def
= b

lists: π · []
def
= []

π · (x::xs)
def
= (π · x)::(π · xs)

products: π · (x, y)
def
= (π · x, π · y)

nats: π · n
def
= n

and then establish:

Theorem 1. If β, β1 and β2 are permutation types, then so are atom, β1 ⇒ β2, perm,
β set, β list, β1 × β2, bool and nat.

Proof. All statements are by unfolding the definitions of the permutation operations
and simple calculations involving addition and minus. With permutations for example
we have

0 · π ′ def
= 0 + π ′ − 0 = π ′

(π1 + π2) · π ′ def
= (π1 + π2) + π ′ − (π1 + π2)
= (π1 + π2) + π ′ − π2 − π1

= π1 + (π2 + π ′ − π2) − π1
def
= π1 · π2 · π ′ 	�

The main point is that the above reasoning blends smoothly with the reasoning in-
frastructure of Isabelle/HOL; no custom ML-code is necessary and a single type class
suffices. We can also show once and for all that the following property—which caused
so many headaches in our earlier setup—holds for any permutation type.
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Lemma 1. Given x is of permutation type, then π1 · (π2 · x) = (π1 · π2) · (π1 · x).

Proof. The proof is as follows:

π1 · π2 · x = π1 · π2 · (−π1) · π1 · x by (9)
= (π1 + π2 − π1) · π1 · x by (8.ii)
def
= (π1 · π2) · (π1 · x) 	�

An equivariant function or predicate is one that is invariant under the swapping of
atoms. Having a notion of equivariance with nice logical properties is a major advantage
of bijective permutations over traditional renaming substitutions [8, §2]. Equivariance
can be defined uniformly for all permutation types, and it is satisfied by most HOL
functions and constants.

Definition 2. A function f is equivariant if ∀π. π · f = f.

There are a number of equivalent formulations for the equivariance property. For exam-
ple, assuming f is of type α ⇒ β, then equivariance can also be stated as

∀π x. π · (f x) = f (π · x) (11)

To see that this formulation implies the definition, we just unfold the definition of the
permutation operation for functions and simplify with the equation and the cancellation
property shown in (9). To see the other direction, we use the fact

π · (f x) = (π · f ) (π · x) (12)

which follows again directly from the definition of the permutation operation for
functions and the cancellation property. Similarly for functions with more than one
argument.

Both formulations of equivariance have their advantages and disadvantages: (11) is
often easier to establish. For example we can easily show that equality is equivariant

π · (x = y) = (π · x = π · y)

using the permutation operation on booleans and property (10). Lemma 1 establishes
that the permutation operation is equivariant. It is also easy to see that the boolean
operators, like ∧, ∨ and −→ are all equivariant. Furthermore a simple calculation will
show that our swapping functions are equivariant, that is

π · (a b) = ((π · a) (π · b)) (13)

for all a, b and π. These equivariance properties are tremendously helpful later on when
we have to push permutations inside terms.
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3 Support and Freshness

The most original aspect of the nominal logic work of Pitts et al is a general definition
for “the set of free variables of an object x”. This definition is general in the sense that
it applies not only to lambda-terms, but also to lists, products, sets and even functions.
The definition depends only on the permutation operation and on the notion of equality
defined for the type of x, namely:

supp x
def
= {a | infinite {b | (a b) · x �= x}}

(Note that due to the definition of swapping in (6), we do not need to explicitly restrict
a and b to have the same sort.) There is also the derived notion for when an atom a is
fresh for an x, defined as

a # x
def
= a /∈ supp x

A striking consequence of these definitions is that we can prove without knowing any-
thing about the structure of x that swapping two fresh atoms, say a and b, leave x un-
changed. For the proof we use the following lemma about swappings applied to an x:

Lemma 2. Assuming x is of permutation type, and a, b and c have the same sort, then
(a c) · x = x and (b c) · x = x imply (a b) · x = x.

Proof. The cases where a = c and b = c are immediate. For the remaining case it is,
given our assumptions, easy to calculate that the permutations

(a c) + (b c) + (a c) = (a b)

are equal. The lemma is then by application of the second permutation property shown
in (8). 	�
Theorem 2. Let x be of permutation type. If a # x and b # x then (a b) · x = x.

Proof. If a and b have different sort, then the swapping is the identity. If they have the
same sort, we know by definition of support that both finite {c | (a c) · x �= x} and
finite {c | (b c) · x �= x} hold. So the union of these sets is finite too, and we know
by Proposition 1 that there is an atom c, with the same sort as a and b, that satisfies
(a c) · x = x and (b c) · x = x. Now the theorem follows from Lemma 2. 	�
Two important properties that need to be established for later calculations is that supp
and freshness are equivariant. For this we first show that:

Lemma 3. If x is a permutation type, then π · a # π · x if and only if a # x.

Proof. π · a # π · x
def
= finite {b | ((π · a) b) · π · x �= π · x}

⇔ finite {b | ((π · a) (π · b)) · π · x �= π · x} since π · is bijective
⇔ finite {b | π · (a b) · x �= π · x} by (1) and (13)

⇔ finite {b | (a b) · x �= x} def
= a # x by (10)

	�
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Together with the definition of the permutation operation on booleans, we can immedi-
ately infer equivariance of freshness:

π · (a # x) = (π · a # π · x)

Now equivariance of supp, namely

π · (supp x) = supp (π · x)

is by noting that supp x = {a | ¬ a # x} and that freshness and the logical connectives
are equivariant.

While the abstract properties of support and freshness, particularly Theorem 2, are
useful for developing Nominal Isabelle, one often has to calculate the support of some
concrete object. This is straightforward for example for booleans, nats, products and
lists:

booleans: supp b = ∅
nats: supp n = ∅

products: supp (x, y) = supp x ∪ supp y

lists: supp [] = ∅
supp (x::xs) = supp x ∪ supp xs

But establishing the support of atoms and permutations in our setup here is a bit trickier.
To do so we will use the following notion about a supporting set.

Definition 3. A set S supports x if for all atoms a and b not in S we have (a b) · x = x.

The main motivation for this notion is that we can characterise supp x as the smallest
finite set that supports x. For this we prove:

Lemma 4. Let x be of permutation type.

i) If S supports x and finite S then supp x ⊆ S.
ii) (supp x) supports x

iii) supp x = S provided S supports x, finite S and S is the least such set,
that means formally, for all S ′, if finite S ′ and S ′ supports x then S ⊆ S ′.

Proof. For i) we derive a contradiction by assuming there is an atom a with a ∈ supp
x and a /∈ S. Using the second fact, the assumption that S supports x gives us that S is
a superset of {b | (a b) · x �= x}, which is finite by the assumption of S being finite.
But this means a /∈ supp x, contradicting our assumption. Property ii) is by a direct
application of Theorem 2. For the last property, part i) proves one “half” of the claimed
equation. The other “half” is by property ii) and the fact that supp x is finite by i). 	�

These are all relatively straightforward proofs adapted from the existing nominal logic
work. However for establishing the support of atoms and permutations we found the
following “optimised” variant of iii) more useful:

Lemma 5. Let x be of permutation type. We have that supp x = S provided S supports x,
finite S, and for all a ∈ S and all b /∈ S, with a and b having the same sort, (a b) · x �= x
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Proof. By Lemma 4.iii) we have to show that for every finite set S ′ that supports x,
S ⊆ S ′ holds. We will assume that there is an atom a that is element of S, but not S ′ and
derive a contradiction. Since both S and S ′ are finite, we can by Proposition 1 obtain an
atom b, which has the same sort as a and for which we know b /∈ S and b /∈ S ′. Since
we assumed a /∈ S ′ and we have that S ′ supports x, we have on one hand (a b) · x =
x. On the other hand, the fact a ∈ S and b /∈ S imply (a b) · x �= x using the assumed
implication. This gives us the contradiction. 	�

Using this lemma we only have to show the following three proof-obligations

i) {c} supports c
ii) finite {c}

iii) ∀ a ∈ {c} b /∈ {c}. sort a = sort b −→ (a b) · c �= c

in order to establish that supp c = {c} holds. In Isabelle/HOL these proof-obligations
can be discharged by easy simplifications. Similar proof-obligations arise for the sup-
port of permutations, which is

supp π = {a | π · a �= a}

The only proof-obligation that is interesting is the one where we have to show that

If π · a �= a, π · b = b and sort a = sort b, then (a b) · π �= π.

For this we observe that

(a b) · π = π if and only if π · (a b) = (a b)

holds by a simple calculation using the group properties of permutations. The proof-
obligation can then be discharged by analysing the inequality between the permutations
((π · a) b) and (a b).

The main point about support is that whenever an object x has finite support, then
Proposition 1 allows us to choose for x a fresh atom with arbitrary sort. This is an im-
portant operation in Nominal Isabelle in situations where, for example, a bound variable
needs to be renamed. To allow such a choice, we only have to assume one premise of
the form finite (supp x) for each x. Compare that with the sequence of premises in our
earlier version of Nominal Isabelle (see (4)). For more convenience we can define a type
class for types where every element has finite support, and prove that the types atom,
perm, lists, products and booleans are instances of this type class. Then no premise is
needed, as the type system of Isabelle/HOL can figure out automatically when an object
is finitely supported.

Unfortunately, this does not work for sets or Isabelle/HOL’s function type. There
are functions and sets definable in Isabelle/HOL for which the finite support property
does not hold. A simple example of a function with infinite support is the function that
returns the natural number of an atom

nat of (Atom s i)
def
= i
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This function’s support is the set of all atoms. To establish this we show ¬ a # nat of.
This is equivalent to assuming the set {b | (a b) · nat of �= nat of} is finite and deriving
a contradiction. From the assumption we also know that {a} ∪ {b | (a b) · nat of �=
nat of} is finite. Then we can use Proposition 1 to choose an atom c such that c �= a,
sort c = sort a and (a c) · nat of = nat of. Now we can reason as follows:

nat of a = (a c) · (nat of a) by def. of permutations on nats
= ((a c) · nat of ) ((a c) · a) by (12)
= nat of c by assumptions on c

But this means we have that nat of a = nat of c and sort a = sort c. This implies that
atoms a and c must be equal, which clashes with our assumption c �= a about how we
chose c. Cheney [3] gives similar examples for constructions that have infinite support.

4 Concrete Atom Types

So far, we have presented a system that uses only a single multi-sorted atom type. This
design gives us the flexibility to define operations and prove theorems that are generic
with respect to atom sorts. For example, as illustrated above the supp function returns
a set that includes the free atoms of all sorts together; the flexibility offered by the new
atom type makes this possible.

However, the single multi-sorted atom type does not make an ideal interface for end-
users of Nominal Isabelle. If sorts are not distinguished by Isabelle’s type system, users
must reason about atom sorts manually. That means subgoals involving sorts must be
discharged explicitly within proof scripts, instead of being inferred by Isabelle/HOL’s
type checker. In other cases, lemmas might require additional side conditions about
sorts to be true. For example, swapping a and b in the pair (a, b) will only produce the
expected result if we state the lemma in Isabelle/HOL as:

lemma
fixes a b :: atom
assumes asm: sort a = sort b
shows (a b) · (a, b) = (b, a)

using asm by simp

Fortunately, it is possible to regain most of the type-checking automation that is lost by
moving to a single atom type. We accomplish this by defining subtypes of the generic
atom type that only include atoms of a single specific sort. We call such subtypes con-
crete atom types.

The following Isabelle/HOL command defines a concrete atom type called name,
which consists of atoms whose sort equals the string ′′name ′′.

typedef name = {a | sort a = ′′name ′′}
This command automatically generates injective functions that map from the concrete
atom type into the generic atom type and back, called representation and abstraction
functions, respectively. We will write these functions as follows:
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� � :: name ⇒ atom �  :: atom ⇒ name

With the definition π · a
def
= �π · �a� , it is straightforward to verify that the type name

is a permutation type.
In order to reason uniformly about arbitrary concrete atom types, we define a type

class that characterises type name and other similarly-defined types. The definition of
the concrete atom type class is as follows: First, every concrete atom type must be a
permutation type. In addition, the class defines an overloaded function that maps from
the concrete type into the generic atom type, which we will write | |. For each class
instance, this function must be injective and equivariant, and its outputs must all have
the same sort, that is

i) if |a| = |b| then a = b ii) π · |a| = |π · a| iii) sort |a| = sort |b| (14)

With the definition |a| def
= �a� we can show that name satisfies all the above require-

ments of a concrete atom type.
The whole point of defining the concrete atom type class was to let users avoid

explicit reasoning about sorts. This benefit is realised by defining a special swapping
operation of type α ⇒ α ⇒ perm, where α is a concrete atom type:

(a ↔ b)
def
= (|a| |b|)

As a consequence of its type, the ↔-swapping operation works just like the generic
swapping operation, but it does not require any sort-checking side conditions—the sort-
correctness is ensured by the types! For ↔ we can establish the following simplification
rule:

(a ↔ b) · c = (if c = a then b else if c = b then a else c)

If we now want to swap the concrete atoms a and b in the pair (a, b) we can establish
the lemma as follows:

lemma
fixes a b :: name
shows (a ↔ b) · (a, b) = (b, a)

by simp

There is no need to state an explicit premise involving sorts.
We can automate the process of creating concrete atom types, so that users can define

a new one simply by issuing the command

atom decl name

This command can be implemented using less than 100 lines of custom ML-code. In
comparison, the old version of Nominal Isabelle included more than 1000 lines of ML-
code for creating concrete atom types, and for defining various type classes and in-
stantiating generic lemmas for them. In addition to simplifying the ML-code, the setup
here also offers user-visible improvements: Now concrete atoms can be declared at any
point of a formalisation, and theories that separately declare different atom types can be
merged together—it is no longer required to collect all atom declarations in one place.
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5 Multi-sorted Concrete Atoms

The formalisation presented so far allows us to streamline proofs and reduce the amount
of custom ML-code in the existing implementation of Nominal Isabelle. In this section
we describe a mechanism that extends the capabilities of Nominal Isabelle. This mech-
anism is about variables with additional information, for example typing constraints.
While we leave a detailed treatment of binders and binding of variables for a later pa-
per, we will have a look here at how such variables can be represented by concrete
atoms.

In the previous section we considered concrete atoms that can be used in simple
binders like λx. x. Such concrete atoms do not carry any information beyond their
identities—comparing for equality is really the only way to analyse ordinary concrete
atoms. However, in “Church-style” lambda-terms [4] and in the terms underlying HOL-
systems [7] binders and bound variables have a more complicated structure. For exam-
ple in the “Church-style” lambda-term

λxα. xα xβ (15)

both variables and binders include typing information indicated by α and β. In this
setting, we treat xα and xβ as distinct variables (assuming α �= β) so that the variable
xα is bound by the lambda-abstraction, but not xβ .

To illustrate how we can deal with this phenomenon, let us represent object types
like α and β by the datatype

datatype ty = TVar string | ty → ty

If we attempt to encode a variable naively as a pair of a name and a ty, we have the
problem that a swapping, say (x ↔ y), applied to the pair ((x, α), (x, β)) will always
permute both occurrences of x, even if the types α and β are different. This is unwanted,
because it will eventually mean that both occurrences of x will become bound by a
corresponding binder.

Another attempt might be to define variables as an instance of the concrete atom
type class, where a ty is somehow encoded within each variable. Remember we defined
atoms as the datatype:

datatype atom = Atom string nat

Considering our method of defining concrete atom types, the usage of a string for the
sort of atoms seems a natural choice. However, none of the results so far depend on
this choice and we are free to change it. One possibility is to encode types or any other
information by making the sort argument parametric as follows:

datatype ′a atom = Atom ′a nat

The problem with this possibility is that we are then back in the old situation where
our permutation operation is parametric in two types and this would require to work
around Isabelle/HOL’s restriction on type classes. Fortunately, encoding the types in a
separate parameter is not necessary for what we want to achieve, as we only have to
know when two types are equal or not. The solution is to use a different sort for each
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object type. Then we can use the fact that permutations respect sorts to ensure that
permutations also respect object types. In order to do this, we must define an injective
function sort ty mapping from object types to sorts. For defining functions like sort ty,
it is more convenient to use a tree datatype for sorts. Therefore we define

datatype sort = Sort string (sort list)
datatype atom = Atom sort nat

With this definition, the sorts we considered so far can be encoded just as Sort s []. The
point, however, is that we can now define the function sort ty simply as

sort ty (TVar s) = Sort ′′TVar ′′ [Sort s []]
sort ty (τ1 → τ2) = Sort ′′Fun ′′ [sort ty τ1, sort ty τ2]

(16)

which can easily be shown to be injective.
Having settled on what the sorts should be for “Church-like” atoms, we have to give

a subtype definition for concrete atoms. Previously we identified a subtype consisting
of atoms of only one specified sort. This must be generalised to all sorts the function
sort ty might produce, i.e. the range of sort ty. Therefore we define

typedef var = {a | sort a ∈ range sort ty}

This command gives us again injective representation and abstraction functions. We
will write them also as � � :: var ⇒ atom and �  :: atom ⇒ var, respectively.

We can define the permutation operation for var as π · a
def
= �π · �a� and the injec-

tive function to type atom as |a| def
= �a�. Finally, we can define a constructor function

that makes a var from a variable name and an object type:

Var x α
def
= �Atom (sort ty α) x 

With these definitions we can verify all the properties for concrete atom types except
Property 14.iii), which requires every atom to have the same sort. This last property is
clearly not true for type var. This fact is slightly unfortunate since this property allowed
us to use the type-checker in order to shield the user from all sort-constraints. But this
failure is expected here, because we cannot burden the type-system of Isabelle/HOL
with the task of deciding when two object types are equal. This means we sometimes
need to explicitly state sort constraints or explicitly discharge them, but as we will see
in the lemma below this seems a natural price to pay in these circumstances.

To sum up this section, the encoding of type-information into atoms allows us to
form the swapping (Var x α ↔ Var y α) and to prove the following lemma

lemma
assumes asm: α �= β
shows (Var x α ↔ Var y α) · (Var x α, Var x β) = (Var y α, Var x β)
using asm by simp

As we expect, the atom Var x β is left unchanged by the swapping. With this we can
faithfully represent bindings in languages involving “Church-style” terms and bindings
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as shown in (15). We expect that the creation of such atoms can be easily automated so
that the user just needs to specify atom decl var (ty) where the argument, or arguments,
are datatypes for which we can automatically define an injective function like sort ty
(see (16)). Our hope is that with this approach Benzmueller and Paulson can make
headway with formalising their results about simple type theory [2]. Because of its
limitations, they did not attempt this with the old version of Nominal Isabelle. We also
hope we can make progress with formalisations of HOL-based languages.

6 Conclusion

This proof pearl describes a new formalisation of the nominal logic work by Pitts et al.
With the definitions we presented here, the formal reasoning blends smoothly with the
infrastructure of the Isabelle/HOL theorem prover. Therefore the formalisation will be
the underlying theory for a new version of Nominal Isabelle.

The main difference of this paper with respect to existing work on Nominal Isabelle
is the representation of atoms and permutations. First, we used a single type for sorted
atoms. This design choice means for a term t, say, that its support is completely char-
acterised by supp t, even if the term contains different kinds of atoms. Also, whenever
we have to generalise an induction so that a property P is not just established for all
t, but for all t and under all permutations π, then we only have to state ∀π. P (π · t).
The reason is that permutations can now consist of multiple swapping each of which
can swap different kinds of atoms. This simplifies considerably the reasoning involved
in building Nominal Isabelle.

Second, we represented permutations as functions so that the associated permutation
operation has only a single type parameter. This is very convenient because the abstract
reasoning about permutations fits cleanly with Isabelle/HOL’s type classes. No custom
ML-code is required to work around rough edges. Moreover, by establishing that our
permutations-as-functions representation satisfy the group properties, we were able to
use extensively Isabelle/HOL’s reasoning infrastructure for groups. This often reduced
proofs to simple calculations over +, − and 0. An interesting point is that we defined
the swapping operation so that a swapping of two atoms with different sorts is not
excluded, like in our older work on Nominal Isabelle, but there is no “effect” of such
a swapping (it is defined as the identity). This is a crucial insight in order to make the
approach based on a single type of sorted atoms to work. But of course it is analogous
to the well-known trick of defining division by zero to return zero.

We noticed only one disadvantage of the permutations-as-functions: Over lists we
can easily perform inductions. For permutations made up from functions, we have to
manually derive an appropriate induction principle. We can establish such a principle,
but we have no real experience yet whether ours is the most useful principle: such an
induction principle was not needed in any of the reasoning we ported from the old
Nominal Isabelle, except when showing that if ∀ a∈supp x. a # p implies p · x = x.

Finally, our implementation of sorted atoms turned out powerful enough to use it
for representing variables that carry on additional information, for example typing an-
notations. This information is encoded into the sorts. With this we can represent con-
veniently binding in “Church-style” lambda-terms and HOL-based languages. While
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dealing with such additional information in dependent type-theories, such as LF or
Coq, is straightforward, we are not aware of any other approach in a non-dependent
HOL-setting that can deal conveniently with such binders.

The formalisation presented here will eventually become part of the Isabelle distri-
bution, but for the moment it can be downloaded from the Mercurial repository linked
at http://isabelle.in.tum.de/nominal/download
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Abstract. Using HOL4, we mechanise termination and correctness for
two unification algorithms, written in a recursive descent style. One com-
putes unifiers for first order terms, the other for nominal terms (terms
including α-equivalent binding structure). Both algorithms work with tri-
angular substitutions in accumulator-passing style: taking a substitution
as input, and returning an extension of that substitution on success.

1 Introduction

The fastest known first-order unification algorithms are time and space linear
(or almost linear) in the size of the input terms [1,2]. In the case of nominal unifi-
cation, polynomial [3], including quadratic [4], algorithms exist. By comparison,
the algorithms in this paper are näıve in two ways: they perform recursive de-
scent of the terms being unified, applying new bindings along the way; and they
perform the occurs check with every new binding. Recursive descent interleaved
with application can require time exponential in the size of the original terms.
Also, it is possible to do the occurs check only once, or even implicitly, in an
algorithm that doesn’t recursively descend terms.

However, näıve algorithms are used in real systems for a number of reasons:
worst case inputs do not arise often in practice, encoding the input and decoding
the output of a fast algorithm can be costly, and näıve algorithms are simpler
to implement and teach. Some evidence for the first two assertions can be found
in Hoder and Voronkov [5] where an imperative version of the algorithm in
this paper (there labelled “Robinson’s”) benchmarks better than the worst-case
linear algorithms.1

One important feature of the algorithms considered by Hoder and Voronkov
is that they all use triangular substitutions. This representation is useful in
systems that do backtracking and need to “unapply” substitutions from terms,
because it enables the use of persistent data structures. The unapply operation
becomes implicit (and thus, efficient) when updates are made to a persistent

1 These benchmarks were made in the context of automated theorem provers with
term indexing; we don’t consider the maintenance of a term index in this paper.
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substitution: backtracking computations simply apply the appropriate subset of
the shared substitution whenever terms in context are required.

A triangular substitution [6] is a set of singleton maps (each binding a different
variable). When this set is implemented as a list, update is constant time and
sharing is maximised. When using triangular substitutions, and writing in a
functional language, it is natural to write unification in an accumulator-passing
style. (The analogue in an imperative setting is to update a global variable,
which is what happens in the implementation of Robinson’s algorithm in Hoder
and Voronkov.) So, for example, the unification algorithm in miniKanren [7,8]
takes two terms, t1 and t2, and an accumulator substitution, s. It returns an
extension of s with any new bindings necessary to make t1 and t2 unify (or fails
if that’s impossible).

Triangular substitutions are generally not idempotent. For example, a binding
from y to z may be added to a substitution already binding x to y. Applying
the extended substitution once to x yields y, but applying it twice yields z. But
a triangular substitution can represent the same information as an idempotent
substitution using exponentially less space. For example if x is bound to the pair
(y, y) and y is bound to the ground term (1, 2) then an idempotent substitution
would contain three copies of (1, 2), whereas a triangular substitution would
contain just one.

Baader and Snyder [6] mention using triangular substitutions in a recursive
descent algorithm as a good idea, but do not pursue it because of the exponential
time complexity. Our own experiments agree that using triangular substitutions
gives better speed and memory usage than computing idempotent substitutions.

Nominal Unification. Classical unification works over first-order terms. Recently,
there has been interest in the theory and implementation of logical systems using
nominal terms, which include names and binders. Such terms provide natural
representations of syntaxes occurring in logic and computer science.

Nominal unification was first defined by Urban, Pitts, and Gabbay [9]. Nom-
inal systems (e.g., αProlog [10], alphaKanren [11]) need to be able to unify nom-
inal terms. The mechanisations in this paper are of algorithms inspired by the
implementations in miniKanren (first-order) and alphaKanren (nominal). (The
alphaKanren paper [11] describes unification with idempotent substitutions; our
mechanisation is of a later, more efficient implementation using triangular sub-
stitutions.)

Contributions

– We provide mechanised definitions of accumulator-passing style first-order
(unify) and nominal (nomunify) unification algorithms. Both definitions
require the provision of a novel termination argument (Section 4).

– Since the unification algorithms may diverge if the accumulator contains
loops, we define and characterise a well-formedness condition on triangular
substitutions that forbids loops (Section 2), and show that the algorithms
preserve it (Sections 5 and 6).
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– We mechanise algorithms for applying triangular substitutions, providing
the requisite termination arguments in Section 3.

– We provide statements of correctness (soundness, completeness, and gener-
ality) for unification algorithms written in accumulator-passing style, and
prove them of unify in Section 5, and of nomunify in Section 6.

The mechanised theories containing all the results in this paper are available
online at https://bitbucket.org/michaeln/formal_mk/src/tip/hol/. Since
the results have been machine-checked, we will omit the proofs of some lemmas.

Notation. In general, higher order logic syntax for Boolean terms uses stan-
dard connectives and quantifiers (∧, ∀ etc.). Iterated application of a function
is written f n x , meaning f(f(. . . f(x))). R+ denotes the transitive closure of a
relation. The relation measure f , where f is of type α → num, relates x and y
if f(x) < f(y).

The do notation is used for writing in monadic style. We only use it to express
bind in the option monad: the term do y <- f x; g y od means NONE if f x
returns NONE. Otherwise, if f x returns SOME y, then the term is the result of
applying g to y (giving a value of option type, either NONE or SOME v ).

FLOOKUP fm k applies a finite map, returning SOME v when the key is in the
domain, otherwise NONE. The domain of a finite map is written FDOM fm. The
sub-map relation is written fm1 � fm2 . The empty finite map is written FEMPTY.
The update of a finite map with a new key-value pair is written fm |+ (k,v).
Composition of a function after a finite map is written f ◦ fm .

Tuples and inductive data types can be deconstructed by case analysis. The
notation is case t1 of p1 → e1 ‖ p2 → e2 . Patterns may include under-
scores as wildcards.

For each type, the constant ARB denotes an arbitrary object of that type.

2 Terms and Substitutions

The word “substitution” can refer to an action—substitution of t1 for x and
t2 for y in t—or it can refer to an object, a collection of variable bindings—
the substitution that binds x to t1 and y to t2. When viewing substitutions
as data structures containing bindings, a separate function is used to apply a
substitution to a term to produce a new term. Equivalent substitutions, under
application, may be different as data structures. We distinguish substitutions
from substitution application in order to investigate a representation, triangular
form, suited to the functional programming idiom of implicitly shared data.

We define first-order terms inductively as follows. We represent variables by
natural numbers (strings would be equally good). Terms are parameterised by
the type α representing constant values (e.g., function symbols).

Definition 1. Terms

term = Var of num | Pair of α term => α term | Const of α

https://bitbucket.org/michaeln/formal_mk/src/tip/hol/
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We represent a substitution (HOL type α subst) as a finite map from num-
bers to terms, thereby abstracting over any particular data structure (an as-
sociation list or something more sophisticated) without losing the distinction
between a substitution and its application. Application to a term is defined as
follows. We will define a different notion of substitution application more suited
to triangular substitutions in Section 3.

Definition 2. Substitution application

s ' (Var v) = case FLOOKUP s v of NONE → Var v ‖ SOME t → t
s ' (Pair t1 t2) = Pair (s ' t1) (s ' t2)
s ' (Const c) = Const c

A substitution is idempotent if repeated application is the same as a single ap-
plication. Applying a substitution to a variable outside its domain yields that
variable. But our representation permits a substitution explicitly binding a vari-
able to itself. We will exclude such substitutions with the condition noids s .

The application of a substitution s to itself is obtained by replacing every
term t in the range of s by its image under s. This is the closest we will get to
substitution composition (selfapp s is s composed with itself); instead we will
compose application functions.

Lemma 1. # selfapp s ' t = s ' (s ' t)

Well-formed Substitutions

For each substitution s we define a relation triR s that holds between a variable
in the domain and a variable in the corresponding term.

Definition 3. Relating a variable to those in the term to which it’s bound

triR s y x ⇐⇒
case FLOOKUP s x of NONE → F ‖ SOME t → y ∈ vars t

A substitution is well-formed (wfs) if triR s is well-founded. There are three
informative statements equivalent to the well-formedness of a substitution.

Lemma 2. Only well-formed substitutions have no cycles

# wfs s ⇐⇒ ∀ v. ¬(triR s)+ v v

Corollary 1. # wfs s ⇒ noids s

Lemma 3. Only well-formed substitutions are well-formed after self-application

# wfs s ⇐⇒ wfs (selfapp s)

Lemma 4. Only well-formed substitutions have fixpoints

# wfs s ⇐⇒ ∃n. idempotent (selfappn s) ∧ noids (selfappn s)
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Proof. From right to left, the result follows by induction on n. From left to right,
the noids condition follows from Lemma 3 and Corollary 1. Idempotence follows
by contradiction. If a substitution is not idempotent there will be a variable that
maps to a term including a variable in the substitution’s domain. If this occurs
within a substitution iterated n times, there must be a chain of length n within
the original substitution with the same property. But an arbitrarily long chain
cannot exist without a loop, contradicting our well-formedness assumption.

Lemma 4 (with Lemma 1) shows that well-formedness is necessary and sufficient
for being able to recover an equivalent idempotent substitution.

3 Substitution Application

Since we are interested in maintaining triangular substitutions, we want to be
able to apply a non-idempotent substitution as if we had collapsed it down to an
idempotent one by repeated self-application without actually doing so. This is
achieved by recursion in the application function walk* (we write s � t for the
application of walk* to substitution s and term t): if we encounter a variable in
the domain of the substitution, we look it up and recur on the result. Defining
this function presents the first of a number of interesting termination problems.

The clearest expression of walk*’s behaviour is the following characterisation:

Lemma 5. Characterisation of walk*

# wfs s ⇒
s � Var v =
(case FLOOKUP s v of NONE → Var v ‖ SOME t → s � t) ∧

s � Pair t1 t2 = Pair (s � t1) (s � t2) ∧
s � Const c = Const c

Lemma 6. walk* reduces to application on idempotent substitutions

# wfs s ⇒ (idempotent s ⇐⇒ walk* s = (') s)

The walk* function can be viewed as performing a tree traversal (“walk”) of
its eventual output term. Other algorithms, including unify, need to perform
some of this tree walk, but may not need to immediately traverse a term to its
leaves. We isolate the part of walk* that finds the ultimate binding of a variable,
calling this vwalk:

Definition 4. Walking a variable

wfs s ⇒
vwalk s v =
case FLOOKUP s v of
SOME (Var u) → vwalk s u

‖ SOME t → t
‖ NONE → Var v
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Proving termination for vwalk under the assumption wfs s follows easily from
the definitions.

Following the miniKanren code, we define a function walk, which either calls
vwalk if its argument is a variable, or returns its argument. It is a common
miniKanren idiom (used in unify, among other places) to begin functions by
walking term arguments in the current substitution. This reveals just enough
of a term-in-context’s structure for the current level of recursion. This idiom is
used in the definition of walk*, which can be stated thus:

Definition 5. Substitution application, walking version

wfs s ⇒
s � t =
case walk s t of
Pair t1 t2 → Pair (s � t1) (s � t2)

‖ t ′ → t ′

The termination relation for walk* is the lexicographic combination of the multi-
set ordering with respect to (triR s)+ over a term’s variables, and the term’s
size.

The “walk first” idiom is also used to define the occurs-check. We omit the
definition but provide the following characterisation.

Lemma 7. The occurs-check finds variables in the term after application

# wfs s ⇒ (oc s t v ⇐⇒ v ∈ vars (s � t))

4 Unification: Definition

Our unification algorithm, unify, has type

α subst → α term → α term → α subst option

The option type in the result is used to signal whether or not the input terms
are unifiable. We accept that unify will have an undefined value when given a
malformed substitution as input. Our strategy for defining unify is to define a
total version, tunify; to extract and prove the termination conditions; and to
then show that unify exists and equals tunify for well-formed substitutions.
The definition of tunify is given in Figure 1.

Three termination conditions are generated by HOL4, corresponding to the
need for a well-founded relation and the two recursive calls:

1. WF R
2. ∀ t2 t1 s t11 t12 t21 t22.

wfs s ∧ walk s t1 = Pair t11 t12 ∧ walk s t2 = Pair t21 t22 ⇒
R (s,t11,t21) (s,t1,t2)

3. ∀ t2 t1 s t11 t12 t21 t22 sx.
wfs s ∧ (walk s t1 = Pair t11 t12 ∧ walk s t2 = Pair t21 t22) ∧
tunify_tupled_aux R (s,t11,t21) = SOME sx ⇒
R (sx,t12,t22) (s,t1,t2)
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Definition 6. Unification with triangular substitutions (total version)

tunify s t1 t2 =
if wfs s then

case (walk s t1,walk s t2) of

(Var v1,Var v2) →
SOME (if v1 = v2 then s else s |+ (v1,Var v2))

‖ (Var v1,t2) →
if oc s t2 v1 then NONE else SOME (s |+ (v1,t2))

‖ (t1 ,Var v2) →
if oc s t1 v2 then NONE else SOME (s |+ (v2,t1))

‖ (Pair t11 t12 ,Pair t21 t22 ) →
do sx <- tunify s t11 t21; tunify sx t12 t22 od

‖ (Const c1,Const c2) → if c1 = c2 then SOME s else NONE

‖ _ → NONE

else

ARB

Fig. 1. First-Order Unification: the unify function is the then branch of the if

A call tunify_tupled_aux R args is a guarded call to the only-partially
defined tunify: any recursive calls must be on arguments that are R-smaller
than args . The call appears in Condition 3 because the argument sx in the
second recursive call tunify sx t12 t22 is the result of the first recursive call.
This is thus an instance of nested recursion.

The unify function walks the subterms being considered in the current sub-
stitution before case analysis. The key to the termination argument is that size of
the subterms, considered in the context of the updated substitution, goes down
on every recursive call. The termination relation unifyR, defined below, makes
this statement in the final conjunct. The other conjuncts are also satisfied by
the algorithm and are required to ensure that unifyR is well-founded.

Definition 7. Termination relation for unify

unifyR (sx,c1,c2) (s,t1,t2) ⇐⇒
wfs sx ∧ s � sx ∧ allvars sx c1 c2 ⊆ allvars s t1 t2 ∧
measure (term_depth ◦ walk* sx) c1 t1

Theorem 1. unifyR is well-founded

# WF unifyR

Proof. By contradiction. If there is an infinite unifyR-chain, then the set of vari-
ables in the arguments (allvars) must reach a fixpoint because each successive
set is a subset of its predecessor, and the sets are finite. As the set of variables
is getting smaller, the substitutions are allowed to get larger (the � relation).
However, once the set of variables reaches its fixpoint, the substitutions will be
drawing on a fixed source for new variable bindings, so they must also reach a
fixpoint. Once the substitution (sx ) is fixed, the first argument of the measure
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conjunct becomes fixed. Hence the supposedly infinite chain would have to stop
(when sx � c1 has zero depth): contradiction.

We thereby satisfy Termination Condition 1. Condition 2 is easy because the
substitution doesn’t change.

Lemma 8. Termination Condition 2

# wfs s ∧ walk s t1 = Pair t11 t12 ∧ walk s t2 = Pair t21 t22 ⇒
unifyR (s,t11,t21) (s,t1,t2)

Proof. For the conjunct involving allvars: either t1 = Pair t11 t12 or the
pair is in the range of the substitution, and similarly for t2 . The other unifyR
conjuncts are simple.

Condition 3, however, requires some work. We define another relation, substR,
weaker than unifyR, which asserts that the variables of the result substitution all
come from the arguments. The substR relation serves as a bridge: weak enough
that we can prove it is satisfied by tunify by induction and strong enough that
it implies unifyR. We use a relation that restricts the substitution only since at
this point we can’t say much about recursive calls without proving unifyR for
each call.

Definition 8. Relation between the output substitution and input arguments

substR sx s t1 t2 ⇐⇒
wfs sx ∧ s � sx ∧ substvars sx ⊆ allvars s t1 t2

Lemma 9. substR implies unifyR on subterms

# wfs s ∧ walk s t1 = Pair t11 t12 ∧ walk s t2 = Pair t21 t22 ∧
(substR sx s t11 t21 ∨ substR sx s t12 t22) ⇒
unifyR (sx,t12,t22) (s,t1,t2)

Lemma 10. unify implies substR

# wfs s ∧ tunify_tupled_aux unifyR (s,t1,t2) = SOME sx ⇒
substR sx s t1 t2

Proof. By well-founded induction (knowing that unifyR is well-founded).

Lemma 11. Termination Condition 3

# wfs s ∧ walk s t1 = Pair t11 t12 ∧ walk s t2 = Pair t21 t22 ∧
tunify_tupled_aux unifyR (s,t11,t21) = SOME sx ⇒
unifyR (sx,t12,t22) (s,t1,t2)

Proof. From the lemmas above.
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5 Unification: Correctness

There are three parts to the correctness statement: if unify succeeds then its
result is a unifier; if unify succeeds then its result is most general; and if there
exists a unifier of s � t1 and s � t2 , then unify s t1 t2 succeeds. A substitu-
tion s is a unifier of terms t1 and t2 if s � t1 = s � t2 .

It is not generally true that the result of unify is idempotent. But unify pre-
serves well-formedness, which (as per Lemma 4) ensures the well-formed result
can be collapsed into an idempotent substitution.

Theorem 2. The result of unify is a unifier and a well-formed extension

# wfs s ∧ unify s t1 t2 = SOME sx ⇒
wfs sx ∧ s � sx ∧ sx � t1 = sx � t2

Proof. The first two conjuncts, that s is a sub-map of sx and sx is well-formed,
are corollaries of Lemma 10. Essentially, unify only updates the substitution,
and then only with variables that aren’t already in the domain.

The rest follows by recursion induction on unify, using Lemma 12 (below),
which states that applying a sub-map of a substitution, and then the larger
substitution, is the same as simply applying the larger substitution on its own.

Lemma 12. walk* over a sub-map

# s � sx ∧ wfs sx ⇒ sx � t = sx � (s � t)

Corollary 2. walk* with a fixed substitution is idempotent

Given Lemma 12 and Theorem 2, we can equally regard unify s t1 t2 as cal-
culating a unifier for t1 and t2 or for the terms-in-context s � t1 and s � t2 .

The context provided by the input substitution is relevant to our notion of a
most general unifier, which differs from the usual context-free notion. A unifier of
terms in context is most general if it can be composed with another substitution
to equal any other unifier in the same context. In the empty context, however,
the notions of most general unifier coincide.

Lemma 13. The kinds of extensions made by unify are innocuous

# wfs s1 ∧ wfs (s |+ (vx,tx)) ∧ vx /∈ FDOM s ∧
s1 � Var vx = s1 � (s � tx) ⇒
∀ t. s1 � (s |+ (vx,tx) � t) = s1 � (s � t)

Proof. By recursion induction on walk*.

Lemma 14. The result of unify is most general (in context)

# wfs s ∧ unify s t1 t2 = SOME sx ∧ wfs s2 ∧
s2 � (s � t1) = s2 � (s � t2) ⇒
∀ t. s2 � (sx � t) = s2 � (s � t)

Proof. By recursion induction on unify using the lemma above.
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Theorem 3. The result of unify is most general (empty context)

# unify FEMPTY t1 t2 = SOME sx ⇒
∀ s. wfs s ∧ s � t1 = s � t2 ⇒ ∃ s ′. ∀ t. s ′ � (sx � t) = s � t

Remark 1. By the lemma above we see that the witness is s itself.

We now turn to the third correctness result.

Lemma 15. A variable and a term containing that variable remain different
under application

# oc s t v ∧ (∀w. t �= Var w) ∧ wfs s ∧ wfs s2 ⇒
s2 � Var v �= s2 � (s � t)

Proof. By considering the term sizes.

Theorem 4. If the terms are unifiable, then unify succeeds

# wfs s ∧ wfs s2 ∧ s2 � (s � t1) = s2 � (s � t2) ⇒
∃ sx. unify s t1 t2 = SOME sx

Proof. By recursion induction on unify, using Lemma 15 for the non-trivial
occurs checks, and using Lemma 14 for the recursive case.

6 Nominal Unification

Nominal terms extend first-order terms with two new constructors, one for names
(also called atoms), and one for ties, which represent binders (terms with a bound
name). We also replace the Var constructor with a constructor for suspensions,
the nominal analogue of variables. A suspension is made up of a variable name
and a permutation of names, and stands for the variable after application of the
permutation. When (if) the variable is bound, the permutation can be applied
further.

Definition 9. Concrete nominal terms

Cterm
= CNom of string
| CSus of (string, string) alist => num
| CTie of string => α Cterm
| CPairn of α Cterm => α Cterm
| CConstn of α

We represent permutations as lists of pairs of names; such a list stands for a
ordered composition of swaps, with the head of list applied last. There may
be more than one list representing the same permutation. We abstract over
these different lists by creating a quotient type. The nominal term data type
is the quotient of the concrete type above by permutation equivalence (==).
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Constructors in the quotient type are the same as in the concrete type but with
the C prefix removed.

Following the example of the first-order algorithm, we begin by defining the
“walk” operation that finds a suspension’s ultimate binding:

Definition 10. Walking a suspension
wfsn s ⇒
vwalkn s π v =
case FLOOKUP s v of
SOME (Sus p u) → vwalkn s (π ++ p) u

‖ SOME t → π • t
‖ NONE → Sus π v

The π ++ p term appends π and p, producing their composition; π • t is the
(homomorphic) application of a permutation to a term.

The termination argument for vwalkn is the same as in the first-order case;
the permutation doesn’t play a part in the recursion. Substitution application
is analogous to the first-order case: walkn calls vwalkn s p v for a suspension
Sus p v , otherwise returns its argument; walk∗n uses walkn, recurring on ties as
well as pairs.

In the first phase of nominal unification (as defined in [9]), a substitution is
constructed along with a set of freshness constraints (alternatively, a freshness
environment). A freshness constraint is a pair of a name and a variable, express-
ing the constraint that the variable is never bound to a term in which the name
is free.

The second phase of unification checks to see if the freshness constraints are
consistent, possibly dropping irrelevant constraints along the way. If this check
succeeds, the substitution and the new freshness environment, which together
form a nominal unifier, are returned. The use of triangular substitutions and
the accumulator-passing style means that our definition of nominal unification
differs from [9] in that the substitution returned from the first phase must be
referred to as the freshness constraints are checked in the second phase.

The final definition in HOL is presented in Definition 12 (Figure 2). In both
phases, we use the auxiliary term_fcs. This function is given a name and a
term, and constructs a minimal freshness environment sufficient to ensure that
the name is fresh for the term. If this is impossible (i.e., if the name is free in
the term), term_fcs returns NONE.

Following our strategy in the first-order case, unifyn is defined via a total
function tunifyn. The pair and constant cases are unchanged, and names are
treated as constants. With suspensions, there is an extra case to consider: if the
variables are the same, we augment the freshness environment with a constraint
(a,s �n Sus [] v) for every name a in the disagreement set of the permuta-
tions (done by unify_eq_vars). In the other suspension cases, we apply the
inverse (reverse) of the suspension’s permutation to the term before performing
the binding (done in add_bdg). (We invert the permutation so that applying the
permutation to the term to which the variable is bound results in the term with
which the suspension is supposed to unify.)
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In the Tie case, a simple recursive descent is possible when the bound names
are the same. Otherwise, we ensure that the first name is fresh for the body of
the second term, and swap the two names in the second term before recursing.

Phase 2 is implemented by verify_fcs, which calls

term_fcs a (s �n Sus [] v)

for each constraint (a, v) in the environment, accumulating the result.

Termination The termination argument for Phase 1 is analogous to the termi-
nation argument for unify in the first-order case. We use the same termination
relation (this time measuring nominal term depth, and ignoring the freshness en-
vironment). The extra termination condition for recursion down a Tie is handled
like the easier of the Pair conditions because the substitution doesn’t change
and the freshness environment is irrelevant to termination.

Termination for Phase 2 depends only on the freshness environment being fi-
nite. We assume the freshness environment is finite in all valid inputs to nomunify,
and it’s easy to show that term_fcs (and hence Phase 1) preserves finiteness by
structural induction on the nominal term.

6.1 Correctness

In the first-order case, unified terms are syntactically equal. In the nominal case,
unified terms must be α-equivalent with respect to a freshness environment,
written fe # t1 ≈ t2 . For example, (λa.X) and (λb.Y ) unify with X bound to
(a b) ·Y (the substitution), but only if a#Y (a singleton freshness environment).
In the absence of the latter, one might instantiate Y with a, and therefore X
with b, producing non-equivalent terms. We write fe # a # t to mean that a
name is fresh for a term with respect to a freshness environment.

Lemma 16. The freshness environment computed by unify_eq_varsmakes the
suspensions equivalent

# wfsn s ∧
unify_eq_vars (dis_set π1 π2) v (s,fe) = SOME (s,fcs) ⇒
fcs # s �n Sus π1 v ≈ s �n Sus π2 v

Lemma 17. verify_fcs extends equivalence to terms under the substitution

# fe # t1 ≈ t2 ∧ wfsn s ∧ FINITE fe ∧
verify_fcs fe s = SOME fex ⇒
fex # s �n t1 ≈ s �n t2

Lemma 18. The result of verify_fcs in a sub-map can be verified in the ex-
tension

# verify_fcs fe s = SOME ve0 ∧ verify_fcs fe sx = SOME ve ∧
s � sx ∧ wfsn sx ∧ FINITE fe ⇒
verify_fcs ve0 sx = SOME ve

Corollary 3. verify_fcs with a fixed substitution is idempotent.
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Definition 11. Phase 1 (total version)

add_bdg π v t0 (s,fe) =
(let t = π−1 • t0 in

if ocn s t v then NONE else SOME (s |+ (v,t),fe))

tunifyn (s,fe) t1 t2 =
if wfsn s then

case (walkn s t1,walkn s t2) of

(Nom a1,Nom a2) → if a1 = a2 then SOME (s,fe) else NONE

‖ (Sus π1 v1,Sus π2 v2) →
if v1 = v2 then

unify_eq_vars (dis_set π1 π2) v1 (s,fe)
else

add_bdg π1 v1 (Sus π2 v2) (s,fe)
‖ (Sus π1 v1,t2) → add_bdg π1 v1 t2 (s,fe)
‖ (t1,Sus π2 v2) → add_bdg π2 v2 t1 (s,fe)
‖ (Tie a1 t1,Tie a2 t2) →

if a1 = a2 then

tunifyn (s,fe) t1 t2
else

do

fcs <- term_fcs a1 (s �n t2);
tunifyn (s,fe ∪ fcs) t1 ([(a1 ,a2)] • t2)

od

‖ (Pairn t11 t12 ,Pairn t21 t22) →
do

(sx,fex) <- tunifyn (s,fe) t11 t21;
tunifyn (sx,fex) t12 t22

od

‖ (Constn c1,Constn c2) →
if c1 = c2 then SOME (s,fe) else NONE

‖ _ → NONE

else

ARB

Definition 12. Nominal unification in two phases

nomunify (s,fe) t1 t2 =
do

(sx,feu) <- unifyn (s,fe) t1 t2;
fex <- verify_fcs feu sx;
SOME (sx,fex)

od

Fig. 2. Nominal Unification
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Theorem 5. The result of nomunify is a unifier, the freshness environment is
finite, and the substitution is a well-formed extension

# wfsn s ∧ FINITE fe ∧ nomunify (s,fe) t1 t2 = SOME (sx,fex) ⇒
FINITE fex ∧ wfsn sx ∧ s � sx ∧ fex # sx �n t1 ≈ sx �n t2

Proof. By recursion induction on unify using the lemmas above.

Theorem 6. The result of nomunify is most general

# wfsn s ∧ FINITE fe ∧ nomunify (s,fe) t1 t2 = SOME (sx,fex) ∧
wfsn s2 ∧ fe2 # s2 �n (s �n t1) ≈ s2 �n (s �n t2) ⇒
(∀ a v.

(a,v) ∈ fex ⇒
(∃ b w fcs.

(b,w) ∈ fe ∧ term_fcs b (sx �n Sus [] w) = SOME fcs ∧
(a,v) ∈ fcs) ∨ fe2 # a # s2 �n Sus [] v) ∧

∀ t. fe2 # s2 �n (sx �n t) ≈ s2 �n (s �n t)

Proof. The second part of the conclusion is analogous to Lemma 14, and the
proof is similar.

The first part is via the following lemma, which is proved by recursion in-
duction on unify: that any freshness constraint generated by nomunify either
originates in the input environment or is a member of the minimal freshness
environment required to equate sx �n t1 and sx �n t2 . We then use the second
part to show that (s2,fe2) must satisfy that minimal environment.

Theorem 7. If the terms are unifiable, then nomunify succeeds

# fe2 # s2 �n (s �n t1) ≈ s2 �n (s �n t2) ∧ wfsn s2 ∧ wfsn s ⇒
∃ sx.

∀ fe.
FINITE fe ∧ verify_fcs fe sx �= NONE ⇒
∃ fex. nomunify (s,fe) t1 t2 = SOME (sx,fex)

We can always provide the empty set for the input freshness environment, since
verify_fcs ∅ s = SOME ∅.
Proof. By recursion induction on unify; the proof is similar to that of Theo-
rem 4. Since unify extends but otherwise ignores the input freshness environ-
ment, we assume the input freshness environment is empty for the inductive
proof. We also use the following lemma in the recursive case.

Lemma 19. The freshness environment generated by one side of a pair will
verify in the substitution computed for both sides.

# fe # t1 ≈ t2 ∧ term_fcs a t1 = SOME fcs1 ∧ fcs1 ⊆ fe ⇒
∃ fcs2. term_fcs a t2 = SOME fcs2 ∧ fcs2 ⊆ fe
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7 Related Work

Robinson’s recursive descent algorithm traditionally takes two terms as input
and produces an idempotent most general unifier on success. This algorithm has
been mechanised elsewhere in an implementable style (e.g., by Paulson [12]).
McBride [13] shows that the algorithm can be structurally recursive in a depen-
dently typed setting, and formalises it this way using LEGO. McBride also points
to many other formalisations. The other main approach to the presentation and
formalisation of unification algorithms is the Martelli-Montanari transformation
system [1]. Ruiz-Reina et al. [14] formalise a quadratic unification algorithm
(using term graphs, due to Corbin and Bidoit) in ACL2 in the transformation
style.

Urban [15] formalised nominal unification in Isabelle/HOL in transformation
style. Nominal unification admits first-order unification as a special case, so this
can also be seen as a formalisation of first-order unification. Much work on
implementing and improving nominal unification has been done by Calvès and
Fernández. They implemented nominal unification [16] and later proved that the
problem admits a polynomial time solution [3] using graph-rewriting.

8 Conclusion

This paper has demonstrated that the pragmatically important technique of the
triangular substitution is amenable to formal proof. Unification algorithms using
triangular substitutions occur in the implementations of logical systems, and are
thus of central importance. We have shown correctness results for unification
algorithms in this style, both for the traditional first-order case, and for nominal
terms.

Future Work. There are imperative unification algorithms (such as Paterson
and Wegman’s [2]) with much better time complexity than Robinson’s that use
ephemeral data structures. Conchon and Filliâtre [17] have shown that Tarjan’s
classic union-find algorithm can be transformed into one using persistent data
structures. It would be interesting to see if similar ideas can be applied to an
imperative unification algorithm; indeed some unification algorithms make use
of union-find.

The walk-based substitution application algorithms in this paper can benefit
from sophisticated representations of substitutions, as well as from optimiza-
tions to the walk algorithm itself. We have done some work on formalising the
improvements to walk* described by Byrd [8]. Future work includes continuing
this formalisation and also investigating representations of triangular substitu-
tions other than the obvious lists.

The Martelli-Montanari transformation system has become a standard plat-
form for presenting unification algorithms, but wasn’t immediately applicable
for us because it assumes idempotent substitutions are used. However it may
be possible to create a transformation system based on triangular substitutions,
and it would be interesting to see how it relates to the usual system.
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In this paper we formalised the original, inefficient presentation of nominal
unification from [9]. The improved nominal unification algorithms by Calvès and
Fernández should also be formalised.

Acknowledgements. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council through the ICT Centre of Excellence
program.
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Abstract. Deadlocks occur in interconnection networks as messages
compete for free channels or empty buffers. Deadlocks are often associ-
ated with a circular wait between processes and resources. In the context
of networks, Duato proved that for adaptive routing networks a cyclic
dependency is not sufficient to create a deadlock. He proposed deadlock-
free routing techniques allowing cyclic dependencies between channels or
buffers. His work was a breakthrough. It was also counterintuitive and
only a complex mathematical proof could convince his peers about the
soundness of his theory. We define a necessary and sufficient condition
that captures Duato’s intuition but that is more intuitive and leads to a
simpler proof. However, our condition is logically equivalent to Duato’s
one. We used the ACL2 theorem proving system to formalize our condi-
tion and its proof. In particular, we used two features of ACL2, namely
the encapsulation principle and quantifiers, to perform an elegant for-
malization based on second order functions.

1 Introduction

A deadlock is a situation where a set of processes is permanently blocked and
no progress is ever possible. This can occur due to a competition for finite re-
sources or reciprocal communications. Classically a deadlock is associated with
a circular wait between processes: each process holds a resource needed by the
next process [1]. In the context of interconnection networks processes are mes-
sages and resources are buffers or channels. A deadlock can occur as messages
compete either for free channels or empty buffers. The dependencies between
resources are captured by a channel (or buffer) dependency graph. Early work
by Dally and Seitz has shown that an acyclic dependency graph is a necessary
and sufficient condition for deadlock-free routing [2].

This original condition only applies to deterministic routing functions, where
a message can take only one route from source to destination. An interconnection
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network can have an adaptive routing function. If a message is blocked on its way,
an adaptive routing function proposes an alternative next-hop allowing further
progress. Duato was the first to propose a necessary and sufficient condition for
deadlock-free routing in adaptive networks [3]. He noticed that alternative paths
could be used to escape deadlock situations and that a cyclic dependency is not
a sufficient condition to create a deadlock. He used Example 1, taken from [4],
to demonstrate this.

n0 n1
cA0

cH0

n3 n2
cH2

cA2

cA3 cA1 cH1

(a) Interconnection network

cA0

cH0

cH2

cA2

cA3 cA1 cH1

(b) Channel dependency graph

Example 1. Consider the interconnection network of Figure 1(a). Routing is de-
fined as follows: when routing a packet from source ni to destination nj, the rout-
ing function always returns channel cAi. It returns channel cHi only if j > i. The
cHi channels do not form a dependency cycle, implying that they will always even-
tually become available. The cAi channels do form a dependency cycle. However,
even if all channels of this cycle are unavailable, messages in node n0 can always
escape the cycle by using channel cH0. After this, the messages in the cycle can
progress. For a more extensive explanation, we refer to Duato’s book[4].

Based on his intuition, he defined and proved a condition capturing the fact
that an adaptive network can still be deadlock-free even in the presence of cyclic
dependencies between channels or buffers [3]. This was a breakthrough in the field
as it enables a dramatic reduction in the number of resources to implement fully
adaptive routing networks. It is also counterintuitive as it seems that deadlock
may appear from a cyclic dependency. Duato’s work was not easily accepted by
his peers. On Duato’s webpage one can read:

Only a complex mathematical proof can show that deadlock freedom
can be guaranteed if certain conditions are met. This research was so
disruptive when it was developed that it was rejected by several peers
and considered to be incorrect, even by the most prominent researchers
at that time. However, it was finally accepted and several well-known
researchers developed their own version of this theory.

The main contribution of this paper is the formal definition and proof of a nec-
essary and sufficient condition for deadlock-free adaptive routing1. We express
1 Sources available at
http://www.cs.ru.nl/∼julien/Julien at Nijmegen/ITP10-Pearl.html
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and prove this condition in the logic of the ACL2 theorem proving system [5].
This extends our formalization of Dally and Seitz’ condition for deterministic
routing [6]. In particular, the formalization of our condition makes use of second
order functions and quantification. This illustrates the use of the encapsula-
tion principle allowing the introduction of constrained functions and the use of
the construct defun-sk allowing the introduction of universal and existential
quantifiers. Our condition captures Duato’s intuition of an escape more directly
making the condition more intuitive. The proof of our condition is simpler than
Duato’s one. Nevertheless, our condition is logically equivalent as they are both
necessary and sufficient conditions based on the same definition of a deadlock.

The paper is organized as follows. In the following Section, we present our
condition. We provide our ACL2 formalization in Section 3 and give details on
the proof in Section 4. Section 5 compares our condition and proof with those
of Duato. We conclude in Section 6.

2 A New Necessary and Sufficient Condition

In this section we present a new necessary and sufficient condition for deadlock-
free routing. Before defining our condition, we first provide a formal network
model and a definition of a deadlock.

2.1 The Network Model

An interconnection network consists of processing nodes connected by channels.
These nodes consist of ports and a central switch (see Figure 1). The switch
contains the routing function and the switching method. There is a port for each
in- and outgoing channel. Each node has a local in- and out-port, respectively
for injecting and removing messages from the network. With each port a list
- of size at least 1 - of buffers is associated. One buffer can store one packet.
Bufferless switching can be represented by associating exactly one buffer per
port. We assume that if a message is located in a buffer of its destination port,
it is consumed immediately. Furthermore, we assume that all destination ports
are terminal, i.e., they are not connected to other ports. A destination port is
therefore never blocked.

With an interconnection network a switching method is associated. We con-
sider store-and-forward packet switching (PS). Packets are the atomic objects

Switch

Channels Channels

out

Local

in

In-ports Out-ports

Fig. 1. Processing node, where each port has two buffers
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transferred between ports. Each packet has a header storing its destination.
Packets are stored in input buffers. Using the header information the routing
function computes possible output buffers. A packet can make progress if one of
these output buffers is free. Otherwise packets wait at their current position.

The routing function determines which paths a message can take from its
current position to its destination. We define routing on the level of ports. Let
P be the set of ports of the network. The routing function is defined as R :
P × P %→ P(P ), such that R(s, d) returns a set of ports which lead from port s
to destination port d, i.e., the next hops.

The port dependency graph of routing function R – noted GR
dep

2 – is a graph
with as vertices P and as edges the pairs of ports connected by function R.
Function Edep returns the set of edges.

Given function Edep, we define the overloaded function Edep : P × P %→ P as
follows:

Edep(p, d) def= {n ∈ Edep(p) | n ∈ R(p, d)}
When given extra parameter d, overloaded function Edep returns a subset of the
set of neighbors. Edep(p, d) returns the set of dependency neighbors created by
destination d, i.e., the set of next hops for a message located in p and destined
for d.

2.2 Deadlock

A configuration σ is an assignment of packets to ports. A configuration is legal if
and only if the buffer capacity of each port is not exceeded. A message is stuck
if all its next hops are unavailable. A deadlock configuration is a configuration
in which some messages are stuck forever. A canonical deadlock configuration
is a configuration where all messages are stuck forever [4]. The canonical dead-
lock configuration can be obtained from a deadlock configuration by stopping
the injection of new messages and waiting for arrival of all messages that are
not blocked. We only need to consider canonical deadlock configurations [4].
From this point on, we define a (canonical) deadlock configuration to be a non-
empty legal configuration where for all messages traversing the network there
exists no available next hop. In such a configuration none of the messages can
advance. A network is deadlock-free if and only if there does not exist a deadlock-
configuration.

2.3 The Condition

Our condition uses the notion of escape ports. Given a set of ports P ′ a port
e ∈ P ′ is an escape for P ′ if and only if for all possible destinations there exists
a dependency neighbor that is not contained in P ′:

esc(e, P ′) def= ∀d · Edep(e, d) � P ′

2 If the routing function is clear from the context we will omit it.
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In other words, an escape for a subgraph is a port in which any message can be
routed outside of the subgraph, regardless of the destination.

A A B
B

A BC D

A A B
B

B
A BC D

Fig. 2. Example dependency graphs. Ports A and B are the only destination ports.
An edge labeled with d means that messages destined for d route to that neighbor. An
unlabeled edge means that all messages route to that neighbor.

Example 2. Consider the set of black ports in Figure 2(a). This set has no escape:
port C has no B-edge outside of the subgraph and likewise for port D and
destination A. If all ports are full, all messages in C are destined for B, and all
messages in D are destined for A, then the result is a deadlock-configuration.
Figure 2(b) has an extra edge that makes port C an escape: for both destinations
A and B there exists a neighbor outside the subgraph. There is no deadlock-
configuration possible in this network.

If a port is in deadlock it must either be in some dependency cycle or there
must exist a path that leads to some deadlocked cycle. Our condition is based
on the idea that as long as dependency cycles have an escape, there is always a
way to prevent the creation of deadlocks. Assume a cycle of unavailable ports,
i.e., a circular wait. As long as such a cycle has an escape there is always at least
one message with a next hop outside the cycle. If all sets of such cycles have an
escape, it is always possible to prevent deadlocks to occur. Hence, the following
condition:

Theorem 1. An interconnection network is deadlock-free if and only if all sets
of cycles in the port dependency graph have an escape.

Figures 3(a), 3(b), and 3(c) illustrate our condition. Assume a deadlock-free
network such that its routing function has a cyclic dependency graph. Figure
3(c) shows the strength of the theorem. At some point, the escape of a cycle
may lead to next hops which are included in cycles which have already been
escaped. The theorem states that this set of cycles again has an escape, so that
at least one message will eventually be able to escape this cycle of cycles.

We rephrase Theorem 1 to a version which is logically equivalent.

Theorem 2. An interconnection network is deadlock-free if and only if all sub-
graphs of the port dependency graph have an escape.

Although Theorem 1 is more intuitive, Theorem 2 is easier to formalize and to
prove. In Section 3 we formalize Theorem 2 in the logic of the ACL2 theorem
proving system.
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(a) The escape leads
messages out of the
cycle.

(b) The escape leads to
a cycle with a new es-
cape.

(c) The escape leads to a
cycle of cycles with a new
escape.

3 Formalization

In this Section we show our formalization of the condition in the ACL2 theo-
rem prover. First we explain how to formalize first- and second order theorems
elegantly in ACL2. Then, the formalizations of routing functions, dependency
graphs, deadlocks and escapes is provided. This section illustrates ACL2 features
and therefore uses the LISP notion of ACL2.

3.1 ACL2

ACL2 stands for “A Computational Logic for Applicative Common Lisp”. For
an introduction to ACL2 we refer to [7]. The ACL2 logic is usually considered a
quantifier-free first order logic with induction. The proofs in this paper require
both quantifiers and second-order logic. ACL2 provides several mechanisms to
elegantly introduce quantifiers and second order functions.

Quantifiers can be introduced using the defun-sk construct. This is a macro
based on the construct defchoose for introducing quantified predicates. In this
paper, we only consider the top-level construct defun-sk. We refer the reader
to a nice introduction of defchoose by Ray [8].

The defun-sk construct introduces a skolemized function. To add a quantified
formula to the ACL2 logic, one defines a skolemized function which returns t if
and only if the formula holds. As an example, the formula ∃x · f(x, y) = 3 can
be added to the logic as follows:

(defun -sk formula (y)
(exists (x) (equal (f x y) 3)))

A defun-sk construct can only introduce one quantifier. It adds to the ACL2
logic function formula-witness, which returns a witness for x. This witness
function can then be used in further reasoning. Note that the actual witness is
not explicitly computed and witness functions are not executable.

The encapsulate construct allows for second order universal quantification [9].
It introduces constrained functions. Those are functions with no actual definition
but defined by a set of constraints. Theorems proven on these functions hold for
all functions satisfying these constraints. Any function can be introduced, as
long as a witness can be specified that satisfies the constraints.

To prove a certain property p for all commutative functions, one introduces
function f and specifies a local witness as follows:
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(encapsulate
(((f * * => *))
;; Local witness:

(local (defun f (a b) (equal a b)))
;; Constraint:

(defthm f-commute (equal (f a b) (f b a)))))

No we can formulate the following second-order theorem:

(defthm ∀-commutative -f-holds -predicate -p
(p (f a b)))

These techniques will be used extensively in the formalization and proof of
our condition.

3.2 Routing and the Dependency Graph

Theorem 2 is a second order theorem ranging over all possible routing functions.
Thus we define function R using the encapsulate construct. The only constraint
on R is its typing: given a source and a destination port, R must return a non-
empty set of valid routes. A route is valid if it is a path in the network starting
with the source and ending with the destination. We define a straightforward
recognizer function Routesp for valid routes and use it to enforce the typing of
function R. For sake of readability we will omit the local witness needed for the
encapsulate construct.

(encapsulate
(((R * *) => *))
(defthm Routesp -R

(let (( routes (R p d)))
(implies (not (equal p d))

(and (consp routes)
(Routesp routes p d))))))

Regarding the dependency graph, we give function Edep no explicit definition,
but define it by two constraints. Constraint routes-->edge states that Edep(p)
must return at least all sets of next hops for all destinations reachable from p.
Constraint edge-->route states that Edep(p) must return at most those ports
n for which there exists a destination d such that n is a next hop for a message
destined for d.

(encapsulate
(((Edep *) => *))
(defthm routes -->edge

(implies (member-equal route (R p d))
(member-equal (cadr route) (Edep p))))

(defthm edge -->route
(implies (member-equal n (Edep p))

(find -dest -neighbor=next p n P ))))
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Function find-dest-neighbor=next searches through a set of possible destina-
tions and returns a destination if and only if function R returns n as next hop
for that destination.

(defun find -dest -neighbor=next (p n dests)
(cond ((endp dests)

nil)
((member -equal n (cadrs (R p (car dests))))
(car dests))

(t
(find -dest -neighbor=next p n (cdr dests)))))

3.3 Deadlock

A message is stuck if all its next hops are unavailable. However, the exact defini-
tion of “being unavailable” depends on the switching technique implemented in
the network. Furthermore, the exact and realistic definition of deadlock often de-
pends on the underlying data-link protocol used to exchange messages between
ports.

We want to abstract from these underlying mechanisms and we want to keep
the proof as generic as possible. To these ends we define two application specific
functions. These functions are not given a definition, but are genericly defined by
constraints. First, function unav takes as parameters a port p and a configuration
σ. It returns t if and only if p is unavailable for the respective switching method.
Function ∀-unav gets as parameter a list of ports and returns t if and only if unav
returns t for all these ports. Secondly, function dl returns t if and only if the
given configuration is a legal deadlock for the respective switching method and
data-link layer. The instantiation of function dl can be a complicated function,
checking e.g. the states of buffers and signal spaces. We prove Theorem 2 for
any switching method and data-link protocol such that function dl returns t if
and only if there is no message with an available next hop.

To formalize this, we define function find-free-msg which searches through
a list of messages and returns a message only if it has an available next hop. We
define a constraint on function dl that it should return t if and only if function
find-free-msg doen not return a message. The proof of the theorem can be
applied for any combination of switching method and data-link layer for which
this constraint can be discharged.

(defun find -free -msg (msgs σ)
(cond ((endp msgs)

nil)
((not (∀-unav (nexthops (car msgs))) σ)
(car msgs))

(t
(find -free -msg (cdr msgs) σ))))

(encapsulate
(((dl *) => *))
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(defthm deadlock <->no-free -msg
(iff (dl σ)

(not (find -free -msg (msgs σ) σ)))))

Remark 1. This is not the only constraint on function dl. Otherwise, one could
make a trivial instantiation by having functions unav and dl always return nil.
Another constraint states that if dl returns nil, then the switching method must
be able to advance at least one message. Advancement is expressed by a decreasing
termination measure. For the formalization of this constraint, see [10].

3.4 The Condition

Theorem 2 ranges over both all possible configurations and all possible subgraphs
of the port dependency graph. In ACL2, we elegantly define the theorem using
the defun-sk construct.

Formalizing a function which returns t if and only if there is a possible dead-
lock configuration is straightforward:

(defun -sk ∃-deadlock ()
(exists (σ)

(dl σ)))

In order to formalize the right hand side of Theorem 2, we define function
escapep which takes as parameters a port and a subgraph and returns t if
and only if the given port is an escape for the subgraph. Function ∃-escape
returns t if and only if there is an escape for the given subgraph.

(defun -sk ∃-escape (subgraph)
(exists (port)

(escapep port subgraph)))
(defun -sk ∀-subgraphs -∃-escape ()

(forall (subgraph)
(implies (consp subgraph)

(∃-escape subgraph))))

Now the condition can easily be defined:

(defthm deadlock -free <->∀-subgraphs -∃-escape
(iff (not (∃-deadlock))

(∀-subgraphs -∃-escape)))

4 Proof

First we give a short informal proof sketch. Then we introduce definitions used
in the proof and proceed with some details on the proof and its formalization.

We prove the contrapositive version of Theorem 2: there is a deadlock if and
only if there is a subgraph without an escape. Such a subgraph is called a knot
in a restricted dependency graph. We use two lemmas to build a knot from a
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deadlock. The first lemma assumes a deadlock configuration σ. It states that if
the waiting relation between the messages in σ is depicted in a graph, this graph
contains a knot. This graph is called the waiting graph. The second lemma states
that a knot in the waiting graph is also a knot in a restricted dependency graph.
The third lemma creates a deadlock from such a knot. The three lemmas state
the contrapositive of Theorem 2.

4.1 Definitions

The waiting graph is a graph which depicts the waiting relation between messages
in a certain configuration. It is thus dynamically defined by a configuration σ.
Informally, two ports p0 and p1 are connected in the waiting graph if there is
message in a buffer of p0 that is routed to p1. Figure 3 gives an example.

(d) Configuration (e) Waiting graph

Fig. 3. An example configuration and its waiting graph. In the configuration each port
has two buffers. Each arrow points to the next hop of the message in the buffer.

Definition 1. Given a configuration σ, the waiting graph is defined by a set of
vertices P and a set of edges Eσ

wait. There is an edge (p0, p1) ∈ Eσ
wait if and only

if there exists a message in a buffer of p0 and p1 is a next hop for that message.

In the proof we consider subgraphs of the dependency graph defined by some
restriction function δ : P %→ P . This restriction function maps ports to desti-
nations. At each port p, it restricts the dependency graph to edges leading to
destination δ(p). Figure 4 gives an example.

Definition 2. Given a restriction function δ : P %→ P , the δ-restricted depen-
dency graph is defined by a set of vertices P and a set of edges Eδ

dep. There is
an edge (p0, p1) ∈ Eδ

dep if and only if p1 ∈ Edep(p0, δ(p0)).

The proof uses the concept of knots. A knot in a graph is a subgraph where for
each vertex all neighbors are included in the knot. Knots have proven to be a
useful concept in deadlock detection [11].

Definition 3. Given a graph G defined by functions V and E, a knot V ′ is a
subgraph such that ∀v ∈ V ′ · E(v) ⊆ V ′.

Given a graph G, function knot(P ′, G) returns t if and only if P ′ is a knot in
graph G.
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A

B

C

(a) Dependency graph

A

B

C

(b) Restricted dependency
graph

A

B

C

(c) Restricted dependency
graph

Fig. 4. Let B and C be the only destination ports. There are two δ-restricted depen-
dency graphs: graph 4(b) is defined by δ(A) = B and δ(p) = Edep(p) (p �= A); graph
4(c) is defined by δ(A) = C and δ(p) = Edep(p) (p �= A).

4.2 The Proof

We prove that there is a deadlock if and only if there exists a δ-restricted de-
pendency graph with a knot. Assume a deadlock configuration σ. We show that
this deadlock-configuration implies a knot P ′ in the waiting graph of σ (Lemma
1). We then construct a restriction δ, such that P ′ is a knot in the δ-restricted
dependency graph as well (Lemma 2). Assume a restriction δ and a knot P ′. We
can construct a deadlock configuration by filling all ports in P ′ with messages
destined for the destinations provided by δ (Lemma 3). Hence, the contrapositive
version of our theorem has been proven.

Lemma 1. A deadlock configuration σ implies that there exists a knot P ′ in the
waiting graph of σ.

∃σ · deadlock(σ) =⇒ ∃P ′ ⊆ P · knot(P ′, Gσ
wait)

Proof. Take as P ′ the set of unavailable ports in σ. We prove that P ′ is a
knot by contradiction. All the wait-neighbors are unavailable, since otherwise
there would exist a port with a message with a next hop that is not full. This
would imply that this message can move, which contradicts the assumption of
deadlock. Since all wait-neighbors of P ′ are unavailable, and since P ′ is the set
of all unavailable ports, P ′ is a knot. 	�
The deadlock does not necessarily consist of unavailable ports only: there can
be a message in an available port, as long as each next hop for this message is
unavailable. However, these available ports are not needed for the deadlock: the
deadlock can be reduced to a set of unavailable ports only, while preserving the
fact that each message is stuck.

Lemma 2. A knot P ′ in the waiting graph of σ implies there exists a restriction
δ such that P ′ is a knot in the δ-restricted dependency graph.

∀P ′ ⊆ P · (∃σ · knot(P ′, Gσ
wait) =⇒ ∃δ · knot(P ′, Gδ

dep))
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Proof. Choose δ such that for all ports p ∈ P ′, δ(p) returns the destination of
one of the messages that is located in p in configuration σ. The set of neighbors
created by this destination is a subset of the wait-neighbors of p – and thus also
a subset of P ′ – since the wait-neighbors include all next hops created by the
destinations of all messages in p. 	�
The reason why it is not possible to create a knot in the unrestricted dependency
graph is that the messages in p do not necessarily lead to all possible reachable
destinations. See for example Figure 5.

A B
d0d1 d1

d1

d0
d0

Fig. 5. Let A and B be filled with messages destined for respectively d0 and d1.
Then {A, B} is a knot in the waiting graph, but not in the unrestricted dependency
graph.

Lemma 3. A knot in the δ-restricted dependency graph implies a deadlock
configuration.

∃P ′ ⊆ P∃δ · knot(P, Gδ
dep) =⇒ ∃σ · deadlock(σ)

Proof. Construct a configuration σ by filling each port p ∈ P ′ completely with
messages destined for δ(p). The set of next hops of a message in p is the set of
dependency neighbors created by destination δ(p). Since this is a subset of P ′

and since each port in P ′ is filled completely, all next hops of all messages are
unavailable. Thus the configuration is in deadlock. 	�
Theorem 2 is the contrapositive of the existence of a knot in the δ-restricted
dependency graph:

∃P ′ ⊆ P∃δ · knot(P, Gδ
dep)

cp
= ∀P ′ ⊆ P∃e ∈ P ′ · esc(e, P ′)

Thus a new necessary and sufficient condition for deadlock-free routing has been
obtained: all subgraphs must contain an escape.

4.3 Details on the Formalization

We identify a peculiar aspect of the proof. The formalization of the right hand
side of Lemma 2 has not been straightforward. The encapsulate construct en-
ables us to define second order functions and prove universal theorems on them.
However, Lemma 2 contains second order existential quantification. We formal-
ized this by storing function δ in an association list. An association list is a
common data type in LISP, which stores pairs of data. Each pair has a key and
a value. An association list can therefore be used to store functions.
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We define function Eδ
dep, the neighbor function of the restricted dependency

graph as follows.

(defun Eδ
dep (port δ)

(let ((dest (cdr (assoc port δ))))
(filter -neighbors -for -dest port (Edep port) dest)))

Given a port p, this function looks up the destination d associated with p using
common LISP function assoc. It then filters all dependency neighbors to return
only those that have been created by d. Function restricted-dep-knotp is a
recognizer for a knot in the restricted dependency graph: it checks if for all ports
the neighbors are contained in the given set of neighbors. If initially parameter
ports is equal to parameter neighbors, then it returns t if and only if neighbors
is a knot.

(defun restricted -dep -knotp (ports neighbors δ)
(if (endp ports)

t

(and (subsetp (Eδ
dep (car ports) neighbors)

(restricted -dep -knotp (cdr ports) neighbors)))
))

Finally, we introduce the existential quantifier of Lemma 2 using defun-sk.

(defun -sk E-restricted -dep -knot ()
(exists (P ′ δ)

(and (consp P ′)
(restricted -dep -knotp P ′ P ′ δ))))

The proof of Lemma 2 requires a witness for function δ. This witness maps a
port p to the destination of one of the messages in port p in σ. This witness can
be built elegantly using the following function:

(defun build -δ-witness (ports σ)
(if (endp ports)

nil
(acons (car ports)

(dest -of (car (get -msgs -in -port (car ports) σ)))
(build -δ-witness (cdr ports) σ))))

5 Comparison to Duato

Duato defined a necessary and sufficient condition for deadlock-free adaptive
routing for PS [12]. We include this condition and a short clarification, but for
an extensive explanation we refer to [4].
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5.1 Duato’s Condition

Theorem 3. A connected and adaptive routing function R for an interconnection
network I is deadlock-free if and only if there exists a routing subfunction R1 that
is connected and has no cycles in its extended resource dependency graph DE.

The intuition can be summarized as follows: assume a subgraph C1 which con-
tains all processing nodes, but contains only a subset of the channels of the
network. Let C1 satisfy two assumptions: (1) C1 is acyclic and (2) the routing
function is able to route any packet to any destination using channels in C1
only. Then each message will always eventually reach its destination. Even if a
message is stuck in a cycle, the channels of this cycle do not belong to C1 by
assumption (1). Assumption (2) states that for each node, any message can be
routed to its destination through channels in C1. Thus the message can always
escape the cycles it is in by using channels in C1.

Duato formalizes this notion using the concept of routing subfunction. Such
a function only selects a subset of the possible next hops for each destination.
This routing subfunction must be connected, i.e., able to route any packet to any
destination. Furthermore, he extends the dependency graph with direct cross
dependencies. If a packet stored in some channel could not have been routed
to this channel by routing subfunction R1, then dependencies involving this
channel are direct cross dependencies. The extended resource dependency graph
is the dependency graph with added direct cross dependencies.

5.2 Similarities and Differences

Our condition is logically equivalent to Duato’s one. Both conditions are both
necessary and sufficient for deadlock-free routing and the definitions of deadlock
are equal. Furthermore, both conditions formalize the same intuition: there must
always be an escape. Both conditions abstract from the data-link layer: they
assume a message is stuck if and only if all its next hops are unavailable.

The differences lie in the formalization of the intuition. We straightforwardly
formulate that there must always exist a message that is able to escape instead
of stating that there must exist a routing subfunction capable to route messages
through an acyclic subgraph. Moreover, the use of the regular dependency graph
instead of the extended dependency graph reduces complexity.

The proofs are completely different. We prove the contrapositive form, namely
that a deadlock is a subgraph without an escape. This enables a more construc-
tive approach, since we merely had to construct a knot from a deadlock config-
uration. Duato constructs in his proof an acyclic connected routing subfunction
from a network where no deadlock configuration is possible. This is the most
difficult part of his proof.

6 Conclusion

We presented a necessary and sufficient condition for deadlock free adaptive
networks. We formalized this condition and its proof using the ACL2 theorem
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proving system. In particular, we illustrated existential quantification over con-
strained functions. This was elegantly performed using constructs of the ACL2
system specifically designed to extend its first order quantifier-free logic. The
complete definition of our condition and its proof require about 100 “defuns”
and 300 “defthms”. Our proof is based on two different graphs. Each one of them
needs its own definitions and lemmas. For instance, our formal proof states that
the dependency graph really is the dependency graph of the given routing func-
tion. About 50 functions and 100 theorems are dedicated to define the depen-
dency and waiting graphs. The main proof makes the connection between these
graphs. To prove the existential quantifiers we need to define functions that
build the deadlock configuration. These functions must be proven to produce a
valid deadlock configuration. The proof follows the nice structure presented in
Section 4 but many details are required to connect all the parts.

Our condition formalizes the seminal work of Duato. We provide a different
condition and a different proof that both involve less concepts and are more
intuitive. Nevertheless, both conditions are logically equivalent. The main ad-
vantage of our condition is that it has been fully verified using a mechanical
theorem prover.

Acknowledgements. We would like to thank the anonymous reviewers for their
apposite, constructive and detailed comments.
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Abstract. Coq has within its logic a programming language that can
be used to replace many deduction steps into a single computation, this
is the so-called reflection. In this paper, we present two extensions of the
evaluation mechanism that preserve its correctness and make it possible
to deal with cpu-intensive tasks such as proof checking of SAT traces.

1 Introduction

In the Coq proof assistant [3], functions are active objects. For example, let us
consider the sum of two natural numbers. The sum function is defined recursively
on its arguments using, say, Peano’s definition. Then 1+2 is an expression that
can be computed to its expected value. In particular to prove 1+2=3, we simply
need to know that equality is reflexive, and the system takes care of checking
that 1+2 and 3 compute to the same value. Note that this computation (also
called normalisation of λ-calculus) is not restricted to ground terms, like in our
example: it can act as a symbolic evaluation on any term. Furthermore, Coq

being based on the Curry-Howard isomorphism, writing a proof or a program
is essentially the same. These remarks are the bases of proofs by reflection,
which consist in replacing many deduction steps by a single computation. This
technique has become popular in the Coq community since a few years. One of
its most impressive application is the formal proof of the four-colour theorem [8].

Using reflection can greatly improve the checking time of proofs. However,
as one pushes the limits of it, efficiency can become a concern. In that respect,
a major improvement has already been achieved through the introduction of a
dedicated virtual machine [9] allowing Coq programs to compare with (bytecode
compiled) OCaml [12] ones. Still, there are strong restrictions left. First, there
are no primitive data-structures. Every type is encoded using the constructs
allowed by the system (primarily, inductive definitions). Also, there is no possi-
bility to use destructive data-structures, which can be much more efficient than
purely functional ones in some circumstances. To be able to go further on what
can be efficiently programmed in Coq, we will add new data-structures such as
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native integers and destructive arrays. The challenge is to achieve this, changing
as little as possible, in order to preserve trust in the correctness of evaluation in
Coq, and nevertheless to get an effective speed-up thank to the new features.

The paper is organised in the following way. In Section 2, we describe how it is
possible in Coq to benefit from the arithmetic capabilities of the microprocessor.
Section 3 is dedicated to arrays. We then propose two examples that illustrate
the benefit of our extension. In Section 4, we present the toy example of the
Mini-Rubik for which we use computation to prove that it is always solvable in
less than 11 moves. Section 5 is dedicated to a more challenging example. In
order to prove the unsatisfiabily of large boolean propositions, we replay in a
reflexive way proof traces generated by SAT solvers.

2 Extending Coq with Machine Integers

Arithmetic is currently defined in Coq as a standard inductive type. Thus,
computations with numbers do not differ from other data-structures: it is a
plain symbolic evaluation. What we aim at, here, is to rely on the arithmetic of
the processor to speed-up computations within Coq. In order to add machine
integers, a first possibility is to extend the theory underlying the Coq logic with:

– one primitive type int;
– the constructors 0, 1, 2, . . . , 2n − 1 of type int;
– the basic primitive functions over the type int such as +, ∗, . . .;
– the corresponding reduction rules for each primitive function.

It is also necessary to give it an equational theory, for instance, Peano theory
together with a lemma stating that (2n −1)+1 = 0. However, this approach has
some drawbacks:

– It adds a large amount of new constructions to the theory. This goes against
de Bruijn’s principle which states that keeping the theory and its imple-
mentation as small as possible highly contributes to the trust one has in a
system. Furthermore, on a more practical side, it will have a deep impact
in the implementation, since the terms will have to be extended with new
syntactic categories (primitive types and primitive functions).

– It adds a lot of new reductions, not only for ground terms but also for
theorems. For example, if we consider the theorem n plus zero that states
that ∀n : int. n+0 = n, it could be convenient to have (n plus zero 7) reduces
to (refl int 7) where refl represents the reflexivity of equality. It is not clear
that way that one captures all the necessary reductions.

For these reasons, we have taken an alternative approach. Efficient evaluation
in Coq, as provided by the virtual machine, uses a compilation step. Before
evaluating a term, it transforms it into another representation that is more
suitable for performing reduction. The idea is to introduce the native machine
integers not as part of the theory of Coq but only in this compilation phase.
So, the type int is defined using the standard commands as a type with a single
constructor that contains n digits:
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Definition digit := bool.
Inductive int : Type := In(dn−1 . . . d1 d0 : digit) : int.

Note that, in the current development, the type int is not parametric in n. We
use a specific n to get a direct mapping to machine words and their operations.
Still, the integration is done in a generic way so integers for a different n could
be derived easily.

The primitive functions are not defined directly. We relate the machine num-
bers int with the relative numbers Z (the Coq representation of Z) with the two
functions • : int → Z and its inverse [•] : Z → int and we prove that they satisfy
the following two properties:

∀ i : int. [i] = i

∀ z : Z. [z] = z mod 2n

Now, it is straightforward to define the primitive functions of int as the image
of the corresponding function of Z. For example, addition for int is defined as
follows:

Definition i1 +int i2 := [i1 +Z i2]

It is also straightforward to derive the basic properties of these functions from
the properties of the corresponding functions on Z. This set of definitions and
properties will let the user manipulate the type int in Coq as any other type.
So we preserve the property that everything is defined from base principle.

Now, the trick is to modify the compiler in such a way that it treats the type
int as real machine integers. The main difficulty is that Coq requires strong
reduction. This is not the case of traditional functional languages where only
weak reduction is needed (no reduction under binders). Before explaining our
modification to the compiler, we first give an overview of what symbolic weak
and strong reductions are and then explain how the compiler works.

2.1 Strong Reduction by Symbolic Weak Reduction

In order to compute the strong normal form of a term t or to test the convertibil-
ity between two terms t1 and t2, the Coq system uses a compiled implementation
of the symbolic calculus [9,2]. We briefly recall what symbolic computation is
starting from the pure λ-calculus extended with inductive types.

Each inductive type is defined by a name I and a fixed number of constructors
|I|. In this context the constructor In is represented by Cint,1. The syntax of the
λ-calculus is extended with constructors and case analysis:

a ::= x | λx.a | a1 a2 | CI,i(a) | case a of (xi ⇒ ai)1≤i≤|I|

the reduction rules are

(λx.a1)a2 ⇒ a1{x ← a2} (β)
case CI,j(a) of (xi ⇒ ai)1≤i≤|I| ⇒ aj{xj ← a} (ι)

Γ (a) ⇒ Γ (a′) if a ⇒ a′ (context)

where there is no restriction on the context Γ . Reduction can happen anywhere,
in particular under binders or inside a branch of a case. We are interested in
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computing the strong βι-normal form of the λ-term a. This is be done by iterating
weak symbolic reduction and readback.

We first introduce the symbolic calculus:

Extended terms b ::= x | λx.b | b1 b2 | CI,i(b) | case b of (xi ⇒ bi)1≤i≤|I| | [k]
Accumulators k ::= h | k v
Atoms h ::= x̃ | case k of (xi ⇒ bi)1≤i≤|I|
Values v ::= λx.b | CI,i(v) | [k]

The value [h v1 . . . vn] is called an accumulator. It represents h applied to argu-
ments v1 . . . vn. The atom x̃ is a symbolic variable. It represents the free variable
x. Finally, case k of (xi ⇒ bi)1≤i≤|I| represents a suspended cases which cannot
reduce since its argument does not reduce to a constructor.

The rules for weak reduction are defined as follows:

(λx.b) v → b{x ← v} (βv)
[k] v → [k v] (βs)

case CI,j(v) of (xi ⇒ bi)1≤i≤|I| → bj{xj ← v} (ιv)
case [k] of (xi ⇒ bi)1≤i≤|I| → [case k of (xi ⇒ bi)1≤i≤|I|] (ιs)

Γv(b) → Γv(b′) if b → b′ (contextv)
where Γv(•) ::= • v | b • | CI,i(b • v) | case • of (xi ⇒ bi)1≤i≤|I|

The rules (βv) and(ιv) are the standard rules for call-by-value function appli-
cation and case reduction. The rule (βs) (“symbolic” β-reduction) handles the
case where the function part of an application is not a function: a free variable
[x̃] or an application of a free variable [x̃ v1 . . . vn] or a suspended case. In that
case, the accumulator simply absorbs its argument. The rule (ιs) explains what
to do when an accumulator is argument of a case: we simply remember that
the case construct cannot reduce by producing a new accumulator. The rule
(contextv) enforces weak reduction (no reduction under binder) and a right to
left evaluation order (the argument being evaluated before the functional part)1.

In order to compute the normal form of a λ-term a, we first inject a into
the symbolic calculus. This is done by replacing each free variable x of a by its
corresponding symbolic value [x̃]. We obtain a closed symbolic term: the variable
x̃ is symbolic and not subject to substitution. In order to compute the normal
form of a closed symbolic term b, we first compute its symbolic head normal
form V(b) (also called value); then we read back the resulting value:

N (b) = R(V(b)) (1)
R(λx.b) = λy.N ((λx.b) [ỹ]) y fresh (2)
R(CI,i(v)) = CI,i(R(v)) (3)
R([k]) = R′(k) (4)
R′(k v) = R′(k) R(v) (5)
R′(x̃) = x (6)
R′(case k of (xi ⇒ bi)1≤i≤|I|) = case R′(k) of (xi ⇒ N (b Ci([ỹi])))1≤i≤|I| (7)

where b = λx.case x of (xi ⇒ bi)1≤i≤|I|
and yi are sequences of fresh variables with |yi| = |xi|

1 The evaluation order is important when using a virtual machine like the ZAM [11]
with n-ary applications to execute the symbolic calculus.
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The readback function R is defined recursively. It transforms a value v into a
normalised source term. Reading back an atom x̃ (equation 6) simply consists
in extracting the variable x. Reading back an accumulator k v (equations 5)
consists in applying the readback of the functional part to the readback of the
argument. The interesting case is for function λx.b (equation 2). It consists in
applying the functional value to a value [ỹ] representing a fresh variable. Here,
“fresh” means that y is not a free variable of b. Then, we compute the value of
the application, which reduces in one step to b{x ← [ỹ]}, and reads it back as
a normalised term a. The normal form of λx.b is λy.a, which is correct up to
α-conversion. The same idea is used to obtain the normal form of the branches
of a case.

In [9], the authors prove the following theorem in the case of the λ-calculus:

Theorem 1. If a is a closed, strongly normalizing λ-term, then N (a) is defined
and is the normal form of a.

The normal form of a term can be obtained by recursively computing its symbolic
weak normal form and reading back the resulting value. The efficiency of the
process clearly depends on the efficiency of the weak evaluation.

2.2 Compiling the Symbolic Calculus

Weak symbolic reduction can be implemented using a compiler and an abstract
machine. The abstract machine we present here is a simplified version of the
ZAM [11]. We write v̂ the values manipulated by the abstract machine. They
are pointers to heap allocated blocks [T : v̂1, . . . , v̂n], where T is a tag, and the
v̂i are values belonging to the block.

A machine state (e, c, s) has three components: an environment e that con-
tains a sequence of machine values v̂1, . . . , v̂n (it associates to the variable of
de Bruijn index i the value v̂i); a code pointer c that represents the term be-
ing executed; a stack frame s that contains function arguments, intermediate
results and return context 〈c, e〉. The semantics of the instruction set and the
compilation rules are given Figure 1.

The compilation scheme [[b]]c takes a term b that has to be compiled and a
code c that corresponds to the continuation of b. If b is normalising, the execution
of (e, [[b]]c, s) leads to (e, c, v̂ :: s) where v̂ is the machine representation of the
value v of b where the free variables have been substituted by their values in e.

Evaluating the code corresponding to a function λx.b builds a closure [Tλ : c, e]
where c is the code pointer corresponding to b and e the current environment.
For application, a return context is pushed on the stack, then the argument
and the function are evaluated, and finally, the APPLY instruction starts the
evaluation of the closure. For constructors, the instruction MAKEBLOCK(n, T )
builds a block2 [T : v̂1 . . . v̂n] which is the machine representation of constructors.
The compilation of a case starts by a PUSHRA, which saves the return context
2 The compilation of a block erases the inductive name in the constructor. For the

correctness, we refer to [9].
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[[x]]c = ACCESS(i); c where i is the de Bruijn index of x
[[λx.b]]c = CLOSURE(GRAB; [[b]]RETURN); c
[[b1 b2]]c = PUSHRA(c); [[b2]][[b1 ]]APPLY

[[CI,i(b1, . . . , bn)]]c = [[bn]] . . . [[b1]]MAKEBLOCK(n, i); c
[[case b of (xi ⇒ b)1≤i≤|I|]]c =

PUSHRA(c); [[b]]SWITCH([[b1]]RETURN, . . . , [[b|I|]]RETURN)

(e, ACCESS(i); c, s) � (e, c, e[i] :: s)
(e, CLOSURE(cf ); c, s) � (e, c, [Tλ : cf , e] :: s)

(e, GRAB; c, v̂ :: s) � (v̂ :: e, c, s)
(ef , RETURN, v̂ :: 〈c, e〉 :: s) � (e, c, v̂ :: s)

(e, APPLY, [Tλ : cf , e] :: s) � (ef , cf , s)
(e, PUSHRA(c1); c2, s) � (e, c2, 〈c1, e〉 :: s)

(e, MAKEBLOCK(n, T ); c, v̂1 :: . . . :: v̂n :: s) � (e, c, [T : v̂1 :: . . . :: v̂n] :: s)
(e, SWITCH(c1, . . . , cm), [T : v̂1 :: . . . :: v̂n] :: s) � (v̂n :: . . . :: v̂1 :: e, cT , s)

(e, SWITCH(c1, . . . , cm), [0 : ACCU, k̂] :: s � (e,RETURN, v̂ :: s)

where v̂ = [0 : ACCU, [1 : k̂, [Tλ : GRAB;SWITCH(c1, . . . , cm)]]]
(ef , ACCU, v̂a :: 〈c, e〉 :: s) � (e, c, [0 : ACCU, ef :: v̂a] :: s)

Fig. 1. Compilation rules and semantics of the virtual machine

(used at the end of branches), then the argument is evaluated and the SWITCH
instruction jumps to the corresponding branche.

What happens for the symbolic calculus? When an APPLY instruction is ex-
ecuted, the top stack value is not necessarily a closure, it can be the machine
representation of an accumulator. An accumulator [k] is represented like a clo-
sure: [0 : ACCU, k̂]. Furthermore, k being of the form h v1 . . . vn, k̂ is represented
as an environment: the sequence ĥ, v̂1, . . . , v̂n. The ACCU instruction takes the
top value of the stack, pushes it at the end of the environment, rebuilds an ac-
cumulate block and returns. In that way, the APPLY instruction does not need
to perform an extra test.

For the same reason, when a SWITCH instruction is executed, the top value
is not necessarily a constructor, it can be an accumulator. If the tag is 0, the
matched value is an accumulator, the SWITCH instruction builds an accumulate
block representing the suspended case. In practice, 0 branches are automatically
added to cases by the compiler, thus the SWITCH instruction of the ZAM can
be used without extra test. Note that for atoms, x̂ is represented by the block
[0 : x] and case k of (xi ⇒ b)1≤i≤|I| is represented by [1 : k̂, [Tλ : c, e]] where k̂ is
the machine representation of k, c and e are the code and the environment for
the function λx.case x of (xi ⇒ b)1≤i≤|I|.

In order to normalise a λ-term a using the virtual machine, we first compute
c = [[a]] and start the evaluation with the abstract machine in the state (e, c, ∅),
where e is an environment associating to each free variable x of a its value [x̃]
encoded by the heap block [0 : ACCU, [0 : x̃]]. When the machine stops, we
obtain a value v on the top of the stack. The readback function analyses which
kind of value it is. It can either be a closure, a constructor, or an accumulator.
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This can be done by a simple inspection of the tag. If the tag is Tλ, we have
to normalise v [ỹ]. This is done simply by restarting the machine in the state
(e, APPLY, v :: [ỹ] :: ∅). The same technique is used to normalise the branches of
a suspended case.

2.3 Adding Machine Integers

We are now ready to explain how we can take advantage of the compilation
mechanism to boost the evaluation of a λ-calculus extended with inductive types
using the machine-integer operations. Of course, the gain will only be effective
for programs using the previously defined inductive type int.

We extend the λ-calculus with a global environment Δ associating global
variables g to their definition (λ-term):

a ::= x | λx.a | a1 a2 | CI,i(a) | case a of (xi ⇒ ai)1≤i≤|I| | g

Δ ::= ∅ | Δ :: (g, a).

The reduction rules now depend on the global environment Δ and are extended
with one rule for the reduction of global definitions: g → Δ(g).

We assume that n has been chosen in such a way that the term In(dn−1, . . . , d0)
is isomorphic to the machine word dn−1 . . . d0 if the dj are all constructors
(true stands for the machine digit 1 and false for 0). In the following, the term
In(dn−1, . . . , d0) is written p if all the dj are constructors. We write ṗ for the
machine representation of p. If m is a machine integer, we write |m| its repre-
sentation as a term of type int; we have p = |ṗ| and m = ˙|m|.

In the following, we assume that we have a global definition + performing the
addition of two int. We denote by +a its associated definition and we write +M

the processor addition. We assume that + does what it is supposed to do, i.e.:

p1 + p2 ⇒∗ |ṗ1 +M ṗ1|

This gives us a first way to boost the reduction of + when the two arguments are
of the form p1 and p2; instead of accessing to the global definition +a of + and
then reducing the application +a p1 p2, one can directly compute |ṗ1+M ṗ2|. This
solution does not work so well when additions are nested. For example, during
the reduction of (p1+p2)+p3, the machine word ṗ1+M ṗ2 would be injected into
its constructor representation at the end of the evaluation of p1 + p2 and then
immediately re-injected into a machine word to perform the second addition. We
have chosen a different solution that overcomes this problem.

We extend the symbolic calculus with machine integers and their primitive
operations. The idea is to try to maintain as long as possible the terms of type
int in their machine representation. The syntax of the new symbolic calculus is
extended with machine integers:

b ::= x | λx.b | b1 b2 | CI,i(b) | case b of (xi ⇒ bi)1≤i≤|I| | [k] | m
v ::= λx.b | [k] | CI,i(v1, . . . , vn) | m
Δb ::= ∅ | Δb :: (g, v)
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In the definition of values, we exclude the case In(v1, . . . , vn) where the vi are all
true or false. New reduction rules are added to the calculus. First, a special case
is added for the constructor In:

p → ṗ

In other words, when a constructor of type int can be represented by a machine
word, its value is the machine representation. Second, for each global definition
representing a primitive operation over int, some special rules are added. Let us
consider addition, we add two rules:

m1 + m2 → m1 +M m2

v1 + v2 → Δb(+) v1 v2

The first rule applies when the two arguments of + are in machine representa-
tion. The result is given by the machine addition. The second one applies when
one of the two arguments is not in machine representation. It can either be an ac-
cumulator or an In constructor with one of its arguments being an accumulator.
In that case, the usual rule for global variable is used: the variable is replaced
by is associating value in Δb.

Pattern matching on terms of type int has also to be taken care of. The
matched value can be a machine word whereas a constructor value or an accu-
mulator is expected. For this reason, we add the rule:

case m of (xi ⇒ b)1≤i≤|I| → case |m| of (xi ⇒ b)1≤i≤|I|

Finally the readback function only needs to be extended so to get rid of machine
integers: R(m) = |m|.

Theorem 1 can be extended to this new symbolic calculus:

Theorem 2. If for all global definitions g with a special shortcut we have
Δb(g) m →∗ gM m. For all closed term a, well typed and strongly normalising,
then N (a) is defined and is then normal form of a.

What remains to be modified is the virtual machine and the compilation scheme.
Previously, the values of the virtual machine were only pointers to heap-allocated
blocks. The values are now extended with machine integers. Two instructions
TOINT and OFINT are added to the virtual machine. Their semantics is given
by:

(e, OFINT; c, d0 :: . . . :: dn−1 :: s) � (e, c, m :: s) m = d0 . . . dn−1 (1)
(e, OFINT; c, v0 :: . . . :: vn−1 :: s) � (e, c, v :: s) otherwise (2)
where v = [1 : v0, . . . , vn−1]

(e, TOINT; c, m :: s) � (e, c, v :: s) (3)
where v = [1 : d0, . . . , dn−1]

(e,TOINT; c, v :: s) � (e, c, v :: s) otherwise (4)

We also add one instruction for each primitive operations. For example, the
instruction ADD corresponds to the addition:

(e, ADD; c, m1 :: m2 :: s) � (e, c, m1 +M m2 :: s) (5)
(e, ADD; c, v1 :: v2 :: s) � (e+, c+, v1 :: v2 :: 〈c, e〉 :: s) otherwise (6)

where Δb(+) = [Tλ : c+, e+]
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Finally, we modify the compiler with special cases for the compilation of the
In constructor, for the primitive operations and for the pattern matching over
elements of type int:

[[In(b0, . . . , bn−1]]c = [[bn−1]] . . . [[b0]]OFINT; c
[[b1 + b2]]c = [[b2]][[b1]]ADD; c

[[case b of (xi ⇒ b)1≤i≤|I|]]c =
PUSHRA(c); [[b]]TOINT;SWITCH([[b1]]RETURN, . . . , [[bn]]RETURN)

if type of b = int

The compilation of the In constructor generates an OFINT as last instruction
and not a MAKEBLOCK as for the other constructors. The OFINT instruction
checks if the first n arguments on the stack correspond to machine represen-
tation of digits (i.e. a block representing the constructors true or false). If all
the arguments are constructors, the instruction builds the corresponding ma-
chine word (this corresponds to the reduction rule p → ṗ at the symbolic level).
If one of the argument is not a constructor, the instruction is equivalent to
MAKEBLOCK(n, 1).

The compilation of a + first evaluates its arguments, then the ADD checks
if they are machine words. If it is the case, the instruction simply performs the
addition. If not, the instruction gets the value [Tλ : c+, e+] of the +, inserts a
return context 〈c, e〉 and performs an APPLY.

The compilation of a pattern matching on an object of type int is also modified.
A TOINT instruction is inserted just before the SWITCH. If the top value of the
stack is a machine word, the TOINT instruction replaces it by its corresponding
block representation. If not, the TOINT instruction does nothing. The semantics
of the SWITCH does not need to be modified.

The readback function should be able to analyse the value it gets. Before
adding machine integer, this was done by matching the tag of the heap block.
Remember that a heap block is a pointer, i.e. a machine integer. The problem is
how to differentiate between pointers and integers. Note that a similar problem
occurs for the implementation of the new instructions, which have to test if some
values are blocks or integers. Fortunately, there is an easy solution. Since the
implementation of the Coq virtual machine is based on the one of OCaml.
The OCaml garbage collector makes the difference between a machine word
representing a pointer and a machine word representing an integer using the
following convention: a pointer is a machine word with least significant bit set to
0, an integer is a machine word with the bit set to 1. So, an integer p is encoded
by the machine word 2p + 1. This is why OCaml, and now Coq, have integers
of only 31 bits on a 32-bit architecture.

2.4 Primitive Functions

As adding a new primitive function requires some expertise, we have developed
a reasonable library of primitive functions for the int type. It contains the usual
functions (addition, multiplication, square root, comparison, logical functions,
shifts) but also some iterators. Functions like
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Definition foldi (A:Type) (F:A->A) (a:A) (n_s n_e:int) :=

if n_s <= n_e then

(fix aux (i:int) (ai:A) {

if i = n_s then F i ai else aux (i-1) (F i ai)

}) n_e a

else a.

that computes F ns (F ns+1 (. . . (F ne a) . . .)) cannot be defined on top of
our library. Because of the definition of int, this is not structurally recursive so
Coq cannot establish that it always terminates. So, we add them as primitive
functions.

3 Extending Coq with Persistent Arrays

Arrays are among the most important data-structures. Unfortunately, logics like
the one of Coq are stateless. So, it is impossible to deal directly with destructive
arrays as the ones we find in mainstream programming languages. The work-
around is usually to use some flavour of purely functional arrays [13]. This works
pretty well when arrays are rather small. For larger ones, not having an O(1)
access to elements of the array quickly becomes unmanageable.

In order to introduce destructive arrays, one way to go is to add states to
the logic. Monads [18] are the standard way to do this. Unfortunately, mon-
ads are quite difficult to manage in a prover without developing some infras-
tructure (see [5,15] for example). An alternative approach is to develop some
kind of program analysis that is capable of discovering (automatically or semi-
automatically) that it can safely use destructive arrays instead of functional ones
(see [14] for example). If one wants this technique to be applicable to a large
set of programs, such analysis is usually rather complex. Here, we are going to
follow a third approach and use destructive arrays but with a functional inter-
face. These arrays are called persistent arrays [1]. For Coq, persistent arrays
are implemented in a very naive way. An array is simply composed of the list of
elements of the array and a default value.

Inductive array (A : Type) : Type := mkArray(elems : list A)(default : A).

As there is no exception in Coq, the default value is mainly used as a return
value when accessing outside the range of the array. Instead of a default value,
all functions manipulating arrays could have been parametrised by a proof that
the access is valid. This last solution has two drawbacks. First, a proof has to
be provided each time a function is used. Second in a call by value strategy, it
adds extra costs since the proof has to be reduced before the actual function is
evaluated. With a default value, the two basic operations on arrays are defined
in a straightforward manner:

Definition get (A : Type)(t : array A)(n : int) := get elem (default t) (elems t) n.
Definition set (A : Type)(t : array A)(n : int)(a : A) :=

mkArray (upd elem (elems t) n a) (default t).

where (get elem d l n) returns the n + 1-th element of the list l if n is less
than the size of the list, d otherwise; and (upd elem l n a) returns l where the
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n + 1-th element has been replaced by a if n is less than the size of the list, l
otherwise. Both definitions are very inefficient. The access is linear in the number
of elements and the update is also linear and furthermore reallocates a large part
of the list.

Now, the virtual machine is going to conform to this functional behaviour
but using destructive arrays. The idea is quite simple. Among all the versions
of the array that may co-exist during execution, the last one (the newest one)
is privileged and is represented by a destructive array. Look-ups and updates
applied to this last version are then very efficient. Older versions of the array are
not destructive arrays but point to the last version through a list of indirections.
These indirections explain which modifications have to be applied in order to
retrieve the values of the old array from the last version. Look-ups of old versions
are possible (this is a requirement of the functional interface) but rather slow
(linear to the number of updates). Updates just add a level on indirection. For
the implementation, we have directly adapted the OCaml code proposed by
J.C. Filliâtre in his paper [6]. Persistent arrays are defined as follows:

type ’a parray_kind = Array of ’a array | Updated of int * ’a * ’a parray

and ’a parray = (’a parray_kind) ref

A persistent array is a reference on a parray_kind which is either a destructive
array (Array) or an indirection Updated(i,v,t) indicating that the persistent
array is t except that at position i the value is v. The OCaml implementation
does not contain explicitly the default value. It is stored in the last position of
the array.

For the get function, we look directly in the array or follow the indirections:

let rec get p n =

match !p with

| Array t ->

let l = Array.length t in

if 0 <= n && n < l then Array.get t n else Array.get t (l-1)

| Updated (k,e,p) -> if n = k then e else get p n

Note that in a path to the destructive array, there could be several occurrences
of n (this location could have been updated several times) but we stop at the
first one. For the set function, an indirection is added at the right position:

let set p n e =

let kind = !p in

match kind with

| Array t ->

if 0 <= n && n < Array.length t - 1 then

let res = ref kind in

p := Updated (n, Array.get t n, res); Array.set t n e; res

else p

| Updated _ ->

if 0<= n && n < length p then ref (Updated(n, e, p)) else p

Note that if we are updating outside the array, everything is left unchanged.
Two more functions complement the library of arrays:



94 M. Armand et al.

Definition copy (A : Type)(t : array A) := t.
Definition reroot (A : Type)(t : array A) := t

If the functional behaviour is the identity for both, they implement two distinct
operations. With the first one, we get a physical copy of the array (a new inde-
pendent destructive array is allocated). With the second one, we get an array
with fast access (it is a destructive array). This is done without copying by re-
cursively reverting all the indirections that lead to the destructive array in the
array that is passed as argument. A very nice application of this reroot operation
can be found in [6].

The extension of the virtual machine of Coq follows the same methodology
than for machine integers. Two translation functions are used to transform a
Coq representation of array into its virtual machine representation and con-
versely. The only detail we had to take care of is that OCaml arrays are limited
in size. If the size of the Coq array is greater than the maximum OCaml size
then the virtual machine switches to the inefficient Coq representation. For the
compilation, array primitives like get are compiled in a slightly different way.
This is due to the implicit polymorphism of the virtual machine implementa-
tion. For the virtual machine, the get operation expects only two arguments,
whereas the Coq version expects three arguments (the type A of the elements).
So, the compilation scheme first evaluates the last two arguments, then the get
checks if they are in machine representation. If not, the argument A is evaluated
and the three arguments are applied to the Coq implementation of get.

4 First Application: The Mini-Rubik

The Mini-Rubik is the pocket version of the famous Rubik cube. It is composed
of 8 small cubes only and has 3,674,160 configurations. It is then quite easy to
explore them completely with computers. Here, we explain how the property
that the Mini-Rubik is always solvable in less than 11 moves has been proved
formally.

First, we need to give a model. For this, we use indexation and associate to
each configure of the Mini-Rubik a unique number from 1 to 3,674,160. Second,
we have to construct a reachability graph – a Cayley graph, using the terminology
of group theory. As we are capable of indexing configuration, this is easy. In order
to represent a set of configurations, we use an array of 3,674,160 booleans. We
prove that it is solvable in 11 moves using an iterative process and two sets
of configurations SA and SN . The first set SA contains the configurations that
have been reached so far. The second set SN contains the new configurations
that have been reached by the previous iteration. Initially these two set only
contain the initial configuration. At each iteration, SA and SN are updated with
all the configurations that can be reached in one move by one configuration in
SN . After 12 iterations, SN should be empty.

This application is perfect for testing our extension. First, as 3, 674, 160 <
231 − 1, a configuration can be represented by a single native integer. Second,
if it is not possible to allocate in Coq an array of 3,674,160 booleans (booleans
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are defined as an inductive type with two constructors, so one boolean takes one
word in memory), thanks to binary encoding we use an array of machine integer
of length 118522 = 3, 674, 160/31+ 1. Furthermore, from a given configuration,
there are 9 configurations reachable in one move. So this means that look-ups in
the array SA will be 9 times more frequent than updates. This is perfect since
our look-ups cost much less than our updates. In [16], we have already presented
a formal proof of the Mini-Rubik. In this version, machine integers were available
but not efficient arrays. The arrays were implemented using an ad hoc functional
data-structure. Checking the proof that the Mini-Rubik is solvable in 11 moves
took 4 minutes. Modified with our new arrays, not only did it reduce to 10
seconds, but it also greatly simplified the implementation.

5 Second Application: Verifying SAT Traces

The most efficient SAT solvers that are used to prove the unsatisfiability of
booleans formulas are all based on the DPLL algorithm with learning (see [10]
for a complete introduction). An interesting feature of this algorithm is that
very little overhead is needed in order to generate a trace that explains why the
formula is unsatisfiable. Formats for traces may slightly vary from one solver to
the other but they are all based on the simple resolution rule:

¬x ∨ C x ∨ C′

C ∨ C′

The variable x is called the resolution variable, C and C′ are clauses, i.e. dis-
junctions of literals. The reflexive method to prove the unsatisfiability of boolean
formulas in Coq works as follows:

- The initial problem is turned by some CNF transformation into a list of
clauses. These clauses are called the roots

- The sat solver is called and returns the trace. This trace is composed of a
list of resolution chains. Each chain corresponds to a clause that has been
learned by the algorithm, so it is a logical consequence of the roots.

- A program written in Coq checks that the trace is correct: it builds the
clauses that correspond to the resolution chains and finally checks that the
last clause is the empty clause, i.e. ⊥ is a consequence of the roots.

From the implementation point of view, roots are represented by a list of lists of
natural numbers. Each boolean variable x has a unique number n. The literal x
is represented as 2n, ¬x as 2n+1. The trace is also represented as a list of lists of
natural numbers. Each number represents an index of a clause. The indexes are
computed with the following convention: roots come first then the clauses built
by resolutions. A resolution chain is a list of natural numbers {n1, n2, . . . , nk}.
In order to build the resulting clause, it is traversed from left to right: Cn1 is
resolved with Cn2 , the result is then resolved with Cn3 and so on.

For the implementation of the checker, we have directly translated the C code
of zVerify, the checker of zChaff [17], into our functional setting. The checker
represents 363 lines of code and its correctness proof is 1621 line long. We use
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Problem Vars Clauses zChaff Isabelle Coq Cert Typing Check Array Parray zVerify

dubois50 150 400 0.00 0.04 0.04 0.00 0.02 0.02 0.00 0.00 0.01
barrel5 1407 5383 0.50 1.10 0.47 0.00 0.32 0.15 0.00 0.00 0.07
barrel6 2306 8931 1.74 10.38 1.15 0.08 0.62 0.45 0.06 0.14 0.14
barrel7 3523 13765 5.20 5.63 1.45 0.17 0.80 0.48 0.07 0.16 0.26
6pipe 15800 394739 42.21 – 24.73 0.98 13.92 9.83 2.05 4.74 2.86
longmult14 7176 22390 408.55 – 73.63 7.72 27.07 38.84 9.10 16.92 7.34
hole11 132 738 14.82 9.36 9.51 0.41 2.96 6.14 1.39 2.89 0.90
hole12 156 949 144.49 61.10 58.28 2.44 18.47 37.38 13.12 16.88 4.85
hole13 182 1197 5048.23 – 1068.30 88.15 387.44 592.72 183.47 275.14 –

Fig. 2. Benchmarking the checker

native integers to represent literals and indexes. Arrays are used for the set of
clauses and for a temporary cache to compute the result of a resolution chain.
In order to tackle large examples, we had to take a special care in memory
usage. For this reason, traces are preprocessed for garbage collecting: we track
when a clause is not used anymore, so its index can be reallocated and we share
common prefixes in resolution chains. Traces processed by the checker are then
list of tagged lists of natural numbers. The tag indicates if the new resulting
clauses has to be appended or reallocated in that case it contains the index of
the substituted clause.

In order to evaluate what we have done, Figure 2 presents some benchmarks.
The machine used for these benchmarks is a Linux Intel Xeon 2.33GHz with
6144 KB of cache and 3 Gigabytes of memory. For each problem, we give:

- the number of variables, the number of clauses and the time for zChaff to
generate the trace;

- the time of a very similar effort done in Isabelle/HOL by proof recon-
struction [19];

- the time for the reflexive method in Coq (we first give the total time, and
then split it in three: the time to parse and preprocess the trace, the time
for Coq to typecheck the trace3, and the actual time of the checker);

- the time of the extracted version of the checker running in OCaml with
OCaml int and native compilation, first with destructive arrays (Array)
then with persistent arrays (Parray);

- the time of zVerify.

Times are given in seconds. The symbol – indicates that the verification fails by
out-of-memory. We can draw some observations. First, checking the trace is al-
ways faster than generating it. While we are slower than zVerify (roughly
10 times slower but with a better memory management most probably due
to our preprocessing), we are competitive with the proof reconstruction of Is-

abelle/HOL. We have a better memory management. We are also faster for all
benchmarks except the pigeon-hole problems, where proof reconstruction is as
fast as our reflected approach. Second, a fair amount of time in Coq is spent for
simply typechecking the generated trace. This clearly indicates that the type-
checker of Coq has not yet been tuned to handle very large terms. Finally, the
3

Coq has to typecheck the trace because it is an argument of the call to the checker,
so it appears explicitly in the proof term.
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checking part in Coq behaves quite well with respect to its extracted version
with native code compilation. Remember that the evaluation in Coq is usually
comparable to the bytecode compilation of OCaml and between native and
bytecode compilations there is usually a factor of 5 to 10. One reason for this
good behaviour is that our array primitives in Coq are actually running in their
native version. The two versions of the extracted version indicate that, for this
kind of application, the cost of using persistent arrays instead of destructive ones
is about a factor of 2.

6 Conclusion

In this paper, we have presented how Coq can be extended with some imperative
features. This extension increases the trusted computing base of the system
but we believe that what we have proposed here is a very good compromise
between the impact the extension has on the architecture of the prover and the
benefit in term of speed-up in proof checking. Our changes are localised to the
abstract machine and its compiler. We didn’t have to change any other part of
the prover. In particular, we didn’t change the logic. We have also developed
a systematic and simple methodology to add efficient data-structures with a
functional interface to the abstract machine and its compiler. This contributes
to the trust one can put in this extension. The methodology has been used to
integrate machine integers and persistent arrays.

Some kind of destructive arrays are available in provers like ACL2 [4], Is-

abelle/HOL [5] or PVS [14], but some of these techniques are difficult to
apply directly to a prover with a rich logic such as Coq and anyway all of them
would require a major modification in the architecture of the prover. To our
knowledge, the idea of using persistent arrays inside a prover is new. If it does
not provide the full power of destructive arrays as in the other provers, for large
applications, it gives a clear speed-up with respect to functional arrays. The loss
in efficiency with respect to destructive arrays is largely compensated by the fact
that we remain in the comfortable setting of functional behaviour.

Our overall goal is not to have an evaluation inside Coq that competes with
mainstream programming languages. It is more to have a reasonable comput-
ing power within the prover. For example, being able to check the property of
the Mini-Rubik in 4 minutes was sufficient enough. The SAT example is more
interesting. We manage to get within Coq what was done by extraction in [7].
Without our extension, it would have been impossible to handle large examples.
The fact that we could very quickly be competitive with what was achieved by
finely-tuned proof reconstruction [19] in HOL and Isabelle/HOL is clearly
good news. It opens new perspectives for the use of reflexive methods inside
Coq. Finally, if our initial motivation was efficiency, memory usage has revealed
to be sometimes an even more crucial limiting factor. Our machine integers
and persistent arrays are much more compact than their corresponding func-
tional representations – or their traditional encoding. Unfortunately, and this
is maybe the only drawback of having this light integration, these objects only
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exist within the abstract machine. In particular, they cannot be stored in proof
objects, therefore have no impact on their size. For this reason, we had to de-
velop an ad hoc inductive type in order to store efficiently the traces generated
by the SAT solver.
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6. Conchon, S., Filliâtre, J.-C.: A persistent union-find data structure. In: ACM Work-
shop on ML, pp. 37–46 (2007)

7. Darbari, A., Fischer, B., Marques-Silva, J.: Formalizing a SAT Proof Checker in
Coq. First Coq Workshop, published as technical report tum-i0919 of the Technical
University of Munich (2009)

8. Gonthier, G.: Formal Proof – The Four-Color Theorem. Notices of the AMS 55(11)
(2008)
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Abstract Influenced by the success of the MIZAR system many declarative proof
languages have been developed in the theorem prover community, as declarative
proofs are more readable, easier to modify and to maintain than their procedural
counterparts. However, despite their advantages, many users still prefer the pro-
cedural style of proof, because procedural proofs are faster to write. In this paper
we show how to define a declarative tactic language on top of a declarative proof
language. The language comes along with a rich facility to declaratively specify
conditions on proof states in the form of sequent patterns, as well as ellipses
(dot notation) to provide a limited form of iteration. As declarative tactics are
specified using the declarative proof language, they offer the same advantages
as declarative proof languages. At the same time, they also produce declarative
justifications in the form of a declarative proof script and can thus be seen as an
attempt to reduce the gap between procedural and declarative proofs.

1 Introduction

The development of interactive tactic based theorem provers started with the LCF sys-
tem [19], a system to support automated reasoning in Dana Scotts “Logic for Com-
putable Functions”. The main idea was to base the prover on a small trusted kernel,
while also allowing for ordinary user extensions without compromising soundness. For
that purpose Milner designed the functional programming language ML and embedded
LCF into ML. ML allowed to represent subgoaling strategies by functions, called tac-
tics, and to combine them by higher order functions, called tacticals. By declaring an
abstract type theorem with only simple inference rules type checking guaranteed that
tactics decompose to primitive inference rules.

While allowing for efficient execution of recorded proofs by representing them as
a sequence of tactic applications, it has been recognized that these kind of proofs are
difficult to understand for a human. This is because the intermediate states of a proof
become only visible when considering the changes caused by the stepwise execution of
the tactics. Tactic proofs can be extremely fragile, or reliant on a lot of hidden, assumed
details, and are therefore difficult to maintain and modify (see for example [34] or [20]
for a general discussion). As the only information during the processing of a proof is
the current proof state and the next tactic to be executed, a procedural prover has to stop
checking at the first error it encounters.
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This has led to declarative proof languages, inspired by MIZAR [29], where proof
steps state what is proved at each step, as opposed to a list of interactions required to
derive it. It has been argued that structured proofs in a declarative proof language are
easier to read and to maintain. Moreover, as a declarative proof contains explicit state-
ments for all reasoning steps it can recover from errors and continue checking proofs
after the first error. It has been noted in [32] that a proof language can be implemented
rather independently of the underlying logic and thus provides an additional abstrac-
tion layer. Due to its advantage many interactive theorem provers nowadays support
declarative proofs (see for example [28,32,3,11]).

Another motivation for a declarative proof language comes from a research com-
munity dealing with the integration of proof assistants into development environments
and supporting the so-called document centric approach [16,2]. The main idea is that
the document, containing a formal theory and the formal proofs, is the central medium
around which tools to assist the author are made available. As many tactics are devel-
oped while developing the formal theory, it is only consequent to integrate them into the
document. Currently, this is not the case, as tactics are usually written in the underlying
programming language of the prover.

Contributions. In this paper we present a declarative tactic language on top of a declar-
ative proof language (which can be seen as an extension of [14]). To our best knowl-
edge, such a language has not been presented before. Our language comes along with
a rich facility to declaratively specify proof states (and conditions on them) in the form
of sequent patterns, as well as ellipses (dot notation) to provide a limited form of it-
eration. The language is intended to provide a simple to use tactic language layer to
bridge the gap between the predefined proof operators and the programming language
of the proof assistant. This new layer of abstraction can be seen in analogy to what
has been done by introducing declarative proof languages. We believe that declarative
tactic languages offer similar advantages as declarative proof languages, namely robust-
ness and readability, and that the trend towards declarative proof languages will carry
on with declarative tactic languages. Interestingly, the trace of a declarative tactic is a
declarative proof script and can thus be inserted into the document if desired. More-
over, because of its additional abstraction, it might provide possibilities to exchange
reasoning procedures between different proof assistants in the long-term view.

The structure of the paper is as follows: Section 2 gives a more detailed background
and motivates our language by means of a simple example. Section 3 presents the ba-
sic proof script language. Section 4 motivates and extends the language by an ellipsis
construct. Finally, we conclude the paper in Section 5 with a discussion of related work.

2 Background and Introductory Example

At present, two main formalization styles are supported by interactive theorem provers,
namely the procedural style and the declarative style.

In the procedural style, proofs consist of a sequence of tactic applications, as shown
on the left of Figure 1. Intuitively, the proof script corresponds to the edges of a deriva-
tion tree being labeled with the tactic names. Even though there are different implemen-
tations of the notion of a tactic, each of these tactics can be understood as a program
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theorem natcomp: "(a::nat) +

(b::nat) = (b::nat)+(a::nat)"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

apply (subst add_Suc_right)

apply (subst add_Suc)

apply (simp)

done

theorem natcomplus: "(a::nat) + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (simp only: add_0)

also have "...=b+0" by (simp only:

add_0_right)

finally show ?thesis .
qed
next ...

Fig. 1. Procedural and declarative proof script in ISABELLE/ISAR

taking a list of goals together with a justification function as input and returning a new
set of goals together with an updated justification function. The justification function is
an internal function in the underlying programming language, such as ML, and cannot
be presented to the user. By being a sequence of explicit program calls, a procedural
proof contains explicit statements of what to do. In particular, the reader does not see
the proof state unless he executes the tactic. Therefore, (procedural) proofs are consid-
ered not to be human readable and difficult to maintain. Procedural tactics are usually
written in the underlying programming language of the assistance system, such as ML,
conflicting with the document centric approach.

