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Preface

The International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, IPMU, is organized every two years
with the aim of bringing together scientists working on methods for the man-
agement of uncertainty and aggregation of information in intelligent systems.
Since 1986, this conference has been providing a forum for the exchange of ideas
between theoreticians and practitioners working in these areas. The 13th IPMU
conference took place in Dortmund, Germany, June 28–July 2, 2010.

This volume contains 77 papers selected through a rigorous reviewing process
among 320 submissions from 36 countries. The contributions reflect the richness
of research in the field of computational intelligence and represent several im-
portant developments, specifically focused on the following subfields:

(a) machine learning, data mining, and pattern recognition,
(b) uncertainty handling,
(c) aggregation and fusion of information,
(d) logic and knowledge processing.

We were delighted that Melanie Mitchell (Portland State University, USA),
Nihkil R. Pal (Indian Statistical Institute), Bernhard Schölkopf (Max Planck Ins-
titute for Biological Cybernetics, Tübingen, Germany) and Wolfgang Wahlster
(German Research Center for Artificial Intelligence, Saarbrücken) accepted our
invitations to present keynote lectures. Jim Bezdek received the Kampé de Fériet
Award, granted every two years on the occasion of the IPMU conference, in view
of his eminent research contributions to the handling of uncertainty in clustering,
data analysis and pattern recognition.

Organizing a conference like this one is not possible without the assistance
and continuous support of many people and institutions. We are particularly
grateful to the organizers of sessions on dedicated topics that took place during
the conference—these ‘special sessions’ have always been a characteristic ele-
ment of the IPMU conference. Frank Klawonn and Thomas Runkler helped a
lot to evaluate and select special session proposals. The special session organizers
themselves rendered important assistance in the reviewing process, that was fur-
thermore supported by the Area Chairs and regular members of the Programme
Committee. Thomas Fober has been the backbone on several organizational and
electronic issues, and also helped with the preparation of the proceedings. In this
regard, we would also like to thank Alfred Hofmann and Springer for providing
continuous assistance and ready advice whenever needed.



VI Preface

Finally, we gratefully acknowledge the support of several organizations and
institutions, notably the German Informatics Society (Gesellschaft für Infor-
matik, GI), the German Research Foundation (DFG), the European Society
for Fuzzy Logic and Technology (EUSFLAT), the International Fuzzy Systems
Association (IFSA), the North American Fuzzy Information Processing Society
(NAFIPS) and the IEEE Computational Intelligence Society.

April 2010 Eyke Hüllermeier
Rudolf Kruse

Frank Hoffmann
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General Chair Eyke Hüllermeier (Philipps-Universität Marburg)
Co-chairs Frank Hoffmann (Technische Universität Dortmund)

Rudolf Kruse (Otto-von-Guericke Universität Magdeburg)
Frank Klawonn (Hochschule Braunschweig-Wolfenbüttel)
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André Lemos, Walmir Caminhas, and Fernando Gomide

Dispersion Estimates for Telecommunications Fraud . . . . . . . . . . . . . . . . . . 370
Nuno Homem and João Paulo Carvalho

The Link Prediction Problem in Bipartite Networks . . . . . . . . . . . . . . . . . . 380
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Abstract. In this paper, we propose to study similarity measures among
fuzzy subsets from the point of view of the ranking relation they induce
on object pairs. Using a classic method in measurement theory, intro-
duced by Tversky, we establish necessary and sufficient conditions for
the existence of a class of numerical similarity measures, to represent a
given ordering relation, depending on the axioms this relation satisfies.

Keywords: Fuzzy similarity, comparison measure, ordering relation,
representability, weak independence conditions.

1 Introduction

Similarity is a key concept in artificial intelligence [12] and similarity measures
have been extensively studied (see [7,14,2,1], see also the surveys [5,8]). The
choice of an appropriate measure when facing a particular problem to solve is
a central issue. Now, due to the subjective characteristic of similarity as used
by human beings, it is more intuitive to compare measures depending on the
order they induce rather than the numerical values they take. Therefore, trying
to get closer to the human reasoning, we propose to consider an ordinal view on
similarity measures. To that aim, we follow the approach proposed by Tversky
[14] and applied later in [3], in the framework of measurement theory: it starts
from a comparative similarity �, defined as a binary relation on object pairs, and
studies the conditions under which � can be represented by a numerical simi-
larity measure. It establishes representation theorems that state necessary and
sufficient conditions under which a given comparative similarity is represented
by a specific form of numerical similarity measures.

Previous works [14,3] considered the crisp case of presence/ absence data, we
focus in this paper on fuzzy data: for any object, the presence of an attribute
is not binary but measured by a membership degree in [0,1]. Considering such
fuzzy data raises several difficulties due to the associated softness and change
continuity: in the crisp case, for any object pair and any attribute, only four
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configurations can occur, namely whether the attribute is present in both objects,
absent from both, or present in one object but not the other one. Moreover,
only two kinds of modifications can occur, changing an attribute presence to
an absence or reciprocally. In the fuzzy case, all modifications are continuous,
and it is not possible to identify a finite set of distinct configurations. Thus
matching the ordinal view of similarity with the numerical one requires the
definition of new properties and axioms to characterise the possible behaviors of
comparative similarity. Furthermore, in the fuzzy framework, similarity measures
cannot be reduced to their general form: they also depend on the choice of a t-
norm and a complementation operator, to define the membership degrees to the
intersection and the complement of fuzzy sets respectively. Indeed, as illustrated
in Section 2, changing the t-norm can lead to very different comparative relations
for a given similarity measure form and a given fuzzy measure. This implies that
the axioms we introduce to characterise comparative similarities depend on the
t-norm choice. We consider the three most common t-norms (min, product and
�Lukasiewicz t-norm) and characterise the comparative similarities representable
by (or agreeing with) a class of similarity measures containing as particular
elements Jaccard, Dice, Sorensen, Anderberg and Sokal-Sneath measures.

The paper is organised as follows: in Section 2, we recall the definitions of
similarity measure representation and equivalence and we introduce basic ax-
ioms, in particular those expressing constraints in terms of attribute uniformity
and monotonicity. Section 3 presents the considered independence axiom that is
required to establish, in Section 4, the representation theorem.

2 From Numerical Similarity to Comparative Similarity

In this section, after introducing the notations used throughout the paper, we
discuss the classic definition of equivalence between numerical similarity mea-
sures and establish basic axioms satisfied by comparative similarities induced
from given classes of numerical similarities, following the ideas of Tversky to
study similarity using the framework of measurement theory [14].

2.1 Preliminaries

We consider that each object is described by p attributes, i.e. by the set of
characteristics from the predefined list A, which can be present with different
degrees of membership: any object is a fuzzy subset of A. The data set is noted
X = [0, 1]p: any X ∈ X is written X = (x1, ..., xp), xi ∈ [0, 1], and associated
with sX = {i : xi > 0}; 0 denotes the object with sX = ∅. We consider a t-norm
� and its dual t-conorm ⊥ and the complement Xc = 1 − X . We define, as
usual, X ∩ Y = X�Y , X \ Y = X�Y c and Y \X = Y�Xc. We say that X∗ is
a strong �-complement of X if sX∩X∗ = ∅, when the intersection is ruled by the
t-norm �.

For any 0 ≤ δ ≤ xi and 0 ≤ η ≤ 1 − xi we denote by x−δ
i = xi − δ,

by xη
i = xi + η, and by X−δ

k = {x1, ..., x
−δ
k , ..., xp}. Lastly, given η such that

0 ≤ η ≤ mini(1− xi), we note Xη = {xη
1 , ..., x

η
p}.
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We indicate by m a measure of fuzzy sets, only depending on the values of
the membership and not on the values of the considered domain, for instance
m(X) = Σixi (m(X) =

∫
sX

X(t)dt in the infinite case). Given X, Y ∈ X , we
note x = m(X ∩ Y ),y+ = m(X \ Y ),y− = m(Y \X) and y = y+ + y−.

We then consider a comparative similarity, defined as a binary relation � on
X 2, with the following meaning: for X, Y, X ′, Y ′ ∈ X , (X, Y ) � (X ′, Y ′) means
that X is similar to Y no more than X ′ is similar to Y ′.

The relations∼ and ≺ are then induced by� as: (X, Y ) ∼ (X ′, Y ′) if (X, Y ) �
(X ′, Y ′) and (X ′, Y ′) � (X, Y ), meaning that X is similar to Y as X ′ is similar
to Y ′. Lastly (X, Y ) ≺ (X ′, Y ′) if (X, Y ) � (X ′, Y ′) holds, but not (X ′, Y ′) �
(X, Y ). If � is complete, then ∼ and≺ are the symmetrical and the asymmetrical
parts of � respectively.

We now introduce the notion of representability for such a comparative simi-
larity by a numerical similarity measure:

Definition 1. Given a comparative similarity �, a similarity measure S : X 2 →
R represents � if and only if ∀(X, Y ), (X ′, Y ′) ∈ X 2

(X, Y ) � (X ′, Y ′)⇔ S(X, Y ) ≤ S(X ′, Y ′)

It is important to notice that in a fuzzy context, if the similarity measure in-
volves the intersection, union or difference of the fuzzy sets whose similarity
is studied, then we need to consider also the particular t-norm and t-conorm
we choose: the induced comparative similarity can change for different choices
of t-norm and t-conorm, as the following example shows: let us consider X =
[0, 1]4, X = (0, 0, 2/10, 3/10), Y = (0, 0, 4/10, 1/10), U = (0, 7/10, 0, 2/10),
V = (0, 0, 3/10, 9/10), W = (0, 0, 1/10, 3/10), Z = (0, 2/10, 4/10, 0). As a fuzzy
measure, we choose m(X) = Σixi and as a similarity measure

S = Sρ(X, Y ) =
x

x + ρy
(1)

with ρ = 1 and we indicate by S� the measure S when we choose the t-norm �.
If we adopt min as a t-norm, then we obtain: Sm(X, Y ) = 3/13 > Sm(U, V ) =

2/21 > Sm(Z, W ) = 1/11 , and so (Z, W ) ≺ (U, V ) ≺ (X, Y );
If we adopt �Lukasiewicz t-norm, we obtain: SL(U, V ) = 1/18 > SL(X, Y ) =

SL(Z, W ) = 0 , and so (X, Y ) ∼ (Z, W ) ≺ (U, V );
If we adopt the product as t-norm, we obtain: Sp(X, Y ) = 11/89 > Sp(U, V ) =

3/32 > Sp(Z, W ) = 1/24 , and so (Z, W ) ≺ (X, Y ) ≺ (U, V ).

2.2 Similarity Measure Equivalence

Any similarity measure on X 2 induces a comparative similarity �, defined as
follows: (X, Y ) ≺ (X ′, Y ′) if S(X, Y ) < S(X ′, Y ′) and (X, Y ) ∼ (X ′, Y ′) if
S(X, Y ) = S(X ′, Y ′).

Now the same ordering relation is induced by any similarity measure that
can be expressed as an increasing transformation of S: any similarity measure
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S′ = ϕ(S), with ϕ : R → R strictly increasing is also a representation of �.
Moreover, no other measure represents �, as shown in [9,10]. Thus, from a
comparative point of view, all functions ϕ(S) are indistinguishable. Formally
speaking, the relation r defined on the set of similarity measures as SrS′ if and
only if S and S′ induce the same comparative similarity on X is an equivalence
relation. An equivalent formulation of this concept is given in [9,10].

The similarity measures defined by Equation 1, with ρ > 0, are all equivalent,
since each of them is an increasing transformation of any other. In particular,
the Jaccard (ρ = 1), Dice (ρ = 1/2), Sorensen (ρ = 1/4), Anderberg (ρ = 1/8)
and Sokal and Sneath (ρ = 2) measures are equivalent.

The same class also contains the function S(X, Y ) = log(x) − log(y), which
is of the kind proposed by Tversky [14]: S is an increasing transformation of
S′(X, Y ) = x/y which is an increasing transformation of S1.

It is to be noted that the function S(X, Y ) = α log(x)− β log(y) for α, β > 0
is not in the same class, but it is equivalent to all measures

S∗
ρ(X, Y ) =

xα

xα + ρyβ

Obviously all these considerations hold for any particular choice of t-norm.

2.3 Basic Axioms

We are now interested in a different classification of similarity measures: instead
of considering the measures that induce the same order, we consider the measures
that induce orders satisfying the same class of axioms. In this section, we consider
axioms that lead to preliminary results regarding relations between similarity
measures and comparative similarity.

The first two axioms we introduce describe basic properties a binary relation
has to satisfy to define a comparative similarity: the first one only states the
relation must be a weak order and the uncountable set X has a countable subset
thoroughly interspersed.

Axiom S1 [weak order]
The relation � defined on X is a weak order, i.e it is complete, reflexive and
transitive.
There exists a countable set Y ⊆ X which is dense in X with respect to � .

We recall that any comparative structure representable by a real function sat-
isfies S1 (see for instance [6], Theorem 2). We note that if we require that the
membership values are rational (and so in particular in the crisp case), then
the second part of S1 is automatically satisfied, since in this case X itself is
countable.

The second axiom expresses boundary conditions.

Axiom S2 [boundary conditions]
∀X, X ′, Y, Y ′ ∈ X , with sX∩X′ = sY ∩Y ′ = ∅
(X, X ′) ∼ (Y, Y ′) � (X, Y ) � (X, X) ∼ (Y, Y )
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Axiom S2 requires that any X differs from any Y no more than from its strong
�-complements, and not less than itself and it imposes that X is similar to itself
as Y is to itself.

It is obvious that S2 strictly depends on the chosen t-norm: in particular
for min and product the class of minimal elements coincides with the class of
elements such that sX ∩ sX′ = sY ∩ sY ′ = ∅. For �Lukasiewicz t-norm it is larger,
since we can obtain 0 also starting from two positive values. The axiom moreover
implies that, if the membership of the intersection of two object descriptions is
null, then it is indifferent whether the attributes are absent of both objects or
present in one of them, with any degree of membership. In particular, if we use
�Lukasiewicz t-norm, two objects having all attributes in common, but with the
sum of involved degrees less than 1, are as similar as two objects having each
attribute completely present in one of them and completely absent from the
other one. This makes a major difference with the crisp case.

The third axiom imposes a symmetry condition.

Axiom S3 [symmetry]
∀X, Y ∈ X , (X, Y ) ∼ (Y, X)

These properties lead to the following two definitions:

Definition 2. A binary relation � on X 2 is a comparative fuzzy similarity if
and only if it satisfies axioms S1 and S2.

Definition 3. A comparative fuzzy similarity is symmetric if and only if it sat-
isfies axiom S3.

The next axiom, named attribute uniformity, examines the conditions under
which the attributes can be considered as having the same role with respect to
the comparative similarity, i.e. the conditions under which a modification in one
attribute is equivalent to the modification of another attribute. In the crisp case,
this axiom only has to consider two kinds of modifications, changing an attribute
presence to an absence or reciprocally. Moreover, it only has to examine the four
categories the attributes belong to (whether they are present in both objects, ab-
sent from both, or present in one object but not the other one). In the fuzzy case,
all modifications are continuous and their effects cannot be simply expressed as
a transition between such categories. The attribute uniformity axiom depends
on the considered t-norm that determines the admissible modifications to be
considered. Thus the axiom takes three formulations detailed below.

Axiom S4min [attribute uniformity]
∀h, k ∈ {1, ..., p}, such that xh ≥ yh and xk ≥ yk, and xh ≥ 1 − yh and
xk ≥ 1− yk

and for all real numbers ε, η, ϑ, γ , with
0 ≤ ε ≤ mini=h,k{(xi − yi), (yi + xi − 1)} ; 0 ≤ η ≤ mini=h,k{(1 − xi)} ,
0 ≤ ϑ ≤ mini=h,k{(yi + xi − 1)} ; 0 ≤ γ ≤ mini=h,k{(xi − yi)}.
one has:

(X−ε
k , Y ) ∼ (X−ε

h , Y ), (Xη
k , Y ) ∼ (Xη

h , Y )

(X, Y −ϑ
k ) ∼ (X, Y −ϑ

h ), (X, Y γ
k ) ∼ (X, Y γ

h )
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The same condition holds for xh ≤ 1− yh and xk ≤ 1− yk and
0 ≤ ε ≤ mini=h,k{(xi − yi)} ; 0 ≤ η ≤ mini=h,k{(1 − yi − xi)} 0 ≤ ϑ ≤
mini=h,k{(yi)} ; 0 ≤ γ ≤ mini=h,k{(xi − yi), (1− yi − xi)}.

Moreover for α ≤ (xk − yk) if xh ≥ 1 − yh and xk ≥ 1 − yk, and α ≤
min{(xk − yk), (1 − yk − xk)} if xh ≤ 1− yh and xk ≤ 1− yk, one has:

(X, Y ) ∼ (X, (Y −α
h )α

k ).

Axiom S4p [attribute uniformity] ∀h, k ∈ {1, ..., p}, such that yk = yh, and
for all real numbers ε, η , with 0 ≤ ε ≤ mini=h,k{xi}, 0 ≤ η ≤ mini=h,k{1−
xi}, one has:

(X−ε
k , Y ) ∼ (X−ε

h , Y ); (Xη
k , Y ) ∼ (Xη

h , Y )

A symmetric condition holds if xk = xh.
Moreover ((X−ε

h )ε
k, Y ) ∼ (X, Y ).

Axiom S4L [attribute uniformity] ∀h, k ∈ {1, ..., p}, such that yi < xi,
xi ≥ 1− yi i = h, k, and for all real numbers ε, γ , with
0 ≤ ε ≤ mini=h,k{(xi − yi), (yi + xi − 1)} ; 0 ≤ γ ≤ mini=h,k{(xi − yi)}.
one has

(X−ε
k , Y ) ∼ (X−ε

h , Y ); (X, Y γ
k ) ∼ (X, Y γ

h ).

The same condition holds for xi ≤ 1− yi and xi ≤ 1− yi , i = h, k, and
0 ≤ ε ≤ mini=h,k{(xi − yi)} 0 ≤ γ ≤ mini=h,k{(xi − yi), (1− yi − xi)}.

We can prove the following Proposition:

Proposition 1. Let us consider on X 2 the t-norm � (� = min, p, L) and the
comparative fuzzy similarity � satisfying Axiom S4�. If m : X 2 → R is a fuzzy
measure such that m(X) = ϕ(

∑
i xi) with ϕ an increasing real function, then

the following condition holds:

if for (X, Y, Z) one has x = z, x− = z− and x+ = z+ then (X, Y ) ∼ (Z, Y )

Proof: let us consider the case � = min. First we note that, starting from (X, Y ),
we can obtain (Z, Y ) with a sequence of steps as those considered in S4min. For
each of them, we have equivalent pairs or pairs with the same values for x, x−

and x+. We prove this in the case (X−ε
k , Y ) and (X−ε

h , Y ), with xh ≥ 1 − yh

and xk ≥ 1 − yk: we have in fact: m(X−ε
k ∩ Y ) = m(X−ε

h ∩ Y ) = m(X ∩ Y ) ;
m(X−ε

k \ Y ) = m(X−ε
h \ Y ) = m(X \ Y ) ; m(Y \ X−ε

k ) = m(Y \ X−ε
h ) =

m(X \ Y ) + ε . Similar proofs can be obtained for the other cases.
It must be underlined also that this axiom is satisfied by any comparative

similarity representable by a similarity measure, only depending on x = m(X ∩
Y ),y+ = m(X \ Y ),y− = m(Y \X) and y = y+ + y−, where m is a measure
of fuzzy sets, depending on the values of the membership and not on the values
of the considered domain. Reciprocally, any comparative similarity satisfying S4
can be represented by a function depending only on x,y+,y−.
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2.4 Monotonicity Axioms

The following three axioms of monotonicity govern the comparative similarity
among pairs differing in a different degree of belonging of only one attribute,
successively for the three considered t-norms.

Axiom S5min [monotonicity] ∀X, Y ∈ X , X �= Y
∀ k, h, j ∈ sX ∩ sY , such that yr > xr , (r = k, h) , xj > yj , 1− xs < ys , (s =
k, j) , 1− xh > yh (so yk, xj > 1/2, xh < 1/2).
For any 0 < ε < min{xh, xk, yj , 2(yh +xh−1), (yk +xk−1)/2, (xj +yj−1)},
one has:

(X−ε
k , Y −ε

k ) ≺ (X, Y −ε
j ) ∼ (X−ε

k , Y ) ≺ ((X−ε/2
k )−ε/2

h , Y ) ≺ (X, Y ).

This axiom means that if an attribute in the support of both objects, i.e. pos-
sessed to a certain extent by both objects, is modified in a way that, for the
object in which the attribute is ”less present”, the degree of belonging is de-
creased, then the modified objects are less similar one to another than the initial
objects were. This corresponds to a strong semantic choice: it implies that the
common strong presence of an attribute is preferred to a common light presence.
Moreover, the axiom states that modifying both objects degrades the similarity
more than changing only one of them. In particular we notice that, for the fuzzy
measure m : X 2 → R with m(X) = (

∑
i xi) , we have:

m(Y ∩X) > m(X−ε
k ∩ Y −ε

k ) = m(X−ε
k ∩ Y ) = m(X ∩ Y −ε

j ) = m((X−ε/2
k )−ε/2

h ∩
Y ) = m(X ∩ Y )− ε;
and
m(X−ε

k \ Y −ε
k ) + m(Y −ε

k \X−ε
k ) = m(X \ Y ) + m(Y \X) + 2ε > m(X−ε

k \ Y ) +
m(Y \ X−ε

k ) = m(X \ Y −ε
j ) + m(Y −ε

j \ X) = m(X \ Y ) + m(Y \ X) + ε >

m((X−ε/2
k )−ε/2

h \ Y ) + m(Y \ (X−ε/2
k )−ε/2

h ) = m(X \ Y ) + m(Y \X)

Axiom S5p [monotonicity] ∀X, Y ∈ X , X �= Y
∀ k, j, r ∈ sX ∩ sY , such that yk = xj ≥ 1/2 xr < yk and ∀ ε, η, γ with
ε, η ≤ yk, and εyk = ηyk + γxr one has:

(X−η
k , Y −γ

r ) ≺ (X, Y −ε
j ) ∼ (X−ε

k , Y ) ∼ (X−ε/2
k , Y

−ε/2
j ) ≺ (Y, X)

Considerations similar to those made for S5min hold, in particular it is easy to see
that in this case: m(Y ∩X) > m(X−η

k ∩Y −γ
r ) = m(X−ε

k ∩Y ) = m(X ∩Y −ε
j ) =

m(X−ε/2
k ∩ Y

−ε/2
j ) = m(X ∩ Y )− εyk;

and
m(X−η

k \ Y −γ
r ) + m(Y −γ

r \ X−η
k ) = m(Y \ X) + m(X \ Y ) + 2εyk − η − γ >

m(X−ε
k \ Y )+ m(Y \X−ε

k ) = m(X \ Y −ε
j )+ m(Y −ε

j \X) = m(X−ε/2
k \ Y

−ε/2
j )+

m(Y −ε/2
j \X

−ε/2
k ) = m(Y \X)+ m(Y \X)+ 2εyk− ε > m(X \ Y ) + m(Y \X).

Axiom S5L [monotonicity] ∀X, Y ∈ X , X �= Y
∀ k, h, j ∈ sX ∩ sY , such that xk < yk, xr > yr , (r = h, j) , ys + xs > 1,
(s = k, j) , yh +xh < 1 and ∀ ε, with ε < min{xk + yk− 1, xh− yh}, one has:
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(X, Y ε
j ) ∼ (X−ε

k , Y ) ≺ ((X−ε
k )−ε

h , Y ) ≺ (X, Y )

Considerations similar to those regarding S5min hold. In particular we notice
that:
m(Y ∩X) > m(X ∩ Y ε

j ) = m(X−ε
k ∩ Y ) = m((X−ε

k )−ε
h , Y ) = m(X ∩ Y )− ε

and
m(X\Y −ε

j )+m(Y −ε
j \X) = m(X−ε

k \Y )+m(Y \X−ε
k ) = m(Y \X)+m(X\Y )+ε >

m((X−ε
k )−ε

h \ Y ) + m(Y \ (X−ε
k )−ε

h ) = m(X \ Y ) + m(Y \X).

We notice that if axioms S1–S4 hold and m is any fuzzy measure equal to the
sum of membership degrees, by using the above computations and taking into
account Proposition 1, it is easy to prove that any comparative similarity �
agreeing with a similarity measure Sf,g,ρ defined as

Sf,g,ρ(X, Y ) =
f(x)

f(x) + ρg(y)
(2)

with ρ > 0 and f and g non negative increasing functions (or any strictly increas-
ing transformation of this measure) satisfies Axioms S5�. Thus in particular, it
is satisfied by the measures belonging to the class Sρ defined in Equation (1), in
which f and g coincide with the identity function.

On the contrary similarity measures such as Ochiai measure or Kulczynski
measure, or more precisely their generalization in the fuzzy environment, do not
satisfy the monotonicity axioms. In [3] a weaker form of monotonicity axiom
has been introduced for the crisp case. It is one of the conditions useful to
characterise comparative similarities representable by a large class of similarity
measures containing as particular case the Ochiai measure. It is possible to give
a similar generalization of monotonicity axioms also in a fuzzy environment. We
focus here on the comparative similarities agreeing with similarity measures of
the class defined in Equation (1).

3 Independence Condition
In [14], a strong axiom of independence has been introduced but it is not ful-
filled by the comparative (fuzzy) similarities induced by most of the similarity
measures present in the literature, in particular by the class considered in this
paper (as proved in [3] for the crisp case). We now introduce a weaker form
of independence in which we only require that the common characteristics are
independent of the totality of the characteristics present in only one element of
the pair. Let us consider a fuzzy measure m, only depending on the membership
values and express, as usual, xi,yi, zi,wi in terms of m.

Axiom WI [weak independence]
For any 4-tuple (X1, Y1), (X2, Y2), (Z1, W1), (Z2, W2), if one of the following
conditions holds
(i) xi = zi for (i = 1, 2), and y1 = y2, w1 = w2
(ii) yi = wi for (i = 1, 2), and x1 = x2, z1 = z2

then (X1, Y1) � (X2, Y2)⇔ (Z1, W1) � (Z2, W2).
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It must be underlined that the comparative similarities representable by a sim-
ilarity measure S defined by Equation (2) satisfy this axiom, and thus in par-
ticular the elements of the class Sf,g,ρ defined by Equation (2). We prove this
assertion for hypothesis (i): by trivial computation it holds that on one hand
(X1, Y1) � (X2, Y2) iff f(x1) ≤ f(x2), and on the other hand (Z1, W1) �
(Z2, W2) iff f(x1) ≤ f(x2), leading to the desired equivalence. The proof is
similar for condition (ii).

The above WI axiom is formulated independently of the t-norm of reference.
Nevertheless the choice of the t-norm determines the pairs which are ruled by
WI. In fact it is possible to show by simple examples that, for a specific choice
of t-norm, the hypotheses of condition WI are satisfied and they are not for a
different choice.

4 Representation Theorem

Now we are able to prove a theorem characterising comparative similarities repre-
sentable by a class of numerical measures, in the case we adopt different t-norms.

Theorem 1. Let us consider X = [0, 1]p, the set of all possible fuzzy subsets
of a set of p characteristics, with a t-norm � ∈ {min, p, L}. Let � be a binary
relation on X 2 \ {(0, 0)}. The following conditions are equivalent:

(i) � is a comparative fuzzy similarity satisfying axioms S4� and S5� and
fulfilling the weak independence property WI

(ii) for the fuzzy measure m : X → R+ equal to
∑

i xi , there exist two non
negative increasing functions f and g, with f(0) = g(0) = 0 such that the
function S : X 2 → [0, 1] defined by Equation (2) represents �.

To prove the theorem, taking into account Proposition 1, we first transform
monotonicity and independence axioms in terms of a fuzzy measure of intersec-
tion and difference among fuzzy subsets. Then we can prove the theorem, by
using essentially the same proof as given in [3] for the crisp case.

5 Conclusion

Considering the framework of measurement theory, we established a relation be-
tween comparative similarities, i.e. binary weak order, and numerical similarity
measures so that the latter represent the former, in the case of fuzzy data. We
highlighted the equivalence between specific properties satisfied by the compara-
tive similarity and a specific form of numerical similarity, containing as particular
cases Jaccard, Dice, Sorensen, Anderberg and Sokal-Sneath measures. This char-
acterisation aims at helping users of similarity to make an appropriate choice of a
similarity measure when facing a particular problem: the selection should rely on
the theoretical desired properties, in terms of monotonicity and independence.
The desired behaviors can be expressed in terms of induced rankings, which is
more compatible with the subjective view of human beings on similarity than
desired behaviors imposed on its possible numerical values.
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Future works aim at studying the case of other similarity measure forms, and
possibly weakening the independence axiom. Another generalization perspective
concerns the study of the results obtained when one replaces the sum of the
fuzzy measures of X \Y and Y \X with the fuzzy measure of (X \Y )∪ (Y \X).
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Abstract. This study investigates a robust measure of similarity ap-
plicable in many domains and across many dimensions of data. Given
a distance or discrepancy measure on a domain, the similarity of two
values in this domain is defined as the probability that any pair of values
from that domain are more different (at a larger distance) than these two
values are. We discuss the motivation for this approach, its properties,
and the issues that arise from it.

1 Introduction

Evaluating similarity remains one of operations underlying human reasoning, as
well as automated information processing. Many approaches are present in the
literature a review of which exceeds the scope of this paper. See for the example
[RM07] and the references therein for a discussion of similarity measures for
heterogeneous data. In this paper we expand on the approach introduced in
[Pop08], [RPR08], that defines similarity as the probability of a certain event.

In the following we will refer to data items X in a multidimensional space,
D1 × . . . ×Dn, where Di ⊂ � or other space (e.g. space of strings, characters,
intervals, etc.). We will further assume that each domain Di comes endowed with
a distance function di. Often, for simplicity we will assume n = 1, 2, 3. However,
the approach presented below can be extended to any dimensions across different
spaces.

Often, the similarity is defined as a decreasing function of the distance (or
more generally discrepancy) between two data items. For example, assuming
n = 1, and d a distance on the domain D of X , similarity between values a and
b of X can be defined as

Sim(a, b) = S(d(a, b))

where S : �+ → �+ is such that, 0 ≤ Sim(a, b) ≤ 1 for any values a, b,
Sim(a, b) = 1 whenever a = b, Sim(a, b) = 0 if d(a, b) is sufficiently large,

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 11–18, 2010.
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and some form of transitivity (or triangle inequality like) relation holds. For
example, S could be defined as

S(d) = 1− d2

M2 (1)

where M = max{d(x, y) |x, y ∈ D}. Equation (1) seems reasonable enough and
it is indeed often used. However, according to the approach taken in this paper,
this equation is suitable only in a special case of the data set D.

2 Similarity as Probability

We start by assuming that the attribute X is a random variable. In particular, in
the discrete case X takes values xi, i = 1, . . . , n with probability pi, i = 1, . . . , n.
Now, given two values of X , a, and b their similarity is determined by how likely
it is to find a pair of values of X , which are more different than a and b are.
The meaning of different is defined by some discrepancy measure (including a
distance measure) in the domain of X . Thus, in the probability based approach
similarity is evaluated as a function of relative distances, rather than distance
magnitudes. The distribution underlying the data is reflected in this definition
of the similarity and affects the final outcome. Indeed, we will see that under
different underlying distributions of otherwise identical data the similarity of
two fixed values changes. We start by defining the similarity along components.
For multidimensional data, we will compute the similarity along each dimension
and then aggregate it across dimensions.

2.1 Probability Based Similarity along One Component

Let F denote the distribution function for the random variable X . That is, for
x ∈ D, F (x) = P (X ≤ x). Further denote by d a distance on D.

Definition 1. The similarity between values a and b of the random variable X
taking into account the underlying distribution F , denoted by SF , is defined as
in equation (2) [RPR08], [RM07],

SF (a, b) = PF (d(X, Y ) ≥ d(a, b)) (2)

where X, Y is independent identically distributed (iid) according to F .

In general, in order to calculate SF (a, b) according to (2) we must first find
the probability distribution of d(X, Y ). For example, if D = �, and d(xi, xj) =
|xi − xj | the distribution of |X − Y | must be computed. The complexity of this
computation depends on the distribution function F . It is easy to see that SF is
a similarity measure on the range of values of the attribute X as the following
proposition states:

Proposition 1. For any distribution function F , SF (a, b) defined by equation
(2) satisfies the following properties:
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1. For any pair of values a, b, 0 ≤ SF (a, b) ≤ 1 ;
2. SF (a, b) = 1 if and only if a = b.
3. SF (a, b) = SF (b, a);
4. SF (a, b) ≤ min{SF (a, c), SF (c, b)} for all c ∈ [a, b];

Proof

1. Obviously, since SF is a probability, 0 ≤ SF ≤ 1.
2. Obviously, if a = b, d(a, b) = 0 and therefore SF (a, b) = P (|d(X, Y )| ≥ 0) =

1. Conversely, if SF (a, b) = P (|d(X, Y )| ≥ d(a, b)) = 1 if follows that d(a, b)
is the lowest value that d(X, Y ) can take, that is d(a, b) = 0 which means
that a = b.

3. This property is obvious.
4. To proves this transitivity (or triangle-like inequality) property, let c ∈ [a, b].

Obviously, |a− c|, |c− b| ≤ |a− b|, and hence, with d(a, b) = |a− b| we have

SF (a, b) = P (|X − Y | ≥ |a− b|) ≤ P (|X − Y | ≥ |a− c|) = SF (a, c)

and

SF (a, b) = P (|X − Y | ≥ |a− b|) ≤ P (|X − Y | ≥ |b− c|) = SF (b, c)

and the inequality follows.

2.2 The Effect of the Distribution on the Similarity

The similarity defined by equation (2) is affected by the underlying distribution
as the following examples show:

Example 1. Consider that X is distributed uniformly on [0, M ] where M ∈
{3, . . . , 5}. By normalization U [0, M ] is mapped into U [0, 1], the uniform dis-
tribution on [0, 1] with the cumulative distribution function

FU [0,1](x) =

⎧⎨⎩
0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1

Assume that d(x, y) = |x− y|. Then Equation (2) reduces

SimU [0,1](a, b) = 1− (FU [0,1](a)− FU [0,1](b))2, for a, b ∈ [0, 1] (3)

and the similarity between a, b ∈ [0, M ] becomes:

SimU [0,M ](a, b)=SimU [0,1](
a

M
,

b

M
)=1−(FU [0,1](

a

M
)−FU [0,1](

b

M
))2=1− |a− b|2

M2

(4)
where we recognize the similarity defined in equation (1).

We will show later that in fact, (1) is really justified only in the case of the
uniform distribution. Before that, let us look at other examples:



14 A. Ralescu, S. Visa, and S. Popovici

Example 2. Here X is N(μ, σ2) and Gμ,σ2 denotes its cumulative distribution
function. Then for two values a, b, of X , (2) obtains:

SimN(μ,σ2)(a, b) = P (|X − Y | ≥ |a− b|) = 1− P (|X − Y | < |a− b|)
= 1− P (−|a− b| < X − Y < |a− b|) = 1− P

(
− d

σ
√

2
< Z < d

σ
√

(2)

)
= 1−

[
Φ( d

σ
√

2
)− Φ(− d

σ
√

2
)
]

= 2
(
1− Φ( d

σ
√

2
)
) (5)

where X, Y are iid N(μ, σ2), Z = X−Y
σ
√

2
is N(0, 1), Φ is its cumulative distribution

function, and d = |a − b|. Figure 1 shows the change in SimN(μ,σ2)(a, b) when
d = |a− b| ∈ {1, . . . , 10}, and σ ∈ {1, . . . , 10}.

0
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0.2

0.4

0.6

0.8

1

σ ∈ {1, …, 10}
d=|a−b|∈ {1, …, 10}

Sim
(a,

b),
 N(

μ,σ
)

an
yμ

Fig. 1. The similarity between a, b, d = |a− b| ∈ {1, . . . , 10}, under N(μ, σ), for any μ,
σ ∈ {1, . . . , 10}

Finally, to further compare the similarity under U [0, M ] and N(μ, σ2) consider
the following example:

Example 3. In this example we consider the attributes XM and YM following
different distributions but having the same mean and variance. More precisely,
XM follows the uniform distribution U [0, M ] with M ∈ {3, 4, 5}. Its mean and
variance are respectively, E(XM ) = M

2 , and V ar(XM ) = M2

12 . Next, for each
M , we let YM be N(μ = M

2 , σ2 = M2

12 ). Consider a, b, such that d = |a − b| ∈
[0, M ]. Table 1 shows the change in the similarity of a, b under uniform and
normal distributions respectively. Figure 2 shows these changes and the difference
between similarities when the distribution change.

These examples show that the probability based similarity between two values a
and b directly depends on the value d(a, b). When the values come from the same
family of distributions, for constant d(a, b), this similarity is affected by the pa-
rameters of the distribution, and it may be different under different distributions,
even when these distributions have the same mean and variance.

2.3 Representations for Similarities

In the previous section we have seen that starting with different distributions, un-
derlying the same set of data, equation (2) leads to different similarity
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Table 1. The similarity between the values a, b, for various values |a − b| = d, when
they come from two different distributions (Uniform, and Normal) with the same mean
and variance

M 3 4 5

d = |a− b| 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

SU [0,M ](a, b)=

1− d2

M2

1 0.89 0.56 0 1 0.94 0.75 0.44 0 1 0.96 0.84 0.64 0.36 0

S
N(M

2
,M

2

12
)
(a, b) =

2(1− Φ( d
√
6

M
)

1 0.41 0.10 0.01 1 0.54 0.22 0.07 0.01 1 0.62 0.33 0.14 0.05 0.01
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Fig. 2. Similarity under different distributions with the same mean and variance (a),
(b), and the difference between these similarities (c)

values between the same pairs of data points. We now ask when a given similar-
ity measure can be represented as in equation (2). We can prove the following
representation result:

Theorem 1. Let S(a, b) be a similarity between two values a, b of the random
variable X, and let d = d(a, b) be the distance (or other discrepancy measure)
between a and b. Then S can be represented as in (2) if and only if

1. S is differentiable as a function of d, and
2.
∫∞
−∞ S′(d)dd = −1

Proof: Assume that as a decreasing function of d, S is represented by (2). The
right hand side of this equation can be rewritten as

rhs(2) = P (d(X, Y ) ≥ d(a, b)) = 1−P (d(X, Y ) < d(a, b)) = 1−Fd(X,Y )(d(a, b))

Therefore, S(d) must satisfy

S(d) = 1− Fd(X,Y )(d).

Taking the derivative, we obtain S′(d) = −F ′
d(X,Y )(d). Since by definition of the

distribution function, F ′
d(X,Y ) is a density, it means that∫ ∞

−∞
F ′

d(X,Y )(d)dd = 1, and therefore,
∫ ∞

−∞
S′(d)dd = −1.
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Let us see what follows from Proposition 3 in the case of various similarity
measures.

Example 4. Let S : �+ → [0, 1], S(d) = −md2+n with m, n > 0. Obviously S(d)
is decreasing in d. We need to determine m and n such that (1) 0 ≤ S(d) ≤ 1
and (2)

∫∞
−∞ S′(d)dd = −1.

Setting n = 1, S(d) ≤ 1 with equality if and only if d = 0, that is, S(d) = 1 if
d = 0. Next, m must be such that S(d) ≥ 0, that is 1−md2 ≥ 0, and therefore,
m ≤ 1

d2 for any value of the distance d. It follows that m ≤ 1
max d2 .

Let M = max d. Thus∫ ∞

−∞
S′(d) dd =

∫ M

0
S′(d) dd =

∫ M

0
−2md dd = −2m

d2

2
|M0 = −mM2

Setting the above equal to −1 it follows that m = 1
M2 which means that S(d) =

1 − d2

M2 . We recovered the probability based similarity between a and b when
the underlying distribution is uniform, U [0, M ]. Moreover, U [0, M ] is the only
distribution for which the intuitive measure of similarity (1) coincides with the
probability based similarity.

Example 5. Consider now that Sim(a, b) = S(d) = βe−αd, where d = d(a, b).
Again we want to determine α and β such that S is a similarity measure satis-
fying (2). First, it is obvious that since S(0) = β, we must have β = 1. Next,∫∞
0 S′(d) dd =

∫∞
0 −αe−αd dd = α/αe−αd|∞0 = −1 for any α. Thus, S(d) = e−α d

is a similarity measure satisfying (2) for any α.

3 Combining the Probability Based Similarity Across
Dimensions

A natural way to wish to combine similarities across dimensions, is to de-
fine a combination rule which would implement the intuitive rule ”Two data
points/vectors are similar across their dimensions if they are similar along each
dimension”. Assume that the data points, a, b are ndimensional, that is, ai ∈ Di,
and that Si(a, b) = Sim(ai, bi) computed as above (assuming that the distribu-
tion underlying Di is known). Further, assuming independence of the dimensions,
the above rule, can be defined as

Sim(a, b) =
n∏

i=1

Si(a, b) (6)

A direct computation of Sim(a, b) from equation (2) may be very tedious, as it
requires manipulating a multivariate distribution. We now state without proof
the following proposition.

Proposition 2. The combination in equation (6) has desirable properties as
follows:
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1. 0 ≤ Sim(a, b) ≤ 1.
2. Sim(a, b) = 1 if a = b.
3. Sim(a, b) is increasing in Si(a, b).
4. Transitivity: Sim(a, b) ≤ min{Sim(a, c), Sim(c, b)}.

However, defining Sim(a, b) by equation (6) has also drawbacks: since Si ∈ [0, 1],
Sim ≤ Si and in fact, it may become very small (for practical purposes 0) as the
number of dimensions increases. A common device to avoid this is to consider
− ln(

∏n
i=1 Si) = −∑n

i=1 ln(Si) (the log-likelihood), where the minus sign is used
to obtain a result greater than zero. Further, noting that the result does not
change qualitatively after multiplication by a constant, we obtain the quantity
X2 = −2

∑n
i=1 ln(Si), widely known as the Fisher Transform [LF71] and used

to combine independent probabilities, which, we should note, Si in fact are.
Standard statistical arguments yield that under the hypothesis that each Si is
distributed U [0, 1], the statistics X2 has a χ2 distribution with 2n degrees of
freedom. We define now the similarity of a and b across all their dimensions as
shown in equation (7) [LH04], [RPR08].

Simall,χ2(a, b) = P (χ2
2n ≥ X2) (7)

Proposition 3. Simall,χ2(a, b), defined by equation (7), when a, b are n
dimensional has the following properties:

1. 0 ≤ Simall,χ2(a, b) ≤ 1
2. Simall,χ2(a, b) = 1 if and only if a = b
3. Simall,χ2(a, b) = Simall,χ2(b, a)
4. Simall,χ2(a, b) ≤ min{Simall,χ2(a, c), Simall,χ2(c, b)} for any c in the hyper-

rectangle determined by the components ai, bj with i, j = 1, . . . , n.

Note that only Si �= 0 can be used in forming X2. The case when some Si = 0
can be treated by a ”fill in” procedure such as used in [Pop08]. Alternatively, we
can consider a subset of {Si, i = 1, . . . , n}. We consider two extreme cases, each
of which uses the fact that −2 logSi is distributed χ2(2) (or exponential with
parameter λ = 1/2.

1. X2
M = −2 logmaxi Si, which can be rewritten as mini{−2 logSi}. Thus the

overall similarity is defined as the tail probability corresponding to the nth
order statistic of the exponential distribution with λ = 1/2:

SimM,χ2(a, b) = P (χ2
2 ≥ X2

M ) (8)

2. X2
Min = −2 logmini Si, which can be rewritten as maxi{−2 logSi}. Thus

the overall similarity is defined as the tail probability corresponding to the
1st order statistic of the exponential distribution with λ = 1/2:

Simm,χ2(a, b) = P (χ2
2 ≥ X2

m) (9)
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4 Concluding Remarks and Future Work

In the above discussion we made the assumption that the data comes from a
known distribution. However, in many applications this may not be the case. In
such cases, we can adopt one of the following procedures: (1) Use the available
data to obtain an estimate of the underlying distribution. For example, one can
use algorithms such as the EM algorithm for approximating the real distribution
by mixtures of Gaussian distributions, and then proceed as indicated above, or
(2) one can compute directly a histogram distances, of the values d(xi, xj), for
values xi of the attribute X . Then, for any values pair (xi, xj) we can compute
directly their similarity from this histogram. For higher dimensions we discussed
the issues that arise when the one dimensional similarities, along individual
dimensions must be combined. Many details remain to be addressed in future
work, including but not limited to a deeper analysis of the similarities defined,
possible relation to other similarities, parametric versus nonparametric measures,
adaptability and incremental definitions, and use in concrete applications.
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Abstract. In order to help to choose similarity or distance measures
for information retrieval systems, we compare the orders these measures
induce and quantify their agreement by a degree of equivalence. We both
consider measures dedicated to binary and numerical data, carrying out
experiments both on artificial and real data sets, and identifying equiv-
alent as well as quasi-equivalent measures that can be considered as
redundant in the information retrieval framework.

Keywords: Similarity, distance, kernel, order-based comparison, equiv-
alence degree, Kendall tau.

1 Introduction

Information retrieval systems provide results in the form of document lists or-
dered by relevance, usually computed as the similarity between the document
and the user request. The choice of the similarity measure is then a central com-
ponent of the system. In such applications, the similarity values themselves are
of little importance, only the order they induce matters: two measures leading
to the same document ordering can be considered as equivalent, and it is not
useful to keep them both. Likewise, several machine learning algorithms only
depend on the similarity rankings and not on their values, such as the k-nearest
neighbor classification, hierarchical clustering with complete or single linkage, or
the monotone equivariant cluster analysis [1].

To formalize this notion, several authors introduced the definition of equivalent
comparison measures [2,3,4,5], as measures always inducing the same ranking,
and exhibited classes of equivalent measures. To refine the characterization of
non-equivalent measures, equivalence degrees were then proposed [6] to quantify
the disagreement between the rankings, considering both the number of inver-
sions and their positions, through the generalised Kendall tau [7,8].

In this paper we propose a systematic study of these equivalence and quasi-
equivalence properties both for measures dedicated to presence/absence and to
numerical data, i.e. data respectively in {0, 1}p and in Rp, taking into account the
main existing similarity, distance and scalar product measures. We compute the
equivalence degrees considering both artificial and real data, the latter consisting
of training data from the 2008 Image CLEF challenge [9].
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As opposed to previous work [6], the protocol we consider here corresponds to
the use of an information retrieval system: it consists in comparing to a request
data all n points of the data set, ranking them according to their similarity to this
request and averaging the result over several requests. This better reflects the
application case, whereas the protocol used in [6] considering all n(n−1)/2 data
pairs simultaneously and ordering them in a single ranking was more focused on
a theoretical comparison of similarity measures. Furthermore, in this paper, we
extend the comparison framework to the case of numerical data.

The paper is organised as follows: section 2 recalls the definitions of equiv-
alence and equivalence degrees for comparison measures and details the exper-
imental protocol. Sections 3 and 4 respectively analyse the results obtained in
the case of binary and numerical data.

2 Order-Based Comparison of Comparison Measures

Denoting X the data universe, similarity measures are functions S : X ×X → R
quantifying proximity or resemblance: they take as argument object couples and
give as a result numerical values that are all the higher as the objects are close.
Distance measures d : X ×X → R+ quantify dissimilarity and return values that
are all the smaller as the objects are close. Similarity and distance measures build
the set of comparison measures.

2.1 Definitions

Order-based Equivalence. Several authors [2,3,4,5] considered the issue of a
theoretical comparison between similarity measures and defined two measures
m1 and m2 as equivalent if they induce the same order when comparing objects:
more formally they are equivalent if and only if ∀x, y, z, t, it holds that m1(x, y) <
m1(z, t)⇔ m2(x, y) < m2(z, t) and m1(x, y) = m1(z, t)⇔ m2(x, y) = m2(z, t).

It has been shown [4,5] that, equivalently, m1 and m2 are equivalent if and
only if there exists a strictly increasing function f : Im(m1) → Im(m2) such
that m2 = f ◦m1, where Im(m) = {s ∈ [0, 1]/∃(x, y) ∈ X 2, s = m(x, y)}.

It is to be noted that when a distance is compared to a similarity measure, it is
necessary to take into account their opposite sense of variation: the inequalities
in the first definition must be the opposite one of the other; the function of the
second definition must be strictly decreasing.

Order-based Equivalence Degrees. In order to refine the characterization
of non-equivalent measures, it has been proposed to quantify the disagreement
between the induced rankings, by equivalence degrees [6]: two measures leading
to a few inversions can be considered as more equivalent than measures inducing
opposite rankings. Furthermore, two measures can be considered as less equiva-
lent if the inversions occur for high similarity values than if they occur for low
values: in the framework of information retrieval systems for instance, most often
only the first results are taken into account, inversions occurring at the end of
the document lists are not even noticed.
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The generalized Kendall tau Kpt,pm [7,8] compares two rankings r1 and r2
defined on a set of elements E , taking into account the number of inversions as
well as their positions: it associates each element pair (i, j) ∈ E2 with a penalty
P (i, j) and is defined as the sum of all penalties divided by the number of pairs.
Four penalty values are distinguished: if the pair (i, j) is concordant (i.e. r1 and
r2 agree on the relative position of i and j: formally denoting δl = rl(i)− rl(j)
the rank difference of i and j in ranking rl, if δ1δ2 > 0 or δ1 = δ2 = 0), then
P = 0; if the pair is discordant (i.e. δ1δ2 < 0), P = 1; if it is tied in one ranking
but not in the other one, P = pt ∈ [0, 1]. Lastly if it is present in one ranking but
missing from the other one, one distinguishes whether both i and j are missing
(P = pm ∈ [0, 1]), or only one is (the pair is then handled as a normal one).

The equivalence degree between two comparison measures m1 and m2 is thus
computed as follows: given a data set D and a request x ∈ D, all points y ∈ D are
ranked according to their similarity to x, according to m1 and m2. The rankings
rk
1 and rk

2 induced on D, restricted to their top-k elements, i.e. to the objects
with rank smaller than a given k are then compared, leading to:

dk
D(m1, m2) = 1−K0.5,1(rk

1 , rk
2 )

It equals 1 for equivalent measures and 0 for measures leading to opposite rank-
ings. We set pt = 0.5 considering that when breaking a tie, there is 1 chance out
of 2 to come up with the same order as defined by the second ranking. We set
pm = 1 considering that a missing data pair indicates a major difference and
can be penalized as a discordant pair. Lastly, for any given k, each data point
x ∈ D is successively considered as request, and the degrees are averaged over
all requests.

2.2 Considered Data Sets

We carry out experiments considering both binary and numerical data, i.e. re-
spectively the universes X = {0, 1}p and X = Rp, and for each of these two
types, artificial and real data set.

For the real data, we consider the ImageClef training corpus [9] that contains
1827 images annotated in a multi-label framework (e.g. indicating whether the
image shows buildings or vegetation). On one hand we use the image labels to
define binary data, encoding the presence or absence of each label. We suppressed
some labels in xor relation with others (such as night, related to day, or outdoor,
related to indoor) as well as subcategory labels (tree, subsumed by vegetation,
and sunny, partly cloudy and overcast subsumed by sky). As a result, the binary
data set contains p = 11 attributes. On the other hand, we encode the images
using their histograms in the HSV space (using p = 6×2×2 = 24 bins) expressed
as percentages, to get a vector description. It is to be noted that this vector
description is such that the sum of all attributes is constant.

The artificial data are generated according to the real data, so as to study the
effect on equivalence results of potential specific data configurations, e.g. variable
density or cluster structures. In the binary case, the artificial data consists of
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Table 1. Classic binary data similarity measures, normalised to [0, 1] (the definitions
may thus differ from the classic ones)

Similarity measure Notation Definition

Jaccard Jac a
a+b+c

Dice Dic 2a
2a+b+c

Kulczynski 2 Kul 1
2

(
a

a+b
+ a

a+c

)
Ochiai Och a√

a+b
√

a+c

Rogers and Tanimoto RT a+d
a+2(b+c)+d

Russel and Rao RR a
a+b+c+d

Simple Matching SM a+d
a+b+c+d

Sokal and Sneath 1 SS1 a+d

a+ 1
2 (b+c)+d

Yule Q Y uQ ad
ad+bc

Yule Y Y uY
√

ad√
ad+

√
bc

all points in a regular grid in {0, 1}11, resulting in 211 = 2048 points. In the
numerical case, the artificial data set is randomly generated following a uniform
distribution on [0, 100]24.

3 Binary Data Similarity Measures

3.1 List of Considered Measures

Formally, similarity measures for binary data are defined as functions S : {0, 1}p×
{0, 1}p → R possessing the properties of maximality (∀a, y, S(x, x) ≥ S(x, y))
and symmetry [10,11], although the latter is not always required [12].

Table 1 recalls the definition of 10 classic similarity measures, using the follow-
ing notations: for any point x ∈ {0, 1}p, X denotes the set of attributes present
in x, i.e. X = {i|xi = 1}; for any data pair (x, y), a, b, c, d denote the number
of attributes respectively common to both points a = |X ∩ Y |, present in x but
not in y or vice-versa, b = |X − Y | and c = |Y − X |, and present in neither x
nor y, d = |X̄ ∩ Ȳ |. The measures not depending on d (the first 4 in Table 1)
are called type I similarity measures, the others type II similarity measures. As
can be seen from the table, the first 2 measures follow the same general scheme
proposed by Tversky [12] Tveα,β(x, y) = a/(a + αb + βc) corresponding to the
special case where α = β = 1 or 1/2 respectively.

3.2 Analytical Equivalence Results

Several classes of equivalent similarity measures were established, exhibiting
their functional dependency [3,4,5]. For the measures defined in Table 1 they
are: (i) {Jaccard, Dice, symmetrical Tversky’s measures Tveα,α}, (ii) {Rogers
and Tanimoto, Simple Matching, Sokal and Sneath 1}, (iii) {Yule Q, Yule Y},
(iv) each of the remaining measures forming a class by itself. For the Tversky’s
measures, it was more generally shown [5] that two measures with parameters
(α, β) and (α′, β′) are equivalent if and only if α/β = α′/β′.
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Table 2. Full rank equivalence degrees for artificial binary data

Jac Kul2 Och RT RR SM SS1 YuQ YuY Random
Dic 1 0.97 0.99 0.87 0.89 0.87 0.87 0.86 0.86 0.50
Jac 0.97 0.99 0.87 0.89 0.87 0.87 0.86 0.86 0.50
Kul2 0.98 0.88 0.88 0.88 0.88 0.88 0.88 0.50
Och 0.88 0.89 0.88 0.88 0.87 0.87 0.50
RT 0.76 1 1 0.90 0.90 0.50
RR 0.76 0.76 0.77 0.77 0.50
SM 1 0.90 0.90 0.50
SS1 0.90 0.90 0.50
YuQ 1 0.50
YuY 0.50

3.3 Experimental Results

Full Rank Comparison. Table 2 contains the full rank equivalence degrees
computed in the case of the artificial data. The top graph of Figure 1 offers a
graphical representation of these values, together with their standard deviation.

As a baseline, we include a measure that generates random similarity values
so as to have a reference equivalence degree. This measure has an equivalence
degree of 0.5 with all measures: on average it ranks differently half of the pairs.

From the equivalence degrees equal to 1, three groups of equivalent measures
are numerically identified, accordingly to the theoretical results (see Section 3.2).
The non-1 degrees give information on the non equivalent measures. It can first
be noted that they all have high equivalence levels: apart from the random
measure, the minimal degree equals 0.76, which implies that the proportion of
inversions is always lower than 24%. Furthermore, it appears that some measures,
although not satisfying the definition of equivalence, have very high equivalence
degrees, above 0.97 (Jac/Och, Kul2/Och, and Jac/Kul2): the latter, that actually
equals the set of type I measures, lead to very few differences and can actually
be considered as quasi-equivalent and thus redundant.

Figure 1 illustrates these degrees with their standard deviation, representing
measure pairs in decreasing order of their degrees. To improve the readability, it
only represents a single member of each equivalence class, and does not consider
further the random measure. Taking into account the standard deviation, it can
be observed on the top graph that for full rank comparison there is no significant
difference between the degrees computed on the artificial and the real data. Thus
all comments on the measures also hold for the real data set.

This graph also highlights the difference between the two measure types, as
already mentioned: whereas type I measures appear highly equivalent one to
another, the ”intra equivalence” of type II measures is smaller. The latter do
not resemble each other more than they resemble the type I measures, which
makes their category less homogeneous and more diverse.
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Fig. 1. Equivalence degrees and their standard deviation: (top) full ranking, (middle)
top-100 (bottom) top-10. For each measure pair the left (resp. right) bar corresponds
to artificial (resp. real) data.

Top-k Comparison. The middle and bottom graphs of figure 1 show the
equivalence degrees obtained when considering, respectively, the top-100 and
top-10 ranked lists. We keep the same abscisse axis used for the full ranking, to
underline the differences occuring when the list is shortened.

It can first be observed that the degrees are globally lower than for the full
rank comparison: the minimum is 0.42 for k = 100, 0.09 for k = 10, indicating
major differences in the ranked lists provided by the measures. The equivalence
degree of the random measure with any other one (not shown on the graphs)
falls down below 0.1: the list it induces has next to nothing in common with the
other lists, and almost all data pairs get a missing penalty.

This decrease indicates that the global agreement observed when comparing
the full rankings is actually mainly due to the last ranked data. This under-
lines that a study of the inversion positions, besides their number, is necessary,
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especially when it comes to selecting non equivalent measures in an informa-
tion retrieval framework. Still, this decrease does not occur for all measures:
the intra type I pairs as well as those involving a type I measure with Rogers
Tanimoto appear to be stable from full ranking to top-100 and top-10. Due to
this behaviour, RT, although being a type II measure, is closer to the type I
category than to type II. These measures can be considered as equivalent even
for restricted rankings, and redundant for information retrieval applications.

Another difference when focusing on the top-k rankings comes from the stan-
dard deviations: it appears that their values considerably increase. Furthermore,
they globally take higher values on the real data than on the artificial ones.
This may be due to the regular distribution of the artificial data, which insures
independence with respect to the request data. On the contrary, the real data
probably follow a distribution with variable density, and the data request may
have different effects, depending on whether it belongs to a dense or to a sparse
region. Still, as for the full rank comparison, and except for RT, no significant
difference between artificial and real data can be observed.

Lastly, it appears that the Yule Q and Russel Rao measures become the most
isolated ones, far from all others: for YuQ, this can be explained by the fact that
it very often takes value 1. Indeed, this occurs for all data pairs (x, y) such that
b = 0 or c = 0. Thus, the set of data in its top-k list is much larger than those of
the other measures, leading to many missing data pairs. The RR behaviour can
be explained similarly: this measure only takes p + 1 = 12 different values in a
universe of size p. Thus its top-k lists contain the whole data set even for low k
values, again leading to many missing pairs when comparing to other measures.

4 Numerical Data Similarity Measures

4.1 List of Considered Measures

Numerical data comparison measures are based on distances or on scalar prod-
ucts [11]. The formers possess properties of positivity, symmetry, minimality,
equivalently to the binary data similarity measures. Moreover, they satisfy the
triangular inequality. The most classic distances are the Minkowski family, and
in particular the Euclidean distance, denoted de, and the Manhattan distance.

The most common dot products comprise the Euclidean dot product ke, the
gaussian kernel kgσ = exp(−de(x, y)2/(2σ2)) and the polynomial kernel kpγ,l =
(〈x, y〉+ l)γ . With the exception of the gaussian kernel, they do not correspond to
classic similarity measures because they do not possess the maximality property,
as e.g. k(x, 2x) > k(x, x). To obtain it, it is necessary to normalize them, defining
k̃(x, y) = k(x, y)/

√
k(x, x)k(y, y). The similarity then only depends on the angle

between the two vectors.

4.2 Analytical Results

Using the functional definition of equivalence, two equivalence classes can be
distinguished. The first one obviously groups the Gaussian kernels with the Eu-
clidean distance: kgσ = f ◦ d with f : x �→ exp(−x2/(2σ2)) that is decreasing.
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Table 3. Full rank equivalence degrees for artificial numerical data

L2 EDP NEDP GK50 GK100 PK3 NPK3 Random
L1 0.90 0.63 0.84 0.90 0.90 0.63 0.89 0.50
L2 0.63 0.87 1 1 0.63 0.97 0.50
EDP 0.76 0.63 0.63 1 0.66 0.50
NEDP 0.87 0.87 0.76 0.90 0.50
GK50 1 0.63 0.97 0.50
GK100 0.63 0.97 0.50
PK3 0.66 0.50
NPK3 0.50

All Gaussian kernels are thus equivalent: in particular, this implies that all σ
values always lead to the same ranking.

The second class, grouping the Euclidean dot product and the polynomial
kernels, is defined down to a data translation: for even values of γ, the function
g(x) = (x + l)γ , such that kpγ,l = g ◦ ke, is increasing only under the condition
that x ≥ −l. Now denoting α the value such that ∀x∀ixi+α ≥ 0 and e the vector
such that ∀i ei = α, after applying the translation by e, one has ∀x∀i xi ≥ 0
and thus 〈x, y〉 =∑i xiyi ≥ 0 > −l. It can be underlined that in a classification
framework the l value does not matter as it scales the feature space attributes
and is counterbalanced by the weighting coefficient learned by the classifier.

In the case where the data are such that ‖x‖ = 1 for all x, these two classes
are merged: indeed de = h◦ke with h(x) =

√
2(1− x) that is strictly decreasing.

4.3 Experimental Results

We compare the most common measures namely the Manhattan (denoted L1)
and Euclidean (L2) distances, the Euclidean dot product (EDP) and its nor-
malised form (EDPN), the Gaussian kernel for σ = 50 (GK50) et σ = 100
(GK100), the polynomial kernel of degree 3 for l = 2000 (PK3) and its normal-
isation (NPK3). The σ and l values for the GK and PK were chosen according
to the data properties. We also add a baseline random measure.

Full Rank Comparison. Table 3 contains the full rank equivalence degrees,
also illustrated, together with their standard deviation, on the top graph of
figure 2.

As in the binary data case, and for the same reason, the random measure
has an equivalence degree of 0.5 with all measures. The degrees equaling 1 are
concordant with the theoretical results and indicate the two expected equiva-
lence classes. Again, all measures have a high agreement level, as the maximal
proportion of inversions is only 37%, obtained when comparing the Gaussian
and polynomial kernels. The observed high degree between L2 and NPK3 does
not correspond to a theoretically known result. It can be explained by the level
lines of these measures (figure omitted for space constraints): even if they locally
differ, they have the same global form and the orders they induce globally agree.
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Fig. 2. Equivalence degrees and their standard deviation, for artificial and real numer-
ical data

The top graph of figure 2 highlights a difference between the artificial and
real data sets that leads to a slightly different ordering of the measure pairs
according to their equivalence degrees. This can be explained by the particularity
of the real data: as they correspond to repartition histograms, their L1 norm is
constant. This specific structure of the data has consequences on the equivalence
degrees.

Top-k Comparison. When focusing on top-k rankings, it can be observed that
the difference between the two data types becomes less marked when k decreases.
The standard deviations increase, underlying the influence of the request data
especially on the beginning of the lists. Besides, although the equivalence degrees
significantly decrease, the order of the measure pairs in terms of equivalence
degree is not modified. Three equivalence levels can be distinguished in particular
for k = 10. The highest one is reached by the pair L2/NPK3, meaning that their
high agreement holds for the highest similarity values. The lowest values are
reached by EDP and any other measures: EDP appears as an isolated measure
which has very less in common with the rest of the measures.
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5 Conclusion

We compared similarity measures for two different data types, quantifying their
proximity and possible redundancy when looking at the ranking they induce,
and considering in particular restricted rankings associated to top-k lists. This
study, relying on the definition of equivalence degree based on the generalised
Kendall tau, takes place in the framework of information retrieval systems. Car-
rying out experiments both on artificial and real data, we showed some stability
property regarding the behaviors of comparison measures on equivalence and
quasi-equivalence results, but also some differences confirming that the equiva-
lence degrees depends on the data sets but less than one could expect.

In future works, we aim to establish relations between data set structure and
quasi-equivalence classes of measures of similarity. Lerman [2] considered this
point of view in the case of binary data, showing that if all data have the same
number of present attributes, i.e. if ∃q/∀x ∈ D |X | = q, then all similarity
measures are equivalent on D. We would like to extent this study to numerical
data and to the quasi-equivalence property.
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Abstract. Comparing partitions is an important issue in classification
and clustering when comparing results from different methods, param-
eters, or initializations. A well–established method for comparing par-
titions is the Rand index but this index is suitable for crisp partitions
only. Recently, the Hüllermeier–Rifqi index was introduced which is a
generalization of the Rand index to fuzzy partitions. In this paper we
introduce a new approach to comparing partitions based on the similari-
ties of their clusters in the sense of set similarity. All three indices, Rand,
Hüllermeier–Rifqi, and subset similarity, are reflexive, invariant against
row permutations, and invariant against additional empty subsets. The
subset similarity index is not a generalization of the Rand index, but
produces similar values. Subset similarity yields more intuitive similari-
ties than Hüllermeier–Rifqi when comparing crisp and fuzzy partitions,
and yields smoother nonlinear transitions. Finally, the subset similarity
index has a lower computational complexity than the Hüllermeier–Rifqi
index for large numbers of objects.

1 Introduction

A partition of a set X = {x1, . . . , xn}, n > 0, is defined as a tuple of mutually
disjoint subsets C1, . . . , Cc ⊆ X , c > 0, Ci ∩ Cj = ∅, i, j = 1, . . . , c, so that
C1∪C2∪ . . .∪Cc = X . Obviously, for n = 1, there is only one partition C1 = X ,
and for n = 2, there are two partitions C1 = X and C1 = {x1}, C2 = {x2}. For
arbitrary n > 0, the number of partitions is given by the Bell number Bn which
can be recursively computed as

Bn+1 =
n∑

k=0

(
n
k

)
Bk, B1 = 1 (1)

For convenience, we represent a c–tuple of partition sets using a partition matrix

U =

⎛⎜⎝u11 · · · u1n

...
. . .

...
uc1 · · · ucn

⎞⎟⎠ (2)

uik ∈ {0, 1}, i = 1, . . . , c, k = 1, . . . , n, so uik = 1 if xk ∈ Ci and uik = 0 if xk �∈
Ci. More generally, we allow that the elements of X may be partially assigned
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to several subsets, which become fuzzy subsets then [1], and we obtain fuzzy
partitions [2] with uik ∈ [0, 1], i = 1, . . . , c, k = 1, . . . , n, and the normalization
condition

c∑
i=1

uik = 1 (3)

for all k = 1, . . . , n. Sometimes fuzzy partitions are required to have only non–
empty subsets

n∑
k=1

uik > 0 (4)

but we do not use this restriction in this paper.
Partitions may be learned from data by supervised or unsupervised learning.

The supervised variant is called classification [3], the unsupervised variant is
called clustering [4]. Classification uses a set Y of additional objects that are
previously assigned to subsets where each subset represents a class. Based on
similarities between the objects in X and the classified objects in the training
set Y classification assigns the objects in X to the respective subsets (classes).
Clustering uses the unclassified objects in X and determines a partition in a way
that similar objects are assigned to the same subset, and dissimilar objects are
assigned to different subsets. So, both classification and clustering are based on
object relations (similarities or dissimilarities), and both produce partitions.

Two important problems in classification and clustering are: first, to determine
the quality of the resulting partitions, and second, to compare the partitions
produced by different methods. To determine the quality of classifiers we (e.g.
randomly) divide the set Y into a training set Yt and a validation set Yv, ignore
the class labels in Yv, classify the objects in Yv according to the relations with Yt,
and then compare the resulting class labels of Yv with the originally given labels.
The correspondence of the class labels is then considered as the quality of the
obtained partition with respect to its classification perfomance. To determine
the quality of (fuzzy) clusterings we use so–called cluster validity measures [5,6]
which are functions f(U) ∈ R that quantify how clearly the objects are assigned
to the clusters, e.g. using the partition coefficient

PC(U) =
1
n

n∑
k=1

c∑
i=1

u2
ik (5)

Comparing partitions produced by different methods, parameters, or initializa-
tions (obtained by classification, clustering, or in other ways) requires functions
f(U1, U2, . . . , Uj) ∈ R, j > 1. Here, we restrict to functions comparing pairs of
partitions f(U1, U2) or f(U, Ũ). A popular measure for comparing crisp parti-
tions is the Rand index [7]. Extensions of the Rand index to fuzzy partitions were
proposed very recently by Campello [8] and by Hüllermeier and Rifqi [9]. In this
paper we present a new approach to comparing both crisp and fuzzy partitions.
The underlying idea is that a pair of partitions should be considered similar if
their clusters are similar. We compute the similarity of the clusters using subset
similarity measures, hence we call this index subset similarity index.
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This paper is structured as follows: In sections 2 and 3 we will quickly summa-
rize the Rand and Hüllermeier–Rifqi indices. Since Campello’s index has some
indesirable properties, for example missing reflexivity, f(U, U) �= 1, we will not
consider this index here. In section 4 we will present our new approach for
comparing partitions using subset similarities. In section 5 we will compare the
subset similarity index with the Rand and Hüllermeier–Rifqi indices based on
some illustrative experiments. In section 6 we will give our conclusions.

2 The Rand Index

The Rand index [7] measures the similarity of a c × n partition U and a c̃ × n
partition Ũ (notice that both partitions describe the same number of objects n,
but may have a different number of subsets, c and c̃) by considering all pairs
of object indices (j, k), j = 1, . . . , n, k = i + 1, . . . , n, and distinguishing the
following four cases:

1. Both objects belong to the same subset in U and the same subset in Ũ .

∀i = 1, . . . , c uij = uik (6)
∀i = 1, . . . , c̃ ũij = ũik (7)

The number of such cases is denoted as n1.
2. Both objects belong to the same subset in U and different subsets in Ũ .

∀i = 1, . . . , c uij = uik (8)
∃i = 1, . . . , c̃ ũij �= ũik (9)

The number of such cases is denoted as n2.
3. Both objects belong to different subsets in U and the same subset in Ũ .

∃i = 1, . . . , c uij �= uik (10)
∀i = 1, . . . , c̃ ũij = ũik (11)

The number of such cases is denoted as n3.
4. Both objects belong to different subsets in U and different subsets in Ũ .

∃i = 1, . . . , c uij �= uik (12)
∃i = 1, . . . , c̃ ũij �= ũik (13)

The number of such cases is denoted as n4.

Based on these case counts the Rand index is defined as

R(U, Ũ) =
n1 + n4

n1 + n2 + n3 + n4
(14)
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3 The Hüllermeier–Rifqi Index

The Hüllermeier–Rifqi index [9] is an extension of the Rand index to fuzzy parti-
tions. Just as the Rand index it computes the similarity between the partitions U
and Ũ from the subset assignments of object j (u1j , . . . , ucj), (ũ1j , . . . , ũc̃j), and
the subset assignments of object k (u1k, . . . , uck), (ũ1k, . . . , ũc̃k). If both objects
belong to the same subset in U , as in case 1 (6) and 2 (8), then uij − uik = 0
for all i = 1, . . . , c and therefore

Ejk =
1
2

c∑
i=1

|uij − uik| = 0 (15)

If both objects belong to the same subset in Ũ , as in case 1 (7) and 3 (11), then
ũij − ũik = 0 for all i = 1, . . . , c and therefore

Ẽjk =
1
2

c̃∑
i=1

|ũij − ũik| = 0 (16)

If both objects belong to different subsets in U , as in case 3 (10) and 4 (10),
then uij−uik = 1 if object j is in subset i, uij−uik = −1 if object k is in subset
i, and uij − uik = 0 otherwise, so

Ejk =
1
2

c∑
i=1

|uij − uik| = 1
2
· 2 = 1 (17)

If both objects belong to different subsets in Ũ , as in case 2 (9) and 4 (13), then
ũij − ũik = 1 if object j is in subset i, ũij − ũik = −1 if object k is in subset i,
and ũij − ũik = 0 otherwise, so

Ẽjk =
1
2

c̃∑
i=1

|ũij − ũik| = 1
2
· 2 = 1 (18)

Now the similarity between U and Ũ is low if Ejk = 0, Ẽjk = 1 (case 2) or
Ejk = 1, Ẽjk = 0 (case 3), i.e. if |Ejk − Ẽjk| = 1. And the similarity between U

and Ũ is high if both Ejk = Ẽjk = 0 (case 1) or both Ejk = Ẽjk = 1 (case 4),
i.e. if |Ejk − Ẽjk| = 0. Averaging and negating this expression finally yields the
equation for the Hüllermeier–Rifqi index.

H(U, Ũ) = 1− 1
n(n− 1)

n∑
j=1

n∑
k=j+1

|Ejk − Ẽjk| (19)

= 1− 1
2n(n− 1)

n∑
j=1

n∑
k=j+1

∣∣∣∣ c∑
i=1

|uij − uik| −
c̃∑

i=1

|ũij − ũik|
∣∣∣∣ (20)

The computational complexity of the Hüllermeier–Rifqi index is o((c + c̃) · n2).
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4 Comparing Partitions by Subset Similarities

A pair of partition matrices U and Ũ divides a set X into the subsets C1, . . . , Cc

and C̃1, . . . , C̃c̃. The set similarity of two subsets Ci and C̃j , i ∈ {1, . . . , c},
j ∈ {1, . . . , c̃} is defined as

sij =
‖Ci ∩ C̃j‖
‖Ci ∪ C̃j‖

(21)

If Ci and C̃j are fuzzy sets, then the set similarity is defined as

sij =

n∑
k=1

T (uik, ũjk)

n∑
k=1

C(uik, ũjk)
(22)

where T is a suitable T norm and C is a suitable T conorm [10]. In this paper,
we choose T = min and C = max, which leads to

sij =

n∑
k=1

min(uik, ũjk)

n∑
k=1

max(uik, ũjk)
(23)

i = 1, . . . , c, j = 1, . . . , c̃. The denominator becomes zero if uik = ũjk = 0 for all
k = 1, . . . , n. In this special case, also the nominator becomes zero, and so we
define sij = 1.

The partition subset operator can be defined as follows: U ⊆ Ũ if and only if(
(C1 = C̃1) ∨ (C1 = C̃2) . . . ∨ (C1 = C̃c̃)

)
∧ ( (C2 = C̃1) ∨ (C2 = C̃2) . . . ∨ (C2 = C̃c̃)

)
...

...
∧ ( (Cc = C̃1) ∨ (Cc = C̃2) . . . ∨ (Cc = C̃c̃)

) (24)

The partition superset operator can be defined accordingly: U ⊇ Ũ if and only
if (

(C1 = C̃1) ∨ (C2 = C̃1) . . . ∨ (Cc = C̃1)
)

∧ ((C1 = C̃2) ∨ (C2 = C̃2) . . . ∨ (Cc = C̃2)
)

...
...

∧ ((C1 = C̃c̃) ∨ (C2 = C̃c̃) . . . ∨ (Cc = C̃c̃)
) (25)

We define that U and Ũ are similar if and only if U ⊆ Ũ or U ⊇ Ũ . For fuzzy
partitions, we define the subset measure

S⊆(U, Ũ) = T
(

C(s11, s12, . . . , s1c̃),
C(s21, s22, . . . , s2c̃),

...
C(sc1, sc2, . . . , scc̃)

) (26)
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and the superset measure

S⊇(U, Ũ) = T
(

C(s11, s21, . . . , sc1),
C(s12, s22, . . . , sc2),

...
C(s1c̃, s2c̃, . . . , scc̃)

) (27)

The similarity measure can then be computed using the subset and superset
measures as

S(U, Ũ) = C
(
S⊆(U, Ũ), S⊇(U, Ũ)

)
(28)

For T = min and C = max, this can finally be conveniently written as

S = max
(

min
i=1,...,c

max
j=1,...,c̃

sij , min
j=1,...,c̃

max
i=1,...,c

sij

)
(29)

The computational complexity of the subset similarity index S is o(c · c̃ ·n) which
is much lower than the complexity of Hüllermeier–Rifqi index for large numbers
of objects n� c, n� c̃.

A similar approach has recently been proposed by Beringer and Hüllermeier in
chapter 5.2 of [11]. However, Beringer and Hüllermeier suggest to use a T norm
T instead of a T conorm C in (28), which yields to much more conservative
similarities.

5 Experiments

In this section we present some theoretical considerations and some numerical
experiments to compare the properties of the Rand index R, Hüllermeier–Rifqi
index H , and the subset similarity index S.

5.1 Reflexivity

As pointed out earlier, we do not consider Campello’s index [8] here, because
it is not reflexive. For the Rand index, two identical matrices will always yield
case 1 or 4 and never case 2 or 3, so n1 +n4 = n(n−1)

2 , n2 = n3 = 0, which leads
to R = (n1 + n4)/(n1 + n4) = 1. For the Hüllermeier–Rifqi index, U = Ũ leads
to Ejk = Ẽjk, j, k = 1, . . . , n, and so H = 1 − 0 = 1. For the subset similarity
index, U = Ũ leads to all ones on the main diagnoal of s, i.e. sii = 1 for all
i = 1, . . . , c, so mini=1,...,c maxj=1,...,c sij = 1, and so S = max(1, 1) = 1. So all
three considered indices are reflexive.

5.2 Row Permutations

Consider for simplicity an arbitrary matrix U and a matrix Ũ that is equal to U
except that two arbitrary rows are exchanged. For the Rand index, exchanging
rows will not change the counts n1, n2, n3, and n4, so we obtain the same result
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as with identical matrices, R = (n1 + n4)/(n1 + n4) = 1. For the Hüllermeier–
Rifqi index, exchanging rows will not have any effect either, because for Ejk

and Ẽjk we always compute sums over i = 1, . . . , c which are invariant, so we
obtain the same result as with identical matrices, H = 1− 0 = 1. For the subset
similarity index, exchanging rows in U will change the corresponding rows and
columns in s, but there will still be at least one entry of 1 in each row and
column, so again mini=1,...,c maxj=1,...,c sij = 1, and so S = max(1, 1) = 1. So
all three considered indices are invariant against row permutations.

5.3 Additional Empty Subsets

We consider adding an empty subset to a partition, i.e. adding a row of zeros to
a partition matrix. For the Rand index, the subset assignments stay the same,
and so will the counts n1, n2, n3, and n4. Therefore, we obtain the same result
as with identical matrices, R = (n1 + n4)/(n1 + n4) = 1. For the Hüllermeier–
Rifqi index, adding zero entries to ũij and ũik will keep Ẽjk = Ejk, so we obtain
the same result as with identical matrices, H = 1 − 0 = 1. For the subset
similarity index, an additional subset will add a zero row and a zero column to
s which will not change the row and column maxima (except the last), so again
mini=1,...,c+1 maxj=1,...,c+1 sij = 1, and so S = max(1, 1) = 1. Notice that up to
here, all indices have shown the same behavior.

5.4 Crisp Binary Partitions

Every crisp binary (i.e. c = 2) partition can be represented by a binary number
forming the fist row of the partition. For example, the number 2910 = 111012
refers to the partition

U =
(

1 1 1 0 1
0 0 0 1 0

)
(30)

In this way, for example, all crisp binary 2 × 5 partitions can be represented
by the numbers {0, . . . , 25 − 1} = {0, . . . , 31}. The similarities of all pairs of
such crisp binary 2 × 5 partitions form a 32 × 32 matrix. Fig. 1 shows the
grey value representations of these matrices for the Rand and Hüllermeier–Rifqi
indices (left) and for the subset similarity index (right). Since we consider here
crisp partitions only, the Rand and Hüllermeier–Rifqi indices always yield the
same results. Light boxes indicate high similarities, and dark boxes indicate
low similarities At the main diagonal and the reverse main diagonal, i.e. for
equal or swapped partitions, all three indices yield maximum similarities, which
corresponds to the findings of sections 5.1 and 5.2. In the other cases the subset
similarity index yields values that are similar (and in some cases even equal) to
the Rand and Hüllermeier–Rifqi indices. Unlike the Hüllermeier–Rifqi index, the
subset similarity index is not a generalization of the Rand index, but it yields
similar values.

In the following experiments we will focus on fuzzy partitions, so we will not
consider the Rand index any more which is only suitable for crisp partitions.
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Fig. 1. Similarities between all crisp binary 2 × 5 partitions. Left: Rand and
Hüllermeier–Rifqi indices. Right: Subset similarity index.

5.5 Similarity of 2 × 2 Crisp and Fuzzy Partitions

Consider the 2× 2 crisp unit partition

U =
(

1 0
0 1

)
(31)

and its similarity with a 2× 2 fuzzy partition

Ũ =
(

1− x y
x 1− y

)
(32)

For x, y ∈ {0, 0.1, . . . , 0.5} we compute the Hüllermeier–Rifqi and the subset
similarity indices. Fig. 2 shows the corresponding grey value representations (x
and y on the horizontal axes, and the similarities on the vertical axis). Again,
light boxes indicate high similarities, and dark boxes indicate low similarities.
The points at the left corner represent x = 0, y = 0, i.e. the crisp unit partition.
In accordance to section 5.1 both indices yield similarities of one. The points at
the right corner represent x = 0.5, y = 0.5, i.e. the most fuzzy partition

Ũ =
(

0.5 0.5
0.5 0.5

)
(33)

The Hüllermeier–Rifqi index interprets the crisp unit partition and this fuzzy
partition as most dissimilar (similarity zero) which does not match our intu-
itive expectation. The subset similarity index, in contrast, computes a non-zero
similarity of 1/3 which we consider more intuitive. Inbetween the extremes, the
Hüllermeier–Rifqi index is linear in x and y, whereas the subset similarity index
has varying slopes allowing smoother transitions.
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Fig. 2. Similarities between 2 × 2 Crisp and Fuzzy Partitions. Left: Hüllermeier–Rifqi
index. Right: Subset similarity index.

6 Conclusions

We have introduced a new approach to comparing pairs of partitions. The main
idea is that partitions should be considered similar if their clusters are simi-
lar. We quantify the similarity of the clusters using subset similarity measures,
hence we called our new measure subset similarity index. Comparisons of this
subset similarity index with the Rand and the Hüllermeier–Rifqi indices show
that all three indices are reflexive, invariant against row permutations, and in-
variant against additional empty subsets. Unlike the Hüllermeier–Rifqi index,
the subset similarity index is not a generalization of the Rand index, but pro-
duces similar values. The Hüllermeier–Rifqi index considers crisp and most fuzzy
partitions as completely dissimilar which contradicts our intuitive expectation,
while the subset similarity index produces non–zero similarities in this case. The
Hüllermeier–Rifqi index is linear with respect to the memberships, while the
subset similarity index has varying slopes which allows smoother transitions.
The computational complexity of the Hüllermeier–Rifqi index is o((c + c̃) · n2),
while the subset similarity index has a computational complexity of o(c · c̃ · n),
so the subset similarity index is much faster for large numbers of objects n� c,
n� c̃.
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Abstract. Fuzzy equality relations or indistinguishability operators
generalize the concepts of crisp equality and equivalence relations in fuzzy
systems where inaccuracy and uncertainty is dealt with. They generate
fuzzy granularity and are an essential tool in Computing with Words
(CWW). Traditionally, the degree of similarity between two objects is a
number between 0 and 1, but in many occasions this assignment cannot
be done in such a precise way and the use of indistinguishability opera-
tors valued on a finite set of linguistic labels such as small, very much,...
would be advisable. Recent advances in the study of finitely valued t-
norms allow us to combine this kind of linguistic labels and makes the
development of a theory of finitely valued indistinguishability operators
and their application to real problems possible.

Keywords: Representation Theorem, Similarity, T -indistinguishability
Operator, finitely valued t-norm.

1 Introduction

1.1 Finitely-Valued t-Norms

In Fuzzy Logic, the logical conjunction is modeled by a t-norm. In this way
infinitely valued logics are obtained in which the truth degree of a proposition
is a number between 0 and 1. In fuzzy systems, t-norms are also used to model
the intersection of fuzzy subsets that are also valued in the unit interval.

In many cases, assigning an exact and precise value between 0 and 1 is not
realistic since due to linguistic vagueness or lack of precision in the data this
assignment is necessarily imprecise. It would be more reasonable in these cases
to consider only a totally ordered finite chain (that can be identified with a finite
subset of [0,1]) to valuate the fuzzy concepts.

So the study of operators defined on a finite chain L is of great interest,
especially because reasoning is usually done by using linguistic terms or labels
that are totally ordered. For instance, the size of an object can be granularized
in very small, small, average, big, very big. If there is defined an operator T
on this set, then we will be able to combine these labels in order to obtain the

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 39–48, 2010.
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combined one, e.g. T (average, very big). In this way of tackling the problem of
combining labels, the calculations are very simple since there is no need neither
to assign numerical values to them, nor to identify them with an interval or with
a fuzzy subset.

Another case when there is useful to use finite chains is when the valued are
discrete by nature or by discretization. On a survey of satisfaction of the clients
with respect to some service, they may be asked to evaluate it with a natural
number between 0 and 5 or with labels going from not at all satisfied to very
satisfied.

In this line, different authors have translated t-norms and t-conorms to finite
chains ([5], [6]) obtaining interesting theoretical results.

1.2 Finitely Valued Indistinguishability Operators

In almost all situations the human being categorizes or granularizes the prop-
erties or features of the objects in a finite set L of linguistic labels that can be
linearly ordered. In these cases, these properties are evaluated on L in a natu-
ral way and consequently the fuzzy subsets of the universe of discourse are also
valued on L.

In the same way, the degree of similarity, equivalence or indistinguishability
between two objects is not a numerical value between 0 and 1, but an element
of L that can be interpreted as rather, very much,

Indistinguishability operators valued in these finite chains seem to be a very
interesting tool that will allow us to study the similarity between objects taking
into account the granularity generated by L and will give an interpretation to
the calculation on this chain.

The degree of similarity or indistinguishability E(x, y) between two objects x
and y will be bounded by the corresponding degrees to E(x, z) and E(y, z).

1.3 Organization of the Paper

After this introductory section a section of preliminary concepts of finitely val-
ued t-norms follows. Section 3 is devoted to some properties of finitely valued
indistinguishability operators. In particular, the Representation Theorem [9] is
generalized to these operators. Section 4 is devoted to additive generators of
finitely valued t-norms. Most of them have additive generators and a new pseudo
inverse is defined in order to be able to generate their residuation. The results
are applied in section 5 to find the dimension and a basis of finitely valued
indistinguishability operators. A section of Concluding Remarks ends the work.

2 Preliminaries

This section contains some definitions and results on finitely valued t-norms that
will be needed later on the paper.

Let L be a finite totally ordered set with minimum e and maximum u.
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Definition 1. A binary operation T : L× L→ L is a t-norm if and only if for
all x, y, z ∈ L

1. T (x, y) = T (y, x)
2. T (T (x, y), z) = T (x, T (y, z))
3. T (x, y) ≤ T (x, z) whenever y ≤ z

4. T (x, u) = x

The set of t-norms on a finite chain depends only on its cardinality. For this
reason we will only consider the chains L = {0, 1, ..., n} and L′ = {0 = 0

n , 1
n , 2

n , ...,
n
n = 1}.

Example 1

1. The Minimum t-norm TM on L is defined by TM (i, j) = min{i, j}).
2. The �Lukasiewicz t-norm T�L on L is defined by T�L(i, j) = max(i + j − n, 0).

Smooth t-norms on finite chains are the equivalent of continuous ones defined
on [0,1].

Definition 2. A map f : L→ L is smooth if and only if

0 ≤ f(i + 1)− f(i) ≤ 1 for all i ∈ L, i < n.

Definition 3. A map F : L × L→ L is smooth if and only if it is smooth with
respect to both variables.

Definition 4. A t-norm T on L is divisible if and only if for all i, j ∈ L with
i ≤ j there exists k ∈ L such that

i = T (j, k).

Smoothness and divisibility are equivalent concepts for t-norms.

Proposition 1. A t-norm on L is smooth if and only if it is divisible.

The next proposition characterizes all smooth t-norms on L as particular ordinal
sums of copies of the t-norm of �Lukasiewicz.

Proposition 2. A t-norm T on L is smooth if and only if there exists J = {0 =
i0 < i1 < ... < im = n} ⊆ L such that

T (i, j) =
{

max(ik, i + j − ik) if i, j ∈ [ik, ik+1] for some ik ∈ J
min{i, j} otherwise.

T is said to be an ordinal sum and can be represented by T =< 0 = i0, i1, ...im =
n >.
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3 Finitely Valued Indistinguishability Operators

Indistinguishability operators fuzzify the concepts of crisp equality and crisp
equivalence relation. They have been studied under different settings, mainly
valued on [0,1] and with respect to a left continuous t-norm, though some gen-
eralizations to more general structures like GL-monoids have been carried on.

A very important result is the Representation Theorem that roughly speaking
says that every fuzzy set μ on a universe X generates an indistinguishability
operator Eμ and that every indistinguishability operator on X can be obtained
as the infimum of a family of indistinguishability operators generated in this way.
The theorem was first proved by Ovchinnikov for the product t-norm. Then it
was generalized to continuous t-norms by Valverde and in [2] it is noticed that
it is also true for GL-monoids. Since finitely valued t-norms are such monoids,
the Representation Theorem also applies to them.

This section adapts the basic definitions on indistinguishability operators to
the finite valued case. In particular, the Representation Theorem and the idea
of extensionality are recalled.

Also the concepts of dimension and basis of an indistinguishability operator
are considered and the characterization of the set of extensional fuzzy subsets
with respect to an indistinguishability operator is adapted to the context of
finitely valued t-norms.

Definition 5. Let T be a t-norm on L. Its residuation −→T is defined by

−→
T (i|j) = max{k ∈ L | T (i, k) ≤ j}.

Example 2

1. If T�L is the �Lukasiewicz t-norm on L, then
→
T�L (i|j) = max(0, n− i + j) for

all i, j ∈ L.

2. If TM is the Minimum t-norm on L, then
→

TM (i|j) ={
min{i, j} if i > j
n otherwise.

Definition 6. The biresiduation ET associated to a given t-norm T on L is
defined by

ET (i, j) = T (−→T (i|j),−→T (j|i)).
Example 3

1. If T�L is the �Lukasiewicz t-norm on L, then ET�L(i, j) = n − |i − j| for all
i, j ∈ L.

2. If TM is the Minimum t-norm, then ETM (i, j) ={
min{i, j} if i �= j
n otherwise.
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Proposition 3. Let T =< 0 = i0, i1, ...im = n > be a smooth t-norm on L. Its
residuation −→T is

−→
T (i|j) =

⎧⎨⎩
n if i ≤ j
max(0, ik+1 − i + j) if i, j ∈ [ik, ik+1] for some ik ∈ J and i > j
j otherwise.

Proposition 4. Let T =< 0 = i0, i1, ...im = n > be a smooth t-norm on L. Its
biresiduation ET is

ET (i, j) =

⎧⎨⎩
n if i = j
ik+1 − |i + j| if i, j ∈ [ik, ik+1] for some ik ∈ J
min{i, j} otherwise.

ET is a special kind of T -indistinguishability operator.

Definition 7. Given a t-norm T on L, a T -indistinguishability operator E on
a set X is a fuzzy relation E : X ×X → L satisfying for all x, y, z ∈ X

1. E(x, x) = n (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Proposition 5. The biresiduation ET of a t-norm T on L is a T -indistinguish-
ability operator on L.

Theorem 1. Representation Theorem for T -indistinguishability operators. Let
R be a fuzzy relation on a set X and T a t-norm on L. R is a T -indistinguish-
ability operator if and only if there exists a family (μi)i∈I of L-fuzzy subsets of
X (i.e.: μi : X → L for all x ∈ X) such that for all x, y ∈ X

R(x, y) = inf
i∈I

ET (μi(x), μi(y)).

(μi)i∈I is called a generating family of R and a fuzzy subset that belong to a
generating family of R is called a generator of R.

Extensional fuzzy subsets with respect to a T -indistinguishability operator E
play a central role since they are the only observable sets taking E into account.
In the crisp case, when E is a crisp equivalence relation on a universe X , the
only crisp subsets from which something can be said if E is considered are only
the union of equivalence classes of E (and intersections if we want to add the
empty set). The equivalence classes give the granularity in X . If E is a fuzzy
relation, extensional sets play this role and they show the granularity generated
by E.

Definition 8. Let T be a t-norm on L, E be a T -indistinguishability operator
on a set X and μ a fuzzy subset of X. μ is extensional with respect to E if and
only if for all x, y ∈ X

T (E(x, y), μ(x)) ≤ μ(y).

HE will denote the set of all extensional fuzzy subsets with respect to E.
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It can be proved that a fuzzy subset is extensional with respect to a T -
indistinguishability operator E if and only if it is a generator of E.

The next result is then straightforward.

Proposition 6. Let T be a t-norm on L, E be a T -indistinguishability operator
on a set X and μ a fuzzy subset of X. μ is extensional with respect to E if and
only if Eμ ≥ E.

In [2] there is a nice characterization of HE .

Proposition 7. Let F (X) be the set of all fuzzy subsets of X and T a t-norm
on L. Given a set H of fuzzy subsets of X, there exists a T -indistinguishability
operator E on X such that H = HE if and only if for all fuzzy subsets μ of H
and for all α ∈ [0, 1],

1. T (α, μ) ∈ H

2. −→T (α|μ) ∈ H

3. −→T (μ|α) ∈ H
4. (H,≤) is a complete sub lattice of (F (X),≤).

Going back th the Representation theorem 1, different families of fuzzy subsets
can generate the same T -indistinguishability operator E. This gives great interest
to the theorem, since if we interpret the elements of the family as degrees of
matching between the elements of X and a set of prototypes, we can use different
features, giving different interpretations to E.

Among the generating families of a relation, the ones with low cardinality are
of special interest, since they have an easy semantical interpretation and also
because the information contained in its matrix can be packed in a few fuzzy
subsets.

Definition 9. Let T be a t-norm on L and E a T -indistinguishability operator
on X. The dimension of E is the minimum of the cardinalities of the generating
families of E in the sense of the Representation Theorem. A generating family
with this cardinality is called a basis of E.

A geometric approach and an algorithm for calculating the dimension and a
basis of T -indistinguishability operators with T continuous Archimedean or the
Minimum t-norm in [0,1] can be found in [1].

In Section 5 an algorithm to find dimensions and basis of T -indistinguishabil-
ity operators for an additively generated t-norm T on L will be provided.

4 Additive Generators

Contrarily to the case of t-norms defined on [0,1], many of the t-norms on a
finite chain L can be additively generated. In particular, it can be proved that
all smooth t-norms on L - including the minimum t-norm and all ordinal sums
- have an additive generator. This will provide us of a technique to find the
dimension and a basis of a finitely valued T -indistinguishability operator E as
well as its set HE of generators or extensional sets.
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Definition 10. Let f : L→ [0,∞) be a strictly decreasing function with f(n) = 0.

– The pseudo inverse f
(−1)
+ : [0,∞)→ L is defined by

f
(−1)
+ (t) = min{i ∈ L; f(i) ≤ t} = min f−1([0, t])

– The pseudo inverse f
(−1)
− : (−∞,∞)→ L is defined by

f
(−1)
− (t) =

{
max{i ∈ L; f(i) ≥ t} = max f−1([t, n]) if t ≥ 0
n otherwise.

The first pseudo inverse f
(−1)
+ was first defined in [6]. f

(−1)
− is a new pseudo

inverse introduced in this paper in order to generate the residuation and biresid-
uation of a t-norm on L.

Definition 11. Let T be a t-norm on L. T is generated by a strictly decreasing
function f : L→ [0,∞) with f(n) = 0 if and only if

T (i, j) = f
(−1)
+ (f(i) + f(j)) for all i, j ∈ L.

f is called an additive generator of T and we will write T = 〈f〉.
For an additive generator f , we will indicate f = (a0, a1, a2, ..., an = 0) where
ai = f(i), i ∈ L.

Example 4

– An additive generator of the t-norm of �Lukasiewicz on L is (n, n − 1, n −
2, ..., 1, 0).

– An additive generator of the minimum t-norm L is (2n− 1, 2n−1− 1, 2n−2−
2, ..., 7, 3, 1, 0).

Some results on additive generators are the following ones.

Proposition 8. Let f = (a0, a1, a2, ..., an = 0) and g = (b0, b1, b2, ..., bn = 0) be
strictly decreasing functions on L. Then 〈f〉 = 〈g〉 if and only if for all i, j, k ∈ L
with k �= 0,

1. ai + aj ≥ a0 ⇒ bi + bj ≥ 0
2. ak ≤ ai + aj < ak−1 ⇒ bk ≤ bi + bj < bk−1.

Corollary 1. If f : L → [0,∞) is a strictly decreasing function with f(n) = 0
and λ > 0, then 〈f〉 = 〈λf〉.
Of course, the reciprocal of the corollary is not true.

Proposition 9. If T is a t-norm on L with additive generator, then we can find
an additive generator f of T with Ran f ∈ Z+.
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Proposition 10. All smooth t-norms on L have an additive generator.

For additively generated t-norms we have representations for their residuations
and biresiduations.

Proposition 11. Let T be a t-norm on L with additive generator f . Then

−→
T (i|j) = f

(−1)
− (f(j)− f(i)) for all i, j ∈ L.

Proof. Given i, j ∈ L,

−→
T (i|j) = max{k ∈ L | T (i, k) ≤ j}

= max{k ∈ L | f (−1)
+ (f(i) + f(k)) ≤ j}

= f
(−1)
− (f(j)− f(i)) .

Proposition 12. Let T be a t-norm on L with additive generator f . Then

ET (i, j) = f
(−1)
− (|f(i)− f(j)|) for all i, j ∈ L.

Proof

ET (i, j) = min{−→T (i|j),−→T (j|i))
= min(f (−1)

− (f(j)− f(i)) , f
(−1)
− (f(i)− f(j))}

= f
(−1)
− (|f(i)− f(j)|) .

5 Dimension and Basis of an Indistinguishability
Operator

In this section we will give a method to calculate the dimension an a basis of a
T -indistinguishability operator E on a finite set X when T , a t-norm on L, can
be additively generated.

Let μ be a fuzzy subset of a finite set X = {r1, r2, ..., rs} of cardinality s. We
will write μ = (q1, q2, ..., qs) when μ(ri) = qi, i = 1, 2, ..., s.

A fuzzy subset of X is a generator of E if and only if Eμ(ri, rj) ≥ E(ri, rj)
for all i, j = 1, 2, ..., s. If T has f as an additive generator, then this condition
can be written as

f
(−1)
− (|f(μ(ri))− f(μ(rj))|) ≥ E(ri, rj) for all i, j = 1, 2, ..., s

or

|f(μ(ri))− f(μ(rj))| ≤ f(E(ri, rj)) for all i, j = 1, 2, ..., s.

This is equivalent to

f(μ(ri))− f(μ(rj)) ≤ f(E(ri, rj)) for all i, j = 1, 2, ..., s.
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Proposition 13. Let T be a t-norm on L with additive generator f and E a
T -indistinguishability operator on a finite set X of cardinality s. A fuzzy subset
μ = (x1, x2, ..., xs) is a generator of E if and only if

f(xi)− f(xj) ≤ f(E(ri, rj)) for all i, j = 1, 2, ..., s.

In other words, HE is the subset of Ls of solutions of the last system of Dio-
phantine inequalities.
Example 5. If T is the �Lukasiewicz t-norm on L, then the last system of inequal-
ities becomes

xi − xj ≤ n− E(ri, rj) for all i, j = 1, 2, ..., s.

Example 6. If T is the minimum t-norm on L, then the last system of inequalities
becomes

2n−xi − 2n−xj ≤ 2n−E(ri,rj) − 1 for all i, j = 1, 2, ..., s.

Example 7. The following fuzzy relation E on X = {r1, r2, r3, r4} is a TM -
indistinguishability operator with L = {0, 1, 2}.

E =

⎛⎜⎜⎝
2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

⎞⎟⎟⎠ .

An L-fuzzy subset (x1, x2, x3, x4) of X is a generator of E if and only if it satisfies
the following Diophantine system of inequations.

22−x1 − 22−x2 ≤ 22−1 − 1
22−x1 − 22−x3 ≤ 22 − 1
22−x1 − 22−x4 ≤ 3
22−x2 − 22−x1 ≤ 1
22−x2 − 22−x3 ≤ 3
22−x2 − 22−x4 ≤ 3
22−x3 − 22−x1 ≤ 3
22−x3 − 22−x2 ≤ 3
22−x3 − 22−x4 ≤ 1
22−x4 − 22−x1 ≤ 3
22−x4 − 22−x2 ≤ 3
22−x4 − 22−x3 ≤ 1

HE has 26 elements:
HE = {(2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 2), (2, 2, 1, 1), (2, 2, 0, 0), (2, 1, 2, 2), (2, 1, 2, 1),

(2, 1, 1, 2), (2, 1, 1, 1), (2, 2, 0, 0), (2, 1, 0, 0), (1, 2, 2, 2), (1, 2, 2, 1), (1, 2, 1, 2),
(1, 2, 1, 1), (1, 2, 0, 0), (1, 1, 2, 2), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1), (1, 1, 0, 0),

(0, 0, 1, 2), (0, 0, 2, 1), (0, 0, 2, 2), (0, 0, 1, 1), (0, 0, 0, 0)}
E has dimension 2 and {(1, 2, 0, 0), (0, 0, 1, 2)} is a basis of E.
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6 Concluding Remarks

In this work finitely valued indistinguishability operators have been introduced.
The most relevant results are

– A new pseudo inverse has been defined that allow us to generate the resid-
uation of a t-norm.

– A method to find the dimension and a basis of a T -indistinguishability op-
erator solving a Diophantine system of inequalities has been developed.

These results will be related to infinitely valued indistinguishability operators in
forthcoming works by the authors.
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Abstract. This paper presents a research on discovering a similarity
relation in multidimensional bioinformatic data. In particular, utilization
of a Rules-based Similarity model to define a similarity in microarray
datasets is discussed. The Rules-based Similarity model is a rough set
extension to the feature contrast model proposed by Amos Tversky. Its
main aim is to achieve high accuracy in a case-based classification task
and at the same time to simulate the human way of perceiving similar
objects. The similarity relation derived from the Rules-based Similarity
model is suitable for genes expression profiling as the rules naturally
indicate the groups of genes whose activation or inactivation is relevant
in the considered context. Experiments conducted on several microarray
datasets show that this model of similarity is able to capture higher-level
dependencies in data and it may be successfully used in cases when the
standard distance-based approach turns out to be ineffective.

1 Introduction

In recent years, a lot of attention of researchers from many fields has been put
into investigation of DNA microarray data. This growing interest is largely moti-
vated by numerous practical applications of knowledge acquired from such data
in medical diagnostics, treatment planning, drugs development and many more.
When dealing with microarrays, researchers have to overcome the problem of
insufficient availability of data. Due to very high costs of microarray process-
ing, usually the number of examples in datasets is limited to several dozens.
This fact, combined with a large number of examined genes, makes many of
the classic statistical or machine learning models unreliable and contributes to
popularity of case-based models among the microarrays classification methods.

Similarity models play a key role in the case-based classification setting as a
notion of similarity is being used in every phase of Case-Based Reasoning cycle
(see. [1]). In particular, the decision class of new instances is assigned based on
the classes of known examples which were pointed as the most similar to the
given case. Numerous a priori given similarity functions have been investigated
in the CBR literature but none of them was successful in a wide variety of
decision making problems. Especially in domains, such as the bioinformatics,
which usually involve working on highly dimensional data, the urge to use the
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similarity learning methods arises. Typically, when exploring microarray data
in the case-based fashion, researchers combine distance-based similarity models
with genes selection and distance metric learning techniques (e.g. [2], [3], [4]).

The Rules-based Similarity (RBS) model is an alternative approach to the
problem of learning a similarity relation from data (see [5], [6]). It may be seen
as a rough set extension to the psychologically plausible feature contrast model
([7]). In this model the similarity is expressed in terms of common and dis-
tinctive binary features of compared objects. Those features may correspond to
higher-level characteristics of examined samples, such as an increased activity
(expression level) of a particular group of genes. Due to a large number of genes in
a single microarray, the number of such features is also extremely large but with
the use of well-established rough set methods it is possible to find those which
are the most relevant in the considered context. This approach is different from
other rough-set based CBR models (e.g. [8]) as it does not need to consider all
pairs of available training samples during the similarity relation learning phase
and it does not assume existence of any predefined local similarity measures.

In further sections, an application of RBS model to microarray data will be
discussed. First, the basic notation and definitions are given. Section 3 briefly
describes the process of discovering the similarity relation from data and Sec-
tion 4 is an overview of results of experiments in which performance of RBS and
some distance-based similarity models were compared on 4 microarray datasets.
Finally, the last section concludes the paper and discusses possible directions for
the future research.

2 Preliminaries

The problem of learning a similarity relation from data involves working on
imprecise concepts and it may be well-handled in a framework provided by the
rough set theory ([9]). In this setting available objects are described within an
information system I = (U, A), where U is a set of objects and A is a set of
their attributes. An information system may be seen as a tabular representation
of knowledge about a considered universe.

The microarray technology allows to monitor expression levels (activity) of
thousands of genes in a single experiment (Fig. 1). Results of multiple microar-
ray experiments can also be arranged in a tabular structure. Unlike in typical
information systems, in such a table rows usually correspond to expression lev-
els of particular genes (attributes) and columns represent the samples (objects).
However, in order to stay consistent with the standard rough set notation a
transposed representation will be used.

Information about a classification of the examined samples may be treated as
a special attribute called a decision. An information system T = (U, A, d) with
a distinguished decision attribute d is called a decision table.

The concept of similarity is a relation τ defined over pairs of objects from
the set U . If no context is given, it is impossible to determine any features of
τ ([7], [10]) and therefore it may be treated as any relation. In such a case,
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Fig. 1. A scheme of a single microarray experiment

approximation of the similarity τ is much more difficult than classification ([11],
[12]) because it may be regarded as a problem of assigning binary labels to
instances from the set U ′ = U ×U . For this reason, a context of similarity needs
to be specified. Since the main scope of this research is the problem of learning
the similarity relation for the classification purpose, the context will be narrowed
to the decision attribute of given samples.

Definition 1. Let T = (U, A, d) be a decision table and let τ denote a similarity
relation over the set U ′ = U×U . We will say that τ is a similarity relation in the
context of the decision d if the following implication holds for every u1, u2 ∈ U :

∀u1,u2∈U (u1, u2) ∈ τ ⇒ d(u1) = d(u2) (1)

The definition above infers that the similarity relation has to be consistent with
the decision classes of d. This feature may be used to guide the relation learning
process. Any relation that satisfies the condition (1) may be treated as the
similarity relation. It is also worth noting that the definition (1) does not impose
any mathematical properties (i.e. reflexivity or symmetry) on τ . However, some
similarity models (e.g. distance-based) do that to constrain the searching space
of the acceptable similarity functions.

Definition 2. The function Sim : U × U → R is a similarity function if

∃λ∈R∀u1,u2∈U Sim(u1, u2) ≥ λ⇔ (u1, u2) ∈ τ (2)

for some similarity relation τ defined over U × U .

The function Sim measures a degree of similarity between instances from U .
Features of the function Sim depend on a domain of instances. Any similarity
function with an appropriate parameter λ define a similarity relation in U × U .

In order to compare the quality of two similarity models it is necessary to
introduce a proper quality measure. In the context of the decision attribute it
seems natural to check how accurate is the similarity-based classification. In all
experiments described in the Section 4 the following classification rule was used:

Definition 3. If Sim is a similarity function, x, y ∈ U and the decision value
d(y) is unknown, the instance y may be classified using the rule:

∀x′∈U Sim(x, y) ≥ Sim(x′, y) ∧ d(x) = di ⇒ d(y) = di (3)
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According to this rule, new samples are classified as belonging to the decision
class of the most similar object from the training set. This rule is equivalent to
1-nearest-neighbor classification.

3 Rules-Based Similarity Model

The Rules-based Similarity model was inspired by the contrast models of simi-
larity proposed by Amos Tversky in 1977 ([7]). Within this model the similarity
is expressed in terms of binary features of compared stimuli. Those features are
usually on a higher abstraction level than sensory data available in datasets.
For the purpose of gene expression profiling, such features may be interpreted
as questions about activity of particular genes or group of genes. Unfortunately
in practice it is impossible to verify the value of all 2#genes possible features
and only those which are the most relevant in the context of the decision at-
tribute have to be selected. Moreover, it is important to notice that the relevance
of a particular feature is strongly dependent on the decision class of compared
samples. For instance when examining the Psorisis data, different features are
important in assessment of the similarity to skin samples taken from patients
suffering from skin psoriasis and the samples taken from the healthy controls.

Further in this section, the RBS model for microarray data is briefly de-
scribed. More insights, general mathematical properties and details regarding
its construction are given in [5] and [6].

Selection of Relevant Features
In the RBS model, rough set methods are used to discover the relevant features of
investigated objects. First, the expression levels of genes are discretized. For the
purpose of this study, a modified version of a discretization algorithm proposed
by Hung Son Nguyen in [13] was used. Instead of selecting only one cut at a
time, the algorithm was able to choose cuts on several genes that discern most
of the samples from different decision classes. Due to the use of the discernibility
measure, this method is consistent with the definition of the similarity in the
context of the decision attribute (Def. 1) and it turned out to be very effective.
It not only discretizes the data but also efficiently decreases its dimensionality.
Those genes for which no cut was selected may be removed from the dataset.

For the datasets with more than two decision classes it is necessary to find
separate sets of cuts for each of possible decision values. To achieve that, the
decision attribute is transformed into a number of binary decision vectors and
the discretization is performed for every one of them.

In the second step, the decision and the inhibitory rules1 are constructed for
each of the discretized sets. The decision rules assign a specific decision class to
examples which they fit, whereas the inhibitory rules forbid such an assignment.
The characteristic function of propositions2 of those rules define higher-level

1 The inhibitory rules are described in detail in [14].
2 The left-hand sides.
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features. The features extracted in this way are guaranteed to be relevant in the
context of the decision attribute, because the rules mining algorithms enforce
desired quality on the constructed rules. The features defined by the decision and
the inhibitory rules may be treated as arguments for and against the similarity
respectively. Those which were defined by the decision rules and match both
compared samples form a set of their common features and those which were
defined by the inhibitory rules and match only to the second sample from the
pair will be their distinctive features. The sets of common and distinctive features
of samples x and y are used to assess a similarity degree of y to x which is denoted
by Sim(x, y).

Fig. 2. A scheme showing the process of discovering relevant features in the RBS model.
Separate feature sets are constructed for each of the decision classes.

The Similarity Function
The relevant features defined by the rules may be seen as local aspects of the
similarity in the context of the decision. To be able to answer the question if a
sample y is more similar to sample x1 than to x2 it is necessary to aggregate the
local similarities and dissimilarities of those samples. The most common way of
doing this is to use a special similarity function (see Def. 2) which measures a
degree of similarity between the samples.

The following similarity function was chosen to aggregate the local similarities
in the RBS model:

Sim(x, y) = relPower
(
COMM(x, y)

)− relPower
(
DIST (x, y)

)
(4)
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In this equation COMM(x, y) and DIST (x, y) are sets of common and distinc-
tive features of x and y. The function relPower(∗) approximates the importance
of arguments for and against the similarity. Its value is equal to the fraction of
training samples from the corresponding decision class which have at least one
feature from the set ∗. There are many other similarity functions that can be used
with the RBS model. This one was chosen due to its plausible rough set interpre-
tation and effectiveness verified in several benchmarks performed on well-known
datasets ([6]). However, in the future more research should be made to establish
efficient methods of learning the aggregation function from data.

Unlike in distance-based models, the proposed similarity function does not
enforce any properties on the constructed similarity relation. Depending on data,
it may be not symmetric and sometimes even not reflexive (e.g. when the dataset
is not consistent). This fact makes RBS more reasonable from psychological point
of view than the classical approach.

4 Comparison of the Rules-Based and the Distance-Based
Similarity Models

A number of experiments were conducted to verify how well different similarity
models deal with the problem of discovering the similarity relation in microarray
data. The RBS as well as 4 different similarity models were constructed for 4
microarray datasets and the classification accuracy of each of models was esti-
mated by repeated 5-fold cross validation. In every experiment, the classification
rule from the Definition 3 was used to even out chances of the models.

The compared models were implemented and tested in R System ([15]). The
arules library was used to generate decision rules for the RBS model and the
standard implementations of the k-NN algorithm from libraries class and kknn
were employed for the distance-based models.

The Competitive Models
The distance-bases similarity models are the most commonly used models in
the CBR literature. They were also repeatedly utilized for the classification of
microarray data (e.g. [3], [4], [16], [17]). In this approach, the samples are treated
as points in a metric space of their attributes and the similarity between them
is a non-increasing function of their distance. Due to high dimensionality of
microarray data, the distance metric learning techniques usually need to be
combined with some genes filtering methods. The distance-based models used in
experiments differed in the way they were extracting relevant genes. Their brief
description is given below:

1. 1-NN: This model was based on the classic k-NN algorithm. The similarity
function was based on the euclidean distance and no gene selection was
made. The results produced by this model were treated as a baseline for
other models – it was interesting to observe how much accuracy can be
gained with the use of some more sophisticated models.
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2. 1-NN+T-test: In this model one particularly popular filtering algorithm,
based on the paired t-test, was used to create a ranking of the genes. For each
gene the null hypothesis was tested that its expression levels within different
decision classes have equal means. The p-value of the test can be used as
a gene relevance measure – the genes with lower p-value are more likely to
be important for the classification. The final number of genes used by the
model was settled by the leave-one-out cross-validation on each training set.
It was chosen within the range of 2 to 1000.

3. 1-NN+T-test+ML: The t-test-based genes selection algorithm was also
applied in the third model but this time, in addition to the number of chosen
genes, a distance metric was tuned. The Minkowski distance was used in the
model and values of the parameter p within the range of 1 to 5 were checked
by the leave-one-out cross-validation.

4. 1-NN+genetic alg.: The last distance-based model used in the experiments
employed the wrapper approach to genes selection. A genetic algorithm was
used to search for an optimal subset of genes. The algorithm was also able
to assign weights to selected genes. Each chromosome encoded a subset of
genes with their weights. The survival of chromosomes was dependent on
the predictive power of the genes reflected by the accuracy of the 1-NN
classifier. The weighted euclidean distance was utilized in the algorithm and
the classification performance of chromosomes was estimated by the leave-
one-out cross-validation on the training set.

Datasets and the Results
Four microarray datasets form diverse medical domains were chosen for the ex-
periments. The first one consists of samples taken from patients with papillary
thyroid cancer (PTC) and with other non-malignant tumors. The second dataset
contains squamous epithelium samples taken from patients suffering from dif-
ferent stages of the reflux disease (Non-Erosive Reflux Disease, Erosive Reflux
Disease and Barrett’s esophagus). The HepatitisC dataset investigates a role of
chronic hepatitis C virus (HCV) in the pathogenesis of HCV-associated hepato-
cellular carcinoma (HCC). Liver samples from subjects with HCC, liver cirrho-
sis, HCC developed from liver cirrhosis and normal controls are compared. The
fourth dataset is a collection of genetic profiles of skin tissue samples taken from
patients examined for skin psoriasis. The tissues are grouped into 3 classes –
uninvolved and involved skin from affected individuals and normal skin from
healthy controls. Characteristics of those datasets can be found in Table 1.

All datasets were available in processed form and no additional microarray
normalization was needed. To increase performance of the distance-based algo-
rithms, data was linearly scaled before the learning phase of those models.

The mean accuracies of compared models are presented in Figure 3. The
RBS model achieved the best result on every dataset. The significance of the
results was tested with the two-sample t-test3. The differences between the RBS
3 The alternative hypothesis in the tests was that the mean accuracy of the RBS model

is lower than the accuracies of the compared models.
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Table 1. A brief summary of the microarray datasets used in the experiments

Name: no. samples no. genes no. decision classes
PTC 51 16502 2
Barrett 90 22277 3
HepatitisC 124 22277 4
Psoriasis 180 54675 3

and the t-test-based approaches turned out to be statistically meaningful on
HepatitisC and Psoriasis data, while the differences between the RBS and the
genetic approach was significant on Barrett and Psoriasis data.

The rules-based model outperformed other algorithms in number of utilized
genes. The actual number of genes used by the RBS varied for every dataset
and cross-validation run but it never exceeded 70, while for the distance-based
models (i.e. t-test-based) this number was sometimes as high as several hundreds.

It was also interesting to notice that there was no considerable difference in
performance between the two t-test-based models. A possible explanation to
this fact is that tuning additional parameters on insufficient number of training
examples often causes overfitting.

Fig. 3. A performance comparison of several similarity models

5 Conclusions

In this paper a method of discovering a rules-based similarity relation in mi-
croarray data was presented. Motivation for this approach comes from works of
psychologists who noticed that the human way of perceiving similar objects has
different properties than distance-based similarity models. In the model, a deci-
sion rules mining algorithm is used to extract features which are relevant in the
context of a decision attribute. Such features may correspond to groups of genes
whose activation (expression level) is an important argument for or against the
similarity of compared samples.
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The classification accuracy of the RBS was compared with popular distance-
based methods on 4 microarray datasets from different medical domains. The
results show that the proposed model is able to outperform other similarity
relation learning techniques in both accuracy and the number of utilized genes.

The idea of RBS is a “research in progress” project. Although the early results
are encouraging, there are still many areas in which the model may be improved.
Currently, one algorithm is used to perform selection of relevant genes and dis-
cretization. In the future some other methods should be tried. One promising
approach is to employ the idea of dynamic reducts (see [18]). Genes from the
dynamic core might be selected and their discretization could be conducted
with the use of information about the cuts generated during construction of the
reducts. Another idea is to focus on incorporation of domain knowledge into
the model. Gene ontologies may be used to reinforce extraction of relevant fea-
tures. New higher-level features might be constructed from genes which perform
similar function and some constrains might be introduced to the rules mining
algorithm to merge semantically similar rules. Finally, some specialized indexing
algorithms, which would make use of induced rules, may be developed to increase
computational performance of the RBS model.

Any progress in the field of learning similarity relation from data would be
beneficial to researchers from many fields. It is important, especially in do-
mains as bioinformatics, where efficient and more accurate models could lead
to discovering of more effective and safer drugs or better planing of treatments.
The classical distance-based approach is sometimes unable to deal with the few-
objects-many-attributes problem and the Rules-Based Similarity appears to be
an interesting alternative.
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Abstract. Clustering algorithms are used to identify groups of similar
data objects within large data sets. Since traditional clustering methods
were developed to analyse complete data sets, they cannot be applied to
many practical problems, e.g. on incomplete data. Approaches proposed
for adapting clustering algorithms for dealing with missing values work
well on uniformly distributed data sets. But in real world applications
clusters are generally differently sized. In this paper we present an ex-
tension for existing fuzzy c-means clustering algorithms for incomplete
data, which uses the information about the dispersion of clusters. In ex-
periments on artificial and real data sets we show that our approach
outperforms other clustering methods for incomplete data.

Keywords: Fuzzy cluster analysis, incomplete data.

1 Introduction

Clustering is an important technique for automatic knowledge extraction from
large amounts of data. Its task is to identify groups or clusters of similar objects
within a data set [5]. Data clustering is used in many areas, including database
marketing, web analysis, information retrieval, bioinformatics, and others. How-
ever, if clustering methods are applied on real data sets, a problem that often
arises is that data items are afflicted with missing values. Missing values could
be caused for example by problems or failures during the data collection, data
transfer, data cleaning or as a result of the data fusion from various sources. De-
pending on the cause of missingness, missing values can be missing at random
or depending on the values of variables in the data set.

The traditional clustering methods were developed to analyse complete data.
In cases where the completion of data sets by repeated data collection is undesir-
able or unpossible e.g. for financial or time reasons, there is a need for analysis
methods handling incomplete data. In the literature there are generally three
different methods to deal with incomplete data sets [9], [11], [12]. The first one
is based on the elimination of data objects or features which comprise missing
values. A main drawback of this approach is that a lot of feature values are not
taken into account during the analysis and thus much information gets lost. The
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� Springer-Verlag Berlin Heidelberg 2010



60 L. Himmelspach and S. Conrad

most frequently used method is data imputation, where values are estimated
to fill in missing values in a preprocessing step [2]. Afterwards the clustering
methods can be used on compelete data without needing to make any further
modifications. However, in addition to the high computational costs the draw-
back of this approach is that the results of the data analysis are effected by
imputation techniques, because the observed (real) and the estimated values are
not distinguished during the data analysis. The basic idea of the third method
is to adapt the clustering methods for dealing with missing values. In the lit-
erature there are already several proposals for adapting partitioning clustering
algorithms for handling missing values [6], [10], [12], [11]. The experiments con-
ducted in [7] have shown that these methods work well as long as clusters have
similar size. But in real world applications clusters are generally differently sized.
In this paper we present an extension for fuzzy c-means algorithms for incom-
plete data, which takes the cluster dispersion into account. In experiments on
artificial and real data sets, we demonstrate the capability of our approach and
compare it with other fuzzy c-means clustering algorithms for incomplete data.
We give a particular attention to the analysis of the performance of the meth-
ods depending on the different missing-data mechanisms and the percentage of
missing values in the data set.

The remainder of the paper is organized as follows. In Section 2 we give an
overview of the basic fuzzy c-means clustering algorithm and methods for adapt-
ing fuzzy c-means algorithm for incomplete data. We introduce our approach to
fuzzy clustering with missing values regarding the dispersion of the clusters in
Section 3. The evaluation results of our method and the comparison with other
existing algorithms are presented in Section 4. We close this paper with a short
summary and discuss future work in Section 5.

2 Fuzzy Clustering of Incomplete Data Sets

2.1 Fuzzy C-Means Algorithm (FCM)

The fuzzy c-means clustering algorithm (FCM) is a partitioning clustering algo-
rithm, which divides a given data set X = {x1, ..., xn} in d-dimensional metric
data space into c clusters. Unlike the classical partitioning clustering methods,
which assign each data object to exactly one cluster, fuzzy c-means algorithm
assigns data points to clusters with membership degrees [1], [6]. The membership
degree uik ∈ [0, 1] expresses the relative degree to which data point xk belongs
to the cluster Ci and is calculated as follows:

uik = (D1/(1−m)
ik )/(

c∑
j=1

D
1/(1−m)
jk ), (1)

where m > 1 is the fuzzification parameter and Dik =‖ xk − μCi ‖2A.

Jm(U, μ) =
c∑

i=1

n∑
k=1

um
ik ·Dik . (2)
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Like most partitioning clustering algorithms FCM determines an optimal parti-
tioning by minimizing an objective function given in Equation 2 in an iterative
process. The algorithm begins with initialising cluster centers μi, which are ran-
domly chosen points in the data space. In the first iteration step the membership
degrees of each data point to each cluster are calculated according to Formula
1. In the second iteration step the new cluster prototypes are calculated based
on all data points depending on their membership degrees to the cluster:

μij = (
n∑

k=1

(uik)mxkj)/(
n∑

k=1

(uik)m), 1 ≤ i ≤ c and 1 ≤ j ≤ d . (3)

The iterative process continues as long as cluster centers change up to a value ε.