In the declarative style, proofs consist of structured blocks, where each block con-
sist of a list of statements, connected by a fixed set of keywords. The statements specify
what is proved at each step. Intuitively, a declarative proof script thus corresponds to the
information contained in the nodes of a derivation tree. Most declarative languages re-
quire the user to give hints justifying the statement using previous statements. However,
in principle a declarative proof can simply be a sequence of intermediate assertions, act-
ing as islands or step stones between the assumptions and the conclusion (by omitting
the constraints indicating how to find a justification of the proof step) leaving the task
of closing the gaps to automation tools. Such islands are sometimes also called proof
plans [13] or proof sketches [33]. Surprisingly, quite many systems – sometimes called
proof finders or proof planner – have been developed trying to automatically close such
gaps, such as MIZAR, NQTHM [8], the SPL system [34], the SAD system [30], the
NAPROCHE [24] system, the SCUNAK system [9], TUTCH [1], or Ω MEGA [15].

The main advantage of a declarative proof script is that intermediate assertions are
shown in the proof script. While this makes the proof easier to read, it makes it more dif-
ficult to write, as the proofs tend to be longer (see the example on the right of Figure 1).
As a consequence, in practice users often prefer the procedural style of proof.

2.1 From Declarative Proof Scripts to Declarative Tactics

Having the correspondence between procedural and declarative proofs in mind and re-
calling that in the simplest case a tactic is a sequence of inference applications, repre-
senting a partial proof, it appears suggestive to think about declarative tactics as analog
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theorem natcomplus: (a::nat) +

(b::nat) = b+a

proof
subgoals by (induct a)

subgoal 0 + b = b + 0

subgoal Suc a + b = b + Suc a

using IH:a+b=b+a

end
qed

theorem natcomplus: (a::nat) +

(b::nat) = b+a

proof
subgoals by (induct b)

subgoal a + 0 = 0 + a

subgoal a + Suc b = Suc b + a

using IH: a+b=b+a

end
qed

Fig. 2. Declarative proof with gap resulting by induction over a, respectively b

to procedural tactics. In contrast to procedural proofs the justification should be declar-
ative, but we additionally require it to be specified using a declarative language, namely
the proof language itself.

Consider for example the problem in Peano arithmetic of showing the commutativity
of addition, that is, a + b = b + a. Of course, a proof can easily be generated in the
procedural style. However, because of its advantages what we are really interested in is
a declarative proof. Starting by induction over one variable, two possible proof attempts
in Ω MEGA-proof language [15] are shown in Figure 2. Note that as the proof is still
partial, it contains unjustified statements and can thus be seen as a proof sketch or a
proof plan. This is similar to the “gap” command introduced in [16].

To automate the generation of one of these scripts, three steps are necessary. First,
we need the control information over which variable the induction has to be performed.
This is for example possible by analyzing the universally quantified variables and

strategy natinduct

cases * � ϕ

with x in (analyzeinductvars ”ϕ”)

P=(abstract ”ϕ” ”x”) ->

proof
subgoals by (induct x)

subgoal P 0

subgoal P (suc x) using IH: P x

end
qed

Fig. 3. Declarative induction tactic

preferring those in recursion position.
Second, we need a schematic proof
script (a proof script with schematic
variables), as well as a mechanism to in-
stantiate schematic variables with actual
terms, which is in our case the desired
induction variable. Indeed, by compar-
ing the scripts above, we observe that
the two proof scripts can be made equal
by replacing the induction variable by
a schematic variable. The choice point
over the induction variable can be ex-
pressed as membership in a (sorted) list
of admissible induction variables, which
can be easily computed in the underly-
ing programming language of the prover. Finally, to be able to perform induction over
the natural numbers on different problems, we replace the instance of the problem by a
schematic variable, and use matching against the proof state to establish their relation.

Our realization is shown in Figure 3, where we use quotes to refer to expressions in
the tactic language within the underlying programming language. To illustrate the dif-
ferent levels of the tactic, we shade the background of expressions in the tactic language,
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while expressions in the proof language are unshaded. Expressions in the underlying
programming language are written in sans serif font.

Even though the result of executing a declarative proof script on a proof state is again
a proof state – as in the case of procedural tactics –, it provides a simple mechanism
to view the proofs at different levels of granularity, namely either as a single tactic
invocation in the style of ... by name, but also by showing the declarative proof script
obtained by replacing the schematic variables by the terms computed by the tactic. Note
that one reason why some users favor the procedural style of proofs over the declarative
style of proofs is that the procedural style is faster to type. This benefit remains when
invoking declarative tactics. However, we additionally obtain a declarative proof script.
In that sense, they can be seen as a means to close the gap between the procedural style
and declarative style of proofs.

3 Development of the Language

In the simplest form, a declarative tactic is a (partial) proof in the proof language. For
more complex situations, we have to answer the following questions: (i) When is the
tactic applicable? (ii) How do the intermediate proof states (islands) look and how can
they be generated? (iii) What is the justification for the statements?

defstrat ::= strategy name stratexp
stratexp ::= cases (matcher stratexp) +

| proof (with assignments)?
matcher ::= matchhead whereexp?

(with assignments)
whereexp ::= where prog
matchhead ::= sequent | var
sequent ::= termpatterns (,*)? � termpattern
termpatterns ::= termpattern

| termpatterns , termpattern
termpattern ::= form | [ term ] (ˆ termqualifier)?
termqualifier ::= + | − | var
assignments ::= lhs assignop prog
assignop ::= = | in
lhs ::= form | ( form (, form)+ )

Fig. 4. Basic Tactic Language

To declaratively specify (i),
we provide the cases construct
and matching facilities to re-
late schematic variables with a
given proof state and to restrict
the applicability of the tactic
(see Figure 4 for the gram-
mar rules and Figure 3 for an
example). The matcher speci-
fies a matching condition on
the proof state in the form of
a sequent. * is used to indi-
cate that the length of the an-
tecedent of the sequent can be
higher than the length of the
antecedent of the matcher. [t]
denotes the condition that t oc-
curs as a subterm in a formula
of the sequent. Subterm occur-
rences can further be restricted
by the specification of polarities, where we use + to indicate a positive subformula and
- to indicate a negative subformula. By using a schematic variable instead of +,-, the
polarity is accessible within the tactic via that variable. Note that in general a matcher
can match a given sequent in different ways and thus introduces nondeterminism.
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proof ::= proof steps qed
steps ::= (ostep;steps)|cstep
ostep ::= set|assume|fact|goal
cstep ::= trivial | goals|cases|ε
by ::= by name? | proof
from ::= from (label (, label)∗)?
sform ::= form | . binop form

assume ::= assume steps from thus form
fact ::= sform | by from
goals ::= subgoals (goal)+ by
cases ::= cases (form { proof })+ by from
goal ::= subgoal form (using form (and form)+)? by
set ::= set var=form (, var=form)∗
trivial ::= trivial by from

Fig. 5. Ω MEGA proof script language

(ii) is expressed within the proof language, while we allow the statements to contain
schematic variables. Figure 5 shows the abstract syntax of our proof language, which is
standard except that metavariables1 are allowed in the statements. Metavariables can be
instantiated using the set construct. The subgoals construct performs an explicit back-
ward step. Each new subgoal is stated by a subgoal, followed by a proof of that subgoal.
New assumptions for that subgoal are introduced within the using form. If only a single
subgoal is introduced, the keyword subgoals can be omitted and the subsequent proofs
refers to the justification of the reduction.

The value of schematic variables is computed during the expansion of tactic. The
grammar rules for tactics are depicted in Figure 4. Here, form and var are from the
underlying term language with possible labels on subterms, such as (L1 : A)∧ (L2 : B)
and schematic variables. We use ⊥ to indicate failure. To allow for a limited form of
non-determinism we provide the assignment operator in, which chooses from a list of
possibilities. As we cannot expect to provide a fixed language to express metalevel
conditions and to perform metalevel analysis (in our case the extraction and sorting of
the admissible induction variables), a reasonable strategy is to link-in the underlying
programming language of the prover here, indicated in the grammar by prog.

For (iii), the justification is either underspecified (no by and no from), partially spec-
ified (by and/or from), or fully specified (subproof given).

These extensions already allow us the specification of the induction tactic in a declar-
ative form (see Figure 3). Note that schematic variables can be used as placeholders for
arbitrary terms, in particular terms generated by an oracle without justification. This
provides a convenient means to integrate results from external systems, such as com-
puter algebra systems (CAS) (see [10] for an overview for combining CAS systems and
theorem provers). In such a case, we can either leave the justification of the oracle step
underspecified (gap), or indicate a tactic to be used to justify it.

An example of such a tactic is given in Figure 6. The tactic is applicable if the goal
has the form abs(GOALLHS)<GOALRHS and calls a CAS to factor GOALLHS. To that
end, the schematic variable Y is bound to the result of the factorization provided by
MAXIMA, where the translation of the term GOALLHS into the syntax of MAXIMA

and the translation back is internalized in maxima-factor. If this succeeds, the script

1 Metavariables are supported by the underlying Ω MEGA prover and are not to be confused with
the schematic variables.
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strategy maximafactorabs

cases

* |- ((abs(GOALLHS)) < GOALRHS) ->

proof
subgoal abs(Y) < GOALRHS by
proof

L2:(Y = GOALLHS) by abeliandecide

L3: abs(Y) = abs(GOALLHS) by (f=abs in arg cong) from L2

trivial from L3

qed
qed
with Y = (maxima-factor "GOALLHS")

Fig. 6. Call of a CAS to factor a subterm of the goal formula

specified in the proof . . . qed block is instantiated and inserted. Being executed, it re-
duces the goal abs(GOALLHS)<GOALRHS to the goal abs(Y)<GOALRHS. This reduction
is justified by (1) showing the equality between Y (the factorization provided by the
CAS) and GOALLHS, and then applying the fact that abs is a function. Note that the
same tactic is also expressible in a forward style by relying on assume and that all la-
bels in the proof script are generated at runtime and are renamed if already present in the
context.

Semantics. Figure 7 shows the semantics of our language constructs by showing how
to expand a declarative tactic to a declarative proof script. The expansion mechanism
works on configurations 〈PS;Γ ;exp〉, where PS denotes the current proof state, and Γ
a context, which is initially empty and keeps track of bindings for schematic variables.
exp denotes the expression to be expanded. Configurations evaluate either to a proof
script, denoted by the relation ↪→, or to an environment, denoted by the relation →. We
use the notation Γ ∪a = b to denote the update of Γ with the binding a = b, and the sym-
bol ⊥ to denote failure. To keep the rules simple, some rules are non-deterministic. In
the actual implementation, of course, all results are lazily produced and stored for back-
tracking. instance(Γ ,S) denotes the instantiation of the schematic proof S by replacing
the schematic variables with their values in Γ . It is only applicable if all schematic vari-
ables are bound. We use eval to evaluate a LISP expression prog; the sequent matching
is abstracted in the function match (which is also non-deterministic).

To enhance readability, we have grouped corresponding rules together. The first
group describes the expansion of the cases construct, which returns the result of the
first case that succeeds. An individual case is either a proof script (second group), or
of the form matchhead (where exp)? (third group). The value of schematic variables
is computed within the with construct (see the last group) which uses eval to eval-
uate expressions of the underlying programming language. Sequent matching works
by first invoking the matcher on the current proof state and then evaluating additional
condition.
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〈PS;Γ ;c1〉 ↪→⊥ 〈PS;Γ ;cases c2 . . .cn〉 ↪→ S

〈PS;Γ ;cases c1 . . .cn〉 ↪→ S 〈PS;Γ ;cases ε〉 ↪→⊥

〈PS;Γ ;c1〉 ↪→ S

〈PS;Γ ;cases c1 . . .cn〉 ↪→ S
S �=⊥

〈PS;Γ ;ass〉 → ⊥

〈PS;Γ ;proof with ass〉 ↪→⊥

〈PS;Γ ;ass〉 → Γ ′ 〈PS;Γ ′;proof〉 ↪→ S

〈PS;Γ ;proof with ass〉 ↪→ S
S �=⊥

〈PS;Γ ;proof〉 ↪→ instance(Γ ,proof)

〈PS;Γ ;matcher〉 → ⊥

〈PS;Γ ;matcher stratexp〉 → ⊥

〈PS;Γ ;matcher〉 → Γ ′ 〈PS;Γ ′;stratexp〉 ↪→ S

〈PS;Γ ;matcher stratexp〉 ↪→ S

〈PS;Γ ;matchhead〉 →match(matchhead,PS)

〈PS;Γ ;matchhead〉 → ⊥

〈PS;Γ ;matchhead where exp〉 → ⊥

〈PS;Γ ;matchhead〉 → Γ ′ 〈PS;Γ ′;where exp〉 → ⊥

〈PS;Γ ;matchhead where exp〉 → ⊥

〈PS;Γ ;matchhead〉 → Γ ′ 〈PS;Γ ;where exp〉 → Γ ′′

〈PS;Γ ;matchhead where exp〉 → Γ ′′

〈PS;Γ ;ass〉 → Γ ′ 〈PS;Γ ′;eval(c)〉 → 	

〈PS;Γ ;where c with ass〉 → Γ ′

〈PS;Γ ;ass〉 → ⊥

〈PS;Γ ;where c with ass〉 → ⊥

〈PS;Γ ;ass〉 → Γ ′ 〈PS;Γ ′;eval(c)〉 → ⊥

〈PS;Γ ;where c with ass〉 → ⊥

〈PS;Γ ;c〉 → 	

〈PS;Γ ;where c〉 → Γ

〈PS;Γ ;eval(prog)〉 → c 〈PS;Γ ∪ lhs = c;ass′〉 → Γ ′′

〈PS;Γ ; lhs = prog ass′〉 → Γ ′′ c �=⊥

〈PS;Γ ;eval(prog)〉 → [c1, . . . ,cn] 〈PS;Γ ∪ lhs = ci;ass〉′ → Γ ′′

〈PS;Γ ; lhs in prog ass′〉 → Γ ′′ n ≥ 1∧1 ≤ i ≤ n

〈PS;Γ ;eval(prog)〉 → ⊥

〈PS;Γ ; lhs assignop prog ass′〉 → ⊥

〈PS;Γ ;eval(prog)〉 → c 〈PS;Γ ∪ lhs = c;ass′〉 → ⊥

〈PS;Γ ; lhs = prog ass′〉 → ⊥
c �=⊥

Fig. 7. Expansion Rules for a Declarative Tactic
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4 Extension of the Basic Language

So far, our declarative tactic language is less expressive than its procedural counter-
part. As a matter of fact, there exist powerful procedural tactics using for example the
constructs of loops, such as simplification, which are per se difficult to express declar-
atively, as we cannot expect to determine their result unless we execute it. While this
is unproblematic when using them to close gaps between intermediate statements, their
treatment as black boxes makes it difficult to express how to process their results fur-
ther in the form of a continuation, because the structure of the formula is lost. For
example, all we know about the result term of factorization in Figure 6 is that it is of the
form Y.

To illustrate a possible continuation of maximafactorabs, let us consider the so-
called limit domain which contains statements about the limit and continuity of func-
tions. It was proposed by Bledsoe [6] as challenge problems for automated theorem
provers. The proofs typically involve ε-δ arguments and are interesting because both
logic and computation have to be combined to find a solution to the problem given
at hand, while still being simple enough to allow for an automatic solution based on
heuristics. Several people from the AI community have tackled this domain (see for
example [26,4]) One heuristic of the limit domain to bound factors is to reduce the
problem that the product β γ is arbitrarily small to the problem that of showing that β
is arbitrarily small and γ can be bounded. This heuristic is called factor bounding and
described (in [4], p. 77f) as follows :

“The following rule is stated for simplicity using only two factors, but the rule
is implemented for a product of any number of factors.

Γ , |α| < δ Γ , |α| < δ | # |β | < ε/(M + 1)
Γ , |α| < δ # |β γ| < ε

When this rule is implemented, we take M to be a fresh metavariable, and forbid
to M all the variables that are forbidden to δ . In the present implementation,
the rule is used only when δ is a metavariable.”

While our language can already deal with the factorization, we cannot yet declaratively
express the factor bounding for an arbitrary number of factors within a single tactic and
use it as continuation. Moreover, what we really want is to express the factor bounding
as the continuation after successful factorization.

Reconsidering the problem we observe that the difficulty is due to the missing
information we have about the factorization, namely the number of factors which is
dynamic. Interestingly, even though the structure is dynamic, syntactic patterns are
commonly used in mathematical practice to capture such a structure, by making use of
ellipses (dot notation). In our example, a dynamic number of factors can be expressed
by the pattern X1 ∗ . . . ∗ Xn. Internally, patterns are implemented by subsequently in-
voking the matcher for pattern X until it fails, taking the associativity of the binary
operator into account, resulting in a list of matches which are stored in an internal
variable X .
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binoppat ::= pattern binop .. binop pattern
listaccess ::= (listterm | var) (var | number)
listterm ::= listdel .. listdel
listdel ::= var | number | pattern
pattern ::= binoppat | listaccess | from
foreachexp ::= foreach var in listterm

(where cond)?

foreachstep ::= foreachexp steps end
foreachass ::= foreachexp var var=prog

Fig. 8. Dynamic matching constructs

Coming back to our example,
we notice that all factors but one
factor shall be bounded. Therefore,
we need also constructs to dynam-
ically construct statements in the
proof script language. To that end,
we introduce a foreach construct.
The grammar for the extended lan-
guage constructs is shown in Fig-
ure 8. Binary patterns (binop) can
be used in places where previously
only form was allowed. Step is
extended by foreachstep construct.
Moreover, assrhs is extended by the foreach assignment (foreachass). These extensions
will allow us to specify a variant of the factorbound method in a convenient way (see
Figure 9 on page 109).

Ellipses. So far our constructs for matching and constructing terms are static in the
sense that their actual form was already determined at compile time. For example, a
pattern of the form lhs = rhs checks whether the input formula is an equality and binds
its first argument to lhs and its right argument to rhs. Dynamic Patterns on the contrary
are patterns that capture dynamic structures, such as all elements of a finite list. We
support a simple dynamic pattern, an ellipsis for binary operators, written A op . . .op A′,
which acts like a Kleene star, as well as a list pattern which is similar except that op
is omitted. Internally, such dynamic patterns are represented as lists, whose length is
stored in an additional variable. To individually access the lists, we provide an accessor
function . That is, A n denotes the n-th element in the list A. If n is a variable, then n is
called access variable. In the current implementation, patterns are restricted to simple
patterns, which are patterns that unify under a substitution σ whose domain consists
only of access variables. Patterns can be used both in conditions, as left hand side of
assignments, as well as in proof script terms. Some examples are shown in Figure 10.

The foreach construct provides a simple form of iteration over a list of values obtained
from a dynamic pattern. It can be used to construct statements in the proof script lan-
guage as well as to construct a list of schematic variables. Its expansion rules are shown
in Figure 11, grouped into the expansion rules to expand foreach within a proof script,
and the expansion rules to expand foreach in assignments. Note that in case of assign-
ments a list containing all produced values is constructed, which has always the length
of list over which it is iterated. In the case that the condition evaluates to ⊥ a term false
is inserted at the corresponding position.

Illustration of the Tactic. As an example, we consider the problem of proving
limx→3

x2−5
x−2 = 4. After expanding the definition of lim, the proof state consists of the

two goals ε > 0, |x−3|<?δ # | x2−5
x−2 −4|< ε and ε > 0 #?δ > 0. The declarative proof

script is shown at the top of Figure 12, where the declarative tactic factorbound (see
Figure 9) is not yet processed.
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strategy factorbound

cases

abs(LHS)<RHS,* |- abs(GOALLHS) < GOALRHS

where (and (variable-eigenvar.is "GOALRHS")

(metavar-is "RHS")

(some #’(lambda (x) (term= "LHS" "x")) "Y 1 .. Y N"))

with Y 1 * .. * Y N = (maxima-factor "GOALLHS")

j = (termposition "LHS" "Y 1 .. Y N")

->

proof
L1: GOALLHS= Y 1 * .. * Y N by abeliandecide

foreach i in 1..N where (not (= "j" "i"))

Y j <= MV j by linearbound

end
L2: abs(GOALLHS)=abs( Y 1 * .. * Y N ) from L1

.<= abs(Y 1) * .. * abs(Y N)

.< MV 1 * .. * MV N

.<= GOALRHS

qed
with foreach i in 1..N

M i = (if (= "i" "j") "RHS" (make-metavar (term-type "RHS")))

Fig. 9. Dynamic pattern matching and proof script generation

Expression Meaning
A 1 + .. + A N finite sum with N summands
abs(A 1) * .. * abs(A N) product with N factors of the form abs( )

(X 1 + Y 1) * .. * (X N + Y N) product of terms of binary sums
1 .. 5 list [1,2,3,4,5]
abs(A 1) .. abs(A N) list with N terms of the form abs( )

Fig. 10. Patterns using ellipses

Processing the factorbound-statement expands it and results in the following steps:
1. The pattern of the cases condition is matched, yielding the following binding:

{LHS %→ x−3,RHS %→?δ ,GOALLHS %→ x2−5
x−2 −4,GOALRHS %→ ε}

2. To be able to evaluate the where condition, the first with part is evaluated. This
results in the following factorization: Y1 ∗ . . . ∗Yn = (x − 3) ∗ ( 1

x−2 )(x − 1). Inter-
nally, a list Y = [(x − 3),( 1

x−2),(x− 1)] is generated, n is bound to 3. In the next
assignment, and j is bound to 1 by looking up x−3 in the list of factors.

3. The conditions of the where part evaluates to true
4. The with part of the proof is evaluated, generating a list M = [?δ ,?MV 1,?MV2] of

length 3.
5. The proof part is expanded and inserted, resulting in the proof script shown at the

bottom in Figure 12.



110 S. Autexier and D. Dietrich

〈PS;Γ ; listterm〉→ [e1, . . . ,en] 〈PS;Γ ; iterate var in [e1, . . . ,en] (where c)?exp2〉 ↪→ S

〈PS;Γ ; foreach var in listterm (where c)? exp2 end〉 ↪→ S

〈PS;Γ ; iterate var in [](where c)? exp2 end〉 ↪→ ε

〈PS;Γ ∪ var = e1;exp2〉 ↪→ S1 〈PS;Γ ; iterate var in [e2, . . . ,en] exp2〉 ↪→ S2

〈PS;Γ ; iterate var in [e1, . . . ,en] exp2〉 ↪→ S1 S2

〈PS;Γ ∪ var = e1;exp2〉 ↪→ S1
〈PS;Γ ∪ var = e1;c〉 → 
 〈PS;Γ ; iterate var in [e2, . . . ,en] where c exp2〉 ↪→ S2

〈PS;Γ ; iterate var in [e1, . . . ,en] where c exp2〉 ↪→ S1 S2

〈PS;Γ ∪ var = e1;c〉 → ⊥ 〈PS;Γ ; iterate var in [e2, . . . ,en] where c exp2〉 ↪→ S2

〈PS;Γ ; iterate var in [e1, . . . ,en] where c exp2〉 ↪→ S2

〈PS;Γ ; listterm〉 → [e1, . . . ,en] 〈PS;Γ ; iterate ass in [e1, . . . ,en] (where c)? prog〉 → Γ ′

〈PS;Γ ; foreach var in listterm (where c)? name var = prog︸ ︷︷ ︸
=:ass

〉 → Γ ′

〈PS;Γ ∪ var = e1;ass〉 → Γ ′
〈PS;Γ ∪ var = e1;c〉 →
 〈PS;Γ ′\(var = e1); iterate var in [e2, . . . ,en] where c ass〉 → Γ ′′

〈PS;Γ ; iterate var in [e1, . . . ,en] where c ass〉 → Γ ′′

〈PS;Γ ∪ var = e1;c〉 → ⊥ 〈PS;Γ ; iterate var in [e2, . . . ,en] where c ass〉 → Γ ′

〈PS;Γ ; iterate var in [e1, . . . ,en] where c ass〉 → Γ ′

Fig. 11. Expansion of the foreach construct

Declarative Tactics and Parameters. For procedural tactics it is often convenient to
pass control information in the form of arguments when calling the tactic. For example,
in the introductory example we invoked the tactic induct with the argument ”x” indi-
cating the induction position. A similar mechanism is desirable in the case of declarative
tactics. In our language, arguments are treated as schematic variables. If a schematic
variable occurs in the proof script, but is neither used in the cases construct nor bound
within the with environment, it corresponds to a required argument. Schematic vari-
ables that are computed within the tactic can be passed as optional arguments. In such a
case, the passed argument overwrites the computed argument. We provide the common
syntax var=value in tactic.

5 Conclusion and Related Work

In this paper we presented the construction a declarative tactic language on top of a
declarative proof language. Our language comes along with a rich facility to declara-
tively specify proof states (and conditions on them) in the form of sequent patterns, as
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theorem th1: limx→3
x2−5
x−2 = 4

proof
subgoals

subgoal | x2−5
x−2 −4| < ε using A1:ε > 0 and A2:|x−3| <?δ by factorbound

subgoal ?δ > 0 using ε > 0
end by limdefbw

qed

theorem th1: limx→3
x2−5
x−2 = 4

proof
subgoals

subgoal | x2−5
x−2 −4| < ε using A1:ε > 0 and A2:|x−3| <?δ

proof
L1: x2−5

x−2 −4 = (x−3)∗ ( 1
x−2 )∗ (x−1) by abeliandecide

|x−1| ≤?MV 1 by linearbound

| 1
x−2 | ≤?MV 2 by linearbound

L2: | x2−5
x−2 −4| ≤ |(x−3)∗ ( 1

x−2 )∗ (x−1)| from L1

. ≤ |x−3| ∗ | 1
x−2 | ∗ |x−1|

. <?δ∗?MV 1∗?MV 2

. ≤ ε
qed
subgoal ?δ > 0 using ε > 0

end by limdefbw

qed

Fig. 12. Declarative proof script of the example before and after processing the call of the declar-
ative tactic factorbound

well as ellipses (dot notation) to provide a limited form of iteration. We believe that
declarative tactic languages offer similar advantages than declarative proof languages,
namely robustness, readability, and maintainability, because intermediate results of the
tactic are visible due to the use of the declarative proof language for their specification.
In addition to that, the main feature of declarative tactics is that they produce declara-
tive proof scripts. They are thus a step to narrow the gap between the declarative and
the procedural style, which is still frequently used in practice.

We have implemented 15 declarative tactics, all of which come in a variant that pro-
duces a forward style proof as well as in a variant that produces a backward style proof.
So far the experiments confirm our impression that declarative tactics are well suited
to automate (sub)proofs having a common structure, as is the case for induction proofs
or the integration of external systems such as computer algebra systems. Moreover, op-
erations that depend on the syntactic structure of the formula can easily be expressed,
for example, to provide structure for common forms of forward reasoning. In these
situations, the declarative tactics were easy to write. However, for situations in which
the subsequent proof steps are not known in advance, such as simplification, declarative
tactics are not adequate.

As already mentioned in the introduction, declarative proof languages and the veri-
fication of proof sketches has been studied by several people. There exists also several
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approaches to present a machine-found proof in a user friendly way [21,18]. In [27]
a language is presented to automatically generate declarative proofs from proof terms.
While this allows the presentation of proofs which have been found automatically, it
does not deal with the specification of tactics in a declarative way.

Closely related to our work is ISAPLANNER [17]. ISAPLANNER generates proof
plans and uses ISAR to represent them, that is, it also generates declarative proofs. It
provides a “gap” command to represent open subgoals together with the annotation of
a technique how to close such a gap. Compared to our approach, the main difference is
that reasoning techniques are written as ML functions, whereas we use the underlying
declarative proof language to specify the tactic. Moreover, our proof language differs
from ISAR by allowing metavariables, which are not supported by ISAR, despite being
supported by ISABELLE.

In the previous version of Ω MEGA, so-called proof methods were declaratively rep-
resented by proof schemas. Proof schemas were partial proofs in natural deduction
(see [22]). In contrast to our approach, methods were implemented directly in the un-
derlying programming language, no declarative proof language was used. Moreover,
there was no possibility to pass control information in the form of a continuation.

Regarding intermediate tactic languages, our approach is similar to COQ’s
LTAC [12], which is an intermediate language intended to deal with small parts of
proofs the user may like to automate locally. In contrast to our language, LTAC remains
in the procedural style of the underlying tactic language instead of being declarative like
our approach based on the declarative proof scripts. LTAC introduces conveniences of
higher-level programming languages to the tactic script language which are independent
form the underlying programming language and is similar in spirit to our aims. More
specifically, LTAC provides pattern matching against the current goal, and our syntax
for sequent patterns |- is inspired from it. LTAC also supports to match subterms and
our syntax [t] is also the same here, except that we also allow to impose the polarity of
the subformula supposed to match by [t]+ or [t]-. A real extension of our language
are the means to bind results of arbitrary computations to local script variables as well
as the pattern syntax with ellipsis, which probably could be included in LTAC.

The matching part in case constructs of our tactic language is related to the extended
meta-functions in ACL2 [23] which allow to access the current goal clause. The ACL2
meta-functions need to be proved correct in order to be usable by the ACL2 reasoner.
From the LCF point of view, this is a way to include derived reasoning steps in the
kernel proof rules, thus extending the kernel rules. In contrast to this our approach
remains entirely in the LCF tradition since the declarative strategies generate proof
scripts, which still need to be evaluated by the underlying (LCF-based) proof script
interpreter. The possibility to perform arbitrary computations and bind the results to a
term pattern, like the call to maxima-factor in the strategy factorbound is close
to ACL2’s bind-free, which takes an arbitrary binding list and adds it to the local
context. This is also possible with our pattern approach by writing X 1 .. X N, which
has the advantage that the names of the local variables can be specified by the writer of
the strategy. It would be possible to accommodate the bind-free-style in the pattern
syntax, but so far we have not encountered situations where this was required. More-
over, the examples presented in [23] also bind only one variable.
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In the context of rewriting several strategy languages exist. The general idea is to
provide a language to specify a class of derivations the user is interested in by con-
trolling the rule applications. Depending on the language, the language constructs are
either defined by a combination of low-level primitives or build-in primitives. On a
second layer, the languages provide constructs to express choice and sequencing, and
recursion. Prominent examples are ELAN [7], MAUDE [25], and Stratego [31]. How-
ever, while being separate, these languages are not declarative in the sense that they are
specified using a declarative language and produce declarative proofs.
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C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 203–220. Springer, Heidelberg
(1999)

29. Trybulec, A., Blair, H.: Computer assisted reasoning with MIZAR. In: Joshi, A. (ed.)
Proceedings of the 9th Int. Joint Conference on Artifical Intelligence, M. Kaufmann, San
Francisco (1985)

30. Verchinine, K., Lyaletski, A.V., Paskevich, A.: System for automated deduction (SAD): A
tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
398–403. Springer, Heidelberg (2007)

31. Visser, E.: Stratego: A language for program transformation based on rewriting strategies.
System description of Stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051,
pp. 357–361. Springer, Heidelberg (2001)

32. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof documents.
In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
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Abstract. CertiCrypt is a general framework to certify the security of
cryptographic primitives in the Coq proof assistant. CertiCrypt adopts
the code-based paradigm, in which the statement of security, and the
hypotheses under which it is proved, are expressed using probabilistic
programs. It provides a set of programming language tools (observa-
tional equivalence, relational Hoare logic, semantics-preserving program
transformations) to assist in constructing proofs. Earlier publications of
CertiCrypt provide an overview of its architecture and main components,
and describe its application to signature and encryption schemes. This
paper describes programming language techniques that arise specifically
in cryptographic proofs. The techniques have been developed to complete
a formal proof of IND-CCA security of the OAEP padding scheme. In this
paper, we illustrate their usefulness for showing the PRP/PRF Switching
Lemma, a fundamental cryptographic result that bounds the probability
of an adversary to distinguish a family of pseudorandom functions from
a family of pseudorandom permutations.

1 Introduction

The goal of provable security [14] is to provide a rigorous analysis of crypto-
graphic schemes in the form of mathematical proofs. Provable security holds
the promise of delivering strong guarantees that cryptographic schemes meet
their goals and is becoming unavoidable in the design and evaluation of new
schemes. Yet provable security per se does not provide specific tools for man-
aging the complexity of proofs and as a result several purported security argu-
ments that followed the approach have been shown to be flawed. Consequently,
the cryptographic community is increasingly aware of the necessity of develop-
ing methodologies that systematize the type of reasoning that pervade crypto-
graphic proofs, and that guarantee that such reasoning is applied correctly. One
prominent method for achieving a high degree of confidence in cryptographic
proofs is to cast the security of a cryptographic scheme as a program verifi-
cation problem: concretely, this is achieved by formulating security goals and
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hypotheses in terms of the semantics of probabilistic programs, and by defin-
ing the adversarial model in terms of a class of programs, e.g. probabilistic
polynomial-time programs. The code-based approach leads to statements that
are unambiguous and amenable to formalization. Yet, standard methods to ver-
ify programs (e.g. in terms of program logics) are ineffective to address the
kind of verification goal that arises from cryptographic statements. The game-
based approach [5,13] is an alternative to standard program verification methods
that establishes the verification goal through successive transformations of the
program and the goal. In a nutshell, the game-based approach proceeds by per-
forming a sequence of transformations of the form G, A →h G′, A′, where G
and G′ are probabilistic programs, A and A′ are events, and h is a monotonic
function such that PrG[A] ≤ h(PrG′ [A′]). When the security of a scheme is ex-
pressed as an inequality PrG0 [A0] ≤ p, it can be proved by exhibiting a sequence
of transformations G0, A0 →h1 G1, A1 → · · · →hn Gn, An and proving that
h1 ◦ · · · ◦ hn(PrGn [An]) ≤ p.

CertiCrypt [3] is a fully machine-checked framework built on top of the Coq
proof assistant [15] to help constructing and verifying game-based cryptographic
proofs. An ancillary goal of CertiCrypt is to isolate and formalize precisely the
reasoning principles that underlie game-based proofs and to automate their ap-
plication. While many proof steps use standard reasoning principles based on
observational equivalence and semantics-preserving program transformations,
some essential techniques arise only in cryptographic proofs. The goal of this
article is to present two such techniques and to illustrate their usefulness. The
first technique is based on failure events and allows to formalize non-semantics-
preserving transformations. It applies to transitions of the form G, A→h G′, A,
where G and G′ behave identically unless a certain failure event bad occurs, and
thus h(p) = p + PrG[bad] (i.e. PrG[A] ≤ PrG′ [A] + PrG[bad]). The second tech-
nique uses interprocedural code motion to place upfront random choices made in
games or, dually, to defer them until later in the game. These transformations,
called eager and lazy sampling respectively, are widely used in proofs in the
Random Oracle Model [4]. Both techniques are discussed in [3], but the present
paper considerably extends their scope. Concretely, we complement the Funda-
mental Lemma of [3], that bounds the difference in the probability of events in
two games that behave identically until failure, with a Failure Event Lemma
that allows to bound the probability of failure. In order to establish the Fail-
ure Event Lemma, we introduce a notion of judgment that upper bounds the
probability of an event after executing a program in terms of the probability
of an event prior to execution. Moreover, we considerably clarify the eager/lazy
sampling methodology using a logic for swapping program statements. The logic
overcomes some limitations that hamper the application of the technique as it
was described in [3].

Both extensions were required to prove the IND-CCA security of the OAEP
padding scheme [8], for which the results of [3] did not suffice. As the complexity
of this proof would prevent us from illustrating the techniques we used, we
consider instead a simpler motivating example, namely the PRP/PRF Switching
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Lemma, a fundamental cryptographic result that bounds the probability of an
adversary to distinguish a family of pseudorandom functions from a family of
pseudorandom permutations.

2 Motivating Example: The PRP/PRF Switching Lemma

Pseudorandom functions (PRF) and pseudorandom permutations (PRP) are
two idealized primitives that play a central role in the design of symmetric-key
systems. Although the most natural assumption to make about a blockcipher is
that it behaves as a pseudorandom permutation, most commonly the security of
a system based on a blockcipher is analyzed by replacing the blockcipher with a
perfectly random function. The PRP/PRF Switching Lemma [10,5] fills the gap:
given a bound for the security of a blockcipher as a pseudorandom permutation,
it gives a bound for its security as a pseudorandom function.

Suppose you give an adversary black-box access to either a random function or
a random permutation, and you ask her to tell you which is the case. For the sake
of concreteness let us assume the domain of the permutation (and the domain
and range of the function) is {0, 1}�. No matter what strategy the adversary
follows, due to the birthday problem, after roughly 2�/2 queries to the oracle
she will be able to tell in which scenario she is with a high probability. If the
oracle is a random function, a collision is almost sure to occur, whereas it could
not occur when the oracle is a random permutation. The birthday problem gives
a lower bound for the advantage of the adversary. The PRP/PRF Switching
Lemma gives an upper bound. In a code-based setting, its formulation is given
in terms of two games GRP and GRF, that give the adversary access to an oracle
that represents a random permutation and a random function, respectively:

Game GRP :
L ← [ ]; b ← A()

Oracle O(x) :
if x �∈ dom(L) then

y $← {0, 1}� \ ran(L);
L ← (x, y) :: L

return L(x)

Game GRF :
L ← [ ]; b ← A()

Oracle O(x) :
if x �∈ dom(L) then

y $← {0, 1}�;
L ← (x, y) :: L

return L(x)

where the instruction y $← {0, 1}� \ ran(L) samples uniformly a bitstring of
length � that is not in the range of the association list L, thus ensuring that
oracle O implements an injective—and therefore bijective—function. Formally,
the instruction y $← {0, 1}�\ran(L) may be implemented by repeatedly sampling
a bitstring until the result does not belong to ran(L).
Lemma 1 (PRP/PRF switching lemma). Let A be an adversary with black-
box access to an oracle O implementing either a random permutation on {0, 1}�

as in game GRP or a random function from {0, 1}� to {0, 1}� as in game GRF.
Suppose, in addition, that A makes at most q > 0 queries to its oracle. Then,

|PrGRP
[b = 1]− PrGRF

[b = 1]| ≤ q(q − 1)
2�+1 (1)
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The standard proof of the PRP/PRF Switching Lemma is due to Impagliazzo
and Rudich [10, Theorem 5.1]. Bellare and Rogaway [5] report a subtle error
in the reasoning of [10] and provide a counterexample. They give a game-based
proof of the PRP/PRF Switching Lemma under the additional assumption that
the adversary never asks the same oracle query twice. Their proof uses the Fun-
damental Lemma (Sec. 4) to bound the advantage of the adversary by the prob-
ability of a failure event, but their justification of the bound on the probability
of failure remains informal.

Shoup [13, Section 5.1] gives another game-based proof of the lemma under the
assumption that the adversary makes exactly q distinct queries. In his proof, the
challenger acts as an intermediary between the oracle and the adversary. Rather
than the adversary calling the oracle at her discretion, it is the challenger who
calls the adversary to get a query and who forwards it to the oracle. There
is probably nothing wrong with this formulation, but we feel that it imposes
unnecessary restrictions on the form of the adversary and hinders understanding.

The PRP/PRF Switching Lemma has been formalized previously. Affeldt,
Tanaka and Marti [1] present a formalization of a game-based proof of the
PRP/PRF Switching Lemma in Coq. What they prove in reality is a simplified
variant that only holds for non-adaptive and deterministic adversaries. They for-
malize adversaries as purely deterministic mathematical functions that take a
natural number and return an element in the domain of its oracle (a query). This
implies that the queries the adversary makes do not depend on the responses to
previous queries or on any random choices. The authors also report on a formal-
ization in CertiCrypt [3]; Sec. 6 presents two significantly simplified proofs that
use the programming language techniques developed in this paper.

3 A Language for Cryptographic Games

Games are formalized as programs in pWhile, a probabilistic imperative lan-
guage with procedure calls. For the purpose of this exposition, we restrict random
sampling to uniform distributions over a set T of base types. We let V be a set of
variable identifiers1 and P be a set of procedure identifiers. The set of commands
is defined inductively by the clauses:

I ::= V ← E assignment
| V $← T random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

1 Variables are partitioned into local and global variables. We will sometimes ignore
this distinction to avoid cluttering the presentation. We use a bold face to typeset
global variables in games.
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where we assume that the set E of expressions has been previously defined.
Moreover, we assume given a function fv : E → 2V that computes the set of free
variables of an expression.

A program (or game) consists of a command and an environment, which maps
a procedure identifier to its declaration, consisting of its formal parameters, its
body, and a return expression2

declaration def= {params : V∗; body : C; re : E}

The language is deeply embedded in Coq, so one can define programs with holes
by parametrizing them by program variables of type C (holes may appear in the
main command or in the body of procedures in the environment). In particular,
adversaries may be represented as procedures whose whole body is modeled as
a variable of type C.

In order to reason about games in the presence of unknown adversaries, we
must specify an interface for adversaries, and construct proofs under the as-
sumption that adversaries are well-formed against their specification. Assuming
that adversaries respect their interface provides us with an induction principle
to reason over all (well-formed) adversaries. We make an extensive use of the in-
duction principle: each time a proof system is introduced, the principle allows us
to establish proof rules for adversaries. Likewise, each time we implement a pro-
gram transformation, the induction principle allows us to prove the correctness
of the transformation for programs that contain procedure calls to adversaries.

Formally, the interface of an adversary consists of a triple (F ,RW ,RO),
where F is the set of procedures that the adversary may call, RW the set of
variables that it may read and write, andRO the set of variables that it may only
read. We say that an adversary A with interface (F ,RW ,RO) is well-formed in
an environment E if the judgment �wf A can be derived from the rules in Fig. 1.
For convenience, we allow adversaries to call procedures outside F , but these
procedures must themselves respect the same interface. Note that the rules are
generic, only making sure that the adversary makes a correct usage of variables
and procedure calls. In particular, they do not aim to impose restrictions that
are specific to a particular game, such as the number of calls that an adversary
can make to an oracle, or the conditions under which an oracle can be called,
or the computational complexity of the adversary. These additional assumptions
on adversaries may be specified independently (e.g. by instrumenting games).

3.1 Semantics

Programs in pWhile are given a continuation-passing style semantics using the
measure monad M , whose type constructor is defined as

M(X) def= (X → [0, 1])→ [0, 1]

2 The formalization uses single-exit procedures. For readability, all examples are pre-
sented in a more traditional style, and use an explicit return statement.
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I �wf nil :I
I �wf i :I ′ I ′ �wf c :O

I �wf i; c :O

writable(x) fv(e) ⊆ I

I �wf x ← e :I ∪ {x}
writable(x)

I �wf x $← T :I ∪ {x}
fv(e) ⊆ I I �wf ci :Oi, i = 1, 2

I �wf if e then c1 else c2 :O1 ∩O2

fv(e) ⊆ I I �wf c :I

I �wf while e do c :I

fv(e) ⊆ I writable(x) p ∈ F
I �wf x ← p(e) :I ∪ {x}

fv(e) ⊆ I writable(x) p �∈ F �wf p

I �wf x ← p(e) :I ∪ {x}
RW ∪RO ∪A.params �wf A.body :O fv(A.re) ⊆ O

�wf A
writable(x) def

= local(x) ∨ x ∈ RW

Fig. 1. Rules for well-formedness of an adversary against interface (F ,RW,RO). A
judgment of the form I �wf c : O can be read as follows: assuming variables in I may
be read, the adversarial code fragment c respects the interface, and after its execution
variables in O may be read. Thus, if I �wf c :O, then I ⊆ O.

The operators unit and bind of the monad are defined as follows:

unit : X →M(X) def= λx. λf. f x
bind : M(X)→ (X →M(Y )) →M(Y ) def= λμ. λF. λf. μ(λx. F x f)

Expressions are deterministic; an expression e of type T is interpreted by a func-
tion �e� : M→ �T �, where �T � is the interpretation of T . The denotation of a
game G is given by the function �G� :M→ M(M), that relates an initial mem-
ory m ∈ M to the expectation operator of the (sub) probability distribution of
final memories resulting from its execution. This allows to define the probability
of an event A in a game G and an initial memory m in terms of its characteris-
tic function 11A, as PrG,m[A] def= �G� m 11A. Thus, in this monadic semantics a
probabilistic event is nothing but a continuation. We refer the interested reader
to [3] for a more detailed account of the semantics.

3.2 Notations

Let X be a set of variables, m1, m2 ∈M and f1, f2 : M→ [0, 1], we define

m1 =X m2
def= ∀x ∈ X. m1(x) = m2(x)

f =X g def= ∀m1 m2. m1 =X m2 =⇒ f(m1) = g(m2)

Let P be a predicate on X and let μ : M(X) be a distribution over X , then
every value x ∈ X with positive probability w.r.t μ satisfies P when

range P μ def= ∀f. (∀x.P x =⇒ f x = 0) =⇒ μ f = 0

Our logics often use modify clauses; the statement modify(E, c, X) expresses
that only variables in X are modified by the command c in environment E.
Semantically,

modify(E, c, X) def= ∀m. range (λm′. m =V\X m′) (�E, c� m)

Finally, for a Boolean-valued expression e, we let 〈e〉i denote the binary relation
λm1 m2. �e� mi = true.



Programming Language Techniques for Cryptographic Proofs 121

3.3 Observational Equivalence and Relational Hoare Logic

CertiCrypt formalizes an equational theory of observational equivalence that al-
lows to prove that program fragments are semantically equivalent. We say that
two games G1, G2 are observationally equivalent w.r.t. an input set of variables
I and an output set of variables O, when

� G1 �I
O G2

def=
∀m1 m2. m1 =I m2 =⇒ ∀f1 f2. f1 =O f2 =⇒ �G1� m1 f1 = �G2� m2 f2

Observational equivalence provides a useful tool to reason about probabilities.
Assume that A is an event (i.e. a map from memories to Booleans) whose value
only depends on a set of variables O, i.e. 11A =O 11A. If � G1 �I

O G2, then for
every pair of memories m1 and m2 such that m1 =I m2, we have

PrG1,m1 [A] = PrG2,m2 [A] (2)

When I = O = V , � G1 �I
O G2 boils down to the semantic equivalence of both

games, which we write as G1 ≡ G2.
Observational equivalence, however, is not enough to justify some context-

dependent program transformations. In order to prove the correctness of such
transformations, we need to generalize observational equivalence to a full-fledged
Relational Hoare Logic that considers arbitrary binary relations on memories
(and not just equality on a subset of variables). This logic deals with judgments
of the form

� G1 ∼ G2 : Ψ ⇒ Φ def= ∀m1 m2. m1 Ψ m2 =⇒ �G1� m1 ∼Φ �G2� m2

where the relation ∼Φ is a lifting of relation Φ to distributions, defined as:

μ1 ∼Φ μ2
def= ∃μ. π1(μ) = μ1 ∧ π2(μ) = μ2 ∧ range Φ μ

where π1 and π2 are the projections that map a distribution over A × B to a
distribution over A and B, respectively:

π1(μ) def= bind μ (λ(x, y).unit x) π2(μ) def= bind μ (λ(x, y).unit y)

For an overview of the rules of the relational logic we refer the reader to [3].

4 Failure Events

One common technique to justify a lossy transformation G, A → G′, A, where
PrG[A] �= PrG′ [A] is to annotate both games with a fresh Boolean flag bad that
is set whenever the code of the games differ. Consider for example the following
two program snippets and their annotated versions:

s def= if e then c1; c else c2 sbad
def= if e then c1; bad← true; c else c2

s′ def= if e then c1; c′ else c2 s′bad
def= if e then c1; bad← true; c′ else c2
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If we ignore the variable bad, s and sbad, and s′ and s′bad, respectively, are ob-
servationally equivalent. Moreover, sbad and s′bad behave identically unless bad is
set. Thus, the difference of the probability of an event A in a game G containing
the program fragment s and a game G′ containing s′ instead can be bounded
by the probability of bad being set in either sbad or s′bad, provided variable bad
is initially set to false.

Lemma 2 (Fundamental Lemma). For any pair of games G, G′ and events
A, A′ and F :

PrG[A ∧ ¬F ] = PrG′ [A′ ∧ ¬F ] =⇒ |PrG[A]−PrG′ [A′]| ≤ max(PrG[F ], PrG′ [F ])

To apply the Fundamental Lemma, we developed a syntactic criterion to dis-
charge its hypothesis for the particular case where A = A′ and F = bad. The hy-
pothesis can be automatically established by inspecting the code of both games:
it holds if their code differs only after program points setting the flag bad to true,
and bad is never reset to false afterwards. Note also that if both games terminate,
then PrG[bad] = PrG′ [bad], and that if, for instance, game G′ terminates with
probability 1, it must be the case that PrG[bad] ≤ PrG′ [bad].

4.1 A Logic for Bounding the Probability of Failure

Many steps in game-based proofs require to provide an upper bound for the ex-
pectation of some function g after the execution of a command c (throughout this
section, we assume a fixed environment E that we omit from the presentation).
This is typically the case when applying the Fundamental Lemma presented in
the previous section: we need to bound the probability of the failure event bad
(equivalently, the expected value of its characteristic function 11bad). An upper
bound for a function (λm.�c� m g) is a function f such that ∀m.�c� m g ≤ f m.
We note this as a triple �c�g � f ,

� �c�g � f def= ∀m.�c� m g ≤ f m

Figure 2 gathers some rules for proving the validity of such triples. The rule
for adversary calls assumes that f depends only on variables that the adversary
cannot modify directly (but that she may modify through oracle calls, of course).
The correctness of this rule is proved using the induction principle for well-formed
adversaries together with the rest of the rules of the logic.

The rules bear some similarity with the rules of Hoare Logic. However, there
are some subtle differences. For example, the premises of the rules for branching
statements do not consider guards. The rule

� �c1�g � f|e �c2�g � f|¬e�if e then c1 else c2�g � f

where f|e is defined as (λm. if �e�m then f(m) else 0) can be derived from the
rule for conditionals statements by two simple applications of the “rule of conse-
quence”. Moreover, the rule for conditional statements is incomplete: consider a
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� �nil�f � f
f = λm. g(m{x := �e� m})

� �x ← e�g � f

f = λm.|�T �|−1 ∑
t∈�T� g(m{x := t})

� �x $← T �g � f

� �c1�g � f �c2�h � g

� �c1; c2�h � f

� �c1�g � f �c2�g � f

� �if e then c1 else c2�g � f

� �c�f � f

� �while e do c�f � f

� g ≤ g′ �c�g′ � f ′ f ′ ≤ f

� �c�g � f

� �p.body�g � f f =X f g =Y g x �∈ (X ∪ Y )

� �x ← p(e)�g � f

�wf A ∀p ∈ F . � �p.body�f � f f =X f X ∩ ({x} ∪ RW) = ∅
� �x ← A(e)�f � f

f =I f � c �I
O c′ g =O g � �c′�g � f

� �c�g � f

Fig. 2. Selected rules of a logic for bounding events

statement of the form �if true then c1 else c2�g � f such that �c1�g � f is valid,
but not �c2�g � f ; the triple �if true then c1 else c2�g � f is valid, but to derive
it one needs to resort to observational equivalence. More general rules exist, but
we have not formalized them since we did not need them in our proofs. More
generally, it seems possible to make the logic complete, at the cost of considering
more complex statements with preconditions on memories.

Discussion. The differences between the above triples and those of Hoare logic
are inherent to their definition, which is tailored to provide an upper bound for
the probability of an event after executing a command. Nevertheless, the validity
of a Hoare triple {P}c{Q} (in which pre and postconditions are Boolean-valued
predicates) is equivalent to the validity of the triple �c�11¬Q � 11¬P . There exists
a dual notion of triple �c�g � f whose validity is defined as:

� �c�g � f def= ∀m.�c� m g ≥ f m

This dual notion allows to express termination of a program as �c�11true � 11true.
Moreover, there exists an embedding of Hoare triples, mapping {P}c{Q} to�c�11Q � 11P . The embedding does not preserve validity for non-terminating
programs (under the partial correctness interpretation). Consider a program c
that never terminates: we have {true}c{false}, but not �c�11false � 11true because
for every m ∈ M, we have �c� m 11false = 0 and 11true(m) = 1.

4.2 Automation

In most applications of Lemma 2, the failure event can only be triggered by oracle
calls. Typically, the flag bad that signals failure is set in the code of an oracle for
which an upper bound for the number of queries made by the adversary is known.
The following lemma provides a general method for bounding the probability of
failure under such circumstances.
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Lemma 3 (Failure Event Lemma). Consider a game G that gives adver-
saries access to an oracle O. Let P, F be predicates over memories, and let
h : N → [0, 1] be such that F does not depend on variables that can be written
outside O, and for any memory m,

P (m) =⇒ range (�O.body� m) (λm′.�cntr� m < �cntr� m′)
¬P (m) =⇒ range (�O.body� m) (λm′.F m′ = F m ∧ �cntr� m = �cntr� m′)
¬F (m) =⇒ PrO.body,m[F ] ≤ h(�cntr� m)

Intuitively, P indicates whether a call would increment the counter, failure F
only occurs in calls incrementing the counter, and h bounds the probability of
failure in a single call.

Then, for any initial memory m satisfying ¬F (m) and �cntr� m = 0,

PrG,m[F ∧ cntr ≤ q] ≤
q−1∑
i=0

h(i)

Proof. Define f :M→ [0, 1] as follows

f(m) def=

⎧⎪⎪⎨
⎪⎪⎩

0 if �cntr� m > q

11F (m) + 11¬F (m)
q−1∑

i=�cntr�m

h(i) if �cntr� m ≤ q

We show �G�f � f by structural induction on the code of G using the rules of
the logic presented in the previous section. We first prove that O satisfies the
triple �O.body�f � f ; we must show that for every m, �O.body� m f ≤ f(m).
This is trivial when ¬P (m), because we have

�O.body� m f = f(m) (�O.body� m 11true) ≤ f(m)

When P (m) and �cntr� m ≥ q, this is trivial too, because O.body increments
cntr and the left hand side becomes 0. We are left with the case where P (m)
and �cntr� m < q. If F (m), the right hand side is equal to 1 and the inequality
holds. Otherwise, we have from the hypotheses that

�O.body� m f ≤ �O.body� m

⎛
⎝λm′.11F (m′) + 11¬F (m′)

q−1∑
i=�cntr�m′

h(i)

⎞
⎠

≤ PrO.body,m[F ] + �O.body�
⎛
⎝λm′.11¬F (m′)

q−1∑
i=�cntr�m+1

h(i)

⎞
⎠

≤ h(�cntr�m) + (�O.body� m 11¬F )
q−1∑

i=�cntr�m+1

h(i) ≤
q−1∑

i=�cntr�m

h(i)

Using the rules in Fig. 2, we can then extend this result to adversary calls and
to the rest of the game, showing that �G�f � f .
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Finally, let m be a memory such that ¬F (m) and �cntr� m = 0. It follows
immediately from �G�f � f that

PrG,m[F ∧ cntr ≤ q] ≤ �G� m f ≤ f(m) =
q−1∑
i=0

h(i) ��

When failure is defined as the probability of a flag bad being set by an oracle
and the number of queries the adversary makes to this oracle is upper bounded
by q, the above lemma can be used to bound the probability of failure by taking
F = bad and defining h suitably. In most practical applications (e.g. security of
OAEP) h is a constant function; the proof of Lemma 1 given in Sec. 6.2 is an
exception for which the full generality of the lemma is needed.

5 Eager and Lazy Sampling

Game-based proofs commonly include bridging steps in which one performs a
semantics-preserving reordering of instructions. On most occasions, the reorder-
ing is intraprocedural. However, proofs in the random oracle model (see Olazy in
Fig. 4 for an example of a random oracle) often use interprocedural code motion,
in which sampling statements are moved from an oracle to the main command
of the game or, conversely, from the main command to an oracle. The first trans-
formation, called eager sampling, is useful for moving random choices upfront:
a systematic application of eager sampling allows to transform a probabilistic
game G that samples at most a fixed number of values into a semantically equiv-
alent game S; G′, where S samples the values that might be needed in G, and
G′ is a completely deterministic program to the exception of adversaries that
might still make their own random choices.3 The second, dual, transformation,
called lazy sampling, is useful to postpone sampling of random values until these
values are actually used for the first time.

CertiCrypt features tactics that allow to perform and justify both intra and
interprocedural code motion. The tactic for intraprocedural code motion is de-
scribed in [3]. In this section, we present a general method to prove the cor-
rectness of interprocedural code motion. The method is based on a logic for
swapping statements, and overcomes many limitations of our earlier lemma re-
ported in [3]. A first limitation of our earlier lemma is that it only allowed to
swap one random sampling at the time, whereas some applications, including
the PRP/PRF Switching Lemma, require swapping a sequence of random sam-
plings. Another limitation of our earlier method is that it could not be used for
proving that some queries to a random oracle O are uniformly distributed and
independent from the view of the adversary, as needed in the proof of IND-CCA
of OAEP.

3 Making adversaries deterministic is the goal of the coin fixing technique, as described
in [5]; formalizing this technique is left for future work.
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5.1 A Logic for Swapping Statements

The primary tool for performing eager/lazy sampling is an extension of the
Relational Hoare Logic with rules for swapping statements. As the goal is to
move code across procedures, it is essential that the logic considers two poten-
tially different environments E and E′. The logic deals with judgments of the
form

� E, (c; S) ∼ E′, (S; c′) : Ψ ⇒ Φ

In most cases, the logic will be applied with S being a sequence of (guarded) sam-
pling statements; however, the logic does not constrain S, and merely requires
that S satisfies three basic properties:

modify(E, S, X) modify(E′, S, X) � E, S �I∪X
X E′, S

for some sets of variables X and I. Some rules of the logic are given in Fig. 3;
for the sake of readability, all rules are specialized to ≡, although we formalized
more general versions of the rules, e.g. for conditional statements

� E, c1; S ∼ E′, S; c′1) : P ∧〈e〉1 ⇒ Q � E, c2; S ∼ E′, S; c′2 : P ∧〈¬e〉1 ⇒ Q

P ⇒ 〈e〉1 = 〈e′〉2 � E′, S ∼ E′, S : = ∧〈e′〉1 ⇒ = ∧〈e′〉1
� E, (if e then c1 else c2; S) ∼ E′, (S; if e′ then c′1 else c′2) : P ⇒ Q

which is used in the application considered in the next section.

x �∈ I ∪ X fv(e) ∩X = ∅
� E, (x ← e; S) ≡ E′, (S; x ← e)

x �∈ I ∪X

� E, (x $← T ; S) ≡ E′, (S; x $← T )

� E, (c1; S) ≡ E′, (S; c′1) � E, (c2; S) ≡ E′, (S; c′2)
� E, (c1; c2; S) ≡ E′, (S; c′1; c

′
2)

� E, (c1; S) ≡ E′, (S; c′1) � E, (c2; S) ≡ E′, (S; c′2) fv(e) ∪ X = ∅
� E, (if e then c1 else c2; S) ≡ E′, (S; if e then c′1 else c′2)

� E, (c; S) ≡ E′, (S; c′) fv(e) ∪X = ∅
� E, (while e do c; S) ≡ E′, (S;while e do c′)

� E, (fE.body; S) ≡ E′, (S; fE′ .body) fE .params = fE′ .params fE .re = fE′ .re

fv(fE.re) ∩X = ∅ x �∈ I ∪X fv(e) ∩X = ∅
� E, (x ← f(e); S) ≡ E′, (S; x ← f(e))

�wf A X ∩ (RW ∪RO) = ∅ I ∩RW = ∅ ∀f �∈ F . fE = fE′

∀f ∈ F . fE .params = fE′ .params ∧ fE .re = fE′ .re ∧
� E, (fE .body; S) ≡ E′, (S; fE′ .body)

� E, (x ← A(e); S) ≡ E′, (S; x ← A(e))

Fig. 3. Selected rules of a logic for swapping statements
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5.2 Application

Consider the games Glazy and Geager in Fig. 4. Suppose that our goal is to provide
an upper bound of the probability of an event A in game Glazy and that the proof
proceeds by eagerly sampling the value that the oracle O returns in response for
a particular query x̂. Define

Sŷ
def= if x̂ �∈ dom(L) then ŷ $← T else ŷ ← L(x̂)

and take I = {x̂, L} and X = {ŷ}. We have that

� Elazy, (c; Sŷ) ≡ Eeager, (Sŷ; c) =⇒ PrGlazy
[A] = PrGeager [A]

Game Glazy :
L ← [ ]; c

Oracle Olazy(x) :
if x /∈ dom(L) then

y $← T ;
L ← (x, y) :: L

else y ← L(x)
return y

Game Geager :
L ← [ ]; ŷ $← T ; c

Oracle Oeager(x) :
if x /∈ dom(L) then

if x = x̂ then y ← ŷ else y $← T ;
L ← (x, y) :: L

else y ← L(x)
return y

Fig. 4. An example of eager sampling using interprocedural code motion

Thus, in order to move from game Glazy to game Geager, it is enough to prove
the commutation property on the left of the implication. This, in turn, requires
showing that

� Elazy, (Olazy.body; Sŷ) ≡ Eeager, (Sŷ;Oeager.body)

which can be achieved by applying the rules of the logic for swapping statements
and the relational Hoare logic.

6 Proofs of the PRP/PRF Switching Lemma

We have formalized two proofs of the Switching lemma: both use the Funda-
mental Lemma to bound the advantage of the adversary by the probability
of a failure event. The first proof uses the eager sampling technique to bound
the probability of failure, whereas the second one relies on the Failure Event
Lemma.

We begin by introducing in Fig. 5 annotated versions Gbad
RP and Gbad

RF of the
games GRP and GRF defined in Sec. 2. From Lemma 2, we readily have

∣∣∣PrGRP
[b = 1]− PrGRF

[b = 1]
∣∣∣=

∣∣∣PrGbad
RP

[b = 1]− PrGbad
RF

[b = 1]
∣∣∣ ≤ PrGbad

RF
[bad]
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Game Gbad
RP :

L ← [ ]; b ← A()

Oracle O(x) :
if x �∈ dom(L) then

y $← {0, 1}�;
if y ∈ ran(L) then

bad ← true;
y $← {0, 1}� \ ran(L)

L ← (x, y) :: L
return L(x)

Game Gbad
RF :

L ← [ ]; b ← A()

Oracle O(x) :
if x �∈ dom(L) then

y $← {0, 1}�;
if y ∈ ran(L) then

bad ← true
L ← (x, y) :: L

return L(x)

Game Geager
RF :

L ← [ ]; S; b ← A()

Oracle O(x) :
if x �∈ dom(L) then

if 0 < |Y | then
y ← hd(Y );
Y ← tl(Y )

else y $← {0, 1}�

L ← (x, y) :: L
return L(x)

S def
= Y ← [ ]; while |Y | < q do y $← {0, 1}�; Y ← Y ++ [y]

Fig. 5. Games used in the proofs of the PRP/PRF Switching Lemma

6.1 A Proof Based on Eager Sampling

We make a first remark: the probability of bad being set in game Gbad
RF is bounded

by the probability of having a collision in ran(L) at the end of the game. Let us
write this latter event as col(L). We prove this by showing that bad =⇒ col(L)
is an invariant of the game by means of the mechanized relational logic.

Using the logic for swapping statements, we modify the oracle in Gbad
RF so that

the responses to the first q queries are instead chosen at the beginning of the
game and stored in a list Y , thus obtaining the equivalent eager version Geager

RF

shown in Fig. 5. Each time a query is made, the oracle pops a value from list Y
and gives it back to the adversary as the response.

By using the rules of the logic for swapping statements, we show that the call
b ← A() swaps with S. Since the initialization code S terminates and does not
modify L, we can conclude that

PrGbad
RF

[col(L)] = PrGbad
RF ;S [col(L)] = PrGeager

RF
[col(L)]

We prove using the Relational Hoare Logic that having a collision in the range of
L at the end of this last game is the same as having a collision in Y immediately
after executing S. We conclude that the bound in Eq. (1) holds by analyzing
the loop in S. Observe that if there are no collisions in Y in a memory m, the
probability of sampling a colliding value in the remaining loop iterations is

PrS,m[∃i, j ∈ N, i < j < q ∧ Y [i] = Y [j]] =
q−1∑

i=|Y |

i

2�

This is proved by induction on (q − |Y |).
Remark. The proof reported in [3] uses a similar sequence of games. The sole
difference is in the application of eager sampling. Here we do it in one step,
whereas the earlier version uses induction. The new proof is both simpler and
shorter (about 400 lines of Coq compared to the 900 lines of the former proof).
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6.2 A Proof Based on Bounding Triples

The bound in Eq. 1 follows from a direct application of Lemma 3. It suffices to
take P = x �∈ dom(L), F = bad, h(i) = i 2−�, and cntr = |L|. If bad is initially
set to false in memory m, we have

PrGbad
RF

,m[bad] = Prb←A( ),m{L:=[ ]}[bad]

= Prb←A( ),m{L:=[ ]}[bad ∧ |L| ≤ q] ≤
q−1∑
i=0

h(i) =
q(q − 1)

2�+1

The second equation holds because A does not make more than q queries to
oracleO; the last inequality is obtained from Lemma 3. We use the logic in Fig. 2
to bound the probability of bad being set in one call to the oracle by |L|/2−�,
as required by the Failure Event Lemma. The resulting proof is considerably
shorter compared to the one presented in the previous section (only about 100
lines of Coq).

7 Related Work

We refer to [3] for an overview of papers that apply proof assistants to cryptogra-
phy, and that focus on programming language techniques akin to those described
in this paper. The first line of work is concerned with reasoning about proba-
bilistic programs. Several program logics have been studied in the literature,
see e.g. [7,12], and some authors have developed machine-checked frameworks to
reason about randomized algorithms. Hurd et al [9] report on a formalization of
the logic of [12], and on several applications. Aubebaud and Paulin [2] present
another framework, which provides the library of probabilities upon which Cer-
tiCrypt is built. The second line of work is concerned with certified program
transformations. Over the last few years, certified optimizing compilers have
become a reality, see e.g. [11]. In the course of these efforts, many program
transformations have been certified, including lazy code motion [16]. There is a
similarity between lazy code sampling and rematerialization [6]—an optimiza-
tion that recomputes a value instead of loading it from memory—and it would
be interesting to see whether the method developed in this paper could prove
useful to build a translation validator for the former.

8 Conclusion

The game-based approach to cryptographic proofs routinely uses a number of
unusual programming language techniques. In this paper we report on the cer-
tification and automation of two such techniques, namely failure events, and
eager/lazy sampling. Both techniques have been used extensively to successfully
provide a machine-checked proof of IND-CCA security of the OAEP padding
scheme. Our ultimate goal is to provide a comprehensive coverage of the tech-
niques used by cryptographers, and to turn CertiCrypt into an effective platform
for verifying a wide range of cryptographic proofs.
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Abstract. Nitpick is a counterexample generator for Isabelle/HOL that builds
on Kodkod, a SAT-based first-order relational model finder. Nitpick supports un-
bounded quantification, (co)inductive predicates and datatypes, and (co)recursive
functions. Fundamentally a finite model finder, it approximates infinite types by
finite subsets. As case studies, we consider a security type system and a hotel key
card system. Our experimental results on Isabelle theories and the TPTP library
indicate that Nitpick generates more counterexamples than other model finders
for higher-order logic, without restrictions on the form of the formulas to falsify.

1 Introduction

Anecdotal evidence suggests that most “theorems” initially given to an interactive
theorem prover do not hold, typically because of a typo or a missing assumption,
but sometimes because of a fundamental flaw. Modern proof assistants often include
counterexample generators that can be run on putative theorems or on specific subgoals
in a proof to spare users the Sisyphean task of trying to prove non-theorems.

Isabelle/HOL [17] includes two such tools: Quickcheck [4] generates functional code
for the higher-order logic (HOL) formula and evaluates it for random values of the free
variables, and Refute [23] searches for finite countermodels of a formula through a re-
duction to SAT (Boolean satisfiability). Their areas of applicability are almost disjoint:
Quickcheck excels at inductive datatypes but is restricted to the executable fragment
of HOL (which excludes unbounded quantifiers) and may loop endlessly on inductive
predicates. Refute copes well with logical symbols, but inductive datatypes and predi-
cates are mostly out of reach due to combinatorial explosion.

In the first-order world, the Alloy Analyzer [13], a testing tool for first-order re-
lational logic (FORL), has enjoyed considerable success lately. Alloy’s backend, the
relational model finder Kodkod [21], is available as a stand-alone Java library and is
used in many projects.

Alloy’s success inspired us to develop a new counterexample generator for Isabelle,
called Nitpick.1 It uses Kodkod as its backend, thereby benefiting from Kodkod’s opti-
mizations (notably its symmetry breaking) and its rich relational logic. The basic trans-
lation from HOL to FORL is conceptually simple (Section 3); however, common HOL

� This work is supported by the DFG grant Ni 491/11-1.
1 The name Nitpick is appropriated from Alloy’s venerable precursor.

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 131–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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idioms such as (co)inductive datatypes and (co)inductive predicates necessitate a trans-
lation scheme tailored for SAT solving (Section 4). In addition, Nitpick benefits from
many novel optimizations that greatly improve its performance, especially in the pres-
ence of higher-order constructs (Section 5).

As case studies, we consider the Isabelle formalizations of a hotel key card system
and a security type system (Section 6), both of which are currently beyond the reach
of Quickcheck and Refute. Our evaluation indicates that Nitpick falsifies more formu-
las than Quickcheck and Refute (Section 7), to a large extent because it imposes no
syntactic restrictions on the formulas to falsify. Nitpick is integrated with the TPTP
benchmark suite [20] and exposed three bugs in the higher-order provers TPS [1] and
LEO-II [3].

2 Background

2.1 Higher-Order Logic (HOL)

The types and terms of HOL [12] are that of the simply typed λ-calculus extended with
type constructors and constants:

Types: Terms:
σ ::= α (type variable) t ::= xσ (variable)

| (σ, . . . ,σ) κ (type construction) | cσ (constant)
| t t (application)
| λxσ. t (abstraction)

We write κ for () κ, σ κ for (σ) κ, and σ κ τ for (σ, τ) κ. HOL’s standard semantics
interprets the Boolean type o and the function space σ→ τ. Other types are defined,
notably the product type σ×τ. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed using
the standard typing rules and write x and c instead of xσ and cσ when the type σ is
irrelevant or can be inferred from the context. A formula is a term of type o.

Type variables occurring in the type of a constant can be instantiated, offering a
restricted form of polymorphism. Standard models interpret the constant �α�α�o as
equality on α for any instance of α. Logical connectives and quantifiers can be defined
in terms of �; for example, Trueo = (λxo. x) � (λx. x) and ∀(α�o)�o = (λPα�o. P �
(λx. True)). The traditional binder notation Qx. t abbreviates Q (λx. t).

2.2 First-Order Relational Logic (FORL)

Kodkod’s idiosyncratic logic, FORL, combines elements from first-order logic and rela-
tional calculus, to which it adds the transitive closure operator [21]. Its formulas involve
variables and terms ranging over relations (sets of tuples drawn from a universe of un-
interpreted atoms) of arbitrary arities. The logic is unsorted, but each term denotes a
relation of a fixed arity that can be inferred from the arities of its variables. Our transla-
tion relies on the following FORL fragment.
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Formulas: Terms:
ϕ ::= false (falsity) r ::= none (empty set)

| true (truth) | iden (identity relation)
| m r (multiplicity constraint) | an (atom)
| r � r (equality) | x (variable)
| r ⊆ r (inclusion) | {〈d, . . . ,d〉 | ϕ} (comprehension)
| ¬ϕ (negation) | πn

n(r) (projection)
| ϕ ∧ ϕ (conjunction) | r+ (transitive closure)
| ∀d: ϕ (universal quantification) | r.r (dot-join)

| r× r (Cartesian product)
d ::= x ∈ r | r ∪ r (union)
m ::= no | lone | one | r− r (difference)
n ::= 1 | 2 | · · · | if ϕ then r else r (conditional)

FORL syntactically distinguishes between terms and formulas. The universe of dis-
course is A = {a1, . . . ,ak}, where each ai is an uninterpreted atom. Atoms and n-tuples
are identified with singleton sets and singleton n-ary relations, respectively. Bound vari-
ables in quantifications and comprehensions range over the tuples in a relation; thus,
∀x∈ (a1∪a2)×a3: ϕ(x) is equivalent to ϕ(a1×a3) ∧ ϕ(a2×a3).

Although they are not listed above, we will sometimes make use of ∨, −→, ∃, ∗, and
∩ in examples. The constraint no r expresses that r is the empty relation, one r expresses
that r is a singleton, and lone r⇐⇒ no r ∨ one r. The projection and dot-join operators
are unconventional; their semantics is given by the equations

�πk
i (r)� = {(ri, . . . ,ri+k−1) | (r1, . . . ,rm) ∈ �r�}
�r.s� = {(r1, . . . ,rm−1, s2, . . . , sn) | ∃t. (r1, . . . ,rm−1, t) ∈ �r� ∧ (t, s2, . . . , sn) ∈ �s�}.

The dot-join operator admits three important special cases. Let s be unary and r, r′ be
binary relations. The expression s.r gives the direct image of the set s under r; if s is a
singleton and r a function, it coincides with the function application r(s). Analogously,
r.s gives the inverse image of s under r. Finally, r.r′ expresses relational composition.

To pass an n-tuple s to a function r, we write 〈s〉.r, which stands for the n-fold
dot-join πn(s).(. . . .(π1(s).r) . . .). We write πi(r) for π1

i (r).
The relational operators often make it possible to express first-order problems con-

cisely. The following Kodkod specification attempts to fit 30 pigeons in 29 holes:

vars pigeons = {a1, . . . ,a30}, holes = {a31, . . . ,a59}
var /0⊆ nest⊆ {a1, . . . ,a30}×{a31, . . . ,a59}
solve (∀p∈pigeons: one p.nest) ∧ (∀h∈holes: lone nest.h)

The example declares three free variables: pigeons and holes are given fixed values,
whereas nest is specified with a lower and an upper bound. Variable declarations are an
extralogical way of specifying sort constraints and partial solutions.

The constraint one p.nest states that pigeon p is in relation with exactly one hole,
and lone nest.h that hole h is in relation with at most one pigeon. Taken as a whole, the
formula states that nest is a one-to-one function. It is, of course, not satisfiable, a fact
that Kodkod can establish in less than a second.
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When reducing FORL to SAT, each n-ary relational variable y is in principle trans-
lated to an |A |n array of propositional variables V[i1, . . . , in], with V[i1, . . . , in] ⇐⇒
〈ai1 , . . . ,ain〉 ∈ y. Most relational operations can be coded efficiently; for example, ∪ is
simply ∨. The quantified formula ∀r∈ s: ϕ(r) is treated as

∧n
j=1 tj ⊆ s−→ ϕ(tj), where

the tj’s are the tuples that may belong to s. Transitive closure is unrolled to saturation.

3 The Basic Translation

Nitpick employs Kodkod to find a finite model (a satisfying assignment to the free
variables and constants) of ¬P, where P is the formula to refute. The translation of a
formula from HOL to FORL is parameterized by the cardinalities of the types occurring
in it, provided as a function |σ| from types to positive integers obeying

|σ| ≥ 1 |o|= 2 |σ→τ|= |τ||σ| |σ× τ|= |σ| · |τ| .
Following Jackson [13], we call such a function a scope. Like other SAT-based model
finders, Nitpick enumerates the possible scopes for each basic type, so that if a formula
has a finite counterexample, the tool eventually finds it, unless it runs out of resources.

The basic translation presented in this section handles the following HOL constants:

Falseo (falsity) insertα�(α�o)�α�o (element insertion)
Trueo (truth) UNIVα�o (universal set)
�α�α�o (equality) ∪(α�o)�(α�o)�α�o (union)
⊆ (α�o)�(α�o)�o (subset) − (α�o)�(α�o)�α�o (set difference)
¬o�o (negation) Pairα�β�α×β (pair constructor)
∧o�o�o (conjunction) fstα×β�α (first projection)
∀(α�o)�o (universal quantifier) sndα×β�β (second projection)
/0α�o (empty set) ( )+ (α×α�o)�α×α�o (transitive closure)

SAT solvers are particularly sensitive to the encoding of problems, so special care is
needed when translating HOL formulas. Whenever practicable, HOL constants should
be mapped to their FORL equivalents, rather than expanded to their definitions. This is
especially true for the transitive closure r+, which is defined as the least fixed point of
λR (x, y). (∃a b. x� a ∧ y� b ∧ r (a, b)) ∨ (∃a b c. x� a ∧ y� c ∧ R (a, b) ∧ r (b, c)).

As a rule, HOL functions should be mapped to FORL relations accompanied by
a constraint. For example, assuming the scope |α| = 2 and |β| = 3, the presumptive
theorem ∀xα. ∃y β. f x� y corresponds to the Kodkod problem

var /0⊆ f ⊆ {a1,a2}×{a3,a4,a5}
solve (∀x∈a1∪a2: one x. f ) ∧ ¬(∀x∈a1∪a2: ∃y∈a3∪a4∪a5: x. f � y)

The first conjunct ensures that f is a function, and the second conjunct is the negation
of the HOL formula translated to FORL.

An n-ary first-order function (curried or not) can be coded as an (n + 1)-ary relation
accompanied by a constraint. However, if the return type is o, the function is more
efficiently coded as an unconstrained n-ary relation. This allows formulas such as A+ ∪
B+ � (A ∪ B)+ to be translated without taking a detour through ternary relations.



Nitpick: A Counterexample Generator for Higher-Order Logic 135

Higher-order quantification and functions bring complications of their own. For ex-
ample, we would like to translate ∀g β�α. g x �� y into something like

∀g⊆ (a3∪a4∪a5)× (a1∪a2): (∀x∈a3∪a4∪a5: one x.g)−→ x.g �� y,

but the⊆ symbol is not allowed at the binding site; only ∈ is. Skolemization solves half
of the problem (Section 5.1), but for the remaining quantifiers we are forced to adopt
an unwieldy n-tuple singleton representation of functions, where n is the cardinality of
the domain. For the formula above, this gives

∀G∈ (a1∪a2)×(a1∪a2)×(a1∪a2): x.
( g︷ ︸︸ ︷

a3×π1(G) ∪ a4×π2(G) ∪ a5×π3(G)
) �� y,

where G is the triple corresponding to g. In the body, we convert the singleton G to the
relational representation, then we apply x on it using dot-join. The singleton encoding
is also used for passing functions to functions; fortunately, two optimizations, function
specialization and boxing (Section 5.1), make this rarely necessary.

We are now ready to look at the basic translation in more detail. The translation dis-
tinguishes between formulas (F), singletons (S), and relations (R). We start by mapping
HOL types to sets of FORL atom tuples. For each type σ, we provide two codings, a
singleton representation S〈〈σ〉〉 and a relational representation R〈〈σ〉〉:2

S〈〈σ→ τ〉〉= S〈〈τ〉〉|σ| R〈〈σ→ o〉〉= S〈〈σ〉〉
S〈〈σ× τ〉〉= S〈〈σ〉〉×S〈〈τ〉〉 R〈〈σ→ τ〉〉= S〈〈σ〉〉×R〈〈τ〉〉

S〈〈σ〉〉= {a1, . . . ,a|σ|} R〈〈σ〉〉= S〈〈σ〉〉.
In the S representation, an element of type σ is mapped to a single tuple ∈ S〈〈σ〉〉. In the
R representation, an element of type σ→o is mapped to a subset of S〈〈σ〉〉 consisting of
the points at which the predicate is True; an element of σ→ τ (where τ �= o) is mapped
to a relation ⊆ S〈〈σ〉〉×R〈〈τ〉〉; any other element is coded as a singleton. For simplicity,
we reuse the same atoms for distinct types. Doing so is sound for well-typed terms.

For each free variable yσ, we generate the declaration var /0⊆ y⊆ R〈〈σ〉〉 as well as a
constraint Φσ(y) to ensure that functions are functions and single values are singletons:

Φσ1�···�σn�o(r) = true Φσ�τ(r) = ∀bf∈S〈〈σ〉〉: Φτ
(〈bf〉.r

)
Φσ(r) = one r.

We assume that free and bound variables are syntactically distinguishable, and use the
letter y for the former and b for the latter. The symbol bf denotes a fresh bound variable.

We assume a total order on n-tuples of atoms and let Si〈〈σ〉〉 denote the ith tuple from
S〈〈σ〉〉 according to that order. Furthermore, we define s(σ) and r(σ) as the arity of the
tuples in S〈〈σ〉〉 and R〈〈σ〉〉, respectively. The translation of terms requires the following
rather technical conversions between singletons (S), relations (R), and formulas (F):

s2rσ→o(r) =
⋃|σ|

i=1 πi(r).(a2×Si〈〈σ〉〉) f2s(ϕ) = if ϕ then a2 else a1

s2rσ→τ(r) =
⋃|σ|

i=1 Si〈〈σ〉〉× s2rτ
(
π

s(τ)
(i−1)·s(τ)+1(r)

)
s2f(r) = r � a2

r2sσ→τ(r) = {〈bf∈S〈〈σ→ τ〉〉〉 | s2rσ→τ(bf)� r} s2rσ(r) = r r2sσ(r) = r.

The Boolean values false and true are arbitrarily coded as a1 and a2, respectively.

2 Metatheoretic functions here and elsewhere are defined using sequential pattern matching,
eliminating the need for side conditions such as “if τ �= o” and “otherwise.”



136 J.C. Blanchette and T. Nipkow

The translation of HOL terms is performed by three functions, F〈〈t〉〉, S〈〈t〉〉, and R〈〈t〉〉.
Their defining equations are to be matched modulo η-equivalence:

F〈〈y〉〉= s2f(y) F〈〈t ⊆ u〉〉= R〈〈t〉〉 ⊆ R〈〈u〉〉 S〈〈b〉〉= b

F〈〈b〉〉= s2f(b) F〈〈¬ t〉〉= ¬F〈〈t〉〉 S〈〈Pair t u〉〉= S〈〈t〉〉×S〈〈u〉〉
F〈〈False〉〉= false F〈〈t ∧ u〉〉= F〈〈t〉〉 ∧ F〈〈u〉〉 S〈〈fst tσ×τ〉〉= πs(σ)

1 (S〈〈t〉〉)
F〈〈True〉〉= true F〈〈∀bσ. t〉〉= ∀b∈S〈〈σ〉〉: F〈〈t〉〉 S〈〈snd tσ×τ〉〉= πs(τ)

s(σ)+1(S〈〈t〉〉)
F〈〈t � u〉〉= R〈〈t〉〉 � R〈〈u〉〉 F〈〈t u〉〉= S〈〈u〉〉 ⊆ R〈〈t〉〉 S〈〈t〉〉= r2sσ

(
R〈〈t〉〉)

R〈〈co〉〉= f2s(c) R〈〈insert t u〉〉= S〈〈t〉〉 ∪ R〈〈u〉〉
R〈〈y〉〉= y R〈〈t ∪ u〉〉= R〈〈t〉〉 ∪ R〈〈u〉〉

R〈〈bσ〉〉= s2rσ(b) R〈〈t−u〉〉= R〈〈t〉〉−R〈〈u〉〉
R〈〈Pair t u〉〉= S〈〈Pair t u〉〉 R〈〈(tσ×σ�o)+〉〉= R〈〈t〉〉+ if r(σ) = 1

R〈〈fst tσ×τ〉〉= s2rσ
(
S〈〈fst t〉〉) R〈〈tσ�o u〉〉= f2s

(
F〈〈t u〉〉)

R〈〈snd tσ×τ〉〉= s2rτ
(
S〈〈snd t〉〉) R〈〈t u〉〉= 〈S〈〈u〉〉〉.R〈〈t〉〉

R〈〈 /0σ〉〉= noner(σ) R〈〈λbσ. t o〉〉= {〈b∈S〈〈σ〉〉〉 | F〈〈t〉〉}
R〈〈UNIVσ〉〉= R〈〈σ〉〉 R〈〈λbσ. tτ〉〉= {〈b∈S〈〈σ〉〉, bf∈R〈〈τ〉〉〉 | bf ⊆ R〈〈t〉〉}.

Annoyingly, the translation of transitive closure is defined only if r(σ) = 1. We will see
ways to lift this restriction in the next two sections.

Theorem 1 (Soundness). Given a putative theorem P with free variables yσ1
1 , . . . ,y

σn
n

within our HOL fragment and a scope S, P admits a counterexample if there exists a
valuation V with V(yj)⊆R〈〈σj〉〉 that satisfies the FORL formula F〈〈¬P〉〉∧∧n

j=1 Φσj(yj).

Proof sketch. Let �t�A denote the set-theoretic semantics of the HOL term t w.r.t. a vari-
able assignment A and the scope S. Let �ρ�V denote the semantics of the FORL term
or formula ρ w.r.t. a variable valuation V and the scope S. Furthermore, let �v�X de-
note the X -encoded FORL value corresponding to the HOL value v, for X ∈ {F,S,R}.
Using recursion induction, it is straightforward to prove that �X〈〈t〉〉�V = ��t�A�X if
V(yi) = �A(yi)�R for all free variables yi and V(bi) = �A(bi)�S for all locally free bound
variables bi occurring in t. Moreover, from the satisfying valuation V of the free vari-
ables yi, we can construct a type-correct HOL assignment A such that �A(yi)�R = V(yi);
the Φσj(yj) constraints and the variable bounds V(yj) ⊆ R〈〈σj〉〉 ensure that such an as-
signment exists. Hence, �F〈〈¬P〉〉�V = true = ��¬P�A�F, which shows that A falsifies P.

A very thorough soundness proof of a translation from HOL to SAT can be found in
Tjark Weber’s Ph.D. thesis [23].

4 Refinements to the Basic Translation

4.1 Approximation of Infinite Types and Partiality

Because of the axiom of infinity, the type nat of natural numbers does not admit any
finite models. To work around this, Nitpick considers finite subsets {0,1, . . . , K − 1}
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of nat and maps numbers ≥ K to the undefined value (⊥), coded as none, the empty
set. Formulas of the form ∀nnat. P(n) are treated in essence as (∀n < K. P(n)) ∧ P(⊥),
which usually evaluates to either False (if P(i) gives False for some i < K) or⊥, but not
to True, since we do not know whether P(K), P(K +1), . . . (collectively represented by
P(⊥)) are true. In view of this, Nitpick generally cannot soundly disprove conjectures
that contain an infinite existential quantifier in their conclusion or an infinite univer-
sal quantifier in their assumptions. As a fallback, the tool enters an unsound mode in
which the quantifiers are artificially bounded. Counterexamples obtained under these
conditions are marked as “potential.”

Functions from nat to α are abstracted by relations ⊆ {a1, . . . ,aK} × {a1, . . . ,a|α|}
constrained to be partial functions. Partiality makes it possible to encode the successor
function Suc as the relation S = (a1× a2) ∪ ·· · ∪ (aK−1× aK), which associates no
value with aK . Conveniently, the dot-join aK .S yields none, and so does none.S . This
is desirable because Suc (K−1) is unrepresentable and Suc ⊥ is unknown.

Partiality leads to a Kleene three-valued logic, which is expressed in terms of Kod-
kod’s two-valued logic as follows. At the outermost level, we let the FORL truth value
false stand for both False (no counterexample) and ⊥ (potential counterexample), and
reserve true for True (genuine counterexample). The same convention is obeyed in other
positive contexts within the formula. In negative contexts, false codes False and true
codes True or ⊥. Finally, in unpolarized contexts (for example, as argument to a func-
tion), the atom a1 codes False, a2 codes True, and none codes⊥. Unlike similar approx-
imation approaches [18, p. 164; 23], Nitpick’s logic is sound, although the tool also has
an unsound mode as noted above.

4.2 Nonuniform Representation of HOL Terms

FORL gives Nitpick a lot of flexibility when encoding terms. A value of type α×β, for
example, can be translated as before to a pair ∈ {a1, . . . ,a|α|}×{a1, . . . ,a|β|}, but it can
also be mapped to a single atom ∈ {a1, . . . ,a|α×β|}. Predicates on α (or functions from
α to σ with |σ|= 2) can be coded as single atoms, sets of atoms, relations from atoms
to {a1,a2}, or |α|-tuples over {a1,a2}.

Nitpick uses FORL’s flexibility to a larger extent than was hinted at in Section 3.
For example, it ensures that the operand of transitive closure is always a binary relation
(a set of pairs), no matter what the HOL type is, lifting an annoying limitation in the
basic translation described earlier. It also keeps track of whether a term can evaluate
to ⊥, which makes many optimizations possible in FORL. For example, because free
variables never yield ⊥, we encode x� y as x⊆ y, which is more efficient.

The current representation selection scheme proceeds in a straightforward bottom-up
fashion, inserting conversions as appropriate. More sophisticated schemes that would
minimize the number of conversions have yet to be tried.

4.3 Encoding of (Co)Inductive Predicates

Isabelle lets users specify (co)inductive predicates p by their introduction rules and
synthesizes a fixed point definition p � lfp F or p � gfp F. For performance reasons,
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Nitpick avoids expanding lfp and gfp to their definitions and translates (co)inductive
predicates directly, using appropriate FORL concepts.

A first intuition is that an inductive predicate p is a fixed point, so we could use
the equation p � F p as the axiomatic specification of p. In general, this is unsound
since it underspecifies p, but there are two important cases for which this method is
sound. First, if the recursion in F is well-founded, the fixed point equation p � F p
admits exactly one solution and we can safely use it as p’s specification. Second, if p
occurs negatively in the formula, we can replace these occurrences by a fresh constant
q satisfying the axiom q� F q; this transformation preserves equisatisfiability.

To deal with positive occurrences of p, we adapt a technique from bounded model
checking [5]: We replace p by a fresh predicate rk defined by

r0 � (λx̄.⊥) rn+1 � F rn,

which corresponds to p unrolled k times. For unpolarized occurrences, we use q ∩ rk.
In essence, we have made p well-founded by adding a counter that decreases by one
with each recursive call. This unrolling comes at a price: The search space and the size
of the propositional formula for rk is k times that of q. Hence, it makes sense to look for
a counterexample with a small value of k first and increment it gradually if needed.

The situation is mirrored for coinductive predicates: Negative occurrences of p be-
come rk, positive occurrences become q, and unpolarized occurrences become q ∪ rk.

To determine whether a predicate is well-founded, Nitpick generates a wellfounded-
ness goal and invokes Isabelle’s termination prover [7] with a time limit. Given intro-
duction rules of the form

p t̄i1 · · · p t̄ini Qi

p ūi

for i ∈ {1, . . . ,m}, the termination prover must exhibit a well-founded relation R such
that

∧m
i=1

∧ni
j=1 Qi −→

〈
t̄ij, ūi

〉 ∈ R holds.
In our experience, about half of the inductive predicates occurring in practice are

well-founded—this includes most type systems and other compositional formalisms,
but generally excludes state transition systems.

4.4 Encoding of (Co)Inductive Datatypes and (Co)Recursive Functions

In contrast to Isabelle’s constructor-oriented treatment of inductive datatypes, Nitpick’s
FORL axiomatization revolves around selectors and discriminators, inspired by Kuncak
and Jackson’s modeling of lists and trees in Alloy [14]. The selector and discriminator
view is usually more efficient than the constructor view because it breaks high-arity
constructors into several low-arity selectors.

Consider the type α list generated from Nilα list and Consα�α list�α list. The FORL
axiomatization is done in terms of the discriminators isNilα list�o and isConsα list�o and
the selectors get1Consα list�α and get2Consα list�α list, which give access to a nonempty
list’s head and tail. Following Dunets et al. [10], Nil and Cons x xs are translated as isNil
and get1Cons.x ∩ get2Cons.xs, respectively.

The following axioms, with N = 1,2, specify a subterm-closed finite universe of lists
using the atoms Aα list:



Nitpick: A Counterexample Generator for Higher-Order Logic 139

DISJ: no isNil ∩ isCons

EXH: isNil ∪ isCons�Aα list

SELN : ∀xs∈Aα list: if xs⊆ isCons then one xs.getNCons else no xs.getNCons

UNIQ: lone isNil ∧ (∀x∈Aα, xs∈Aα list: lone get1Cons.x ∩ get2Cons.xs)
ACYCL: no get2Cons+ ∩ iden.

Examples of subterm-closed list universes using traditional list notation are {[], [a1], [a2],
[a3]} and {[], [a2], [a3,a2], [a1,a3,a2]}. For recursive functions, Nitpick ignores the con-
struction synthesized by Isabelle and relies instead on the user-specified equations.

The approach can be generalized to mutually recursive datatypes. To generate the
ACYCL axioms for the mutually recursive datatypes x with constructors A x�y�x and B x

and y with constructor C x�y, we compute their datatype dependency graph, in which
vertices are labeled with datatypes and arcs are labeled with selectors. Then we compute
for each datatype a regular expression capturing the nontrivial paths from the datatype
to itself, with . standing for concatenation, ∪ for alternative, and ∗ and + for repetition.
We require the paths to be disjoint from identity:

no (get1A ∪ get2A.get1C)+ ∩ iden

no (get1C .get1A∗ .get2A)+ ∩ iden.

yx
get1A 

get2A 

get1C

Nitpick supports coinductive datatypes, even though Isabelle does not provide a high-
level mechanism for defining them. Users can define custom coinductive datatypes from
first principles and tell Nitpick to substitute its efficient FORL axiomatization for their
definitions. Nitpick also knows about Isabelle’s coinductive “lazy list” datatype, α llist,
with the constructors LNilα llist and LConsα�α llist�α llist. The FORL axiomatization is
similar to that used for α list, but the ACYCL axiom is omitted to allow cyclic (ω-
regular) lists. Infinite lists are presented to the user as lassos, with a finite stem and
cycle. The following coinductive bisimulation principle is translated along with the
HOL formula, to ensure that distinct atoms correspond to observably distinct lists:

BISIM1
LNil � LNil

x� y xs� ys
BISIM2.

LCons x xs� LCons y ys

5 Optimization Steps

5.1 HOL Preprocessing

Function Specialization. A function argument is said to be static if it is passed unaltered
to all recursive calls. A typical example is f in the definition of map:

map f []� [] map f (x · xs)� f x · map f xs.
An optimization reminiscent of the static argument transformation or lambda-dropping
[9, pp. 148–156] is to specialize the function for each eligible call site, thereby avoiding
passing the static argument altogether. At the call site, any term whose free variables
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are all globally free is eligible for this optimization. Following this scheme, map Suc ns
would become mapSuc ns, where mapSuc is defined as follows:

mapSuc []� [] mapSuc (x · xs)� Suc x · mapSuc xs.

For this example, specialization reduces the number of propositional variables needed
to encode the function by a factor of |nat||nat|.

Boxing. Nitpick normally translates function and product types directly to the homol-
ogous Kodkod concepts. This is not always desirable; for example, a transition relation
on states represented as n-tuples leads to a 2n-ary relation, which gives rise to a combi-
natorial explosion and precludes the use of FORL’s binary transitive closure.

Our experience suggests that it is almost always advantageous to approximate n-
tuples where n ≥ 3 as well as higher-order arguments. This is achieved by wrapping
them in an isomorphic type α box with the single constructor Boxα�α box, inserting
constructors and selectors as appropriate. Assuming that specialization is not in use, the
second equation for map would then become

map f (nat�nat) box (x · xs)� get1Box f x · map f xs,

with map (Box Suc) ns at the call site. Notice that for function types, boxing is similar
to defunctionalization [2], with selectors playing the role of “apply” functions. Further
opportunities for boxing are created by uncurrying high-arity constants beforehand.

Quantifier Massaging. (Co)inductive definitions are marred by existential quantifiers,
which blow up the size of the resulting propositional formula. The following steps are
applied to eliminate quantifiers or reduce their binding range: (1) Replace quantifica-
tions of the forms ∀x. x � t −→ P(x) and ∃x. x � t ∧ P(x) by P(t) if x does not occur
free in t. (2) Skolemize. (3) Distribute quantifiers over congenial connectives (∀ over ∧,
∃ over ∨ and −→). (4) For any remaining subformula Qx1 . . . xn. p1 ⊗ ·· · ⊗ pm, where
Q is a quantifier and ⊗ is a connective, move the pi’s out of as many quantifiers as
possible by rebuilding the formula using qfy({x1, . . . , xn}, {p1, . . . , pm}), defined as

qfy( /0, P) =
⊗

P qfy(x " X, P) = qfy(X, P−Px ∪ {Qx.
⊗

Px}),
where Px = {p ∈ P | x occurs free in p}.

The order in which individual variables x are removed from the first argument is
crucial because it affects which pi’s can be moved out. For clusters of up to 7 quantifiers,
Nitpick considers all permutations of the bound variables and chooses the one that
minimizes the sum ∑m

i=1 |τi1| · . . . · |τiki | · size(pi), where τi1, . . . , τiki are the types of the
variables that have pi in their binding range, and size(pi) is a rough syntactic measure
of pi’s size; for larger clusters, it falls back on a heuristic inspired by Paradox’s clause
splitting procedure [8]. Thus, the formula ∃xα yα. p x∧ q x y∧ r y ( f y y) is transformed
into ∃yα. r y ( f y y) ∧ (∃xα. p x ∧ q x y). Processing y before x in qfy would instead
give ∃xα. p x ∧ (∃yα. q x y ∧ r y ( f y y)), which is more expensive because r y ( f y y),
the most complex conjunct, is doubly quantified and hence |α|2 copies of it are needed
in the resulting propositional formula.

Constructor Elimination. Since datatype constructors may return ⊥ in our encoding,
we canincrease precision by eliminating them. A formula such as [x,y] � [a,b] can
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easily be rewritten into x � a ∧ y � b, which evaluates to either True or False even if
[x,y] or [a,b] would yield ⊥.

For multiple-argument constructors, eliminating constructors helps reduce the num-
ber of nested quantifiers. Consider a datatype of AVL trees with two constructors,
Nullα tree and Nodeα�α tree�α tree�nat�α tree, and a data constant defined by the equations

data Null� /0 ∀a t1 t2 h. data (Node a t1 t2 h)� {a} ∪ data t1 ∪ data t2.

Our target is the constructor application Node a t1 t2 h in the second equation’s left-hand
side. We first pull it out and assign it to a fresh bound variable y:

∀a t1 t2 h y. y� Node a t1 t2 h −→ data y� {a} ∪ data t1 ∪ data t2.

Then we express the constructor arguments in terms of selectors in the conclusion,
rewrite the assumption to use a discriminator, and omit the obsolete variables:

∀y. isNode y−→ data y� {get1Node y} ∪ data (get2Node y) ∪ data (get3Node y).

By quantifying over a single variable, we reduce the number of copies of the body from
|α| · |α tree|2 · |nat| to |α tree| in the SAT problem, without losing counterexamples. This
technique is also useful for constructors taking a single higher-order argument, such as
those inserted by the boxing optimization described above.

5.2 Monotonicity Inference

Many formulas occurring in practice are monotonic in the sense that if the formula is
falsifiable for a given scope, it is also falsifiable for all larger scopes [13, p. 165]. That
not all formulas are monotonic will become clear after considering |UNIV|= 3.

Monotonicity can be exploited to prune the search space. For a formula involving
n uninterpreted types, a model finder must a priori consider kn scopes to exhaust all
models up to the cardinality bound k. With monotonicity, it is sufficient to consider the
single scope in which all types have cardinality k.

We developed and implemented two calculi for inferring monotonicity, and proved
them sound [6]. The first calculus, on which we focus here, has limited support for sets
encoded as predicates. The second, more powerful calculus addresses this problem by
annotating function arrows and relying on a SAT solver to ensure consistent annotations.

For simplicity of exposition, the first calculus is defined for a HOL fragment in which
the only constants are � and −→. We let True abbreviate (λxo. x) � (λx. x) and ∀x. p
abbreviate (λx. p)� (λx. True). We assume a distinguished type variable αwith respect
to which monotonicity is inferred. The calculus is defined below:

TVs(o) = /0 TV+(β) = {β} TV–(β) = /0 TVs(σ→τ) = TV–s(σ) ∪ TVs(τ)

K(x) K(−→)

α /∈ TV–(σ)

K(�σ�σ�o)

K(t) K(u)

K(t u)

K(t)

K(λx. t)

K(t)

Ms(t)

M–s(t) Ms(u)

Ms(t −→ u)

M+(t) α /∈ TV+(σ)

M+(∀xσ. t)

M–(t)

M–(∀x. t)

K(t) K(u)

M–(t � u)
.
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The TVs(σ) function gives the set of type variables occurring positively (if s is +) or
negatively (if s is −) with respect to →. The judgment K(t) expresses that t’s value
remains essentially the same when α’s cardinality is increased, assuming that the free
variables also stay the same. A formula P is monotonic if M–(P) is derivable.

We evaluated both calculi on the theorems from six highly polymorphic Isabelle the-
ories (AVL2, Fun, Huffman, List, Map, and Relation). We found that the simple calculus
inferred monotonicity for 41% to 97% of the theorems depending on the theory, while
the more sophisticated calculus achieved 65% to 100% [6].

6 Case Studies

6.1 Volpano–Smith–Irvine Security Type System

Assuming a partition of program variables into public and private ones, Volpano, Smith,
and Irvine [22] provide typing rules guaranteeing that the contents of private variables
stay private. They define two types, High (private) and Low (public). An expression
is High if it involves private variables; otherwise it is Low. A command is High if it
modifies private variables only; commands that could alter public variables are Low.

As our first case study, we consider a fragment of the formal soundness proof by
Snelting and Wasserrab [19]. Given a variable partition Γ, the inductive predicate Γ �
e : σ tells whether e has type σ, whereas Γ,σ � c tells whether command c has type σ.
Below is a flawed definition of Γ,σ � c:

Γ,σ � skip

Γ v� �High�
Γ,σ � v:=e

Γ � e : Low Γ v� �Low�
Γ,Low � v:=e

Γ,σ � c1

Γ,σ � c1 ;c2

Γ � b : σ Γ,σ � c1 Γ,σ � c2

Γ,σ � if (b) c1 else c2

Γ � b : σ Γ,σ � c

Γ,σ � while (b) c

Γ,High � c

Γ,Low � c
.

The following theorem constitutes a key step in the soundness proof:

Γ,High � c ∧ 〈c, s〉�∗ 〈
skip, s′

〉 −→ ∀v. Γ v� �Low� −→ s v� s′ v.

Informally, it asserts that if executing the High command c in state s terminates in
state s′, then the public variables of s and s′ must agree. This is consistent with our
intuition that High commands should only modify private variables. However, because
we planted a bug in the definition of Γ,σ � c, Nitpick finds a counterexample:

Γ = [v1 #→ Low] s = [v1 #→ false]
c = skip; v1 := (Var v1 ==Var v1) s′ = [v1 #→ true].

Even though the command c has type High, it assigns true to the Low variable v1. The
bug is a missing assumption Γ,σ � c2 in the typing rule for sequential composition.

6.2 Hotel Key Card System

We consider a state-based model of a vulnerable hotel key card system with record-
able locks [16], inspired by an Alloy specification due to Jackson [13, pp. 299–306].
The formalization relies on three opaque types, room, guest, and key. A key card, of
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type card = key× key, combines an old key and a new key. A state is a 7-field record
(|owns :: room→guest option, curr ::room→key, issued ::key→o, cards ::guest→card→
o, roomk ::room→key, isin ::room→guest→o, safe ::room→o|). The set reach of reach-
able states is defined inductively by the following rules:

inj init
INIT

(|owns = (λr.⊥), curr = init, issued = range init, cards = (λg. /0),
roomk = init, isin = (λr. /0), safe = (λr. True)|) ∈ reach

s ∈ reach k /∈ issued s
CHECK-IN

s(|curr := (curr s)(r := k), issued := issued s ∪ k,
cards := (cards s)(g := cards s g ∪ 〈curr s r, k〉),
owns := (owns s)(r := �g�), safe := (safe s)(r := False)|) ∈ reach

s ∈ reach 〈k, k′〉 ∈ cards s g roomk s r ∈ {k, k′}
ENTRY

s(|isin := (isin s)(r := isin s r ∪ g), roomk := (roomk s)(r := k′),
safe := (safe s)(r := owns s r � �g� ∧ isin s r � /0 ∨ safe s r)|) ∈ reach

s ∈ reach g ∈ isin s r
EXIT.

s(|isin := (isin s)(r := isin s r−{g})|)∈ reach

A desirable property of the system is that it should prevent unauthorized access:

s ∈ reach ∧ safe s r ∧ g ∈ isin s r −→ owns s r � �g�.
Nitpick needs some help to contain the state space explosion: We restrict the search to
one room and two guests. Within seconds, we get the counterexample

s = (|owns = (r1 := �g1�), curr = (r1 := k1), issued = {k1, k2, k3, k4},
cards = (g1 := {〈k3, k1〉 , 〈k4, k2〉}, g2 := {〈k2, k3〉}), roomk = (r1 := k3),
isin = (r1 := {g1, g2}), safe = {r1}|)

with g = g2 and r = r1.
To retrace the steps from the initial state to the s, we can ask Nitpick to show the

interpretation of reach at each iteration. This reveals the following “guest in the middle”
attack: (1) Guest g1 checks in and gets a card 〈k4, k2〉 for room r1, whose lock expects
k4. Guest g1 does not enter the room yet. (2) Guest g2 checks in, gets a card 〈k2, k3〉 for
r1, and waits. (3) Guest g1 checks in again, gets a card 〈k3, k1〉, inadvertently unlocks
room r1 with her previous card, 〈k4, k2〉, leaves a diamond on the nightstand, and exits.
(4) Guest g2 enters the room and “borrows” the diamond.

This flaw was already detected by Jackson using the Alloy Analyzer on his original
specification and can be fixed by adding k′ � curr s r to the conjunction in ENTRY.

7 Evaluation

An ideal way to assess Nitpick’s strength would be to run it against Refute and Quick-
check on a representative database of Isabelle/HOL non-theorems. Lacking such a
database, we chose instead to derive formulas from existing theorems by mutation,
replacing constants with other constants and swapping arguments, as was done when
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evaluating Quickcheck [4]. The vast majority of formulas obtained this way are in-
valid, and those few that are valid do not influence the ranking of the counterexample
generators. For executable theorems, we made sure that the generated mutants are also
executable to prevent a bias against Quickcheck.

The table below summarizes the results of running the tools on 3200 random mutants
from 20 Isabelle theories (200 per theory), with a limit of 10 seconds per formula. Most
counterexamples are found within a few seconds; giving the tool more time would have
little impact on the results.

THEORY QUICK. REF. NITP.

Divides 134/184 3+15 141+2

Fun 5/9 162+1 163+0

GCD 119/162 1+17 124+10

List 78/130 3+113 117+9

MacLaurin 43/62 0+0 26+7

Map 19/34 103+45 157+0

Predicate 2/2 147+14 161+0

Relation 0/2 144+3 150+1

Set 17/25 149+0 151+0

Wellfounded 10/24 118+20 141+1

THEORY QUICK. REF. NITP.

ArrowGS 0/0 0+126 139+2

Coinductive 4/6 16+7 87+13

CoreC++ 7/30 3+6 29+1

FFT 31/40 1+2 47+15

Huffman 84/160 1+45 119+2

MiniML 14/33 0+116 79+49

NBE 41/62 0+18 81+24

Ordinal 0/66 10+3 12+0

POPLmark 56/96 4+6 103+15

Topology 0/0 124+4 139+3

The table’s entries have the form G/X for Quickcheck and G+P for Refute and Nit-
pick, where G = number of genuine counterexamples found and reported as such, P =
number of potential counterexamples found (in addition to G), and X = number of ex-
ecutable mutants (among 200).

Refute’s three-valued logic is unsound, so all counterexamples for formulas that in-
volve an infinite type are potentially spurious and reported as such to the user. Nitpick
also has an unsound mode, which contributes some potential counterexamples. Unfor-
tunately, there is no easy way to tell how many of these are actually genuine.

Quickcheck and Nitpick are comparable on executable formulas, but Nitpick also
fares well on non-executable ones. Notable exceptions are formalizations involving real
arithmetic (MacLaurin and FFT), complex set-theoretic constructions (Ordinal), or a
large state space (CoreC++).

Independently, Nitpick competes against Refute in the higher-order model finding
division of the TPTP [20]. In a preliminary run, it disproved 293 out of 2729 formulas
(mostly theorems), compared with 214 for Refute. Much to our surprise, Nitpick exhib-
ited counterexamples for five formulas that had previously been proved by TPS [1] or
LEO-II [3], revealing two bugs in the former and one bug in the latter.

8 Related Work

The approaches for testing conjectures can be classified in three broad categories:

– Random testing. The formula is evaluated for random values of the free variables.
This approach is embodied by Isabelle’s Quickcheck [4] and similar tools for other
proof assistants. It is restricted to executable formulas.
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– SAT solving. The formula is translated to propositional logic and handed to a SAT
solver. This procedure was pioneered by McCune in his first-order finder MACE
[15]. Other first-order MACE-style finders include Paradox [8] and Kodkod [21].
The higher-order finders Refute [23] and Nitpick also belong to this category.

– Direct search. The search for a model is performed directly on the formula, without
translation to propositional logic. This approach was introduced by SEM [24].

Some proof methods deliver sound or unsound counterexamples upon failure, notably
model checking, semantic tableaux, and satisfiability modulo theory (SMT) solving.
Also worth of mention is the Dynamite tool [11], which lets users prove Alloy formulas
in the interactive theorem prover PVS. Weber [23, pp. 3–4] provides a more detailed
discussion of related work.

9 Conclusion

Nitpick is to our knowledge the first higher-order model finder that supports both in-
ductive and coinductive predicates and datatypes. It works by translating higher-order
formulas to first-order relational logic (FORL) and invoking the highly-optimized SAT-
based Kodkod model finder [21] to solve these. Compared with Quickcheck, which
is restricted to executable formulas, Nitpick shines by its generality—the hallmark of
SAT-based model finding.

The translation to FORL is designed to exploit Kodkod’s strengths. Datatypes are en-
coded following an Alloy idiom [10,14] extended to mutually recursive and coinductive
datatypes. FORL’s relational operators provide a natural encoding of partial application
and λ-abstraction, and the transitive closure plays a crucial role in the encoding of in-
ductive datatypes. Our main contributions have been to isolate three ways to translate
(co)inductive predicates to FORL, based on wellfoundedness, polarity, and linearity,
and to devise optimizations—notably function specialization, boxing, and monotonic-
ity inference—that dramatically increase scalability in practical applications.

Nitpick is included with the latest version of Isabelle and is invoked automatically
whenever users enter new formulas to prove, helping to catch errors early, thereby sav-
ing time and effort. But Nitpick’s real beauty is that it lets users experiment with formal
specifications in the playful way championed by Alloy but with Isabelle’s higher-order
syntax, definition principles, and theories at their fingertips.
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Abstract. Popular finite difference numerical schemes for the resolu-
tion of the one-dimensional acoustic wave equation are well-known to be
convergent. We present a comprehensive formalization of the simplest
scheme and formally prove its convergence in Coq. The main difficul-
ties lie in the proper definition of asymptotic behaviors and the implicit
way they are handled in the mathematical pen-and-paper proofs. To
our knowledge, this is the first time this kind of mathematical proof is
machine-checked.

Keywords: partial differential equation, acoustic wave equation, numer-
ical scheme, Coq formal proofs.

1 Introduction

Ordinary differential equations (ODE) and partial differential equations (PDE)
are ubiquitous in engineering and scientific computing. They show up in weather
forecast, nuclear simulation, etc., and more generally in numerical simulation.
Solutions to nontrivial problems are nonanalytic, hence approximated by numer-
ical schemes over discrete grids.

Numerical analysis is mainly interested in proving the convergence of these
schemes, that is, the approximation quality increases as the size of the dis-
cretization steps decreases. The approximation quality is characterized by the
error defined as the difference between the exact continuous solution and the
approximated discrete solution; this error must tend toward zero in order for
the numerical scheme to be useful.

There is a wide literature on this topic, e.g. see [1,2], but no article goes into
all the details. These “details” may have been skipped for readability, but they
could also be mandatory details that were omitted due to an oversight. The

� This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-
04) and F

∮
ST (ANR-08-BLAN-0246-01).

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 147–162, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



148 S. Boldo et al.

purpose of a mechanically-checked proof is to uncover these issues and check
whether they could jeopardize the correctness of the schemes.

This work is a first step toward the development of formal tools for dealing
with the convergence of numerical schemes. It would have been sensible to start
with classical schemes for ODE, such as the Euler or Runge-Kutta methods. But
we decided to directly validate the feasibility of our approach on the more com-
plicated PDE. Moreover, this opens the door to a wide variety of applications,
as they appear in many realistic problems from industry.

We chose the domain of wave propagation because it represents one of the most
common physical phenomena one experiences in everyday life: directly through
sight and hearing, but also via telecommunications, radar, medical imaging, etc.
Industrial applications range from aeroacoustics to music acoustics (acoustic
waves), from oil prospection to nondestructive testing (elastic waves), from optics
to stealth technology (electromagnetic waves), and even include stabilization of
ships and offshore platforms (surface gravity waves). We restrained ourselves to
the simplest example of wave propagation models, the acoustic wave equation
in a one-dimensional space domain, for it is a prototype model for all other
kinds of wave. In this case, the equation describes the propagation of pressure
variations (or sound waves) in a fluid medium; it also models the behavior of a
vibrating string. For simplicity, we only consider homogeneous media, meaning
that the propagation velocity is constant. Among the wide variety of numerical
schemes for approximately solving the 1D acoustic wave equation, we chose the
simplest one: the second order centered finite difference scheme, also known as
the “three-point scheme”. Again, for simplicity, we only consider regular grids
with constant discretization steps for time and space.

To our knowledge, this is the first time this kind of mathematical proof is
machine-checked.1 Few works have been done on formalization and proofs on
mathematical analysis inside proof assistants, and fewer on numerical analysis.
Even real analysis developments are relatively new. The first developments on
real numbers and real analysis are from the late 90’s [3,4,5,6,7]. Some intuitionist
formalizations have been realized by a team at Nijmegen [8,9]. Analysis results
are available in provers such as ACL2, Coq, HOL Light, Isabelle, Mizar, or PVS.
Regarding numerical analysis, we can cite [10] which deals, more precisely, with
the formal proof of an automatic differentiation algorithm. About Rn and the
dot product, an extensive work has been done by Harrison [11]. About the big O
operator for asymptotic comparison, a decision procedure has been developed
in [12]; unfortunately, we needed a more powerful big O and those results were
not applicable.

Section 2 presents the PDE, the numerical scheme, and their mathematical
properties. Section 3 describes the basic blocks of the formalization: dot product,
big O, and Taylor expansions. Section 4 is devoted to the formal proof of the
convergence of the numerical scheme.

1 The Coq sources of the formal development are available from
http://fost.saclay.inria.fr/wave_method_error.php

http://fost.saclay.inria.fr/wave_method_error.php
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2 Wave Equation

A partial differential equation modeling an evolutionary problem is an equation
involving partial derivatives of an unknown function of several independent space
and time variables. The uniqueness of the solution is obtained by imposing ad-
ditional conditions, typically the value of the function and the value of some of
its derivatives at the initial time. The right-hand sides of such initial conditions
are also called Cauchy data, making the whole problem a Cauchy problem, or an
initial-value problem.

The mathematical theory is simpler when unbounded domains are consid-
ered [1]. When the space domain is bounded, the computation is simpler, but
we have to take reflections at domain boundaries into account; this models a
finite vibrating string fixed at both ends. Thanks to the nice property of finite
velocity of propagation of the wave equation, we can build two Cauchy problems,
one bounded and the other one unbounded, that coincide on the domain of the
bounded one. Thus, we can benefit from the best of both worlds: the bounded
problem makes computation simpler and the unbounded one avoids handling
reflections. This section, as well as the steps taken at section 4 to conduct the
proof of the convergence of the numerical scheme, is inspired by [13].

2.1 The Continuous Equation

The chosen PDE models the propagation of waves along an ideal vibrating elastic
string, see [14,15]. It is obtained from Newton’s laws of motion [16].

The gravity is neglected, hence the string is supposed rectilinear when at
rest. Let u(x, t) be the transverse displacement of the point of the string of
abscissa x at time t from its equilibrium position. It is a (signed) scalar. Let c
be the constant propagation velocity. It is a positive number that depends on
the section and density of the string. Let s(x, t) be the external action on the
point of abscissa x at time t; it is a source term, such that t = 0 ⇒ s(x, t) = 0.
Finally, let u0(x) and u1(x) be the initial position and velocity of the point of
abscissa x. We consider the Cauchy problem (i.e., with conditions at t = 0)

∀t ≥ 0, ∀x ∈ R, (L(c)u)(x, t) def=
∂2u

∂t2
(x, t) + A(c)u(x, t) = s(x, t), (1)

∀x ∈ R, (L1 u)(x, 0) def=
∂u

∂t
(x, 0) = u1(x), (2)

∀x ∈ R, (L0 u)(x, 0) def= u(x, 0) = u0(x) (3)

where the differential operator A(c) is defined by

A(c) def= − c2 ∂2

∂x2 . (4)

We admit that under reasonable conditions on the Cauchy data u0 and u1 and
on the source term s, there exists a unique solution to the Cauchy problem (1)–
(3) for each c > 0. This is a mathematical known fact (established for example
from d’Alembert’s formula (6)), that is left unproved here.



150 S. Boldo et al.

For such a solution u, it is natural to associate at each time t the positive
definite quadratic quantity

E(c)(u)(t) def=
1
2

∥∥∥∥x �→ ∂u

∂t
(x, t)

∥∥∥∥
2

+
1
2
‖x �→ u(x, t)‖2A(c) (5)

where 〈v, w〉 def=
∫

R
v(x)w(x)dx, ‖v‖2 def= 〈v, v〉 and ‖v‖2A(c)

def= 〈A(c) v, v〉. The
first term is interpreted as the kinetic energy, and the second term as the poten-
tial energy, making E the mechanical energy of the vibrating string.

This simple partial derivative equation happens to possess an analytical solu-
tion given by the so-called d’Alembert’s formula [17], obtained from the method
of characteristics [18], ∀t ≥ 0, ∀x ∈ R,

u(x, t) =
1
2
(u0(x− ct) + u0(x + ct)) +

1
2c

∫ x+ct

x−ct

u1(y)dy+

1
2c

∫ t

0

(∫ x+c(t−σ)

x−c(t−σ)
s(y, σ)dy

)
dσ. (6)

One can deduce from formula (6) the useful property of finite velocity of prop-
agation. Assuming that we are only interested in the resolution of the Cauchy
problem on a compact time interval of the form [0, tmax] with tmax > 0, we
suppose that u0, u1 and s have a compact support. Then the property states
that there exists xmin and xmax with xmin < xmax such that the support of the
solution is a subset of Ω

def= [xmin, xmax]×[0, tmax]. Furthermore, since the bound-
aries do not have time to be reached by the signal, the Cauchy problem set on Ω
by adding homogeneous Dirichlet boundary conditions (i.e. for all t ∈ [0, tmax],
u(xmin, t) = u(xmax, t) = 0), admits the same solution. Hence, we will numeri-
cally solve the Cauchy problem on Ω, but with the assumption that the spatial
boundaries are not reached.

Note that the implementation of the compact spatial domain [xmin, xmax] will
be abstracted by the notion of finite support (that is to say, being zero outside
of an interval, see Section 4.2) and will not appear explicitly otherwise.

Note also that most properties of the continuous problem proved unnecessary
in the formalization of the numerical scheme and the proof of its convergence.
For instance, integration operators and d’Alembert’s formula can be avoided as
long as we suppose the existence and regularity of a solution to the PDE and
that this solution has a finite support.

2.2 The Discrete Equations

Let (Δx, Δt) be a point in the interior of Ω; define the discretization func-
tions jΔx(x) def=

⌊
x−xmin

Δx

⌋
and kΔt(t)

def=
⌊

t
Δt

⌋
; then set jmax

def= jΔx(xmax) and

kmax
def= kΔt(tmax). Now, the compact domain Ω is approximated by the regular

discrete grid defined by

∀k ∈ [0..kmax], ∀j ∈ [0..jmax], xk
j

def= (xj , t
k) def= (xmin + jΔx, kΔt). (7)
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Fig. 1. Three-point scheme: uk+1
j (×) depends on uk

j−1, uk
j , uk

j+1 and uk−1
j (•)

Let vh be a discrete function over [0..jmax]× [0..kmax]. For all k in [0..kmax], we
write vk

h = (vk
j )0≤j≤jmax , then vh = ((vk

h)0≤k≤kmax). A function v defined over Ω
is approximated at the points of the grid by the discrete function vh defined
on [0..jmax] × [0..kmax] by vk

j
def= v(xk

j ), except for u where we use the notation

ūk
j

def= u(xk
j ) to prevent notation clashes.

Let u0h and u1h be two discrete functions over [0..jmax]; let sh be a discrete
function over [0..jmax]× [0..kmax]. Then, the discrete function uh over [0..jmax]×
[0..kmax] is said to be the solution of the three-point2 finite difference scheme,
as illustrated in Figure 1, when the following set of equations holds:

∀k ∈ [2..kmax], ∀j ∈ [0..jmax],

(Lh(c)uh)k
j

def=
uk

j − 2uk−1
j + uk−2

j

Δt2
+ (Ah(c)uk−1

h )j = sk−1
j , (8)

∀j ∈ [0..jmax], (L1h(c)uh)j
def=

u1
j − u0

j

Δt
+

Δt

2
(Ah(c)u0

h)j = u1,j, (9)

∀j ∈ [0..jmax], (L0h uh)j
def= u0

j = u0,j, (10)

∀k ∈ [0..kmax[, uk
−1 = uk

jmax+1 = 0 (11)

where the matrix Ah(c), discrete analog of A(c), is defined, for any vector vh =
((vj)0≤j≤kmax), by

∀j ∈ [0..jmax], (Ah(c) vh)j
def= − c2 vj+1 − 2vj + vj−1

Δx2 . (12)

Note that defining uh for artificial indexes j = −1 and j = jmax + 1 is a trick to
make the three-point spatial scheme valid for j = 0 and j = jmax.

A discrete analog of the energy is also defined by3

Eh(c)(uh)k+ 1
2

def=
1
2

∥∥∥∥∥
uk+1

h − uk
h

Δt

∥∥∥∥∥
2

Δx

+
1
2
〈
uk

h, uk+1
h

〉
Ah(c) (13)

2 In the sense “three spatial points”, for the definition of matrix Ah(c).
3 By convention, the energy is defined between steps k and k + 1, thus the notation

k + 1
2
.
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where 〈vh, wh〉Δx
def=

∑jmax
j=0 vjwjΔx, ‖vh‖2Δx

def= 〈vh, vh〉Δx,

and 〈vh, wh〉Ah(c)
def= 〈Ah(c) vh, wh〉Δx.

Note that the three-point scheme is parametrized by the discrete Cauchy
data u0h and u1h, and by the discrete source term sh. Of course, when u0h, u1h,
and sh are respectively approximations of u0, u1, f , then the discrete solution uh

is an approximation of the continuous solution u.

2.3 Convergence

Let ζ and ξ be in ]0, 1[ with ζ ≤ 1 − ξ. The CFL(ζ, ξ) condition (for Courant-
Friedrichs-Lewy, see [19]) states that the discretization steps satisfy the relation

ζ ≤ cΔt

Δx
≤ 1− ξ. (14)

Note that the lower bound ζ may seem surprising from a numerical analysis
point of view; the formalization has however shown that it was mandatory (see
Section 4.3).

The convergence error eh measures the distance between the continuous and
discrete solutions. It is defined by

∀k ∈ [0..kmax], ∀j ∈ [0..jmax], ek
j

def= ūk
j − uk

j . (15)

The truncation error εh measures at which precision the continuous solution
satisfies the numerical scheme. It is defined by

∀k ∈ [2..kmax], ∀j ∈ [0..jmax], εk−1
j

def= (Lh(c) ūh)k
j − sk−1

j , (16)

∀j ∈ [0..jmax], ε0
j

def= (L1h(c) ūh)j − u1,j , (17)

∀j ∈ [0..jmax], ε−1
j

def= (L0hūh)j − u0,j. (18)

The numerical scheme is said to be convergent of order 2 if the convergence error
tends toward zero at least as fast as Δx2 + Δt2 when both discretization steps
tend toward 0. More precisely, the numerical scheme is said to be convergent of
order (p,q) uniformly on the interval [0, tmax] if the convergence error satisfies
(see Section 3.2 for the definition of the big O notation that will be uniform with
respect to space and time)

∥∥∥ekΔt(t)
h

∥∥∥
Δx

= O[0,tmax](Δxp + Δtq). (19)

The numerical scheme is said to be consistent with the continuous problem at
order 2 if the truncation error tends toward zero at least as fast as Δx2 +
Δt2 when the discretization steps tend toward 0. More precisely, the numerical
scheme is said to be consistent with the continuous problem at order (p, q)
uniformly on interval [0, tmax] if the truncation error satisfies∥∥∥εkΔt(t)

h

∥∥∥
Δx

= O[0,tmax](Δxp + Δtq). (20)



Formal Proof of a Wave Equation Resolution Scheme 153

The numerical scheme is said to be stable if the discrete solution of the associated
homogeneous problem (i.e. without any source term, s(x, t) = 0) is bounded from
above independently of the discretization steps. More precisely, the numerical
scheme is said to be stable uniformly on interval [0, tmax] if the discrete solution
of the problem without any source term satisfies

∃α, C1, C2 > 0, ∀t ∈ [0, tmax], ∀Δx, Δt > 0,
√

Δx2 + Δt2 < α ⇒∥∥∥ukΔt(t)
h

∥∥∥
Δx
≤ (C1 + C2t)(‖u0h‖Δx + ‖u0h‖Ah(c) + ‖u1h‖Δx). (21)

The result to be formally proved at section 4 states that if the continuous so-
lution u is regular enough on Ω and if the discretization steps satisfy the CFL
(ζ, ξ) condition, then the three-point scheme is convergent of order (2, 2) uni-
formly on interval [0, tmax].