2.2 Fuzzy Clustering of Incomplete Data

The fuzzy c-means algorithm cannot be directly applied to incomplete data sets,
because it uses every feature value of each data item. In literature several ap-
proaches for adapting FCM for clustering incomplete data are proposed. Some
of them such as whole-data strategy (WDS) and partial distance strategy (PDS)
[6] carry out the analysis only on the basis of available values. Other methods
estimate and replace the missing feature values or distances in each iteration of
the fuzzy c-means algorithm. As examples can be taken the optimal completion
strategy (OCS), the nearest prototype strategy (NPS) [6] and the distance esti-
mation strategy (DES) [10]. The results of object data experiments described
in [6], [7] showed that the lowest misclassification errors and the best accu-
racy are obtained by PDSFCM, OCSFCM and NPSFCM. The results of these
three approaches are quite similar in all experiments. As OCSFCM provides a
basis for our approach, in the following we focus in on the description of this
method.

Optimal Completion Strategy (OCS). The idea of the Optimal Completion
Strategy (OCS) [6] is to estimate missing values depending on all cluster centers
in an additional third iteration step of FCM as follows:

xkj = (
c∑

i=1

(uik)mμij)/(
c∑

i=1

(uik)m), 1 ≤ k ≤ n and 1 ≤ j ≤ d . (4)

The calculation of membership degrees and the cluster centers in the first two
iteration steps works in the same way as in the FCM. The missing values in the
data matrix are replaced by random values at the beginning of the algorithm.

The missing values of incomplete data item can be completely substituted
by the corresponding values of cluster prototype to which the data point has
highest membership degree respectively the minimum partial distance [3]. This
modification of OCS is referred to as the Nearest Prototype Strategy (NPS) [6].



62 L. Himmelspach and S. Conrad

3 Fuzzy Clustering of Incomplete Data Based on Cluster
Dispersion

OCSFCM and NPSFCM estimate missing values of a data point only depend-
ing on distances between this data point and cluster centers. These approaches
disregard completely the information about the cluster sizes. In real world ap-
plications the data objects are generally distributed on differently sized clusters.
This way the marginal data objects of a large cluster have a larger distance to
their cluster center than marginal objects of a small cluster. If the estimation of
missing values and the assignment of a data object are calculated only on the ba-
sis of distances between the data point and cluster centers, it is highly possible,
that the marginal objects of a large cluster are assigned falsely to the nearest
small cluster. Also the experiments described in [7] have shown, that OCSFCM
and NPSFCM produce more accurate results on uniformly distributed data sets
than on data sets with clusters of different size. In order to avoid such misclas-
sifications we developed a new membership degree u∗

ik for estimating missing
values, which takes also the cluster dispersion into account.

We divide the data set X into Xobs, the set of completely observed data items,
and Xmis, the set of data items with missing values. Furthermore, we divide the
feature set F into Fobs, the set of completely observed features, and Fmis, the
set of features with missing values. Then the membership degree u∗

ik of a data
point xk to a cluster Ci is defined as follows:

u∗
ik = (s∗

2

i D
1/(1−m)
ik )/(

c∑
j=1

s∗
2

j D
1/(1−m)
jk ) . (5)

We calculate the squared dispersion s∗
2

i of a cluster Ci as a squared averaged
distance of data points to their cluster centers according to Formula 6.

s∗
2

i =
1

| Ci ∩Xobs | −1

∑
xj∈Ci∩Xobs

∑
f∈Fobs

(xj .f − μCi .f)2 , (6)

where xj ∈ Ci ⇔ uij = max{u1j, ..., ucj} and | Ci ∩Xobs |≥ 2. The membership
degree u∗

ik is the higher the larger the dispersion of the cluster and the smaller
the distance between the data point and the cluster center are. If all clusters
are uniformly distributed then the membership degree u∗

ik depends only on the
distances between the data point and cluster centers.

The resulting algorithm is referred to as Fuzzy C-Means Algorithm for In-
complete Data based on Cluster Dispersion (FCMCD). The working principle
of FCMCD is adapted from OCSFCM (see Algorithm 1). In the third iteration
step the missing values are estimated depending on the cluster prototypes and
dispersion of clusters as follows:

xkj = (
c∑

i=1

(u∗
ik)mμ′

ij)/(
c∑

i=1

(u∗
ik)m), 1 ≤ k ≤ n and 1 ≤ j ≤ d . (7)
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Algorithm 1. FCMCD(X, c, m, ε)
Require: X is an incompete data set, 1 < c < n is a number of clusters, m > 1 is a

fuzzification parameter, ε > 0

1: Initialize the set of data centers μ′ = {μ′
1, ..., μ

′
c}

2: Initialize all missing values xkj in X with random values
3: μ = {}
4: repeat
5: μ = μ′

6: Calculate the membership degrees uik of each data point xk to each cluster
Ci // Step 1

7: Calculate the set of new cluster centers μ′ = {μ′
1, ..., μ

′
c} // Step 2

8: Estimate and fill in all missing values xkj according to Formula 7 // Step 3

9: until ‖μ − μ′‖ > ε
10: return μ′

So far we calculate the cluster dispersion on the basis of completely observed
features. Since the values in these features are available for incomplete data
points as well, we can also include the data objects with missing values during
the calculation of cluster dispersion s∗i . If the missing values occur in a large
number of data objects but in few attributes, this alternative affords to include
more available values during the calculation of cluster dispersion than in Formula
6 described. Furthermore, in this way we avoid the restriction that each cluster
must consist at least of two completely observed data items. For a distinction
from our basic approach, we refer to this alternative method as FCMCD∗.

Also NPSFCM can be extended in a straightforward way using the new mem-
bership degree. The missing values of incomplete data objects must be substi-
tuted by the corresponding values of the cluster prototypes to which the data
point shows the highest membership degree u∗

ik. For that, the calculation of the
numerator of membership degree u∗

ik is here sufficient.

4 Data Experiments

We have conducted several experiments on an artificial data set as well as
real data. The artificial data set was generated by a composition of three 3-
dimensional Gaussian distributions. It consists of 300 data points which are un-
equally distributed on three differently sized clusters with 52, 101 and 147 data
items. The real world data set contains the demographic information about 203
countries. For our experiments we used only the attributes average age, death
rate and child mortality. We achieved the best result for the silhouette coeffi-
cient [8] of 0.58 for two clusters with 46 and 157 data items using basic FCM.
For our experiments we used the range from 0 to 10 for the feature values. As
dependent features do not provide additional information for the clustering, we
ensured that the values of different features are uncorrelated in both data sets.
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To generate incomplete data sets, both data sets are modified by successively
removing values in two of three features with different probabilities according
to a multivariate pattern [9]. The percentage of missing values was calculated
in relation to all values in data set. As missing values can induce a random or
conditional reduction of a data set, we deleted the values from test data according
to the common missing-data mechanisms MCAR, MAR and NMAR. In this way
we want to test whether the performance of algorithms depends on different
missing-data mechanisms, which refer the relationship between missingness and
the underlying values in the data set [9]. The missing values are called missing
completely at random (MCAR), if the missingness does not depend on the data
values in the data set independent whether they are missing or observed. The
missing values are denoted as missing at random (MAR), if the missingness
depends only on values that are observed, and not on the components that are
missing. If the missingness of data depends on the missing values themselves
then the missing-data mechanism is called not missing at random (NMAR).

In our experiments we proceeded as follows: first we clustered the complete
data sets with basic FCM to find out the actual distribution of the data points
into clusters. We used these clusterings as baseline for the comparison. Then we
clustered the incomplete data with several fuzzy c-means algorithms for incom-
plete data. To create the test conditions as real as possible, we initialized the
cluster prototypes with random values at the beginning. For the stopping crite-
rion ‖μ−μ′‖ < ε we used the Frobenius norm distance. In all our experiments we
set the value ε on 0.0001. As the experimental results for extension of OCSFCM
and NPSFCM are very similar, below we present the results of our experiments
on the example of OCSFCM organized according to missing-data mechanisms.

4.1 Test Results for Data with Missing Values MCAR

Figure 1 represents the performance results for OCSFCM, FCMCD and FCMCD∗

on artificial and real data sets with missing values ”missing completely at ran-
dom”. To evaluate performance, we compare the averaged accuracy (percentage
of correctly classified data items) obtained over 30 trials in relation to the per-
centage of missing values in the data sets. For 0% missing values, all approaches
reduce to basic FCM, and find the same partitioning of data items as FCM. For 5%
or more missing values in the data sets, the performance results of FCMCD and
FCMCD∗ are quite similar. These algorithms produce a lower number of misclas-
sification errors than OCSFCM. The averaged accuracy of these two algorithms
exceed 90%, when the percentage of missing values is not greater than 50%. More-
over, FCMCD and FCMCD∗ are considerably more stable than OCSFCM. With
a few exceptions these algorithms produce the same partitioning of data objects
independent of initial partitioning. In contrast, OCSFCM produces from trial to
trial different partitioning of data items into clusters. Consequently different num-
bers of misclassification errors are obtained by OCSFCM in every trial. We cap-
tured the performance variations of OCSFCM with standard deviation (bars in
figures). Furthermore, the standard deviation for OCSFCM significantly increases
with increasing number of missing values in data set.



Fuzzy Clustering of Incomplete Data Based on Cluster Dispersion 65

0 10 20 30 40 50

65

70

75

80

85

90

95

100

Percentage of missing values in data set / %

A
cc

ur
ac

y 
/ %

OCSFCM

FCMCD

FCMCD*

(a)

0 10 20 30 40 50

65

70

75

80

85

90

95

100

Percentage of missing values in data set / %

A
cc

ur
ac

y 
/ %

OCSFCM

FCMCD

FCMCD*

(b)

Fig. 1. Averaged results of 30 trials for accuracy on (a) artificial and (b) real data sets
with missing values MCAR (bars indicate +/- on standard deviation)

4.2 Test Results for Data with Missing Values MAR

The performance results for OCSFCM, FCMCD and FCMCD∗ on data with
missing values ”missing at random” are shown in Figure 2. All algorithms show
quite similar performance when the percentage of missing values is relatively
low. For 15% or more missing values in the data sets we observe significant
differences in the performance of algorithms. In comparison to missing values
MCAR, the algorithms perform somewhat worse on data with missing values
MAR, especially on real data set. This is due to the fact that missing values
MAR occur in data items depending on values of available features and thus,
they occur in data objects with particular properties. In this way the completely
available data objects do not represent the whole data set anymore. Therefore,
the missing values MAR can only be estimated with less accuracy as missing
values MCAR. And that leads to more misclassifications with increasing number
of missing values in the data set. Also a slightly better performance of FCMCD∗

compared to FCMCD can be explained by the fact that FCMCD∗ calculates the
dispersion of clusters on the basis of feature values of all data items and FCMCD
takes only feature values of completely available data items into account.

4.3 Test Results for Data with Missing Values NMAR

Figure 3 shows the experimental results for OCSFCM, FCMCD and FCMCD∗

on data with missing values ”not missing at random”. As in the case of miss-
ing values MAR, the performance of the algorithms is worse than on data with
missing values MCAR. The reasons behind this are the same as in the case of
missing values MAR. Missing values occur in data items with particular prop-
erties so that completely available data items do not represent the whole data
set. In this way some clusters are more afflicted with missing values than others.
Thus, clusters, which contain a lot of data objects with missing values, are not
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Fig. 2. Averaged results of 30 trials for accuracy on (a) artificial and (b) real data sets
with missing values MAR (bars indicate +/- on standard deviation)

identified as such by clustering algorithms. Experiments showed, that OCSFCM
splits clusters with a low number of incomplete data items in several clusters and
disperses data items of clusters with a high number of incomplete data items to
other clusters. In contrast, FCMCD and FCMCD∗ strive to preserve the struc-
ture of clustering by estimating missing values with regard to the dispersion
of clusters. This is reflected also in the fact that the performance of FCMCD
and FCMCD∗ is better than the performance of OCSFCM on data with missing
values NMAR (cf. Figure 3).

4.4 Prototype Error and Runtime

In our experiments we were also interested in comparing the runtime (here:
mean number of iterations to termination) of algorithms. Table 1 gives the av-
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Fig. 3. Averaged results of 30 trials for accuracy on (a) artificial and (b) real data sets
with missing values NMAR (bars indicate +/- on standard deviation)
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Table 1. The average number of
iterations to termination

% Mean Number of Iterations
Missing OCSFCM FCMCD FCMCD∗

5 22.2 17.7 17.8
15 27.8 21.4 19.8
25 35.4 22.7 22.7
35 46.6 26.3 26.5
45 85.5 48.0 49.8
55 143.5 89.6 102.4

Table 2. The average prototype
error

% Mean Prototype Error
Missing OCSFCM FCMCD FCMCD∗

5 0.1756 0.1065 0.1043
15 0.4237 0.1504 0.1504
25 0.5467 0.1585 0.1585
35 0.7468 0.3265 0.3283
45 0.8791 1.0844 1.1387
55 1.1558 2.2040 2.1811

erage number of iterations required to terminate for three approaches obtained
over 30 trials on real data set with missing values MCAR. For complete data
sets all algorithms require such as basic FCM about 8-12 iterations to termi-
nation. With an increasing number of missing values in the data set, the mean
number of iterations increases strongly. From 35% of missing values in the data
set, OCSFCM requires almost double number of iterations to terminate than
the other two algorithms. There are no significant differences in the runtime of
FCMCD and FCMCD∗.

For some applications the information about the location of clusters is im-
portant as well as the information about the partitioning of data objects into
clusters. Therefore, we analysed the algorithms regarding the determination of
cluster prototypes in presence of missing values in the data set. Table 2 gives
the average Frobenius norm distance between the terminal cluster prototypes
obtained by FCM on the complete data set and the corresponding terminal
cluster prototypes computed by the three algorithms on the real data set with
missing values MCAR. When the percentage of missing values is not greater
than 40% in the data set, the terminal cluster prototypes obtained by FCMCD
and FCMCD∗ are considerably more accurate than terminal prototypes obtained
by OCSFCM. From 45% of missing values in the data set, OCSFCM produces
more accurate terminal cluster prototypes than our approach. It is very inter-
esting that the accuracy obtained for FCMCD and FCMCD∗ is still about 10%
higher than for OCSFCM in this range (cf. Figure 1 (b)). This is due to the
fact that OCSFCM fills in the missing values by values, which are very close
to the corresponding feature values of the nearest cluster prototype. In this
way the cluster prototypes are better preserved, but the clustering structure
gets lost. In order to preserve the clustering structure, FCMCD takes cluster
dispersion into account during the calculation of membership degrees and, con-
sequently, cluster prototypes. In this way FCMCD produces a lower number
of misclassification errors than OCSFCM, but terminal prototypes obtained by
FCMCD are less accurate in the case of high percentage of missing values in
data set.
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5 Conclusions and Future Work

The already existing fuzzy c-means algorithms for incomplete data based on
missing value estimation leave clustering structure (cluster sizes) out of con-
sideration during the estimation of missing values. For this reason they fail to
work on incomplete data with differently sized clusters. Our approach uses a new
membership degree for missing value estimation based on cluster dispersion. In
experiments on artificial and real data sets with differently sized clusters, we
have shown that our approach outperforms other approaches. It produces less
misclassification errors, it is more stabil, it requires less iterations to termination,
and it produces more accurate terminal cluster prototypes in the cases, where
the percentage of missing values in the data set is not greater than 40%.

In all our experiments we assumed the real number of clusters to be known
because we calculated it on complete data sets using silhouette coefficient [8].
However, in real world applications the number of clusters is generally not known
a priori. Therefore, in our future work, we plan to analyse and compare the clus-
tering methods for incomplete data on several data sets with different numbers
of clusters regarding the correct calculation of cluster number. Furthermore, our
experiments showed that all clustering methods perform poorer on data sets
with missing values MAR and NMAR than in the case of missing values MCAR.
In order to improve the performance of our approach on data with missing val-
ues MAR and NMAR, we also plan to combine our approach with an approach
presented in [11] that uses class specific probabilities for missing values.
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Abstract. The technique presented in this paper is based on fuzzy clus-
tering in order to achieve robust automatic detection of active regions in
solar images. The first part of the detection process is based on seed se-
lection and region growing. After that, the regions obtained are grouped
into real active regions using a fuzzy clustering algorithm. The procedure
developed has been tested on 400 full-disk solar images (corresponding
to 4 days) taken from the satellite SOHO. The results are compared with
those manually generated for the same days and a very good correspon-
dence is found, showing the robustness of the method described.

Keywords: Fuzzy clustering, cluster validity measure, active region de-
tection, image processing, region growing.

1 Introduction

The automatic processing of information in Solar Physics is becoming increas-
ingly important due to substantial increase in the size of solar image data archives
and also to avoid the subjectivity that carries the manual treatment of this infor-
mation. The automated detection of solar phenomena such as sunspots, flares,
solar filaments, active regions, etc, is important for, among other applications,
data mining and the reliable forecast of the solar activity and space weather.
Significant efforts have been done to create fully automated Solar Catalogues[1].

In this paper we focus on the automatic detection of active regions on solar
Extreme Ultraviolet (EUV) images obtained from the satellite SOHO. Active
regions are solar regions with intense magnetic activity which can be detected
as bright regions in the bands of Hα or EUV. It could be useful to study its
evolution and behaviour in the forecast of solar flare activity. Active regions
have been manually detected and numbered for dozen of years by the NOAA
(National Oceanic and Atmospheric Administration) organization. Some auto-
mated detection methods have been developed in order to avoid the inherent
subjectivity of manual detections[2,3].

As region growing has proved to be a reliable means to investigate solar fea-
tures as filaments[3] or active regions, we have based our method on it, improving
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the way seeds and thresholds are chosen. After that, fuzzy clustering is applied to
group the candidate regions produced into complete active regions. Fuzzy clus-
tering allows the introduction of fuzziness for the belongingness of each bright
region to a concrete active region. Fuzzy clustering has been widely used in
image processing for image segmentation or boundary detection, also for solar
images[4,5].

The rest of the paper is organized as follows. Section 2 presents the pre-
processing stage prior to the region selection. Section 3 introduces the seed
selection and region growing procedures which produce a bright regions auto-
matically selected candidates to belong to real active regions. This is followed
by the description of the fuzzy clustering procedure in Section 4. A validity
measure is also defined to choose the optimal number of clusters in the image.
Section 5 shows some experimental results. Finally, Section 6 summarizes the
main conclusions of the paper.

2 Image Preprocessing

Prior to any feature recognition, the solar images have to be pre-processed in
order to correct them from geometrical or photometric distorsions. The images
used for the process are Extreme Ultraviolet (EUV) images of the Sun acquired
from the satellite SOHO (Solar and Heliospheric Observatory). They are down-
loaded in FITS (Flexible Image Transport System) file format. FITS is the most
commonly used digital file format in astronomy. It is designed specifically for
scientific data and hence includes many descriptions of photometric and spatial
calibration information and image origin metadada. The calibrations applied to
the images were:

– Dark current subtraction: a uniform (identical for all the pixels) zero
flux response is subtracted from the raw image.

– Degridding: the aluminum filter located close to the focal plane of the
instrument casts a shadow on the CCD detector that creates a modulation
pattern, or grid, in the images. The degridding factors are calculated and
stored, and the image is multiplied by the degridding factor for a fairly
reasonable correction to the data.

– Filter normalization: account is taken for the variable transmittivity of
the clear and aluminum filters (Al+1 or Al+2).

– Exposure time normalization: the flux is normalized to the exposure
time. Binned images are treated properly.

– Response correction: due to exposure to EUV flux, the pixel to pixel
sensitivity (flat-field) of the CCD detector is highly variable. The flat-fields
needed to correct the images are computed regularly from images of visible
light calibration lamps.

After the calibration on the image has been made, the background, the halo and
the contour of the image are completely erased. The contour is not important
because the information received from the satellites about the contour is not
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(a) (b)

Fig. 1. (a) Original image (b) image without background, halo and contour

completely true. This information is not true for problems capturing images of
the satellites. The results can be seen in Figure 1, where the image 1 (a) is the
original image of the Sun taken on January 15, 2005 and the image 1 (b) is the
image without background, halo and contour.

3 Region Detection

Once the image is fully cleaned and pre-processed, we can investigate the active
regions using first a region growing method based on the image grey level prop-
erties. The principle is to group pixels into large regions if these pixels fall into a
predefined intensity range. The procedure is started from a pixel or small region
called a seed. This method is more effective than applying a basic automatic
threshold as it associates a grey level condition with a connectivity condition.
The efficiency of the method will thus depend on the seed selection procedure
and on the intensity range definition. The region growing process usually pro-
duces a big amount of regions that need to be grouped into real active regions
as it will be shown in Section 4.

3.1 Seeds Selection

The seed selection is a major step in the procedure. Firstly, the method calculates
the Otsu’s optimal value only for the pixels of the Sun area. Let’s assume that an
image has 2 types of pixels: objects and background. The threshold is obtained
minimizing the weighted within-class variance. This turns out to be the same as
maximizing the between-class variance.

Otsu′s threshold = max
1≤t≤L

{
σ2

W (t)
}

(1)
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where

– An image contains N pixels whose gray levels are between 1 and L.
– pi = fi

N , fi is the frequency of occurrence of the value i.
– Pixels are divided into two classes: C1, with gray levels [1, . . . , t] and C2,

with gray levels [t + 1, . . . , L].

The weighted within-class variance is:

σ2
W (t) = q1(t)σ2

1(t) + q2(t)σ2
2(t) (2)

Where the class probabilities are estimated as:

q1(t) =
t∑

i=1

P (i) q2(t) =
L∑

i=t+1

P (i) (3)

And the class means are given by:

μ1(t) =
t∑

i=1

iP (i)
q1(t)

μ2(t) =
L∑

i=t+1

iP (i)
q2(t)

(4)

Finally, the individual class variances are:

σ2
1(t) =

t∑
i=1

[i− μ1(t)]2
P (i)
q1(t)

σ2
2(t) =

L∑
i=t+1

[i− μ2(t)]2
P (i)
q2(t)

(5)

The optimal value of Otsu will be used to select the seeds. Every pixel which
intensity value is less than the value obtained from the Otsu’s method will be
seed.

∀x, y ∈ D, seedx,y = Otsu′s threshold > I(x, y) (6)

where

– D ∈ [1 . . .width Image, 1 . . . length Image].
– I(x, y) is the pixel’s value on its coordinates x,y.

3.2 Region Growing

The next step consists in growing the region. The region growing code that has
been used in this system was developed by Gonzalez[6]. This method uses three
inputs:

– An image.
– A set of seeds (calculated as in the previous section).
– A threshold (thresholdlimit) which set the limit to growth. This limit is in

the range: [seed− thresholdlimit, seed + thresholdlimit].

Thresholdlimit is calculated as the average of the values of all pixels in the image.
The result obtained after applying these techniques can be seen in Figure 2 (a).
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(a) (b)

Fig. 2. (a) Image after region growing (b) image after selection of candidate regions

3.3 Selection of Candidate Regions

As it can be seen, after making the region growing technique there is too much
noise and portions of regions that do not have the importance that they really
deserve such as you can see in Figure 2. Thus, it is advisable to make a selection
phase of candidate regions. This phase consists of two steps:

1. Removing all regions that do not exceed a minimum value of area. This will
eliminate false positives in the selection of seeds.

2. Once large regions have been selected, the next step is to look for regions
close to these, regardless of the size of these surrounding regions. Finally
we get more compact regions suitable for use in the next step. The result
of the segmentation process is positive, as can be seen by comparing 1 (a)
and 2 (b).

4 Fuzzy Clustering Algorithm to Identify Active Regions

Once the image has been segmented into independent pieces, a grouping process
should be performed for the candidate regions are clustered in real active regions.
The algorithm used here is the Gustafson-Kessel fuzzy clustering algorithm[7].
Babuska[8] provided a slight variation of the Gustafson-Kessel algorithm which
improved the variance estimation.

This technique has been selected for this problem because it is not known
a priori the form or structure of the clusters. Another important point is that
the distance measure is the distance of Mahalanobis [9]. Gustafson and Kessel
extended the standard fuzzy c-means algorithm.
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The Fuzzy c-means clustering algorithm[10] is based on the minimization of
an objective function called c-means functional. It is defined as:

J(X ; U, V ) =
c∑

i=1

M∑
k=1

(μik)m||xk − vi||2A (7)

where

– X = {x1, x2, . . . , xM} are the data which must be classified.
– U = [μik] ∈Mfc, is a fuzzy matrix of X.
– V = [c1, c2, . . . , cc], is the vector of centroids.

Gustafson and Kessel extended the standard fuzzy c-means algorithm by employ-
ing an adaptive distance norm, in order to detect clusters of different geometrical
shapes in one data set. Each cluster has its own norm matrix Ai. The matrices
Ai are an optimization variable in the following objective function:

J(Z, U, V, A) =
c∑

i=1

N∑
k=1

μm
i=k(zk − vi)Ai(zk − vi)T (8)

But the objective function cannot be minimized directly because J depends
linearly on Ai. Therefore Ai is constrained by: det|Ai| = ρi, ρ > 0. Allowing
the matrix Ai to vary with its determinant fixed corresponds to optimizing
the cluster’s shape while its volume is constant. Using the Lagrange multiplier
method, the following expression for Ai is obtained:

Ai = [ρidet(Fi)]1/nF−1
i (9)

where Fi is the fuzzy covariance matrix of the ith cluster defined by:

Fi =

N∑
k=1

(μik)m(xk − vi)(xk − vi)T

N∑
k=1

(μik)m

(10)

Clustering algorithm is fuzzy does not mean that a priori information of the
number of clusters to be made should not provide. To solve this problem, N
iterations with N possible numbers of clusters are made in our system. The
value of N is in the range of [2, M ]. If the number of candidate regions is less
than M , the number of possible clusters that exist and therefore iterations will
be the number of candidate regions. If the number of candidate regions is greater
than M , the number of iterations will be M . This is developed so for several
reasons.

– The empirical value of M will be more or less 10. This is because is difficult
to find more than ten active regions simultaneously in the Sun.

– The computational cost required to perform clustering is very high and must
be optimized.
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Fig. 3. Three clusters are determined in this image

4.1 Cluster Validation

Once calculated the candidate active regions for different number of clusters, it
will be possible to determine the correct number of clusters. To do this we use a
modified clustering validation index with different densities developed by Chou,
Su and Lai[11]. The index used is defined in the Equation (11) where

– Ai is the set whose elements are the data points assigned to the ith cluster.
– |Ai| is the number of elements in Ai.
– xj and xk are the regions’ centroids.
– vi and vj are the clusters’ centroids ith and j th.
– d is a distance function.

CS(c) =

c∑
i=1

⎧⎨⎩ 1
|Ai|

∑
xj∈Ai

max
xk∈Ai

{
d(xj , xk)

}⎫⎬⎭
c∑

i=1

{
min

j∈c,j �=i

{
d(vi, vj

}} (11)

The correct number of clusters is one that minimizes the value of the index. The
main difference between this method and our method is the distance function
d(xi, xk). In both cases the distance used is the Manhattan distance. In the
first case the Manhattan distance is calculated between regions’ centroids and
in the second case it is calculated between the closest points of two regions.
The Gustafson and Kessel algorithm determines which elements belong to each
cluster and the index determines the number of clusters. Figure 3 shows the tree
clusters finally obtained for the image that appears in Figure 1 (a).
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5 Experimental Results and Discussion

The procedure for automatic detection of active regions has been applied to
the period between January 15, 2005 and January 18, 2005, on more than 400
observations.

A summary of the results can be seen in Table 1 showing the percentages of
candidate region detection and the percentage of errors. The errors are classified
in ±1 error,±2 errors and > 2 errors. For example, if an image has three brilliant
regions and the method detects two or four candidates region it will be an error
classified in the group ±1.

Table 1. Experimental results

Errors
Day Observations %Candidate region detected % ±1 % ±2 % > 2

January 15, 2005 95 93.685 6.315 0 0
January 16, 2005 109 89.910 7.339 1.834 0.917
January 17, 2005 94 57.448 29.787 9.574 3.191
January 18, 2005 110 37.275 17.272 18.181 27.272

In this study, it is taken into account that a brilliant region of the Sun is only
manually numbered by the NOAA as an active region when it has high activity
during its life (normally several days). So, it is not possible to determine if a
brilliant region will be numbered or not as an active region considering only
the information of one image. For us, all the brilliant regions will be candidate
active region because they present high activity in that particular moment. The
experimental results show the correspondence of the clustering output with the
candidate active region that there are in each image.

A further processing should be done to analyze which candidate active regions
are real active regions studying its behaviour during a long period of time.

To study the fuzzy clustering algorithm is regarded as being correctly classified
all images correctly detected the active and candidates. Next, the experimental
results will be discussed in detail.

5.1 January 15, 2005 and January 16, 2005

The results obtained on January 15, 2005 using a total of 95 images are:

– 93.685% of automatically detected candidate regions match the manually
detected ones.

– 6.315% of automatically detected candidate regions don’t correspond to man-
ual ones.

On this day there are 2 active regions but the reality is that after the process
of image segmentation we can clearly see three candidate active regions. One of
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these images has been developed throughout this paper and the final result can
be seen in Figure 3. The result of fuzzy clustering algorithm is quite positive of
success getting a value of 93.685%.

The results obtained on January 16, 2005 using a total of 109 images are:

– 89.910% of automatically detected candidate regions match the manually
detected ones.

– 7.339% of automatically detected candidate regions has ±1 error.
– 1.834% of automatically detected candidate regions has ±2 errors.
– 0.917% of automatically detected candidate regions has > 2 errors.

On this day the 2 regions of the previous day remain. The results remain very
positive being the value of automatic detection 89.910%.

5.2 January 17, 2005

The results for the January 17, 2005 using 94 images are:

– 57.448% of automatically detected candidate regions match the manually
detected ones.

– 29.787% of automatically detected candidate regions has ±1 error.
– 9.574% of automatically detected candidate regions has ±2 errors.
– 3.191% of automatically detected candidate regions has > 2 errors.

On this day 2 new active regions appear. So, there exist a total of 4 active
regions. The percentage of failing has increased which is a more modest result
than those obtained previously. Note that almost 30% of failures belong to the
group ±1.

5.3 January 18, 2005

The results for the January 18, 2005 using 110 images are:

– 37.275% of automatically detected candidate regions match the manually
detected ones.

– 17.272% of automatically detected candidate regions has ±1 error.
– 18.181% of automatically detected candidate regions has ±2 errors.
– 27.272% of automatically detected candidate regions has > 2 errors.

On this day 6 regions are active but is a day especially complicated. Visually
it is imposible to determine whether there are really six active regions because
they are very close, even some of them are overlapping. At this point, we can
state that the clustering algorithm works well even in these cases. To solve the
problem it would be neccesary to combine information from several frequency
bands.
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6 Conclusions

In this paper some experimental results for the detection of active regions on the
Sun have been presented using the Gustafson-Kessel’s fuzzy clustering algorithm
and the Mu-Chun’s index validation. Satisfactory results have been obtained as
have been shown in Table 1.

One of the major constraints that have been found in the system is inherent
to the algorithm of Gustafson-Kessel, where the density of points per cluster
is predetermined.This fact provoke a serious problem in the system because
a region of large area is considered equally influential than a small region. A
proposal for improving the system could be to modify the parameter input to the
Gustafson-Kessel algorithm, as the division of large regions into small regions.

So, the automated techniques developed allow to detect bright regions on
the Sun and to group them into real active regions. Further work will be car-
ried out to produce automatic AR detection in other spectral bands or in the
magnetogram to combine all the information to obtain more realistic detections.
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Abstract. This paper deals with the problem of dynamic dimension
reduction during the on-line update and evolution of fuzzy classifiers.
With ’dynamic’ it is meant that the importance of features for discrim-
inating between the classes changes over time when new data is sent
into the classifiers’ update mechanisms. In order to avoid discontinuity
in the incremental learning process, i.e. permanently exchanging some
features in the input structure of the fuzzy classifiers, we include feature
weights (lying in [0, 1]) into the training and update of the fuzzy clas-
sifiers, which measure the importance levels of the various features and
can be smoothly updated with new incoming samples. In some cases,
when the weights become (approximately) 0, an automatic switching off
of some features and therefore a (soft) dimension reduction is achieved.
The approaches for incrementally updating the feature weights are based
on a leave-one-feature-out and on a feature-wise separability criterion.
We will describe the integration concept of the feature weights in evolv-
ing fuzzy classifiers using single and multi-model architecture. The whole
approach will be evaluated based on high-dimensional on-line real-world
classification scenarios.

Keywords: Incremental feature weighting, soft dimension reduction,
evolving fuzzy classifiers.

1 Motivation and State of the Art

Data-driven fuzzy classifiers are nowadays used in many fields of applications
such as decision making [12], fault and novelty detection [8], classification in EEG
signals [19], image classification [18]. This is mainly because they are offering a
powerful tool which is able to model non-linear dependencies between features
and still providing some interpretable insight at the same time.

A significant problem when learning fuzzy classifiers from data is the so-called
curse of dimensionality effect, especially when the number of features in a classi-
fication problem, compared to the number of available training samples, is quite
� This work was funded by the Upper Austrian Technology and Research Promotion.
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high: this may deteriorate the predictive performance significantly. Therefore,
during the last decade feature selection methods in conjunction with training of
fuzzy classifiers for reducing the curse of dimensionality were developed. For in-
stance in [17] features are selected according to the ranking obtained by applying
mutual information. Another attempt for reducing dimensionality in fuzzy clas-
sifiers is presented in [13], where the best features for a fuzzy integral classifier
are elicited by a specific interaction index, comparing the importance of feature
pairs with the importance of their sums. An interesting approach for reduction
of the feature space is presented in [4], where feature selection is integrated into
a multistage genetic learning process, which determines a set of feature subsets
by means of the chromosomes in the final population with the best fitness value.

Another important issue in classification scenarios is the usage of incremental
updates of classifiers during on-line processes at the systems, ideally in single-
pass mode without using any prior data samples (in order to achieve fast updates
with low virtual memory demand). An attempt to tackle this issue was made in
[2], where two different incremental training methods, FLEXFIS-Class [11] and
eClass [1] are compared with respect to empirical performance and extended to
include different classifier architectures (single model, multi model in two vari-
ants). Other incremental fuzzy classification approaches are demonstrated in [3]
(for generalized fuzzy min-max neural networks) and in [14], using a transfor-
mation probability-possibility to construct densities of possibilities.

Now, it is a challenge to apply an adaptive feature selection process during
the incremental on-line update of the fuzzy classifiers. This is because at the
beginning of the whole learning process specific features may turn out to be
much more important than later on. In principle, someone may apply some
incremental feature selection techniques synchronously to the update of the fuzzy
classifiers. This may serve as a by-information about the most essential features,
but the problem remains how to integrate this permanently changing information
into the evolving fuzzy classifiers in a smooth way. Smoothness here does not
refer to the classifiers’ outputs (which are discrete class labels), but to change
feature weights step-wise instead of performing any abrupt changes in the input
structure (e.g. exchanging features), which may lead to undesired classifiers’
behavior resulting in severe performance drops.

2 Our Approach

In this paper, we propose an alternative approach for dynamically reducing curse
of dimensionality during the incremental on-line training phase of fuzzy classi-
fiers in a smooth way. Therefore, we exploit the generalization concept of feature
selection, called feature weighting, which assigns weights lying in [0, 1] to the fea-
tures according to their importance level. If the weight of a feature approaches
0, the feature will not have any impact in the learning as well as classifica-
tion process. Therefore, a (soft) dimension reduction can be achieved through
the concept of feature weighting. Soft here means that features with very low
weights have little impact and are almost but not completely discarded in the
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high dimensional feature space. The key point and advantage among a crisp
feature selection approach is now that these weights can be updated smoothly
during the incremental learning phase with newly loaded data samples in a life-
long learning mode (all samples equally weighted): the update with one single
sample changes the weights of all features just slightly. In this paper, two novel
approaches for incremental feature weighting will be demonstrated, both based
on Dy–Brodley’s separability criterion [7] (Section 3): a leave-one-feature-out
separability criterion by excluding each one of the p features leading to p mea-
sures, and a faster feature-wise (single dimension-wise) criterion. We will present
update formulas for both criteria (Section 3). Furthermore, we will demonstrate
how to integrate the feature weights into the evolving fuzzy classifiers using
FLEXFIS-Class SM and FLEXFIS-Class MM [11] approaches as training en-
gines (Section 4). In Section 5, we will evaluate the impact of including the
incrementally updated features weights into the evolving fuzzy classifiers. This
will be based on two (noisy and high-dimensional) real-world data sets from
surface inspection scenarios.

3 Incremental Feature Weighting - 2 Variants

3.1 Separability Criterion

For assigning weights to the features, we exploit a well-known criterion for mea-
suring the discriminatory power of a feature set in classification problems, the
so-called Fisher’s interclass separability criterion which is defined as [6]:

J =
det(Sb)
det(Sw)

(1)

where Sb denotes the between-class scatter matrix measuring how scattered the
cluster means are from the total mean and Sw the within-class matrix measuring
how scattered the samples are from their class means. The goal is to maximize
this criterion. Sw can be expressed by the sum of the covariance matrices over
all classes, i.e. by:

Sw =
K∑

j=1

Σj (2)

with Σj the covariance matrix for the jth class:

Σj =
1

Nj

Nj∑
k=1

(Xk,. − X̄j(Nj))T (Xk,. − X̄j(Nj)) (3)

with X the regression matrix containing Nj samples from class j as rows and p
features as columns, X̄j(Nj) the mean value vector of all the features for the Nj

samples. The matrix Sb is defined as:

Sb =
K∑

j=1

Nj(X̄j − X̄)T (X̄j − X̄) (4)
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with Nj the number of samples belonging to class j, X̄j the center of class j and
X̄ the mean over all data samples.

However, this criterion has the shortcomings [7], that 1.) The determinant
of Sb tends to increase with the number of inputs, hence also does the sepa-
rability criterion (1), preferring higher dimensionality of the input space; and
2.) it is not invariant under any nonsingular linear transformation. This means
that once m features are chosen, any nonsingular linear transformation on these
features changes the criterion value. Hence, we apply the following criterion (Dy-
Brodley’s measure) [7]:

J = trace(S−1
w Sb) (5)

with trace(A) the sum of the diagonal elements in A.

3.2 Incremental Update of Separability Criterion

Regarding incremental capability of this criterion, it is obviously sufficient to
update the matrices Sw and Sb and then to compute (5). Both matrices can be
updated during incremental mode in single-pass and sample-wise manner. The
matrix Sb can be updated by simply updating Nj (the number of samples falling
into class j) through counting and X̄j as well X̄ by incrementally calculating

the mean X̄(N + m) = NX̄(N)+
∑N+m

k=N Xk,.

N+m . The same update mechanism applies
to the mean over samples falling into class j, X̄j.

For Sw, we need to update the covariance matrices of each class, which (leaned
on [16]) is given by (for the jth class)

Σj(new) =
1

Nj + m
(NjΣj(old))

+ mΣj;pnew +
Njm

Nj + m
(X̄j(Nj)− X̄j(m))T (X̄j(Nj)− X̄j(m)) (6)

with Σj;pnew the covariance matrix on the m new samples for class j.

3.3 Variant A: Leave-One-Feature-Out Approach

Now, the question remains how to use this criterion for assigning feature weights.
Assuming that the full dimensionality of the data is p, the idea is now to calculate
(5) p times, each time one of the p features is discarded→ leave-one-feature-out
approach. In this sense, we obtain p different values for (5), J1, ..., Jp, which
can be again updated synchronously and independently in incremental mode.
A statement on the relative importance of features can be made, when sorting
these values in decreasing order: the maximal value of these indicates that the
corresponding discarded feature is the least important one, as the feature was
discarded and still a high value is achieved. In the same manner, the minimal
value of these indicates that the corresponding discarded feature is the most
important one, as dropping the value of the separability criterion (when applied
to the remaining p − 1 features) more significantly than any of the others. As
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weights should lie in the full span in [0, 1], we suggest to compute the weights
as:

λj = 1− Jj −min1,...,p(Jj)
maxj=1,...,p(Jj)−min1,...,p(Jj)

(7)

hence the feature with the weakest discriminatory power (and therefore maximal
Jj) is assigned a weight value of 0, and the feature with strongest discriminatory
power a weight of 1.

3.4 Variant B: Single Feature-Wise Approach

The problem with the leave-one-feature-out approach is that it requires a quite
high computation time, as for each single sample falling into class L, the co-
variance matrix ΣL and the between-class scatter matrix for class L need to
be updated, which demands an update of the whole Sw resp. Sb by summing
up over all classes. The complexity for calculating one Jp is (proof left to the
reader) O((2K + 3)p2 + 2p3 + 3p) ≈ O((2K + 3)p2 + 2p3), hence the overall
complexity for all Jj ’s is O((2K + 3)p3 + 2p4). For reducing this complexity,
we apply a greedy-based approach for approximating Dy-Brodley’s separability
criterion. This is done by calculating the between-class and within-class scatter
for each feature separately. By using the feature-wise approach we obtain scalar
values for Sb and Sw, i.e. for the ith feature:

Sb(i) =
K∑

j=1

Nj(X̄j;i − X̄i)2 Sw(i) =
K∑

j=1

V arj;i (8)

with X̄i the mean value of the ith feature, X̄j;i the mean value of the ith feature
over class j samples and V arj;i the variance of the ith feature over class j
samples. The single separability criterion for feature i is simply calculated by

Ii =
Sb(i)
Sw(i)

(9)

The mean value over features for class j samples can be updated by the incre-
mental mean, the variance of a features xi is updated in the same manner as the
covariance in (6) by setting xi = x1 = x2. The update is quite fast as it requires
only linear complexity in the number of features (O(p)) for each single sample.
The final feature weights are obtained by:

λj =
Ij

maxj=1,...,p
(10)

4 Integrating Feature Weights into EFC

4.1 Integration in FLEXFIS-Class SM

FLEXFIS-Class SM, firstly introduced in [11], extended in [2], exploits the clas-
sical fuzzy classifier architectures, which comes with singleton labels in the con-
sequent parts of the rules, see e.g. [15]. The single antecedent parts of the rules
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contain Gaussian membership functions, which are connected by a product t-
norm Hence, during the classification phase feature weights can be simply in-
cluded when eliciting the rules’ activation degrees, that is by:

μi(x) =
∏

p
j=1e

− 1
2

(xj−cij)2

σ2
ij

λj

i = 1, ..., C (11)

with p the dimensionality of the feature space, C the number of rules, cij the
center of the jth antecedent part in the ith rule and σij the width of the jth
antecedent parts in the ith rule. This means that the fuzzy set membership
degrees of unimportant features (with feature weights near 0) are 1, hence serving
a ’don’t care parts’ as not influencing the whole rule activation when taking the
product over these degrees. For important features (feature weights near 1),
the (nearly) actual fuzzy set membership degrees are taken, influencing the rule
activation degrees.

The training phase in FLEXFIS-Class SM takes place in the cluster space,
where an evolving version of vector quantization, eVQ [9] is applied for updating
already existing and evolving new clusters on demand based on the characteris-
tics of new incoming samples. Updating of already existing clusters takes place
by:

c
(new)
win = c

(old)
win + ηwinλI(x− c

(old)
win ) (12)

with I the identity matrix and ηwin the decreasing learning. Note the inclusion
of the feature weight. Generation of new clusters (=rules) is performed whenever
a new sample is lying far away from existing cluster centers. In this case, the
inclusion of feature weights in the distance calculation suppresses the genera-
tion of superfluous clusters in case when the distance with respect to unimpor-
tant features is high. The weighted Euclidean distance measure (used in case of
axes-parallel ellipsoidal clusters) between a sample x and a cluster center c is
calculated by:

dist =

√√√√ p∑
j=1

λj(xj − cj)2 (13)

4.2 Integration in FLEXFIS-Class MM

FLEXFIS-Class MM, firstly introduced in [11], extended in [2], exploits a multi
model architecture integrating K Takagi-Sugeno fuzzy regression models for K
classes. These are trained based on indicator matrices (off-line case) respectively
indicator vectors (on-line case), which follows the idea of linear regression by in-
dicator matrix [5]. Opposed to the linear version, the non-linear version triggered
by TS fuzzy models with more than one rule is able to circumvent the masking
problem in case of K > 2. For the TS fuzzy models, it applies Gaussian mem-
bership function combined with product t-norm in the rules’ antecedent parts.
Hence, as in case of FLEXFIS-Class SM, during the classification phase feature
weights can be simply included when eliciting the rules’ activation degrees in the
same manner as in (11). This weighting approach is performed when inferencing
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through each of the K TS fuzzy models and eliciting the final class response by
a one-versus-rest classification approach:

L = class(x) = argmaxm=1,...,K f̂m(x) (14)

The interpretation of including feature weights in this way during classification is
that un-important features do not change the rule activation degrees (low feature
weight values triggering high fuzzy set membership values near 1), hence only
the important ones are responsible for weighting the consequent hyper-planes in
each of the K Takagi-Sugeno fuzzy models.

The training phase of each Takagi-Sugeno fuzzy model is carried out sepa-
rately and independently. As in case of FLEXFIS-Class SM, the rules and their
antecedent parts are again generated by an evolving version of quantization eVQ
[9]. Hence, the same procedure for including features weights in antecedent part
learning as already described in Section 4.1 is applied. When updating the con-
sequent parameters ŵi;m of the ith rule in the mth model from the kth to the
k +1th sample with RFWLS = recursive fuzzily weighted least squares (for local
learning using least squares optimization function) — see also [10]: the feature
weights are included in μi;m as (11) are calculated, affecting the normalized rule
membership degree Ψi;m (appearing in the RFWLS algorithm).

5 Evaluation

This section demonstrates the impact of the incremental feature weighting during
incremental on-line evolution of fuzzy classifiers. Thereby, the central aspect will
be a comparison of conventional evolving fuzzy classifiers (without using any type
of dimensionality reduction method) with included dynamic, incremental feature
weighting approach while evolving the fuzzy classifiers. We applied our novel
approach to two different application scenarios: 1.) Inspection of CD Imprints
where the classification problem is to detect system failures (such as color drift
during offset print, a pinhole caused by a dirty sieve, occurrence of colors on
dirt, palettes running out of ink) when printing the upper-side of compact discs;
and 2.) food production (egg inspection), where the task was to discriminate
between dirt (= egg is still ok) and yolk (= egg is broken). We recorded images
during the real on-line production process and stored them onto the hard-disc
in the same order as recorded. This means that the list of aggregated features
extracted from the images appear in the same order in the feature matrix (row-
by-row) as the images were recorded on-line. Hence, evolving the classifiers by
incrementally sending the samples from the feature matrices into the training
algorithms is a one-to-one simulation of the real on-line case. The obtained data
sets had the characteristics as shown in Table 1.

Both data sets are divided into a training set and a test set. The first half of
the training set is used for an initial training and parameter optimization step
(in a CV procedure), eliciting the optimal vigilance parameter ρ (responsible for
the sensitivity to allow new rules being evolved in the classifiers), the second
half for further adaptation and evolution of the classifiers to simulate the real
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Table 1. Data sets from CD imprint, egg inspection and spam recognition and their
characteristics

# Images # Tr. Samples # Test Samples # Feat. Class D.
CD Imprint 1687 1024 (2x512) 510 74 16.78%/83.22%
Eggs 5341 2895 2302 17+2 79.83%/20.17%

(a) (b) (c)

Fig. 1. Progress of accuracies on separate test data set during on-line evolution of
fuzzy classifiers with FLEXFIS-Class MM for CD imprint data set, (a): without feature
weighting, (b): with dynamic (incremental) leave-one-feature-out criterion and (c): with
dynamic (incremental) feature-wise separability criterion

on-line case. The test data set denotes the last part of the whole feature matrix,
hence is used for calculating the accuracies of the classifiers on new on-line data
as an estimation of the generalization performance of the classifiers.

5.1 Results

Figure 1 presents the evolution of the accuracies (on separate on-line test data)
during on-line update of the fuzzy classifiers with FLEXFIS-Class MM on CD
imprint data. The first figure (a) visualizes those obtained without applying
any feature weighting strategy implicitly. Here, we can recognize that in fact
the accuracy increases with more samples included into the incremental update,
however this increase is not as stable as in case when applying dynamic leave-one-
feature-out feature weighing (shown in (b)) or dynamic dimension-wise feature
weighting (shown in (c)), as showing some down trends, especially for the first
part of on-line samples (up to sample #800). Furthermore, the levels of accuracy
are significantly higher in both incremental feature weighting variants, especially
at the beginning of the whole update process, i.e. from the 512th sample on.

Figure 2 shows a similar behavior between not including feature weights and
inclusion of dynamic features weights when FLEXFIS-Class MM is applied to egg
inspection. The difference is not that big as in case of CD imprint data, but still
visible and therefore significant. This can be explained as 1.) the data available
for initial training is much larger than in case of CD imprints (1447 versus 512),
and 2.) the number of features in both data sets is lower than in CD imprints
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(a) (b) (c)

Fig. 2. Progress of accuracies on separate test data set during on-line evolution of
fuzzy classifiers with FLEXFIS-Class MM for egg inspection data set, (a): without
feature weighting, (b): with leave-one-feature-out criterion and (c): with feature-wise
separability criterion

(19 versus 74). Therefore, the proportion ’training samples to dimensionality of
the feature space’ is more beneficial in case of egg data, compared to CD imprint
data set, and therefore the impact of a soft dimension reduction step through
feature weighting is lower.

Also an interesting and positive observation is that the much faster feature-
wise separability criterion is at least as good as the leave-one-feature-out ap-
proach in all data sets and for both evolving fuzzy classification variants (in most
cases it can even outperform the leave-one-feature-out approach, especially after
the whole incremental training procedure is finished). This means the discrimi-
natory power of single features alone are already sufficient to increase accuracies
of the evolving fuzzy classifiers.

6 Conclusion

In this paper, we proposed a concept for a dynamic and smooth integration of
dimension reduction into evolving fuzzy classifiers in form of an incremental fea-
ture weighting algorithm (hence achieving a soft dimension reduction process).
For feature weighting, we applied two criteria, one based on a leave-one-feature-
out approach, the other based on a feature-wise (single dimension) approach,
both exploiting the concept of separability criterion of features (jointly or inde-
pendently) and both incrementally calculable during on-line phase in a robust
manner (in the sense that they converge to the batch version). The feature
weights are integrated into the classification phase when using single as well as
multi model fuzzy classifier architecture and into the learning phase when using
FLEXFIS-Class SM as well as FLEXFIS-Class MM as evolving fuzzy classifier
approaches. Based on the observations when applying evolving fuzzy classifiers
to high-dimensional on-line classification scenarios, we can conclude that our
incremental feature weighting approaches are able to guide evolving fuzzy classi-
fiers to more predictive power during on-line operation mode than when feature
weighting is not included in the training process.
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Abstract. In a classification task, the imbalance class problem is present
when the data-set has a very different distribution of examples among
their classes. The main handicap of this type of problem is that standard
learning algorithms consider a balanced training set and this supposes a
bias towards the majority classes.

In order to provide a correct identification of the different classes of
the problem, we propose a methodology based on two steps: first we will
use the one-vs-one binarization technique for decomposing the original
data-set into binary classification problems. Then, whenever each one of
these binary subproblems is imbalanced, we will apply an oversampling
step, using the SMOTE algorithm, in order to rebalance the data before
the pairwise learning process.

For our experimental study we take as basis algorithm a linguistic
Fuzzy Rule Based Classification System, and we aim to show not only
the improvement in performance achieved with our methodology against
the basic approach, but also to show the good synergy of the pairwise
learning proposal with the selected oversampling technique.

Keywords: Imbalanced Data-sets, Multi-class Problems, Pairwise
Learning, One-vs-One, Oversampling.

1 Introduction

In the research community on imbalanced data-sets [1], recent efforts have been fo-
cused on two-class imbalanced problems. However, multi-class imbalanced learn-
ing problems appear with high frequency and the correct identification of each
kind of concept is equally important for considering different decisions to be taken.
In this framework, the solutions proposed for the binary-class problem may not be
directly applicable and as a result, there are few works in the specialised literature
that cover this issue at present [2].
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Additionally, learning from multiple classes implies a difficulty for Data Min-
ing algorithms, since the boundaries among the classes can be overlapped, which
causes a decrease in performance. In this situation, we can proceed by trans-
forming the original multi-class problem into binary subsets, which are easier to
discriminate, via a class binarization technique [3,4].

In this contribution we propose a methodology for the classification of multi-
class imbalanced data-sets by combining the pairwise learning or one-vs-one
(OVO) approach [3] with the preprocessing of instances via oversampling. The
idea is to train a different classifier for each possible pair of classes ignoring the
examples that do not belong to the related classes, and to apply a preprocessing
technique based on oversampling to those training subsets that have a significant
imbalance between their classes. Specifically, in order to rebalance the distribu-
tion of training examples in both classes, we will make use of the “Synthetic
Minority Over-sampling Technique” (SMOTE) [5], which has shown very good
results in our previous works on the topic [6,7].

Our objective is to analyse whether this procedure allows a better discrimina-
tion of the different classes of the problem, rather than just applying the basic
algorithm, and to study the significance of the preprocessing step by contrast-
ing the performance of our methodology against the simple OVO approach. In
order to develop this empirical study, we have chosen a linguistic Fuzzy Rule
Based Classification System (FRBCSs), the Fuzzy Hybrid Genetics-Based Ma-
chine Learning (FH-GBML) algorithm [8]. Furthermore, we have selected 16
multi-class data-sets from the UCI repository [9] and the measure of perfor-
mance is based on the Probabilistic AUC [10].

This contribution is organised as follows. First, Section 2 presents the problem
of imbalanced data-sets, describing its features and the metric we have employed
in the context of multiple classes. Next, Section 3 provides a brief introduction
to binarization techniques for dealing with multi-class problems, focusing on the
pairwise learning approach. In Section 4 we describe the algorithm selected for
the study and we present our classification methodology for multi-class imbal-
anced data-sets based on pairwise learning and oversampling. In Section 5 the
experimental framework for the study is established. The experimental study
is carried out in Section 6, where we show the goodness of our model. Finally,
Section 7 summarises and concludes the work.

2 Imbalanced Data-Sets in Classification

In the classification problem field, the scenario of imbalanced data-sets appears
when the numbers of examples that represent the different classes are very dif-
ferent [2]. The minority classes are usually the most important concepts to be
learnt, since they represent rare cases or because the data acquisition of these
examples is costly. In this work we use the imbalance ratio (IR) [11], defined as
the ratio of the number of instances of the majority class and the minority class,
to organise the different data-sets according to their IR.

Most learning algorithms aim to obtain a model with a high prediction accu-
racy and a good generalisation capability. However, this inductive bias towards
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such a model poses a serious challenge to the classification of imbalanced data.
First, if the search process is guided by the standard accuracy rate, it benefits
the covering of the majority examples; second, classification rules that predict
the positive class are often highly specialised and thus their coverage is very low,
hence they are discarded in favour of more general rules, i.e. those that predict
the negative class. Furthermore, it is not easy to distinguish between noise ex-
amples and minority class examples and they can be completely ignored by the
classifier.

Regarding the empirical measure, instead of using accuracy, a more correct
metric is considered. This is due to the fact that accuracy can lead to erroneous
conclusions, since it doesn’t take into account the proportion of examples for
each class. Because of this, in this work we use the AUC metric [12], which can
be defined as

AUC =
1 + TPrate − FPrate

2
(1)

where TPrate and FPrate are the percentage of correctly and wrongly classified
cases belonging to the positive class respectively.

Since this measure has been introduced for binary imbalanced data-sets, we
need to extend its definition for multi-class problems. In the specific case of the
AUC metric [10], we will compute a single value for each pair of classes, taking
one class as positive and the other as negative. Finally we perform the average
of the obtained value. The equation for this metric is as follows:

PAUC =
1

C(C − 1)

C∑
j=1

C∑
k �=j

AUC(j, k) (2)

where AUC(j, k) is the AUC (equation (1)) having j as positive class and k as
negative class. c also stands for the number of classes. This measure is known as
Probabilistic AUC.

3 Reducing Multi-class Problems by Binarization
Techniques: One vs. One Approach

Multi-classes imply an additional difficulty for Data Mining algorithms, since
the boundaries among the classes can be overlapped, causing a decrease in the
performance level. In this situation, we can proceed by transforming the original
multi-class problem into binary subsets, which are easier to discriminate, via a
class binarization technique [4].

We will make use of the OVO approach [3], which consists of training a clas-
sifier for each possible pair of classes ignoring the examples that do not belong
to the related classes. At classification time, a query instance is submitted to
all binary models, and the predictions of these models are combined into an
overall classification [13]. An example of this binarization technique is depicted
in Figure 1.
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Fig. 1. One-vs-One binarization technique for a 4-class problem

In order to generate the class label, we will use the methodology we have
proposed in [14], which considers the classification problem as a decision making
problem, defining a fuzzy preference relation with the corresponding outputs
of the classifiers. From this fuzzy preference relation, a set of non-dominated
alternatives (classes) can be extracted as the solution to the fuzzy decision mak-
ing problem and thus, the classification output. Specifically, the maximal non-
dominated elements of the fuzzy preference relation are calculated by means of
the non-dominance criterion proposed by Orlovsky in [15]. In the case of conflict
with a given input, i.e. when there are more than one non-dominate value, it
remains unclassified due to this ambiguity.

4 Solving Multi-class Imbalanced Data-Sets with Fuzzy
Classifiers and Pairwise Learning

In this section we will first describe the FH-GBML algorithm, which will be
employed as the base fuzzy model. Then we will present our methodology for
dealing with multi-class imbalanced data-sets by means of the combination of
multi-classification techniques and preprocessing of instances.

4.1 Fuzzy Hybrid Genetics-Based Machine Learning Rule
Generation Algorithm

The FH-GBML method [8] consists of a Pittsburgh approach where each rule set
is handled as an individual. It also contains a Genetic Cooperative-Competitive
learning (GCCL) approach (an individual represents a unique rule), which is
used as a kind of heuristic mutation for partially modifying each rule set.

This method uses standard fuzzy rules with rule weights where each input
variable xi is represented by a linguistic term or label. The system defines 14
possible linguistic terms for each attribute as well as a special “do not care” set.
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In the learning process, Npop rule sets are created by randomly selecting Nrule

training patterns. Then, a fuzzy rule from each of the selected training patterns
is generated by probabilistically choosing an antecedent fuzzy set from the 14
candidates (P (Bk) = μBk

(xpi)∑ 14
j=1 μBj

(xpi)
) and each antecedent fuzzy set of the gener-

ated fuzzy rule is replaced with don’t care using a pre-specified probability.
Npop -1 rule sets are generated by selection, crossover and mutation in the

same manner as the Pittsburgh-style algorithm. Next, with a pre-specified prob-
ability, a single iteration of the Genetic Cooperative-Competitive-style algorithm
is applied to each of the generated rule sets.

Finally, the best rule set is added to the current population in the newly
generated (Npop -1) rule sets to form the next population and, if the stopping
condition is not satisfied, the genetic process is repeated again.

4.2 Methodology for Dealing with Multi-class Imbalanced Problems
with Linguistic Fuzzy Rule Based Classification Systems

Our proposed methodology is defined according to the following two steps:

1. First we will simplify the initial problem into several binary sets, in order
to be able to apply those solutions that have been already developed and
tested for imbalanced binary-class applications, for example those at data
level that change the class size ratio of the two classes via oversampling.

The advantages of this binarization approach with respect to other tech-
niques, such as confronting one class with the rest (“one-vs-all” [16]), are
detailed below:

– It was shown to be more accurate for rule learning algorithms [17].
– The computational time required for the learning phase is compensated

by the reduction in size for each of the individual problems.
– The decision boundaries of each binary problem may be considerably

simpler than the “one-vs-all” transformation.
– The selected binarization technique is less biased to obtain imbalanced

training-sets which, as we have stated previously in Section 2, may sup-
pose an added difficulty for the identification and discovery of rules cov-
ering the positive, and under-represented, samples. Clearly, this last issue
is extremely important in our framework.

2. Once we have created all the binary training subsets, we search for those
sets that have a significant IR in order to apply the preprocessing step by
means of the SMOTE algorithm. According to our previous works on the
topic [6], we will consider that the training set is imbalanced if the IR has a
value higher than 1.5 (a distribution of 60-40%).

In order to clarify this procedure, the complete process is summarized in
Algorithm 1.
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Algorithm 1. Procedure for the multi-classifier learning methodology for im-
balanced data-sets
1. Divide the training set into C(C − 1)/2 binary subsets for all pairs of classes.
2. For each binary training subset:

2.1. If IR > 1.5
• Apply SMOTE preprocessing

2.2. Build a classifier generated with any learning procedure
3. For each input test pattern:

3.1. Build a fuzzy preference relation R as:
• For each class i, i = 1, . . . , m

• For each class j, j = 1, . . . , m, j �= i
• The preference degree for R(i, j) is the normalized certainty degree

for the classifier associated with classes i and j. R(j, i) = 1−R(i, j)
3.2. Transform R into a fuzzy strict preference relation R′.
3.3. Compute the degree of non-dominance for all classes.
3.4. The input pattern is assigned to the class with maximum non-dominance value.

5 Experimental Framework

In this section we first provide details of the real-world multi-class imbalanced
problems chosen for the experimentation and the configuration parameters of
the methods, and then we present the statistical tests applied to compare the
results obtained with the different approaches.

5.1 Data-Sets and Parameters

Table 1 summarizes the properties of the selected data-sets. It shows, for each
data-set, the number of examples (#Ex.), the number of attributes (#Atts.),
the number of numerical (#Num.) and nominal (#Nom.) features, the number
of classes (#Cl.) and the IR. The penbased, page-blocks and thyroid data-sets
have been stratified sampled at 10% in order to reduce their size for training. In
the case of missing values (cleveland and dermatology) we have removed those
instances from the data-set. Finally, we must point out that the estimates of the
performance were obtained by means of a 5-fold cross validation.

The selected configuration for the FH-GBML approach consists of product
T-norm as conjunction operator, together with the Penalised Certainty Factor
approach for the rule weight and fuzzy reasoning method of the winning rule.
Regarding the specific parameters for the genetic process, we have chosen the
following values:

– Number of fuzzy rules: 5 ·d rules (max. 50 rules).
– Number of rule sets: 200 rule sets.
– Crossover probability: 0.9.
– Mutation probability: 1/d.
– Number of replaced rules: All rules except the best-one (Pittsburgh-part,

elitist approach), number of rules / 5 (GCCL-part).



Linguistic FRBCS and Pairwise Learning for Imbalanced Data 95

Table 1. Summary Description of the Data-Sets

id Data-set #Ex. #Atts. #Num. #Nom. #Cl. IR

aut autos 159 25 15 10 6 16.00
bal balance scale 625 4 4 0 3 5.88
cle cleveland 297 13 6 7 5 13.42
con contraceptive 1,473 9 6 3 3 1.89

method choice
der dermatology 366 33 1 32 6 5.55
eco ecoli 336 7 7 0 8 71.50
gla glass identification 214 9 9 0 6 8.44
hay hayes-roth 132 4 4 0 3 1.70
lym lymphography 148 18 3 15 4 40.50
new new-thyroid 215 5 5 0 3 4.84
pag page-blocks 548 10 10 0 5 164.00
pen pen-based 1,099 16 16 0 10 1.95

recognition
shu shuttle 2,175 9 9 0 5 853.00
thy thyroid 720 21 6 15 3 36.94
win wine 178 13 13 0 3 1.5
yea yeast 1,484 8 8 0 10 23.15

– Total number of generations: 1,000 generations.
– Don’t care probability: 0.5.
– Probability of the application of the GCCL iteration: 0.5.

where d stands for the dimensionality of the problem (number of attributes).
For the use of the SMOTE preprocessing technique, we will consider the 5-

nearest neighbour to generate the synthetic samples, and balancing both classes
to the 50% distribution. In our preliminary experiments we have tried several
percentages for the distribution between the classes and we have obtained the
best results with a strictly balanced distribution.

5.2 Statistical Tests for Performance Comparison

In this paper, we use the hypothesis testing techniques to provide statistical
support for the analysis of the results. Specifically, we will use non-parametric
tests, due to the fact that the initial conditions that guarantee the reliability of
the parametric tests may not be satisfied, causing the statistical analysis to lose
credibility with these type of tests [18,19].

For performing pairwise comparisons between two algorithms, we will apply
the Wilcoxon signed-rank test [20]. Furthermore, we consider the average ranking
of the algorithms in order to show graphically how good a method is with respect
to its partners. This ranking is obtained by assigning a position to each algorithm
depending on its performance for each data-set. The algorithm which achieves
the best accuracy in a specific data-set will have the first ranking (value 1);
then, the algorithm with the second best accuracy is assigned rank 2, and so
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forth. This task is carried out for all data-sets and finally an average ranking is
computed as the mean value of all rankings.

6 Experimental Study

We show the average results in training and test in Table 2, for the three clas-
sification schemes analysed in this study, namely the basic approach (Base),
the multiclassification approach (OVO) and the multiclassification scheme with
oversampling (OVO+SMOTE).

Table 2. Results for the FH-GBML algorithm with the different classification
approaches

Base OVO OVO+SMOTE
Data-set AUCTr AUCT st AUCTr AUCT st AUCT r AUCT st

aut .7395 .6591 .8757 .6910 .8032 .6829
bal .7178 .7008 .7307 .7109 .7992 .7296
cle .6395 .5577 .7366 .5664 .7949 .5584
con .5852 .5623 .6468 .6201 .6683 .6294
der .7169 .6862 .9746 .9084 .9614 .8716
eco .7564 .7811 .9269 .8201 .9578 .8321
gla .7426 .6920 .8691 .7444 .9375 .8207
lym .8590 .7626 .9349 .8397 .9284 .8689
hay .7979 .6954 .9597 .6656 .9663 .6456
new .9490 .8861 .9967 .9564 .9850 .9457
pag .7317 .6929 .9472 .7862 .9696 .8552
pen .8460 .8340 .9798 .9508 .9740 .9387
shu .7253 .7709 .9319 .8635 .9950 .9516
thy .5198 .4992 .5304 .4993 .9193 .8763
win .9847 .9501 1.000 .9710 .9974 .9519
yea .6456 .6272 .8042 .7438 .8365 .7442
Mean .7473 .7099 .8653 .7711 .9075 .8064

We observe that in most cases the best result in test (which is stressed in
boldface) corresponds to the one obtained by our OVO+SMOTE methodology.
Nevertheless, in order to support the suggestion that our methodology enables
an enhancement of the classification ability of the FH-GBML algorithm for im-
balanced problems, we will perform a detailed statistical study.

2.88

1.501.63

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Basic OVO OVO+SMOTE

Fig. 2. Average ranking for the FH-GBML method with the different classification
schemes
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Table 3. Wilcoxon signed-ranks test. R+ corresponds to the sum of the ranks for the
OVO+SMOTE method and R− to the Basic and OVO classification schemes.

Comparison R+ R− p-value Hypothesis (α = 0.05)
OVO+SMOTE vs. Basic 131.0 5.0 0.001 Rejected for OVO+SMOTE
OVO+SMOTE vs. OVO 88.0 48.0 0.301 Not Rejected

First, Figure 2 shows the average ranking computed for the different classi-
fication schemes, where we can observe that OVO+SMOTE is the best option,
whereas the basic FH-GBML approach obtains the worst ranking with a much
higher value than the former.

Next, we perform a Wilcoxon test (Table 3) to contrast the different ap-
proaches that are being studied. The first conclusion extracted from the result
of this test is that our methodology is actually better suited for imbalanced data-
set with multiple classes than the basic learning algorithm. Also, we observe that
the application of the oversampling step enables the obtention of better results
than applying the binarization scheme directly over the original training data,
as suggested by both the higher sum of the ranks in favour of our methodology
and the average results in Table 2.

The study carried out allow us to discuss several issues as future work:

1. The inclusion of different Machine Learning algorithms to analyse the ro-
bustness of our methodology.

2. A comparative study of several preprocessing techniques (oversampling, un-
dersampling and hybrid approaches).

3. A detailed study regarding the IR of the algorithms and the goodness of
the application of preprocessing in each case and the definition of a precise
threshold in order to rebalance the binary training data.

7 Concluding Remarks

In this paper we have presented a new methodology for the classification of
multi-class imbalanced data-sets using a combination of pairwise learning and
preprocessing of instances. This methodology divides the original problem into
binary-class subsets which are rebalanced using the SMOTE algorithm when the
IR between the corresponding classes is higher than a threshold.

We have tested the quality of this approach using the FH-GBML algorithm,
a linguistic FRBCSs, for which the experimental results support the goodness
of our methodology as it generally outperforms the basic and pairwise learning
multi-classifier approach.
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6. Fernández, A., Garćıa, S., del Jesus, M.J., Herrera, F.: A study of the behaviour
of linguistic fuzzy rule based classification systems in the framework of imbalanced
data–sets. Fuzzy Sets and Systems 159(18), 2378–2398 (2008)

7. Fernández, A., del Jesus, M.J., Herrera, F.: On the 2-tuples based genetic tuning
performance for fuzzy rule based classification systems in imbalanced data-sets.
Information Sciences 180(8), 1268–1291 (2010)

8. Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of fuzzy GBML ap-
proaches for pattern classification problems. IEEE Transactions on System, Man
and Cybernetics B 35(2), 359–365 (2005)

9. Asuncion, A., Newman, D.: UCI machine learning repository. University of Cali-
fornia, Berkeley (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

10. Hand, D.J., Till, R.J.: A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning 45(2), 171–186 (2001)
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Abstract. We present some probabilistic rough set approaches to or-
dinal classification with monotonicity constraints, where it is required
that the class label of an object does not decrease when evaluation of
this object on attributes improves. Probabilistic rough set approaches
allow to structure the classification data prior to induction of decision
rules. We apply sequential covering to induce rules that satisfy consis-
tency constraints. These rules are then used to make predictions on a
new set of objects. After discussing some interesting features of this type
of reasoning about ordinal data, we perform an extensive computational
experiment to show a practical value of this proposal which is compared
to other well known methods.

1 Introduction

Rough set analysis of classification data is a useful step preceding the learning of
a classifier. It checks the data for possible inconsistencies by calculation of lower
approximations of considered sets of objects. Due to this type of data structuring,
one may restrict a priori the set of objects on which the classifier is learned to
a subset of sufficiently consistent objects belonging to lower approximations.
This restriction is motivated by a postulate for learning from consistent data, so
that the gained knowledge is relatively certain. Rough set analysis also enables
estimation of the attainable training error before learning of the classifier.

The original Rough Set Approach proposed by Pawlak [12] deals with clas-
sification data which are not considered to be ordered. In this case, the data
structuring is possible using the rough set concept involving an indiscernibility
relation. This is why we call the original approach Indiscernibility-based Rough
Set Approach (IRSA). Ordinal classification with monotonicity constraints con-
sidered in this paper requires, however, a structuring tool which would handle
the ordered domains of attributes and a monotonic relationship between evalua-
tions of objects on the attributes and the assignment of these objects to ordered
decision classes. This tool has been proposed by Greco, Matarazzo and Słowiński
[9,14] and called Dominance-based Rough Set Approach (DRSA), since it uses
the rough set concept involving a dominance relation. Both in IRSA and in
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DRSA, the approximations are built using granules of knowledge, which are ei-
ther indiscernibility classes (IRSA) or dominance cones (DRSA). In IRSA and
DRSA, granules of knowledge have to be consistent, which appears to be too
restrictive in practical applications. Therefore, different versions of probabilistic
rough set approaches (for IRSA and DRSA) were proposed (see [4] for review). In
this paper, we rely on the monotonic Variable Consistency DRSA (VC-DRSA)
introduced in [4]. We use various object consistency measures to quantify the
evidence for membership of an object to a set.

The rule induction algorithm co-operating with VC-DRSA is called VC-
DomLEM. It induces a minimal set of probabilistic decision rules, by sequential
covering [8,10] of training objects structured by VC-DRSA. In other words, it
generalizes the description of objects contained in probabilistic lower approxi-
mations obtained by variable consistency rough set approaches. To control the
quality of the rules, we use three different rule consistency measures. They have
the same properties as corresponding object consistency measures used for def-
inition of probabilistic lower approximations. Classification of objects by the
induced rules is made using the classification scheme described in [2].

This paper is organized as follows. In Section 2, we remind basic definitions of
DRSA and VC-DRSA. In Section 3, we describe characteristics and properties
of decision rules. In Section 4, we present VC-DomLEM algorithm. Section 5
contains results of an experiment in which we compared classifiers based on
VC-DomLEM to other well known classifiers. Section 6 concludes the paper.

2 Basic Definitions of Rough Set Approaches

Data analyzed by Dominance-based Rough Set Approach (DRSA) [9,14] concern
a finite universe U of objects described by attributes from a finite set A. It has the
form of a decision table, where rows correspond to objects from U and columns
correspond to attributes from A. Attributes with preference-ordered value sets
are called criteria, while attributes whose value sets are not preference-ordered
are called regular attributes. Moreover, set A is divided into disjoint sets of
condition attributes C and decision attributes D. The value set of attribute

q ∈ C ∪D is denoted by Vq, and VP =
|P |∏
q=1

Vq is called P -evaluation space, where

P ⊆ C. For simplicity, we assume that set D is a singleton D = {d}, and that
values of d are ordered class labels. Decision attribute d makes a partition of set
U into a finite number of n disjoint sets of objects, called decision classes. We
denote this partition by X = {X1, . . . , Xn}.

When among condition attributes from C there is at least one criterion, and
there exists a monotonic relationship between evaluation of objects on criteria
and their values (class labels) on the decision attribute, then, in order to make a
meaningful representation of classification decisions, one has to consider the dom-
inance relation in the evaluation space. For each object y ∈ U , two dominance
cones are defined with respect to (w.r.t.) P ⊆ C. The P -positive dominance
cone D+

P (y) is composed of objects that for each qi ∈ P are not worse than
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y. The P -negative dominance cone D−
P (y) is composed of objects that for each

qi ∈ P are not better than y. The class labels are ordered, such that if i < j,
then class Xi is considered to be worse than Xj. The approximations concern
unions of decision classes: upward unions X≥

i =
⋃

t≥i Xt, where i = 2, 3, . . . , n,
and downward unions X≤

i =
⋃

t≤i Xt, where i = 1, 2, . . . , n− 1.
In order to simplify notation, we will use symbol X to denote a set of objects

belonging to union of classes X≥
i or X≤

i , unless it would lead to misunderstand-
ing. Moreover, we will use symbol EP (y) to denote any granule D+

P (y) or D−
P (y),

y ∈ U . If X and EP (y) are used in the same equation, then for X representing
X≥

i (resp. X≤
i ), EP (y) stands for dominance cone D+

P (y) (resp. D−
P (y)).

Probabilistic rough set approaches aim to extend lower approximation of set
X by inclusion of objects with sufficient evidence for membership to X . This
evidence can be quantified by object consistency measures.

Let us give a generic definition of probabilistic P -lower approximation of set
X . For P ⊆ C, X ⊆ U, y ∈ U , given a gain-type (resp. cost-type) object consis-
tency measure ΘP

X(y) and a gain-threshold (resp. cost-threshold) θX , the P -lower
approximation of set X is defined as:

P θX (X) = {y ∈ X : ΘP
X(y) ∝ θX}, (1)

where ∝ denotes ≥ in case of a gain-type object consistency measure and a gain-
threshold, or ≤ for a cost-type object consistency measure and a cost-threshold.
In the above definition, θX ∈ [0, AX ] is a technical parameter influencing the
degree of consistency of objects belonging to lower approximation of X .

The definition of P -upper approximation, as well as that of P -boundary of set
X , given in [4], are not relevant here. In [4], we also introduced and motivated
four monotonicity properties required from object consistency measures used in
definition (1); they were denoted by (m1), (m2), (m3), and (m4).

Let us remind definitions of positive, negative and boundary regions of X in
the evaluation space ([3]). First, let us note that each set X has its complement
¬X = U −X . P -positive region of X in P -evaluation space is defined as:

POSθX

P (X) =
⋃

y∈PθX (X)

EP (y), (2)

where θX comes from (1). Basing on definition (2), we can define P -negative and
P -boundary regions of the approximated set as follows:

NEGθX

P (X) = POSθX

P (¬X)− POSθX

P (X), (3)

BNDθX

P (X) = U − POSθX

P (X)−NEGθX

P (X). (4)

A classifier learned on P -lower approximations may correctly assign object y ∈
Xi to class Xi if y belongs to the P -positive region of X≥

i or X≤
i .

Let P ⊆ C, θX = {θ
X≤

1
, . . . , θ

X≤
n−1

, θ
X≥

2
, . . . , θ

X≥
n
}. The following two mea-

sures estimate the attainable training error of the classifier. The first measure
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estimates the ratio of training objects in the data table that may be learned by
the classifier:

λθX

P (X ) =

∣∣X1 ∩ POS
θ

X
≤
1

P (X≤
1 )
∣∣

|U | + (5)

+
⋃n−1

i=2

∣∣Xi ∩ (POS
θ

X
≥
i

P (X≥
i ) ∪ POS

θ
X

≤
i

P (X≤
i ))
∣∣

|U | +

∣∣Xn ∩ POS
θ

X
≥
n

P (X≥
n )
∣∣

|U | .

The second measure estimates the average minimal absolute difference between
index of the class to which a training object may be assigned and index of the
class to which the object belongs. For i : yj ∈ Xi,

δθX

P (X ) =
1
|U |

|U|∑
j=1

min
k : yj∈POS

θ
X

≥
k

P (X≥
k )∨ yj∈POS

θ
X

≤
k

P (X≤
k )

|i− k|. (6)

Finally, let us recall definitions and monotonicity properties of object consis-
tency measures which will be used in definition (1). The first object consistency
measure that we consider is a cost-type measure εP

X(y). For P ⊆ C, X,¬X ⊆ U ,
it is defined as:

εP
X(y) =

|EP (y) ∩ ¬X |
|¬X | . (7)

As proved in [4], this measure has properties (m1), (m2) and (m4).
The second object consistency measure is a cost-type measure ε

′P
X (y). For

P ⊆ C, X,¬X ⊆ U , y ∈ U , it is defined as:

ε
′P
X (y) =

|EP (y) ∩ ¬X |
|X | . (8)

As proved in [4], this measure has all four desirable monotonicity properties.
The third object consistency measure is a gain-type measure μ

′P
X (y) intro-

duced in [3]. For P ⊆ C, X≥
i , X≤

i ⊆ U , y ∈ U , measures μ
′P
X≥

i

(y) and μ
′P
X≤

i

(y)

are defined as:

μ
′P
X≥

i

(y) = max
z∈D−

P (y)∩X≥
i

μP
X≥

i

(z), μ
′P
X≤

i

(y) = max
z∈D+

P (y)∩X≤
i

μP
X≤

i

(z), (9)

where μP
X(z) = |EP (z)∩X|

|EP (z)| denotes rough membership of object z ∈ U to union of
classes X ⊆ U , w.r.t. set P ⊆ C. Measure μP

X(y) has properties (m2) and (m3),
but it lacks properties (m1) and (m4) [4], while measure μ

′P
X (y), has properties

(m2), (m3), and (m4), but it lacks property (m1) [3].

3 Characteristics and Properties of Decision Rules

In VC-DRSA, we consider decision rules of the following type:

qi1(y) $ ri1 ∧ . . . ∧ qip(y) $ rip ∧ qip+1(y) = rip+1 ∧ . . . ∧ qiz (y) = riz ⇒ y ∈ X≥
i ,

qi1(y) � ri1 ∧ . . . ∧ qip(y) � rip ∧ qip+1(y) = rip+1 ∧ . . . ∧ qiz (y) = riz ⇒ y ∈ X≤
i ,
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where i ∈ {i1, i2, . . . , ip} is a criterion index, i ∈ {ip+1, ip+2, . . . , iz} is a regular
attribute index, rq ∈ Vq, and symbols $ and � denote weak preference w.r.t.
single criterion and inverse weak preference, respectively.

Let us denote by rθ̂X

X ∈ Rθ̂X

X a rule with conclusion y ∈ X , and with value
of rule consistency measure Θ̂ not worse than threshold θ̂X . The premise of
this rule is denoted by Φ

r
θ̂X
X

, while its conclusion by Ψ
r

θ̂X
X

. The set of objects

satisfying the premise is denoted by ‖Φ
r

θ̂X
X

‖. We consider three rule consistency
measures:

ε-consistency of rθ̂X

X : ε(rθ̂X

X ) =

∣∣‖Φ
r

θ̂X
X

‖ ∩ ¬P θX (X)
∣∣

|¬P θX (X)| , (10)

ε′-consistency of rθ̂X

X : ε′(rθ̂X

X ) =

∣∣‖Φ
r

θ̂X
X

‖ ∩ ¬P θX (X)
∣∣

|P θX (X)| , (11)

μ-consistency of rθ̂X

X : μ(rθ̂X

X ) =

∣∣‖Φ
r

θ̂X
X

‖ ∩ P θX (X)
∣∣∣∣‖Φ

r
θ̂X
X

‖∣∣ , (12)

where θ̂X = |¬X|
|¬P θX (X)|θX in definition (10), θ̂X = |X|

|P θX (X)|θX in definition (11),

and θ̂X = θX in definition (12). ε-consistency (ε′-consistency) measure is related
to cost-type object consistency measure defined by (7) (resp. (8)). μ-consistency
measure is related to gain-type rough membership measure used in definition
(9). The above rule consistency measures inherit the monotonicity properties
from the corresponding object consistency measures.

We expect decision rules to be short and minimal. A rule is minimal in set R,
if there is no other rule r′ ∈ R with not less general premise and not less specific
conclusion. Moreover, set Rθ̂X

X of rules with conclusion y ∈ X has to be complete,
which in our case means that each object y ∈ P θX (X) has to be covered by at
least one rule from Rθ̂X

X . Finally, each rule rθ̂X

X ∈ Rθ̂X

X should be non-redundant,
i.e., such that it cannot be removed without breaking the completeness of Rθ̂X

X .

4 Induction of Decision Rules by VC-DomLEM

VC-DomLEM algorithm uses a heuristic strategy called sequential covering
[10,8]. It induces a complete set of minimal and non-redundant decision rules R.
It operates at two levels. At the first level, in Algorithm 1, unions of classes
X ∈ X are considered one by one. For each X , set of rules Rθ̂X

X is induced
by the V C-SequentialCoveringmix method (line 4) – Algorithm 2. Each rule
rθ̂X

X ∈ Rθ̂X

X uses elementary conditions constructed for objects from P θX (X), on
attributes from set P . Value of chosen measure Θ̂, defined by (10), (11) or (12),
has to be not worse than given threshold value θ̂X . Moreover, rθ̂X

X is allowed
to cover only objects from set AOθX

P (X), calculated according to chosen option
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s ∈ {1, 2, 3} (line 3). We consider three options: 1) AOθX

P (X) = POSθX

P (X), 2)
AOθX

P (X) = POSθX

P (X) ∪BNDθX

P (X), and 3) AOθX

P (X) = U .
At the second level, in V C-SequentialCoveringmix method, rules for a given

set X are induced. The best elementary condition selected in line 7 is chosen
according to the following two quality measures considered lexicographically: 1)
rule consistency measure (10), (11) or (12) of rθ̂X

X extended by new elementary
condition ec, 2)

∣∣‖Φ
r

θ̂X
X ∪ec

‖ ∩ P θX (X)
∣∣. It is worth noting that, in general, it

is possible to add a new elementary condition on an attribute already present
in the rule. However, such condition is always redundant from the viewpoint
of ε-consistency (10) and ε′-consistency (11) measures; this allows to decrease
computational complexity by reducing EC in these cases [5]. Moreover, mea-
sures (10) and (11) allow for further reduction of EC, since they have property
(m4) [5]. Elementary conditions from set EC always come from objects that
support the growing rule (line 9). Elementary conditions that are not neces-
sary to satisfy constraints from line 6 are removed from the constructed rule
in line 11. Redundant rules are removed in an iterative procedure (line 15),
which uses the following measures considered lexicographically: 1) the smallest
value of

∣∣‖Φ
r

θ̂X
X

‖ ∩P θX (X)
∣∣, 2) the worst value of Θ̂(rθ̂X

X ). It can be shown that

V C-SequentialCoveringmix method with μ-consistency measure (12) may fail
to construct a rule satisfying constraints from line 6 [5]. This is caused by lack
of property (m4) of this measure. To overcome this problem, we define P -edge
regions of unions of classes X≥

i and X≤
i as follows. For P ⊆ C, X≥

i , X≤
i ⊆ U ,

y, z ∈ U , θ
X≥

i
∈ [0, A

X≥
i

], θ
X≤

i
∈ [0, A

X≤
i

]:

EDGE
θ

X
≥
i

P (X≥
i ) = {y ∈ P

θ
X

≥
i (X≥

i ) : z ∈ D−
P (y) ∩ P

θ
X

≥
i (X≥

i )⇒ z ∈ D+
P (y)},

EDGE
θ

X
≤
i

P (X≤
i ) = {y ∈ P

θ
X

≤
i (X≤

i ) : z ∈ D+
P (y) ∩ P

θ
X

≤
i (X≤

i )⇒ z ∈ D−
P (y)}.

Then, the proposed modification consists in using EDGEθX

P (X) instead of
P θX (X) in line 1 of V C-SequentialCoveringmix.

Algorithm 1. V C-DomLEM
Input : set X of upward unions of classes X≥

i ∈ U or downward unions of classes X≤
i ∈ U ;

set of attributes P ⊆ C; rule consistency measure Θ̂; set of rule consistency measure
thresholds {θ̂X : X ∈ X}; object covering option s.

Output: set of rules R.
R := ∅;1
foreach X ∈ X do2

AO
θX
P (X) := AllowedObjects(X, P, θX , s);3

R
θ̂X
X := V C-SequentialCoveringmix (P θX (X), AO

θX
P (X), P, Θ̂, θ̂X);4

R := R ∪ R
θ̂X
X ;5

RemoveNonMinimalRules(R);6
end7
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Algorithm 2. V C-SequentialCoveringmix

Input : set of positive objects P θX (X) ⊆ U ; set of objects that can be covered
AO

θX
P (X) ⊆ U , AO

θX
P (X) ⊇ P θX (X); set of attributes P ⊆ C; rule consistency

measure Θ̂; rule consistency measure threshold θ̂X .

Output: set of rules R
θ̂X
X assigning objects to X.

B := P θX (X);1

R
θ̂X
X := ∅;2

while B �= ∅ do3
r

θ̂X
X := ∅;4

EC := ElementaryConditions(B, P );5

while (Θ̂(rθ̂X
X ) does not satisfy θ̂X) or (‖Φ

r
θ̂X
X

‖ � AO
θX
P (X)) do

6
ec := BestElementaryCondition(EC, r

θ̂X
X , Θ̂, P θX (X));7

r
θ̂X
X := r

θ̂X
X ∪ ec;8

EC := ElementaryConditions(B ∩ support(rθ̂X
X ), P );9

end10

RemoveRedundantElementaryConditions(rθ̂X
X , Θ̂, θ̂X , AO

θX
P (X));11

R
θ̂X
X := R

θ̂X
X ∪ r

θ̂X
X ;12

B := B \ supp(rθ̂X
X );13

end14

RemoveRedundantRules(Rθ̂X
X , Θ̂, P θX (X));15

5 Results of the Computational Experiment

The aim of the experiment was to check what is the predictive accuracy of
the rough set approach in classification. To achieve this goal, we measured mean
absolute error (MAE) and the percentage of correctly classified objects (PCC) on
twelve ordinal data sets listed in Table 1. In this table, we also show the values of
λ (5) and δ (6), calculated on the whole data sets. For both measures, we present
values for the most restrictive consistency thresholds (i.e., ε∗X = 0, μ

′∗
X = 1), and

values calculated for the consistency thresholds used in the experiment. These
values can be compared to MAE and PCC obtained by the classifiers.

We considered VC-DomLEM1 [5] in two variants: monotonic (i.e., with consis-
tency measure ε [4]) and non-monotonic (i.e., with consistency measure μ′ [3]).
Moreover, we used two ordinal classifiers that preserve monotonicity constraints:
Ordinal Learning Model (OLM) [1] and Ordinal Stochastic Dominance Learner
(OSDL) [6]. We also used some well known non-ordinal classifiers: Naive Bayes,
Support Vector Machine (SVM) with linear kernel [13], decision rule classifier
RIPPER, and decision tree classifier C4.5.

The predictive accuracy was calculated by stratified 10-fold cross-validation,
which was repeated several times. The results are shown in Tables 2 & 3. Both
tables contain values of predictive accuracy together with their standard devia-
tion. Moreover, for each data set we calculated a rank of the result of a classifier
when compared to the other classifiers. The rank is presented in brackets (the
smaller the rank, the better). Last row of Tables 2 & 3 shows the average rank
1 See http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html

http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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Table 1. Characteristics of data sets, values of λ and δ measures for θ∗
X = ε∗X = 0,

θ∗
X = μ

′∗
X = 1, as well as for εX and μ′

X used to obtain results shown in Tables 2 & 3

λ
θ∗

X
C (X ) δ

θ∗
X

C (X ) εX λεX
C (X ) δεX

C (X ) μ′
X λ

μ′
X

C (X ) δ
μ′

X
C (X )

Table 2. Mean absolute error (MAE)

0.04536 (1) 0.04867 (2) 0.1146 (6) 0.1280 (7) 0.0489 (3) 0.0515 (4) 0.05528 (5) 0.1545 (8)
+
−0.001531 +

−0.000884 +
−0.01371 +

−0.001205 +
−0.00352 +

−0.005251 +
−0.001736 +

−0
0.2331 (1) 0.2436 (3) 0.2564 (4) 0.3217 (7) 0.2960 (5) 0.2424 (2) 0.324 (8) 0.3065 (6)
+
−0.003297 +

−0.007185 +
−0.005943 +

−0.01244 +
−0.01154 +

−0.003297 +
−0.01835 +

−0.001648
0.03720 (2) 0.04578 (6) 0.03958 (3) 0.03243 (1) 0.04483 (5) 0.05532 (7) 0.1764 (8) 0.04149 (4)
+
−0.002023 +

−0.003504 +
−0.0006744 +

−0.0006744 +
−0.004721 +

−0.00751 +
−0.00552 +

−0.001168
0.03421 (1) 0.03524 (2) 0.1757 (7) 0.08668 (4) 0.2029 (8) 0.1168 (6) 0.09156 (5) 0.04141 (3)
+
−0.0007275 +

−0.0009624 +
−0.002025 +

−0.002025 +
−0.01302 +

−0.003108 +
−0.005358 +

−0.0009624
0.08293 (1) 0.0925 (2) 0.1707 (5) 0.4386 (8) 0.1611 (4) 0.1196 (3) 0.3461 (7) 0.3158 (6)
+
−0.01479 +

−0.01579 +
−0.009832 +

−0.01579 +
−0.01372 +

−0.01790 +
−0.02744 +

−0.01034
0.1232 (1) 0.1289 (2.5) 0.1289 (2.5) 0.2129 (7) 0.1737 (6) 0.1653 (5) 0.2633 (8) 0.1541 (4)
+
−0.01048 +

−0.01428 +
−0.01428 +

−0.003961 +
−0.02598 +

−0.01048 +
−0.02206 +

−0.003961
1.307 (2) 1.364 (7) 1.325 (5) 1.318 (3) 1.681 (8) 1.326 (6) 1.321 (4) 1.280 (1)
+
−0.002055 +

−0.006018 +
−0.003771 +

−0.007257 +
−0.01558 +

−0.006018 +
−0.01027 +

−0.00704
0.3702 (3) 0.4146 (5) 0.3456 (2) 0.4262 (6) 0.4296 (7) 0.3736 (4) 0.474 (8) 0.3422 (1)
+
−0.01352 +

−0.005112 +
−0.003864 +

−0.01004 +
−0.01608 +

−0.01089 +
−0.01114 +

−0.005019
0.3406 (1.5) 0.3469 (3) 0.4829 (6) 0.3406 (1.5) 0.3991 (5) 0.3863 (4) 1.577 (7) 1.592 (8)
+
−0.001878 +

−0.004 +
−0.002906 +

−0.001775 +
−0.003195 +

−0.005253 +
−0.03791 +

−0.007555
0.4813 (6) 0.5187 (7) 0.475 (5) 0.4457 (4) 0.4277 (3) 0.426 (2) 0.615 (8) 0.4033 (1)
+
−0.004028 +

−0.002867 +
−0.004320 +

−0.003399 +
−0.00838 +

−0.01476 +
−0.0099 +

−0.003091
0.454 (4) 0.4857 (7) 0.475 (6) 0.4503 (2) 0.452 (3) 0.4603 (5) 0.5707 (8) 0.433 (1)
+
−0.004320 +

−0.005249 +
−0.004320 +

−0.002867 +
−0.006481 +

−0.004497 +
−0.007717 +

−0.002160
0.5024 (1) 0.5201 (3) 0.5488 (4) 0.5891 (6) 0.6825 (8) 0.652 (7) 0.5757 (5) 0.5153 (2)
+
−0.006226 +

−0.003956 +
−0.005662 +

−0.02101 +
−0.03332 +

−0.03721 +
−0.006044 +

−0.006044
2.04 4.12 4.62 4.71 5.42 4.58 6.75 3.75

obtained by a given classifier. Moreover, for each data set, the best value of the
predictive accuracy, as well as values included in the standard deviation of the
best one, are marked in bold.

We applied Friedman test to globally compare performance of eight different
classifiers on multiple data sets [7]. The null-hypothesis in this test was that
all compared classifiers perform equally well. We analyzed the ranks from Ta-
bles 2 & 3. The p-values in Friedman test were 0.00017 and 0.00018, respectively.
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Table 3. Percentage of correctly classified objects (PCC)

95.46 (1) 95.13 (2) 88.54 (6) 87.2 (7) 95.11 (3) 94.85 (4) 94.47 (5) 84.55 (8)
+
−0.1531 +

−0.0884 +
−1.371 +

−0.1205 +
−0.352 +

−0.5251 +
−0.1736 +

−0
76.69 (1) 75.64 (3) 74.36 (4) 67.83 (7) 70.4 (5) 75.76 (2) 67.6 (8) 69.35 (6)
+
−0.3297 +

−0.7185 +
−0.5943 +

−1.244 +
−1.154 +

−0.3297 +
−1.835 +

−0.1648
96.28 (2) 95.42 (6) 96.04 (3) 96.76 (1) 95.52 (5) 94.47 (7) 82.36 (8) 95.85 (4)
+
−0.2023 +

−0.3504 +
−0.06744 +

−0.06744 +
−0.4721 +

−0.751 +
−0.552 +

−0.1168
97.15 (1) 97.1 (2) 84.72 (7) 92.18 (4) 84.41 (8) 89.84 (6) 91.72 (5) 96.53 (3)
+
−0.063 +

−0.1311 +
−0.1667 +

−0.2025 +
−1.309 +

−0.1819 +
−0.4425 +

−0.063
91.7 (1) 90.75 (2) 83.41 (5) 56.62 (8) 84.69 (4) 88.52 (3) 68.58 (7) 72.41 (6)
+
−1.479 +

−1.579 +
−0.9832 +

−1.579 +
−1.409 +

−1.409 +
−2.772 +

−1.479
87.68 (1) 87.11 (2.5) 87.11 (2.5) 78.71 (7) 82.63 (6) 83.47 (5) 73.67 (8) 84.6 (4)
+
−1.048 +

−1.428 +
−1.428 +

−0.3961 +
−2.598 +

−1.048 +
−2.206 +

−0.3961
26.9 (2) 22.17 (7) 25.03 (3) 24.27 (5) 20 (8) 27.83 (1) 23.97 (6) 24.7 (4)
+
−0.3742 +

−0.1247 +
−0.2494 +

−0.2494 +
−0.4243 +

−0.4028 +
−0.4643 +

−0.8165
66.73 (3) 62.43 (6) 67.49 (2) 62.7 (5) 61.61 (7) 66.33 (4) 55.46 (8) 68.3 (1)
+
−1.256 +

−1.139 +
−0.3483 +

−0.6693 +
−1.555 +

−0.6966 +
−0.7545 +

−0.3483
67.55 (1) 67.1 (2.5) 56.22 (6) 67.1 (2.5) 63.55 (5) 64.33 (4) 27.43 (7) 22.04 (8)
+
−0.4642 +

−0.4032 +
−0.2328 +

−0.2217 +
−0.5635 +

−0.5844 +
−0.7179 +

−0.128
55.63 (6) 52.73 (7) 56.17 (5) 58.87 (4) 60.83 (2) 60.73 (3) 45.43 (8) 63.03 (1)
+
−0.3771 +

−0.17 +
−0.3399 +

−0.3091 +
−0.6128 +

−1.271 +
−0.8179 +

−0.2625
56.43 (6) 52.8 (7) 56.57 (5) 58.23 (2) 57.63 (3) 57.1 (4) 47.83 (8) 58.6 (1)
+
−0.4643 +

−0.4320 +
−0.4784 +

−0.2055 +
−0.66 +

−0.4320 +
−0.411 +

−0.4243
54.58 (2) 53.05 (4) 53.6 (3) 51.83 (5) 44.08 (8) 47.99 (7) 49.15 (6) 55.37 (1)
+
−0.7913 +

−1.349 +
−0.2284 +

−1.813 +
−0.8236 +

−2.888 +
−0.7527 +

−0.3763
2.25 4.25 4.29 4.79 5.33 4.17 7 3.92

These results and observed differences in average ranks allowed us to conclude
that there is a significant difference between compared classifiers.

We checked significance of difference in predictive accuracy for each pair of
classifiers. We applied Wilcoxon test [11] with null-hypothesis that the medians
of results on all data sets of the two compared classifiers are equal. First, we
applied this test to MAE from Table 2. We observed significant difference (p-
values lower than 0.05) between monotonic VC-DomLEM and any other classifier
except OSDL. The same was true for the following pairs: non-monotonic VC-
DomLEM and OLM, Naive Bayes and OLM, C4.5 and RIPPER, C4.5 and OLM,
OSDL and OLM. Then, we applied Wilcoxon test to results from Table 3. We
observed significant difference between monotonic VC-DomLEM and any other
classifier except C4.5 and OSDL. The same was true for following pairs: non-
monotonic VC-DomLEM and OLM, Naive Bayes and OLM, RIPPER and OLM,
C4.5 and RIPPER, C4.5 and OLM, OSDL and OLM.

Finally, we compared the values from Tables 2 & 3 to the values of δ and
λ presented in Table 1. Remember that MAE and PCC were calculated by
averaged 10-fold cross validation, while δ and λ were calculated on the whole
data sets. Nevertheless, we can observe that these measures are, in general,
concordant. Moreover, using δ and λ, we can identify the data sets which are
highly inconsistent and thus hard to learn (e.g., ERA). It can also be seen that
some classifiers performed better than the values of δ and λ. This means that
they overcame inconsistencies in the data.
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6 Conclusions

We have shown that variable consistency rough set approaches to ordinal classifi-
cation with monotonicity constraints enjoy very good properties. The junction of
these approaches with induction of decision rules by sequential covering results in
classifiers which show usually better predictive accuracy than their competitors.
Using twelve benchmark data sets, we have shown that monotonic VC-DomLEM
classifier has the best average rank for two predictive accuracy measures used to
assess the results.
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Abstract. In this paper we propose a web document classification ap-
proach based on an extended version of Probabilistic Relational Models
(PRMs). In particular PRMs have been augmented in order to include
uncertainty over relationships, represented by hyperlinks. Our extension,
called PRM with Relational Uncertainty, has been evaluated on real data
for web document classification purposes. Experimental results shown
the potentiality of the proposed model of capturing the real semantic
relevance of hyperlinks and the capacity of embedding this information
in the classification process.

Keywords: Probabilistic Relational Models, Relational Uncertainty,
Web Page Classification.

1 Introduction

It is well known that web page classification can be improved by exploiting the
structural information provided by hyperlinks. However, hyperlinks are usually
sparse, noisy and thus in many situations can only provide limited help. Several
contextual classification approaches have been proposed in order to opportunely
exploite the link structure underlying a set of web documents [8][7] [6]. In [8] the
authors provide an approach for automatically identifying those links that are
not explicit in the web structure, but can be implicitly inferred by extracting
them from the analysis of web query logs. All extracted hyperlinks are then
included within the method known as Classification by Linking Neighbors. In
[7] a link-based model, based on a logistic regression approach, is introduced for
modelling both the link distributions and the attributes of linked documents.
In [6] URLs of hyperlinks are segmented into meaningful chunks and, togheter
with theri sequential and orthographic features, are added to a Support Vector
Machines model.

However, all these approaches assume that all the links have the same impor-
tance during the induction of a given inference model. In this paper we propose
a contextual classification approach which takes into account the semantic im-
portance of hyperlinks by enhancing a statistical relational approach known as
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Probabilistic Relational Model (PRM). Probabilistic Relational Models are a rich
representation language, used to combine relational representation with proba-
bilistic directed graphical models. PRMs conceptually extend Bayesian Networks
in order to incorporate the relational structure during learning and inference pro-
cesses. From a high level point of view, PRMs specify a probability model over
attributes of interrelated objects rather then over features of propositional sam-
ples. Their ability of reasoning in relational domains can be exploited in order
to address the web page classification problem.

The simplest form of PRMs was introduced by Friedman in [2]. In order
to describe PRMs, we need to introduce their key components: (1) a relational
schema S; (2) a dependency structure DS over attributes, with the corresponding
CPDs; (3) a joint probability distribution P .

The relational schema S defines the structure of the relational data, with
a set of entities Ei and reference slots r. Two important components can be
derived by the relational schema: (a) a relational skeleton σS defined as a partial
specification of the schema, where objects and reference slots are specified, while
attribute values are left unknown and (b) a schema completion I which specifies
the objects eit that instantiate entities Ei and the relationships r existing among
them. A completion I specifies therefore a value for each attribute eit.A and a
value for each reference slot eit.r.

The dependency structure DS over the attributes of the schema, is usually
defined by exploiting the same assumption of Bayesian Networks. This means
that each variable in a PRM, i.e. attribute Ei.A of an entity belonging to a rela-
tional schema S, is directly influenced by only few others. Indeed, PRMs define
for each attribute Ei.A a set of parents Pa(Ei.A) that provides direct influences
on it. Having a dependency structure that establish causal relationships between
entity attributes, a conditional probability distribution (CPD) is associated to
each node of the network.

The final key component of PRMs is represented by the joint probability dis-
tribution P , defined over the relational model. In particular, given a relational
skeleton σS the joint probability distribution over all completions of the rela-
tional schema S can be computed as:

P (I|σS , DS) =
∏

eit∈σS(Ei)

∏
A∈A(eit)

P (eit.A|Pa(eit.A)) (1)

The main goal of PRMs is to define a distribution over relational data, i.e. a
distribution over possible completions of the relational schema that are consis-
tent with the relational skeleton. This joint probability distribution needs to be
computed by considering a given relational skeleton σS , which specifies those
objects that we have to consider in order to infer a given variable value. In or-
der to explicitly use all the objects which are related to a given variable during
the inference process, a PRM induces a Unrolled Bayesian Network. In order
to derive a coherent probability distribution the dependency structure on the
unrolled Bayesian Network is required to be acyclic [3].

An interesting remark about PRMs is concerned with the relational structure:
classical PRMs assume that, for inferring variable distributions, the skeleton σS
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must be fixed and certain they do not provide a probabilistic model of relation-
ships between objects. This assumption limits the use of PRMs to those domains
in which the relationships between objects, i.e. the reference slots, are certain
and fixed in advance. These challenges have been addressed in the literature by
investigating PRMs with Structural Uncertainty [4]. Two extension of PRMs
have been proposed: Reference Uncertainty and Existence Uncertainty.

PRMs with Reference Uncertainty are a form of PRMs able to deal with those
domains in which the existence of reference slots are uncertain, but the number
of related objects is known. This model specifies a relational skeleton σo in which
each object that instantiates a entity is given and creates a probabilistic model
for the value (true or false) of each reference slot eit.r ∈ σo. For more details refer
to [3]. PRMs with Existence Uncertainty are a form of PRMs where not only the
existence of reference slots is uncertain, but also the number of related objects
is unknown. In order to manage this kind of uncertainty over the relational
structure, all the objects that potentially exist into the model are considered.
Then a special binary attribute, called exists variable, is introduced in order to
model the existence of a relationship between two potential objects. For more
details about PRMs with Existence Uncertainty refer to [5]. Getoor et al. used
PRMs with Existence Uncertainty in order to address the classification problem.
They assert that while we know the set of web pages, we may be uncertain
about which web pages link to each other and thus we have uncertainty over the
existence of a link. In their model links may or may not exist, and therefore they
are modelled by a binary random variable.

In this paper we want to consider not only the existence of a link, but also if the
link is an expression of a semantic coherence between linked pages: in some cases
a link can positively contribute to the inference process, while in some other cases
a link could only add noise. For example the link from a page speaking about
football to a page for the pdf reader download assumes less importance than a link
between two football web pages. In this direction, in which a relation between two
objects can be represented by a probabilistic connection, we propose a further
extension of PRMs named PRM with Relational Uncertainty. In order to consider
the semantic value of each link we need to extend PRM in order to account for the
relational uncertainty, i.e. relation between documents are modelled as continuos
random variables whose value represent the semantic coherence between linked
pages.

The outline of the paper is the following. In Section 2 our extension of PRMs,
focused on web document classification purposes, is presented in order to model
the uncertainty over the relational structure. In Section 3 an experimental evalu-
ation, that includes a comparison with Bayesian Networks and available PRMs,
is conducted on a real case-study. Finally, in Section 4 conclusions are derived.

2 Probabilistic Relational Models with Relational
Uncertainty

The probability model provided by traditional PRMs, as mentioned above, have
a limitation over the relational structure: uncertainty over relationships is not
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admitted and therefore parent attributes have the same impact on inferring child
distribution.

PRMs with Relational Uncertainty, called PRMs/RU, are a form of PRMs
able to deal with domains in which the existence of a reference slot is known, but
the relationships that they model could assume different degrees of “strength”.
That is probabilistic relationships are introduced in PRMs in order to model the
“strength” of relationships between two related objects.

Consider for instance the inference process for the simplified unrolled citation
graph reported in Figure 1. We can state that the attribute p7.topic depends on
its internal parent p7.author and on its external related parent attribute p9.topic.
If we consider the evidence that the cited paper p9 is about math, i.e. p9.math,
our expectation in traditional PRM about p7.topic likely tends to the same topic.
However, if we consider the “strength” of this relationship our expectation could
change. If we know that p9 is not cited for related aspects, and therefore there

Fig. 1. Toy Example of PRMs/RU

exists a weak relationship, we could smooth our expectation accordingly. The
reasoning about the citation graph is applicable also to the web domain: the
topic of a web page could be inferred by considering the topic of related pages
and by taking into account the “strength” of their relationships.

Thus, we can intuitively think at PRMs with Relational Uncertainty as a proba-
bilistic graphical model in which the local distribution of an attribute is influenced
not only by attributes of its related parents but also by the “strength” of their re-
lationships. In order to describe PRMs/RU, we need to provide a new definition of
(1) the relational schema, (2) the dependency structure over attributes with the
associated set of parameters, (3) the joint probability distribution.

2.1 Relational Schema

In order to model the relational uncertainty we include in the relational schema
Support Entities that explicitly model probabilistic relationships between cou-
ple of related objects. This extended schema is called probabilistic skeleton σP
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Each support entity contains: two reference slots for identifying two linked doc-
uments (origin and destination), and one artificial relationship attribute, that
represents the probabilistic relationship holding between two related objects.

A simple example of probabilistic relational skeleton for the web domain is
depicted in Figure 2(a), where objects di belong to the standard entity Docu-
ment, objects lij belong to the support entity Link and the uncertain relationship
between document is denoted by the uncRel attribute.

(a) (b)

Fig. 2. Components of PRM derived from the relational schema

In PRMs/RU a schema completion I∗ specifies the value for each attribute
belonging to standard entity, the value for each attribute belonging to sup-
port entity and the two reference slots. In particular, a schema completion I∗

for the web domain specifies reference slots lij .origin and lij .destination, the
value of each object attribute, i.e. document category di.class, and the value of
probabilistic relationship lij .uncRel. (See Figure 2(b)). In order to measure the
uncertainty over the web we used the procedure proposed in [1]. In particular,
we identified those semantic portion of a web page containing a hyperlink and
we evaluated its coherence with respect to the origin and the destination pages.

2.2 Dependency Structure and CPDs

In the dependency structure DP of a PRM/RU an edge from each support
entity or at least one attribute of its related entities must be ensured. This means
that we introduce a node for the descriptive attribute Document.class, and a node
for the artificial relationship variable Link.uncRel. We introduce at entity level an
edge from Document.class to itself in order to model the dependency between
the category label of an origin document and the category label of adjoining
destination documents. Moreover, an edge from Link.uncRel to Document.class
is stated in order to take into account, during learning and inference process,
probabilistic relationships between related documents. This dependency model
is reported in Figure 3. Having a dependency structure that establishes causal
relationships between attributes, conditional probability distributions can be
estimated for each node of the network.
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Fig. 3. Dependency structure of PRMs/RU

Conditional probability distribution in PRMs/RU can be computed as for
traditional PRMs, because probabilistic relationships are modelled as attributes
of (support) entities. The CPDs, can be estimated directly on relational data.
Also in this case, since CPDs are defined at entity level, they can be shared by
all objects that instantiate a given entity.

2.3 Joint Probability Distribution

A PRM/RU Φ∗ for a relational schema S is defined as a probabilistic graphical
model. In particular, PRMs/RU define, as well as traditional PRMs, a joint
probability distribution over all completion of the relational schema σP .

In order to explicitly use specific objects during the inference process, PRM/RU
induces an Unrolled Bayesian Network. However, to obtain a coherent probability
model this Unrolled Bayesian Network must be acyclic and this cannot be always
ensured.

For example, in the web domain the acyclicity requirement is not guaranteed.
If we state the web dependency model presented in Figure 3, in which the cat-
egory of a web page depends on the category of its adjoining documents, the
corresponding Unrolled Bayesian Network could generate cycles as depicted in
Figure 4(a). Moreover, the probabilistic relationship, as pointed out in section
2.1, can be asymetric. Indeed the link strength from di to dj can have a different
value that from dj to di. In order to deal with relational uncertainty and to elim-
inate graph cycles, a new unrolling procedure based on model decomposition is
proposed.

Model Decomposition. The basic idea of dealing with probabilistic relation-
ships and cyclic dependencies is to create a set of unrolled acyclic sub-networks
stem from the cyclic one. This model decomposition, that starts from an unrolled
Bayesian Network B, remove cycles through the following procedure:

– each attribute eit.A that is involved into a cycle is splitted into eit.A[in] and
eit.A[out], which are placed into the set of nodes Nin and Nout respectively.

– each attribute eit.A (also comprising that ones belonging to support entities)
which is not involved into a cycle is mapped into a node eit.A[ac] and placed
into a set of nodes Nac
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(a) (b)

Fig. 4. Unrolled PRMs/RU

– an edge from emp.A[out] to eit.A[in] is established only if there exists an
edge in B from emp.A to eit.A

– an edge from emp.A[ac] to eit.A[in] is established only if there exists an edge
in B from emp.A to eit.A

– an edge from emp.A[ac] to eit.A[ac] is established only if there exists an edge
in B from emp.A to eit.A

At the end of this procedure we obtain a set β of N sub-networks Bx that are
acyclic by construction. In our web example, from network B shown in Figure
4(a), we derived the sub-networks B1 and B2 depicted in Figure 4(b).

Given a relational skeleton σP the joint probability distributions for any re-
lational skeleton I∗ can be computed over each sub-network Bx as follows:

P (I∗|σP , Bx) =
∏

eit.A∈Bx

P (eit.A|Pa(eit.A)) (2)

A complete joint probability distribution for the PRM/RU Φ∗ is therefore defined
as:

P (I∗|σP , β) =
N∑

x=1

P (I∗|σP , Bx)
N

. (3)

3 Experimental Investigation

PRM/RU has been evaluated comparing its accuracy to that one obtained by
benchmarks models available in the literature: Bayesian Networks and PRM with
Existence Uncertainty. Our experimental investigation starts from a dataset con-
struction step, in which about 10000 web pages from popular sites listed in 5
categories of Yahoo! Directories (http://dir.yahoo.com/) are downloaded. See
table 1. The main goal is to infer the class label (topic) of a document di by
considering the class label of adjoining documents and the “strength” of their
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Table 1. Dataset Features

Category # of document

Art & Humanities 3280

Science 2810

Health 1740

Recreation & Sports 1250

Society & Culture 960

relationships. In particular, the dependency model depicted in Figure 3 and the
corresponding acyclic Bx and By unrolled networks are constructed.

The Accuracy metric, which estimates the number of elements correctly clas-
sified, is used to evaluate the classification performance. Given the documents
belonging to the collection reported in Table 1, the accuracy (Acc) is estimated
as follows:

Acc =
number of documents successfully classified

total number of documents
(4)

Since Bayesian Networks are not suitable for relational data, a “flattening”
procedure has been performed in order to reduce the document dataset into a
propositional form. A propositional representation for relational data could be
obtained by fixing the feature space and by mapping multiple feature values into
a single one. For our experimental investigation, the feature space is defined by
setting originClass and destinationClass features. Since a destination document
dj could be linked by several origin documents di, the value of the destination-
Class feature could depend on more than one originClass value. For this reason,
we choose the most frequent originClass value with respect to each destination-
Class. For example if a document is linked by two documents about Health and
one document about Science, the Health value is chosen for representing the
originClass.

The second benchmark predictive model used in this experimental investiga-
tion is PRM with Existence Uncertainty. This model, in which the existence or
the absence of a relationship is modelled by the exists binary variable, will be
called PRM/EU.

In Figure 5 the classification performance comparison on web relational data
is reported: PRMs with relational uncertainty outperforms, in terms of accu-
racy, the benchmarks algorithms. We can see that PRMs have in general better
performance than BNs. Moreover, we can note that the potential of PRMs/RU
and PRMs/EU of capturing the real “strength” of a relationship between two
linked documents and the capacity of including this “strength” into the proba-
bility model can improve the models predictive power. Finally we can see that
the continuous version of PRMs/EU, although able to consider the link strengh,
seem to loose some information: the main limitation is the use of a single variable
to model structural uncertainty.
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Fig. 5. Performance comparison on web relational data

4 Conclusion

In this paper one of the most promising model able to deal with uncertainty
over relational data, known as Probabilistic Relational Model, has been inves-
tigated and extended. In particular, Probabilistic Relational Models with Rela-
tional Uncertainty have been proposed in order to deal with domains in which
the relationships between objects could assume different degrees of “strength”.
Probabilistic Relational Models with Relational Uncertainty have been experi-
mentally investigated for web document classification purposes. The proposed
models have been compared, in terms of classification accuracy, with Bayesian
Networks and Probabilistic Relational Models with Existence Uncertainty. The
experimental investigation on real data shows that Probabilistic Relational Mod-
els with Relational Uncertainty can offer significant improvement with respect
to the benchmark models used for prediction in relational domains.
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Abstract. Multi-label classification problems arise in many real-world
applications. Classically, in order to construct a multi-label classifier, we
assume the existence of a labeled training set, where each instance is
associated with a set of labels, and the task is to output a label set for
each unseen instance. However, it is not always possible to have perfectly
labeled data. In many problems, there is no ground truth for assigning
unambiguously a label set to each instance, and several experts have to
be consulted. Due to conflicts and lack of knowledge, labels might be
wrongly assigned to some instances. This paper describes an evidence
formalism suitable to study multi-label classification problems where the
training datasets are imperfectly labelled. Several applications demon-
strate the efficiency of our apporach.

1 Introduction

In multi-label classification problems, each object may belong simultaneously to
several classes, contrary to standard single-label problems where objects belong
to only one class. Multi-label classification methods have been increasingly re-
quired by modern applications where the target classes are not exclusive and
an object may belong to an unrestricted set of classes instead of exactly one.
For instance, in natural scene classification, each image may belong to several
semantic classes, such as sea and sunset [1].

Several methods have been proposed for multi-label learning. These methods
can be categorized into two groups. A first group contains the indirect methods
that transform the multi-label classification problem into a set of binary classi-
fication problems (Binary relevance approach (BR): a binary classifier for each
class or pairwise classifiers) [12] [11] [6] or into multi-class classification problem
(Label powerset approach (LP): each subset of classes is considered as a new
class) [9]. A second group consists in extending common learning algorithms
and making them able to manipulate multi-label data directly [10].

Usually, multi-label classification tasks are based on training datasets where
each instance is associated with a perfectly known set of labels. In practice, gath-
ering such high quality information is not always feasible at a reasonable cost. In
many problems, however, there is no ground truth for assigning unambiguously
a label set to each instance, and the opinions of one or several experts have to be
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elicited. Typically, an expert may express lack of confidence for assigning exactly
one label set. If several experts are consulted, some conflicts will inevitably arise.
This again will introduce some uncertainties in the labeling process.

In [10] and [4], an evidential formalism for handling uncertainty on the classi-
fication of multi-labeled data has been presented. This formalism extends all the
notions of Dempster-Shafer (D-S) theory [7] to the multi-label case with only a
moderate increase in complexity as compared to the classical case. Based on this
formalism, an evidence-theoretic k-NN rule for multi-label classification has been
presented. The proposed method, called EML-kNN for Evidential Multi-Label
k-Nearest Neighbor, generalizes the single-label evidence-theoretic k-NN rule [2]
to the multi-label case. Thus, an unseen instance is classified on the basis of its
k nearest neighbors under the D-S framework.

In [10], we applied our method on several benchmark datasets where all in-
stances were perfectly labelled. We also noticed that our evidential formalism for
set-valued variables allows us to express ambiguities and uncertainties when the
available data used to train the multi-label classifier are imprecisely labelled. As
far as our knowledge, such imprecise data are not available from real-world prob-
lems. Thus, in order to show the performance of EML-kNN in such cases and
demonstrate its effectivness, we propose a labeling process to randomly simulate
imprecise multi-labelled data.

The remainder of the paper is organized as follows. Section 2 describes the
evidence formalism for multi-label case. Section 3 recalls the evidence-theoretic
k-NN rule for multi-label classification. Section 4 presents experiments on some
real datasets and shows the effectiveness of our approach to handle imprecise
data. Finally, Section 5 makes concluding remarks.

2 Evidence Formalism

The Dempster-Shafer (D-S) theory is a formal framework for representing and
reasoning with uncertain and imprecise information. Different approaches to
single-label classification in the framework of evidence theory have been pre-
sented in the literature [3] [2]. This theory is usually applied to handle uncer-
tainty in problems where only one single hypothesis is true. However, there exist
problems where more than one hypothesis are true at the same time, e.g., the
multi-label classification task. Let Ω denote the set of all hypotheses in a certain
domain, e.g., in classification, Ω is the set of all possible classes. The frame of
discernment of the evidence formalism for multi-label case is not Ω, as in the
single label classification problem, but its power set Θ = 2Ω. A mass function
m is thus defined as a mapping from the power set of Θ to the interval [0, 1]. As
proposed in [4], instead of considering the whole power set of Θ, we will focus
on the subset C(Ω) of 2Θ defined as:

C(Ω) = {ϕ(A, B)| A ∩B = ∅} ∪ {∅Θ} (1)
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where ∅Θ represents the conflict in the frame 2Θ, and for all A, B ⊆ Ω with
A ∩ B = ∅, ϕ(A, B) is the set of all subsets of Ω that include A and have no
intersection with B:

ϕ(A, B) = {C ⊆ Ω| C ⊇ A and C ∩B = ∅}. (2)

The size of the subset C(Ω) of 2Θ is equal to 3|Ω| + 1 and is thus much smaller
than the size of 2Θ (|2Θ| = 22|Ω|

). Consequently, this formulation reduces the
complexity of multi-label problems, while being rich enough to express evidence
in many realistic situations. The chosen subset C(Ω) of 2Θ is closed under in-
tersection, i.e., for all ϕ(A, B), ϕ(A′, B′) ∈ C(Ω), ϕ(A, B) ∩ ϕ(A′, B′) ∈ C(Ω).
Based on the definition of ϕ(A, B), we can deduce that:

ϕ(∅, ∅) = Θ, (3)
∀A ⊆ Ω, ϕ(A, Ā) = {A}, (4)

∀A ⊆ Ω, A �= ∅, ϕ(A, A) = ∅Θ. (5)

By convention, ∅Θ will be represented by ϕ(Ω, Ω).
For any ϕ(A, B), ϕ(A′, B′) ∈ C(Ω), the intersection operator over C(Ω) is

defined as follow:

ϕ(A, B) ∩ ϕ(A′, B′) =
{

ϕ(A ∪A′, B ∪B′) if A ∩B′ = ∅ and A′ ∩B = ∅
ϕ(Ω, Ω) otherwise,

(6)
and the inclusion operator over C(Ω) is defined as:

ϕ(A, B) ⊆ ϕ(A′, B′) ⇐⇒ A ⊇ A′ and B ⊇ B′. (7)

A mass function m on C(Ω) can be represented with the following two equations:

m : C(Ω) −→ [0, 1] (8)∑
ϕ(A,B)∈C(Ω)

m(ϕ(A, B)) = 1. (9)

For convenience of notation, m(ϕ(A, B)) will be simplified to m(A, B). For any
ϕ(A, B) ∈ C(Ω), the belief and plausibility functions are now defined as:

bel(A, B) =
∑

ϕ(Ω,Ω) �=ϕ(A′,B′)⊆ϕ(A,B)

m(A′, B′), (10)

and
pl(A, B) =

∑
ϕ(A′,B′)∩ϕ(A,B) �=ϕ(Ω,Ω)

m(A′, B′). (11)

Given two independent bodies of evidence over the same frame of discernment
like C(Ω), the aggregated mass function, denoted by m12, obtained by com-
bining the mass functions m1 and m2 of the two bodies of evidence using the
unnormalized Dempster’s rule is calculated in the following manner:

m12(A, B) =
∑

ϕ(A′,B′)∩ϕ(A′′,B′′)=ϕ(A,B)

m1(A′, B′)m2(A′′, B′′). (12)
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This rule is commutative and associative, and has the vacuous mass function
(m(∅, ∅) = 1) as neutral element.

3 Evidential Multi-Label k-NN

Problem. LetX = RP denote the domain of instances and let Ω = {ω1, . . . , ωQ}
be the finite set of labels. The multi-label classification problem can now be for-
mulated as follows. Given a set S = {(x1, A1, B1), . . . , (xM , AM , BM )} of M
training examples, where xi ∈ X , Ai ⊆ Ω denotes a set of classes that surely
apply to instance i, and Bi ⊆ Ω is a set of classes that surely do not apply to
the same instance. For instance, assume that instances are songs and classes are
emotions generated by these songs. Upon hearing a song, an expert may decide
that this song certainly evokes happiness and certainly does not evoke sadness,
but may be undecided regarding the other emotions (such as quietness, anger,
surprise, etc.). In that case, the song cannot be assigned to a single label set, but
one can associate to it the set of all label sets containing ”happiness” and not
containing ”sadness”. The goal of the learning system is to build a multi-label
classifier H : X → 2Ω that associates a label set to each unseen instance.

To determine the multi-label classifier, the evidential multi-label kNN rule
introduced in [10] can be used. Hereafter, we recall the principle of this method.

EML-kNN. Let x be an unseen instance, Y its unknown label set, and Nx
its k nearest neighbors in S based on a certain distance function d(., .), usually
the Euclidean one. Each element (xi, Ai, Bi) in Nx constitutes a distinct item
of evidence regarding the label set of x.