We do not admit (nor prove) the Lax equivalence theorem which stipulates
that for a wide variety of problems and numerical schemes, consistency implies
the equivalence between stability and convergence. Instead, we establish that
consistency and stability implies convergence in the particular case of the one-
dimensional acoustic wave equation.

3 The Coq Formalization: Basic Blocks

We decided to use the Coq proof assistant [20], as Coq was already used to prove
the floating-point error [21] of this case study. All our developments use the
Coq real standard (classical) library. Numerical equations, numerical schemes,
numerical approximations deal with classical statements, and are not in the scope
of intuitionist theory.

3.1 Dot Product

The function space Z → R can be equipped with pointwise addition and multi-
plication by a scalar. The result is a vector space. In the following, we are only
interested in functions with finite support, that is the subset

F
def= {f : Z → R | ∃a, b ∈ Z, ∀i ∈ Z, f(i) �= 0 ⇒ a ≤ i ≤ b},

which is also a vector space. Then it is possible to define a dot product on F ,
noted 〈., .〉, as follows:

〈f, g〉 def=
∑
i∈Z

f(i)g(i) (22)

and the corresponding norm ‖f‖ def=
√〈f, f〉. The corresponding Coq formaliza-

tion is not immediate, though. One could characterize F with a dependent type,
but that would make operation 〈., .〉 difficult to use (each time it is applied,
proofs of finite support properties have to be passed as well). Instead, we define



154 S. Boldo et al.

〈., .〉 on the full function space Z → R using Hilbert’s ε-operator (provided in
Coq standard library in module Epsilon), as follows:

〈f, g〉 def= ε

⎛
⎝λx.∃a b, (∀i, (f(i) �= 0 ∨ g(i) �= 0)⇒ a ≤ i ≤ b)

∧ x =
∑b

i=a f(i)g(i)

⎞
⎠ (23)

Said otherwise, we give 〈f, g〉 a definition as a finite sum whenever f and g both
have finite support and we let 〈f, g〉 undefined otherwise.

To ease the manipulation of functions with finite support, we introduce the
following predicate characterizing such functions

FS (f) def= ∃a b, ∀i, f(i) �= 0 ⇒ a ≤ i ≤ b

and we prove several lemmas about it, such as

∀fg,FS(f)⇒ FS (g)⇒ FS(f + g)
∀fc,FS(f) ⇒ FS (c · f)
∀fk,FS(f) ⇒ FS(i �→ f(i + k))

We also provide a Coq tactic to automatically discharge most goals about FS (.).
Finally, we can establish lemmas about the dot product, provided functions have
finite support. Here are some of these lemmas:

∀f g c,FS(f)⇒ FS(g) ⇒ 〈c · f, g〉 = c · 〈f, g〉
∀f1 f2 g,FS (f1)⇒ FS (f2)⇒ FS(g) ⇒ 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉
∀f g,FS(f) ⇒ FS (g)⇒ |〈f, g〉| ≤ ‖f‖ · ‖g‖
∀f g,FS(f) ⇒ FS (g)⇒ ‖f + g‖ ≤ ‖f‖+ ‖g‖

These lemmas are proved by reduction to finite sums, thanks to Formula (23).
Note that the value of 〈f, g〉Δx defined in Section 2.2 is equal to Δx · 〈f, g〉.

3.2 Big O Notation

For two functions f and g over Rn, one usually writes f(x) = O‖x‖→0(g(x)) for

∃α, C > 0, ∀x ∈ Rn, ‖x‖ ≤ α ⇒ |f(x)| ≤ C · |g(x)|.

Unfortunately, this definition is not sufficient for our formalism. Indeed, while
f(x,Δx) will be defined over R2 × R2, g(Δx) will be defined over R2 only. So
it begs the question: what to do about x?

Our first approach was to use

∀x, f(x,Δx) = O‖Δx‖→0(g(Δx))

that is to say
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∀x, ∃α, C > 0, ∀Δx ∈ R2, ‖Δx‖ ≤ α⇒ |f(x,Δx)| ≤ C · |g(Δx)|
which means that α and C are functions of x. So we would need to take the
minimum of all the possible values of α, and the maximum for C. Potentially,
they may be 0 and +∞ respectively, making them useless.

In order to solve this issue, we had to define a notion of big O uniform with
respect to the additional variable x:

∃α, C > 0, ∀x,Δx, ‖Δx‖ ≤ α ⇒ |f(x,Δx)| ≤ C · |g(Δx)|.
Variables x and Δx are restricted to subsets S and P of R2. For instance, the
big O that appears in Equation (19) uses

S = R× [0, tmax],

P =
{
Δx = (Δx, Δt) | 0 < Δx ∧ 0 < Δt ∧ ζ ≤ c ·Δt

Δx
≤ 1− ξ

}
.

As often, the formal specification has allowed us to detect some flaws in usual
mathematical pen-and-paper proofs, such as an erroneous switching of the uni-
versal and existential quantifiers hidden in the big O definition.

3.3 Taylor Expansion

The formalization assumes that “sufficiently regular” functions can be uniformly
approximated by multivariate Taylor series. More precisely, the development
starts by assuming that there exists two operators partial derive firstvar
and secondvar. Given a real-valued function f defined on the 2D plane and a
point of it, they respectively return the functions ∂f

∂x and ∂f
∂t for this point, if

they exist.
Again, these operators are similar to the use of Hilbert’s ε operator. For

documentation purpose, one could add two axioms stating that the returned
function computes the derivatives for derivable functions; they are not needed
for the later development though. Indeed, none of our proofs depend on the
actual properties of derivatives; they only care about the fact that differential
operators appear in both the regularity definition below and the wave equation.

The two primitive operators ∂
∂x and ∂

∂t are encompassed in a generalized
differential operator ∂m+n

∂xm∂tn . This allows us to define the 2D Taylor expansion
of order n of a function f :

DLn(f,x) def= (Δx, Δt) �→
n∑

p=0

1
p!

(
p∑

m=0

(
p

m

)
· ∂pf

∂xm∂tp−m
(x) ·Δxm ·Δtp−m

)
.

A function f is then said to be sufficiently regular of order n if

∀m ≤ n, DLm−1(f,x)(Δx)− f(x + Δx) = O (‖Δx‖m) . (24)
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4 The Coq Formalization: Convergence

4.1 Wave Equation

As explained in Section 2, a solution of the wave equation with given u0, u1 and s
verifies Equations (1)–(3). Its discrete approximation verifies Equations (8)–(10).
Both are directly translated in Coq using the definitions of Section 3. Concerning
the discretization, we choose that the space index is in Z (to be coherent with
the dot product definition of Section 3.1) while the time index is in N.

Our goal is to prove the uniform convergence of the scheme with order (2,2)
on the interval [0, tmax]:∥∥∥ekΔt(t)

h

∥∥∥
Δx

= O t ∈ [0, tmax]

(Δx, Δt) → 0
0 < Δx ∧ 0 < Δt∧
ζ ≤ c Δt

Δx ≤ 1 − ξ

(Δx2 + Δt2).

4.2 Finite Support

The proofs concerning the convergence of the scheme rely on the dot product.
As explained in Section 3.1, the dot product requires the functions to have a
finite support in order to apply any lemma. We therefore proved the finiteness
of the support of many functions. We assume that the inputs u0, u1, and s of the
wave equation have a finite support. More precisely, we assume that there exists
χ1 and χ2 such that u0(x) = u1(x) = 0 for all x out of [χ1, χ2] and s(x, t) = 0
for all x out of [χ1− c · t, χ2 + c · t] where c is the velocity of propagation of waves
in Equation (1).

Figure 2 describes the nullity, that is to say the finite support, of the various
functions. We needed to prove the finiteness of their support:

– u0 and u1 by hypothesis and therefore u0,j and u1,j .
– s (for any value t) by hypothesis and therefore sk

j is zero outside of a cone
of slope c−1.

slope: c−1

χ1 χ2

uh may be nonzero.

s and thus u may be nonzero.

u0 and u1 may be nonzero.

slope: Δt
Δx ·

⌈
c · Δt

Δx

⌉−1
(equals Δt

Δx under CFL

x

t
tmax

conditions)

Fig. 2. Finite supports. The support of the Cauchy data u0 and u1 is included in the
support of the continuous source term s, and of the continuous solution u. Which is in
turn also included in the support of the discrete solution uh, provided that the CFL
condition holds. For a finite tmax, all these supports are finite.
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– the scheme itself has a finite support: due to the definition of uk
j and the

nullity of u0,j and u1,j and sk
j , we can prove that uk

j is zero outside of a cone

of slope Δt
Δx ·

⌈
c · Δt

Δx

⌉−1
. Under CFL(ζ, ξ) conditions, this slope will be Δt

Δx .
– the truncation and convergence errors also have finite support with the pre-

vious slope.

We need here an axiom about the nullity of the continuous solution. We assume
that the continuous solution u(x, t) is zero for x out of [χ1 − c · t, χ2 + c · t]
(same as s). This is mathematically correct, since it derives from d’Alembert’s
formula (6). But its proof is out of the scope of the current formalization and
we therefore preferred to simply add the nullity axiom.

4.3 Consistency

We first prove that the truncation error is of order Δx2 + Δt2. The idea is
to show that, for Δx small enough, the values of the scheme Lh are near the
corresponding values of L. This is done using the properties of Taylor expansions.
This involves long and complex expressions but the proof is straightforward.

We first prove that the truncation error in one point (j, k) is a O(Δx2 +Δt2).
This is proved for k = 0 and k = 1 by taking advantage of the initializations
and Taylor expansions. For bigger k, the truncation error reduces to the sum of
two Taylor expansions of degree 3 in time (this means m = 4 in Formula (24))
and two Taylor expansions of degree 3 in space that partially cancel (divided by
something proportional to ‖Δx‖2). Here, we take advantage of the generality
of big O as we consider the sum of a Taylor expansion on Δx and of a Taylor
expansion on −Δx. If we had required 0 < Δx (as a space grid step), we could
not have done this proof.

The most interesting part is to go from pointwise consistency to uniform
consistency. We want to prove that the norm of the truncation error (in the sense
of the infinite dot product 〈·, ·〉Δx) is also O(Δx2 + Δt2). We therefore need to
bound the number of nonzero values of the truncation error. As explained in
Section 4.2, the truncation error values at time k ·Δt may be nonzero between
χ1

′
k =

⌊
χ1
Δx

⌋ − ⌈c · Δt
Δx

⌉
k and χ2

′
k =

⌈
χ2
Δx

⌉
+
⌈
c · Δt

Δx

⌉
k. This gives a number of

terms N roughly bounded by (all details are handled in the formal proof):

N ≤ χ2
′
k − χ1

′
k

Δx
≤ χ2 − χ1

Δx2 + 2 · kmax ·
⌈
c · Δt

Δx

⌉
Δx

≤ χ2 − χ1

Δx2 + 2 · tmax

Δt
· c · Δt

Δx + 1
Δx

As the norm is a Δx-norm, this reduces to bounding with a constant value the
value N ·Δx2 which is smaller than χ2−χ1 +2 · tmax · c+2 · tmax · Δx

Δt . To bound
this with a constant value, we require c Δt

Δx to have a constant lower bound ζ (it
already had an upper bound 1−ξ). Then N ·Δx2 ≤ χ2−χ1+2·tmax·c+2·c·tmax· 1ζ
which is constant.
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xx

Δt Δt

t t

t0 t0

slope: Δt
Δx slope: Δt

Δx

Fig. 3. For a given time t0, the number of nonzero values increases when the slope Δt
Δx

goes to zero. From left to right, Δt is divided by 2 whereas Δx remains the same. We
can see that the number of nonzero terms is almost doubled (from 9 to 17).

Mathematically, this requirement comes as a surprise. The following scenario
explains it. If c Δt

Δx goes to zero, then Δt goes to zero much faster than Δx. It
corresponds to Figure 3. The number of nonzero terms (for uh and thus for the
truncation error) goes to infinity as Δt

Δx goes to zero.

4.4 Stability

To prove stability, we use the discrete energy defined in Equation (13). From the
properties of the scheme, we calculate the evolution of the energy. At each step,
it increases by a known value. In particular, if s is zero, the discrete energy (as
the continuous energy) is constant:

∀k > 0, Eh(c)(uh)k+ 1
2 − Eh(c)(uh)k− 1

2 =
1
2
〈
uk+1

h − uk−1
h , sk

h

〉
Δx

.

From this, we give an underestimation of the energy:

∀k,
1
2

(
1−

(
c
Δt

Δx

)2
)∥∥∥∥∥

uk+1
h − uk

h

Δt

∥∥∥∥∥
Δx

≤ Eh(c)(uh)k+ 1
2 .

Therefore we have the nonnegativity of the energy under CFL(ζ, ξ) conditions.
For convergence, the key result is the overestimation of the energy:

√
Eh(c)(uh)k+ 1

2 ≤
√

Eh(c)(uh)
1
2 +

√
2

2
√

2ξ − ξ2
·Δt ·

k∑
j=1

‖i �→ sh(i, j)‖Δx

for all time t, with k =
⌊

t
Δt

⌋− 1.
This completes the stability proof. In the inequality above, the energy is

bounded for uh, but the bound is actually valid for all the solutions of the
discrete scheme, for any initial conditions and source term.

Note that the formal proof of stability closely follows the mathematical pen-
and-paper proof and no additional hypotheses were found to be necessary.

4.5 Convergence

We prove that the convergence error is the solution of a scheme and therefore
the results of Section 4.4 apply to it. More precisely, for all Δx, the convergence
error is solution of a discrete scheme with inputs
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u0,j = 0, u1,j =
e1

j

Δt
, and sk

j = εk+1
j ,

where the errors refer to the errors of the initial scheme of the wave equation
with grid steps Δx. (Actual Coq notations depend on many more variables.)

We have proved many lemmas about the initializations of our scheme and of
the convergence error. The idea is to prove that the initializations of the scheme
are precise enough to guarantee that the initial convergence errors (at step 0
and 1) are accurate enough.

We also bounded the energy of the convergence error. Using results of Sec-
tion 4.4, the proof reduces to bounding the sum of the source terms, here
the truncation errors. Using results of Section 4.3, we prove this sum to be
O(Δx2 + Δt2). A few more steps conclude the proof.

Once more, the formal proof follows the pen-and-paper proof and progresses
smoothly under the required hypothesis, including all the conditions on Δt

Δx of
Equation (14).

5 Conclusion and Perspectives

One of the goals of this work is to favor the use of formal methods in numerical
analysis. It may seem to be just wishful thinking, but it is actually seen as
needed by some applied mathematicians. An early case led to the certification
of the O∂yssée tool [10]. This tool performs automatic differentiation, which
is one of the basic blocks for gradient-based algorithms. Our work tackles the
converse problem: instead of considering derivation-based algorithms, we have
formalized and proved part of the mathematical background behind integration-
based algorithms.

This work shows there may be a synergy between applied mathematicians and
logicians. Both domains are required here: applied mathematics for an initial
proof that could be enriched upon request and formal methods for machine-
checking it. This may be the reason why such proofs are scarce as this kind of
collaboration is uncommon.

Proof assistants seem to mainly deal with algebra, but we have demonstrated
that formalizing numerical analysis is possible too. We can confirm that pen-
and-paper proofs are sometimes sketchy: they may be fuzzy about the needed
hypotheses, especially when switching quantifiers. We have also learned that
filling the gaps may cause us to go back to the drawing board and to change the
basic blocks of our formalization to make them more generic (a big O that needs
to be uniform and also generic with respect to a property P ).

The formal bound on the error method, while of mathematical interest, is not
sufficient to guarantee the correction of numerical applications implementing
the three-point scheme. Indeed, such applications usually perform approximated
computations, e.g., floating-point computations, for efficiency and simplicity rea-
sons. As a consequence, the proof of the method error has to be combined with
a proof on the rounding error, in order to get a full-fledged correction proof.
Fortunately, the proof on the rounding error has already been achieved [21]. We
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are therefore close to having a formal proof of both the numerical scheme and
its floating-point implementation.

An advantage of Coq with respect to most other proof assistants is the abil-
ity to extract programs from proofs [22]. For this work, it does not make much
sense to extract the algorithm from the proofs: not only is the algorithm already
well-known, but its floating-point implementation was also certified [21]. So, an
extraction of the algorithm would not bring much. However, extraction gives
access to the constant C hidden behind the big O notation. Indeed, the proof of
the floating-point algorithm relies on the discrete solution being good enough,
so that the computed result does not diverge. Precisely, the convergence error
has to be smaller than 1, and an extracted computation would be able to en-
sure this property. Furthermore, having access to this constant can be useful to
the applied mathematicians for the a posteriori estimations needed for adaptive
mesh refinements. Extraction also gives access to the α constant. That way, we
could check that the constant Δx chosen in the C program described in [21]
verifies this requirement. Note that performing an extraction requires to mod-
ify the definition of the big O so that it lives in Set instead of Prop. But this
formalization change happens to be straightforward and Coq then succeeds in
extracting mathematical formulas for constants α and C. Only basic operators
(e.g. +,

√·, min) and constants (e.g. tmax, ξ, χ1, Taylor constants) appear in
them, so they should be usable in practice.

The formal development is about 4500-line long. Its dependency graph is
detailed in Figure 4. About half of the development is a reusable library described
in Section 3 and the other half is the proof of convergence of the numerical scheme
described in Section 4. This may seem a long proof for a single scheme for a single
PDE. To put it into perspective, usual pen-and-paper proofs are 10-page long
and an in-depth proof can be 60-page long. (We wrote one to ensure that we
were not getting sidetracked.) So, at least from a length point of view, the formal
proof is comparable to a detailed pen-and-paper proof.

In the end, the whole development contains only two axioms: the ε operator
for the infinite dot product (see Section 3.1) and the finite support of the continu-
ous solution of the wave equation (see Section 4.2). So, except for this last axiom
which is related to the chosen PDE, the full numerical analysis proof of conver-
gence is machine-checked and all required hypotheses are made clear. There is
no loss of confidence due to this axiom, since the kind of proof and the results
it is based upon are completely different from the ones presented here. Indeed,
this axiom is about continuous solutions and hence much less error-prone.

For this exploratory work, we only considered the simple three-point scheme
for the one-dimensional wave equation. Further works involve generalizing our
approach to other schemes and other PDEs. We are confident that it would
scale to higher-dimension and higher-order equations solved by discrete numer-
ical schemes. However, the proofs of Section 4 are entangled with particulars of
the presented problem, and would therefore have to be redone for other prob-
lems. So a more fruitful approach would be to prove once and for all the Lax
equivalence theorem that states that consistency implies the equivalence between
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convergence

stability consistency

one d wave equation

R n

Differential

BigO

R two

Reals compl

Fig. 4. Dependency graph of the Coq development. On the left are the files from the
convergence proof. The other files correspond to the reusable library.

convergence and stability. This would considerably reduce the amount of work
needed for tackling other schemes and equations.

This work also showed us that summations and finite support functions play
a much more important role in the development than we first expected. We are
therefore considering moving to the SSReflect interface and libraries for Coq [23],
so as to simplify the manipulations of these objects in our forthcoming works.
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Abstract. We present a reflexive tactic for deciding the equational the-
ory of Kleene algebras in the Coq proof assistant. This tactic relies
on a careful implementation of efficient finite automata algorithms, so
that it solves casual equations almost instantaneously. The correspond-
ing decision procedure was proved correct and complete; correctness is
established w.r.t. any model (including binary relations), by formalising
Kozen’s initiality theorem.

Motivations

Proof assistants like Coq or Isabelle/HOL make it possible to leave technical
or administrative details to the computer, by defining high-level tactics. For
example, one can define tactics to solve decidable problems automatically (e.g.,
omega for Presburger arithmetic and ring for ring equalities). Here we present
a tactic for solving equations and inequations in Kleene algebras. This tactic
belongs to a larger project whose aim is to provide tools for working with binary
relations in Coq. Indeed, Kleene algebras correspond to a non-trivial decidable
fragment of binary relations. In the long term, we plan to use these tools to
formalise results in rewriting theory, process algebras, and concurrency theory
results. Binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract
rewriting (e.g., Newman’s Lemma, equivalence between weak confluence and the
Church-Rosser property, termination theorems based on commutation proper-
ties) are best presented using informal “diagram chasing arguments”. This is
illustrated by Fig. 1, where the same state of a typical proof is represented three
times. Informal diagrams are drawn on the left. The goal listed in the middle
corresponds to a naive formalisation where the points related by relations are
mentioned explicitly. This is not satisfactory: a lot of variables have to be intro-
duced, the goal is displayed in a rather verbose way, the user has to draw the
intuitive diagrams on its own paper sheet. On the contrary, if we move to an
algebraic setting (the right-hand side goal), where binary relations are seen as
abstract objects that can be composed using various operators (e.g., union, inter-
section, relational composition, iteration), statements and Coq’s output become
rather compact, making the current goal easier to read and to reason about.
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Hsq ’: R� s q’
=========================
∃s: P, S� p s & R� s q’

R,S: X
H: R · S� ⊆ S� · R�

===============
R · S� · R� ⊆ S� · R�

Fig. 1. Diagrammatic, concrete, and abstract presentations of the same state in a proof

More importantly, moving to such an abstract setting allows us to implement
several decision procedures, that could hardly be stated with the concrete pre-
sentation. For example, once we rewrite H in the right-hand side goal of Fig. 1,
we obtain the inclusion S�·R�·R�⊆S�·R� which is a (straightforward) theorem of
Kleene algebras: the tactic we describe in this paper proves it automatically.

Outline. We give some mathematical background and we sketch the overall
structure of the tactic in Sect. 1. The underlying design choices are discussed in
Sect. 2. We describe the algorithm and its correctness proof in Sect. 3. Section 4
is devoted to related works and directions for future work.

1 Deciding Equalities in Kleene Algebras

Theoretical background. A Kleene algebra [20] is a tuple 〈X, ·, +, 1, 0, �〉, where
〈X, ·, +, 1, 0〉 is an idempotent non-commutative semiring, and � is a unary op-
eration on X , satisfying the following axiom and inference rules (where ≤ is the
preorder defined by x ≤ y � x + y = y):

1 + a · a� ≤ a� a · x ≤ x

a� · x ≤ x

x · a ≤ x

x · a� ≤ x

Terms of Kleene algebras are called regular expressions, irrespective of the con-
sidered model. Models of Kleene algebras include regular languages, where the
star operation is language iteration; and binary relations, where the product (·)
is relational composition, and star is reflexive and transitive closure. Thanks to
finite automata theory [19,29], equality of regular languages is decidable:

“two regular languages are equal if and only if the corresponding minimal
automata are isomorphic”.

However, the above theorem is not sufficient to decide equations in all Kleene
algebras: it only applies to the regular languages model. We actually need a more
recent theorem, by Kozen [20] (independently proved by Krob [24]):

“if two regular expressions α and β denote the same regular language,
then α = β can be proved in any Kleene algebra”.
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In other words, the algebra of regular languages is initial among Kleene algebras:
we can use finite automata algorithms to solve equations in an arbitrary Kleene
algebra A. The main idea of Kozen’s proof is to encode finite automata using
matrices over A, and to replay the algorithms at this algebraic level. Indeed, a
finite automaton with transitions labelled by the elements of A can be repre-
sented with three matrices 〈u, M, v〉 ∈ M1,n ×Mn,n ×Mn,1: n is the number
of states of the automaton; u and v are 0-1 vectors respectively coding for the
sets of initial and accepting states; and M is the transition matrix: Mi,j labels
transitions from state i to state j.

We remark that the product u ·M · v is a scalar (i.e., a regular expression),
which can be thought of as the set of one-letter words accepted by the automaton.
Therefore, to mimic the behaviour of a finite automaton, we just need to iterate
over the matrix M . This is possible thanks to another theorem, which actually
is the crux of the initiality theorem: “square matrices over a Kleene algebra form
a Kleene algebra”. We hence have a star operation on matrices, and we can
interpret an automaton algebraically, by considering the product u ·M� · v.

Overview of our strategy. We define a reflexive tactic. This methodology is quite
standard [2]: for example, this is how the ring tactic is implemented [14]. Con-
cretely, this means that we implement the decision procedure as a Coq program,
and that we prove its correctness and completeness within the proof assistant:
Definition decide_kleene: regex → regex → bool := ...
Theorem Kozen: ∀ a b, decide_kleene a b = true ↔ a == b.

The above statement corresponds to correctness and completeness with respect
to the syntactic “free” Kleene algebra’: regex is the inductive type for regular
expressions over a given set of variables, and == is the inductive equality gener-
ated by the axioms of Kleene algebras and the rules of equational reasoning (see
Fig. 4). Using reification mechanisms, this is sufficient for our needs: the result
can be lifted to other models using simple tactics (see Sect. 2.3).

The equational theory of Kleene algebras is PSPACE-complete [26]; this means
that the decide_kleene function must be written with care, using efficient out-
of-the-shelf algorithms. Notably, the matricial representation of automata is not
efficient, so that formalising Kozen’s “mathematical” proof [20] in a naive way
would be computationally impracticable. Instead, we need to chose appropri-
ate data structures for automata and algorithms, and to rely on the matricial
representation only in proofs, using the adequate translation functions.

2 Underlying Design Choices

Before giving more details about our implementation of the decision procedure
(Sect. 3), we explain the main choices we made about the design of our library:
definition of the algebraic hierarchy, representation of matrices and handling of
heterogeneous structures, reification mechanism, and numbers representation.
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2.1 Algebraic Hierarchy

The mathematical definition of a Kleene algebra is incremental: a Kleene algebra
is a non-commutative semiring, which is itself composed of a monoid and a semi-
lattice. Moreover, proofs naturally follow this hierarchy: when proving results
about semirings, one usually relies on results about both monoids and semi-
lattices. In order to structure our development in a similar way, we defined the
algebraic hierarchy using Coq’s recent typeclasses mechanism [30]: we defined
several classes, corresponding to the different algebraic structures, so as to obtain
the following “sub-class” relations:

SemiLattice <:
Monoid <:

SemiRing <: KleeneAlgebra <: ...

Records vs. modules. Typeclasses are based on records ; another possibility was
to use modules. We tried the latter one; it was however quite difficult to organise
modules, signatures, and functors so as to obtain the desired level of sharing
between the various proofs. In particular, when we consider more complex al-
gebraic structures, we can no longer work with syntactical sub-typing between
structures (we only have functors from one structure to another) and we lose the
ability to directly use theorems, definitions, and tactics from lower structures in
higher structures. Except for some limitations due to the novelty of this feature,
typeclasses happen to be much easier to use than modules for defining such a
hierarchy. Sharing is obtained in a straightforward way, the code does not need
to be written in a monolithic way (as opposed to using functors), and there are
nice and simple solutions for overloading notations (e.g., we can use the same
infix symbol for multiplication in a monoid, a semiring, or a matrix semiring).

Typeclasses vs. canonical structures. Canonical structures is another record-
based inference mechanism (which we incidentally use to declare concrete struc-
tures). We tried to use canonical structures instead of typeclasses to define the
algebraic hierarchy from the beginning, along the lines of [13,3,12]. The overall
benefit was unclear. This is mainly because our hierarchy is not really deep, so
that we can handle it with typeclasses without introducing a complex infrastruc-
ture (we reached the limit, however: some of our proofs are noticeably slow to
compile, due to this simplistic approach). Another reason is that we lack a deep
understanding of Coq internal unification algorithm, which currently seems to
be required to work efficiently with canonical structures. Therefore, we might
switch to canonical structures at some point, when this technology will be better
understood and supported.

2.2 Matrices

A matrix can be seen as a partial map from pairs of integers to a given type X ,
so that a Coq type for matrices and a sum operation could be defined as follows:
Definition MX (n m: nat) := ∀ i j, i<n → j<m → X.
Definition plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<m) :=

M i j Hi Hj + N i j Hi Hj.
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This corresponds to the dependent types approach: a matrix is a map to X from
two integers and two proofs that these integers are lower than the bounds of
the matrix. Except for the concrete representation, this is the approach followed
in [3,12,4]. With such a type, every access to a matrix element is made by ex-
hibiting two proofs, to ensure that indices lie within the bounds. This is not
problematic for simple operations like the above plus function; this however re-
quires more boilerplate for other functions, like block decomposition operations.

We actually adopt another strategy: we move bounds checks to equality proofs,
by working with the following definitions:
Definition MX n m := nat → nat → X.
Definition equal n m (M N: MX n m) := ∀ i j, i<n → j<m → M i j == N i j.
Fixpoint sum i k (f: nat → X) :=

match k with 0 ⇒ 0 | S k ⇒ f i + sum (S i) k f end.
Definition dot n m p (M: MX n m) (N: MX m p) :=

fun i j ⇒ sum 0 m (fun k ⇒ M i k · N k j).

Here, a matrix is an infinite function from pairs of integers to X , and equality is
restricted to the domain of the matrix. With these definitions, we do not need to
manipulate proofs when defining matrix operations (like the above dot function),
so that subsequent definitions are easier to write. Bounds checks are required a
posteriori only, when proving properties about these matrices operations, e.g.,
associativity of the product. This is generally straightforward: these proofs are
done within the interactive proof mode, so that they can be solved with high
level tactics like omega. (Note that this separation between proofs and programs
could also be achieved syntactically—even with a dependently typed definition
of matrices—by using Coq’s Program feature.)

Although the correctness proof of our algorithm heavily relies on matricial
reasoning, and in particular block matrix decompositions, we have not found
major drawbacks to this approach yet. We actually believe that it would scale
smoothly to even more intensive usages of matrices, e.g., linear algebra [12].

Phantom types. Unfortunately, these non-dependent definitions allow one to type
the following code, where the three additional arguments of dot are implicit:
Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

This definition is accepted because of the conversion rule: since the dependent
type MX n m does not mention n nor m in its body, these type informations can
be discarded by the type system using the conversion rule (MX n 16 = MX n 64).
While such an ill-formed definition will be detected at proof-time; it is a bit sad
not to benefit from the advantages of a strongly typed programming language
here. We solved this problem at the cost of some syntactic sugar, by resorting
to an inductive singleton definition, reifying bounds in phantom types :
Inductive MX (n m: nat) := box: (nat → nat → X) → MX n m.
Definition get (n m: nat) (M: MX n m) := match M with box f ⇒ f end.
Definition plus (n m: nat) (M N: MX n m) :=

box n m (fun i j ⇒ get M i j + get N i j).

Coq no longer equates types MX n 16 and MX n 64 with this definition, so that the
above ill_dot function is rejected, and we can trust inferred implicit arguments
(e.g., the m argument of dot).
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X: Type.

dot: X → X → X.
one: X.
plus: X → X → X.
zero: X.
star: X → X.

dot_neutral_left:
∀ x, dot one x == x.

...

T: Type.
X: T → T → Type.

dot: ∀ n m p, X n m → X m p → X n p.
one: ∀ n, X n n.
plus: ∀ n m, X n m → X n m → X n m.
zero: ∀ n m, X n m.
star: ∀ n, X n n → X n n.

dot_neutral_left:
∀ n m (x: X n m), dot one x == x.

...

Fig. 2. From Kleene algebras to typed Kleene algebras

Computation. Although we do not use matrices in computations in this work, we
also advocate this lightweight representation from the efficiency point of view.
First, using non-dependent types is more efficient: not a single boundary proof
gets evaluated in matrix computations (e.g., matrix multiplications). Second,
using functions to represent matrices is two-edged: on the one hand, if the matrix
resulting of a computation is seldom used, then computing its elements by need
is efficient; on the other hand, making numerous accesses to the same expensive
computation may be a burden. To this end, we defined a memoisation operator
that computes all elements of a given matrix, stores the results in a map, and
returns the closure that looks up in the map rather than recomputing the result.
This memoisation operator is proved to be an identity; it can be inserted in
matrix computations in a transparent way, at judicious places.
Definition mx_force n m (M: MX n m): MX n m :=

let l := mx_to_lists M in box n m (fun i j ⇒ nth i (nth j l)).
Lemma mx_force_id : ∀ n m (M : MX n m), mx_force M == M.

2.3 Typed Algebras, Typed Reification

Adding types. We need to work with rectangular matrices at several places: to
prove the correctness of some steps of the algorithm (see Sect. 3.3), and to treat
vectors as matrices so as to factorise proofs. However, while square matrices over
a semiring form a semiring, this is not the case for rectangular matrices: the var-
ious operations are only partial, dimensions have to agree. Therefore, with naive
definitions of the algebraic structures, we are unable to use theorems and tools
developed for monoids, semi-lattices, and semirings to reason about rectangular
matrices. To remedy this problem, we generalised algebraic structures from the
beginning using types. An example is given in Fig. 2: a typical signature for
semirings is presented on the left-hand side; we moved to the signature on the
right-hand side, where a set T of indices (or types) is used to constrain the vari-
ous operations. These abstract indices can be thought of as matrix dimensions;
we actually moved to a categorical setting: T is a set of objects, X n m is the set
of morphisms from n to m, one is the set of identities, and dot is composition.

As expected, with such definitions, one can form arbitrary matrices over a
typed structure, and obtain another instance of this typed structure. In partic-
ular, the matrices over an arbitrary typed Kleene algebra form a typed Kleene
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algebra. Then, thanks to typeclasses, we inherit all theorems, tactics, and no-
tations we defined on generic structures, at the matricial level. Notably, when
defining the star operation on matrices over a Kleene algebra, we can benefit
from all tools for semirings, monoids, and semi-lattices. This is quite important
since this construction is rather complicated.

Removing types. Typed structures not only make it easier to work with rect-
angular matrices, they also give rise to a wider range of models. In particular,
we can consider heterogeneous binary relations rather than binary relations on
a single fixed set. This leads to the following question: can the usual decision
procedures be extended to this more general setting? Consider for example the
equation a · (b · a)� = (a · b)� · a, which is a theorem of typed Kleene algebras
as soon as a and b are respectively given types n → m and m → n, for some
n, m. How to ensure that the untyped automata algorithms respect types and
actually give valid, well-typed, proofs?

For efficiency and practicability reasons, extending our decision procedure to
work with typed elements is not an option. Instead, we proved the following
theorem, which allows one to erase types, i.e., to transform a typed equality goal
into an untyped one:

� u = v Γ � u � α : n → m Γ � v � β : n → m

� α = β : n → m
(∗)

Here, Γ � u � α : n → m reads “under the evaluation and typing context Γ ,
the untyped term u can be evaluated to α, of type n → m”; this predicate can
be defined inductively in a straightforward way, for various algebraic structures.
The theorem can then be rephrased as follows: “if the untyped terms u and v are
equal, then for all typed interpretations α and β of u and v, the typed equality
α = β holds”. See [28] for a theoretical study of these untyping theorems; also
note that Kozen investigated a similar question [21] and came up with a slightly
different solution: he solves the case of the Horn theory rather than equational
theory, at the cost of working in a restrained form of Kleene algebras.

Typed reification. The above discussion about types raises another issue: reflexive
tactics need to work with syntactical objects. For example, in order to construct
an automaton, we need to proceed by structural induction on the given expres-
sion. This step is commonly achieved by moving to the free algebra of terms,
and resorting to Coq’s reification mechanism (quote). However, this mechanism
does not handle typed structures, so that we needed to re-implement it. Since
we do not have binders, we were able do this within Ltac: it suffices to eapply
theorem (∗) to the current goal, so that we are left with three goals, with holes
for u, v and Γ . Then, by using an adequate representation for Γ , and by ex-
ploiting the very simple form of the typing and evaluation predicate, we are able
to progressively fill these holes and to close the two goals about evaluation, by
repeatedly applying constructors and ad-hoc lemmas about environments.

Unlike Coq’s standard quote mechanism, which works by conversion and has
no impact on the size of proofs, this simple “user-level”-quote generates large
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proof-terms. In fact, this is the current bottleneck of our tactic: on casual exam-
ples, the time spent in reification exceeds the time spent in computations! We
thus plan to implement an efficient reification mechanism, possibly in OCaml.

2.4 Numbers, Finite Sets, and Finite Maps

To code our decision procedure, we mainly need natural numbers, finite sets, and
finite maps. Coq provides several representations for natural numbers: Peano
integers (nat), binary positive numbers (positive), and big natural numbers in
base 231 (BigN.t), the latter being shipped with an underlying mechanism to use
machine integers and perform efficient computations. Similarly, there are various
implementations of finite maps and finite sets, based on ordered lists (FMapList),
AVL trees (FMapAVL), or uncompressed Patricia trees (FMapPositive).

While Coq’s standard library features well-defined interfaces for finite sets
and finite maps, the different definitions of numbers lack this standardisation.
In particular, the provided tools vary greatly depending on the implementation.
For example, the tactic omega, that decides Presburger’s arithmetic on nat, is
not available for positive. To abstract from this choice of basic data structures,
and to obtain a modular code, we designed a small interface to package natu-
ral numbers together with the various operations we need, including sets and
maps. We specified these operations with respect to nat, and we defined several
automation tactics. In particular, by automatically translating goals to the nat
representation, we can use the omega tactic in a transparent way.

3 The Algorithm and Its Proof

We now focus on the heart of our tactic: the decision procedure and the cor-
responding correctness proof. The algorithm that decides whether two regular
expressions denote the same language can be decomposed into four steps:

1. build non-deterministic finite automata with epsilon-transitions (ε-NFA);
2. remove epsilon-transitions to get non-deterministic finite automata (NFA);
3. determinise the automata to obtain deterministic finite automata (DFA);
4. check that the two DFAs are equivalent.

The third step can produce automata of exponential size. Therefore, we have
to carefully select our construction algorithm, so that it produces rather small
automata. More generally, we have to take a particular care about efficiency;
this drives our choices about both data structures and algorithms.

The Coq types we used to represent finite automata are given in Fig. 3; we
use modules only for handling the namespace; the type regex is defined in Fig. 4,
label and state are synonyms for the type of numbers. The first record type
(MAUT.t) corresponds to the matricial representation of automata; it is rather
high-level but computationally inefficient; we use it only in proofs, through the
evaluation function MAUT.eval (MX n m is the type of n×m matrices over regex;
the evaluation function calculates the matricial product u ·M� ·v and casts it to
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Module MAUT.
Record t := build {
size: nat;
initial : MX 1 size;
delta: MX size size;
final: MX size 1

}.
Definition eval(A: t): regex :=
mx_to_scal
((initial A) · (delta A)� · (final A)).

End MAUT.

Module eNFA.
Record t := build {
size: state;
labels: label;
epsilon : state→stateset ;
delta: label→state→ stateset ;
initial : state;
final: state }.

Definition to_MAUT (A: t): MAUT.t.
Definition eval A :=
MAUT.eval (to_MAUT A).

End eNFA.

Module NFA.
Record t := build {
size: state;
labels: label;
delta: label→ state→stateset ;
initial : stateset ;
final: stateset }.

Definition to_MAUT (A: t): MAUT.t.
Definition eval A :=
MAUT.eval (to_MAUT A).

End NFA.

Module DFA.
Record t := build {
size: state;
labels: label;
delta: label→state→state;
initial : state;
final: stateset }.

Definition to_MAUT (A: t): MAUT.t.
Definition eval A :=
MAUT.eval (to_MAUT A).

End DFA.

Fig. 3. Coq types and evaluation functions of the four automata representations

a regex). The three other types are efficient representations for the three kinds
of automata we mentioned above; fields size and labels respectively code for
the number of states and labels, the other fields are self-explanatory. In each
case, we define a translation function to matricial automata (to_MAUT), so that
each kind of automata can eventually be evaluated into a regular expression.

The overall structure of the correctness proof is depicted in Fig. 5. Datatypes
are recalled on the left-hand side; the outer part of the right-hand side corre-
sponds to computations: starting from two regular expressions α and β, two
DFAs A3 and B3 are constructed and tested for equivalence. The proof corre-
sponds to the inner equalities (==): each automata construction preserves the
semantics of the initial regular expressions, two DFAs evaluate to equal values
when they are declared equivalent by the corresponding algorithm.

In the following sections, we give more details about each step of the decision
procedure, together with a sketch of our correctness proof (although we do not
implement the same algorithms, this proof is largely based on Kozen’s one [20]).

3.1 Construction

There are several ways of constructing an ε-NFA from a regular expression. At
first, we implemented Thompson’s construction [33], for its simplicity; we finally
switched to a variant of the Ilie and Yu’s construction [17] which produces smaller
automata. This algorithm constructs an automaton with a single initial state
and a single accepting state (respectively denoted by i and f); it proceeds by
structural induction on the given regular expression. The corresponding steps are
depicted below; the first drawing corresponds to the base cases (variable, one,
zero); the second one is union (plus): we recursively build the two sub-automata
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Inductive regex :=
| dot: regex→ regex→regex
| plus: regex→ regex→regex
| star: regex→ regex
| one: regex
| zero: regex
| var: label→ regex.

Inductive eq :=
| eq_trans : Transitive eq
| eq_sym: Symmetric eq
| eq_dot_zero: ∀e, e · 0==0
| eq_plus_idem: ∀e, e+e==e
| ...
where "e==f" := (eq e f).

Fig. 4. Regular expressions
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Fig. 5. Correctness of the algorithm

between i and f ; the third one is concatenation: we introduce a new state, p,
build the first sub-automaton between i and p, and the second one between p
and f ; the last one is for iteration (star): we build the sub-automata between a
new state p and p itself, and we link i, p, and f with two epsilon-transitions.
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To avoid costly union operations, we actually use an accumulator (an ε-NFA) to
which we recursively add states and transitions.

We prove correctness in two steps, by using a more high-level algorithm. This
algorithm is very similar to the previous one, except that it works with the
matricial representation (MAUT.t). The following lemma states that the corre-
sponding implementations are equivalent (regex_to_eNFA is the efficient function,
regex_to_MAUT is the high-level one, and === is matricial automata equality):
Lemma step1: ∀e, eNFA.to_MAUT (regex_to_eNFA e) === regex_to_MAUT e.

Therefore, it suffices to prove correctness for the high-level construction—the
following lemma—for which we can use algebraic and matricial reasoning.
Lemma step2: ∀e, MAUT.eval (regex_to_MAUT e) == e.

To obtain the latter lemma, we have to consider the following one, where build
is the recursive function that underpins regex_to_MAUT: build e i f A applies
the above construction to the regular expression e, between states i and f of
the matricial automaton accumulator A; and add e i f A just adds a transition
labelled e to A, between i and f.
Lemma step2 ’: ∀e i f A, MAUT.eval (build e i f A) == MAUT.eval (add e i f A).

As an example of the kind of algebraic reasoning we need to formalise, the
following property of star w.r.t. block matrices is used twice: with (x, y, z) =
(e, 0, f), it gives the case of a concatenation (e · f); with (x, y, z) = (1, e, 1) it
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yields iteration (e�). In both cases, the line and the column that are added on
the left-hand side correspond to the state (p) generated by the construction.

[
u 0

] ·

⎡
⎢⎢⎢⎢⎣

... 0
· · · Mi,f · · · x

... 0

0 z 0 y

⎤
⎥⎥⎥⎥⎦

�

·
[

v

0

]
= u ·

⎡
⎢⎢⎣

...
· · · Mi,f + x · y� · z · · ·

...

⎤
⎥⎥⎦

�

· v

Finally, by combining the lemmas step1 and step2, we obtain the correctness of
our construction algorithm, i.e., we can fill the two triangles from Fig. 5:
Theorem construction_correct: ∀e, eNFA.eval (regex_to_eNFA e) == e.

3.2 Epsilon Transitions Removal

The automata obtained with the above construction contain epsilon-transitions:
their transitions matrices are of the form M = J +N with N =

∑
a a ·Na, where

J and the Na are 0-1 matrices. J and N respectively correspond to the graph
of epsilon and labelled transitions. Algebraically, removing epsilon-transitions is
achieved using a simple law: ∀xy, (x + y)� = x� · (y · x�)�. This law yields

u · (J + N)� · v = u · J� · (N · J�)� · v ,

so that automata 〈u, N, v〉 and 〈u · J�, N · J�, v〉 are equivalent. We furthermore
check that the latter automaton no longer contains epsilon-transitions: this is a
NFA. This algebraic proof is not surprising: looking at 0-1 matrices as binary
relations, J� actually corresponds to the reflexive-transitive closure of J .

Although this is how we prove the correctness of this step, computing J� alge-
braically is inefficient: we have to implement a proper transitive closure algorithm
for the low-level representation of automata. We actually rely on a property of
the construction from Sect. 3.1: when given regular expressions in “strict star”
form, the produced ε-NFAs have acyclic epsilon-transitions. More precisely, we
say that a regular expression is in strict star form if for all its sub-expressions
of the form e�, the regular language corresponding to e does not contain the
empty word. Intuitively, the only possibility for introducing an epsilon-cycle in
the construction from Sect. 3.1 comes from star expressions. By forbidding the
empty word to appear in such cases, we prevent the formation of epsilon-cycles.

Concretely, this means that: 1) we wrote a recursive function that transforms a
regular expression into an equivalent one, in strict star form; 2) we proved that
our construction algorithm returns ε-NFAs whose reversed epsilon-transitions
are well-founded, when the argument is in strict star form; 3) based on this
assumption we implemented a simple transitive closure algorithm, using well-
founded recursion and memoisation; 4) we proved that this algorithm actually
yields an automaton (of type NFA.t) whose translation into a matricial automaton
is exactly 〈u · J�, N · J�, v〉, so that the above algebraic proof applies.
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3.3 Determinisation

Determinisation is exponential in worst case: this is a power-set construction.
However, examples where this bound is reached are rather contrived: the em-
pirical complexity is tractable. Starting from a NFA 〈u, M, v〉 with n states, the
algorithm consists in a standard depth-first enumeration of the subsets accessible
from the set of initial states. It returns a DFA 〈û, M̂ , v̂〉 with n̂ states, together
with a injective map ρ from [1..n̂] to subsets of [1..n]. We sketch the algebraic
part of the correctness proof. Let X be the rectangular (n̂, n) 0-1 matrix defined
by Xsj � j ∈ ρ(s), we prove that the following commutation properties hold:

M̂ ·X = X ·M (1) û ·X = u (2) v̂ = v ·X (3)

The intuition is that X is a “decoding” matrix: it sends states of the DFA to
the characteristic vectors of the corresponding subsets of the NFA. Therefore,
(1) can be read as follows: executing a transition in the DFA and then decoding
the result is equivalent to decoding the starting state and executing parallel
transitions in the NFA. Similarly, (2) states that the initial state of the DFA
corresponds to the set of initial states of the NFA. From (1), we deduce that
(M̂)� ·X = X ·M� using a theorem of Kleene algebras; we conclude with (2, 3):

û · (M̂)� · v̂ = û · (M̂)� ·X · v = û ·X ·M� · v = u ·M� · v .

A Coq-specific technical difficulty in the concrete implementation of this algo-
rithm comes from termination: the main loop is executed at most 2n times (there
are 2n subsets of [1..n]), but we cannot use this bound directly. Indeed, we can
easily determinise NFAs with 500 states in practice, while computing 2500 is ob-
viously out of reach (the binary representation of numbers does not help since
we need to do structural “unary” recursion); we thus have to iterate lazily. We
tried to use well-founded recursion; this was rather inconvenient, however, since
this requires mixing some non-trivial proofs with the code. We currently use the
following “pseudo-fixpoint operators”, defined in continuation passing style:

Variables A B: Type.
Fixpoint linearfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=

match n with O ⇒ k a | S n ⇒ f (linearfix n f k) a end.
Fixpoint powerfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=

match n with O ⇒ k a | S n ⇒ f (powerfix n f (powerfix n f k)) a end.

Intuitively, linearfix n f k lazily approximates a potential fixpoint of the func-
tional f: if a fixpoint is not reached after n iterations, it uses k to escape. The
powerfix operator behaves similarly, except that it escapes after 2n−1 iterations:
we prove that powerfix n f k a is equal to linearfix (2n − 1) f k a. Thanks
to these operators, we can write the code to be executed using powerfix, while
keeping the ability to reason about the simpler code obtained with a naive struc-
tural iteration over 2n: both versions of the code are easily proved equivalent,
using the intermediate linearfix characterisation.

3.4 Equivalence Checking

Two DFAs are equivalent if and only if their respective minimised DFAs are
equal up-to isomorphism. While exploring all state permutations is sufficient to
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obtain decidability, there is a more direct and efficient approach that does not
require minimisation: one can perform an on-the-fly simulation check, using an
almost linear algorithm by Hopcroft and Karp [1].

This algorithm proceeds as follow: it computes the disjoint union automata
〈u, M, v〉, and checks that the former initial states (iA, iB) are equivalent. Intu-
itively, two states are equivalent if they can match each other’s transitions to
reach equivalent states, with the constraint that no accepting state can be equiv-
alent to a non-accepting one. Hence, the algorithm starts with a pair of states
that must be equivalent—typically (iA, iB)—and try to recursively equate their
reducts along transitions. To be almost linear, the algorithm uses a disjoint-sets
data structure to compute equivalence classes. Indeed, if the pairs {i, j} and
{j, k} have already been equated, one can skip the pair {i, k} if encountered.

To our knowledge, there are two implementations of union-find data structures
in Coq [9,25]. However, [9] is not computational, and [25] is more geared toward
extraction (it uses sig types). Therefore, we had to re-implement and prove this
data structure from scratch. Namely, we implemented disjoint-sets forests [10]
with path compression and the usual “union by rank” heuristic.

Like previously, the correctness of the equivalence check is proved algebraically:
we define a 0-1 matrix Y to encode the obtained equivalence relation on states, and
we prove that it satisfies the following properties:

1 ≤ Y (1) Y · Y ≤ Y (2) Y ·M ≤ M · Y (3)

iA · Y = iB · Y (4) Y · v = v (5)

Equations (1, 2) correspond to the fact that Y encodes a reflexive and transi-
tive relation. The remaining equations assess that Y is a simulation (3), that
the initial arguments are equated (4), and that related states are either accept-
ing or non accepting (5). This allows us to conclude using standard algebraic
reasoning.

3.5 Completeness: Counter-Examples

By combining the proofs from the above sections according to Fig. 5, we obtain
the correctness of the decision procedure: if decide_kleene a b returns true, then
a==b, and thanks to the untyping theorem (∗) from Sect. 2.3, we deduce that a
and b are equal in any typed Kleene algebra.

We also proved the converse implication, i.e., completeness. This basically
amounts to exhibiting a counter-example in the case where the DFAs are not
equivalent. From the algorithmic point of view, this is almost straightforward:
it suffices to record the word that is being read in the algorithm from Sect. 3.4;
when two states that should be equivalent differ by their accepting status, we
know that the current word is accepted by one DFA and not by the other one.
Accordingly, the decide_kleene function actually returns an option (list label)
rather than a boolean, so that the counter-example can be given to the user.

From the proof point of view, to obtain the reverse implication of the equiv-
alence we mentioned in Sect. 1, we just have to show that languages (i.e.,
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predicates over list of labels, list label→Prop) form a Kleene algebra in which
the language accepted by a DFA is exactly the language obtained with DFA.eval:
Theorem interp_DFA_eval: ∀ A: DFA.t, DFA_language A [=] interp (DFA.eval A).

(DFA.eval actually returns a regular expression which we need to interpret as a
language; [=] is language equality, i.e., pointwise equivalence of the predicates.)

4 Conclusions

We presented a correct and complete reflexive tactic for deciding Kleene algebra
equalities. This tactic belongs to a broader project whose aim is to provide
algebraic tools for working with binary relations in Coq; the development can
be downloaded from [5]. To our knowledge, this is the first certified efficient
implementation of these algorithms and their integration as a generic tactic.

4.1 Performances

We performed intensive tests on randomly generated regular expressions. On
typical use cases, the tactic runs instantaneously (except for the time spent in
the reification mechanism, as explained at the end of Sect. 2.3). It runs in less
than one second for expressions with 150 internal nodes and 20 variables, and less
than one minute for even larger expressions (1000 internal nodes, 40 variables),
that are very unlikely to appear in “human-written” proofs.

Thanks to the efficient implementation of radix-2 search trees (PositiveMap),
we get higher performances if we use positive rather than BigN.t, despite the
underlying mechanism that uses machine arithmetic—a recent feature of Coq.

4.2 Related Works

The idea of reasoning about binary relations algebraically is old [32,11]. Among
others [18,34], Struth applied this idea within an interactive theorem prover [31].
He later turned to automated first-order theorem provers (ATP): Höfner and him
verified facts about various relation algebras [15,16] using Prover9, a resolution/-
paramodulation based ATP. Our approaches are quite different: we implemented
a decision procedure for a decidable theory, whereas their proposal consists in
feeding a generic automated prover with the axioms of some algebras, and to see
how far the prover can go by itself. As a consequence, their methodology applies
directly to a very wide class of goals and algebras, while we are restricted to
the equational theory of Kleene algebras. On the other hand, our tactic always
terminates, while Prover9 is unpredictable: even for very simple goals, it can
diverge, find a proof immediately, or find a proof in a few minutes [16].

At the time we started this project, Briais formalised decidability of regular
languages equality [6]. However, his approach is not computational, so that even
straightforward identities cannot be checked by letting Coq compute.

Narboux defined a set of Coq tactics for diagrammatic proofs [27]. He works
in the concrete setting of binary relations, which makes it possible to represent
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more diagrams, but does not scale to other models. The level of automation is
rather low: it basically reduces to a set of hints for the auto tactic.

Our notion of strict star form (Sect. 3.2) was inspired by the standard notion
of star normal form [7] and the idea of star unavoidability [17]. To our knowledge,
the facts that we can always rewrite regular expressions in such a form and that
ε-NFAs with acyclic epsilon-transitions can be constructed in this way are new.

4.3 Directions for Future Work

Earlier failure checks. Our algorithm for checking equivalence of DFAs returns
whenever two non-equivalent states are encountered. This optimisation greatly
improves over minimisation-based algorithms, but we could go one step further,
by checking the equivalence on-the-fly, during the determinisation phase. This
way, we could abort the computation of DFAs as soon as a discrepancy is found.
KAT, Hoare logic. We plan to extend our decision procedure to Kleene algebras
with tests (KAT), so as to provide automation to prove correctness of programs
in Hoare logic [22]. A first possibility would be to encode KAT expressions into
KA [23] and to use the current tactic. This encoding being potentially exponen-
tial, it is unclear whether this approach would be tractable. A more involved
approach would be to use the dedicated automata construction presented in [8].

Acknowledgements. We thank Guilhem Moulin, Assia Mahboubi, Matthieu
Sozeau, Bruno Barras, and Hugo Herbelin for highly stimulating discussions.
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Abstract. The Satisfiability Modulo Theories (SMT) solver Z3 can gen-
erate proofs of unsatisfiability. We present independent reconstruction of
these proofs in the theorem provers Isabelle/HOL and HOL4 with par-
ticular focus on efficiency. Our highly optimized implementations out-
perform previous LCF-style proof checkers for SMT, often by orders of
magnitude. Detailed performance data shows that LCF-style proof re-
construction can be faster than proof search in Z3.

1 Introduction

Interactive theorem provers like Isabelle/HOL [1] and HOL4 [2] have become
invaluable tools in formal verification. They typically provide rich specification
logics, which allow modelling complex systems and their behavior. Despite the
merits of user guidance in proving theorems, there is a need for increased proof
automation in interactive theorem provers: even proving a simple theorem can
be a tedious task.

In recent years, automated theorem provers have emerged for combinations
of first-order logic with various background theories, e.g., linear arithmetic, ar-
rays, bit vectors [3]. These provers, called Satisfiability Modulo Theories (SMT)
solvers, are of particular value in formal verification, where specifications and ver-
ification conditions can often be expressed as SMT formulas [4,5]. SMT solvers
also have applications in model checking, constraint solving, and other areas.

Interactive theorem provers can greatly benefit from the reasoning power of
SMT solvers. Proof obligations that are SMT formulas can simply be passed to
the automated prover, which will solve them without further human guidance.
However, almost every SMT solver is known to contain bugs [6]. When integrated
naively, the SMT solver (and the integration) become part of the trusted code
base: bugs could lead to inconsistent theorems in the interactive prover. For
formal verification, where correctness is often paramount, this is undesirable.

The problem can be solved by requiring the SMT solver to produce proofs
(of unsatisfiability), and reconstructing these proofs in the interactive prover.
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Among the proof-producing solvers is Z3 [7], a state-of-the-art SMT solver de-
veloped by Microsoft Research. In this paper, we present independent recon-
struction for the proofs generated by Z3 in Isabelle/HOL and HOL4. These two
popular LCF-style [8] systems are based on a relatively small trusted kernel (see
Sect. 3) that provides a fixed set of simple inference rules. Z3, on the other hand,
uses a number of powerful inference rules in its proofs (see Sect. 4). This makes
proof reconstruction challenging.

Our LCF-style implementations of proof reconstruction (see Sect. 5) do not
extend the trusted code base. Any attempt to perform an unsound inference
will be caught by the underlying theorem prover’s kernel. In contrast, a stand-
alone proof checker for Z3 could be implemented much more efficiently, but
would have to be trusted. For utmost reliability, the latter approach is clearly
not ideal, also because Z3’s proofs are relatively difficult to check: besides first-
order reasoning also decision procedures for supported theories (e.g., arrays,
linear arithmetic) are required. As a mixture of both worlds, a proof checker
obtained by reflection could be much faster than our LCF-style implementation
yet be formally verified. However, sparse documentation of Z3’s proof rules would
heavily complicate this approach, while our implementations just fall back to
existing automated proof tools for underspecified cases. Maybe not surprisingly,
the only proof checker applicable to all Z3 proofs that existed previous to our
work was an older version of Z3 [9]. By using Isabelle/HOL and HOL4 as proof
checkers, we in fact discovered previously unknown bugs in Z3.

Driven by the nature of proof obligations commonly seen in formal verification
and related domains, we restrict ourselves to reconstruct proofs of first-order
logic theorems over the theories of equality and uninterpreted functions, arrays,
and linear integer and real arithmetic. In particular, we do not consider proof
reconstruction for the theory of bitvectors.

Evaluation of our implementations (see Sect. 6) is performed on SMT-LIB
problems [10]. This is because there is a large and diverse library of problems
readily available, promising a good coverage of Z3’s proof rules. The implicit
assumption that such an approach yields a practically useful system for typical
goals in Isabelle/HOL or HOL4 has already been confirmed by first users.

2 Related Work

Work on the integration of SMT solvers with LCF-style theorem provers is rel-
atively sparse.

McLaughlin et al. [11] describe a combination of HOL Light and CVC Lite for
quantifier-free first-order logic with equality, arrays and linear real arithmetic. Ge
and Barrett [12] present the continuation of that work for CVC3, the successor
of CVC Lite, supporting also quantified formulas and linear integer arithmetic.
CVC Lite’s and CVC3’s proof rules are much more detailed than the ones used
by Z3. For instance, CVC3 employs more than 50 rules for the theory of real
linear arithmetic alone. Although one would expect this to allow for more pre-
cise (and hence, faster) proof reconstruction, McLaughlin et al. report that their
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implementation is around six times slower than a decision procedure for linear
real arithmetic implemented directly in HOL Light. For an in-depth comparison
of our work with proof reconstruction for CVC3 see Sect. 6.

Fontaine et al. [13] describe an integration of the SMT solver haRVey with
Isabelle/HOL. Their work is restricted to quantifier-free first-order logic with
equality and uninterpreted functions. Hurlin et al. [14] extend this approach
to quantified formulas. Skolemization is discussed in great detail. Unlike in our
work, background theories (e.g., linear arithmetic, arrays) are not supported.

Recently, the first author [15] presented proof reconstruction for Z3 in the
theorem prover Isabelle/HOL. We improve upon that work in both reconstruc-
tion speed and completeness (i.e., correct coverage of Z3’s inference rules). We
discuss similarities and differences in detail in Sect. 5, before comparing perfor-
mance in Sect. 6.

Common to the above approaches is their relatively poor performance on
larger problems. Evaluation is typically done on a few selected, hand-crafted toy
examples. Only [12,15] use a significant number of SMT-LIB [10] benchmarks
for demonstrating success rates—at the cost of long reconstruction run-times.
This paper is the first to focus on efficiency, and consequently, the first to give
solid evidence of attainable performance for LCF-style proof reconstruction.

3 LCF-Style Theorem Proving

The term LCF-style [8] describes theorem provers that are based on a small in-
ference kernel. Theorems are implemented as an abstract data type, and the only
way to construct new theorems is through a fixed set of functions (corresponding
to the underlying logic’s axiom schemata and inference rules) provided by this
data type. This design greatly reduces the trusted code base. Proof procedures
based on an LCF-style kernel cannot produce unsound theorems, as long as the
implementation of the theorem data type is correct.

Traditionally, most LCF-style systems implement a natural deduction calcu-
lus. Theorems represent sequents Γ � ϕ, where Γ is a finite set of hypotheses,
and ϕ is the sequent’s conclusion. Instead of ∅ � ϕ, we simply write � ϕ.

The two incarnations of LCF-style systems that we consider here, i.e., HOL4
and Isabelle/HOL, are popular theorem provers for polymorphic higher-order
logic (HOL) [2], based on the simply-typed λ-calculus. Both systems share the
implementation language, namely Standard ML.

Although Isabelle/HOL and HOL4 implement the same logic, they differ in their
internal data structures, and even in the primitive inference rules provided: some
rules that are primitive in one system are derived (i.e., implemented as a combi-
nation of primitive rules) in the other. Therefore, optimization is challenging, and
performance comparisons must be taken with a grain of salt. Highly optimized
proof procedures typically show similar performance in the two systems [16].

On top of their LCF-style inference kernels, both Isabelle/HOL and HOL4
offer various automated proof procedures: notably a simplifier, which performs
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term rewriting, a decision procedure for propositional logic, tableau- and resolu-
tion-based first-order provers, and decision procedures for Presburger arithmetic
on integers and real algebra.

Substitution of type and term variables is a primitive inference rule in both
Isabelle/HOL and HOL4. Consequently, substitution is typically much faster
than (re-)proving the theorem’s specific instance. General theorems (which we
will call schematic) can, therefore, play the role of additional inference rules.

4 Z3: Language and Proof Terms

A detailed and perspicuous description of Z3’s language and proof terms has
been given in [9,15]. We briefly review the key features necessary to understand
this work.
Z3’s language is many-sorted first-order logic, based on the SMT-LIB lan-
guage [10]. Basic sorts include bool, int and real. Interpreted functions include
arithmetic operators (+,−, ·), Boolean connectives (∨, ∧, ¬), constants� and⊥,
first-order quantifiers (∀, ∃), the distinct predicate, and equality. It is worth not-
ing that the connectives ∧ and ∨ are polyadic functions in Z3, i.e., they can take
an arbitrary number of arguments.

Z3’s proof terms encode natural deduction proofs. The deductive system used
by Z3 contains 34 axioms and inference rules. These range from simple rules
like mp (modus ponens) to rules that abbreviate complex reasoning steps, e.g.,
rewrite for equality reasoning involving interpreted functions, or th-lemma for
theory-specific reasoning. We discuss selected rules in more detail in Sect. 5.

Z3’s proofs are directed acyclic graphs (DAGs). Each node represents application
of a single axiom or inference rule. It is labeled with the name of that axiom
or inference rule and the proposition to conclude. The edges of a proof graph
connect conclusions with their premises. The hypotheses of sequents are not
given explicitly. A designated root node concludes ⊥.

5 Proof Reconstruction

Our work on Z3 proof reconstruction, although heavily optimized (and in large
parts developed independently), shares certain features with the approach pre-
sented in [15], and more generally also with [14,16]. We thereby confirm that
these solutions are of general interest and benefit, beyond a single theorem prover
implementation. The similarities with related work are as follows.

Representation of Z3’s language in higher-order logic is natural and direct. Basic
types and interpreted functions have corresponding counterparts in the HOL
implementations considered here. We translate uninterpreted functions and sorts
into higher-order logic as variables and type variables, respectively. Arrays are
translated as functions. Thus, array updates (store) become function updates,
array lookup (select) reduces to function application, and extensionality is an
axiom.
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Representation of Z3’s proofs in Standard ML is via a balanced tree, with lookup
in O(log n), that maps node identifiers to proof nodes. The proof generated by
Z3 is parsed, and a corresponding ML value is built. Proof nodes are given by a
disjoint union. Initially, each node contains the information that is recorded ex-
plicitly in the Z3 proof. Once the corresponding inference step has been checked
in the theorem prover, this information is replaced by the derived theorem. Thus,
lemmas only need to be derived once, even if they are used multiple times in the
proof. This technique was originally proposed in [16], where efficient LCF-style
proof checking for SAT solvers is discussed.

Depth-first (postorder) traversal of the proof, starting from the root node, de-
termines the order in which proof steps are reconstructed. If there are steps in
the Z3 proof that do not contribute to the derivation of the final ⊥, they are
never checked. This technique was also adapted from [16].

Assumptions in the Z3 proof can be introduced by three rules: asserted and
goal introduce assumptions made in the input problem (from which ⊥ is derived
eventually), while hypothesis introduces arbitrary local assumptions. These
must be discharged by the lemma rule later. We use the axiom schema {ϕ} � ϕ
(which is available in both Isabelle/HOL and HOL4) to introduce assumptions,
thereby inserting them as hypotheses whenever they are used in the proof. At
the very end of proof reconstruction, we check that only assumptions from the
input problem remain as hypotheses.

Skolem functions introduced by Z3’s proof rule sk are given hypothetical defi-
nitions in terms of Hilbert’s choice operator (see [14,15] for details). This allows
to replace the equisatisfiability relation that Z3 uses in its proofs, which has no
direct counterpart in higher-order logic, with equivalence.

Local definitions are used by Z3 to introduce abbreviations for formulas. The
relevant rules are intro-def and apply-def. We model locally defined abbrevi-
ations by hypothetical definitions, in much the same way as Skolem functions.

5.1 Reconstruction Techniques

Beyond these similarities, however, there are numerous ways in which our ap-
proach differs from previous ones. Noticeably, we have spent considerable time on
profiling (see Sect. 6.4). This has prompted faster reconstruction techniques for
many of Z3’s inference rules. We distinguish four different techniques to model
a Z3 inference rule in an LCF-style system:

1. as a single primitive inference or schematic theorem,
2. as a combination of primitive inferences and/or schematic theorems,
3. by applying an automated proof procedure,
4. as a combination of the above.

These techniques vary in implementation effort and performance. Primitive in-
ference rules and schematic theorems are typically the preferred choice where
possible (because they are easy to use, and as fast as it gets), but they are lim-
ited in applicability: the set of primitive rules provided by an LCF-style kernel is
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fixed, and schematic theorems can only be applied to terms with a fixed structure
that is known in advance. For instance, deriving � ϕ from a conjunction � ϕ∧ψ
is within the realm of possibility, but a derivation of � ϕ from an arbitrarily
nested conjunction � . . . ∧ ϕ ∧ . . . already requires a combination of primitive
inferences and/or schematic theorem instantiations.

Automated proof procedures, on the other hand, work well for rapid prototyp-
ing. About one third of Z3’s proof rules merely require propositional reasoning,
and another third perform relatively simple first-order reasoning. These rules
can, in principle, be implemented by a single application of (1) a fast decision
procedure for propositional logic [16], or (2) an automated prover for first-order
logic with equality [17], respectively. Even though (1) internally employs a state-
of-the-art SAT solver, and (2) has fared well in various CASC competitions [18],
the key disadvantage of automated proof procedures is that their performance is
hard to control. We have achieved speedups of three to four orders of magnitude
by replacing calls to these automated tools with specialized implementations
(using combinations of primitive inferences and/or schematic theorems) that
perform the specific reasoning steps required to model Z3’s proof rules.

Table 1 gives an overview of the reconstruction techniques currently used for
the different proof rules of Z3. We apply automated proof procedures only to
theory-specific rules and to approximate four rules that Z3 never used in our ex-
tensive evaluation. If performance for the latter rules was important, they might
as well be implemented using the second category of reconstruction techniques.

We now describe relevant optimizations in more detail. Since primitive in-
ference rules in different theorem provers often show different performance rel-
ative to each other, there is not necessarily one (prover-independent) optimal
approach. We discuss alternatives where appropriate.

Table 1. Proof rules and reconstruction techniques

Reconstruction technique Proof rules

Primitive inference or
schematic theorem

asserted, commutativity, goal, hypothesis,
iff-false, iff-true, iff∼, mp, mp∼, refl, symm,
trans, true

Combination of primitive
inferences and/or schematic
theorems

and-elim, apply-def, def-axiom, elim-
unused, intro-def, lemma, monotonicity,
nnf-neg, nnf-pos, not-or-elim, quant-inst,
quant-intro, sk, unit-resolution

Automated proof procedures der, distributivity, pull-quant, push-quant

Combination of the above rewrite, rewrite∗, th-lemma

5.2 Propositional and First-Order Reasoning

Nested conjunctions. A recurring task in Z3’s proofs is to establish equivalence of
two (arbitrarily parenthesized) conjunctions ϕ ≡ p1∧· · ·∧pn and ψ ≡ q1∧· · ·∧qn,
where {pi | 1 ≤ i ≤ n} = {qi | 1 ≤ i ≤ n}. Such permutated conjunctions arise
for two reasons. First, conjunction in Z3 is polyadic, i.e., it can take an arbitrary
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number of arguments, while in Isabelle/HOL and HOL4, conjunction is a binary
(right-associative) operator. For instance, ϕ1 ∧ϕ2 ∧ϕ3 in Isabelle/HOL is really
short for ϕ1 ∧ (ϕ2 ∧ ϕ3). Second, unfolding of the distinct predicate leads to
conjoined inequalities: e.g., distinct [x, y, z] ≡ x �= y ∧ x �= z ∧ y �= z.

A rewriting-based approach (using associativity, commutativity and idem-
potence of conjunction) turns out to be far too slow. Instead, we perform the
required re-ordering not at the term level, but using ML data structures. We first
derive theorems {ϕ} � pi (for each pi) by assuming ϕ and recursively applying
conjunction elimination. These intermediate theorems are stored in a balanced
tree, indexed by their conclusion. From them, we derive {ϕ} � ψ by recursion
over the structure of ψ, using conjunction introduction. In a similar way, we get
{ψ} � ϕ. Combining both theorems, we obtain � ϕ⇔ ψ.

This implementation has complexity O(n log n). It improves over an imple-
mentation with quadratic complexity that had been part of the HOL4 theorem
prover since 1991 [19].

Nested disjunctions are treated dual to nested conjunctions, but our implemen-
tations deviate from each other due to differences in the primitive inference rules
available.

In HOL4, we first show that ψ ≡ q1∨· · ·∨qn follows from each of its disjuncts.
Then we recurse over the structure of the premise ϕ ≡ p1 ∨ · · · ∨ pn, using
disjunction elimination to show that since each disjunct pi implies ψ, we have
{ϕ} � ψ. Deriving ψ from each of its disjuncts is not completely straightforward.
We achieve complexity O(n log n) by assuming ψ (thereby obtaining {ψ} � ψ),
and then recursively deriving {ϑ1} � ψ and {ϑ2} � ψ from {ϑ1 ∨ ϑ2} � ψ. This
inference step is not provided as a primitive rule by the HOL4 kernel. We found
an implementation that uses a combination of primitive rules to be roughly twice
as fast as one that instantiates a schematic theorem � (ϑ1 ∨ϑ2 ⇒ ψ)⇒ ϑ1 ⇒ ψ
(and a similar theorem for ϑ2).

In Isabelle/HOL, we show equivalence of ϕ and ψ by contraposition, i.e., by
showing that ¬ϕ and ¬ψ are equivalent. This can be done in analogy to the
case of conjunctions, only that instead of conjunction elimination and conjunc-
tion introduction, dual theorems for negated disjunctions must be applied. The
complexity of this approach is again O(n log n).

Unit resolution implements the following inference rule, which strengthens a
disjunction by removing disjuncts that have been disproved:

Γ � ∨i∈I ϕi 〈Γi � ¬ϕi〉i∈J

Γ ∪⋃i∈J Γi �
∨

i∈I\J ϕi
unit-resolution

We model this inference rule in HOL4 by extending the technique for nested
disjunctions described previously. For i ∈ I\J , deriving the conclusion

∨
i∈I\J ϕi

from each ϕi is done exactly as before. For i ∈ J , on the other hand, we use the
fact that ϕi has been disproved, and that anything (in particular, the desired
conclusion) follows from ⊥. We found this implementation to be about 30%
faster in HOL4 than the approach detailed in [16], which is more efficient only
when proofs contain many successive resolution steps.
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In Isabelle/HOL, we again use contraposition to model unit resolution. As-
sume that ¬∨i∈I\J ϕi holds and show that this together with the facts ¬ϕi

(for i ∈ J) implies ¬∨i∈I ϕi. Hence the premise
∨

i∈I ϕi implies the conclusion∨
i∈I\J ϕi. The main step of this deduction employs the contraposition-based

technique for nested disjunctions described previously.

Literal memoization. The Z3 proof rule and-elim deduces a conjunct from a
polyadic conjunction. In an LCF-style system where conjunction is binary, this
amounts to repeated application of conjunction elimination. Since and-elim is
commonly applied to the same premise � ϕ several times, deducing a different
conjunct each time, it is more efficient to explode � ϕ once and for all instead
of repeatedly extracting a single conjunct. The resulting conjuncts are stored in
the proof node that derived � ϕ, indexed by a balanced tree for efficient lookup.
This memoization technique applies dually to the rule not-or-elim.

Quantifier instantiations in Z3’s proof rules can be determined by (first-order)
term matching. No first-order proof search is necessary. We avoid the auto-
mated first-order provers that are built into Isabelle/HOL and HOL4: they are
unnecessarily powerful, but relatively slow. Instead, we perform the required
combinations of primitive inferences directly.

5.3 Theory-Specific Reasoning

With these optimizations in place, Z3’s propositional and first-order inference
steps are checked with reasonable efficiency. The one remaining performance hog
is theory-specific reasoning, involving interpreted functions (e.g., linear arith-
metic). This is performed by three proof rules in Z3: rewrite, rewrite∗1 and
th-lemma. We implement these rules by sequentially trying schematic theo-
rems, exploiting associativity, commutativity and idempotence of conjunction
and disjunction, trying the simplifier, and applying decision procedures for lin-
ear integer and real arithmetic.

When done naively, the automated tools, i.e., the simplifier and the decision
procedures for linear arithmetic, dominate run-time. We were able to improve
performance by reducing the number of proof obligations that are passed to these
tools. In our current implementation the simplifier only rewrites array updates,
but not Boolean or arithmetic operators: these are handled through schematic
theorems or specialized proof procedures. We employ the following optimization
techniques for theory-specific reasoning.

Schematic theorems. Matching a theorem’s conclusion against a given term and,
if successful, instantiating the theorem accordingly is typically much faster than
deriving the instance again. By studying the actual usage of rewrite in Z3’s
proofs, we identified more than 230 useful schematic theorems. These include
propositional tautologies such as � (p ⇒ q) ⇔ (q ∨ ¬p), theorems about equal-
ity, e.g., � (x = y)⇔ (y = x), and theorems of linear integer and real arithmetic,

1 Since rewrite∗ is a variant of rewrite, we implicitly include the former when refer-
ring to the latter in the remainder of this section.
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e.g., � x + 0 = x. Together, these theorems allow about 76% of all terms given
to rewrite to be proved by instantiation alone. Because of their generality, our
schematic theorems should be useful for a wide range of benchmarks. We store
all schematic theorems in a term net to allow faster search for a match.

To a smaller extent, we also use schematic theorems in the implementations
of Z3’s proof rules def-axiom and th-lemma.

Theorem memoization. Isabelle/HOL and HOL4 allow instantiating free vari-
ables in a theorem, while Z3 has to re-derive theorems that differ in their unin-
terpreted functions. Hence, there is more potential for theorem re-use in these
provers than in Z3. We exploit this by storing theorems of linear arithmetic that
are proved by rewrite or th-lemma in a term net. Since every theorem is also
stored in a proof node anyway, this increases memory requirements only slightly
(namely by the memory required for the net’s indexing structure). Before invok-
ing a decision procedure for linear arithmetic on a proof obligation, we attempt
to retrieve a matching theorem from the net. However, proof obligations that
occur frequently are often available as schematic theorems already. Therefore,
with an extensive list of schematic theorems in place, the performance gained
by theorem memoization is relatively small.

Generalization. We generalize proof obligations by replacing sub-terms that are
outside the fragment of linear arithmetic with variables, before passing the proof
obligation to the arithmetic decision procedures. This has two benefits. First,
it makes theorem memoization more useful, since more general theorems po-
tentially can be re-used more often. Second, it avoids expensive preprocessing
inside the arithmetic decision procedures. For instance, HOL4’s arithmetic deci-
sion procedures perform case splitting of if-then-else expressions. This could lead
to an exponential number of cases. Z3’s proof rule th-lemma, however, does
not require the linear arithmetic reasoner to know about if-then-else: if neces-
sary, conditionals are split using one of the other proof rules before Z3 solves
the problem by linear arithmetic. Therefore, proof obligations are provable even
with all conditionals treated as atomic.

6 Experimental Results

We evaluated our implementations in four ways. First, we measured success rates
and run-times of proof reconstruction for 1273 SMT-LIB benchmarks drawn from
the latest SMT-COMP [20], an annual competition of SMT solvers. Second, a
selection of these benchmarks was taken to compare our implementations with
proof reconstruction for CVC3 in HOL Light [11,12] (CH). Third, we contrasted
our work with previous work on proof reconstruction for Z3 [15] (ZI). Finally,
we measured profiling data to give a deeper insight into our results.

Evaluation was performed on problems comprising first-order formulas (partly
quantifier-free, QF, partly with (+p) or without (-p) quantifier patterns) over
(combinations of) the theories of equality and uninterpreted functions (UF),
arrays (A), linear integer arithmetic (LIA), linear real arithmetic (LRA), com-
bined linear arithmetic (LIRA), integer difference logic (IDL), real difference
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logic (RDL). SMT-LIB logic names are formed by concatenation of the theory
abbreviations given in parentheses.

We obtained all figures2 on a Linux system with an Intel Core2 Duo T7700
processor, running at 2.4GHz—the same machine that had been used to evalu-
ate ZI. Measurements were conducted with Z3 2.3 and CVC3 2.2. As underlying
ML environment, we used Poly/ML 5.3.0 for both Isabelle/HOL and HOL4. For
comparability with ZI, we restricted proof search to two minutes and proof recon-
struction to five minutes, and limited memory usage for both steps to 4GB. All
measured times are CPU times (with garbage collection in Poly/ML excluded).

Run-times for Isabelle/HOL are typically within a factor of 1–2 of HOL4
run-times. This is because we have fully implemented some of the optimizations
described in this paper only for HOL4 so far. It should not be taken as an
indication that HOL4 is more efficient than Isabelle/HOL per se.

6.1 SMT-COMP Benchmarks

Table 2 shows our results for Isabelle/HOL. For every SMT-LIB logic, we mea-
sured for Z3 the average time to find a proof and the average proof size, and
for our implementation the average time to reconstruct a proof (timeouts are
counted as 300 s). Additionally, we give success and timeout rates for proof re-
construction and the ratio of reconstruction time to solving time (R-time).

Our reconstruction succeeds on 75% of all problems solved by Z3. Failures are
mostly due to timeouts (19%), but also due to shortcomings of Z3 and in a few cases
of our reconstruction.3 Note that low success rates, which are in most cases caused
by timeouts, occur mainly in logics dominated by arithmetic. Closer analysis (of
individual examples and profiling data, see Sect. 6.4) suggests that the theory-
specific proof rules rewrite and th-lemma are to blame for this deficiency.

Proofs produced by Z3 may be extremely large. Our implementations are
nevertheless able to reconstruct huge proofs within the given timeout. The largest
proof successfully reconstructed had a size of 168MB and comprised more than
3 million Z3 proof rules.

Reconstruction for individual logics is at least 2.7 times slower than proof
search; on average the ratio lies at 18.5 despite our extensive optimizations. A
thorough study of our measurements, however, reveals that for several problem
classes, the picture is different: e.g., in case of AUFLIA−p, AUFLIA+p and
AUFLIRA, our reconstruction is faster than Z3 on 11-34% of all problems.

6.2 Comparison with CH

In the implementation of CH we tested, proof reconstruction was tuned for log-
ics including uninterpreted functions, arrays and linear integer arithmetic. Thus,
we only compare relevant results of the previous section with CH. Table 3 shows

2 Our data is available at http://www4.in.tum.de/~boehmes/fast_proof_rec.html
3 Z3 discovers injectivity of functions and uses this property for rewriting; reconstruc-

tion would require yet another special case for the already complex rewrite rule, which
we have not implemented so far.

http://www4.in.tum.de/~boehmes/fast_proof_rec.html
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Table 2. Experimental results (Isabelle/HOL) for selected SMT-COMP logics

Logic Solved (Z3) Reconstructed Rates

# Time Size # Time Success Timeout R-time

AUFLIA+p 187 0.095 s 64 KB 187 0.413 s 100% 0% 4.34
AUFLIA−p 192 0.117 s 81 KB 190 1.962 s 98% 0% 16.72
AUFLIRA 189 0.292 s 366 KB 144 0.794 s 76% 0% 2.72
QF AUFLIA 92 0.158 s 694 KB 49 136.498 s 53% 42% 863.85
QF IDL 40 2.322 s 12MB 19 173.875 s 47% 52% 74.89
QF LIA 100 17.154 s 77MB 26 208.713 s 26% 65% 12.17
QF LRA 88 4.849 s 10MB 55 142.351 s 62% 36% 29.36
QF RDL 52 9.773 s 16MB 26 173.953 s 50% 50% 17.80
QF UF 87 16.131 s 62MB 73 73.242 s 83% 16% 4.54
QF UFIDL 55 4.511 s 12MB 8 260.351 s 14% 85% 57.72
QF UFLIA 91 1.543 s 4MB 85 29.086 s 93% 6% 18.85
QF UFLRA 100 0.086 s 914 KB 100 3.916 s 100% 0% 45.68

Total 1273 3.656 s 13MB 962 67.785 s 75% 19% 18.54

Table 3. Comparison between Z3/Isabelle/HOL and CVC3/HOL Light

Logic Solved Reconstructed

# Time Rate Time

Z3 CVC3 I H I H

AUFLIA+p 182 0.043 s 0.485 s 100% 84% 0.294 s 12.369 s
AUFLIA−p 173 0.050 s 0.149 s 99% 80% 0.165 s 5.791 s
QF AUFLIA 89 0.053 s 3.150 s 52% 68% 17.197 s 4.068 s
QF IDL 34 0.483 s 10.063 s 52% 41% 20.776 s 87.772 s
QF LIA 18 0.398 s 25.587 s 55% 0% 33.870 s n/a
QF UF 58 1.531 s 7.920 s 100% 86% 13.465 s 14.645 s
QF UFIDL 38 0.301 s 6.525 s 18% 18% 13.017 s 27.120 s
QF UFLIA 82 0.034 s 4.114 s 100% 9% 4.897 s 18.866 s

Total 674 0.219 s 3.326 s 85% 64% 4.994 s 12.147 s

Table 4. Experimental results (HOL4) for selected SMT-LIB logics

Logic Solved (Z3) Reconstructed Failed Ratio

# Time # Time Size #T #Z R-time

AUFLIA 100 0.180 s 100 0.450 s 206 KB 0 0 2.5
AUFLIRA 100 0.051 s 97 0.034 s 16KB 0 3 0.7
QF UF 96 2.992 s 74 16.199 s 16 MB 1 21 5.4
QF UFLIA 99 0.534 s 92 6.948 s 194 KB 7 0 13.0
QF UFLRA 100 0.189 s 100 1.705 s 1 MB 0 0 9.0

for each considered logic the number of problems solved by both Z3 and CVC3,
their average run-time, the success rate of reconstruction for Isabelle/HOL (I)
and HOL Light (H), and the average run-time of reconstruction (timeouts are
counted as 300 s). Measuring these figures stimulated improvements to the im-
plementation of CH; we only give the newest (and best) results for CH.
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Clearly, our implementations can reconstruct more problems. More impor-
tantly, our reconstruction is on average more than two times faster than CH
(and up to 42 times faster in the case of AUFLIA+p), even though CH does not
have any parsing overhead (it uses a binary interface to CVC3, not a file-based
one like our implementations).

6.3 Comparison with ZI

For comparability, we evaluated our implementations on the same set of SMT-
LIB benchmarks (and, in fact, on the very same Z3 proofs) that were used to
evaluate ZI [15]. Table 4 summarizes our experimental results for HOL4. For each
SMT-LIB logic, the table shows the number of problems that Z3 determined to
be unsatisfiable, the average run-time of Z3 (as reported in [15]), the number of
successful proof reconstructions along with average HOL4 run-time and average
Z3 proof size, and the number of failed proof reconstructions (due to timeouts #T
and confirmed (and by now fixed) Z3 bugs #Z). The rightmost column of Tab. 4
shows the ratio of reconstruction time to solving time (R-time, cf. Sect. 6.1). We
observe that this ratio is less than 1 for the AUFLIRA logic: LCF-style proof
reconstruction for this logic is faster than proof search in Z3.

A more detailed comparison revealed that our highly optimized implementa-
tions (both in Isabelle/HOL and HOL4) outperform ZI on every problem of the
AUFLIA, AUFLIRA, QF UF and QF UFLRA logics. Often, the performance
gain is several orders of magnitude. Only the QF UFLIA logic contains 18 prob-
lems for which reconstruction in HOL4, despite our optimizations, is slower than
reported in [15]. We conclude that there is still potential for optimization in
HOL4’s decision procedure for integer arithmetic [21].

1
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AUFLIA AUFLIRA QF UF QF UFLIA QF UFLRA

Fig. 1. Speedup factors

The figure to the right shows the
average speedups of Isabelle/HOL
(left) and HOL4 (right) over the run-
times measured in [15]. Shaded bars
give the maximum speedups achieved
on individual problems (3,437 in the
case of AUFLIRA for our HOL4 im-
plementation!). Note that the figure
uses a logarithmic scale. The overall
speedup is 13.9 for HOL4 and 11.7 for
Isabelle/HOL.

6.4 Profiling

To further understand these results and to identify potential for future opti-
mization, we present relevant profiling data for our HOL4 implementation. (Is-
abelle/HOL profiling data is roughly similar.) Figures 2 to 6 show bar graphs
that indicate the four4 most time-consuming proof rules of Z3 for the respec-
tive SMT-LIB logic, and their percentaged shares of total run-time (dark bars).
4 For QF UFLIA, we only show th-lemma separately and combine all other rules.
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Additionally, time spent on parsing proof files is shown as well (see Tab. 4 for
average proof sizes). We contrast each proof rule’s relative run-time with the
mean frequency of that rule (light bars).
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We see that after extensive optimization, proof reconstruction times are rela-
tively well-balanced between Z3’s different proof rules for most logics, although
the rewrite rule still accounts for almost half of the total run-time on the AU-
FLIA, AUFLIRA, and QF UFLRA benchmarks. For QF UF, on the other hand,
rewriting is relatively unimportant, but proofs contain many (in fact, over 5 mil-
lion) unit-resolution inferences. Checking these consequently requires more
than 41% of the run-time.

For these four logics, merely parsing Z3’s proof files accounts for 11% (AU-
FLIA) to 19% (QF UF) of the total run-time. Note that parsing does not involve
the LCF-style inference kernel. Hence, there are limits to future performance
gains that can be achieved through further optimization of LCF-style reasoning.

The picture looks different for the QF UFLIA logic, where run-time is dom-
inated almost entirely by the th-lemma rule. Parsing and other proof rules
of Z3 account for less than 2% of reconstruction time. Z3 internally uses the
Simplex algorithm to decide linear arithmetic [9] and applies a branch and cut
strategy for integers [22]. However, any information about how a decision is
found is kept private: the th-lemma rule only represents the statement that
a system of linear inequations is inconsistent. Consequently, reconstructing this
proof rule amounts to finding the refutation again, with (probably) far less op-
timized decision procedures in the case of Isabelle/HOL and HOL4. Instead of
making those faster, we conjecture that enriching th-lemma with the necessary
information (which is already available in Z3) would improve efficiency of proof
reconstruction considerably.
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7 Conclusions

We have presented LCF-style proof reconstruction for Z3 in the theorem provers
Isabelle/HOL and HOL4. In comparison to a recent implementation in Isabelle/
HOL [15], our implementations are significantly faster on most benchmarks,
often by orders of magnitude. Moreover, we have modeled the proof rules of Z3 in
Isabelle/HOL and HOL4 with unprecedented accuracy, thereby achieving almost
full (except for very few exotic corner cases) proof coverage. We also outperform
a related implementation of proof reconstruction for CVC3 in HOL Light [12].
We have three main conclusions.

LCF-style proof checking for SMT is feasible. Our implementations give evidence
that LCF-style proof checking for SMT solvers is not only possible in principle,
but also that it is feasible. Clearly there is a steep price (in terms of performance)
that one has to pay for checking proofs in a general-purpose LCF-style theorem
prover. However, even for proofs with millions of inferences, LCF-style proof
checking can be as fast as (or even faster than) proof search in Z3. This confirms
a similar observation made in [16] regarding the feasibility of LCF-style proof
checking for large SAT-solver generated proofs.

Specialized implementations can be significantly faster than generic proof proce-
dures in LCF-style provers. The speedup that we achieved over [15] shows the
importance of profiling when performance is an issue. We achieved speedups of
several orders of magnitude by replacing calls to generic automated proof pro-
cedures with specialized implementations that perform the specific inferences
required to check Z3’s proof rules. This is despite the fact that some of these
automated procedures employ state-of-the-art algorithms internally. Of course,
writing fast specialized proof procedures requires much more familiarity with
the theorem prover than simply calling automated proof procedures.

Z3’s proof format could be easier to check. Conceptually, we only had to over-
come minor hurdles to implement proof reconstruction for Z3’s natural-deduction
style proofs in the considered LCF-style theorem provers. That the conclusion of
each inference step is given explicitly proved tremendously helpful. Proof rules
rewrite and th-lemma, however, seem overly complex, and despite substan-
tial optimization efforts, they still dominate run-time in our implementations.
We encourage the Z3 authors to (1) replace rewrite by a collection of sim-
pler rules with clear semantics and less reconstruction effort, ideally covering
specific rewriting steps of at most one theory, and (2) enrich th-lemma with
additional easily-checkable certificates or trace information guiding refutations
to avoid invocations of expensive (arithmetic) decision procedures. Currently the
theoretical complexity of proof checking for background theories is the same as
for proof search. We also hope that our experience will influence the design of a
future SMT proof standard.

We have integrated proof reconstruction as an automated proof procedure
in both HOL4 and Isabelle/HOL. If ϕ is an SMT formula, the user can in-
voke this proof procedure to have it pass ¬ϕ to Z3, reconstruct Z3’s proof of
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unsatisfiability (if one is found) to obtain {¬ϕ} � ⊥, and from this � ϕ is derived
by contradiction. Our implementations are freely available5 and already in use.

There are numerous differences in internal data structures between HOL4,
Isabelle/HOL and other LCF-style theorem provers, but based on previous ex-
perience [16] we have little doubt that the optimization techniques presented in
this paper can be used to achieve similar performance in other theorem provers.

Future work includes (1) proof reconstruction for other SMT-LIB theories,
e.g., bit vectors, (2) evaluation of proof reconstruction for typical goals of Is-
abelle/HOL or HOL4, (3) parallel proof reconstruction [23], by checking inde-
pendent paths in the proof DAG concurrently, and (4) investigations into proof
compression [24] for SMT proofs.
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INRIA
arthur.chargueraud@inria.fr

Abstract. In this paper, we develop a general theory of fixed point
combinators, in higher-order logic equipped with Hilbert’s epsilon oper-
ator. This combinator allows for a direct and effective formalization of
corecursive values, recursive and corecursive functions, as well as func-
tions mixing recursion and corecursion. It supports higher-order recur-
sion, nested recursion, and offers a proper treatment of partial functions
in the sense that domains need not be hardwired in the definition of func-
tionals. Our work, which has been entirely implemented in Coq, unifies
and generalizes existing results on contraction conditions and complete
ordered families of equivalences, and relies on the theory of optimal fixed
points for the treatment of partial functions. It provides a practical way
to formalize circular definitions in higher-order logic.

1 Introduction

1.1 Motivation: Partial Corecursive Functions

To the best of our knowledge, there exists, until now, no general approach to
formalizing partial corecursive functions in a simple and satisfying manner. Con-
sider for example the filter function on infinite streams. Given a predicate P of
type A→ bool (or A→ Prop), the filter function f takes a stream s and returns
a stream made of the elements of s that satisfy P . The filter function is partial
because it produces a well-defined stream only when its argument s contains
infinitely many items satisfying the predicate P .

One way to constructively formalize the definition of filter in a logic of total
functions is to have f take as extra argument a proof that its argument contains
infinitely many items satisfying the predicate P . In this approach, studied by
Bertot [4], the new filter function does not have the type stream A → streamA,
but instead admits a dependent type. Unfortunately, working with dependent
types is often associated with numerous technical difficulties, so we would rather
find a solution that does not make such a heavy use of dependent types.

A different, non-constructive approach to formalizing the filter function was
proposed by Matthews [17]. To apply his technique, the filter function first needs
to be turned into a total function, by testing explicitly whether the argument be-
longs to the domain. Let “neverP s” be a predicate that holds when the stream s
does not contain any item satisfying P . The body of the filter function can be de-
scribed through a functional F , as follows. Throughout the paper, the operator ::
denotes the consing operation on infinite streams.

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 195–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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F f s � let x :: s′ = s in if (never P s) then arbitrary else
if (P x) then x :: (f s′) else f s′

The filter function f can then be defined as “Fix1 F”, where Fix1 is a combinator
that picks, using Hilbert’s epsilon operator, the unique fixed point of its argument
when it exists, and otherwise returns an arbitrary value. Here, the functional F
can be proved to admit a unique fixed point using a fixed point theorem based
on contraction conditions, devised by Matthews [17]. It follows that f satisfies
the fixed point equation f s = F f s for any stream s.

The main downside of the approach described above is that the domain of
the function needs to be hardwired in its definition. As argued by Krauss [12]
for the case of recursive functions, this requirement is unsatisfactory. First, it
requires us to modify the code of the functional, which is inelegant and may cause
difficulties when extracting executable code. Second, it overspecifies the output
of the function outside its domain. Third, it requires knowledge of the domain
of the function at the time of its definition, which is not always practical [12].

The central matter of this paper is to construct a fixed point combinator Fix
that truly supports partial functions. For example, Fix can be directly applied
to the functional that describes the original filter function, shown below.

F f s � let x :: s′ = s in if (P x) then x :: (f s′) else f s′

1.2 Fixed Point Equations with Non-unique Solutions

Most forms of circular definitions can be captured by (or encoded as) an equation
of the form a = F a. Yet, such a fixed point equation does not necessarily admit
a unique solution.

One typical case is that of partial functions. In a logic of total functions, a
partial function can be represented as a pair of a total function f of type A → B
and a domain D of type A → Prop. The partial function (f, D) is said to be a
partial fixed point of a functional F of type (A → B) → (A→ B) if the equation
f x = F f x holds for any x satisfying D. (We postpone to §3.3 the discussion
of how circular definitions for partial functions can be expressed as equations of
the form a = F a.) A functional F typically admits several partial functions as
fixed point. Can one of them be considered the “best” fixed point for F?

The starting point of this paper is the observation that the exact answer to
this question is given by the theory of the optimal fixed point developed in 1975
by Manna and Shamir [16], which we have formalized in Coq. A fundamental idea
in this theory is that the only genuine solutions of a fixed point equation are the
partial functions that are consistent with any other fixed point (two functions are
consistent if they agree on the intersection of their domain). Such fixed points
are said to be generally-consistent. The optimal fixed point is defined as the
generally-consistent fixed point with the largest domain. In a sense, the optimal
fixed point is the most well-defined solution that can be extracted from the fixed
point equation without making arbitrary choices. Manna and Shamir [16] proved
that any functional of type (A→ B) → (A→ B) admits an optimal fixed point.
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Another typical case where fixed point equations do not not admit unique
solutions occurs when working modulo equivalence relations. A value a is a fixed
point of F modulo (≡) if the equation x ≡ F x holds for any value x such that
x ≡ a. Moreover, a fixed point a is said to be the unique fixed point modulo (≡)
of a functional F if any other fixed point x of F is equivalent to a modulo (≡).
In this case, even though the functional F does not admit a unique solution,
it admits a unique equivalence class of solutions. Thus, any element from this
class of equivalence can be considered as representing the meaning of the the
circular definition associated with F . The interest of the definition of “fixed
point modulo” is that it allows defining recursive functions on values compared
modulo an equivalence relation without involving an explicit quotient structure.

1.3 A Generic Fixed Point Combinator

In order to unify the various forms of circular definitions, we introduce a generic
fixed point combinator. The basic idea is to pick the “best” fixed point, for a
customizable notion of “best” that depends on the kind of circular definition
being targeted. Our combinator, called Fix, takes as argument an equivalence
relation ≡, an order relation � and a functional F . It then uses Hilbert’s epsilon
operator to pick, among the set of all fixed points modulo ≡ of the functional F ,
the greatest fixed point with respect to � (not be confused with the greatest
fixed point in the sense of domain theory).

Fix (≡) (�)F � ε x. [ greatest (�) (fixed point modulo (≡) F ) x ]

Appropriate instantiations of the binary relations≡ and � produce a combinator
for unique fixed point and a combinator for optimal fixed point (possibly modulo
an equivalence relation).

Now, in order to exploit properties about the value returned by Fix (≡) (�)F ,
we need to prove that the functional F indeed admits a greatest fixed point. For
a very large scope of circular definitions, the existence of greatest fixed points
can be derived from one very general theorem, which is developed in this paper.
This theorem combines and generalizes several existing ideas: contraction condi-
tions [11], inductive invariants [14] and complete ordered families of equivalence
[17,9]. Moreover, the corollaries used in the particular case of partial functions
rely on the theory of optimal fixed points [16] and involves a generalized version
of a theorem developed in the context of maximal inductive fixed points [14,13].

The paper is organized as follows. First, we present all the ingredients that
our paper builds upon. Second, we describe our generic fixed point combinator
and its specialized versions. We then present our fixed point theorem and its
corollaries. Finally, we investigate, without formal justification, the possibility
for code extraction from circular definitions based on the combinator Fix. Due
to space limitations, several results can only be summarized. The details can be
found in the technical appendix.1

1 Appendix available fom http://arthur.chargueraud.org/research/2010/fix/

http://arthur.chargueraud.org/research/2010/fix/
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2 Ingredients

2.1 Contraction Conditions for Recursive Functions

The recursion theorem from set theory justifies the existence of a unique func-
tion f such that ∀x. f x = F f x, provided F f x depends only on the values of f y
for y < x (with respect to some well-founded relation <). The contraction con-
dition formally captures the hypothesis of the recursion theorem. In the context
of machine-checked proofs, it seem to have first been exploited by Harrison [11].

Definition 1 (Contraction Condition for Recursive Functions). Let F
be a functional of type (A → B) → (A → B), and < be a well-founded relation
on values of type A. The contraction condition for F with respect to < states:

∀x f1 f2. (∀y < x. f1 y = f2 y) ⇒ F f1 x = F f2 x

This contraction condition ensures the existence of a unique fixed point for F as
soon as the codomain of the recursive function, the type B, is inhabited.

For example, consider the functional as F f x � if x ≤ 1 then 0 else 1+ f �x
2 �,

which describes a function that computes the binary logarithm of its argument.
Let us prove that this functional is contractive. Given arbitrary x, f1 and f2 and
the assumption “∀y < x. f1 y = f2 y”, the proof obligation is:

if x ≤ 1 then 0 else 1 + f1 �x2 � = if x ≤ 1 then 0 else 1 + f2 �x2 �

If x is less or equal to 1, then the goal is trivial. Otherwise, we need to show
that f1 �x

2 � and f2 �x
2 � are equal. The only way to prove this equality is to use

the assumption “∀y < x. f1 y = f2 y”. So, we have to justify the fact that �x
2 � is

less than x, which is true because x is greater than one. The inequation �x
2 � < x

indeed captures the fact that the recursive call is made on a value smaller than
the current argument x.

Contraction conditions support reasoning on higher-order recursion. They can
also be adapted to n-ary recursive functions and mutually-recursive functions,
which can be encoded into simple functions using products and sums, respec-
tively. Moreover, contraction conditions can be easily extended so as to support
partial functions by restricting arguments to be in a given domain D. For a func-
tional F contractive on a domain D, the fixed point theorem guarantees the exis-
tence of a partial fixed point f on that domain, satifying ∀x. D x⇒ f x = F f x.
Notice that the use of this theorem requires one to provide the domain D before
constructing the fixed point f of F .

2.2 Inductive Invariants

As Krstić and Matthews [14] point out, the contraction condition for recursive
function fails to handle the case of nested recursion. Consider the nested zero
function, described by the functional F f x � if x = 0 then 0 else f(f(x − 1)).
Trying to prove F contractive leads to the proof obligation f1(f1(x − 1)) =
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f2(f2(x− 1)). The hypothesis of the contraction condition can be used to prove
f1(x− 1) equal to f2(x− 1), because x− 1 is smaller than x. However, we have
no assumption at all on the value of f1(x− 1), so we cannot prove the equality
f1(f1(x− 1)) = f2(f1(x− 1)). To address this limitation, Krstić and Matthews
[14] introduced the notion of inductive invariants and used it to weaken the
contraction condition, thereby obtaining a stronger fixed point theorem able to
handle nested recursion.

Definition 2 (Inductive invariants). A binary relation S of type A → B →
Prop is an inductive invariant for a functional F of type (A → B) → (A → B)
if there exists a well-founded relation < such that

∀x f. (∀y < x. S y (f y)) ⇒ S x (F f x)

The first observation to be made is that if S is an inductive invariant for F , then
any fixed point f of F admits S as post-condition, in the sense that S x (f x)
holds for any x. Formally, the restricted contraction condition for a functional F ,
with respect to an inductive invariant S, is similar to the contraction condition
except that it includes an extra hypothesis about the function f1. This condition
guarantees the existence and uniqueness of a fixed point.

Definition 3 (Restricted Contr. Condition for Recursive Functions)

∀x f1 f2. (∀y < x. f1 y = f2 y) ∧ (∀y. S y (f1 y)) ⇒ F f1 x = F f2 x

By instantiating S as the predicate “λx r. (r = 0)”, one can prove that the nested
zero function admits a unique fixed point and always returns zero.

2.3 Complete Ordered Families of Equivalences

The contraction conditions described so far can only deal with recursion, for
the basic reason that recursive calls must be applied to smaller values with re-
spect to a well-founded relation. In order to deal with corecursive functions,
Matthews [17] introduced a different form of contraction conditions stated in
terms of families of converging equivalence relations. Di Gianantonio and Mic-
ulan [9] slightly simplified this structure, calling it complete ordered families of
equivalence, abbreviated as “c.o.f.e.”. We follow their presentation.

The contraction condition for a functional F of type (A → A) → A is stated

in terms of a family of equivalence relations over values of type A, written
i≈,

indexed with values of an ordered type I. This family needs to be complete in the
sense that all coherent sequences converge to some limit. Note: the definitions of
coherence and of completeness can be skipped upon first reading.

Definition 4 (Ordered Families of Equivalence). The structure (A, I,≺,
i≈)

is an ordered family of equivalences when ≺ is a well-founded transitive relation

over the type I and
i≈ is an equivalence relation over the type A for any i of

type I. Thereafter, the intersection of all the relations
i≈ is written ≈.
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Definition 5 (Coherent Sequences). A sequence ui of values of type A in-
dexed by elements of type I is said to be coherent if for any indices i and j such

that i ≺ j the values ui and uj are equivalent at level i, that is, ui
i≈ uj. More

generally, the sequence ui is said to be coherent on the domain K, for a predicate

K of type I → Prop, when the property ui
i≈ uj holds for any i and j satisfying

K and such that i ≺ j holds.

Definition 6 (Completeness for an Ordered Family of Equivalences).

An ordered family of equivalences (A, I,≺,
i≈) is said to be complete if, for any

downward-closed domain K (i.e., such that i ≺ j and K j imply K i) and for
any sequence ui coherent on the domain K, the sequence ui admits a limit l on

the domain K, in the sense that ui
i≈ l holds for any i satisfying K.

A basic example of c.o.f.e. is the one associated with streams. In this case, I

is the set of natural numbers ordered with <. The relation
i≈ relates any two

streams that agree up to their i-th element. The intersection ≈ of the family

of relations (
i≈)i∈N corresponds to stream bisimilarity. This construction of a

c.o.f.e. for sterams can be easily generalized to coinductive trees.
Complete ordered families of equivalences are used to state the following suf-

ficient condition for the existence of a unique fixed point for F modulo ≈.

Definition 7 (Contraction Condition for c.o.f.e.’s). The functional F is

contractive w.r.t. a complete ordered family of equivalences (A, I,≺,
i≈) when

∀x y i. (∀j ≺ i. x
j≈ y) ⇒ F x

i≈ F y

In the particular case of streams, the contraction condition expresses the fact
that if x and y are two streams that agree up to the index i− 1, then F x and
F y agree up to the index i. More generally, the contraction condition asserts
that, given any two values x and y, the functional F is such that F x and F y
are always closer to one another than x and y are, for an appropriate distance.

Di Gianantonio and Miculan [10] have described a general theory, expressed
in categories of sheaves, in which complete ordered families of equivalences are
simply particular cases of sheaves on well-founded topologies. Their theory also
covers the case of well-founded recursion, described by functionals of type ∀x :
A. ({y | y < x} → B)→ B. However, di Gianantonio and Miculan do not cover
the important case of nested calls, nor do they explain how the contraction
condition for recursive functions described by functionals of type (A → B) →
(A→ B) fits their model.

2.4 Optimal Fixed Point

The combinator Fix1 for unique fixed points [17] described in the introduction
does not work for partial functions because the associated fixed point equation
typically admits several partial fixed points. One idea, put forward by Krstić
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and Matthews [14] and investigated in more details by Krstić in [13], is that
there is always a “best” domain for any functional describing a terminating
recursive function, and that, on this domain, there exists a unique fixed point.
The formalization of this idea relies on the notion of inductive fixed point.

Definition 8 (Inductive Fixed Point). f is an inductive fixed point of a
functional F on a domain D if there exists a well-founded relation < such that:

∀g x. D x ⇒ (∀y < x. D y ⇒ f y = g y) ⇒ f x = F g x

Interestingly, an inductive fixed point on a given domain is always the unique
fixed point on that domain. Moreover, any functional admits a maximal inductive
fixed point, which is the inductive fixed point with the largest domain. This
theorem, which does not appear to have ever been mechanized, may suggest
the definition of a maximal inductive fixed point combinator. Such a combinator
would be useful for terminating functions. However, it would not accommodate
corecursive functions.

In this paper, we invoke an older and much more general theorem in order
to formalize the notion of “best” fixed point. The theorem, due to Manna and
Shamir [16], asserts the existence of an optimal fixed point for any functional de-
scribing a partial function. While it was initially designed for recursive programs,
the theorem turns out to apply to a much larger class of circular definitions.

Several definitions need to be introduced before we can state this theorem.
A partial function f̄ , written with an overline, is represented as a pair (f, D)
of a total function f of type A → B and of a domain D of type A → Prop.
We write A ↪→ B the type of partial functions from A to B. Moreover, we
write dom(f̄) the right projection of f̄ and write f (without an overline) the
left projection of f̄ . Two partial functions f̄ and f̄ ′ are said to be equivalent,
written f̄

↪→= f̄ ′, if they have the same domain and are extensionally equal on
that domain. Moreover, two partial functions f̄ and f̄ ′ are said to be consistent
if they agree on the intersection of their domains. Finally, a partial function f̄ ′

extends a partial function f̄ , written f̄  f̄ ′, if the domain of f̄ is included in
the domain of f̄ ′ and if f and f ′ are extensionally equal on the domain of f̄ .
Note that the relation  defines a partial order (modulo ↪→=) on the set of partial
functions. The next two definitions formalize the notion of optimal fixed point.

Definition 9 (Generally-Consistent Fixed Points). Let f̄ be a fixed point
modulo ↪→= (the equivalence between partial functions) of a functional F of type
(A ↪→ B) → (A ↪→ B). The fixed point f̄ is said to be a generally consistent,
written generally consistentF f̄ , if any other fixed point f̄ ′ of F modulo ↪→= is
consistent with f̄ .

In other words, a generally-consistent fixed point f̄ of a functional F is such
that, for any other fixed point f̄ ′ of F , the equation f ′(x) = f(x) holds for any x
that belongs both to the domain of f̄ and that of f̄ ′. The contrapositive of this
statement asserts that the domain of a generally-consistent fixed point cannot
include any point x whose image is not uniquely determined by the fixed point
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equation for F . Thus, as argued by Manna and Shamir [16], generally-consistent
fixed points are the only genuine solutions of any circular function definition.

Definition 10 (Optimal Fixed Point). A partial function f̄ of type A ↪→ B
is the optimal fixed point of a functional F of type (A ↪→ B) → (A ↪→ B) if
it is the greatest generally-consistent fixed point of F , with respect to the partial
order  on the set of partial functions.

In short, the optimal fixed point f̄ of a functional F is the generally-consistent
fixed point of F with the largest domain. This means that every other generally-
consistent fixed point of F is a restriction of f̄ to a smaller domain.

Theorem 1 (Optimal Fixed Point Theorem). For any functional F of type
(A ↪→ B)→ (A ↪→ B), where B is inhabited, F admits an optimal fixed point.

The optimal fixed point theorem appears to have had relatively little impact as a
theory of circular program definitions, probably because optimal fixed points are
not computable in general. Yet, as a foundation for a theory of circular logical
definitions, we find the optimal fixed point theorem to be the tool of choice.

2.5 Contributions of This Paper

1. By spotting the interest of optimal fixed points for logical circular defini-
tions and by conducting the first formal development of the optimal fixed
point theorem, we obtain a proper treatment of partiality for recursive and
corecursive functions in higher-order type theory.

2. Using invariants to generalize existing results on complete ordered fami-
lies of equivalences, we provide the first general method for justifying the
well-definiteness of nested corecursive functions. The use of invariants also
supports reasoning on certain forms of corecursive values that could not be
formalized with previously-existing contraction conditions.

3. By showing that contraction conditions for recursive functions can be ob-
tained as a particular instance of contraction conditions for complete ordered
families of equivalences, even when nested calls are involved, we are able to
offer a unified presentation of a number of fixed point theorems based on
contraction conditions.

3 The Greatest Fixed Point Combinator

3.1 Definition of the Greatest Fixed Point Combinator

The combinator Fix takes as argument an equivalence relation ≡ and a partial
order �, both defined on values of an inhabited type A. It then takes a functional
F of type A→ A and returns the greatest fixed point of F modulo ≡ with respect
to �, if it exists. Its definition relies on the predicate “greatest ≺ P x”, which
asserts that x satisfies P and that x is greater than any other value satisfying P ,
with respect to ≺.
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Definition 11 (The Greatest Fixed Point Combinator)

Fix (≡) (�)F � ε x. [ greatest (�) (fixed point modulo (≡) F ) x ]

Note that Coq can accomodate Hilbert’s epsilon operator. It suffices to add
the axiom of indefinite description and that of predicate extensionality. The
application of the epsilon operator requires a proof that the type A is inhabited.
We encapsulate this proof using an inductive data type Inhabited, of sort Type →
Prop. (Note that proofs of type InhabitedA need not be manipulated explicitly,
thanks to the use of Coq’s typeclass facility.) Thus, Fix has type:

∀A. (Inhabited A) → (A→ A→ Prop)→ (A → A→ Prop)→ (A→ A) → A

3.2 Instantiation as a Unique Fixed Point Combinator

The unique fixed point combinator Fix1, useful for circular definitions that do
not involve partial functions, can be defined in terms of Fix. To that end, it
suffices to instantiate both ≡ and � as the equality between values of type A.

Definition 12 (Another Unique Fixed Point Combinator)

FixVal F � Fix (=) (=)F

FixVal is provably equivalent to the definition ε x.(∀y. y = F y ⇐⇒ y = x).
More generally, we can construct a combinator for unique fixed point modulo

an equivalence relation ∼, simply by instantiating both ≡ and � as ∼.

Definition 13 (Combinator for Unique Fixed Point Modulo)

FixValMod (∼)F � Fix (∼) (∼)F

3.3 Instantiation as an Optimal Fixed Point Combinator

We now construct a combinator that returns the optimal fixed point of a func-
tional F of type (A → B) → (A → B). First, we need to transform F as a
functional between partial functions, of type (A ↪→ B) → (A ↪→ B), so as to
be able to invoke the theory of optimal fixed points. Second, we need to find a
suitable instantiation of the relation � to ensure that the greatest fixed point
with respect to � is exactly the optimal fixed point. We start with the first task.

Definition 14 (“Partialization” of a Functional). A functional F of type
(A → B) → (A → B) can be viewed as a functional of type (A ↪→ B) →
(A ↪→ B), i.e. as a functional on partial functions, by applying the following
“partialization” operator: partializeF � λ(f, D). (F f, D).

Definition 15 (Partial Fixed Points). Given a functional F of type (A →
B)→ (A → B), we say that f̄ is a partial fixed point of F if and only if it is a
fixed point of the functional “partializeF” modulo ↪→=.
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Our next step is to define a relation#F over the set of fixed points of “partializeF”
so that the greatest element of#F is exactly the optimal fixed point of F . On the
one hand, the optimal fixed point is a generally-consistent fixed point of “partialize
F”, moreover it is the greatest with respect to . On the other hand, the combina-
tor Fix produces a fixed point f̄ of “partializeF” which is the greatest with respect
to the relation #F , meaning that any other fixed point f̄ ′ satisfies f̄ ′ #F f̄ . To
ensure that f̄ is the optimal fixed point, we need to ensure (1) that f̄ is gener-
ally consistent, and (2) that f̄ extends any other generally-consistent fixed point.
These two requirements give birth to the following definition of #F .

Definition 16 (Partial Order Selecting the Optimal Fixed Point)

f̄ ′ #F f̄ � consistent f̄ f̄ ′ ∧ (generally consistentF f̄ ′ ⇒ f̄ ′  f̄)

Given a functional F of type (A → B) → (A → B), the value returned by
“Fix (↪→=) (#F ) (partialize F )” is a function of type A ↪→ B. Since we are not
interested in the domain of the resulting function but only in its support, of
type A→ B, we retain only the first projection.

Definition 17 (The Optimal Fixed Point Combinator)

FixFun F � π1(Fix (↪→=) (#F ) (partializeF ) )

The following theorem relates the definition of FixFun with that of the optimal
fixed point, thereby justifying that FixFun indeed picks an optimal fixed point.

Theorem 2 (Correctness of the Optimal Fixed Point Combinator).
Given a functional F of type (A → B) → (A → B) and a partial function f̄ of
type A ↪→ B, the following two propositions are equivalent:

1. greatest ( ) (generally consistentF ) f̄

2. greatest (#F ) (fixed point modulo (↪→=) (partializeF )) f̄

This ends our construction of the optimal fixed point combinator. The construc-
tion can be easily generalized to the case where values from the codomain B are
compared with respect to an arbitrary equivalence relation ≡ rather than with
respect to Leibniz’ equality. This construction results in a strictly more general
combinator, called FixFunMod, which is parameterized by the relation ≡.

4 The General Fixed Point Theorem and Its Corollaries

4.1 A General Contraction Theorem for c.o.f.e.’s

Our fixed point theorem for c.o.f.e.’s strengthens the result obtained Matthews
[17] and later refined by Di Gianantonio and Miculan [9], adding, in particular,
support for nested calls. Our contraction condition generalizes the contraction
condition for c.o.f.e.’s with an invariant, in a somewhat similar way as in the
restricted contraction condition.
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Definition 18 (Contraction Condition). Given a c.o.f.e. (A, I,≺,
i≈), a func-

tional F of type A → A is said to be contractive with respect to an invariant Q of
type I → A→ Prop when

∀x y i. (∀j ≺ i. x
j≈ y ∧ Q j x ∧ Q j y) ⇒ F x

i≈ F y ∧ Q i (F x)

Our fixed point theorem asserts that a given functional admits a unique fixed
point as soon as it is contractive with respect to a continuous invariant. The
notion of continuity that we introduce for this purpose is defined as follows.

Definition 19 (Continuity of an Invariant). Given a c.o.f.e. (A, I,≺,
i≈),

an invariant Q is said to be continuous if the following implication holds for any
downward-closed domain K, for any sequence (ui)i:I and for any limit l.

(∀i. K i⇒ ui
i≈ l) ∧ (∀i. K i⇒ Q i (ui)) ⇒ (∀i. K i ⇒ Q i l)

Theorem 3 (Fixed Point Theorem for c.o.f.e.’s). If (A, I,≺,
i≈) is a c.o.f.e.

and if F is a functional of type A → A contractive with respect to a continuous
invariant Q in this c.o.f.e., then F admits a unique fixed point x modulo ≈.
Moreover, this fixed point x is such that the invariant Q i x holds for any i.

The proof of this theorem is fairly involved. The fixed point is constructed as
a limit of a sequence, defined by well-founded induction on ≺. Each element
of this sequence is itself defined in terms of a limit of the previous elements in
the sequence. Moreover, the convergence of all those limits depend on the fact
that the i-th value of the sequence satisfies the invariant at level i, that is, the
predicate Q i.

4.2 Fixed Point Theorem for Corecursive Values

When F is a contractive functional modulo ≈, it admits a unique fixed point
modulo ≈ (by Theorem 3), thus “FixValMod (≈)F” satisfies the fixed point
equation for F .

Theorem 4 (Fixed Point Theorem for FixValMod)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = FixValMod (≡)F

(A, I,≺,
i≈) is a c.o.f.e.

≡ is equal to
⋂

i:I
i≈

F is contractive w.r.t. Q
Q is continuous

⇒
{

x ≡ F x
∀i. Q i x

Compared with previous work, the use of an invariant in the contraction con-
dition makes it strictly more expressive. For the sake of presentation, we con-
sider a simple example. The circular definition associated with the functional
F s � 1 :: (filter (≥ a) s) is correct only if a ≤ 1. When this is the case, we
can prove F contractive. It suffices to define the invariant Q in such a way that
“Q i s” implies that the i first elements of s are greater than or equal to a.
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4.3 Fixed Point Theorem for Recursive Functions

The goal of this section is to build a c.o.f.e. that can be used to prove that
a functional F of type (A → B) → (A → B) describing a terminating recur-
sive function on a domain D admits a unique fixed point of type A → B. This
relatively simple construction, which allows us to unify the various forms of con-
traction conditions, does not seem to have appeared previously in the literature.

Theorem 5 (c.o.f.e. for Recursive Functions). Let ≡ be an equivalence
relation of type A → A → Prop, let < be a well-founded relation of type A →
A → Prop, and let D be a domain of type A → Prop. Then, the structure
(A→ B, A, <+,

x≈) is a complete ordered family of equivalences, where (
x≈)x:A is

a family of equivalence relations on values of type A→ B defined as follows:

f1
x≈ f2 � ∀y <∗ x. D y ⇒ f1 y ≡ f2 y

Above, <+ is the transitive closure of < and <∗ its reflexive-transitive closure.

In this particular c.o.f.e., the contraction condition can be reformulated in a way
which, in practice, is equivalent to the conjunction of the propositions “S is an
inductive invariant for F” and “F satisfies the restricted contraction condition
with respect to S” (Definition 2 and Definition 3).

Theorem 6 (Contraction Condition for Recursive Functions). Let D be
a domain of type A → Prop and let S be a post-condition of type A → B → Prop
compatible with ≡, in the sense that if “S x y1” holds and if “y1 ≡ y2” then
“S x y2” also holds. Then, in the c.o.f.e. for recursive functions, a functional F
is contractive w.r.t. the invariant “λx f. D x⇒ S x (f x)” as soon as F satisfies

∀x f1 f2. D x ∧ (∀y < x. D y ⇒ f1 y ≡ f2 y ∧ S y (f1 y))
⇒ F f1 x ≡ F f2 x ∧ S x (F f1 x)

A corollary, not shown here, to the general fixed point theorem (Theorem 3)
can be stated for this reformulated contraction condition. The conclusion of this
corrolary asserts the existence of a partial fixed point f modulo ≡ on the domain
D. Moreover, this fixed point f satisfies the post-condition ∀x. D x⇒ S x (f x).

The next key theorem in our development establishes that the partial fixed
point (f, D) is a generally-consistent fixed point of the functional “partializeF”.
The proof of this theorem is quite technical. It reuses and generalizes several ideas
coming from the proof that inductive fixed points are generally-consistent [13].

Combining the existence of a generally-consistent fixed point f for F on the
domain D with the existence of an optimal fixed point for F , we deduce that the
domain of the optimal fixed point of F contains D. It follows that the optimal
fixed point for F satisfies the fixed point equation on the domain D.

Theorem 7 (Specification of FixFunMod for Recursive Functions)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f = FixFunMod (≡)F
≡ is an equivalence
< is well-founded
S is compatible with ≡
F is contractive on D w.r.t. < and S modulo ≡

⇒
{∀x. D x ⇒ f x ≡ F f x
∀x. D x ⇒ S x (f x)
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4.4 Fixed Point Theorem for Mixed Recursive-Corecursive
Functions

Due to space limitations, we skip the description of the c.o.f.e. for simple corecur-
sive functions and directly focus on the strictly more general c.o.f.e. for functions
mixing recursion and corecursion. Compared with the construction proposed by
Matthews [17], we have added support for partial functions and for nested calls.

Let A → B be the type of the function to be constructed and let D be
the domain on which we want to prove the function well-defined. The values
of the input type A are compared with respect to some well-founded relation,
written <. The values of the coinductive output type B are compared using an

existing c.o.f.e. (B, I,≺,
i≈). The following result explains how to combine < and

≺ in order to construct a c.o.f.e. for the function space A → B. The associated
contraction condition and the fixed point theorem follow.

Theorem 8 (c.o.f.e. for Mixed Recursive-Corecursive Functions). The

structure (A → B, I × A, <′,
(i,x)
≈′ ) is a c.o.f.e., where <′ is the lexicographical

order associated with the pair of relations (≺, <+) and where (
(i,x)
≈′ )(i,x):I×A is a

family of equivalence relations on values of type A→ B such that

f1

(i,x)

≈′ f2 � ∀(j, y) ≤′ (i, x). D y ⇒ f1 y
j≈ f2 y

Theorem 9 (Contraction Condition for Mixed Functions). Let D be a
domain of type A → Prop. Let S be an indexed post-condition of type I →
A → B → Prop, compatible with

i≈ in the sense that if “S i x y1” holds and if

“∀j ≺ i. y1
j≈ y2” holds then “S i x y2” holds. Then, in the c.o.f.e. for mixed

recursive-corecursive functions, a functional F is contractive w.r.t. the invariant
“λ(i, x) f. D x⇒ S i x (f x)” as soon as F satisfies the condition:

∀i x f1 f2. D x ∧ (∀(j, y) <′ (i, x). D y ⇒ f1 y
j≈ f2 y ∧ S j y (f1 y) ∧ S j y (f2 y))

⇒ F f1 x
i≈ F f2 x ∧ S i x (F f1 x)

Theorem 10 (Specification of FixFunMod for Mixed Functions)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = FixFunMod (≡)F
< is a well-founded relation

(B, I,≺,
i≈) is a c.o.f.e.

≡ is equal to
⋂

i:I
i≈

F is contractive on D w.r.t. S

S is compatible with
i≈

⇒
{∀x. D x ⇒ f x ≡ F f x
∀i x. D x ⇒ S i x (f x)

Let us apply this theorem to the filter function. Let f be the function FixFunMod
(≡)F, where F is the functional defined in §1.1 and ≡ stands for stream bisimi-
larity. The domain D characterizes streams that contain infinitely many elements
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satisfying the predicate P . Two streams from the domain are compared as fol-
lows: s < s′ holds if the index of the first element satisfying P in s is less than
the index of the first element satisfying P in s′. No invariant is needed here, so
we define S such that S i s s′ always holds. Let us prove F contractive, as in [17].
Assume the argument s decomposes as x :: s′. There are two cases. If x satisfies

P , then the goal is x :: (f1 s′)
i≈ x :: (f2 s′). This fact is a consequence of the

assumption f1 s′
i−1≈ f2 s′, which we can invoke because (i−1, s′) is lexicographi-

cally smaller than (i, s). If x does not satisfy P , the goal is f1 s′
i≈ f2 s′. This fact

also follows from the hypothesis of the contraction condition, because (i, s′) is
lexicographically smaller than the pair (i, s). Note that this relation holds only
because the argument s belongs to the domain D. In conclusion, the equation
f s ≡ F f s holds for any stream s in the domain D.

5 Code Extraction

Given a formal development carried out in higher-order logic, one can extract
a purely functional program by retaining only the computational content and
erasing all the proof-specific elements. The extracted code enjoys a partial cor-
rectness property with respect to the original development. Note that termi-
nation is usually not guaranteed: even a Caml program extracted from a Coq
development can diverge [3]. Our definition of Fix relies on Hilbert’s epsilon op-
erator, a non-constructive axiom that does not admit an executable counterpart.
Nevertheless, it is still possible to translate the constant Fix into a native “let-
rec” construct from the target programming language. (A similar technique in
described in Bertot and Komendantsky’s work [6].)

Our experiments suggest that this extraction leads to efficient and correct
programs, with respect to partial correctness. However, a formal justification of
our approach is not attempted in this paper. The theory of code extraction is
already far from trivial [15] and there exists, as far as we know, no theory able
to account for the correctness of code extraction in the presence of user-defined
extraction for particular constants. Thus, in this paper we do not attempt a
correctness proof and simply point out that extraction can be set up in practice.

In Haskell, where evaluation is lazy by default, the extraction of the constant
Fix is very simple: it suffices to translate “Fix” into “λF. letx = F x in x”. This
value has type “∀A. (A → A) → A”, which is appropriate given the type of
Fix. The extraction towards OCaml code is slightly trickier: due to the explicit
boxing of lazy values, we need to extract the combinator for corecursive values
towards a different constant than that used to extract functions.

6 Other Related Work and Future Work

The most closely related work has already been covered throughout §2. In this
section, we briefly mention other approaches to circular definitions. Krauss [12]
gives a detailed list of papers dealing with recursive function definitions.
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The package TFL developed by Slind [19] supports the definition of total re-
cursive functions for which a well-founded termination relation can be exhibited.
Building on Slind’s ideas, Krauss [12] developed the function package, which sup-
ports a very large class of partial recursive functions. It relies on the generation
of an inductive definition that captures exactly the domain of the recursive func-
tion. Contrary to our work, this approach does not support code generation for
partial functions (except tail-recursive ones) and does not support corecursion.

The technique of recursion on an ad-hoc predicate, which consists in defining
a function by structural induction on an inductive predicate that describes its
domain, was suggested by Dubois and Donzeau-Gouge [8] and developed by
Bove and Capretta [7]. Later, Barthe et al. [2] used it in the implementation
of a tool for Coq. Besides the fact that it relies heavily on programming with
dependent types, one major limitation of this approach is that the treatment of
nested recursion requires the logic to support inductive-recursive definitions.

Another possibility for defining terminating recursive functions is to work
directly with a general recursion combinator [18], using dependently-typed func-
tionals. Balaa and Bertot [1] proved a fixed point theorem in terms of a con-
traction condition for functions of type “∀x : A. (∀y : A. R y x ⇒ B y) ⇒ B x”,
where R is some well-founded relation. More recently, Sozeau [20] implemented
facilities for manipulating subset types in Coq, including a fixed point combina-
tor for functionals of type

(∀x : A.
(∀y : {y : A |R y x}. B (π1 y)

) ⇒ B x
) ⇒

∀x : A. (B x). This approach supports higher-order and nested recursion, but
only if the inductive invariant of the function appears explicitly in its type.

Bertot [4] has investigated the formalization of the filter function in con-
structive type theory. This work was later generalized to support more general
forms of mixed recursive-corecursive functions [5]. More recently, Bertot and
Komendantsky [6] used Knaster-Tarski’s least fixed point theorem as a basis to
define and reason on non-terminating functions (the development requires clas-
sical logic and a description axiom). The main limitation of their approach is
that the output type of every function must be turned into an option type.

In the future, we would like to implement a generator for automatically deriv-
ing corollaries to the general fixed point theorem, covering each possible function
arity and providing versions with and without domains and invariants. Proving
such corollaries by hand on a per-need basis is generally manageable, but having
a generator would certainly be much more convenient.
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Abstract. This article presents the formal proof of correctness for a
plane Delaunay triangulation algorithm. It consists in repeating a se-
quence of edge flippings from an initial triangulation until the Delaunay
property is achieved. To describe triangulations, we rely on a combi-
natorial hypermap specification framework we have been developing for
years. We embed hypermaps in the plane by attaching coordinates to
elements in a consistent way. We then describe what are legal and il-
legal Delaunay edges and a flipping operation which we show preserves
hypermap, triangulation, and embedding invariants. To prove the termi-
nation of the algorithm, we use a generic approach expressing that any
non-cyclic relation is well-founded when working on a finite set.

1 Introduction

Delaunay triangulation is one of the cornerstones of computational geometry. In
two dimensions, the task is, given a collection of input points, to find triangles
whose corners are the input points, so that none of the input points lies inside the
circumcircle of a triangle. This constraint about circumcircles makes it possible
to ensure that flat triangles are avoided as much as possible. This is important
for many numeric simulation applications, as flatter triangles imply more errors
in the simulation process.

To our knowledge, this article presents the first formalized proof of correctness
of an algorithm to build a plane Delaunay triangulation. The algorithm takes
as input an arbitrary triangulation and repeatedly flips illegal edges until the
Delaunay criterion is achieved. This is one of the most naive algorithms, but
proving its formal correctness is already a challenge. We shall review more related
work around geometry, combinatorial maps, and formalization in section 2.

We use a general data-structure to represent plane subdivisions and perform
proofs, known as hypermaps [32,10,16,3,12,14,15]. Hypermaps are collections of
darts equipped with two permutations. Darts are elementary objects, more el-
ementary than points: usually, two darts constitute an edge and several darts
� This work is supported by the French ANR project GALAPAGOS (2007-2010).
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constitutes a point. The two permutations are used to describe how darts are
connected together to constitute an edge or a point. We then need to give lo-
cations to points. This is done by embedding the darts in the plane, by simply
attaching coordinates, making sure that all darts that constitute the same point
should have the same coordinates. We then restrict our work to triangulations by
defining a way to compute faces and by considering hypermaps with three-point
faces. We shall review our approach to hypermaps in section 3.

The edge flipping operation can be defined at a topological level: it mainly
consists in detaching an edge from two points and attaching it back to two
other points. As an intermediate step, we observe a hypermap that is not a
triangulation, but after re-attaching the edge we get back a new triangulation.
We review the topological aspect of edge flipping in section 4.

The next step is to describe where edge flipping occurs. At this point the
coordinates of points play a role. We formalize how oriented triangles and cir-
cumcircles are computed and define illegal edges. We show that illegal edges can
be flipped and that the operation also preserves the geometric constraints of
well-embedded triangulations. We study this aspect in section 5.

A crucial aspect of our formalization is to show that the algorithm terminates.
We tackle this issue by formalizing the argument that the number of possible
triangulations based on a given collection of darts and a given collection of points
is finite. We then exhibit a real number associated to each triangulation that de-
creases when an illegal edge is flipped. Because the set of possible triangulations
is finite, this is enough to ensure termination. This point is studied in a generic
manner in section 6.

In section 7, we show the kind of correctness statement that we have proved
about our Delaunay algorithm. The full formalization is developed in Coq [4,9].
It covers many different aspects: hypermaps, geometry, termination problems.
Because of the size of this paper, we do not enter into details, but the full
formalization is available at [17].

2 Related Work

2.1 Geometric Modeling and Delaunay Triangulations

Like [23], we work with a general model of plane subdivisions, based on hy-
permaps [10] and combinatorial oriented maps [32]. The triangulations of our
development are a kind of combinatorial oriented maps.

Triangulations are widely used in computational geometry to model, recon-
struct or visualize surfaces. For instance, the CGAL library offers a lot of ad-
vanced functionalities about triangulations [7]. Among them, the Delaunay trian-
gulations [23,25,18,2] are very appreciated in applications because their triangles
are regular enough to avoid some numerical artefacts. Pedagogical presentation
are given in [18,2].



Formal Study of Plane Delaunay Triangulation 213

2.2 Formal Specifications and Proofs in Computational Geometry

We work in the Calculus of Inductive Constructions with Coq [4,9]. Related work
on the description of geometric algorithms includes [29] also using Coq and [26]
using Isabelle. Concerning graphs, [1] gives a model of triangulations restricted
to the study of the five color theorem. Hypermaps are also used intensively in
[22] for the proof of the four-colour theorem. A detailed comparison is given in
[15]. Hypermaps also play a significant role in the formalization of packings by
tame graphs in the proof of Kepler’s conjecture [28].

Other work with close variants of the hypermaps used in this paper are con-
cerned with the formal study of geometric modelling [31], surface classification
[11], image segmentation [13], and a discrete form of the Jordan curve theorem [15].

3 Hypermaps

3.1 Mathematical Aspects

Definition 1. (Hypermap)
(i) A hypermap is an algebraic structure M = (D, α0, α1), where D is a finite
set, the elements of which are called darts, and α0, α1 are permutations on D.

Intuitively, darts can be understood as half-edges, the permutation α0 usually
connects the two darts of each edge, and α1 connects all the darts that meet on
the same vertex of a graph. In general, the α0 permutation could link together
an arbitrary number of elements, but in practice, it is usually involutive. Fig.
1 gives an example of a hypermap with only three darts (darts 7, 10, and 11)
that are not 0-linked to another one. Such exotic darts may always occur at
intermediate stages during manipulation of maps. For all other darts of Fig. 1,
the 0-successor of the 0-successor of each dart is the dart itself.

In Fig. 1, α0 and α1 are permutations on D = {1, . . . , 11}, then M =
(D, α0, α1) is a hypermap. It is drawn on the plane by associating to each dart a
curved arc (here a simple line segment) oriented from a bullet to a small stroke:
0-linked (resp. 1-linked) darts share the same small stroke (resp. bullet). By
convention, in the drawings of hypermaps on surfaces, αk permutations turn
counterclockwise around strokes and bullets.

3.2 Formal Encoding

We use Coq’s datatype declaration mechanism to define a two element type dim
of dimensions and an infinite type dart of darts, with a special dart singled out
for later purposes. This special dart is called nil. To describe embeddings we
also add a type point which is a pair of coordinates (real numbers).

Hypermaps are then described by collecting darts and links in a free map
linear data structure of type fmap:

Inductive fmap : Set :=
V | I (m:fmap)(d:dart)(p:point) | L (m:fmap)(k:dim)(d1 d2:dart).
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Fig. 1. An example of hypermap embedded on the plane

This defines two operations, I to add new dart d in an existing map m, associating
this dart with the location p, and L to add a link from dart d1 to dart d2 in the
map m, at dimension k.

This free data structure is too permissive: we may add the same dart several
times, we may link a dart that is not in the map, etc. We will see later that
hypermaps are free maps where some preconditions have been verified before
adding each dart and link, based on some helper functions.

A first function called exd computes whether a given dart is present in a
map. Another pair of functions, named succ and pred, compute whether there
is a link at a given dimension with a given dart as source or target. For each
dimension, the convention is to include in the free map only links that make up
an open path. Thus, to represent a map where αk(d1) = d2, αk(d2) = d3 and
αk(d3) = d1, the free map will only contain a link from d1 to d2 and a link from
d2 to d3, or a link from d2 to d3 and a link from d3 to d1, or a link from d1
to d2 and a link from d3 to d1. The αk functions are then computed from the
incomplete paths using a recursive algorithm that simply traverses the free map
structure. The formal notation in Coq syntax for the αk functions of a given
map m will be cA m k.

Hypermaps are then defined as free maps such that some preconditions were
verified before applying any of the I or L operations. The precondition prec I
for adding a dart in a hypermap is that the dart should not already be present
and should be different from the special dart nil. The precondition prec L for
adding a link is that the source and the target should be darts in the map, the
source should not already have a successor, the target should not already have a
predecessor, and the new link should not be closing an open path. As an example
of our notations, here is how our prec L function is defined:

Definition prec_L (m:fmap)(k:dim)(x y:dart) :=
exd m x /\ exd m y /\ ~succ m k x /\ ~pred m k y
/\ cA m k x <> y.

Verifying that a free map is indeed a hypermap can be described using a simple
recursive function inv hmap that traverses the map and verifies the preconditions
at each step:

Fixpoint inv_hmap(m:fmap):Prop:=
match m with
V => True
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| I m0 x _ _ => inv_hmap m0 /\ prec_I m0 x
| L m0 k0 x y => inv_hmap m0 /\ prec_L m0 k0 x y

end.

When m is a hypermap, we prove that the αk, or cA m k, are permutations of the
darts. Then, by construction, for every dart d the set {d′|d′ = αn

k (d)} is finite
and is called the orbit of d at dimension k. From the most abstract point of
view, there is no difference between links at dimension 0 and links at dimension
1. However, to describe the subdivisions we are accustomed to manipulate, it will
be better to ensure that orbits at dimension zero are edges, and thus contain
only two darts, while orbits at dimension one are vertices, and thus contain only
darts that are associated to the same geometrical point (see section 4.2). We
also say that two darts x and y are in the same component if there exists a path
from x to y using the αk permutations at each step.

When α0 and α1 are permutations, the composition of their inverses φ =
α−1

1 ◦ α−1
0 the orbits of which are the faces.

Notions of components, paths, and orbits are independent from the permu-
tation being observed. To handle all these in a regular fashion, we developed a
generic module.

Planar hypermaps can be characterised by counting their edges, vertices, faces,
and components [14]. These remain topological properties, independent from
actual positions.

Definition 2. (Euler characteristic, genus, planarity, Euler formula)
Let d, e, v, f , c, be the numbers of darts, edges, vertices, faces, and components
of a hypermap.
(i) The Euler characteristic of M is χ = v + e + f − d.
(ii) The genus of M is g = c− χ/2.
(iii) When g = 0, M is said to be planar. It satisfies the Euler formula: χ = 2∗c.
Truly geometric aspects are described by observing the plane coordinates associ-
ated to each dart in the I operation. Of course, embeddings are consistent with
the geometric intuition only if all darts in a vertex share the same coordinates
and the two darts that constitute an edge never have the same coordinates. An
extra condition is that faces should not be too twisted: we express this condi-
tion only for triangles, by stating that they have to satisfy the counter-clockwise
orientation predicate as already used by Knuth in [25].

In a nutshell, Knuth’s orientation predicate relies on the existence of a 3-
argument predicate on points (named ccw in our development, Fig. 2(a)) that
satisfies five axioms. The first one expresses that if p, q, r satisfy ccw, then so do
q, r, p (in that order). We shall also use a more complex axiom, which we shall
name Knuth’s fifth axiom, with the following statement (Fig. 2(b)):

Lemma axiom5 :
forall p q r s t : point,
ccw q p r -> ccw q p s -> ccw q p t ->
ccw q r s -> ccw q s t -> ccw q r t.
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Fig. 2. Orientation of a triple of points (p, q, r) in the plane and the fifth axiom

Using all these concepts, we can state precisely what we mean by a triangulation:
a planar hypermap, where all edges have two darts, and all faces have three
vertices. From the geometric point of view, this hypermap should also be well-
embedded: all edges contain darts with different geometric locations, all triangles
but one are oriented counter-clockwise. The one face that is not a counter-
clockwise triangle correspond to the external boundary. In this first experiment,
we have assumed this external boundary to also be a triangle, but one that
is oriented clockwise (Fig. 3). This simplification can also be found in well-
known studies of the Delaunay problem [23]. A hypermap that satisfies all these
conditions is said to be a well-embedded triangulation.

Fig. 3. A triangulation with triangular external face

4 Split, Merge and Flip

In the previous sections, we have described the basic constructors of hypermaps
I and L and the many ways in which we can observe maps and local parts of
these maps. Now, we will study ways to transform maps.

4.1 Splitting a K-Orbit, Merging Two K-Orbits

When flipping edges, we need to detach darts from vertices (1-orbits). A more gen-
eral point of view is to consider that a vertex is actually split into two parts while
respecting the connection order. To understand the required transformations, we
need to remember that links are left open in the map structure. Before the split,
one dart has no 1-successor, after the split two of the darts taken from the split
vertex have no 1-successor. The split operation is specified by stating the two darts
that have this property, let’s assume these two darts are called x and y (Fig. 4).
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Fig. 5. Merging two vertices

The split operation can be described for any dimension k and is decomposed
in two steps. In the first step, one checks whether x has a k-successor. If it has
one, then the darts z and t in the k-orbit such that z has no k-successor and t
has no k-predecessor are computed, the k-link starting in x is removed, and a
link from z to t is added. In this step, the orbit is actually not changed, and we
can call this operation shifting. In the second step, the one link starting in y is
removed. The precondition for this operation is that x and y should be different
and in the same k-orbit. In our formal development this is described by a function
named Split and we proved a few important properties of this operation, for
instance that it preserves planarity and commutativity with respect to x and
y.

To merge two orbits, we need to choose a dart x in one of the orbit and a dart
y in the other, with the intention that the k-successor of x will be y in the new
map (Fig. 5). Of course, a first step is to make sure that the two orbits are shifted
in such a way that x has no successor and y has no predecessor before adding
a link from x to y. This operation has a pre-condition imposing that x and y
are not in the same orbit. When considering merging at dimension 1 (merging
vertices), the effect on edges and vertices is quite obvious, but less clear for faces
[14,16].

4.2 Flipping an Edge

Flipping an edge actually consists in first removing an edge thus “merging”
two adjacent triangles, and then adding back a new edge between two differ-
ent vertices from the merged face. Actually, the two vertices between which a
new edge is added are neighbors to the two vertices from which the first edge was
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Fig. 6. Four topological steps of Flip

removed. The number of darts in the map is preserved, so that the edge that is
removed in the first step can be viewed as moved from a pair of vertices to another
one. The first step of removing an edge is described using two split operations,
while the second step of adding back a new edge is described using two merge
operations. Embeddings must then be updated to respect the requirement that
all darts in a vertex share the same location.

The topological steps are illustrated in Fig. 6. The precondition for this oper-
ation is that the two darts in the edge should be in different faces and connected
to vertices of 3 darts or more.

In intermediate steps, the subdivision is no longer a triangulation: the merged
face has a different number of vertices, the detached edge is a component of its
own, etc. However, we describe a pair of preconditions, named prec Flip and
prec Flip emb that ensure that the flipping operation as a whole preserves the
important topological properties, for instance planarity, having only two-dart
edges and three-vertex faces and the embedding properties, for instance that
all darts in a 1-orbit (a vertex) share the same coordinates and that all trian-
gles but for the external face are oriented counter-clockwise. The precondition
for topological properties (prec Flip) is that the flipped edge consists of darts
belonging to distinct faces and to vertices with at least three darts. The pre-
condition for embedding properties (prec Flip emb) is that the four points in
the intermediate merged face should constitute a convex quadrangle. In our for-
mal development, we actually prove that prec Flip is sufficient to preserve the
important topological properties, that the prec Flip emb is sufficient to preserve
the well-embedding properties, and that prec Flip emp implies prec Flip [16].
We shall see that our algorithm for Delaunay triangulation only requires flipping
edges that satisfy these predicates.
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Fig. 7. Point s is in the circumcircle of (p, q, r)

5 The Delaunay Criterion

A triangulation satisfies the Delaunay criterion when none of the vertices occurs
inside the circumcircle of a face. In other words, there are no illegal edges. In our
development we defined a four-argument predicate in circle to express that a
point is inside the circumcircle of three other points.

Definition 3. (Illegal edge)
An edge is illegal in a well-embedded plane triangulation when:
(i) its two adjacent triangles are counterclockwise oriented (which excludes the
external face);
(ii) the vertex of one of the two triangles which is not an extremity of the edge
is inside the circumcircle of the other triangle.

This notion is illustrated in Fig. 7, where s is inside the circumcircle of triangle
(p, q, r), at the right of pq. Note that this property is symmetrical with respect
to the two triangles. When an illegal edge is detected, we know that the precon-
ditions for the flip operation are satisfied. When the operation is performed, the
new edge produced by this flip operation is legal. This contains two parts: the
two new triangles are oriented, and the circumcircles of each new triangle does
not contain the fourth point.

More precisely, the important property, called exchange in our formal devel-
opment, asserts that when two adjacent triangles (p, q, r) and (q, p, s) are ori-
ented counterclockwise and s is in the circumcircle of (p, q, r), then the triangles
(r, s, q) and (s, r, p) are also oriented counterclockwise (Fig.7).

Proving this part required some effort. We actually showed that, when p, q, r,
and s are in the conditions of the lemma, then there exists a fifth point t so that
p, t q, r, and s are in the conditions of Knuth’s fifth axiom for the orientation
predicate. This point is simply the one obtained by rotating the center of the
circumcircle by a quarter-turn around p. We can then use Knuth’s fifth axiom
to conclude that p, s, r is oriented counterclockwise. A symmetric proof (with a
rotation around q) yields that q, r, s is oriented counterclockwise. This symmetric
proof is implemented by copying and pasting the formal development, mutatis
mutandi. Uses of Knuth’s first axiom then yield the result.
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The 3-argument predicate ccw is computed from point coordinates through a
simple determinant: ∣∣∣∣∣∣

xp yp 1
xq yq 1
xr yr 1

∣∣∣∣∣∣
The boolean condition is represented by the sign of the determinant and the
condition of degeneracy, that three points are never aligned, ensures that this
determinant is non-zero. The 4-argument predicate, in circle is also computed
through the sign of a simple determinant:

∣∣∣∣∣∣∣∣

xp yp xp
2 + yp

2 1
xq yq xq

2 + yq
2 1

xr yr xr
2 + yr

2 1
xs ys xs

2 + ys
2 1

∣∣∣∣∣∣∣∣
Knuth’s five axioms are easily proved using algebraic tools (in Coq, mostly the
ring tactic) from these analytic definitions [25,29]. Proving the existence of the
point t a few paragraphs above actually relies on a stronger tool, a tactic called
psatz (the name comes from positivstellensatz) and able to handle simple cases
of non-linear formulas, available only in recent versions of Coq [6].

6 Termination Based on Finiteness

Traditional approaches to ensure the termination of algorithms rely on structural
recursion for the simplest algorithms and well-founded orders for the others. In
this work, we took the novel approach of relying on three features:

– We rely on the fact that the number of triangulations embedded on a given
finite set of points and using a finite set of darts is finite,

– We exhibit an order on triangulations that is not well-founded, but we show
that flipping an illegal edge implies a strict decrease in that order,

– We then rely on the fact that any transitive, irreflexive, and antisymmetric
relation R is well-founded when restricted on a finite set.

6.1 A Generic Library for Finiteness

For the formal development, we describe a minimal description of finiteness for
subsets of a type. First, we represent each subset of a type T by a predicate on
T, i.e., a function of type T -> Prop. Then we express finiteness by stating that
all elements satisfying the predicate are found in a list. This is specified by the
following datatype declaration:

Record fset (T:Type) := mkfs {
prd :> T -> Prop;
fs_enum : list T;
_ : forall x, prd x -> In x fs_enum

}.
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This declaration states that a finite set on type T is described by the charac-
teristic predicate prd of type T -> Prop and a list fs enum which enumerates
the elements that satisfy prd. Actually our definition is quite lenient, because
it makes it possible to have in the list more elements than those satisfying the
predicate. The list is very useful because it gives a simple way to iterate over
all the elements in the finite set (and with our lenient definition, risking to see
several times the same elements and elements outside the set). This method, of
associating two points of view (predicate or covering list) over a simple notion
(finite set) is directly inspired from the approach to describe finite sets in the
ssreflect package [21].

We then show that finiteness is preserved by cartesian product, disjoint sum,
inclusion, inverse image through an injection, construction of lists of fixed length,
construction of lists of bounded length, and construction of lists without
duplication.

To show that the triangulations we consider are in a finite set, we start by
computing from any map the list of darts and the set of points that appear in
this map. We show that this list of darts and this set of points is preserved during
flips. It is easy for the list of darts because the order of the I constructors in the
fmap structure is not modified by the basic shift, split, or merge operations. For
points, it is harder, because a flip operation changes the number of darts that
use a given coordinate and we need to show that the set is preserved modulo a
possible change in the order and number of times each point is inserted. We do
this by defining a sorting function with removal of duplicates (an insertion sort
algorithm with an extra test to detect duplications) and applying this sorting
function on the list of points used in the triangulation. We then show that the list
of points obtained after a flip operation, once sorted and cleaned from duplicates,
is preserved through flipping.

We then show that all maps built on the same list of darts and the same set
of points are in a finite set, obtained using cartesian products, sums, etc.

6.2 A Strict Order on Triangulations

As a complement to the finiteness property, we must exhibit a strict order that
decreases every time an illegal edge is flipped.

It is well known that Delaunay triangulation is closely related to computing
the three-dimensional convex hull of points projected from the horizontal plane
to the revolution paraboloid with equation z = x2 + y2.

Given four points p, q, r, and s in a three-dimensional space, the determinant
obtained from their coordinates by adding a column of ones actually computes
a value which is proportional to the volume of the tetrahedron defined by these
four points. ∣∣∣∣∣∣∣∣

xp yp zp 1
xq yq zq 1
xr yr zr 1
xs ys zs 1

∣∣∣∣∣∣∣∣
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Thus, the determinant computed in Section 5 to decide whether a point oc-
curs inside the circumcircle of a triangle actually computes the volume of the
tetrahedron defined by the four projections of the points from the plane to
the paraboloid. When considering two adjacent triangles and the triangles ob-
tained after flipping the common edge, we can compute the volume between
these two triangles and the corresponding triangles using the projected points
in the paraboloid. The two configurations yield two different volumes. The dif-
ference of volume is exactly the volume of the tetrahedron based on the points
in the paraboloid, and it is positive when the projected triangles switch from a
concave position to a convex one.

To compute each individual volume, we decompose the prism-like shape into
three tetrahedra, each being computed using a determinant. Showing the rela-
tion between the volumes of the two prism-like shapes before and after the flip
operation and the determinant used for the in circle predicate is an easy task
using Coq’s ring tool.

To compute the accumulated volume, we simply enumerate the edges of the
map and add the triangle obtained as the φ-orbit for each edge. Of course,
each triangle is thus represented three times, but this does not matter for our
decreasing argument. We simply need to show that the volume computed only
changes for the six darts whose φ-orbit changes during the flip operation.

6.3 Describing a Terminating Function

To describe a terminating function, we rely on a type tri map, which combines
a free map and the proof that it is a well-embedded triangulation. This type is
defined as a conventional Coq sigma-type:

Definition tri_map := {m | inv_Triangulation m /\ isWellembed m}.

The natural projection returning the free map is written p tri.
We then define a function step tri, from type tri map to itself, which per-

forms a flip when the map contains an illegal edge. This function relies on the
proofs that flip preserves the property of being a well-embedded triangulation.
We also define a final dec function that detects when there are no illegal edges.

Last we define a function nat measure which first constructs the final set
of all triangulations using the same darts and points, with its enumerating list
and then counts the triangulations in this list whose volume is smaller than the
current one. This natural number decreases at every flip on a triangulation that
contains an illegal edge, i.e., every derivation that does not satisfy the final
predicate.

The recursive algorithm is not structural recursive, so we need to use one of
the tools provided in the Coq system to support general forms of recursion. Here,
we use the Function command, which accepts a definition as long as one can
prove that some measure (a natural number) decreases at each recursive call.
We first prove the lemma non final step decrease and then provide it to the
Function command.
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Lemma non_final_step_decrease :
forall m, ~final (p_tri m) ->
(nat_measure (step_tri m) < nat_measure m)%nat.

...

Function delaunay’ (t : tri_map) {measure nat_measure} :=
if final_dec (p_tri t) then

(p_tri t)
else

delaunay’ (step_tri t).

Computing the finite set of all triangulations is expensive (an exponential cost
in the number of darts and points), but this computation is not actually done in
the algorithm, it is used as a logical argument for termination. This computation
is actually removed from the derived code produced by Coq’s extraction facility.

7 Solving the Delaunay Problem

It only makes sense to run the algorithm on well-embedded triangulations. Thus,
our Delaunay function takes as argument a map and the proofs that this map is a
triangulation and that it is well-embedded. It then calls the delaunay’ function
with the adequate element of type tri map.

Definition Delaunay (m : fmap)(IT inv_Triangulation m)
(WE:isWellembed m) : fmap :=

delaunay’ (exist _ m (conj IT WE)).

In our formal proof, we show that the end result of the Delaunay function re-
turns a well-embedded triangulation that contains no illegal edges. For instance,
we have the following statement:

Theorem no_dart_illegal_Delaunay :
forall (m : fmap)(IT: inv_Triangulation m)(WE: isWellembed m),

no_dart_illegal (Delaunay m IT WE).

In English words, we quantify over all free maps that satisfy two predicates.
The first predicate inv Triangulation captures all the conditions for the map
to be a correct triangulation in the topological sense: it is a correct hypermap,
0-orbits have two elements only, faces have three elements. The second predicate
isWellembedded expresses that the coordinates are consistent: all darts in the
same point share the same coordinates, all triangles are oriented. The hypotheses
that the map satisfies these predicates are given names IT and WE respectively.
The function Delaunay that computes the Delaunay triangulation takes these
hypotheses as arguments. We then use a predicate no dart illegal to express
that the Delaunay condition is always satisfied: it is never the case that the extra
vertex of an adjacent triangle is inside the circumcircle of a given triangle.
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8 Conclusion

The one missing element of this algorithm is a starter: given an arbitrary set of
points inside a triangle, we need to produce the initial triangulation. Developing
a naive algorithm, with only the requirement that the triangulation should be
well-formed, should be an easy task. Actually, if the three points describing the
external face are given first, an possible algorithm is a simple structural recursive
function on the list of points.

All numeric computations are described using “abstract perfect” real num-
bers. In practice, specialists in algorithmic geometry know that numeric compu-
tation with floating point numbers can incur failures of the algorithm by failing
to detect illegal edges, or by giving inconsistent results for several related com-
putations [33,24]. For instance, rounding errors could make that both an edge
and its flipped counterpart could appear to be illegal, thus leading to looping
computation that is not predicted by our ideal formal model. However, we know
that all predicates are based on determinant computations, hence polynomial
computation, and it is thus sufficient to ensure that intermediate computations
are done with a precision sufficiently higher than the precision of the initial data
to guarantee the absence of errors introduced by rounding. Thus, the “theoreti-
cal” correctness of the algorithm can be preserved in a “practical” sense if one
relies on a suitable approach to increase the precision of numeric computations,
as in [27,30,20].

Our whole development from the hypermap specifications and proofs up to
the Delaunay properties reaches about 70, 000 Coq lines, with more than 300
definitions and 700 lemmas and theorems. Thanks to the extraction facility pro-
vided in the Coq sytem, an Ocaml version of the algorithm can be obtained
(where every computation on real numbers is replaced by computation on un-
bound integers for instance, since division is never used in the algorithm) [17].

We described the most naive algorithm for the Delaunay problem. We be-
lieve that most of the framework concerning the topology will be re-usable when
studying other algorithms for this problem [23,18,2]. Also, our proof reason on
abstract models given as Coq programs, not actual programs designed for effi-
ciency. Previous experiments in the formalization of efficient algorithms [5] show
that the proofs at an abstract level are a useful first step for the study of efficient
programs given in an imperative language.

Our framework is a sound basis for subsequent software developments with
triangulations and Flip in computational geometry and geometric modeling, for
instance in the way of [3,12,13,8] where hypermaps are represented by linked lists.
The functional, side-effect-free approach in this formal description has been very
useful for the proofs. However, for efficiency purpose it is crucial to relate this
functional description with imperative implementations.

Acknowledgments. We wish to thank L. Pottier, T.-M. Pham, and S. Pion for
their suggestions in establishing some of the geometric proofs.
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Abstract. A variety of logical frameworks support the use of higher-
order abstract syntax (HOAS) in representing formal systems given via
axioms and inference rules and reasoning about them. In such frame-
works, object-level binding is encoded directly using meta-level binding.
Although these systems seem superficially the same, they differ in a va-
riety of ways; for example, in how they handle a context of assumptions
and in what theorems about a given formal system can be expressed and
proven. In this paper, we present several case studies which highlight a
variety of different aspects of reasoning using HOAS, with the intention
of providing a basis for qualitative comparison of different systems. We
then carry out such a comparison among three systems: Twelf, Beluga,
and Hybrid. We also develop a general set of criteria for comparing such
systems. We hope that others will implement these challenge problems,
apply these criteria, and further our understanding of the trade-offs in-
volved in choosing one system over another for this kind of reasoning.

1 Introduction

In recent years, the POPLmark challenge [1] has stimulated considerable inter-
est in mechanizing the meta-theory of programming languages, and the issued
problems exercise many aspects that are known to be difficult to formalize.
While several solutions have been submitted showing the diversity of possible
approaches, it has been hard to compare them. Part of the reason is that while
the proposed examples are typical for their domain, they do not highlight the
differences between systems. We will bring a different view: As experts in design-
ing and building logical frameworks, we propose a few challenge problems which
highlight the differences between different meta-languages, and thereby hopefully
provide a better understanding of what practitioners should be looking for.

Our focus in this paper is on encoding meta-theory of programming lan-
guages using higher-order abstract syntax (HOAS), where we encode object-level
binders with meta-level binders. As a consequence, users can avoid implement-
ing common and tricky routines dealing with variables, such as capture-avoiding
substitution, renaming and fresh name generation. Because of this one can think
of HOAS encodings as the most advanced technology for specifying programming
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language meta-theory which leads to very concise and elegant encodings and pro-
vides the most support for such an endeavor. However concentrating on encoding
binders neglects one important aspect: the support for hypothetical and para-
metric reasoning. Even in systems supporting HOAS, there is not a clear answer
to this. On one side of the spectrum, we find the logical framework Twelf [15] or
the dependently-typed functional language Beluga [13,14]. Both systems provide
direct support for contexts to keep track of hypotheses. In Twelf, contexts are
implicit while in Beluga they are explicit. Supporting contexts directly has two
advantages. First, it eliminates the need for building up a context and manag-
ing it explicitly via a first-order representation such as a list. More importantly,
it eliminates the need to explicitly prove structural properties about contexts,
such as weakening. Such built-in support for contexts allows for highly com-
pact proofs. Second, using hypothetical and parametric reasoning provides us
with direct meta-level support for applying substitution lemmas. Consequently,
substitution lemmas come for free.

On the other side of the spectrum of systems supporting HOAS, we have,
for instance, the two-level Hybrid system [10,5] as implemented in Coq [3] and
Isabelle/HOL [11], Abella [6], and the Tac prover [2], where contexts are manu-
ally represented as lists. While the substitution lemma is still obtained for free
because it is an application of the cut-rule, structural properties about contexts
such as weakening must typically be proven separately as lemmas. These lem-
mas can be tedious and they may cause difficulties when automating induction
proofs (see [2]). On the other hand, since these systems do not rely on specific
built-in procedures for dealing with contexts, there is more flexibility in how
they are handled and the necessary reasoning is more transparent to the user.
Consequently, proofs in these systems are often easier to understand and to trust.

This paper presents three case-studies which highlight the different treat-
ments of hypothetical reasoning. Along the way, we develop a set of questions
which allow a qualitative evaluation and comparison of different reasoning sys-
tems. These questions also provide guidance for users and developers in un-
derstanding better the differences and limitations. Due to space restrictions,
we concentrate on the logical framework Twelf, the functional dependently-
typed language Beluga, and the interactive theorem proving environment Hy-
brid. However, we hope that these problems will subsequently also be imple-
mented using related approaches and serve as a starting point to understand
commonalities and differences. Details about the challenge problems and their
mechanization can be found in an electronic appendix which is available at
http://complogic.cs.mcgill.ca/beluga/benchmarks.

2 Examples

In this section, we give an informal presentation and proofs of various prop-
erties of the lambda-calculus. We discuss in detail the first example which is
concerned with equality reasoning and then briefly sketch the other problems.
Formal proofs will be discussed in later sections only for the first. All these ex-
amples are purposefully simple, so they can be easily understood and one can

http://complogic.cs.mcgill.ca/beluga/benchmarks
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quickly appreciate the capabilities and trade-offs different systems offer. Yet we
believe they are representative of the issues and problems arising when formal-
izing formal systems and proofs about them.

2.1 Equality Reasoning for Lambda-Terms

We begin by defining the syntax of the (untyped) lambda-calculus together with
a declarative definition of equality which includes reflexivity and transitivity in
addition to the structural rules. We then define the algorithmic version of equal-
ity, which concentrates only on the structural rules. We model the declarative
definition of equality by the judgment Ψ � equal M N and the algorithmic one
by the judgment Φ � eq M N and carefully define the contexts Ψ and Φ. The
goal is to prove these two versions of equality to be equivalent.

Term M ::= y | lam x. M | app M1 M2 Context Φ ::= · | Φ, equal x x
Context Ψ ::= · | Ψ, eq x x

Algorithmic Equality

eq x x ∈ Ψ

Ψ � eq x x

Ψ, eq x x � eq M N

Ψ � eq (lamx. M) (lam x. N)
Ψ � eq M1 N1 Ψ � eq M2 N2

Ψ � eq (app M1 M2) (app N1 N2)

Declarative Equality

equal x x ∈ Φ

Φ � equal x x

Φ, equal x x � equal M N

Φ � equal (lamx. M) (lam x. N) Φ � equal M M

Φ � equal M1 N1 Φ � equal M2 N2

Φ � equal (app M1 M2) (app N1 N2)
Φ � equal M L Φ � equal L N

Φ � equal M N

It may be slightly unusual to keep the fact that a variable is equal to itself as a
declaration in the context in both formulations. It is only strictly necessary in
the first. There are two main reasons. 1) Explicitly introducing the appropriate
assumption about each variable is a general methodology which scales to more
expressive assumptions. For example, when we specify typing rules, we must
introduce a typing context that keeps track of the fact that a given variable
has a certain type. 2) Choosing this formulation will also make our proofs more
elegant and compact, while at the same time highlight the issues which arise
when working with two formal systems each using different assumptions.

We begin by proving that reflexivity and transitivity are indeed admissible
from the algorithmic definition of equality.

Theorem 1 (Admissibility of Reflexivity and Transitivity)

1. If Ψ contains premises for all the free variables in M , then Ψ � eq M M .
2. If Ψ � eq M L and Ψ � eq L N then Ψ � eq M N .

The first theorem can be proven by induction on M . The second can be proven
by induction on the first derivation. We now state that when we have a proof
for equal M N then we also have a proof using algorithmic equality.
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Attempt 1 (Completeness). If Φ � equal M N then Ψ � eq M N .

However, we note that this statement does not contain enough information about
how the two contexts Φ and Ψ are related. In the base case, where we have that
Φ � equal x x, we must know that for every variable x in Φ there exists a
corresponding assumption such that eq x x in Ψ . There are two solutions to
this problem. 1) We state how two contexts are related and then assume that if
this relation holds the theorem holds. 2) We generalize the context used in the
theorem such that it contains both assumptions as follows:

Generalized context Γ ::= · | Γ, eq x x, equal x x

where we deliberately state that the assumption eq x x always occurs together
with the assumption equal x x, and then apply weakening and strengthening as
needed to apply the equality inference rules. Both approaches can be mechanized
and we discuss some of the trade-offs later. For now we will concentrate on the
latter approach and state the revised generalized theorem.

Theorem 2 (Completeness). If Γ � equal M N then Γ � eq M N .

Proof. Proof by induction on the first derivation. We show three cases which
highlight the use of weakening and strengthening.

Case 1: Assumption from context
We know Γ � equal x x where equal x x ∈ Γ by assumption. Because of the
definition of Γ , we know that whenever we have an assumption equal x x, we
also must have an assumption eq x x.

Case 2: Reflexivity rule
If the last step applied in the proof was the reflexivity rule Γ � equal M M ,
then we must show that Γ � eq M M . By the reflexivity lemma, we know that
Ψ � eq M M . By weakening the context Ψ , we obtain the proof for Γ � eq M M .

Case 3: Equality rule for lambda-abstractions
Γ � equal (lam x. M) (lam x. N) by assumption
Γ, equal x x � equal M N by decl. equality rule for lambda-abstraction
Γ, eq x x, equal x x � equal M N by weakening
Γ, eq x x, equal x x � eq M N by i.h.
Γ, eq x x � eq M N by strengthening
Γ � eq (lam x. M) (lam x. N) by alg. equality rule for lambda-abstraction

This proof demonstrates many issues related to the treatment of bound variables
and the treatment of contexts. First, we need to be able to apply a lemma which
was proven in a context Ψ in a different context Γ . Second, we need to apply
weakening and strengthening in the proof. Third, we need to be able to know
the structure of the context and we need to be able to take advantage of it. We
focus here on these structural properties of contexts, but of course many proofs
also need the substitution lemma.
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2.2 Reasoning about Variable Occurrences

In this example, we reason about the shape of terms instead of equality of terms.
The idea is to compare terms up to variables. For example lamx. lam y. app x y
would have the same shape as lam x. lam y. app y x but these two terms are
obviously not equal. We use the judgment Φ � shape M1 M2 to describe that
the term M1 and the term M2 have the same shape or structure. Thinking of
the lambda-terms being described by a syntax tree, comparing the shape of
two terms corresponds to comparing two syntax trees where we do not care
about specific variable names which are at the leaves of it. The definition for
shape M1 M2 can be found in the electronic appendix.

We now prove that if M1 and M2 have the same shape, then they must have
the same number of variables using the judgment Φ � var−occ M I where I
describes the total number of variable occurrences in the term M . So for example,
the total number of variable occurrences in the term lam x. lam y. app (app y x) x
is 3. If we think of the lambda-term as a syntax tree, then I describes the number
of leaves in the syntax tree described by the term M . We give three different
variations, intended to show differences among systems.

Theorem 3
1. If Φ � shape M1 M2

then there exists an I such that Φ � var−occ M1 I and Φ � var−occ M2 I.
Furthermore I is unique.

2. If Φ � shape M1 M2
then for all I. Φ � var−occ M1 I implies Φ � var−occ M2 I.

3. If Φ � shape M1 M2 and Φ � var−occ M1 I then Φ � var−occ M2 I.

2.3 Reasoning about Subterms in Lambda-Terms

For the next example, we define when a given lambda-term M is a subterm of
another lambda-term N and hence we consider M to be structurally smaller
than (or equal to) N using the following judgment: Ψ � le M N . Rules for this
judgment are given in the electronic appendix. We concentrate here on stating
a very simple intuitive theorem that says that if for all terms N , if N is smaller
than K implies that N is also smaller than L, then clearly K is smaller than L.

Theorem 4. If for all N . Ψ � le N K implies Ψ � le N L then Ψ � le K L.

This theorem is interesting because in order to state it, we nest quantification
and implications placing them outside the fragment of propositions directly ex-
pressible in systems such as Twelf.

3 Mechanization in Twelf and Beluga

In this section, we discuss how the previous examples are implemented in Twelf
and Beluga. Both systems share an encoding of expressions and inference rules
for declarative and algorithmic equality in the logical framework LF [7]. There
are several excellent tutorials on how to represent inference rules in the logical
framework LF, and hence we keep this very short.
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Formalization of Lambda-Terms and Declarative and Algorithmic Equality. Using
HOAS, we represent binders in the object-language (see for example lamx. M) us-
ing binders in the meta-language, i.e., the logical framework LF. Hence the con-
structor lam takes in a function of type exp → exp. For example, the object-language
term lam x. lam y. app x y will be represented in LF as lam (λx. lam (λy. app x y)

). Bound variables found in the object language, are not explicitly represented in
the meta-language.

Object-language Representation in LF
Term M ::= y exp : type

| lamx. M lam :(exp → exp) → exp.

| app M1 M2 app : exp → exp → exp.

We give the implementation of the declarative and algorithmic equality rules
next using the two type families eq and equal respectively. Each inference rule is
then represented as a type. Hypothetical derivations (as in the rule for lambda-
abstraction) are represented as higher-order functions.
eq: exp → exp → type.
eq_lam : (Πx : exp. eq x x → eq (E x) (F x))

→ eq (lam (λx. E x)) (lam (λx. F x)).
eq_app : eq E1 F1 → eq E2 F2 → eq (app E1 E2) (app F1 F2).

equal: exp → exp → type.
e_l: (Πx:exp. equal x x → equal (T x) (T’ x))

→ equal (lam (λx. T x)) (lam (λx. T’ x)).
e_a: equal T2 S2 → equal T1 S1 → equal (app T1 T2) (app S1 S2).
e_r: equal T T.
e_t: equal T R → equal R S → equal T S.

Proofs as Recursive Functions. Beluga is a functional language where (hypo-
thetical) derivations are characterized by contextual objects and an inductive
proof about derivations is written as a recursive function using pattern match-
ing on them. Each case of the proof corresponds to one branch in the function.
First, we define the context schema for the context Ψ which was used in defining
algorithmic equality to track assumptions of the form eq x x (see page 229).
Context schemas classify contexts just as types classify terms. It can be defined
as follows: schema eqCtx = block x:exp . eq x x; This states that our context con-
sists of blocks of assumptions, containing x:exp and eq x x. More formally, the
block-construct introduces a Σ-type grouping the two declarations together.

The reflexivity theorem which stated that for all M there exists a proof for
eq M M can then be implemented as a recursive function called ref which will
have the following type: rec ref : {ψ:(eqCtx)*} {M::exp[ψ]} (eq (M ..)(M ..))[ψ]

This can be read as follows: for all contexts ψ which have schema (eqCtx)*, for
all terms M, we have a proof that (eq (M ..) (M ..))[ψ]. Explicit quantification over
the context variable ψ is written using curly brackets in {ψ:(eqCtx)*}. The schema
is annotated with * to denote that declarations of the specified schema may be
repeated and the context must be passed explicitly by the user. For universally
quantifying over M, we use curly brackets in {M::exp[ψ]}. Central to Beluga is
the idea of a contextual type. M for example has type exp[ψ] which describes an
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object M which has type exp in the context ψ. M is hence an expression which
may refer to variables in the context ψ. When we use M it is associated with a
substitution which maps all the variables in ψ to the correct target context. In
the example, we use M within the contextual type (eq (M ..) (M ..))[ψ]. Hence, M

is declared in the context ψ and because it is also used in the context ψ, it is
associated with the identity substitution, which is written as .. in our concrete
syntax. Intuitively, it means M can depend on all the variables which occur in the
context described by ψ. The derivation Ψ � eq M M is directly captured by the
contextual type (eq (M ..) (M ..))[ψ].

Before we represent the completeness theorem as a recursive function ceq, we
define the schema of the generalized context, following our previous informal
development as follows: schema eCtx = block x:exp,u:eq x x.equal x x ;

Finally, we state the type and implementation of the function ceq. We indicate
that the context γ is implicit in the actual implementation of the proof and will
be reconstructed by omitting the (...)* when declaring the schema of γ.

rec ceq: {γ:eCtx} (equal (T ..) (S ..))[γ] → (eq (T ..) (S ..))[γ] =
fn e ⇒ case e of
| [γ] #p.3 .. ⇒ [γ] #p.2 .. % Assumption from context

| [γ] e_r (T .. )⇒ ref [γ] <γ. _ > % Reflexivity

| [γ] e_t (D2 ..) (D1 ..) ⇒ % Transitivity
let [γ] F2 .. = ceq ([γ] D2 ..) in
let [γ] F1 .. = ceq ([γ] D1 ..) in

trans ([γ] F1 ..) ([γ] F2 ..)

| [γ] e_l (λx. λu. D .. x u) ⇒ % Abstraction
let [γ,b:block x:exp,u:eq x x . equal x x] F .. b.1 b.2 =

ceq ([γ, b:block x:exp, u:eq x x . equal x x] D .. b.1 b.3)
in

[γ] eq_lam (λx.λv. F .. x v)

| [γ] e_a (D2 ..) (D1 ..) ⇒ % Application
let [γ] F1 .. = ceq ([γ] D1 ..) in
let [γ] F2 .. = ceq ([γ] D2 ..) in

[γ] eq_app (F1 ..) (F2 ..) ;

We explain the three cases shown also in the proof on page 230. First, let us
consider the case where we used an assumption from the context. It is modelled
using parameter variables #p in Beluga. Operationally, #p can be instantiated
with any bound variable from the context γ. Since the context γ consists of
blocks with the following structure: block x:exp,u:eq x x . equal x x, we in fact
want to match on the third element of such a block. This is written as #p.3 ...
The type of #p.3 is equal (#p.1 ..) (#p.1 ..). Since our context always contains a
block and the parameter variable #p .. describes such a block, we know that there
exists a proof for eq (#p.1 ..) (#p.1 ..) which can be described by #p.2 ...

Second, we consider the case where we applied the reflexivity rule e_r as a
last step. In this case, we need to refer to the reflexivity lemma we proved about
algorithmic equality. To use the function ref which implements the reflexivity
lemma for algorithmic equality we however need a context of schema eqCtx but
the context used in the proof for ceq is of schema eCtx. Since the schema eCtx

in fact contains at least as much information as the schema eqCtx, we should
be allowed to pass a context of schema eCtx when a context of schema eqCtx is
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required. This is achieved by incorporating context subsumption in Beluga (see
[17,8] for an introduction to context subsumption).

Third, we consider the case for e_lam. In this case, we extend the context
with the new declarations about variables and pass to the recursive call ceq the
derivation [γ, b:block x:exp,u:eq x x.equal x x] D .. b.1 b.3). Weakening is built-
in. Although the derivation D only depends on the context ψ,x:exp,u:equal x x,
we can use it in the context which also has the assumption eq x x. Applying the
induction hypothesis corresponds to the recursive call. The result of recursive
call is a derivation F, where F only depends on x:exp and u:eq x x. In the on-paper
proof we employed strengthening. Finally, we use F to assemble the final result
eq_lam (λx.λv. F .. x v).

The cases where we applied the application rule e_a and the transitivity rule
e_t as a last step are straightforward. In both cases, we simply appeal to the
induction hypothesis on the subderivations D1 .. and D2 ... This is implemented
as a recursive call to ceq using the derivation [γ] D1 .. and the recursive call to
ceq using the derivation [γ] D2 ... Finally we assemble the result. In the case for
applications we use the rule eq_app and in the case for transitivity we use the
lemma trans.

Proofs as Relations. In Twelf, the proof is implemented as a relation between
two derivations, and we separately check that it constitutes a total function. The
mode declaration says how we must read the relation operationally. The theorem
is represented as a type family, and each case of the proof is represented as one
type (or clause). The proof is similar to the implementation in Beluga, with a
few exceptions. In Twelf, the context in which we prove the theorem is implicit,
and there is no generic variable case, but the variable case is folded into the
case for lambda-abstraction. We begin by stating the reflexivity theorem as a
relation in Twelf together with the corresponding world declaration. Similar to
context schemas, world declarations allow us to describe the context in which
the theorem is proven. However, unlike schemas, worlds also keep information
about base cases. Since variable cases are handled implicitly, not explicitly, the
context must not only list assumptions x:exp and u:equal x x but in addition a
proof that reflexivity holds for x, i.e., ref x u.
ref: ΠT:tp.equal T T → type. %mode ref +T -D.

%block r_block : block {x:term}{u:equal x x}{r_x: ref x u}.
%worlds (r_block) (ref T D).

We now inspect the implementation of the proof of the completeness proof from
page 230. It will be very similar to our proof in Beluga, except for the treatment
of base cases and contexts.
ceq: eq T S → equal T S → type. %mode ceq +E -D.
c_r: ref _ E

→ ceq eq_r E.

c_t: ceq D1 E1 → ceq D2 E2 → tr E1 E2 E
→ ceq (eq_t D2 D1) E.

c_l: (Πx:tm.Πu:equal x x.Πt_x:tr u u u.Πr_x: ref x u.Πv:eq x x.
ceq v u → ceq (E x v) (D x u))

→ ceq (eq_l E) (eq_l D).
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c_a: ceq F1 D1 → ceq F2 D2
→ ceq (eq_a F2 F1) (equ_a D2 D1).

%block cl:block {x:term}{u:equal x x}{t_x:tr u u u}{r_x:ref x u}{v:eq x x}
{c_x: ceq v u}.

%worlds (cl) (ceq E D).

%total E (ceq E D).

We can read for example the case c_a for applications as follows: Given the
relation ceq F1 D1 (i.h. on the derivation F1 and D1) and the relation ceq F2 D2

(i.h. on the derivation F2 and D2), we know ceq (e_a F2 F1) (equ_a D2 D1). This
case is closely related to the case in our functional program. The differences
arise in the case for lambda-abstractions. Since Twelf supports contexts only
implicitly, we must introduce a variable x not only together with the assumption
equal x x and eq x x, as we do in Beluga, but we also must assume that the
reflexivity and transitivity lemma hold for this variable and that indeed there is
a proof that guarantees that whenever we have equal x x we must have a proof
for eq x x.

Because there is no explicit context and no explicit variable case when reason-
ing about formal systems, the base cases are scattered and pollute our context.
Consequently, it now is harder to compose lemmas and reason about the rela-
tionship between different contexts. For example, the world described by blocks
r_block is not a prefix of the world described by blocks cl. In Twelf, this will
lead to world subsumption failure and the user needs to weaken manually the
proof for reflexivity to include assumptions t_x:trans u u u.1 Apart from the is-
sues around contexts, the Twelf allows a very compact representation of the
completeness proof. Weakening and strengthening is handled automatically. For
a more detailed explanation regarding the formalization of proofs in the Twelf
system and context subsumption, we refer the reader to [8].

4 Mechanization in Two-Level Hybrid

The Hybrid approach [10] exploits the advantages of HOAS within general theo-
rem proving systems. We use a pretty-printed version of Coq concrete syntax in
this paper. Prop is the type of meta-level formulas and the usual symbols (e.g.,
→, ∀) represent the meta-level connectives and quantifiers. [[ A1; A2; . . . ; An ]] →
A abbreviates A1 → (A2 → · · · (An → A) · · · ), or equivalently (A1 ∧ A2 ∧ · · · ∧
An) → A. The symbol == denotes definitional equality. Free variables in induc-
tive definitions and statements of theorems are implicitly universally quantified
at the top-level of each clause or statement.

Hybrid provides a type expr and a set of operators on this type used to
encode object-language syntax. It is built definitionally on the foundation of the
meta-language of the underlying theorem prover; no axioms are introduced. The
operators that are used in this paper, with their types are:

CON : con → expr | APP : expr → expr → expr | LAM : (expr → expr)→ expr .

1 Alternatively, we can also weaken the transitivity lemma and change the order of
blocks.
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We define the type con later to represent the constants of an object-language.
In the two-level approach used by Hybrid, a specification logic (SL) is defined

inductively and used to encode inference rules of object-languages. Hypothetical
and parametric judgments are encoded in the SL layer. In this paper, we use a
simple SL, a sequent formulation of a fragment of second-order minimal logic
with backchaining, adapted from [9] (and also used in [10]). Its syntax and
inference rules can be encoded directly as follows:

inductive oo := tt : oo | 〈 〉 : atm → oo | and : oo → oo → oo

| imp : atm → oo → oo | all : (expr → oo) → oo

inductive � : atm list → nat → oo → Prop :=
s tt : → Γ �n tt
s and : [[ Γ �n G1; Γ �n G2 ]] → Γ �n+1 (G1 and G2)
s all : [[ (∀x.proper x → Γ �n G x) ]] → Γ �n+1 (all x.G x)
s imp : [[ A,Γ �n G ]] → Γ �n+1 (A imp G)
s init : [[ A ∈ Γ ]] → Γ �n 〈A〉
s bc : [[ A ←− G; Γ �n G ]] → Γ �n+1 〈A〉

In the inductive definition of oo, atm is a parameter used to represent atomic
predicates of the object-language and 〈 〉 coerces atoms into propositions of type
oo. In the definition of the SL, we use the symbol � for the sequent arrow and
decorate it with natural numbers to allow reasoning by (complete) induction on
the height of a proof. For convenience we write Γ �G if there exists an n such that
Γ �n G, and furthermore we simply write � G when ∅�G. The first four clauses
of the definition directly encode the introduction rules of a sequent calculus for
this logic. Terms of type expr are built on an underlying de Bruijn syntax. The
use of the proper annotation rules out terms that have occurrences of bound
variables that do not have a corresponding binder (dangling indices).2 In the
last two rules, atoms are provable either by assumption or via backchaining over
a set of Prolog-like rules, which encode the properties of the object-language. The
notation A ←− G represents an instance of one of the clauses of this definition.
The sequent calculus is parametric in those clauses.

A small set of structural rules of the SL is proved, and used to reason about
object-languages. We prefix theorems formalized in Hybrid with “H-.”

H-Theorem 5 (Structural Properties)
(a) Height weakening: [[ Γ �n G; n < m ]]→ Γ �m G
(b) Context weakening: [[ Γ �n G; Γ ⊆ Γ ′ ]]→ Γ ′ �n G
(c) Atomic cut: [[ A, Γ � G; Γ � 〈A〉 ]] → Γ � G

Formalization of Lambda-Terms and Declarative and Algorithmic Equality. To
represent the object-language, we fill in the definition of con, define new oper-
ators app and lam using the operators defined earlier for expr , and fill in the
definition of atm, which includes the is tm relation for well-formedness of terms
as well as eq and equal. The inference rules are inductively defined using ( ←− ).
2 Hybrid 0.2 described in [10] includes an improvement that doesn’t require the proper

predicate, but the proofs in this paper are not yet ported to the new version.
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inductive con := cAPP : con | cLAM : con
app M1 M2 == (APP (APP (CON cAPP) M1) M2)
lam x. M x == (APP (CON cLAM ) (LAM (λx. M x))

inductive atm := is tm : expr → atm | eq, equal : expr → expr → atm
inductive ←− : atm → oo → Prop :=
tm lam : [[ abstr T ]] → is tm (lam x. Tx) ←− all x. (is tm x) imp 〈is tm (Tx)〉
tm app : → is tm (app T1 T2) ←− 〈is tm T1〉 and 〈is tm T2〉
eq lam : [[ abstr E; abstr F ]] → eq (lam x.Ex) (lam x. Fx) ←−

all x. (eq x x) imp 〈eq (Ex) (Fx)〉
eq app : → eq (app E1 E2) (app F1 F2) ←−

〈eq E1 F1〉 and 〈eq E2 F2〉
e l : [[ abstr T ; abstr T ′ ]] → equal (lam x. Tx) (lam x. T ′x) ←−

all x. (is tm x) imp (equal x x) imp 〈equal (Tx) (T ′x)〉
e a : → equal (app T1 T2) (app S1 S2) ←−

〈equal T1 S1〉 and 〈equal T2 S2〉
e r : → equal T T ←− 〈is tm T 〉
e t : → equal T S ←− 〈equal T R〉 and 〈equal R S〉
The well-formedness clauses tm lam and tm app are required since Hybrid terms
are untyped (all object-level terms have type expr). Each of the remaining clauses
of the inductive definition is given the same name as the corresponding rule in the
Twelf and Beluga encoding. Note that they are quite similar; the differences in
the encodings include 1) the abstr conditions used to rule out meta-level functions
that do not encode object-level syntax, and (2) the appearance of is tm in the
e l and e r clauses, which are required to prove adequacy of the encoding (see [5]
for a fuller discussion of adequacy of Hybrid encodings). In particular, we prove:

� 〈eq T S〉 → � 〈is tm T 〉 ∧� 〈is tm S〉
� 〈equal T S〉 → � 〈is tm T 〉 ∧� 〈is tm S〉.

Formalization of Completeness for Algorithmic Equality. In place of classifying
contexts using context schemas or worlds declarations, we adopt the notion of a
context invariant. This notion is informal; since we have an expressive logic at
our disposal, we can define any predicate on contexts. We present one approach
and briefly discuss a second one. In the first, we have three context invariants,
one each for the proofs of reflexivity, transitivity, and completeness.

ref inv Φ Ψ == (∀x. is tm x ∈ Φ → eq x x ∈ Ψ)
tr inv Ψ == (∀x y. eq x y ∈ Ψ → x = y)

ceq inv Φ Ψ == ref inv Φ Ψ ∧ tr inv Ψ ∧ (∀x y. equal x y ∈ Φ → eq x y ∈ Ψ)

Context invariants are used for two purposes here: 1) to represent how two
contexts in different judgments are related (e.g., ref inv), and 2) to represent
information contained in the Σ-type groupings found in the block declarations
in Beluga and Twelf (e.g., tr inv). If we include enough information, as we do
here, no weakening or strengthening is needed in the completeness proof. Instead,
the following property is needed.

H-Lemma 6 (Context Extension)
ceq inv Φ Ψ → ceq inv (equal x x, is tm x, Φ) (eq x x, Ψ)
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We now state the reflexivity and completeness theorems, and discuss the proof
of the completeness theorem.

H-Theorem 7 (Reflexivity). [[ ref inv Φ Ψ ; Φ�n 〈is tm T 〉 ]] → Ψ �n 〈eq T T 〉
In addition to being necessary for adequacy, well-formedness definitions provide
a convenient form of induction, which is used to prove the above theorem.

H-Theorem 8 (Completeness)
[[ ceq inv Φ Ψ ; Φ �n 〈equal T S〉 ]]→ Ψ �n 〈eq T S〉

The proof is by induction on n with induction hypothesis:

IH == [[ i < n; ceq inv Φ Ψ ; Φ �i 〈equal T S〉 ]]→ Ψ �i 〈eq T S〉.

A derivation of Φ �n 〈equal T S〉 must end in an application of the last two
clauses of the definition of the SL (s init or s bc, page 236). In the s init case
(the assumption from context case), we know that (equal T S) ∈ Φ. By the
definition of ceq inv, we know that (eq T S) ∈ Ψ . We use this fact and simply
apply s init to obtain Ψ �n 〈eq T S〉, as desired.

When the derivation ends in s bc, it must be the case that one of the four
clauses defining declarative equality (page 237) was used. We consider reflex-
ivity (e r) and abstraction (e l). In the former, we know that T = S and
Φ �n−1 〈is tm T 〉. By H-Theorem 7, we can conclude Ψ �n−1 〈eq T T 〉 and by
H-Theorem 5(a), that Ψ �n 〈eq T T 〉.

In the abstraction case (e l), we know that T and S have the form (lamx. T ′x)
and (lam x. S′x), respectively, and we must show:

[[ IH ; ceq inv Φ Ψ ; Φ �n 〈equal (lamx. T ′x) (lamx. S′x)〉 ]]
→ Ψ �n 〈eq (lam x. T ′x) (lam x. S′x)〉

By repeated inversion of the SL rules on the last premise, and repeated backward
application of these rules to the conclusion, we obtain:

[[ IH ; ceq inv Φ Ψ ; proper x; (equal x x, is tm x, Φ) �n−4 〈equal (T ′x) (S′x)〉 ]]
→ (eq x x, Ψ) �n−3 〈eq (T ′x) (S′x)〉

We can conclude ceq inv (equal x x, is tm x, Φ) (eq x x, Ψ) by H-Lemma 6 ap-
plied to the second premise, and then apply the induction hypothesis to obtain:

[[ IH ; . . . ; (eq x x, Ψ) �n−4 〈eq (T ′x) (S′x)〉 ]]
→ (eq x x, Ψ) �n−3 〈eq (T ′x) (S′x)〉

which is provable directly by an application of H-Theorem 5(a).
We can also prove this theorem using a generalized context as is done in

Twelf and Beluga. Using this alternate approach, we have only one context, so
the context invariant no longer needs to express relationships between different
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contexts; now it only needs to contain the following information, which is also
found in the block declarations in Beluga and Twelf.

ceq inv′ Γ == (∀xy. eq x y ∈ Γ → x = y) ∧ (∀xy. equal x y ∈ Γ → x = y).

Using this approach, we must also explicitly define weakening and strengthen-
ing functions on contexts, and lemmas about them. Such functions and lemmas
depend on the object-language, but the lemmas are fairly easily proved using
H-Theorem 5(b), which is the general weakening theorem of the SL. The rea-
soning required to prove this new version of H-Theorem 8 is similar to before,
though slightly complicated by the need to explicitly apply the weakening and
strengthening lemmas.

5 Criteria for Comparison

In this section we compare the approach taken in the three systems considered
in this paper. More generally, we describe a list of questions which can be used
to quantitatively compare systems and highlight their differences.

How do we represent contexts in proofs? Beluga supports explicit contexts when
implementing proofs about LF objects. Context variables allow us to abstract over
concrete contexts and the structure of contexts is defined by context schemas. Σ-
types tie different declarations together. While Beluga shares the general ideas
regarding representing and reasoning about contexts with the Twelf system, it
makes the meta-theoretic reasoning about contexts which is hidden in Twelf ex-
plicit. In Twelf, the actual context of hypotheses remains implicit. In Hybrid, con-
texts are explicitly modelled using lists or sets in the SL, but do not appear in the
specification of the inference rules of the object-language in the inductive defini-
tion of ( ←− ).

How do we reason with contexts? Reasoning with contexts is particularly impor-
tant when reasoning about the relationship between two formal systems (such
as the equality example) and when we assemble larger proofs using lemmas.
Systems like Twelf and Beluga also support structural reasoning about con-
texts; for example, weakening is supported by the underlying typing rules and
context subsumption. This built-in support is sensitive to the ordering of ele-
ments in a context (or world) schema and may require explicit weakening as in
the implementation of the completeness proof for equality in Twelf. In Hybrid,
H-Theorem 5 supports simple reasoning about contexts. This theorem is car-
ried out once and for all at the SL level, and reused for every object-language.
More complicated reasoning about weakening and strengthening can be avoided
in Hybrid by expressing relationships between contexts in different judgments.
The trade-off is that we must define these relationships explicitly as context
invariants and prove context extension lemmas. The meta-logic, however, pro-
vides considerable flexibility in expressing such invariants. In fact, as discussed
earlier, we can express them so that they use generalized contexts and lead to
proofs that follow the corresponding Twelf and Beluga proofs quite closely. Do-
ing so requires explicit weakening and strengthening lemmas that are specific to
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the object-language. Much of the reasoning that uses these kinds of lemmas is
stereotyped and could be automated (although we have not yet done so).

How do we retrieve elements from a context? As the context is implicit in Twelf
and the user has no access to it, the user cannot pattern match on elements from
it directly. Instead of generic cases which pattern match on an element from the
context, base cases in proofs are handled whenever an assumption is introduced,
and in fact are treated as part of the context. This may lead to scattering of base
cases and redundancy, and in addition complicates reasoning about contexts. In
Beluga, retrieval is supported using parameter variables and projections. This
is in fact crucial in the reflexivity ref and in the completeness proof ceq, where
we use Σ-types to tie assumptions together and use projections on a parameter
variable to retrieve different parts. Since the context is explicit in the SL level in
Hybrid, when retrieval of elements is needed in the base case and other cases, it
is done via simple list operations such as membership. The Coq libraries provide
support for using such operations in proofs.

How easy is it to state a given theorem? The examples in sections 2.2 and 2.3
provide a wide range of statements. All discussed systems provide a two-level ap-
proach. However, the level which allows reasoning about formal systems is more
expressive in Beluga and in Hybrid. These systems provide direct representations
of the given theorems. Twelf’s meta-logic which is used to verify that a given
relation constitutes a proof is not rich enough to handle nested quantification
and implications directly. One solution is to implement an assertion logic which
is then used to encode the actual theorem [18].

How do we apply a substitution lemma? In all known systems supporting HOAS
encodings substitution lemmas come for “free.” While the examples in this paper
do not make use of the substitution lemma, there are several well-known exam-
ples such as type preservation for MiniML. In the Twelf system and in Beluga,
applying the substitution lemma is reduced to the substitution operation in the
underlying logical framework. In Hybrid, the substitution lemma corresponds to
the application of the SL cut-rule, expressed as H-Theorem 5(c).

How do we know we have implemented a proof? In a system such as Hybrid,
we simply need to trust the underlying proof assistant and establish adequacy.
In general, proofs proceed by induction on the definition of the SL with a sub-
induction on the object-language. Coq provides extensive support for inductive
reasoning, and the induction hypothesis is a premise that is applied explicitly
when needed.

In systems such as Twelf or Beluga, we need to establish separately that the
user implemented a total function. Twelf is a mature system and provides a
coverage checker which in turn relies on the world declarations to ensure the
base cases are covered. In addition, the termination checker verifies that a given
relation is terminating according to a structural ordering specified by the user.
This establishes that all appeals to the induction hypothesis are valid.

Beluga essentially adopts the same philosophy, although the current release
does not include a coverage and termination checker. The theoretical foundation
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for coverage in Beluga is described in [4] and an implementation is planned for
the future. Intuitively, pattern matching on a contextual object of type A[Ψ ]
is exhaustive if we cover all constructors of type A plus the cases described by
parameter variables, which cover the possibility that we have used an assumption
from the context Ψ . For termination checking, we believe the ideas from [12] can
be easily adapted.

In general, writing cases using pattern matching by hand may result in a more
compact proof since it provides a flexible way to write fall-through patterns or to
simultaneously match on several objects. Hence, we may get away with writing
fewer cases explicitly as compared to an interactive prover.

How easy is it to interface the system with, for example, support for natural num-
bers? In the example that counts variable occurrences, reasoning about natural
numbers may be necessary and useful. Twelf and Beluga’s reasoning infrastruc-
ture does not support them and hence properties like addition and the totality
of addition must be proven separately. This leads to some overhead in the actual
proofs. Hybrid, on the other hand, relies heavily on the theorem prover’s built
in data-type for natural numbers along with a large collection of lemmas and
automated proof procedures (such as omega in Coq).

6 Conclusion

We presented several benchmark problems together with a general set of criteria
for comparing reasoning systems which support the mechanization of formal
systems. In addition, we discussed in detail the proofs of one of these problems in
three systems (Beluga, Twelf, and Hybrid), and applied these criteria to compare
them. This work is a starting point that will help users and developers to evaluate
proof assistants which mechanize the reasoning about formal systems. It will
also facilitate a better understanding of the differences between and limitations
of these systems, as well as the impact of these design decisions in practice. This
will provide guidance for users and stimulate discussion among developers.

We hope that these problems will subsequently also be implemented in sys-
tems using related approaches. In particular, the Delphin System [16] seems to
lie between the three systems discussed in this paper. Similarly, it would be in-
teresting to compare systems such as Abella as well as approaches not relying
on HOAS encodings such as nominal encodings.
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Abstract. This paper presents a new HOL4 formalization of the cur-
rent ARM instruction set architecture, ARMv7. This is a modern RISC
architecture with many advanced features. The formalization is detailed
and extensive. Considerable tool support has been developed, with the
goal of making the model accessible and easy to work with. The model
and supporting tools are publicly available – we wish to encourage others
to make use of this resource. This paper explains our monadic specifica-
tion approach and gives some details of the endeavours that have been
made to ensure that the sizeable model is valid and trustworthy. A novel
and efficient testing approach has been developed, based on automated
forward proof and communication with ARM development boards.

1 Introduction

Instruction set architectures (ISAs) provide a precise interface between hard-
ware (microprocessors) and software (high-level code). Formal models of instruc-
tion sets are pivotal when verifying computer micro-architectures and compilers.
There are also areas where it is appropriate to reason directly about low-level
machine code, e.g. in verifying operating systems, embedded code and device
drivers. Detailed architecture models have also been used in formalizing multi-
processor memory models, see [15].

In the past, academic work has frequently examined the pedagogical DLX
architecture, see [6]. When compared to commercial architectures, DLX is rela-
tively uncomplicated – being a simplified version of the MIPS RISC architecture.
Consequently, it is rarely cumbersome to work with the entire DLX instruction
set. More recently there has been a move to modelling, and working with, com-
mercial instruction sets (possibly in a reduced form). This has been motivated
by a desire to carry out demonstrably realistic case studies, showing that various
techniques scale and are not purely “academic” in nature. Common commercial
architectures include: IA-32, x86-64, PowerPC, Sparc and ARM. The ARM
architecture is ubiquitous in low-powered (mobile and embedded) computing
devices – the latest version of the architecture, dubbed ARMv7, is implemented
by, for example, the Cortex-A8 processor.

There are many challenges when working with full-blown ISAs, these include:
(i) official reference manuals are large, stretching to many hundreds of pages
– one can easily overlook subtle details or become bogged down with “uninter-
esting” background information; (ii) official descriptions are semi-formal (am-
biguous); (iii) many details are implementation dependent or unpredictable; (iv)

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 243–258, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



244 A. Fox and M.O. Myreen

architectures frequently have multiple generations, versions and optional exten-
sions; and (v) large formalizations can stretch the capabilities of interactive
theorem provers. Most importantly: how can one be sure that the formalization
does not contain bugs? The scale and complexity is such that it is not possi-
ble to eradicate all errors by simply eyeballing the specification or examining
a few instructions. This paper discusses our experiences with constructing and
validating a complete model of the ARMv7 architecture using the HOL4 proof
system [16].

2 Approach

Some key aspects of the work presented here are:

– The ARM instruction set architecture has been modelled in HOL using a
monadic style. This approach has a number of advantages, which are dis-
cussed in Section 3.

– The model is extensive and detailed – it covers all architecture versions cur-
rently supported by ARM, including full support for Thumb-2 instructions.1

– A collection of tools have been built around the model, making it accessible
and easy to work with. This includes an assembler and disassembler, both
of which are implemented in Standard ML. There is also a tool for auto-
matically extracting the semantics of a single instruction from the model:
this is implemented through evaluation (forward proof) and is discussed in
Section 4.

– A distinction is made between entities that are defined or derived inside of
the HOL logic and those that reside outside – this is illustrated in Figure 1.
It is important that everything defined inside of the logic is valid. On the
other hand, although it is advantageous that the other tools (e.g. the parser
and encoder) are bug free, these are not fundamentally relied upon in formal
verification work.

– The model operates at the machine code level, as opposed to a more abstract
assembly code level. In particular, the model does not provide assembly
level “pseudo instructions” and instruction decoding is explicitly modelled
inside the logic. This means that the the model can be directly validated
by comparing results against the behaviour of hardware employing ARM
processors – this is discussed in Section 5.

Through the use of extensive validation, trust in the model is progressively es-
tablished. An efficient testing framework has been developed, which is based on
a HOL session communicating with an ARM development board (via a serial
port). This set-up is required because most PCs are based on x86 processors and
cannot natively run ARM code. The results from this testing are discussed in
Section 5.3. Due to space constraints, precise details of the ARM architecture
are not provided here, readers are instead referred to [4] and [11].
1 It does not cover the ARMv7-M profile (which has a slightly different programmer’s

model) or the ThumbEE, Jazelle, VFP and Advanced SIMD extensions.
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Fig. 1. Overall structure of the formalization

3 Monadic Specification

The HOL4 system provides built-in support for defining recursive, total functions
(see [17]). Consequently, formal specifications can be written in a functional
programming style using syntax roughly similar to that of ML. For example, in
the HOL4 model of the ARMv4 architecture (see [3]), a typical definition is of
the following form:

f(v1, . . . , vm) = let x1 = g1(. . . ) in
. . .

let xn = gn(. . . ) in
(w1, . . . , wm)

If f defines the semantics of a machine code instruction then the vector v would
represent the components of the programmer’s model state space (for example,
machine registers) and w specifies the next state. The variables xi are intermediate
computations; typically the result of accessing, updating and manipulating state
components. There are a few problems with this particular style of specification:

– Explicitly naming state component (splitting the state into a vector) can
make it harder to make global changes to sizeable specifications, e.g. adding,
removing or changing the type of state components.

– The semantics is rigidly fixed to that of a state transformer. In particular,
it is not possible to reason about the order of intermediate computations,
observing whether or not they were performed sequentially or in parallel.

– For those more familiar with imperative code, the specification is not espe-
cially readable.

– It is not obvious how to handle memory I/O, non-determinism or “error
states”.

All of these factors motivate the use of a monadic programming style (see [18]),
where computations themselves are represented with an abstract data type.
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Let M represent a monad type constructor. The two fundamental monad
operations are return and bind, represented by:

return : α → α M and &= : α M→ (α → β M)→ β M

respectively. The return operation gives a value to a computation. The bind
operation composes computations: it takes the result of one computation and
passes it on to another. The type variables α and β represent the types for
working values in a computation: these roughly correspond with the variables and
arguments of procedures and functions in an imperative language. The monad
type constructor M, and associated primitive operations, can be defined in any
number of ways, implementing various underlying computational models – this
can loosely correspond with defining a semantics (and run-time environment)
for a given programming language.

In addition to the two primitive monad operations, our specifications also
makes use of a parallel operation:

� : α M→ β M→ (α× β) M .

This performs two operations, but without imposing an order of evaluation.

3.1 Sequential Monad

It is possible to define monads in HOL without considering concrete implemen-
tations: one could, for example, provide an axiomatic formalization. However,
there are advantages to being able to actually carry out computations with the
model (see Section 4). This section presents a sequential monad – this has formed
the primary basis for working with the ARM specification. The monad provides
a simple operational semantics in a shallow embedding style – this is suited
to evaluation and code verification with a Hoare style logic. The overall HOL
specification is split into two parts: the monad specification and the instruction
set specification. This means that the instruction set specification part can be
interpreted by any other monad with the same interface.

The type constructor for the sequential monad is as follows:

α Mseq ≡ state → (α× state) MaybeError

where state is the programmer’s model state space and

β MaybeError = Okay of β | Error of string .

This is essentially a state-transformer monad with error states. The monad type
can be viewed as a partial map, representing a state transition with a return
value. When the map is “undefined”, the result is a tagged string – this can be
used to identify where an error occurred.
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The basic monad operations are defined as follows:

return (v) = λs. Okay (v, s) ,

(f &= g) = λs.

[
case f(s) of Error e→ Error e

| Okay (v, s′)→ g(v)(s′)

]

and

(f � g) = (f &= (λv1. g &= (λv2. return (v1, v2)))) .

Note that errors are terminal (no further next state computation is performed)
and the parallel operation simply performs computations in a left to right order.

Thanks to Michael Norrish, it is possible to use Haskell’s do-notation when
parsing and printing monadic terms in HOL4. For example, the parallel operation
above is more readable when written as follows:

(f � g) = do v1 ← f ; v2 ← g; return (v1, v2) od .

In addition to these operations, there is a collection of operations for accessing
(reading an writing) state components. For example, registers are accessed with:

read reg : iid → bool[4]→ bool[32] M and
write reg : iid → bool[4]→ bool[32]→ unit M

where bool[4] is a 4-bit register index (for registers r0–r15); and bool[32] is a 32-
bit register value. The type iid is used to identify threads and is of little interest
here.2 The definitions for these operations derive from pseudo-code contained
within the official ARM programmer’s model description (see [11]).

3.2 Instruction Set Specification

Having defined the underlying monad, one can then define the semantics of
instructions. The following operation runs one instruction:

arm instr : iid → encoding × bool[4]× instruction→ unit M .

This operation takes a triple (enc, cond , ast), which represents the result of fetch-
ing and decoding an instruction. Instructions are conditionally run: for example,
the instruction addcs r1,r2 will have a cond value of 2 and it will be a no-op
when the carry flag is not set. The enc field indicates the instruction encoding,
e.g. 16-bit Thumb, 32-bit Thumb or 32-bit ARM. The behaviour of instructions
is specified with various sub-operations, these are selected by pattern matching
over the abstract syntax term (ast).

2 It allows register and memory accesses to be tagged with the identity of the thread
that made them.
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As an example, consider the bit-field-insert instruction (bfi).3 This is specified
on page A8-49 of the ARM reference [11] with the following pseudo code:

if ConditionPassed() then
  EncodingSpecificOperations();
  if msbit >= lsbit then

  R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
  // Other bits of R[d] are unchanged

  else
  UNPREDICTABLE;

The “encoding specific operations” part assigns values to components based
on the instruction encoding. For example, with a 32-bit Thumb encoding the
following applies from page A8-48:

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd);  n = UInt(Rn); msbit = UInt(msb);  lsbit = UInt(imm3:imm2);
if BadReg(d) || n == 13 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
BFI<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 Rn 0 imm3 Rd imm2 (0) msb

The description above additionally provides the concrete syntax and encoding
for this instruction, together with a list of architecture versions over which the
instruction is defined. The corresponding HOL4 specification for bfi is:

� bit_field_clear_insert_instr ii enc (Bit_Field_Clear_Insert msb d lsb n) =
instruction ii "bit_field_clear_insert"

(thumb2_support CROSS U(:ARMextensions → bool))
(λ v.

(if enc = Encoding_Thumb2 then
((d = 13w) ∨ (d = 15w)) ∨ (n = 13w)

else
d = 15w) ∨ w2n msb < w2n lsb)

do
rd ← read_reg ii d |||
rn ← if n = 15w then return 0w else read_reg ii n;
increment_pc ii enc |||
write_reg ii d (bit_field_insert (w2n msb) (w2n lsb) rn rd);
return ()

od

This code simultaneously specifies the closely related bit-field-clear (bfc) instruc-
tion. Grouping related instructions together greatly reduces the size specifica-
tion, which in turn limits the scope for introducing errors. The helper function
instruction takes: the thread identifier; a string naming the instruction class
(this is used to tag error states); a set representing the architectures and exten-
sions over which the instruction is defined; a predicate that determines whether
the instruction is unpredictable for a particular instruction set version; and an
operation that specifies the behaviour when the instruction is defined and pre-
dictable. Together with the decoding function, this covers all aspects of the
official ARM pseudo code specification.
3 This replaces a bit range in a destination register with bits from a source register,

which is implemented in HOL4 with the bit vector operation bit_field_insert.
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Although the HOL4 specification is far from being aesthetically perfect, it is
at least fairly compact and reasonably readable. More importantly, it is precise
and formal. In fact, in order to be of use, the HOL4 specification is in some ways
over-precise, since it specifies the order of resource accesses, as well as specifying
when the program counter is updated. The ARM reference explicitly states that
their pseudo code does not cover such low-level aspects of the behaviour (see
page 4 of Appendix I in [11]). However, cases in which such design choices would
become visible are typically designated (by ARM) as being unpredictable, so
this over-specification should not be a problem at this level of abstraction.

4 Single Step Theorems: Evaluation

For the purposes of code verification and model validation, we require theorems
of the form:

� ∀s. P(s) ⇒ (NEXT(s) = s′) (1)

where the predicate P specifies a context (e.g. instruction to be run); and the
function NEXT : state → state option defines the next state behaviour for the
architecture with respect to the sequential monad. Such single step theorems are
needed, for example, to generate Hoare triples for every op-code encountered in
the machine code of a program being verified. How can such theorems be derived
“on-demand” from the monadic specification? First it is necessary to define a
monad operation next : unit M, which calls arm_instr using the result of fetching
and decoding an instruction.4 The following definition is then possible:

NEXT(s) =

[
case next(s) of Error → NONE

| Okay ((), s′)→ SOME s′)

]
.

It is possible to derive Equation 1 by directly expanding function definitions
using the HOL4 simplifier, which supports contextual rewriting.5 Unfortunately,
the simplifier is fairly slow and this is a significant problem when working with
such a large model. There is a much faster call-by-value rewrite engine (EVAL), but
this does not directly support contextual rewriting. To get around this limitation,
the following theorem (which is proved once and for all) is used:

� ∀s xh g P.

(∀i. P (i)⇒ (g(i) = i)) ∧ (2)
(next(g(s)) = Okay ((), x)) ∧ (3)
(P (s)⇒ (h(g(s)) = x)) (4)
⇒
(P (s)⇒ (NEXT(s) = SOME (h(s)))) . (5)

A tool for deriving single step theorems “on-the-fly” works in stages as follows:
4 For simplicity sake, non-pipelined operation is assumed here.
5 Some infrastructure is needed to intelligently expand the context, i.e. generate the

predicate P.
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– The user supplies an instruction op-code, together with some other context,
e.g. the current architecture version, processor mode and instruction set
(Thumb or ARM).

– The tool examines the op-code (decodes it) and constructs a custom context
predicate P and corresponding function g. Equation 2 is proved to hold. The
context predicate and function must ensure that the supplied instruction
runs successfully. Amongst other things, this includes avoiding error states,
e.g. ensuring that memory addresses are suitably aligned and things like
division by zero do not occur. This stage can be completed fairly quickly.

– The next state operation is evaluated for the initial “context” state g(s),
giving Equation 3. The rewriter (EVAL) is provided with many lemmas to
ensure that the evaluation proceeds properly, i.e. making sure that error
states are actually avoided. It is also necessary to restrict evaluation from
proceeding too far, e.g. expanding with the definition of bit vector operations.

– The terms representing the states g(s) and x are compared and a function
h is constructed. Equation 4 is proved to hold.

– The consequent, Equation 5, is derived by modus ponens using the general
theorem (above) and the three generated theorems (Equations 2–3). This is
a simple application of the MATCH_MP rule in HOL4. Finally, simplifications
are applied and the resulting single step theorem is returned to the user.

Most of the effort with this approach went into automating the construction
of P and g, and proving appropriate evaluation lemmas. For example, consider
the instruction eor pc,r1,r2,asr #2.6 To be predictable in ARMv7, we require
a context P containing (r1 ⊕ (r2 & 2))[1 : 0] �= 2. This is achieved by defining g
such that

r1 �→ if (r1 ⊕ (r2 & 2))[1 : 0] �= 2 then r1 else r2 & 2

and, during the next state evaluation, using the general lemma

� ∀x y. ((if (x⊕ y)[1 : 0] �= 2 then x else y)⊕ y)[1 : 0] �= 2

which holds because y ⊕ y = 0 and 0[1 : 0] �= 2. Thus, by applying function
g, we successfully satisfy P and avoid the error case – the evaluation proceeds
automatically as required. Covering all such cases, over all instructions and archi-
tecture versions, was an arduous undertaking. However, the resulting instruction
evaluator is relatively fast (see below) and the internal complexities are invisible
to the user.

The final simplification stage provides a canonical form for state accesses
and updates. For example, registers are read and written using the following
functions:

ARM READ REG : bool[4]→ state→ bool[32] and
ARM WRITE REG : bool[4]→ bool[32]→ state→ state .

6 In ARMv7 this instruction performs a branch with exchange to the target address
r1 ⊕ (r2 � 2), where ⊕ is exclusive-or and � is signed right shift. The “exchange”
part relates to switching between Thumb and ARM code. The behaviour is different
for ARMv6 and different again for all earlier versions – the tool is aware of this.
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The theorem below is derived from the single step theorem for 32-bit Thumb
op-code F362 01C7 (bfi r1,r2,#3,#5):

� Abbrev (pc = ARM_READ_REG 15w state) ∧ Abbrev (rd = ARM_READ_REG 1w state) ∧
Abbrev (rn = ARM_READ_REG 2w state) ⇒
(ARM_ARCH state = ARMv7_A) ∧ ... ∧ aligned (pc,2) ∧
(ARM_READ_MEM (pc + 3w) state = 1w) ∧ (ARM_READ_MEM (pc + 2w) state = 199w) ∧
(ARM_READ_MEM (pc + 1w) state = 243w) ∧ (ARM_READ_MEM pc state = 98w) ⇒
(ARM_NEXT state = SOME

(ARM_WRITE_MEM_READ (pc + 3w) (ARM_WRITE_MEM_READ (pc + 2w)
(ARM_WRITE_MEM_READ (pc + 1w) (ARM_WRITE_MEM_READ pc

(ARM_WRITE_REG 1w (bit_field_insert 7 3 rn rd)

The first two lines show some abbreviations – these have been added here to
aid readability. Note that these theorems are not really designed for human con-
sumption – instead, they provide raw input to other automated tools. Observe
that memory accesses (from fetching the instruction) have been recorded with
ARM_WRITE_MEM_READ. This example took around 0.9 s to run,7 which is approxi-
mately the same time that it takes to perform full ground-term evaluation.

5 Validation

Our ARM model formalizes a substantial part of the 2000-page ARM reference
manual. As a result, the specification is very large and detailed. The ARM model
is sufficiently complex that mistakes are very hard to avoid and very hard to
discover. How do we know that our model correctly describes the execution of
ARM instructions on ARM processors? Furthermore, if there are mistakes in the
model, how do we find them?

Our solution is a validation infrastructure that allows us to compare the ex-
ecution of ARM instructions in our model with their execution on real ARM
hardware. This infrastructure consists of a mixture of ML, C and custom assem-
bly programs, together with the hardware used to run machine code on ARM
processors. The following ARM development boards have been used:

Olimex LPC-2129P board, with a comparatively old ARM7TDMI-S core;

Atmel SAM3U-EK board, with a “lightweight” ARM Cortex-M3 core; and

Texas Instruments BeagleBoard, with a “heavyweight” ARM Cortex-A8 core.

The majority of the testing has been performed on the BeagleBoard, which
supports the latest architecture version, namely ARMv7-A.

5.1 Random Testing

Our principle validation approach is based on generating large test suites of
randomly generated instructions. The generator is designed to provide broad
coverage over the ARM and Thumb instruction spaces. The number of instruc-
tion instances is sufficiently large that it is not feasible to manually achieve such

7 For HOL4 (experimental kernel) under Poly/ML with a Pentium 4, 3.0 GHz and
2GB of RAM.
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wide coverage in a reliable fashion. However, in some cases a custom test suit
is used, which may include manually selected op-codes. This helps speed up the
testing process when examining op-codes that are currently deemed “of interest”
or that require “special treatment”.

Although substantial software engineering effort went into writing this vali-
dation infrastructure, its top-level functionality is conceptually simple:

Step 1: Instruction selection and evaluation.
Instructions are generated by randomly choosing valid abstract syntax terms,
representing instructions of a given kind, e.g. data-processing, branch, load,
store or other. These terms are then encoded into 16-bit or 32-bit instruction
op-codes and the ARM model is evaluated for each concrete instruction
encoding, i.e. we calculate the step theorem described in Section 4. We ignore
instructions for which the model returns “unpredictable”.

Step 2: Installing test code onto an ARM board.
With some boards, installation of new programs requires physically removing
and inserting jumpers on the boards. (The reason for this is that the boards
are implemented as a Harvard architecture, i.e. programs cannot alter them-
selves or install new code.) Consequently, human interaction is sometimes
required, and instructions are generated and tested in batches.

Step 3: Random input generation.
Once the boards have the correct batch of tests installed, test cases can be
sent across the serial cable. We generate random inputs for all registers that
are, according to the model, relevant for this instruction. In order to increase
the chances of hitting corner cases such as “result equals zero”, each input
is chosen, by a fixed probability, to be one of the following constants:

0 1 2 01010101 00FF00FF FF00FF00 FFFFFFFE FFFFFFFF

otherwise input is chosen uniformly from the set of 32-bit numbers.

Step 4: Sending input via serial cable, waiting for reply.
Input is sent to the boards as strings, e.g. the following echo command
will tell the board to test instruction 1917F303 on inputs 20000000 FF00FF00

9E466F33, if the board is listening to serial port ttyS0:
echo "1917F303 20000000 FF00FF00 9E466F33" > /dev/ttyS0

(To save space, this example omits showing all other register values.) The
tester program on the board: reads this input; finds the right instruction to
execute; sets up the state; executes the instruction; saves the state and sends
back the following output, which can be read from ML as a normal text file
at location /dev/ttyS0:

instruction: 1917F303

input: 20000000 FF00FF00 9E466F33

output: 28000000 FF00FF00 FF800000

Programming the board software was by far the hardest part of the validation
effort.

/dev/ttyS0
/dev/ttyS0
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Step 5: Validating results against the model.

Once the board has responded to the input, the instruction’s step theorem
is instantiated and evaluated using the concrete values for the input line (as
shown above). If the test results disagree with the model then a failure is
reported in a log file, e.g. the following log entry records a genuine error in
the first revision of our ARM model. Here the values of the flag register cpsr
and register r9 differ from their expected values.

FAIL: 1917F303 ARCH ARMv7-M THUMB ssat r9,#24,r3,lsl #4

resource: cpsr r3 r9

input: 20000000 FF00FF00 9E466F33

board.out: 28000000 FF00FF00 FF800000

model.out: 20000000 FF00FF00 00800000

diff: ^^^^^^^^ ^^^^^^^^

The cause of this error was a minor misinterpretation of the ARM manual.

Step 6: Repeat from Step 3.

By looping through Steps 3–6, we get through five tests per second on av-
erage. This speed is achieved by only once evaluating the full ARM model
symbolically for each instruction (Step 1) and then in the test loop (Steps
3–6) evaluating only fully instantiated terms, which is relatively fast in HOL.
The overall performance is limited by communication speeds.

5.2 Other Means of Gaining Assurance

There are other means of gaining assurance that the model is correct. For exam-
ple, we gain some assurance that the model cannot be completely wrong from:

– Observing that code verified against this model (see [13]) seems to behave
as expected when executed on real hardware.

– Running the model over ARM code that calculates a non-trivial known func-
tion, e.g. MD5. For example, a reference C implementation of MD5 (see [14])
was cross-compiled to ARM machine code using GCC. This was then run on
an SML version of the HOL model, which was generated using Konrad Slind’s
EmitML tool. This approach sacrifices trust (using the LCF approach) for
performance – running a few thousand ARM instructions per second.

However, both of these approaches are inferior to the testing described above,
since these approaches have smaller coverage of the instruction space and make
finding the source of erroneous output very complicated.

5.3 Test Results

Comparing the execution of instructions on hardware to evaluations of the ARM
model has been a successful method for both quickly finding bugs in the model
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and as a means of gaining evidence that the HOL definitions are, if not com-
pletely accurate, very close to exactly right. At the time of writing the test-
ing coverage is good but not yet complete. Progress and tests are recorded
at www.cl.cam.ac.uk/~mom22/arm-tests. This should allow others to benefit
from, and independently assess, this work.

The following bugs were found using the approach described in Section 5.1.

1. Bit-field insert (BFI): the following update should occur
Rd<msb:lsb> ← Rn<(msb-lsb):0>

but instead the following was occurring
Rd<msb:lsb> ← Rn<msb:lsb> .

2. Signed saturates (SSAT and SSAT16): there was a missing application of a
sign-extension function.

3. 16-bit signed saturate (again) and an assortment of signed multiples (SSAT16,
SMLA<x><y>, SMUL<x><y>, SMLAW<x><y>, SMULW<x><y> and SMLAL<x><y>): sign ex-
tension was not working properly because the bit vector operation word_bits

was being used instead of word_extract.
4. The 32-bit Thumb versions of load signed half-word and load signed byte

(LDRSH and LDRSB): these were incorrectly decoded (flag values were being
extracted from the wrong bit position).

In each of the cases listed above there was a clear discrepancy between the
“real” register output values and those obtained through evaluating the model.
In addition to these bugs it also became clear that the 32-bit Thumb register shift
instructions (LSR, ASR, LSL and ROR) were not being tested. This was because the
model was incorrectly identifying them as being unpredictable. It later transpired
that there was also a bug in decoding these instruction.8

Finally, a bug was found through the MD5 example mentioned in Section 5.2.
The condition test was wrong for the greater-than (GT) and less-than or equal
(LE) conditions: the carry flag (C) was being used instead of the zero flag (Z).9

As an unforeseen consequence of this project, it has has been possible for us
to identify and report bugs in the GNU assembler (gas). These mostly concern
Thumb-2 support in versions 2.19 and 2.20. That is to say, there were errors in
the binary encoding of SEV.W, PKHTB, QADD, QDADD, QSUB and QDSUB. The reported
bugs are documented at sourceware.org/bugzilla/ under bug numbers 10168,
10169, 10186 and 11013.

6 Restrictions

There are some limitations to our approach. We have not found a clean way
to simultaneously consider multiple monadic interpretations of the specification
in HOL4. This has not been a problem for our work, where we focus on the
sequential semantics, but we speculate that some kind of module system (such
as Locales in Isabelle or Sections in Coq) could be helpful here. The testing
framework has proved to be very successful, however, note that:
8 A bit vector extract was off by one position.
9 This bug was fixed before the random testing covered conditional instructions.

www.cl.cam.ac.uk/~mom22/arm-tests
sourceware.org/bugzilla/
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– Store instructions require special treatment.
– Care must be taken with instructions that access or update the program

counter or stack pointer (registers fifteen or thirteen). The random instruc-
tion generator normally avoids these instructions, since most instances are
unpredictable. The predictable cases must be tested separately but it is nec-
essary to address the problem of providing a mechanism for safely branching
when running tests.

– If something does go wrong (e.g. an op-code is unexpectedly undefined or is
a branch) then it can be tricky to recover and work out what has happened.
A “hang” must be treated as a possible fail case.

– It is hard to be confident that the coverage is exactly right for each supported
architecture version. That is to say, one cannot be totally sure that unpre-
dictable and undefined instruction instances have been properly identified.
Testing has not been carried out on ARMv5 or ARMv6 boards. Further-
more, the testing automatically filters out all instructions that the model
says are unpredictable and some of these cases are not easy to spot in the
ARM reference [11]. Omissions can be spotted by examining the table of
results, but this process is not foolproof.

– It is not possible to test instruction instances that need to be run in privileged
modes (e.g. supervisor mode) or that change the current processor mode.
This affects the testing of mrs, msr, cps, bkpt, rfe, svc and smc instructions.
This also covers hardware exceptions – interrupts, aborts and resets.

– One cannot fully test implementation dependent or system features. This
includes semaphore instructions, such as ldrex and clrex (clear-exclusive),
and hint instructions, such as wfe, wfi (wait for interrupt), pld (pre-load
data) and dmb (data memory barrier). In some cases it is possible to simply
observe whether or not these instruction behave like no-op instructions.

It is possible that many of these shortcomings could be overcome by using the
JTAG interface on the development boards, instead of using the serial port.
The JTAG interface is specifically designed for carrying out debugging with
embedded processors. However, this would require more specialist equipment
and know-how. We believe that the testing that has been completed to date
provides an excellent basis for establishing trust in the model.

7 Related Work

This section discusses related work in formalizing various commercial instruction
set architectures using interactive theorem provers, i.e. in ACL2, Coq, Isabelle and
HOL4. There is much work that is indirectly related, but here we exclude non-
commercial architectures (e.g. DLX) and informal or semi-formal ISA models (e.g.
in C, System Verilog, Haskell and so forth). It is worth noting that there have been
significant efforts made in testing large formal models in other areas, e.g. network
protocols, see [2]. Work in the area of commercial ISAs includes the following.

ARM. The ARM specification presented here has its origins in work on verifying
the ARM6 processor to the RTL level, see [3]. The specification of the architec-
ture (then version 3) has been almost completely rewritten in the process of



256 A. Fox and M.O. Myreen

upgrading to a monadic specification for architecture versions 4–7. Neverthe-
less, the experience gained from that project was invaluable and it provided an
excellent point of reference.

Processor implementations of the modern architecture versions are proprietary
and so we are unable to prove our specification correct with respect to RTL level
models. Instead we have validated the model through extensive testing against
modern ARM hardware.

ARM/C. The L4 verified project [8] has produced a formally verified micro-
kernel running on ARMv6. However, the model stays at and above the C level
and only describes how ARM specific details are seen through C code (e.g.
details of interrupts). They assume correctness of C compilers and assume the
correctness of in-lined ARM assembly, which constitutes approximately 7% of
the microkernel’s implementation. Their low-level functional specification of the
C code uses monads to make it look similar to the original C.

x86. Our work on testing the model against real hardware was inspired by
similar work by Susmit et al. [15] on validation of an operational semantics for
x86 machine code. We achieved higher throughput of tests by structuring our
test framework differently: we evaluated the ARM model once for each concrete
instruction instance and reuse the resulting theorem for multiple test of the same
instruction, while the x86 work re-evaluated the x86 model for each test and that
work did not make use of development boards.

An extensive formal model of the x86 instruction set is being developed by
Hunt in conjunction with work on specifying and verifying the media unit, i.e.
a unit which performs floating point arithmetic, of a Centaur Technology’s x86
processor [7]. As part of this work, Hunt developed the E hardware specification
language which has some monad-like features – in so far as allowing the model to
support multiple interpretations. Unfortunately this high-fidelity model of the
x86 instruction set architecture is not publicly available.

AAMP7G. Another commercial formal specification has been developed by
Rockwell Collins. They have an executable ACL2 model of the Rockwell Collins
AAMP7G microprocessor at the instruction-set level [5]. Unfortunately, as with
Hunt’s x86 model, this model is also not in the public domain.

PowerPC. The Compcert project [10] has produced, and proved the correct-
ness of, an optimising C compiler that targets PowerPC. As part of this work
they formalized a subset of PowerPC assembly. Their model is smaller in scope
than our ARM model (but sufficient for a compiler) and does not include an
instruction decoder, thus their model is an assembly level model. They also have
a more abstract view of memory which is expressed in terms of memory blocks,
in contrast to our very concrete mapping from 32-bit addresses to 8-bit data.

JVM. A succession of increasingly sophisticated models of the JVM bytecode
have been developed in ACL2 [12], the most complicated of which includes
threaded behaviour and untyped execution. Models of JVM have also been de-
veloped in Isabelle/HOL [9] and Coq [1].
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8 Summary

The ARMv7 architecture reference [11] is a sizeable document (stretching to over
two thousand pages in length) and it covers all aspects of the architecture. This
ARM reference has been used to construct a formal instruction set model in HOL
using a monadic specification style. In total the specification comes to around
6500 lines of HOL4 script. The model covers many thousands of instruction
instances, which perform non-trivial arithmetic and logical bit vector operations.
Instruction decoding is modelled explicitly – mapping ARM and Thumb machine
code to an AST data type.

Two important questions arise. How to make the model accessible and easy
to use in formal verification projects. How to ensure that the model is trustwor-
thy and as free from bugs as possible. To address these points significant tool
support has been developed. In fact, this endeavour requires more code than the
model itself, accounting for approximately 15000 lines of code/script. The most
important tool is an instructions evaluator – this takes an instruction op-code
and outputs a theorem giving that instruction’s operational semantics. This sin-
gle step theorem can be used in code verification and in validating the model. A
novel technique is used to ensure that the evaluator works efficiently and auto-
matically. The formalization is made more accessible through tight integration
with a custom written ARM assembler and disassembler. This saves users having
to build and rely upon gas as a cross-compiler.

The model has been systematically tested through comparison against the
behaviour of ARM hardware. Batches of instructions are randomly generated and
loaded onto development boards. The single step theorems are used to evaluate
the instructions for multiple data inputs (register assignments) and the results
are compared against the output from the boards. This technique has enabled
us to run many thousands of tests, identifying and fixing a number of bugs in
the model. We encourage others to examine and use the model, tools and test
data/results, which are publicly available at www.cl.cam.ac.uk/~acjf3/arm.
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Abstract. We have developed a hybrid system safety prover, imple-
mented in Coq using the abstraction method introduced by [2]. The de-
velopment includes: a formalisation of the structure of hybrid systems;
a framework for the construction of an abstract system (consisting of
decidable “over-estimators” of abstract transitions and initiality) faith-
fully representing a concrete hybrid system; a translation of abstract
systems to graphs, enabling the decision of abstract state reachability
using a certified graph reachability algorithm; a proof of the safety of
an example hybrid system generated using this tool stack. To produce
fully certified safety proofs without relying on floating point computa-
tions, the development critically relies on the computable real number
implementation of the CoRN library of constructive mathematics for-
malised in Coq. The development also features a nice interplay between
constructive and classical logic via the double negation monad.

1 Introduction

In [2], Alur et al. present an automated method for hybrid system safety ver-
ification in which one derives from the hybrid system of interest an abstract
hybrid system, which is essentially a finite automaton whose traces are suffi-
ciently representative of traces in the original system that unreachability in the
abstract system (which can be decided using a standard graph algorithm) implies
unreachability in the concrete system (which, being governed by continuous be-
haviours, cannot be decided so readily). Thus, the abstraction method brings the
safety verification problem from a continuous and infinite domain into a discrete
and finite domain, where it can be dealt with using standard graph algorithms.

The prototype implementation described in [2] was developed in a conven-
tional programming language, only has an informal correctness argument, and
uses ordinary floating point numbers to approximate the real numbers that are
used in said argument. These factors limit the confidence one can justifiably have
in safety judgements computed by this implementation, because (1) it is easy
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for bugs to creep into uncertified programs; (2) it is easy to make mistakes in
informal correctness arguments; and (3) floating point computations are subject
to rounding errors and representation artifacts.

Our goal is to increase this degree of confidence by developing a certified
reimplementation of the abstraction technique in Coq, a proof assistant based
on a rich type theory that also functions as a (purely functional) programming
language. The Coq system lets us develop the algorithms and their formal cor-
rectness proofs in tandem in a unified environment, addressing (1) and (2) above.

To address (3), we replace the floating point numbers with exact computable
reals, using the certified exact real arithmetic library developed by O’Connor [14]
for CoRN, our Coq repository of formalised constructive mathematics [7]. This
change is much more than a simple change of representation, however; because
computable reals only permit observation of arbitrarily close approximations,
certain key operations on them (namely naive comparisons) are not decidable.
The consequences of this manifest themselves in our development in several
ways, which we discuss in some detail. Hence, our development also serves to
showcase O’Connor’s certified exact real arithmetic library applied to a concrete
and practical problem.

On a separate note, we argue that the use of computable reals is not just a
pragmatic choice necessitated by the need to compute, but is actually funda-
mental considering their role in hybrid systems, where they represent physical
quantities acted upon by a device with sensors and actuators. In the real world,
measurements are approximate.

The end result of our work is a framework with which one can specify (inside
Coq) a concrete hybrid system, set some abstraction parameters, derive an ab-
stract system, and use it to compute (either inside Coq itself or via extraction
to OCaml) a safety proof for the concrete system.

2 Hybrid Systems and the Abstraction Method

A hybrid system is a model of how a software system (running on a device
with sensors and actuators), described as a finite set of locations with (discrete)
transitions between them, acts on and responds to a set of continuous variables
(called the continuous state space), typically representing physical properties of
some environment (such as temperature and pressure).

There are many varieties of hybrid systems [9,11]. We follow [2] and to illus-
trate the definition and the abstraction method, we use the example of a system
describing a thermostat (this is the same example as in [2]), shown in Figure 1.

The thermostat has three locations. The first two, Heat and Cool, represent
states in which the thermostat heats and cools the environment it operates in,
respectively. The third, Check, represents a self-diagnostic state in which the
thermostat does not heat or cool. The continuous state space of the thermostat
consists of two continuous variables denoting an internally resettable clock c and
the temperature T in the environment in which the thermostat operates.
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Each location has an associated invariant predicate defining the set of per-
mitted values for the continuous variables while in that location. The invariants
for the thermostat are:

InvHeat(c, T ) := T � 10∧c � 3, InvCool(c, T ) := T � 5, InvCheck(c, T ) := c � 1.

T <= 10 & c <= 3

Heat

T >= 9

T <= 6 −−> c := 0 c >= 0.5 −−> c := 0

c >= 2 −−> c := 0

T = 2

c = 1 CheckCool

.
.

.
.

..
.T >= 5 c <= 1

T = − T/2

c = 1c = 1

T = −T

Fig. 1. The Thermostat as an example of a Hybrid Systems

The initial states of a hybrid system are determined by a predicate Init. For the
thermostat, Init(l, c, T ) is defined as l = Heat ∧ c = 0 ∧ 5 � T � 10.

The discrete transitions between locations describe the logic of the software
system. Each such transition is comprised of two components: a guard predicate
defining a subset of the continuous state space in which the transition is enabled
(permitted), and a reset function describing an instantaneous change applied as
a side effect of the transition, as seen in the following definition of the discrete
transition relation:

(l, p)→D (l′, p′) := guardl,l′(p) ∧ resetl,l′(p) = p′ ∧ Invl(p) ∧ Invl′(p′)

It will be clear from Figure 1 what the guards and reset functions are. Note the
inherent non-determinism in a Hybrid Systems specification: when in Cool, the
system can jump to Heat whenever the temperature T is in the interval [5, 6].

Each location in a hybrid system has an accompanying flow function which
describes how the continuous variables change over time while the system is in
that location. The idea is that different locations correspond to different uses of
actuators available to the software system, the effects of which are reflected in the
flow function. In the thermostat example, the flow function corresponding to the
Cool location has the temperature decrease over time. This is expressed via the
differential equation Ṫ = −T , which is the usual short hand for T ′(t) = −T (t),
where T ′(t) denotes the derivative of the temperature function over time t.

In the canonical definition of hybrid systems, flow functions are specified as
solutions to differential equations (or differential inclusions) describing the dy-
namics of the continuous variables. We follow [2] in abstracting from these, taking
instead the solutions of these differential equations, which are flow functions Φ
which satisfy:

Φ(p, 0) = p and Φ(p, d + d′) = Φ(Φ(p, d), d′)
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The idea is that Φ(p, d) denotes the value of the continuous variable after dura-
tion d, starting from the value p. We say that there is a (concrete) continuous
transition from a state (l, p) to a state (l, p′) if there is a non-negative duration
d such that p′ = Φl(p, d) with the invariant for l holding at every point along
the way:

(l, p)→C (l, p′) := ∃d∈R�0 . Φl(p, d) = p′ ∧ ∀0�t�d . Invl(Φl(p, t)).

A flow function on R2 can be expressed as the product of two flow functions:
Φl((c0, T0), t) = (ϕl,c((c0, T0), t), ϕl,T((c0, T0), t)). In the thermostat example, as
in many other examples of hybrid systems, ϕl,c((c0, T0), t) does not actually
depend on T0 and ϕl,T((c0, T0), t) does not actually depend on c0. We call this
feature separability of the flow function. Our development currently relies heavily
on this property. Separability makes the form of the flow functions simpler:

Φl((c0, T0), t) = (ϕl,c(c0, t), ϕl,T(T0, t))

In the thermostat, ϕl,c(c0, t) = c0 + t for all locations l, ϕHeat,T(T0, t) = T0 + 2t,
ϕCheck,T(T0, t) = T0 ∗ e−

1
2 t and ϕCool,T(T0, t) = T0 ∗ e−t. So ϕ′

Cool,T(T0, t) =
−ϕCool,T(T0, t), solving the differential equation Ṫ = −T for the Cool location.

A transition is either continuous or discrete: →CD:=→D ∪ →C . A finite
sequence of transitions constitutes a trace and we denote by→→CD the transitive
reflexive closure of →CD. We now say that a state s is reachable if there is an
initial state i from which there is a trace to s, that is

Reach(s) := ∃i∈State . Init(i) ∧ i→→CD s.

The objective of hybrid system safety verification is to show that the set of reach-
able states is a subset of a predefined set of “safe” states. For the thermostat,
the intent is to keep the temperature above 4.5 degrees at all times, and so we
define Safe(c, T ) := T > 4.5 (and Unsafe(c, T ) as its complement).

2.1 The Abstraction Method

There are uncountably many traces in a hybrid system, so safety is undecidable
in general. In concrete cases, however, safety may be (easily) provable if one
finds the proper proof invariant. Unfortunately these are often hard to find, so
we prefer methods that are more easily automated. The predicate abstraction
method of [2] is one such method.

The idea is to divide the continuous state space into a finite number of con-
vex subsets (polygons), A1, . . . , An, which yields a finite abstract state space,
AState := {(l, Ai) | l ∈ Loc, 1 � i � n}, with an obvious embedding A : State →
AState of concrete states into abstract states. On this abstract state space, one
immediately defines abstract continuous transitions and abstract discrete transi-
tions (both potentially undecidable) as follows.

(l, P ) A→C (l, Q) := ∃p∈P,q∈Q . (l, p)→C (l, q)

(l, P ) A→D (l′, Q) := ∃p∈P,q∈Q . (l, p)→D (l, q).
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Define abstract reachability by AReach(a) := ∃s0∈State . Init(s0)∧A(s0)
A→→CD a,

as expected. Also the predicates ASafe and AUnsafe, stating when abstract states
are safe / unsafe can be defined in the straightforward way.

Traces in the finite transition system constructed in this way are sufficiently
representative (see Figure 2.) of those in the original (concrete) system that one
can conclude safety of the latter from safety of the abstract system:

if ∀a∈AState . AReach(a) → ASafe(a), then ∀s∈State . Reach(s)→ Safe(s).

s
CD

� s′ s0

CD

� s1

CD

� s2

CD

� . . .

∨ ∨ ∨ ∨ ∨
A(s)

A

CD

� A(s′) A(s0)
A

CD

� A(s1)
A

CD

� A(s2)
A

CD

� . . .

Fig. 2. The abstraction function

The interest and power of the abstraction method lies in two facts. First, we do
not need the exact definitions of A→C and A→D to conclude safety of the concrete
system from safety of the abstract system. We only need the property of Figure
2, so we can over-estimate A→C and A→D (i.e. replace it with a transition relation
that allows more transitions). Second, there are good heuristics for how to divide
the continuous state space into regions, and how to decide whether there should
be an abstract transition from one abstract state to another.

This is indicated in Figure 3. The left hand side illustrates the challenge: given
abstract regions A and B, we are to determine whether some flow duration per-
mits flow from points in A to points in B. Following the over-estimation property
just mentioned, we introduce an abstract transition from A to B whenever we
cannot positively rule this out.

On the right hand side we see the abstract state space indicated for the lo-
cation Heat. The abstract state space consists of rectangles, possibly degenerate
(extending to −∞ or +∞). According to [2], a good candidate for an abstrac-
tion is to take the values occurring in the specification (Figure 1) as the bounds
of such rectangles. (In case one cannot prove safety, there is of course the op-
portunity for the user to refine the bounds.) The grey area indicates that from
these states also abstract discrete transitions are possible. The dashed area is
unreachable, because of the invariant for the Heat location. being reachable.
All the abstract transitions from the rectangle [0.5, 1) × [5, 6) are shown: as
the temperature flow function for Heat is ϕHeat,T(T0, t) = T0 + 2 ∗ t, and the
clock flow function is ϕHeat,c(c0, t) = c0 + t, these are all the possible abstract
transitions.

Using the abstraction method, [2] proves the correctness of the thermostat.
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a1 b1 c1 d1

a2

b2

c2

d2

A

B

4.5

5

6

9

10

0.5 1.0 2.0 3.0 c (clock) 

Heat
T (temp)

Fig. 3. The abstraction function computed

3 Formalisation

We now describe the Coq formalisation and the design choices made. We will
not pay much attention to the specifics of Coq and its type theory CiC, and will
instead focus on concerns relating to the use of computable reals and constructive
logic. The complete sources of the development are available on the web, as well
as a technical report describing the formalisation in more detail [22].

3.1 (Concrete) Hybrid Systems

We begin by showing our definition of a concrete system, the different parts of
which we discuss in the remainder of this section.

Record System : Type :=
{Point : CSetoid
;Location : Set
;Location eq dec : EqDec Location eq
; locations : ExhaustiveList Location
;State := Location × Point
; initial : State → Prop
; invariant : State → Prop
; invariant initial : initial subsetof invariant
; invariant stable : ∀ s ,Stable (invariant s)
;flow : Location → Flow Point
; guard : State → Location → Prop
; reset : Location → Location → Point → Point }.

This is a Coq definition of a record type of “Systems”, which contain a field
“Point”, representing the continuous state space and a field “Location”, repre-
senting the set of locations. Here, we take Point to be an arbitrary constructive
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setoid, which is basically just a type with an equality on it. For Location, we
assume a decidable equality and a finite enumeration (“exhaustive list”) of loca-
tions. The other parts are as expected (“Flow Point” is the type of flow functions
on the type “Point”), except for the requirement that the invariant Invl is “Sta-
ble” for every location l, which we will discuss now.

3.2 Stability, Double Negation, and Computable Reals

Constructively, a proof of X → A ∨ B is a function that, given an X , returns
either a proof of A, or a proof of B. With this in mind, suppose we try to
implement le lt dec :∀ (x , y :CR), (x � y ∨y <x ), where CR are the constructive
reals. Then given x and y in CR, we are to produce a proof either of x � y
or of y < x. Unfortunately, the nature of computable reals only lets us observe
arbitrarily close approximations of x and y. If it happens to be the case that
x = y, then no matter how closely we approximate x and y, the error margins
(however small) will always leave open the possibility that y is really smaller
than x. Consequently, we will never be able to definitively conclude that x � y.

Computable reals do admit two variations of the proposition:

1. leltdecoverlap : ∀ (x y : CR), (x < y → ∀ z , (z � y ∨ x � z ))
2. leltdecDN : ∀ (x y : CR),¬¬(x � y ∨ y < x )

Both are weaker than the original, and are less straightforward to use. Nev-
ertheless, this is the path we will take in our development (we will heavily
use leltdecDN ), because just taking le lt dec as an axiom amounts to cheating.
A question that immediately arises is: How does one actually use this doubly
negated variant in proofs? One practical way is to observe that double negation,
as a function on propositions, is a monad [21]. Writing DN P for ¬¬P , we have
the following two key operations that make DN a monad:

returnDN : ∀ A,A→ DN A
bindDN : ∀ A B ,DN A→ (A→ DN B)→ DN B

The first expresses that any previously obtained result can always be inserted
“into” the monad. The second expresses that results inside the monad may be
used freely in proofs of additional properties in the monad. For instance, one
may bindDN a proof of DN (x � y ∨ y < x) (obtained from leltdecDN above)
with a proof of (x � y ∨ y < x) → DNP , yielding a proof of DN P .

Thus, DN establishes a “proving context” in which one may make use of
lemmas yielding results inside DN that may not hold outside of it (such as
leltdecDN ), as well as lemmas yielding results not in DN , which can always be
injected into DN using returnDN . The catch is that such proofs always end
up with results in DN , which begs the question: what good is any of this? In
particular, can leltdecDN be used to prove anything not doubly negated?

As it happens, some propositions are stable in the sense that they are con-
structively equivalent to their own double negation. Examples include negations,
non-strict inequalities on real numbers, and any decidable proposition.
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Requiring that hybrid system invariants are stable effectively lets us use classi-
cal reasoning when showing that invariants hold in certain states. One instance
where we need this is in the proof of transitivity of the concrete continuous
transition.

Invariants are typically conjunctions of inequalities, which are stable only if
the inequalities are non-strict. Hence, the limits on observability of computable
real numbers ultimately mean that our development cannot cope with hybrid
systems whose location invariants use strict inequalities. We feel that this is not
a terrible loss. In Section 3.3 we will see analogous limitations in the choice of
abstraction parameters.

3.3 Abstract Hybrid Systems

We now want to define an abstract system and an abstraction function satisfying
the properties indicated in Figure 2. However, this is not possible, because we
cannot make a case distinction like x � 0∨0 < x and therefore we cannot define
a function that maps a point (c, T ) to the rectangle R it is in. We can define a
function that approximates a point (c, T ) up to, say ε (ε > 0) and then decides
to send that point to the rectangle R the approximation is in. This implies that,
when one is close to the edge of a rectangle,

– different representations of a point (c, T ) may be sent to different rectangles,
– a point that is less than ε outside the rectangle R may still be sent to R.

The second is very problematic, because it means the property for the abstraction
function A depicted in Figure 2 no longer holds.

We argue that these problems are not merely inconvenient byproducts of our
use of constructive logic and computable reals, but actually reflect the profound
limitation of physical reality where one can only ever measure quantities approx-
imately, making case distinctions like x � 0 ∨ 0 < x simply unrealistic.

Moreover, we claim that the classical abstraction method allows one to prove
the safety of systems that are unreliable in practice. We will not expand on this
here, but suppose we add a fourth location Off to the thermostat of Figure 1,
with Ṫ = −1, ċ = 1 and an arrow from Heat to Off with guard c � 2 ∧ T < 9.
Clearly, if the system can end up in location Off, it is unsafe. Now, using the
classical abstraction method, there is no transition to any state involving location
Off from the initial state, because as soon as c � 2, T � 9. However, when we
get close to c = 2, any small mistake in the measurement of T may send the
system to Off, making the whole hybrid system very unreliable.

The positive thing is that we do not really need the commutation property of
Figure 2. To address the problems we

– let regions in the abstract hybrid systems overlap (ideally as little as possible,
e.g. only at the edges).

– replace the abstract relations A→C and A→D by functions over cont trans and
over disc trans that take a region R0 as input and output a list of regions
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including R0: (Ro, R1, . . . , Rn) in such a way that ∪0�i�nRi is an over-
approximation of the set of states reachable by a continuous (resp. discrete)
step from a state in R0.

– loosen the requirement on the abstraction function A; for s ∈ State, we only
require DN (∃r∈Region . s ∈ r).

To summarise, if s →C s′, then we don’t require A(s′) to be in the list
over cont trans(A(s)), but we only require s′ to be in the

⋃
over cont trans(A(s)).

This simple change relieves us from having to determine the exact regions that
points are in: they just should be covered. The functions over cont trans and
over disc trans yield a notion of trace in the abstract hybrid system in the straight-
forward way: starting from R0, take an R1 in over cont trans(R0), then an R2 in
over disc trans(R1), and so forth.

Whereas in a concrete hybrid system states consist of a location paired with a
point in the continuous state space, in an abstract hybrid system states consist
of a location paired with the “name” of a region corresponding to a subset of the
continuous state space. From now on we will use a “concrete.” prefix for names
like State defined in section 3.1, which now have abstract counterparts. Region is
a field from a record type Space bundling region sets with related requirements:

Record Space : Type :=
{Region : Set
;Region eq dec : EqDec Region eq
; regions : ExhaustiveList Region
;NoDup regions : NoDup regions
; in region : Container Point Region
; regions cover : ∀ (l : Location) (p : Point),

invariant (l , p) → DN {r : Region | p ∈ r }}.

The Container Point Region type specified for in region reduces to Point →
Region → Prop. Container is a type class that provides the notation “x ∈ y”.
Finally, regions cover expresses that each concrete point belonging to a valid
state must be represented by a region—a crucial ingredient when arguing that
unreachability in the abstract system implies unreachability in the concrete sys-
tem. The double negation in its result type is both necessary and sufficient:

It is necessary because regions cover boils down to a (partial) function that,
given a concrete point, must select an abstract region containing that point.
This means that it must be able to decide on which side of a border between two
regions the given point lies. As we saw in section 3.2, that kind of decidability is
only available inside DN unless all region borders have nontrivial overlap, which
is undesirable.

Fortunately, the double negation is also sufficient, because we will ultimately
only use regions cover in a proof of ... → ¬concrete.reachable s (for some uni-
versally quantified variable s), which, due to its head type being a negation, is
stable, and can therefore be proved in and then extracted from DN . Hence, we
only need regions cover ’s result in DN .
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3.4 Under-Estimation and Over-Estimation

Ultimately, in our development we are writing a program that attempts to pro-
duce hybrid system safety proofs. Importantly, we are not writing a complete
hybrid system safety decision procedure: if the concrete system is unsafe or the
abstraction method fails, our program will simply not produce a safety proof. It
might seem, then, that we are basically writing a tactic for a particular problem
domain. However, tactics in Coq are normally written in a language called Ltac,
and typically rely on things like pattern matching on syntax. Our development,
on the other hand, is very much written in regular Gallina, with hardly any
significant use of Ltac.

We define underestimation P to be either a proof of P , or not:

Definition underestimation (P : Prop) : Set := {b : bool | b = true → P }.
The bool in the definition nicely illustrates why we call this an “under-estimation”:
it may be false even when P holds. We can now describe the functionality of our
program by saying that it under-estimates hybrid system safety, yielding a term
of type underestimation Safe, where Safe is a proposition expressing safety of a
hybrid system.

Considered as theorems, under-estimations are not very interesting, because
they can be trivially “proved” by taking false. Hence, the value of our program
is not witnessed by the mere fact that it manages to produce terms of type
underestimation Safe, but rather by the fact that when run, it actually manages
to return true for the hybrid system we are interested in (e.g. the thermostat).
It is for this reason that we primarily think of the development as a program
rather than a proof, even though the program’s purpose is to produce proofs.

The opposite of an under-estimation is an over-estimation:

Definition overestimation (P : Prop) : Set := {b : bool | b = false → ¬P }.
Since hybrid system safety is defined as unreachability of unsafe states, we may
equivalently express the functionality of our development by saying that it over-
estimates unsafe state reachability. Indeed, most subroutines in our programs
will be over-estimators rather than under-estimators. Notions of over-estimation
and under-estimation trickle down through all layers of our development, down
to basic arithmetic. For instance, we employ functions such as (recall that CR
denotes the type of constructive reals):

overestimate�CR (ε : Q+) : ∀ x y : CR, overestimation (x �CR y)

As discussed earlier, �CR is not decidable. overestimate�CR merely makes a “best
effort” to prove ¬(x �CR y) using ε-approximations. A smaller ε will result in
fewer spurious true results.