The mass function mi over C(Ω) induced by the item of evidence (xi, Ai, Bi)
regarding the label set of x is defined as:

mi(Ai, Bi) = α exp(−γdi) (13)
mi(∅, ∅) = 1− α exp(−γdi) (14)

where di = d(x,xi), 0 < α < 1 and γ > 0. Parameter α is usually fixed at a
value close to 1 such as α = 0.95 [2], whereas γ should depend on the scaling of
distances and can be fixed by cross-validation [10].

After considering each item of evidence in Nx, we obtain k mass functions
mi, i = 1, . . . , k that can be combined using the multi-label extension of the
unnormalized Dempster’s rule of combination (12) to form the resulting mass
function m.

For decision making, different procedures can be used. The following simple
and computationally efficient rule was implemented. Let Ŷ be the predicted label
set for instance x to differentiate it from the ground truth label set Y of x. To
decide whether to include each class ωq ∈ Ω or not, we compute the degree of
belief bel({ωq}, ∅) that the true label set Y contains ωq, and the degree of belief
bel(∅, {ωq}) that it does not contain ωq. We then define Ŷ as

Ŷ = {ωq ∈ Ω | bel({ωq}, ∅) ≥ bel(∅, {ωq})}. (15)
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4 Experiments

4.1 Datasets

Three datasets were used in our experiments: the emotion, scene and yeast
datasets1. Each one was split into a training set and a test set. Table 1 sum-
marizes the characteristics of the datasets used in the experiments. The label
cardinality of a dataset is the average number of labels of the instances, while
the label density is the average number of labels of the instances divided by the
total number of labels [8].

Table 1. Characteristics of datasets

Number of Feature vector Number of Training Test Label Label maximum size
Dataset instances dimension labels instances instances cardinality density of a label set
emotion 593 72 6 391 202 1.869 0.311 3
scene 2407 294 6 1211 1196 1.074 0.179 3
yeast 2417 103 14 1500 917 4.237 0.303 11
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Fig. 1. Accuracy and HammLoss for EML-kNN on the emotion dataset for different
values of the confidence threshold t

4.2 Imprecise Labeling Process

To simulate imprecise labeling by an expert, the following procedure was used.
Let Yi be the true label set for instance i, and let yi = (yi1, . . . , yiQ) be the
vector of {−1, 1}Q such that yiq = 1 if ωq ∈ Yi and yiq = −1 otherwise. For each
instance i and each class ωq, we generated a probability of error piq = p′iq/2,
where p′iq was taken from a beta distribution with parameters a = b = 0.5 (this
consists on a bimodal distribution with modes at 0 and 1), and we changed yiq

1 http://mlkd.csd.auth.gr/multilabel.html

http://mlkd.csd.auth.gr/multilabel.html
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Fig. 2. Comparison between direct and BR versions of EML-kNN over 10 trials on
imprecise and noisy labels generated from the emotion dataset

to −yiq with probability piq, resulting in a noisy label vector y′
i. Each number

piq represents the probability that the membership of instance i to class ωq will
be wrongly assessed by the experts. This number may be turned into a degree
of confidence ciq by the transformation:

ciq = 1− 2piq, (16)

where ciq = 1 means that the expert is totally sure about the membership
(yiq = 1) or not (yiq = −1) of instance i to class ωq, while ciq = 0 means that
he is totally undecided about this membership. In practice, these numbers can
be provided by the experts.

By fixing a threshold t for confidence values (intuitively, t > 0.5), we then
define the imprecise label vector as y′′

i = (y′′
i1, . . . , y

′′
iQ) with

y′′
iq =

{
y′

iq if ciq ≥ t,

0 otherwise.
(17)

As shown in Section 2, such a vector of {−1, 0, 1}Q can be represented by
ϕ(Ai, Bi), the set of subsets of Ω, such that:{

Ai = {ωq ∈ Ω | y′′
iq = 1},

Bi = {ωq ∈ Ω | y′′
iq = −1}. (18)

The set Ai then contains the classes ωq that can be definitely assigned to instance
i with a high degree of confidence (ciq ≥ t), while Bi is the set of classes which are
definitely not assigned to instance i. The remaining set Ω \ (Ai ∪ Bi) contains
those classes about which the expert is undecided (ciq < t). We recall that
ϕ(Ai, Bi) contains all the label sets including Ai and non intersecting Bi.
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Fig. 3. Accuracy and HammLoss box plots over 10 trials for the emotion dataset
with the following methods: EML-kNN with imprecise labels, ML-kNN, ML-RBF and
Rank-SVM with noisy labels

4.3 Evaluation Metrics

Let D = {(x1, Y1), . . . , (xN , YN )} be a multi-label evaluation dataset containing
N labeled examples. Let Ŷi = H(xi) be the predicted label set for the pattern
xi, while Yi is the ground truth label set for xi.

A first metric called ”Accuracy” gives an average degree of similarity between
the predicted and the ground truth label sets of all test examples [8]:

Accuracy(H,D) =
1
N

N∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

. (19)

A second metric is the ”Hamming loss” that counts prediction errors (an in-
correct label is predicted) and missing errors (a true label is not predicted). In
order to be consistent with the above measure, we report 1-Hamming loss [6]:

HamLoss(H,D) = 1− 1
N

N∑
i=1

1
Q
|Yi & Ŷi|, (20)

where & is an operator to compute the symmetric difference of two sets.
The values of these evaluation criteria are in the interval [0, 1]. Larger values

of these metrics correspond to higher classification quality.

4.4 Results and Discussions

Figure 1 shows the performance of EML-kNN over the two evaluation criteria
Accuracy and HammLoss for different values of confidence threshold t after
10-fold cross validation on imprecise labels generated from the training emotion
dataset. The best results were obtained for t ∈ [0.5, 0.9]. In the following, the
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Fig. 4. Accuracy and HammLoss box plots over 10 trials for the scene dataset with
the following methods: EML-kNN with imprecise labels, ML-kNN, ML-RBF and Rank-
SVM with noisy labels

value of t was fixed to 0.6. Note that, for EML-kNN, γ was fixed to 0.5 and
k to 10. The values of these two parameters can easily be determined by cross
validation, but here, they are fixed manually to moderate values.

EML-kNN was originally developed in order to construct a multi-label learn-
ing system able to handle multi-labeled data directly. However, it can be also
used when transforming the multi-label leaning problem into single-label one,
which is referred to as indirect approach. To get an idea about the performance
of each approach, the original EML-kNN (direct version) and the BR version
(binary learning for each label) were applied to imprecise and noisy labeled data
generated from the emotion dataset. Figure 2 shows the results over 10 trials.
First, we notice the improved performances of our leaning system when applied
to imprecise labels. This result demonstrates the usefulness of our evidence for-
malism. Secondly, we remark that the performances of the direct and BR versions
of our method are very close, with a slight advantage for the direct approach.
Note that, in terms of execution time, the direct approach is much faster. In the
next experiments, the originial version (direct) of EML-kNN was used.

EML-kNN was compared to three existing multi-label classification methods
that were shown to exhibit good performances: ML-kNN [13] that is the closest
to our method as both are based on k-NN rule, ML-RBF [12] derived from
radial basis function neural networks, and Rank-SVM [5] that is based on the
traditional support vector machine. For ML-kNN, k was fixed to 10 as in [13].
As used in [12], the fraction parameter for ML-RBF was set to 0.01 and the
scaling factor to 1. For Rank-SVM, the best parameterization reported in [5],
i.e. polynomial kernels with degree 8, was used.

After performing the labeling process explained in Section 4.2, noisy labels
and imprecise labels were generated for instances from each dataset. EML-kNN
was applied to imprecise labels (y′′

i corresponding to ϕ(Ai, Bi) in the multi-label
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Fig. 5. Accuracy and HammLoss box plots over 10 trials for the yeast dataset with
the following methods: EML-kNN with imprecise labels, ML-kNN, ML-RBF and Rank-
SVM with noisy labels

evidence formalism), while the ML-kNN, ML-RBF and Rank-SVM algorithms
were applied to noisy labels (y′

i), as it is not clear how imprecise labels could be
handled using these methods.

Figures 3, 4 and 5 show the box plots for the Accuracy and HammLoss
measures obtained by the applied methods, over ten generations of imprecise
and noisy labels, for the emotion, scene and yeast datasets respectively.

Based on the two evaluation criteria and over the three datasets, EML-kNN
clearly dominates the remaining methods. These preliminary results demonstrate
the ability of our approach to handle imprecise labels in multi-label classification
tasks. In fact, when the available learning data have not a ground truth and have
been labeled subjectively by a pool of experts, noisy labels will be inevitably
assigned to some instances due to conflicts or lack of knowledge. If an expert gives
a degree of confidence about each assigned label, by using EML-kNN method
based on the evidence formalism explained in Section 2, we are able to reduce
the risk of assigning wrongly some labels to an instance i when the degrees of
confidence are not high. That explains the good performances of our method.

5 Conclusion

In this paper, we have used the evidence formalism for multi-label learning and
the EML-kNN method introduced in [10] to propose a multi-label learning sys-
tem able to handle complex learning tasks in which the data are imprecisely
labeled. In fact, in many real-world problems, there are no ground truth for
assigning unambiguously a label set to each instance, and several experts have
to be consulted. Due to lack of confidence and conflicts between experts, un-
certainties are introduced when labeling instances. To assess the performances
of our approach when learning from data with imprecise labels, we have used
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an algorithm to randomly simulate such data. Experimental results demonstrate
the ability of our approach to handle imprecise labels in multi-label classification
tasks. EML-kNN dominates state-of-the-art methods in such situations.
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Abstract. K-nearest neighbours algorithms are among the most popular existing
classification methods, due to their simplicity and good performances. Over the
years, several extensions of the initial method have been proposed. In this paper,
we propose a K-nearest neighbours approach that uses the theory of imprecise
probabilities, and more specifically lower previsions. This approach handles very
generic models when representing imperfect information on the labels of train-
ing data, and decision rules developed within this theory allows to deal with is-
sues related to the presence of conflicting information or to the absence of close
neighbours. We also show that results of the classical voting K-NN procedures
and distance-weighted k-NN procedures can be retrieved.

Keywords: Classification, lower prevision, nearest neighbours.

1 Introduction

The k-nearest neighbours (K-NN) classification procedure is an old rule [1] that uses
the notion of similarity and distance with known instances to classify a new one. Given
a vector x ∈ RD of input features, a distance d : RD × RD → R and a data set of
training samples composed of N couples (xi, yi) where xi ∈ RD are feature values
and yi ∈ Y = {ω1, . . . , ωM} is the class to which belongs the ith sample, the voting
k-NN procedure consists in choosing as the class y of x the one that is in majority in
the k nearest neighbours.

One of the main drawback of the original algorithm is that it assumes that the k-
nearest neighbors are relatively close to the instance to classify, and can act as reliable
instances to estimate some conditional densities. It also assumes that all classes or pat-
terns are well represented in the input feature space, and that the space is well sampled.
In practice, this is rarely true, and the distance between a new instance and its nearest
neighbour can be large. This makes the way basic k-NN procedure treats the training
samples questionable Also, some classes of training samples may only be imperfectly
known, and this uncertainty should be taken into account.

To integrate these various features, many extensions of the initial method have been
proposed: use of weights to account for distance between neighbours and instance to
classification [2]; use of distance and ambiguity rejection, to cope respectively with
nearest neighbours whose distance from the instance to classify is too large and with
nearest neighbours giving conflicting information [3]; use of uncertainty representations

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 129–138, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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such as belief functions to cope with uncertainty [4]. For a detailed survey of the k-NN
algorithm and its different extensions, see [5, Chap. 2].

As far as uncertainty representations are concerned, it can be argued that belief func-
tions do not allow to model precisely all kinds of uncertainties. For example, they are
unable to model exactly uncertainty given by probability intervals (i.e., lower and up-
per probabilistic bounds given on each class). Imprecise probability theory and walley’s
lower previsions [6] are uncertainty models that encompass belief functions as special
cases. In this sense, they are more general and allow for a finer modelling of uncertainty.

In this paper, we propose and discuss a k-NN rule based on the use of Walley’s lower
prevision [6,7], and of the theory underlying them. As for the TBM k-NN procedure
(based on evidence theory and on Dempster’s rule of combintion), it allows to treat all
the issues mentioned above without introducing any other parameters than the weights
on nearest neighbours, however it does so with a different approach (being based on dif-
ferent calculus) and allows the use of more general uncertainty models than the TBM.
In particular, we argue that using decision rules proper to the lower previsions approach
allows to take account of ambiguities and distances without having to include additional
parameters. Using these imprecise decision rules, we also introduce a criteria allowing
to pick the "best" number k of nearest neighbours, balancing imprecision and accuracy.
After recalling the material concerning lower previsions (Section 2) needed in this pa-
per, we details the proposed method and its properties (Section 3), before finishing with
some experiments (Section 4).

2 Lower Previsions

This section introduces the very basics about lower previsions and associated tools
needed in this paper. We refer to Miranda [7] and Walley [6] for more details.

2.1 Basics of Lower Previsions

In this paper, we consider that information regarding a variable X assuming its values
on a (finite) space X counting N exclusive and disjoint elements is modelled by the
means of a so-called coherent lower previsions. We denote by L(X ) the set of real-
valued bounded functions onX . A lower prevision P : K → R is a real-valued mapping
on a subsetK ⊆ L(X ). Given a lower prevision, the dual notion of upper prevision P is
defined on the set−K = {−f |f ∈ K} and is such that P (f) = −P (−f). As discussed
by Walley [6], lower previsions can be used to model information about the variable X .
He interprets P (f) as the supremum buying price for the uncertain reward f .

Given a set A ⊆ X , its lower probability P (A) is the lower prevision of its indicator
function 1(A) , that takes value one on A and zero elsewhere. The upper probability
P (A) of A is the upper prevision of 1(A) , and by duality P (A) = 1 − P (Ac). To a
lower prevision P can be associated a convex set PP of probabilities, such that

PP = {p ∈ PX |(∀f ∈ K)(Ep(f) ≥ P (f))}
with PX the set of all probability mass functions over PX and Ep(f) =

∑
x∈X p(x)f(x)

the expected value of f given p. As often done, PP will be called the credal set of P .
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A lower prevision is said to avoid sure loss iff PP �= ∅ and to be coherent iff it
avoids sure loss and ∀f ∈ K, P (f) = min {Ep(f)|p ∈ PP }, i.e. iff P is the lower
envelope of PP . If a lower (upper) prevision is coherent, it corresponds to the lower
(upper) expectation of PP . If a lower prevision P avoids sure loss, its natural extension
E(g) to a function g ∈ L(X ) is defined as E(g) = min {Ep(g)|p ∈ PP }. Note that P
and its natural extension E coincide on K only when P is coherent, otherwise P ≤ E
and P (f) < E(f) for at least one f .

Lower previsions are very general uncertainty models, in that they encompass (at
least from a static viewpoint) most of the other known uncertainty models. In partic-
ular both necessity measures of possibility theory [8] and belief measures of evidence
theory [9] can be seen as particular lower previsions.

2.2 Vacuous Mixture and Lower Previsions Merging

When multiple sources provide possibly unreliable lower previsions modelling their
beliefs, we must provide rules both to take this unreliability into account and to merge
the different lower previsions into a single one, representing our final beliefs.

An extreme case of coherent lower prevision is the vacuous prevision P v and its
natural extension Ev , which are such that Ev(g) = infω∈X g(ω). It represents a state
of total ignorance about the real value of X . Given a coherent lower prevision P , its
natural extension E and a scalar ε ∈ [0, 1], the (coherent) lower prevision P ε that we
call vacuous mixture is such that P ε = εP + (1 − ε)P v . Its natural extension Eε is
such that Eε(f) = εE(f) + (1 − ε) infω∈X f(ω), for any f ∈ L(X ) and with E
the natural extension of P . ε can be interpreted as the probability that the information
P is reliable, 1 − ε being the probability of being ignorant. The vacuous mixture is a
generalise both the the well-known linear-vacuous mixture and the classical discounting
rule of belief functions. In terms of credal sets, it is equivalent to computePP ε

such that
PP ε

= {εpP + (1− ε)pv|pP ∈ PP , pv ∈ PX}.
Now, if we consider k coherent lower previsions P 1, . . . , P k and their natural exten-

sions E1, . . . , Ek, then we can average them into a natural extension Eσ by merging
them through an arithmetic mean, that is by considering Eσ(f) = 1

k

∑k
i=1 Ei(f) for

any f ∈ L(X ). This rule has been justified and used by different authors to merge
coherent lower previsions or, equivalently, convex sets of probabilities [10].

2.3 Decision Rules

Given some beliefs about a (finite) variable X and a set of preferences, the goal of
decision rules is here to select the optimal values X can assume, i.e. the class to which
X may belong. Here, we assume that preferences are modeled, for each ω ∈ X , by cost
functions f ′

ω, that is f ′
ω(ω′) is the cost of selecting ω′ when ω is the true class. When

uncertainty over X is represented by a single probability p, the optimal class is the one
whose expected cost is the lowest, i.e. ω̂ = arg minω∈X Ep(f ′

ω), thus taking minimal
risks. If the beliefs about the value of X are given by a lower prevision P , the classical
expected cost based decision has to be extended [11].

One way to do so is to still require the decision to be a single class. The most well-
known decision rule in this category is the maximin rule, for which the final decision is
such that
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ω̂ = arg min
ω∈X

Ep(f ′
ω)

this amounts to minimising the upper expected cost, i.e., the worst possible conse-
quence, and corresponds to a cautious decision. Other possible rules include minimising
the lower expected cost or minimising a value in-between.

The other way to extend expected cost is to give as decision a set (possibly, but
not necessarily reduced to a singleton) of classes, reflecting our indecision and the im-
precision of our beliefs. This requires to build, among the possible choices (here, the
classes), a partial ordering, and then to select only the choices that are not dominated
by another one. Two such extensions are the interval ordering ≤I and the maximality
ordering≤M . Using interval ordering, a choice ω is dominated by a choice ω′, denoted
by ω ≤I ω′, iff E(f ′

ω) ≤ E(fω), that is if the upper expected cost of picking ω′ is sure
to be lower than the lower expected cost of picking ω. The decision set Ω̂I is then

Ω̂I = {ω ∈ X| � ∃ω′s.t.ω ≤I ω′}.

Using maximality ordering, a choice ω is dominated by a choice ω′, denoted by ω ≤M

ω′, iff E(fω − fω′) > 0. This has the following interpretation: given our beliefs, ex-
changing ω for ω′ would have a strictly positive expected cost, hence we are not ready
to do so. The decision set Ω̂M is then

Ω̂M = {ω ∈ X| � ∃ω′s.t.ω ≤M ω′}.

The maximility ordering refines the Interval ordering and is stronger, in the sense that
we always have Ω̂M ⊆ Ω̂I . Using these decision rules, the more precise and non-
conflicting our information is, the smaller is the set of possible classes Ω̂.

3 The Method

Let x1, . . . , xN be N D-dimensional training samples, Y = {ω1, . . . , ωM} the set of
possible classes, and P i : L(Y) → [0, 1] be the lower prevision modelling our knowl-
edge about the class to which the sample xi belongs. Given a new instance x to classify,
that is to which we have to assign a class y ∈ Y , we denote by x(1), . . . , x(k) its k or-
dered nearest neighbours (i.e. d(i) < d(j) if i ≤ j). For a given nearest neighbour x(i),
the knowledge P (i) can be regarded as a piece of evidence related to the unknown class
of x. However, this piece of knowledge is not 100% reliable, and should be discounted
by a value εi ∈ [0, 1] depending of its class, such that, for any f ∈ L(Y),

E(i),x(f) = ε(i)E(i) + (1 − ε(i)) inf
ω∈Y

f(ω).

It seems natural to ask for ε be a decreasing function of d(i), since the further away is
the neighbour, the less reliable is the information it provides about the unknown class.
Similarly to Denoeux proposal, we can consider the general formula

ε = ε0φ(d(i)),
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where φ is a non-increasing function that can be depended of the class given by x(i). In
addition, the following conditions should hold:

0 < ε0 < 1 ; φ(0) = 1 and lim
d→∞

φ(d) = 0.

The first condition imply that even if the new instance has the same input as one
training data sample, we do not consider it to be 100% reliable, as the relation link-
ing the input feature space and the output classes is not necessarily a function. From
P (1),x, . . . , P (k),x, we then obtain a combined lower prevision P such that

Px =
1
k

k∑
i=1

P (i),x.

Using Px as the final uncertainty model for the true class of x, one can predict its
final class, either as a single class by using a maximin-like criteria or as a set of pos-
sible classes by using maximality or interval dominance. Using maximality or interval
dominance is a good way to treat both ambiguity or large distances with the nearest
neighbours. Indeed, if all nearest neighbours agree on the output class and are close to
the new instance, the obtained lower prevision Px will be precise enough so that the
criteria will end up pointing only one possible class (i.e., Ω̂M , Ω̂I will be singletons).
On the contrary, if nearest neighbours disagree or are far from the new instance, Px

will be imprecise or indecisive, and Ω̂M , Ω̂I will contain several possible classes.

3.1 Using Lower Previsions to Choose k

A problem when using the k-nearest neighbour procedure is to choose the "best" num-
ber k of neighbours to consider. This number is often selected as the one achieving the
best performance in a cross-validation procedure, but k-NN rules can display erratic
performances if k is slightly increased or decreased, even if it is by one.

We propose here a new approach to guide the choice of k, using the features of lower
previsions: we propose to choose the value k achieving the best compromise between
imprecision and precision, estimated respectively from the number of optimal classes
selected for each test sample, and from the percentage of times where the true class is
inside the set of possible ones.

Let (xN+1, yN+1), . . . , (xN+T , yN+T ) be the test samples. Given a value k of near-
est neighbours, let Ωk

M,i denote the set of classes retrieved by maximality criteria for

xN+i, and δk
i : 2|Y| → {0, 1} the function such that δk

i = 1 if yN+i ∈ Ωk
M,i and 0

otherwise. That is, δk
i is one if the right answer is in the set of possible classes. Then,

we propose to estimate the informativeness Infk and the accuracy Acck of our k-NN
method as:

Infk = 1−
∑T

i=1 |Ωk
M,i| − T

T (M − 1)
; Acck =

∑T
i=1 δk

i

T

Note that informativeness has value one iff |Ωk
M,i| = 1 for i = 1, . . . , T , that is deci-

sions are precise, while accuracy measures the number of times the right class is in the
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set of possible classes. This means that the less informative is a classifier, the more accu-
rate it will be, since the right answer will be in the set of possible classes every time. We
then estimate the global performance GPk as the value GPk = βInfk + (1− β)Acck ,
that is a weighted average between precision and accuracy, with β ∈ [0, 1] the impor-
tance given to informativeness. Letting k vary, we then select the best value k∗ as

k∗ = arg min
k=1,...,N

GPk.

The idea of this rule is to choose the value k∗ achieving the best compromise between
informativeness and accuracy (as some evaluation methods used for experts in classical
probabilities).

3.2 Precise Training Samples and Unitary Costs

Let us now consider a particular case, namely the one where all training samples xi

have a single class yi as output, and where the cost function (called here unitary) fω of
choosing ω is fω(ω′) = 1 − δω,ω′ where δω,ω′ is the classical Kronecker delta (= 1
if ω = ω′, zero otherwise). This assumptions corresponds to the one of classical k-
NN procedures. Given these cost functions and a lower prevision P on Y , the lower
expectation for fω is

E(fω) = E({ω}c) = 1− E({ω}),
that is one minus the upper probability of the singleton ω. Similarly, the upper expecta-
tion of fω is one minus the lower probability of the singleton ω.

The lower prevision P i and its natural extension Ei modeling our uncertainty about
the output of a training sample xi is simply, for any f ∈ L(Y), the value Ei(f) = f(yi)
where yi is the output of xi. We also have Ei(f) = Ei(f), and can now show that our
method extends classical k-NN

Proposition 1. Let k be the number of nearest neighbours considered. If training sam-
ples are precise, costs unitary and discounting rates ε(1) = . . . = ε(k) = ε, then the
method used with a maximin decision criteria gives the same result as a classical k-NN
rule.

Proof. Let us consider a given ω ∈ Y and its unitary cost function fω. Let us now
compute the upper expectation of fω, or equivalently one minus the lower probability
of {ω}. Given the k nearest neighbour, the lower probability E({ω}) of {ω} is

E({ω}) =
1
k

k∑
i=1

εδω,y(i) + (1− ε) inf fω =
ε

k

k∑
i=1

δω,y(i) .

The highest value of E({ω}) is reached for the value ω ∈ Y which have the maximal
number of representative in the k neighbours, and since the value maximising this lower
probability is the same as the one minimising the upper expectation of unitary cost
functions, this finishes the proof.
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Proposition 2. Let k be the number of nearest neighbours considered. If training sam-
ples are precise, costs unitary and discounting rates ε(i) = wi are equal to some
weights, then the method used with a maximin decision criteria gives the same result as
a weighted k-NN rule with the same weights.

Proof. Similar to the proof of Prop. 1.

The case of precise training samples and unitary costs have another interesting property,
namely the one that the set of possible classes obtained by maximality criteria coincide
with the one obtained by interval dominance. This avoids any choice and allows using
computational procedures used for interval-dominance, which are simpler.

Proposition 3. Let k be the number of nearest neighbours considered. If training sam-
ples are precise and costs unitary, then Ω̂M = Ω̂I for any new instance.

Proof. To prove this proposition, we will simply show that for ω, ω′, the two conditions
to have ω ≥I ω′ and ω ≥M ω′ both coincide in this particular case. First, we have
ω ≥M ω′ if and only if E(1({w}) − 1({w′}) ) > 0. Using Eq. and the particular case
that we consider here, we have

E(1({w}) − 1({w′}) ) =
1
k

(
k∑

i=1

ε(i)δω,y(i) −
k∑

i=1

ε(i)δω′,y(i) −
k∑

i=1

(1− ε(i))

)
.

The last part of the equation right-hand side being due to the fact that infω∈Y(1({w}) −
1({w′}) ) = −1 if ω �= ω′. Hence, ω ≥M ω′ iff the number between parenthesis is
positive. Now, we have that ω ≥I ω′ if and only if E(1({w}) ) ≥ E(1({w′}) ). In our
particular case, this becomes

1
k

k∑
i=1

ε(i)δω,y(i) ≥
1
k

(
k∑

i=1

ε(i)δω′,y(i) +
k∑

i=1

(1 − ε(i))

)
.

Moving the right hand side to the left finishes the proof.

4 Experiments

Since Proposition 2 indicates that the results of the proposed method can be made equiv-
alent (in terms of prediction accuracy) to those of a weighted k-NN method, we refer to
studies comparing the results of different weighted k-NN method to have an idea about
the accuracy of the method.

Instead, we have preferred to experiment our method to select the best number k of
nearest neighbours on some classical benchmark problems. We used a leave-one-out
validation method. The class of each sample is predicted using the N − 1 remaining
samples. Infk, Acck and GPk are averaged over the N obtained results. We also com-
puted the average error rate using a maximin criterion, which gives results equivalent
to the weighted k-NN with weights given by the discounting factor.

As discussing and optimising φ is not the topic of the paper, we consider the simple
heuristic where, for a given training data (x, y), φ(dx) = exp−d/dy , with dy the average
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Table 1. Experiment data sets

Name # instances # input variables # output classes
Glass 214 9 6

Image segmentation 2100 19 7
Ionosphere 351 9 2

Letter recognition 2500 16 26

distance between elements of the training set having y for class. We fix ε0 = 0.99, in
order to not increase too quickly the imprecision.

Four different classification problems taken from the UCI repository [12] are consid-
ered. They are summarized in Table 1 . Results obtained for each of them are summa-
rized in Fig 1. In each graphs are displayed, for different values of k nearest neighbours,
the informativeness Infk, the precision Acck, the global score GPk as well as the pre-
cision obtained by using a maximin criterion, equivalent to the one obtained with a
weighted k-NN method using the discounting weights.
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FIG 1.B Glass data setFIG 1.A Ionosphere data set

FIG 1.D Image segmentation data setFIG 1.C Letter recognition data set

: Infk : Acck : GPk : Maximin

Fig. 1. Experiment results

Note that, here, both the choices of β, of ε0 and of φ() are of importance, for they will
directly influence the imprecision of Px and hence the decision imprecision concerning
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the class of x and the optimal k∗. As could be expected, the informativeness globally
decreases with the number k of nearest neighbours, while the number of sample xi

whose true class is in the set of optimal classes |Ωk
M,i| globally increases. Note that

this imprecision is due to two different causes: the presence of conflicting information
in (in this case, the different classes to which belongs the neighbours are optimal) and
distance of the neighbours to the sample (in this case, Px is very imprecise and no class
dominates another, i.e., they are all optimal).

The increase in informativeness that we can see when going from k = 2 to k =
3 for the Glass and Image segmentation data sets are due to the fact that immediate
neighbours provide conflicting information that do not make decisions less informative,
but provoke, for some sample, a decision shift from their true class to a false class.
Such an increase is then the clue that some classes boundaries may be quite difficult to
identify in the input space. A smooth decrease of informativeness is then the clue that
there are no significant conflict in the information provided by neighbours, as for the
ionosphere and letter recognition data.

The initial number of samples that have imprecise classifications due to the distance
with their neighbours can be evaluated from the informativeness for k = 1. Indeed, if
k = 1, there can be no conflict between neighbours, and the imprecise classification can
only come from the large distance and the resulting discounting weight. It is therefore
also a good way to evaluate the density of the data set, and its representativeness (for
example, points in the ionosphere data set seems to have large distances between them,
compared to the others).

Although they could probably be improved by optimised choices of the metric, of pa-
rameters β, ε0, φ(), our results show that allowing for a small imprecision can improve
significantly the resulting classification, and the confidence we have in the classifier an-
swer, without adding additional parameters such as a rejection or distance threshold. They
also indicate that, in general, best results are obtained for a small number of neighbours.
Finally, if one wants a unique class as answer, it is always possible to come back to the
solution of a classical weighted k-NN method. An alternative would be to use another
classifier and its answer to precisiate the imprecise answer given by our method.

5 Conclusion and Perspectives

In this paper, we have defined a first K-NN method based on lower previsions (equiv-
alent to convex probability sets). As lower previsions are very generic models of un-
certainty, using them allows to handle labels coming from expert opinions expressed
in very different ways. Using the theory of lower previsions also allows to settle the
problem of ambiguity (conflicting information) and absence of neighbours close to a
given instance, without adding additional parameters. This can be done by using de-
cision rules that selects sets of possible (i.e., optimal) classes rather than single ones
when information delivered by neighbours is ambiguous or unreliable.

Using this particular feature of lower previsions, we have proposed a simple and
new means to select the "best" number k of nearest neighbours to consider. Namely,
the number that achieves the best balance between accuracy (good classification) and
precision (decision retaining only a small number of classes).
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This paper have exposed the basics of a K-NN method using lower previsions. Many
surrounding topics remains to be investigated, among which:

– how to distinguish imprecise decisions due to ambiguity from those due to unreli-
able (i.e. "far away") neighbours ?

– how to optimise (as done in [13]) the whole procedure so that it can give better
results for a given problem ?

– how the framework of lower previsions can help in solving the problem of instances
having uncertain / missing input values ?

– how does this method compare to other (basic) classification methods using lower
previsions, such as the Naive credal classifier [14] ?
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Abstract. Various forms of probability and probabilistic concepts have
been discussed in fuzzy logic since its very inception, but their math-
ematical foundations have yet to be fully established. In this paper,
we investigate theoretical issues concerning (1) probability measures as
membership functions, (2) probability measures for fuzzy sets, and (3)
fuzzy-valued probabilities.

Keywords: Fuzzy logic, probability measures, conditional probability,
independence, fuzzy probability.

1 Introduction

Although the axiomatic foundation of probability theory did not exist until Kol-
mogorov developed it in the twentieth century, the mathematics of probability
has a long history. For instance, the famous correspondence between Pascal
and Fermat in the seventeenth century about the “problem of the points” sub-
stantially advanced the mathematics of games of chance, and other prominent
mathematicians such as James and Jacques Bernoulli, De Moivre, and Laplace
established notable limiting results in probability (see, for instance, [8]). Today
the importance of probability theory is widely recognized in a variety of fields
of research, and probability continues to fascinate the general public because of
its relevance to everyday life.

The rigorously established measure-theoretic probability that we have today
deals with probabilities of events, which are “crisp” subsets of the sample space.
On the other hand, Zadeh [11,13] developed a mathematical system of fuzzy sets
and logic, and he introduced what he called “probability measures” on collections
of fuzzy sets [12]. He also invented “fuzzy probabilities”, which are potential
functions (they are fuzzy numbers) highly related to probabilities [14]. Evidently
probabilistic concepts have been discussed in fuzzy logic since its very inception,
and this is hardly surprising as the importance of probability is ubiquitous both
in theory and in practice.
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However, there has not been any systematic effort to satisfactorily extend
classical probability theory to fuzzy logic. In this paper we attempt to take a
first step toward establishing theoretical foundations for several forms of prob-
ability in fuzzy logic. We discuss various issues regarding probabilistic concepts
developed in fuzzy logic. In Section 3, we examine fuzzy sets whose member-
ship functions are probability measures. We describe some unusual properties of
the collection of such fuzzy sets. In Section 4, we investigate probability mea-
sures for fuzzy events. Conditional probability and independence have not been
thoroughly developed in fuzzy logic, and we attempt to extend these important
concepts to probabilities of fuzzy sets. In Section 6, we examine how to theoret-
ically manage the fuzzy numbers that have been described as “fuzzy probabil-
ities”. We initiate a discussion on how classical probability theory, which deals
only with real-valued probabilities, can be generalized to axiomatically formulate
fuzzy-valued probabilities.

2 Preliminaries

First we briefly describe the fundamentals of Kolmogorov’s axiomatic probabil-
ity theory (see, for instance, [1,3]). Let Ω denote the sample space, which is often
described as the “set of all possible outcomes”. We consider a σ-field F (also
called a σ-algebra or a Borel field) of subsets of Ω: F is a nonempty collection of
subsets of Ω such that it is closed under complementation and countable union.
A probability measure P on F is a numerically valued set function with domain
F that satisfies the following three axioms:

(i) P (E) ≥ 0 ∀E ∈ F .
(ii) P (Ω) = 1.
(iii) If {Ei} is a countable collection of (pairwise) disjoint sets in F , then
P (
⋃

i Ei) =
∑

i P (Ei).

Each set in F is called an event and considered measurable, and P (E) represents
the probability of E ∈ F . The triple (Ω, F , P) is called a probability space, and
(Ω, F ) is described as a measurable space.

Axiom (iii) is called “countable additivity”, and it can be difficult to check
whether a set function satisfies this property. Instead, we consider the following
two axioms:

(iii.a) If {Ei} is a sequence in F such that Ei ↓ ∅, then P (Ei)→ 0.
(iii.b) If {E1, E2, . . . , En} is a finite collection of (pairwise) disjoint sets in F ,
then P (

⋃n
i=1 Ei) =

∑n
i=1 P (Ei).

Axioms (iii.a) and (iii.b) are called the “axiom of continuity” and “finite additiv-
ity”, respectively. We can prove that these two axioms together are equivalent to
(iii), so we will check (iii.a) and (iii.b) to determine whether a set function satis-
fies the axiom of countable additivity. It is important to note that, by induction
on n, P is finitely additive if (iii.b) holds for n = 2—if P (A∪B) = P (A)+P (B)
for disjoint sets A and B in F .
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Conventional probability theory does not deal with fuzzy sets; each set in F
is a crisp set, and with the set-theoretic operations of union, intersection, and
complementation, F is a boolean algebra with ∅ its minimum element and Ω its
maximum element. Thus probability measures are defined on boolean algebras.
For our discussions, it is important to note that in boolean algebras, it follows
from the three axioms of probability that E1 ⊂ E2 implies P (E1) ≤ P (E2). In
the quantum theory of probability, measurable sets are those in an orthomodular
lattice, which is usually the closed vector space of an infinite dimensional Hilbert
space [2]. Note that in ortholattices, a ⊂ b′ implies a ∩ b = ∅, but the converse
does not hold in general; the two are equivalent only in boolean algebras. In
quantum probability theory, if a ⊂ b′, then P (a ⊕ b) = P (a) + P (b), where ⊕
represents the direct sum, i.e., a⊕ b denotes the space spanned by a and b.

As described in Section 1, we would like to extend axiomatic probability
theory to fuzzy sets. If the extension is not possible, then it is desirable to
establish an analogous axiomatic theory of probability in fuzzy logic. There exist
two main schools of thought in the philosophy of probability: the frequentist
school and the Bayesian school. Frequentists view probability as the long-run
(limiting) frequency of occurrence, whereas Bayesians view it as the degree of
belief. Both positions have advantages and disadvantages, but in either case,
we must carefully consider the following two linguistic components of fuzzy sets
in order to establish a theory of probability in fuzzy logic. One is the semantic
component, which pertains to objects or their information necessary in specifying
events that are predicated as probable. Thus this component concerns extending
the concept of the measurable space (Ω, F ) to fuzzy logic. The other is the
syntactic component, which pertains to a context in which probable events are
clearly represented and assigned probabilities. For this, we must establish rules
that assign probabilities and specify computations with them. Therefore this
component concerns extending the probability measure P to fuzzy logic.

3 Probability Measures as Membership Functions

Any probability measure P : L→ [0, 1] can be used as a membership function of
a probabilistic predicate, such as “probable”, and thus be considered a fuzzy set.
We will describe a membership function that is also a probability measure as a
probability membership function. Probability measures in [0, 1]L form a rather
peculiar family of fuzzy sets. First we consider the ordering of such fuzzy sets.
Let P1 and P2 be two probability measures on L, and suppose that P1 ≤ P2.
Then P1(a) ≤ P2(a) for all a ∈ L. We also have P1(a′) ≤ P2(a′), whence 1 −
P1(a) ≤ 1−P2(a) and P2(a) ≤ P1(a). Therefore two fuzzy sets with probability
membership functions are either coincidental or uncomparable.

Let p denote the predicate “probable” acting on a boolean algebra, and sup-
pose that we have two probability membership functions μ

(1)
p and μ

(2)
p for p (they

represent two uses of the predicate). Then it follows that either μ
(1)
p = μ

(2)
p or

μ
(1)
p NC μ

(2)
p , where NC is used to indicate that they are uncomparable. Hence

it appears that the pointwise ordering of such fuzzy sets is not the “right” way
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to compare them; probability measures seem to be of a different type compared
to other fuzzy sets. We are currently investigating various relations that can be
effectively used to compare fuzzy sets with probability membership functions.

Compositions of probability measures by the three typical connectives in any
algebra ([0, 1]X , ·, +,′ ) [10] also show some odd properties. Since P1 · P2 ≤ P1
and P1 · P2 ≤ P2, it follows that P1 · P2 = P1 = P2. We also have P1 + P2 ≥ P1
and P1 + P2 ≥ P2. Hence P1 + P2 = P1 = P2. The negation of a probability
measure is not a probability measure, since N ◦ P (0) = N(P (0)) = N(0) = 1.
Thus the collection {P |P is a probability measure} ⊂ [0, 1]L is rather peculiar
in any algebra of fuzzy sets.

4 Fuzzy-Crisp Probability: Probability Measures for
Fuzzy Events

In this section, we consider probabilities of fuzzy events, which we call “fuzzy-
crisp probabilities”. We should keep in mind that for no algebra of fuzzy sets
([0, 1]X , ·, +,′ ) does there exist L ⊆ [0, 1]X such that L �= {0, 1}X and such that
(L, ·, +,′ ) is an ortholattice. A fortiori, (L, ·, +,′ ) is not a boolean algebra or
an orthomodular lattice. Therefore, neither conventional probability theory nor
quantum probability theory is immediately applicable to such L. However, this
does not imply that, for any L ⊆ [0, 1]X such that L �= {0, 1}X, there is no
function P : L → [0, 1] that satisfies the three axioms of probability. Indeed,
Zadeh [12] found such functions and described them as probability measures of
fuzzy events. We examine his concept of fuzzy-crisp probability.

Let X := {x1, x2, . . . , xn} (thus X is finite). For all μ ∈ [0, 1]X , |μ| :=∑n
i=1 μ(xi) is called the crisp cardinal or sigma-count of μ. Notice that for μ ∈

{0, 1}X satisfying μ−1(1) = A ⊆ X , we have |μ| = Card(A), since μ(xi) ∈ {0, 1}
for each i. Clearly |μ0| = 0 and |μ1| = |X | = n. Let L = [0, 1]X be a standard
algebra of fuzzy sets with (T, S, N) such that

N := 1− id, (1)
T (a, b) + S(a, b) = a + b. (2)

Condition (2) is satisfied by Frank’s family, which includes (a) T = min, S =
max; (b) T = prod, S = prod∗; and (c) T = W, S = W ∗. With such an algebra,
the mapping P : L→ [0, 1] defined by

P (μ) =
|μ|
n
∀ μ ∈ L (3)

satisfies the three axioms of probability; it is easy to show that axioms (i)–(ii) and
(iii.a)–(iii.b) hold for this P . Also it is easy to verify the identify P (μ′) = 1−P (μ).
For μ, σ ∈ L, suppose that μ ≤ σ. Then μ(xi) ≤ σ(xi) for 1 ≤ i ≤ n, so∑n

i=1 μ(xi) ≤
∑n

i=1 σ(xi). Hence |μ| ≤ |σ|, and we have P (μ) ≤ P (σ), as desired.
Due to these properties, we find it agreeable to consider P as a probability
measure for the algebra L.
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Suppose that X := [a, b] ⊂ � (a ≤ b), and let [0, 1]X be endowed with
(T, S, N) satisfying (1)–(2). Consider

L := {μ ∈ [0, 1]X |μ is Riemann-integrable over [a, b]}.
Clearly L contains all the Riemann-integrable functions in {0, 1}X. Notice that
L is closed under T , S, and N : μ ·σ, μ+σ, and 1−μ are all in L for any μ, σ ∈ L.
Define P : L→ [0, 1] by

P (μ) :=
1

b− a

∫ b

a

μ(x) dx ∀ μ ∈ L. (4)

If we have a constant fuzzy set, μr(x) = r ∀ x ∈ X , then clearly P (μr) = r.
Again, it is easy to verify that P satisfies the three axioms of probability, so it can
be considered a probability measure. It is also easy to show that P (μ′) = 1−P (μ).
Note that we have

P (μ′) =
1

b− a

∫ b

a

(1 − μ(x)) dx =
b− a

b− a
− 1

b− a

∫ b

a

μ(x) dx = 1− P (μ).

The supposition of equipossibility is evident in (3) and (4). However, this sup-
position is unnecessary, and these measures can be generalized by considering

P (μ) :=
∫

μ(x) dλ(x),

where λ is a probability measure on the σ-field in X (see [12]). Also notice that,
in general, μ ≤ σ′ does not imply μ · σ = μ0, so it does not imply P (μ + σ) =
P (μ)+ P (σ). However, if T = W , S = W ∗, and N = 1− id, then μ ≤ σ′ implies
μ · σ = μ0

5 Conditional Probability and Independence for Fuzzy
Events

One of the most important concepts in probability theory is conditional proba-
bility, and we will examine this concept for fuzzy-crisp probability. Conditioning
is a profound concept in measure-theoretic probability, but for simplicity, we will
focus on cases where conditioning events have positive measures. Let (L, ·, +,′ )
be a boolean algebra. We let 0 and 1 denote its minimum and maximum, re-
spectively. Let P denote a probability measure on L. For each a ∈ L − {0},
aL := {a · x|x ∈ L} is a subalgebra with the restriction of · and + and with
a complementation operator ∗ defined by (a · x)∗ = a · x′. This subalgebra can
represent a conditional boolean algebra. The minimum of aL is 0 · a = 0, and
its maximum is 1 · a = a. Provided that P (a) �= 0, the function P ∗ : aL→ [0, 1]
defined by

P ∗(a · x) =
P (a · x)
P (a)

(5)



144 E. Trillas, T. Nakama, and I. Garćıa-Honrado

is a probability measure on aL (but not on L), and we use P (x|a) to denote
P ∗(a ·x). Two events a, b ∈ L are said to be independent if P (b|a) = P (b) [hence
P (a · b) = P (a)P (b)].

If L is a boolean algebra with 2n elements resulting from n atoms, then the
simplest way of defining P on L is by P (a) = Card(a)

n for all a ∈ L, where
Card(a) denotes the number of atoms in a. In this case, for all x ∈ aL, we have
P (x|a) = Card(a·x)

Card(a) . In general, if {a1, a2, . . . , an} is the set of n atoms, then we
can define a probability measure P by P (ai) = αi ≥ 0 for 1 ≤ i ≤ n such that∑n

i=1 αi = 1. In the equipossible case, we have P (ai) = 1/n for all i.
By the distributive law, we have a · x + a · y = a · (x + y) ∈ aL for all a, b, x ∈

L. Thus this law is important for aL to be a boolean algebra, and P (x|a) :=
P ∗(a · x) is a probability when L is a boolean algebra. Unfortunately, if L is
an orthomodular lattice, then aL is not an orthomodular lattice, so conditional
probability cannot be defined in this manner.

We investigate whether the concept of conditional probability for crisp sets
can be properly extended to fuzzy sets. We will consider (3) and (4), which
satisfy the axioms of probability. First we suppose that X is finite. Thus we let
X := {x1, x2, . . . , xn} and examine (3). Consider a fuzzy set σ ∈ [0, 1]X as a
conditioning event. We suppose that P (σ) �= 0. If we apply (5) to this case, then
we obtain

P (μ|σ) =
P (μ · σ)
P (σ)

=
1
|σ|

n∑
i=1

T (μ(xi), σ(xi)). (6)

In order for this conditional probability to satisfy

P (σ|σ) = 1, (7)

we must have

|σ| =
n∑

i=1

T (σ(xi), σ(xi)).

This equality is satisfied only by T = min:

n∑
i=1

min{σ(xi), σ(xi)} =
n∑

i=1

σ(xi) = |σ|.

Note that the conditional probability defined by Zadeh [12] is problematic be-
cause it does not satisfy (7). (Zadeh uses prod for T .) If (T, S) is in Frank’s
family, then we have S = max for T = min. In this case, we have

P (μ + λ|σ) + P (μ · λ|σ) = P (μ|σ) + P (λ|σ),

as desired (with crisp sets, P (· |σ) satisfies the three axioms of probability and
is thus a probability measure). Thus by imposing (7), which should be consid-
ered rather natural or desirable, we obtain a different definition of conditional
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probability compared to that of Zadeh [12], who did not provide any rationale
for using T = prod instead of T = min in defining it.

Next we analyze the independence of two fuzzy events. We have

P (μ · σ) =
1
n

n∑
i=1

min{μ(xi), σ(xi)},

P (μ)P (σ) =

(
1
n

n∑
i=1

μ(xi)

)(
1
n

n∑
i=1

σ(xi)

)
.

Thus, for T = min, two fuzzy events are said to be independent if

1
n

n∑
i=1

min{μ(xi), σ(xi)} =

(
1
n

n∑
i=1

μ(xi)

)(
1
n

n∑
i=1

σ(xi)

)
. (8)

This definition of independence is different from Zadeh’s [12], because we have
chosen T = min so that the conditional probability (6) satisfies (7). Equation (8)
holds for two crisp independent events, and it is also valid when one of the sets
is μ1. (Recall that in classical probability theory, Ω is independent of any event.)

We analyze the case that X = [a, b] ⊂ �. For σ ∈ [0, 1]X such that P (σ) �= 0,
we use the measure P defined at (4) and consider

P (μ|σ) =
P (μ · σ)
P (σ)

=

∫ b

a
T (μ(x), σ(x)) dx

(b − a)P (σ)
. (9)

In order for (9) to satisfy P (σ|σ) = 1, we again set T to min. In this case, two
fuzzy events are said to be independent if

1
b− a

∫ b

a

min{μ(x), σ(x)} dx =

(
1

b − a

∫ b

a

μ(x) dx

)(
1

b − a

∫ b

a

σ(x) dx

)
.(10)

There actually exist many pairs of strictly fuzzy (non-crisp) events that sat-
isfy our definition of independence [(8) for the discrete case and (10) for the
continuous case]. For instance, μ := .75/1 + .75/2 + .25/3 + .25/4 and σ :=
.25/1 + .25/2 + .75/3 + .75/4 are independent according to (8). However, we
must thoroughly examine whether our definition (or any other definition of fuzzy
independence) makes sense theoretically or practically, and we will do so in our
future studies.

6 Fuzzy-Fuzzy Probability: Fuzzy Numbers as
Probabilities

In this section we present a tentative discussion on fuzzy numbers as probabili-
ties. We will not present a definitive approach to formulating a rigorous theory
for this type of probability. However, we will address issues that appear essential
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in establishing a theoretical foundation for the concept, and we will describe a
possible framework (albeit it has yet to be fully developed) for the formulation
of fuzzy probability theory.

Zadeh [14] introduced the idea of using fuzzy numbers to represent proba-
bilities that are derived from imprecise, incomplete, or unreliable sources. We
will call these fuzzy numbers “fuzzy-fuzzy probabilities”. Jauin and Agogino [6],
Dunyak and Wunsch [4], and Halliwell and Shen [5] also presented models of
fuzzy-fuzzy probability.

Zadeh’s concept of fuzzy-fuzzy probability is as follows. Let X denote a finite
universe of discourse {x1, x2, . . . , xn}. For each fuzzy set μ ∈ [0, 1]X , sort the
numbers μ(x1), μ(x2), . . . , μ(xn) in descending order. Without loss of generality,
assume that μ(x1) ≥ μ(x2) ≥ · · · ≥ μ(xn). The fuzzy cardinality |μ|F of μ is
given by

|μ|F (i) := min{μ(x1), μ(x2), . . . , μ(xi)}, 1 ≤ i ≤ n

(thus |μ|F is a mapping from {1, 2, . . . , n} to [0, 1]). Zadeh defines a “fuzzy
probability measure” FP (μ) of μ by the fuzzy number FP (μ) := |μ|F

|X| = |μ|F
n .

For instance, if X = {a, b, c, d} and μ = 1/a + .8/b + .3/c + .2/d, then |μ|F =
1/1 + .8/2 + .3/3 + .2/4, and FP (μ) = 1/.25 + .8/.5 + .3/.75 + .2/1.

Thus for some L and NF satisfying {0, 1}X �= L ⊂ [0, 1]X and {0, 1}[0,1] �
NF ⊂ [0, 1][0,1], FP is a mapping from L to NF . Can fuzzy-fuzzy probability be
considered a form of probability? The answer is clearly no in classical probability
theory, where probabilities must be real numbers between 0 and 1 by definition.
For this reason, it is probably inappropriate to describe FP as a probability
measure, which in classical probability theory is defined as a real-valued set
function (see Section 2). Therefore, it seems appropriate to distinguish FP from
classical probability measures and to call it, for example, “Zadeh’s measure”.
However, we may be able to extend conventional real-valued probabilities to
include “fuzzy-valued” probabilities in a theoretically satisfactory manner.

In order for FP to be considered such an extended probability measure, we
must be able to construct an arithmetical structure (NF,⊗,⊕,*,+,≤∗) with
a unit element 1 (this should be the maximum element in NF ) and a neutral
element 0 (this should be the minimum element in NF ) so that FP satisfies
the three axioms of probability with respect to the operations composing the
structure:

(a) FP (μ) ≥ 0 ∀ μ ∈ L.
(b) FP (μ1) = 1.
(c) If {μi|μi ∈ L} is a countable set so that μi · μj = μ0 for i �= j, then

FP (μ1 + μ2 + · · ·+ μn) = FP (μ1)⊕ FP (μ2)⊕ · · · ⊕ FP (μn).

The operations ⊗,⊕,*,+ and the relation ≤∗ must be carefully specified so that
the outcomes of the operations and the ordering resulting from ≤∗ are justifiable
theoretically or practically. In addition to (a)–(c), we should check whether FP
also satisfies the following properties:

(6.1) FP (μ′) = 1* FP (μ).
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(6.2) If μ ≤ σ, then FP (μ) ≤ FP (σ).
(6.3) When restricted to {0, 1}X, FP takes on elements in {0, 1}[0,1].
(6.4) For σ ∈ NF , FP (σ) �= 0, we have a conditional probability FP (μ|σ) :=

FP (μ ·σ)+FP (σ) with which the independence of μ and σ can be defined
by FP (μ|σ) = FP (μ) or by FP (μ · σ) = FP (μ)⊗ FP (σ).

Regarding (6.1)–(6.2), note that the corresponding properties in classical proba-
bility theory follow from the three axioms of probability, but they may not follow
from (a)–(c) in (NF,⊗,⊕,*,+,≤∗).

Unfortunately, the four existing models of fuzzy-fuzzy probability proposed
by [4], [5], [6], and [14] fail to satisfy some of these properties. For instance, using
an axiom, Halliwel and Shen [5] ensure only finite subadditivity: If μ · σ = μ0,
then FP (μ + σ) ≤∗ FP (μ) ⊕ FP (σ). The identity FP (μ′) = 1 * FP (μ) does
not always hold for Zadeh’s model [14]. However, consider

(μ⊕ σ)(t) := sup
t=x+y

min{μ(x), σ(y)}.

In words, we add fuzzy numbers according to the extension principle in fuzzy
arithmetic. Then Zadeh’s model achieves the identity

FP (μ + σ)⊕ FP (μ · σ) = FP (μ) + FP (σ).

To date, no studies have carefully examined the concept of conditioning or in-
dependence for fuzzy-fuzzy probability. The existing models assume that X is
finite, and fuzzy-fuzzy probability has yet to be developed in cases where X is
countably or uncountably infinite. It is also important to carefully establish the
operations ⊗, ⊕, *, +, and ≤∗. They may not be universal (different cases may
require different sets of these operations), and we should be able to provide jus-
tification for using a particular set of them. The effectiveness of these operations
will also depend on what type of fuzzy sets are used in deriving fuzzy-fuzzy prob-
abilities. Therefore, to fully establish a mathematically rigorous foundation for
fuzzy-fuzzy probabilities, we must properly design various components of fuzzy
systems.

7 Discussion

We have reviewed various forms of probability and probabilistic concepts in fuzzy
logic and examined several issues associated with them. Theoretical foundations
of fuzzy-crisp or fuzzy-fuzzy probability have yet to be fully established. In par-
ticular, the concept of fuzzy-fuzzy probability lacks analytical rigor, and it must
be further examined theoretically. We should investigate whether it is possible
to properly extend fundamental principles or properties of classical probability
theory to fuzzy-fuzzy probability. It is desirable to reinforce the extension prin-
ciple for fuzzy-fuzzy probability, as we do in extending classical set theory to
fuzzy set theory—if we replace fuzzy sets with crisp ones, we must be able to
obtain existing results in conventional set theory.
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Regarding fuzzy-crisp probability, we should keep in mind that there are other
measures of uncertainty for fuzzy events. For instance, Sugeno’s λ-measures [9]
hold for the algebra ([0, 1]X , W, W ∗, 1− id), although they were originally intro-
duced in order to deal with boolean algebras. The value of λ ∈ (−1,∞) deter-
mines the additivity of the measures; they can be sub-additive, super-additive,
or additive, and they may not have any of these properties. They have been
useful in certain applications [7].

We are currently examining how to establish (NF,⊗,⊕,*,+,≤∗), which will
form a framework for handling fuzzy numbers as probabilities. We also intend to
extend Zadeh’s fuzzy-fuzzy probability to cases where the universe of discourse
is not finite. Many theoretical issues remain to be resolved in order to develop
a rigorous axiomatic theory of probability in fuzzy logic, and we hope that our
paper can serve to stimulate studies of fuzzy probability theory.
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Abstract. In the paper a content-based image retrieval system (CBIR)
is considered. We discuss some aspects of image representation and their
retrieval when imprecision plays an important role. The sources of im-
precision are identified and some ways of dealing with it are proposed.
The discussion is illustrated with an example of our pilot implementation
of such a CBIR system.

Keywords: Content-based image retrieval, CBIR, imprecision, query-
ing, image comparison, fuzzy logic.

1 Introduction

Content-based image retrieval (CBIR) gains importance due to rapidly growing
multimedia collections, notably on the Internet. There are many commercial ap-
plications for this technique. However, images exhibit a very complex structure
and their advanced automatic processing is difficult. Retrieval in CBIR systems
may be seen as inherently fuzzy because of imperfection in the image feature def-
inition, imperfection in query formulation, imperfection in the index structure,
etc. [3].

Thus, effective and efficient processing of images requires tools and techniques
to deal with a general problem of imperfect information. One of the promising
lines of research in this area is based on fuzzy set theory and further efforts to
built upon it the computational theory of perceptions [20]. For more information
on this topic in the field of image processing, cf. Yager and Petry [19], Prados-
Suárez et al. [18] or Chamorro-Mart́ınez et al. [4].

During the last decade some extensions of data models have been proposed
in order to allow for the representation and processing of imperfect information.
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Some approaches also concern the CBIR systems [7], [9], [16], [17], or multimedia
systems in general – [8].

One of the most challenging tasks consists in grasping the semantic content
of an image. Among the most successful attempts the work of Candan and Li
[3] should be mentioned. They developed the SEMCOG query processor for
retrieving images taking into account their semantic and spatial imperfection.

In this paper we focus on the identification of the sources of imperfect (im-
precise) information in a class of the CBIR systems. This imperfection is related
to the very representation of images, as discussed above, as well as to the user’s
preferences expressed directly with the use of natural language elements or,
what is more practical, indirectly in the features of an image composed using
the query-by-example paradigm.

Images are assumed to be represented by collections of objects extracted from
them. These objects are characterized by some low-level visual features and
they are assigned to semantically meaningful classes by an automatic procedure.
These objects are further characterized by their spatial relationships, which play
an important role in determining the matching between the images.

The content of the paper is the following. Section 2 describes various features
used to represent images and identifies the imprecision related with the values
of these features. Section 3 discusses how to match images while taking into
account the imprecision related to their representation.

Our approach is essentially general, but some of its aspects are motivated
by a particular CBIR system, whose pilot version has been implemented by
Jaworska [11,12]. This system is meant for a specific domain and is customized
for the representation of house images. We use its screenshots to illustrate our
discussion.

2 Representation of Images in the Database and in the
Queries

2.1 The Types of the Features

For an effective and efficient content based retrieval, images have to be rep-
resented in a rich format combining purely graphical, structural and semantic
features. These features are:

– visual properties of the whole image and of the objects extracted from it
(e.g., color, texture, etc.) ,

– spatial or temporal relationships of the above-mentioned objects (the latter
relationships are relevant in case of the video data), and the structure of the
whole image built upon a set of the objects,

– semantic properties, here corresponding mainly to the classes assigned to the
above-mentioned objects, which can also include textual metadata (annota-
tions), which are not considered in this paper, however.

are recorded in a database. Now, we will briefly discuss particular features and
possible imprecision of their values. As in our CBIR system queries also take
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primarily the form of images, then all these considerations apply to them as
well. Other forms of queries are discussed too, where appropriate.

In our approach, the objects are extracted from an image using the algorithm
presented in detail in [11]. Each object is characterized by some low-level features
such as: average color kav, texture parameters Tp, area A, convex area Ac, filled
area Af , centroid {xc, yc}, eccentricity e, orientation a, moments of inertia m11,
bounding box {b1(x, y), . . . , bw(x, y)} (w number of vertices), major axis length
mlong, minor axis length mshort, solidity s and Euler number E. Some of these
features are determined in an obvious way, while the derivation of others is more
complex. For example, the average color kav is a triple, computed as the average
values of the red, green and blue components intensity over all the pixels of an
object. Another complex feature, the texture Tp, is determined using the wavelet
transforms.

Thus, at the level of visual properties representation, each object o extracted
from an image is represented by a vector o = [o(kav), o(Tp), o(A), . . . , o(E)].
These features are presented in the example window of the interface for a selected
object in Fig. 1. Each object is assigned an identifier (a key) and is stored in a
separate row of the database.

From the structural point of view, in the simplest approach, an image is
treated as a set of objects. A more sophisticated structure may be imposed,
e.g. a hierarchy of objects, which is built using a containment relation, and
may be exemplified by an object representing the roof containing two other
objects representing dormers. For image comparison still other representations
may be useful. An image may be treated as a multiset of objects classes, without
distinguishing them individually. For example, it may be important to observe
that two images of houses contain the same number of objects of a given class,
e.g. representing windows, without referring to their individual properties.

For a more advanced comparison of images it may be important to take into
account spatial relationships between the objects extracted from each of them.
Basically, spatial relationships between objects may be represented by modeling
topological relationships or orientation relationships; cf., e.g., [21]. We adopt
the latter approach which seems to be more practical for the CBIR systems
and, even in its simplest form, is satisfactory for our purposes, in particular for
the application domain considered. The way the relative location of particular
objects is represented may be best described by the following example.

Let us consider Image 1 in Fig. 2, where object o2 (a door) is to the left
(westward) of object o3 (a window), which in turn is to the left and below (south-
westward) of the object o4 (a dormer). For four objects extracted from Image
1 in Fig. 2 a matrix of the relative locations is obtained, as shown in Table 1.
The information on spatial relationships of the objects is a global feature of the
whole image and is stored in the database during the image indexing phase.