3.5 Abstract Space Construction

When building an abstract system, one is in principle free to divide the con-
tinuous state space up whichever way one likes. However, if the regions are too
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fine-grained, there will have to be very many of them to cover the continuous
state space of the concrete system, resulting in poor performance. On the other
hand, if the regions are too coarse, they will fail to capture the subtleties of the
hybrid system that allow to prove it safe (if indeed it is safe at all). Furthermore,
careless use of region overlap can result in undesirable abstract transitions (and
therefore traces), adversely affecting the abstract system’s utility.

In [2], a heuristic for interval bound selection is described, where the bounds
are taken from the constants that occur in the invariant, guard, and safety
predicates. For the thermostat, we initially attempted to follow this heuristic
and use the same bounds, but found that due to our use of computable reals,
we had to tweak the bounds somewhat to let the system successfully produce
a safety proof. Having to do this “tweaking” manually is clearly not ideal. One
may want to develop heuristics for this.

Another way in which our thermostat regions differ from [2] lies in the fact
that our bounds are always inclusive, which means adjacent regions overlap in
lines.

3.6 Abstract Transitions and Reachability

Once we have a satisfactory abstract Space, our goal is to construct an over-
estimatable notion of abstract reachability implied by concrete reachability, so
that concrete unreachability results may be obtained simply by executing the
abstract reachability over-estimator. We first over-estimate the continuous tran-
sitions; we need the following definition for that.

Definition shared cover
(cs : concrete.State → Prop) (ss : abstract .State → Prop) : Prop :=
∀ s : concrete.State, s ∈ cs → DN (∃ r : abstract .State, s ∈ r ∧ r ∈ ss).

A set of concrete states is said to be sharedly-covered by a set of abstract states
if for each of the concrete states in the former there is an abstract state in the
latter that contains it.

We now specify what the type of over cont trans should be.

over cont trans : ∀ s : abstract .State,
{p : list abstract .State | NoDup p ∧ shared cover

(concrete.invariant ∩ (overlap s ◦ flip concrete.cont trans)) p}
So, over cont trans s should produce a list of abstract states p without dupli-
cates, such that p is a shared cover of the collection of concrete states c that
satisfy the invariant and whose set of origins under concrete.cont trans have an
overlap with s . In more mathematical terms: p should form a shared cover of
{c ∈ State | Inv(c)∧s∩{c′ | c′ →C c} �= ∅}. We similarly specify over disc trans
as an over-estimator for concrete disc trans and over initial as an over-estimator
of concrete.initial .

We now consider the properties we require for abstract .reachable . An obvious
candidate is:
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∀ (s : concrete.State), concrete.reachable s →
∀ (s ′ : abstract .State), s ∈ s ′ → abstract .reachable s ′.

because it implies

∀ (s : concrete.State)
(∃ s ′ : abstract .State, s ∈ s ′ ∧ ¬abstract .reachable s ′) →
¬concrete.reachable s,

This expresses that to conclude unreachability of a concrete state, one only needs
to establish unreachability of one abstract state that contains it. However, this
definition neglects to facilitate sharing: a concrete state may be in more than one
abstract state. So, if a concrete state is in one abstract state which is unreachable,
it may still be in another abstract state which is reachable. One should establish
unreachability of all abstract states containing the concrete state. Hence, what
we really want is an abstract .reachable satisfying:

∀ s : concrete.State,
(∀ s ′ : abstract .State, s ∈ s ′ → ¬abstract .reachable s ′)→
¬concrete.reachable s.

3.7 Under-Estimating Safety

We now show how a decision procedure for abstract .reachable lets us under-
estimate hybrid system safety, and in particular, lets us obtain a proof of ther-
mostat safety. (The construction of the decision procedure itself is detailed in
the next section.) So suppose we have reachable dec : decider abstract .reachable .
ThermoSafe is defined as thermo unsafe ⊆ concrete.unreachable. Since we triv-
ially have ¬overlap unsafe concrete.reachable → ThermoSafe , we also have:

Definition under thermo unsafe unreachable : underestimation ThermoSafe .

Using a tiny utility underestimation true of type ∀ P (o:underestimation P), o =
true → P , we can now run this under-estimator to obtain a proof of the ther-
mostat system’s safety:

Theorem : ThermoSafe .
Proof .

apply (underestimation true under thermo unsafe unreachable).
vm compute.reflexivity.

Qed.

The first apply reduces the goal to

under thermo unsafe unreachable = true.

The vm compute tactic invocation then forces evaluation of the left hand side,
which will in turn evaluate over thermo unsafe reachable , which will evaluate
reachable dec, which will evaluate the over-estimators of the continuous and
discrete transitions. This process, which takes about 35 seconds on a modern
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desktop machine, eventually reduces under thermo unsafe unreachable to true,
leaving true = true, proved by reflexivity .

We can now also clearly see what happens when the abstraction method
“fails” due to poor region selection, overly simplistic transition/initiality over-
estimators, or plain unsafety of the system. In all these cases, vm compute re-
duces under thermo unsafe unreachable to false , and the subsequent reflexivity
invocation will fail.

This concludes the high level story of our development. What remains are
the implementation of reachable dec in terms of the decidable over-estimators
for abstract initiality and continuous and discrete transitions, and the imple-
mentation of those over-estimators themselves. The former is a formally verified
graph reachability algorithm, that we don’t detail here. The over-estimator for
continuous transitions, over cont trans will be detailed in the next section for
the thermostat case.

3.8 Over-Estimating Continuous Abstract Transitions

We now discuss the implementation of over cont trans . Given two regions r src
and r dst , if we can determine that there are no points in r src which the flow
function maps to points in r dst , then we don’t put an abstract continuous
transition between r src and r dst . Clearly, this is impossible to meaningfully
over-estimate for a general flow function and general regions. However, the ther-
mostat posesses three key properties that we can exploit:

1. its continuous space is of the form Rn;
2. abstract regions correspond to multiplied R intervals;
3. its flow functions are both separable and range invertible.

The notion of separability has already been discussed in Section 2.
A flow function f on CR is range invertible if

∃ (range inverse : OpenRange → OpenRange → OpenRange),
∀ (a : OpenRange) (p : CR), p ∈ a →
∀ (b : OpenRange) (d : Duration), f p d ∈ b → d ∈ range inverse a b

Here, OpenRange represents potentially unbounded intervals in R (with bounds
closed if present. In other words, if ϕ : R2 → R is a flow function with range
inverse F and a, b are intervals in R, then F (a, b) is an interval that con-
tains all t for which ϕ(x, t) ∈ b for some x ∈ a. Range invertibility is a less
demanding alternative to point invertibility: ϕ−1 is the point inverse of ϕ if
∀x, y ∈ R(ϕ(x, ϕ−1(x, y)) = y). So a point inverse ϕ−1(x, y) computes the exact
time t it takes to go from x to y via flow ϕ. A range inverse computes an interval
that contains this t.

In the formalisation we use a modest library of flow functions when defining
the thermostat’s flow. Included in that library are range-inverses, which conse-
quently automatically apply to the thermostat’s flow. Hence, no ad-hoc work is
needed to show that the thermostat’s flow functions are range-invertible. Having
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defined the class of separable range-invertible flow functions, and having argued
that the thermostat’s flow is in this class, we now show how to proceed with our
over-estimation of existence of points in r src which the flow function map to
points in r dst . Regions in the abstract space for our thermostat are basically
pairs of regions in the composite spaces, so r src and r dst can be written as
(r src temp, r src clock ) and (r dst temp, r dst clock ), respectively, where each
of these four components are intervals.

We now simply use an OpenRange overlap over-estimator of type

Q+ → ∀ a b : OpenRange, overestimation (overlap a b)

(defined in terms of things like overestimate�CR shown in section 3.4) to over-
estimate whether the following three intervals overlap:

1. [0, inf ]
2. range inverse temp flow r src temp r dst temp
3. range inverse clock flow r src clock r dst clock

For a visual explanation, one may consult the left drawing in Figure 3 and view
r src clock as [a1, b1], r dst clock as [c1, d1] etc. Overlap of 2 and 3 is equivalent
to existence of a point in r src from which one can flow to a point in r dst . After
all, if these two range inverses overlap, then there is a duration d that takes a
certain temperature value in r src temp to a value in r dst temp and also takes
a certain clock value in r src clock to a value in r dst clock . If 2 and 3 do not
overlap, then either it takes so long for the temperature to flow from r src temp
to r dst temp that any clock value in r src clock would “overshoot” r dst clock ,
or vice versa. Finally, if 1 does not overlap with 2 and 3, then apparently one
could only flow backward in time, which is not permitted. Hence, overlap of
these three ranges is a necessary condition for existence of concrete flow from
points in r src to points in r dst , and so our abstract .cont trans over-estimator
may justifiably return “false” when the overlap over-estimator manages to prove
absence of overlap.

4 Related Work

Verification of hybrid systems is an active field of research and there is a number
of tools developed with this goal in mind; see [15] for a comprehensive list. Most of
them are based on abstract refinement methods, either using box representations
[20,17] or with polyhedra approximations [2,5,6].

Many of those tools are implemented in MATLAB [13] and those using some
general programming language of choice most often rely on standard floating
point arithmetic, which comes with its rounding errors. Some tools that address
this problem include PHAVer [8], which relies on the Parma Polyhedra Library
[3] for exact computations with non-convex polyhedra and HSolver [19], which
is based on the constraint solver RSolver [18].

Formal verification becomes more and more important, especially in the field
of hybrid systems, which are used to model safety critical systems of growing
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complexity. There has been previous work on using general purpose theorem
provers for verification of hybrid systems: see [1,10] and [12,4] for works using,
respectively, PVS and STeP. KeYmaera [16] is a dedicated interactive theorem
prover for specification and verification logic for hybrid systems. It combines
deductive, real algebraic, and computer algebraic prover technologies and allows
users to model hybrid systems, specify their properties and prove them in a
semi-automated way.

However, to the best of our knowledge, none of the work or tools discussed
above rely on a precise model of real number computations completely verified
in a theorem prover, such as the model of CoRN used in this work.

5 Conclusions and Further Research

The presented verification of hybrid systems in Coq gives a nice showcase of
proof-by-computation-on-computable-reals. The computable reals in CoRN do
really complicated things for us, by approximating values for various real number
expressions at great precision. The development also contains some nice layers
of abstraction, involving the sophisticated use of type classes, e.g. the systematic
use of estimators to make tactic-like optional-deciders, at each level in the stack
and the use of the double negation monad.

It remains to be seen how far this automated verification approach can be
taken, given the fact that we have limited ourselves to hybrid systems where we
have a solution to the differential equation as a flow function, this flow function
is separable (Section 2) and range invertible (Section 3.8) and the invariants are
stable (Section 3.1). Finally, the reset functions should not be too strange, see
[22] for details. If the flow functions are given, the largest part of the work is in
producing useful range inverse functions. Note that we always have the trivial
range inverse function, that just returns R, but that is not useful. We want a
function that actually helps to exclude certain abstract continuous transitions.

There is still a lot of room for more clever heuristics, possibly with less re-
strictive preconditions. The heuristic in [2] for bound selection doesn’t work out
of the box, but manual tweaking is obviously not ideal, so some more experi-
mentation is required here. Finally, in case safety cannot be proved, one would
like the system to generate an “offending trace” automatically, which can then
be inspected by the user.

Acknowledgements. We thank the referees for their useful suggestions; due to
space limitations we have not been able to incorporate all of them.
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Abstract. Many inductive theorem provers generate induction schemes
from the recursive calls appearing in terminating functions defined re-
cursively in the specification. This strategy is called coverset induction
in the context of algebraic specifications, and has been shown to be quite
useful in a wide variety of applications. One challenge is that coverset
induction typically requires using a total recursive function, while many
operations are only meaningful on a subset of their inputs. A general-
ization of coverset induction method that supports partial constructors
and operations specified in membership equational logic is proposed. The
generalization has been implemented in the Maude ITP, and used to
perform an extensive case study involving powerlists — a data structure
introduced by J. Misra to elegantly formalize parallel algorithms based
on divide and conquer strategy. Powerlists are constructed by partial op-
erations, and it has been a challenge to naturally reason about powerlists
using a formal logic that only supports total operations. We show how
theorems about powerlists can be elegantly proven using the generalized
coverset induction scheme implemented in the Maude ITP.

1 Introduction

Effective use of an inductive theorem prover requires efficient interaction between
the user and the automated reasoning capabilities exposed by the tool. The user
needs to be able to effectively direct how the tool uses its reasoning algorithms
to enable the verification of systems that are intractable to fully automatic tools.
Advanced reasoning algorithms are useful to minimize user interaction, but the
user must also be able to debug failed proof attempts to identify lemmas that
must be proven first or give additional hints to the theorem prover.

A key challenge in software verification is the treatment of partiality: many
algorithms are designed to operate on data structures that satisfy specific invari-
ants, while the mathematical logics underlying most work on automated theorem
proving tools assume that the functions are total. When attempting to prove
properties about the algorithms, the user must remember to carefully specify
these invariant assumptions in a consistent way for all lemmas and correctness
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properties; otherwise, the proof attempt can fail or inadvertently sidetrack the
user into proving properties about special cases that were irrelevant to the con-
text in which those procedures are used.

A logic that can support partiality in a natural and simple way may thus
greatly ease the proving process. In this paper, we use membership equational
logic (MEL) [5] for this purpose. In MEL, partiality is naturally represented
by a distinction between kinds and sorts. Potentially meaningful terms have
a kind; but only well-defined terms have a sort. Therefore, a term is defined
iff it has a sort in the given specification. A term having a kind but lacking
a sort is an undefined or error term. This provides a general logic for partial
functions within a total (kinded) context, avoiding the complications of partial
logics. Furthermore, sorts and subsorts can be hierarchically arranged in sort
hierarchies; and the data elements of a sort can be defined by semantic conditions
given by conditional memberships. Also, partial functions can become total on
such semantically-defined sorts, so that typing of partial functions at the kind
level can be further refined and overloaded by their restrictions to total functions
at the sort level.

Since the Maude language [7] and its ITP inductive theorem prover are based
on MEL, its logic is a good fit for reasoning inductively about functions and
data structures involving partiality and subsorts. However, as we explain in this
paper, a number of nontrivial improvements were needed to make it possible for
the Maude ITP to support larger-scale case studies involving partial functions
and partial data structures such as those appearing in the powerlist case study.
The most crucial and theoretically interesting extension needed was perhaps the
extension of coverset induction from its original total setting to the MEL setting
supporting partiality and subsorts, and its integration into ITP. This contribu-
tion is the main focus of this paper. Another key extension is the mechanical
support for the ability to reason about alternative representations of the same
data structure (for example in arithmetic between numbers in Peano notation,
+, or as products of primes). For lack of space, we do not explain other use-
ful extensions such as better support for multiple equivalence relations and new
commands to ease debugging, whose description can be found in [12].

We present some highlights of an extended case study involving powerlists,
which is available from the ITP website [1]. Powerlists [21] are a data structure
proposed by J. Misra to capture many data-parallel algorithms where lists of
data may sometimes be appended, and sometimes interleaved to perform par-
allel operations in an algorithm. Their key feature is that such operations are
partial, since powerlist operations require lists of the same length, which is al-
ways a power of 2. Mechanical reasoning about powerlists has been challenging,
because of their partial nature. The main goal of our work is to make such in-
ductive reasoning as natural as possible, so that mechanical proofs can match
the simplicity of Misra’s original hand proofs. In this regard our results are
quite encouraging: we have proven many results about powerlists in a way that
closely follow their hand proofs. The Maude ITP’s support of partiality allowed
us to stay focused on the heart of the proofs without being sidetracked on many



Coverset Induction with Partiality and Subsorts 277

partiality and definedness issues. Although we needed some more lemmas than
those explicitly proven in Misra’s work to ensure that operations were well-
defined, the proofs of such lemmas were mostly automatic.

The main contributions of the paper are: (i) a generalized form of coverset
induction that naturally supports inductive reasoning with partiality, sorts, and
subsorts; (ii) a new, publicly available version of the Maude ITP tool that im-
plements these new inductive reasoning techniques; and (iii) an extensive case
study on powerlists that validates the practical applicability of these methods
to extensive and challenging reasoning problems.

In the next section, we review the relevant literature on coverset induction and
reasoning about powerlists. In Section 2, we introduce membership equational
logic (MEL), and show how powerlists can be defined in MEL. In Section 4, we
present our generalization of coverset induction to MEL, and illustrate its use
with a basic example from powerlists. In Section 5, we discuss implementation
specific issues in the Maude ITP. In Section 6, we present an overview of our
powerlist case study. Finally, we conclude in Section 7 with a summary and
discussion of future work.

1.1 Related work

The cover set method for mechanizing inductive reasoning was proposed by
Zhang et al [23] and served in the theorem prover RRL as the method for gen-
erating induction schemes from terminating and sufficient-complete recursive
definitions specified as rewrite rules. It adapts NQThm’s [6] approach of using
the recursive calls to generate induction hypotheses. Other related methods for
automatically generating induction schemes are based on the so-called induction-
less method (also called Proof by Consistency by Kapur and Musser) [15, 22]. For
checking consistency, test sets [3, 16] are generated from rewrite rules relating
constructors of a data structure.

The implementation of the cover set method in RRL used a pattern of the
form f(x1, · · · , xn), for generating an induction scheme from the definition of
f . A generalization of the cover set method was proposed by Kapur and Sub-
ramaniam [18] for function definitions specified using 0, s, +, where unification
modulo linear arithmetic was used to generate induction schemes from patterns
f(s1, · · · , sn), where the si’s are linear arithmetic expressions. An orthogonal
generalization was proposed by Kapur [14] for regular data structures specified
using partial constructors with applicability conditions.

In proposing power lists [21], Misra presented well-crafted hand-proofs of
properties of primitive operations of powerlists using algebraic laws, which were
used in hand-proofs of some of the algorithms expressed using powerlists. This
work was subsequently extended by Adams [2] for ripple-carry and carry-look-
ahead adder circuits. Kapur [14] developed a method for specifying regular and
semantic data structures by allowing constructors of such data structures to
be partial using applicability conditions under which a constructor applica-
tion is meaningful. This specification method served as the basis of reason-
ing about powerlists in preserving contexts as imposed by the applicability
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conditions arising due the operations appearing in the rewrite rules. Properties
of parametrized adder circuits of arbitrary data width were verified using RRL
with minimal user guidance [19]. This work was subsequently extended to verify
properties of parallel algorithms on hypercubes [17]. While the proofs generated
by RRL closely mimics Misra and Adams’ handcrafted proofs, they were done in
a somewhat ad-hoc manner, primarily because, RRL does not support typing. A
special inference method was developed to reason about the length properties of
powerlists and contexts generated from the applicability conditions on top of a
decision procedure for quantifier-free Presburger arithmetic implemented in the
theorem prover. Consequently, for other semantic data structures with different
applicability conditions, a user would have to start all over again from scratch,
as RRL did not provide any typing support for specifying applicability condi-
tions; further context-sensitive rewriting used for simplification using algebraic
laws on regular and semantic data structures, as well as algorithms on these data
structures had to be supported in an ad-hoc fashion.

Gamboa’s formalization of powerlists in a quantifier-free first logic of recursive
functions developed by Boyer and Moore is the closest in spirit to our formaliza-
tion [10]. Gamboa specified powerlists as a subset of "dotted-pairs", much like
the specification of the kind for powerlists here, and Misra’s powerlists were a
subset called regular powerlists and defined using similarity predicates. Opera-
tions were total and formalized in terms of destructor operations on powerlists.
This formalization lead, in our opinion, to complex proofs that required many
auxiliary lemmas to deal with ACL2’s total logic. The theorems were perhaps
more general, but clearly not as elegant as Misra’s hand-coded proofs or proofs
generated by RRL. However, Gamboa claimed that proofs generated by his ap-
proach have compositionality properties, critical in large mechanical verification.
We believe that compositionality of proofs can be achieved while maintaining the
simplicity and elegance of hand-proofs if order-sorted typing with membership
equational logic is adopted as a basis for specifying regular and semantic data
structures such as powerlists.

Bouhoula and Jacquemard have proposed using equational specifications made
of rewrite rules with conditions and constraints where constraints are interpreted
over constructor terms [4]. Tree grammars are used for automating proofs by in-
duction about such equational specifications. Although we could not find any ex-
plicit proofs of properties of powerlists or algorithms on them, it is claimed there
that this equational specification formalism can be used for regular and partial
data structures such as powerlists and sorted lists.

2 Background about MEL Theories

We first review the underlying logic of the Maude ITP, called Membership Equa-
tional Logic (MEL), and show how powerlists can be formalized within it (see [5]
for a more comprehensive introduction). Membership equational logic is essen-
tially a many-kinded Horn logic with equality and unary predicates. The logic
has two levels of typing: kinds type operator declarations in a signature, and
sorts type terms using membership axioms in a particular theory.
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Signatures. A membership equational logic (MEL) signature is a triple Σ =
(K, F, S) consisting of: (1) a set K of kinds ; (2) a family of function symbols F
typed by the kinds, where f : k1 . . . kn → k denotes that f is a function with n
inputs of kind k1 . . . kn and output kind k; and (3) a disjoint K-kinded family
of sets S = {Sk}k∈K of sorts. Given a disjoint K-kinded family of variables
X = {Xk }k∈K , where each set Xk is infinite, the terms of a MEL signature
Σ are a K-indexed family TΣ(X) = {TΣ(X)k }k∈K where each set TΣ(X)k

denotes the set of well-kinded terms with kind k formed from the symbols in
F and variables in X . We let vars(t) denote the variables appearing in a term
TΣ(X), and let TΣ denote the set of ground terms (terms without variables). A
substitution is a mapping θ : Y → TΣ(X) with a finite domain Y ⊆ X and the
condition that θ(xk) ∈ TΣ(X)k for each xk ∈ Yk.

Logic. Atomic formulas in MEL are either equations t = u with t, u ∈ TΣ(X)k

for some k ∈ K or memberships t : s with t ∈ TΣ(X)k and s ∈ Sk. A MEL
theory E is a set of Horn clauses of the form (∀Y ) α if α1 ∧ · · · ∧ αn, where α
and αi (i ∈ [1, n]) are either equations or memberships with variables in Y . For
a given atomic formula α, we write E � α if α can be derived via a sound and
complete logic for simply-typed Horn clauses or MEL (e.g., [5]). Sorts in MEL
are typically used to define a more refined notion of well-formed values in MEL
than the kind-declarations. As syntactic sugar, we let (∀x1 : s1, . . . , xn : sn) ϕ
denote the formula (∀x1 . . . xn)x1 : s1∧· · ·∧xn : sn =⇒ ϕ. As noted in [5], each
MEL theory E defines an initial algebra TE whose elements are the equivalence
classes of ground terms with respect to the relation t =E u ⇐⇒ E � t = u. For
any first-order formula ϕ over the atomic formulas in Σ, we write TE |= ϕ if ϕ
is true in TE . Inductive reasoning is reasoning in TE .

MEL specifications can be executed by orienting equations l = r left-to-right
as rules, and using term rewriting techniques extended to support the member-
ship constraints as well (see [5] for details). In general, rewriting can lead to
non-termination and non-confluence. In this paper, we assume that the Maude
specification is both operationally terminating [9] and confluent [5]. These prop-
erties guarantees agreement between the equational semantics, and the opera-
tional semantics obtained by rewriting. We rely on existing tools available for
checking termination and confluence [8]. Operational termination also guaran-
tees the soundness of the coverset induction.

3 Specification of Powerlists as a MEL Theory

We formalize unnested powerlists [21] over natural numbers as a MEL theory
Powerlists are non-empty lists formed from singleton lists [i] and two binary op-
erations: an operation | called tie that concatenates its arguments, and a second
operation × called zip that interleaves its arguments together. Both operations
require that their arguments are similar (i.e.,to have the same length), and con-
sequently the length is always a power of 2. For example, both (1 | 2) | (3 | 4)
and (1 | 2)× (3 | 4) = (1 | 3) | (2 | 4) are well-formed powerlists, while (4 | 3)× 1
and (1 | 2) | 3 are not well-formed.
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fmod POWERLIST is protecting NAT .
sort Pow .
op [_] : Nat -> Pow [ctor].
op _|_ : [Pow] [Pow] -> [Pow] .

vars M N : Nat . vars P Q R S : Pow .

cmb P | Q : Pow if sim?(P, Q) = true .

op sim? : Pow Pow -> Bool [comm].
eq sim?(P | Q, R | S) = sim?(P, R) .
eq sim?([M], [N]) = true .
eq sim?(P | Q, [N]) = false .

op _x_ : [Pow] [Pow] -> [Pow] .
eq (P | Q) x (R | S) = (P x R) | (Q x S) .
eq [M] x [N] = [M] | [N] .

endfm

Fig. 1. Powerlist example in Maude syntax

We formalize unnested powerlists in the POWERLIST module defined in Figure 1.
The module POWERLIST imports the predefined module NAT that defines a sort Nat
for representing the natural numbers, along with common operations on them.
We introduce the sort Pow, which we will reserve for those terms representing
powerlists; Maude automatically introduces also the kind [Pow] to denote the
kind of the sort Pow. We also introduce four operators: [_] for representing the
operation that forms powerlist elements; _|_ for representing the powerlist tie
operation; _x_ for representing the powerlist zip operation; and sim? for repre-
senting the similarity relation that holds on two well-sorted powerlists if they
have the same length. Similarity is declared to be commutative to best take
advantage of Maude’s support for rewriting modulo axioms, and uses the sort
constraints on variables to simplify its definition.

In the variable declaration section, we associate the sort Nat to the variables
M and N, and the sort Pow to the variables P, Q, R, and S. By doing this, we are in
fact declaring: (i) that M and N are variables of the kind [Nat], and P, Q, R, and S
of the kind [Pow], and (ii) that in all memberships and equations in which those
variables appear, there is an implicit extra condition stating that those variables
only range over the set of terms belonging to their associated sort. Finally, in
the membership declaration section, we declare that the tie of two powerlists are
powerlists if they have equal length. In fact, the declarations in the module:

op [_] : Nat -> Pow [ctor] .
op sim? : Pow Pow -> Bool [comm].

eq sim?(P | Q, R | S) = sim?(P, R) .

are just syntactic sugar for the following:
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op [_] : [Nat] -> [Pow] .
cmb [N] : Pow if N : Nat.
op sim? : [Pow] [Pow] -> [Bool] [comm].
cmb sim?(P, Q) : Bool if P : Pow /\ Q : Pow .

ceq sim?(P | Q, R | S) = sim?(P, R)
if P : Pow /\ Q : Pow /\ R : Pow /\ S : Pow .

Since not all terms constructed with the operators _|_ and _x_ will represent
powerlists, those operators are declared at the kind level. We have a membership
for the tie operation, but can omit one for the zip operation, because zip is
defined equationally in terms of tie. The membership for zip is thus an inductive
consequence of the other axioms, and is straightfoward to prove in the Maude
ITP using the coverset induction techniques described in the next section.

Given arbitrary terms t and u with kind [Pow], t | u denotes a term with kind
[Pow]. However, t | u only has sort Pow if it matches a membership with sort
Pow. In the POWERLIST module, this requires that t and u both have sort Pow and
sim?(t, u) = true. As an example, the term [1] | ([2] | [3]) is not a powerlist.
This is represented in POWERLIST by the fact that the term ([1] | [2]) | [3]
has kind [Pow], but it does not belong to the sort Pow as sim?([1], [2] | [3])
= false. When given terms that are not proper powerlists, sim? may return
true even if the terms have different lengths. However, such terms are not well-
sorted, and thus are irrelevant in proofs involving well-sorted powerlists. For
example, even though sim?([1] | [2], [3] | ([4] | [5])) = true, the conditional
membership defining the sort Pow cannot be applied to the term ([1] | [2]) |
([3] | ([4] | [5])), because the subterm [3] | ([4] | [5]) does not have sort Pow.

In general, sort declarations on defined operations such as _x_ or sim? should
be viewed as assertions rather than axioms, and they should be an inductive
consequence of the other axioms. One can either prove such assertions with the
Maude ITP, or in some cases, completely automatically with the Maude Suffi-
cient Completeness Checker [13]. By default, memberships implied by operator
declarations are viewed as assertions, however they are treated as axioms if one
uses the ctor attribute (as done in the case with [_] above).

4 Generalizing Coverset Induction in MEL Theories

In order to perform proofs by induction, we need a well-founded ordering that
can be used for an induction scheme and for generating induction hypotheses.
Coverset induction [23] generates induction schemes for recursive operations de-
fined by a complete set of terminating rewrite rules. The theorem prover typically
generates a separate goal for each rewrite rule used to define an operation: equa-
tions with no recursive calls generate base cases, while recursive equations yield
induction steps.

Traditional coverset induction works quite well for total operations. However,
it is unsound in general for partial operations, because no case is generated
when the operation is undefined. For partial operations, a sound algorithm for
performing coverset induction must either generate additional base cases to cover
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arguments where the operation is undefined, or requires a separate completeness
property which implies the undefined cases are irrelevant under certain assump-
tions about the current theory. We follow the first approach in this paper, because
it better supports a more general notion of partiality where the theory has com-
plete freedom to define the meaning of sorts axiomatically. The second approach
has been followed in [14], where the partiality constraints where expressed as
part of the signature.

Assumptions. Our coverset induction algorithm works by incrementally instan-
tiating variables in a pattern term to match the left-hand sides of equations in a
MEL theory E that is operationally terminating and normalizing when oriented
as a rewrite theory [5, 9]. For our coverset algorithm to terminate, we require
that the only memberships over variables x : s if x : s′ are those used to define
a partial order <, called the subsort ordering, over the sorts in the theory. This
restriction is satisfied in practice by Maude specifications.

We also assume that every variable appearing in a conditional membership or
equation is constrained to have a specific sort. If needed, one could transform
a specification into an equivalent specification satisfying this property by (1)
introducing a fresh maximal sort sk for each kind k, (2) adding memberships so
that each term with kind k has sort sk, and (3) for each formula ϕ if α ∈ E ,
adding extra constraint x : sk to α when there is no sort constraint x : s ∈ α
and k is the kind of variable x.

In our algorithm, we assume that the user is attempting to prove inductively
that TE |= (∀x1 : s1 . . . xn : sn) ϕ. To help motivate this with a running exam-
ple, suppose that we have added a function for returning the last element in a
powerlist to the specification POWERLIST of powerlists given in Figure 1:

op last : Pow -> Nat .
eq last(P | Q) = last(Q) . eq last([N]) = N .

We want to prove that last could be defined using the zip operator as well:

A{P:Pow ; Q:Pow} ((sim?(P, Q)) = (true) => (last(P x Q)) = (last(Q)))

This theorem is given in Maude ITP syntax where the quantified variables P
and Q appear with their sorts defined in the universally quantified formula. The
extra parenthesis are needed for parsing Maude terms within the formula. In
desugared mathematical syntax, the above formula is equivalent to

(∀p, q) p : Pow ∧ q : Pow ∧ sim?(p, q) = true =⇒ last(p x q) = last(q)

The first step for generating a coverset induction scheme is to identify a term
p ∈ TΣ(X) called the pattern, with free variables Y = { x1, . . . , xn }. It is not
required, but the pattern is typically a subterm in ϕ whose root symbol is a
recursively defined function. The equations whose left-hand sides match the pat-
tern are used to generate induction cases. For our running example, we use the
pattern P x Q. The relevant equations are

eq (P | Q) x (R | S) = (P x R) | (Q x S) .
eq [M] x [N] = [M] | [N] .
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Our algorithm for generating coverset induction schemes performs constructor-
based narrowing [11] to match the initial pattern p against the left-hand sides
of equations appearing in the specification. The result is a set of induction cases
{ϕ1, . . . ϕm } such that

TE |= (∀x1 : s1 . . . xn : sn) ϕ ⇐⇒ TE |= ϕ1 ∧ · · · ∧ ϕm. (1)

By itself, the property in (1) is trivial to satisfy — the set {ϕ } would satisfy this
property. The usefulness of coverset induction stems from the fact that coverset
induction should generate formulas ϕ1, . . . , ϕm that have terms that are reducible
from the equations in the specification, and have induction hypotheses that are
applicable to the resulting normalized subterms.

Our coverset induction algorithm consists of two phases: a goal narrowing
phase, and a case generation phase. The goal narrowing phase analyzes the left-
hand sides of the equations in E to generate a set of substitutions that are used
to generate the induction cases. The case generation phase further analyzes the
right-hand sides of recursive equations to find appropriate induction hypotheses
for each case.

Goal narrowing. The induction cases are generated by instantiating the for-
mula ϕ in various ways. We define how to generate the initial substitutions used
to generate the goals. A conditional term is a pair (t, α) where t ∈ TΣ(X) and
α is a conjunction of atomic formulas that constrains the variables appearing in
the right-hand side of vars(t). We say that a ground term u ∈ TΣ is a ground
instance of (t, α) iff there is a substitution θ : X → TΣ such that: (1) u = tθ and
(2) TE |= αθ. Given a disjunctive set Δ of conditional terms, we say that u is a
ground instance of Δ iff it is an instance of some conditional term (t, α) ∈ Δ.

Our narrowing procedure is an iterative procedure that repeatedly applies an
inference rule defined below on a disjunctive set of conditional substitutions.
We start with the initial set Δ0

p = { (p, x1 : s1 ∧ · · · ∧ xn : sn) }, and apply the
rule (2) defined below until termination to obtain Δ1

p, Δ
2
p, . . . , Δ

∗
p. In our running

example, we have Δ0
PxQ = { (P x Q, P : Pow ∧ Q : Pow) }.

From a semantic perspective, the ground instances ψ of Δ0
p correspond to

the possible ground instantiations of the pattern p using the sort constraints
in the initial formula ϕ. Our approach is to incrementally replace variables in
conditional terms with constructor instances to match the left-hand-sides of
rewrite rules in E . To find variables to instantiate, we introduce the concept of the
demanded variables of a term — that is, variables in a term whose instantiation
may cause equations to match the term. Formally, the demanded variables of a
t ∈ TΣ(X) is the set dvars(t) ⊆ vars(t) such that

x ∈ dvars(t) ⇐⇒ ∃ (l = r if α) ∈ E s.t. mgu(t, l) = θ ∧ θ(x) �∈ X.

where mgu(t, l) returns the most general unifier of t and l if it exists and ⊥
otherwise. For the initial pattern P x Q in the example, dvars(P x Q) = { P, Q }.

We can then define our inference rule as follows:
(t, α) ∈ Δi

p x : s ∈ α x ∈ dvars(t)

Δi+1
p := Δi

p \ { (t, α) } ∪ { (t[x/u], α[x/u] ∧ α′) | u : s if α′ ∈ E } (2)
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The final set Δ∗
p is then used to generate induction cases. This process is guaran-

teed to terminate, but is not confluent. Different values for Δ∗
p may be obtained

depending on which variable is expanded in each application. We will discuss
the strategy chosen by the Maude ITP when we describe the implementation in
the next section.

In our example, we can expand either P or Q in the initial set Δ0
PxQ. In this

case we choose to expand p. The relevant memberships are

cmb [N] : Pow if N : Nat.
cmb P | Q : Pow if sim?(P, Q) = true /\ P : Pow /\ Q : Pow .

Expanding using these memberships results in the set

Δ1
PxQ = { ([ M ] | Q, M : Nat ∧ Q : Pow),

((P1 | P2) x Q, P1 : Pow ∧ P2 : Pow ∧ Q : Pow ∧ sim?(P1, P2) = true) }
The variable Q is expandable in both of the substitutions in Δ1

PxQ due to the
first and second equations on × respectively. Expanding each substituion in
order yields the sets

Δ2
PxQ = { ([M] x [N], M : Nat ∧ N : Nat),

([M] x (Q1 | Q2), M : Nat ∧ Q1 : Pow ∧ Q2 : Pow ∧ sim?(Q1, Q2) = true),
((P1 | P2) x Q, P1 : Pow ∧ P2 : Pow ∧ Q : Pow ∧ sim?(P1, P2) = true) }

Δ3
PxQ = { ([M] x [N], M : Nat ∧ N : Nat),

([M] x (Q1 | Q2), M : Nat ∧ Q1 : Pow ∧ Q2 : Pow ∧ sim?(Q1, Q2) = true),
((P1 | P2) x [N], P1 : Pow ∧ P2 : Pow ∧ N : Nat ∧ sim?(P1, P2) = true),
((P1 | P2) x (Q1 | Q2), P1 : Pow ∧ P2 : Pow ∧ Q1 : Pow ∧ Q2 : Pow
∧ sim?(P1, P2) = true ∧ sim?(Q1, Q2) = true) }

The algorithm terminates with Δ3
PxQ, because the variables are appearing in

terms are not further expandable.
It is not difficult to show that each application of the inference rule preserves

the ground instances of Δi
p.

Proposition 1. If Δi+1
p is obtained from Δi

p by applying the inference rule (2),
then Δi+1

p has the same set of ground instances as Δi
p.

Case generation. Finally, we generate an induction case ϕt,α from each condi-
tional substitution in Δ∗

p. The induction hypotheses are obtained by matching t
against the left-hand sides of equations in E . Given terms t, u ∈ TΣ(X), we let
match(t, u) denote a substitution θ s.t. tθ = u if one exists, and ⊥ otherwise. It
is not difficult to see that each conditional substitution (t, α) ∈ Δ∗

p, matches p,
and we let θ = match(p, t) The formula ϕt,α is defined as follows:

ϕt,α =
(
α ∧

∧
l=r if α′∈E

ψ=match(l,t)

∧
u∈subterms(rψ)
ρ=match(p,u)

(α′ψ =⇒ ϕρ)
)

=⇒ ϕθ

Coverset induction on our example P x Q yields the 4 subgoals which can be
discharged automatically within the Maude ITP via rewriting.
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A{M:Nat ; N:Nat}
((sim?([M], [N])) = (true) => (last([M] x [N])) = (last([N])))

A{M:Nat ; Q1:Pow ; Q2:Pow}
((sim?([M], Q1 | Q2)) = (true)
=> (last([M] x (Q1 | Q2))) = (last(Q1 | Q2)))

A{P1:Pow ; P2:Pow ; N:Nat}
((sim?(P1 | P2, [N])) = (true)
=> (last((P1 | P2) x [N])) = (last([N])))

A{P1:Pow ; P2:Pow ; Q1:Pow ; Q2:Pow}
((sim?(P1 | P2, Q1 | Q2)) = (true)
& ((sim?(P1, Q1)) = (true) => (last(P1 x Q1)) = (last(Q1)))
& ((sim?(P2, Q2)) = (true) => (last(P2 x Q2)) = (last(Q2)))
=> (last((P1 | P2) x (Q1 | Q2))) = (last(Q1 | Q2)))

We show the correctness of our coverset induction algorithm in the following:

Theorem 1 ([12]). Let E denote a MEL theory that is operationally terminat-
ing, ground confluent and ground sort-decreasing. For each formula with the form
(∀x1 : s1 . . . xn : sn) ϕ and a pattern p ∈ TΣ(X) with variables { x1, . . . , xn },
let Δ∗

p be a set of conditional substitutions obtained by applying the inference
rule (2) until completion starting from Δ0

p.

TE |= ϕ ⇐⇒
∧

(t,α)∈Δ∗
p

TE |= ϕt,α.

In the initial coverset induction approach of the RRL, the initial pattern p was
required to have the form f(x1, . . . , xn) where f was a total defined function.
Under these restrictions, the coverset induction schemes can be generated di-
rectly form the equations used to define f without the goal narrowing phase
presented here. Our separate goal narrowing phase allows both support for par-
tial functions and more general patterns.

5 Implementation in the Maude ITP

The Maude ITP tool is an interactive theorem prover capable of showing that a
first-order formula holds in the initial model TE of an MEL theory E given as a
Maude specification. The ITP is written in Maude, and uses Maude’s extensive
support for reflection to reason about Maude theories. This support for reflection
is critical to other Maude-based reasoning tools such as the Maude Termination
Tool and confluence checker [8].

We have extended the Maude ITP with two commands cov and cov* which
apply coverset induction when invoked by the user. The difference between the
two commands is that cov* will automatically simplify all of the subgoals gen-
erated by coverset induction using Maude’s built-in tactics, while cov will leave
them unchanged. The commands have the syntax:
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(cov on pattern) (cov* on pattern)

While using coverset induction in the powerlist case study, we found several ways
to improve the implementation over a naive implementation suggested by the the-
oretical work in the previous section: (1) allow the user to define alternative con-
structors for sorts in the specification; (2) allow substitutions in subgoals to be
further specialized by additional patterns ; and (1) apply the Δ-rule only to vari-
ables that are demanded by the largest number of equations in E . We also perform
a simple syntactic subsumption test to eliminate redundant induction cases.

Alternative constructors. Many proofs in mathematics and computer science
rely on the ability to view the same data in multiple ways. This includes the
natural numbers, which can be viewed in terms of zero and successor, or the
product of primes. It also applies to the powerlist data structure which we will
describe in more detail in the next section. To accommodate this in the ITP, we
added a command ctor-def which allows one to define an alternative named set
of memberships t1 : s if α1 . . . tn : s if αn whose general form introduces a proof
obligation of the following form:

(∀x : s) (∃y1. t1 = x ∧ α1) ∨ · · · ∨ (∃yn. tn = x ∧ αn)

By proving this conjecture, one can optionally have the ITP use the alternative
memberships in later proofs.

The ability to use alternative constructors is crucial to our powerlist case
study. In the POWERLIST module in Section 2, one could define alternative con-
structors for sort Pow using zip:

cmb [M] : Pow if M : Nat .
cmb (P x Q) : Pow if P : Pow /\ Q : Pow /\ sim?(P, Q) = true .

As a simple example, we introduce operations for rotating elements in a pow-
erlist to the right and left:

op rr : Pow -> Pow . op rl : Pow -> Pow .
eq rr([N]) = [N] . eq rl([N]) = [N] .
eq rr(P x Q) = rr(Q) x P . eq rl(P x Q) = Q x rl(P) .

After proving an alternative constructors for zip and a few lemmas to ensure the
term rr(P x Q) is well-sorted, the proof that rl(rr(p)) = p goes through with a
single coverset induction command: (cov* using zip on rr(P) .)

Additional patterns. One useful feature of coverset induction is that, in addi-
tion to generating potentially useful induction hypotheses, it instantiates terms
appearing in the current problem to match additional rules in the specification.
This allows simplification by rewriting, and may be necessary for the ITP to
automatically resolve goals. To aid in this, the Maude ITP allows the user to
specify additional pattern terms that further refine substitutions generated by
the case generation phase.

Most-demanded variable heuristic. As mentioned previously, our cover-
set induction rule is not confluent, and may yield different induction schemes
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depending on which variables are instantiated. As a heuristic, if multiple vari-
ables in a conditional substitution are eligible for expansion by the rule (2), we
expand the variable demanded by a maximal number of equations.

As an example, we define a function contains which returns true if a given
natural number appears in a powerlist.

op count : Nat Pow -> Bool .
eq count(N, P | Q) = count(N, P) or count(N, Q) .
eq count(0, [0]) = true . eq count(s N, [s M]) = count(N, [M]) .
eq count(0, [s M]) = false . eq count(s N, [0]) = false .

In performing coverset induction using the pattern count(N, P), the Maude ITP
expands P before expanding N. P is demanded by all 5 equations while N is de-
manded by only 4. This optimization eliminates an extra case, and simplified
the verification of adder circuits done as part of our powerlist case study.

6 Powerlist Case Study

In this section, we briefly discuss how the work in the previous two sections has
been applied to the verification of algorithms over powerlists [21]. We have used
the ITP to mechanically prove a wide variety of theorems dealing with powerlists
— including Misra’s theorems in [21] on basic properties of powerlists, Fast
Fourier Transform, Batcher’s sorting, parallel prefix-sum, as well as results in [2]
on the correctness of arbitrary-width ripple-carry and carry-lookahead adders.
Overall, our case study has lead us to two major conclusions: (1) the ITP would
definitely benefit from implementing some of the proof management capabilities,
decision procedures, and support for parameterized theories available in other
theorem provers; (2) despite these limitations, the use of membership equational
logic helped lead to relatively simple and straightforward proofs.

A more comprehensive look at our case study is available in [12]. Due to
space constraints, we omit a detailed look of each proof here. Instead, we will
focus on one example — the correctness of Ladner and Fischer’s parallel prefix
sum algorithm [20]. Misra showed in [21] how it could easily be formalized using
powerlists. Given a powerlist p over scalars and a binary operation +, the prefix
sum ps(p) is defined by:

ps([x0, x1, . . . , xn]) = [x0, x0 + x1, . . . , x0 + x1 + · · ·+ xn]

A sequential definition of prefix sum can be defined in Maude as follows:

op ps : Pow -> Pow .
eq ps([ N ]) = [ N ] .
eq ps(P | Q) = ps(P) | (last(ps(P)) + ps(Q)) .

where last(P ) returns the last element of P (see Section 4), and + has been
overloaded to extend it to powerlists:

op _+_ : Nat Pow -> Pow .
eq M + (P | Q) = (M + P) | (M + Q) .
eq M + [ N ] = [ M + N ] .
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Operationally, our definition of ps computes the prefix sum of the left half of
the powerlist, then adds the total to the prefix sum of the right half.

When the operation + is associative and has identity 0, Ladner and Fis-
cher [20] showed that the prefix sum can be efficiently computed in parallel by
computing the sums of adjacent elements recursively. Given a powerlist p × q,
we let p + q denote the elementwise sum of p and q. To compute ps(p × q), the
Ladner and Fischer algorithm computes the sum ps(p + q) which has half as
many elements, and then uses this sum to compute the final result in parallel.
To define this in Maude, we first introduce an operation for inserting an element
into a powerlist, and shifting the remaining elements to the right:

op rsh : Nat Pow -> Pow .
eq rsh(M, [ N ]) = [ M ] .
eq rsh(M, P | Q) = rsh(M, P) | rsh(last(P), Q) .

We can then express the Ladner-Fischer closure as follows:

op lf : Pow -> Pow .
eq lf([ N ]) = [ N ] .
eq lf(P x Q) = (rsh(0, lf(P ++ Q)) + P) x lf(P ++ Q) .

where ++ is the elementwise powerlist sum:

op _++_ : [Pow] [Pow] -> [Pow] .
eq (P1 | P2) ++ (Q1 | Q2) = (P1 ++ Q1) | (P2 ++ Q2) .
eq [ M ] ++ [ N ] = [ M + N ] .

Our ITP proof that ps and lf are equivalent is quite straightforward, and
starts with the following command:

(goal ps-lf : POWERLIST-PREFIX |- A{P:Pow} ((ps(P)) = (lf(P))) .)

To reduce space, we will assume that we have already shown some basic theorems
about powerlist similarity, the zip operation, the last operation and basic types (a
self-contained proof script is available at [1]). We next introduce an associativity
lemma and a lemma to commute rsh and +:

(lem elt-sum-assoc :
A{N:Nat ; P:Pow ; Q:Pow}
((sim?(P,Q)) = (true) => ((N + P) ++ Q) = (N + (P ++ Q))) .)

(cov* on P ++ Q .)

(lem rsh-self-elt-plus :
A{N:Nat ; P:Pow} ((rsh(N, N + P)) = (N + rsh(0, P))) .)
(lem rsh-self-elt-plus-general :

A{M:Nat ; N:Nat ; P:Pow}
((rsh(N + M, N + P)) = (N + rsh(M, P))) .)

(cov* on N + P .)
(cov* on N + P .)

The previous lemmas simplify subterms appearing in the right-hand side of the
definition of ps. By using these lemmas, we can easily show that ps can be
defined in terms of zip:
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(lem ps-zip :
A{P:Pow ; Q:Pow}
((sim?(P,Q)) = (true) =>
(ps(P x Q)) = ((rsh(0, ps(P ++ Q)) + P) x ps(P ++ Q))) .)

(cov* on P ++ Q .)

The main goal is then solved with: (cov* using zip on lf(P) .)
In Misra’s original proof [21], the correctness of Ladner and Fischer’s algo-

rithm was approached by defining a simple prefix sum, which used the zip oper-
ation instead of tie. He then showed how Ladner and Fischer’s scheme could be
derived with a few lemmas and a small number of algebraic steps. This deriva-
tion involved defining a recursive powerlist equation which was then solved for
the correct solution. It would be interesting to see if this approach can be more
fully automated as the Maude ITP is only able to verify properties about ex-
isting algorithms, rather than deriving an algorithm by solving equations. We
suspect that such work would require a specialized constraint solver, pehaps a
unification procedure, that has been tailored to directly supported the powerlist
operations. In Ruben Gamboa’s work with ACL2 [10], he also introduced simple
prefix sums, but his proof in ACL2 required a number of auxiliary lemmas to
deal with ACL2’s inability to treat zip a constructor.

7 Conclusions
Our work has addressed the need to reason inductively about partial data struc-
tures and partial operations. Based on MEL’s natural and simple support for
subsorts and partiality, we have presented a generalization of the coverset in-
duction method that naturally supports reasoning on such partial operations
without cluttering the user with a host of definedness proofs alien to the heart
of the reasoning. We have implemented these methods in a new version of the
Maude ITP tool and have demonstrated the simplicity and naturalness of this
approach by means of an extensive powerlist case study. Due to space limita-
tions, we could only give a small sampling of the theorems proved. Many more
theorems were proven in [12], with their code and tool publicly available in [1].

For future work, greater support for inductive reasoning about parametrized
modules in the Maude ITP would have been very helpful and should be added to
a new version of the tool. Also, simpler proofs could clearly be fully automated.
Perhaps more importantly, we hope that this work will stimulate us and others to
study how support for types, subtypes and partiality can be added to inductive
theorem provers already supporting typed logics, so that such reasoning becomes
as simple and natural as possible.

Acknowledgments. The authors would like to thank the anonymous referees
for suggestions that helped improve the quality of this paper.
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2 School of Informatics, University of Edinburgh�

moakristin.johansson@univr.it, {l.dixon,a.bundy}@ed.ac.uk

Abstract. Rippling is a heuristic used to guide rewriting and is typ-
ically used for inductive theorem proving. We introduce a method to
support case-analysis within rippling. Like earlier work, this allows goals
containing if-statements to be proved automatically. The new contribu-
tion is that our method also supports case-analysis on datatypes. By
locating the case-analysis as a step within rippling we also maintain the
termination. The work has been implemented in IsaPlanner and used to
extend the existing inductive proof method. We evaluate this extended
prover on a large set of examples from Isabelle’s theory library and from
the inductive theorem proving literature. We find that this leads to a
significant improvement in the coverage of inductive theorem proving.
The main limitations of the extended prover are identified, highlight the
need for advances in the treatment of assumptions during rippling and
when conjecturing lemmas.

1 Introduction

Inductive proofs are needed to reason about recursion and are thus commonplace
in mathematical theories of concern to computer science, such as lists and trees.
They are also essential for program verification. In practice, inductive proofs
require significant user-guidance and expertise. The theoretical need for this can
be seen by the failure, for inductive theories, of cut elimination and decidabil-
ity [4]. Given the difficulty of automating inductive proofs, it is then sometimes
surprising that informal mathematical texts present many proofs simply as “by
induction”. The ease with which such proofs are informally written is not re-
flected by automatic, inductive theorem proving. In particular, user-guidance is
often needed to specify where case-analysis should be performed.

While earlier inductive proof methods can automatically consider the cases of
an if-statement [14,7,19], these systems are first-order and lack pattern match-
ing constructs for inductively defined datatypes. We call these constructs case-
statements. Higher-order systems can express these constructs and frequently use
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them to define functions. However, in higher-order domains, systems have pre-
viously been unable to include the case-analysis steps for pattern-matching con-
structs within automatic inductive proof search, without sacrificing termination.

The work we describe in this paper improves on the coverage of automatic
inductive proof methods by incorporating case-analysis for both if- and case-
statements. Our proof technique extends rippling, which is a heuristic used for
removing the differences between a goal and its inductive hypothesis. It improves
on earlier rippling based methods [5] by supporting analysis of case-statements.
An important property of our method is that it also preserves termination. This
allows many proofs which previously needed explicit user-guidance, or manipu-
lation of the representation, to now be found automatically.

To perform the application of case-analysis within rippling, we introduce a
restricted form of resolution which treats variables at the head of a rule as
requiring an occurrence of their parameters to be found within the goal. This
is then used to guide unification during resolution and avoids the problem that
case-analysis rules otherwise unify with every goal.

Our extension of rippling has been implemented in IsaPlanner [9] allowing
it to be used for proofs in Isabelle [16]. IsaPlanner did not previously support
case-splitting for if- or case-statements. Using our implementation, we tested
a large number of examples from both Isabelle’s library as well as problems
from the inductive theorem proving literature. Our results show that the use
of case-analysis in rippling successfully automates the proof of many problems
that were previously unprovable by IsaPlanner as well as other systems. Our
implementation and more exhaustive details of the experiments are available
online1. We also analyse the cases where our inductive theorem prover fails.
This highlights the need for further work on orthogonal aspects of inductive
proof which are no longer limited by case-analysis.

2 Background

2.1 Rippling

Rippling is a heuristic technique for guiding deduction [5]. It is typically used to
guide the step cases of inductive proofs. We briefly review the terminology as well
as the steps involved by considering a proof of the commutativity of addition.2

The proof, by induction on the first argument, results in the induction hypothesis
∀y. a+y = y+a, called the skeleton. Rippling annotates the parts of the goal that
differ from the skeleton, called wave-fronts. For example, in the step-case subgoal,
shaded boxes annotate the wave-fronts: Suc a +�b� = �b�+ Suc a ; where the

1 http://dream.inf.ed.ac.uk/projects/isaplanner
2 For the sake of brevity, we do not discuss the various forms of rippling such as static

vs dynamic rippling, and we do not need to concern ourselves with details of ripple-
measures. The work in this paper is based on dynamic rippling using the sum-of-
distances ripple-measure. The interested reader can find further details of such choices
in [5,9].

http://dream.inf.ed.ac.uk/projects/isaplanner
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wave-fronts are the two Suc symbols. The locations corresponding to universally
quantified variables in the skeleton are called sinks. In our example, there are two
sinks, corresponding to the locations of y, both of which contain b.

An annotation for a goal can be constructed from the skeleton and stored
separately using embeddings [11,18]. For the purposes of this paper, it suffices to
consider an embedding simply as way to construct the annotations for a goal.
When the skeleton does not embed into the goal, there is no way to annotate
the goal such that removing the wave-fronts leaves an instance of the skeleton.
Because the correspondence between the skeleton and the goal is lost when there
is no way to annotate the goal, such goals are typically considered as worse than
those for which there is an embedding.

Informally, one can understand rippling as deduction that tries to move the
wave fronts to the top of the term tree, remove them, or move them to the
locations of sinks. When all wave-fronts are moved into sinks, or removed, the
skeleton can typically be used to prove the goal. This is called fertilisation. When
the skeleton is an equation, using it to perform substitution in the goal is called
weak fertilisation. In contrast to this, strong fertilisation refers to the case when
the goal can be resolved directly with the skeleton. An example proof of the
commutativity of addition ending in weak-fertilisation is presented in Fig. 1.

A rippling measure defines a well-founded order over the goals, and is con-
structed from annotated terms. The purpose of a measure is to ensure termina-
tion and guide rewriting of the goal to allow fertilisation. Ripple-measures are
defined such that, when they are sufficiently low, fertilisation is possible. Each
step of rewriting which decreases the ripple measure is called a ripple-step.

Definition 1 (Rippling, Ripple-Step). A ripple step is defined by an infer-
ence of the form:

W, s, a2 � g2

W, s, a1 � g1

((t1 ⇒ t2) ∈W )
g1 ≡ t1σ g2 ≡ t2σ
a1 ∈ annot(s, g1)
a2 ∈ annot(s, g2)
Mess(a2) < Mess(a1)

The first two conditions identify a rewrite rule in the context W that matches
the current goal g1 and rewrites it to the new goal g2. The next two conditions
ensure that the goals have rippling annotations, a1 and a2 respectively, for the
skeleton s. The last condition ensures that the ripple measure decrease, where
Mess(ai) is the measure with respect to the skeleton s of annotated term ai.
Rippling is the repeated application of ripple-steps.

When there is no rewrite which reduces the measure, either fertilisation is possi-
ble, or the goal is said to be blocked. The need for a lemma is typically observed
when a proof attempt is blocked, or when fertilisation leaves a non-trivial sub-
goal3. There are various heuristics for lemma discovery, the most successful being
3 By non-trivial, we mean that automatic methods such as simplification cannot prove

the subgoal.
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Suc a + �b� = �b�+ Suc a⏐⏐4 Ripple using: (Suc X) + Y = Suc (X + Y )

Suc(a + �b�) = �b�+ Suc a
↑

⏐⏐4 Ripple using: X + (Suc Y) = Suc (X + Y)

Suc(a + �b�) = Suc(�b�+ a)
⏐⏐4 Weak fertilisation

Suc (b + a) = Suc (b + a)

Fig. 1. A rippling proof for the step-case goal of the commutativity of addition. Ripple-
steps move wave-fronts higher up in the term tree and then weak fertilisation is applied.

lemma calculation which applies common subterm generalisation to the goal and
attempts to prove the resulting lemma by induction [5,13,9,1].

An important difference between rippling and other rewriting techniques is
that the rippling measure is not based on a fixed ordering over terms, but on the
relationship between the skeleton, the previous rippling steps, and the goal being
considered. This gives rise to two notable features of rippling: its termination
is independent of the rules it is given, and, within a single proof, it may apply
an equation in both directions. The interested reader can find a more detailed
account of rippling in [5,9].

2.2 Isabelle/IsaPlanner

Isabelle is a generic interactive theorem prover which implements a range of
object logics, such as higher-order logic (HOL) and Zermelo-Fraenkel set the-
ory, among others [16]. Isabelle follows the LCF-approach to theorem proving,
where new theorems can only be obtained from previously proved statements
through manipulations by a small set of trusted inference rules. More complex
proof methods, called tactics are built by combining these basic rules in differ-
ent ways. This ensures that the resulting proofs rely only on the fixed trusted
implementation of the basic inference rules.

Isabelle also has a large theorem library, especially for higher-order logic. The
work presented in this paper has been carried out for Isabelle/HOL, although
in principle, following Isabelle’s design methodology, it can be applied within
Isabelle’s other object logics. Isabelle/HOL provides powerful definitional tools
that allow the expression of datatypes as well as provably terminating functions
over them. When the user specifies a datatype, Isabelle automatically derives its
defining equations and creates a constant for case-based pattern matching [15].
For example, writing Nat = 0 | (Suc Nat) defines the fresh constants 0 :: Nat
(this is Isabelle’s notation for ‘0 is of type Nat’), and Suc :: Nat ⇒ Nat and
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derives theorems such as 0 �= (Suc x) and (Suc x = Suc y) = (x = y). A
constant nat case : α ⇒ (Nat ⇒ α) ⇒ Nat ⇒ α, is also automatically defined
in order to support definition by pattern-matching. When case-constants are
applied to their arguments, Isabelle’s pretty printing machinery writes them in
the more conventional style: case n of 0 ⇒ c1 | Suc n′ ⇒ c2, where n is the
third argument, c1 is the first, and finally c2 is the second argument, with n′

being c2’s parameter of type Nat. We call such expressions case statements.
To facilitate interactive proof, Isabelle has a number of automatic tactics, in-

cluding a powerful simplification tool which is configured by specifying the set
of rules it will apply. The simplification procedure can, for restricted cases, in-
troduce a case-split on the condition of an if-statement; this is discussed further
in §6.3. IsaPlanner is a proof-planner for Isabelle [9]. It provides additional ab-
stractions for writing more complex tactics. In particular, an automatic inductive
theorem prover based on rippling has been developed in [9,11].

Notation: We will follow Isabelle’s notational conventions:

– Theorems with assumptions are written �P ; Q� =⇒ R, stating that P and
Q are assumptions for the conclusion R.

– Variables that are allowed to be instantiated by unification, are differentiated
from those that are not. Meta-variables are allowed to be instantiated, and
are prefixed by ‘?’, e.g. ?P .

– The list cons function is written as ‘#’, and we use the ‘@’-symbol for append.

3 Case-Analysis for Rippling

Isabelle/HOL allows both if-statements, which are directly built into HOL, and
case-statements, which are derived for each datatype. Case-statements are more
general than if-statements and may introduce new bound variables. Moreover,
they provide a convenient way to break datatypes into difference cases without
having to introduce well-formedness conditions. More generally, datatypes and
their corresponding case-statements are widely used in typed-functional pro-
gramming. In Isabelle’s list library, 16 out of 31 function definitions involve
conditional statements, 6 of which use case-statements. Examples include list
operations, such as member (∈) and delete, as well as subtraction and ≤ for
natural numbers. Properties of these functions are typically proved interactively
by induction and case-analysis.

Our approach to automate such proofs with rippling is to treat the splitting
of conditional statements eagerly – as part of the ripple-step that introduced the
conditional statement. After each ripple-step, the case splitting techniques for
case- and if-statements are tried. The case- and if-splitting techniques involve
two stages: first they attempt to prove that a particular branch will be taken,
avoiding the need for a case-analysis. If that fails, then the appropriate case- or
if-split is introduced. If the goal does not contain a case- or if-statement, then
none of the case-splitting techniques apply and the goal is unchanged. Either
way, rippling then continues to try to apply further ripple-steps. The top-level
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ripple step = apply ripple step THEN ensure measure decrease;

rippling = solved OR blocked OR (ripple step THEN rippling);

ripple step with splits = apply ripple step

THEN (take if branch OR split if

OR take case branch OR split case OR id)

THEN ensure measure decrease;

rippling with splitting = solved OR blocked OR

(ripple step with splits THEN rippling with splitting);

Fig. 2. The top-level tactic-style presentation of rippling its extension to include case-
analysis for case- and if-statements. The tactic apply ripple step performs a single
step of rippling and succeeds when it satisfies the first three conditions of definition 1
and ensure measure decrease ensures the last two conditions and tries to prove any
non-rippling goals by simplification.

tactic-style script for rippling, and its extension for case-analysis, is shown in
Fig. 2 and an illustrative example of its application is presented in § 3.1.

The condition used to ensure that rippling terminates is that each ripple-
step decreases the ripple measure. For rippling with case-splits, the ripple-step
is modified to include case splitting, and the ripple-measure is checked for each
goal after all case-splits are applied. This preserves the termination of rippling,
even when performing case analysis on arbitrary datatypes. We discuss, in §3.5,
the motivation for eager case-splitting as opposed to considering the introduction
and elimination of case- and if-statements as ripple-steps. In §3.3 and §3.4 we
give the details of the techniques to handle case- and if-statements respectively.

During a case-split, it is often the case that some branch can no longer be an-
notated with respect to the skeleton. Such goals are called non-rippling goals. Like
earlier accounts of conditional-rippling, the ripple-step succeeds when such sub-
goals can be solved easily. In our case, this means by simplification, although other
accounts used weaker proof methods (by assumption) [7]. When a non-rippling
goal is unsolved by simplification the measure-decrease check fails causing the
ripple-step to fail and for search to backtrack. Occasionally, all subgoals after a
case-split may be non-rippling goals and are solved by simplification, in which case
the solvedbranch of rippling will be taken. Typically, this indicates that the prob-
lem did not require proof by induction, but only proof by case-analysis.

3.1 A Simple Example

Below we present a simple example of the application of the case-analysis tech-
nique. Due to lack of space, more advanced theorems are available on the web4.

It is possible to define the max function for natural numbers as follows:

max 0 y = y (1)
max (Suc x) y = (case y of 0⇒ (Suc x) | (Suc z)⇒ Suc (max x z)) (2)

4 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php

http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php
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In an inductive proof of the commutativity of the max function, the step-case
is:

Inductive hypothesis (IH): ∀b. max a b = max b a

Step-case goal: max Suc a �b′� = max �b′� Suc a (3)

By applying rule 2 (apply ripple step), the left hand side of the step-case is
rippled to:

case b′ of 0 ⇒ (Suc a) | (Suc z)⇒ Suc(max a �z�) = max �b′� Suc a

At this point, a case-statement has been introduced. Because there are no if-
statements, the take if branch and split if techniques do not apply. The
take case branch also fails as there is no information about the structure of b′,
as needed to proceed down either branch of the case-statement. The split case
technique is then applied. This performs a case-split on b′, which allows the proof
to proceed and results in the subgoals for the zero and successor cases:

b′ = 0 =⇒ Suc a = max b′ (Suc a) (4)

b′ = Suc z =⇒ Suc(max a �z�) = max �b′� Suc a (5)

Goal 4 cannot be annotated but is solved by Isabelle’s simplification tactic
(within ensure measure decrease). Goal 5 is measure-decreasing but then be-
comes blocked. As discussed in §2 the step-case technique then applies weak-
fertilisation and simplification, which in this case completes the proof.

3.2 Applying Case Splits: Restricted Unification in Resolution

To apply a case split, we use a theorem derived for each datatype by Isabelle’s
definitional machinery. For instance, the following theorem is automatically de-
rived for natural numbers:

�?n = 0 =⇒?P (?f1); ∀x. (?n = Suc x) =⇒?P (?f2 x)� =⇒
?P (case ?n of 0 ⇒?f1 | (Suc x) ⇒ (?f2 x)) (6)

Applied to a case-statement, the meta-variable ?P matches the context in which
the case-statement occurs. Such theorems allow a case split, to be implemented
as a single resolution step. In an interactive setting, the user can specify an
instantiation for ?P . However, in terms of automatic proof by resolution using
higher-order unification, the meta-variable ?P occurs in head position and thus
allows the theorem to be applied to any goal, not just goals that contain case-
statements. Furthermore, even when applied to goals containing case-statements,
trivial unifiers are found (imitations that throw away the arguments). We want
such rules to only find unifiers for goals that contains the meta-variable’s argu-
ment, which we call the subterm of interest.
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Fig. 3. Examples of zippers with the focus marked by a dashed box. The $-symbol
denotes application at the level of the abstract term syntax. [Left] A zipper on the
term ?P (f ?a ?b), with focus on the subterm f ?a ?b. [Right] A zipper on g(f x y),
with focus on the subterm f x y.

A simple algorithm, implemented in IsaPlanner, for resolution with such
theorems uses a restricted form of unification that first instantiates the head-
positioned meta-variable and then performs regular resolution. Our implemen-
tation uses zippers to traverse the goal term in order to identify the location of
the subterm of interest. The zipper maintains the context of this subterm which
is used to construct the desired instantiation for the head-variable.

Zippers, as introduced by Huet [12], were motivated by the common problem
of needing to represent a tree with a subtree that is the focus of attention.
The focus of attention can then be moved left, right, up or down the tree.
Figures 3 illustrates zippers over term-trees, where the focus is marked by a
dashed box. Using zippers to move around a term has time proportional to
the distance moved. Access to the focused subterm and its context is constant
time. Importantly, traversal maintains the context. This allows zippers to give
programmatic means by which to work on both the subterm of interest and the
context in which it occurs.

Below we give an overview of our algorithm for restricted resolution. As an
example, assume we have a rule of the form ?P (?a) =⇒?P (f ?a ?b) which we
wish to resolve with the goal g(f x y).

1. Find the argument of the top-level meta-variable: Check if there in-
deed is a top-level meta-variable in the conclusion of the rule, otherwise it is
safe to proceed with normal resolution. If there is a top-level meta-variable,
its argument should match some subterm of the goal that is to be resolved.
In our example, the top-level meta-variable, ?P in the rule, has the argument
(f ?a ?b). We use a zipper to find this subterm, as shown in Figure 3-left.

2. Find a matching subterm in the goal: Using a zipper we traverse the
term-tree of the goal until a subterm matching the argument of the meta-
variable is found. In the example, ?P has one argument, (f ?a ?b), which
matches the subterm (f x y) in the goal. Figure 3-right shows the zipper of
the goal, focused on the unifying subterm.

3. Instantiate the top-level meta-variable: The term context surrounding
the focused subterm in the goal (everything outside the dashed box in



Case-Analysis for Rippling and Inductive Proof 299

figure 3-right) is used to construct an instantiation for the rule’s top-level
meta-variable. The instantiation is created by replacing the focused subterm
in the goal with a bound variable and abstracting over it. In our example,
this gives the instantiation ?P ≡ λ z. g(z).

4. Resolve with the instantiated theorem: In our example, resolution is
performed with g(?a) =⇒ g(f ?a ?b), which instantiates the remaining vari-
ables, and results in the new sub-goal g(x).

If resolution had been performed without first instantiating ?P , an extra result-
ing goal would also be a possibility, namely (λ z. g(f x y)) ?a (by imitation in
higher-order unification), which reduces the goal to g(f x y), which is the same
as the goal we started with. For rules which have a head-positioned meta-variable
in both the conclusion and some assumption, ordinary higher-order unification
will find trivial unifiers that result in the same goal as the one that was trying
to be proved in the first place. Our technique avoids this problem.

3.3 Case-Statements

As mentioned earlier, each datatype defined in Isabelle has an associated case-
constant. This comes with pattern-matching rules for each branch of the case
statement. For the datatype of natural numbers these are:

(case 0 of 0⇒?f1 | (Suc x) ⇒?f2 x) = ?f1

(case (Suc ?n) of 0⇒?f1 | (Suc x) ⇒?f2 x) = ?f2 ?n

Our case-analysis technique first attempts substitution with one of the above
theorems, and if successful it will continue rippling on that branch. If all substi-
tution attempts fail, a case-split is introduced by applying restricted resolution
with the appropriate case-splitting theorem. For example, returning to the com-
mutativity of max (§3.1), the step-case subgoal containing the case-statement
is:

case b′ of 0 ⇒ (Suc a) | (Suc z)⇒ Suc(max a �z�) = max �b′� Suc a

(7)
Recall the case-split rule for natural numbers (theorem 6, page 297). This can
be used to perform a case-split on b′ by restricted resolution. This involves first
using zippers to partially instantiating ?P ≡ λ x. x = max b′ (Suc a), and then
resolution produces the new ‘split’ subgoals:

b′ = 0 =⇒ Suc a = max b′ (Suc a) (8)

b′ = Suc z =⇒ Suc(max a �z�) = max �b′� Suc a (9)

Observe that following a case-split, an equational assumption, stating the par-
ticular value that the case-split term takes, is introduced for each branch. The
equation is then substituted in each goal’s conclusion. In our example, this means
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replacing b′ in the conclusions of goals 8 and 9, with 0 and Suc z respectively.
This is the final step involved in splitting a case-statement into its possible con-
structor cases. Not performing the substitution complicates further rippling and
lemma calculation. For lemma calculation, the substitution frequently removes
the need to consider the assumption further, and thus allows one construct more
general lemmas. For further rippling, it can cause goals to have no valid anno-
tations or for sinks to contain different, but provably equivalent, terms.

3.4 If-Statements

On encountering an if-statement, our case-analysis technique will first attempt
to go down either one of the two branches by substitution using the library
theorems:

?P =⇒ (if ?P then ?x else ?y) =?x (10)

¬?P =⇒ (if ?P then ?x else ?y) =?y (11)

Applying either of these results in two subgoals. For theorem 10, one subgoal in-
volves proving the condition ?P and the other requires proving the then-branch
which has substituted the if-statement for ?x. Similarly, applying theorem 11
involves proving that ?P is false, and then proving the else-branch. The subgoal
arising from the condition is solved either by resolution with an existing assump-
tion, or by simplification. The other subgoal (the then or else branch) is passed
back to rippling.

If the technique fails to show that either the condition ?P or its negation
holds, a split on the condition is introduced. This is performed by restricted
resolution with the library theorem:

�?Q =⇒?P (?y); ¬?Q =⇒?P (?z) � =⇒ ?P (if ?Q then ?y else ?z) (12)

As before, this results in two new sub-goals. Typically, the skeleton embeds into
only one of them, in which case that goal is called the rippling goal. Before
rippling continues on the rippling goal(s), if there is a non-rippling goal, it is
passed to the simplifier and must be solved before rippling continues.

Example. Consider the following theorem: x ∈ (l @ m) = x ∈ l ∨ x ∈ m. The
proof starts by induction on l and then uses the definition of member:

x ∈ (h#t) = if (x = h) then True else x ∈ t

Rippling with this rule results in the step-case subgoal:

if (x = h) then True else x ∈ (l @ m)) = x ∈ (h # l ) ∨ x ∈ m

The case-analysis technique is then triggered by the discovery of an if-statement
in the goal. It is not possible to prove the condition (x = h) or its negation
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by simplification, so a split is introduced. Restricted resolution with theorem 12
gives two new subgoals:

x = h =⇒ True = x ∈ (h # l) ∨ x ∈ m (13)

x �= h =⇒ x ∈ (l @ m) = x ∈ (h # l ) ∨ x ∈ m (14)

The skeleton does not embed into goal 13 and so it is passed to the simplifier,
which successfully solves it. Goal 14 is then rippled further by rewriting the right
hand side to:

x �= h =⇒ x ∈ (l @ m) = if (x = h) then True else x ∈ l) ∨ x ∈ m

This time, taking the else-branch succeeds, as the assumption introduced by the
previous case-split can be used to show the negation of the condition. The proof
is now finished by strong fertilisation.

3.5 Eager Case-Splits

Case-splitting is interleaved with rippling, and applied eagerly whenever a rule
introduces a case- or if-statement. The rule introducing the case statement, fol-
lowed by application of the case-split itself, is regarded as a single ripple-step.
This has two main advantages over waiting until rippling is blocked, or including
the case-split as a separate rule in rippling, as in previous approaches [5].

Firstly, some ripple measures are not reduced between the goal containing a
case-statement and the resulting goal after the split. In the example proof of
goal 7, the case-statement has a wave-front in the same position, with respect
the skeleton, as the goal (9) after the split. Ripple measures which are invariant
on the size of wave fronts hence filter out such steps as they are not measure
decreasing. By treating a rule’s application and the following case-split as a single
ripple-step, all known ripple-measures decrease with respect to the previous goal
(3). Similarly, for splitting data-types, substitution with the introduced case-
assumption is typically not measure decreasing and hence needs to be included
as part of the compound ripple-step.

Secondly, when case- and if-statements can be reduced to a known branch,
such that an actual case-split is not required, our technique proceeds directly
down the relevant branch. If the case- or if-statement is allowed to remain in
the goal, redundant rippling steps might be applied to a branch which is later
discarded. Eager application of the case-splits is thus more efficient on such
problems.

4 Evaluation

Functions defined using if- and case-statement are very common, but many
proofs requiring the corresponding case- analysis could not previously be found
by rippling based methods. Rippling with the case-analysis technique has been
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evaluated, in IsaPlanner, on a set of 87 theorems involving lists, natural num-
bers and binary trees. These are defined using if- or case-statements, none of
which IsaPlanner could prove previously. 47 of the theorems can now be proved
automatically using our case-analysis technique. Of the theorems in this evalu-
ation corpus, 41 of the proofs involve if-statements, 41 involve case-statements
and 5 involve both. Most of the theorems in the corpus are a subset of induc-
tive theorems from Isabelle’s libraries for lists and natural numbers5. Some are
more programmatic in character and taken from the CLAM system [13] and
from problems arising from dependently typed programming [20]. The criteria
used to select the theorems was simply that they require inductive proof and
involve some function(s) defined using if- or case-statements. We also added
some further theorems to check that our machinery worked with other common
properties and definitions. The evaluation corpus and full results, including the
run-times are available on-line6.

We did not expect IsaPlanner to prove all theorems even with the new case-
analysis technique. Many of the remaining 40 theorems require, in addition to
case-analysis, support for generating conditional lemmas or more elaborate rea-
soning about side-conditions than IsaPlanner currently is capable of. These the-
orems are included in the corpus to identify areas for further development of the
prover. With case-analysis techniques now available, we propose further exten-
sions to IsaPlanner in §5.

The theorems were proved only from function definitions, rippling was not
provided with any extra lemmas. The experiments were run on an Intel 2 GHz
processor. All proofs were found in less than one second. Some failed proofs
took slightly longer, with the maximum of 9 seconds for one proof attempt.
For the experiments we used IsaPlanner’s rippling-based inductive prover [9],
which has been extended with our case-analysis technique. We also compared
this prover with one that applies induction followed by Isabelle’s simplifier and
lemma calculation [10]. The simplifier applies rewriting with the definitions from
left to right which ensures termination. However, lemma calculation can lead
to infinite chains of conjectured lemmas. The results of the comparison show
that the simplification-based prover differs from the rippling-based one in two
important respects:

Proved Theorems: The simplification-based prover managed to prove 37 of
the 87 theorems. There are 15 theorems rippling can solve but simplification
cannot, most of these require a split on a case-statement, which simplification is
unable to perform. In general case-splitting for datatypes makes simplification
non-terminating. There are also 6 theorems simplification proves but rippling
fails to prove. These involve more sophisticated reasoning with assumptions than
rippling currently employs. Interestingly, when the standard set of simplification
rules from Isabelle’s library are available, rippling’s performance improves more
than the simplification-based technique; there are then 20 theorems provable by

5 isabelle.in.tum.de/dist/library/HOL/index.html
6 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php

isabelle.in.tum.de/dist/library/HOL/index.html
http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php
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the rippling prover and but not by the simplification-based one. The number of
theorems that simplification can prove, but rippling cannot, is unchanged.

Termination and Conjecturing: On problems that it cannot solve, the sim-
plification based prover fails to terminate. In contrast, the rippling based prover
terminates on all proofs. When asked for alternative proofs, rippling also main-
tains termination while the simplification based prover again fails to terminate.
When analysed in more detail, we observed that conjecturing after simplifica-
tion frequently leads to attempting to prove an infinite chain of increasingly
complicated conjectures. Rippling, on the other hand, does not suffer from this
problem. We conclude that the heuristic guidance of rippling leads to better
lemmas being calculated.

5 Further Work

The implementation of techniques for case-analysis have increased the power of
IsaPlanner’s inductive prover. The failed proofs in the evaluation set highlight a
number of areas for further work that are orthogonal but complementary to case-
splitting. Firstly, this paper has not focused on lemma discovery. An interesting
future direction is to explore automated discovery of conditional lemmas, which
are needed in many proofs. An example is the proof that insertion sort produces a
sorted list: sorted(insertion sort l). IsaPlanner’s current lemma discovery tech-
niques are limited to making conjectures without assumptions. However, in this
case the needed lemma is sorted m =⇒ sorted(insert x m).

Secondly, extensions to improve IsaPlanner’s capabilities to reason about
more complex conditional conjectures, and about goals with multiple assump-
tions would further increase the power of the prover. Such goals occur more
frequently in domains where case-splitting is applied, introducing new assump-
tions. Implementing extensions to fertilisation, as described in [2] may prove
beneficial in these cases. An example where this would be useful is in the proof
of the lemma that needs to be conjectured to prove the correctness of sorting:
sorted m =⇒ sorted(insert x m). The step case would be solved by rippling
forward to prove sorted (h#t) =⇒ sorted t, and rippling backward to prove
sorted (insert x t) =⇒ sorted (insert x (h#t)). This requires both rippling for-
ward from assumptions and, as is currently implemented, backwards from the
goal, respectively.

Finally, for this paper, we have not been concerned with the issue of induc-
tion scheme selection. IsaPlanner’s induction tactic does allow the user to spec-
ify a custom induction scheme, but when running entirely automatic, as in our
experiments, IsaPlanner’s default setting is to use structural induction on a sin-
gle variable. However, with such an induction scheme, some proofs will then re-
quire many nested case-splits, interleaved with new inductions. As there is a risk of
non-termination, IsaPlanner only allows new inductions in the context of lemma
speculation, and not for non-rippling goals arising after case-splits. Exploring
heuristics for automatically selecting and applying induction schemes over mul-
tiple variables simultaneously will enable full automation in more of these cases.
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An example where this is beneficial is the proof of right-commutativity of sub-
traction, expressed in Isabelle’s library as (i - j) - k = (i - k) - j. However, even
when more elaborate induction schemes are used, there is no guarantee that case-
statements may not be introduced at some intermediate point in the proof, per-
haps from rewrite rules arising from other conditional functions, or from auxiliary
lemmas. Therefore, the case-analysis technique will still be of use.

6 Related Work

6.1 Induction-Scheme Based Case-Analysis

Approaches to selecting or deriving induction schemes, such as recursion analy-
sis [3], can avoid the need to perform additional case-splits. This is how systems
such as ACL2 [14] and VeriFun [19] tackle problems that otherwise need case-
analysis. As these system do not have datatypes, unlike Isabelle/IsaPlanner, all
recursive functions are defined using if-statements and destructor constructs.
For example, append is defined by: x @ y = if x=[] then y else hd(x)#(tl(x) @
y). Functions involving case-splits on multiple variables are defined by recur-
sion on several arguments, and hence recursion analysis is able to construct the
appropriate induction scheme.

In Isabelle, definitions are typically constructor style. While and proofs could
be translated into destructor style to avoid dealing with case-statements, this
would require translating all function definitions and auxiliary lemmas as well.
However, the problem of how to control the unfolding of case-statements would
not be solved; instead it would become a problem of conditional rewriting where
new variables are introduced. Furthermore, translation would produce longer,
less readable proofs. Another example when recursion analysis over destructor
style definitions is not appropriate is during function synthesis, where new forms
of recursion need to be derived [6]. Curiously, using case-analysis, as opposed
to selecting and constructing richer induction schemes also sometimes avoids
introducing unnecessary base-cases.

6.2 Case-Splitting in Other Rippling Based Provers

In version 3 of the CLAM system [8], conditional functions would typically be
defined using several conditional rewrite rules. For example, member would, in
the non-empty case, be written using the rules: x = h =⇒ x ∈ (h # t) = True
and x �= h =⇒ x ∈ (h # t) = x ∈ t. If one of these is applicable but the con-
dition cannot be proved by simplification, and there exists another rule with a
complementary condition, CLAM’s case-split critic is triggered and introduces a
split on the condition [13]. In Isabelle/IsaPlanner, functions with conditions are
typically defined using an if- or case-statement. This is why our case-analysis
technique works on if- and case-statements, rather than complementary condi-
tional rewrite rules as in CLAM. As CLAM works only in first-order domains,
it does not include case-statements and its case-analysis critic cannot perform
the corresponding splits on datatypes. Of the 87 theorems in our evaluation
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corpus, CLAM could thus not have proved any of the 41 theorems about func-
tions defined using case-statements. The λCLAM system [17], while being able
to express case-statements, had no proof methods working with them.

6.3 Simplification

Simplification based tools, such as Isabelle’s simplifier, can automatically split
if-statements, but not case-statements ([15], §3.1.9). In general, splitting case-
statements might cause non-termination for rewriting. The user is therefore re-
quired to identify and insert case-splits where required, or apply a more sophisti-
cated induction scheme, such as simultaneous induction on several variables. Our
technique, on the other hand is incorporated as a step within rippling and the
rippling measure ensures termination. Splitting case-statements is safe as long
as the ripple-measure decreases. IsaPlanner employs the simple default struc-
tural induction scheme for the datatype. Thanks to the case-analysis technique,
IsaPlanner still succeeds in automatically proving theorems such as (i - j) - k =
i - (j + k), which in the interactive proof from Isabelle’s library uses a custom
induction scheme chosen by the user.

7 Conclusions

Performing case-splits is an important feature for an automatic inductive theo-
rem prover. It is needed to prove properties of many functions that are naturally
defined using if- and case-statements. Our case-analysis technique can perform
the needed case-splits for many of these cases. It is triggered during rippling
whenever an if- or case-construct is encountered. If it is possible to prove the as-
sociated condition, the technique proceeds down the corresponding branch, oth-
erwise it introduces a split. Performing such case splits automatically by naive
resolution is applicable to all goals. By introducing a restricted form of resolution
we were able to take advantage of the automatically derived library theorems.
The technique has been fully implemented and tested in IsaPlanner. It is incor-
porated with rippling, which ensures termination. Our evaluation showed that
47 out of 87 theorems which required case-analysis could be prove automatically
by IsaPlanner. Splitting the cases of a pattern matching statement was needed
for 14 of these problems. Other forms of rewriting such as Isabelle’s simplifier,
are non terminating in these cases. More difficult conditional theorems from our
evaluation corpus require the capability to conjecture conditional lemmas and
improved reasoning with assumptions, which we suggest as future work.
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Abstract. We present a new scheme to translate mathematical devel-
opments from HOL Light to Coq, where they can be re-used and re-
checked. By relying on a carefully chosen embedding of Higher-Order
Logic into Type Theory, we try to avoid some pitfalls of inter-operation
between proof systems. In particular, our translation keeps the mathe-
matical statements intelligible. This translation has been implemented
and allows the importation of the HOL Light basic library into Coq.

1 Introduction

1.1 The Curse of Babel?

Proof-systems are software dedicated to the development of mechanically checked
formal mathematics. Each such system comes with its own logical formalism,
its own mathematical language, its own proof language and proof format, its
own libraries. A consequence is that it is largely impossible to reuse a formal
development of one system in another, at least not without a re-implementation
requiring important amounts of human work and skills.

This situation is about as old as proof-systems themselves, has often been
deplored and is mostly felt as a modern form of the curse of Babel.

On the other hand, if the large number of human languages sometimes hinders
comprehension between people, it also gives them a broader set of means to
express themselves. It is well known that many subtleties of an original text are
often “lost in translation”. A similar point can be made in the case of formal
mathematics: certain formalisms and systems can allow smoother developments
of, say, real analysis, while others will be more at ease with fields involving large
combinatorial case analyzes.

For these reasons, automatic translation between proof-systems is a tempting
and old idea. It has, however, been hindered by various theoretical and practical
obstacles. We here describe a new attempt that opens new possibilities. The
ideas underlying this work are:

– We focus on one particular case, the translation from HOL Light to Coq.
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– This work is specific to this case, and builds upon a careful study of the
logical formalisms of both systems and the way they are implemented.

– In this particular case, we provide a good translation, in the following sense:
the statements of the theorems translated from HOL Light remain intelligible
and can be incorporated into further developments made in Coq.

1.2 Embedding Higher-Order Logic into Coq

As it is often the case when logic meets implementation, there are two aspects
in this work:

1. The choice of logical embedding: in our case, statements and proofs of HOL
Light have to be translated into counterparts in Coq’s type theory. For in-
stance, one often distinguishes between deep and shallow embeddings. The
choice of this translation is central and will be discussed below.

2. The way to actually implement this translation. This will depend on issues
like the way the two systems represent proofs, whether the translating func-
tion processes proof objects or proof scripts, etc. . .

Deep and shallow embeddings. In order to represent terms from one logical
framework A inside another formalism B, we have two possible ways:

– A deep embedding: define data-types in B that represent types and terms of
A; we can then define, inside B, what it means to be provable in A.

– A shallow embedding: represent types and terms of A using their counter-
parts in B; this translation must preserve provability.

A deep embedding can ease things on the implementation side: we have access
to the structure of the terms, and we can reason about them. Furthermore, the
data types serve as a well-defined interface between the two systems.

However, our ultimate aim is to obtain actual Coq theorems1. For that, we
concretely need a shallow embedding. In a previous work by F. Wiedijk [20],
theorems from HOL Light were directly translated through a shallow encoding.
Wiedijk observed that automation was difficult to perform that way. Further-
more, and although he used a shallow embedding, the theorems he obtained were
still somewhat awkward in Coq. For instance, we would like to see the theorem
∀a, ∃b, a = b to be translated in Coq in forall (A:Type)(a:A), exists b, a
= b whereas Wiedijk obtains forall (A:hol_type), hol_thm (hol’’forall
A (hol_Abs A hol’’bool (fun (a:A)=> hol’’exists A (hol_Abs
hol’’bool (fun (x:A)=> hol’’eq A x a))))).

To avoid these pitfalls, we are going to obtain this shallow encoding going
through a deep one. Frameworks like type theories allow to lift a deep embedding
into a shallow one. This operation is called reflection from a proof theoretic point

1 If John Harrison provides us with, say, Wiles’ proof of Fermat’s theorem in HOL
Light, we want to translate it to the “real” Coq formulation of this famous result,
and not the theorem “Fermat’s theorem as stated in HOL is provable in HOL”.
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of view; through a proofs-as-programs perspective it can be understood as a
compilation operation and corresponds to one of the two steps of normalization
by evaluation (NbE) [7]. In this work we adapt a previous formalization of NbE
in Coq [12].

To conclude, from HOL Light, we get deeply embedded terms; then we trans-
late them into Coq theorems using a process similar to the computation part of
normalization by evaluation.

Motivations and difficulties. Embedding the Higher-Order Logic into Coq
means defining a model of this logical framework, and so proving its coherence.
The confidence we can have about the HOL Light theorem prover is thus in-
creased. And this is enforced by the ability we have to check in Coq the theorems
that were proved in HOL Light.

When translating theorems from HOL Light to Coq, we will have to take into
account the differences between the two systems: as they often make different
choices in the way a same mathematical corpus is formalized, one can therefore
fear that a translated theorem is difficult to reuse in the target system, or that
its statement becomes obscured.

Finally, one expects such a translation to be robust to changes in both proof-
systems, and to be as efficient as possible in terms of time and memory con-
sumption.

1.3 Related Work

Interaction between HOL and Coq. There already have been some attempts
to share proofs between HOL systems and Coq, some of which are being devel-
oped now. One solution is to rely on an independent tool that will, at the same
time, check the proof and perform the translation [9,2]. Closer to our approach,
it is conceivable to transform a theorem in the HOL system into a theorem in
Coq, and check it in Coq, using its HOL proof as a guideline. F. Wiedijk [20] ob-
served that directly using a shallow encoding was hard to automate and resulted
in rather unintelligible theorems in Coq.

Recording and exporting HOL proofs. Efficient systems to record and
export HOL proofs have already been developed, both for the HOL prover [21]
and for HOL Light [19,17]. These works pursue the same motivations as ours:
to import HOL proofs into a theorem prover. Since Obua’s tool [19] is far more
stable and easier for a direct exportation to Coq, we reused his code on the HOL
Light side (proof recording), and changed the exportation side to a Coq format.
These changes are now distributed with the development version of HOL Light2.

1.4 Outlines

In the next section, we see the main characteristics of HOL Light and Coq that
serve our work. Section 3 is dedicated to the major part of our work: constructing
2 The development version of HOL Light is currently available at
http://hol-light.googlecode.com/svn/trunk

http://hol-light.googlecode.com/svn/trunk
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a deep embedding of the HOL Light logic into Coq, that is defining data structures
that represent types, terms and derivations of HOL Light. To relate this to our
main goal, we have to work on two levels:

– Upstream: we record and export HOL Light proofs into this encoding.
– Downstream: inside Coq, we construct a lifting from the deep embedding to

a shallow embedding. Each HOL Light construction is mapped to its Coq
counterpart. Besides, we prove that each time we have a Coq object rep-
resenting a correct HOL Light derivation, its translation is a correct Coq
theorem (Section 4).

This way, from a proof tree imported from HOL Light, we can reconstruct a
theorem statement and its proof, using reflection.

We develop some aspects of the way to obtain reasonable performances in
Section 5, thus obtaining the results described in Section 6. Finally, we discuss
our approach and its perspectives.

2 HOL Light and Coq

HOL Light [15] and Coq [6] are two interactive theorem provers written in OCaml
[18]. Although the ancestries of Coq and HOL Light can both be traced back to
LCF, there are important differences, between the logical formalisms as well as
in the way they are implemented. For obvious matters of space, we here do not
give a complete description of the two systems, but underline differences which
are crucial for the translation.

A more detailed comparison between HOL [14] and Coq has been established
in [22] and enhanced in [9]. These studies also apply to HOL Light, which mainly
differs from HOL by its smaller implementation.

2.1 The Status of Proofs

Proof systems like Coq and HOL Light share the same goal: to construct a formal
proof. However, the status of these constructions is different in the two systems.
This difference is directly related to the two formalisms.

HOL Light implements a variant of Church’s Higher-Order Logic. A proof is
a derivation in natural deduction. In the example below, Γ and Δ are sets of
hypotheses; s, t, u and x are objects of some well chosen types:

Γ � s = t Δ � t = u

Γ ∪Δ � s = u
trans � x = x

refl

Γ ∪Δ � s(x) = u(x)
mk comb

While such a derivation has an obvious tree structure, it is not constructed as
such in the system’s memory. HOL Light represents statements like Γ � s = t as
objects of an ML abstract data type thm. The fact that this data type is abstract
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is the key to the system’s safety3: the only way to construct objects of type thm
are well-understood primitive tactics corresponding to primitive inference rules.
Thus, if a statement Γ � P can be represented in thm, it is indeed a theorem.

Coq implements a Type Theory where proofs are objects of the formalism4.
More precisely, “being a proof of P” is identical with “being of type P”, and as
a consequence, the statements of the theory are of the form Γ � t : P .

This results in a very different architecture and safety model:

– The type-checker is the safety critical part of the system, its trusted comput-
ing base.

– Theorems are constants: the statement is the type and the body is the proof.
Proofs are thus kept in the system’s memory and can be re-checked.

Consequences. Since Coq keeps proof-objects while HOL Light does not, we
need to build these objects at some point in the translation process. The trans-
lated proofs can have a critical size. We will see below that this requires special
care.

2.2 Computations and Equality

In both formalisms, the objects are strongly normalizing typed λ-terms. The
way normalization is performed is very different however. Coq allows to type
actual functional programs: its objects include a purely functional and termi-
nating kernel of ML. This leads to some computation over terms, and a notion
of convertibility between β-equivalent terms. In HOL Light, no computation is
performed, and two β-equivalent terms are only provably equal.

Let us take an example.
In Coq, addition over unary natural numbers is defined as the usual program:

Fixpoint plus (n m : nat) : nat := match n
with | O => m | S p => S (plus p m) end.

Such programs come with a notion of computation, which defines a notion of in-
tentional equality. In this case, extended β-reduction yields (with some syntactic
sugar) 2 + 2 �β 4 and thus 2 + 2 =c 4.

Like in all Martin-Lf type theories, these, possibly complex, computations are
taken into account in the formalism by the specific conversion rule:

(Conv) Γ � t : A Γ � B : s

Γ � t : B
(if A =c B)

As a consequence, computations are omitted in the proof; for instance the propo-
sitions even(2 + 2) and even(4) have exactly the same proofs.

Another consequence is that Coq and similar type theories need a notion of
propositional equality which is distinct from the computational relation =c.
3 And to the safety of related systems (LCF, HOL).
4 This is one aspect of the Curry-Howard isomorphism; another aspect is that the

Type Theory is constructive, but this point is less central here.
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In HOL Light, on the other hand, one will prove the existence of addition,
that is of a function verifying the properties 0 + x = x and S(x) + y = S(x + y).
The equality predicate is the way to construct atomic propositions, and all con-
structions (∧,∨,⇒ connectors, quantifiers. . . ) are defined through combinations
of equality and, in some cases, the ε-operator.

HOL Light’s equality has specific rules corresponding to reflexivity, transitivity,
extentionality, β and η-equivalence.

Consequences. On the one hand, in Coq, the length of a proof can be reduced
by maximizing the computational part, which does not appear in proofs. This
principle is called computational reflection. In our development, proofs of the
theorems that are imported from HOL Light use these computational capabilities
of Coq.

On the other hand, in HOL Light, the absence of computation leads to big
proofs. The advantage is that we avoid the implementation of a β-reduction
over our representation of HOL Light’s λ-terms and a conversion rule, really
simplifying de facto proof checking.

2.3 Treatment of Constants

Constants, that is the ability to have definitions, are essential to any mathemati-
cal development. Precisely because of the different statuses of equality, constants
are treated differently in the two systems.

In Coq, constants are treated through the computational equality and the
conversion rule. Whenever a constant is defined:

Definition c : A := body.

a new object c of type A is added to the environment, and the computational
equality is extended by c =c body.

In HOL Light, constant unfolding is explicitly handled by the equality predi-
cate. The corresponding definition will also yield an object c of type A, together
with a theorem stating that c = body.

Consequences. The fact that constants in HOL Light are unfolded only by
invoking a specific theorem will turn out to be very convenient: it will allow us
to map specific constants to previously defined Coq objects (see Section 4.3).

2.4 Classical Logic

Whereas Coq’s intentional type theory is constructive, HOL Light’s logic is:

– Extensional: the η-equivalence is assumed (and functional extensionality can
be deduced from it in HOL Light).

– Classical: propositions are actually boolean terms; thus propositional exten-
sionality is true by definition; furthermore the axiom of choice is assumed
via the introduction of a primitive Hilbert ε-operator.
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Consequences. Given the fact that the classical reasoning is deeply embedded
in HOL Light logic, there seems to be no alternative but to assume corresponding
axioms in Coq (excluded middle, choice operator, extentionality). Indeed, we
need to apply them when proving the coherence of HOL Light in Coq.

2.5 Type Definitions

In Coq, type definitions are just regular definitions or inductive definitions. In
HOL, there is no primitive notion of induction, and since types have a different
status than terms, type definitions have to be handled specifically.

A user can define new types in different ways involving facilities such as in-
duction, but they all rely on one mechanism: the schema of specification. This is
implemented by the primitive rule new_basic_type_definition, which, given
a property P : A → bool, a term x : A such that � P x holds, defines the type
B = {y : A|P y}, and two constants (in the sense of section 2.3): the canonical
injection from B to A and the injection from A to B whose behavior is specified
only for elements y such that P y holds.

Consequences. All the types in HOL Light are inhabited, since the base types
are inhabited and a type definition has to be inhabited because we require � P x.
This is useful to define the ε operator in a proper way without a condition of
non-emptiness on the type.

3 Deep Embedding: Representing Higher-Order Logic in
Coq

In this section, we represent Higher-Order Logic in Coq. The main originality is
the computational definition of deduction at the end of the section. The basic
definitions are quite standard, but some care is needed in order to make the later
developments tractable and to keep memory consumption as low as possible as
well as the computations efficient enough. In particular, it is mandatory to have
explicit definitions.

Our encoding uses the SSReflect tactics and libraries package developed by
G. Gonthier et al. [13], but the level of details of this paper does not allow us to
make clear how crucial this is.

3.1 Types and Terms

Names. We need names for variables and definitions both for types and terms.
These names have to be in an infinite countable set over which equality is decid-
able. For efficiency reasons, we chose positive, the Coq representation of binary
natural numbers greater than 1.

In the rest of the paper, idT, defT, idV and defV, respectively representing
types variables, types constants, terms variables and terms constants, stand for
positive.
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Types. For types, we need variables and definitions, and we give a specific status
to the two primitive definitions of HOL Light: bool and the functional arrow. A
previously defined type is accessed through its name and the list of its arguments.

Inductive type : Type :=
| TVar : idT → type | Bool : type
| Arrow : type → type → type
| TDef : defT → list_type → type
with list_type : Type :=
| Tnil : list_type
| Tcons : type → list_type → list_type.

Terms. Terms are defined straightforwardly as an inductive type. For bound
variables, we use a locally nameless representation [5], which is simpler to reason
about than a named representation. As for types, we distinguish some primitive
term definitions: the equality, the ε choice operator, and the logical connectives.
We group them together under the type cst, and obtain for terms this definition:

Inductive term : Type :=
| Dbr : nat → term | Var : idV → type → term
| Cst : cst → term | Def : defV → type → term
| App : term → term → term
| Abs : type → term → term.

Typing. This is our first use of computational reflection. Rather than defining
typing judgments as an inductive relation, we directly define [12] a typing algo-
rithm. Given a De Bruijn context (a list of types) g and a term t, the function
infer returns the type of t under the context g if it exists, and fails otherwise. wt
g t Ameans that this term has type A under g, and is just a shortcut for “infer g t
returns A”. Since we consider simply typed terms, the definition of infer is easy.

3.2 Derivations

We now define HOL Light’s logical framework. Typically, Coq’s induction process
and dependant types are well-suited to represent such judgments. Here is an
extract of the inductive data-type that represents HOL Light derivations):

Inductive deriv : hyp_set → term → Prop :=
| Drefl : forall t A, wt nil t A → deriv

hyp_empty (heq A t t)
| Dconj: forall h1 h2 a b, deriv h1 a → deriv

h2 b → deriv (hyp_union h1 h2) (a hand b)
| Dconj1: forall h a b, deriv h (a hand b) →

deriv h a
| Dconj2: forall h a b, deriv h (a hand b) →

deriv h b
| ...
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It would however be impractical to have HOL Light generate such derivations.
They would be too verbose and difficult to build (for Drefl, how to prove wt
nil t A?). Obua [19] notices that it is sufficient to build a far more compact
skeleton of the tree. This skeleton carries only minimal information; typically
which inference rules have been used.

Following his code, we record proofs in HOL Light using an ML recursive type
that represents this skeleton (which means this structure uses no dependent
types anymore). We then export it straightforwardly into its twin Coq inductive
type:

Inductive proof : Type :=
| Prefl : term → proof
| Pconj : proof → proof → proof
| Pconjunct1 : proof → proof
| Pconjunct2 : proof → proof
| ...

These twin OCaml and Coq types thus establish the bridge between HOL Light
and Coq.

This structure is typed too loosely to guarantee the correctness of the deriva-
tion. Some objects of type proof do not correspond to actual proofs. For in-
stance, Pconjunct1 stands for the elimination rule of ∧ on the left. Its argument
should be a proof of a theorem that looks like Γ � A∧B, but this is not enforced
in the proof inductive type.

However, a skeleton is sufficient to reconstruct a complete derivation when it
exists, by making the necessary verifications. This is the job of the proof2deriv
function:

– If p is a well-formed proof, then proof2deriv p returns h and t, and we can
establish that deriv h t stands (this is lemma proof2deriv_correct).

– If not, proof2deriv fails.

Once more computational reflection is used to deduce deriv h t from a proof.

4 Going from the Deep Embedding to Coq Terms

In the previous section, we show how to export HOL Light proofs and obtain in
Coq objects of type deriv h t for a certain h and t, that is to say deeply written
theorems. To interact with Coq theorems, we want to have a shallow reading of
these theorems. That is why we define a translation from deep to shallow.

This translation has already been implemented in [12] for a simply typed λ-
calculus with only named variables. Here it is trickier with De Bruijn indices
and definitions.

4.1 General Idea

For the moment, we suppose given an interpretation function I to interpret
variables and definitions names. Its meaning is detailed in Section 4.3.
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We first define [•]I , a translation function on types, that maps, for instance,
Bool to Prop and the arrow to the arrow of Coq (see its precise typing below).
We then define | • |I , a translation function on terms, that respects their types.
Informally, it means that when a term t has type T , then |t|I belongs to [T ]I :

if Γ � t : T then |t|I ∈ [T ]I

4.2 Implementation

It is important for all the types in HOL Light to be inhabited, as we noticed
in Section 2.5. We now cope with this by stating that the translation of a type
must be an inhabited Type. Inhabited Types can be represented by a record:

Record type_translation : Type :=
mkTT {ttrans :> Type; tinhab : ttrans }.

The translation function [•]I , a.k.a. tr_type, maps a HOL type to a
type_translation:

tr_type: forall I, type → type_translation

The translation function | • |I , a.k.a. sem_term, is as a refinement of the typing
function infer (see Section 3.1). In addition to typing a term, it gives its Coq
translation (note that its definition is eased by the use of dependant types):

sem_term : context → term →
option {ty: type & forall I, tr_type I ty}

4.3 The Interpretation Functions

Variables. We have three kinds of variables to interpret: type variables, named
term variables and De Bruijn indices. We map each of them to Coq objects with
respect to their types.

Definitions. The interpretation of definitions is a key point to preserve the
intelligibility of theorems. Interpretation for types and terms definitions are re-
spectively defined by:

Definition type_definition_tr := defT →
list type_translation → type_translation.

Definition term_definition_tr :=
defV → forall (A: type), tr_type I A.

Imagine we have a HOL Light term t bringing into play objects of type num, the
type for natural numbers defined with zero (_0) and successor (SUC). If we apply
sem_term to t with an object of type type_definition_tr that maps (num,[])
to nat and a object of type term_definition_tr that maps (_0,num) to O and
(SUC,num→num) to S, we obtain a Coq term that corresponds to t, but it is a
standard Coq theorem, and it would have been written that way directly in Coq.
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Besides, this process is fully flexible: if instead of nat, we map num to N, the
Coq type for binary natural numbers, then we get the same term in this different
formalism of naturals.

Notation. In the remaining of the article, the interpretation functions are still
abbreviated as I.

4.4 Adequacy of Derivations w.r.t. Semantics

We can now establish that this translation applied to correct HOL Light deriva-
tions produce correct Coq theorems. By a correct Coq theorem, we mean a term
that is locally closed, has type Bool, and whose translation is a correct Coq
proposition whatever the interpretation functions might be:

Definition has_sem (t: term) : Prop :=
match sem_term nil t with

| Some (existT Bool evT) ⇒ forall I, evT I
| _ ⇒ False end.

We can establish the following theorem:

Theorem sem_deriv : forall (h: hyp_set) (t:
term), deriv h t → forall I, sem_hyp I h →
has_sem I t.

where sem_hyp I h checks that has_sem I holds for each term of h. Since
has_sem is a function, the proofs of the translated theorems are computationally
reflexive again.

Conclusion of parts 3 and 4. When a theorem is being proved in HOL
Light, its proof is recorded. It can be exported as an object p: proof that we
expect to be correct (because it comes from a HOL Light proof). Given this
object, we define a set of hypotheses h and a conclusion t with proof2deriv.
proof2deriv_correct gives a computationally reflexive proof that these objects
correspond to a derivation. If h is empty, we can apply has_sem to t, to get the
Coq version of this theorem (which is very close to one would have written
directly in Coq), and we have a computationally reflexive proof of this theorem
applying sem_deriv.

5 Improving Efficiency

As such this process allows, in principle, to import HOL Light theorems and
to check them. . . In practice, it would take too much time and use too much
memory. We stopped when the exported files reached 200 Gb; Obua reports a
similar experience [19].



318 C. Keller and B. Werner

5.1 Sharing

Proofs. Obua uses the natural sharing for proofs that comes from the user:
when a piece of proof is used more than twice, it is shared. This sharing is not
optimal, and it depends on the user’s implementation, but it is very simple, it
does not need too much memory (using a hash-table to perform hash-consing
on proofs would really increase the memory consumption), and it is sufficient to
considerably reduce the size of the exported files.

In Coq, this sharing is kept by adding one constructor to the inductive type
proof:

Inductive proof : Type :=
|...| Poracle : forall h t, deriv h t → proof.

For each proof coming from HOL Light, the corresponding derivation is immedi-
ately computed. It can be called in a following proof thanks to the constructor
Poracle.

Types and terms. We share types and terms using standard hash-consing
presented in [10].

5.2 Opaque Proofs

In Coq, even with sharing, objects of type proof can be arbitrary big. Our idea
to avoid keeping them in memory is to:

– distribute the theorems coming from HOL Light into separate files, and when
compiling the (n + 1)th file, load only the statements of the theorems of the
first n files, but not the opaque proofs (this can be done with the option
-dont-load-proofs of Coq’s compiler);

– put the objects of type proof inside Coq opaque proofs.

5.3 Computation

In addition to its internal reduction mechanism, Coq includes an optimized
bytecode-based virtual machine to evaluate terms. It is less tunable, but rather
more efficient that the internal mechanism. It is well suited for the full evaluation
required by computational reflection.

6 Results

6.1 Implementation

Our implementation is free software and can be found online [1]. Looking back
at the two main objectives of this work, efficiency and usability, we observe some
limitations to the first goal, while the second one is rather fulfilled.
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Table 1. Benchmarking the standard library and Model

Bench.
Number Time Memory

Theorems Lemmas Rec. Exp. Comp. H.D.D. Virt. OCaml Virt. Coq

Stdlib 1,726 195,317 2 min 30 6 min 30 10h 218 Mb 1.8 Gb 4.5 Gb

Model 2,121 322,428 6 min 30 29 min 44h 372 Mb 5.0 Gb 7.6 Gb

Vectors 2,606 338,087 6 min 30 21 min 39h 329 Mb 3.0 Gb 7.5 Gb

6.2 Tests

The tests were realized on a virtual machine that is installed on a DELL server
PowerEdge 2950, with 2 processors Intel Xeon E5405 (quad-core, 2GHz) and 8
Gb RAM, with CentOS (64 bits). We are able to import and to check in Coq
HOL Light proofs from:

– The standard library: what is loaded by default when launching HOL Light.
– The Model directory: a proof of consistency and soundness of HOL Light in

HOL Light [16] (which, again, enforces the confidence in HOL Light).
– The elementary linear algebra tools developed in Multivariate/vectors.ml.

The results are summed up in Table 1. For each benchmark, we report the
number of theorems that were exported, the number of lemmas generated by
sharing, the time to interpret theorems and record their proofs in HOL Light,
the time to export theorems to Coq, the time of compilation in Coq, the size of
the generated Coq files, the maximal virtual memory used by OCaml, and the
maximal virtual memory used by Coq. In the next two paragraphs, we analyze
the origins of compilation time and memory consumption, and present some
possible solutions.

Time and memory in Coq. Our proof sharing system has the major drawback
to lead to a complete blow-up of the number of exported statements, as the first
two columns of Table 1 attest. Moreover, all these statements need to be kept
in memory because all the theorems depend on one another.

The time of Coq’s compilation thus cannot be less than quadratic in the
number of Coq files, since compiling the (n + 1)th file imports files 1 to n. The
other operations that are expensive in time are:

– the parsing of the proof objects;
– the evaluation of the computationally reflexive proofs.

Concerning this last item, it is important to notice that Coq’s virtual machine
can run such a big computation. Computational reflection sounds thus a good
way to import proofs, at least in Coq.

In other words: sharing limits the memory consumed by proof objects, but
the resulting number of statements then becomes a problem. The compilation
time is not too restrictive, since the incoming theorems have to be compiled once
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Table 2. Mapping of definitions. In Coq, N is the type of binary natural numbers, and
is defined in NArith. In HOL Light, num is the type of unary natural numbers.

HOL Light num + * DIV MOD

Coq N Nplus Nmult Ndiv Nmod

for all. Moreover, it requires far less human work to automatically export some
theorems and compile it with our tool than to prove them from scratch in Coq.
Memory is a large limitation for a user though, since he or she needs to import
all the Coq files even to use only the last theorem. It would be convenient to be
able not to load the intermediary lemmas, but it does not seem possible with
our present proof objects implementation.

Memory in OCaml. The fact that proofs are kept is not the only limiting factor
for OCaml’s memory: during exportation, we create big hash-tables to perform
hash-consing and to remember theorem statements. If we keep the present proof
format, we definitely would have to reduce the extra-objects we construct for
exportation.

Conclusion. Now that we have something reliable for a rather simple proof
format, a next step is to switch to a more compact format such as the ones
presented in [8] or [17].

6.3 Usability

We now give an example from integer arithmetic of an interaction between HOL
Light and Coq’s theorems. We map HOL Light’s definitions as stated in Table 2.

Given the usual notation to say “a divides b”:

Notation "a|b" := (Nmod b a = 0).

we import the theorem MOD_EQ_0 from HOL Light:

Theorem hollight_MOD_EQ_0_thm :
forall x x0 : N, x0 <> 0 →

x0 | x = (exists a : N, x = a * x0).

and combine it with one Coq’s theorem using tactics to prove:

Lemma div_mult : forall a b, a <> 0 → a | b →
forall k, a | k*b.

The proof is only five lines long, because it is straightforward from
hollight_MOD_EQ_0_thm. As Coq’s standard library does not have any lemmas
about division and modulo in N, proving this statement from scratch would
certainly not be trivial.
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7 Conclusion and Future Work

The new way to translate theorems and proofs from HOL Light to Coq presented
in this paper fills the gap between those two interactive theorem provers. We
solve both theoretical and practical problems coming from the different frame-
works the two provers are based on. Relying on the computational power of Coq
(reflection), our translation is both able to restore theorems meanings in Coq
and give a small proof of them.

The implementation scales up to non trivial libraries. We are limited by usual
performance issues, but at a much later point. To manage to import even larger
developments, like the geometric properties used in the Flyspeck project [3], we
need to reduce compilation time and virtual memory used. This may be possible
by improving the proof format and changing the way we perform sharing.

Possible future directions include:

– translating HOL proofs to other systems with rich computation capabilities;
– integrating other external tools in Coq, such as other interactive theorem

provers or automatic theorem provers, without compromising its soundness.
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Abstract. In order to make existing formalizations available for set-
theoretic developments, we present an automated translation of theories
from Isabelle/HOL to Isabelle/ZF. This covers all fundamental primi-
tives, particularly type classes. The translation produces LCF-style the-
orems that are checked by Isabelle’s inference kernel. Type checking is
replaced by explicit reasoning about set membership.

1 Introduction

Compared to the type theories underlying most widely-known proof assistants
today, set theory has received less attention in the field of interactive theorem
proving. This is unfortunate, since set theory is arguably the formalism that
comes closest to a “standard foundation of mathematics” and since it provides
a rich and well-understood foundation.

This paper describes an automated translation of theories from Isabelle/HOL
to Isabelle/ZF (which implements ZFC). We interpret recorded proof terms,
and the resulting derivations are again checked by Isabelle’s LCF-style inference
kernel, which ensures soundness of the approach and implementation.

While the general idea of a mapping to set theory is not new—in fact, the
standard semantics of HOL [17] is defined in ZFC—, translating entire theories
of realistic proof developments is a highly non-trivial task: In addition to the
bare proofs, one must cope with theory extension mechanisms like constant and
type definitions. Moreover, Isabelle’s type classes and overloading as well as
interactions between the object-logic Isabelle/HOL and the logical framework
Isabelle/Pure complicate this task. To our knowledge, this is the first complete
translation scheme to set theory (it is complete except for a fine point, discussed
in §5.2). It is also the first proof-producing one.

1.1 Motivation

The motivation for this work comes from several directions:

Experimenting with theorem proving based on set theory. The simple type theory
of HOL is sometimes a limitation that makes certain concepts (e.g., monads,
which would require parametrization over type constructors) hard or impossible
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to formalize. One way of improving this is to move to a stronger type theory, like
the calculus of constructions [2] or the recently proposed HOL Omega [8]. An
alternative path is to abandon types as an integral part of the logic and to work
in a logic that is untyped, but expresses the equivalent of typing judgements
explicitly as propositions. A type discipline could then be reintroduced as an
extra layer of “soft types” built on top of an untyped LCF kernel. Such a system
could make the notion of type checking more open to experimentation, since it
is easier to change something that is not part of the foundation.

This idea has been mentioned in the literature several times [5,9,20,6], and,
in principle, Isabelle/ZF could be a starting point to explore these possibilities.
This work intends to explore how HOL-style reasoning can be turned into set-
theoretic reasoning, mechanized in Isabelle/ZF.

Exchange format between proof assistants. Although there already exist trans-
lation facilities for proofs between different theorem provers, combining devel-
opments from different systems in practice is still an open problem (Gordon
calls it a “Grand Challenge” [6]). Set theory has sometimes been mentioned as
a candidate for an exchange format between different logics, mainly because the
semantics of many logical systems can be defined set-theoretically.

Reviving Isabelle/ZF. Our translation makes the large body of theories devel-
oped in Isabelle/HOL available in ZF. We believe that this may facilitate the
development of proof tools (e.g., arithmetic decision procedures) in set theory,
which typically require a certain amount of established theory.

None of the goals that we take as a long-term motivation can be solved by
this work alone. However, we aim to take a small step towards them with the
following concrete contributions:

– By carefully revisiting the foundations of the Isabelle/HOL system, we show
how all its primitives can be translated to a purely definitional theory in
Isabelle/ZF (with global choice; see §3). In particular, type classes and over-
loading are eliminated.

– We provide a prototype implementation of this mapping that produces
machine-checked proofs in Isabelle/ZF.

1.2 Related Work

The standard set-theoretic semantics of HOL is described by Pitts [17]. Gordon
[5] experimented with combinations of HOL and ZFC by axiomatizing a type of
sets in HOL. He describes a transfer principle between the two worlds which is
very similar to our translation of propositions. However, Gordon’s translation is
not proof-producing, and one must trust the correctness of its implementation.
Moreover, the semantics of the axiomatic combination of HOL and ZFC are still
slightly unclear.

A number of proof transformation tools have been developed to replay
proofs of one theorem prover in another, mostly within the HOL family of
provers [10,14]. Similarly, the AWE extension [1] interprets theories within the
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Isabelle/HOL system, replacing types, constants, and axioms with concrete mod-
els. Our translation is closely related to these tools but slightly more complex,
since our target language is untyped and type reasoning has to be made explicit.

2 Formal Preliminaries

Isabelle [15] is a generic theorem prover, which supports reasoning in different
object-logics embedded in a logical framework (often referred to as the “meta-
logic”). While many Isabelle applications use Isabelle/HOL exclusively, this par-
ticular work critically relies on the generic nature of the system.

In this section, we recall the logical foundations of Isabelle, including how the
object-logics HOL and ZF are embedded in Isabelle/Pure.

The meta-syntactic abbreviation tm always denotes the sequence t1 . . . tm.
Binding a sequence of variables (λxm : τm. t) always means iteration of binders
(λxm : τm. t). We omit type and sort annotations when they are clear from the
context. Substitution of t2 for x in t1 is written as t1[x := t2].

2.1 Pure

Isabelle/Pure is a simply-typed intuitionistic higher-order logic featuring just
implication, universal quantification, equality and schematic polymorphism with
type classes [19,7]. Unlike many dependently-typed systems, it retains the strat-
ification into sorts, types, terms, and proofs, which we discuss in this order.

Sorts and Types. Syntactically, (type) classes c are formal names, and sorts s
are finite symbolic intersections of classes, written as finite sets {c1, . . . , cn},
where the empty intersection is denoted by �. Types are either type constructor
applications, or type variables annotated with their sort.

τ ::= κ τm | αs

Special type constructors are prop (propositions) and ⇒ (function space).
A set of type classes together with an acyclic subclass relation ≺ and a set A of

arities of the form κ :: (sm)c is called an order-sorted algebra [18]. It induces the
type-in-class relation τ : c defined by the following rules, where τ : {c1, . . . , cn}
abbreviates τ : c1, . . . , τ : cn.

τ : c1 c1 ≺ c2

τ : c2

τm : sm (κ :: (sm)c) ∈ A

κ τm : c

c ∈ s

αs : c

For now, we regard classes and sorts as purely syntactic. The details, including
the interaction of type classes and derivations, are deferred to §5.

Terms. The language of terms is a conventional simply-typed lambda calculus
extended with constants (also denoted by c), whose types can be instantiated



326 A. Krauss and A. Schropp

at each occurrence. This yields schematic polymorphism, where type inference
is still decidable, since arbitrary type abstractions are not allowed.

t ::= x | c[τm] | t1 t2 | λx : τ. t

We also write c for c[]. Primitive constants include universal quantification
∧

:
(α� ⇒ prop) ⇒ prop, implication =⇒ : prop ⇒ prop ⇒ prop, and equality
≡ : α� ⇒ α� ⇒ prop. A term is called closed if it contains no free term
variables.

The typing rules for terms are standard. We assume a function Σ that maps
constants to their types with canonical type variables α�

m.

x : τ ∈ Γ

Γ � x : τ Γ � c[τm] : Σ(c)[α�
m := τm]

Γ � t1 : τ1 ⇒ τ2 Γ � t2 : τ1

Γ � t1 t2 : τ2

Γ, x : τ1 � t : τ2

Γ � (λx : τ1. t) : τ1 ⇒ τ2

Terms of type prop are called propositions and are denoted by φ.

Proofs. The language of proofs constitutes another level of lambda calculus on
top of terms, in the spirit of the Curry-Howard correspondence. The two versions
of abstraction and application correspond to the introduction and elimination
of
∧

and =⇒, respectively. Proof variables h stand for hypotheses. Axioms and
previously-proved theorems are modelled as proof constants thm, whose types
can be instantiated in a manner similar to term constants.

p ::= λx : τ. p | λh : φ. p | p ) t | p1 • p2 | h | thm[τm]

Note that thm is a meta variable for proof constants. We also write thm for thm[].
We give the main propositions-as-types typing rules for proofs, which are to be

read modulo αβη-equivalence. Like for term constants, the function Σ yields the
proposition proved by a proof constant, which may contain free type variables
αsm

m .

Γ, x : τ � p : φ

Γ � (λx : τ. p) : (
∧

x : τ. φ)
Γ, h : φ1 � p : φ2

Γ � (λh : φ1. p) : φ1 =⇒ φ2

Γ � p : (
∧

x : τ. φ) Γ � t : τ

Γ � (p ) t) : φ[x := t]
Γ � p1 : φ1 =⇒ φ2 Γ � p2 : φ1

Γ � (p1 • p2) : φ2

h : φ ∈ Γ

Γ � h : φ

τm : sm

Γ � thm[τm] : Σ(thm)[αsm
m := τm]

Pure has further rules and axioms, ensuring that ≡ is an extensional and con-
gruent equivalence relation, which equates αβη-convertible lambda terms and is
the bi-implication on propositions.
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Sometimes it is convenient to imagine that all type variables αsm
m occurring

in a closed proposition φ are explicitly quantified on the outermost level. We
take the freedom to write this as ∀αm : sm. φ. Similarly, on the level of proofs,
the dependency on type variables is expressed using an abstraction-like notation
λαm : sm. p . A proof is called closed if all occuring term and type variables are
bound in this way. However, these notations are not part of the formal system!

Constant definitions. Pure allows constant definitions, i.e., the introduction of
a new constant c : τ and the definitional axiom c[αm] ≡ t, if τ contains exactly
the type variables αm, t is closed, t : τ , and t contains only type variables αm.
Since defining equations can always be unfolded, this is a conservative theory
extension. Defining equations are written with :≡ instead of ≡.

2.2 HOL

Higher-order logic (HOL) is embedded as an object-logic in Isabelle/Pure by
introducing a type bool of classical truth values. A constant Trueprop : bool ⇒
prop embeds booleans into propositions. We write Trueprop t as [ t ]. Object-level
quantifiers and connectives are introduced as constants ∀ : (α ⇒ bool) ⇒ bool ;
¬ : bool ⇒ bool ; −→,∨,∧ : bool ⇒ bool ⇒ bool ; = : α ⇒ α⇒ bool , etc.

Natural-deduction rules
A B

C
can then be expressed as meta-level propo-

sitions A =⇒ B =⇒ C. For example, these are the introduction and elimination
rules for ∀ and −→, and the law of the excluded middle:

allI :
∧

P : α ⇒ bool . (
∧

x : α. [ P x ]) =⇒ [ ∀x. P x ]

spec :
∧

(P : α ⇒ bool) (a : α). [∀x. P x ] =⇒ [ P a ]

impI :
∧

P Q : bool . ([ P ] =⇒ [ Q ]) =⇒ [ P −→ Q ]

mp :
∧

P Q : bool . [ P −→ Q ] =⇒ [ P ] =⇒ [ Q ]

True or False :
∧

P : bool . [ P = True ∨ P = False ]

In Isabelle, outermost quantifiers and the [ · ]-embedding are not printed, such
that the first rule reads (

∧
x : α. P x) =⇒ ∀x. P x, but we will keep them

explicit in this paper, to visualize the division between meta- and object-logic.
HOL has some more rules and axioms, which we omit for brevity. However,

two primitive constants are notable: the definite description operator THE :
(α ⇒ bool) ⇒ α, axiomatized by

∧
a.[ (THE x. x = a) = a ], and the constant

undefined : α, which is unspecified as it comes with no axiom.
The approach of modelling the inference rules of the object-logic as theorems

in the meta-logic is common to all of Isabelle’s object logics. What is special in
HOL is that the function space of the object-logic coincides with that of the meta-
logic. This works because HOL and Pure are so similar. To make interactions
with the framework more explicit, a type class hol is used to characterize HOL
types.

This class contains types such as bool , natural numbers, lists, and it is closed
under ⇒. Types such as prop or bool ⇒ prop are not in this class. The HOL
axioms are restricted to types which are in the hol class.
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Type definitions. A speciality of HOL is the ability to define new type constructors
from non-empty subsets of existing types. A type definition κ αm

∼= P , where
P : τ ⇒ bool is a closed term (called the representing set) with type variables αm,
together with a proof of [∃x. P x ], gives rise to a bijection between κ αm and τ ,
in the form of new constants Repκ : κ αm ⇒ τ , Absκ : τ ⇒ κ αm and an axiom[

(∀z : κ αm. P (Repκ[αm] z)) ∧
(∀z : κ αm. Absκ[αm] (Repκ[αm] z) = z) ∧
(∀y : τ. P y −→ Repκ[αm] (Absκ[αm] y) = y)

]
,

which we abbreviate as typedefκ. Notice that this axiom does not specify the
value of Absκ[αm] y when [ P y ] does not hold.