Semantic information concerning particular images takes the form of the class
assigned to each object extracted from an image. The actual list of the classes
under consideration depends on the application domain. In case of our pilot im-
plementation, meant for a real-estate agency, the objects are classified as doors,
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Fig. 1. Example of a real graphical object comparison: the extraction and classification
of objects (here: window frames) helps to match two images despite the distortion of
the low-level visual features

Table 1. Relative locations of the objects extracted from Image 1 in Fig. 2 are as
follows: W in a cell means that the object represented by a given column is to the west
of an object represented by a given row; similarly for E - to the east, S - to the south,
N - to the north, and their combinations, e.g. N-E meaning to the north-east.

o1 o2 o3 o4

o1 S S-E E
o2 N E N-E
o3 S-W E S
o4 W S-W S-W

windows, etc. The classification of the objects is based on a pattern library [13].
For each class of objects this library contains a pattern (or a set of patterns) rep-
resenting a given class in terms of the values of particular low-level image features
mentioned above. In our pilot implementation these patterns were constructed
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Fig. 2. General scheme of similarity determination between two images compared as
two collections of objects. At the bottom, the objects extracted from both images are
listed and labeled. The trapezoidal membership functions illustrate the tolerance on
the location of the objects’ centroids assumed, separately for each coordinate.

in a semi-automatic way. First, a training collection of objects has been manu-
ally assigned classes. Then, a decision tree has been created using the MATLAB
built-in algorithm. Finally, the resulting tree has been manually tuned, using
expert knowledge.

2.2 Imprecision in the Image Representation

All three types of the features mentioned above, i.e. low-level visual features,
spatial relationships and structural aspects, as well as semantic features are
often difficult to represent in a precise, non-ambiguous way. This imperfection
requires special means for the representation and processing of such data, notably
during the matching of an image against a query. Due to the complex form of
the images and the required rich representation format, various data types are
used, admitting various forms of imperfection. In what follows, we briefly discuss
the main cases.

The low-level features allow, first of all, for numerical values. In the database
they are stored as such. However, obviously some numerical features such as, e.g.
the coordinates of the centroid, are inherently imprecise. Thus, when the matching
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of two images is determined and their numerical features are compared, they are
automatically treated as fuzzy numbers; more details are given in Section 3. On
the other hand, in case of the classical query, aimed at retrieving images possessing
specified values of particular numerical features, it is very natural to allow for the
use of the linguistic labels. For example, the user may look for such images that
most of their objects are of a large area and high intensity of red or green color.
Such queries may be easily formalized and processed using techniques developed
in the field of flexible (fuzzy) queries against relational databases; cf., e.g., [14].

The spatial relationships are inherently imprecise. This imprecision may be
expressed using different levels of granularity. In the previous section, a typical
coarse-grained level is assumed, where only eight relative placements are distin-
guished (north, west,. . . etc.), however a more fine-grained representation with
fuzzily defined directions may be needed, depending on the application domain.

The imprecision is also very natural for the representation of an image in terms
of a set of objects. Namely, the effectiveness of the object extraction procedure,
notably of the segmentation algorithm, is limited and, thus, in some cases it
may be worthwhile to represent that fact using, e.g. a membership degree of an
object to an image, which leads to its representation as a fuzzy set of objects.

The semantic representation of an image is identified in our approach with the
classification of the extracted objects. Many popular classifiers do not just indi-
cate one class for a given object but provide richer information, ranking each class
against the object. This may also be the case of the decision tree based classifier,
if there are leaves with a non-zero impurity degree. Thus, some uncertainty is usu-
ally related to the output of the classifier and this may be expressed by, e.g. as-
signing to an object a fuzzy set of classes instead of just one class. This fuzzy set
membership function would have the possibilistic, disjunctive interpretation. This
should be, of course, reflected in the query matching algorithm (cf. Section 3) as
well as in the structural representation of an image as then particular objects may
be interpreted as belonging simultaneously to different classes.

3 Matching Images against a Query

The primary way of querying in our CBIR system is via the graphical query by
example (QBE) interface. The user expresses his or her preferences constructing
an image and the system searches the database to find similar images. More ad-
vanced users and users with specific preferences may execute a standard query
specifying their requirements in terms of the required values of the image fea-
tures. The features referred to may be of a global character (e.g., concerning an
average color intensities in the whole image or its histogram characteristic) or
may concern particular objects extracted from an image.

We will now discuss how the imprecision related to different types of fea-
tures is taken into account while the matching between a query and an image is
determined.

First, let us briefly discuss the standard queries where the image sought is
characterized by the values of its selected low-level visual features. As mentioned
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earlier, the techniques developed in the field of flexible (fuzzy) queries against
relational databases (cf., e.g., [14]) are here directly applicable. The main idea
is to allow queries using linguistic terms instead of numbers to express query
conditions. These linguistic terms may be exemplified by:

– the labels of fuzzy numbers, such as “high”, “low”, etc.,
– fuzzy comparators, such as “much greater than”, “more or less equal”, etc.,
– linguistic quantifiers, such as “most”, “almost all” etc.

The latter class of linguistic terms is especially interesting. They may be used
in a query to replace the standard logical connectives of conjunction and dis-
junction linking query conditions, with the aim to make the aggregation of these
conditions more flexible. Namely, instead of requiring an image to satisfy all (con-
junction) or just one (disjunction) condition, the user may require that most of
them are satisfied. The linguistic quantifiers are also very useful in the CBIR
systems in a different way, taking into account the representation of an image
as a set/multi-set of objects, which is discussed later on.

Imprecision inherent to the values of low-level visual features should be taken
into account in a different way when comparing two images, in particular when
one of them is composed by the user and represents his or her query. In such a
case a comparison of the absolute values of these low-level features is, in gen-
eral, not reasonable. However, in some scenarios it makes sense: when images are
carefully selected and scaled, or when one of the images is manually composed
by the user from the objects extracted from the images collected in a database.
This latter case is, in particular, assumed in our pilot implementation of the
CBIR system for house images. Then, when matching images it is reasonable
to compare their feature absolute values. However, it may be advantageous to
assume some tolerance for these value differences. For example, it may be rea-
sonable to treat two doors as identical from the point of view of the area feature
even if their values differ by, e.g. 10%. Similarly, if the centroids of two objects
are taken into account, a slight misplacement should be neglected. Thus, during
the matching, the values of these attributes are “fuzzified” and represented by
trapezoidal fuzzy numbers. This is illustrated for the centroid feature in Fig. 2,
where both coordinates of the centroid are represented by an individual fuzzy
number. The actual shape of its membership function depends on the other fea-
tures of a given object. In case of the centroid feature, the tolerance introduced
by the fuzzy number is relative to its size, in particular to the values of the major
and minor axes lengths: the higher/wider the object, the higher the tolerance.
Then, the values of the low-level features “fuzzified” in such a way are compared
using some techniques; cf. [6].

The comparison of low-level feature values determines the similarity between
objects belonging to two images under comparison. However, the most important
criterion in this comparison is the class assigned to the given objects. If a unique
class is assigned to an object, then the result of a comparison is trivially based on
the equality relation. If uncertainty in the class assignment is allowed, then some
more sophisticated measures are needed. In particular, these assignments may
be treated as fuzzy sets and compared using one of the many methods discussed
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in the literature, cf., e.g. [6]. On the other hand, they may be treated as genuine
possibility distributions and compared using, e.g. the approach proposed by Bosc
et al. [2]. The results of the comparison of all low-level features are aggregated
to yield an overall similarity degree between pairs of objects belonging to the
images being compared.

While the whole images are also compared using their global low-level features,
the most important is the match between sets/multisets of the objects extracted
from them. Thus, we have two sets/multisets, which have to be compared, and
additionally a similarity degree between them, computed using their low-level
visual features and their class assignments. For such a setting, Hallez et al. [10]
have proposed recently a number of indices of similarity, which are thus readily
applicable for our CBIR system. On the other hand, the hierarchical structure
of some objects makes applicable the methods elaborated by, e.g. Maŕın et al.
[15] and Berzal et al. [1]. See also Chow et al. [5] who proposed a tree-structured
image representation in which a root node contains the global features, while
the child nodes contain the local region-based ones. This approach hierarchically
integrates information on image contents to attain a better retrieval accuracy
than the global and regional attributes, individually compared.

Finally, the spatial relationships between objects should be taken into ac-
count when deciding on the match between images. Candan and Li [3] analyzed
description of the objects’ mutual relationships based on different fuzzy opera-
tors. In our system [13] spatial relationships of the objects in an image are also
used as a global feature; cf. Section 2. Thus, the matching of images is based
on the similarities of objects and their spatial relationships. The query image
is represented as a vector Q = {Fgq , oq1 , . . . , oqN }, gathering global features of
the image Fgq and object feature vectors oqk

, for all objects extracted from the
image. For matching the spatial relationships of the objects (cf. Table 1) in two
compared images first of all a pairing between the objects is established. This
is done during the comparison of whole collections of objects representing both
images, when for each object in one image the most similar object in another
image is determined. Then, the matrices representing spatial relationships (cf.
Table 1) are appropriately arranged so that the rows in the matrix corresponding
to a particular image represent the objects paired with the objects represented
by the same row in the matrix corresponding to another image. Finally, the cells
of two matrices are compared against each other. In the simplest case, the result
of the comparison is binary, but it may be worthwhile to adopt a more flexible
approach to the comparison by, e.g. declaring the compatibility (matching) be-
tween the matrices (to a degree) when most of the cells are identical. In case a
more fine-grained representation of spatial relationships is used (cf. Section 2),
the need for a more flexible comparison is more evident.

For an in-depth discussion of various related issues, cf. Maŕın et al. [15].
In order to address some special practical cases the matching procedure should

be made even more flexible, concerning both the comparison of the sets of ob-
jects and their spatial relationships. For example, if one image matched against
another one is a half of it, then the comparison should be based on the inclusion
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between sets of objects rather than on their identity or similarity. In this case we
are able to match the objects location table to a fragment of it. It is worth notic-
ing that then the matrices representing the spatial relationships of the objects
in both images, limited only to the paired objects, should still match.

4 Conclusions

In the paper we discuss the sources of imprecision and propose some ways to
deal with them in a content-based image retrieval system. The following sources
of imprecision have been identified:

– user-defined criteria regarding the values of low-level visual image features
while querying the system,

– a need for tolerance when comparing low-level features of two images to be
matched against each other,

– the definition of spatial relationships between objects,
– an automatic classification of objects to the predefined semantically mean-

ingful classes.

We have proposed some ways to deal with these kinds of imprecision, mainly via
a novel use of some known techniques.

We have also briefly described our pilot implementation of a CBIR system.
Further research will focus on an experimental verification of the practical use-
fulness and effectiveness of the proposed imprecision modeling.
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Abstract. This paper proposes a joint extension of interval comparison
and random variable comparison methods to the ranking of fuzzy random
variables. First, an extension of stochastic dominance to random intervals
is proposed. It enables to retrieve some previous ranking methods for
belief functions and for fuzzy intervals. On this basis, a direct extension
of stochastic dominance to fuzzy random variables is proposed. This
approach is just one among various possibilities obtained by combining
fuzzy interval and random variable comparison methods.

1 Introduction

Quite often, we are faced with the situation where the values of random variables
are not completely known. When random variables take values that are fuzzy
intervals, it leads to the concept of fuzzy random variables, first introduced
by Kwakernaak [13]. Later, other authors like Kruse and Meyer [12], Puri and
Ralescu [15], among others studied this concept. Puri and Ralescu consider a
fuzzy random variable as a classical one taking values on a metric space of
membership functions. On the contrary, Kwakernaak and Kruse consider a fuzzy
random variable to represent uncertainty about a standard random variable,
i.e. a fuzzy set of random variables. This is the view adopted here. Recently,
Couso and Dubois [4] proposed yet another interpretation of this concept (as a
conditional possibility measure dominating a set of conditional probabilities).

It is of interest to define an extension of stochastic dominance to fuzzy random
variables that would combine dominance between random variable and compar-
ison of fuzzy intervals. The problem of extending the natural ordering of the real
line to fuzzy intervals has produced a large and scattered literature. Wang and
Kerre [17] tried to compare the various methods via the definition of properties
that comparison indices should satisfy. Another point of view consists in noticing
that a fuzzy interval being a generalization of an interval, as well as a special
case of a random set [10], rank-ordering methods for fuzzy intervals should be
somewhat related to interval comparisons as well and dominance indices between
random variables. From this point of view, the comparison of fuzzy and random
variables could be cast into a unified setting.

In this paper, we propose a direct extension of stochastic dominance to fuzzy
random variables whose values are fuzzy intervals of the L − R type. Comparing
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upper and/or lowerbounds of intervals of the real line, we first define a direct exten-
sion of stochastic dominance to random intervals. We also calculate the probability
that a random interval is greater than another in the sense of prescribed relations
between intervals. Thereafter, based on these extensions and the valued relations
between L − R fuzzy intervals defined by Chanas et al. [1,2], we propose a direct
extension of stochastic interval dominance to fuzzy randomvariables of type L−R.

2 Comparison of Random Variables

Let (Ω,F , P ) be probability space where Ω is a set, F an algebra of measur-
able subsets and P a probability measure. The concept of first order stochas-
tic dominance consists in comparing the probability distributions of two ran-
dom variables a and b as follows: a is said to stochastically dominate b if
Fa(x) = P ({ω : a(ω) ≤ x}) ≤ Fb(x) = P ({ω : b(ω) ≤ x}), ∀x ∈ R, where
Fa and Fb are the cumulative distribution functions of the random variables a
and b respectively. Its importance in decision theory is known. In particular, a
random variable a stochastically dominates another random variable b (denoted
by a >s.d b) if and only if for any increasing function f : R −→ R (a utility
function, typically), the expectation of f(a) is greater than the expectation of
f(b) (see Chateauneuf et al. [3]). For an early review of stochastic orderings in
this vein see Mosler and Scarsini [14].

Apart from stochastic dominance, one can measure the probability that a
random variable a is greater than another one b, as P (a > b) = P ({(ω, ω′) :
a(ω) > b(ω′)}). One of the two following opposite assumptions is often made:

– independent random variables with continuous distribution functions pa and
pb: then P (a > b) =

∫
x>y pa(x)pb(y)dxdy.

– comonotone random variables with a functional link of the form ω = ω′:
then P (a > b) = P ({ω : a(ω) > b(ω)}).

Then define a >P
α b ⇐⇒ P (a > b) > α. For α = 0.5 one obtain the relation >P :

a >P b ⇐⇒ P (a > b) > P (b > a) provided that P (a = b) = 0 (continuous
distributions). Let us note that the relation >P can have cycles (this is the
Condorcet effect). One can eliminate cycles of prescribed length by choosing α
sufficiently high (see De Baets et al. [5]). Besides, it is clear that in the case of
co-monotonic functional dependence, P (a > b) = 1 is generally equivalent to
stochastic dominance of a over b.

3 Ranking Real Intervals

Let A = [a, a] and B = [b, b] be two real intervals. For ranking them, we have
four relations >i, i = 1, 2, 3, 4, defined in [7] as follows:

[a, a] >1 [b, b]⇔ a > b; [a, a] >2 [b, b]⇔ a > b;

[a, a] >3 [b, b]⇔ a > b; [a, a] >4 [b, b]⇔ a > b.
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The relation >1 is the strongest, >4 is the weakest, >2 et >3 are intermediary.
Hence the following implications:

A >1 B ⇒ A >2 B ⇒ A >4 B; A >1 B ⇒ A >3 B ⇒ A >4 B (1)

These relations are known in the literature:

– A >1 B ⇔ ¬(B ≥4 A). The relation >1 is an interval order (Fishburn [11]).
In the case of independence between random variables a and b, P (a > b) = 1
is generally equivalent to Support(a) >1 Support(b).

– The simultaneous use of ≥2 and ≥3 : A $ B if and only if A ≥2 B and
A ≥3 B. This is the canonical order induced by the lattice structure of
intervals, equipped with the operations max and min extended to intervals :
A $ B ⇔ max([a, a], [b, b]) = [a, a] ⇐⇒ min([a, a], [b, b]) = [b, b] (we call it
lattice interval order).

Finally, one way of comparing intervals consists in choosing a number in each
interval and to compare these numbers. The selection of representatives of the
intervals can be based on some pessimism index α ∈ [0, 1] reflecting the attitude
of a decision-maker. This is the well-known Hurwicz criterion, such that if A =
[a, a], B = [b, b], A $α B means αa + (1−α)a ≥ αb + (1−α)b. It is obvious that
A $ B ⇐⇒ A $α B, ∀α ∈ [0, 1]. Note that the Hurwicz order of intervals plays
the same role with respect to the lattice interval order as the ranking of random
variables by their expected utility with respect to stochastic dominance.

4 Stochastic Dominance for Random Intervals

Let A(ω) = [a(ω), a(ω)] and B(ω′) = [b(ω′), b(ω′)] be two random intervals;
where a, a, b et b are random variables such that: P (a > a) = P (b > b) = 1.

Based on the definition of stochastic dominance of random variables and the
order relations >i, i = 1, 2, 3, 4, between real intervals, we define a direct ex-
tension of stochastic dominance and these four interval orderings to random
intervals as follows:

Definition 1. Let i, j be two integers such that 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4. A
random interval A (i, j)-stochastically dominates a random interval B, if:

P ({ω : A(ω) >i {c}}) ≥ P ({ω : B(ω) >j {c}}), ∀c ∈ R (2)

Remarks

– This definition actually only subsumes 4 definitions of stochastic dominance,
not 16. Indeed, A >1 {c} is the same as A >2 {c} (it means a > c) and
A >3 {c} is the same as A >4 {c} (it means a > c).

– If ∀ω ∈ Ω, a(ω) = a(ω) = a(ω) and b(ω) = b(ω) = b(ω), this definition
reduces to standard stochastic dominance a >s.d b.
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– Note that one might have defined stochastic dominance for random intervals
as a direct extension, replacing numbers by intervals:

P ({ω : [a(ω), a(ω)] >i [c, c]}) ≥ P ({ω : [b(ω), b(ω)] >j [c, c]})
for all real numbers c and c such that, c ≤ c. However, such a proposal
either comes down to our definition (if i = j, as it uses the same bound
of [c, c], or i = 2, 4, j = 1, 3 since then P ({ω : A(ω) >i {c}}) ≥ P ({ω :
B(ω) >j {c}}) ⇐⇒ P ({ω : [a(ω), a(ω)] >i [c, c]}) ≥ P ({ω : [b(ω), b(ω)] >j

[c, c]}), ∀c ≤ c ≤ c), or it is too demanding to make sense (if i = 1, 3, j = 2, 4,
since it requires P (a > c) ≥ P (b > c), ∀c ≤ c while in general limc→+∞P (a >
c) = 0 while limc→−∞P (b > c) = 1.

Definition 1 comes down to the following four definitions of stochastic dominance
between random intervals:
– If i = 1, 2, j = 3, 4 : P (a > c) ≥ P (b > c) ⇐⇒ a ≥s.d b, denoted A ≥s.d

1 B;
– If i = 1, 2, j = 1, 2 : P (a > c) ≥ P (b > c) ⇐⇒ a ≥s.d b, denoted A ≥s.d

2 B;
– If i = 3, 4, j = 3, 4: P (a > c) ≥ P (b > c) ⇐⇒ a ≥s.d b, denoted A ≥s.d

3 B;
– If i = 3, 4, j = 1, 2 : P (a > c) ≥ P (b > c) ⇐⇒ a ≥s.d b, denoted A ≥s.d

4 B.

One can connect the concept of random interval to belief functions. A continuous
belief function [16] is defined by a density function of mass m(x, y) ≥ 0 if and
only if x ≤ y, alloted to random interval A(ω) = [x, y]. One can then build the
cumulative functions:

BelA((−∞, x]) = P (A ⊆ (−∞, x]) = P (a ≤ x)
PlA((−∞, x]) = P (A ∩ (−∞, x] �= ∅) = P (a ≤ x).

Our stochastic dominance orderings are then closely related to those proposed
by T. Denoeux [6]

– A ≥s.d
1 B if and only if BelA((−∞, x]) ≤ PlB((−∞, x]);

– A ≥s.d
2 B if and only if BelA((−∞, x]) ≤ BelB((−∞, x]);

– A ≥s.d
3 B if and only if PlA((−∞, x]) ≤ PlB((−∞, x]);

– A ≥s.d
4 B if and only if PlA((−∞, x]) ≤ BelB((−∞, x]).

In the general case, based on the implications (1) in section 2, some properties
of stochastic dominance of random intervals follow.
Proposition 1. Let A and B be two random intervals:

1. A ≤s.d
1 B ⇒ A ≤s.d

2 B ⇒ A ≤s.d
4 B ;

2. A ≤s.d
1 B ⇒ A ≤s.d

3 B ⇒ A ≤s.d
4 B.

These results always hold due to the fact that Bel ≤ Pl.

5 Probabilistic Ordering Relation between Random
Intervals

Instead of generalizing stochastic dominance, one can randomize the four order
relations between intervals and compute the probability for a random interval
A to be greater than a random interval B in the sense of >i, i = 1, 2, 3, 4. the
corresponding fuzzy relations are then defined by:
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1. μ1(A, B) = P ({(ω, ω′) : A(ω) >1 B(ω′)} = P (a(ω) > b(ω′)).
2. μ2(A, B) = P ({(ω, ω′) : A(ω) >2 B(ω′)} = P (a(ω) > b(ω′)).
3. μ3(A, B) = P ({(ω, ω′) : A(ω) >3 B(ω′)} = P (a(ω) > b(ω′)).
4. μ4(A, B) = P ({(ω, ω′) : A(ω) >4 B(ω′)} = P (a(ω) > b(ω′)).

The first expression is the natural probabilistic extension of interval order.

Proposition 2. For continuous distribution functions, one can check the fol-
lowing properties:

– μ4(A, B) = 1− μ1(B, A)
– μ1(A, B) ≤ μi(A, B) ≤ μ4(A, B) for i ∈ {2, 3}

One can finally consider a stochastic extension of the lattice interval order:

μ�(A, B) = P ({(ω, ω′) : (a(ω) > b(ω′)) ∧ (a(ω) > b(ω′))})
By virtue of Frechet inequalities, one easily gets:

μ2(A, B) + μ3(A, B)− 1 ≤ μ�(A, B) ≤ min(μ2(A, B), μ3(A, B)).

6 Valued Relations between L − R Fuzzy Intervals

One can consider a fuzzy interval like a nested random set [10]. One can thus
apply the above definitions to the comparison of fuzzy intervals, as done by
Chanas and colleagues [1,2]. To simplify, one considers here the comparison of
intervals of the same shape up to homothety.

6.1 Fuzzy Intervals of the L – R Type

A fuzzy interval of type L-R is a fuzzy interval whose membership function μÃ
is defined by: (cf [8])

μÃ(x) =

⎧⎨⎩
1 if x ∈ [a, a],
L(a−x

λA
) if x ≤ a,

R(x−a
ρA

) if x ≥ a

⎫⎬⎭ .

The functions L and R are defined on the half real line [0,∞) such that L(0) =
R(0) = 1, non-negative, decreasing, continuous on the left. The spreads λA

and ρA are positive real numbers. By convention, if λA = 0 and ρA = 0, then
Ã = [a, a]. Let FN(LR) be the set of fuzzy interval of type L-R. Ã ∈ FN(L, R)
is denoted by Ã = (a, a, λA, ρA).

6.2 Probabilistic Relations between Fuzzy Intervals

Let α ∈ (0, 1], and Ãα the α-cut of Ã. One can easily see that:

Ãα = [a− L−1(α)λA, a + R−1(α)ρA],
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where L−1 and R−1 are the reciprocal functions of L and R respectively. The
functions L and R being continuous, α can scan the interval (0, 1] in a continuous
and uniform way. Let ξ be a uniformly distributed random variable on (0, 1] and
such that for each ξ = α, one obtains the set Ãα as a realization. In this case,
Ã is considered as a random interval A(ξ) = [a− L−1(ξ)λA, a + R−1(ξ)ρA] and
1− ξ is the degree of confidence of finding the value described by Ã inside A(ξ).

Definition 2. Let Ã = (a, a, λA, ρA) ∈ FN(L, R) and B̃ = (b, b, λB, ρB) ∈
FN(L, R) be two L−R fuzzy intervals. For i = 1, 2, 3, 4 the membership functions
μi : FN(L, R)2 → [0, 1], are defined by:
μ1(Ã, B̃) = P ({a− L−1(ξ)λA > b + R−1(ζ)ρB})
μ2(Ã, B̃) = P ({a− L−1(ξ)λA > b− L−1(ζ)λB})
μ3(Ã, B̃) = P ({a + R−1(ξ)ρA > b + R−1(ζ)ρB})
μ4(Ã, B̃) = P ({a + R−1(ζ)ρA > b− L−1(ξ)λB})
where ξ and ζ are uniform random variables on [0, 1].

This is just the application of definitions proposed in the previous section for
random intervals; ξ and ζ could be independent, comonotonic or coupled by any
other copula. The actual form of μi is depending on this copula.

Lemma 1. For two arbitrary fuzzy intervals of type L − R, the following con-
dition are fulfilled: μ1(Ã, B̃) > 0 ⇒ a > b. And μ4(Ã, B̃) < 1 ⇔ b ≥ a (or
equivalently μ4(Ã, B̃) = 1⇔ a ≥ b).

No assumption of independence between ξ and ζ is needed to obtain this ob-
vious result. For instance, μ1(Ã, B̃) > 0 implies {(ξ, ζ) : a − L−1(ξ)λA >
b + R−1(ζ)ρB} �= ∅. Then it must contain the pair (ξ, ζ) = (1, 1).

Proposition 3. Let Ã and B̃ be two fuzzy intervals of type L−R with underlying
continuous random variables.

1. μ1(Ã, B̃) = 1− μ4(B̃, Ã)
2. μ1(Ã, B̃) ≤ μi(Ã, B̃) ≤ μ4(Ã, B̃) for all i ∈ {2, 3}
3. μ1(Ã, B̃) > 0⇒ μ4(Ã, B̃) = 1

The two first results are the consequences of Proposition 2. For the last property,
it is due to Lemma 1 (it is also an instance of the property N(F ) > 0→ Π(F ) =
1 for events F in possibility theory). These properties and the lemma above will
be used in the proof of propositions concerning the stochastic dominance of fuzzy
random variables of type L−R.

Remark. If Ã and B̃ reduce to intervals A = [a, a] and B = [b, b] then, the
above indices μi(Ã, B̃) become characteristic functions of relations >i namely:
A >i B if and only if μi(A, B) = 1 for i = 1, 2, 3, 4.

Two assumptions are considered by Chanas et al. in [2]: functionally dependent
fuzzy intervals and independent fuzzy intervals.
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Functionally Dependent Fuzzy Intervals. One can for example suppose
that the fuzzy intervals Ã and B̃ are associated the same random variable ξ
on the unit interval. In other words, one must select the same α-cuts of Ã and
B̃ (it is the case for two fuzzy numbers provided by the same expert selecting
a single degree of confidence). One will speak of fuzzy intervals with positively
related degrees of confidence. Let us note that this dependence is the one between
the sources producing Ã and B̃, and not between the underlying variables. The
indices in Definition 2 become (using a superscript D for this case):

μD
1 (Ã, B̃) = P ({a− L−1(ξ)λA > b + R−1(ξ)ρB});

μD
2 (Ã, B̃) = P ({a− L−1(ξ)λA > b− L−1(ξ)λB});

μD
3 (Ã, B̃) = P ({a + R−1(ξ)ρA > b + R−1(ξ)ρB});

μD
4 (Ã, B̃) = P ({a + R−1(ξ)ρA > b− L−1(ξ)λB});

where ξ is a uniform random variable on [0, 1]. The use of fuzzy intervals of type
L−R allows an explicit calculation of these indices, for instance

– Since L and R are decreasing functions, if b < a and a− λA < b + ρB then
there is single value ξ = α1 such that a − L−1(ξ)λA = b + R−1(ξ)ρB . If
L = R, α1 = L( a−b

λA+ρB
). Hence μ1(Ã, B̃) = 1−α1 = 1− μ4(B̃, Ã). One thus

gets μ1(Ã, B̃) > β if and only if ∀α > 1− β, Ãα >1 B̃α.
– If a > b but a−λA < b+λB one can solve the equation a−L−1(ξ)λA = b−

L−1(ξ)λB , the single solution of which is α2 = L( a−b
λA−λB

). Then, μ2(Ã, B̃) =
1− α2 and μ2(Ã, B̃) > β if and only if ∀α > 1− β, Ãα >2 B̃α.

– In the same way, if a < b but a − ρA > b + ρB one can solve the equation
a+R−1(ξ)ρA = b+R−1(ξ)ρB , the single solution of which is α3 = R( b−a

ρA−ρB
).

Then, μ3(Ã, B̃) = α3 and μ3(Ã, B̃) > β if and only if ∀α > β, Ãα >3 B̃α.

Consider now the extension of the relation , to fuzzy intervals, as

μ�(Ã, B̃)=P ({(a−L−1(ξ)λA >b−L−1(ξ)λB)∧(a+R−1(ζ)ρA > b+R−1(ζ)ρB)}).
If a > b but a − λA < b + λB , and a > b but a − ρA < b + ρB, one gets
{ξ : a − L−1(ξ)λA > b − L−1(ξ)λB} ⊆ {ξ : a + R−1(ξ)ρA > b + R−1(ξ)ρB} or
conversely. Thus : μ�(Ã, B̃) = min(μ2(Ã, B̃), μ3(Ã, B̃)).

Independent Fuzzy Intervals. The other assumption used by Chanas et al. is
that the cuts of Ã and B̃ are induced by two independent random variables ξ and
ζ on the unit interval. It is the case of two fuzzy intervals supplied by independent
sources. One then speaks of fuzzy intervals with independent confidence levels.
The explicit calculation of indices can also be carried out. For instance, if b < a
and a − λA < b + ρB then μI

1(Ã, B̃) (superscript I for independence) is the
surface above the line defined by a − λAL−1(ξ) = b + ρBR−1(ζ) in the unit
square. Namely we must have a−λAL−1(ξ) < b+ρBR−1(ζ) to have overlapping
cuts. Hence
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μI
1(Ã, B̃) = 1−

∫ 1

0
R(min(1, max(0,

a− b− λAL−1(ξ)
ρB

))dξ.

Moreover, the two events {ξ : a − L−1(ξ)λA > b − L−1(ξ)λB} and {ζ : a +
R−1(ζ)ρA > b + R−1(ζ)ρB} being independent, the valued relation μI� breaks
up now as follows:

μI
�(Ã, B̃) = μI

2(Ã, B̃) · μI
3(Ã, B̃)

7 Stochastic Dominance between Fuzzy Random
Variables

Fuzzy random variables were originally introduced by Kwakernaak [13]:

Definition 3. A fuzzy random variable X̃ is a function from a probability space
(Ω,F , P ) to the set of fuzzy intervals : ω ∈ Ω �→ X̃(ω) ∈ F(R).

If F(R) is restricted to FN(LR), X̃ is called fuzzy random variable of type L−
R and denoted X̃(ω) = (x(ω), x(ω), λX(ω), ρX(ω)) such that ∀ω ∈ Ω, λX(ω) ≥
0, x(ω) < x(ω), ρX(ω)) ≥ 0.

We now define stochastic dominance of fuzzy random variables of type L−R.

Definition 4. Let Ã and B̃ be two fuzzy random variables of type L − R, and
i, j ∈ {1, 2, 3, 4}. Ã (i, j)-stochastically dominates B̃ if and only if ∀β ∈ [0, 1),
P (μi(Ã, {c}) > β) ≥ P (μj(B̃, {c}) > β), ∀c ∈ R.

Notice that it again comes down to 4 forms of stochastic dominance. Indeed,
denoting by μÃ(ω) the membership function of Ã(ω) and by Ã1(ω) its core:

μ1(Ã, {c}) = μ2(Ã, {c}) = 1− μÃ(c) if c ≤ inf Ã1 and 0 otherwise;
μ4(Ã, {c}) = μ3(Ã, {c}) = μÃ(c) if c ≥ sup Ã1 and 1 otherwise.

So we can denote P (μi(Ã, {c}) > β) ≤ P (μj(B̃, {c}) > β), ∀c ∈ R as follows:

– If i = 1, 2, j = 3, 4 : Ã ≥s.d
1 B̃; if i = 1, 2, j = 1, 2 : Ã ≥s.d

2 B̃;
– If i = 3, 4, j = 3, 4: Ã ≥s.d

3 B̃; if i = 3, 4, j = 1, 2 : Ã ≥s.d
4 B̃.

These relations extend to fuzzy random variables both stochastic dominance and
the 4 interval orderings. Moreover we can show:

Proposition 4. If Ã ≤s.d
1 B̃ then a ≤s.d b.

Proof. Ã ≤s.d
1 B̃ if and only if ∀β ∈ [0, 1) and ∀c ∈ R, P (μ4(Ã, {c}) > β) ≤

P (μ1(B̃, {c}) > β). From lemma 1, the condition μ1(B̃, {c}) > β implies b > c.
Likewise, from lemma 1, the condition μ4(Ã, {c}) > β implies a > c. Now the
following inclusions hold: {ω : a(ω) > c} = {ω : μ4(Ã(ω), {c}) = 1} ⊂ {ω :
μ4(Ã(ω), {c}) > β}, and {ω : b(ω) > c} = {ω : μ1(B̃(ω), {c}) > 0} ⊃ {ω :
μ1(B̃(ω), {c}) > β}. Hence:
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P (a > c) ≤ P (μ4(Ã, {c}) > β) ≤ P (μ1(B̃, {c}) > β) ≤ P (b > c).

Likewise, we can check that

– If Ã ≤s.d
2 B̃ then a is stochastically dominated by b;

– If Ã ≤s.d
3 B̃ then a is stochastically dominated by b;

– If Ã ≤s.d
4 B̃ then a is stochastically dominated by b.

Relying on the previous definition and properties of probabilistic orderings of
fuzzy intervals, the following properties of the stochastic dominance of fuzzy
random variables extend the relations between the 4 basic interval orderings:

Ã ≤s.d
1 B̃ ⇒ Ã ≤s.d

2 B̃ ⇒ Ã ≤s.d
4 B̃;

Ã ≤s.d
1 B̃ ⇒ Ã ≤s.d

3 B̃ ⇒ Ã ≤s.d
4 B̃. More properties of these ordering

relations should be studied. Moreover, they should be applied to the extension
of linear programming techniques when coefficients are fuzzy random variables,
thus jointly extending fuzzy and stochastic programming.

8 Conclusion

An extension of the stochastic dominance to fuzzy random variables of type
L − R was proposed in two following successive stages: First, the extension of
stochastic dominance from random variables to random intervals by means of
the four order relations between bounds of intervals. Then, the extension, to
random intervals, and in a second step to fuzzy random variables of type L−R,
of the probability of dominance between random variables by means of the fuzzy
relations defined in [1],[2].

This work is clearly preliminary. There are several ways of comparing inter-
vals. And two basic ways of extending the ordering of reals to random variables:
by stochastic dominance (of the first order), or by calculating the probability that
a random variable is greater than another. Thus, there are two lines to consider
for the comparison of random intervals: by applying the stochastic dominance to
each of pair of bounds, or by calculating the probability that one random bound
is greater than another. One can also directly generalize stochastic dominance ac-
cording to a relation between intervals. One can apply these extensions to fuzzy
intervals seen as particular cases of random intervals. In the case of the compari-
son of fuzzy random variables, one is then in front of several possible definitions of
stochastic dominance that blend these various ingredients. In this paper we just
outlined the direct extension of stochastic dominance. Other relations of domi-
nance between fuzzy random variables Ã and B̃ could be considered, for instance

1. One can apply the indices of interval dominance >i, i = 1, 2, 3, 4 between
their α-cuts : ∀α ∈ (0, 1], μα

i (Ã, B̃) = P (Ãα >i B̃α), and define dominance
degrees μi(Ã, B̃) as the integral

∫ 1
0 μα

i (Ã, B̃)dα w.r.t. α.
2. As Ãα and B̃α are random intervals, one can require stochastic dominance

of Def. 1 between these random intervals for each α. One can thus define
another form of stochastic dominance for fuzzy random variables:
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Ã ≤ij
sd B̃ ⇐⇒ P (Ãα >i {c}) ≤ P (B̃α >j {c}), ∀α ∈ (0, 1], ∀c ∈ R.

Yet other combinations are possible. It will be necessary of course to understand
the links between these possible definitions, and to find out those that have
the best properties (in the light of [17]), and for which the evaluations are easy
to calculate in practice. In this work, we considered a particular type of fuzzy
random variables. For future works, an extension of stochastic dominance of
fuzzy random variables to more general settings could be considered. Moreover,
one can also combine the comparison between random variables and the max-min
possibilistic approach to the comparison of fuzzy intervals [9].
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Abstract. The correlation coefficient (Pearson’s r) is one of the most frequently
used tools in statistics. In this paper we propose a correlation coefficient of Ata-
nassov’s intuitionistic fuzzy sets (A-IFSs). It provides the strength of the rela-
tionship between A-IFSs and also shows if the considered sets are positively or
negatively correlated. Next, the proposed correlation coefficient takes into ac-
count not only the amount of information related to the A-IFS data (expressed by
the membership and non-membership values) but also the reliability of the data
expressed by a so-called hesitation margin.

1 Introduction

Since Karl Pearson’s proposal of the correlation coefficient r (so called Pearson’s coef-
ficient) in 1895, it has became one of the most broadly applied indices in statistics [12].
Generally, correlation indicates how well two variables move together in an linear fash-
ion. In other words, correlation reflects a linear relationship between two variables. It is
an important measure in data analysis and classification, in particular in decision mak-
ing, predicting the market behavior, medical diagnosis, pattern recognition, and other
real world problems concerning environmental, political, legal, economic, financial, so-
cial, educational, artistic, etc. systems.

As many real world data may be fuzzy, the concept has been extended to fuzzy
observations (cf. e.g., Chiang and Lin [4], Hong and Hwang [7], Liu and Kao [11]).

A relationship between A-IFSs (representing, e.g., preferences, attributes) seems to
be of a vital importance, too, so that there are many papers discussing the correlation of
A-IFSs: Gersternkorn and Mańko [5], Bustince and Burillo [3], Hong and Hwang [6],
Hung [8], Hung and Wu [9], Zeng and Li [33]. In some of those papers only the strength
of relationship is evaluated (cf. Gersternkorn and Mańko [5], Hong and Hwang [6],
Zeng and Li [33]). In other papers (cf. Hung [8], Hung and Wu [9]), a positive and
negative type of a relationship is reflected but the third term describing an A-IFS, which
is important from the point of view of all similarity, distance or entropy measures (cf.
Szmidt and Kacprzyk, e.g., [14], [16], [23], [18], [25]), [26]) is not accounted for.

In this paper we discuss a concept of correlation for data represented as A-IFSs
adopting the concepts from statistics. We calculate it by showing both a positive and
negative relationship of the sets, and showing that it is important to take into account
all three terms describing A-IFSs.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 169–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 A Brief Introduction to Intuitionistic Fuzzy Sets

One of the possible generalizations of a fuzzy set in X (Zadeh [32]), given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is Atanassov’s

intuitionistic fuzzy set (Atanassov [2]) A:

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that 0<μA(x) + νA(x)<1,
and μA(x), νA(x) ∈ [0, 1] denote the degree of membership and a degree of non-
membership of x ∈ A, respectively, and the hesitation margin of x ∈ A is:

πA(x) = 1− μA(x) − νA(x) (3)

The πA(x) expresses a lack of knowledge of whether x belongs to A or not (Atanas-
sov [2]); obviously, 0<πA(x)<1, for each x ∈ X ;

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [14], [16], [23], entropy (Szmidt and Kacprzyk [18], [25]), simi-
larity (Szmidt and Kacprzyk [26]) for the A-IFSs, etc. i.e., the measures that play a cru-
cial role in virtually all information processing tasks. The hesitation margin is shown
to be indispensable also in the ranking of intuitionistic fuzzy alternatives as it indi-
cates how reliable (sure) information represented by an alternative is (cf. Szmidt and
Kacprzyk [27], [28]).

The use of A-IFSs instead of fuzzy sets implies the introduction of additional de-
grees of freedom (non-memberships and hesitation margins) into the set description.
Such a generalization of fuzzy sets gives us an additional possibility to represent imper-
fect knowledge which may lead to describing many real problems in a more adequate
way. This is confirmed by successful applications of A-IFSs to group decision making,
negotiations, voting and other situations are presented in Szmidt and Kacprzyk [13],
[15], [17], [19], [20], [21], [22], [24], [29], Szmidt and Kukier [30], [31].

2.1 A Geometrical Representation

One of possible geometrical representations of an intuitionistic fuzzy sets is given in
Figure 1 (cf. Atanassov [2]). It is worth noticing that although we use a two-dimensional
figure (which is more convenient to draw in our further considerations), we still adopt
our approach (e.g., Szmidt and Kacprzyk [16], [23], [18], [25]), [26]) taking into ac-
count all three terms (membership, non-membership and hesitation margin values) de-
scribing an intuitionistic fuzzy set. Any element belonging to an intuitionistic fuzzy
set may be represented inside an MNO triangle. In other words, the MNO triangle
represents the surface where the coordinates of any element belonging to an A-IFS can
be represented. Each point belonging to the MNO triangle is described by the three
coordinates: (μ, ν, π). Points M and N represent the crisp elements. Point M(1, 0, 0)
represents elements fully belonging to an A-IFS as μ = 1, and may be seen as the
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Fig. 1. Geometrical representation

representation of the ideal positive element. Point N(0, 1, 0) represents elements fully
not belonging to an A-IFS as ν = 1, i.e. can be viewed as the ideal negative element.
Point O(0, 0, 1) represents elements about which we are not able to say if they belong
or not belong to an A-IFS (the intuitionistic fuzzy index π = 1). Such an interpretation
is intuitively appealing and provides means for the representation of many aspects of
imperfect information. Segment MN (where π = 0) represents elements belonging to
the classic fuzzy sets (μ + ν = 1). For example, point x1(0.2, 0.8, 0) (Figure 1), like
any element from segment MN represents an element of a fuzzy set. A line parallel to
MN describes the elements with the same values of the hesitation margin. In Figure 1
we can see point x3(0.5, 0.1, 0.4) representing an element with the hesitation margin
equal 0.4, and point x2(0.2, 0, 0.8) representing an element with the hesitation margin
equal 0.8. The closer a line that is parallel to MN is to O, the higher the hesitation
margin.

3 Correlation

The correlation coefficient (Pearson’s r) between two variables is a measure of the
linear relationship between them.

The correlation coefficient is 1 in the case of a positive (increasing) linear relation-
ship, -1 in the case of a negative (decreasing) linear relationship, and some value be-
tween -1 and 1 in all other cases. The closer the coefficient is to either -1 or 1, the
stronger the correlation between the variables.

3.1 Correlation between Crisp Sets

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample of size n from a joint proba-
bility density function fX,Y (x, y), let X and Y be the sample means of variables X and
Y , respectively, then the sample correlation coefficient r(X, Y ) is given as (e.g., [12]):
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r(A, B) =

n∑
i=1

(xi −X)(yi − Y )

(
n∑

i=1
(xi −X)2

n∑
i=1

(yi − Y )2)0.5
(4)

where: X = 1
n

n∑
i=1

xi, Y = 1
n

n∑
i=1

yi.

3.2 Correlation between Fuzzy Sets

Suppose that we have a random sample x1, x2, . . . , xn ∈ X with a sequence of paired
data (μA(x1), μB(x1)), (μA(x2), μB(x2)), . . ., (μA(xn), μB(xn)) which correspond
to the membership values of fuzzy sets A and B defined on X , then the correlation
coefficient rf (A, B) is given as ([4]):

rf (A, B) =

n∑
i=1

(μA(xi)− μA)(μB(xi)− μB)

(
n∑

i=1
(μA(xi)− μA)2)0.5(

n∑
i=1

(μB(xi)− μB)2)0.5
(5)

where: μA = 1
n

n∑
i=1

μA(xi), μB = 1
n

n∑
i=1

μB(xi).

3.3 Correlation between A-IFSs

We propose a correlation coefficient for two A-IFSs, A and B, so that we could express
not only a relative strength but also a positive or negative relationship between A and
B. Next, we take into account all three terms describing an A-IFSs (membership, non-
membership values and the hesitation margins) because each of them influences the
results.

Suppose that we have a random sample x1, x2, . . . , xn ∈ X with a sequence of
paired data [(μA(x1), νA(x1), πA(x1)), (μB(x1), νB(x1), πB(x1))], [(μA(x2), νA(x2),
πA(x2)), (μB(x2), νB(x2), πB(x2))], . . . , [(μA(xn), νA(xn), πA(xn)), (μB(xn),
νB(xn), πB(xn))] which correspond to the membership values, non-memberships val-
ues and hesitation margins of A-IFSs A and B defined on X , then the correlation coef-
ficient rA−IFS(A, B) is given by Definition 1.

Definition 1. The correlation coefficient rA−IFS(A, B) between two A-IFSs, A and
B in X , is:

rA−IFS(A, B) =
1
3
(r1(A, B) + r2(A, B) + r3(A, B)) (6)

where

r1(A, B) =

n∑
i=1

(μA(xi)− μA)(μB(xi)− μB)

(
n∑

i=1
(μA(xi)− μA)2)0.5(

n∑
i=1

(μB(xi)− μB)2)0.5
(7)
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r2(A, B) =

n∑
i=1

(νA(xi)− νA)(νB(xi)− νB)

(
n∑

i=1
(νA(xi)− νA)2)0.5(

n∑
i=1

(νB(xi)− νB)2)0.5
(8)

r3(A, B) =

n∑
i=1

(πA(xi)− πA)(πB(xi)− πB)

(
n∑

i=1
(πA(xi)− πA)2)0.5(

n∑
i=1

(πB(xi)− πB)2)0.5
(9)

where: μA = 1
n

n∑
i=1

μA(xi), μB = 1
n

n∑
i=1

μB(xi), νA = 1
n

n∑
i=1

νA(xi),

νB = 1
n

n∑
i=1

νB(xi), πA = 1
n

n∑
i=1

πA(xi), πB = 1
n

n∑
i=1

πB(xi),

The proposed correlation coefficient (6) depends on two factors: the amount of infor-
mation expressed by the membership and non-membership degrees (7)–(8), and the
reliability of information expressed by the hesitation margins (9).

Remark: Analogously as for the crisp and fuzzy data, rA−IFS(A, B) makes sense for
A-IFS variables whose values vary. If, for instance, the temperature is constant and the
amount of ice cream sold is the same, then it is impossible to conclude about their rela-
tionship (as, from the mathematical point of view, we avoid zero in the denominator).

The correlation coefficient rA−IFS(A, B) (6) fulfills the following properties:

1. rA−IFS(A, B) = rA−IFS(B, A)

2. If A = B then rA−IFS(A, B) = 1

3. |rA−IFS(A, B)| =≤ 1

The above properties are not only fulfilled by the correlation coefficient rA−IFS(A, B)
(6) but also by its every component (7)–(9).

Remark: It is should be emphasized that rA−IFS(A, B) = 1 occurs not only for A =
B but also in the cases of a perfect linear correlation of the data (cf. Example 2) (the
same concerns each component (7)–(9)).

Now we will show some simplified examples. The size of the data set is too small to
look at them as for significant samples, but the purpose is just for illustration.

Example 1. Let A and B be A-IFSs in X = {x1, x2, x3}:

A = {(x1, 0.1, 0.2, 0.7), (x2, 0.2, 0.1, 0.7), (x3, 0.3, 0, 0.7)}

B = {(x1, 0.3, 0, 0.7), (x2, 0.2, 0.2, 0.6), (x3, 0.1, 0.6, 0.3)}



174 E. Szmidt and J. Kacprzyk

Fig. 2. Data from Example 1: we can see that there is no perfect negative linear relationship
among elements from A and B

It is easy to notice that

– the membership values of the elements in A (i.e.: 0.1, 0.2, 0.3) increase whereas the
membership values of the elements in B (i.e.: 0.3, 0.2, 0.1) decrease. In the result
(7) we have r1(A, B) = −1.

– the non-membership values of the elements in A (i.e.: 0.2, 0.1, 0.0) decrease whereas
the non-membership values of the elements in B (i.e.: 0.0, 0.2, 0.6) increase. In the
result (8) we have r2(A, B) ≈ −1.

– the hesitation margins of the elements in A (i.e.: (0.7, 0.7, 0.7) do not change while
the hesitation margins of the elements in B (i.e.: 0.7, 0.6, 0.2) decrease. In the result
(9) we have r3(A, B) = 0.

Therefore, finally, from (6) we obtain rA−IFS(A, B) = 1
3 (−1− 1 + 0) = −0.67.

If we exclude from considerations the hesitation margins, and take into account two
components (7) and (8) only, we obtain rA−IFS(A, B) = 1

2 (−1 − 1) = −1 which
means that there is a perfect negative linear relationship between A and B (which is
difficult to agree).

In Figure 2 there is a geometrical interpretation (cf. Section 2.1) of the data from
Example 1.

It is worth emphasizing that for practical purposes (e.g., in decision making) it seems
rather useful to know correlation (9) concerning lack of knowledge represented by the
variables considered. If, for example, the data represent reactions of patients to a new
medicine, it seems unavoidable to carefully examine just the part (9) of the correla-
tion coefficient (6) as it may happen that a new treatment/medicine increases unforseen
reactions. In such situations it may be important not only to assess all components sep-
arately but even to give them different weights in (6).
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Fig. 3. Data from Example 2 - we can see perfect positive linear relationship among elements
from A and B

Certainly, we may find an example when r3(A, B) does not influence the correlation
coefficient rA−IFS(A, B) in a sense of the final result (an obtained number). But such
situations are the exceptions, not a rule.

Example 2. Let A and B be A-IFSs in X = {x1, x2, x3}:

A = {(x1, 0.1, 0.2, 0.7), (x2, 0.2, 0.1, 0.7), (x3, 0.29, 0.0, 0.71)}

B = {(x1, 0.1, 0.3, 0.6), (x2, 0.2, 0.2, 0.6), (x3, 0.29, 0.1, 0.61)}
Now we have

– the membership values of the elements in A (i.e.: 0.1, 0.2, 0.29) increase and the
membership values of the elements in B (i.e.: 0.1, 0.2, 0.29) are the same, so from
(7) we have r1(A, B) = 1.

– the non-membership values of the elements in A (i.e.: 0.2, 0.1, 0.) decrease and the
non-membership values of the elements in B (i.e.: 0.3, 0.2, 0.1) decrease, and from
(8) we have r2(A, B) = 1.

– the hesitation margins of the elements in A, are equal to (0.7, 0.7, 0.71), and the
hesitation margins of the elements in B are equal to (0.6, 0.6, 0.61), so from (9) we
have r3(A, B) = 1.

So, finally, from (6) we obtain rA−IFS(A, B) = 1
3 (1+1+1) = 1. Now the result is just

the same in spite of we take into account r3(A, B) or not (in the sense of considering (7)
and (8) only, and dividing their sum by 2). But in general, r3(A, B) plays an important
role in the correlation coefficient.
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In Figure 3 there is a geometrical interpretation of the data from Example 2. It is easy
to notice the perfect positive linear relationship among elements from A and B (the
perfect positive linear relationship of hesitation margins is expressed by the parallel
lines formed by the elements from A and B (the two lines are also parallel to MN
segment).

4 Conclusions

We have proposed a new correlation coefficient between A-IFSs. The coefficient pro-
posed, like Pearson’s coefficient between crisp sets, measures the strength of relation-
ship between A-IFSs, and shows if the sets are positively or negatively correlated.
Next, all three terms describing A-IFS are taken into account (the membership, non-
membership values and hesitation margins). Each term plays an important role in data
analysis and decision making, so that each of them should be reflected while assessing
the correlation between A-IFSs.
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Abstract. Generalizing the probabilistic correlation ratio we will in-
troduce a correlation ratio for marginal possibility distributions of joint
possibility distributions.

Keywords: Correlation ratio, possibility distribution, joint possibility
distribution.

1 Introduction

In statistics, the correlation ratio is a measure of the relationship between the
statistical dispersion within individual categories and the dispersion across the
whole population or sample. The correlation ratio was originally introduced by
Karl Pearson [5] as part of analysis of variance and it was extended to random
variables by Andrei Nikolaevich Kolmogorov [4] as,

η2(X |Y ) =
D2[E(X |Y )]

D2(X)
,

where X and Y are random variables. If X and Y have a joint probability density
function, denoted by f(x, y), then we can compute η2(X |Y ) using the following
formulas

E(X |Y = y) =
∫ ∞

−∞
xf(x|y)dx

and
D2[E(X |Y )] = E(E(X |y)− E(X))2,

and where,

f(x|y) =
f(x, y)
f(y)

.
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Note 1. The correlation ratio measures the functional dependence between X
and Y . It takes on values between 0 (no functional dependence) and 1 (purely
deterministic dependence). It is worth noting that if E(X |Y = y) is linear func-
tion of y (i.e. there is a linear relationship between random variables E(X |Y )
and Y ) this will give the same result as the square of the correlation coefficient,
otherwise the correlation ratio will be larger in magnitude. It can therefore be
used for judging non-linear relationships. Also note that the correlation ratio is
asymmetrical by nature since the two random variables fundamentally do not
play the same role in the functional relationship; in general, η2(X |Y ) �= η2(Y |X).

A fuzzy number. A is a fuzzy set R with a normal, fuzzy convex and continu-
ous membership function of bounded support. The family of fuzzy numbers is
denoted by F . Fuzzy numbers can be considered as possibility distributions. A
fuzzy set C in R2 is said to be a joint possibility distribution of fuzzy numbers
A, B ∈ F , if it satisfies the relationships

max{x | C(x, y)} = B(y) and max{y | C(x, y)} = A(x)

for all x, y ∈ R. Furthermore, A and B are called the marginal possibility dis-
tributions of C. A γ-level set (or γ-cut) of a fuzzy number A is a non-fuzzy set
denoted by [A]γ and defined by [A]γ = {t ∈ X |A(t) ≥ γ} if γ > 0 and cl(suppA)
if γ = 0, where cl(suppA) denotes the closure of the support of A.

Let A ∈ F be fuzzy number with a γ-level set denoted by [A]γ = [a1(γ), a2(γ)],
γ ∈ [0, 1] and let Uγ denote a uniform probability distribution on [A]γ , γ ∈ [0, 1].

In possibility theory we can use the principle of expected value of functions
on fuzzy sets to define variance, covariance and correlation of possibility distri-
butions. Namely, we can equip each level set of a possibility distribution (repre-
sented by a fuzzy number) with a uniform probability distribution, then apply
their standard probabilistic calculation, and then define measures on possibility
distributions by integrating these weighted probabilistic notions over the set of
all membership grades [1,2]. These weights (or importances) can be given by
weighting functions. A function g : [0, 1]→ R is said to be a weighting function
if g is non-negative, monotone increasing and satisfies the following normaliza-
tion condition

∫ 1
0 g(γ)dγ = 1. Different weighting functions can give different

(case-dependent) importances to level-sets of possibility distributions. In this
paper we will introduce a correlation ratio for marginal possibility distributions
of joint possibility distributions.

2 A Correlation Ratio for Marginal Possibility
Distributions

Definition 1. Let us denote A and B the marginal possibility distributions of
a given joint possibility distribution C. Then the g-weighted possibilistic corre-
lation ratio of marginal possibility distribution A with respect to marginal possi-
bility distribution B is defined by

η2
f (A|B) =

∫ 1

0
η2(Xγ |Yγ)g(γ)dγ (1)
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where Xγ and Yγ are random variables whose joint distribution is uniform on
[C]γ for all γ ∈ [0, 1], and η2(Xγ |Yγ) denotes their probabilistic correlation ratio.

So the g-weighted possibilistic correlation ratio of the fuzzy number A on B is
nothing else, but the g-weighted average of the probabilistic correlation ratios
η2(Xγ |Yγ) for all γ ∈ [0, 1].

3 Computation of Correlation Ratio: Some Examples

In this section we will compute the g-weighted possibilistic correlation ratio for
joint possibility distributions (1−x− y), (1−x2− y), (1−√x− y), (1−x2− y2)
and (1 −√x−√y) defined on proper subsets of the unit square.

3.1 A Linear Relationship

Consider the case, when

A(x) = B(x) = (1 − x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, 1− γ], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by C(x, y) = (1− x− y) · χT (x, y), where

T =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1

}
.

Then we have [C]γ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1− γ

}
. The density

function of a uniform distribution on [C]γ is

f(x, y) =

⎧⎨⎩
2

(1 − γ)2
if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧⎨⎩
2(1− γ − x)

(1− γ)2
if 0 ≤ x ≤ 1− γ

0 otherwise

f2(y) =

⎧⎨⎩
2(1− γ − y)

(1− γ)2
if 0 ≤ y ≤ 1− γ

0 otherwise

For the correlation ration we need to calculate the conditional probalility
distribution:

E(X |Y = y) =
∫ 1−γ−y

0
xf(x|y)dx =

∫ 1−γ−y

0
x

f(x, y)
f2(y)

dx =
1− γ − y

2
,



A Correlation Ratio for Possibility Distributions 181

where 0 ≤ x ≤ 1−γ. The next step is to calculate the variation of this distribution:

D2[E(X |Y )] = E(E(X |y)− E(X))2

=
∫ 1−γ

0
(
1− γ − y

2
− 1− γ

3
)2

2(1− γ − y)
(1− γ)2

=
(1 − γ)2

72
.

Using the relationship

D2(Xγ) =
(1− γ)2

18
,

we obtain that the probabilistic correlation of Xγ on Yγ is

η2(Xγ |Yγ) =
1
4
.

From this the g-weighted possibilistic correlation ratio of A with respect to
B is,

η2
f (A|B) =

∫ 1

0

1
4
g(γ)dγ =

1
4
.

Note 2. The g-weighted normalized measure of interactivity between A ∈ F and
B ∈ F (with respect to their joint distribution C) is defined by [3]

ρf (A, B) =
∫ 1

0
ρ(Xγ , Yγ)g(γ)dγ

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
.

and where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1], and ρ(Xγ , Yγ) denotes their probabilistic correlation
coefficient. In this simple case

η2
f (A|B) = η2

f (B|A) = [ρf (A, B)]2,

since E(Xγ |Yγ = y) is a linear function of y. Really, in this case we have,

E(Xγ |Yγ = y) =
1− γ − y

2
=

1− γ

3
− y

2
+

1− γ

6

=
1− γ

3
− 1

2
y −
(
− 1

2

)
× 1− γ

3

=
1− γ

3
− 1

2

(
y − 1− γ

3

)
= E(Xγ)− ρ(Xγ , Yγ)(y − E(Yγ)).
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3.2 A Nonlinear Relationship

Consider the case, when

A(x) = (1− x2) · χ[0,1](x),

B(x) = (1− y) · χ[0,1](y),

for x ∈ R, that is [A]γ = [0,
√

1− γ], [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose
that their joint possibility distribution is given by:

C(x, y) = (1 − x2 − y) · χT (x, y),

where
T =

{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1

}
.

A γ-level set of C is computed by

[C]γ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1− γ

}
.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧⎨⎩
1∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise
=

⎧⎨⎩
3

2(1− γ)
3
2

if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧⎨⎩
3(1− γ − x2)

2(1− γ)
3
2

if 0 ≤ x ≤ √1− γ

0 otherwise

f2(y) =

⎧⎨⎩
3
√

1− γ − y

2(1− γ)
3
2

if 0 ≤ y ≤ 1− γ

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X = x) =
∫ 1−γ−x2

0
yf(y|x)dy =

∫ 1−γ−x2

0
y
f(x, y)
f1(x)

dy =
1− γ − x2

2
,

where 0 ≤ y ≤ 1−γ. The next step is to calculate the variation of this distribution:

D2[E(Y |X)] = E(E(Y |x)− E(Y ))2

=
∫ √

1−γ

0
(
1 − γ − x2

2
− 2(1− γ)

5
)2

3(1− γ − x2)
2(1− γ)

3
2

dx

=
2(1− γ)2

175
.
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Using the relationship

D2(Yγ) =
12(1− γ)2

175
,

we obtain that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
1
6
.

From this the g-weighted possibilistic correlation ratio of B with respect to
A is,

η2
f (B|A) =

∫ 1

0

1
6
g(γ)dγ =

1
6
.

Similarly, from D2[E(X |Y )] =
3(1− γ)

320
, and from

D2(Xγ) =
19(1− γ)

320
,

we obtain,

η2
f (A|B) =

∫ 1

0

3
19

g(γ)dγ =
3
19

.

That is η2
f (B|A) �= η2

f (A|B).

3.3 Joint Distribution: (1 − √
x − y)

Consider the case, when

A(x) = (1−√x) · χ[0,1](x),

B(x) = (1− y) · χ[0,1](y),

for x ∈ R, that is [A]γ = [0, (1 − γ)2], [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose
that their joint possibility distribution is given by:

C(x, y) = (1 −√x− y) · χT (x, y),

where
T =

{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0,

√
x + y ≤ 1

}
.

A γ-level set of C is computed by

[C]γ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0,

√
x + y ≤ 1− γ

}
.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧⎨⎩
1∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise
=

⎧⎨⎩
3

(1− γ)3
if (x, y) ∈ [C]γ

0 otherwise
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The marginal functions are obtained as

f1(x) =

⎧⎨⎩
3(1− γ −√x)

(1− γ)3
if 0 ≤ x ≤ (1− γ)2

0 otherwise

f2(y) =

⎧⎨⎩
3(1− γ − y)2

(1− γ)3
if 0 ≤ y ≤ 1− γ

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X = x) =
∫ 1−γ−√

x

0
yf(y|x)dy =

∫ 1−γ−√
x

0
y
f(x, y)
f1(x)

dy =
1− γ −√x

2
,

where 0 ≤ y ≤ 1− γ. The next step is to calculate the variation of this distribu-
tion:

D2[E(Y |X)] = E(E(Y |x)− E(Y ))2

=
∫ (1−γ)2

0
(
1 − γ −√x

2
− 1− γ

4
)2

3(1− γ −√x)
(1− γ)3

dx

=
(1 − γ)2

80
.

Using the relationship

D2(Yγ) =
3(1− γ)2

80
,

we obtain that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
1
3
.

From this the g-weighted possibilistic correlation ratio of B with respect to
A is,

η2
f (B|A) =

∫ 1

0

1
3
g(γ)dγ =

1
3
.