2.3 ZF

First-order logic (FOL), the basis of ZFC, is modelled in Isabelle by two types
ι and o, representing individuals and truth values, respectively. Again, an em-
bedding [ · ] : o ⇒ prop is introduced, along with first-order connectives ∀ : (ι ⇒
o)⇒ o; ¬ : o⇒ o; −→,∨,∧ : o⇒ o ⇒ o; = : ι⇒ ι ⇒ o, etc., and the usual nat-
ural deduction rules for them. ZFC is then added using the standard collection
of FOL axioms (see [16] for details) about the constant ∈ : ι⇒ ι ⇒ o. Note that
the axiom schema of replacement is represented as Pure quantification over a
predicate. As ι is the type of all sets, the meta level can be used to reason about
proper classes (ι ⇒ o), operators (ι⇒ ι), binding structures ((ι ⇒ τ) ⇒ τ), etc.

Function spaces can be constructed using → : ι ⇒ ι ⇒ ι, and elements of
A → B can be constructed using an operator Lambda : ι ⇒ (ι ⇒ ι) ⇒ ι, which
restricts the domain of an operator f : ι ⇒ ι to a set A. We write (λx ∈ A. f x)
for Lambda A f . The application of such a function to an argument is written
using an explicit apply operator ‘ : ι ⇒ ι ⇒ ι. While α-conversion is inherited
from the framework, β- and η-reduction are conditional rewrite rules.∧

A y f. [ y ∈ A ] =⇒ (λx ∈ A. f x) ‘ y ≡ f y∧
A B f. [ f ∈ A → B ] =⇒ (λx ∈ A. f ‘ x) ≡ f

(ZF-βη)

As opposed to HOL, where formulas are just special terms, in FOL the languages
of formulas (o) and terms (ι) are syntactically separated. For the sake of uni-
formity, our translation will map everything to type ι, using the set B :≡ {0, 1}
for truth values, with the interpretation function 〈 · 〉 :≡ (λx. x = 1) : ι ⇒
o. We must thus define appropriate versions of logical connectives, such as
T̂rue , F̂alse , −̂→ : ι and =̂ , ∀̂ : ι ⇒ ι.

T̂rue :≡ 1, F̂alse :≡ 0

−̂→ :≡ (λA,B ∈ B. if A = F̂alse then T̂rue else B),

=̂ :≡ (λA : ι. λ x y ∈ A. if x = y then T̂rue else F̂alse ),

∀̂ :≡ (λA : ι. λP ∈ A → B. P =A→B (λx ∈ A. T̂rue ))

( =̂ )A x y is written x =A y, and ( ∀̂A (λx ∈ A. P x)) is written ( ∀̂x ∈ A. P x).
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3 The Basic Translation

The standard set-theoretic model of HOL [17] is based on a set U , which serves
as the universe of types. Among other requirements, U must be closed under
function spaces. For example, the set Vω+ω \ {∅}, with Vω+ω of the cumulative
hierarchy (see, e.g., [11]), could be used as the set of all types. While such a
relatively small model may be desirable from a foundational point of view, it
would make the results of our translation weaker than necessary, and not very
intuitive. In fact, it is not necessary that the universe of types forms a set, and
so we prefer to use the proper class of all non-empty sets.

The idea underlying the translation is as follows.

– Types τ are mapped to terms denoting non-empty sets � τ � : ι.
– Type constructors are mapped to operations on sets.
– Terms t : τ are mapped to terms � t � : ι, such that � t � ∈ � τ � holds.
– Application and abstraction are translated to (λx ∈ A. . . .) and ‘.
– Quantification over types (which may only occur on the outermost level) is

mapped to Pure quantification over sets.
– Type annotations on variables are mapped to set membership assumptions.
– Proofs are instrumented with non-emptiness and membership derivations,

following the typing rules.

Example 1. The statement ∀α : {hol}. ∧(x : α) (P : α ⇒ bool ). [ P x ] is
translated to
∧

A : ι. [ A �= ∅ ] =⇒ (
∧

x : ι. [ x ∈ A ] =⇒ (
∧

P : ι. [ P ∈ A → B ] =⇒ [〈P ‘ x 〉])) ,
which, after moving quantifiers out, becomes

∧
AxP : ι. [ A �= ∅ ] =⇒ [ x ∈ A ] =⇒ [ P ∈ A→ B ] =⇒ [〈P ‘ x 〉] .

Example 2. The transitivity rule for HOL equality,

∀α : {hol}. ∧r s t : α. [ r = s ] =⇒ [ s = t ] =⇒ [ r = t ]

is translated to
∧

A : ι. [ A �= ∅ ] =⇒ (
∧

r : ι. [ r ∈ A ] =⇒ (
∧

s : ι. [ s ∈ A ] =⇒
(
∧

t : ι. [ t ∈ A ] =⇒ [〈 r =A s 〉] =⇒ [〈 s =A t 〉] =⇒ [〈 r =A t 〉]))) ,

which, after moving quantifiers out, becomes
∧

A r s t : ι. [ A �= ∅ ] =⇒ [ r ∈ A ] =⇒ [ s ∈ A ] =⇒ [ t ∈ A ]
=⇒ [〈 r =A s 〉] =⇒ [〈 s =A t 〉] =⇒ [〈 r =A t 〉] .

One consequence of our choice of translation is that we need an axiom of global
choice, which postulates an operation choose satisfying

∧
A : ι. [ A �= ∅ ] =⇒ [ choose A ∈ A ] .



330 A. Krauss and A. Schropp

This is a conservative extension of ZFC [4]. The need for it arises not only
from the fact that HOL includes a choice operator by itself, but already from the
presence of underspecification. While the constant undefined has no particular
properties in HOL, its translation to ZF must satisfy at least the formula

∧
A : ι.

[ A �= ∅ ] =⇒ [ ̂undefined A ∈ A ], which arises from its type. This is exactly the
global choice axiom.

In the following presentation of the basic translation scheme, we make a few
simplifying assumptions: First, we assume that the theorems we translate do not
mix HOL and Pure arbitrarily, but use essentially plain HOL reasoning, except
for an outermost layer of

∧
and =⇒. Theorems relevant in practice typically

have this form (see §6.2 for exceptions). Second, all type variables must be of
sort {hol} (see §5 for the treatment of other classes). Third, we assume that there
are no type or term variables in proofs that do not occur in the corresponding
proposition (which is easy to achieve by substituting any ground type or term)
and that proofs are closed.

Type constructors κ, term constants c, and proof constants thm occurring in
proofs must already have translations κ̂ , ĉ and t̂hm . These are either set up
manually, as it must be done for the primitives and axioms, or come from a
recursive invocation of the translation scheme.

Types and terms are translated as follows:

Translation of types: Translation of terms:

�κ τm � := κ̂ � τm � � c[τm] � := ĉ � τm �
�α � := xα �λx : τ. t � := λx ∈ � τ � . � t �

� x � := x

� t1 t2 � := � t1 � ‘ � t2 �
Note that for a type τ , � τ � is a term (of type ι), not a type. Type instantiations
of constants are translated to applications.

In the outer structure of propositions, the domain of universal quantifiers is
restricted to the respective sets, and the Trueprop embedding is replaced with
[ 〈 · 〉 ]. On the outermost level, non-emptiness conditions are added for the sets
arising from type variables.

Translation of outer proposition structure:

�∧x : τ. φ � :=
∧

x : ι. [ x ∈ � τ � ] =⇒ �φ �
�φ1 =⇒ φ2 � := �φ1 � =⇒ �φ2 �

� [ t ] � := [〈 � t � 〉]
� ∀αm : {hol}. φ � :=

∧
xαm : ι. [ xαm �= ∅ ] =⇒ �φ �

In the proof transformation given below, the proofs corresponding to typing
judgements and non-emptiness of types must be filled in explicitly. We mark the
positions where a proof of [P ] must be inserted by placeholders {P}. This proof,
which may refer to hypotheses available in the respective context, is generated by
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means of a tactic. Moreover, since the original proof is modulo αβη-equivalence
and abstraction and application have been translated to their ZF counterparts,
we must explicitly normalize them by rewriting with the rules (ZF-βη). For
a proposition φ, let norm (φ) denote the normalized proposition. For a proof
p : φ, norm (p) denotes a proof of norm (φ), and p1 •n p2 abbreviates norm (p1) •
norm (p2). We generate the proof of norm (p) from p using Isabelle’s simplifier.

Translation of proofs:

� λx : τ. p � := λx : ι. λ h : [ x ∈ � τ � ]. � p �
�λh : φ. p � := λh : �φ � . � p �

� h � := h

� p1 • p2 � := � p1 � •n � p2 �
� p ) t � := � p � ) � t � •n {� t � ∈ � τ �} where t : τ

�λαm : {hol}. p � := λxαm : ι. λ hm : [ xαm �= ∅ ]. � p �
� thm[τm] � := t̂hm ) � τm � •n {� τm � �= ∅}

Example 3. The proof of the transitivity rule shown previously is based on a
substitution rule, one of HOL’s axioms:

subst : (∀α : {hol}. ∧(s t : α) (P : α ⇒ bool). [ s = t ] =⇒ [ P s ] =⇒ [ P t ])

ŝubst : (
∧

xα : ι. [ xα �= ∅ ] =⇒ (
∧

s : ι. [ s ∈ xα ] =⇒ (
∧

t : ι. [ t ∈ xα ] =⇒
(
∧

P : ι. [ P ∈ xα → B ] =⇒ [〈 s =xα t 〉] =⇒ [〈P ‘ s 〉] =⇒ [〈P ‘ t 〉]))))
trans = (λ (α : {hol}) (r s t : α) (h : [ r = s ]) (h′ : [ s = t ]).

subst[α] � s � t � (λx : α. r = x) • h′ • h)

: (∀α : {hol}. ∧(r s t : α). [ r = s ] =⇒ [ s = t ] =⇒ [ r = t ])

t̂rans = (λ (xα : ι) (hα : [ xα �= ∅ ]) (r : ι) (hr : [ r ∈ xα ]) (s : ι) (hs : [ s ∈ xα ]).

(λ (t : ι) (ht : [ t ∈ xα ]) (h : [〈 r =xα s 〉]) (h′ : [〈 s =xα t 〉]).
ŝubst � xα •n {xα �= ∅} � s •n {s ∈ xα} � t •n {t ∈ xα}

� (λ x ∈ xα. r =xα x) •n {(λx ∈ xα. r =xα x) ∈ xα → B}
•n h′ •n h))

4 Translating Constant and Type Definitions

When translating constant definitions c[αm] :≡ t where t : τ , the dependency on
types αm is made explicit. We introduce a new constant ĉ : ιm ⇒ ι.

ĉ :≡ (λxαm : ι. � t �)
The translation of the original definition � c[αm] ≡ t � (that is, ĉ xαm ≡ � t �) is a
simple consequence of the above definition and proved automatically. Moreover,
the following theorem is deduced, which is needed by the type checking tactic
to derive the translation of typing judgements involving c.

∧
xαm : ι. [ xαm �= ∅ ] =⇒ [ ĉ xαm ∈ � τ � ]
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Type definitions κ αm
∼= P with P : τ ⇒ bool are translated to constant defini-

tions of a set κ̂ (parameterized by the sets xαm arising from type parameters)
and two functions R̂epκ and Âbsκ .

κ̂ :≡ λxαm : ι. {z ∈ � τ � | 〈 �P � ‘ z 〉}
R̂epκ :≡ λxαm : ι. λ z ∈ κ̂ xαm . z

Âbsκ :≡ λxαm : ι. λ y ∈ � τ � . if y ∈ κ̂ xαm then y else ̂undefined (κ̂ xαm)

Since the new type is simply mapped to a subset of the original type, the func-
tions R̂epκ and Âbsκ become identity mappings. Since Âbsκ must be total and
always return an element of κ̂ to satisfy its type, we use ̂undefined .

From these definitions we derive the characteristic property � typedefκ � for
the type definition, as well as the typing lemmas for R̂epκ and Âbsκ and the
fact that the new type constructor preserves non-emptiness. The proof of the
latter theorem makes use of the non-emptiness proof provided for the original
HOL definition.

∧
xαm : ι. [ xαm �= ∅ ] =⇒ [ R̂epκ xαm ∈ κ̂ xαm → � τ � ]∧
xαm : ι. [ xαm �= ∅ ] =⇒ [ Âbsκ xαm ∈ � τ � → κ̂ xαm ]∧
xαm : ι. [ xαm �= ∅ ] =⇒ [ κ̂ xαm �= ∅ ]

5 Translating Type Classes and Overloaded Definitions

The translation described so far covers standard HOL. However, in the Is-
abelle/HOL libraries, even the most basic theories make heavy use of type classes
and overloading, which means that our translation must support them to be
practically useful.

The basic solution is to employ a preprocessing step which eliminates classes
and overloading from theories, producing a theory in plain HOL. Then, the
translation from the previous section can be applied to obtain the set-theoretic
version.

In this section, we describe the basics of type classes and overloading, which
were neglected in §2. Then we show how to compile them away. Although the two
mechanisms are typically used together (cf. [7]), we can treat them separately,
removing first type classes and then overloading. The outline of this transforma-
tion was already pointed out by Haftmann and Wenzel [7], but not considering
proof terms and without implementation.

5.1 Type Classes

In a nutshell, classes assigned to a type τ express extra properties of τ that
are propagated by the type system. In particular, a sort annotation s on a type
variable αs corresponds to an implicit hypothesis about α.
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It is possible to embed types into the term language using a unary type
constructor itself and a constant TYPE : itself α, such that the type τ can be
represented by the term TYPE [τ ].

To describe the logical properties of types in a class c, a constant Clc :
itself α ⇒ prop is defined. For example, the class of all finite types can be
defined as Clfinite [α] :≡ (λx : itself α. [ �f : nat ⇒ α. injective[nat , α] f ]). The
proposition Clc[τ ] (TYPE [τ ]) serves as the logical interpretation of the type-in-
class statement τ : c as defined in §2.1, and we abbreviate it by � τ : c �.

When subclass relationships c1 ≺ c2 and arities κ :: (sm)c are backed up by
proofs of ∀α : �. �α : c1 � =⇒ �α : c2 � and ∀αm : �. �αm : sm � =⇒ �κ αm : c �,
respectively, then � τ : c � is provable in Pure when τ : c holds. More precisely,

τ : c implies {�α� : c′ � |αs occurs in τ, c′ ∈ s} � � τ� : c � ,

where τ� denotes the type τ with all sort annotations replaced by �.
To reflect this connection between the type system and the inference system,

Pure provides a special proof constructor ofclass τ c and the rule

τ : c

Γ � ofclass τ c : � τ : c � .

The ofclass constructor serves as a placeholder for an explicit proof of � τ : c �,
which can always be constructed in a straightforward manner, following the rules
for τ : c.

Elimination of classes. To eliminate classes from propositions, we remove all
sort annotations from type variables and replace them by explicit assumptions.
Thus, a proposition ∀αm : sm. φ becomes ∀αm : �. �αm : sm � =⇒ φ.

Example 4. The proposition

∀α : {finite}. ∧f : α ⇒ α. [ injective[α, α] f ←→ surjective [α, α] f ]

is converted to

∀α : �. � α : finite � =⇒ ∧
f : α ⇒ α. [ injective[α, α] f ←→ surjective [α, α] f ] .

Eliminating classes from proofs amounts to this explication of sort constraints on
type variables and replacing the proof constructors ofclass τ c with derivations
for � τ : c �, using the newly-introduced assumptions on type variables.

A subtlety arises when the proof of a proposition contains type variables that
do not occur in the proposition itself. Since the presence of such a type variable
βs constitutes an implicit assumption that the sort s is inhabited (i.e., � τ : s �
holds for some ground type τ), we must introduce an extra hypothesis �α : s � for
some canonical α. These sort inhabitedness hypotheses are tracked by Isabelle’s
inference kernel, ensuring soundness even when proof term recording is disabled.
Term variables do not need a corresponding treatment, since types are always
inhabited.
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5.2 Overloading

Overloaded constants can have multiple defining equations on different types.
To simplify the presentation, we assume that types of constants have exactly
one parameter α, which allows us to write c[τ ] instead of c[τm]. The treatment
below is easily extended to the general case.

An overloaded constant c is specified by giving its type τ and multiple defining
equations c[τi] :≡ ti : τ [α := τi] for different type instances τi, where all type
variables in the closed ti have to occur in τ [α := τi], or equivalently in τi.

We write c[τ ] � d[σ] iff there exists a type τi, a substitution θ, and a defining
equation c[τi] :≡ ti, such that τ = θ(τi) and ti contains a constant occurrence
d[σ′] where σ = θ(σ′). This relation on constants with types is called the depen-
dency relation.

A system of overloaded definitions is well-formed, if the defining equations
for any constant do not overlap (i.e., different τi and τj are not unifiable after
renaming variables apart) and the dependency relation � is terminating. The
latter property ensures that unfolding definitions cannot lead to non-termination
and is undecidable [13], but Isabelle approximates this by a simpler criterion [7].

Note that this notion of overloading is more than just the use of a single name
for multiple logical constants: The definition of another constant d[α] may refer
to an overloaded constant c[τ ], with the effect that the meaning of d also depends
on instantiations of α. Then d is called indirectly overloaded. We call a constant
c[τ ] overloading-free iff it is primitive or has exactly one defining equation, whose
right-hand side mentions only overloading-free constants.

A constant occurrence c[τ ] in a term is called resolvable iff τ = θ(τi) for some
substitution θ and some τi from a defining equation c[τi] :≡ ti. Since defining
equations do not overlap, τi and θ are then uniquely defined and we say c[τ ] is
resolvable via θ on c[τi].

Eliminating Overloading. The idea behind the elimination of overloading re-
sembles the dictionary construction used to eliminate type classes from Haskell
programs. For overloaded constants c, an overloading-free dictionary constant
ci is defined for each of the equations c[τi] :≡ ti, abstracting out unresolvable
overloading in ti.

Concrete occurrences c[τ ] can then be replaced by so-called dictionary terms:
If c[τ ] is resolvable, the corresponding dictionary constant is used, possibly pass-
ing through other dictionaries. If c[τ ] is not resolvable, a dictionary variable Dc[τ ]
is inserted.

Formally, for a constant c and type τ , we define the set

dicts(c[τ ]) :=

{⋃
c[τ ]�d[τ ′] dicts(d[τ ′]) if c[τ ] is resolvable.

{c[τ ]} otherwise.

This set is well-defined and finite, since the dependency relation � is terminat-
ing and finitely branching. Lifting this to arbitrary terms, we define dicts(t) :=⋃

i∈{1,...,k} dicts(di[σi]), where dk[σk] are the occurrences of constants in t. We
assume some canonical order on dicts(t).
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To eliminate overloading from a term, the mapping � · �ov replaces (indirectly)
overloaded constant occurrences c[τ ] with dictionaries. Overloading-free con-
stants and the rest of the term structure is preserved. If c[τ ] is not resolvable, a
dictionary variable is inserted.

� c[τ ] �ov := Dc[τ ]

If c[τ ] is resolvable via θ on c[τi], the corresponding dictionary constant ci is
used, passing dictionaries through:

� c[θ τi] �ov := ci[θ αm] � dk[θ σk] �ov ,

where {dk[σk]} = dicts(c[τi]) and αm are the type variables in τi.
The definitions of the dictionary constants ci arise from the defining equations

c[τi] :≡ ti:
ci[αm] :≡ (λDdk[σk]. � ti �ov)

where αm are the type variables in τi and {dk[σk]} = dicts(c[τi]).
At the outermost level of propositions, we abstract over the generated dictio-

nary variables.

�∀αm. φ �ov := ∀αm.
∧

Ddk[σk]. � φ �ov where {dk[σk]} = dicts(φ) .

Proofs are structurally unchanged, but constant definitions of overloaded con-
stants are replaced by theorems about the resulting dictionary term.

Example 5. Assume an infix type constructor × with pair syntax (·, ·) and pro-
jections fst and snd , and a type nat where nat-plus : nat ⇒ nat ⇒ nat defines
addition. An overloaded addition function plus : α ⇒ α ⇒ α could be defined
by the following equations.

plus [nat ] :≡ nat-plus
plus [α× β] :≡ λx y : α× β. (plus [α] (fst x) (fst y), plus[β] (snd x) (snd y))

The overloading elimination introduces constants

plus1 :≡ nat-plus
plus2[α, β] :≡ (λ (Dplus[α] : α ⇒ α⇒ α) (Dplus[β] : β ⇒ β ⇒ β) (x y : α× β).

(Dplus[α] (fst x) (fst y), Dplus[β] (snd x) (snd y)))

from which dictionaries for plus on arbitrarily nested tuples can be built, e.g.,

� plus[(nat × nat)× nat ] �ov = plus2[nat × nat ,nat ] (plus2[nat ,nat ] plus1 plus1) plus1 .

Notice the dictionary variables in the following translation of a simple theorem.

�∀αβ : �. [ comm[α] plus[α] ] =⇒ [ comm[β] plus[β] ] =⇒ [ comm[α× β] plus[α× β] ] �ov
= ∀αβ : �.

∧
(Dplus[α] : α ⇒ α ⇒ α) (Dplus[β] : β ⇒ β ⇒ β).

[ comm[α] Dplus[α] ] =⇒ [ comm[β] Dplus[β] ]

=⇒ [ comm[α× β] (plus2[α, β] Dplus[α] Dplus[β]) ]
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Overloaded constants appearing in representing sets of type definitions are re-
placed in the same way using � · �ov. However, a fine point should be noted here:
Abstracting out unresolvable overloading would give rise to dependent types.
This is no problem in the set-theoretic interpretation, but as the overloading
elimination is currently implemented as a preprocessing step on the HOL side,
it does not handle such overloading. This can be fixed by collapsing the differ-
ent parts of the translation. However, to remove unresolvable overloading from
type definitions while staying in HOL, one has to eliminate the type definition
altogether, replacing it by its representing type together with a predicate.

It appears that this subtle issue was overlooked in all proof sketches of con-
servativity of overloading so far [13,19,7]. Practically, this form of overloading
seems to be quite rare. It does not occur in the main HOL image, but a few
instances exist in the HOLCF development [12].

6 Discussion and Limitations

We briefly discuss some limitations of our approach and current implementation.

6.1 Replacing Constants and Types

The translations of some concepts defined in HOL are not as one would like to
use them in set theory. For example, the translation �int � of the HOL integers
should be the set Z, which is already defined in Isabelle/ZF but happens to be
a different (though isomorphic) object.

This problem is common to all proof translation tools and there is no general
solution yet, apart from configuration to match up the concepts with equivalent
ones. For example, in the proof translation from HOL4 and HOL Light to Is-
abelle/HOL [14], concepts can be replaced with others that behave in the same
way, possibly with minor modifications such as argument order. In principle,
our translation supports such replacements, but currently this requires tedious
manual configuration and equivalence proofs.

6.2 Interactions of Pure and HOL

Recall that our translation inserts explicit constants Lambda and ‘ for abstrac-
tion and application in object-logic statements but leaves the outer proposition
structure consisting of

∧
and =⇒ intact. The advantage of this approach is that

the results adhere to Isabelle’s standard rule format. But in a few corner cases,
the translation becomes difficult. For example, consider the following substitu-
tion rule for Pure equality:

∀α β : �.
∧

(f : α ⇒ β) (x : α) (y : α). x ≡ y =⇒ f x ≡ f y

This is clearly a rule of the framework, as it contains no connectives of any
object-logic. The translation should thus keep the rule as it is. On the other hand,
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when α and β are instantiated with HOL types, then it should turn the types
into sets and translate the application f x to f ‘ x. This shows that separating
the framework from the object-logic cannot be done in a modular way. We have
solved this problem by producing several variants for such rules, for different
type instantiations.

An alternative translation that we would like to explore in the future is to
abandon the distinction between Pure and HOL connectives, mapping everything
to sets. Of course, dependencies on types must still use the framework, as type
constructors and polymorphic constants are not sets in our model.

6.3 Performance

In its current implementation, the translation is expensive both in terms of
time and memory. We exercised it on the main HOL image and HOL’s num-
ber theory. Translating Fermat’s little theorem and all its dependencies from
the basic axioms takes 80 minutes and 1.6 GB of main memory on stock hard-
ware. Measurements indicate that this performance cost is mainly due to extra
βη-normalization of terms and type checking proofs becoming explicit in ZF.
Obviously, more work is needed here to improve the performance.

7 Conclusion

Our translation maps all Isabelle/HOL primitives to set theory. By translating
the proofs along with the theories, we can guarantee soundness of the overall
method. The fact that we uncovered a notable omission in all previous proofs of
conservativity of overloading (see §5.2) shows that our approach of “implemented
semantics” is also useful for better understanding the logical system. Moreover,
having an implementation facilitates experiments and modifications and will
hopefully stimulate the further development of Isabelle/ZF.

Our elimination of type classes and overloading can also be of help when trans-
lating Isabelle/HOL developments to other systems. Previously, these concepts
could only be translated by using extra-logical abstraction mechanisms provided
by the OCaml language [10].
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1. Bortin, M., Broch Johnsen, E., Lüth, C.: Structured formal development in Isabelle.
Nordic Journal of Computing 13, 1–20 (2006)

2. Coquand, T., Huet, G.: The calculus of constructions. Information and Computa-
tion 76(2-3), 95–120 (1988)



338 A. Krauss and A. Schropp

3. Furbach, U., Shankar, N. (eds.): IJCAR 2006. LNCS (LNAI), vol. 4130. Springer,
Heidelberg (2006)

4. Gaifman, H.: Global and local choice functions. Israel Journal of Mathematics 22
(3-4), 257–265 (1975)

5. Gordon, M.J.C.: Set theory, higher order logic or both? In: von Wright, J.,
Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 191–201.
Springer, Heidelberg (1996)

6. Gordon, M.J.C.: Twenty years of theorem proving for HOLs: Past, present and
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Abstract. The Isabelle Collections Framework (ICF) provides a unified
framework for using verified collection data structures in Isabelle/HOL
formalizations and generating efficient functional code in ML, Haskell,
and OCaml. Thanks to its modularity, it is easily extensible and supports
switching to different data structures any time. For good integration with
applications, a data refinement approach separates the correctness proofs
from implementation details. The generated code based on the ICF lies
in better complexity classes than the one that uses Isabelle’s default
setup (logarithmic vs. linear time). In a case study with tree automata,
we demonstrate that the ICF is easy to use and efficient: An ICF based,
verified tree automata library outperforms the unverified Timbuk/Taml
library by a factor of 14.

1 Introduction

Isabelle/HOL [15] is an interactive theorem prover for higher order logic. Its
code generator [7] extracts (verified) executable code in various functional lan-
guages from formalizations. However, the generated code often suffers from being
prohibitively slow. Finite sets and maps are represented by chains of pointwise
function updates, whose memory usage and run time are unacceptable for larger
collections in practice. For example, to obtain an operative implementation, de
Dios and Peña manually edited their generated code such that it used a balanced-
tree data structure from the Haskell library [5, Sec. 5]. Not only are such manual
changes cumbersome and error-prone as they must be redone each time the code
is generated, they in fact undermine the trust obtained via formal verification.

There are some Isabelle/HOL formalizations of efficient collection data struc-
tures such as red-black trees (RBT), AVL trees [16], and unbalanced binary-
search trees [11], each providing its own proprietary interface. This forces the
user to chose the data structures at the start of formalization, and severely hin-
ders switching to another data structure later. Moreover, wherever efficient data
structures replace the standard types for sets and maps, one runs the risk of
cluttering proofs with details from the data structure implementation, which
obfuscates the real point of the proof. Furthermore, ad-hoc implementations of
efficient data structures are scattered across other projects, thus limiting code
reuse. For example, Berghofer and Reiter implemented tries for binary strings
(called BDDs there), within a solver for Presburger arithmetic [2].

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 339–354, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper presents the Isabelle Collections Framework (ICF) that addresses
the above problems. The main contribution is a unified framework (Sec. 2) to
define and use verified collection data structures in Isabelle/HOL and extract
verified and efficient code. As it works completely inside the logic, it neither in-
creases the trusted code base, nor does it require editing the extracted code. The
ICF integrates both existing (red-black trees, associative lists) and new (hash-
ing, tries, array lists) formalizations of collection data structures. It provides a
unified abstract interface that is sufficient for defining and verifying algorithms
– independently of any concrete data structure implementation. This permits to
change the actual data structure at any point without affecting the correctness
proofs. To easily integrate existing data structures, the ICF contains a library
of generic algorithms that implement most operations from a few basic opera-
tions. The ICF uses a data refinement approach that transfers the correctness
statements from the abstract specification level to the concrete data structure
implementation; Sec. 3 contains a small, but non-trivial example. With this ap-
proach, the ICF integrates well in existing formalizations.

Another contribution is our evaluation of the ICF (Sec. 4): (i) To benchmark
its performance, we compared the ICF to the standard code generator setup
and to library data structures of Haskell, OCaml, and Java. (ii) To demonstrate
its usability in a case study, we implemented a formally verified tree-automata
library [13] based on the ICF, using the data refinement approach. The ICF based
tree-automata library outperforms the OCaml-based Timbuk/Taml library [6]
by a factor of 14 and is competitive with the Java library LETHAL [14].

The ICF is published electronically in the Archive of Formal Proofs [12]. As
the AFP is only updated with new Isabelle releases, a more recent version may
be available at http://cs.uni-muenster.de/sev/projects/icf/.

1.1 Related Work

Most interactive theorem provers provide some efficient data structures in their
libraries. The Coq standard library [4] features a modular specification for maps
and sets that mirrors OCaml’s library except for iterators. There are implemen-
tations based on strictly ordered (association) lists and on AVL trees for both
sets and maps. There is also a trie implementation for maps with binary strings
as keys. Coq’s type system and code extraction facility allow the inclusion of
data structure invariants (orderedness for lists and the search tree property for
AVL trees) in the type definition without losing the capability to generate code.
At present, Isabelle does not support this, i.e., the data structure invariants
must be carried through all theorems explicitly. For ACL2 [10], there is a set
implementation based on ordered lists, too.

For Haskell, Peyton Jones [17] proposes an elegant collections framework that
uses type constructor classes and multi-parameter constructor classes. Unfortu-
nately, Isabelle’s type system supports neither of them.

The C++ Standard Template Library (STL) [18] provides the abstract con-
cepts for the ICF: concepts (= ADTs), container classes (= implementations), al-
gorithms (= generic algorithm), and iterators. In the STL, iterators are first-class

http://cs.uni-muenster.de/sev/projects/icf/
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Fig. 1. The structure of the Isabelle Collections Framework

objects that represent the state of an iteration. In ICF, iterators are realized as
combinators. While the first approach is more general (e.g., it allows one to it-
erate simultaneously over multiple data structures), ours is more convenient for
use with a functional language. In C++, the compiler instantiates the templates
automatically. This is not possible in Isabelle/HOL. Instead, the ICF contains
(automatically generated) explicit instantiations of the generic algorithms. The
user has to select the appropriate instantiation, which is easy due to a uniform
naming scheme.

As for Java, the Java Collections Framework [9] provides an object-oriented
approach. Interfaces describe ADTs. Concrete data structures implement them
in classes. Generic algorithms are provided by means of static methods (in the
java.util.Collections class) and abstract collection classes, which provide
default implementations for most operations based on just a few basic ones (e.g.
java.util.AbstractSet). Dynamic dispatch takes the role of instantiating the
generic algorithms.

2 Overview of the Framework

Figure 1 outlines the structure of the Isabelle Collections Framework (ICF). Its
main components are abstract data types (Sec. 2.1), generic algorithms (Sec. 2.4),
and implementations (Sec. 2.6). An abstract data type (ADT) specifies a set of
operations and their behavior (e.g. a set with empty, member, insert, delete and
iteration operations) w.r.t. a base type in Isabelle (Sec. 2.2). ADTs can extend
other ADTs, denoted by solid lines. An implementation provides an actual data
structure with operations (dashed lines), and proves that they match the speci-
fication of the ADT (e.g. HashSet implements the ADT set). A generic algorithm
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implements some operation via other ADT operations (dotted lines) – indepen-
dently of the concrete implementation. For this, the iterators (Sec. 2.3) that each
ADT provides are extremely useful.

2.1 Abstract Data Types

The ICF currently supports three different abstract data types:

Maps. A map is a partial function from keys to values with finite domain. The
operations include the empty map constructor, emptiness check, lookup,
update, deletion, composition, iteration, conversion to associative lists, and
quantification and choice over the domain. Ordered maps extend maps in
that they require a linear order on the keys and provide operations to iterate
over the keys in ascending and descending order. Currently, there are map
implementations using association lists, red-black trees (RBT), hashing, and
tries. The RBT implementation is also an ordered map.

Sets. A finite set with empty set constructor, insertion, intersection, union,
difference, emptiness, membership and subset checks, cardinality, iteration,
image, and choice operations. Like for maps, the ICF specifies ordered sets
that require a linear order on the elements and provide ordered iteration. Ex-
cept for ListSet, the set implementations are derived from the corresponding
map implementations via the generic algorithm Map2Set.

Sequences. A finite sequence. Unlike sets and maps, the insertion order deter-
mines the iteration order. Implementations are a queue LFIFO with amortized
constant-time enqueue and dequeue as well as push and pop operations, and
a resizable array implementation that provides access by index positions.

2.2 Data Refinement

The operations of an ADT are specified by its intended behavior w.r.t. an ab-
straction mapping α that abstracts from the concrete implementation to the so
called base type of the ADT. The base type of sets is Isabelle/HOL’s type ′a set,
maps have the base type ′k → ′v option1, and sequences have the base type
′a list. For example, the empty, memb, and ins operations of the ADT set are
specified as follows:2

empty-correct : α empty = {}
memb-correct : memb x s ⇔ x ∈ (α s)
ins-correct : α (ins x s) = {x} ∪ (α s)

A proposition that involves ADT operations is usually proved in two steps:

1. Transform it into a proposition that only involves operations on the base
type. This is straightforward using the specifications of the ADT’s operations
and usually done automatically by Isabelle’s simplifier.

1 The data type ′a option = None | Some ′a corresponds to Maybe a in Haskell.
2 To simplify the presentation, we omitted the data structure invariant invar, which

guards all specifications for abstract data types (cf. Sec. 2.5).
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2. Prove the transformed proposition. Since it only involves base types, this
proof enjoys the full support of Isabelle’s automated proof methods and is
completely independent of the ICF.

For example, the proposition memb y (ins x (ins y (ins z empty))) is first trans-
formed to y ∈ {x, y, z} and then proved automatically by the method auto.

Hence, when using the ICF to implement some algorithm, the algorithm is
first formalized and proved correct on the base type – independently of the ICF.
In a second (straightforward) step, definitions are transformed to use the ADTs
of the ICF, and correct data refinement is shown. This approach also simplifies
porting existing formalizations to the ICF, which requires only the second step,
while the existing correctness proofs remain untouched. Section 3 presents an
example of this approach in detail.

2.3 Iterators

Iterators are one of the ICF’s key concepts. An iterator over a finite set or map
is a generalized fold combinator: It applies a state-transforming function to all
elements of a set (entries of a map, resp.), starting with an initial state and re-
turning the final state. Additionally, the iteration is interrupted if a continuation
condition on the state no longer holds. The iteration order is unspecified.

The Isabelle/HOL standard library provides an uninterruptible fold combi-
nator for finite sets that requires the state-transformer to be left-commutative3

to ensure that the iteration result does not depend on the iteration order. How-
ever, generic algorithms in the ICF typically use state-transformers that are not
left-commutative. Consider, e.g., a generic algorithm for coercion between set
implementations. It iterates over the source set and inserts each element into
the target set which is initially empty. Although inserting is left-commutative
on the base type, the shape of the target set’s data structure usually depends
on the insertion order, i.e. inserting is not left-commutative for data structures.
Hence, ICF iterators do not require left-commutativity.

An iterator iterate on a set data structure of type ′s has the type (′σ →
bool) → (′a → ′σ → ′σ) → ′s → ′σ → ′σ. It takes a continuation condition
c, a state transformer f , the set s, and the initial state σ. For reasoning, the
following rule is used, which requires an iteration invariant I:

[iterate-rule]

I (α s) σ0
∀x i σ. c σ ∧ x ∈ i ∧ i ⊆ α s ∧ I i σ =⇒ I (i − {x}) (f x σ)

∀σ. I {} σ =⇒ P σ
∀σ i. i ⊆ α s ∧ i 
= {} ∧ ¬c σ ∧ I i σ =⇒ P σ

P (iterate c f s σ0)

The iteration invariant I :: ′x set → ′σ → bool takes two parameters: (i) the
iteration state i denotes the set of elements that still needs to be iterated over,
and (ii) the computed state σ of type ′σ. To establish a property P of the
resulting state, it must be shown that:
3 A function f :: ′a → ′σ → ′σ is called left-commutative iff ∀x y. f x◦f y = f y ◦f x.
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1. the iteration invariant I holds for the initial state σ0 with the whole set α s
unprocessed,

2. the state transformer f preserves I for any removal of any element from any
subset of α s, and

3. I i σ implies P σ, when the iteration stops either normally (i = {}) or
prematurely (¬c σ, i 
= {}).

Example 1. The following algorithm copy copies a set from a source implemen-
tation (indexed 1) to a target implementation (indexed 2).

copy s1 = iterate1 (λσ. True) ins2 s1 empty2

The continuation condition (λσ. True) ensures that iteration does not stop pre-
maturely. The iteration state is the data structure of the target implementation.
The initial state is the empty set empty2, and the state transformer function is
the insert function ins2 of the target implementation. To prove copy correct –
i.e. if invar1 s1, then invar2 (copy s1) and α2 (copy s1) = α1 s1 – we use the
iteration invariant I i s2 = (α2 s2 = (α1 s1) − i ∧ invar2 s2).

Example 2. Bounded existential quantification (∃x ∈ s. P x) can be imple-
mented via iteration: bex s P = iterate (λσ. ¬σ) (λx σ. P x) s False. The state
of this iteration is a Boolean that becomes true when the first element satisfying
P is found. The iteration stops prematurely when the state becomes true.

For proving bex correct – i.e. if invar s, then bex s P = (∃x ∈ α s. P x) – we
use the iteration invariant I i σ = (σ = (∃x ∈ (α s) − i. P x)).

2.4 Generic Algorithms

A generic algorithm implements and proves correct a target operation by means
of a set of source operations, independently from the actual data structure. To
obtain an implementation of the target operation together with its correctness
statement, the generic algorithm and its correctness statement are instantiated
with actual implementations of the source operations.

Generic algorithms reduce redundancy because an algorithm needs to be
proved correct only once and is then instantiated for various implementations of
the involved ADTs. For example, the map-to-nat function computes a bijective
map from a finite set into an initial segment of the natural numbers. It is defined
and proved correct independently of the actual map and set implementations.

Generic algorithms are also used to reduce the effort of creating a new imple-
mentation. The ADTs provide generic algorithms to derive most operations from
a small set of basic operations, using iterators as a key concept. For example, all
specified map and set operations can be implemented by iterators and four basic
operations: the empty map or set constructor, lookup or membership test, inser-
tion, and deletion. In a later development stage, these generic implementations
may be replaced by versions optimized for the actual data structure. However, as
the generic algorithms are reasonably efficient, this is often not necessary. As a
special case, the ICF contains generic algorithms to derive a set implementation
from a map implementation by using a map with value type unit, whose only
element is ().
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2.5 Realization within Isabelle/HOL

In this section, technical details and challenges of the ICF’s realization within
Isabelle/HOL are discussed.

Abstract Data Types. The ICF uses Isabelle/HOL’s locale mechanism4 [1] to
specify an ADT. For each ADT, a base locale fixes the data structure invari-
ant and the abstraction function. Each operation is specified by its own locale,
which extends the base locale, fixes the operation and specifies its behavior. For
example, the following locales specify the ADT set and its delete operation:

locale set = fixes α :: ′s → ′a set and invar :: ′s → bool

locale set-delete = set +
fixes delete :: ′a → ′s → ′s
assumes delete-correct :

invar s =⇒ α (delete x s) = (α s) − {x}
invar s =⇒ invar (delete x s)

Note that the data structure invariant invar guards all specification equations
to allow for ADT implementations that require invariants.

Implementations. An implementation interprets the locales with the opera-
tions it provides, thereby showing that they satisfy the ADT’s specification.
The HashSet implementation, e.g., defines the functions hs-α, hs-invar, and hs-
delete and proves the lemma hs-delete-impl: set-delete hs-α hs-invar hs-delete
where set-delete denotes the assumption predicate of the locale set-delete. From
this lemma, interpretation produces the lemma hs.delete-correct, which is delete-
correct with the parameters instantiated by hs-α, hs-invar, and hs-delete. Note
that the dot (instead of a dash) in hs.delete-correct has technical reasons.

Naming Conventions. The ICF uses several naming conventions that simplify
its usage: The locale specifying an operation op for an ADT adt is named adt-op
(e.g., set-delete). The correctness assumption is called op-correct (e.g., delete-
correct). Each implementation of an ADT has a short (usually two letters) prefix
(e.g., hs for HashSet). An implementation with prefix pp provides a lemma pp-
op-impl and interprets the operation’s locale with the prefix pp, yielding the
lemma pp.op-correct.

Data Refinement. The proof of the data refinement step is, in many cases, per-
formed automatically by the simplifier. In some complex cases, involving, e.g.,
recursive definitions or nested ADTs, a small amount of user interaction is nec-
essary. Section 3 contains an example for such a complex case.

4 Locales provide named local contexts with fixed parameters (fixes) and assump-
tions (assumes). They support inheritance (+) and interpretation (i.e., parameter
instantiation), which requires to discharge the assumptions. A predicate with the
locale’s name collects all assumptions of the locale.
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Generic Algorithms. A generic algorithm is defined as a function that takes the
source operations as arguments. The correctness lemma shows that the target
operation meets its specification if the source operations meet theirs.

Example 3. Reconsider the bounded existential quantification from Ex. 2, where
an iterate operation was used. In a generic algorithm, this operation becomes
an additional parameter:

bex iterate s P = iterate (λσ. ¬σ) (λx σ. P x) s False

Assume that the locale set-bex specifies bounded existential quantification. Then,
we prove the correctness lemma

bex-correct: set-iterate α invar iterate =⇒ set-bex α invar (bex iterate)

An instantiation then sets the parameters α, invar, and iterate to its opera-
tions. In Isabelle/HOL, this is easily done with the OF and folded attributes, as
illustrated in the following example, that instantiates the algorithm for HashSets:

definition hs-bex = bex hs-iterate
lemmas hs-bex-impl = bex-correct[OF hs-iterate-impl, folded hs-bex-def ]

where hs-iterate-impl: set-iterate hs-α hs-invar hs-iterate. Hence, we get the
lemma hs-bex-impl: set-bex hs-α hs-invar hs-bex.

Unfortunately, Isabelle cannot generate instantiations of a generic algorithm
automatically like Coq with its implicit arguments or C++ with its template
mechanism. Instead, the ICF contains (automatically generated) explicit instan-
tiations for each combination of generic algorithm and implementation, using
a uniform naming scheme. It remains up to the user to select the appropriate
instantiation, which is easy due to the uniform naming scheme. For example, to
compute the union of a list-based set with a hash set, yielding a hash set, the
user has to pick the function lhh-union, where the prefix lhh selects the right
instantiation of the union-algorithm.

When implementing an algorithm using the ICF, the user must choose be-
tween writing a generic algorithm or fixing the data structures in advance. A
generic algorithm needs to be parameterized over all used operations. If an algo-
rithm uses only a few operations, the parameterization may be done explicitly,
as in Ex. 3. If many different operations are involved, parameterization can be
hidden syntactically in locale context, in order not to mess up the definitions
with long parameter lists. However, due to restrictions in Isabelle/HOL’s poly-
morphism, every collection with different element type requires its own operation
parameters. Similarly, one has to specify one monomorphic instantiation for each
iterator with different state. Alternatively, a record can collect all required ADT
operations, but the monomorphism issue remains.

When a generic algorithm is not required, one can fix the used data struc-
tures beforehand, either by making alias definitions for the concrete operations
and lemmas at the beginning of the theory, or by directly using the concrete
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operations and lemmas throughout the theory. This avoids the above-mentioned
problems with polymorphism. Thanks to the consistent naming conventions used
in the ICF, switching to another implementation is as easy as replacing the
prefixes of constant and lemma names (e.g., replacing rs- by ts- to switch from
RBTs to Tries).

An alternative approach (similar to Peyton Jones’ XOps route that automat-
ically selects the data type implementation [17, Sec. 3]) is to hide ADT imple-
mentations completely from the ADT inside the logic. To that end, we introduce
a new type for each ADT which is isomorphic to its base type. In the generated
code, the new type becomes a data type with one constructor for each implemen-
tation. The abstract operations then pattern match on the ADT and dispatch to
the correct implementation – emulating dynamic dispatch of the Java Collection
Framework. Concrete implementations are selected by choice of the constructor,
and, thanks to dynamic dispatch, manual instantiation or selection of generic
algorithms is no longer necessary. However, this approach currently only works
for ADT implementations that do not require invariants. Thus, it is only im-
plemented for tries and array-based hashing. Yet, the Isabelle developers are
working on the code generator such that it can handle such invariants.5

2.6 Implementations for ADTs

The ICF implementations for the ADTs use four basic data structures: lists,
arrays, red-black trees, and tries. Inside Isabelle/HOL, arrays are isomorphic to
lists, but for Haskell code, we use the Data.Array.Diff.DiffArray implemen-
tation from the Haskell library, which supports in-place updates while provid-
ing the immutable (functional) interface. To our knowledge, ML’s and OCaml’s
standard libraries do not feature a similar implementation, so we fall back on
a list-based implementation. Red-black trees are taken from the Isabelle/HOL
standard library and extended with the iterator concept. A trie (prefix tree) is
a search tree for strings where the key string identifies the path from the root
to the node that stores the value. In contrast to RBTs, tries do not need data
structure invariants. Our implementation improves upon and substantially ex-
tends the one in [15, Ch. 3.4.4]. The implementations for the ADTs use these
data structures to implement maps, sets and sequences (cf. Fig. 1).

Maps. There are four implementations for finite maps: association lists (ListMap),
red-black trees (RBTMap), hashing (HashMap, based on either RBTs or arrays),
and tries (TrieMap).

Association lists have the data structure invariant that every key is unique
in the list. While not being necessary, this allows for a simpler and more effi-
cient implementation of iterators. Association lists work for all key types with
executable equality test.

Red-black trees require that the key type is linearly ordered; the invariant
ensures that it is a correct RBT, i.e., it has no two consecutive red nodes on a
path, balanced height, the root is black, and the entries are ordered by their key.
5 Personal communication with F. Haftmann.



348 P. Lammich and A. Lochbihler

If a key type does not have a canonical linear order, one can still use red-
black trees by prefixing a hash operation hashcode that maps keys to integers.
Then, the RBT maps an integer (the key’s hashcode) to a bucket, which stores
the key-value pairs for all keys with that hashcode in an association list. We
use Isabelle’s type classes to overload the hashcode function for different types
and provide instantiations for all standard Isabelle type constructors except for
functions (because they cannot be tested for equality). The invariant for hashing
backed by RBTs is (i) the invariant for the RBT itself and (ii) that the keys in
any bucket (i.e. association list) are distinct and have the bucket’s hashcode.

The ICF also offers hashing backed by an array, which is currently only sen-
sible with Haskell code (cf. above). This provides access in constant time, but
requires to grow the array and rehash all data in the map when the load in-
creases beyond a certain threshold. Our implementation triggers a rehash when
the number of keys reaches 75% of the array size, a standard load factor threshold
for open hashing.

By definition, keys for tries must be strings. For all other types, we use an
encoding function encode into strings of integers, which must be injective. For
natural numbers, e.g., we compute the 16-adic representation starting with the
lowest digit, i.e. 1000 = 3 ·162 +14 ·16+8 is encoded as [8, 14, 3]. The type class
for this encoding pairs every encode function with a left-inverse partial function
decode that decodes the strings. Since encode is one-to-one, only countable types
may be used as keys in a trie. Like for hashing, the ICF provides instantiations
for all countable types predefined in Isabelle/HOL.

Sets. A map whose value type is the singleton type unit is isomorphic to a set,
where mapping a key k to () means that the set contains k. The ICF provides
generic algorithms (Map2Set) such that an implementation for the ADT map
easily yields one for the ADT set. The RBT, hashing, and trie implementation
for maps use this setup to define the set implementations.

Sequences. Sequences are typically used in two different styles: array-like and
stack- or queue-like. In the array-like style, elements are accessed by index, and
new elements are appended at the end. If implemented with a linked-list data
type, these operations take linear time. The ICF therefore provides an array-
based implementation ArrayList, which provides index and appending operations
in amortized constant time (for Haskell), enlarging the array as necessary. How-
ever, prepending an element must shift all elements, which takes linear time.

In case a stack or queue is needed, the ICF contains an amortized constant-
time queue implementation LFIFO that also provides constant-time stack opera-
tions. However, access by index is implemented by iteration, which takes linear
time on average.

3 An Example Application

In this section, we demonstrate how to use the ICF in an example application
inspired by the Sieve of Eratosthenes. Whereas the traditional Sieve produces a
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sieve n ≡ sieve1 n 2 (λ . {})
sieve1 n i M ≡ if n < i then M

else sieve1 n (i + 1) (if M i = {} then addp n i i M else M)

addp n p j M ≡ if j > n then M else addp n p (j + p) (M(j := {p} ∪ M j))

Fig. 2. The modified Sieve of Eratosthenes to compute sets of prime divisors

list of prime numbers less than n, we produce a map from numbers less than n
to their set of prime divisors, ignoring their multiplicity. A tail-recursive imple-
mentation is shown in Fig. 2, where sieve n runs the function sieve1 for the first
n numbers and returns a function M of type nat → nat set such that for all i
within 2 and n, M i is the set of all prime divisors of i. sieve1 n i M iterates
from i up to n and, whenever it encounters a new prime number i (M i = {}),
it adds i to the set M j of all multiples j of i up to n via the function addp.

However, this implementation is not executable, because it contains the test
M i = {} (i.e. a function equality6). One solution is to change M ’s type to nat →
nat set option and replace {} with None, but this is very inefficient because the
function M is built from pointwise updates, i.e. a function application M i takes
time linear in the number of updates. Since the number of prime divisors ω(n)
of n is in O(log(log(n))) [8], there are O(n · log(log(n))) updates and the above
application executes O(n) times. Since sets and maps are coded as functions,
insertion and update only add function closures and therefore require constant
time. Hence, the overall run time is in O(n2 · log(log(n))).

We now reformulate the sieve as a generic algorithm by replacing the map M
and the sets in the range of M by ICF ADTs (and implementations). Note that
the Sieve could be implemented much more efficiently using an array monad and
lists instead of sets. Yet, it still is a good non-trivial example to illustrate how
to integrate the ICF in one’s formalization, because the set ADT is nested in
the map ADT. Following the data refinement approach from Sec. 2.2, the Sieve
integrates with the ICF in three steps:

1. For code generation, we define new functions that operate on ADTs (Fig. 3).
2. We show that the new functions preserve the data structure invariants.
3. We show transfer equations between original and new functions.

The equations proved in step 3 are then used to transfer correctness theorems
from the original functions to the new functions.

The sieve is defined as a generic algorithm, i.e. the definitions are (implic-
itly) parameterized over the used operations. The implicit parameterization is
achieved by combining the locales for maps and sets, thereby prefixing the map
and set operations with m- and s- resp., to avoid name clashes. Fig. 3 shows
the new implementation. Note that the algorithm is structurally the same, but
the operations on sets and maps have been replaced by the ADT operations, for

6 In Isabelle/HOL, a set is represented by its characteristic function.
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sieve′ n ≡ sieve′1 n 2 m-empty

sieve′1 n i M ≡ if n < i then M

else sieve′1 n (i + 1) (if m-lookup i M = None then addp′ n i i M else M)

addp′ n p j M ≡ if n < j then M

else addp′ n p (j + p) (m-update j (s-ins p (opt-dest (m-lookup j M))) M)

opt-dest None ≡ s-empty opt-dest (Some A) ≡ A

Fig. 3. Implementation of the modified Sieve with the ICF

which no syntactic sugar is currently available. The new function opt-dest stems
from replacing the function M by a map where None represents the empty set.

Since the ADTs are nested, their abstraction functions and invariant predi-
cates are combined into new ones:

α M ≡ s-α (opt-dest (m-α M))
invar M ≡ m-invar M ∧ (∀n S. m-α n = Some S =⇒ s-invar S ∧ s-α S 
= {})

Note that we exclude empty sets being stored in M , because None already rep-
resents them. Next, we show that addp’ and sieve’ preserve the data structure
invariant invar. This is straightforward because they only use the abstract oper-
ations that preserve the invariants by assumption. Finally, proving the following
transfer equations is also straightforward under the assumption invar M :

α (addp′ n p M) = addp n p (α M) (1)
α (sieve′1 n i M) = sieve1 n i (α M) (2)

α (sieve′ n) = sieve n (3)

Since invar (sieve′ n) holds, m-lookup j (sieve′ n) returns the set of j’s prime
divisors for all 2 ≤ j ≤ n.

To obtain an executable implementation with concrete data structures, e.g.
RBTs, we simply interpret our locale. The ICF is set up such that all proof
obligations are discharged automatically. For the run time complexity of the
RBT implementation, the map operations dominate the set operations because
the set size is limited by O(log(log(n))). Since M is updated O(n · log(log(n)))
times, the overall run time is in O(n · log(n) · log(log(n))).

4 Evaluation

This section reports on some performance measurements. In Sec. 4.1, we compare
the generated code using the ICF with the code generated from the Isabelle/HOL
default set representation, and with the tree data structures from the standard
libraries of Haskell and OCaml.7 Then, we briefly describe a tree automata

7 Unfortunately, the SML standard library contains no tree structure.
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Fig. 4. Comparison of ICF data structures with code generator defaults and with Java

library that is based on the ICF and compare its performance to a well-known
OCaml library and a Java library (Sec. 4.2).

All tests where done on a 2.66 GHz x86/64 dual-core machine with 4 GB
of memory. We used Poly/ML 5.2, OCaml 3.09.3, GHC 6.10.4, and OpenJDK
1.6.0-b09. The run time values are averages over three test runs.

4.1 Basic Operations

For comparing the performance of basic set operations, we ran a simple pro-
gram that starts with an empty set, then inserts n times a random number in
the range [0, 2n), then removes n times a random number in the range [0, 2n),
then tests n times a random number in the range [0, 2n) for membership in
the set, and finally iterates over each element in the set. As iteration is not
executable in Isabelle/HOL’s default code generator setup, we omitted the last
phase when comparing with the default setup. This program exercises exactly
the basic operations (empty, member, insert, delete, iterate) from which the
other set operations may be (and actually are) derived by generic algorithms.

The left part of Figure 4 shows the runtimes of the code generated by Isabelle
from a set-based formalization using the standard code generator setup and of the
code that uses ICF data structures. The x axis shows the test size n and the y axis
the required time in milliseconds. This test was done on the Poly/ML platform,
which was faster than OCaml and GHC for this kind of tests. Clearly, the run
time of the code generated from the default setup grows significantly faster
(theoretically O(n2)) than the code using the ICF red-black trees (theoretically
O(n log n)). However, even the list-based ICF set implementation (also O(n2)) is
significantly faster than the default setup, because the latter’s chain of pointwise
function updates grows also with every delete operation.

The right part of Fig. 4 compares ICF’s red-black trees to Java’s TreeSet
and HashSet classes. Java’s HashSet class is backed by an array, and thus more
efficient than the tree implementations, whose overhead per operation is much
larger. Moreover, Java uses destructive updates whereas the ICF is purely func-
tional. The ICF test was, again, run on the Poly/ML platform. Java’s TreeSet
is, on average, 3.7 times faster than the RBTs from the ICF – the ratio decreases
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Fig. 5. Comparison of the ICF with the OCaml and Haskell standard library

from 5.0 for n = 105 to 3.2 for n = 106. Java’s HashSet is even 15.2 times faster
on average. These results show how much room there is for speed-up, when one
is not bound to platform constraints.

In order to capture the potential for improvement on a functional language
platform (to which the Isabelle/HOL code generator is restricted), we compare
the red-black trees from the ICF with tree data structures from the Haskell
and OCaml standard libraries. The results are shown in Fig. 5. For OCaml, the
standard library is, on average, 34% faster than the ICF – the ratio increases
from 25% for n = 104 to 38% for n = 105. For Haskell, the difference is even
more significant. Here, the standard library is, on average, about 2.6 times faster
– the value increases from 2.0 for n = 104 to 3.0 for n = 105. The significant
super-linear increase for Haskell also results from lazily evaluated tail-recursive
functions.8

Currently, the ICF tree data structure uses RBTs from the Isabelle standard
library. Our results show that there is still room for improvement on the data
structure’s efficiency. On the other hand, the ICF data structures are formally
verified, whereas those of the Haskell and OCaml standard libraries are not.
Moreover, it would also be possible to configure the code generator to use the
data structures from the standard library instead of the verified ones.

4.2 Case Study: An ICF-Based Tree Automata Library

The first author has implemented a formally verified tree automata library [13].
It uses the ICF to derive efficient code and the data refinement approach to
verify algorithms on an implementation independent (and thus simpler) level.
We compared the generated code to Timbuk/Taml [6], a tree automata library
for OCaml, and to LETHAL [14], a tree automata library for Java that has been
developed as a students’ project in our group.

The test consisted of intersecting seven pairs of randomly generated tree au-
tomata (with a few hundred rules and up to one hundred states each), and

8 Up to a certain extent, strict evaluation in Haskell can be forced by the seq-operator.
However, we did not include such platform specific optimizations into the ICF.
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Table 1. Tree Automata Library using the ICF compared to other libraries

ICF ICF ICF ICF Taml LETHAL
Language Haskell SML OCaml OCaml(i) OCaml(i) Java

complete 1.5s 6.1s 12.5s 121s 1923s 0.456s
reduced 73ms 407ms 522ms 4983ms 71636ms 120ms

then checking the results for emptiness. Table 1 shows the run time for var-
ious platforms. All ICF versions used RBT-based hashing. Most notably the
ICF library running on Haskell is three orders of magnitude faster than Tim-
buk/Taml. However, this mainly results from comparing compiled Haskell with
interpreted OCaml (marked as OCaml(i) in the table header). Another issue is
that the ICF-based library uses a different algorithm for checking emptiness that
performs better for automata with non-empty languages. However, even when
comparing the ICF-based library and Timbuk/Taml both on interpreted OCaml,
with a reduced test set (second row) where the tested automata’s languages are
all empty, the ICF based library is still about 14 times faster. We conjecture that
Timbuk/Taml’s use of plain lists for sets and maps – which is common practice
in functional programming – explains that difference.

For the complete test set, the Java-based LETHAL library is about three times
faster than the ICF-based library running on Haskell. For the reduced test set,
the latter is even a bit faster than the Java implementation. These encouraging
results demonstrate that it is possible to use the ICF to develop efficient verified
algorithms that are competitive with existing unverified ones.

5 Conclusion

The Isabelle Collections Framework is a unified, easy-to-use framework for using
verified data structures in Isabelle/HOL formalizations. Abstract data types for
common Isabelle types provide the option to generate efficient code for a wider
class of operations than the default setup. Data refinement allows one to transfer
correctness results from existing formalizations to efficient implementations by
means of transfer equations. The ICF implementations vastly outperform the
standard code generator setup. The ICF proved its usability and efficiency in a
verified tree automata library: The generated code outperforms the well-known
(unverified) Timbuk/Taml library by a factor of 14, and is even competitive with
the Java-based (also unverified) LETHAL library.

However, a lot remains to be done. The evaluation shows that the data struc-
tures are not yet optimally efficient. Some data structures, like heaps and priority
queues, are still missing. Concerning usability, Isabelle’s code generator currently
poses the biggest limitation. When it will support invariants for data types, the
ICF will integrate much more smoothly into existing formalizations.

Another approach to make functional code more efficient are state monads
that support, e.g., arrays with destructive updates. The Imperative HOL frame-
work [3] adds support for monads to Isabelle/HOL. It remains future work to
implement and verify monadic collection data structures.
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Abstract. Recent advances in termination analysis have yielded new
methods and tools that are highly automatic. However, when they fail,
even experts have difficulty understanding why and determining how
to proceed. In this paper, we address the issue of building termination
analysis engines that are both highly automatic and easy to use in an
interactive setting. We consider the problem in the context of ACL2,
which has a first-order, functional programming language. We introduce
the notion of a termination core, a simplification of the program under
consideration which consists of a single loop that the termination engine
cannot handle. We show how to extend the Size Change Termination
(SCT) algorithm so that it generates termination cores when it fails
to prove termination, with no increase to its complexity. We show how
to integrate this into the Calling Context Graph (CCG) termination
analysis, a powerful SCT-based automatic termination analysis that is
part of the ACL2 Sedan. We also present several new, convenient ways
of allowing users to interface with the CCG analysis, in order to guide it
to a termination proof.

1 Introduction

Recent years have seen great advances in the field of automated proofs of pro-
gram termination (e.g. [1,3,8,11]). In this paper, we will explore one such termi-
nation analysis, the Calling Context Graph (CCG) algorithm, in detail [9,13].
The motivation for developing the CCG algorithm came from our desire to inte-
grate mechanized program verification into the undergraduate curriculum. We
used ACL2 [6,5,7], in part because it is based on a simple, applicative program-
ming language and has a relatively simple logic. One of the first issues students
confront is that functions must be shown to terminate. We wanted to avoid dis-
cussing ordinals and measure functions, so we developed and implemented the
CCG termination analysis, which is able to automatically prove termination for
the kinds of functions arising in undergraduate classes.
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Unfortunately, any termination analysis (and CCG is no exception) is bound
to fail, either because the program under consideration is non-terminating or
because the analysis is just not powerful enough to prove termination. In this
paper, we address the issue of what to do when that happens. The idea is to
leverage all of the information that was discovered during the termination effort.
For example, the analysis may have discovered that certain loops in the program
are terminating. Rather than throwing out all of that analysis and asking the
user to prove termination from scratch, we want to present the user with an
explanation of why the termination analysis failed. We propose to do that by
generating a termination core, a new program that the termination analysis
cannot prove terminating and which corresponds to a single simple cycle of the
original program. Termination cores reveal the true reason that the termination
analysis failed. Termination cores are a general notion that we believe can be
fruitfully applied to any number of termination analyses, but in this paper we
show how to compute termination cores for algorithms based on Size Change
Termination (SCT) [8].

We start by reviewing CCG analysis in Section 2. We then introduce the
notion of termination cores in Section 3. We prove that the complexity of the
termination core generation problem for SCT is PSPACE-complete and we pro-
vide a practical algorithm. Just reporting termination cores is not enough. We
need a mechanism that enables the user to interact with the termination analy-
sis. We discuss this in Section 4, where we present several new, convenient ways
of allowing users to interface with the CCG analysis, in order to guide it to a
termination proof.

All the techniques described here are implemented in the current version of
ACL2s, the ACL2 Sedan [4,2], a freely available, open-source, well-supported
theorem prover that is based on ACL2, but was designed with greater usability
and automation as primary design considerations. ACL2s provides a modern
integrated development environment and includes fully automatic bug-finding
methods based on a synergistic combination of theorem proving and random
testing. CCG analysis is an integral part of ACL2s. In extensive experimental
trials, it was able to prove over 98% of the more than 10,000 functions in the
ACL2 regression suite terminating with no user input. ACL2s has been used
at Northeastern University, UT Austin, and Georgia Tech to teach hundreds of
undergraduate students how to reason about programs.

2 Termination Using Calling Context Graphs

We give a brief, simplified overview of the CCG analysis. For a more complete
and detailed treatment, see [9,13]. The domain for the CCG analysis is a universe
of programs, Prog, written in an applicative first-order functional programming
language. For the sake of simplicity, we limit our discussion here to a very simple
language, part of whose semantics is sketched in Figure 1: F denotes the universe
of function names; X the universe of variable names; V the universe of values; E
the universe of expressions; Hist the universe of histories, which map previously
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f, g ∈ F v, u ∈ V x, y, z ∈ X e, m ∈ E
h ∈ Hist = F → X ∗ × E ε ∈ Env = X → V

�if etest then ethen else eelse�
h ε =

{
�ethen�h ε if �etest�

h ε �= nil

�eelse�
h ε otherwise

�f e1 e2 . . . en�h ε = �e�h [xi �→ vi]
n
i=1 where vi = �ei�

h ε and h(f) = 〈〈xi〉ni=1, e〉

Fig. 1. A rough sketch of a simple language and its semantics

defined functions to their signature and definitions; and Env the universe of
environments, which map variables to values.

Consider the following function definition:

f x y = if (x < y) then 1 + (f (x+1) y)
else if (x > y) then 1 + (f x (y+1))
else 0

First, we create an abstraction of the program that captures its recursive behav-
iors while ignoring everything else. In f, the value returned in the base case and
the fact that we add 1 to the value returned by each recursive call is irrelevant to
the termination proof. We therefore reduce the program to its calling contexts.
Intuitively, these are the recursive calls of the program along with the conditions
under which each call is made. More formally, given a program F ∈ Prog, a
calling context is a triple, 〈f, G, e〉 ∈ Contexts = F × 2E × E , such that f is a
function defined in F (F can contain several function definitions), e is a call to
a function defined in F , and G is the set of governors of e, i.e., the exact set of
conditions under which e is executed. The calling contexts for f are as follows.

1. 〈f, {x < y}, (f (+ x 1) y)〉
2. 〈f, {not (x < y), x > y}, (f x (+ y 1))〉

Note that, in the governor for the second context, the second condition implies
the first. We could therefore simplify this governor to be {x > y}.

The calling contexts are used to approximate the behavior of the program via
the construction of a Calling Context Graph (CCG), whose nodes are the calling
contexts of the program and whose edges represent possible paths of execution
from one context to the next. The minimal CCG for F is as follows.

��������1
�� ��������2 ��

Notice that if x < y, then in the next iteration, x ≤ y, since x is incremented
by 1. Likewise, if x > y, then in the next iteration, x ≥ y since y is incremented
by 1. Therefore, it is not possible for execution of f to move from one context to
the other. This is a critical observation for proving termination, since if the flow
of the program could alternate between the contexts, it could enter an infinite
loop where x was increased, then y, and so on, without x and y ever being equal.
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In order to formalize our notion of a CCG, we need the notion of a call substi-
tution. Given a function call, e = f e1 e2 . . . en, to a function with parameters
x1, x2, . . . , xn, the call substitution for e, denoted σe, substitutes each ei for the
corresponding xi.

A CCG is a graph, G = 〈C, E〉, whose nodes, C ⊆ Contexts, and whose edges,
E ⊆ Contexts×Contexts and for any pair of contexts, c1 = 〈f1, G1, e1〉, c2 =

〈f2, G2, e2〉 ∈ C, if e1 is a call to f2 and
�∧

g1∈G1
g1 ∧ ∧

g2∈G2
g2σe1

�h

ε 
= nil

for some ε ∈ Env, then 〈c1, c2〉 ∈ E. Such an environment is called a witness for
〈c1, c2〉. Notice that it is in general undecidable to determine if an edge must be in
a CCG. This is why the condition for including an edge is an if rather than an iff.
The goal is to create a safe approximation of the minimal CCG. Also, note that
the trivial CCG, defined as the CCG in which there is an edge from c1 to c2 iff c1
represents a call to the function containing c2, gives us the exact same information
as a standard call graph (in which the nodes are function names and there is an
edge between f and g if f contains a call to g). We use theorem prover queries to
generate CCGs that are smaller than the trivial one [9]. For example, using the
ACL2 theorem prover, we are able to generate the minimal CCG for f as given
above.

The next step in the CCG analysis is to annotate each edge of the CCG with a
generalized size change graph (GSCG). These tell us which values are decreasing
or non-increasing from one context to the next in our CCG. A valid set of GSCGs
for f is as follows.

G1:
1 → 1:

y-x
> ��y-x

G2 :
2 → 2:

x-y
> ��x-y

GSCGs are then used to annotate the CCG, creating an Annotated CCG (ACCG).
More formally, we define ACCGs and GSCGs as follows.

p, q, r ∈ Lab = {>,≥}
G,H ∈ ACCG = 2Contexts × 2Contexts×GSCG×Contexts

G, H ∈ GSCG = 2E × 2E × 2E×Lab×E × Contexts × Contexts

Each edge in the ACCG is annotated with a GSCG. We write c1
G−→ c2 to

denote that 〈c1, G, c2〉 is an edge ∈ G. A GSCG is a bipartite graph with a set of
expressions corresponding to the left nodes, a set of expressions corresponding
to the right nodes, a set of labeled edges, and the pair of contexts the GSCG
annotates. The tuple 〈M1, M2, E, c1, c2〉 is a GSCG if for every 〈m1, r, m2〉 ∈ E

we have that �m1�h ε r �m2�h ε for each ε that is a witness for 〈c1, c2〉. We
write m1

r−→ m2 to denote that 〈m1, r, m2〉 is an edge ∈ G.
GSCGs and ACCGs are similar in concept to size change graphs (SCGs) and

annotated call graphs (ACGs) that form the basis of the Size Change Termination
analysis of Lee, Jones, and Ben-Amram for use in their size-change analysis [8].
The differences are that GSCGs have arbitrary expressions rather than just
variables for nodes, and ACCGs mirror the recursive flow from recursive call
to recursive call rather than from function to function. The result is a more
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detailed analysis of program behavior. However, structurally, these concepts are
the same, which allows us to apply the size change analysis to ACCGs as follows.

Definition 1. A multipath π through an ACCG G is a (potentially infinite)
path in G: π = f0

G1−−→ f1
G2−−→ f2

G3−−→ · · · .
We write Gω for the set of infinite multipaths over G and G+ for the set of finite,
nonempty ones. We sometimes write G1, G2, . . . or 〈Gi〉 to describe a multipath
when the function names are irrelevant. Paths in ACCGs are called multipaths
because their elements are graph structures and may contain many threads.

Definition 2. A thread in a multipath π = 〈Gi〉 is a sequence of size-change
edges 〈xi−1

ri−→ xi〉 such that xi−1
ri−→ xi ∈ Gi for all i > 0.

For example, consider the multipath f
G1−−→ f

G1−−→ f. Its only thread is y-x
>−→

y-x
>−→ y-x. A thread tells us that the values of certain expressions do not

increase during a sequence of calls, and can be used to prove termination as
follows.

Definition 3. The Size Change Termination (SCT) problem takes an
ACCG as input and returns true if every infinite multipath through the ACCG
has a suffix with a thread 〈mi

ri−→ mi+1〉 such that infinitely many ri = >, or
false otherwise.

By well-foundedness, no infinite path through the ACCG that has such a thread
can be an actual computation.

Theorem 1 (Lee, et al. [8]). SCT is PSPACE complete.

The SCT problem can be solved by composing GSCGs to create new GSCGs
representing multiple transitions in the ACCG.

Definition 4. Composition of GSCG labels and GSCGs is defined as follows.

1. p · q =
{≥ if p =≥ and q =≥

> otherwise
2. G1 · G2 = 〈M1, M3, E, c1, c3〉, where G1 = 〈M1, M2, E1, c1, c2〉, and G2 =

〈M2, M3, E2, c2, c3〉, and E = {m1
p·q−−→ m3 | m1

p−→ m2 ∈ G1 ∧ m2
q−→ m3 ∈

G2}
Definition 5. The evaluation of π = 〈G1, G2, . . . , Gn〉 ∈ G+ is �π� = G1 ·
G2 · · ·Gn.

Proposition 1. m
r−→ m′ ∈ �π� iff there exists a thread m

r1−→ m1
r2−→ · · · rn−1−−−→

mn−1
rn−→ m′ in π, with r = r1 · · · · · rn.

Composition occurs until a fixed point is reached, at which point certain GSCGs,
called idempotents are examined. An idempotent is a GSCG, G, of the form
〈M, M, E, c, c〉 such that G ·G = G. If all idempotents have an edge, e

>−→ e ∈ G,
then the algorithm returns true. Otherwise, it returns false.
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Theorem 2 (Lee et al. [8]). The algorithm above solves SCT.

Theorem 3 (Manolios and Vroon [9]). If a program, D ∈ Prog has a
corresponding ACCG, G, such that SCT(G) = true, D is terminating on all
inputs.

3 Termination Cores

The idea behind termination cores is to present the user with a single simple
cycle that embodies the reason for a failure to prove termination. We want this
to be a general notion that applies to any termination prover, so we begin by
defining a general notion of a termination analysis.

Definition 6. A termination analysis, T , is a function that takes in a set of
function definitions, F , and returns true or false, such that if T (F ) = true,
it is the case that the definitions of F will terminate for all inputs according to
the semantics of the language.

When the termination analysis fails, we want to create a new program that is
simpler than the original, but still reflects the reason for the failure. We there-
fore must link the recursive behaviors of two programs, which we express as a
relationship between their CCGs.

Definition 7. Two calling contexts, c, c′ of the form 〈f, G, (g e1 . . . en)〉 and
〈f ′, G, (g′ e1 . . . en)〉, respectively, are said to be similar, denoted c ∼ c′. We
can denote c′ as [c]f

′
g′ , or c as [c′]fg .

Using this notion of context similarity, we develop the notion of a similarity-
preserving path homomorphism between ACCGs that will form the basis of our
definition of termination cores. We begin by defining path homomorphism.

Definition 8. Given two directed graphs, G = (C, E), G′ = (C′, E′), a path ho-
momorphism is a function φ : C → C′ such that 〈c1, c2〉 ∈ E ⇒ 〈φ(c1), φ(c2)〉 ∈
E′. If such a φ exists, we say that G is homomorphic to G′. If C and C′ are sets of
contexts, we say φ is similarity-preserving if c ∼ φ(c) for all c ∈ C.

In other words, a similarity-preserving homomorphism from G to G′ demonstrates
that the original program associated with G′ contains a superset of the recursive
behaviors of the new program associated with G.

Definition 9. Let T be a termination analysis, F be a set of function definitions
such that T (F ) = false, and G = (C, E) be a CCG for F . Then a termination
core for F modulo T , is a set of function definitions, F ′ that satisfy all of the
following:

– The trivial CCG, G′ = (C′, E′), of F ′ is a simple cycle,
– There exists a similarity-preserving path homomorphism, φ : G′ → G,
– T (F ′) = false.
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Thus, the termination core is a single loop through the original program for
which the termination analysis fails. The Termination Core modulo T (TCT ) is
the problem of finding such cores.

Definition 10. Given a termination analysis T , the termination core mod-
ulo T (TCT ) problem takes a program P as input and generates null if
T (P ) = true and a termination core for P modulo T otherwise.

3.1 Termination Cores in CCG via Size Change Cores

In order to create termination cores for CCG, we use the notion of size change
cores (SCC).

Definition 11. A size change core is a finite multipath of the form π =
c

G1−−→ c1
G2−−→ · · · Gn−−→ c such that, πω has no suffix with a corresponding thread

of infinite descent.

Proposition 2. SCT(G) = false iff there exists a size change core for G.

Proof. By the definition of SCT, it is clear that if such an SCC exists, SCT (G) =
false. For the other direction, suppose SCT (G) = false. Then by Theorem 2,
there exists π = c

G1−−→ c1
G2−−→ · · · Gn−−→ c such that �π� is idempotent and has no

edge of the form m
>−→ m. Notice that π is an SCC: by Proposition 1, there is

no thread for π, m
r1−→ m1

r2−→ · · · rn−→ m such that one of r1 · · · rn is “>”. Now,
suppose that πω has a suffix with an infinitely decreasing thread. By the pigeon
hole principle, this means that there exists some k and m such that πk has a
thread m

r1−→ m1
r2−→ · · · rnk−−→ m such that some ri is “>”. By Proposition 1,

this means that
	
πk



has an edge m

>−→ m in it. But
	
πk



= �π� since �π� is

idempotent. Therefore, no such edge can exist. ��
Consider the following function:

f a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then 1 + (f (b+1) (a-1) (c+1) (d-1))

+ (f (b-1) (a+1) (c-1) (d+1))
else 0

The contexts for this function are as follows.

1. 〈f, {a > 0, b > 0, c > 0, d > 0}, (f (b+1) (a-1) (c+1) (d-1))〉
2. 〈f, {a > 0, b > 0, c > 0, d > 0}, (f (b-1) (a+1) (c-1) (d+1))〉

Suppose we use the measures a, b, c, and d for both contexts. Then we get the
following ACCG.

��������1G1
��

G1
����������2 G2��

G2

��

G1: a >


��������� a

b b
c c

d
> ��d

G2: a a

b

> ��									 b
c

> ��c
d d
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Notice, then, that an SCC for this program is 1 G1−−→ 1 G1−−→ 2 G2−−→ 1, for which
there is no thread at all. The problem is that this is not a simple cycle. In order to
create a termination core, then, we must derive a simple cycle that corresponds
to an SCC. We do this by renaming the functions in the contexts in order to
distinguish between occurrences of a single context in the loop.

Definition 12. Given a cycle c = c1, c2, . . . , cn, c1 in an ACCG, and a sequence
of fresh, distinct function symbols, f = 〈fi〉ni=1 ∈ Fn, the similar simple

cycle with respect to f , denoted [c]f , is the sequence c′ = 〈[ci]
fi

fi+1
〉 where

fn+1 = f1. Given a cyclical multipath, π = c1
G1−−→ c2

G2−−→ · · · Gn−−→ c1, the set of
similar simple cyclical multipaths with respect to f , denoted [π]f is the

set containing all π′ = [c1]
f1
f2

G′
1−−→ [c2]

f2
f3

G′
2−−→ · · · G′

n−−→ [c1]
f1
f2

such that each G′
i is a

subgraph of the corresponding Gi.

The two key features of similar simple cyclical multipaths are that they are
simple cycles and that they preserve the non-terminating behavior of an SCC.
Thus, we get the following result.

Lemma 1. Let π = 〈Gi〉ni=1 be an SCC and π′ = 〈G′
i〉ni=1 ∈ [π]f . Then π′ is an

SCC of the ACCG consisting of the contexts, edges, and GSCGs of π′.

Proof. By definition, there is no infinitely decreasing thread corresponding to
πω. But every thread of πω is a thread of π′ω by construction. Therefore, there
is no infinitely decreasing thread corresponding to π′ω. By definition, this makes
π′ an SCC.

Returning to our example, we can construct a similar simple cycle to our SCC
as follows:

1. 〈f0, {a > 0, b > 0, c > 0, d > 0}, (f1 (b+1) (a-1) (c+1) (d-1))〉
2. 〈f1, {a > 0, b > 0, c > 0, d > 0}, (f2 (b+1) (a-1) (c+1) (d-1))〉
3. 〈f2, {a > 0, b > 0, c > 0, d > 0}, (f0 (b-1) (a+1) (c-1) (d+1))〉

We use a similar simple cycle to an SCC to create a corresponding termination
core. We do this by creating a trivial function for each context in the similar
simple cycle as follows.

Definition 13. Given a calling context, c = 〈f, {e1, e2, . . . , en}, e〉, the mini-
mal function definition for c is the following function, where 〈xi〉mi=1 are the
parameters for function f .1

f x1 x2 . . . xm =
if (e1 and e2 and . . . and en) then e else
[x1; x2; . . .; xm]

The point is to use the similar simple cycles to construct the minimal definitions.
In the case of our example, we have the following.
1 Notice that we can return anything at all in the else case below. In our implemen-

tation, we return the list of parameters for technical, ACL2-related reasons.
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f0 a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then (f1 (b+1) (a-1) (c+1) (d-1))
else [a; b; c; d]

f1 a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then (f2 (b+1) (a-1) (c+1) (d-1))
else [a; b; c; d]

f2 a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then (f0 (b-1) (a+1) (c-1) (d+1))
else [a; b; c; d]

What remains is to prove that this corresponds to a termination core in general.
Our work thus far allows us to prove that the resulting functions satisfy the first
two conditions of termination cores.

Lemma 2. Let π = c1
G1−−→ c2

G2−−→ · · · Gn−−→ c1 be a size change core for ACCG
G, c = c1, c2, . . . , cn, c1, f be a sequence of fresh, distinct function names, and
c′ = [c]f = c′1, c

′
2, . . . , c

′
n, c′1. Then the trivial CCG, G′ of the minimal function

definitions of c′, is a simple cycle such that there exists a similarity-preserving
path homomorphism from G′ to G.

Proof. This follows from the freshness and distinctness of the function names in
f . ��

All that remains, then, is to show that our construction results in functions
that cannot be proved terminating by our analysis. In order to do this, we need
to make some assumptions about the construction of ACCGs. Intuitively, we
need to assume that we are consistent in our choice of measures and our ability
to prove the necessary queries. We require that our ACCG generator is not
“smarter” when analyzing the termination core than it is when analyzing the
the original function.

Definition 14. Let build-accg : Prog → ACCG be a function that computes
an ACCG corresponding to the input program. Then we say that build-accg
is monotonic if when given P, P ′ ∈ Prog such that there exists a similarity-
preserving homomorphism, φ from the trivial CCG of P to the trivial CCG
of P ′, the following conditions hold, where GP = build-accg(P ) and GP ′ =
build-accg(P ′):

– c1
G−→ c2 ∈ GP if the call of c1 is a call to the function containing c2 and

φ(c1)
G′−→ φ(c2) ∈ GP ′ , and

– For all c1
G−→ c2 ∈ GP and φ(c1)

G′−→ φ(c2), G is a subgraph of G′.

From this point forward, we assume a fixed, monotonic build-accg. The inter-
esting about this monotonicity property for us is that it means that the ACCG
we construct for our termination core contains a similar simple multipath to the
SCC we used to construct it. More formally, we have the following.
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Lemma 3. Let P be a program and GP = build-accg(P ) such that π is an
SCC for GP that traverses contexts c. Then if c′ = [c]f and P ′ is the set of
minimal function definitions for c′, then the multipath π′ that visits in order the
contexts of c′ in GP ′ = build-accg(P ′) is a similar simple multipath to π.

Proof. Follows from the definition of monotonicity. ��
Now we fix our definition of ccg and ccg-tc, our termination analysis and
termination core solver, respectively; but first, we introduce the size change core
problem.

Definition 15. The Size Change Core (SCC) problem takes an ACCG, G,
as input and returns a size change core if SCT(G) = false and null otherwise.

Definition 16. We define ccg as SCT (build-accg(P )). We define ccg-tc :
Prog → Prog as follows: Given program, P ,let π = SCC(build-accg(P )). If
π = null, return null. Otherwise, return the minimal function definitions for
[π]f for some fresh function names, f .

Based on the work we’ve done so far, it is fairly straightforward to prove the
following.

Theorem 4. ccg-tc solves TCccg.

Proof. By the definition of SCC, ccg-tc(P ) returns null iff ccg(P ) = true, so
we only need to concern ourselves with the case in which ccg(P ) = false.

If ccg-tc(P ) produces a program’ P ′, then P ′ satisfies the first two properties
of a termination core by Lemma 2. It satisfies the final property by a combination
of Lemma 3 with Lemma 1. ��

3.2 Constructing Size Change Cores in CCG

We prove that SCC ∈ PSPACE . To do this, we use a characterization of the
problem using Büchi automata. Given an ACCG, G, consider the two sets of
infinite multipaths:

FLOWω = Gω

DESCω = {π ∈ Gω | π has a suffix with an infinitely decreasing thread}
By results in [8], both FLOWω and DESCω are ω-regular subsets of GSCG

ω

for which there are Büchi automata that solve each in space polynomial with
respect to the size of the original program. Note that SCT is equivalent to de-
termining if FLOWω ⊆ DESCω. This, in turn can be expressed as the problem
of determining that FLOWω ∩ DESCω is empty.

What we want is to find π ∈ A = FLOWω ∩ DESCω when such a π ex-
ists. One idea is to construct the Büchi automaton corresponding to A and to
search for such a path. Unfortunately, this does not work because complement-
ing a Büchi automaton can lead to an exponential blowup. Fortunately, there
are methods that allow us to traverse A in polynomial space without actually
constructing it [10]. The PSPACE completeness of SCC can then be proved as
follows.
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Theorem 5. SCC is PSPACE complete.

Proof. Showing PSPACE hardness is trivial. By Proposition 2, SCT is reducible
to SCC, and by Theorem 1, SCT is PSPACE-complete.

To show that SCC is in PSPACE, we non-deterministically find a multipath
π = π1π2 ∈ A such that s

π1−→ a
π2−→ a for some initial state s and accepting

state a, using the following algorithm, where S0 is the set of initial states, S is
the set of states, and F is the set of final states of A. Also, the alphabet of A is
the set of GSCG’s of the ACCG G.

1: s ← s0 ← choose(S0); a ← choose(F )
2: for i = 1 to |S| do
3: s ← choose({t ∈ S | s

G−→ t ∈ A})
4: if s = a then
5: for i = 1 to |S| do
6: G ← choose(G)
7: s ← choose({t ∈ S | s

G−→ t ∈ A})
8: Output G
9: if s = a then
10: return found
11: return null
12: return null

Here, choose denotes a non-deterministic choice of an element in the given set if
such an element exists. If not, it causes the entire algorithm to halt and return
null. Note that A is non-empty iff such a path exists [12]. However, the algorithm
only outputs π2. By the definition of A, we see that π1π

ω
2 is an infinite multipath

such that no suffix of the multipath has an infinitely decreasing thread. Thus, πω
2

is also such a multipath, since any suffix of πω
2 is a suffix of π1π

ω
2 . By definition,

this makes πω
2 a size change core. Therefore, this algorithm solves SCC.

At any given point, all we are storing is four states (s0, a, s, and t), two
counters between 1 and |S|, and a single GSCG, G. All of this plus determining
if s

G−→ t ∈ A can be done in polynomial space. Therefore, SCC ∈ NPSPACE =
PSPACE . ��
Definition 17. An enhanced size change graph (ESCG) is a triple, 〈G, p, l〉
where G is a GSCG and one of the two conditions hold:

– p = G is an GSCG and l = 1, or
– p is a pair of ESCGs, 〈H ′, H ′′〉 such that G = G′ ·G′′, and l = l′ + l′′, where

H ′ = 〈G′, p′, l′〉 and H ′′ = 〈G′′, p′′, l′′〉.
The enhancement of an existing GSCG, G, denoted G, is the ESCG, 〈G, G, 1〉.
Definition 18. The corresponding multipath of an ESCG, H = 〈G, p, l〉,
denoted path(H), is G if p = G, and path(H1)path(H2) if p = 〈H1, H2〉.
Definition 19. The composition of two ESCGs, H1 = 〈G1, p1, l1〉 and H2 =
〈G2, p2, l2〉, denoted H1 · H2 is the ESCG, 〈G1 · G2, 〈H1, H2〉, l1 + l2〉.
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Let S′ ← the enhancements of all the GSCGs of the ACCG.
Let ≺ s.t. 〈G, p, l〉 ≺ 〈G′, p′, l′〉 iff l < l′.
repeat

S ← S′

for all H = 〈G, p, l〉, H ′ = 〈G′, p′, l′〉 ∈ S do
if ∃H ′′ = 〈G′′, p′′, l′′〉 ∈ S′ s.t. G′′ = G ·G′ then

S′ ← S′ − {H ′′} ∪min≺{H · H ′, H ′′}
else

S′ ← S′ ∪ {H ; H ′}
until S = S′

if ∃H = 〈G, p, l〉 s.t. G is idempotent with no edge of the form m
>−→ m then

return path(H)
else

return true

Fig. 2. An algorithm for solving SCC

Lemma 4. Given an ESCG, H = 〈G, p, l〉, G = �path(H)�.
Theorem 6. The algorithm given in Figure 2 solves SCC.

Proof. The algorithm behaves exactly as the one in Theorem 2, except that we
keep track of which ESCGs were composed to create each new ESCG and the
length of the path corresponding to the ESCG. Thus there exists an idempotent
ESCG without an edge m

>−→ m iff SCT also discovers such an edge. Therefore,
if SCT (G) = true, SCC(G) = null, and if SCT (G) = false, SCC(G) returns
a circular multipath, π such that �π� is idempotent and contains no edge of the
form m

>−→ m. Suppose there was some decreasing thread corresponding to πω .
Then by the pigeon hole principle, there would be some k such that πk such
that there existed a decreasing thread from some m to itself. By Proposition 1,
this means that

	
πk



would have an edge m

>−→ m. But by the definition of
idempotence,

	
πk



= �π�, and we already stated that no �π� has no edge of

the form m
>−→ m. Therefore, there is no infinite decreasing thread for πω . By

definition, then, π is an SCC. ��
Theorem 7. The algorithms in Theorem 2 and Figure 2 have the same com-
plexity.

Proof. To the original data structures, we add pointers to two ESCGs and an
integer representing the length of a path whose evaluation leads to the cor-
responding ESCG. Since there can be exponential ESCGs, these added fields
require linear length in the size of the original problem. In the loop itself, we
perform one addition and one comparison of the lengths, which takes linear time,
and create two pointers to the ESCGs being composed, which takes constant
time. This is eclipsed by the composition of the GSCGs, which has complexity
that is polynomial and greater than linear. Thus, there is no overall change in
the complexity from the SCT algorithm to the SCC algorithm. ��
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4 Interactive CCG

Termination core analysis, as described in this paper is implemented in ACL2s,
the ACL2 Sedan. When reporting termination cores to ACL2s users, our goal
is to give as specific and concrete a reason for the failure to prove termination
as possible, taking into account everything the termination prover discovered in
its proof attempt. The hope is that termination cores will be effective tools for
helping users efficiently debug failed termination proofs.

Once a user figures out why the termination proof attempt failed, she must
then be able to interact with the termination engine, in order to guide it towards
a proof. We have developed a clean and intuitive interface that gives the user
a way to interact with the theorem prover without getting bogged down in the
details of CCG analysis. The interface is based on the three possible reasons
CCG can fail to prove termination.

The first and most obvious source of failure is a non-terminating program. In
this case, our analysis will reach a point at which it finds an SCC that represents
an actual infinite run of the program. This is particularly useful in programs with
multiple recursive behaviors, as it enables the user to find the relevant code and
make revisions. Consider, for example, the following program. The reader is
encouraged to figure out what is going on before reading further.
f1 w r z s x y a b zs =

if (a > 0) then
f2 w r z 0 r w 0 0 zs

else w = r^zs

f2 w r z s x y a b zs =
if z > 0 then

f3 w r z s x y y s zs
else f1 s r (z-1) 0 0 0 0 0 zs

f3 w r z s x y a b zs =
if a > 0 then

f3 w r z s x y (a-1) (b+1) zs
else f2 w r z b (x-1) y 0 0 zs

ACL2s produces the following core:

f3_0 w r z s x y a b zs =
if a <= 0 then
f2_0 w r z b (x-1) y 0 0 zs

else
[w; r; z; s; x; y; a; b; zs]

f2_0 w r z s x y a b zs
if z > 0 then
f3_0 w r z s x y y s zs

else
[w; r; z; s; x; y; a; b; zs]

From the termination core, we see that the only value consistently decreasing in
this loop is x, which decreases by 1 each time through the loop. The problem is
that there is no test to see that x is positive. Instead, we check that z is positive.
This is easily remedied by changing z > 0 to x > 0 in the definition of f2. Does
the program terminate now? Readers are encouraged to construct a measure
and to mechanically verify it. (It took us about 20 minutes.) If we submit the
updated program, CCG analysis proves termination in under 2 seconds, fully
automatically with no user guidance.

The above program was generated by applying weakest precondition analy-
sis to a triply-nested loop. An expert with over a decade of theorem proving
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experience spent 4–6 hours attempting to construct a measure function that
could be used to prove termination, before giving up. So, this example high-
lights how useful termination analysis can be and how termination core analysis
can help users discover and correct termination bugs.

A second reason that CCG analysis may fail to prove termination is that it
may fail to guess the necessary Calling Context Measures (CCMs) [9,13]. Calling
context measures can be thought of as building blocks for conventional measures.
We use simple heuristics to guess CCMs, and while they are effective for many
programs, they are certainly not complete. Consider, the following program.

dec x = if x <= 0 then 255 else x-1
f x = if x = 1 then 0 else 1 + (f (dec x))

Our heuristics choose |x| as the CCM for the sole recursive call in f. However,
this measure does not always decrease across the recursive call. For example, if
x is 0, (dec x) is 255. The reader is encouraged to prove termination using the
standard measure-based approach.

The termination core produced by our algorithm is as follows.

f_0 x = if x = 1 then [x] else (f_0 (dec x))

This termination core is not terribly helpful, since it has the exact same looping
behavior as the original. However, our core generator also lists the CCMs chosen
for each context, as well as the edges of the relevant GSCGs. For our example,
our analysis will inform the user that the sole CCM chosen was |x|, which cannot
be shown to be non-increasing or decreasing from one iteration of the loop to
the next. A quick look at the definition of dec confirms that this is not an
appropriate CCM. However, (dec x) is a useful CCM. That is, it is easy to
prove that if x is not 1, (dec (dec x)) < (dec x).

We provide an interface that allows users to override the heuristics for guessing
CCMs by providing one of two hints to the CCG algorithm. The first is the
:CONSIDER hint, which takes a list of expressions over the parameters of the
function to which the user wishes to apply the hint. This tells the CCG analysis
to add the given CCMs to those heuristically generated for all the contexts in
the function to which it is applied. In our example, a :CONSIDER [(dec x)]
hint will result in measures {|x|, (dec x)} for the sole context.

In some cases, users may want even more control. For example, |x| is irrelevant
for the termination proof. Such CCMs lead to needless theorem prover queries.
Therefore, we also provide a :CONSIDER-ONLY hint. This is identical in usage
to the :CONSIDER hint, but tells the CCG analysis to use only those measures
provided by the user for the given function. Thus, the hint :CONSIDER-ONLY
[(dec x)] in our example will result in (dec x) being the only measure for the
sole context. Giving this hint leads to a simpler termination proof.

The final reason that CCG may fail to prove termination is that it was unable
to prove a necessary theorem about either the exclusion of an edge from the
CCG or about the relationship between two measures across a recursive call.
Consider, for example the following definition of merge sort.
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mergesort x =
if x = [] or tl x = []
then x
else mergelists (mergesort (evens x)) (mergesort (odds x))

Here, (evens [e0; e1; . . .; en]) returns [e0; e2; . . .] and odds applied to
the same list returns [e1; e3; . . .]. Our analysis produces the following core:

mergesort_0 x = if not (x = []) and (not (tl x = []))
then mergesort_0 (evens x) else [x]

It also tells us that the sole measure |x| (i.e., the length of x) could not be shown
to be decreasing. The problem is that the theorem prover was unable to prove
that evens always returns a list that is smaller than the input if that input list
has 2 or more elements in it. It turns out that ACL2d needs some guidance to
get this proof to go through. If we prove this lemma, termination still fails, but
we get a new core.

mergesort_0 x = if not (x = []) and (not (tl x = []))
then mergesort_0 (odds x) else [x]

We have the same problem with odds that we had with evens. A similar lemma
leads to a successful termination proof. Note the interactive nature of this pro-
cess. There were two different reasons for CCGs inability to prove termination.
Rather than simply giving up, the CCG analysis shows the user each reason for
non-termination, one at a time, thereby enabling the user to successfully address
these issues and prove termination.

5 Conclusions

We examined the issue of building termination analysis engines that are both
highly automatic and easy to use in an interactive setting. The challenge is in un-
derstanding and then dealing with failure. To this end, we introduced the notion
of a termination core, a simplification of the program under consideration which
consists of a single loop that the termination engine cannot prove terminating.
Termination cores are used to help users understand why a termination analy-
sis engine failed to prove termination. We showed how to extend Size Change
Termination so that it generates a termination core when it fails to prove ter-
mination. We showed that this is a PSPACE-complete problem and presented a
practical algorithm that adds termination core generation to the Calling Context
Graph termination analysis, a recent, powerful termination analysis that is part
of the ACL2 Sedan. We also presented several convenient ways of allowing users
to interact with CCG analysis, so that they can guide it to a termination proof
after analyzing the termination core that was generated. These techniques are
implemented in the ACL2 Sedan, a freely available, open-source, well-supported
theorem prover that is based on ACL2, but was designed with greater usability
and automation as primary design considerations.
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Abstract. In this article, we describe a framework for formally verify-
ing the correctness of compiler optimizations. We begin by giving formal
semantics to a variation of the TRANS language [6], which is designed
to express optimizations as transformations on control-flow graphs using
temporal logic side conditions. We then formalize the idea of correctness
of a TRANS optimization, and prove general lemmas about correctness
that can form the basis of a proof of correctness for a particular optimiza-
tion. We present an implementation of the framework in Isabelle, and as
a proof of concept, demonstrate a proof of correctness of an algorithm
for converting programs into static single assignment form.

Keywords: optimizing compilers, theorem proving, program transfor-
mations, temporal logic.

1 Introduction

Optimizations for time and memory efficiency are now an essential feature of
almost all modern compilers. These optimizations are often complex program
transformations, and establishing their correctness is a difficult process. In this
paper, we propose a general framework for expressing and verifying compiler
optimizations using established theorem-proving tools, with the goal of reducing
the burden of proving correct any particular optimization.

The problem of verifying a compiler optimization can be divided into two
main parts. The first is specification of the optimization by giving its semantics
in some mathematical formalism. For this purpose, we use the TRANS language,
proposed by Kalvala et al. [6], in which optimizations are defined as transfor-
mations on control flow graphs conditioned on the satisfaction of temporal logic
formulae. This approach is particularly amenable to proofs of correctness for sev-
eral reasons. First, it allows a more modular formulation of many optimizations
than the traditional algorithms, reducing the amount of context that needs to be
drawn in to the proof of each step of optimization. Second, it provides a uniform
framework for expressing various types of optimizations; by proving certain facts
about the fundamental operations of the language, we can take advantage of the
redundancy among different optimizations. Finally, the use of temporal logic
side conditions makes the assumptions of the transformation explicit in a formal
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sense, and can help narrow the gap between the theoretical semantics of the op-
timization and its actual implementation (e.g., by using model checking to verify
the condition before the transformation is performed). As part of the framework,
we provide an Isabelle implementation of TRANS, and an instantiation capable
of expressing the static single assignment (SSA) transformation.

The second part of the problem, and often the more intractable one, is verifica-
tion of the optimization. Given a definition of correctness, one must construct a
formal proof that the correctness property holds for the optimization (see for in-
stance Leroy [8]). The complexity of this process can vary significantly depending
on the choice of formalisms in previous steps. Optimizations are most commonly
specified as algorithms operating on program code, an approach that is easy
to implement but relatively difficult to verify. TRANS itself does not provide a
verification procedure, but it does break optimizations down into combinations
of simple graph transformations, offering a cleaner, more modular approach. By
identifying the basic operations involved in common optimizations, and proving
useful lemmas about their correctness, we hope to reduce the amount of effort
involved in the proof of correctness of any particular optimization.

To demonstrate the versatility of the framework, we have defined and verified
an algorithm for transforming programs into SSA form, a common precursor to
compiler optimizations [3,1]. The SSA transformation is particularly interesting
because it extends the underlying language of a program, adding φ-functions
that are used to determine which instance of a variable should be used based on
the program’s execution trace. While the transformation cannot be expressed
in TRANS as originally presented, we offer a parametric view of TRANS which
allows us to easily add transformation-specific constructs such as indexed vari-
ables and φ-functions. We then give a formal proof of correctness for the SSA
conversion using the Isabelle/HOL theorem prover, using the lemmas provided
by the framework. The result is a specification of the SSA transformation that
is guaranteed to preserve the semantics of the original program.

2 Language Framework

TRANS is a language for expressing program transformations in terms of condi-
tional rewrites on control-flow graphs. As such, in order to give its formal seman-
tics, we must first define the language of programs and formalize the notion of
control-flow graphs for those programs. We begin with the simple language L0,
which captures some of the basic functionality of intermediate representations.
An L0 program is a list of instructions, and the number provided to a goto
command gives the target instruction as a position in the list. More formally:

expr::=expr op expr | num | var
instr::=var := expr | ret(expr) | if expr goto num | skip | goto num

graph instr ::=var := expr | ret(expr) | if expr | goto
The semantics of L0 have been formalized by Lacey et al. [7].

Since TRANS operates on control-flow graphs (CFGs), rather than directly
on programs, we must also formally define CFGs. Our definition is adapted from
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that given by Kalvala [6], in which the nodes are labeled with single instructions
rather than larger basic blocks. A CFG is a record G = (N, E ⊆ N × N ×
{seq, branch}, I : N � graph instr1, S : N � N), where A � B indicates a
partial function from A to B, satisfying the following properties:

1. the node set NG contains the special nodes Entry and Exit
2. the instruction labeling IG is defined on all nodes except Entry and Exit
3. Entry has no incoming edges, and Exit has no outgoing edges
4. the outgoing edges of each other node are consistent with the instruction

labeling of that node
5. the reflexive transitive closure of the successor relation SG is a linear order
6. if two nodes m and n are connected by an edge with label seq , then n is the

successor in SG of m

Of these, property 4 captures the core idea of a CFG, and its formal defini-
tion depends on the underlying language of the graph. In the case of L0, the
appropriate edges for each instruction type are as follows:

– The Entry node has one outgoing edge, with label seq
– a node labeled with := has one outgoing edge, with label seq
– a node labeled with if has two outgoing edges, one with label seq and one

with label branch
– a node labeled with goto has one outgoing edge, with label branch
– a node labeled with ret has one outgoing edge, with label seq , connecting

to the Exit node

The inclusion of a successor function aids us in transforming CFGs back into
programs, so that TRANS transformations can be said to operate on programs
as well as graphs.

A useful property in establishing program correctness is recoverability. A CFG
is recoverable if it has a unique last node: that is, there is only one node that
is labeled with ret, and that node is the only predecessor of the Exit node2 [6].
Reasoning about the correctness of a transformation can sometimes be simplified
by adding the assumption that the graph in question is recoverable.

Since the framework is to be used to prove that certain transformations pre-
serve the semantics of CFGs, it must also include a notion of evaluation of a
CFG. We can give L0 CFGs a small-step execution semantics, based on the se-
mantics of L0, in a manner similar to Leroy [8]. The configurations of a CFG
under execution are either intermediate configurations of the form (m, l, t), where
m is a memory, l is a node in the graph (a program point), and t is an execution
trace3, or values v, indicating that the execution of the graph has terminated.
1 Rather than retain the program’s instruction numbering in the graph, we use edges

to indicate the targets of goto and if statements, which also erases the distinction
between goto and skip nodes; we use goto for either sort of instruction.

2 Note that any program with at least one ret instruction can be restructured to
satisfy this condition, by replacing returns with jumps to a single return instruction.

3 While the execution trace t does not affect the outcome of any instruction in L0,
we include it for generality; in particular, we will make use of it in adjusting the
framework to handle the SSA transformation.
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Then we can define the small-step relation →G for a graph G as follows, where
we use the notation out edges G l to indicate the set of outgoing edges of l in G,
and assume standard evaluation semantics for arithmetic expressions:

out edges G Entry = {(Entry, l′, seq)}
(m,Entry, t) →G (m, l′,Entry; t)

IG(l) = x := e (e, m) ⇓ v out edges G l = {(l, l′, seq)}
(m, l, t) →G (m[x ← v], l′, l; t)

IG(l) = if e (e, m) ⇓ 0 out edges G l = {(l, l′1, seq), (l, l′2, branch)}
(m, l, t) →G (m, l′1, l; t)

IG(l) = if e (e, m) ⇓ v v 
= 0 out edges G l = {(l, l′1, seq), (l, l′2, branch)}
(m, l, t) →G (m, l′2, l; t)

IG(l) = goto out edges G l = {(l, l′, branch)}
(m, l, t) →G (m, l′, l; t)

IG(l) = ret(e) (e, m) ⇓ v

(m, l, t) →G v

We can now define precisely what we mean when we say that two CFGs are
semantically equivalent. We define the set of results of a CFG G starting from a
configuration (m, l, t) as the set of values in the transitive closure of the small-
step relation:

(m, l, t) →G v

(m, l, t, v) ∈ result G

(m, l, t) → (m′, l′, l; t) (m′, l′, l; t, v) ∈ result G
(m, l, t, v) ∈ result G

Then two graphs G and G′ are semantically equivalent if and only if

∀v.(empty ,Entry, [], v) ∈ result G ⇔ (empty ,Entry, [], v) ∈ result G′

That is, starting from the entry point, the empty environment, and the empty
trace, the result set of G is the same as the result set of G′. It is worth noting
that this is a partial correctness property, which ignores the possibility of non-
termination of the optimization.

3 The TRANS Language

Now we have enough background to define the TRANS language itself. We will
present here an overview of the syntax and semantics of the language, focusing on
the differences between our formulation and its original presentation; for further
details, see Kalvala et al. [6].
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3.1 Overview

The basic units of TRANS are conditional graph rewrites of the form
A1, A2, ..., An if φ, where the Ai’s are actions to be performed on a graph,
and φ is a CTL-based side condition. Both the action and the condition may
contain metavariables, which are instantiated with program objects when the
transformation is applied. Actions are defined by

A ::= add edge(n, m, t) | remove edge(n, m, t) | replace n with p1, ..., pm

| split edge(n, m, t, p)

The action add edge(n, m, t) adds an edge labeled t between n and m;
remove edge(n, m, t) removes an edge with label t between n and m;
replace n with p1, ..., pm, replaces the instruction at n with the instructions
p1, ..., pm; and split edge(n, m, t, p), inserts a node with instruction p in the mid-
dle of the edge from n to m labeled t. Many common program transformations
can be expressed as a combination of these basic actions; in fact, many, including
conversion to SSA form, can be expressed using only the replace action. Rather
than using actual (graph) instructions, these actions take as arguments instruc-
tion patterns, in which metavariables can be used in place of program objects.

The side condition of a rewrite is an expression in CTL over paths in the
graph, with the atomic predicates node(n), which asserts that the metavariable
n matches the current node, and stmt(p), which asserts that the instruction
pattern p matches the instruction label at the current node. These atomic predi-
cates can be combined with the usual propositional connectives, as well as several
CTL-specific operators [4], which fall into one of two categories. The first con-
tains the next-time operators EX and AX , which assert that a statement holds
on some successor and all successors of the current node respectively. The second
group includes the until operators Eφ1Uφ2 and Aφ1Uφ2, which assert that φ1
holds on all nodes until a node is reached on which φ2 holds, along some path and
all paths forward from the current node respectively. TRANS also uses reversed
versions of the temporal operators, e.g. ←−−

EX , which make analogous assertions
on nodes/paths backward from the current node. The formula φ@n asserts that
φ holds starting from the node n. In addition to the CTL formulae on paths,
TRANS side conditions include various basic predicates, such as freevar (x, e),
which asserts that x is a free variable of the expression e, or fresh(x), which as-
serts that x does not appear in any instruction in the graph under consideration.

In order to determine the concrete transformation represented by a rewrite,
a valuation, or map from metavariables to program objects, must be provided.
This valuation, usually denoted by σ, is applied to both the action, to determine
the actual nodes and instructions to be rewritten, and the side condition, to
ensure that it produces a valid instance of the rewrite. A concrete instruction is
obtained from a pattern p by applying the function subst(σ, p), which replaces
all the metavariables in p with the values given to them by σ.

A TRANS expression, then, is a group of conditional rewrites combined with
any number of strategies, defined by

T ::=A1, ..., Amifφ | MATCH φ IN T | T1 THEN T2 | T1 	 T2 | APPLY ALL T
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The TRANS expression MATCH φ IN T executes T under the restriction that
its valuation must satisfy the condition φ; T1 THEN T2 applies T1 and T2 in
sequence to a graph; T1 	 T2 applies either T1 or T2; and APPLY ALL T
recursively applies T under any possible valuation until it is no longer applicable.

Two aspects of the TRANS language are provided as parameters. The first
parameter is the underlying language used to label the nodes of the CFGs; for
instance, TRANS on L0 CFGs has instruction patterns such as x := e and if e.
The second parameter is the set of basic predicates and atomic propositions used
in the side conditions. Any property of a valuation and/or a CFG can serve as
a predicate; any property of a valuation, a CFG, and a node can be used as
an atomic proposition. We will modify both of these parameters when applying
TRANS to the SSA transformation. Note that even TRANS on L0 can express a
variety of common optimizations; see Kalvala [6] for several examples, including
dead code elimination and strength reduction.

3.2 Transformation Semantics

For the most part, the semantics of our definition of TRANS are identical to those
given by Kalvala [6], with the addition of a few new basic predicates and local
(defined) predicates. However, we take a simpler approach to the semantics of
top-level transformations, and offer new definitions for the sequencing strategies
THEN and APPLY ALL which we believe are more consistent with the intended
use of the strategies.

In the original presentation of TRANS, the semantics of a transformation
were given by a semantic function �.� : Transformation → (PartV aluation ×
FlowGraph → P(FlowGraph → FlowGraph)) taking a transformation, a par-
tial valuation (a partial function from metavariables to objects), and a graph,
and giving a set of functions on graphs. That is, given a partial valuation and
a graph, a transformation defined a set of functions to be applied to the graph.
However, these functions are all intended to be applied to the graph provided,
and are not guaranteed to be safe on any other graph (since the conditions
of the transformation are checked on the original graph). Thus, the seman-
tic function for a transformation can equally return the set of graphs result-
ing from the application of the transformation to the graph provided. We will
take this approach in the following definitions, and use a semantic function
�.� : Transformation → (PartV aluation × FlowGraph → P(FlowGraph)).

Our second modification to the semantics deals with the compositional strate-
gies THEN and APPLY ALL. Originally, the semantics of THEN were given by

�T1 THEN T2�(τ,G) = {f ◦ g | f ∈ �T1�(τ,G) ∧ g ∈ �T2�(τ,G)}
Intuitively, both T1 and T2 are evaluated on the graph G, and then the result-

ing functions are composed. This has the disadvantage that it violates one of
the desired properties of TRANS, namely, that a transformation is only applied
when its side condition is satisfied. Since T2 is evaluated on G, and then applied
to f(G) for some f ∈ �T1�(τ,G), the transformation it defines may be applied to



A Framework for Formal Verification of Compiler Optimizations 377

a graph on which its side condition does not hold. Using our modified semantic
function, we propose the alternate definition

�T1 THEN T2�(τ,G) = {G′′ | ∃G′.G′ ∈ �T1�(τ,G) ∧ G′′ ∈ �T2�(τ,G′)}
Under this definition, T2 is evaluated not on the original graph G, but rather on
the graph G′ to which it will be applied, restoring the link between the condition
and the transformation.

Our treatment of the APPLY ALL strategy is similar, but more complex. The
intention of the strategy is to apply a transformation everywhere in the graph,
i.e., until the transformation can no longer be applied. The original semantics
given for APPLY ALL were

�APPLY ALL T �(τ,G) = {f1 ◦ f2 ◦ ... ◦ fn | fi ∈ �T �(τ,G) \ {f1, ..., fi−1}}
This definition again allows the application of a transformation to a graph on
which the side condition has not been checked, and also suffers from the problem
that �T �(τ,G) may not be finite (or even countable). As a matter of fact, since the
graph under consideration changes after each application of T , and the condition
must be re-evaluated, the APPLY ALL construct is essentially recursive. Thus,
in order to give it the desired semantics, we must give it an inductive definition.
We begin by defining an inductive set apply some containing all graphs produced
from applying T some number of times (possibly zero) to G:

G ∈ apply some(T, τ,G)

G′ ∈ �T �(τ,G) G′′ ∈ apply some(T, τ,G′)
G′′ ∈ apply some(T, τ,G)

Then, by removing all of the intermediate graphs, we can define APPLY ALL
as yielding exactly the set of graphs in which T has been performed until it can
no longer be applied:

�APPLY ALL T �(τ,G)=apply some(T, τ,G)\{G′ | ∃G′′.G′ 
= G′′∧G′′∈�T �(τ,G′)}
Under this definition, we once again have the property that a transformation
is never applied to a graph on which its condition has not been evaluated, and
we also know that T will no longer be applicable to the resulting graphs4. As
part of the implementation of the framework, we have formalized the syntax
and modified semantics of TRANS in Isabelle; the algebraic definitions can be
translated directly into Isabelle datatypes and functions.

4 Theoretical Properties of TRANS

Although the TRANS approach has not previously been used to verify optimiza-
tions, the modularity provided by strategies and the use of CTL side conditions
4 Note that if the recursive application of T is non-terminating, the set defined by

APPLY ALL T is empty.
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make it well suited for formal verification. In this section, we state and sketch the
proof of several simple but powerful properties of TRANS expressions, dealing
with the effects of strategies and some common transformations. These lemmas
also suggest a general methodology for verifying optimizations using TRANS:
the first lemma can be used to break an optimization down into component
transformations, and the following lemmas provide useful facts about common
basic transformations.

When verifying a transformation, we frequently want to prove that some prop-
erty of the program under consideration is preserved ; that is, if it holds for the
original program, then it also holds for the transformed program. Formally, we
say that a transformation T preserves a property P of graphs if for all partial val-
uations τ and graphs G, if P holds on G, then for all result graphs G′ ∈ �T �(τ,G),
P holds on G′. We expect that if a group of transformations preserves some prop-
erty, then any combination of those transformations also preserves the property.
In fact, we can prove that the various strategies preserve any property that their
component transformations preserve:

Lemma 1. Suppose that T and T ′ preserve some property P . Then
MATCH φ IN T , T THEN T ′, T 	 T ′, and APPLY ALL T preserve P .

Proof. For every strategy other than APPLY ALL, the result follows directly
from the semantics of the strategy. We can show that APPLY ALL T preserves
P by induction on the number of applications of T . ��
This result allows us to break down the problem of showing that a complex trans-
formation preserves a property into one of showing that each of its individual
components (sub-expressions of the form A1, ..., Am if φ) preserves the property.
In the case study below we will use this lemma to show that a transformation
preserves recoverability, but it could be used for any invariant on a graph.

The simplest transformation is one of the form replace n with p, where p is
a single instruction pattern. This is the TRANS method of modifying a single
instruction in the graph. Transformations of this form have many useful proper-
ties: for instance, they do not change the nodes, edges, or successor relation of
a graph. In addition, we can give a simple condition under which such transfor-
mations preserve recoverability.

Lemma 2. Consider a recoverable graph G = (N, E, I, S), and a valuation σ. If
IG σ(n) is the same type of instruction5 as p, then G′ = �replace n with p�(σ,G)
is recoverable.

Proof. The only effect of the single-instruction replace is to replace the instruc-
tion at σ(n) with subst(σ, p). Since the two instructions have the same type, this
replacement does not affect the recoverability of the graph. ��
This is a powerful lemma because it can be proved at the level of actions, and thus
applies to any transformation using an action of this form. In other words, any

5 I.e., they are both if-statements, or both goto-statements, etc.
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transformation which performs only replacements of instructions by instructions
of the same type is guaranteed to preserve recoverability. As we will see in our
case study, some surprisingly complex transformations fall into this category.

A slightly more complicated transformation is one of the form replace n with
p1, ..., pm, which replaces an instruction with a list of instructions. In this case,
the nodes, edges, and successor function are all affected, but in a strictly local
way. Once again, we can identify a common case in which such transformations
preserve recoverability: that of inserting a list of assignments before some point
in the program.

Lemma 3. Consider a recoverable graph G = (N, E, I, S), and a valuation
σ. If σ(i) = IG σ(n) and p1, ..., pm are all assignment patterns, then G′ =
�replace n with p1, ..., pm, i�(σ,G) is recoverable.

Proof. The effect of this replace action is to insert a sequence of nodes before
σ(n). Since each inserted node is connected to its successor with a seq-edge,
which is consistent with any assignment instruction, G′ is still a CFG, and since
no ret instructions are added or removed, G′ is still recoverable. ��
Note that the pi’s must be assignments because the edges inserted between the
new nodes are labeled with seq. In fact, this lemma can be generalized to any
instruction type for which the appropriate outgoing-edge set is a single seq-edge.

Lemma 4. Consider a recoverable graph G = (N, E, I, S), and a valuation σ. If
σ(i) = I G σ(n) and p1, ..., pm are patterns consistent with an outgoing-edge set
of a single seq-edge, then G′ = �replace n with p1, ..., pm, i�(σ,G) is recoverable.

In the case of L0, these two statements are equivalent, but in more comprehensive
languages, such as the L1 language presented below, the more general statement
of the lemma will be more useful.

5 The SSA Transformation

5.1 Static Single Assignment Form

One common program transformation in optimizing compilers is conversion to
SSA form. While not in itself an optimization, this conversion allows for the
application of various other optimizations and analyses [3,1]. A program in SSA
form, as its name suggests, has no more than one assignment statement for each
variable in the program. This is accomplished by labeling each instance of each
variable with a subscript, or index ; a unique index is given to each definition
of a variable, and each use is given the index of the definition that reaches it.
At join-points in the program, where two or more branches converge, there
may be more than one reaching definition of a given variable; in this case, a
φ-function is inserted at that point. The φ-function takes as arguments all the
indexed instances of the variable that could reach the current point, chooses the
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Fig. 1. Converting a CFG to SSA form

appropriate instance based on the trace of the current execution, and assigns it
to a new instance of the variable. In this way, for every use of a variable in any
instruction other than a φ-function, there is exactly one reaching definition, and
so every variable can be labeled unambiguously with an index.

From a verification perspective, the SSA transformation is particularly inter-
esting because 1) it introduces new variables into the program, and 2) it extends
the language of the program by adding φ-functions. As such, we decided to test
the power of the framework by using it to state and prove the correctness of SSA.

5.2 Defining SSA in TRANS

TRANS on L0 is not sufficient to express the SSA transformation. However, we
can extend L0 to a new language L1 that can support SSA by adding two new
constructs: an indexed variable varnum , which can be used anywhere a variable
can be used, and a φ-instruction var := φ(var , ..., var). The appropriate outgoing
edge set for a φ-instruction is a single node with label seq, as in the case of an
ordinary L0 assignment instruction. The small-step evaluation rules for the φ-
instruction are as follows, where find in trace v1, ..., vn t G gives the most recent
definition of any of the xi’s in the trace t:

IG(l) = x := φ(v1, ..., vn) find in trace v1, ..., vn t G = v′

out edges G l = {(l, l′, seq)}
(m, l, t) →G (m[x ← m(v′)], l′, l; t)

IG(l) = x := φ(v1, ..., vn) ∀v′.find in trace v1, ..., vn t G 
= v′

out edges G l = {(l, l′, seq)}
(m, l, t) →G (m, l′, l; t)

Note that we now make use of the execution trace included in the configuration.
We include a rule to handle the corner case in which none of the variables in the
φ-function are defined; in this case, the φ-function has no effect on the memory.
We chose this outcome, rather than allowing the execution to become stuck, to
most closely mimic the behavior of the original graph: if a variable was undefined,
the program would not become stuck until it reached a use of the variable, and
inserting a φ-function should not force a crash in a program that would not
originally have crashed.
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We also add several SSA-specific basic predicates to TRANS, such as
fresh new(x, j). The predicate fresh new(x, j) holds when x is a variable, j is
a number, and the indexed variable xj does not appear anywhere in the pro-
gram. We can use CTL on CFGs to define useful propositions on nodes such as
reaches(x, j), which holds when xj reaches the current node, and multi defs(x),
which holds when two different instances of x reach the current node.

We can now express the SSA conversion in TRANS on L1. We break the
conversion down into four stages, as follows: add index adds indices to the left-
hand side of each assignment in the program. add phi inserts φ-functions (with
empty bodies) at every point reached by multiple definitions6. update updates
each use of a variable with the index of the reaching instance, and fills in the
bodies of φ-functions. Finally, refactor transforms each indexed variable (which
is semantically equivalent to the variable obtained by dropping the index) to an
entirely new variable, giving it a separate location in memory. The conversion
can be written in TRANS as follows:

add index ::= replace n with (xk := e)
if (varlit(x) ∧ stmt(x := e) @ n ∧ fresh new(x, k))

The first step of the conversion is the simplest: each definition of a variable x is
assigned a unique index k, without making any other changes to the graph.

add phi ::=
replace n with (xk := φ(), i)
if (stmt(i) @ n ∧ multi defs x j1 j2 @ n ∧ fresh new x k ∧
∃n1 (∃n2 ((¬n1 is n2) ∧ (←−−EX node(n1) ∧ ←−−

EX node(n2)) @ n)) ∧
A(∃y, s (stmt(y := φ(s)) ∧ ¬x is y))U(¬∃y, s (stmt(y := φ(s)))) @ n)

In the second step, we insert the φ-functions at the proper locations in the pro-
gram. Whereas in traditional algorithmic descriptions of the transformation, an
analysis must be performed to determine where to place φ-functions, the TRANS
approach allows us to explicitly state the condition under which a function should
be inserted. The second half of the condition ensures that the φ-functions are
only inserted at join points, and that no more than one φ-function per variable
is inserted at each join point.

update ::= MATCH (reaches x k @ n) IN
(replace n with (y := e[xk]) if stmt(y := e[x]) @ n 	
replace n with (if e[xk]) if stmt(if e[x]) @ n 	
replace n with (ret(e[xk])) if stmt(ret(e[x])) @ n 	
replace n with (xk′ := φ(xk, s)) if (stmt(xk′ := φ(s)) @ n ∧ xk /∈ s))

In the third step, each use of a variable is annotated with the index of the
reaching definition. Each φ-function is also populated with the reaching instances
of the variable to which it is assigned.
6 Note that this formulation of the conversion may not compute a minimal number of

φ-functions; this could be achieved by adding an additional condition to add phi .
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refactor ::=
MATCH (fresh(z) ∧ (stmt(xk := e) ∨ stmt(xk := φ(s))) @ n) IN
((replace n with (z := e) if stmt(xk := e) @ n 	
replace n with (z := φ(s)) if stmt(xk := φ(s)) @ n) THEN
APPLY ALL (replace m with(y := f [z]) if stmt(y := f [xk]) @ m 	

replace m with (if f [z]) ifstmt(if f [xk]) @ m 	
replace m with (ret(f [z])) if stmt(ret(f [xk])) @ m 	
replace m with (y := φ(z, t)) if stmt(y := φ(xk, t)) @ m))

The final step is to replace each indexed variable with an entirely new variable.
While this is not explicitly a part of most SSA algorithms, it is necessary because
of the memory model used in our implementation, in which every instance of a
variable points to the same memory location. The advantage of this approach
is that each individual step can be shown to preserve the program’s semantics,
allowing for a more modular proof of correctness, as will be shown below.

Each step performs the desired transformation for one variable, so we use the
APPLY ALL strategy to extend it to the entire program, giving the complete
SSA transformation:

conversion ::= (APPLY ALL add index ) THEN (APPLY ALL add phi) THEN
(APPLY ALL update) THEN (APPLY ALL refactor )

5.3 Proving SSA Correct

Given the definition of SSA in TRANS, and the lemmas shown above, we are
now ready to construct a proof of correctness for SSA. In fact, using the Isabelle
implementation of the framework, we have done exactly that, proving that any
graph produced by the conversion is semantically equivalent to the input graph.
We will outline the proof below. Since we have taken the trouble to express
the conversion in as modular a fashion as possible, we can verify it by proving
appropriate theorems for each of the individual steps, and then combining them
with the simple facts about the strategies shown above.

Thanks to the power of the framework, we can easily show that each step of
the transformation preserves recoverability.

Lemma 5. add index , add phi, update, and refactor all preserve recoverability.

Proof. All of the actions in add index , update, and refactor are of the form
specified in Lemma 2, so they preserve recoverability. The action in add phi is
of the form specified in Lemma 4, so it also preserves recoverability. Thus, we
can conclude that the conversion preserves recoverability. ��
Corollary 1. The complete SSA conversion preserves recoverability.

Proof. Since recoverability is a property of a graph, by Lemma 1 the conversion
preserves recoverability if each of its steps preserves recoverability. ��
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Now we can demonstrate the correctness of the transformation. Once again,
we will proceed modularly, stating an appropriate lemma for each step of the
conversion. Of course, the steps are not independent of each other; they are
semantics-preserving only in combination. However, we can separate them by
stating appropriate conditions that must hold for each step to be correct, and
then showing that these conditions hold after the previous step. Ultimately, we
will have shown not only that the results of the transformation are semantically
equivalent to its input, but also that the resulting graphs are in SSA form. We can
identify three properties that should hold at various points in the transformation:

1. The graph has no more than one definition for each variable instance it
contains.

2. There is no more than one instance of each variable in the graph that reaches
each node labeled with a non-φ instruction, and each instruction uses a
variable instance xj only if xj reaches the node labeled with the instruction.

3. If an instance of a variable xj reaches a node in the graph labeled with a
φ-function, and another instance xk is in the body of the φ-function, then
xj is also in the body of the φ-function.

Note that if a graph has no indexed variables, then property 1 is sufficient to
imply that the graph is in SSA form, since there is at most one instance of each
variable.

Lemma 6. Consider a CFG G with no φ-functions. Then every graph in
�add index�(empty ,G) is semantically equivalent to G and has no φ-functions.
Furthermore, every graph in �APPLY ALL add index�(empty ,G) is semanti-
cally equivalent to G, has no φ-functions, and has property 1.

Lemma 7. Consider a recoverable CFG G with no non-empty φ-functions such
that property 1 holds for G. Then any graph in �add phi�(empty ,G) is seman-
tically equivalent to G, has no non-empty φ-functions, and has property 1. Any
graph in �APPLY ALL add phi�(empty ,G) also is semantically equivalent to G,
has no non-empty φ-functions, and has property 1.

Lemma 8. Consider a CFG G with property 1 such that every φ-function in
G is of the form xj = φ(xk1, ..., xkn) – i.e., every variable in the body of the
φ-function has the same base as the variable on the left-hand side. Then every
graph in �update�(empty ,G) is semantically equivalent to G, has property 1, and
has only φ-functions of the form xj = φ(xk1, ..., xkn). Furthermore, every graph
in �APPLY ALL update�(empty ,G) is semantically equivalent to G, has only
φ-functions of the form xj = φ(xk1, ..., xkn), and has properties 1, 2, and 3.

Lemma 9. Consider a CFG G with properties 1, 2, and 3. Then every graph
in �refactor�(empty ,G) is semantically equivalent to G and has properties 1,
2, and 3. Furthermore, every graph in �APPLY ALL refactor�(empty ,G) is
semantically equivalent to G, has properties 1, 2, and 3, and has no indexed
variables.
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Theorem 1. Consider a recoverable L0 CFG G. Every graph in
�conversion�(empty ,G) is semantically equivalent to G, and is in SSA form.

Proof. We will proceed by breaking the conversion into steps, and then make
use of the above lemmas. Since L0 does not contain φ-functions, we know
that G has no φ-functions. Thus, by Lemmas 5 and 6, every graph in
�APPLY ALL add index�(empty ,G) is recoverable, is semantically equivalent
to G, has no φ-functions, and has property 1. If a graph has no φ-functions, then
it certainly has no non-empty φ-functions. Thus, by Lemma 7, every graph in
�(APPLY ALL add index THEN (APPLY ALL add phi)�(empty ,G) is seman-
tically equivalent to G, has no non-empty φ-functions, and has property 1. If
every φ-function in a graph is empty, then certainly every φ-function is of the
form xj = φ(xk1, ..., xkn). Thus, by Lemma 8, every graph in

�(APPLY ALL add index ) THEN
(APPLY ALL add phi) THEN (APPLY ALL update)�(empty ,G)

is semantically equivalent to G, and has properties 1, 2, and 3. Finally, by Lemma
9, we can conclude that every graph in �conversion�(empty ,G) is semantically
equivalent to G, has properties 1, 2, and 3, and has no indexed variables, implying
that it is in SSA form. ��

6 Conclusions and Further Research

We have outlined a new approach to proving the correctness of compiler op-
timizations, as well as an Isabelle-implemented framework to support this ap-
proach. We have clarified and formalized the semantics of the TRANS language,
making it into a tool for use in constructing fully formal proofs of correctness for
program transformations; the Isabelle code can be found online [10]. By using
TRANS to state a transformation in terms of conditional rewrites on CFGs, a
verifier can take advantage of the general lemmas we have established about the
semantics of TRANS. We have demonstrated the generality of this approach by
parameterizing TRANS to express the SSA transformation, and then presented
a new and relatively concise proof of correctness for the transformation within
our framework. This is, to the best of our knowledge, the first machine-assisted
verification of an optimization expressed in TRANS, and the first verified SSA
conversion of any sort. We hope that the approach demonstrated here will sig-
nificantly reduce the difficulty of the problem of verifying optimizations.

The L0 language on which our implementation of TRANS is based is relatively
simple, and does not include some common features of intermediate languages,
such as arrays and function calls. Our experience with L1 suggests that param-
eterizing TRANS with more expressive languages can be easily accomplished;
the more difficult aspect of adding new features is providing a semantics for
programs with these features and proving related lemmas about TRANS. This
would bring the framework a step closer to dealing with real-world intermediate
languages, and enable it to handle a wider range of optimizations.
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The tendency to leave compiler optimizations unverified might be defended
with the argument that most optimizations have been in use for decades with-
out major problems. However, bugs have been discovered even in C compilers
[11], and the situation is even more complicated when dealing with concurrency.
Most optimizations for parallel programs are experimental and have not been
widely field-tested, and it is much more difficult to put forward a convincing
informal justification for a parallel optimization. For this reason, we believe that
compilers for parallel languages particularly stand to benefit from formal proofs
of correctness. While formalisms such as control-flow graphs and CTL are suf-
ficient for expressing and verifying optimizations on sequential programs, they
are not as obviously applicable to the case of parallel programs. However, we
believe that concurrent analogues of these formalisms, such as parallel program
graphs [14] and alternating-time temporal logic [2], will allow us to extend our
approach to parallel optimizations.

7 Related Work

This research builds on the work of Lacey et al. [7] and Kalvala et al. [6], who
have defined the core concepts of the TRANS language and used it to express
and (on paper) verify several optimizations.

One of the first computer-assisted verifications of a compiler was due to Moore
[12]. The source language of this compiler was very low-level, and the compiler
did not perform any optimizations.

Leroy [9] has developed a Coq-based framework for the verification of opti-
mizations that depend on dataflow analysis. Code transformations operate on
instructions, and are verified by comparing the semantics of the transformed
instructions to that of the original instructions under conditions provided by the
dataflow analysis. However, this approach can handle only limited modifications
to program structure. Visser et al. [16] use a rewrite system to define optimiza-
tions on programs in a functional language. Their system includes a variety of
rewriting strategies, but does not deal with conditional rewriting or verification.

Translation validation [13,15] is another method of verifying compiler opti-
mizations. In this approach, rather than proving the optimization correct for all
programs, an automatic verifier is used on the results of each application of the
optimization to ensure that the resulting program has the same semantics as the
original program. Since the process is fully automated, the verification process
is considerably more lightweight, but the range of optimizations that can be
handled is more limited.

Various work has been done on the formal properties of code already in SSA
form; see for instance Blech and Glesner [5], who have used Isabelle to verify an
algorithm for code generation from SSA.

Acknowledgments. We would like to thank Sara Kalvala and Richard War-
burton for introducing us to TRANS and clarifying various points.
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Abstract. Lebesgue integration is a fundamental concept in many
mathematical theories, such as real analysis, probability and informa-
tion theory. Reported higher-order-logic formalizations of the Lebesgue
integral either do not include, or have a limited support for the Borel
algebra, which is the canonical sigma algebra used on any metric space
over which the Lebesgue integral is defined. In this paper, we overcome
this limitation by presenting a formalization of the Borel sigma algebra
that can be used on any metric space, such as the complex numbers or
the n-dimensional Euclidean space. Building on top of this framework,
we have been able to prove some key Lebesgue integral properties, like
its linearity and monotone convergence. Furthermore, we present the
formalization of the “almost everywhere” relation and prove that the
Lebesgue integral does not distinguish between functions which differ
on a null set as well as other important results based on this concept.
As applications, we present the verification of Markov and Chebyshev
inequalities and the Weak Law of Large Numbers theorem.

1 Introduction

Formal modeling of physical systems or devices is not a very straightforward
task due to the presence of many continuous and unpredictable components.
For example, embedded systems are operating in a concrete physical environ-
ment with continuous dynamics; cryptography heavily relies upon information
theoretic concepts; a broad area of chemistry and biology (and biophysics) wor-
ries about stochastic effects and phenomena, etc. Formal models of computation
have in the past mostly been considered independent of the continuous or unpre-
dictable world. In classical formal verification efforts, hardware and software are
viewed as discrete models of computation. But due to the dire need of accurate
analysis in safety-critical domains, there is a growing trend towards incorpo-
rating continuous and unpredictable physical realities in the formal models of
physical systems.

Lebesgue integration [1] is a fundamental concept in many mathematical the-
ories, such as real analysis [5], probability [6] and information theory, which are
widely used to model and reason about the continuous and unpredictable com-
ponents of physical systems. The reasons for its extensive usage, compared to
the commonly known Riemann integral, include the ability to handle a broader
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class of functions, which are defined over more general types than the real line,
and its better behavior when it comes to interchanging limits and integrals. In
order to facilitate the formal analysis of physical systems, two higher-order-logic
formalizations of the Lebesgue integral have been recently reported [3,15]. How-
ever, they either do not include, or have a very limited support for the Borel
algebra [2], which is a sigma algebra generated by the open sets. These defi-
ciencies restrict the formal reasoning about some very useful Lebesgue integral
properties, which in turn limits the scope of formally analyzing physical systems.

In this paper, we present a generalized formalization of the Lebesgue integral
in order to exploit its full potential for the formal analysis of other systems. We
first formalize the Borel algebra that provides a unified framework to prove the
Lebesgue integral properties and measurability theorems on any metric space,
such as the real numbers, the complex numbers or the n-dimensional Euclidean
space. Building on top of this formalization, we prove some of the key Lebesgue
integral properties as well as its convergence theorems. Similarly, we formalize
the notion of “almost everywhere” [1] and prove that the Lebesgue integral does
not distinguish between functions which differ on a null set along with some other
useful results based on the “almost everywhere” relation. In order to illustrate
the practical effectiveness of our work, we utilize it to verify the Chebyshev and
Markov inequalities and the Weak Law of Large Numbers (WLLN) [14], which
are widely used properties in probability and information theories.

We used the HOL theorem prover for the above mentioned formalization and
verification tasks. The main motivation behind this choice was to build upon
existing formalizations of measure [10] and Lebesgue integration [3] theories.

The rest of the paper is organized as follows: Section 2 provides a review of
related work. In Section 3, we give an overview of main definitions of the measure
theory [2]. Section 4 presents our formalization of the Borel theory, which is
used in Section 5 to prove the main properties of the Lebesgue integral and its
convergence theorems. In Section 6, we use our formalization for verifying some
important theorems from the theory of probability. Finally, Section 7 concludes
the paper and provides hints to future work.

2 Related Work

Coble [3] generalized the measure theory formalization by Hurd [10] and built
on it to formalize the Lebesgue integration theory. He proved some properties of
the Lebesgue integral but only for the class of positive simple functions. Besides,
multiple theorems in Coble’s work have the assumption that every set is mea-
surable which is not correct in most cases of interest. We propose to prove the
Lebesgue integral properties and convergence theorems for arbitrary functions
by providing a formalization of the Borel sigma algebra, which has also been
used to overcome the assumption of Cobles’s work.

Based on the work of Hurd [10], Richter [15] also formalized the measure
theory in Isabelle/HOL, where he restricts the measure spaces that can be con-
structed. In Richter’s formalization, a measure space is the pair (A, μ); A is a set
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of subsets of X , called the set of measurable sets and μ is a measure function.
The space is implicitly the universal set of the appropriate type. This approach
does not allow to construct a measure space where the space is not the universal
set. The only way to apply this approach for an arbitrary space X is to define
a new type for the elements of X , redefine operations on this set and prove
properties of these operations. This requires considerable effort that needs to
be done for every space of interest. The work we propose in this paper is based
on the formalization of Coble [3] where we define a measure space as a triplet
(X,A, μ); the set X being the space.

Richter [15] defined the Borel sets as being generated by the intervals. In the
formalization we propose in this paper, the Borel sigma algebra is generated by
the open sets and is more general as it can be applied not only to the real numbers
but to any metric space such as the complex numbers or Rn, the n-dimensional
Euclidean space. It provides a unified framework to prove the measurability
theorems in these spaces. Besides, our formalization allows us to prove that
any continuous function is measurable which is an important result to prove
the measurability of a large class of functions, in particular, trigonometric and
exponential functions. To prove this result we also formalize in this paper key
concepts of topology [13] in HOL.

In his work in topology in the PVS theorem prover, Lester [11] provided
formalizations for measure and integration theories but did not prove the prop-
erties of the Lebesgue integral nor its convergence theorems such as the Lebesgue
Monotone Convergence.

3 Measure Theory

The measure theory formalization in HOL was essentially done in [10] and [3]. We
make use of this formalization in our development and hence will only mention
the main definitions. A measure is a way to assign a number to a set, interpreted
as its size, a generalization of the concepts of length, area, volume, etc. A mea-
sure is defined on a class of subsets called the measurable sets. One important
condition for a measure function is countable additivity, meaning that the mea-
sure of a countable collection of disjoint sets is the sum of their measures. This
leads to the requirement that the measurable sets should form a sigma algebra.

Definition 1. Let A be a collection of subsets of a space X. A defines a sigma
algebra on X iff A contains the empty set ∅, and is closed under countable unions
and complementation within the space X.

Definition 1 is formalized in HOL as

� ∀X A. sigma_algebra (X,A) =
subset_class X A ∧ {} ∈ A ∧ (∀s. s ∈ A ⇒ X\s ∈ A) ∧
∀c. countable c ∧ c ⊆ A ⇒ ⋃

c ∈ A

where X\s denotes the complement of s within X ,
⋃

c the union of all elements
of c and subset_class is defined as
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� ∀X A. subset_class X A = ∀s. s ∈ A ⇒ s ⊆ X

A set S is countable if its elements can be counted one at a time, or in other
words, if every element of the set can be associated with a natural number, i.e.,
there exists a surjective function f : N → S.

� ∀s. countable s = ∃f. ∀x. x ∈ s ⇒ ∃n. f n = x

The smallest sigma algebra on a space X is A = {∅, X} and the largest is its
powerset, P(X), the set of all subsets of X . The pair (X,A) is called a σ-field
or a measurable space, A is the set of measurable sets.

For any collection G of subsets of X we can construct the smallest sigma algebra
on X containing G, we call it the sigma algebra on X generated by G, denoted
by σ(X, G). There is at least one sigma algebra on X containing G, namely the
power set of X . σ(X, G) is the intersection of all those sigma algebras.

� ∀X G. sigma X G = (X,
⋂{s | G ⊆ s ∧ sigma_algebra (X,s)})

Definition 2. A triplet (X,A, μ) is a measure space iff (X,A) is a measurable
space and μ : A → R is a non-negative and countably additive measure function.

� ∀X A mu. measure_space (X,A,mu) =
sigma_algebra (X,A) ∧ positive (X,A,mu) ∧
countably_additive (X,A,mu)

A probability space (Ω,A, p) is a measure space satisfying p(Ω) = 1.
There is a special class of functions, called measurable functions, that are struc-
ture preserving, in the sense that the inverse image of each measurable set is also
measurable. This is analogous to continuous functions in metric spaces where the
inverse image of an open set is open.

Definition 3. Let (X1,A1) and (X2,A2) be two measurable spaces. A function
f : X1 → X2 is called measurable with respect to (A1,A2) (or (A1,A2) measur-
able) iff f−1(A) ∈ A1 for all A ∈ A2.

f−1(A) denotes the inverse image of A. The HOL formalization is the following.

� ∀a b f.
f ∈ measurable a b =
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a

In this definition, we did not specify any structure on the measurable spaces. If
we consider a function f that takes its values on a metric space, most commonly
the set of real numbers or complex numbers, then the Borel sigma algebra on
that space is used.
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4 Borel Theory

Working with the Borel sigma algebra makes the set of measurable functions
a vector space. It also allows us to prove various properties of the measurable
functions necessary for the development in HOL of the Lebesgue integral and its
properties.

Definition 4. The Borel sigma algebra on a space X is the smallest sigma al-
gebra generated by the open sets of X.

� borel X = sigma X (open_sets X)

An important example, especially in the theory of probability, is the Borel sigma
algebra on R, denoted by B(R).

� Borel = sigma UNIV (open_sets UNIV)

Clearly, to formalize as well as prove in HOL various properties of B(R), we need
to formalize some topology concepts of R and also provide a formalization of the
set of rational numbers Q. A theory for the rational numbers was developed in
HOL but does not include the theorems that we need and is in fact unusable for
our development because we need to work on rational numbers as a subset of
real numbers and not of a different HOL type. We will prove later that B(R) is
generated by the open intervals. This was actually used in many textbooks as
a starting definition for the Borel sigma algebra on R. While we will prove that
the two definitions are equivalent in the case of the real line, our formalization
is vastly more general and can be used for any metric space such as the complex
numbers or Rn, the n-dimensional Euclidian space.

4.1 Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers, the denominator of which is positive. We use natural numbers and
express Q, the set of rational numbers, as the union of non-negative (Q+) and
non-positive (Q−) rational numbers.

� Q = {r | ∃ n, m. r = n
m ∧ m > 0} ∪ {r | ∃ n, m. r = −n

m ∧ m > 0}
We prove in HOL an extensive number of reassuring properties on the set Q as
well as few other less straightforward ones, namely, Q is countable, infinite and
dense in R.

Theorem 1. N ⊂ Q and ∀x, y ∈ Q, −x, x + y, x − y, x ∗ y ∈ Q and ∀y 
= 0,
1
y and x

y ∈ Q

A proof of this theorem in HOL is at the same time straightforward and tedious
but it is necessary to manipulate elements of the newly defined set of rational
numbers and prove their membership to Q in the following theorems.

Theorem 2. The set of rational numbers Q is countable.
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Proof. We prove that there exists a bijection f1 from the set of natural numbers
N to the cross product of N and N∗ (f1 : N → N × N∗). Let f2 : N × N∗ → Q+

such that f2(a, b) = a
b . and f = f2 ◦ f1. Then ∀x ∈ Q+, there exists n ∈ N such

that f(n) = x. This proves that Q+ is countable. Similarly, we prove that Q− is
countable and that the union of two countable sets is countable. ��
Theorem 3. (Q dense in R)
∀x, y ∈ R and x < y, there exists r ∈ Q such that x < r < y.

Proof. We start by defining the ceiling of x as the smallest natural number larger
than x, denoted by �x� and prove that ∀x, x ≤ �x� and ∀x ≥ 0, �x� < x + 1.
Let x, y ∈ R such that x < y. We use the ceiling function and the Archimedean
property to construct r such that x < r < y. ��
Another definition that will be useful in our development is the set of open
intervals with rational end-points Ir = {]r1, r2[: r1, r2 ∈ Q}.
� open_intervals_set = {{x | a<x ∧ x<b} | a ∈ UNIV ∧ b ∈ UNIV}

We prove that Ir is countable by showing that the mapping Ir → Q×Q that sends
an open interval ]r1, r2[∈ Ir to the ordered pair of rational numbers (r1, r2) ∈
Q × Q is injective, and that the cross product of two countable sets, Q in this
case, is countable.

4.2 Topology

To define the Borel sigma algebra on R, we need some concepts of the topology
of R formalized in HOL. Some of this was already developed by Harrison [7] but
his formalization in HOL does not use the set theory and also lacks some of the
important theorems that we need in our development. Harrison, later, developed
an extensive topology theory [8] in HOL-Light. In the following, we define the
concepts of neighborhood and open set in R and prove the required theorems.

Definition 5. Let a ∈ A ⊂ R. A is a neighborhood of a iff there exists a real
number d > 0 such that ∀x. |x − a| < d ⇒ x ∈ A. In other words, a is an
interior point of A.

� ∀A a.
neighborhood_R A a = ∃d. 0<d ∧ ∀y. a - d<y ∧ y<a + d ⇒ y ∈ A

Definition 6. A set that is a neighborhood to all of its points in an open set.
Equivalently, if every point of a set is an interior point then the set is open.

� ∀A. open_set_R A = ∀x. x ∈ A ⇒ neighborhood_R A x

Theorem 4. The empty set and the universal set are open.

Theorem 5. Every open interval is an open set.
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Theorem 6. The union of any family of open sets is open. The intersection of
a finite number of open sets is open.

Theorem 7. Every open set in R is the union of a countable family of open
intervals.

Proof. We only show the proof for Theorem 7. Let A be an open set in R,
then by the definition of open set, for all x in A there exists an open interval
containing x such that ]a, b[⊂ A. Using the property of density of Q in R, there
exists ]ar, br[⊂ A containing x, ar and br being rational numbers. A is the union
of family of elements of Ir which is then countable because Ir is countable. ��
Theorem 8. The inverse image of an open set by a continuous function is open.

Proof. Let A be an open set in R. From the previous theorem, A is a countable
union of open intervals (Ai). f−1(A) = f−1(

⋃
Ai) =

⋃
f−1(Ai). Using Theo-

rem 6, it suffices to prove that the inverse image of an open interval is open. For
this we use the definition of a continuous function and the limit of a function to
prove that any point of f−1(Ai) is an interior point. ��

4.3 Borel Measurable Sets

In this section, we prove in HOL that the Borel algebra on the real line B(R)
is generated by the open intervals (]c, d[ for c, d ∈ R). We show that it is also
generated by any of the following classes of intervals: ]−∞, c[, [c, +∞[, ]c, +∞[,
] − ∞, c], [c, d[, ]c, d], [c, d], where c, d ∈ R.

Theorem 9. B(R) is generated by the open intervals ]c, d[ where c, d ∈ R

Proof. The sigma algebra generated by the open intervals, σI , is by definition
the intersection of all sigma algebras containing the open intervals. B(R) is one of
them because the open intervals are open sets (Theorem 5). Hence, σI ⊆ B(R).
Conversely, B(R) is the intersection of all the sigma algebras containing the open
sets. σI is one of them because every open set on the real line is the union of
a countable collection of open intervals (Theorem 7). Consequently B(R) ⊆ σI

and finally B(R) = σI .
To prove that B(R) is also generated by the other classes of intervals, it suffices

to prove that any interval ]a,b[ is contained in the sigma algebra corresponding
to each class. For the case of the intervals of type [c, d[, this follows from the
equation ]a, b[ =

⋃
n [a + 1

2n , b[.
For the open rays ] −∞, c [, the result follows from the fact that [a, b[ can be

written as the difference of two rays, [a, b[ = ] −∞, b [ \ ] −∞, a [.
In a similar manner, we prove in HOL that all mentioned classes of intervals
generate the Borel sigma algebra on R. ��
Another useful result, asserts that the singleton sets are measurable sets of B(R).

Theorem 10. ∀c ∈ R, {c} ∈ B(R)
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The proof of this theorem follows from the fact that a sigma algebra is closed
under countable intersection and the equation

∀c ∈ R {c} =
⋂
n

[c − 1
2n

, c +
1
2n

[

4.4 Real Valued Measurable Functions

Recall that in order to check if a function f is measurable with respect to
(A1,A2), it is necessary to check that for any A ∈ A2, its inverse image f−1(A) ∈
A1. The following theorem states that, for real-valued functions, it suffices to
perform the check on the open rays (] −∞, c[, c ∈ R).

Theorem 11. Let (X,A) be a measurable space. A function f : X → R is
measurable with respect to (A,B(R)) iff ∀c ∈ R, f−1(] −∞, c[) ∈ A
Proof. Suppose that f is measurable with respect to (A,B(R)), we showed in
the previous section that ∀c ∈ R, ] − ∞, c[∈ B(R). Since f is measurable then
f−1(] − ∞, c[) ∈ A. Now suppose that ∀c ∈ R, f−1(] − ∞, c[) ∈ A, we need
to prove ∀A ∈ B(R), f−1(A) ∈ A. This follows from Theorem 7 stating that
A is a countable union of open intervals and the equalities f−1(

⋃
n∈N An) =⋃

n∈N f−1(An) and f−1(] −∞, c[) =
⋃

n∈N f−1(] − n, c[) ��
In a similar manner, we prove in HOL that f is measurable with respect

to (A,B(R)) iff ∀ c, d ∈ R the inverse image of any of the following classes of
intervals is an element of A: ] − ∞, c[, [c, +∞[, ]c, +∞[, ] − ∞, c], [c, d[, ]c, d],
[c, d].

Every constant real function on a space X is measurable. In fact, if ∀x ∈
X, f(x) = k, then if c ≤ k, f−1(] −∞, c[) = ∅ ∈ A. Otherwise f−1(] −∞, c[) =
X ∈ A. The indicator function on a set A is measurable iff A is measurable. In
fact, I−1

A (] −∞, c[) = ∅, X or X\A when c ≤ 0, c > 1 or 0 < c ≤ 1 respectively.
We prove in HOL various properties of the real-valued measurable functions.

Theorem 12. Let f and g be measurable functions and c ∈ R then the following
functions are also measurable: cf, |f |, fn, f + g, fg and max(f, g).

Theorem 13. If (fn) is a sequence of real-valued measurable functions such
that ∀n, x, fn(x) → f(x) then f is a measurable function.

Theorem 14. Every continuous function g : R → R is measurable with respect
to (B(R),B(R)).

Theorem 15. If g : R → R is continuous and f is measurable then g ◦ f is also
measurable.

Theorem 14 is a direct result of Theorem 8 stating that the inverse image of an
open set by a continuous function is open. Theorem 15 guarantees, for instance,
that if f is measurable then exp(f), Log(f), cos(f) are measurable. This is
derived using Theorem 14 and the equality (g ◦ f)−1(A) = f−1(g−1(A)). We
now show how to prove that the sum of two measurable functions is measurable.
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Proof. We need to prove that for any c ∈ R, (f + g)−1(]−∞, c[) is a measurable
set. One way to solve this is to write it as a countable union of measurable sets.
By definition of the inverse image, (f + g)−1(] − ∞, c[) = {x : f(x) + g(x) <
c} = {x : f(x) < c − g(x)}. Using Theorem 3 we prove that it is equal to⋃

r∈Q{x : f(x) < r and r < c − g(x)}. We deduce that (f + g)−1(] − ∞, c[) =⋃
r∈Q f−1(] − ∞, r[) ∩ g−1(] − ∞, c − r[). The right hand side is a countable

union of measurable sets because Q is countable and f and g are measurable
functions. ��

5 Lebesgue Integral

Similar to the way in which step functions are used in the development of the
Riemann integral, the Lebesgue integral makes use of a special class of functions
called positive simple functions. They are measurable functions taking finitely
many values. In other words, a positive simple function g can be written as a
finite linear combination of indicator functions of measurable sets (ai).

∀x ∈ X, g(x) =
∑
i∈s

αiIai(x) ci ≥ 0 (1)

Let (X,A, μ) be a measure space. The integral of the positive simple function g
with respect to the measure μ is given by∫

X

g dμ =
∑
i∈s

αiμ(ai) (2)

Various properties of the Lebesgue integral for positive simple functions have
been proven in HOL [3]. We mention in particular that the integral above is
well-defined and is independent of the choice of (αi), (ai), s. Other properties in-
clude the linearity and monotonicity of the integral for positive simple functions.
Another theorem that was widely used in [3] has however a serious constraint,
as was discussed in the related work, where the author had to assume that every
subset of the space X is measurable. Utilizing our formalization of the Borel
algebra, we have been able to overcome this problem. The new theorem can be
stated as

Theorem 16. Let (X,A, μ) be a measure space, f a non-negative function mea-
surable with respect to (A,B(R)) and (fn) a monotonically increasing sequence
of positive simple functions, pointwise convergent to f such that ∀n, x, fn(x) ≤
f(x) then

∫
X

f dμ = limn→∞
∫

X
fn dμ.

The next step towards the Lebesgue integration for arbitrary measurable func-
tions is the definition of the Lebesgue integral of positive measurable functions
which is given by∫

X

f dμ = sup{
∫

X

g dμ | g ≤ f and g positive simple function} (3)
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Finally, the integral for arbitrary measurable functions is given by
∫

X

f dμ =
∫

X

f+ dμ −
∫

X

f− dμ (4)

Where f+ and f− are the positive functions defined by f+(x) = max(f(x), 0)
and f−(x) = max(−f(x), 0).

5.1 Integrability

In this section, we provide the criteria of integrability of a measurable function
and prove the integrability theorem which will play an important role in proving
the properties of the Lebesgue integral.

Definition 7. Let (X,A, μ) be a measure space, a measurable function f is
integrable iff

∫
X |f | dμ < ∞ or equivalently iff

∫
Xf+ dμ < ∞ and

∫
Xf− dμ < ∞

Theorem 17. For any non-negative integrable function f there exists a se-
quence of positive simple functions (fn) such that ∀n, x, fn(x) ≤ fn+1(x) ≤
f(x) and ∀x, fn(x) → f(x). Besides

∫
X

f dμ = lim
n

∫
X

fn dμ

For arbitrary integrable functions, the theorem is applied to f+ and f− and
results in a well-defined integral, given by

∫
X

f dμ = lim
n

∫
X

f+
n dμ − lim

n

∫
X

f−
n dμ

Proof. Let the sequence (fn) be defined as

fn(x) =
4n−1∑
k=0

k

2n
I{x: k

2n ≤f(x)< k+1
2n } + 2nI{x:2n≤f(x)} (5)

We show that the sequence (fn) satisfies the conditions of the theorem and use
Theorem 16 to conclude that

∫
X

f dμ = limn

∫
X

fn dμ. First, we use the definition
of (fn) to prove in HOL the following lemmas

Lemma 1. ∀n, x, f(x) ≥ 2n ⇒ fn(x) = 2n

Lemma 2. ∀n, x, and k < 4n, k
2n ≤ f(x) < k+1

2n ⇒ fn(x) = k
2n

Lemma 3. ∀x, (f(x) ≥ 2n) ∨ (∃k, k < 4n and k
2n ≤ f(x) < k+1

2n )

Using these lemmas we prove that the sequence (fn) is pointwise convergent
to f (∀x, fn(x) → f(x)), upper bounded by f (∀n, x, fn(x) ≤ f(x)) and
monotonically increasing (∀n, x, fn(x) ≤ fn+1(x)). ��
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5.2 Lebesgue Integral Properties

We prove in HOL key properties of the Lebesgue integral, in particular the
monotonicity and linearity. Let f and g be integrable functions and c ∈ R then

Theorem 18. ∀x, 0 ≤ f(x) ⇒ 0 ≤ ∫
X

f dμ

Theorem 19. ∀x, f(x) ≤ g(x) ⇒ ∫
Xf dμ ≤ ∫

Xg dμ

Theorem 20.
∫

X
cf dμ = c

∫
X

f dμ

Theorem 21.
∫

Xf + g dμ =
∫

Xf dμ +
∫

Xg dμ

Theorem 22. A and B disjoint sets ⇒ ∫
A∪B

f dμ =
∫

A
f dμ +

∫
B

f dμ

Proof. We only show the proof for Theorem 21. We start by proving the property
for non-negative functions. Using the integrability property, given in Theorem 17,
there exists two sequences (fn) and (gn) that are pointwise convergent to f and
g, respectively, such that

∫
X

f dμ = limn

∫
X

fn dμ and
∫

X
g dμ = limn

∫
X

gn dμ.
Let hn = fn + gn then the sequence hn is monotonically increasing, pointwise
convergent to f + g and ∀x hn(x) ≤ (f + g)(x) and using Theorem 16,

∫
Xf +

g dμ = limn

∫
X

hn dμ. Finally, using the linearity of the integral for positive
simple functions and the linearity of the limit,

∫
Xf + g dμ = limn

∫
Xfn dμ +

limn

∫
Xgn dμ =

∫
Xf dμ+

∫
Xg dμ. Now we consider arbitrary integrable functions.

We first prove in HOL the following lemma.

Lemma 4. If f1 and f2 are positive integrable functions such that f = f1 − f2
then

∫
X

f dμ =
∫

X
f1 dμ − ∫

X
f2 dμ

The definition of the integral is a special case of this lemma where f1 = f+ and
f2 = f−. Going back to our proof, let f1 = f+ + g+ and f2 = f− + g− then f1
and f2 are non-negative integrable functions satisfying f + g = f1 − f2. Using
the lemma we conclude that∫

Xf+g dμ =
∫

Xf1 dμ−∫
Xf2 dμ = (

∫
Xf+ dμ+

∫
Xg+ dμ)−(

∫
Xf+ dμ+

∫
Xg+ dμ) =

(
∫

X
f+ dμ − ∫

X
f− dμ) + (

∫
X

g+ dμ − ∫
X

g− dμ) =
∫

X
f dμ +

∫
X

g dμ. ��

5.3 Lebesgue Monotone Convergence

The monotone convergence is arguably the most important theorem of the
Lebesgue integration theory and it plays a major role in the proof of the Radon
Nikodym theorem [2]. In this section, we present a proof of the theorem in HOL.

Theorem 23. Let f be an integrable function and (fn) be a sequence of func-
tions such that ∀n, x, 0 ≤ fn(x) ≤ fn+1(x) ≤ f(x) and ∀x, fn(x) → f(x).
Then ∫

X

f dμ = lim
n→∞

∫
X

fn dμ
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Proof. By the monotonicity of the integral, we deduce that ∀n,
∫

X
fn dμ ≤∫

X
f dμ. Hence limn→∞

∫
X

fn dμ ≤ ∫
X

f dμ. It remains to prove that
∫

X
f dμ ≤

limn→∞
∫

Xfn dμ. From Theorem 17, there exists a sequence of positive simple
functions (gn) such that ∀n, x, gn(x) ≤ gn+1(x) ≤ f(x) and ∀x, gn(x) → f(x)
satisfying

∫
X

f dμ = limn→∞
∫

X
gn dμ. It is sufficient to prove that ∀k ∈ N,∫

Xgk dμ ≤ limn→∞
∫

Xfn dμ. For a fixed k, since gk is a positive simple function
then there exists (αi), (ai) and a finite set s such that

∫
X

gk dμ =
∑

i∈s αiμ(ai).
On the other hand, splitting the integral of fn and using the properties of
the integral and limit, we have limn→∞

∫
X

fn dμ = limn→∞
∑

i∈s

∫
X

fnIai dμ =∑
i∈s limn→∞

∫
X

fnIai dμ. Consequently, it suffices to prove that ∀ i ∈ s, αiμ(ai)
≤ limn→∞

∫
XfnIai dμ Or, equivalently, that ∀ i ∈ s and z such that 0 < z <

1, zαiμ(ai) ≤ limn→∞
∫

X
fnIai dμ. Let bn = {t ∈ ai : zαi ≤ fn(t)} then⋃

n bn = ai and zαiμ(ai) = zαiμ(
⋃

n bn) = zαi limn μ(bn) = limn zαiμ(bn) =
limn

∫
XzαiIbn dμ. Furthermore, from the definition of bn and the monotonic-

ity of the integral,
∫

X
zαiIbn dμ ≤ ∫

X
fnIbn dμ ≤ ∫

X
fnIai dμ. We conclude that

zαiμ(ai) ≤ limn→∞
∫

XfnIai dμ. ��

5.4 Almost Everywhere

In this section we will define the “almost everywhere” relation [1] and prove in
HOL some properties of the Lebesgue integral based on this relation. Consider
a measure space (X,A, μ). A null set E is a measurable set of measure zero.

Definition 8. Almost Everywhere
Let A be a subset of X and P be a property about elements of A. We say that
P is true almost everywhere in A, abbreviated as “P a.e. in A”, relative to the
measure μ, if the subset of A where the property does not hold is a null set.

� ∀m P. ae m P =
{x | x ∈ m_space m ∧ ~P x} ∈ measurable_sets m ∧
(measure m {x | x ∈ m_space m ∧ ~P x} = 0)

When A = X , we simply say “P a.e.”. For example, f = g a.e. means that the
set {x | f(x) 
= g(x)} is a null set.
Similarly, fn → f a.e. means that there exists a null set E such that ∀x ∈
X\E fn(x) → f(x).

Theorem 24. If A is a null set then for any measurable function f ,
∫

A
f dμ = 0

Theorem 25. If f and g are two integrable functions such that f = g almost
everywhere, then

∫
X

f dμ =
∫

X
g dμ

Theorem 26. If f and g are two integrable functions such that f ≤ g almost
everywhere, then

∫
Xf dμ ≤ ∫

Xg dμ

We provide the proof of the first theorem as it is used to prove the last two.
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Proof. It suffices to prove the theorem for positive measurable functions as the
integral of an arbitrary function g is the difference of the integrals of g+ and g−.
By definition,

∫
Af dμ =

∫
XfIA dμ = sup{∫Xg dμ | g ≤ fIA} where the functions

g are positive simple functions.
We will show that the set over which the supremum is taken is equal to {0}. For
a positive simple function g such that g ≤ fIA we show that g(x) = 0 outside
of A. Hence

∫
X

g dμ =
∫

A
g dμ =

∫
X

gIA dμ. Furthermore, there exists (αi), (ai)
and a finite set s such that ∀x ∈ X, g(x) =

∑
i∈s αiIai(x). The indicator

function of A can be split as IA =
∑

i∈s IA∩ai . Hence gIA can be written as
gIA =

∑
i∈s αiIA∩ai . This implies that

∫
X

gIA dμ =
∑

i∈s αiμ(A ∩ ai). Since
0 ≤ μ(A ∩ ai) ≤ μ(A) = 0 and s is finite, then

∫
Xg dμ = 0 ��

6 Applications

In this section, we use our formalized Lebesgue integration theory to prove in
HOL some important properties from the theory of probability, namely, the
Chebyshev and Markov inequalities and the Weak Law of Large Numbers [14].

6.1 Chebyshev and Markov Inequalities

In probability theory, both the Chebyshev and Markov inequalities provide esti-
mates of tail probabilities. The Chebyshev inequality guarantees, for any prob-
ability distribution, that nearly all the values are close to the mean and it plays
a major role in the derivation of the laws of large numbers [14]. The Markov in-
equality provides loose yet useful bounds for the cumulative distribution function
of a random variable.

Let X be a random variable with expected value m and finite variance σ2.
The Chebyshev inequality states that for any real number k > 0,

P (|X − m| ≥ kσ) ≤ 1
k2 (6)

The Markov inequality states that for any real number k > 0,

P (|X | ≥ k) ≤ m

k
(7)

Instead of proving directly these inequalities, we provide a more general proof
using measure theory and Lebesgue integrals in HOL that can be used for both
and a number of similar inequalities. The probabilistic statement follows by
considering a space of measure 1.

Theorem 27. Let (S,S, μ) be a measure space, and let f be a measurable func-
tion defined on S. Then for any nonnegative function g, nondecreasing on the
range of f,

μ({x ∈ S : f(x) ≥ t}) ≤ 1
g(t)

∫
S

g ◦ f dμ .
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� ∀m f g t.
(let A = {x | x ∈ m_space m ∧ t ≤ f x} in

measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ g x) ∧ (∀x y. x ≤ y ⇒ g x ≤ g y) ∧
integrable m (\x. g (f x)) ⇒
measure m A ≤ (1 / (g t)) * fn_integral m (\x. g (f x)))

The Chebyshev inequality is derived by letting t = kσ, f = |X − m| and g
defined as g(t) = t2 if t ≥ 0 and 0 otherwise. The Markov inequality is derived
by letting t = k, f = |X | and and g defined as g(t) = t2 if t ≥ 0 and 0 otherwise.

Proof. Let A = {x ∈ S : t ≤ f(x)} and IA be the indicator function of A.
From the definition of A, ∀x 0 ≤ g(t)IA(x) and ∀x ∈ A t ≤ f(x). Since
g is non-decreasing, ∀x, g(t)IA(x) ≤ g(f(x))IA(x) ≤ g(f(x)). As a result,
∀x g(t)IA(x) ≤ g(f(x)). A is measurable because f is (S,B(R)) measurable.
Using the monotonicity of the integral,

∫
S

g(t)IA(x)dμ ≤ ∫
S

g(f(x))dμ. Finally
from the linearity of the integral g(t)μ(A) ≤ ∫

S
g ◦ fdμ. ��

6.2 Weak Law of Large Numbers (WLLN)

The WLLN states that the average of a large number of independent measure-
ments of a random quantity converges in probability towards the theoretical
average of that quantity. Interpreting this result, the WLLN states that for a
sufficiently large sample, there will be a very high probability that the average
will be close to the expected value. This law is used in a multitude of fields.
It is used, for instance, to prove the asymptotic equipartition property [4], a
fundamental concept in the field of information theory.

Theorem 28. Let X1, X2, ... be an infinite sequence of independent, identically
distributed random variables with finite expected value E[X1] = E[X2] = ... = m

and let X = 1
N

∑N
i=1 Xi then for any ε > 0,

lim
n→∞

P (|X − m| < ε) = 1 (8)

� ∀p X m v e.
prob_space p ∧ 0 < e ∧
(∀i j. i 
= j ⇒ uncorrelated p (X i) (X j)) ∧
(∀i. expectation p (X i) = m) ∧ (∀i. variance p (X i) = v) ⇒
lim (\n. prob p {x | x ∈ p_space p ∧

abs ((\x. 1/n * SIGMA (\i. X i x) (count n))x-m) < e}) = 1

Besides the Chebyshev inequality, to prove this theorem in HOL, we need to
formalize and prove some key properties of the variance of a random variable.
The main property being that the variance of a sum of uncorrelated random
variables is the sum of their variances. Notice that the requirement of the random
variables being independent in the WLLN can be relaxed to simply requiring
them to be uncorrelated.
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Let X and Y be random variables with expected values μX and μY , respec-
tively. The variance of X is given by V ar(X) = E[|X −μX |2] and the covariance
between X and Y is given by Cov(X, Y ) = E[(X −μX)(Y −μY )]. X and Y are
uncorrelated iff Cov(X, Y ) = 0.

We prove the following properties in HOL: V ar(X) = E[X2]−μ2
X ; Cov(X, Y )

= E[XY ] − μXμY ; V ar(X) ≥ 0 and V ar(aX) = a2V ar(X). V ar(X + Y ) =
V ar(X) + V ar(Y ) + 2Cov(X, Y ) and V ar(X + Y ) = V ar(X) + V ar(Y ) if
X and Y are uncorrelated. Finally if ∀i 
= j, Xi, Xj are uncorrelated, then
V ar(

∑N
i=1 Xi) =

∑N
i=1 V ar(Xi).

Proof. Using the linearity property of the Lebesgue integral as well as the prop-
erties of the variance we prove that E[X ] = 1

N

∑N
i=1 m = m and V ar(X) = σ2

N .
Applying the Chebyshev inequality to X, we get P (|X−m| ≥ ε) ≤ σ2

Nε2 . Equiva-
lently, 1− σ2

Nε2 ≤ P (|X −m| < ε) ≤ 1. It then follows that limn→∞ P (|X −m| <
ε) = 1. ��
To prove the results of this section in HOL we used the Lebesgue integral prop-
erties, in particular, the monotonicity and the linearity, as well as the properties
of real-valued measurable functions. The above is not available in the work of
Coble [3] because his formalization does not include the Borel sets so he cannot
prove the Lebesgue properties and the theorems of this section. The Markov and
Chebyshev inequalities were previously proven by Hasan and Tahar [9] but only
for discrete random variables. Our formalization allows us to provide a proof
valid for both the discrete and continuous cases. Richter’s formalization [15]
only allows random variables defined on the whole universe of a certain type.
The above mentioned formalizations do not include the definition of variance
and proofs of its properties and hence cannot be used to verify the WLLN.

7 Conclusions

In this paper, we have presented a formalization in HOL of the Borel algebra
to fill the gap in previous formalizations in higher-order-logic of the Lebesgue
integral. Our formalization is general as it can be applied on functions defined on
any metric space. Building on this framework, we proved important properties of
the Lebesgue integral, in particular, the monotonicity and linearity properties.
We also proved in HOL the Lebesgue monotone convergence, a key result of the
Lebesgue integration theory. Additionally, we formalized the concept of “almost
everywhere” and proved that the Lebesgue integral does not distinguish between
functions which differ on a null set as well as other important results based on the
“almost everywhere” relation. These features of the proposed approach facilitate
the formal reasoning process for the continuous and unpredictable components
of a wide range of physical systems. For illustration purposes, we proved in
HOL key theorems from the theory of probability, namely the Chebyshev and
Markov inequalities as well as the WLLN. The HOL codes corresponding to all
the formalization and proofs, presented in this paper, are available in [12].
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Overall our formalization required more than 7000 lines of code. Only 250 lines
were required to verify the key properties of the applications section. This shows
the significance of our work in terms of simplifying the formal proof of properties
using the Lebesgue integration theory. The main difficulties encountered were
the multidisciplinary nature of this work, requiring deep knowledge of measure
and integration theories, topology, set theory, real analysis and probability and
information theory. Some of the mathematical proofs also posed challenges to
be implemented in HOL.

Our future plans include using the Lebesgue integral development to formal-
ize key concepts of the information theory. We will use the Lebesgue monotone
convergence theorem and the Lebesgue integral properties to prove the Radon
Nikodym theorem [2], paving the way to defining the probability density func-
tions as well as the Kullback-Leibler divergence [4], which is related to the mutual
information, entropy and conditional entropy [4].
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Abstract. When verifying a concurrent program, it is usual to assume
sequentially consistent memory. However, most modern multiprocessors
buffer their stores, providing native sequential consistency only at a sub-
stantial performance penalty. To regain sequential consistency, a pro-
grammer has to follow an appropriate programming discipline. However,
existing näıve disciplines, such as protecting all shared accesses with locks
to avoid data races, or flushing store buffers according to a protocol that
allows arbitrary data races, are not flexible enough for building high-
performance multiprocessor software. We present a new discipline for
concurrent programming under TSO (total store order, with store buffer
forwarding). Instead of using concurrency primitives, such as locks, it
is based on maintaining ownership information in ghost state, allowing
the discipline to be expressed as a state invariant and verified through
conventional program reasoning. If every execution of a program in a
system without store buffers follows the discipline, then every execution
of the program in a system with store buffers is sequentially consistent.

1 Introduction

When verifying a shared-memory concurrent program, it is usual to assume
that each memory operation works directly on a shared memory state, a model
sometimes called atomic memory. A memory implementation that provides this
abstraction for programs that communicate only through shared memory is said
to be sequentially consistent. Concurrent algorithms in the computing literature
tacitly assume sequential consistency, as do most application programmers.

However, modern computing platforms do not guarantee sequential consis-
tency for arbitrary programs, for two reasons. First, optimizing compilers are typ-
ically incorrect unless the program is appropriately annotated to indicate which
program locations might be concurrently accessed by other threads; this issue is
addressed only cursorily in this paper. Second, modern processors buffer stores
of retired instructions. To make such buffering transparent to single-processor
programs, subsequent reads of the processor read from the buffer in preference
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to the cache (store buffer forwarding); otherwise, a program could write a new
value to an address but later read an older value. However, in a multiprocessor
system, processors do not snoop the store buffers of other processors, so a store
becomes visible to the storing processor before it becomes visible to others. This
can result in executions that are not sequentially consistent.

The simplest example illustrating such an inconsistency is the following pro-
gram, consisting of two threads T0 and T1, where x and y are shared memory
variables (initially 0) and r0 and r1 are registers:

T0: x = 1; T1: y = 1;
r0 = y; r1 = x;

In a sequentially consistent execution, it is impossible for both r0 and r1 to
be assigned 0. This is because the assignments to x and y must be executed in
some order; if x (resp. y) is assigned first, then r1 (resp. r0) will be set to 1.
However, in the presence of store buffers, the assignments to r0 and r1 might be
performed while the writes to x and y are still in their respective store buffers,
resulting in both r0 and r1 being assigned 0.

One way to cope with store buffers is to make them an explicit part of the
programming model which is a substantial programming concession. Because
store buffers are FIFO this ratchets up the complexity of program reasoning
considerably. Moreover, because writes from function calls might still be buffered
when a function returns, visible store buffers break modular program reasoning.

In practice, the usual remedy for store buffering is adherence to a program-
ming discipline that provides sequential consistency for a suitable class of archi-
tectures. In this paper, we describe and prove the correctness of such a discipline
suitable for the memory model provided by existing x86/x64 machines, where
each write emerging from a store buffer hits a global memory subsystem visible
to all processors. Because each processor sees the same global ordering of writes,
this model is sometimes called total store order (TSO) [2]1

The concurrency discipline most familiar to concurrent programs is one where
each variable is protected by a lock, and a thread must hold the corresponding
lock to access the variable. (It is possible to generalize this to allow shared locks,
as well as variants such as split semaphores.) Such lock-based techniques are
typically referred to as coarse-grained concurrency control, and suffice for most
concurrent application programming. However, these techniques do not suffice
for low-level system programming (e.g., the construction of OS kernels), for sev-
eral reasons. First, in kernel programming efficiency is paramount, and atomic
memory operations are more efficient for many problems. Second, lock-free con-
currency control can sometimes guarantee stronger correctness (e.g., wait-free
algorithms can provide bounds on execution time). Third, kernel programming

1 In 2008, both Intel [8] and AMD [1] put forward a weaker memory model in which
writes to different memory addresses might be seen in different orders on different
processors, but must respect causal ordering. However, current implementations sat-
isfy the stronger conditions described in this paper, and Intel has backed away from
these proposals, reaffirming TSO compliance in its latest specifications [9]. According
to Owens et al. [12] AMD plans a similar adaptation of their manuals.
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requires taking into account the implicit concurrency of concurrent hardware ac-
tivities (e.g., a hardware TLB racing to use page tables while the kernel is trying
to access them), and hardware cannot be forced to follow a locking discipline.

A more refined concurrency control discipline, which is much closer to ex-
pert practice, is to classify memory addresses as lock-protected or shared. Lock-
protected addresses are used in the usual way, but shared addresses can be
accessed using atomic operations provided by hardware (e.g., on x86 class archi-
tectures, most reads and writes are atomic2). The main disciplinary restriction
on these accesses is that if a processor does a shared write and a subsequent
shared read (possibly from a different address), the processor must flush the
store buffer somewhere in between. A flush is triggered by a memory fence or
interlocked instructions (like compare and swap). In our example, both x and y
would be shared addresses, so each processor would have to flush its store buffer
between its first and second operations. The C-idiom to identify shared portions
of memory is the volatile tag on variables and type declarations. Temporarily
thread local data (like lock-protected addresses) can be accessed non-volatilely,
whereas accesses to shared memory are tagged as volatile. This prevents a com-
piler from applying certain optimizations to shared accesses which could cause
undesired behavior, e.g., to store intermediate values in registers instead of writ-
ing them to the memory.

However, even this discipline is not very satisfactory. First, we would need
more rules to allow locks to be created or destroyed, or to change memory
between shared and protected, and so on. Second, there are many interesting
concurrency control mechanisms besides locks that allow a thread to obtain ex-
clusive or shared access to data, and this discipline would not help with these.

In this paper, we consider a much more general and powerful discipline that
also guarantees sequential consistency. The basic rule for shared addresses is
similar to the discipline above, but there are no locking primitives. Instead,
we treat ownership as fundamental; local accesses (i.e., operations on locations
owned by the thread) do not introduce any flushing obligations. Using ownership
as a basis of our reduction has a number of advantages:

1. Ownership is manipulated by nonblocking ghost updates, whereas locking
(or other concurrency control primitives) introduce runtime overheads.

2. Instead of building concurrency control primitives (such as locks) into the
methodology, we can instead verify that they conform to our discipline.

3. Because our discipline can be expressed as an ordinary program invariant,
conformance to the discipline can be established using ordinary (sequentially
consistent) concurrent program reasoning, without having to talk about his-
tories or complete executions.

4. Important compiler optimizations (e.g., moving a local write ahead of a
global read) require distinguishing between owned and unowned accesses, so
this is already built into important low-level languages (such as C).

Overview. In Sect. 2 we describe the programming discipline. In Sect. 3 we intro-
duce preliminaries of Isabelle/HOL, the theorem prover in which we mechanized
2 Except for certain memory types, or for operations that cross a cache line.
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our work,3 which is detailed in Sect. 4 introducing the formal models and the
reduction theorem. We conclude and discuss related work in Sect. 5.

2 Programming Discipline

The basic idea behind the programming discipline is, that before gathering new
information about the shared (volatile) state (via reading) the thread has to
make its outstanding changes to the shared state (volatile writes) visible to
others, by flushing the store buffer. Outstanding changes to thread local memory
(non-volatile writes) do not require flushing. This makes it possible to construct
a sequentially consistent execution of the global system. In this execution, a
volatile write to shared memory happens when the write instruction exits the
store buffer, and a volatile read from the shared memory happens when all
preceding writes have exited the store buffer. We distinguish thread local and
shared memory by an ownership model. Ownership is maintained in ghost state
and can be transferred either as side effect of a write operation or by a dedicated
ghost operation. Informally, the rules of the discipline are as follows:

– In any state, each memory address is either (i) shared or unshared, (ii) un-
owned or owned by a unique thread, and (iii) read-only or read-write.

– Every unowned address must be shared and can be accessed by all threads.
– Every read-only address is unowned.
– A thread can take ownership of an unowned address, or release ownership

of an address that it owns. It can also change whether an address it owns is
shared or not. Upon release of an address it can mark it as read-only.

– Each memory access is marked as volatile or non-volatile.
– Every thread maintains a dirty flag, which is set on a volatile write and

cleaned on every flushing instruction (i.e. fence and interlocked instructions).
– A thread can only perform sound accesses:

• a non-volatile write if the address is owned by the thread and is unshared,
• a non-volatile read if the address is owned by the thread or is read-only,
• a volatile read if the address is shared or the thread owns it; the dirty

flag of the thread has to be clean,
• a volatile write if no other thread owns the address (i.e. unowned or

owned by the writer) and the address is not read-only.
• For interlocked instructions, which have the side effect of the store buffer

getting flushed, the rules for volatile accesses apply.

Note first that the conditions above are not thread-local, because some actions
are allowed only when an address is unowned, marked read-only, or not marked
read-only. A thread can ascertain such conditions only through system-wide in-
variants, respected by all threads, along with data it reads. By imposing suitable
global invariants, various thread-local disciplines (such as one where addresses
are protected by locks, conditional critical regions, or monitors) can be derived
as lemmas by ordinary program reasoning, without need for meta-theory.
3 Theory files will be published on the AFP: http://afp.sourceforge.net/

http://afp.sourceforge.net/
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Table 1. Programming discipline

(a) Access policy

sharing

owner read-write read-only unshared

unowned vR, vW nvR /
me nvR, vW / nvR, nvW
other vR / /

volatile reads have to be clean

(b) Flushing policy

flush (before)

interlocked as side effect
vR if dirty
others never

(volatile, non-volatile, Read, Write)

Second, note that these rules can be checked in the context of a concurrent
program without store buffers, by introducing ghost state to keep track of owner-
ship and sharing and the dirty flag to monitor whether the thread has performed
a volatile write since the last flush. The dirty flag only has to be clean for volatile
reads, for non-volatile reads it can be dirty. This means that only volatile reads
may require store buffer flushes to ensure sequential consistency. Our main re-
sult is that if a program obeys the rules above, then the program is sequentially
consistent when executed on a TSO machine.

Table 1a summarizes the access policy and Table 1b the associated flushing
policy of the programming discipline. Typical use-cases are the following: un-
owned (read-write) memory is used for lock-free algorithms or the locks them-
selves; when acquiring a lock the protected data becomes owned and unshared;
owned and shared memory captures the single-writer-multiple-readers idiom;
read-only (unowned) memory is used for memory protected by a reader-writer
lock while there is no writer, or if data stays unmodified after initialization.
The key motivation is to improve performance by minimizing the number of
store buffer flushes, while staying sequentially consistent. The need for flushing
the store buffer decreases from interlocked accesses (where flushing is a side-
effect) over volatile accesses to non-volatile accesses. Accepting the performance
penalty it is sound to use stricter accesses as necessary e.g. use a volatile access
if a non-volatile one is sufficient. The access rights of interlocked and volatile
accesses coincide. Some interlocked operations (e.g. test-and-set) can read from,
modify and write to an address in a single atomic hardware step.When a thread
owns an address it is guaranteed that it is the only one writing to that address.
This thread can safely perform non-volatile reads to that address without miss-
ing any write. Similar it is safe for any thread to access read-only memory via
non-volatile reads since there are no outstanding writes at all.

Reconsider our first example program. If we choose to leave both x and y
unowned (and hence shared), then all accesses must be volatile. This forces each
thread to flush its store buffer between its write and read operation. We mark
assignments and reads with subscripts v for volatile and nv for non-volatile
accesses. Moreover, ghost operations are slanted and 〈. . . 〉 make the enclosed
operations happen atomically. We highlight some preconditions by inserting an
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assertion {...}. Note that the dirty flags are thread local and we can use ordinary
sequential reasoning to argue that they remain reset after the fence operations.

T0: 〈xv = 1, dirty = true 〉; T1: 〈yv = 1, dirty = true〉;
〈fence, dirty = false 〉; 〈fence, dirty = false 〉;
〈{dirty == false}, r0 = yv〉; 〈{dirty == false}, r1 = xv〉;

In practice, on an x86/x64 machine, the fence may be omitted by making
the writes interlocked, which flushes store buffers as a side effect. For whichever
thread the write is the second to hit memory the subsequent read is guaranteed
to see the write of the other thread, making the execution violating sequential
consistency impossible.

However, couldn’t the first thread take ownership of x before writing it, so
that its write could be non-volatile? The answer is that it could try, but then the
second thread would be unable to read x volatile (or take ownership of x and read
it non-volatile), because we would be unable to prove that x is unowned at that
point. In other words, a thread can take ownership of an address only if it is not
racing to do so. This is illustrated by the following code snippet, where it is easy
to construct an interleaving where an assertion is violated. Keep in mind that
acquire and release are ghost operations which do not have any influence on
possible schedules. We have to be able to proof that their preconditions always
hold (for every possible schedule), e.g., that an address is unowned when we
attempt to acquire it. In the examples after an acquire(a) the thread owns the
address a and also marks it as unshared.

T0: 〈{unowned(x)}, acquire(x) 〉; T1: 〈{unowned(y)}, acquire(y) 〉;
xnv = 1; ynv = 1;
release(x); release(y);
〈{unowned(y)}, acquire(y) 〉; 〈{unowned(x)}, acquire(x) 〉;
r0 = ynv; r1 = xnv;
release(y); release(x);

The assertions do not hold for every possible schedule, as for example x may
not be released by T0 at the point were T1 is trying to acquire it. Hence, the
program does not obey our programming discipline.

Ultimately, the races allowed by the discipline involve volatile access to an un-
owned address, which brings us back to locks. A spinlock is typically implemented
with an interlocked read-modify-write on an address, say l (the interlocking pro-
viding the required flushing of the store buffer). If the locking succeeds, we can
prove that no other thread holds the lock, and can therefore safely take own-
ership of an address “protected” by the lock, say a. The global invariant to do
this reasoning is that, whenever l == 0 address a is unowned. And whenever l
== 1 there exists exactly one thread owning a. Thus, our discipline subsumes
the better-known disciplines governing coarse-grained concurrency control. The
following code snippet illustrates this reasoning in our framework:

while(!〈interlocked test and set(lv)), acquire(a) 〉);
{‘a owned by current thread’}
... critical section accessing a non-volatilely ...
〈lv = 0, release(a) 〉;



From Total Store Order to Sequential Consistency 409

The acquire(a) is supposed to happen atomically with the successful test-
and-set. It transfers ownership of the currently unowned a (according to the
invariant) to the (thread-local) ownership-set of the current thread. Only the
thread itself is able to release ownership once it has acquired it. This justifies
non-volatile accesses to a in the critical section. Atomically with resetting the
lock l the ownership of a is released, maintaining the invariant.

3 Preliminaries of Isabelle/HOL

The formalization presented in this paper is mechanized within the interactive
theorem prover Isabelle/HOL [10], using its document generation facilities, which
guarantees a close correspondence between the presentation and the theory files.
We distinguish formal entities typographically from other text. We use a sans
serif font for types and constants (including functions and predicates), e.g., map,
a slanted serif font for free variables, e.g., x or �, and a slanted sans serif font for
bound variables, e.g., x or �. Small capitals are used for data type constructors,
e.g., Foo, and type variables have a leading tick, e.g., ′a. HOL keywords are type-
set in type-writer font, e.g., let. The logical/mathematical notions follow the
standard notational conventions with a bias towards functional programming.
We prefer curried function application, e.g., f a b instead of f (a, b).

Isabelle/HOL provides standard types like Booleans, natural numbers, inte-
gers, total functions, pairs, lists, and sets. There are packages to define new data
types and records. Isabelle allows polymorphic types, e.g., ′a list is the list type
with type variable ′a. In HOL all functions are total, e.g., nat ⇒ nat is a total
function on natural numbers. A function update is f (y := v) ≡ λx . if x = y
then v else f x . To formalize partial functions the type ′a option is used. It is a
data type with two constructors, one to inject values of the base type, e.g.,  x!,
and the additional element ⊥. A base value can be projected with the function
the, which is defined by the sole equation the  x! = x. Since HOL is a total logic
the term the ⊥ is still a well-defined yet un(der)specified value. Partial functions
are usually represented by the type ′a ⇒ ′b option.They are commonly used as
maps. We denote the domain of map m by dom m. A map update is written as
m(a #→ v). We can restrict the domain of a map m to a set A by m
A.

The empty list is [], with x · xs the element x is ‘consed’ to the list xs.With
xs @ ys list ys is appended to list xs. With the term map f xs the function f is
applied to all elements in xs. The length of a list is |xs|, the n-th element can be
selected with xs[n] and is updated via xs[n := v ].

Sets come along with the standard operations like union, i.e., A ∪ B, mem-
bership, i.e., x ∈ A and set inversion, i.e., − A. Tuples with more than two
components are pairs nested to the right.

4 Formalization

In this section we go into the details of our formalization. In our model, we dis-
tinguish the plain ‘memory system’ from the ‘programming language semantics’



410 E. Cohen and B. Schirmer

shared
read-write

unshared

owned

shared
read-write

shared
read-only

unowned

R ∩ W

A ∩ − L

A ∩ L

R ∩ − W
A ∩ LA ∩ − L

Acquire, keep Local; Release, mark Writeable

Fig. 1. Ownership transfer

which we both describe as a small-step transition relation. During a computa-
tion the programming language issues memory instructions (read / write) to
the memory system, which itself returns the results in temporary registers. This
interface allows us to parameterize the program semantics over the memory sys-
tem. Our main theorem allows us to simulate a computation in the semantics
based on a memory system with store buffers by a computation in the semantics
based on a sequentially consistent memory system. We refer to the former one
as store buffer machine and to the latter one as virtual machine. The simulation
theorem is independent of the programming language. An instantiation with a
simple WHILE language can be found in our technical report [5]. We continue
with introducing the common parts of both machines.

Addresses a, values v and temporaries t are natural numbers. Ghost annota-
tions for manipulating the ownership information are the following sets of ad-
dresses: the acquired addresses A, the unshared (local) fraction L of the acquired
addresses, the released addresses R and the writable fraction W of the released
addresses (the remaining addresses are considered read-only). These four annota-
tions are part of write instructions, interlocked operations and a dedicated ghost
instruction and are supplied by the verification engineer. According to these an-
notations ownership transfer can take place atomically with volatile writes and
interlocked operations (in case a write is performed) or as sole effect of the ghost
instruction. The possible status changes of an address due to these ownership
transfer operations are depicted in Figure 1. For example by putting address a
into the sets R and W a thread can release a, which it currently owns, and mark
it as unowned and read-write. Otherwise, if a /∈ W , its new state is unowned
and read-only. Conversely an currently unowned address can be acquired by by
putting it into set A. If it is also in set L, the new state is owned and unshared,
otherwise it is owned and shared. The sharing state of an already owned address
can also be altered accordingly. Note that ownership of an address is not directly
transferred between threads, but is first released by one thread and then can be
acquired by another thread.
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i < |ts| ts[i] = (p, is, �, sb) �� p →p (p ′, is ′)

(ts, m)
sb⇒ (ts[i := (p ′, is @ is ′, �, sb)], m)

i < |ts| ts[i] = (p, is, �, sb)

(is, �, sb, m)
sb→m (is ′, � ′, sb ′, m ′)

(ts, m)
sb⇒ (ts[i := (p, is ′, � ′, sb ′)], m ′)

i < |ts| ts[i] = (p, is, �, sb)
(m, sb) →sb (m ′, sb ′)

(ts, m)
sb⇒ (ts[i := (p, is, �, sb ′)], m ′)

Fig. 2. Global transitions of store buffer machine

A memory instruction is a datatype with the following constructors:

– Read volatile a t for reading from address a to temporary t, where the
Boolean volatile determines whether the access is volatile or not.

– Write volatile a sop A L R W to write the result of evaluating the store
operation sop at address a. A store operation is a pair (D, f ), with the
domain D and the function f . The function f takes temporaries � as a
parameter, which maps a temporary to a value. The subset of temporaries
that is considered by function f is specified by the domain D. We consider
store operations as valid when they only depend on their domain:

valid-sop sop ≡ ∀D f �. sop = (D , f ) ∧ D ⊆ dom � −→ f � = f (��D)

Again the Boolean volatile specifies the kind of memory access.
– RMW a t sop cond ret A L R W , for atomic interlocked ‘read-modify-write’

instructions (flushing the store buffer) which can affect both the temporaries
and the memory. First the value at address a is loaded to temporary t, and
then the condition cond on the temporaries is considered to decide whether
a store operation sop is also executed. In case of a store the function ret,
depending on both the old value at address a and the new value, specifies
the final result stored in temporary t. With a trivial condition cond this
instruction also covers interlocked reads and writes.

– Fence, a memory fence that flushes the store buffer.
– Ghost A L R W for ownership transfer.

4.1 Store Buffer Machine

The store buffer machine does not maintain any ghost state. A thread config-
uration is a tuple (p, is, �, sb) consisting of the program state p, a memory
instruction list is, the map of temporaries � and the store buffer sb. A global
configuration (ts, m) consists of a thread list ts and the memory m, which is
a function from addresses to values. Figure 2 defines the computation of the
global system by the non-deterministic transition relation (ts, m) sb⇒ (ts ′, m ′).
A transition selects a thread ts[i] = (p, is, �, sb) and either the ‘program’ the
‘memory’ or the ‘store buffer’ makes a step defined by sub-relations.

The program step relation �� p →p (p ′, is ′) is an unspecifed parameter to the
global transition relation. It takes temporaries � and the current program state
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v = (case buffered-val sb a of ⊥ ⇒ m a | �v ′� ⇒ v ′)

(Read volatile a t · is, �, sb, m)
sb→m (is, �(t �→ v), sb, m)

sb ′ = sb @ [Writesb volatile a (D, f ) (f �) A L R W ]

(Write volatile a (D, f ) A L R W · is, �, sb, m)
sb→m (is, �, sb ′, m)

(m, Writesb volatile a sop v A L R W · sb) →sb (m(a := v), sb)

¬ cond (�(t �→ m a)) �
′ = �(t �→ m a)

(RMW a t (D, f ) cond ret A L R W · is, �, [], m)
sb→m (is, � ′, [], m)

cond (�(t �→ m a))
�

′ = �(t �→ ret (m a) (f (�(t �→ m a)))) m ′ = m(a := f (�(t �→ m a)))

(RMW a t (D, f ) cond ret A L R W · is, �, [], m)
sb→m (is, � ′, [], m ′)

(Ghost A L R W · is, �, sb, m)
sb→m (is, �, sb, m)

(Fence · is, �, [], m)
sb→m (is, �, [], m)

Fig. 3. Memory and store buffer transitions of store buffer machine

p and makes a step by returning a new program state p ′ and an instruction list
is ′ which is appended to the remaining instructions. For example executing an
assignment l = 0 to a volatile address l, with no further ownership annotations,
generates the memory instruction Write True l (∅, λ�. 0) ∅ ∅ ∅ ∅.

A memory step (is, �, sb, m) sb→m (is ′, � ′, sb ′, m ′) may only fill its store buffer
with new writes. In a separate store buffer step (m, sb) →sb (m ′, sb ′) the store
buffer may release outstanding writes to the memory.

The store buffer maintains the list of outstanding memory writes. Write in-
structions are appended to the end of the store buffer and emerge to memory
from the front of the list. A read instruction is satisfied from the store buffer if
possible. An entry in the store buffer is of the form Writesb volatile a sop v for
an outstanding write (keeping the volatile flag), where operation sop evaluated
to value v . The memory and store buffer transitions are defined in Figure 3. For
a read we obtain the value of the last write to address a which is still pending in
the store buffer with buffered-val sb a. In case no outstanding write to address
a is in the store buffer we read the content of a from memory. Write operations
have no immediate effect on the memory but are queued in the store buffer
instead, they update the memory when they exit the store buffer. Interlocked
and fence operations require an empty store buffer, which means that it has to
be flushed before the action can take place. The read-modify-write instruction
first adds the current value at address a to temporary t and then checks the
store condition cond on the temporaries. If it fails this read is the final result
of the operation. Otherwise the store is performed. The resulting value of the
temporary t is specified by the function ret which considers both the old and
new value as input. The fence and the ghost instruction are just skipped.
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i < |ts| ts[i] = (p, is, �, D, O) �� p →p (p ′, is ′)

(ts, m, S)
v⇒ (ts[i := (p ′, is @ is ′, �, D, O)], m, S)

i < |ts|
ts[i] = (p, is, �, D, O) (is, �, m, D, O, S)

v→m (is ′, � ′, m ′, D ′, O ′, S ′)

(ts, m, S)
v⇒ (ts[i := (p, is ′, � ′, D ′, O ′)], m ′, S ′)

Fig. 4. Global transitions of virtual machine

4.2 Virtual Machine

The virtual machine is a sequentially consistent machine without store buffers,
maintaining additional ghost state to check for the programming discipline. A
thread configuration is a tuple (p, is, �, D, O), with the dirty flag D indicating
whether there may be an outstanding volatile write in the store buffer and the set
of owned addresses O. The dirty flag D has to be clean for all volatile reads. The
global configuration of the virtual machine (ts, m, S) maintains a Boolean map
of shared addresses S (indicating write permission). Addresses in the domain of
mapping S are considered shared and read-only S ≡ {a. S a =  False!} is the
set of read-only addresses with respect to S. According to the rules in Figure 4
a global transition of the virtual machine (ts, m, S) v⇒ (ts ′, m ′, S ′) is either a
program or a memory step.

The transition rules for its memory system are defined in Figure 5, casually
grouping the ghost state into a single component G for succinctness. In addition
we introduce the safety judgment Os,i � (is, �, m, D, O, S)

√
in Figure 6, where

Os is the list of ownership sets obtained from the thread list ts and i is the
index of the current thread. Safety of all reachable states of the virtual machine
ensures that the programming discipline is obeyed by the program and is our
formal prerequisite for the simulation theorem. It is left as a proof obligation
to be discharged by means of a proper program logic for sequentially consistent
executions. We elaborate on the rules of Figures 5 and 6 in parallel.

To read from an address it either has to be owned or read-only or it has to
be volatile and shared. Moreover a volatile read has to be clean. The memory
content of address a is stored in temporary t. A non-volatile write is only allowed
if the address is both owned and unshared. The result is written directly into
memory. A volatile write is only allowed when no other thread owns the address
and the address is not marked as read-only. Simultaneously with the volatile
write the dirty flag D is set and we can transfer ownership as specified by the
annotations A, L, R and W . The acquired addresses A must not be owned by
any other thread and stem from the shared addresses or are already owned. Re-
acquiring owned addresses can be used to change the shared-status via the set
of local addresses L which have to be a subset of A. The released addresses R
have to be owned and distinct from the acquired addresses A. After the write the
new ownership set of the thread is obtained by adding the acquired addresses
A and releasing the addresses R: O ′ = O ∪ A − R. The released addresses R
are augmented to the shared addresses S and the local addresses L are removed.
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(Read volatile a t · is, �, x, m, G)
v→m (is, �(t �→ m a), x, m, G)

(Write False a (D, f ) A L R W · is, �, x, m, G)
v→m (is, �, x, m(a := f �), G)

G = (D, O, S) G ′ = (True, O ∪ A − R, S ⊕W R "A L)

(Write True a (D, f ) A L R W · is, �, x, m, G)
v→m (is, �, x, m(a := f �), G ′)

¬ cond (�(t �→ m a)) G = (D, O, S) G ′ = (False, O, S)

(RMW a t (D, f ) cond ret A L R W · is, �, x, m, G)
v→m (is, �(t �→ m a), x, m, G ′)

cond (�(t �→ m a))
�

′ = �(t �→ ret (m a) (f (�(t �→ m a)))) m ′ = m(a := f (�(t �→ m a)))
G = (D, O, S) G ′ = (False, O ∪ A − R, S ⊕W R "A L)

(RMW a t (D, f ) cond ret A L R W · is, �, x, m, G)
v→m (is, � ′, x, m ′, G ′)

G = (D, O, S) G ′ = (D, O ∪ A − R, S ⊕W R "A L)

(Ghost A L R W · is, �, x, m, G)
v→m (is, �, x, m, G ′)

G = (D, O, S) G ′ = (False, O, S)

(Fence · is, �, x, m, G)
v→m (is, �, x, m, G ′)

Fig. 5. Memory transitions of the virtual machine

a ∈ O ∨ a ∈ read-only S ∨ volatile ∧ a ∈ dom S volatile −→ ¬ D
Os,i � (Read volatile a t · is, �, m, D, O, S)

√

a ∈ O a /∈ dom S
Os,i � (Write False a (D, f ) A L R W · is, �, m, D, O, S)

√

∀ j<|Os|. i �= j −→ a /∈ Os[j]

a /∈ read-only S ∀ j<|Os|. i �= j −→ A ∩ Os[j] = ∅
A ⊆ O ∪ dom S L ⊆ A R ⊆ O A ∩ R = ∅

Os,i � (Write True a (D, f ) A L R W · is, �, m, D, O, S)
√

¬ cond (�(t �→ m a)) a ∈ dom S ∪ O
Os,i � (RMW a t (D, f ) cond ret A L R W · is, �, m, D, O, S)

√

cond (�(t �→ m a)) ∀ j<|Os|. i �= j −→ a /∈ Os[j]

a /∈ read-only S ∀ j<|Os|. i �= j −→ A ∩ Os[j] = ∅
A ⊆ O ∪ dom S L ⊆ A R ⊆ O A ∩ R = ∅

Os,i � (RMW a t (D, f ) cond ret A L R W · is, �, m, D, O, S)
√

A ⊆ dom S ∪ O
L ⊆ A R ⊆ O A ∩ R = ∅ ∀ j<|Os|. i �= j −→ A ∩ Os[j] = ∅

Os,i � (Ghost A L R W · is, �, m, D, O, S)
√

Os,i � (Fence · is, �, m, D, O, S)
√ Os,i � ([], �, m, D, O, S)

√

Fig. 6. Safe configurations of a virtual machine
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We also take care about the write permissions in the shared state: the released
addresses in set W as well as the acquired addresses are marked writable: S ′ = S
⊕W R &A L. The auxiliary ternary operators to augment and subtract addresses
from the sharing map are defined as follows:

S ⊕W R ≡ λa. if a ∈ R then �a ∈ W� else S a

S "A L ≡ λa. if a ∈ L then ⊥ else case S a of ⊥ ⇒ ⊥ | �w� ⇒ �a ∈ A ∨ w�
The read-modify-write instruction has the same operational behavior on the

physical state as in the store-buffer machine. As it is an interlocked operation
which flushes the store buffer the dirty flag D is cleaned. The other effects on
the ghost state and the safety side-conditions are the same as for the volatile
read and volatile write, respectively.

The ghost instruction allows to transfer ownership when no write is involved
i.e., when merely reading from memory. It has the same safety requirements
as the corresponding parts in the write instructions. The effect of the fence
instruction in the virtual machine is to clean the dirty flag. Finally, an empty
list of instructions is considered safe.

4.3 Reduction

The reduction theorem reduces a computation of the store buffer machine to
a sequential consistent computation of the virtual machine. We formulate this
as a simulation theorem which states that a computation of the store buffer
machine (tssb, m) sb⇒

∗
(tssb

′, m ′) can be simulated by a computation of the virtual
machine (ts, m, S) v⇒∗

(ts ′, m ′, S ′). The theorem considers computations that
start in an initial configuration where all store buffers are empty and end in a
configuration where all store buffers are empty again. A configuration of the store
buffer machine is obtained from a virtual configuration by removing all ghost
components and assuming empty store buffers. This coupling relation between
the thread configurations is written as tssb ∼ ts. Moreover, the precondition
initialv ts S ensures that the ghost state of the initial configuration of the virtual
machine is set up properly: the ownership sets of the threads are distinct, an
address marked as read-only (according to S) is unowned and every unowned
address is shared. Finally, we ensure conformance to the programming discipline
by the precondition safe-reach (ts, m, S) which guarantees that all reachable
configurations in the virtual machine are safe (according to the rules in Figure 6).

Theorem 1 (Reduction)
(tssb, m)

sb⇒
∗

(tssb
′, m ′) ∧ empty-store-buffers tssb

′ ∧ tssb ∼ ts ∧ initialv ts S ∧
safe-reach (ts, m, S) −→ (∃ ts ′ S ′. (ts, m, S)

v⇒∗
(ts ′, m ′, S ′) ∧ tssb

′ ∼ ts ′)

This theorem captures our intuition that every result that can be obtained from
a computation of the store buffer machine can also be obtained by a sequentially
consistent computation. However, to prove it we need some generalizations that
we describe in a technical report [5]. First of all the theorem is not inductive as
we do not consider arbitrary intermediate configurations but only those where
all store buffers are empty. For intermediate configurations the coupling relation



416 E. Cohen and B. Schirmer

becomes more involved. The major obstacle is that a volatile read can overtake
non-volatile writes that are still in the store-buffer and have not yet emerged
to memory. Keep in mind that our programming discipline only ensures that
no volatile writes can be in the store buffer the moment we do a volatile read,
outstanding non-volatile writes are allowed.

5 Conclusion

We have presented a practical and flexible programming discipline for concurrent
programs and have formally proven that it ensures sequential consistency on
TSO machines, such as present x64 architectures. Our approach covers a wide
variety of concurrency control like locking, data races, single writer multiple
readers, read only and thread local portions of memory. We minimize the need
for store buffer flushes to optimize the usage of the hardware. Our theorem is
not coupled to a specific logical framework like separation logic but is based
on more fundamental arguments, namely the adherence to the programming
discipline which can be discharged within any program logic using the standard
sequentially consistent memory model, without any of the complications of TSO.

Related work. Our model is compatible with the recent revisions of the Intel man-
uals [9] and the x86 model presented in [12] which revises their previous work [7].
The state of the art in formal verification of concurrent programs is still based
on a sequentially consistent memory model. To justify this on a weak memory
model a quite drastic approach is chosen, allowing only coarse-grained concur-
rency usually implemented by locking. Thereby data races are ruled out and
data race free programs can be considered as sequentially consistent for example
for the Java memory model [14, 3] or the x86 memory model [12]. Ridge [13]
considers weak memory and data-races and verifies Peterson’s mutual exclusion
algorithm, ensuring sequential consistency by flushing after every write.

Burckhardt and Musuvathi [4] describe an execution monitor that efficiently
checks whether a sequentially consistent TSO execution has a single-step exten-
sion that is not sequentially consistent. Like our approach, it avoids having to
consider the store buffers as an explicit part of the state. However, their condition
requires maintaining enough history information to determine causality between
events, which means maintaining a vector clock (which is itself unbounded) for
each memory address. Causality (being essentially graph reachability) is already
not first-order, and hence unsuitable for many types of program verification.

Closely related to our work is the work of Owens [11] investigating on the
conditions for sequential consistent reasoning within TSO. The notion of a
triangular-race free trace is established to exactly characterize the traces on
a TSO machine that are still sequentially consistent. A triangular race occurs
between a read and a write of two different threads to the same address, when
the reader still has some outstanding writes in the store buffer. To avoid trian-
gular races the reader has to flush the store buffer before reading. This is the
same condition that we enforce, if we limit every address to be unowned and
every access to be volatile. We regard this limitation as too strong for practical
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programs, where non-volatile accesses (without any flushes) to temporarily local
portions of memory (e.g. lock protected data) is common practice. This is our
core motivation for introducing the ownership based programming discipline.
Limitations. There is a class of important programs that are not sequentially
consistent but nevertheless correct. Consider a simple spinlock implementation
with a volatile lock l, where l == 0 indicates that the lock is not taken. The
following code acquires the lock:

while(!interlocked test and set(l));
...critical section accessing protected objects ...,

and with the assignment l = 0 we can release the lock again. Within our frame-
work address l can be considered unowned (and hence shared) and every access
to it is volatile. We do not have to transfer ownership of the lock l itself but of the
objects it protects. As acquiring the lock is an expensive interlocked operation
anyway there are no additional restrictions from our framework. The interesting
point is the release of the lock via the volatile write l = 0. This leaves the dirty
bit set, and hence our programming discipline requires a flushing instruction be-
fore the next volatile read. If l is the only volatile variable this is fine, since the
next operation will be a lock acquire again which is interlocked and thus flushes
the store buffer. So there is no need for an additional fence. But in general this
is not the case and we would have to insert a fence after the lock release to make
the dirty bit clean again and to stay sequentially consistent. However, can we
live without the fence? For the correctness of the mutual-exclusion algorithm we
can, but we leave the domain of sequential consistent reasoning. The intuitive
reason for correctness is that the threads waiting for the lock do no harm while
waiting. They only take some action if they see the lock being zero again, this
is when the lock release has made its way out of the store buffer.

Another example is the following barrier synchronization: each processor has
a flag that it exclusively writes (with volatile writes without any flushing) and
other processors read, and each processor waits for all processors to set their flags
before continuing past the barrier. Each processor might first see its own flag set
and immediately or later still see all other flags clear. This is not sequentially
consistent, as each processor observes a different order, but it is still correct.

Common for these examples is that there is only a single writer to an address,
and the values written are monotonic in a sense that allows the readers to draw
the correct conclusion when they observe a certain value. This pattern is named
Publication Idiom in Owens work [11].
Future work. The first direction of future work is to try to deal with the
limitations of sequential consistency described above and try to come up with a
more general reduction theorem that can also handle non sequentially consistent
portions of code that follow some monotonicity rules. Another direction of
future work is to take compiler optimization into account. Our volatile accesses
correspond roughly to volatile memory accesses within a C program. An opti-
mizing compiler is free to convert any sequence of non-volatile accesses into a
(sequentially semantically equivalent) sequence of accesses. As long as execution
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is sequentially consistent, equivalence of these programs (e.g., with respect to fi-
nal states of executions that end with volatile operations) follows immediately by
reduction. However, some compilers are a little more lenient in their optimiza-
tions, and allow operations on certain local variables to move across volatile
operations. In the context of C (where pointers to stack variables can be passed
by pointer), the notion of “locality” is somewhat tricky, and makes essential
use of C semantically forbidding address arithmetic across memory objects. Fi-
nally we plan to integrate the programming discipline into VCC [6], a verifier for
concurrent C programs, which currently merely assumes sequentially consistent
memory. VCC already distinguishes between volatile and non-volatile accesses
and has a notion of ownership managed in ghost state that has to be mapped
to our needs. The dirty flag has to be added to VCC’s ghost state.

Acknowledgments. We thank Mark Hillebrand for discussions and feedback on
this work and extensive comments on this paper.
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Abstract. We present a compiler for definitions made by pattern match-
ing on inductive families in the Coq system. It allows to write structured,
recursive dependently-typed functions as a set of equations, automati-
cally find their realization in the core type theory and generate proofs
to ease reasoning on them. It provides a complete package to define and
reason on functions in the proof assistant, substantially reducing the
boilerplate code and proofs one usually has to write, also hiding the in-
tricacies related to the use of dependent types and complex recursion
schemes.

1 Introduction

In this paper, we present a new tool to define and reason on functions manip-
ulating inductive families in the Coq system. At the core of the system is a
compiler for dependent pattern-matching definitions given as a set of equations
into vanilla Coq terms, inspired by the work of Goguen et al. [1] . Our system
also incorporates with-clauses (as in Epigram or Agda) that can be used to
add a pattern on the left-hand side for further refinement and supports struc-
tural and well-founded recursion on inductive families using a purely logical and
efficient scheme.

The system provides proofs of the equations that can be used as rewrite rules
to reason on calls to the function. It also automatically generates the inductive
graph of the function and a proof that the function respects it, giving a useful
elimination principle for it.

Equations
1 is implemented as an elaboration into the core Coq type theory,

allowing the smallest trusted code base possible and ensuring the correctness of
the compilation at each use. The whole system makes heavy use of type classes
and the high-level tactic language of Coq for greater genericity and extensibility.

The paper is organized as follows: first, we present an implementation of a
dependent pattern-matching compiler (�2) supporting with clauses and efficient
recursion on inductive families (�3). Then, we show how we can derive sup-
port proofs and in particular a powerful elimination principle directly from the
structure of our programs (�4). We finally discuss related work in section 5 and
conclude (�6).
1 Available at http://mattam.org/research/coq/equations.en.html
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2 Dependent Pattern-Matching Compilation Redux

The idea of writing pattern-matching equations over inductive families goes back
to Coquand [2]. He introduced the idea of checking that a set of equations
formed an exhaustive covering of a signature. From this covering one can build
an efficient case tree in the standard way [3].

The interesting addition of dependent pattern-matching over simply-typed
pattern-matching is the fact that some constructors need not be considered be-
cause the type of the object being matched upon guarantees that it could not
have been built with them. Moreover, as each constructor refines the indices
of a filtered object and as we are considering equations that can have multiple
patterns, refinement may have effects on the values or types of other matched
objects. This means that each constructor adds static information to the prob-
lem, and this process can be used ad libitum, as exemplified by the definition of
diag below:

Equations {A n} (v : vector (vector A n) n) : vector A n :=
diag A O Vnil := Vnil ;
diag A (S n) (Vcons (Vcons a n v) n v ′) := Vcons a (diag (vmap vtail v ′)).

We pattern match on a square matrix of size n by n and compute its diagonal.
Only two cases need to be considered: either the matrix is empty and so is its
diagonal, or the matrix has n + 1 rows made of vectors of size n + 1 and we
can extract the element at the top left of the matrix and build the rest of the
diagonal recursively.

Internal vs. external approaches. There exist two main approaches to
adding dependent pattern matching to a dependent type theory. One is to bake
in the high-level pattern matching construct and make the associated coverage
checking and unification procedure part of the core system. This is essentially a
shallow approach: one works directly in the metalanguage of the system’s imple-
mentation and avoids building witnesses for the covering and unification. The
disadvantages of the external approach are that it makes the trusted code base
larger and limits the extensibility of the system: adding a new pattern matching
construct like with-clauses requires to modify the kernel’s code. Agda imple-
ments pattern-matching this way, and there is a proposal to extend Coq in a
similar way [4].

The internal approach takes a different path. In this case we use the type
theory itself to explain why a definition is correct, essentially building a wit-
ness of the covering in terms of the simpler existing constructs on inductive
families. This is the path chosen by [1], and the way Epigram implements
pattern-matching. One advantage is that the compiler needs not to be trusted:
it elaborates a program that can be checked independently in the core type
theory. By taking an elaboration viewpoint, it is also much easier to extend the
system with new features that can also be compiled away to the core type theory.
Our mantra (after McBride) is that type theory is enough to explain high-level
programming constructs.
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Our implementation closely follows the scheme from [1], its originality comes
mainly from a number of design choices that we will explain in detail. We will
not present here the whole formal development of pattern-matching compilation
as is done in [1] but we will introduce the main structures necessary to describe
our contributions.

The compilation process starts from a signature and a set of clauses given by
the user, constructed from the grammar given in figure 1.

term, type t, τ ::= x | λx : τ, t | Πx : τ, τ ′ | . . .
binding d ::= (x : τ ) | (x := t : τ )

context Γ, Δ ::=
−→
d

program prog ::= f Γ : τ := −→c
user clause c ::= f −→up n
user pattern up ::= x | C −→up | ?(t)
user node n ::= := t | :=! x | with t := { −→c }

Fig. 1. Definitions and user clauses

A program is given as a tuple of a (globally fresh) identifier, a signature and
a set of user clauses. The signature is simply a list of bindings and a result type.
The purposed type of the function f is then Π Γ, τ . Each user clause comprises
a set of patterns that will match the bindings Γ and a right hand side which
can either be a simple term (program node), an empty node indicating that the
type of variable x is uninhabited or a refinement node adding a pattern to the
problem, scrutinizing the value of t.

Notations and terminology. We will use the notation Δ to denote the set of
variables bound by an environment Δ, in the order of declarations. An arity
is a term of the form Π Γ, s where s is a sort. A sort (or kind) can be either
Prop (categorizing propositions) or Type (categorizing computational types, like
bool). An arity is hence always a type. We consider inductive families to be
defined in a (elided) global context by an arity I : Π Δ, s and constructors−−−−−−−−−→
Ii : Π Γi, I

−→
t . Although CIC distinguishes between parameters and indices and

our implementation does too, we will not distinguish them in the presentation
for the sake of simplicity.

Searching for a covering. The goal of the compiler is to produce a proof that
the user clauses form an exhaustive covering of the signature, compiling away
nested pattern-matchings to simple case splits. As we have multiple patterns
to consider and allow overlapping clauses, there may be more than one way to
order the case splits to achieve the same results. We use inaccessible patterns
(noted ?(t)) as in Agda to help recover a sense of what needs to be destructed
and what is statically known to have a particular value, but overlapping clauses
force the compilation to be phrased as a search procedure. As usual, we recover
a deterministic semantics using a first-match rule when two clauses overlap.
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context map c ::= Δ � −→p : Γ
pattern p ::= x | C −→p | ?(t)
splitting spl ::= Split(c, x , (spl?)n) | Compute(c, rhs)
node rhs ::= Program(t) | Refine(t, c, �, spl)
label � ::= ε | �.n (n ∈ N)

Fig. 2. Context mappings and splitting trees

The search for a covering works by gradually refining a programming problem
Δ � −→p : Γ and building a splitting tree. A programming problem, or context
mapping (fig. 2), is a substitution from Δ to Γ , associating to each variable in
Γ a pattern p typable in Δ. We start the search with the problem Γ � Γ : Γ , i.e.
the identity substitution on Γ and the list of user clauses. For f with signature
Π Δ, τ we define the f-computation type fcomp Δ := τ and consider the type
of the function to be Π Δ, fcomp Δ from now on. We use this computation type
during compilation to precisely keep track of recursive calls and to interface with
tactics. A splitting can either be:

– A Split(Δ � −→p : Γ, x , (s?)n) node denoting that the variable x is an object
of an inductive type with n constructors and that splitting it in context Δ
will generate n subgoals which are covered by the optional subcoverings s.
When the type of x does not unify with a particular constructor’s type the
corresponding splitting is empty.

– A Compute(Δ � −→p : Γ, rhs) node, where the right hand side can be either:
• A Program(t) node denoting a leaf program t of type f.�comp

−→p in Δ.
• A Refine(t, c′, �, s) node corresponding to a with rule introducing a pat-

tern for t with s covering the new problem c′. The label � uniquely
identifies the node and will be used to define auxiliary definitions.

Match(x , p) := ⇑ {x := p}
Match(C −→p , C −→q ) := Match(−→p ,−→q )
Match(C , D ) := ⇓
Match(C −→p , y) := ⇒ {y}
Match(?(t), ) := ⇑ ∅

Match(ε, ε) := ⇑ ε
Match(p0;−→p , q0;−→q ) := Match(p0, q0) ∪Match(−→p ,−→q )

⇑ s ∪ ⇑ s′ := ⇑ (s ∪ s′)
⇒ vs ∪ ⇒ vs ′ := ⇒ (vs ∪vs′)
⇓ ∪ | ∪ ⇓ := ⇓
⇒ vs ∪ := ⇒ vs
∪ ⇒ vs := ⇒ vs

Fig. 3. Matching patterns

Recursively, we will try to match the user patterns of each clause with the
current problem Δ � −→p : Γ . Matching patterns −→q from the a user clause and
patterns −→p from the current programming problem can either fail (⇓), succeed
(⇑ s) returning a variable substitution s from −→q to −→p or get stuck (⇒ vs)
returning a set of variables from −→p that needs further splitting to match the
user patterns in −→q .
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– If the clause does not match a particular problem we try the next one, if
there are no clauses left we have a non-exhaustive pattern-matching.

– If the problem is stuck on the clause, we try to recursively find a splitting
after refining a stuck variable x, creating subproblems that correspond to
an instantiation of the variable with each possible constructor. We build a
Split(c, x, s) node from the resulting set of splittings if all succeed, or try the
next stuck variable.

– If the clause matches we get back a substitution from the user clause variables
to Δ, so we can typecheck right-hand side terms in environment Δ. We look
at the right-hand side and decide:

• If it is a program user node, we simply typecheck the program and build
a Program(t) node.

• If it is an empty node (:=! x), we refine x and check that this produces
no subproblems, building a Split node.

• If it is a with node (⇐ t ⇒ {−→c }), we typecheck t in Δ finding its type τΔ.
We then strengthen the context Δ for t, giving us the minimal context
Δt to typecheck t and the remaining context Δt. This strengthening
is in fact a context mapping Δt, xt : τΔ, Δt � str : Δ, xt : τΔ. We
can now abstract t from the remaining context to get a new context:
Δ�.n � Δt, xt : τΔ, Δt[t/xt ]. We check that this context is well-typed
after the abstraction, which might not be the case. We also define an
abstracted type for the subprogram f.�.ncomp Δ�.n := f.�comp

−→p [t/xt ] and
search for a covering of the identity substitution of Δ�.n using updated
user clauses −→c . The user clauses are actually transformed to match the
strengthening: each ci must be of the form −→p i px

i where −→p i matches−→p . The matching gives us a substitution from the variables of −→p , the
patterns at the with node, to new user patterns. We can easily make
new user clauses matching the strengthened context Δ�.n by associating
to each variable of Δ�.n its associated user pattern and using px

i for the
new pattern. The result of the covering will then be a splitting s for the
problem c′ = idsubst(Δ�.n) from which we can build a Refine(t, c′, �.n, s)
node with a fresh n. Compiling this term will give us a term of type
ΠΔ�.n, f.�.ncomp Δ�.n. We can apply this term to Δ

t
, t, Δt to recover a

term of type f.�comp
−→p in the original Δ context, providing a witness

for the initial Δ � −→p : Γ problem. Consider for example the following
definition:
Equations {A} (l : list A) (p : A → bool) : list A :=
filter A nil p := nil ;
filter A (cons a l) p with p a := {
filter A (cons a l) p true := a :: filter l p ;
filter A (cons a l) p false := filter l p }.

When interpreting the with node, the patterns of the inner clauses are
transformed to match the variables A a l p bound at the with node and
their additional pattern for p a.
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The compiled term built from this covering will have a type convertible
with:

ΠA a l p (b : bool), filtercomp A (cons a l) p

We can then instantiate b with p a to build a term in the initial A, a, l ,
p context.

This is a basic overview of the algorithm for type-checking pattern-matching
definitions as described in [5], except for the treatment of inaccessible patterns
we omitted for brevity. In our case however we not only check that pattern-
matchings are well-formed, we also produce witnesses for this compilation in
the core language, following [1]. Now that we have compiled the program to a
simplified splitting tree, we just need to construct a mapping from splittings to
Coq terms. We already explained how Refine(c, x, �, s) nodes are compiled, and
Program(t) nodes are trivially compiled, so we just need to map Split nodes.

2.1 A Few Constructions

The dependent pattern-matching notation acts as a high-level interface to a
unification procedure on the theory of constructors and uninterpreted functions.
Our main building block in the compilation process is hence a mechanism to
produce witnesses for the resolution of constraints in this theory, and use these
to compile Split nodes. The proof terms will be formed by applications of
simplification combinators dealing with substitution and proofs of injectivity
and discrimination of constructors, their two main properties.

The design of this simplifier is based on the “specialization by unification”
method developed in [6,7]. The problem we face is to eliminate an object x of
type I

−→
t in a goal Γ � τ potentially depending on x. We want the elimination

to produce subgoals for the allowed constructors of this family instance. To do
that, we generalize the goal by fresh variables Δ (x ′ : I Δ) and a set of equations
asserting that x ′ is equal to x , giving us a new, equivalent goal:

Δ, x ′ : I Δ, Γ � −−−−→
Δi ) ti → x ) x ′ → τ

Note that the equations relate terms that may be in different types due to the
fresh indices, hence we use heterogeneous equality ) to relate them. We can apply
the standard eliminator for I on x′ in this goal to get subgoals corresponding to
all its constructors, all starting with a set of equations relating the indices t
of the original instance to the indices of the constructor. We use a recursive
tactic to simplify these equalities, solving the impossible cases automatically. Its
completeness is asserted in [1]: at the end of specialization we get refined goals
where the initial x has been substituted by the allowed constructors only.

Our tactic relies on a set of combinators for simplifying equations in the theory
of constructors, most of which are just rephrasings of the substitution principles
for Leibniz and heterogeneous equality. The only interesting bit is a simplifier for
equalities between constructors. We need a tactic that can simplify any equality
C
−→
t = D−→u , either giving us equalities between arguments −→

t and −→u that can be
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further simplified or deriving a contradiction if C is different from D. McBride et
al. [7] describe a generic method to derive such an eliminator that we adapted
to Coq. For any (computational) inductive type I : Π Γ, Type, we can derive a
transformer NoConfusionI : Π Γ (P : Type), I Γ → I Γ → Type that describes
how to simplify the goal P under the assumption that the two instances of I Γ
are equal. E.g., for natural numbers we define:

Equations NoConfusion nat (P : Type) (x y : nat) : Type :=
NoConfusion nat P O O := P → P ;
NoConfusion nat P (S n) (S m) := (n = m → P) → P ;
NoConfusion nat P := P .

Suppose we have a goal P and a proof of NoConfusion nat P x y for x and
y in constructor form supposing x = y. The proof will always unfold to an
implication ending in P , so we can apply it to our goal. Depending on the form
of x and y, we will make the goal progress in different ways. If x and y are both
O, then we are left to prove the same goal unchanged, the equality is trivial (P
→ P). If x and y are both of the form S then we are left with a proof of the
goal under the additional hypothesis that the arguments are equal ((n = m →
P) → P). Finally, in all other cases, the goal is directly discharged, as we have
a witness of P by contradiction of the equality of n and m.

We define a new type class [8] to register NoConfusion proofs for each type.
Instances can be automatically derived for any computational inductive family.
We can then build a generic tactic to simplify any equality hypothesis on a reg-
isted type using this construction, which subsumes the standard discriminate
and injection tactics.

Dealing with K. There is one little twist in our simplifier, due to the fact that
Coq does not support the principle of “Uniqueness of Identity Proofs”, also
referred to as Streicher’s K axiom [9], which is necessary to compile dependent
pattern-matchings:

Axiom UIP refl : ∀ (U : Type) (x : U ) (p : x = x ), p = eq refl

This principle allows us to simplify a goal depending on a proof p of x = x by
substituting the sole constructor eq refl for p. As we are outside the kernel, we
can easily make use of this axiom to do the simplifications, but this means that
some of our definitions will not be able to reduce to their expected normal forms:
they are not closed in the empty context anymore. We will tame this problem
by providing the defining equations as rewrite rules once a function is accepted,
making use of the axiom again to prove these.

It is notorious that using rewriting instead of the raw system reduction dur-
ing proofs is much more robust and lends itself very well to automation. Hence
we only lose the ability to compute with these definitions inside Coq itself,
for example as part of reflexive tactics. At least two proposed extensions to
Coq allow to derive this principle without any axioms: an extension to make
dependent pattern-matching more powerful with respect to indices [4] and the
addition of proof-irrelevance. Having them would make Equations only more
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useful. Note that extracted terms do not suffer from this fact as propositions like
equality are erased.

3 Recursion

We now turn to the treatment of recursive definitions. A notorious problem with
the Coq system is that it uses a syntactic check to verify that recursive calls
are well-formed. Only structurally recursive functions making recursive calls on
a single designated argument are allowed. The syntactic criterion is very re-
strictive, inherently non-modular and a major source of bugs in the core type
checker. Its syntactic nature also precludes the use of some program transfor-
mations, for example uses of abstraction might turn a guarded program into
an unguarded one. To avoid these pitfalls, we can use the same principle as for
pattern-matching and explain the recursive structure of our programs using type
theory itself.

To do so, we will use an elimination principle on the datatype we want to
recurse on, that will give us a way to make recursive calls on any subterm.
Instead of a syntactic notion of structural recursion, we will now use a logical
one, which is compatible with the rest of the logical transformations happening
during compilation.

3.1 The Below Way

Goguen et al. [1] give a way to elaborate recursive definitions by building a
memoizing structure. For any inductive type I : ΠΓ, Type, we define a new type
BelowI that captures all the recursive subterms of a given term, applied to an
arity. For natural numbers, we define Below nat as follows:

Equations Below nat (P : nat → Type) (n : nat) : Type :=
Below nat P O := unit ;
Below nat P (S n) := (P n × Below nat P n)%type.

The Below nat definition uses the built-in structural recursion to build a tuple
of all the recursive subterms of a number, applied to an arbitrary arity P . We
can build this tuple for any n : nat given a functional step that builds a P n if
we have P for all the strict subterms of n, and hence derive an eliminator:

Definition rec nat (P : nat → Type)
(step : Π n : nat, Below nat P n → P n) (n : nat) : P n :=
step n (below nat P step n).

Now suppose we want to define a function by recursion on n : nat. We can
simply apply this recursor to get an additional Below nat P n hypothesis in
our context. If we then refine n, this Below nat P n hypothesis will unfold at
the same time to a tuple of P n ′ for every recursive subterm n ′ of n. These
hypotheses form the allowed recursive calls of the function.

This construction generalizes to inductive families and the predicate can also
be generalized by equalities in a similar fashion as the dependent case construct
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to allow recursion on subfamilies of a dependent inductive object. For example,
consider defining vlast:

Equations vlast {A : Type} {n : nat} (v : vector A (S n)) : A :=
vlast A n v by rec v :=
vlast A ?(O) (Vcons a ?(O) Vnil) := a ;
vlast A ?(S n) (Vcons a ?(S n) v) := vlast v .

Here we use recursion using Below vector. When we encounter a recursion
user node by rec v (witnessed as Rec(v, s) in the splitting tree), we apply the
recursor for the type of v , after having properly generalized it. The recursion
hypothesis is hence of the form:

Below vector A (λ (n ′ : nat) (v ′ : vector A n ′),
Π n (v : vector A (S n)), n ′ = S n → v ′ ) v → vlast comp v) n v

When we use non-structural recursion, recursive calls are rewritten as appli-
cations of a trivial generic projection operator for the function:

vlast comp proj : ∀ (A : Type) (n : nat) (v : vector A (S n))
{vcomp : vlast comp v} → vlast comp v

The last argument of the projection is implicit and will be filled either au-
tomatically by a proof search procedure or interactively by the user. When we
typecheck a recursive call, the procedure will try to find a satisfying vlast comp
object in the context, simplifying and applying Below vector hypotheses.

This method handles the structurally recursive definitions satisfactorily, but it
is very inefficient. Indeed, if we try to reduce a program built with this recursor
using a call-by-value reduction, there might be an exponential blowup as the
object we are recursing on, that is the tuple of all possible recursive calls belowI,
will have to be computed for each call. This is not so important if we are using
a lazy reduction strategy but it is prohibitive if we want to compute with a call-
by-value strategy inside Coq, or compute with the extracted program in ML.
Extraction removes the logical parts of a term (in Prop), like the manipulations
on equality used during specialization by unification, but in this case the Below
object is computational and must be kept.

To avoid this problem, we will use another way of witnessing the subterm
relation that is entirely logical.

3.2 Generalized Subterm Relations

Our solution is to define the subterm relation on an inductive family and write
functions by well-founded recursion on this relation. The solution is also re-
stricted to inductive types in Type. Indeed we cannot define any irreflexive
relation on inductives in Prop, as that would contradict the proof-irrelevance
principle consistent with the calculus.

Definition 1 (Subterm relation). Given a computational inductive type I :
Π Δ, Type with constructors

−−−−−−−−−→
Ii : Π Γi, I

−→
t , we define the generalized subterm

relation as an inductive type Isub : Π Δl Δr, I Δl → I Δr → Prop. For each
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constructor Ii : Π Γi, I
−→
t and for each binding of Γi of the form (x : Π Γx, I −→u )

we add a constructor to the relation: Isub
n : Π Γx Γi, I

sub −→u −→
t (x Γ x) (Ii Γ i).

Before going further, we will simplify our development by considering only ho-
mogeneous relations. Indeed we can define for any inductive type Π Δ, I Δ (any
arity in general) a corresponding closed type by wrapping the indices Δ in a de-
pendent sum and both the indices and the inductive type in another dependent
sum.

Definition 2 (Telescope transformation). For any context Δ, we define
packing Σ(Δ) and unpacking Σ(Δ, s) by recursion on the context2:

Σ(ε) = unit Σ(x : τ, Δ) = Σx : τ, Σ(Δ)
Σ(ε, s) = ε Σ(x : τ, Δ, s) = π1 s, Σ(Δ, π2 s)

The heterogeneous subterm relation can hence be uncurried to form an homo-
geneous relation on Σ i : Σ(Δ), I Σ(Δ, i).

The traditional notion of well-founded relation as found in the Coq standard
library is restricted to homogeneous relations and based on the following notion
of accessibility:

Inductive Acc {A} (R : A → A → Prop) (x : A) : Prop :=
Acc intro : (∀ y : A, R y x → Acc R y) → Acc R x .

An element of Acc A R x contains a proof that any preceding element of x by
R (if any) is also accessible. As objects of Acc are inductive, there has to a finite
proof for the accessibility of x , hence all possible chains · · ·R xi−1xi, R xi x have
to be finite. A relation is said to be well-founded if all elements of its support are
accessible for it. This corresponds (classicaly) to the descending chain condition.
We make a class to register well founded relations:

Class WellFounded {A : Type} (R : relation A) := wellfounded : ∀ a, Acc R a.

It is then trivial to derive a fixpoint combinator by recursion on the accessi-
bility proof, given a step function as before:

Definition FixWf ‘{WF : WellFounded A R} (P : A → Type)
(step : Π x : A, (Π y : A, R y x → P y) → P x ) : Π x : A, P x .

Obviously, we can prove that the direct subterm relation defined above is
well-founded. It follows by a simple induction on the object and inversion on
the subterm proof relating the subterms and the original term. We still need to
take the transitive closure of this relation to get the complete subterm relation.
Again it is easily shown that transitive closure preserves well-foundedness.

Using this recursion scheme produces more efficient programs, as only the
needed recursive calls have to be computed along with the corresponding proofs
of the subterm relation. Extraction of FixWf is actually a general fixpoint.

We can use the same technique as before to use this fixpoint combinator in
Equations definitions, we just need to deal with the currying when applying
2 We omit type annotations for the construction of sums and the projections, they

can be easily infered.
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it to an object in an inductive family. Consider the application of the fixpoint
combinator for vlast again, our initial problem was:

∀ A n (v : vector A (S n)), vlast comp A n v

To apply our recursion operator over vectors, we must first prepare for a de-
pendent elimination on v packed with its index n. To do so, we simply generalize
by an equality between the packed object and a fresh variable of the packed type,
giving us an equivalent goal:

A : Type v ′ : {index : nat & vector A index}
============================
∀ n (v : vector A (S n)), v ′ = existT (S n) v → vlast comp A n v

We can now directly use the fixpoint combinator on the subterm relation for
packed vectors with v ′. This results in a new goal with an additional induction
hypothesis expecting a packed vector and a proof that it is smaller than the
initial packed v . Using currying, unpacking of existentials and the dependent
elimination simplification tactic, we get back a goal refining the initial problem
with the same patterns A n v .

The last step is to provide a proof search procedure to automatically build
proofs of the subterm relation, filling the witnesses that appear at recursive
calls. We can easily do so using a hint database with the constructors of the Isub

relation and lemmas on the transitive closure relation that only allow to use the
direct subterm relation on the right to guide the proof search by the refined v ,
emulating the unfolding strategy of Below.

Measures. We need not restrict ourselves to the subterm relation for building
well-founded definitions, we can also use any other available well-founded relation
at our hands. A common one is provided by the inverse image relation produced
by a function on a given relation, often referred to as a measure when the relation
is the less-than order on natural numbers. We leave this generalization for future
work.

4 Reasoning Support

We now turn to the second part of the Equations package: the derivation of
support definitions to help reasoning on the generated implementations.

4.1 Building Equations

The easiest step is constructing the proofs of the equations as propositional
equalities.

Definition 3 (Equations statements). We recurse on the splitting tree, book-
keeping the current label �, initially ε, and for each Compute(Δ � −→p : Γ, rhs)
node we inspect the right-hand side and generate a statement:

– Program(t): the equation is simply Π Δ, f.� −→p = t.
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– Refine(t, Δ′ � −→v x, x ,−→v x : Δx, x : τ, Δx, �′, s): We know that the new pro-
gramming problem is just a reordering of the variables in Δ after having
inserted a declaration for the refined object and abstracted the remaining Δx

context. The auxiliary definition f.�′ produces an object refining this con-
text, we can hence generate an indirection equation for the helper function:
Π Δ, f.� −→p = f.�′ −→v x t −→v x. We continue the generation of equations, con-
sidering the new programming problem and setting the current label to �′.

All of these goals are solvable by simply unfolding the definition of the function
and simplifying the goal: the constructor forms in the leaf patterns direct the
reduction. If we didn’t use any axioms during the definition, then these follow
definitionally. When we encounter axioms in these proofs we simply rewrite using
their expected computational behavior.

We create a database of rewrite rules named f with the proofs of these equa-
tions, to allow simplification by rewriting, abstracting many steps of reasoning
and computation in a single rewrite.

4.2 Induction Principle

The next step is to build the inductive graph of the function. Considering f :
Π Γ, fcomp Γ , we want to build an inductive relation f ind : Π Γ, fcomp Γ → Prop
that relates arguments Γ to results fcomp Γ .

We first define a function that finds the occurrences of recursive calls in a
right-hand side term and abstracts them by variables. This is easy to do given
that all the recursive calls are labeled by the trivial fcomp proj projection.

Definition 4 (Abstracting recursive calls). The AbsRec(f, t) operator is
defined by recursion on the term t, under a local context Δ, initially empty. The
operator builds a context representing the abstracted recursive calls and a new
term using these abstracted calls. By case on t:

– fcomp proj
−→
t p : We recursively compute the abstractions in −→

t giving us a
new context Δ′ and terms

−→
t′ . We extend Δ′ with a fresh declaration res :=

λ Δ, f
−→
t′ : Π Δ, fcomp

−→
t′ and the term becomes res Δ.

– λx : τ, b : Let the result of abstracting b in an extended context Δ, x : τ be
(Δ′, b′), we return (Δ′, λx : τ, b′).

– f e : We simply combine the results of abstracting f and e separately.
– let x := t in b : We do the abstractions in t resulting in Δ′, t′ and recursively

call the abstraction on b in a context extended with (x := t′). We simply
combine the resulting contexts and terms.

– Otherwise we return the empty context and the term unchanged.

Once we get the recursive calls abstracted, we will need to add induction hy-
potheses to the context.

Definition 5 (Induction hypotheses generation). Given a context Δ of
results produced by the AbsRec(f, t) operator, we define the induction hypothe-
ses context by a simple map on Δ, denoted Hyps(Δ). For each binding res :
Π Δ, fcomp

−→
t we build a new binding resind : Π Δ, f ind

−→
t (res Δ).
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We are now ready to build the inductive graph. We will actually be building
graphs for both the toplevel definition and each auxiliary definition, resulting in
a mutual inductive type

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
f.�ind : Π Δ�.n, f.�comp Δ�.n → Prop.

Definition 6 (Inductive graph). We compute the constructors of the f.�ind

relation by recursion on the splitting tree:

– Split(c, x, s) : Again splitting nodes are basically ignored, we just collect the
constructor statements for the splittings s, if any.

– Rec(v, s) : Recursion nodes are also ignored when we compute the inductive
graph, after all they just produce different ways to build fcomp objects. We
just recurse on the splitting s.

– Compute(Δ � −→p : Γ, rhs) : By case on rhs:
• Program(t) : We abstract the recursive calls of the term using the function

AbsRec(f, t) which returns a context ψ and a new term t′. We return
the statement

Π Δ Ψ Hyps(Ψ), f.�ind
−→p t′

• Refine(t, Δ′ � −→v x, x ,−→v x : Δx, x : τ, Δx, �.n, s) : As for the equation,
we just have to do an indirection to the inductive graph of the auxiliary
function, but we have to take into account the recursive calls of the refined
term too. We compute AbsRec(f, t) = (ψ, t′) and return:

Π Δx Δx Ψ Hyps(Ψ) (res : f.�.ncomp Δ
x

t′ Δx)
f.�.nind

−→v x t′ −→v x res → f.�ind
−→p res

We continue with the generation of the f.�.nind graph.

We can now prove that the function (and its helpers) corresponds to this graph
by proving the following lemma:

Theorem 1 (Graph lemma). We prove Π Δ�, f.�ind Δ� (f.� Δ�) by following
the splitting tree.

– Rec(c, s) : We replay recursion nodes, giving us new ways to prove f ind that
we will use to prove the goals corresponding to induction hypotheses.

– Split(c, x, s) : Each split is simply replayed, empty ones solve the goal directly.
– Compute(Δ � −→p : Γ, rhs) : At computation nodes our goal will necessarily

be simplifiable by an equation because we replayed the whole splitting, i.e. it
will have the form Π Δ, f.�ind

−→p (f.� −→p ). By case on rhs:
• Program(t) : We rewrite with the equation for this node and apply one

of the constructors for the graph. We will optionally get subgoals for
induction hypotheses here if t had recursive calls in it. They are solved
by a proof search, in exactly the same way as the proofs for the recursive
calls were found.

• Refine(t, Δ′ � −→v : Γ ′, �.n, s) : Here we can rewrite with the indirection
equation and apply the indirection constructor for the inductive graph,
then solve potential induction subgoals. We will be left with a subgoal
for f.�.nind in which me must abstract the refined term t. We can then
recurse on the goal: ΠΔf.�.n, f.�.nind

−→v (f.�.n −→v ).
��
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4.3 Deriving an Eliminator

Once we have the proof of the graph lemma Π Δ, f ind Δ (f Δ), we can specialize
the eliminator of f ind which is of the form:

Π (P : Π Δ, fcomp Δ → Prop)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Pf.� : Π Δf.�, f.�comp Δf.� → Prop)

(f : Π Γ, f ind
−→
t (f −→u ) → P

−→
t (f −→u ) → · · ·)

...
Π Δ (r : fcomp Δ), f ind Δ r → P Δ r

This eliminator expects not only one proposition depending on the arguments
of the initial call to f but also a proposition for each one of the helpers corre-
sponding to refinement nodes. We can easily define the proposition for f.�.n in
terms of the proposition for f.�. Each Pf.�.n is defined as:

λ Δx (x : τ) Δx (r : f.�.ncomp Δf.�.n), Π Ψ Hyps(Ψ){f ind := P},
Π H : x = t′, Pf.�

−→p (cast r x H) where AbsRec(f, t) = Ψ, t′

We abstract on the context of the refinement node with its distinguished
variable x and on a result r for the subprogram. As we know that this subprogram
is called with a particular refined value t, we can assert the equality x = t and
cast the result with this equality to get back a term of type f.�comp Δ

x
Δx: we

are simply doing the inverse of the abstraction of t that happened during the
typechecking of the refinement node. Of course, if t itself contains recursive calls,
we must also abstract by the corresponding P hypotheses and use t′ instead.

We want to eliminate not any fcomp Δ object but specifically f calls. Using the
graph lemma proof we can trivially specialize the conclusion to Π Δ, P Δ (f Δ)

We can also remove the unnecessary hypotheses of the form f ind
−→
t (f −→u )

appearing in the methods, as they are all derivable from the graph lemma proof.
Finally, we can get rid of all the indirection methods as they are of the form:

Π Δf.�.n (r : f.�comp Δf.�.n) Ψ Hyps(Ψ){f ind := P}, Pf.�.n Δ
x

t′ Δx r → Pf.�
−→p r

These are readily derivable given the definitions of the P.f.�.n above: the equal-
ity hypothesis for the refinement is instantiated by a reflexivity proof, making
the cast reduce directly. We are left with a tautology.

The cleaned up eliminator can be applied directly to any goal depending on
f, possibly after another generalization by equalities if the call has concrete,
non-variable arguments. The elimination will give as many goals as there are
Program() nodes in the splitting tree (possibly more than the number of actual
user nodes due to overlapping patterns). The context will automatically be en-
riched by equalities witnessing all the refinement information available and of
course induction hypotheses will be available for every recursive call appearing
in these and the right hand sides. This gives rise to a very powerful tool to write
proofs on our programs, and a lightweight one at the same time: all the details
of the splitting, refinement and recursion are encapsulated in the eliminator.
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5 Related Work

5.1 Dependent Pattern-Matching

The notions of dependent pattern-matching and coverage building were first
introduced by Coquand in his seminal article [2] and the initial Alf implemen-
tation. It was studied in the context of an extension of the Calculus of Construc-
tions by Cornes [10] who started the work on inversion of dependent inductive
types that was later refined and expanded by McBride [11]. Subsequent work
with McKinna and Goguen around Epigram [7,12,1] led to the compilation
scheme for dependent pattern-matching definitions which is also at the basis
of Equations. Using the alternative external approach, Norell developed the
Agda 2 language [5], an implementation of Martin-Löf Type Theory that inter-
nalizes not only Streicher’s axiom K but also the injectivity of inductive types.
In a similar spirit, Barras et al [4] propose to extend Coq’s primitive elimination
rule to handle the unification process.

5.2 Recursion in Type Theory

Our treatment of recursion is comparable to the Function tool by Barthe et al.
[13] which supports well-founded recursion and also generates an inductive graph
and a functional induction principle. Our implementation is however more robust
as the input program is sufficiently structured to give a complete procedure to
generate the graph, and more powerful in its handling of dependent pattern-
matching. It does not however remedy the combinatorial explosion due to the
use of catch-all clauses in programs as it also uses an expansion strategy to
compile pattern-matching.

Another powerful way to handle non-structural recursion in type theory was
developed by Bove et Capretta [14]. The technique, based on the ability to first
define the inductive domain of a function and delay the termination argument
might now be adaptable in our setting.

5.3 Elaborations into Type Theory

The Program [15] extension of Coq which permits elaboration of Coq pro-
grams by separating programming and proving lacked the support for reasoning
on definitions after the fact. We hope to combine the subset coercions system of
Program inside Equations to get the best of both tools.

The Epigram language also incorporates “views” and the application of ar-
bitrary eliminators with by in addition to the with construct [12] which were
not considered here.

6 Conclusion

Future Work. Our setup should allow to extend the language easily with features
like first-class patterns or views and support the application of custom tactics
during elaboration. We will also need to consider the general case of mutual
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(co)-inductive definitions. We also want to evaluate the effectiveness of this ap-
proach on a large example, comparing it to other function definition tools like
Function or the HOL function package.

We have presented a new tool for defining programs using dependent-pattern
matching in the Coq system, automatically generating a supporting theory to
ease post-hoc reasoning on them. The system has a safe architecture, living
entirely outside the kernel and allowing easy extension thanks to its reliance on
the high-level tactic language and type classes constructs. We hope it provides
a more robust, accessible and powerful user interface to the calculus.
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itifs, Synthése de lemmes d’inversion. PhD thesis, Université Paris 7 (1997)
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Abstract. We present the mechanical verification of an algorithm for
building a BDD from an AND/INVERTER graph (AIG). The algorithm
uses two methods to simplify an input AIG using BDDs of limited size; it
repeatedly applies these methods while varying the BDD size limit. One
method is similar to dynamic weakening in that it replaces oversized
BDDs by a conservative approximation; the other method introduces
fresh variables to represent oversized BDDs. This algorithm is written
in the executable logic of the ACL2 theorem prover. The primary con-
tribution is the verification of our conversion algorithm. We state its
correctness theorem and outline the major steps needed to prove it.

1 Introduction

In this paper we present the mechanical verification of a tool for building a BDD
from an AND/INVERTER graph (AIG) representation of a Boolean function.
This tool uses two methods to find simplifications of the AIG that may remove
unneeded branches while limiting the size of BDDs; one method is similar to
dynamic weakening and the other uses variable substitutions to limit the BDD
sizes. These methods are applied iteratively with varying BDD size limits until
an iteration limit is exhausted or an exact result is achieved. The primary con-
tribution of this paper is the mechanically-checked verification of this algorithm,
which has been used in verifying floating-point addition and multiplication hard-
ware at Centaur Technology [5].

After examining related work, we describe our BDD and AIG packages, which
are implemented in the executable logic language of the ACL2 theorem prover
[7, 6]. We then present the AIG-to-BDD conversion algorithm and the ACL2
theorem of its correctness, with discussion of the major steps necessary to prove
the theorem. We believe that our proof is the first mechanically checked proof
of such a conversion procedure.

2 Motivation

This work arose from an effort to verify the floating-point addition unit of
Centaur Technology’s Nano (64-bit) microprocessor design using ACL2-based

M. Kaufmann and L. Paulson (Eds.): ITP 2010, LNCS 6172, pp. 435–449, 2010.
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verification tools. In our verification flow, the hardware design logic is converted
to an AIG representation. In order to verify that the hardware implements its
specification, we convert the hardware’s AIG representation into BDDs using
the conversion algorithm presented here. Our algorithm attempts to avoid the
AIG-to-BDD conversion for intermediate nodes where the BDD value is irrele-
vant to the final result. Splitting the analysis of the adder into cases and using
the conversion algorithm to avoid building large intermediate BDDs allows the
analysis to be completed successfully.

3 Related Work

In general, it is not a robust strategy to attempt verification tasks by building the
BDDs of complex Boolean functions; some functions require exponential space to
represent as ordered BDDs and others are highly sensitive to variable ordering.
However, the symbolic trajectory evaluation (STE) literature has shown that
such an approach can be profitable in certain problem domains when strategies
such as abstraction of don’t-care inputs [10] or splitting the input space into
subcases [1] can prove effective. The case-splitting method is particularly helpful
in the analysis of floating-point addition [1].

Dynamic weakening [11] is a technique used in STE to avoid blowup when
computing BDDs for nodes that are irrelevant to the final result. When using
dynamic weakening in STE, BDD values exceeding a certain size are replaced by
the unknown value X, which conservatively approximates any symbolic value in
the four-valued logic of STE. Our algorithm uses this type of dynamic weakening
as one of two approaches to eliminating oversized BDDs; the other approach is
less conservative and may reach exact final results at a lower size threshold than
dynamic weakening.

Our algorithm is also similar in spirit to cutpoint-based methods of combina-
tional equivalence checking. Originally such methods were based on exhaustive
simulation [2], but modern versions use techniques such as localized BDD sweep-
ing [9]. These techniques allow combinational equivalences of complex expres-
sions to be proved while limiting the size of BDDs used in the computations.
These techniques also are applicable to a broader set of verification problems
than equivalence checking [8], wherein BDD sweeping techniques are often inte-
grated with a SAT solver operating on AIGs. Compared to these cutpoint-based
BDD sweeping techniques, our algorithm is lazier; our algorithm only inserts
cutpoints where the BDD created exceeds a size threshold, whereas other meth-
ods strategically explore several cutpoint frontiers to achieve more simplification
of the AIG structure.

4 Definitions

Our goal is to demonstrate the correctness of our AIG-to-BDD conversion. We
will describe the interface functions of the BDD and AIG packages, then intro-
duce the algorithm Aig-To-Bdd. We verify the correctness of Aig-To-Bdd

with respect to our specification function A2B, which we will also define.
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4.1 BDD Package Specification

We have defined a BDD implementation using user-level ACL2 functions [3].
While our BDD data structure definition differs from that of ROBDD packages
such as CUDD [12], the same basic operations are possible on both data struc-
tures. The proof of correctness of the AIG-to-BDD conversion algorithm is not
dependent on the BDD representation. Therefore we will describe the interface
of our BDD package without reference to its implementation.

Well-formed BDD objects are recognized by the ACL2 predicate Normp.
The constant Boolean functions are represented by the Boolean values t and
nil. Propositional logic operations on BDDs are named with a Q- prefix, such
as Q-Not, Q-And, and Q-Ite. The ith BDD variable of the variable order
is produced by Qv(i). Function Max-Var determines the highest numbered
BDD variable that is referenced in a BDD; we make use of this later when we
wish to introduce a new BDD variable. Eval-Bdd applies the Boolean function
represented by a BDD to a list of Boolean values, producing a Boolean result.
We have proven the following correctness properties for these operations.