Similarly, from D2[E(X |Y )] =
3(1− γ)4

175
, and from

D2(Xγ) =
37(1− γ)4

700
,

we obtain:

η2
f (A|B) =

∫ 1

0

12
37

g(γ)dγ =
12
37

.
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3.4 A Ball-Shaped Joint Distribution

Consider the case, when

A(x) = B(x) = (1− x2) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0,
√

1− γ], for γ ∈ [0, 1]. Suppose that their
joint possibility distribution is ball-shaped, that is,

C(x, y) = (1− x2 − y2) · χT (x, y),

where
T =

{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

}
.

A γ-level set of C is computed by

[C]γ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1− γ

}
.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧⎨⎩
1∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise
=

⎧⎨⎩
4

(1 − γ)π
if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧⎨⎩ 4
√

1− γ − x2

(1− γ)π
if 0 ≤ x ≤ 1− γ

0 otherwise

f2(y) =

⎧⎨⎩ 4
√

1− γ − y2

(1− γ)π
if 0 ≤ y ≤ 1− γ

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X = x) =
∫ √1−γ−x2

0
yf(y|x)dy =

∫ √1−γ−x2

0
y
f(x, y)
f1(x)

dy =

√
1− γ − x2

2
,

where 0 ≤ y ≤ √1− γ. The next step is to calculate the variation of this
distribution:

D2[E(Y |X)] = E(E(Y |x)− E(Y ))2

=
∫ √

1−γ

0
(

√
1− γ − x2

2
− 4
√

1− γ

3π
)2

4
√

1− γ − x2

π(1 − γ)
dx

=
(1− γ)(27π2 − 256)

144π2 .
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Using the relationship

D2(Yγ) =
(1− γ)(9π2 − 64)

36π2 ,

we obtain that the probabilistic correlation ratio of Yγ with respect to Xγ is

η2(Yγ |Xγ) =
27π2 − 256
36π2 − 256

.

Finally, we get that the g-weighted possibilistic correlation ratio of B with re-
spect A is,

η2
f (B|A) =

∫ 1

0

27π2 − 256
36π2 − 256

g(γ)dγ =
27π2 − 256
36π2 − 256

.

3.5 Joint Distribution: (1 − √
x − √

y)

Consider the case, when A(x) = B(x) = (1 − √x) · χ[0,1](x), for x ∈ R, that
is [A]γ = [B]γ = [0, (1 − γ)2], for γ ∈ [0, 1]. Suppose that their joint possibility
distribution is given by:

C(x, y) = (1−√x−√y) · χT (x, y),

where
T =

{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0,

√
x +
√

y ≤ 1
}

.

A γ-level set of C is computed by

[C]γ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0,

√
x +
√

y ≤ 1− γ
}

.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =

⎧⎨⎩
1∫

[C]γ dxdy
if (x, y) ∈ [C]γ

0 otherwise
=

⎧⎨⎩
6

(1− γ)4
if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =

⎧⎨⎩
6(1− γ −√x)2

(1− γ)4
if 0 ≤ x ≤ (1− γ)2

0 otherwise

f2(y) =

⎧⎨⎩
6(1− γ −√y)2

(1− γ)4
if 0 ≤ y ≤ (1− γ)2

0 otherwise

For the correlation ration we need to calculate the conditional probability
distribution:

E(Y |X =x)=
∫ (1−γ−√

x)2

0
yf(y|x)dy=

∫ (1−γ−√
x)2

0
y
f(x, y)
f1(x)

dy=
(1 − γ −√x)2

2
,
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where 0 ≤ y ≤ (1 − γ)2. The next step is to calculate the variation of this
distribution:

D2[E(Y |X)] = E(E(Y |x) − E(Y ))2

=
∫ (1−γ)2

0
(
(1− γ −√x)2

2
− (1− γ)2

5
)2

6(1− γ −√x)2

(1− γ)4
dx

=
19(1− γ)4

1400
.

Using the relationship

D2(Yγ) =
9(1− γ)4

350
,

we obtain that the probabilistic correlation of Yγ with respect to Xγ is,

η2(Yγ |Xγ) =
19
36

.

That is, the g-weighted possibilistic correlation ratio of B with respect to A is,

η2
f (B|A) =

∫ 1

0

19
36

g(γ)dγ =
19
36

.

4 Summary

In this paper we have introduced a correlation ratio for marginal possibility dis-
tributions of joint possibility distributions. We have illustrated this new principle
by five examples.
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Abstract. Nonparametric predictive inference (NPI) is a powerful fre-
quentist statistical framework based only on an exchangeability assump-
tion for future and past observations, made possible by the use of lower
and upper probabilities. In this paper, NPI is presented for ordinal data,
which are categorical data with an ordering of the categories. The method
uses a latent variable representation of the observations and categories
on the real line. Lower and upper probabilities for events involving the
next observation are presented, and briefly compared to NPI for non-
ordered categorical data. As an example application the comparison of
two groups of ordinal data is presented.

Keywords: Categorical data; lower and upper probabilities; nonpara-
metric predictive inference; ordinal data; pairwise comparison.

1 Introduction

Nonparametric Predictive Inference (NPI) is a frequentist statistical framework
based only on few modelling assumptions, enabled by the use of lower and upper
probabilities to quantify uncertainty [2,6]. In NPI, attention is restricted to one
or more future observable random quantities, and Hill’s assumption A(n) [11] is
used to link these random quantities to data, in a way that is closely related
to exchangeability [10]. Coolen and Augustin [7,8] presented NPI for categorical
data with no known relationship between the categories, as an alternative to the
Imprecise Dirichlet Model (IDM) [15]. However, in many practical applications
the categories are ordered, in which case such data are also known as ordinal
data. It is important that such knowledge about ordering of categories is taken
into account, this paper presents the first NPI results for such data. The method
uses an assumed underlying latent variable representation, with the categories
represented by intervals on the real-line, reflecting the known ordering of the
categories and enabling application of the assumption A(n). An excellent recent
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overview of established statistical methods for ordinal data was presented by Liu
and Agresti [12]. The IDM can be applied to ordinal data, see e.g. Coolen [4]
who applied it to grouped lifetime data including right-censored observations,
but it does not naturally use the ordering of the categories.

Section 2 provides a brief introduction to NPI. Section 3 presents NPI for
ordinal data. For events which are of most practical interest, closed form formulae
for the NPI lower and upper probabilities are derived, and some properties of
these inferences are discussed. These results are briefly compared to NPI for non-
ordered categorical data [8] in Section 4. To illustrate the application of this new
method to practical problems, comparison of two groups of ordinal data is briefly
presented in Section 5. More general results, including multiple comparisons and
inferences for multiple future observations, together with more detailed analyses
of properties of such methods, will be presented elsewhere.

2 Nonparametric Predictive Inference

Nonparametric predictive inference [2,6] is based on Hill’s assumption A(n) [11].
Let X1, . . . , Xn, Xn+1 be real-valued absolutely continuous and exchangeable
random quantities. Let the ordered observed values of X1, X2, . . . , Xn be denoted
by x1 < x2 < . . . < xn and let x0 = −∞ and xn+1 =∞ for ease of notation. We
assume that no ties occur; ties can be dealt with in NPI [6] but it is not relevant
in this paper. For Xn+1, representing a future observation, A(n) [11] partially
specifies a probability distribution by P (Xn+1 ∈ Ij = (xj−1, xj)) = 1

n+1 for
j = 1, . . . , n + 1. A(n) does not assume anything else, and can be considered to
be a post-data assumption related to exchangeability [10]. Inferences based on
A(n) are predictive and nonparametric, and can be considered suitable if there is
hardly any knowledge about the random quantity of interest, other than the n
observations, or if one does not want to use such information. A(n) is not sufficient
to derive precise probabilities for many events of interest, but it provides bounds
for probabilities via the ‘fundamental theorem of probability’ [10], which are
lower and upper probabilities in interval probability theory [14,16,17].

In NPI, uncertainty about the future observation Xn+1 is quantified by lower
and upper probabilities for events of interest. Lower and upper probabilities
generalize classical (‘precise’) probabilities, and a lower (upper) probability for
event A, denoted by P (A) (P (A)), can be interpreted as supremum buying
(infimum selling) price for a gamble on the event A [14], or just as the maximum
lower (minimum upper) bound for the probability of A that follows from the
assumptions made [6]. This latter interpretation is used in NPI, we wish to
explore application of A(n) for inference without making further assumptions.
So, NPI lower and upper probabilities are the sharpest bounds on a probability
for an event of interest when only A(n) is assumed. Informally, P (A) (P (A)) can
be considered to reflect the evidence in favour of (against) event A.

Augustin and Coolen [2] proved that NPI has strong consistency properties
in the theory of interval probability [14,16,17]. Direct application of A(n) for
inferential problems is only possible for real-valued random quantities. However,
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by using assumed latent variable representations and variations to A(n), NPI has
been developed for different situations, including Bernoulli quantities [5]. Defin-
ing an assumption related to A(n), but on a circle instead of the real-line, Coolen
[6] enabled inference for circular data. This ’circular-A(n)’ assumption, in com-
bination with a latent variable representation using a probability wheel, enabled
NPI for non-ordered categorical data as presented by Coolen and Augustin [8],
with as additional attractive feature the possibility to include both defined and
undefined new categories in the event of interest [7]. Whilst it is natural to con-
sider inference for a single future observation in many situations, one may also
be interested in multiple future observations. This is possible in a sequential
way, taking the inter-dependence of the multiple future observations into ac-
count. For example in NPI for Bernoulli quantities this was included throughout
[5], and dependence of specific inferences on the choice of the number of future
observations was explicitly studied in the context of multiple comparisons [9].

3 NPI for Ordinal Data

In situations with ordinal data, there are k ≥ 2 categories to which observations
belong, and these categories have a natural fixed ordering, hence they can be
denoted by C1 < C2 < . . . < Ck. It is attractive to base NPI for such data on
the naturally related latent variable representation with the real-line partitioned
into k categories, with the same ordering, and observations per category rep-
resented by corresponding values on the real-line and in the specific category.
Assuming that multiple observations in a category are represented by different
values in this latent variable representation, the assumption A(n) can be applied
for the latent variables. This is now explained in detail, and for several important
situations closed forms for the NPI lower and upper probabilities are derived.
We focus mostly on situations with k ≥ 3, although the arguments also hold
for k = 2, in which case the NPI method presented in this paper is identical to
NPI for Bernoulli data [5]. We restrict attention to a single future observation,
the interesting case of ordinal data with multiple future observations will be
presented elsewhere.

We assume that n observations are available, with only the number of ob-
servations in each category given. Let nl ≥ 0 be the number of observations
in category Cl, for l = 1, . . . , k, so

∑k
l=1 nl = n. Let Yn+1 denote the random

quantity representing the category a future observation will belong to. We wish
to derive the NPI lower and upper probabilities for events Yn+1 ∈

⋃
l∈L Cl with

L ⊂ {1, . . . , k}. These do not follow straightforwardly from the NPI lower and
upper probabilities for the events involving single categories as lower (upper)
probabilities are super-additive (sub-additive) [14].

Using the latent variable representation, we assume that category Cl is rep-
resented by interval ICl, with the intervals IC1, . . . , ICk forming a partition
of the real-line and logically ordered, that is interval ICl has neighbouring in-
tervals ICl−1 to its left and ICl+1 to its right on the real-line (or only one of
these neighbours if l = 1 or l = k, of course). We further assume that the n
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observations are represented by x1 < . . . < xn, of which nl are in interval ICl,
these are also denoted by xl

i for i = 1, . . . , nl. A further latent variable Xn+1 on
the real-line corresponds to the future observation Yn+1, so the event Yn+1 ∈ Cl

corresponds to the event Xn+1 ∈ ICl. This allows A(n) to be directly applied
to Xn+1, and then transformed to inference on the categorical random quantity
Yn+1. The ordinal data structure for the latent variables is presented in Fig. 1.

−∞ ∞
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. . .
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. . .
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. . .
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. . . . . .

. . . . . .

Fig. 1. Ordinal data structure

We now derive the NPI lower and upper probabilities for general events of the
form Yn+1 ∈ CL, with CL =

⋃
l∈L Cl and L ⊂ {1, . . . , k}. We assume that L is a

strict subset of {1, . . . , k}, as the event that a future observation falls into any
of the k categories is necessarily true and has NPI lower and upper probabilities
both equal to 1. Assuming A(n) for Xn+1 in the latent variable representation,
each interval Ij has been assigned probability mass 1/(n + 1) (see Section 2).
Although we do not know exactly the values xj , since they only exist in the
latent variable representation, we do know the number of these xj values in each
interval ICl.

To derive the NPI lower probability for the event Yn+1 ∈ CL, we derive the
NPI lower probability for the corresponding latent variable event Xn+1 ∈ ICL,
where ICL =

⋃
l∈L ICl and L ⊂ {1, . . . , k}. This lower probability is derived

by summing all probability masses assigned to intervals Ij that are fully within
ICL, so in effect we minimise the total probability mass assigned to ICL. Hence,
these NPI lower probabilities are

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
1

n + 1

n+1∑
j=1

1{Ij ⊂ ICL} (1)

where 1{A} is equal to 1 if A is true and equal to 0 else. As we do not know the
exact locations of the intervals ICl, this may appear to be vague, yet the fact
that we know the numbers of xj values within each interval ICl suffices to get
unique values for these NPI lower probabilities.

The corresponding NPI upper probabilities are derived by maximising the
total probability mass that can be assigned to ICL. Without any further as-
sumptions on the way the probability mass 1/(n + 1) is spread over an interval
Ij , this means that we can include all such probability masses corresponding
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to intervals Ij that have a non-empty intersection with ICL. So the NPI upper
probabilities are

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
1

n + 1

n+1∑
j=1

1{Ij ∩ ICL �= ∅} (2)

These NPI upper probabilities are also uniquely determined. The construction
of these NPI lower and upper probabilities can be presented following Shafer’s
concept of basic probability assignments [13], but it should be emphasized that
the NPI approach does not follow the Dempster-Shafer rule for updating which is
often associated with the use of basic probability assignments. Next, we present
closed form results for these NPI lower and upper probabilities for two special
cases which are of practical interest. Thereafter we briefly discuss some proper-
ties of these NPI lower and upper probabilities, and we present an example to
illustrate them.

3.1 Special Cases

An important special case of these inferences concerns the event Yn+1 ∈ CL, with
CL consisting of adjoining categories, so the corresponding union of intervals ICL

forms a single interval on the real-line in the latent variable representation. For
this case simple closed forms for the NPI lower and upper probabilities are
available. Let L = {s, . . . , t}, with s, t ∈ {1, . . . , k}, s ≤ t, excluding the case
with s = 1 and t = k for which both the NPI lower and upper probabilities are
equal to 1. Let Cs,t =

⋃t
l=s Cl, ICs,t =

⋃t
l=s ICl and let ns,t =

∑t
l=s nl. Using

the notation (x)+ = max(x, 0), the NPI lower and upper probabilities (1) and
(2) for such events are

P (Yn+1 ∈ Cs,t) = P (Xn+1 ∈ ICs,t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ns,t − 1)+

n + 1
if 1 < s ≤ t < k

ns,t

n + 1
if s = 1 or t = k

(3)

P (Yn+1 ∈ Cs,t) = P (Xn+1 ∈ ICs,t) =
ns,t + 1
n + 1

for 1 ≤ s ≤ t ≤ k (4)

Of course, s = t is the event that the next observation belongs to one specific
category.

A further special case for which closed form expressions are available for the
NPI lower and upper probabilities occurs if nl > 0 for all l ∈ {1, . . . , k}, so there
are observations in all k categories. We need to consider if the categories C1 and
Ck are included in CL (so IC1 and ICk in ICL) and we need to take account of
all pairs of neighbouring categories which are both included in CL. Let

pL =
k−1∑
r=1

1{r, r + 1 ∈ L}
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be the number of neighbouring pairs of categories included in CL, and let

eL = 1{1 ∈ L}+ 1{k ∈ L}+ pL

We further introduce the notation sL for the number of categories in CL, so
sL = |L|, and nL =

∑
l∈L nl. Then the NPI lower probability (1), with L a strict

subset of {1, . . . , k}, is

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
∑

l∈L(nl − 1) + eL

n + 1
=

nL − sL + eL

n + 1
(5)

and the corresponding NPI upper probability (2) is

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
∑

l∈L(nl + 1)− pL

n + 1
=

nL + sL − pL

n + 1
(6)

These two special cases are likely to cover many situations of practical interest.
The problem for deriving a simple general closed form expression for the NPI
lower and upper probabilities (1) and (2) results from accounting for one or more
consecutive categories without any observations in the event of interest, in which
case it is important whether or not there are observations in the neighbouring
categories.

3.2 Properties

The NPI lower and upper probabilities (1) and (2) satisfy the conjugacy property
P (Yn+1 ∈ CL) = 1−P (Yn+1 ∈ CLc) for all L ⊂ {1, . . . , k} and Lc = {1, . . . , k}\L,
which follows from 1{Ij ⊂ ICL}+ 1{Ij ∩ ICc

L �= ∅} = 1 for all j = 1, . . . , n + 1.
Augustin and Coolen [2] prove stronger consistency properties for NPI lower
and upper probabilities for real-valued random quantities within the theory of
Weichselberger [16,17], in particular that they are F -probability. Their results
apply directly to the NPI lower and upper probabilities for Xn+1 in the latent
variable representation in this paper, and hence also imply that the NPI lower
and upper probabilities (1) and (2) for the categorical random quantity Yn+1
are F -probability. This implies the above mentioned conjugacy property, and
also coherence of these lower and upper probabilities in the sense of Walley [14].
However, Walley-coherence goes further by also considering such lower and upper
probabilities at different moments in time, that is to say with different numbers
of observations as is relevant in case of updating. In NPI, updating is performed
by just calculating the relevant lower and upper probabilities using all available
data, and is not performed via conditioning on prior sets of probabilities [2].
The NPI lower and upper probabilities (1) and (2) bound the corresponding
empirical probability for the event of interest, so

P (Yn+1 ∈ CL) ≤ nL

n
≤ P (Yn+1 ∈ CL) (7)

Property (7) can be considered attractive when aiming at ’objective inference’,
and the possibility to satisfy this property is an important advantage of statistical
methods using lower and upper probabilities [6].
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3.3 Example

Suppose there are k = 5 ordered categories, C1 < . . . < C5, and n = 11 observa-
tions with n1 = 1, n2 = 3, n3 = 1, n4 = 4 and n5 = 2, so equations (5) and (6)
can be used. The NPI lower and upper probabilities for several events Y12 ∈ CL
are given in Table 1, together with the corresponding empirical probability nL/n.

Table 1. NPI lower and upper probabilities

L P P nL/n

{1} 1/12 2/12 1/11
{2} 2/12 4/12 3/11
{3} 0 2/12 1/11
{4} 3/12 5/12 4/11
{5} 2/12 3/12 2/11
{1, 2} 4/12 5/12 4/11
{1, 2, 3} 5/12 6/12 5/11
{2, 3, 4} 7/12 9/12 8/11
{1, 2, 4} 7/12 10/12 8/11
{1, 2, 4, 5} 10/12 1 10/11

These lower and upper probabilities illustrate the relation (7), and they also
show that the difference between corresponding upper and lower probabilities is
not constant. The lower and upper probabilities for the events with L consisting
of a single category or a group of adjoining categories also illustrate the lower
and upper probabilities (3) and (4) from the first special case discussed above.

4 Comparison to NPI for Non-ordered Categorical Data

Coolen and Augustin [8] presented NPI for categorical data with a known number
of possible categories yet with no ordering or other known relationship between
the categories. Their inferences are based on a latent variable representation
using a probability wheel, with each category represented by a single segment
of the wheel yet without any assumption about the specific configuration of the
wheel. Their NPI lower and upper probabilities with regard to the next observa-
tion are further based on a circular version of A(n) [6] and optimisation over all
possible configurations of the probability wheel that are possible corresponding
to the data and this so-called circular-A(n) assumption. Coolen and Augustin
[7] illustrated how this model can also be used in case of an unknown number of
possible categories, which is less likely to be of relevance in case of ordinal data
hence we have not addressed it here. For further details of NPI for non-ordered
categorical data we refer to Coolen and Augustin [8], we just wish to emphasize
that the inferences can differ substantially if categories are known to be ordered
and therefore the inferences presented here are applied.

To illustrate that NPI for non-ordered categorical data and NPI for ordinal
data can be very different, consider the following simple example. Suppose we
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have k = 6 ordered categories, C1 < . . . < C6, and only n = 3 observations,
one in each of the first three categories, so n1 = n2 = n3 = 1 and n4 = n5 =
n6 = 0. Following the results presented in this paper, the NPI lower and upper
probabilities for the event Y4 ∈ {C1, C2, C3} are 3/4 and 1, respectively. If,
however, the categories were not assumed to be ordered, then the corresponding
NPI lower and upper probabilities for this event would be 0 and 1, respectively
[8]. The latter lower probability may be surprising, it results from the possibility
that the categories C1, C2, C3 could, in the probability wheel representation, be
separated by the other three categories, and from the fact that no single category
has been observed more than once. We do not discuss this difference in more
detail, but it is important to recognize that the inferences for categorical data
can differ substantially if one can use a known ordering of the categories. Due to
the different latent variable representations for these two situations, it is not the
case that the NPI lower and upper probabilities according to these two models
are nested, as could perhaps have been expected. One could consider different
structures for the categories and different latent variable representations, this is
left as an interesting topic for future research.

5 Comparison of Two Groups

In many applications of statistics, one aims at comparing multiple groups of
data. We briefly illustrate how the NPI approach presented in this paper can
be used for comparison of two groups of data, detailed justification of these
results will be presented elsewhere, together with generalization to comparisons
of more than two groups of data. Suppose that, as before, we consider k ordered
categories, C1 < . . . < Ck, but now we have data for two independent groups
which we wish to compare. Traditional statistical methods [12] tend to formulate
problems of comparison of multiple groups as tests of hypotheses, but in NPI
comparisons are necessarily predictive, hence one or more future observations
per group are compared. Let us denote the two different groups by A and B,
and we add a superscript a or b to our earlier notation to indicate the group. So,
the total number of observations for group A (B) is na (nb), of which na

j (nb
j) are

in category Cj . To use NPI for the comparison of these two groups, restricting
attention to a single future observation per group, we assume A(na) for the next
observation Y a

na+1 from group A, and A(nb) for the next observation Y b
nb+1 from

group B, and per group we use the same latent variable representation as before.
Whilst ordinal data do not normally have meaningful associated location sum-

maries (e.g. mean or median), due to the natural ordering of the categories it is
meaningful to consider the events Y a

na+1 < Y b
nb+1 and Y a

na+1 ≤ Y b
nb+1 for com-

parison of the two groups. For the corresponding underlying latent variables, this
then follows NPI comparison of two groups of real-valued data as presented by
Coolen [3], with the added complication that no actual observations are avail-
able for the latent variables and hence there is no knowledge about the ordering
of values of the two groups within a category. Hence, the NPI lower and upper
probabilities for these events are derived by minimisation and maximisation,
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respectively, of corresponding lower and upper probabilities for all possible or-
derings of the latent variables per category. This leads to the following NPI lower
and upper probabilities, with γ = ((na + 1)(nb + 1))−1,

P (Y a
na+1 < Y b

nb+1) = γ
k∑

v=2

v−1∑
w=1

na
wnb

v (8)

P (Y a
na+1 < Y b

nb+1) = γ

(
k∑

v=2

v−1∑
w=1

na
wnb

v + nb − nb
1 + na − na

k + 1

)
(9)

and

P (Y a
na+1 ≤ Y b

nb+1) = γ

(
k∑

v=1

v∑
w=1

na
wnb

v + na
1 + nb

k

)
(10)

P (Y a
na+1 ≤ Y b

nb+1) = γ

(
k∑

v=1

v∑
w=1

na
wnb

v + na + nb + 1

)
(11)

We illustrate such comparison of two ordinal data sets, using these NPI lower and
upper probabilities, by considering the data presented in Table 2, which were
also used by Agresti [1] who provides further references to the origins of this
data set. The data consider tonsil size for two groups of children, namely 1326
noncarriers (Group A) and 72 carriers (Group B) of streptococcus pyogenes. An
observation in category C1 implies that tonsils are present but not enlarged, C2
that tonsils are enlarged and C3 that tonsils are greatly enlarged.

Table 2. Data: size of tonsils

C1 C2 C3

Noncarriers (A) 497 560 269
Carriers (B) 19 29 24

The NPI lower and upper probabilities (8)-(11) for these data are P (Y a
1327 <

Y b
73) = 39781

1327×73 = 0.4107, P (Y a
1327 < Y b

73) = 40892
1327×73 = 0.4221, P (Y a

1327 ≤
Y b

73) = 72441
1327×73 = 0.7478 and P (Y a

1327 ≤ Y b
73) = 73319

1327×73 = 0.7569. Agresti [1]
considered all 1326 × 72 = 95472 different carrier-noncarrier pairs that can be
put together from these children, of which for 19(560 + 269) + 29(269) = 23552
pairs the noncarrier has larger tonsils than the carrier, hence for 71920 pairs
the carrier’s tonsils are as least as large as those of the noncarrier, and for
39781 pairs the carrier has the larger tonsils. Notice that the relative frequencies
corresponding to these pairs, 39781

95472 = 0.4167 and 71920
95472 = 0.7533 are bounded

by the corresponding NPI lower and upper probabilities. In this example, the
differences between corresponding NPI upper and lower probabilities are small,
due to the large numbers of observations. Clearly, if one considers groups with
fewer observations, there will be more imprecision. However, this NPI approach
remains valid and keeps its attractive frequentist properties for all sizes of data
sets, so inferences are not only valid for large samples as is often the case in more
established frequentist statistical methods.
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Abstract. Selecting a particular summative (i.e., formally equivalent to a prob-
ability distribution) kernel when filtering a digital signal can be a difficult task.
To circumvent this difficulty, one can work with maxitive (i.e., formally equiva-
lent to a possibility distribution) kernels. These kernels allow to consider at once
sets of summative kernels with upper bounded bandwith. They also allow to per-
form a robustness analysis without additional computational cost. However, one
of the drawbacks of filtering with maxitive kernels is sometimes an overly impre-
cise output, due to the limited expressiveness of summative kernels. We propose
to use a new uncertainty representation, namely cloud, to achieve a compromise
between summative and maxitive kernels, avoiding some of their respective short-
comings. The proposal is then experimented on a simulated signal.

Keywords: Signal treatment, interval-valued fuzzy sets, generalised p-boxes.

1 Introduction

Reconstructing a continuous signal from a set of sampled and possibly corrupted ob-
servations is a common problem in both digital analysis and signal processing [1]. In
this context, kernel-based methods can be used for different purposes: reconstruction,
impulse response modelling, interpolation, (non)-linear transformations, filtering, etc.

Most kernels used in signal processing are linear combination of summative kernels,
which are positive functions with an integral equal to one. A summative kernel can
therefore be associated to a particular probability distribution. Still, how to choose a
particular kernel and its parameters to filter a given signal is often a tricky question.
Using maxitive kernels [2], that is kernels that are formally equivalent to possibility
distributions [3], can overcome this difficulty. This can be done by interpreting maxitive
kernels and associated possibility distributions [3] as sets of summative kernels (or sets
of probability distributions [4]). The output of a maxitive kernel-based filtering is an
interval valued signal that gathers all the outputs of conventional filtering based on the
summative kernels belonging to the considered set. This property allows to perform a
rosbustness or sensitivity analysis of the filtering during the filtering process itself.

The main interests of maxitive kernels are their simplicity of representation and their
computational tractability. The price to pay for such features is a limited expressiveness
and the impossibility to exclude unwanted summative kernels from the set represented
by maxitive kernels in some applications. For instance, this set always includes a Dirac
measure, meaning that the filtered interval-valued signal always includes the original
(noisy) signal itself.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 198–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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To overcome this shortcoming of maxitive kernel while keeping their interesting
features, we propose to use another uncertainty representation, called clouds [5], as
a compromise between summative and maxitive kernels. we call the resulting kernels
cloudy kernels. The interest of cloudy kernels is two-fold: they are more expressive
than maxitive kernels, the latter being a special case of the former [6], and their use
only require low computational efforts, an important feature in signal processing.

We first introduce summative and maxitive kernels, before showing how cloudy ker-
nels can act as a compromise between the two (Section 2). The computational aspects
of using cloudy kernels are then discussed, and an efficient algorithm to perform signal
filtering with them is devised (Section 3). Some experiments on a simulated signal are
then performed and their results discussed (Section 4).

2 Between Summative and Maxitive Kernels: Cloudy Kernels

This section recalls the basics of summative and maxitive kernels. It then introduces
cloudy kernels and shows how they can model summative kernels with lower-bounded
bandwidth . For readability purpose, we will restrict ourselves to representations defined
on the real line R and its discretization X .1

2.1 Summative Kernels

A summative kernel κ is formally equivalent to a Lebesgue-measurable probability dis-
tribution κ : R→ R+, and can be interpreted as such. The associated probability mea-
sure Pκ : B→ [0,1] defined on the real Borel agebra B is such that, for any measurable
subset A⊆ R (also called an event), Pκ(A) =

∫
A κ(x)dx.

In this paper, we restrict ourselves to bounded, symmetrical and mono-modal ker-
nels. To shorten notations, we consider that kernels belong to a family of kernels param-
eterized by their bandwidth Δ and defined on a compact interval [−Δ ,Δ ] ⊆ R centred
around zero. Typical kernels belonging to such families are recalled and represented in
Table 1. We denote them by κΔ , and they are such that κΔ (x) = κΔ (−x). To a summative
kernel κΔ can be associated its cumulative distribution function FκΔ : [−Δ ,Δ ]→ [0,1]
such that, for any x ∈ [−Δ ,Δ ], FκΔ (x) =

∫ x
−Δ κΔ (x)dx which is such that FκΔ (0) = 1/2

and FκΔ (x)+ FκΔ (−x) = 1.

2.2 Maxitive Kernels

A maxitive kernel π is a normalised function π : R→ [0,1] with at least one x ∈R such
that π(x) = 1. A maxitive kernel can be associated to a possibility distribution [3], hence
inducing two (lower and upper) confidence measures, respectively called necessity and
possibility measures. They are such that, for any event A⊆ R, we have:

Π(A) = max
x∈A

π(x) N(A) = 1−Π(Ac) = inf
x∈Ac

(1−π(x)), (1)

1 Extension of presented methods to some product space Rp is straightforward.
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Table 1. Some classical summative kernels

Name κ Shape

Triangular κ(x) = (1−| x
Δ |)IΔ

x
0

Uniform κ(x) = 1
2Δ IΔ x

0

with Ac the complement of A. A maxitive kernel π can be associated to a set of sum-
mative kernels Pπ dominated by the possibility measure Π of π , such that Pπ =
{κ ∈ PR|∀A⊆R,P(A)≤Π(A)}, with PR the set of all summative kernels over R. If a
summative kernel κ is in Pπ , we say, by a small abuse of language, that π includes κ .
This interpretation makes maxitive kernels instrumental tools to filter signal when the
identification of a single summative kernel is difficult.

There are many ways to build a maxitive kernel including a given summative ker-
nel [7]. Here, we consider the so-called Dubois-Prade transformation, since it provides
the most specific solution. Given a summative kernel κΔ , the maxitive kernel πκΔ re-
sulting from the Dubois-Prade transformation is such that

πκΔ (x) =
{

2 ∗FκΔ (x) if x≤ 0
2 ∗ (1−FκΔ(x)) if x > 0

We will denote by π+
κΔ

,π−κΔ
the following functions

π−κΔ
(x) =

{
πκΔ (x) if x≤ 0

1 if x > 0
π+

κΔ
(x) =

{
1 if x≤ 0

πκΔ (x) if x > 0.
(2)

The (convex) set PπκΔ
includes, among others, all summative kernels κΔ ′ with Δ ′ ∈

[0,Δ ] [7]. Hence, maxitive kernels allow to consider families of kernels whose band-
width are upper-bounded, but not lower-bounded, which in some situations may be a
shortcoming. For instance, in those cases where it is desirable to smoothen a signal, the
interval-valued signal resulting from an imprecise filtering should not envelope the ini-
tial signal, i.e., the Dirac measure should be excluded from the set of summative kernels
used to filter. It is therefore desirable to dispose of representations allowing to model
sets of summative kernels whose bandwidths are both lower- and upper-bounded. Next
sections show that the uncertainty representation called clouds can meet such a need.

2.3 Cloudy Kernels

Clouds, the uncertainty representation used to model cloudy kernels, have been intro-
duced by Neumaier [5]. On the real line, they are defined as follows:
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Definition 1. A cloud is a pair of mappings [π ,η ] from R to the unit interval [0,1] such
that η ≤ π and there is at least one element x ∈ R such that π(x) = 1 and one element
y ∈ R such that η(y) = 0

A cloud [π ,η ] induces a probability family P[π ,η] such that

P[π ,η] = {κ ∈ PR|Pκ({x|η(x)≥ α})≤ 1−α ≤ Pκ({x|π(x) > α})}. (3)

And P[π ,η] induces lower and upper confidence measures P[π ,η],P[π ,η] such that, for
any event A⊆R, P[π ,η](A) = infκ∈P[π,η]

Pκ(A) and P[π ,η](A) = supκ∈P[π,η]
Pκ(A). Also

note that, formally, clouds are equivalent to interval-valued fuzzy sets having boundary
conditions (i.e., π(x) = 1 and η(y) = 0 for some (x,y) ∈ R2). A family of clouds that
will be of particular interest here are the comonotonic clouds [6]. They are defined as
follows:

Definition 2. A cloud is comonotonic if ∀x,y ∈ R, π(x) < π(y)⇒ η(x)≤ η(y)

A cloudy kernel is simply a pair of functions [π ,η ] that satisfies Definition 1. As for
maxitive kernels, we can associate P[π ,η] to the corresponding set of summative ker-
nels. In this paper, we will restrict ourselves to cloudy kernels induced by bounded,
symmetric and unimodal comonotonic clouds. Again, to make notations easier, we will
consider that they are defined on the interval [−Δ ,Δ ].

Definition 3. A unimodal symmetric cloudy kernel defined on [−Δ ,Δ ] is such that, for
any x ∈ [−Δ ,Δ ], η(x) = η(−x), π(x) = π(−x) and η ,π are non-decreasing (non-
increasing) in [−Δ ,0] ([0,Δ ])

As for maxitive kernels, given a unimodal symmetric cloudy kernel, we will denote by
η+,η− the functions such that

η−(x) =
{

η(x) if x≤ 0
1 if x > 0

η+(x) =
{

1 if x≤ 0
η(x) if x > 0.

(4)

Two particular cases of comonotonic symmetric cloudy kernel are the so-called thin
and fuzzy clouds. A cloudy kernel is said to be thin if ∀x ∈ R, π(x) = η(x), i.e., if the
two mappings coincide. A cloudy kernel is said to be fuzzy if ∀x ∈ R, η(x) = 0, i.e. if
the lower mapping η conveys no information.

A cloudy kernel is pictured in Figure 1. Note that a fuzzy cloudy kernel [π ,η ] induces
the same summative kernel set P[π ,η] as the maxitive kernel π . We now recall some
useful properties of clouds and cloudy kernels.

Proposition 1. A cloudy kernel [π ,η ] is included in another one [π ′,η ′] (in the sense
that P[π ,η] ⊆P[π ′,η ′]) if and only if, for all x ∈ R, [π(x),η(x)]⊆ [π ′(x),η ′(x)].
Hence, given a cloudy kernel [π ,η ], any thin cloud [π ′,η ′] such that η ≤ η ′ = π ′ ≤ π
is included in [π ,η ]. Inversely, for any thin cloud [π ′,η ′] not satisfying this condition
(i.e. ∃x such that η ′(x) < η(x) or π ′(x) > π(x)), we have P[π ,η]∩P[π ′,η ′] = /0.

Proposition 2. The convex set P[π ,η] induced by a thin cloud [π ,η ] includes the two
summative kernels having for cumulative distributions F−,F+ such that, for all x ∈ R

F−(x) = η−(x) = π−(x) ; F+(x) = 1−η+(x) = 1−π+(x). (5)

P[π ,η] being a convex set, any convex combination of F−,F+ is also in the thin cloud.
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x
0

1

η− η+

π− π+

Δinf

Δsup

Fig. 1. Example of cloudy kernel

2.4 Summative Kernel Approximation with Cloudy Kernels

Let us show that cloudy kernels can remediate to the main drawback of maxitive ker-
nels, i.e. they can model sets of summative kernels κΔ where Δ is lower and upper-
bounded. Assume that we want to represent the set of summative kernels κΔ such that
Δ ∈ [Δinf,Δsup]. To satisfy this requirement, we propose to consider the cloudy kernel
[π ,η ][Δinf,Δsup] such that, for any x ∈ R:

πΔsup(x) =
{

2 ∗FΔsup(x) if x≤ 0
2 ∗ (1−FΔsup(x)) if x≥ 0

; ηΔinf(x) =
{

2 ∗FΔinf(x) if x≤ 0
2 ∗ (1−FΔinf(x)) if x≥ 0

(6)

Let us first show that this cloud contains all the desired summative kernels, starting with
the summative kernels such that Δ = Δinf and Δ = Δsup].

Proposition 3. The cloudy kernel [π ,η ][Δinf,Δsup] includes the two summative kernels
κΔinf and κΔsup having for cumulative distributions FΔinf,FΔsup .

Proof. From the definition of our cloudy kernel, we have that the thin cloudy kernels
having for distributions πΔsup and ηΔinf are included in [π ,η ][Δinf,Δsup] (Proposition 1).

Let us denote F−π ,F+
π and F−η ,F+

η the cumulative distributions given by Eq. (5) re-
spectively applied to the thin cloudy kernels πΔsup and ηΔinf . By Proposition 2, they are
included in the cloudy kernel [π ,η ][Δinf,Δsup], and since P[π ,η][Δinf ,Δsup ]

is a convex set,
1/2F−π + 1/2F+

π and 1/2F−η + 1/2F+
η are also included in the kernel. These two convex

mixtures being equals to FΔinf,FΔsup , this ends the proof.

Proposition 4. The cloudy kernel [π ,η ][Δinf,Δsup] includes any summative kernel κΔ
having FΔ for cumulative distribution with Δ ∈ [Δinf,Δsup].

Proof. We know, by Proposition 2, that the thin cloudy kernel [π ,η ]FΔ
such that

πΔ (x) =
{

2 ∗FΔ if x≤ 0
2 ∗ (1−FΔ) if x≥ 0

includes the cumulative distribution [π ,η ]FΔ
. Also, we have that FΔinf(x) ≤ FΔ (x) ≤

FΔsup(x) for x ≤ 0, and FΔsup(x) ≤ FΔ (x) ≤ FΔinf(x) for x ≥ 0, due to the symmetry of
the retained summative kernels. This means that πΔsup ≤ πΔ ≤ ηΔinf , therefore the thin
cloudy kernel [π ,η ]FΔ

is included in [π ,η ][Δinf,Δsup], and this ends the proof.
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Let us now show that the proposed cloudy kernels exclude summative kernels with a
bandwidth smaller than Δinf, among which is the Dirac measure.

Proposition 5. Any kernel κΔ having FΔ for cumulative distribution with Δ ≤ Δinf or
Δ ≥ Δsup is not included in the cloudy kernel [π ,η ][Δinf,Δsup]

Proof. Similar to the one of Proposition 4, considering that the thin cloud induced by
FΔ when Δ ≤ Δinf is not included in the cloudy kernel [π ,η ][Δinf,Δsup].

These proposition show that cloudy kernels are fitted to our purpose, i.e., representing
sets of summative kernels with lower- and upper-bounded bandwidth. Still, as for max-
itive kernels, other kernels than the summative kernels belonging to the family κΔ are
included in P[π ,η][Δinf ,Δsup ]

.

3 Practical Computations

In practice, imprecise filtering is done by extending the expectation operator to repre-
sentations inducing probability sets, in our case by using Choquet integrals [9]. In this
section, we recall what is a Choquet integral and its links with expectation operators.
We then propose an efficient algorithm to compute this Choquet integral for cloudy
kernels. To shorten notations [π ,η ][Δinf,Δsup],ηΔinf and πΔsup will be denoted by [π ,η ],η
and π . Since computations are achieved on a discretised space, we consider that we are
working on a finite domain X of N elements. In our case, this space corresponds to a
finite sampling of the signal.

3.1 Expectation Operator and Choquet Integral

Consider the domain X = {x1, . . . ,xN} with an arbitrary indexing of elements xi (not
necessarily the usual ordering between real numbers) and a real-valued function f (here,
the sampled values of the signal) on X , together with a discretized summative kernel
κi, i = 1, . . . ,N, where κi = κ(xi). Classical convolution between the kernel κ and the
sampled signal f is equivalent to compute the expectation Eκ( f ) = ∑N

i=1 κi f (xi).
When working with a set P of summative kernels defined on X , the expecta-

tion operator E( f ) becomes inter-valued [E( f ),E( f )], withE( f ) = infκ∈P Eκ ( f ) and
E( f ) = supκ∈P Eκ( f ). These bounds are generally hard to compute, still there are
cases where practical tools exist that make their computation more tractable. First re-
call [10] that lower and upper confidence measures of P on an event A⊆X are such
that P(A) = infκ∈P Pκ(A) and P(A) = supκ∈P Pκ(A) and are dual in the sense that
P(A) = 1− P(Ac). If P satisfy a property of 2-monotonicity, that is if for any pair
{A,B} ⊆X we have P(A∩ B) + P(A∪B) ≥ P(A) + P(B), then expectation bounds
can be computed by a Choquet Integral.

Consider a positive bounded function2 f on X . If we denote by () a reordering of
elements of X such that f (x(1))≤ . . .≤ f (x(N)), the Choquet Integral giving the lower
expectation reads

2 Positivity is not constraining here, since if c is a constant E( f + c) = E( f )+ c and the same
holds for E.
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CP( f ) = E( f ) =
N

∑
i=1

( f (x(i))− f (x(i−1))P(A(i)), (7)

with f (x(0)) = 0 and A(i) = {x(i), . . . ,x(N)}. Upper expectation can be computed by
replacing the lower measure P by the upper one P. The main difficulty to evaluate
Eq. (7) is then to compute the lower (or upper) confidence measure for the N sets Ai.

3.2 Imprecise Expectation with Cloudy Kernels

Cloudy kernels satisfying Definition 2 induce lower confidence measure that are ∞-
monotone [8,6], hence Choquet integral can be used to compute lower and upper ex-
pectations. Let us now detail how the lower confidence measure value on events can
be computed efficiently (upper confidence measure are obtained by duality). Cloudy
kernels [π ,η ] defined on X induce a complete pre-order ≤[π ,η] between elements of
X , in the sense that x ≤[π ,η] y if and only if η(x) ≤ η(y) and π(x) ≤ π(y). Given a
set A ⊆X , we denote respectively by xA and by xA its lowest and highest elements
with respect to ≤[π ,η]. We now introduce the concepts of [π ,η ]-connected sets, that are
instrumental in the computation of lower confidence measures.

Definition 4. Given a cloudy kernel [π ,η ] over X , a subset C⊆X is [π ,η ]-connected
if it contains all elements between xC and by xC, that isC={x ∈X |xC ≤[π ,η] x≤[π ,η] xC}
We denote by C the set of all [π ,η ]-connected sets of X . Now, any event A can be
inner approximated by another event A∗ such that A∗ =

⋃
C∈C ,C⊂A .C is the union of all

maximal [π ,η ]-connected sets included in A. Due to an additivity property of the lower
confidence measure on [π ,η ]-connected sets [11], P(A) is then

P(A) = P(A∗) = ∑
C∈C ,C⊂A

P(C) (8)

We consider that elements of X are indexed accordingly to≤[π ,η], i.e., elements x1, . . . ,
xN are indexed such that i≤ j if and only if η(xi)≤ η(x j) or π(xi)≤ π(x j). Given this
ordering, the lower confidence measure of a [π ,η ]-connected set C = {xi, . . . ,x j} is
given by the simple formula

P(C) = max{0,η(x j+1)−π(xi−1)},
with η(xN+1) = 1 and π(x0) = 0. Note that, as ≤[π ,η] is a pre-order, we have to be
cautious about equalities between some elements. Figure 2 illustrates a cloudy kernel
with 7 (irregularly) sampled values, its associated indexing and order.

Algorithm 1 describes how to compute lower confidence measures and the incre-
mental summation giving the lower expectation. At each step, the [π ,η ]-connected sets
forming A(i) are extracted and the corresponding lower confidence measure is com-
puted. The value of the Choquet integral is then incremented. To simplify the algorithm,
we assume≤[π ,η] to be an order (i.e., it is asymmetric). Note that two orderings and in-
dexing are used in the algorithm: the one where elements are ordered by values of f ,
denoted by (), and the other where elements are ordered using ≤[π ,η], without paren-
thesis. Except if the function f is increasingly monotonic in R, the indexing following
the natural order of numbers is never used.
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Fig. 2. Discretization of cloudy kernels and indexing of elements around x7 (each xi corresponds
to a sampled value)

Algorithm 1. Algorithm for lower expectations: basic ideas
Input: f ,[π,η], N (number of discretized points)
Output: Lower/upper expectations
E = 0 ;
for i = 1, . . . ,N do

Compute f (x(i))− f (x(i−1)) ;
Extract [π,η]-connected sets such that A(i) = C1∪ . . .∪CMi ;
With Cj = {xk| j ≤ k ≤ j} ;

Compute P(A(i)) = ∑Mi
j=1 max(0,η(x j+1)−π(x j−1)) ;

E = E+[ f (x(i))− f (x(i−1))]×P(A(i))

4 Experiment: Comparison with Summative and Maxitive Kernels

Let us now illustrate the advantage of using cloudy kernels rather than simple maxitive
kernels when filtering a noisy signal. Figure 3 shows in cyan a (noisy) signal that has
to be filtered by a smoothing kernel. Imprecise kernels (cloudy or maxitive) can be
used if one does not know the exact shape of the impulse response of the filter, but
can assume that this filter is symmetric, centred and has a lower and upper bounded
bandwidth Δ ∈ [Δinf,Δsup]. The signal pictured in 3 has been obtained by summing nine
sine waves with random frequencies and then by adding a normal centered noise with a
standard deviation σ = 5.

Assume that the summative kernels to be considered are the uniform ones bounded
by Δ ∈ [0.018,0.020]. The most specific maxitive kernel dominating this family is the
triangular kernel with a bandwidth equal to 0.02 (see [2]). The bounds obtained by using
such a kernel are displayed on Figure 3 (dotted red and blue lines). As expected, the
inclusion of the Dirac measure in the maxitive kernel gives very large upper and lower
filtered bounds, that encompass the whole signal (i.e. the signal is always in the interval
provided by the maxitive kernel). Given our knowledge about the desired bandwidth, it
is clearly desirable to also take account of the lower bound 0.018.
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Fig. 3. Superposition of the original signal (cyan), the maxitive imprecise filtering (dotted blue -
upper, dotted red - lower) and the cloud based imprecise filtering (blue - upper, red - lower)

Cloudy kernels can model a more specific set of summative kernels, accounting for
the lower bound, by using the cloudy kernel composed of two triangular maxitive ker-
nels, the lower kernel having a bandwidth Δinf = 0.018 and the upper kernel having a
bandwidth Δsup = 0.020, and filtering the signal with Algorithm 1. The result is also pic-
tured in Figure 3 (full red and blue lines). We can see that the lower and upper bounds
are now much tighter, as expected. Hence, we now have bounds to whose are associated
a good confidence and that are more informative.

To illustrate the capacity of maxitive and cloudy kernels to encompass the desired
kernels, we have plotted on 4 ten filtered signals (in cyan) obtained by using differ-
ent symmetric centered summative kernels whose bandwidth belongs to the interval
[Δinf,Δsup]. Every filtered signal belongs to the interval-valued signal obtained by using
the cloudy kernel based approach.
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Fig. 4. Superposition of nine filtered signals (cyan), the maxitive imprecise filtering (dotted blue -
upper, dotted red - lower) and the cloud based imprecise filtering (blue - upper, red - lower)
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5 Conclusion

Both summative and maxitive kernels suffer from some defects when it comes to filter
a given signal. The former asks for too much information and the latter is often too im-
precise to give tight information. In this paper, we have proposed to use cloudy kernels
(using the uncertainty representations called cloud) as a compromis between the two
representations to achieve imprecise linear filtering. We have also proposed a simple
and efficient (but not necessarily the most efficient) algorithm to compute lower and
upper bounds of the filtered signal.

Our experiments show that using cloudy kernels does have the expected properties.
Compared to summative and maxitive kernels, they allow to retrieve reliable and in-
formative envelope for the filtered signal. However, it appears that envelopes resulting
from the filtering using cloudy kernel are still not so smooth. We suspect that this is due
to summative kernels inside the cloudy kernels for which probability masses are con-
centrated around some particular points (i.e. mixtures of Dirac measures). To avoid this,
we could consider the use of technics already proposed [12] to limit the accumulation
of such probability masses.
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Abstract. The theory of majorisation between real vectors with equal
sum of components, originated in the beginning of the XXth century,
enables a partial ordering between discrete probability distributions to
be defined. It corresponds to comparing, via fuzzy set inclusion, possi-
bility distributions that are the most specific transforms of the original
probability distributions. This partial ordering compares discrete prob-
ability distributions in terms of relative peakedness around their mode,
and entropy is monotonic with respect to this partial ordering. In fact,
all known variants of entropy share this monotonicity. In this paper, this
question is studied in the case of unimodal continuous probability densi-
ties on the real line, for which a possibility transform around the mode
exists. It corresponds to extracting the family of most precise prediction
intervals. Comparing such prediction intervals for two densities yields a
variant of relative peakedness in the sense of Birnbaum. We show that a
generalized form of continuous entropy is monotonic with respect to this
form of relative peakedness of densities.

1 Introduction

Possibility theory, in its quantitative variants, proves to be closely related to var-
ious notions in probability theory and statistics. On the one hand, a possibility
measure is a coherent upper probability in the sense of Walley [19], i.e. it char-
acterizes some convex sets of probabilities. Moreover, as a possibility measure
can be characterized by a family of nested sets equipped with lower probabil-
ity bounds, a possibility distribution is closely related to so-called probabilistic
inequalities (such as Chebyshev, Gauss, etc...) and to prediction or confidence in-
tervals of probability densities, that can be useful for representing measurement
uncertainty [14].

On the other hand, the issue of measuring the dispersion of a probability
density has been a major concern for a long time. It is well-known that computing
variance is not the end of the story. There are many other dispersion indices
such as the entropy families, the Gini index and so on. They actually evaluate to
what extent a distribution is far from expressing randomness (maximal entropy
corresponding to full-fledged randomness, minimal entropy to determinism). In
other words, to what extent the probability vector is peaked. Variance, risk
aversion measures in decision theory [17,18] are another view for dispersion,
where the metric of the space plays a central role.
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The definition of a qualitative relation between probability measures express-
ing that a probability density is less random than another is a less known ques-
tion. As there is a constraint on probability weights (they must sum to 1), an
equivalent question is to compare probability measures in terms of their rela-
tive peakedness, a term coined by Birnbaum [1]. An important remark made by
Birnbaum is that peakedness must be defined around some prescribed value. The
idea proposed by Birnbaum is to compare the probabilities of a nested family of
intervals symmetrically defined around this prescribed value (like the mean, the
median or the mode). In the case of entropy, the metric of the set on which the
probability density is defined is immaterial, i.e. entropy measures a “vertical”
concentration of probability values around the mode.

A bridge between possibility theory, Birnbaum peakedness and entropy-like
dispersion indices was pointed out by Dubois and Hüllermeier [6] in the finite
case. Namely, on a finite set consider the possibility measure Π that is the most
specific one dominating the probability measure P , assuming the probability
and the possibility distributions are comonotone. This possibility distribution
exists and is unique [7,3,10]. Dubois and Hüllermeier [6] proved that given two
probability vectors p = (p1, . . . , pn) and q = (q1, . . . , qn) corresponding to the
same ordering of elements of Ω, if the possibility distribution πp is less specific
than πq (which means that p is less peaked than q in the spirit of Birnbaum)
then the dispersion of p is greater than the dispersion of q for a large class of
entropy-like indices.

The aim of this paper is to extend this result to the continuous case. In the
next section we recall the historical background of this problem, which has roots
in the early XXth century. Then we motivate the continuous extension of the
above result. Section 3 states the problem and provides a proof. Finally, we
comment on the difference between variance and entropy, and point out the
similarity between the obtained result and similar properties existing for risk
aversion measures in decision theory.

2 Historical and Mathematical Background in the Finite
Case

Let x and y be two vectors with n non-negative decreasingly ordered integer
components, that satisfy the restriction

∑n
i=1 xi =

∑n
i=1 yi. A Pigou-Dalton

transfer on x consists in adding 1 to some component xi while subtracting 1
from another component xj , j > i. As cited by Marshall and Olkin [12], in 1903,
Muirhead discussed what Dalton called a ”transfer” and proved the following
result.

Proposition 1. The following conditions are equivalent:

(i) x can be derived from y by a finite number of transfers;
(ii) the sum of the k largest components of x is less than or equal to the sum of

the largest components of y, k = 1, . . . , n, with equality when k = n (this is
the “majorization relation”).
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The vector obtained by sum of the k largest components of x for k = 1 to n is
called the Lorentz curve.

Later on, Hardy, Littlewood and Polya, 1929 (cf. [12], Theorem 2.B.2) proved
that a necessary and sufficient condition that a positive real vector x is ma-
jorized by y, the sum of components of each being equal, is that there exists a
doubly stochastic matrix A such that x = yA. We can restrict without loss of
generality to positive n-component vectors x such that

∑n
i=1 xi = 1, i.e. proba-

bility vectors p = (p1, . . . , pn), and let Δn be the set of such probability vectors.
Hardy Polya and Littlewood also consider, for any concave function φ : R → R,
the mapping Hφ : Δn → R defined as Hφ(p1, . . . , pm) =

∑m
i=1 φ(pi), which is

concave and symmetric. They showed that p is majorized by q if and only if
Hφ(p) > Hφ(q), ∀φ continuous and concave.

As examples of entropy functions, choosing φ(x) = −x log(x) yields Shannon
entropy, of the form −∑n

i=1 pi log(pi). Choosing φ(x) = x(1 − x) yields the
quadratic entropy 1 −∑n

i=1 p2
i .

A function H(p) mapping probability distributions to reals is said to be Schur-
concave [15] if H(bA) ≥ H(b) for all bistochastic matrices A. It is clear that
Schur-concavity and functions Hφ are very closely related. In fact, any concave
and symmetric function is Schur-concave. The converse does not hold [15].

3 Peakedness from the Finite to the Continuous Case

Consider the finite set Ω with n elements. A possibility distribution π on Ω is
a mapping from Ω to the unit interval such that π(ω) = 1 for some ω ∈ Ω. A
possibility degree π(ω) evaluates the absence of surprise about ω being the actual
state of the world. We may write πi for π(ωi), for short. A possibility distribution
generates a set function Π(·) called a possibility measure such that Π(A) =
maxω∈A π(ω). The degree of necessity (certainty) of an event A is computed from
the degree of possibility of the complementary event Ac as N(A) = 1 − Π(Ac).

In the following definition, we recall a basic notion from possibility theory
(e.g. Dubois et al. [9]) already mentioned in the introduction.

Definition 1. We say that a possibility distribution π(·) is more specific than
a possibility distribution ρ(·) iff π ≤ ρ pointwisely. It is strictly more specific if
π ≤ ρ and π(ω) < ρ(w) for at least one ω ∈ Ω.

Clearly, the more specific π(·), the more informative it is. If π(wi) = 1 for some
ωi and π(ωj) = 0 for all j �= i, then π(·) is maximally specific (full knowledge);
if π(ωi) = 1 for all i, then π(·) is minimally specific (complete ignorance).

A numerical degree of possibility can be viewed as an upper bound to a prob-
ability degree [8]. Namely, with every possibility distribution π(·) one can asso-
ciate a non-empty family of probability measures dominated by the possibility
measure:

P(π) = {P |P (A) ≤ Π(A) for all A ⊆ Ω }.
On such a basis, it is possible to change representation from possibility to proba-
bility and conversely [7,3]. Changing a probability distribution into a possibility
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distribution means losing information as the variability expressed by a proba-
bility measure is changed into incomplete knowledge or imprecision. Some prin-
ciples for this transformation have been suggested in [10]. They come down to
selecting a most specific element from the set of possibility measures dominating
P (·), that is,

∀A ⊆ Ω : Π(A) ≥ P (A)

with Π(A) = maxω∈A π(ω) and P (A) =
∑

ω∈A p(ω). A minimal consistency be-
tween the ordering induced by the probability distribution and the one of the pos-
sibility distribution, is also required, namely a form of comonotony: π(ω) > π(ω′)
whenever p(ω) > p(ω′). Results concerning tightest probability-possibility trans-
forms in the finite case [3,10] can be summarized by the following proposition.

Proposition 2. Consider a probability vector p = (p1, . . . , pn) determining a
probability measure P on a finite universe Ω = {ω1, . . . , ωn} with the restriction
p1 > p2 · · · > pn where p(ωi) = pi denotes the probability mass of ωi ∈ Ω. Define
the nested family (Aα)α∈[0,1) such that for each α ∈ [0, 1], Aα is a minimal
cardinality set satisfying P (Aα) ≥ 1 − α. Build the possibility distribution πp

with α-cuts (Aα)α∈[0,1), such that πp(x) = sup{α : x ∈ Aα}. Then

1. The sets Aα are of the form Ni = {ωj, pj ≥ pi} = {ω1, . . . , ωi}
2. The sets Aα are maximizing the probability P (A) among all sets A with the

same cardinality as Aα.
3. πp(ωi) = 1 − P (Ni−1)
4. The possibility measure Πp associated to πp is the most specific possibility

distribution dominating P and comonotonic to it.

Proof. Consider the nested family of sets Ni = {ω1, . . . , ωi}. It is of the form
{ωj, pj ≥ pi}. It is clear that P (Ni) > P (A), ∀A ⊂ Ω with cardinality i, A �= Ni.
Note that P (Ni) =

∑i
j=1 pj. Hence Ni = Aα for α ∈ [

∑n
j=i+1 pj ,

∑n
j=i pj). De-

fine the possibility distribution πp
1 > πp

2 · · · > πp
n where πp

i = sup{α : ωi ∈ Aα}.
It is clear that πp

i =
∑n

j=i pi = 1 − P (Ni−1). This possibility distribution dom-
inates p, i.e. such that Πp(A) = maxωi∈A πp

i ≥ P (A), ∀A ⊆ Ω. Note that by
construction, P (N c

i ) = Πp(N c
i ) = πp

i , ∀i = 1, . . . , n; so any possibility measure
Π dominating P must be such that Π(N c

i ) ≥ Πp(N c
i ). As π is comonotonic to

p, π(ωi) ≥ πp
i . Hence Πp is maximally specific among those which dominate P .

�

When pi = pi+1 for some i the above result still applies to a large extent ex-
cept that maximally specific possibility distributions dominating p are no longer
unique nor will they be strictly comonotonic to it (e.g. πp

i > πp
i+1 or conversely).

For instance, the most specific possibilistic transform of the uniform probability
measure is πp

i = i/n where the ordering of elements is arbitrary.
A probability vector p is said to be less peaked than probability vector q

whenever πp is less specific than πq. The main result in [6], which is a conse-
quence of results by Hardy et al. as explained in Section 2 reads as follows: let
Hφ(p) =

∑m
i=1 φ(pi) be a generalized entropy function, where φ continuous and

concave. Then:



212 I. Couso and D. Dubois

Theorem 1. If a probability vector p is less peaked than a vector q, then Hφ(p)
≥ Hφ(q), ∀φ continuous and concave; if p is strictly less peaked than q, then
Hφ(p) > Hφ(q).

On the other hand, possibility transforms of continuous unimodal densities were
studied by Dubois et al. [10,5]. The above concept of “minimal cardinality con-
fidence interval” in the finite case extends to the idea of minimal length confi-
dence interval in the continuous case. More specifically, the following result was
established:

Proposition 3. [5] Consider a probability measure P on the real line with con-
tinuous unimodal density p and mode m. Define the nested family (Aα)α∈[0,1)
such that for each α ∈ [0, 1], Aα is a minimal length closed interval satisfying
P (Aα) ≥ 1−α. Build the possibility distribution πp with α-cuts (Aα)α∈[0,1), such
that πp(x) = sup{α : x ∈ Aα}. Then

1. The sets Aα are of the form Fc = {x : p(x) ≥ c};
2. The sets Aα are maximizing the probability P (A) among all intervals A with

the same length as Aα;
3. πp(inf Aα) = πp(sup Aα) = 1 − P (Aα);
4. πp is the most specific possibility distribution dominating P.

Thus, we see that the possibility distribution constructed this way is the coun-
terpart of the probability-possibility transformation in the discrete case. This re-
sult extends to multimodal probability densities (then replacing minimal length
closed intervals by minimal length closed sets formed by finite unions of inter-
vals), and even to multidimensional densities [16].

4 From Peakedness to Entropy in the Continuous Case

Entropy can be defined in the continuous setting. This is the so-called differential
entropy of the form H(p) = − ∫ p(y)log(p(y))dy for a continous density p on the
real line. As described in [[11], Section 1.1.2, page 5], this expression is provably
the limit of the Shannon entropy of a discrete probability vector obtained using
a partition of the support of the density p into adjacent intervals of the same
length and making this length vanish. This limit idea can be extended to other
types of entropies, i.e. φ-entropies Hφ. We aim to check that Theorem 1 given
in [6], connecting the (total) preordering on probability measures defined by
entropies and the (partial) ordering defined by possibilistic specificity, can be
extended to continuous probabilities.