Theorem 1. Qv produces a Normp object:

Normp(Qv(i)).

Theorem 2. Each of the BDD propositional logic operations produces an out-
put satisfying Normp when its inputs satisfy Normp. For example,

Normp(x) ⇒ Normp(Q-Not(x)), and
(Normp(x) ∧ Normp(y)) ⇒ Normp(Q-And(x, y)).

Theorem 3. Eval-Bdd correctly interprets the semantics of the constant func-
tions and the Qv constructor:

Eval-Bdd(t, v) = t,

Eval-Bdd(nil, v) = nil, and
Eval-Bdd(Qv(i), v) = if Nth(i, v) then t else nil.

Here Nth(i, v) gives the ith element of list v.

Theorem 4. Eval-Bdd correctly interprets the semantics of the BDD propo-
sitional logic. For example,

Eval-Bdd(Q-Not(x), v) = ¬Eval-Bdd(x, v)
Eval-Bdd(Q-And(x, y), v) = Eval-Bdd(x, v) ∧ Eval-Bdd(y, v).

Theorem 5. Only the first Max-Var(x) variables are relevant to the evalua-
tion of x:

(Max-Var(x) ≤ Len(v)) ⇒ Eval-Bdd(x,Append(v, v′)) = Eval-Bdd(x, v).

Here Len(v) gives the length of the list v, and Append(v, v′) gives the list
formed by appending the elements of v onto v′.
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Theorem 6. Max-Var has the following properties:

Max-Var(t) = Max-VAR(nil) = 0,

Max-Var(Qv(i)) = i when i is a natural number,
Max-Var(Q-Not(x)) = Max-Var(x), and

Max-Var(Q-And(x, y)) ≤ Max(Max-Var(x),Max-Var(y)).

Theorem 7. BDDs are canonical. That is, if two BDDs represent the same
Boolean function, then they are equal; equivalently, if they are unequal, then
there is some variable assignment under which their evaluations are unequal:

Normp(x) ∧ Normp(y) ∧ x 
= y

⇒ ∃v . Eval-Bdd(x, v) 
= Eval-Bdd(y, v).

Finally, the function Count-Branches(x, lim) counts the number of unique
branching nodes in a BDD x unless it is greater than the limit lim . Halting the
count when it exceeds lim is simply a performance optimization. We use this to
heuristically determine if it is too expensive to continue computing with a given
BDD.

4.2 AIG Package Specification

As with the BDD package, the AIG package is defined with user-level ACL2 func-
tions, and while its implementation differs from other AIG packages, the interface
is similar. In our AIG representation, any ACL2 object may be interpreted as an
AIG; there is no well-formedness predicate. All other non-cons objects, such as
symbols and numbers, are interpreted as variables. The constant Boolean AIGs
are represented as t and nil as with the BDD package. The node constructors
Aig-And and Aig-Not make new conjunction or negation nodes, respectively.
The function Aig-Eval evaluates the Boolean function represented by an AIG,
using a table which maps the AIG variables to Boolean values; Lookup(key , tab)
indexes into such a table. We have proven the following correctness properties
for these operations.

Theorem 8. Aig-Eval correctly interprets the semantics of the constant func-
tions and variables:

Aig-Eval(t, tab) = t

Aig-Eval(nil, tab) = nil

and if v is a non-Boolean atom,

Aig-Eval(v, tab) = Lookup(v, tab).

Theorem 9. Aig-Eval correctly interprets the semantics of Aig-And and
Aig-Not:

Aig-Eval(Aig-Not(x), tab) = ¬Aig-Eval(x, tab)
Aig-Eval(Aig-And(x, y), tab) = Aig-Eval(x, tab) ∧ Aig-Eval(y, tab).
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Our goal for the algorithms we will describe is to build a BDD from an AIG
given a table mapping AIG variables to BDDs. The specification for such a
transformation is A2B. While this is also an executable function in ACL2, it
may perform poorly and is used only as a specification. Given input AIG x
and table avt (“AIG variable table”) mapping AIG variables to BDD values, we
define A2B as follows; here we use operators ¬,∧ as notation for describing AIG
nodes, so that ¬y signifies a negation node with subtree y:

A2B(x, avt) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x when x is a Boolean
Lookup(x, avt) when x is a variable
Q-Not(A2B(y, avt) when x is ¬y

Q-And(A2B(a, avt),
A2B(b, avt))

when x is a ∧ b.

(1)

A well-formed AIG variable table is a table of key-value pairs in which each
key is a non-Boolean atom and each value is a Normp object. The predicate
Avt-Wfp(avt) (“well-formed predicate”) checks this property. Finally, the func-
tion Table-Max-Var returns the number of the highest BDD variable present
in the values of a table avt . Note that

Max-Var(A2B(x, avt)) ≤ Table-Max-Var(avt);

this is provable by a simple induction on A2B using Theorem 6.

4.3 ACL2(H) Implementation

The ACL2 execution language lacks many features convenient for implementing
efficient BDD and AIG structures and operations. ACL2(H) [3] is an exten-
sion that rectifies this by adding several capabilities to the underlying execution
engine while leaving the ACL2 logic unchanged. The major such capabilities
used in the BDD and AIG packages are hash-consing, function memoization,
and applicative hash tables. Hash-consing allows BDDs to be created as canon-
ical objects without complicating the user-level code. Similarly, the function
memoization facility allows BDD operations to be written as recursive functions
without including specific memoization-related code. Applicative hash tables are
used extensively in the AIG-to-BDD conversion algorithm.

Because the logic of ACL2(H) is the same as the logic of ACL2, all of our
theorems are provable in ACL2, although the execution performance of our al-
gorithms would be unacceptable. Thus we do not need to assume that ACL2(H)
is correctly implemented in order to believe that our algorithms are correct; this
assumption is, however, necessary if we wish to believe in the results of executing
them in ACL2(H).

5 AIG-to-BDD Conversion Algorithm

The idea behind the conversion algorithm is to attempt to determine whether
certain AIG nodes can be eliminated as irrelevant by calculating with BDDs
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of limited size. Certainly if it can be determined that one of the conjuncts of
an AIG AND node reduces to nil, then the other conjunct is irrelevant. More
generally, if conjunct a represents a Boolean function that implies conjunct b,
then a∧ b equals a, so that b is an irrelevant node. Even when b is too expensive
to calculate exactly as a BDD (for example, when it is an output of a multiplier)
it can sometimes be proven to be irrelevant. Our algorithm tries two methods
to find and eliminate irrelevant nodes. One method conservatively approximates
BDDs that are larger than the current size threshold, and the other substitutes
fresh variables for oversized BDDs. The top-level algorithm applies these two
methods according to an order specified by the user.

5.1 Bounding Method

The first method, Bound-Method, uses upper and lower bound (over- and
under-approximate) BDDs to approximate the exact result when it cannot be
calculated within the current size limit. Here a is a lower bound for b (and b
is an upper bound for a) if for all variable assignments v, Eval-Bdd(a, v) ⇒
Eval-Bdd(b, v), or equivalently, Q-And(a, b) = a. Each node value is there-
fore encoded using two BDDs, just as in the onset/offset representation used
for the four-valued logic of symbolic trajectory evaluation [4]. In fact, the two
representations are equivalent, with the upper bound equivalent to the onset and
the lower bound equivalent to the negation of the offset. The bounding method
is essentially the same as STE’s dynamic weakening technique [11]; however,
we describe the technique here in terms of bounds rather than the onset/offset
vocabulary of STE.

Every AIG node has an exact BDD value, but this may be too large to com-
pute. Therefore, we associate each node instead with an upper and lower bound
BDD, of which each is smaller than a given size threshold. When the upper and
lower bounds are identical for a given node, these bounds are equal to the exact
BDD of that node. We generate the bounds for a conjunction node by computing
Q-And of the corresponding bounds of its two conjuncts. When the generated
upper (resp. lower) bound BDD is larger in size than the current threshold, it is
replaced by t (resp. nil); thus when both the upper and lower bounds exceed the
size limit at the same node, that node’s value is considered to be the unknown
value bounded by nil and t. If at a conjunction node a ∧ b the upper bound of
conjunct a implies the lower bound of conjunct b, then the conjunction equals
a. At each size limit, we remove known irrelevant AIG branches; this allows us
to avoid reexamining the same irrelevant portions with a larger BDD size limit.

The inputs to Bound-Method consist of the AIG ain to be transformed into
a BDD, the table avt mapping AIG variables to BDDs, the size limit lim , and
two tables fmemo and bmemo, used for memoization. The memoization entries
are divided between the tables on the basis of whether or not the BDD results
are exact; exact results are stored in fmemo and inexact ones in bmemo. Results
from fmemo can then be reused, whereas the results in bmemo are discarded after
each application of this algorithm since they contain approximations specific to
a particular BDD size limit. For reference, Fig. 1 lists the tables used in the
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Table Keys Values

avt AIG Variables BDD values
fmemo Input AIGs AIG and exact BDD results
smemo Input AIGs AIG and BDD results with substitu-

tions
bmemo Input AIGs AIG and upper/lower bound BDDs
bvt Oversized BDDs Fresh BDD variables

Fig. 1. Tables used in Bound-Method and Subst-Method algorithms

AIG-to-BDD conversion algorithm with their key and value types. The function
returns the upper and lower bound BDDs and a new AIG formed by removing
irrelevant branches from ain . The function proceeds by cases on the syntactic
type of ain :

Boolean constant. The upper and lower bounds and the AIG result are all
equal to ain.

Variable. We look up the corresponding BDD value bv in avt . The size of bv is
then calculated. If the size is greater than lim , the upper and lower bounds
returned are t and nil respectively. Otherwise, the upper and lower bounds
are both bv . If bv is a Boolean constant, then the AIG returned is that
constant; otherwise it is ain .

Negation. Let x be the negated branch of ain . We recursively run the algorithm
on x . The upper bound returned is the negation of the lower bound for x ,
the lower bound is the negation of the upper bound for x , and the new AIG
is the negation via Aig-Not of the AIG returned by the recursive call.

Conjunction. First, we check for an entry for ain in the memoization tables.
If an entry exists, we return its previously recorded (possibly exact) upper
and lower bound BDD and AIG results.

Otherwise, let x and y be the conjoined branches of ain . We first run the
algorithm recursively on x . Let ux , lx , and ax denote the resulting upper
BDD bound, lower BDD bound, and output AIG, respectively. In the case
where ux is the constant nil, we immediately return nil for all three return
values.

Otherwise, we recur also on y. Let uy, ly , and ay denote the resulting
upper bound, lower bound, and output AIG, respectively. We check the
results to see whether we can determine that ain is equal to either x or y. If
Q-And(ux , ly) = ux , then ain = x and we return ux , lx , and ax . Similarly
if Q-And(uy, lx ) = uy, then we return uy , ly , and ay .

If we cannot make such a determination, we compute the upper bound
ub = Q-And(ux , uy) and the lower bound lb = Q-And(lx , ly). If the size of
ub exceeds the limit, it is replaced by t; similarly if the size of lb exceeds
the limit it is replaced by nil. The new AIG returned is the Aig-And of
the return values from the recursive calls unless ub and lb are equal Boolean
constants, in which case the AIG returned is that value.
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In all of the above cases, we update the memoization tables to reflect
the calculated values before returning. If the upper and lower bound BDDs
returned are equal, we have an exact result, so fmemo is updated to map
both ain and the result AIG to the resulting AIG and BDD values; otherwise
bmemo is updated to map ain to the result values.

A small example of where this algorithm gives an advantage follows. Consider
the AIG a ∧ ¬(¬a ∧ b). Suppose that the BDD result qa for a can be calculated
exactly. If the upper and lower bound BDDs computed for b are both larger
than the size limit, then they are replaced by t and nil. The bounds for ¬a are
calculated exactly as (¬qa,¬qa). The conjunction of this with b yields bounds
(¬qa,nil); the negation yields (t, qa). Finally, the conjunction of this with a
just yields (qa, qa) so that the subtree can be replaced by a without calculating
a value for b.

A weakness of this method is that it fails to reduce expressions such as b∧¬b
when b is too expensive to calculate. The next method is less conservative and
therefore can reduce some such expressions.

5.2 Variable Substitution Method

The second, less conservative method replaces each oversized BDD by a fresh
BDD variable, associating that oversized BDD with its chosen variable in a table
so that if the same BDD is encountered again, the same variable is reused. The
variable numbers of fresh variables assigned to oversized BDD results are larger
than Table-Max-Var(avt). A BDD result y from this method is an exact
value for the target AIG x — that is, y = A2B(x, avt) — if Max-Depth(y) ≤
Table-Max-Var(avt).

The variable-substitution method is implemented by the function Subst-

Method. Like Bound-Method, this function takes as inputs the AIG ain to
be transformed, the table avt mapping AIG variables to BDDs, the size limit lim ,
two tables fmemo and smemo used for memoization, and another table bvt (“BDD
variable table”). The memoization entries are again divided between the tables
based on whether the BDD results are exact. The third table bvt maps oversized
BDDs to their associated fresh BDD variables. For reference, Fig. 1 lists the ta-
bles used in the AIG-to-BDD conversion algorithm with their key and value types.
Subst-Method returns a BDD result and an AIG formed by removing irrelevant
branches. Again, it proceeds by cases on the syntactic type of ain :

Boolean constant. The BDD and AIG result are equal to ain .
Variable. We look up the corresponding BDD value in avt . We assume this

BDD to be smaller than the size bound, and we return it as the BDD result.
The AIG result is ain itself unless the BDD is a Boolean constant, in which
case that value is returned.

Negation. Let x be the negated branch of ain . We recursively run the algorithm
on x . The BDD returned is the negation of the BDD returned by the recursive
call and the AIG returned is the negation via Aig-Not of the AIG returned
by the recursive call.
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Conjunction. First, we check for an entry for ain in the memoization tables.
If an entry exists, we return its previously recorded result BDD and AIG.

Otherwise, let x and y be the conjoined branches of ain . We first run the
algorithm recursively on x . Let bx and ax be the BDD and AIG result of
this recursive call. In the case where bx is nil, we immediately return nil

for both return values.
Otherwise, we recur also on y. Let by and ay be the BDD and AIG results

of this call. We check bx and by to see whether we can determine that ain is
equal to either x or y. If Q-And(bx , by) = bx then ain = x and we return
bx and ax , and similarly if Q-And(bx , by) = by then ain = y and we return
by and ay .

Otherwise, the conjunction BDD b is Q-And(bx , by). If the size of b
exceeds the limit, we check the bvt to see whether b has previously been
mapped to a BDD variable. If so, the BDD returned is that variable; other-
wise, we assign to b the next fresh variable v , map b to v in bvt , and return
v . The AIG returned is the conjunction of those returned by the recursive
calls unless the conjunction BDD is a constant Boolean, in which case the
AIG returned is that value.

In all of the above cases, we update the memoization tables to reflect the
calculated values before returning. If the BDD result calculated has Max-

Var less than or equal to Table-Max-Var(avt), then it is known to be
exact and the return values are stored in fmemo; otherwise they are stored
in smemo.

Because this function replaces oversized BDDs by variables rather than by un-
knowns, it is more accurate than the bounding method. It is capable of resolving
some tautologies and contradictions among nodes whose BDD representations
are oversized. For example, if B is a subexpression producing an oversized BDD,
replacing that BDD with a fresh variable when converting b ∧ ¬b allows that
expression to be reduced to nil, whereas instead bounding it by t and nil does
not enable that reduction. However, Subst-Method is typically slower than
Bound-Method at a given size limit.

5.3 Combination of Methods

Our top-level algorithm Aig-To-Bdd, described in Algorithm 1, simply iterates
over a user-provided list in which each entry specifies a conversion method and
BDD size limit. At each step, we run the specified conversion method at the
given size limit. Usually, it is preferable for the size limits to be increasing. If
the BDD results from the conversion are determined to be exact, then the loop
terminates, returning the AIG and BDD results from the conversion. Otherwise,
the simplified AIG resulting from the conversion replaces the input AIG for the
next step. The fmemo table is retained between iterations since it only collects
exact results, whereas the other memoization tables bmemo and smemo and the
BDD variable table bvt of the variable substitution method are deleted after each
step, since the results stored in these tables depend on the conversion method
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Algorithm 1
procedure Aig-To-Bdd(ain, avt , steps)

fmemo ← empty table
a ← ain
for step in steps do

lim ← Limit(step)
if Method(step) = bound then

bmemo ← empty table
(a, ub, lb, fmemo, bmemo) ← Bound-Method(a, avt , lim, fmemo, bmemo)
if ub = lb then

return (success, ub, a)
end if

else � Method(step) = subst

smemo ← empty table
bvt ← empty table
(a, b, fmemo, smemo, bvt) ← Subst-Method(a, avt , lim, fmemo, smemo, bvt)
if Max-Var(b) ≤ Table-Max-Var(avt) then

return (success, b, a)
end if

end if
end for
return (failure,nil, a)

end procedure

and BDD size limit. Finally, if the algorithm reaches the end of the list of steps
without obtaining an exact result, then it returns a flag indicating failure along
with the simplified AIG produced by the most recent conversion.

6 Correctness Theorem

We prove the following correctness theorem about Aig-To-Bdd:

Theorem 10 (Correctness of Aig-To-Bdd). Let

(flag , b, aout) = Aig-To-Bdd(ain , avt , steps).

If Avt-Wfp(avt ) holds, then:

A2B(ain , avt) = A2B(aout , avt)

and, when flag = success,

A2B(ain , avt) = b.

The proof of this theorem depends on correctness theorems for Bound-

Method and Subst-Method, including an important invariant about fmemo.
We define the predicate Fmemo-Correct(fmemo, avt) to indicate whether all
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values stored in fmemo are correct, exact results. Specifically, Fmemo-Correct

checks that for each key ain of fmemo, the corresponding value is a pair (aout , b)
that satisfies

A2B(ain , avt) = A2B(aout , avt) = b.

To prove our top-level theorem by induction, it suffices to show for each
method that, when run with the local tables smemo, bmemo, and bvt all empty
and fmemo satisfying Fmemo-Correct,

– the AIG result aout is equivalent to ain under function composition with
avt :

A2B(ain , avt) = A2B(aout , avt),

– when an exact BDD result b is found, it is the correct one:

A2B(ain , avt) = b, and

– the resulting fmemo table also satisfies Fmemo-Correct.

To prove these properties by induction, however, we state a stronger theorem
that combines these three properties with additional invariants about each of
the local tables.

For the correctness theorem of Bound-Method, we show that bmemo sat-
isfies an invariant Bmemo-Correct(bmemo, avt). This function checks that
the inexact upper and lower bounds in each entry of the table are indeed upper
and lower bounds of the exact BDD result for the input AIG, and that the re-
duced AIG result is also equivalent to the input AIG under composition with
avt . Specifically, Bmemo-Correct checks that for each key ain in bmemo, the
corresponding value is a triple (aout , ub, lb) where

A2B(ain , avt) = A2B(aout , avt)

and for all variable assignments v,

Eval-Bdd(lb, v) ⇒ Eval-Bdd(A2B(ain , avt), v) and
Eval-Bdd(A2B(ain , avt), v) ⇒ Eval-Bdd(ub, v).

The invariants needed for Subst-Method ensure that bvt is well-formed and
that the memoized entries stored in smemo are correct. The structure of the
variable substitution table bvt is checked by the function Bvt-Wfp(bvt , avt).
This table is built up by Subst-Method as new BDD variables are introduced.
Each of these new variables must not previously exist in either avt or bvt , and
the BDD to which the variable is associated must only depend on previously
introduced variables. Therefore, Bvt-Wfp checks that the entries in bvt may
be ordered as

(bk+1,Qv(k + 1)), (bk+2,Qv(k + 2)), . . . , (bk+n,Qv(k + n))
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where k = Table-Max-Var(avt) and for each i ∈ {k + 1, . . . , k + n},

Max-Var(bi) < i.

This property is preserved each time an oversized BDD is replaced by a variable
and the pairing is added to bvt , since the new variable is always chosen to be the
first BDD variable greater than Table-Max-Var(avt) and not already assigned
in bvt , and the oversized BDD is constructed from values from avt and variables
already assigned in bvt .

The correctness of the memoization entries stored in smemo is checked by
the function Smemo-Correct(smemo, bvt , avt). Each entry in smemo is a key-
value pair similar to those of fmemo, where the key is an AIG ain and the value
is a pairing (aout , b) of a result AIG and a BDD. As with fmemo and bmemo,
Smemo-Correct requires that the result AIG be equivalent to the input AIG
under composition with avt . However, the BDD result b may depend on variables
assigned in bvt as well as those in avt , due to substitutions of variables for oversize
BDDs. Its relation to the exact result bexact = A2B(ain , avt) is determined
by these substitutions. We define a predicate Bdd-Substp(b, bexact, bvt) that
determines whether b is a representation of bexact under the substitutions given
in bvt ; Smemo-Correct requires that this hold for each entry in smemo.

Given an assignment v of values to the variables present in avt , we will de-
scribe a way to recover the value Eval-Bdd(bexact, v) from b and bvt ; Bdd-

Substp requires that this algorithm obtains the correct value for all variable
assignments. To recover the exact value under an assignment ak of the first
k = Table-Max-Var(avt) variables, we determine an induced value vi for each
substituted variable Qv(i) by evaluating its corresponding oversized BDD bi,
which only references variables of lower indices. That is, we construct extended
variable assignments encompassing the substituted variables according to the
recurrence

vi = Eval-Bdd(bi, ai−1)
ai = Append(ai−1,List(vi))

for i > k.

The predicate Bdd-Substp(b, bexact, bvt) checks whether, for all initial assign-
ments ak of length k,

Eval-Bdd(b, an) = Eval-Bdd(bexact, ak),

where k + 1 is the smallest index of a substituted variable in bvt and n is the
number of entries in bvt . This is equivalent to requiring that the Boolean function
represented by bexact be recoverable from b by resubstituting bi for Qv(i) for i
from k + n down to k + 1.

Two trivial corollaries of this definition are important for the correctness proof
of Subst-Method. If

Bvt-Wfp(bvt , avt) and
Bdd-Substp(b, bexact, bvt),
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then
Max-Var(b) < k ⇒ b = bexact,

and for any extension bvt ′ ⊇ bvt ,

Bvt-Wfp(bvt ′, avt) ⇒ Bdd-Substp(b, bexact, bvt ′).

We are now ready to state the inductive correctness theorems for Bound-

Method and Subst-Method.

Theorem 11 (Inductive Correctness of Bound-Method). Let

(aout , ub, lb, fmemo′, bmemo′)
= Bound-Method(ain , avt , lim , fmemo, bmemo)

and let
bexact = A2B(ain , avt).

If

Avt-Wfp(avt),
Fmemo-Correct(fmemo, avt), and

Bmemo-Correct(bmemo, avt),

then:

Fmemo-Correct(fmemo′, avt),
Bmemo-Correct(bmemo′, avt),

A2B(aout , avt) = bexact,

∀v . (Eval-Bdd(bexact, v) ⇒ Eval-Bdd(ub, v)), and
∀v . (Eval-Bdd(lb, v) ⇒ Eval-Bdd(bexact, v)).

This theorem shows that Bound-Method preserves the necessary invariants
of fmemo and bmemo, produces BDD results that are upper and lower bounds of
the exact BDD, and produces an AIG result that is equivalent to the input under
composition with avt . Because Bmemo-Correct is trivially satisfied by an
empty bmemo, this shows that Bound-Method satisfies the properties required
for the proof of correctness of Aig-To-Bdd.

Theorem 12 (Inductive Correctness of Subst-Method). Let

(aout , b, fmemo′, smemo′, bvt ′)
= Subst-Method(ain , avt , lim , fmemo, smemo, bvt)

and let
bexact = A2B(ain , avt).
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If

Avt-Wfp(avt),
Fmemo-Correct(fmemo, avt),

Bvt-Wfp(bvt , avt), and
Smemo-Correct(smemo, bvt , avt),

then:

bvt ⊆ bvt ′,
Bvt-Wfp(bvt ′),

Smemo-Correct(smemo′, bvt ′, avt),
Fmemo-Correct(fmemo′, avt),

A2B(aout , avt) = bexact, and
Bdd-Substp(b, bexact, bvt ′).

This theorem shows that Subst-Method preserves the necessary invariants
of fmemo, bmemo, and bvt , produces a BDD result that is related to the exact
result by the substitution given in bvt ′, and produces an AIG result that is
equivalent to the input under composition with avt . Because Bvt-Wfp and
Smemo-Correct are trivially satisfied when bvt and smemo are empty, this
shows that Subst-Method satisfies the properties required for the proof of
correctness of Aig-To-Bdd.

The proof of correctness of the full AIG-to-BDD algorithm involves 150 me-
chanically checked lemmas in addition to the correctness theorems provided in
the BDD and AIG packages. The proof script runs in 22.4 seconds on a 3.00
GHz Intel Xeon E5450 processor.

7 Conclusions

We have presented an algorithm for converting an AIG to a BDD, involving
two heuristic simplification methods that are applied while varying a size bound
on the BDDs that can be examined. This algorithm is implemented and proven
correct in the ACL2 logic, and may be executed efficiently using the ACL2(H)
extensions. We have presented the correctness theorem and outlined the major
steps of proving that theorem, including the inductive lemmas necessary for
proving the correctness of the two subroutines. We believe that our proof is the
first tool verification involving this kind of conversion algorithm.

The algorithms described in this paper are used at Centaur Technology to
verify several instructions of the VIA Nano processor, including several floating-
point addition and multiplication instructions [5]. In many such operations, naive
methods of BDD-based symbolic simulation cause blowups because different
intermediate signals require different BDD orderings for efficient representation;
in these cases, there is no single BDD ordering that can be used to symbolically
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simulate the entire circuit. By using our AIG to BDD conversion algorithm and
case-splitting in such a way that enough intermediate signals become irrelevant
to the final value, we are able to simulate through the circuit with a single BDD
ordering per case, allowing us to verify these operations.

Besides giving us confidence in the correctness of our verification tools, having
proven the correctness of this algorithm allows us to prove properties of hard-
ware models by symbolic simulation. Our correctness theorem allows us to draw
conclusions about the evaluation of an AIG based on the result of converting it
to a BDD. This enables a hardware verification methodology in which the result
of each completed verification is an ACL2 theorem stating the result, proven
without using unverified assumptions about our verification algorithms.
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Abstract. Extending the calculus of constructions with rewriting would
greatly improve the efficiency of proof assistants such as Coq. In this
paper we address the issue of the logical power of such an extension.
In our previous work we proposed a procedure to check completeness

of user-defined rewrite systems. In many cases this procedure demon-
strates that only a basic subset of the rules is sufficient for completeness.
Now we investigate the question whether the remaining rules are induc-
tive consequences of the basic subset.
We show that the answer is positive for most practical rewrite sys-

tems. It is negative for some systems whose critical pair diagrams require
rewriting under a lambda. However the positive answer can be recovered
when the notion of inductive consequences is modified by allowing a
certain form of functional extensionality.

1 Introduction

Theorem provers based on type theory and Curry-Howard Isomorphism, such
as Coq [9], are built on top of a powerful computing mechanism which is the
lambda calculus. The typing rule which allows for integration of computation
into the typing system is called the conversion rule.
Conversion is based on the terminating syntactic reduction relation, it is de-

cidable and hence rather weak. A separate, stronger propositional equality used
for reasoning is defined as an inductive predicate with no special treatment in
the typing systems. The negative consequences of such approach are the difi-
culties in handling propositional equalities. For example, if addition is defined
by induction on the first argument then even though ∀x:nat, x+0 = x can be
proved by induction, the type vector(n+0) is not convertible to vectorn while
vector(0+n) is.
One solution is to look for new type theories where equality has better rea-

soning properties without compromising its computational properties [20,2,1].
Another approach is to try to put more power in the computation part, either
by adding specific decision procedures to the existing conversion relation, e.g.
congruence closure [6], or simply extending the reduction mechanism with user-
defined rewriting rules. This paper is concerned with the latter possibility.
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Of course adding arbitrary rewrite rules may easily break strong normalization
or confluence and hence compromise good meta-theoretical properties of the
formalism. Since these properties are undecidable for rewriting systems, there
are a number of incomplete decidable criteria that ensure termination and that
are flexible enough to be met by many useful rewriting systems [3,5,4,16,17].
Once termination is established an easy test of joinability of critical pairs can tell
if the rewriting system is also confluent. A terminating and confluent rewriting
system leads to the decidable conversion—it is sufficient to syntactically compare
the unique normal forms of inspected terms.
There are two most important roles a rewriting system may play in a theorem

prover. First, it can provide a means to decide e.g. a word problem in certain
axiomatic theories, for example in group theory. Second, it can be used to define
functions, similarly to definitions by pattern matching, but in a more straightfor-
ward way. Moreover, a definition by rewriting can contain rules which add more
equations to conversion compared to a regular definition by pattern matching.
Consider again the addition on unary natural numbers. Using rewriting one can
define it in a symmetric way and even include associativity, therefore making
the conversion richer and hence the proofs shorter and more automatic.

O + y −→ y x + O −→ x
(S x) + y −→ S (x + y) x + (S y) −→ S (x + y)

(x + y) + z −→ x + (y + z)

In order to trust a proof developed with the help of a proof assistant, one must
make sure the development is logically consistent. One can show that it is the
case for all developments in which there are no axioms and all definitions by
rewriting are complete, i.e. the functions they define are total [4,19]. An auto-
matic procedure to check completeness of definitions by rewriting is also provided
in our paper [19].
It turns out that in many cases this procedure uses only a subset of the rules

given by the user, demonstrating that this basic subset is already complete.
The basic subset roughly corresponds to a definition by cases one can write for
example in Coq or a definition using recursors. In this paper we analyse the
logical power of the rules that are outside the basic subset to understand how
strong can be the generated conversion relation. These additional rules seem to
be quite arbitrary even though we know that the whole set of rules is terminating
and confluent. Throughout this paper we investigate the question whether the
additional rules are inductive consequences of the basic subset.
In the example given above, the set of five rules is strongly normalizing and

confluent. The additional three rules (in the right column) are indeed inductive
consequences of the basic complete system (in the left column) because all con-
structor instances of their respective left- and right-hand sides are joinable using
the basic set of rules. This can be generalized to all first order rewriting systems
(see e.g. Theorem 7.6.5 in [15]).
The standard notion of an inductive consequence [10], meaning an equation

which is valid for all ground instances, must of course be adapted to the higher-
order setting. Instead of ground instances, we use instances typeable in closed
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environments. Our proof technique works by analysing critical pairs formed by
additional rules with rules from the basic complete subsystem. In order to trans-
fer the critical pair diagrams to the typed context we impose some slight restric-
tions on the form of rules and critical pairs.
The first result of the paper concerns the majority of useful rewriting systems:

if confluence of critical pairs can be proved without rewriting under a binder,
additional rules are inductive consequences of the basic subset (Section 6, The-
orem 1). This of course includes all first order rewriting systems, but also def-
initions over dependently typed symbols and higher-order functions as used in
functional programming languages.
The situation is more difficult when rewriting under a binder is necessary to

join the critical pair diagrams (Section 7). This is usually the case for functions
defined over functional inductive types. To get the positive result in this case
(Theorem 2), we must modify the notion of inductive consequences, allowing
for a more lax comparison of functional terms, similar in spirit to functional
extensionality. Otherwise there are examples where closed instances of left- and
right-hand sides of additional rules are not joinable using the basic subset.
From the perspective of a proof assistant user, our results are reassuring about

relevance of definitions by rewriting with additional rules. Indeed, for a given
definition by rewriting, if the additional rules are shown to be inductive conse-
quences, it means they are valid equations on closed terms, even if they are not
necessarily provable as lemmas. Another motivation concerns extraction [12] in a
system with rewriting. Although the extraction mechanism can only treat rules
which resemble pattern matching, it turns out that the others do not affect the
results of computation even for higher order and polymorphic functions.
Because of space considerations, some proofs and examples have been moved

from this paper to the web appendix [18].

2 Motivating Examples

In a future version of Coq with rewriting, apart from definitions, axioms and
inductive definitions, a user would be allowed to enter definitions by rewriting,
even for higher-order and polymorphic functions:1

Inductive list (A:Set) : Set := nil | cons : A → list A → list A
Symbol map : forall A:Set, (A → A) → list A → list A
Rules
map A f (nil A) −→ nil A
map A f (cons A a l) −→ cons A (f a) (map A f l)
map A (fun x ⇒ x) l −→ l
Parameter l : list nat.

The above fragment can be interpreted as an environment consisting of the
inductive definition of lists, a definition by rewriting of the map function and the
1 The syntax of the definition by rewriting is inspired by the experimental “recriture”
branch of Coq developed by Blanqui. For the sake of clarity we omit certain details,
like environments of rule variables.
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declaration of a variable l of type list nat. In this environment all rules for
map contribute to conversion. They form a terminating and confluent rewriting
system in which the first two rules completely define map. The third rule is an
inductive consequence of the first two (by Theorem 1) and, transformed into
equation, can be proved by induction.
Even though we consider higher-order rewriting, we choose the simple match-

ing modulo α-conversion to match a rule to a term. Higher-order matching is
useful for example to encode logical languages by higher-order abstract syn-
tax, but it is seldom used in Coq where modeling relies rather on inductive
types.
Let us consider another example, the inductive identity function on Brouwer’s

ordinals:

Inductive ord : Set :=
o : ord | s : ord → ord | lim : (nat → ord) → ord.

Symbol id : ord → ord
Rules
id o −→ o
id (s x) −→ s (id x)
id (lim f) −→ lim (fun n ⇒ id (f n))
id (id x) −→ id x

This set of rules is also terminating and confluent and the first three rules com-
pletely define id. The fourth rule says that id is an idempotent function. This
time, because ord is a functional inductive type, the fourth rule cannot be proved
to be an inductive consequence of the first three without weakening the notion
of inductive consequences. This example will be discussed in details in Section 7.
Note however that ∀x :ord, id (id x) = x can be proved in Coq assuming the
functional extensionality axiom ∀f g : A → B, (∀x :A, f x = g x) → f = g.
The last example in this section is the substitutivity property of equality:

Inductive eq (A:Set)(a:A) : A → Prop := refl : eq A a a.

Symbol subst : forall (A: Set)(P: A → Set)(a b: A)(p: eq A a b)(x: P a), P b
Rules
subst A P a a (refl A a) x −→ x
subst A P a a p x −→ x

This set of rules is also terminating and confluent and already the first rule com-
pletely defines subst. The second rule is an inductive consequence of the first
one (by Theorem 1) but this time the corresponding equality lemma subst eq
∀(A : Set)(P : A → Set)(a : A)(p : eq Aa a)(x : P a), subst A P a a p x = x,
is unprovable in the environment where we have only the standard (like in
Coq) elimination of equality. Indeed, one can show2 that subst eq implies
Streicher’s axiom K which is not derivable from the standard elimination of
equality [11].

2 See for example http://coq.inria.fr/stdlib/Coq.Logic.EqdepFacts.html

http://coq.inria.fr/stdlib/Coq.Logic.EqdepFacts.html
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3 Pure Type Systems with Generative Definitions

Even though most papers motivated by the development of Coq concentrate on
the calculus of constructions, we present here a slightly more general formaliza-
tion of a pure type system with inductive definitions and definitions by rewriting.
The presentation, taken from [7,8,19], is quite close to the way these elements
are and could possibly be implemented in Coq. The formalism is built upon a
set of PTS sorts S, a binary relation A and a ternary relation R over S govern-
ing the typing rules (Term/Ax) and (Term/Prod) respectively (Fig. 1). The
syntactic class of pseudoterms is defined as follows:

t ::= v | s | (t1 t2) | (λv :t1.t2) | (∀v :t1.t2)

A pseudoterm can be a variable v ∈ Var , a sort s ∈ S, an application, an
abstraction or a product. Pseudoterms are identified with finite labelled trees; a
λv and a ∀v are binary nodes with the first child corresponding to the type of
the variable v and the second to the body of the abstraction (product).
Positions are strings of positive integers. The subterm of t at position p is

denoted by t|p while t1[t2]p stands for the result of replacing t1|p with t2 in t1.
We use FV (t) to denote the set of free variables of a term t. For convenience we
assume that all bound variables are different and are different from the free ones.
We use Greek letters γ, δ to denote substitutions which are finite partial maps

from variables to pseudoterms. The postfix notation is used for the application
of substitutions. We write [t/x] for the substitution of t to a variable x.
Inductive definitions and definitions by rewriting are generative, i.e. they are

stored in the environment and are used in terms only through names they “gen-
erate”. An environment is a sequence of declarations, each of them is a variable
declaration v : t, an inductive definition Ind(Γ I := Γ C), where Γ I and Γ C are
environments providing names and types of (possibly mutually defined) induc-
tive types and their constructors, or a definition by rewriting Rew(Γ, R), where
Γ is an environment providing names and types of (possibly mutually defined)
function symbols and R is a set of rewrite rules defining them. A rewrite rule
is a triple denoted by G � l −→ r, where l and r are pseudoterms and G is an
environment, assigning types to variables occurring in the left- and right-hand
sides l and r. Each l is of the form f(l1, . . . , ln) where f ∈ Γ .
Given an environment E, inductive types, constructors and function symbols

declared in E are called constants (even though syntactically they are variables).
General environments are denoted by E and the environment containing only
variable declarations are denoted by Γ , Δ, G, D. We assume that names of
all declarations in environments are pairwise disjoint. The set of all variables
declared in an environment Γ is denoted by dom(Γ ).
Given a term t and a position p, we write Γ (t, p) to denote the environment

of variables that are bound in t on the path from the root to p.
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Let Γ I = I1 : tI
1 . . . In : tI

n and Γ C = c1 : tC
1 . . . cm : tC

m

E � tI
j : sj tI

j = ∀−−−−→(z : Zj) s′j for j = 1 . . . n

E; Γ I � tC
i : ŝi tC

i = ∀−−−−→(z : Z′
i) Iji �w for i = 1 . . . m

E � Ind(Γ I := Γ C) : correct
if POSE(Γ I := Γ C)

Let Γ = f1 : t1 . . . fn : tn and R = {Gi � li −→ ri}i=1...m, where
Gi = xi

1 : ti
1; . . . ; x

i
ni

: ti
ni

E � tk : sk for k = 1 . . . n

E; Gi � ok FV (li, ri) ⊆ Gi for i = 1 . . . m

E � Rew(Γ, R) : correct
if ACCE(Γ, R)

ε � ok
E � ok E � t : s

E; v : t � ok
E � ok E � Ind(Γ I := Γ C) : correct

E; Ind(Γ I := Γ C) � ok
E � ok E � Rew(Γ, R) : correct

E;Rew(Γ, R) � ok
E1; v : t; E2 � ok

E1; v : t; E2 � v : t

E � ok
E � Ii : tI

i

E � ok
E � ci : tC

i

where

8<
:

E = E1; Ind(Γ I := Γ C); E2

Γ I = I1 : tI
1 . . . In : tI

n

Γ C = c1 : tC
1 . . . cm : tC

m

E � ok
E � fi : ti

E � ok δ : Gi → E

E � liδ −→R riδ
where

8<
:

E = E1;Rew(Γ, R); E2

Γ = f1 : t1 . . . fn : tn

R = {Gi � li −→ ri}i=1...m

(Term/Prod)
E � t1 : s1 E; v : t1 � t2 : s2

E � ∀v : t1.t2 : s3
where (s1, s2, s3) ∈ R

(Term/Abs)
E; v : t1 � e : t2 E � ∀v : t1.t2 : s

E � λv : t1.e : ∀v : t1.t2

(Term/Ax)
E � ok

E � s1 : s2
where (s1, s2) ∈ A

(Term/App)
E � e : ∀v : t1.t2 E � e′ : t1

E � e e′ : t2{v �→ e′}

(Term/Conv)
E � e : t E � t′ : s E � t ≈ t′

E � e : t′

Fig. 1. Definition correctness, environment correctness and lookup, PTS rules

Definition 1. A pure type system with generative definitions is defined by the
typing rules in Fig. 1, where:

– The relation ≈ used in the rule (Term/Conv) is the smallest congruence
on well typed terms, generated by −→ which is the sum of beta and rewrite
reductions, denoted by −→β and −→R respectively (for the exact definition
see [8], Section 2.8).
– The notation δ : Γ → E means that δ is a well-typed substitution, i.e.

E � vδ : tδ for all v : t ∈ Γ .

As in [17,4], recursors and their reduction rules have no special status and they
are supposed to be expressed by rewriting.
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Assumptions. We assume that we are given a positivity condition POS for
inductive definitions and an acceptance condition ACC for definitions by rewrit-
ing. Together with the right choice of the PTS they must imply the following
properties:

P1 subject reduction, i.e. E � e : t, E � e −→ e′ implies E � e′ : t
P2 uniqueness of types, i.e. E � e : t, E � e : t′ implies E � t ≈ t′.
P3 strong normalization, i.e. E � ok implies that reductions of all well-typed
terms in E are finite

P4 confluence, i.e. E � e : t, E � e −→∗ e′, E � e −→∗ e′′ implies E � e′ −→∗ ê
and E � e′′ −→∗ ê for some ê.

These properties are usually true in all well-behaved type theories. They are for
example all proved for the calculus of algebraic constructions [4], an extension of
the calculus of constructions with inductive types and rewriting, where POS is
the strict positivity condition as defined in [14], and ACC is the General Schema.
From now on, we use the notation t↓ for the unique normal form of t.

4 Completeness of Definitions

The definitions given in this section correspond to the ones given in [19]. Here,
for the sake of clarity, we unfold and hence eliminate several auxiliary definitions.

Definition 2 (Canonical form and canonical substitution). Given a judg-
ment E � e : t we say that the term e is in canonical form if and only if:

– if t↓ is an inductive type then e = c(e1, . . . , en) for some constructor c and
terms e1, . . . , en in canonical form
– otherwise e is arbitrary

Let Δ be a variable environment and E a correct environment. We call δ : Δ → E
canonical if for every variable x ∈ Δ, the term xδ is canonical.

Definition 3 (Complete definition). Let E be an environment and Rew(Γ, R)
a rewrite definition such that E � Rew(Γ, R) : correct. The definition is com-
plete, which is denoted by COMPE(Γ, R), if and only if for all function symbols
f : (x1 : t1) . . . (xn : tn) t ∈ Γ , all environments E′ and all canonical substitu-
tions δ : (x1 : t1; . . . ; xn : tn) → (E;Rew(Γ, R); E′), such that all terms xiδ are
in normal form, the term f(x1δ, . . . xnδ) is head-reducible by R.

Below we recall Definition 4.5 and Lemma 4.6 from [19].

Definition 4 (Closed environment). An environment E is closed if and only
if it contains only inductive definitions and complete definitions by rewriting, i.e.
for each partition of E into E1;Rew(Γ, R); E2 the condition COMPE1(Γ, R) is
satisfied.

Lemma 1 (Canonicity). Let E be a closed environment. If E � e : t and e is
in normal form then e is canonical.
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Corollary 1. Let E be a closed environment such that E = E1;Rew(Γ, R); E2.
Let f ∈ Γ and let t1, . . . , tn be terms such that E � f(t1, . . . , tn) : t for some t.
Then f(t1, . . . , tn) is reducible.

In [19] we also give a sound and terminating, but necessarily incomplete, algo-
rithm that checks whether a rewrite definition is complete. In many cases this
algorithm demonstrates that only a basic subset of the rules is sufficient to show
completeness.
In the next sections we investigate the question whether the remaining rules

are inductive consequences of the basic subset.

5 Towards Inductive Consequences

In equational logic one says that s = t is an inductive consequence of a theory
E if for all closed substitutions σ the judgement E � sσ = tσ holds (see for
example [10]).
If equational theories are generated by rewriting systems then the problem of

inductive consequences may be reformulated as follows: assuming R′ ⊇ R, are
the rules from R′ − R inductive consequences of the rules from R.
In our setting R′ is the set of rules given by the user, R is a confluent and

complete subsystem of R′ and the question is roughly whether for all rules
l → r ∈ R′ − R and all closed substitutions σ, we have E;Rew(Γ, R) � lσ ≈ rσ.
In order to show it one must find a sequence of reductions in E;Rew(Γ, R)

between lσ and rσ. The proof is done by induction on the sum of the reduction
ordering associated with E;Rew(Γ, R′) plus the suitable subterm relation. The
crucial reduction is the first one from lσ. It always exists because σ is closed,
l starts with a function symbol and E;Rew(Γ, R) is closed. The reduction takes
place either entirely in σ or overlaps with l. In the first case one easily gets a new
substitution σ′ such that lσ rewrites to lσ′ and rσ to rσ′, and one can use the
induction hypothesis.
In the second case l and the left-hand side of some rule from E;Rew(Γ, R)

overlap and one gets an instance of a critical pair of R′. Since R′ is confluent
and terminating, its critical pairs are joinable. Following the critical pair dia-
gram one replaces each R′ step (which is smaller than lσ), with a sequence of
R steps obtained from the induction hypotheses. In the end one gets the complete
R sequence from lσ to rσ.
The usual critical pairs are defined for untyped terms using syntactic unifi-

cation. The latter has several good properties: it is decidable and it does not
introduce new variables.
In order to transfer a critical pair diagram from untyped terms and untyped

rewriting to typable terms and rewriting in a PTS, we must slightly restrict
the form of rules, which must be left-algebraic (Definition 5), and critical pairs,
which must be type compatible (Definition 8). In particular we must be able to
compute the types of variables that appear in the left-hand sides of the rules and
to check whether these types are compatible (Definition 7) with what is written
in the local environments of the rules.
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Definition 5 (Algebraic terms, left-algebraic rules). A term is algebraic
if every free variable that appears in it is an argument of a constant symbol.
A rule G � l −→ r is left-algebraic if l is algebraic.

Definition 6 (Computed type). Let t be an algebraic term, p a position and
c : ∀−−−−→(z : Z).tc a constant such that t|p = c(�a) for some �a. For a given j the
computed type for a term t|p·j, denoted by CT (t|p·j), is Zj [a1/z1, . . . aj−1/zj−1].

Definition 7 (Type compatibility). An environment G is type compatible
with an algebraic term t if for every x : T ∈ G there is a position q such that
t|q = x and T = CT (t|q).
An environment G is type compatible with a term t if computed types for free
variables of t agree with G. It can be understood as a weaker version of typability
of t in G.
A well-typed instance of an algebraic, possibly untypable term equipped with

a type compatible environment defines a well-typed substitution.

Lemma 2 (Well-typed substitution from well-typed term). Let t be an
algebraic term, G an environment type compatible with t and let ρ be a substitu-
tion such that G′ � tρ : U for some U. Then ρ : G → G′ is well-typed.

For our needs we equip each critical pair with an environment of variables that
appear in the pair and we impose the type compatibility assumption on this
environment.

Definition 8 (Critical pairs for R′ wrt R, type compatibility). Critical
pairs for R′ wrt R are critical pairs for every G � l −→ r ∈ R′ and every
D � g −→ d ∈ E;Rew(Γ, R) computed using syntactic unification. Critical pairs
of G � l −→ r and D � g −→ d are tuples (rθ, lθ[dθ]p, Δ) for all positions p
such that there exists the most general unifier θ unifying l|p and g and where Δ
is the subset of G; D, such that dom(Δ) = FV (lθ)
A critical pair is type compatible if Δ is type compatible with lθ.

Lemma 3 (Unification of left-algebraic rules). Let G � l −→ r and D �
g −→ d be left-algebraic rules, p a position in l and θ the most general syntactic
unifier of l|p and g. Then lθ is algebraic.

In the next two sections we prove inductive consequence theorems for two kinds
of rewriting systems. Section 6 adresses the case of rewriting on non-functional
inductive types and Theorem 1 is an extension of results known for first order
rewriting. This covers the majority of practical cases, in particular all examples
from this paper (and from the web appendix [18]) apart from the definition by
rewriting of id on ord. Section 7 concerns rewriting on functional inductive
types.
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6 Inductive Consequences

For the rest of this section let us assume that E is a closed environment such
that ACCE(Γ, R) and COMPE(Γ, R) and that R′ ⊇ R extends R with some
additional rules in such a way that ACCE(Γ, R′) holds.
At the end of this section Theorem 1 states that in the closed environment

E;Rew(Γ, R) the rules from R′ −R are inductive consequences of the rules from
E;Rew(Γ, R) under the assumption that all applications of rules from R′ −R in
the critical pair diagrams occur on free positions.

Definition 9 (Free position). Let t be a term. A position q is free in t if t|q
is not in the scope of any bound variable from t.

Definition 10 (Free rewriting). A term s free rewrites to t in the rewriting

system R′ − R, denoted by E;Rew(Γ, R) � s
�λR′
−→R′−R t, if there exists a rule

G � l −→ r ∈ R′ − R a substitution γ : G → (E;Rew(Γ, R)) and a free position
q in s such that s|q = lγ and t = s[rγ]q.

Definition 11 (
λR′-rewriting). A term s 
λR′-rewrites to t, which is denoted

by E;Rew(Γ, R) � s
�λR′
� t, if either E;Rew(Γ, R) � s −→ t or E;Rew(Γ, R) �

s
�λR′
−→R′−R t.

In other words 
λR′-rewriting consists in rewriting in the environmentE;Rew(Γ, R)
with rules from E;Rew(Γ, R) or beta in any context and using rules from R′−R
only on free positions.

Definition 12 (
λR′-joinability of critical pairs, critical pairs diagram).
We say that (u, v, Δ), a critical pair for R′ wrt R, is 
λR′-joinable if it is type

compatible and there is a term e such that Δ � u
�λR′
� ∗e and Δ � v

�λR′
� ∗e and

if for every R′ − R rewrite step Δ � s[l′γ]p −→ s[r′γ]p in these sequences the
substitution γ : G′ → Δ and the term l′γ are well-typed, where G′ is the local
environment of G′ � l′ −→ r′ ∈ R′ − R.
The terms u, v, e (with environment Δ) and the aforementioned reductions

between them are called a critical pair diagram.

Note that we do not assume that all terms in the critical pair diagrams are
typable.

Definition 13 (
λ-subterm). Let t be a term. The term s = t|q is a 
λ-subterm
of t, denoted by t � �λ s, if q is free in t.

It is well-known that the sum of � �λ and any relation that is well-founded and
stable by context is also well-founded.

Theorem 1. Suppose that critical pairs for R′ wrt R are 
λR′-joinable. Then
for every rule G � l −→ r ∈ R′ − R and substitution σ : G → (E;Rew(Γ, R)),
such that E;Rew(Γ, R) � lσ : T for some T , one has E;Rew(Γ, R) � lσ ≈ rσ.
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Proof. By induction on (−→ ∪ � �λ) where −→ is the reduction relation corre-
sponding to the environment E;Rew(Γ, R′)3. The relation −→ is well-founded
by assumption ACCE(Γ, R′).
Since E;Rew(Γ, R) is closed and lσ is typable, by Corollary 1 the term lσ is

reducible. There are two possibilities. If the reduction takes place in the substi-
tution then there exists a variable z such that z : Z ∈ G and E;Rew(Γ, R) �
zσ −→ t′ for some t′. Let us define σ′ to be σ′(x) = σ(x) for x 
= z and σ′(z) = t′.
The substitution σ′ is well-typed since by subject reduction E;Rew(Γ, R) �
t′ : Zσ′. The term lσ′ is also well-typed by subject reduction, since obvi-
ously E;Rew(Γ, R) � lσ −→+ lσ′. By induction hypothesis applied to lσ′ we
have E;Rew(Γ, R) � lσ′ ≈ rσ′. We have also E;Rew(Γ, R) � lσ ≈ lσ′ and
E;Rew(Γ, R) � rσ ≈ rσ′ because they result from rewriting with R. By transi-
tivity of ≈ we conclude that E;Rew(Γ, R) � lσ ≈ rσ.
Otherwise, there is a rule D � g −→ d coming from E;Rew(Γ, R) that has a

critical pair with G � l −→ r at position p in l. It means that there exists θ,
the most general substitution unifying l|p and g, and ρ, such that σ = θρ,
and that the critical pair equals (lθ[dθ]p, rθ, Δ) where dom(Δ) = FV (lθ). Then

E;Rew(Γ, R) � lσ
�λR′
−→R′−R rσ and E;Rew(Γ, R) � lσ −→ lθ[dθ]pρ. Let us

denote lθ[dθ]p by l̂. Since critical pairs are joinable there exists a term e such

that E;Rew(Γ, R) � rσ
�λR′
� ∗eρ and E;Rew(Γ, R) � l̂ρ

�λR′
� ∗eρ.

The term lθ may be not well-typed but it is algebraic by Lemma 3. We know
that the term lθρ is well-typed. By Lemma 2, this implies that ρ is a well-typed
substitution from Δ to E;Rew(Γ, R).
Every R′ − R step on the path from rσ = rθρ or l̂ρ to eρ is of the form

E;Rew(Γ, R) � sρ
�λR′
−→R′−R tρ where s = s[l′γ]q, t = s[r′γ]q for some free

position q, a rule G′ � l′ −→ r′ ∈ R′ − R, and a substitution γ : G′ → Δ such
that l′γ is well-typed in Δ. Of course sρ = sρ[l′γρ]q. Since ρ : Δ → E;Rew(Γ, R)
is well-typed, the substitution γρ and the term l′γρ are also well-typed. Hence
we may apply the induction hypothesis to l′γρ (since it is smaller than lσ in
(−→ ∪� �λ)+) and get E;Rew(Γ, R) � l′γρ ≈ r′γρ. Since ≈ is stable by context,
E;Rew(Γ, R) � sρ ≈ tρ also holds. Obviously, all rewriting steps corresponding
to E;Rew(Γ, R) can be replaced by conversion. Hence E;Rew(Γ, R) � rσ ≈ eρ

and E;Rew(Γ, R) � l̂ρ ≈ eρ. Of course we have also E;Rew(Γ, R) � lσ ≈ l̂ρ

because lσ rewrites to l̂ρ using a rule from R. Consequently by transitivity and
symmetry of ≈ we get the desired conclusion E;Rew(Γ, R) � lσ ≈ rσ.

7 Functional Inductive Consequences

Like in the previous section let us assume that E is a closed environment such
that ACCE(Γ, R) and COMPE(Γ, R) and that R′ ⊇ R extends R with some
additional rules in such a way that ACCE(Γ, R′) holds.

3 Since R-normal canonical forms are not necessarily R′-normal, straightforward R-
normalization of lσ and rσ does not always lead to equal terms.
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Like before the goal of this section is to check the power of rules from R′ −R
with respect to those already present in R. The main difference is that now we
allow for systems whose critical pairs need at least one step of rewriting under a
binder. This is often the case when considering rewrite rules involving functional
inductive types.
Let us consider the ord example from Section 2. The rules for id are strongly

normalizing and confluent. However, to join the critical pair between the 4th
and the 3rd rule of id one needs rewriting under an abstraction

id (id (lim f)) −→ id (lim f) −→ lim (fun n ⇒ id (f n))
id (id (lim f)) −→ id (lim (fun n ⇒ id (f n)))
−→+ lim (fun n ⇒ id (id (f n))) −→ lim (fun n ⇒ id (f n))

It is easy to check that the first three rules for id form a complete subsystem.
However, it is not true that for every closed substitution σ, term (id (id x))σ
is convertible with (id x)σ using only the first three rules. Let n2o be defined
in the following way:

Rewriting n2o : nat -> ord
Rules n2o O −→ o n2o (S x) −→ S (n2o x)

Consider σ = [ lim (fun n ⇒ n2o n) / x ]. Then:

lσ = id (id (lim (fun n ⇒ n2o n))) −→+ lim (fun n ⇒ id (id (n2o n)))
rσ = id (lim (fun n ⇒ n2o n)) −→+ lim (fun n ⇒ id (n2o n))

and these are different normal forms. The reason is that even though the sub-
stitution is closed, the corresponding instances of the left- and right-hand side
of the 4th rule reduce to terms where the function symbol id is applied to open
terms. In order to pass from open to closed terms again one can consider a new
equivalence, containing the usual conversion and identifying functions that are
equal for all closed arguments. Let ∼ω be the smallest congruence containing ≈
and closed by the following (ω) rule:

E closed
E � f : ∀x :A.B E � g : ∀x :A.B
∀d (E � d : A =⇒ E � fd ∼ω gd)

E � f ∼ω g
(ω)

The rule states roughly that functions f and g are equal if all their closed in-
stances are. It is similar in spirit to functional extensionality in a sense that the
∼ω equality is roughly the same to inductive consequences as the propositional
equality with functional extensionality to the equality without it.
In fact, we do not need the (ω) rule in its full generality. We will use it only for

functions that are arguments of constructors on functional recursive positions,
like in lim (fun n ⇒ n2o n). One may also argue that in these places functions
are only a means to express infinite branching of a constructor and hence that
these functions should be treated extensionally.
Before we can state and prove the theorem corresponding to Theorem 1 from

the previous section we need to know more about ∼ω.
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Lemma 4. Let E be a closed environment and let s[a]p, s[b]p and T be terms
such that E � s[a]p : T , E � s[b]p : T . Moreover, suppose that all declarations in
Γ (s, p) come from abstractions.
If E � aδ ∼ω bδ holds for all δ : Γ (s, p) → E then E � s[a]p ∼ω s[b]p.

The above lemma states that in order to know E � s[a]p ∼ω s[b]p, which is
in some sense an ∼ω equality between open terms a and b, it is sufficient to
check that E � aδ ∼ω bδ holds for all closed substitutions δ. Hence, it shows
how to pass from open terms to the closed ones, and in particular from an
open instance of the left-hand side of a rule l′γ to a closed one l′γδ. Closed
instances are necessary since we want to follow the proof of Theorem 1 and use
the inductive hypothesis. On the other hand this forces us to use an induction
ordering > strong enough to show that lσ > l′γδ for an arbitrary δ, instead of
the usual lσ > l′γ.
An example of a well-founded ordering allowing for applications to arbitrary

arguments is the constructor subterm ordering on functional types. Taking ord
for example, the term lim f is greater than f t for any t of type nat. Of course
this can be done only for recursive arguments of a constructor and because we
restrict ourselves to well-typed terms.
Unfortunately constructor subterm is not enough for our needs: we need to

use it together with the rewrite relation generated by the environment and with
beta reduction. And it is not always the case that the sum of the constructor
subterm with a well-founded relation is always well-founded (see an example
in [18]). Fortunately, the sum of the constructor subterm with the rewrite rela-
tion generated by rules accepted by HORPO is always well-founded [17]. Our
hypothesis is that this can be extended to any well-founded relation containing
rules for recursors.
Note that s|pδ is smaller than s in the constructor subterm ordering only if

on the path from the root to q in s there are only constructors and abstractions
and that they appear only on recursive positions. For that reason we restrict
critical pair diagrams to be joinable that way.
Let us now introduce formally the notions of a recursive position, constructor

rewriting and constructor subterm ordering.

Definition 14 (Recursive position). The i-th position of a constructor
c : ∀−−−−→(p : P )

−−−→
(z : d), I(�p)�w of an inductive type I is recursive if di is of the form

∀(x1 : T1) . . . (xn : Tn).I(�p)�v. It is called a nonfunctional recursive position if
n = 0; otherwise is is called a functional recursive position.

Definition 15 (Constructor rewriting). A term s constructor rewrites to t

in a rewriting system R′ − R, which is denoted by E;Rew(Γ, R) � s
c−→R′−R t,

if there exists a rule G � l −→ r ∈ R′ − R, a position q = q1 · . . . · qm, and
a substitution γ : G → (E;Rew(Γ, R)) such that s = s[lγ]q, t = s[rγ]q, and for
every k = 0..m − 1

– either s|q1...qk
= c(�a,�b) for some constructor c and qk+1 is a recursive posi-

tion of c,
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– or s|q1...qk
= λx : T.s|q1...qk+1 , 0 < k < m, s|q1...qk−1 = c(�a,�b) for some

constructor c and qk is a functional recursive position of c.

Definition 16 (cR′-rewriting). A term s cR′-rewrites to t, which is denoted

by E;Rew(Γ, R) � s
cR′
� t, if either E;Rew(Γ, R) � s −→ t or E;Rew(Γ, R) �

s
c−→R′−R t.

In other words cR′-rewriting consists in rewriting in the environmentE;Rew(Γ, R)
with rules from E;Rew(Γ, R) or beta in any context and using R′−R rules only in
contexts built from constructors and abstractions as described in Definition 15.

Definition 17 (cR′-joinability of critical pairs, critical pairs diagram).
We say that (u, v, Δ), a critical pair for R′ wrt R, is cR′-joinable if it is type

compatible and there is a term e such that Δ � u
cR′
� ∗e and Δ � v

cR′
� ∗e and if

for every R′ − R rewrite step in these sequences Δ � s[l′γ]p −→ s[r′γ]p

– γ is a well-typed substitution from G′ to Δ, Γ (s, p) and
– l′γ is a well-typed term in Δ, Γ (s, p)

where G’ is the local environment from G′ � l′ −→ r′ ∈ R′ − R.
The terms u, v, e (with environment Δ) and the aforementioned reductions

between them are called a critical pair diagram.

Since the constructor subterm ordering is not well-founded on nontypable terms,
the definition below depends on environment.

Definition 18 (Constructor subterm). Let c : ∀−−−−→(p : P )
−−−→
(z : d).I(�p)�w be a

constructor of an inductive type I and let i be a recursive position of c. Let
E be an environment and �a, �b be terms such that c(�a,�b) is typable in E.
Then for every �t such that E � bi�t : T for some T the term bi�t is a constructor

subterm of c(�a,�b) in E, denoted by E � c(�a,�b) �c bi�t.

Theorem 2. Suppose that all critical pairs for R′ wrt R are cR′-joinable and
that the relation (−→ ∪ �c) is well-founded in E;Rew(Γ, R′). Then for every
rule G � l −→ r ∈ R′ − R and substitution σ : G → (E;Rew(Γ, R)), such that
E � lσ : T for some T , one has E;Rew(Γ, R) � lσ ∼ω rσ.

Proof (sketch). By induction on (−→ ∪ �c) in the environment E;Rew(Γ, R′).
The proof follows exactly the schema of the proof of Theorem 1. The difference

is that in a critical pair diagram there may be an R′ −R rewriting step under a
binder, which means that we have an open instance of some left hand-side from
R′−R and induction hypothesis cannot be directly applied. We use Lemma 4 to
get a closed instance, and then we show that the resulting term is always smaller
than lσ in the ordering used for induction.
Once we show that induction hypothesis can be applied, the rest of the proof

goes as in Theorem 1.
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8 Conclusions

In this paper we study the calculus of constructions with rewriting and we ad-
dress the issue of the logical power of such an extension.
We continue the research about rewriting in the calculus of constructions

presented in [19] where an algorithm that checks completeness of definitions by
rewriting was given. In many cases this algorithm demonstrates that only a basic
subset of the rules is sufficient for completeness. In this paper we have shown
that the remaining rules are inductive consequences of the basic subset.
The proof is done for two kinds of rewriting systems: when there is no rewrit-

ing under a binder in the critical pairs diagrams (Section 6) and for some class
of systems where such situation happens (Section 7). In the latter case the con-
clusion of the inductive consequences lemma must be modified by allowing for a
kind of functional extensionality in the corresponding equivalence.
The additional assumptions on rewriting that we impose do not seem restric-

tive. First of all we require the rewrite rules to be left-algebraic and the critical
pairs to be type-compatible, which can be checked easily. Second, there are as-
sumptions on the form of critical pairs diagrams. These are different in Section 6
and Section 7, where the restrictions are mainly due to difficulties in finding a
suitable ordering for induction, but they always account for a simple inspection
of a diagram.
It is interesting to relate our paper to the PhD work of Oury [13]. He studies

CCE, the extensional calculus of constructions, and shows that CCE is conserva-
tive with respect to the calculus of inductive constructions extended with three
axioms (functional extensionality, Streicher’s axiom K and the third technical
one). One of the interests of CCE is that it can be seen as a model of the calculus
of constructions with rewriting. Assuming that one uses only rewrite rules that
are provable as equalities, extending conversion with l −→ r can be modeled
in CCE by adding l = r as an axiom and then using it by extensionality. Con-
sequently, calculus of constructions with rewriting rules which are provable as
equalities is conservative with respect to the calculus of inductive constructions
extended with the three axioms mentioned above.
Unfortunately we do not prove in this paper that additional rules are prov-

able equalities. We only approach this goal by studying the notion of inductive
consequences. In the algebraic setting the three notions, being an additional
rule, being an inductive consequence and being an equality proved by induction
coincide. In our setting the gap between these notions is not trivial: there are
inductive consequences which are not provable as equalities without additional
axioms, see subst in Section 2 where axiom K is needed, and there are addi-
tional rules that are not inductive consequences in the strict sense, see id in
Section 2 and 7.
It would be interesting to check what happens if we try to prove equalities

in a system where axiom K and functional extensionality are present from the
start. Especially, since they appear independently in other works on equality in
type theory (see e.g. [2]) and that one of them, axiom K, can be easily defined
by rewriting, see for example [19].
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Abstract. The Quantified Boolean Formulae (QBF) solver Squolem can
generate certificates of invalidity, based on Q-resolution. We present in-
dependent checking of these certificates in the HOL4 theorem prover.
This enables HOL4 users to benefit from Squolem’s automation for QBF
problems, and provides high correctness assurances for Squolem’s results.
Detailed performance data shows that LCF-style certificate checking is
feasible even for large QBF instances. Our work prompted improvements
to HOL4’s inference kernel.

1 Introduction

Deciding the validity of Quantified Boolean Formulae (QBF) is an extension of
the well-known Boolean satisfiability problem (SAT). In addition to the usual
connectives of propositional logic, QBF may contain universal and existential
quantifiers over Boolean variables. As a simple example, consider the formula

∃x∀y ∃z. x ∧ (y ∨ z) ∧ (y ∨ ¬z). (1)

QBF have applications in adversarial planning and formal verification [1,2,3].
They are also interesting from a theoretical viewpoint: QBF is the canonical
PSPACE-complete problem [4]. Whether QBF is harder than SAT is an open
problem, but it is widely believed that Boolean quantifiers allow to give expo-
nentially more succinct encodings for certain problems than propositional logic
alone.

QBF solvers automatically decide validity of such formulae. (For closed QBF,
satisfiability is equivalent to validity, and unsatisfiability is equivalent to invalid-
ity.) In addition, certain QBF solvers can produce certificates for their answers
that can be checked independently [5]. Squolem is a state-of-the-art QBF solver
that generates Q-resolution [6] based certificates for invalid formulae [7].

In this paper, we present independent checking of Squolem’s certificates for
invalid QBF in the HOL4 [8] theorem prover. HOL4 is a popular interactive
theorem prover for higher-order logic [9]. It is based on a small LCF-style [10,11]
kernel that provides an abstract data type of theorems, equipped with a fixed
set of constructor functions (corresponding to the axiom schemata and inference
rules of higher-order logic). Derived rules (such as Q-resolution) that are not
� This work was supported by the British EPSRC under grant EP/F067909/1.
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provided by this kernel must be implemented by composing existing rules. This
provides high correctness assurances: derived rules cannot produce inconsistent
theorems, as long as the theorem data type itself is implemented correctly. On
the other hand, it makes an efficient implementation of derived rules challenging.

The motivation for our work is twofold. First, interactive theorem provers
like Coq [12], HOL4, Isabelle [13] and PVS [14] can greatly benefit from the
reasoning power of automated tools. Consequently, researchers have on various
occasions integrated automated first-order provers [15,16,17], SAT solvers [18],
and more recently SMT solvers [19,20] with interactive provers. Our integration
of a QBF solver with HOL4 fills a small, but not insignificant gap in this long
line of research. It enables HOL4 users to benefit from Squolem’s automation for
QBF problems, and since the results are checked by HOL4’s inference kernel, no
trust needs to be put in the QBF solver.

Second, QBF solvers are complex software tools. Similar to state-of-the-art SAT
solvers, they typically employ various heuristics and optimizations to achieve com-
petitive performance [21,22]. Correctness is hard to establish, and different QBF
solvers frequently disagree on the status of individual benchmarks. QBF-Eval
competitions in previous years resolved disagreements by majority vote [23].
This rather unsatisfactory approach confirms the importance of QBF bench-
mark certification. HOL4’s inference kernel has been carefully scrutinized by
dozens of researchers for over two decades. By using HOL4 as an independent
checker, we obtain high correctness assurances for Squolem’s results.

We review related work in Section 2. Relevant background material is in-
troduced in Section 3. Section 4 presents our main contribution: an approach
to QBF certificate checking, and in particular an efficient implementation of
Q-resolution, in HOL4. Experimental results are given in Section 5. Section 6
concludes.

2 Related Work

To our knowledge, this paper is the first to consider the integration of a QBF
solver with an interactive theorem prover. Related work can be classified into two
distinct areas: (i) the integration of automated solvers with LCF-style theorem
provers, and (ii) certificate checking for QBF solvers.

Integrating automated solvers with interactive theorem provers, just like our
work, is typically motivated by a need for increased automation in the interactive
system. First attempts were already made in the early 90s [15]. Since then, a long
line of related research has developed. Integrations have been proposed for first-
order provers [16,17], for model checkers [24], computer algebra systems [25,26],
SAT solvers [18], and more recently for SMT solvers [19,20], to name just a few.
The approach presented in this paper especially draws on ideas from [18] for
efficient LCF-style propositional resolution (see Section 4).

Q-resolution based certificates for Squolem were proposed by Jussila et al. [7].
Other proof formats for QBF solvers have been suggested: e.g., BDD-based traces
for sKizzo [27], and inference logs for yQuaffle [28]. Narizzano et al. [5] give an
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overview and compare different certificate formats. Squolem’s certificates show
competitive performance, and they are relatively simple. Thus, implementing a
checker is probably easier than for the other formats.

Unsurprisingly, stand-alone proof checkers for QBF are typically much more
efficient [5] than the LCF-style proof checker presented in this paper. From the
HOL4 point of view, however, a stand-alone checker would become part of the
trusted code base (i.e., bugs in the checker—or in the integration—could lead to
inconsistent theorems in HOL4). In contrast, the checker presented here cannot
draw an unsound inference: any attempt to do so will be prevented by HOL4’s
trusted inference kernel.

3 Background and Theory

We now introduce relevant definitions and notation in more detail. Our terminol-
ogy is entirely standard. The reader is expected to be familiar with propositional
logic.

3.1 Quantified Boolean Formulae

We assume an infinite set of Boolean variables. A literal is a possibly negated
Boolean variable. We extend negation to literals and identify ¬¬v with v. A
clause is a disjunction of literals. A clause is trivial if it contains both a variable
and its negation. We say that a propositional formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses.

Definition 1 (Quantified Boolean Formula). A Quantified Boolean For-
mula (QBF) is of the form

Q1x1 . . . Qnxn. φ,

where n ≥ 0, each xi is a Boolean variable, each Qi is either ∀ or ∃, and φ is a
propositional formula in CNF.

Q1x1 . . . Qnxn is called the quantifier prefix, and φ is called the matrix. With-
out loss of generality, we consider QBF in this prenex form only. Any formula
involving only propositional connectives and quantifiers over Boolean variables
can be transformed into prenex form through syntactic manipulations. (We have
not yet implemented such a transformation. Note that a HOL4 implementation,
aside from producing an equivalent QBF in prenex form, would also have to
produce a proof of the equivalence. Doing so efficiently can easily be a challenge
for large formulae, but is beyond the scope of this paper.)

We define an order < on variables such that xi < xj iff i < j, i.e., larger
variables are in the scope of smaller variables. x1 is called the outermost, xn the
innermost variable of the above QBF.

The QDIMACS format [29] is the standard input format of QBF solvers. It
provides a textual means of encoding QBF in prenex form. It is a backward-
compatible extension of the DIMACS format [30], the standard input format
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of SAT solvers. We have implemented a translation from (the QBF subset
of) HOL4 terms into QDIMACS format, and a simple recursive-descent parser
for QDIMACS files that returns the corresponding QBF as a HOL4 term (see
Section 3.4).

The QDIMACS format imposes further restrictions: all variables xi must be
distinct, all variables must appear in the matrix, and the innermost quantifier
must be existential (i.e., Qn = ∃). Note that an innermost universal quantifier
can be eliminated by removing all occurrences of the bound variable from the
matrix: if a non-trivial clause v∨φ is true for all values of v, then φ must be true
(and likewise for a clause ¬v ∨ φ). This inference is called forall-reduction [6].
Applying it as often as possible (to eliminate all universal variables that are
larger than the largest existential variable), one obtains the forall-reduct of the
original clause.

We further require all variables that appear in the matrix to be bound by
some quantifier, i.e., we consider closed QBF only. This is to avoid confusion:
in the QDIMACS format, free variables have existential semantics (to retain
backward compatibility with the DIMACS format), while in HOL4, free variables
in theorems have universal semantics (to permit instantiation). Therefore, if a
QBF has free variables, we consider its existential closure instead.

The semantics of closed QBF is defined recursively, by expanding the outer-
most variable: [[∀x. φ]] = [[φ[x #→ -] ∧ φ[x #→ ⊥]]], and similarly [[∃x. φ]] =
[[φ[x #→ -] ∨ φ[x #→ ⊥]]]. (Here φ[x #→ y] denotes substitution of y for all free
occurrences of x in φ.) A QBF is called invalid if its semantics is ⊥ (i.e., false).

3.2 Q-Resolution

QBF of interest typically contain several dozen or even hundreds of quantifiers.
A naive recursive computation of their semantics, which would be exponential
in the number of quantifiers, is not feasible. Therefore, Squolem takes a differ-
ent approach. To show that a QBF is invalid, Squolem proves that it entails
⊥. Squolem’s certificates of invalidity are based on a single inference rule that
is known as Q-resolution [6]. Q-resolution employs propositional resolution fol-
lowed by forall-reduction to eliminate universal quantifiers.

Let φ and ψ be two clauses. We say that φ and ψ can be resolved if some
variable v occurs positively in φ and negatively in ψ. (v is called the pivot
variable.) Propositional resolution then derives the clause φ′ ∨ ψ′, where φ′ is φ
with v removed, and ψ′ is ψ with ¬v removed. This clause is called the resolvent
of φ and ψ.

The resolvent of non-trivial clauses no longer contains the pivot variable. If the
pivot was existential, the resolvent’s largest variable may be universal, thereby
enabling forall-reductions.

Definition 2 (Q-resolution). Let φ and ψ be two clauses of a QBF that can
be resolved. Their resolvent’s forall-reduct is called the Q-resolvent of φ and ψ.
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Q-resolution, just like resolution for propositional clauses, is sound and refu-
tation-complete for QBF in prenex form [6]. Thus, given any invalid QBF, we
can derive ⊥ by repeated application of Q-resolution to suitable clauses.

As a simple example, consider (1). This QBF is invalid. To derive ⊥ using
Q-resolution, we resolve y ∨ z with y ∨ ¬z to obtain y. This clause no longer
contains z, the QBF’s innermost variable. Thus forall-reduction removes y, which
is universally quantified, and we obtain the empty clause, i.e., ⊥.

3.3 Squolem’s Certificates of Invalidity

Squolem’s certificate format is described in detail in [31]. The format is ASCII-
based. Clauses and variables are referenced by positive integers. Negative values
stand for negated variables, i.e., integer negation denotes propositional negation.

Certificates of invalidity contain a log of Q-resolution inferences, concluded
by a final line that gives the identifier of the empty clause. For each Q-resolvent,
the log contains a line stating its assigned clause identifier, the literals that the
Q-resolvent contains, and the clauses that it was derived from. Original clauses
(from the QBF’s matrix) are numbered consecutively, starting from 1.

For instance, mapping x, y ∨ z and y ∨ ¬z to clause identifiers 1, 2 and 3,
respectively, a certificate for (1) might look as follows:

QBCertificate
4 0 2 3 0
CONCLUDE INVALID 4

Thus, the empty clause (with identifier 4) is obtained by Q-resolving clauses 2
and 3. Note that forall-reduction is part of a Q-resolution inference. 0 is merely
used as a separator.

We have written a simple recursive-descent parser for this certificate format
that returns the encoded information as a value in Standard ML.

3.4 Higher-Order Logic

HOL4 is a popular LCF-style [10,11] theorem prover for polymorphic higher-
order logic [9]. It is based on Church’s simple type theory [32] extended with
Hindley-Milner style polymorphism [33]. Higher-order logic (HOL) contains a
type of Booleans, propositional connectives, and quantifiers over arbitrary types.
Hence, quantified propositional logic can straightforwardly be embedded into
HOL.

HOL4 implements a natural-deduction calculus. Theorems represent sequents
Γ � φ, where Γ is a finite set of hypotheses, and φ is the sequent’s conclusion.
Instead of ∅ � φ, we simply write � φ. Internally, the set of hypotheses is given by
a red-black tree (for efficient search, insertion and deletion), with terms treated
modulo α-equivalence.

Like other LCF-style provers, HOL4 has a small inference kernel. Theorems
are implemented as an abstract data type, and new theorems can be constructed
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only through a fixed set of functions provided by this data type. These func-
tions directly correspond to the axiom schemata and inference rules of higher-
order logic. Figure 1 shows the rules of HOL that we use to validate Squolem’s
certificates.

Assume{φ} � φ
Γ � φ ∧ ψ

Conj1
Γ � φ

Γ � φ ∧ ψ
Conj2

Γ � ψ

Γ � φ ∨ ψ Δ1 ∪ {φ} � θ Δ2 ∪ {ψ} � θ
DisjCases

Γ ∪Δ1 ∪Δ2 � θ

Γ � φ =⇒ ⊥
NotIntro

Γ � ¬φ

Γ � ¬φ
NotElim

Γ � φ =⇒ ⊥

Γ � ψ
Disch

Γ \ {φ} � φ =⇒ ψ

Γ � φ =⇒ ψ Δ � φ
MP

Γ ∪ Δ � ψ

Γ � φ
Instθ

Γ θ � φ θ

Γ � ∀x. φ
Spect

Γ � φ[x �→ t]

Γ � ∃x.φ Δ ∪ {φ[x �→ v]} � ψ
Choosev (v not free in Γ , Δ or ψ)

Γ ∪ Δ � ψ

Fig. 1. Selected HOL inference rules

The LCF-style architecture greatly reduces the trusted code base. Proof pro-
cedures, although they may implement arbitrarily complex algorithms, cannot
produce unsound theorems, as long as the implementation of the theorem data
type is correct. HOL4 is written in Standard ML [34], a type-safe functional
language (with impure features, e.g., references) that has an advanced module
system. To benefit from HOL4’s LCF-style architecture, we must implement
proof reconstruction in this language.

On top of its LCF-style inference kernel, HOL4 offers various automated proof
procedures: e.g., a simplifier, which performs term rewriting, a decision procedure
for propositional logic, and various first-order provers. However, the performance
of these procedures is hard to control. To achieve optimal performance, we do
not employ them for certificate checking, but instead combine primitive inference
rules directly (see Section 4).

4 Checking Squolem’s Certificates in HOL4

4.1 Preliminaries

Given a QBF ϕ = Q1x1 . . . Qnxn. φ and a certificate of its invalidity, our goal
is to derive {ϕ} � ⊥ as a HOL4 theorem. We start by assuming the QBF’s
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matrix, φ, thereby obtaining {φ} � φ. We then use a combination of forward and
backward reasoning: the former to transform the sequent’s conclusion into ⊥, and
the latter to introduce quantifiers into the hypothesis, thereby transforming it
into ϕ. This enables a clear separation of propositional and quantifier reasoning.

Suppose that φ = C1∧· · ·∧Ck, where each Ci is a clause of the original QBF.
Repeatedly applying inference rules Conj1 and Conj2, we split {φ} � φ into k
separate theorems {φ} � C1, . . . , {φ} � Ck. This eliminates all conjunctions from
the conclusion. Therefore, we do not have to use associativity or commutativity
of conjunction in order to resolve clauses. Note that this step does not consume
significant amounts of memory: although φ may be huge, existing Standard ML
implementations employ sharing and store φ in memory only once.

We use a similar idea to eliminate disjunctions. Suppose that Ci = li1∨· · ·∨limi
,

where each lij is a literal. Following [18], we use a combination of DisjCases,
Disch and MP to transform {φ} � Ci into {φ,¬li1, . . . ,¬limi

} � ⊥. This al-
lows us to benefit from HOL4’s relatively efficient management of hypotheses
(which are stored in a red-black tree internally) when manipulating literals dur-
ing resolution, rather than having to use associativity and commutativity of
disjunction.

4.2 General Proof Structure

After transformation into this sequent form, each clause theorem is stored in a
dictionary (implemented by a red-black tree for logarithmic time access), indexed
by its numeric clause identifier. Along with each clause, we store the quantifier
prefix that is missing from the clause’s hypothesis. Since we started by assuming
the matrix, this is the entire prefix initially, i.e., Q1x1 . . . Qnxn. During certifi-
cate validation, we will successively introduce these quantifiers again, until we
arrive at the original QBF.

Squolem’s certificates of invalidity encode a directed acyclic graph. The empty
clause is the root, and each node is connected to the premises from which it is
derived by Q-resolution. We perform a depth-first post-order traversal of this
graph, starting at the root node, and adding new clauses to the clause dictionary
as they are derived. This approach, which is also adopted from [18], has two
benefits. First, if there are Q-resolution inferences in the certificate that do not
contribute to the derivation of the final ⊥, these are never checked in HOL4.
Second, clauses must be derived in HOL4 only once, even if they are used several
times in the proof. Later, they are simply retrieved from the dictionary.

4.3 Q-Resolution

Every node of the proof graph corresponds to a Q-resolution inference, which we
have to perform in HOL4 (unless the node does not contribute to the derivation of
the final ⊥, see above). Q-resolution consists of propositional resolution followed
by forall-reduction.
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Propositional resolution for clauses in sequent form can be implemented effi-
ciently as a combination of primitive HOL inferences [18]:

Γ ∪ {¬v} � ⊥
Disch

Γ � ¬v =⇒ ⊥

Δ ∪ {v} � ⊥
Disch

Δ � v =⇒ ⊥
NotIntro

Δ � ¬v
MP

Γ ∪ Δ � ⊥
The resolvent, Γ ∪ Δ � ⊥, is again a clause in sequent form.

It remains to deal with forall-reduction. Let {φ, l1, . . . , lm} � ⊥ be the re-
solvent, and let xi be the largest variable that occurs in it. Since propositional
resolution has removed the (existential) pivot variable, xi may be universal. We
must perform forall-reduction if this is the case.

There are two aspects to this task. We successively transform the QBF’s
matrix, which initially is a hypothesis of each clause, into the original QBF. Thus,
we must introduce (existential and universal) quantifiers for variables larger
than xi, which no longer occur in the clause. Second, we must eliminate xi,
exploiting the fact that it is universal.

Suppose the missing quantifier prefix is Q1x1 . . . ∀xi . . . Qjxj , with j ≥ i. If
Qj = ∀, we derive

{φ, l1, . . . , lm} � ⊥
Disch{l1, . . . , lm} � φ =⇒ ⊥

Assume{∀xj . φ} � ∀xj . φ
Specxj{∀xj . φ} � φ

MP{∀xj . φ, l1, . . . , lm} � ⊥
If Qj = ∃, then necessarily j > i, and we instead derive

Assume{∃xj . φ} � ∃xj . φ {φ, l1, . . . , lm} � ⊥
Choosexj{∃xj . φ, l1, . . . , lm} � ⊥

The side condition of Choosexj (see Figure 1) is satisfied because xj does not
occur among l1, . . . , lm.

Repeating this step for all missing quantifiers up to Qixi, we arrive at
{Qixi . . . Qjxj . φ, l1, . . . , lm} � ⊥. Note that Qi = ∀, hence our reasoning is
sound despite the fact that xi still occurs in the clause.

Now xi is bound in Qixi . . . Qjxj . φ, and occurs free only in one of the literals
l1, . . . , lm. We instantiate xi to ¬⊥ if it occurs positively, and to ⊥ if it occurs
negatively. In either case the literal becomes ¬⊥ and can be discharged.

We continue to forall-reduce the resulting clause to eliminate further universal
variables if possible.

A technicality arises from the interplay of propositional resolution and forall-
reduction. Forall-reduction introduces quantifiers (thereby shortening the pre-
fix of missing quantifiers). Therefore, the two clauses used in a resolution step
may have different quantifier prefixes around the matrix in their hypotheses:
i.e., Qixi . . . Qnxn. φ vs. Qjxj . . . Qnxn. φ, with i < j. The resolvent will con-
tain both formulae as hypotheses. In our bookkeeping, we only keep track of
the longer prefix of missing quantifiers, i.e., Q1x1 . . . Qj−1xj−1, and ignore the
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other hypothesis. Eventually, later forall-reduction steps in the proof will (again)
introduce quantifiers Qixi through Qj−1xj−1 into the resolvent. At this point
both hypotheses will become identical, and (since hypotheses are implemented
by a set) one copy will automatically be discarded by HOL4.

While this could lead to an accumulation of matrix hypotheses (each with a
different quantifier prefix) in a clause during certificate validation, clauses with
different quantifier prefixes are rarely resolved in practice. In the QBF certificates
used for evaluation (see Section 5), clauses derived by Squolem contain at most
two matrix hypotheses each.

4.4 Example

Consider (1) again. Let φ = x∧(y∨z)∧(y∨¬z) denote its matrix. We assume φ
to obtain {φ} � φ. Using Conj1 and Conj2, we derive three separate theorems
{φ} � x, {φ} � y ∨ z, and {φ} � y ∨ ¬z. Their respective sequent forms are
{φ,¬x} � ⊥, {φ,¬y,¬z} � ⊥, and {φ,¬y, z} � ⊥ The missing quantifier prefix
for each theorem is ∃x∀y ∃z.

Validating Squolem’s proof of invalidity (see Section 3.3), we now Q-resolve
the second and the third theorem. Propositional resolution yields {φ,¬y} � ⊥.
The largest variable that occurs in this clause is y.

Since y is universal, we perform forall-reduction (as detailed in Section 4.3).
The innermost missing quantifier is ∃z. Thus, we first derive {∃z. φ, ¬y} � ⊥.
The next missing quantifier is ∀y, so we derive {∀y∃z. φ, ¬y} � ⊥. Now we
eliminate y by instantiating it to ⊥, thereby obtaining {∀y∃z. φ, ¬⊥} � ⊥. Dis-
charging ¬⊥ yields {∀y∃z. φ} � ⊥. The next missing quantifier is ∃x, and x does
not occur in the clause (except in φ). Hence, we finally arrive at {∃x∀y∃z. φ} � ⊥.

4.5 Variable Binding and Substitution

HOL4 comes with two different implementations of its inference kernel: one uses
de Bruijn indices (and explicit substitutions) to represent λ-terms [35], the other
(by M. Norrish) uses a name-carrying implementation [36]. These implementa-
tions differ in the performance (and even complexity) of primitive operations.
For instance, λ-abstracting over a variable takes constant time with the name-
carrying implementation, but with de Bruijn indices is linear in the size of the
abstraction’s body (because every occurrence of the newly bound variable in the
body must be replaced by an index). Moreover, since the abstraction’s body re-
mains unchanged in the name-carrying implementation, there is more potential
for memory sharing if the body is also used elsewhere, and hence a potentially
smaller memory footprint. Despite these differences, both kernels show similar
overall performance on the HOL4 library.

This is no longer true for QBF validation. In higher-order logic, ∀x. φ is
syntactic sugar for ∀(λx. φ), and likewise for ∃x. φ. Hence, the algorithm for
Q-resolution presented in Section 4.3 forms λ-abstractions (and takes them
apart again) when introducing quantifiers during forall-reduction. We will see in
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Section 5 that Norrish’s name-carrying implementation, therefore, is significantly
faster for QBF validation than the kernel that uses de Bruijn indices internally.

During evaluation, we also observed that the name-carrying implementation
spent significant time instantiating variables (to ⊥ or ¬⊥, before they are dis-
charged as part of forall-reduction). Capture-avoiding substitution in a name-
carrying implementation may have to rename bound variables away from the free
variables in the body of a λ-abstraction. It turned out that in order to collect
these free variables, the HOL4 implementation of substitution would unneces-
sarily descend into the body of a λ-abstraction even when the variable to be
instantiated was bound (in which case instantiation would not change the body
at all). We achieved an average speed-up of 2.6 (see Section 5) by improving the
implementation of capture-avoiding substitution to collect free variables only
when they are actually needed for renaming.

One might gain further improvements by using a modified term data structure.
The kernel could compute the set of a term’s free variables when the term is built,
and store it in memory along with the term itself. This might allow for an even
more efficient implementation of capture-avoiding substitution.

5 Experimental Results

We have evaluated our implementation on the same set of 69 invalid QBF prob-
lems that was previously used (by the Squolem authors) to evaluate the per-
formance of Squolem’s certificate generation [7]. The set resulted from applying
Squolem to all 445 problems in the 2005 fixed instance and 2006 preliminary
QBF-Eval data sets. With a time limit of 600 seconds per problem, Squolem
solved 142 of these problems; 69 were determined to be invalid.

All experiments were conducted on a Linux system with an Intel Core2 Duo
T9300 processor at 2.4 GHz. Memory usage was restricted to 3 GB. HOL4 was
running on top of Poly/ML 5.3.

5.1 Run-Times

Table 1 shows our experimental results for the 69 invalid QBF problems. The
first column gives the name of the benchmark. The next three columns provide
information about the size of the benchmark, giving the number of alternating
quantifiers,1 variables, and clauses, respectively. Column four shows the run-time
of Squolem (with certificate generation enabled) to solve the benchmark. Column
five shows the number of Q-resolution steps in the resulting certificate. The last
three columns finally show the run-time of certificate validation in HOL4, using
the de Bruijn kernel, the name-carrying kernel, and our optimized variant of the
name-carrying kernel, respectively (see Section 4.5). All run-times are given in
seconds (rounded to the nearest tenth of a second). On one benchmark, the de
Bruijn kernel ran out of memory (indicated by an M).
1 Counting successive quantifiers of the same kind, as in ∀x∀y ∀z . . ., as one quantifier

only. The total number of quantifiers in each benchmark is typically identical to the
number of variables.
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Table 1. Experimental results

Squolem Q-res. de Bruijn name- optimized
Benchmark name Quant. Vars. Clauses (s) steps (s) carrying (s) name-c. (s)
Adder2-2-c 7 249 291 8.9 445 6.4 0.6 0.3
adder-2-unsat 3 66 110 13.6 3632 3.3 1.6 0.5
comp.blif 0.10 0.20 0 0 inp exact 7 310 831 6.0 2612 3.0 0.3 0.1
comp.blif 0.10 1.00 0 0 inp exact 3 306 842 1.9 3317 1.0 0.1 0.1
flipflop-3-c 3 164 203 0.0 15 0.0 0.0 0.0
flipflop-4-c 3 866 1158 20.5 12 1.4 0.0 0.0
k d4 p-12 33 755 2234 0.4 276 44.2 1.5 0.6
k d4 p-16 41 995 2966 0.6 348 95.5 2.7 1.0
k d4 p-20 49 1235 3698 0.8 420 173.1 4.3 1.7
k d4 p-21 51 1295 3881 0.8 438 197.4 4.7 2.0
k d4 p-4 17 275 770 0.1 132 2.8 0.2 0.1
k d4 p-8 25 515 1502 0.3 204 15.0 0.7 0.3
k dum p-12 27 517 1352 0.1 302 17.6 0.8 0.3
k dum p-16 35 685 1782 0.1 334 35.1 1.3 0.6
k dum p-20 43 853 2212 0.1 366 61.9 1.9 0.8
k dum p-21 45 893 2311 0.1 366 68.1 2.1 0.9
k dum p-4 15 556 215 0.1 231 2.2 0.2 0.1
k dum p-8 19 349 922 0.1 266 6.9 0.4 0.2
k grz p-12 17 534 1961 479.2 303 19.1 1.1 0.3
k grz p-4 17 318 953 0.1 283 5.3 0.4 0.2
k grz p-8 17 419 1406 0.6 286 10.5 0.7 0.2
k lin p-4 7 241 840 0.0 28 1.1 0.1 0.0
k lin p-8 7 439 1916 242.8 32 4.7 0.2 0.1
k path p-12 27 805 2238 0.3 306 40.3 1.4 0.5
k path p-16 35 1081 3014 0.4 406 91.9 2.6 1.0
k path p-20 43 1357 3790 0.5 506 173.4 4.4 1.9
k path p-21 45 1429 3996 0.6 531 200.2 4.9 2.1
k path p-4 11 253 686 0.1 106 1.7 0.1 0.1
k path p-8 19 529 1462 0.2 206 12.2 0.5 0.2
k poly p-12 79 1005 2268 0.4 1072 137.5 3.5 2.0
k poly p-16 103 1329 3000 1.6 1375 303.9 6.6 3.8
k poly p-20 127 1653 3732 1.8 1711 577.9 11.1 6.6
k poly p-21 131 1707 3854 0.9 1771 635.6 12.0 7.1
k poly p-4 31 357 804 0.1 377 7.0 0.3 0.2
k poly p-8 55 681 1536 0.2 724 44.1 1.5 0.7
k t4p p-12 37 979 3040 1.5 394 91.9 2.7 1.0
k t4p p-16 45 1529 3936 2.1 474 180.7 4.5 1.8
k t4p p-20 53 1539 4832 2.5 554 318.3 6.9 2.7
k t4p p-21 55 1609 5056 2.6 574 360.7 7.5 3.0
k t4p p-4 21 419 1248 0.5 234 9.3 0.5 0.2
k t4p p-8 29 699 2144 1.0 314 37.1 1.4 0.5
s27 d3 u 3 117 254 33.2 309 0.2 0.2 0.0
sat05-561-qd 1 24 61 0.0 158 0.0 0.0 0.0
TOILET2.1.iv.3 3 28 70 0.0 20 0.0 0.0 0.0
toilet a 08 01.2 3 60 2205 1.0 6 1.7 0.8 0.1
toilet a 08 01.4 3 112 2429 1.1 44 3.6 1.4 0.2
toilet a 08 05.2 3 140 2833 124.9 1855 5.7 7.4 4.9
toilet a 10 01.2 3 74 10455 33.7 6 17.8 8.0 1.0
toilet a 10 01.3 3 106 10604 35.1 16 24.7 8.5 1.1
toilet a 10 01.4 3 138 10753 36.3 44 36.5 13.7 1.6
toilet c 08 01.2 3 55 229 0.0 6 0.1 0.0 0.0
toilet c 08 01.4 3 107 453 0.1 44 0.2 0.0 0.0
toilet c 08 05.2 3 135 857 122.4 1855 0.6 0.7 0.7
toilet c 10 01.2 3 68 325 0.0 6 0.1 0.0 0.0
toilet c 10 01.4 3 132 623 0.2 44 0.3 0.1 0.0
tree-exa2-10 20 20 12 0.0 18 0.0 0.0 0.0
tree-exa2-15 30 30 17 0.0 28 0.0 0.0 0.0
tree-exa2-20 40 40 22 0.0 38 0.0 0.0 0.0
tree-exa2-25 50 50 27 0.0 48 0.0 0.0 0.0
tree-exa2-30 60 60 32 0.0 58 0.1 0.0 0.0
tree-exa2-35 70 70 37 0.0 68 0.1 0.1 0.0
tree-exa2-40 80 80 42 0.0 78 0.1 0.1 0.1
tree-exa2-45 90 90 47 0.0 88 0.2 0.1 0.1
tree-exa2-50 100 100 52 0.0 98 0.3 0.2 0.1
vonNeumann-ripple-carry-5-c 3 24562 35189 220.3 33 M 1.8 1.5
z4ml.blif 0.10 0.20 0 0 inp exact 5 65 193 1.8 996 0.2 0.0 0.0
z4ml.blif 0.10 0.20 0 0 out exact 3 61 185 1.2 1536 1.3 0.3 0.1
z4ml.blif 0.10 1.00 0 0 inp exact 3 65 198 0.1 588 0.1 0.0 0.0
z4ml.blif 0.10 1.00 0 0 out exact 3 63 194 0.6 1588 1.2 0.2 0.1
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Average run-times are 60.2 seconds for the de Bruijn kernel (not including
benchmark vonNeumann-ripple-carry-5-c), 2.1 seconds for the name-carrying
kernel, and 0.8 seconds for our optimized variant of the name-carrying kernel.
This amounts to speed-up factors of 28.7 (de Bruijn vs. name-carrying) and 2.6
(name-carrying vs. optimized), respectively, for a total speed-up factor of 75.3
(de Bruijn vs. optimized).

For comparison, we have also measured run-times of QBV [7], a stand-alone
checker for Squolem’s certificates that was developed by the authors of Squolem.
QBV validates each of the 69 certificates in less than 0.1 seconds. LCF-style
validation in HOL4, using the optimized name-carrying kernel, is one to two
orders of magnitude slower. However, for users of HOL4, another comparison
might be more relevant: LCF-style validation (using the optimized name-carrying
kernel) on average is a factor of 24.5 faster than proof search with Squolem, and
at most 8 times slower on individual benchmarks.

5.2 Profiling

To gain deeper insight into these results, we present profiling data for the
de Bruijn kernel (Figure 2), the name-carrying kernel (Figure 3), and our opti-
mized variant of the name-carrying kernel (Figure 4).

For each kernel, we show the shares of total run-time (dark bars) and relative
number of function calls (light bars) for the following functions: binding of exis-
tential quantifiers during forall-reduction (bind∃), binding of universal quantifiers
during forall-reduction (bind∀), elimination of universal variables during forall-
reduction (elim), and propositional resolution (resolve) as part of Q-resolution.
Additionally, time spent on other aspects of certificate validation, e.g., file pars-
ing and conversion of clauses into sequent form, is shown as well (other). The
relative number of function calls (light bars) is the same for each kernel.

We observe that the de Bruijn kernel (Figure 2) spends more than 90% of
validation time on the introduction of existential quantifiers. This is in line with
the relative frequency of bind∃. The name-carrying implementation (Figure 3),
however, performs the same operation much more quickly (for the reasons dis-
cussed in Section 4.5), reducing its run-time share to less than 20%. On the other
hand, time spent on variable elimination (elim) has increased disproportionally,
to over 60%. Our optimization of capture-avoiding substitution (see Section 4.5)
reduces this time to a negligible fraction again (Figure 4), while the remaining
operations take proportionally higher time shares.
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6 Conclusions

We have presented LCF-style checking for certificates of QBF invalidity (gen-
erated by the QBF solver Squolem) in HOL4. In particular, we have presented
an efficient implementation of Q-resolution on top of HOL4’s inference kernel
for higher-order logic. Detailed performance data shows that LCF-style certifi-
cate checking is feasible even for large invalid QBF instances: all 69 benchmark
certificates were checked successfully. However, performance very much depends
on implementation details of the underlying inference kernel. We have improved
HOL4’s implementation of capture-avoiding substitution, thereby achieving a
speed-up of 75.3 over an implementation based on de Bruijn indices. Our imple-
mentation is freely available from the HOL4 repository [36].

Our work has two main applications. First, it enables HOL4 users to benefit
from Squolem’s automation for QBF problems. These can now be passed from
the HOL4 system to Squolem, which will automatically decide their validity.
For invalid QBF problems, Squolem’s certificate will then be used to derive the
QBF’s negation as a theorem in HOL4. Second, our work provides high correct-
ness assurances for Squolem’s results. Due to HOL4’s LCF-style architecture,
our proof checker cannot draw unsound inferences (provided HOL4’s kernel is
correct). Thus, the approach can be used for QBF benchmark certification.

In this paper, we have only considered certificates of invalidity. In principle,
one can establish validity of a QBF instance by showing that the negation is
invalid. However, this approach is rarely feasible in practice [7]. Squolem can
generate certificates of validity directly, based on Skolem functions. LCF-style
checking for certificates of validity remains future work.

One could also extend our work to other QBF solvers, which use different
certificate formats (see [23] for an overview), and to other interactive theorem
provers, e.g., Isabelle or Coq. Because seemingly minor differences in kernel data
structures can have significant impact, it is not clear if similar performance can
be achieved in these systems.

An alternative approach that might yield better performance than the
LCF-style implementation presented in this paper is the use of reflection [37],
i.e., implementing and proving correct a checker for Squolem’s certificates in
the prover’s logic, and then executing the verified checker without producing
proofs. While this approach still provides relatively high correctness assurances,
obtaining a theorem in HOL4 would require enhancing the inference kernel
with a reflection rule that allows to trust the result of such a verified
computation.
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Abstract. Higher Order Abstract Syntax, or HOAS, is a technique for
using a higher-order logic as a metalanguage for an object language with
binding operators. It avoids formalizing syntactic details related to vari-
able binding by identifying variables of the object logic with variables
of the metalogic. In another paper we extended the usual set-theoretic
semantics of HOL with a notion of parametric function, and showed how
to use this extension to give solutions to the recursive type equations
characteristic of HOAS, for example T = T × T + T → T for a HOAS
representation of the untyped lambda-calculus. This paper describes an
effort to apply these semantic ideas in a proof assistant.

When formalizing abstract syntax that has binding constructs, one can use a
first-order style with explicit representation of variable names, or a higher-order
style [1], where variables are not explicitly represented, but instead are identified
with variables of the metalanguage (HOL in our case).

The distinction can be illustrated using recursive type equations and, as an
example, the syntax of untyped lambda calculus. Taking id to be a type of
identifiers, the syntax of the untyped lambda calculus could be formalized as a
datatype

exp = id + exp × exp + id × exp.

The first disjunct of the disjoint sum above represents variables, the second,
application terms, and the third, lambda abstractions. Contrast this with the
following “datatype”, which uses a higher-order encoding:

exp = exp × exp + exp → exp.

Here variables are not explicitly represented: a lambda abstraction λx. M is
represented as a function that can be thought of as mapping terms N to the
result of substituting N for x in M .

A drawback to the HOAS approach is that it has been difficult to adapt to
widely-used general-purpose proof construction tools such as Isabelle/HOL [3].
Part of the reason can be seen from the second equation above: the occurrence
of exp on the left side of the function space arrow means the equation cannot be
viewed as an inductive definition, at least when function space is given its usual
meaning.

However, as shown in [2], the second equation does make sense, as an inductive
definition, under a nonstandard interpretation of the function space as a type of
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parametric functions. These are functions that do not analyse, or discriminate
on, their input, but instead just build data structures that have the input as
a component. For example, λx. ((x, 3 + 4), Inl x) is parametric since the body
builds on x using only data constructors.

The goal of our work is to make the HOAS technique available in a general and
simple way in general-purpose proof tools. In [2], we gave an extension to classical
higher-order logic, and its standard set-theoretic semantics, that supports both
a parametric function type, and a recursive type constructor similar to what
is implicit in Isabelle/HOL’s datatype package except that it also allows some
negative occurrences of the type being defined.

Our previous paper focused on semantics and typechecking. The paper sug-
gested some axioms, but mostly it just noted that a few forms of reasoning, such
as HOAS-style induction, were valid in the semantics. One major shortcoming
was a convincing method for dealing with representation of open terms. The
usual HOAS-style datatypes only represent closed terms.

We are now in the process of implementing these ideas and experimenting with
their use in formal metareasoning. This paper describes a first, but substantial,
step in this direction. Specifically, we give an axiomatic extension of HOL for
parametric functions and for contexts, which are iterations of parametric lambda-
abstraction. Contexts represent open terms without sacrificing the identification
of object-level and meta-level variables.

In the remainder of the paper we sketch our implementation. The Isabelle the-
ories can be found at www.scs.carleton.ca/~howe/shoas/itp10. For a com-
parison with related work, see [2].

The starting point is the parametric function type. In [2], we extended HOL’s
type system so that parametricity of functions is guaranteed by typechecking.
Modifying Isabelle’s type system to implement this is not feasible, so we take
the parametric function space α ↪→ β to be a subset of the usual function
space α → β, using a predicate parm. We use the notations �x. e and f $ e for
the parametric versions of lambda-abstraction and application. These notations
stand for pfun(λx. e) and papp f e, respectively. We add axioms asserting the
parametricity of the identity function; the “primitive” data constructors for sum,
product and natural numbers; and the composition of parametric functions.

The crux of our approach to implementing parametricity-based metareasoning
is contexts. The intention of the type α �β is to collect together all types of the
form α ↪→ α ↪→ . . . ↪→ α ↪→ β for zero or more repetitions of α. While α ↪→ β
is the type of one-argument parametric functions, α � β can be thought of as
the type of n-ary parametric functions, for all n. An n-ary parametric function,
viewed as a context, represents an expression of the object logic with n free
variables.

We want a datatype definition such as

α � β = Closed β | Bind α ↪→ β

for representing open terms of an object logic. An object Closed x represents a
closed term of the object logic, while Bind adds a “free” variable to the con-
text. Our justification for the use of ↪→ in an inductive datatype definition is
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semantic, so we need to axiomatize this type. This involves declaring Closed and
Bind as new constants and giving axioms corresponding to the usual theorems
proved for new datatypes (e.g. induction, and injectiveness and distinctness of
constructors). We also add a constant for the usual primitive recursion operation
over a datatype, and axiomatize its behaviour.

These axioms are not sufficient for our use of contexts, since they are only
what we would get if we made a conventional datatype definition using → instead
of ↪→. The operations we want on contexts could all be defined, instead of axiom-
atized, if we were not concerned with parametricity. However, what we want is to
“lift” a parametric function to contexts: if f has type α ↪→ β and �x1. . . .�xn. e
is a context (so e is parametric in x1, . . . , xn), then �x1. . . . � xn. f $ e is also a
context. While there is an axiom for ordinary composition of parametric func-
tions, there is no way to use it to prove this more general version of composition,
so we axiomatize it. We introduce two constants

pfunc : : (α � β) → α � (α ↪→ β)
pappc : : (α � (β ↪→ γ)) → (α � β) → α � γ

and axiomatize structural recursion for them. The constant pappc captures the
more general composition, while pfunc uses pfun to move the last “free variable”
of the context into the Closed part.

One might suspect that the parm predicate might be an issue in proofs. It
has not been a problem so far: some simple lemmas provided to the simplifier
have sufficed. However, no approach to reasoning about binding has turned out
to be perfect, and ours is no exception. While alpha-equivalence is completely
handled by the metatheory, there is another equivalence that arises with open
terms. Consider our lambda-calculus example and the two contexts �x.App x x
and �x. � y.App x x, where we use the more suggestive App instead of the left
injection into the disjoint sum. Both of these contexts represent the same term
of the lambda calculus: x(x) for some free variable x. Context equivalence is
therefore defined by c1 ∼=∼ c2, for c1 and c2 in α�β, if for all l, ctxt inst c1 l =
ctxt inst c2 l, where ctxt inst c l applies c, qua iterated abstraction, to as many
as needed of the infinite list of arguments l, obtaining a value of type β . We
add an axiom asserting that pfunc respects this equivalence.

The final thing we need to axiomatize for contexts is a well-founded ordering,
denoted .. This ordering is the key to proving induction principles for HOAS
representations. The ordering is based on the structural ordering of data built
from pairing and disjoint sum injections, but lifted to contexts. In addition to
axioms for transitivity and well-foundedness, we have axioms

x . pairc x y; y . pairc x y; x . inlc x; x . inrc x; x . pfunc x

where pairc, inlc etc are defined in terms of the corresponding data constructors,
for example inlc c = pappc (Closed (pfun Inl))c. The last of these axioms is note-
worthy. It says, for example, that Bind (�x.Closed h $ x) . Closed h. In terms
of HOAS representations, this means that moving an abstraction from a term
representation into the context takes us lower in the ordering. Finally, we need
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an axiom for the “base case”: is var y ⇒ ¬(x . y) where is var y is defined to
be true exactly when y has the form �x1. . . .� xn. xi for some i with 1 ≤ i ≤ n.

If we were able to specify all the data constructors at once, we would need no
further axioms. However, for each new recursive type we introduce, we need five
axioms related to the isomorphism between the left and right hand sides of the
equation. We do not need axioms for the constructors of the new type because
they are defined in terms of pairing and injections.

With the given axioms, we are able to prove some useful lemmas and theorems.
The highlights of what we have proven so far include two forms of induction for
the HOAS representation of the untyped lambda calculus. The representing type
is axiomatized using the isomorphism pair consisting of Fold exp, which has type
(exp × exp + exp ↪→ exp) ↪→ exp, and its inverse unfold exp.

The context-based and HOAS induction principles (both proven) are as fol-
lows. In the first rule, the quantifications are over exp � exp and in the second,
exp.

(∀x. is var x ⇒ p x) & (∀x, y. p x ⇒ p y ⇒ p (appc x y)) &
(∀x. p x ⇒ p (lamc x)) ⇒ p x

(∀x, y. p x ⇒ p y ⇒ p (App x y)) &
(∀f. (∀x. p x ⇒ p (f x)) ⇒ p (Lam f))
⇒ p x

Future Work. The next steps are to implement primitive recursion operations
corresponding to the two kinds of induction rules presented above, to develop
some basic metamathematics of the untyped and typed lambda calculus, and to
investigate implementing a “package” for the new kind of recursive data type.

Definitional developments are, of course, highly preferable to axiomatic ones
such as this one, which are prone to errors (indeed, one of the reviewers of
this paper found an egregious one). However, further experimentation with this
approach is needed before deciding whether it merits the effort involved in a
definitional construction. Because this approach is based on a change to the
basic semantics of HOL, such an effort would likely be massive.
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Abstract. We present a formalisation of separation logic which, by
avoiding the use of existential quantifiers, allows proofs that only use
standard equational rewriting methods as found in off-the-shelf theo-
rem provers. This proof automation is sufficiently strong to free the user
from dealing with low-level details in proofs of functional correctness.
The work presented here has been implemented in HOL4 and ACL2. It
is illustrated on a standard example (reversal of a linked-list).

1 Introduction

Separation logic [7] has emerged as an effective technique for proving the correct-
ness of pointer manipulating programs. As a result, there have been a number
of theorem prover formalisations of separation logic [1,4,9,11] and tactics for
dealing with separation logic-style reasoning in theorem provers [2,5,10].

In this paper we present a novel formalisation which, by avoiding the use of
existential quantifiers, allows basic rewriting to suffice as a useful proof tactic. We
believe that the simplicity of our setup makes it independent of any particular
theorem prover: the work presented here has been implemented in HOL4 [8] (by
the current author) and subsequently in ACL2 [3] (by Matt Kaufmann).

Gast [2] also modifies separation logic to fit better with current theorem
provers. Compared with Gast [2], our approach follows the idea of separation
logic more closely (we state memory content and memory layout together) and
achieves a higher degree of automation by simple rewriting (Sections 3 and 4).

2 Separation Logic without Quantifiers

At the heart of separation logic lies the separating conjunction ∗. The separating
conjunction is defined such that p ∗ q holds for state s whenever state s can be
split into two disjoint parts (according to some definition of disjoint union /)
such that p holds for one part and q for the other part.

(p ∗ q) s = ∃s1 s2. (s = s1 / s2) ∧ p s1 ∧ q s2

The value of the separating conjunction becomes apparent in the context of
(avoiding unwanted) pointer aliasing: if list a xs asserts that a linked list is
in memory then list a xs ∗ list b ys states that there are two list in memory
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and these occupy disjoint addresses in memory. Thus asserting that there is no
pointer aliasing between the lists. This list assertion is conventionally defined as
follows. Here the notation a #→ x means that memory location a holds value x.

list a [] = (a = 0)
list a (x::xs) = ∃a′. (a #→ a′) ∗ (a+1 #→ x) ∗ list a′ xs ∗ (a 
= 0)

In this paper, we will show that the common case of linked-lists and other as-
sertions of the form (a #→ x) ∗ (b #→ y) ∗ . . . ∗ (c #→ z) can be formalised without
quantifiers in such a way that simple rewriting is a sufficiently powerful proof
tool for proofs of functional correctness.

Instead of defining a separating conjunction directly, we define a function
separate which mimics (a #→ x)∗(b #→ y)∗. . .∗(c #→ z) when supplied with a list of
the form [(a, x), (b, y), . . . , (c, z)] and here the separation is due to all distinct xs,
which states that there are no duplicate elements in its argument list xs. Below
t is a list of addresses that must be distinct from those mentioned in l.

separate [] t state = all distinct t
separate ((a, x)::l) t state = (state(a) = x) ∧ separate l (a::t) state

A suitable adaption of list is then defined as a function listx which produces a
list of (address,value) pairs which can be substituted for the variable l above. To
avoid the existential quantifier used in the definition of list, we make the internal
addresses external and explicit. Here addr xs returns a pointer to the head of
the list xs.

addr [] = 0
addr ((a, x)::xs) = a

listx [] = []
listx ((a, x)::xs) = (a, addr xs)::(a+1, x)::listx xs

Separation logic states the correctness of programs as Hoare triple judgments
{pre} code {post}. We define a similar judgement as follows based on an opera-
tional semantics exec (defined in [6]) for a toy machine language where the code
resides in memory. This judgement spec is defined to assert that, if the initial
state s satisfies pre1 and contains the code code separately from addresses pre2,
then n steps of execution will reach a state which satisfies post1 and contains
code separately from addresses post2. We write list append as ++.

spec s n (pre1, pre2) code (post1, post2) =
separate (code ++ pre1) pre2 s =⇒
separate (code ++ post1) post2 (exec n s)

3 Automatic Rewriting Tactic

The above definitions allow rewriting alone to suffice for proving specifications.
Our rewriting tactic essentially just expands all the definitions and rewrites
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where applicable with lemmas that describe append (++) i.e. the expansion of
separate (xs ++ ys) t s and all distinct (xs ++ ys).

This simple rewriting tactic is capable of proving specifications for single
passes though code. For example, it can automatically prove the following spec-
ification for a sequence of four instructions which swap the next-pointers in two
linked lists, thus swapping the tails of the lists (xs is swapped for ys). The pro-
gram counter which is incremented by 12 is stored at address 0. This specification
states that addresses 3 and 4 are used as temporaries during execution. Their
initial and final values are not recorded. Let llist p xs = (p, addr xs)::listx xs.

spec s 4
([(0, p)] ++ llist 1 (x::xs) ++ llist 2 (y::ys) ++ frame, [3, 4] ++ rest)
(pointer swap code p)
([(0, p+12)] ++ llist 1 (x::ys) ++ llist 2 (y::xs) ++ frame, [3, 4] ++ rest)

The reason for why rewriting alone can prove this is very simple: the expansion of
preconditions produces a number of inequalities, e.g. p 
= q, on the left-hand-side
of the implication in spec. These inequalities resolve if-statements,

if p = q then x else state(p)

that arise in the expansion of postconditions, i.e. the right hand-side of the
implication in the definition of spec.

4 Verification Example

Finally, we will demonstrate the use of our rewriting tactic as part of a standard
example: verification of in-place list reversal.

The code we will verify expects on entry, that location 1 holds a pointer to the
linked-list which is to be reversed. On each iteration of the loop (around location
18), one element of the list is popped from the list pointed to from location 1
and prepended to a list whose pointer is kept in location 2. On exit, location 2
holds a pointer to the reversed list. Our toy machine language has no registers,
thus locations 1, 2 and 3 are used here as if they were registers.

0 : mem[2] := 0

3 : jump to 18

6 : mem[3] := mem[mem[1]]

9 : mem[mem[1]] := mem[2]

12 : mem[2] := mem[1]

15 : mem[1] := mem[3]

18 : jump to 6, if mem[1] �= 0

We first prove a lemma about the behaviour of the body of the loop. The loop
body transfers an element from one of the linked lists to the other, looping
around program location 18 in the code rev code, which is positioned relative to
address p. This goal is automatically discharged by our rewriting tactic.
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spec s 5
([(0, p+18)] ++ llist 1 (x::xs) ++ llist 2 ys ++ frame, [3] ++ rest)
(rev code p)
([(0, p+18)] ++ llist 1 xs ++ llist 2 (x::ys) ++ frame, [3] ++ rest)

The proof of the main loop is a simple induction on the length of the list pointed
to from location 1, i.e. xs. The base case is solved by our rewrite tactic; the step
case is a simple 4-line proof which composes the above lemma for the body of
the loop with the inductive hypothesis.

spec s (1 + length xs × 5)
([(0, p+18)] ++ llist 1 xs ++ llist 2 ys ++ frame, [3] ++ rest)
(rev code p)
([(0, p+21)] ++ llist 2 (reverse xs ++ ys) ++ frame, [1, 3] ++ rest)

By joining the above specification with a similar lemma for the initialisation
code, we arrive at the final specification which states that list xs is reversed:

spec s (3 + length xs × 5)
([(0, p)] ++ llist 1 xs ++ frame, [2, 3] ++ rest)
(rev code p)
([(0, p+21)] ++ llist 2 (reverse xs) ++ frame, [1, 3] ++ rest)
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Abstract. We present a new formalization of the algebraic hierarchy
in Coq, exploiting its new type class mechanism to make practical a
solution formerly thought infeasible. Our approach addresses both tra-
ditional challenges as well as new ones resulting from our ambition to
build upon this development a library of constructive analysis in which
abstraction penalties inhibiting efficient computation are reduced to a
bare minimum. To support mathematically sound abstract interfaces for
�, �, and �, our formalization includes portions of category theory and
multisorted universal algebra.

1 Introduction

The development of libraries for formalized mathematics presents many soft-
ware engineering challenges [4,8], because it is far from obvious how the clean,
idealized concepts from everyday mathematics should be represented using the
facilitities provided by concrete theorem provers and their formalisms, in a way
that is both mathematically faithful and convenient to work with.

For the algebraic hierarchy—a critical component in any library of formalized
mathematics—these challenges include structure inference, handling of multiple
inheritance, idiomatic use of notations, and convenient algebraic manipulation.

Several solutions have been proposed for the Coq theorem prover: dependent
records [7] (a.k.a. telescopes), packed classes [6], and occasionally modules. We
present a new approach based entirely on Coq’s new type class mechanism, and
show how its features together with a key design pattern let us effectively address
the challenges mentioned above.

Since we intend to use this development as a basis for constructive analysis
with practical certified exact real arithmetic, an additional objective and moti-
vation in our design is to facilitate efficient computation. In particular, we want
to be able to effortlessly swap implementations of number representations. Do-
ing this requires that we have clean abstract interfaces, and mathematics tells us
what these should look like: we represent �, �, and � as interfaces specifying
an initial semiring, an initial ring, and a field of integral fractions, respectively.

To express these elegantly and without duplication, our development1 includes
an integrated formalization of parts of category theory and multi-sorted universal
algebra, all expressed using type classes for optimum effect.
1 The sources are available at: http://www.eelis.net/research/math-classes/
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2 The Type-Classified Algebraic Hierarchy

Unlike Haskell’s and Isabelle’s second class type classes, Coq’s type classes are
first class: classes and their instances are realized as ordinary record types (“dic-
tionaries”) and registered constants of these types.

We represent each structure in the algebraic hierarchy as a type class. This
immediately leads to the familiar question of which components of the structure
should become parameters of the class, and which should become fields. By far
the most important design choice in our development is the decision to turn all
structural components (i.e. carriers, relations, and operations) into parameters,
keeping only properties as fields. Type classes defined in this way are essentially
predicates with automatically resolved proofs.

Conventional wisdom warns that while this approach is theoretically very
flexible, one risks extreme inconvenience both in having to declare and pass
around all these structural components all the time, as well as in losing notations
(because we no longer project named operations out of records).

These are legitimate concerns that we avoid by exploiting the way Coq type
classes and their support infrastructure work, using operational type classes:
classes with a single field representing a single relation or operation in isolation.
Such classes are treated specially by Coq in being translated to mere definitions
rather than records, with the field projection becoming the identity function.

Class Equiv A := equiv : relation A.
Infix "=" := equiv (at level 70 ,no associativity) .

These operational type classes serve to establish canonical names, which not only
lets us bind notations to them, but also makes their declaration and use implicit
in most contexts. For instance, using the following definition of semirings, all
structural parameters (represented by operational classes declared with curly
brackets) will be implicitly resolved by the type class mechanism rather than
listed explicitly whenever we talk about semirings.

Class SemiRing A {e : Equiv A} {plus : RingPlus A} {mult : RingMult A}
{zero : RingZero A} {one : RingOne A} : Prop :=
{semiring mult monoid :> Monoid A (op := mult) (unit := one)
; semiring plus monoid :> Monoid A (op := plus) (unit := zero)
; semiring plus comm :> Commutative plus
; semiring mult comm :> Commutative mult
; semiring distr :> Distribute mult plus
;mult 0 l : ∀ x , 0 ∗ x = 0 } .

The two key Coq features that make this work are implicit quantification (when
declaring a semiring), and maximally inserted implicit arguments (when stating
that something is a semiring, and when referencing operations and relations).
Both were added specifically to support type classes.

Having argued that the all-structure-as-parameters approach can be made
practical, we enumerate some of the benefits that make it worthwhile.
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First, multiple inheritance becomes trivial: SemiRing inherits two Monoid
structures on the same carrier and setoid relation, using ordinary named argu-
ments (rather than dedicated extensions [9]) to achieve “manifest fields”.

Second, because our terms are small and independent and never refer to
proofs, we are invulnerable to concerns about efficiency and ambiguity of pro-
jection paths that plague existing solutions, obviating the need for extensions
like the proposed coercion pullbacks [1].

Third, since our structural type classes are mere predicates, overlap between
their instances is a non-issue. Together with the previous point, this gives us
tremendous freedom to posit multiple structures on the same operations and
relations, including ones derived implicitly via subclasses: by simply declaring a
SemiRing class instance showing that a ring is a semiring, results about semirings
immediately apply implicitly to any known ring, without us having to explicitly
encode this relation in the hierarchy definition itself, and without needing any
projection or translation of carriers or operations.

3 Category Theory and Universal Algebra

Motivated originally by our desire to cleanly express interfaces for basic numeric
data types such as � and � in terms of their categorical characterization as
initial objects in the categories of semirings and rings, respectively, we initially
introduced only the very basics of category theory into our development, again
using type classes where possible to achieve the same benefits mentioned before.

Realizing that much code duplication for the various algebraic structures in
the hierarchy could be avoided by employing universal algebra constructions,
we then proceeded to formalize some of the theory of multisorted universal al-
gebra and equational theories, using it to automatically construct varieties of
algebras. We avoided existing formalizations [3,5] of universal algebra, because
we aimed to find out what level of elegance, convenience, and integration can
be achieved using the state of the art technology (of which type classes are the
most important instance).

At the time of writing, our development includes a fully integrated formaliza-
tion of a nontrivial portion of category theory and multisorted universal algebra,
including various categories (e.g. the category Cat of categories, and generic va-
riety categories which we instantiate to obtain the categories of monoids, semir-
ings, and rings), functors (including automatically generated forgetful functors),
natural transformations, adjunctions, initial models of equational theories con-
structed from term algebras, transference of proofs between isomorphic models
of equational theories, subalgebras, congruences, quotients, products, and the
first homomorphism theorem.

There is an interesting interplay in our development between concrete alge-
braic structure type classes and their expressions on the one hand, and models
of universal algebras and varieties instantiated with equational theories on the
other. While occasionally a source of tension in that translation in either direc-
tion is not (yet) fully automatic, this duality also opens the door to the possibility
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of fully internalized implementations of generic tactics for algebraic manipula-
tion, no longer requiring plugins. One missing piece in this puzzle is automatic
quotation of concrete expressions into universal algebra expressions. We have
already implemented a proof of concept showing that like unification hints [1],
type classes can be used to implement Ltac/OCaml-free quotation.

4 Conclusions

Our development (which according to coqwc consists of about 5K lines of speci-
fications and 1K lines of proofs) shows that the first class type class implementa-
tion in Coq is already an extremely powerful piece of technology which enables
new practical and elegant solutions to old problems.

In our work we push the type class implementation and the new generalized
rewriting infrastructure [10] to their limits, revealing both innocent bugs as well
as more serious issues (concerning both efficiency and functionality) that the
Coq development team is already working on (for instance with the soon to be
revealed new proof engine).

Acknowledgements. We would like to thank Matthieu Sozeau for discussions
and quickly solving numerous small bugs and feature requests.
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Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp.
131–148. Springer, Heidelberg (1999)

4. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-coRN, the constructive coq repository
at nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 88–103. Springer, Heidelberg (2004)

5. Domı́nguez, C.: Formalizing in Coq Hidden Algebras to Specify Symbolic Compu-
tation Systems. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M.,
Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI),
vol. 5144, pp. 270–284. Springer, Heidelberg (2008)

6. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

7. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic
hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002)

8. Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Berardi,
et al. (eds.) [2], pp. 153–168

9. Luo, Z.: Manifest fields and module mechanisms in intensional type theory. In:
Berardi, et al. (eds.) [2], pp. 237–255

10. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formal-
ized Reasoning 2(1), 41–62 (2009)



Author Index

Armand, Michaël 83
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