Consider an absolutely continuous probability measure (wrt the Lebesgue
measure) P satisfying the following restrictions:

(i) Its support is contained in a bounded interval [a, b].
(ii) Its density function p is continuous, unimodal (i.e., there exists a unique

m ∈ [a, b] such that p(m) = max{p(x) : x ∈ [a, b]}), and it is strictly
increasing on the open interval (a, m) and strictly decreasing on (m, b).
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(The above conditions include strictly concave functions on [a, b] for instance).
We will define a specific possibility measure, Πp that dominates P . The con-
struction (following [5]) will be as follows: For every c ∈ R+, define Fc as the
subset of the real line Fc = {x : p(x) ≥ c}. Let us consider the possibility
measure Πp whose possibility distribution πp is defined as follows:

πp(x) = sup{α : x ∈ Fκ(α)},

where κ : [0, 1] → R+ is such that κ(α) satisfies the condition P (Fκ(α)) = 1−α.
The following theorem will be the main result in this section:

Theorem 2. Consider two probability measures P and Q satisfying the above
restrictions (i) and (ii), and denote by p and q their respective density functions.
Let Hφ be a φ-entropy defined as Hφ(p) =

∫
φ(p(x))dx, where φ is concave and

continuous. Then the following implication holds:

πp(x) ≤ πq(x), ∀x ∈ R ⇒ Hφ(p) ≤ Hφ(q).

Before proving the main result, we will check the following auxiliary claims:

Lemma 1. Suppose that p is a continuous density, unimodal (with mode m)
strictly increasing in (a, m) and strictly decreasing in (m, b) and that its support
is contained in the interval [a, b]. For every c ∈ (0, p(m)], define Fc as the subset
of the real line Fc = {x : p(x) ≥ c}. Then each Fc is a closed interval Fc =
[A(c), B(c)]. Furthermore the range of the mapping L : R+ \ {0} → R+ defined
as L = B − A contains the whole interval (0, b − a).

Proof. By the continuity of p we can easily derive that the set Fc has a maximum,
B(c), and a minimum, A(c). Furthermore, we observe that A(c) ≤ m ≤ B(c)
and so, by the respective monotonicity conditions assumed for p on (a, m) and
(m, b), Fc is convex. Furthermore, the mappings A : [0, p(m)] → R and B :
[0, p(m)] → R are continuous and so is the mapping L = B − A. Hence, by
Darboux theorem, we conclude the thesis of this lemma. �

Remark 1. Note that L(c) can be alternatively written as λ(Fc), ∀ c, where λ is
the Lebesgue measure.

Lemma 2. Suppose that the density function, p, associated to the probability
measure P is continuous, unimodal (with mode m) strictly increasing in (a, m)
and strictly decreasing in (m, b), and that its support is contained in the interval
[a, b]. Then, there exists a mapping κ : [0, 1] → R+ satisfying the condition
P (Fκ(α)) = 1 − α, for all α ∈ [0, 1], with Fc = {x : p(x) ≥ c}.
Proof. Let κ(α) be defined as κ(α) = sup{c : P (Fc) ≥ 1−α}. Then, we can eas-
ily check that P (Fκ(α)) = 1−α. Notice that, under the above hypotheses, Fκ(α) is
a closed interval [A(κ(α)), B(κ(α))]. If, by reductio ad absurdum, we suppose that
P (Fκ(α)) > 1−α we could find some ε > 0 such that Pf ([A(κ(α)) + ε, B(κ(α)−
ε]) ≥ 1 − α. The union of family of intervals {[A(κ(α)) + ε, B(κ(α) − ε], ε ∈
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(0, min{m−A(c), B(c)−m})}coincides with the open interval (A(κ(α)), B(κ(α))),
so their probability tends (as ε goes to 0) to the probability of such an open in-
terval, that coincides with the probability of the closed one. Since p is strictly
increasing in (a, m) and strictly descreasing in (m, b), there exists some c > κ(α)
such that p(x) > κ(α), ∀x ∈ [A(κ(α)) + ε, B(κ(α)− ε]. It contradicts the defini-
tion of supremum. �

Lemma 3. Consider the possibility distribution πp:

πp(x) = sup{α : x ∈ Fκ(α)}, ∀x

Denote by πp
α and πp

α respectively its weak and its strong α-cut. Then:

πp
α = (A(κ(α)), B(κ(α))) and πp

α = [A(κ(α)), B(κ(α))].

Proof. It is immediate, since the union ∪α>β(A(κ(α)), B(κ(α))) coincides with
the open interval (A(C(β)), B(C(β))) and, on the other hand, the intersection
∩α<β [A(κ(α)), B(κ(α))] is the closed interval [A(C(β)), B(C(β))]. �

Now, let us use the last lemmas to prove Theorem 2.

Proof of the main result: Suppose that πp ≤ πq and so

πp
α ⊆ πq

α, ∀α (1)

1. We will first “discretize” the probability measures associated to p and q, by
dividing their support into n subintervals, for each n ∈ N (see Figure 1).
We will check that the discretized probability associated to p is more peaked
than the one associated to q.

For each n ∈ N define the class of subsets of the interval [a, b],

{Ap
0,n, . . . , Ap

n,n} = {∅, Fc(1,n), . . . , Fc(n,n)},

where c(i, n) ∈ R+ is such that L(c(i, n)) = i(b−a)
n . Such a c(i, n) exists in

virtue of Lemma 2. In other words, we define a nested family of n+1 “level-
cuts” of p, each one of length i(b−a)

n included in the support [a, b]. Based on
this family, we can define a partition on [a, b] as follows:

Bp
0,n = Ap

0,n, Bp
i,n = Ap

i,n \ (∪i−1
j=1B

p
j,n).

By construction, the Lebesgue measure of each Bp
i,n is b−a

n . Let us do the
same construction for the density q to define the partition {Bq

1,n, . . . , Bq
n,n}.

Let us now denote pn
i = P (Bp

i,n) and qn
i = Q(Bq

i,n), ∀ i = 0, . . . , n.
Let us check that, for any n ∈ N, the probability (pn

1 , . . . , pn
n) is more

peaked than (qn
1 , . . . , qn

n). Let us pick an arbitrary n ∈ N and an arbitrary
r ∈ {1, . . . , n}. Let us consider the value of α such that πq

α coincides with the
set Aq

r,n. There exists some k ∈ {1, . . . , n} such that Ap
k,n ⊂ πq

α ⊆ Ap
(k+1),n.

By construction, and according to the above hypotheses we can check that:

k(b − a)
n

< λ(πq
α) ≤ (k + 1)(b − a)

n
and
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a b
i(b−a)

n

(b − a)/n

pn
i = P (Bp

i,n) = area( )

Bp
1,n

Bp
2,n

Bp
i,n

Bp
2,n

Bp
i,n

Fig. 1. Partitioning the support of a density

r(b − a)
n

= λ(πq
α).

Furthermore, by hypothesis πp
α is included in πq

α so, λ(πp
α) ≤ λ(πq

α) and
then k < r, or, equivalently k + 1 ≤ r. Moreover, according to Lemma 2,
qn
1 + . . . + qn

r = Q(Aq
r,n) = Q(λ(πq

α)) is 1 − α which is less than or equal to
pn
1 + . . . + pn

k+1 = P (Ap
k,n).

Thus, we conclude that pn
1 + . . .+ pn

r ≤ qn
1 + . . .+ qn

r . Since this has been
proved for an arbitrary r, we conclude that (pn

1 , . . . , pn
n) is more peaked than

(qn
1 , . . . , qn

n).
2. Let us now check that the φ−entropies Hφ(p) and Hφ(q) can be obtained as

limits of the valuations on the discretized probabilities.
If we apply the mean-value theorem twice (the set Bp

i,n can be written
as the union of two intervals) and we take into account the properties of the
function p, we have:

pn
i =

∫
Bp

i,n

p(x) dx = p(bp
i,n)

(b − a)
n

,

for some bp
i,n ∈ Bp

i,n. Analogously, we see obtain:

qn
i =

∫
Bq

i,n

q(x) dx = q(bq
i,n)

(b − a)
n

for some bq
i,n ∈ Bq

i,n. Thus, the following equalities hold,

n

b − a
pn

i = p(bp
i,n) and

n

b − a
qn
i = q(bq

i,n),

for some bp
i,n ∈ Bp

i,n and some bq
i,n ∈ Bq

i,n, and for all n ∈ N and all i ∈
{1, . . . , n}.
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Hence,
n∑

i=1

φ(p(bp
i,n)) and

n∑
i=1

φ(p(bq
i,n))

can be alternatively written as
n∑

i=1

φ

(
n

b − a
pn

i

)
and

n∑
i=1

φ

(
n

b − a
qn
i

)
.

According to the first part of this theorem, pn = (pn
1 , . . . , pn

n) is more peaked
than qn = (qn

1 , . . . , qn
n) and so the vector n

b−apn = ( n
b−apn

1 , . . . , n
b−apn

n) is also
more peaked than n

b−aqn = ( n
b−aqn

1 , . . . , n
b−aqn

n) (for the peakedness relation,
the components of the two vectors do not need to sum up to one, but they
just need to sum the same value).

Thus,
n∑

i=1

φ

(
n

b − a
pn

i

)
≤

n∑
i=1

φ

(
n

b − a
qn
i

)
,

and hence also

n

b − a

n∑
i=1

φ

(
n

b − a
pn

i

)
≤ n

b − a

n∑
i=1

φ

(
n

b − a
qn
i

)
, ∀n.

Now, by the definition of the Riemann integral, we have that
n∑

i=1

b − a

n
(φ ◦ p)(bp

i,n) and
n∑

i=1

b − a

n
(φ ◦ q)(bq

i,n)

respectively converge to the integrals
∫ b

a (φ ◦ p)(x) dx and
∫ b

a (φ ◦ q)(x) dx, so
the result is checked. �

5 Vertical vs. Horizontal Dispersion

The above comparison between probability distributions in terms of their peaked-
ness does not depend on the underlying metric. There are other ways of evaluat-
ing the dispersion of probability densities, that look strikingly different. The first
one is the variance. It takes into account the metric of the probability space. The
empirical variance, for instance, depends on the distance between the observed
measurements, while the entropy does not.

In fact, it is possible to relate entropy and a form of variance, provided that we
operate a ninety-degree rotation of the usual variance, considering the dispersion
of the p(x) values, not the x values. Namely, in the discrete case, the quadratic
entropy 1−∑n

i=1 p2
i is basically the opposite of such a vertical variance. Namely,

sticking to a finite setting, the variance σ2
p of {p1, . . . , pn} takes the following

form, based on the fact that the mean value of the pi’s is 1/n:

σ2
p =

∑n
i=1(pi − 1/n)2

n
=
∑n

i=1 p2
i

n
− (1/n)2 =

1
n

(1 − 1/n−
n∑

i=1

pi(1 − pi)),
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since 1 − ∑n
i=1 p2

i =
∑n

i=1 pi(1 − pi) so that it corresponds, up to an affine
rescaling, to the opposite of the quadratic entropy, of the form 1

n (1− 1/n−Hφ)
with φ(x) = x(1−x). In other words, the quadratic entropy is a kind of vertical
variance.

We can also try to express the generalized entropy as the arithmetic mean
H(p1, . . . , pn) =

∑n
i=1 pif(pi), where f is a decreasing function. It is easy to

check that any concave function φ satisfying the boundary condition φ(0) = 0
can be written as a product φ(x) = xf(x), where f is a decreasing mapping.
Letting f(pi) = p1 − pi, where p1 is the probability of the mode, any φ-entropy
with φ(0) = 0 can also be understood as the expectation of (an increasing
function of) the vertical distances p1 − pi of the probabilities to the mode.

Besides, there is another niche in the literature of decision theory that studies
risk-aversion indices. The seminal works in this area are those of Rothschild and
Stiglitz in [17,18]. These authors consider the dispersion around the mean, but
they question the variance as a legitimate risk aversion measure. They consider
a distribution p to be more risky (= more scattered) than another one q if and
only if ∫

R
u(x)p(x)dx ≥

∫
R

u(x)q(x)dx,

for all risk-concave utility functions u : R → R, where concave utility func-
tions model risk-averse decision-makers. Interestingly, in their paper they try
to approach the intuition by considering transfers similar to Pigou-Dalton ones,
albeit keeping the mean value constant. Moreover their idea of p being more
risky than q corresponds to adding a zero-mean random variable to the variable
x with distribution g. Finally they show that relative risk is checked by second
order stochastic dominance, which means comparing cumulative distributions
by their Lorentz curve, i.e.

∫ y

−∞ FP (x)dx ≤ ∫ y

−∞ FQ(x)dx, where FP is the cu-
mulative distribution of measure P . So there is a full-fledged similarity between
peakedness and risk in this sense as shown on table 1:

Table 1. Comparison between peakedness around the mode and risk aversion

Notion Discrete entropy Risk aversion
definition majorization for probability vectors majorization for real vectors
property

∑n
i=1 pi = 1 P, Q have equal mean

dominance πp(x) ≤ πq(x), ∀ x ∈ R
∫ y

−∞ FP (x)dx ≤ ∫ y

−∞ FQ(x)dx

transfer vertical horizontal
index ∀φ concave Hφ(p) ≤ Hφ(q)

∫
u(x)q(x)dx ≥ ∫ u(x)p(x)dx ∀u concave

adding noise q = A ◦ p, A = bistochastic matrix Y = X + θ, θ has zero mean

This analogy is worth studying further. Marshall and Olkin [12], p. 16-17 also
point out the concept of dilation. Q is a dilation of P if the integral of any convex
function with respect to P is less than or equal to the integral of the same convex
function with respect to Q. It seems to be related to second order stochastic dom-
inance in the infinite case, but it generalizes also the concept of ”majorization”
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in the finite case. However, in relation to entropies, the majorization concerns
probability vectors, while in relation to risk measures, it concerns real-valued
vectors having the same mean (hence the same sum) value. So, it seems that the
comparison of probability measures in terms of risk aversion, using second-order
stochastic dominance, is a concept similar but orthogonal to the comparison of
probability-possibility transforms, just like variance is orthogonal to quadratic
entropy.

6 Conclusion

This paper proposes a rather general way of comparing continuous probability
densities on the real line, with respect to their peakedness around the mode, by
generalizing differential entropy by means of concave continuous functions. This
is equivalent to checking the inclusion of the tightest prediction intervals around
the mode, which comes down to comparing the relative specificity of possibility
transforms. This result sheds some light on the respective meanings of differential
entropy and variance and suggests several possible lines of research:

– First, entropy maximization is a very common technique for justifying the
use of some specific probability measures in the presence of incomplete in-
formation. For instance, the Gaussian density is obtained by maximizing
Shannon entropy under fixed mean and variance [11]. This kind of method-
ology could be reconsidered in terms of minimizing peakedness, using the
possibility (Lorentz curve) ordering as a qualitative criterion.

– Next, one may try to exploit the qualitative peakedness ordering as a substi-
tute to informational distances (such as Kullback-Leibler relative entropy),
defining a ternary relation of the form “p1 is more peaked than p2 but less
peaked than p3”, and finding relative entropies in agreement with this com-
parison. One could then reconsider probability kinematics problems [4] in a
more general setting, not dependent on the choice of a numerical distance-
like index.
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Abstract. Non-additive robust ordinal regression (NAROR) considers
Choquet integral or one of its generalizations to represent preferences of
a Decision Maker (DM). More precisely, NAROR takes into account all
the fuzzy measures which are compatible with the preference information
given by the DM and builds two preference relations: possible preference
relation, when there is at least one compatible fuzzy measure for which an
alternative is preferred to the other, and necessary preference relation,
when an alternative is preferred to the other for all compatible fuzzy
measures. Although it is interesting to take into consideration all the
compatible fuzzy measures, in some decision problems we need to give
a value to every alternative and it results necessary to obtain the most
representative fuzzy measures among all the compatible ones. The aim
of the paper is to propose an algorithm to the DM for selecting the most
representative utility function expressed as Choquet integral from which
a DM’s representation of preferences is obtained.

Keywords: Multiple Criteria Decision Analysis; Choquet integral; Non-
additive robust ordinal regression; Most representative fuzzy measures.

1 Introduction

1.1 A Multicriteria Problem

In Multiple Criteria Decision Analysis (MCDA), a decision problem is composed
of a finite set of m alternatives A = {a1, a2, . . . , aj, . . . , am}, evaluated on the
basis of a family of n consistent criteria G = {g1, g2, . . . , gi, . . . , gn}, with gi:A→
R. From here on, we will use the terms criterion gi or criterion i interchangeably
(i = 1, 2, · · · , n). For the sake of simplicity, but without loss of generality, we
suppose that the evaluations with respect to the considered criteria are increasing
with respect to preference, i.e. “the more the better”.

1.2 Multicriteria Methods Based on DM’s Indirect Preference
Information

In the context of multiple criteria decision analysis, several approaches have been
proposed based upon the disaggregation-aggregation paradigm. In such methods
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some holistic judgements on some reference actions A′ ⊆ A are elicitated from
the Decision Maker (DM) in order to infer the decision parameters (for exam-
ple, weights and thresholds) compatible with the DM’s preference information
(disaggregation phase). These parameters, induced using a methodology called
ordinal regression, are used in the decision model to rank all the alternatives in
A (aggregation phase).

The multicriteria methods based on the disaggregation-aggregation paradigm,
are interesting since they are less cognitive demanding from the DM’s point of
view. The most important and applied of such multicriteria approaches are UTA
[22] and its variants [26]. In UTA the utility evaluation of every alternative a ∈ A
is the additive one, i.e.:

U(a) =
n∑

i=1

ui(gi(a)).

UTA, after DM’s comparisons on some reference alternatives, infers via linear
programming the marginal utilities at each break point of the subintervals into
which the range of values of every criterion is divided, with the underling hy-
pothesis that the marginal utilities are piecewise linear.

In UTA, the marginal utilities, obtained by a methodology called additive
ordinal regression, restore the DM’s preorder on A′.

The principles of ordinal regression have been applied also to some non-
additive decision models. In this case, we shall speak of non-additive ordinal
regression and in this context we remember some UTA like-methods within the
Choquet integral framework (see [1] and [23]) and the DRSA methodology [18].

Usually, among the many sets of parameters of a decision model translating
the DM’s preference information, only a specific set is considered. For example,
only one among the many utility functions representing the DM’s holistic pref-
erence information is selected, like in the papers of Marichal and Roubens [23]
and of Angilella, Greco, Lamantia and Matarazzo [1] where, in case of modelling
preference with Choquet integral [7], the authors choose one among many fuzzy
measures compatible with the DM’s preferences.

Since such choice is arbitrary to some extent, recently robust ordinal regres-
sion (for a recent survey see [21]) has been proposed with the aim of taking into
account all the sets of parameters compatible with the DM’s preference informa-
tion. In literature, the first method based on robust ordinal regression is a recent
generalization of UTA, called UTAGMS [19]. The UTAGMS is a multiple criteria
method, that instead of considering only one additive utility function compati-
ble with the preference information provided by the DM such as in UTA, takes
into consideration the whole set of additive utility functions compatible with the
preference information provided by the DM. In particular, the UTAGMS method
requires a set of pairwise comparisons on a set of reference alternatives A′ as
DM’s preference information. Then, the model, via linear programming, defines
two relations on the set A: the necessary weak preference relation, which holds
for any two alternatives a, b ∈ A if all compatible utility functions give to a a
value not smaller than the value given to b, and the possible weak preference
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relation, which holds for this pair if at least one compatible utility function gives
to a a value not smaller than the value given to b.

Recently an extension of UTAGMS has been proposed: the GRIP method [8],
that builds a set of additive value functions, taking into account not only a
preorder on a set of alternatives, but also the intensities of preference among
alternatives.

Both UTAGMS and GRIP are based on the additive robust ordinal regression.
Until now, robust ordinal regression has been implemented to additive util-

ity functions under the assumption of criteria independence. In [4], the authors
have proposed a non-additive robust ordinal regression (NAROR) on a set of al-
ternatives A, whose utility is evaluated in terms of the Choquet integral which
permits to represent the interaction among criteria, modeled by the fuzzy mea-
sures, parameterizing their approach.

In [4], besides holistic pairwise preference comparisons of alternatives from
a subset of reference alternatives A′, the DM is also requested to express the
intensity of preference on pairs of alternatives from A′, to supply pairwise com-
parisons on the importance of criteria, and the sign and intensity of interaction
among pairs of criteria. More precisely NAROR takes into account all the fuzzy
measures which are compatible with the preference information given by the DM
and builds two preference relations: possible preference relation, when there is
at least one compatible fuzzy measure for which an alternative is preferred to
the other, and necessary preference relation, when an alternative is preferred to
the other for all compatible fuzzy measures.

Recently, in [3] the NAROR approach has been extended to some generaliza-
tions of the Choquet integrals specifically, bipolar Choquet integral (see [13], [14]
and [17]), level dependent Choquet integral and bipolar level dependent Choquet
integral (see [10].)

Although, considering all compatible fuzzy measures, the possible and neces-
sary preference has a lot of methodological advantages, however, the DM can
have some difficulty to interpret the results. In fact, in general, the necessary
preference relation is a partial preorder, i.e. a transitive and reflexive binary
relation, while the possible preference relation is a strongly complete and neg-
atively transitive binary relation (see [19]). Therefore the necessary preference
relation and the possible preference relation are quite different from usual com-
plete preorders supplied by the classical utility functions. The aim of the paper is
to propose an utility function that represents in the best way the necessary pref-
erence and the possible preference relations, in order to help the DM in better
understanding the results of the NAROR methodology. This utility function is
obtained maximizing the difference between the values assigned by the Choquet
integral to pairs of alternatives for which there is a necessary preference and
minimizing the difference in case there is not a necessary preference. This utility
function is called the most representative utility function, because it represents
in the “best way” the difference between the necessary and the possible pref-
erence. In this sense, the objective of the most representative utility function,
is quite different from the simple choice of one utility functions among some
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compatible utility functions which is a subject well-known in literature. For ex-
ample in UTA (see [22]), several algorithms have been presented to explore the
set of admissible value functions and to test the stability of the ranking obtained
(post-optimality analysis). Instead, within NAROR methodology, the robustness
concerns are taken into account through the necessary and possible preference
relation on the basis of the whole set of all utility functions, compatible with the
preferences expressed by the DM, and the most representative value function
is not “the best one” of all those utility function, but simply it is the best to
highlight the results obtained by all those compatible utility functions.

The maximization of the difference between the utility values of two alterna-
tives resembles UTAMP1, a variant of the UTA method (see [5] and also one of
its recent extensions, the method ACUTA [6]). The same methodology is adopted
by [23] with respect to the utility function expressed as Choquet integral. How-
ever, our approach differs from those ones, because it does not consider only the
preferences given by the DM, but it takes into account first of all the necessary
and possible preference relations built through NAROR.

In the context of robust ordinal regression, the idea of the most representative
value functions among the compatible ones has been already presented for choice
and ranking problems in [9] and for sorting problems in [15].

The basic principle of the most representative value function approach is “one
for all, all for one”:

– One for all: one value function is representing all compatible value functions;
– All for one: all compatible value functions contribute to the definition of the

most representative value function.

The paper is organized as follows. In Section 2, the non-additive robust ordinal
regression (NAROR) is described. Section 3 proposes the methodology to obtain
the most representative fuzzy measure compatible with the DM’s preference
information. Section 4 presents a didactic example illustrating the methodology.
Section 4 contains conclusions.

2 Non-Additive Robust Ordinal Regression (NAROR)

2.1 Notation and Definitions: Choquet Integral

A fuzzy discrete measure (called also capacity) on G with |G| = n is a set
function μ : 2G → [0, 1] with μ(∅) = 0, μ(G) = 1 (boundary conditions) and
∀ R ⊆ S ⊆ G, μ(R) ≤ μ(S) (monotonicity condition). Let us observe that we
will use the terms fuzzy measures or capacities interchangeably.

A fuzzy measure is additive if μ(R∪S) = μ(R)+μ(S), for any R,S ⊆ G such
that R ∩ S = ∅. In case of additive fuzzy measures, μ(R) is simply obtained by
μ(R) =

∑
i∈R

μ({i}), ∀ R ⊆ G. In the other cases, we have to define a value μ(R)

for every subset R of G, obtaining 2n coefficients values. Given a ∈ A ⊆ Rn
+ and

μ being a fuzzy measure on G, then the Choquet integral [7] is defined by:
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Cμ(a) =
∑n

i=1

[
g(i)(a) − g(i−1)(a)

]
μ (Ai) =

=
∑n

i=1g(i)(a)
(
μ (Ai) − μ (Ai+1)

)
where (·) stands for a permutation of the indices of criteria such that:

g(1)(a) ≤ g(2)(a) ≤ g(3)(a) ≤ ... ≤ g(n)(a), (1)

with Ai = {(i), ...., (n)}, i = 1, .., n, g(0) = 0 and μ(An+1) = ∅.
The importance index or Shapley value of criterion i ∈ G [25] with respect to

fuzzy measure μ is defined by:

ϕ({i}) =
∑

R⊆G\{i}

(|G| − |R| − 1)!|R|!
|G|! [μ(R ∪ {i})− μ(R)],

The interaction index between criteria i, j ∈ G with respect to the value μ(R) is
measured by the Murofushi-Soneda interaction index introduced in [24], that is
defined by:

ϕ({i, j}) =

∑
R⊆G\{i,j}

(|G| − |R| − 2)!|R|!
(|G| − 1)!

[
μ(R ∪ {i, j}) − μ(R ∪ {i})− μ(R ∪ {j}) + μ(R)

]
Note that in the rest of the paper the Choquet integral, the importance and
interaction indices will be expressed in terms of Möbius representation with
regard to 2-additive measures [12], i.e., in simple words, we take into account
only interactions between couples of criteria, for their computational advantages
and their easy interpretation from the decisional point of view.

2.2 Description of NAROR

In this section, we recall the binary preference relations on the set of reference
alternatives A′ defined in [4].

Let us suppose that the preference of the DM is given by a partial pre-order
� on A′ ⊆ A.

The preference relation � can be decomposed into its symmetric part ∼ and
into its asymmetric part �, whose semantics are, respectively:

a ∼ b ⇔ a is indifferent to b,

a � b ⇔ a is preferred to b, with a, b ∈ A′.

The relation on the intensity of preference on pairs alternatives is represented
by a partial pre-order �∗ on A′ ×A′, whose semantics is: for a, b, c, d ∈ A′

(a, b) �∗ (c, d) ⇔ a is preferred to b

at least as much as c is preferred to d;
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The following system of linear constraints synthesizes the DM’s preference
information expressed in the approach proposed in [4].

EA′
ε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cμ(a) > Cμ(b) + ε if a � b with a, b ∈ A′,
Cμ(a) = Cμ(b) + ε if a ∼ b with a, b ∈ A′,
Cμ(a) − Cμ(b) > Cμ(c) − Cμ(d) + ε if (a, b) �∗ (c, d) with a, b, c, d ∈ A′,
...
Constraints on the importance and interaction of criteria
...
Boundary, monotonicity conditions

The set of constraints EA′
ε with ε defines a set of fuzzy measures (capacities)

μ compatible with the DM’s preference information if the Choquet integral,
calculated with respect to it, restores the DM’s ranking on A′, i.e.

a � b ⇔ Cμ(a) ≥ Cμ(b) ∀a, b ∈ A′.

Moreover, using linear programming, our decision model establishes two prefer-
ence relations:

– for any x, y ∈ A, the necessary weak preference relation �N , if for all com-
patible fuzzy measures the utility of x is not smaller than the utility of y,
i.e. x �N y ⇔ Cμ(x) ≥ Cμ(y), for all compatible fuzzy measures;

– for any x, y ∈ A, the possible weak preference relation �P , if for at least one
compatible fuzzy measure the utility of x is not smaller than the utility of y,
i.e. x �P y ⇔ Cμ(x) ≥ Cμ(y) for at least one compatible fuzzy measures.

Specifically, the necessary preference relation �N and the possible preference
relation �P on A are obtained by solving the two following linear programs,
∀x, y ∈ A :

max ε s.t.
{
EA′

ε

Cμ(y) ≥ Cμ(x) + ε.
(2)

and

max ε s.t.
{
EA′

ε

Cμ(x) ≥ Cμ(y).
(3)

If the optimization problem (2) is solved by a ε ≤ 0, then Cμ(x) ≥ Cμ(y) for
all compatible fuzzy measures μ, that implies x �N y with x, y ∈ A. On the
contrary, if a positive ε solves the linear program (3), then there exists at least
one compatible fuzzy measures μ such that Cμ(x) ≥ Cμ(y), that implies x �P y
with x, y ∈ A.
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3 The Most Representative Utility Function

In this section we suggest an algorithm for building the most representative
utility function expressed as Choquet integral.

The algorithm is composed of the following steps

1. Establish the necessary and possible preference relations on the set A of
alternatives, on the basis of the procedure explained in Section 2.

2. Add to the set of constraints EA′
ε the constraints Cμ(x) ≥ Cμ(y) + γ for all

pairs (x, y) ∈ A×A such that x �N y and y �N x, i.e. x �N y. 1

3. Compute max γ.
4. Let the max γ found in the previous point equal to γ∗ and add the constraint
γ = γ∗ to the set of constraints of point 2.

5. For all pairs of alternatives (x, y) ∈ A × A such that x �N y and y �N x,
which are the pairs of alternatives such that x �P y and y �P x, add the
constraints Cμ(x) ≥ Cμ(y)+δ and Cμ(y) ≥ Cμ(x)+δ to the set of constraints
of point 4.

6. Compute min δ.

Let us describe the above procedure in more details. Concerning the pairs of
alternatives in relation of necessary preference, i.e. for all (x, y) ∈ A × A such
that x �P y and not y �P x, the maximization of γ in the constraints of type
Cμ(x) ≥ Cμ(y)+γ aims at maximizing the minimal difference between the utility
values of the alternatives.

Concerning the pairs of alternatives (x, y) ∈ A × A such that x �P y and
y �P x, the maximization of δ in the constraints of type Cμ(x) ≥ Cμ(y) + δ
and Cμ(y) ≥ Cμ(x)+ δ aims at minimizing the maximum difference between the
utility values.

At the end of the algorithm, the procedure finds the most representative utility
function. The corresponding capacities can be considered as the most represen-
tative. Observe, however, that they may not be unique and therefore a sensitivity
analysis can be useful.

4 A Didactic Example

Let us consider a ranking problem of five alternatives A = {a1, a2, a3, a4, a5}
evaluated on the basis of three criteria G = {g1, g2, g3}. Table 1 presents the
evaluation matrix, i.e. the scores of each alternative with respect to the consid-
ered criteria on a [0, 20] scale. We suppose that the criteria have to be maximized.

Such evaluation matrix, if the DM chooses A∗ = {a1, a2, a3} as the reference
set of actions, is the same example proposed by Marichal and Roubens [23].

In particular, the DM’s preference information considered in [23], can be syn-
thesized as follows:

– a1 � a3
– a3 � a2

1 �N denotes the asymmetric part of �N .
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Table 1. Evaluation Matrix

g1 g2 g3

a1 12 12 19
a2 16 16 15
a3 19 19 12
a4 20 12 16
a5 16 14 17.5

– ϕ({g3}) > ϕ({g1})
– ϕ({g3}) > ϕ({g2})
– ϕ({g2, g3}) < 0

Adopting the methodology implemented in [23], we obtain a set of fuzzy measures
that evaluates the utility of every alternative, in terms of the Choquet integral.
The ranking obtained is displayed in the following table on the left (see Table 2).

Table 2. The two rankings obtained with the Marichal-Roubens methodology (on the
left) and with NAROR (on the right)

N. of ranking
a1 1st

a2 4th

a3 3rd

a4 2nd ex-aequo

a5 2nd ex-aequo

N. of ranking
a1 2nd

a2 5th

a3 3rd

a4 1st

a5 4th

Then, we apply the methodology NAROR with the same DM’s preference in-
formation proposed in [23], but enlarging the reference set to A∗ = {a1, a2, a3, a4,
a5} and adding a DM’s statement on the intensity of preference between pairs
of alternatives i.e.: (a4, a5) �∗ (a1, a2).

After computing the necessary and possible relations, we apply the algorithm
proposed in Section 3.

The second table on the right shows the results obtained with the most rep-
resentative fuzzy measures obtained within NAROR where γ∗ = 0.096019 and
δ = 0 (see Table 2).

5 Conclusions

In this paper, we have proposed an algorithm to help the DM to better interpret
the necessary and the possible preference relations supplied by NAROR method-
ology with the most representative utility function. Let us remark that the most
representative utility function has not to be considered as the “best” among the
whole set of utility functions compatible with the DM’s preferences. It simply
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can support the DM in the comprehension of the necessary and the possible
preference relations. Observe also that differently from other approaches, our
methodology does not aim to build a utility function representing the initial in-
put information, being the preference given by the DM, but instead it highlights
the final output results being the necessary and the possible preference relations.

The algorithm, illustrated in Section 3, could be enriched including also some
statements on the strength of preference among pairs of alternatives, as done
in the example, and on the interaction among criteria. In this case, the most
representative utility function should highlight also these characteristics of the
preference relations supplied by NAROR methodology.

One of the future research directions could be to extend the concept of most
representative fuzzy measures also for sorting problems. In this case, the most
representative fuzzy measures will be useful to identify the range of classes to
which every alternative could possibly be assigned.

Lastly, let us observe that the most representative utility function, that has
been proposed here to interpret the results obtained within the methodology
NAROR, could be applied for the ranking of the alternatives, as an output of an
autonomous multicriteria procedure, independently from NAROR.
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Abstract. Analysis of rule interestingness measures with respect to
their properties is an important research area helping to identify groups
of measures that are truly meaningful. In this article, we analyze prop-
erty Ex1, of preservation of extremes, in a group of confirmation mea-
sures. We consider normalization as a mean to transform them so that
they would obtain property Ex1 and we introduce three alternative ap-
proaches to the problem: an approach inspired by Nicod, Bayesian, and
likelihoodist approach. We analyze the results of the normalizations of
seven measures with respect to property Ex1 and show which approaches
lead to the desirable results. Moreover, we extend the group of ordinally
non-equivalent measures possessing valuable property Ex1.

Keywords: Normalization, Bayesian confirmation measures, property
Ex1.

1 Introduction

One of the main objectives of data mining process is to identify ”valid, novel,
potentially useful, and ultimately comprehensible knowledge from databases” [6].
When mining large datasets, the number of knowledge patterns, often expressed
in a form of ”if..., then...” rules, can easily be overwhelming rising an urgent
need to identify the most useful ones. Addressing this issue, various quantitative
measures of rule interestingness (attractiveness) have been proposed and stud-
ied, e.g., support, confidence, lift (for a survey on interestingness measures see
[1], [9], [13]). The literature is a rich resource of ordinally non-equivalent mea-
sures that reflect different characteristics of rules. There is no agreement which
measure is the best. To help to analyze objective measures, some properties
have been proposed, expressing the user’s expectations towards the behavior of
measures in particular situations. Properties of measures group the measures ac-
cording to similarities in their characteristics. Using the measures which satisfy
the desirable properties, one can avoid considering unimportant rules. Different
properties were surveyed in [5], [9], [10], [19]. In this paper, we focus on two de-
sirable properties: property of confirmation quantifying the degree to which the
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premise of the rule provides evidence for or against the conclusion [8], [2], and
property Ex1 guaranteeing that any conclusively confirmatory rule, for which
the premise φ entails the conclusion ψ (i.e. such that φ |= ψ), is assigned a
higher value of measure than any rule which is not conclusively confirmatory,
and that any conclusively disconfirmatory rule, for which φ refutes ψ (i.e. such
that φ |= ¬ψ), is assigned a lower value than any rule which is not conclu-
sively disconfirmatory [4], [11]. Though property Ex1 is so intuitively clear and
required, it is not satisfied by many popular measures. Looking for a way of trans-
forming seven chosen confirmation measures, so they would fulfill Ex1, Crupi et
al. [4] proposed to normalize them. Their approach, however, is only one of many
ways to handle this issue. In this paper, we extend their analysis and propose
three other alternative normalization schemas. Moreover, we analyze them with
respect to property Ex1 presenting and commenting the results of application
of different normalizations to the chosen measures. Furthermore, as the result
of our work, there also emerges a set of interestingness measures (alternative to
one of Crupi et al.) that satisfy desirable properties and thus extend the family
of valuable measures.

2 Preliminaries

A rule induced from a dataset U shall be denoted by φ → ψ. It consists of a
premise (evidence) φ and a conclusion (hypothesis) ψ. A rule is a logical sentence
in the sense that elementary conditions on attributes are connected by logical
”and”, on both sides of the rules. However, on a particular attribute they can
concern evaluations expressed on nominal, ordinal or cardinal scales. For each
rule we consider the number of objects which satisfy both the premise and the
conclusion, only the premise, only the conclusion, neither the premise nor the
conclusion. However, this does not mean that in our data each object can assume
only values e.g., ψ or ¬ψ. It simply means that when we evaluate a rule of the
type ”if φ, then ψ” we take into account set of objects that satisfy ψ and a set
of objects that do not satisfy ψ.

In general, by sup(γ) we denote the number of objects in the dataset for
which γ is true. Thus, sup(φ→ ψ) is the number of objects satisfying both the
premise and the conclusion of a φ → ψ rule. Moreover, the following notation
shall be used throughout the paper: a = sup(φ → ψ), b = sup(¬φ → ψ),
c = sup(φ→ ¬ψ), d = sup(¬φ→ ¬ψ). Observe that b can be interpreted as the
number of objects that do not satisfy the premise but satisfy the conclusion of
the φ→ ψ rule. Analogous observations hold for c and d. Moreover, the following
relations occur: a+c = sup(φ), a+b = sup(ψ), b+d = sup(¬φ), c+d = sup(¬ψ),
and the cardinality of the dataset U , denoted by |U |, is the sum of a, b, c and d.

3 Property of Bayesian Confirmation

Formally, an interestingness measure c(φ → ψ) has the property of Bayesian
confirmation (or simply confirmation) iff it satisfies the following conditions:
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c(φ→ ψ)

⎧⎨⎩
> 0 if Pr(ψ|φ) > Pr(ψ),
= 0 if Pr(ψ|φ) = Pr(ψ),
< 0 if Pr(ψ|φ) < Pr(ψ).

(1)

where Pr(ψ) denotes the probability of ψ, and Pr(ψ|φ) is the conditional prob-
ability of ψ given φ.

This definition identifies confirmation with an increase in the probability of
the conclusion provided by the premise, neutrality with the lack of influence
of the premise on the probability of conclusion, and disconfirmation with a de-
crease of probability of the conclusion imposed by the premise [2]. Under the
”closed world assumption” adopted in inductive reasoning, and because U is a
finite set, it is legitimate to estimate probabilities in terms of frequencies, e.g.,
Pr(ψ) = sup(ψ)/|U | = (a + b)/|U |. In consequence, we can define the con-
ditional probability as Pr(ψ|φ) = Pr(φ ∧ ψ)/Pr(φ), and it can be regarded as
sup(φ→ ψ)/sup(φ) (i.e. a/(a+c)). Thus, the above condition can be re-written:

c(φ→ ψ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0 if a

a+ c >
a+ b
|U | ,

= 0 if a
a+ c = a+ b

|U | ,
< 0 if a

a+ c <
a+ b
|U | .

(2)

Measures that possess the property of confirmation are referred to as confirma-
tion measures or measures of confirmation. They quantify the degree to which
the premise φ provides ”support for or against” the conclusion ψ [8]. By using the
attractiveness measures that possess this property one can filter out rules which
are misleading and disconfirm the user, and this way, limit the set of induced
rules only to those that are meaningful [18]. The only constraints (2) that the
property of confirmation puts on a measure are that it assigns positive values in
the situation when confirmation occurs, negative values in case of disconfirma-
tion and zero otherwise. As a result, many alternative, non-equivalent measures
of confirmation have been proposed. Most commonly used ones are gathered in
Table (1) (selection provided in [4]):

4 Property Ex1 of Preservation of Extremes

To handle the plurality of alternative confirmation measures Crupi et al. [4] have
proposed a property (principle) Ex1 resorting to considering inductive logic as an
extrapolation from classical deductive logic. On the basis of classical deductive
logic they construct a function v:

v(φ, ψ) =

⎧⎨⎩
the same positive value if φ |= ψ,
the same negative value if φ |= ¬ψ,
0 otherwise.

(3)

For any argument (φ, ψ) v assigns it the same positive value (e.g., +1) if and
only if the premise φ of the rule entails the conclusion ψ (i.e. φ |= ψ). The same
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Table 1. Common confirmation measures

D(φ → ψ) = Pr(ψ|φ) − Pr(ψ) = a
a + c − a + b

|U | Carnap [2]

S(φ → ψ) = Pr(ψ|φ) − Pr(ψ|¬φ) = a
a + c − b

b + d
Christensen [3]

M(φ → ψ) = Pr(φ|ψ) − Pr(φ) = a
a + b

− a + c
|U | Mortimer [14]

N(φ → ψ) = Pr(φ|ψ) − Pr(φ|¬ψ) = a
a + b

− c
c + d

Nozick [16]

C(φ → ψ) = Pr(φ ∧ ψ) − Pr(φ)Pr(ψ) = a
|U | −

(a + c)(a + b)
|U |2 Carnap [2]

R(φ → ψ) = Pr(ψ|φ)
Pr(ψ) − 1 = a|U |

(a + c)(a + b) − 1 Finch [7]

G(φ → ψ) = Pr(¬ψ|φ)
Pr(¬ψ) = 1 − c|U |

(a + c)(c + d) Rips [17]

value but of opposite sign (e.g., -1) is assigned if and only if the premise φ refutes
the conclusion ψ (i.e. φ |= ¬ψ). In all other cases (i.e. when the premise is not
conclusively confirmatory nor conclusively disconfirmatory for the conclusion)
function v obtains value 0.

From definition, any confirmation measure c(φ → ψ) agrees with function
v(φ, ψ) in the way that if v(φ, ψ) is positive then the same is true for c(φ →
ψ), and when v(φ, ψ) is negative, so is c(φ → ψ). According to Crupi et al.,
the relationship between the logical implication or refutation of ψ by φ, and
the conditional probability of ψ subject to φ should go further and demand
fulfillment of the principle Ex1 [4]:

if v(φ1, ψ1) > v(φ2, ψ2), then c(φ1 → ψ1) > c(φ2 → ψ2). (4)

Property Ex1 is desirable for any interestingness measure as it guarantees that
the measure will assign a greater value to any conclusively confirmatory rule
(i.e. such that φ |= ψ, e.g., if x is seven of spades then x is black) than to any
rule which is not conclusively confirmatory (e.g., if x is black then x is seven
of spades). Moreover, rules that are conclusively disconfirmatory (i.e. such that
φ |= ¬ψ, e.g., if x is seven of spades then x is red) will obtain smaller values
of interestingness measures than rules which is not conclusively disconfirmatory
(e.g., if x is black then x is seven of spades).

5 Normalization of Confirmation Measures

Having observed that confirmation measures D, S, M , N , C, R, G (defined
earlier on) are contrary to Ex1, Crupi et al. [4] proposed to normalize them by
dividing each of them by the maximum (minimum, respectively) the measure
obtains when φ |= ψ, i.e. when the rule’s premise entails its conclusion (φ |=
¬ψ, respectively). Determining the maximum or minimum that a confirmation
measure obtains in case of confirmation or disconfirmation has, however, no
unique interpretation, and the approach applied by Crupi et al. is only one of
many ways to handle this issue. We shall now propose and analyze four (including
the approach of Crupi et al.) alternative schemas allowing to determine the
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maximum (or minimum) of any confirmation measure in those two situations.
We denote by a′, b′, c′ and d′ the values of a, b, c and d, respectively, in case
of maximizing or minimizing the confirmation. Each of the analyzed schemas
eventually leads to a different normalization, as we divide the original measures
by their maximum or minimum calculated using alternative schemas. Therefore
next, we will present and discuss results of normalization of measures D, S, M ,
N , C, R, G using those approaches.

5.1 Approach Inspired by Nicod

The Nicod’s criterion presented in [15] says that an evidence confirms a rule
φ→ ψ if and only if it satisfies both the premise and the conclusion of the rule,
and disconfirms it if and only if it satisfies the premise but not the conclusion of
the rule. Thus, objects for which the premise and the conclusion is supported are
considered as positive examples for the rule and objects satisfying the premise
but not the conclusion are counter-examples. Moreover, according to Nicod’s
criterion, an evidence that does not satisfy the premise is neutral with respect to
the rule. It means that objects for which the premise is not satisfied are irrelevant
to the rule, no matter whether they support the conclusion or not. Now, let us
propose a schema, based on Nicod’s criterion, for determination of maximum
(or minimum) of a confirmation measure. Following Nicod’s directives, the only
objects that are relevant to a rule are positive examples and counter-examples.
It brings us to an observation that a measure will obtain its maximum when all
counter-examples change into positive examples. It means that the number of
positive examples should take over all counter-examples (i.e. a′ = a + c), and
the number of counter-examples should drop to 0 (i.e. c′ = 0). The number of
evidence which are irrelevant to the rule should remain unchanged (i.e. b′ = b and
d′ = d). The schema for determination of the minimal value is analogous. Putting
all the considerations together we obtain the approach, inspired by Nicod, to
determine the extremes of any measure (Table 2).

Table 2. Schemas for determination of the extremes of any measure

Nicod’s Bayesian Likelihoodist Crupi’s et al.
Max Min Max Min Max Min Max Min

a′ = a + c a′ = 0 a′ = a + b a′ = 0 a′ = a + c a′ = 0 a′ = a + c a′ = 0
b′ = b b′ = b b′ = 0 b′ = a + b b′ = 0 b′ = b + d b′ = b − c b′ = a + b

c′ = 0 c′ = a + c c′ = 0 c′ = c + d c′ = 0 c′ = a + c c′ = 0 c′ = a + c

d′ = d d′ = d d′ = c + d d′ = 0 d′ = b + d d′ = 0 d′ = c + d d′ = d − a

5.2 Bayesian Approach

Bayesian approach is related to the idea that the evidence confirms the hypoth-
esis, if the hypothesis is more frequent with the evidence rather than without
the evidence. Analogously, the evidence disconfirms the hypothesis, if ¬ hypoth-
esis is more frequent with the evidence rather than without the evidence. Thus,
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determination of measure’s extremes based on this approach should consider a
rule from the perspective of its conclusion. Following Bayesian approach, let us
observe that for a rule if x is a raven then x is black [12] a measure will obtain
its maximum if all black non-ravens change into black ravens (i.e. a′ = a+ b and
b′ = 0), and all non-black ravens change into non-black non-ravens (i.e. d′ = c+d
and c′ = 0). It is due to the fact that when there are no black non-ravens (i.e.
b′ = 0), the hypothesis of being black is more frequent with the premise of being
a raven rather than with ¬premise of being a non raven, which means that the
premise confirms the rule’s conclusion. Moreover, when there are no non-black
ravens (i.e. c′ = 0), the ¬hypothesis of being non-black is disconfirmed as it
is more frequent with the ¬premise of being a non-raven rather than with the
premise of being a raven. Disconfirmation of ¬hypothesis is desirable as it re-
sults in confirmation of the hypothesis. The considerations about determination
of the minimal value are analogous. The Bayesian approach to determination of
a measure’s maximum or minimum is summarized in Table 2.

5.3 Likelihoodist Approach

The likelihoodist approach is based on the idea that the evidence confirms the
hypothesis, if the evidence is more frequent with the hypothesis rather than
without the hypothesis, and in this context, analogously, the evidence disconfirms
the hypothesis, if the evidence is more frequent without the hypothesis rather
than with the hypothesis. Thus, one can informally say that likelihoodists look at
the rule from the perspective of its premise. According to likelihoodist approach,
for a rule if x is a raven then x is black [12] a measure will obtain its maximum if
all non-black ravens change into black ravens (i.e. a′ = a+ c and c′ = 0), and all
black non-ravens change into non-black non-ravens (i.e. d′ = b+ d and b′ = 0).
It results from the fact that when there are no non-black ravens (i.e. c′ = 0), the
evidence of being a raven is more frequent with the hypothesis of being black
rather than with ¬hypothesis of being non black, which means that the premise
confirms the rule’s conclusion. Moreover, when there are no black non-ravens
(i.e. b′ = 0), the ¬evidence of being a non-raven is more frequent with the
¬hypothesis of being non-black rather than with the hypothesis of being black.
Thus, we can conclude that hypothesis is disconfirmed by the ¬premise and as
a result of that the hypothesis is confirmed by the premise. Determination of
the minimal value of confirmation measure is analogous. The whole likelihoodist
approach to calculating the measure’s extremes is presented in Table 2.

5.4 Approach of Crupi et al.

Having proved that none of the measures: D, S, M , N , C, R nor G satisfies
the desirable property Ex1, Crupi et al. [4] showed an easy way to transform
them into measures that do fulfill Ex1. They presented formulas to which the
considered measures boil down when φ |= ψ and when φ |= ¬ψ, and proposed
to normalize the measures by dividing them by the obtained formulas. Their
article, however, does not provide any methodological schema to determine the
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measure’s extremes - only the calculated formulas are given. Since, the approach
of Crupi et al. brings such interesting results, we have analyzed it thoroughly in
terms of our notation, i.e. a, b, c and d, and came up with a clear schema (see
Table 2) that can be used to determine the extremes of any measure.

According to Crupi et al., dividing a measure by the formula obtained when
φ |= ψ produces the normalized measure in case of confirmation (i.e. when
Pr(ψ|φ) ≥ Pr(ψ)), and the division by absolute value of the formula obtained
when φ |= ¬ψ gives the normalized measure in case of disconfirmation (i.e.
when Pr(ψ|φ) < Pr(ψ)). Interestingly, it turned out that the considered mea-
sures all gave the same result after that transformation, i.e. Dnorm = Snorm =
Mnorm = Nnorm = Cnorm = Rnorm = Gnorm. Crupi et al. labeled the newly
obtained measure of confirmation Z. In case of confirmation Z = G and in case
of disconfirmation Z = R. Crupi et al. [4] have proved that measure Z and all
confirmation measures ordinally equivalent to Z satisfy property Ex1.

6 Results of Applying Normalization Schemas to
Measures

Each of the schemas presented by us to determine the extremes of measures even-
tually results in a different normalization. Table 3 presents them all. For the sake
of the presentation, the definitions of the analyzed measures were simplified by
basic mathematical transformations (column 1). The next four columns contain
results for different normalization schemas, for each measure there are two rows
containing the normalized measure in case of confirmation (the first row) and
disconfirmation (the second row). The notation we used assumes that lower in-
dexes signify the applied normalization (N stands for Nicod, B for Bayesian, L
for likelihoodist, and C for Crupi et al.), and that the case of confirmation is
marked by a ”+” and the case of disconfirmation by a ”-” (e.g., DN+ stands for
measure D normalized in case of confirmation, using the approach inspired by
Nicod).

Since the normalization of Crupi et al. was introduced as a tool for transform-
ing the measures so they would satisfy the property Ex1, we have analyzed the
results of different normalizations of measures D, S, M , N , C, R, G from the
view point of this property. Let us observe, that Ex1 is satisfied by any confirma-
tion measure that obtains its maximal value when there are no counterexamples
to the rule and its minimal value when there are no positive examples to the rule.
These two conditions can be regarded as sufficient for proving the possession of
Ex1 by measure c(φ→ ψ).

Theorem 1. All confirmation measures D, S,M , N , C, R, G normalized using
approach inspired by Nicod or approach of Crupi et al. satisfy property Ex1.
Moreover normalization using Bayesian approach gives measures satisfying Ex1
only in case of measure D, R and G, whereas using likelihoodist approach, Ex1
does not hold for any of the considered measures.
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Table 3. Results of alternative normalization approaches

Original measure Nicod’s norm.
Bayesian
norm.

Likelihoodist
norm.

Crupi
et al
norm.

D(φ → ψ) = ad−bc
|U|(a+c)

DN+ = ad−bc
d(a+c)

DN− = ad−bc
b(a+c)

G

R

S

S

G

R

S(φ → ψ) = ad−bc
(a+c)(b+d)

DN+

DN−

S

S

S

S

G

R

M(φ → ψ) = ad−bc
|U|(a+b)

MN+ = (ad−bc)(a+b+c)
d(a+b)(a+c)

R

N

N

ML+ = ad−bc
(a+b)(b+d)

R

G

R

N(φ → ψ) = ad−bc
(a+b)(c+d)

NN+ = (ad−bc)(a+b+c)
(a+b)(a+c)(c+d)

NN− = (ad−bc)(a+c+d)
(a+b)(a+c)(c+d)

N

N

N

N

G

R

C(φ → ψ) = ad−bc
|U|2

DN+

DN−

N

N

S

S

G

R

R(φ → ψ) = ad−bc
(a+b)(a+c)

MN+

R

G

R

ML+

R

G

R

G(φ → ψ) = ad−bc
(a+c)(c+d)

G

GN− = (ad−bc)(a+c+d)
b(a+c)(c+d)

G

R

G

GL− = ad−bc
(c+d)(b+d)

G

R

Proof. Possession of property Ex1 can be verified by putting c = 0 and a = 0
in the normalized measure and checking whether it’s formula boils down to 1 in
case c = 0 and to -1 in case a = 0. The considered measures normalized using
approach inspired by Nicod or approach of Crupi et al. are equal to 1 (or -1)
when c = 0 (or a = 0).

The new measures obtained during normalization inspired by Nicod can be re-
garded as alternative ones with respect to measure Z advocated by Crupi et
al. [4]. DN , SN , MN , NN , CN , RN , and GN are as valuable as Z in terms of
possession of Ex1 and, generally, produce different rankings on rules than Z. It
is an important result widening the group of non-equivalent measures satisfying
property Ex1.

Theorem 2. Measures DN , SN , MN , NN , CN , RN , and GN (resulting from
application of normalization inspired by Nicod) are ordinally non-equivalent to
measure Z.
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Proof. Measure f is ordinally equivalent to measure g iff for any rules r1, r2:

f(r1)

⎧⎨⎩
>
=
<

⎫⎬⎭ g(r1) iff f(r2)

⎧⎨⎩
>
=
<

⎫⎬⎭ g(r2). (5)

The above condition needs to be fulfilled both in case of confirmation and dis-
confirmation. For Table 3 it is enough to consider measures DN+ , MN+ , NN+

and GN− . The situation in which the number of objects in U is distributed over
a, b, c and d is called scenario α. In scenario α, rule r : φ → ψ is supported
by a objects from U . Table 4 contains a counterexample proving that in two
exemplary scenarios α1 and α2 measures DN+ , and MN+ produce rankings dif-
ferent than measure G. Measure G assigns r2 greater value than to r1, whereas
measures DN+ , and MN+ rank those rules the other way round. Thus, DN and
MN are ordinally non-equivalent to measure Z. By the next counterexample in
Table 4, let us show that in scenarios α3 and α4 measure NN+ produces differ-
ent ranking than measure G. Observe that measure G assigns r1 greater value,
whereas measures NN+ favors r2, thus we can conclude that NN is ordinally non-
equivalent to Z. Finally, scenarios α1 and α2 from Table 4 prove that measure
GN− produces different ranking than measure R. Here, GN− assigns r1 greater
value, whereas R favors r2. Thus, GN is ordinally non-equivalent to Z.

Table 4. Counterexamples showing ordinal non-equivalence of measures DN , MN , NN ,
GN and measure Z

Counterexample concerning measures DN+ and MN+

α1 a = 90 b = 8 c = 1 d = 1 |U | = 100 DN+(r1)=0.90 MN+ (r1)=0.91 G(r1) = 0.45
α2 a = 70 b = 16 c = 4 d = 10 |U | = 100 DN+(r2) = 0.86 MN+ (r2) = 0.90 G(r1)=0.61

Counterexample concerning measure NN+

α3 a = 70 b = 1 c = 19 d = 1 |U | = 100 NN+ (r1) = 0.33 G(r1)=0.26

α4 a = 55 b = 2 c = 26 d = 17 |U | = 100 NN+ (r2)=0.37 G(r1) = 0.25

Counterexample concerning measure GN−

α1 a = 90 b = 8 c = 1 d = 1 |U | = 100 GN− (r1)=5.18 R(r1) = 0.009
α2 a = 70 b = 16 c = 4 d = 10 |U | = 100 GN− (r2) = 3.22 R(r1)=0.099

7 Conclusions

Analysis of interestingness measures with respect to their properties is an impor-
tant research area helping to identify groups of measures that are truly mean-
ingful. In this article, we have focused on possession of property Ex1 in a group
of popular confirmation measures. Normalization of measures as a way to trans-
form them so that they would obtain property Ex1 has been considered. A cru-
cial step of such normalization is determination of the extremes of the measures
in case of confirmation and disconfirmation. In this article, we have introduced
three alternative approaches to this problem, i.e. an approach inspired by Nicod,
Bayesian, and likelihoodist approach.All these approaches, as well as that of Crupi
et al., lead to different results and normalizations, as they consider the concept of
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confirmation from different perspectives. A set of seven confirmation measures,
earlier analyzed by Crupi et al., has been normalized using those four schemas.
We have analyzed the results of the normalizations with respect to property Ex1.
The conclusions that we obtained show that approach inspired by Nicod, as well
as approach of Crupi et al., give normalized measures with property Ex1 in cases
of all of the considered measures. Moreover, we have proved that measures ob-
tained through those normalizations are ordinally non-equivalent. Thus, we have
extended the group of measures possessing valuable property Ex1.
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Abstract. Our ability to recognize the gender and estimate the age of
people around us is crucial for our social development and interactions.
In this paper, we investigate how to use Slow Feature Analysis (SFA) to
estimate gender and age from synthetic face images. SFA is a versatile
unsupervised learning algorithm that extracts slowly varying features
from a multidimensional signal. To process very high-dimensional data,
such as images, SFA can be applied hierarchically. The key idea here
is to construct the training signal such that the parameters of interest,
namely gender and age, vary slowly. This makes the labelling of the data
implicit in the training signal and permits the use of the unsupervised
algorithm in a hierarchical fashion. A simple supervised step at the very
end is then sufficient to extract gender and age with high reliability.
Gender was estimated with a very high accuracy, and age had an RMSE
of 3.8 years for test images.

Keywords: Slow feature analysis, human face images, age, gender, hi-
erarchical network, feature extraction, pattern recognition.

1 Introduction

The estimation of gender and age is crucial for many social interactions, and is
done everyday consciously or unconsciously. This process happens very quickly
and requires relatively little visual information which is usually of dynamic na-
ture, but we are also capable of performing this process with still images.

In this work we investigate how an unsupervised algorithm for signal ex-
traction can be used to automatically extract gender and age information from
single frontal images of simulated subjects (random 3D face models). This has
applications to man-machine interaction, face recognition, and as an aid in the
supervision of age and gender related policies.

In order to learn the gender and age of the subjects, we decided to use a
versatile unsupervised algorithm called Slow Feature Analysis (SFA). SFA ex-
tracts slowly varying features from a high-dimensional signal. Contrary to other
unsupervised learning algorithms, for SFA time plays a key role. In this pa-
per, the high-dimensional signal is a sequence of images (e.g. each image is a
135 × 135 = 18225-dimensional vector), and it is enforced that one or more
(hidden) parameters involved in image generation change on a relatively slow
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timescale. Although individual signal components (e.g. pixels of an image) might
change on a very fast timescale, the algorithm should find a way to combine sev-
eral signal components at any time step, such that the resulting computed signals
vary each as slowly as possible over time, while still containing information about
the input.

The trick in using this unsupervised algorithm to learn some particular fea-
ture is to create an appropriate training sequence in which the slowest varying
parameter is the feature we want to learn. Thus, for instance, for the age esti-
mation problem, the training signal is a sequence of face images in which the
age of the subjects increases very slowly. We show that in this case, the slowest
learned feature is strongly correlated with the original age of the subject.

1.1 Related Work

Berkes et al. [3] used (a single unit of) quadratic SFA to analyze sequences of
image patches from natural images. They studied optimal stimuli yielding the
largest and smallest responses from the unit, and showed that SFA is capable of
learning receptive fields with properties similar to those found in complex cells
in the primary visual cortex.

Later Franzius et al. [4] implemented a hierarchical model of SFA and used
it to extract position and view direction in a simulated box environment. They
showed that the type of features learned, which resemble certain cells in a ro-
dent’s brain, depend solely on the statistics of the sequences of images generated
by the movement inside the box.

More recently, Franzius et al. [5] also used the temporal slowness principle and
followed an invariant object recognition approach. They estimate the identity
and pose of artificial fish and textured spheres from still images. They studied
the simultaneous change in one or more slow parameters at different timescales.
Contrary to this work, the supervised post-processing used for feature estimation
is based on linear regression and they used a much larger number of signals for
this step, while we used only three signals.

Some existing methods for gender classification, which can be roughly divided
into appearance-based and geometric-based approaches, are briefly described
in [8,6] and for age classification in [6].

2 Slow Feature Analysis (SFA)

SFA is a biologically inspired unsupervised learning algorithm [7], that in its
linear version is somewhat related to PCA and ICA, but has the essential prop-
erty that the temporal component of the variables is also considered (i.e., the
temporal ordering of the samples matters).

The input is a multidimensional signal x(t) = (x1(t), . . . , xN (t))T . SFA then
computes a set of weights wi = (wi,1, . . . , wi,N )T , such that each output signal
yi(t) = x(t)T wi has the slowest possible temporal variation and is uncorrelated
to signals yj for j < i.
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More formally, the output signals yi(t), for 0 ≤ i < N must be optimally slow
in the sense that the objective function Δ(yi)

def= 〈ẏi(t)2〉 (i.e., the variance of
the time derivative of yi) is minimal while the following constraints must hold:

– Zero mean: 〈yi(t)〉 = 0
– Unit variance: 〈yi(t)2〉 = 1
– Decorrelation: 〈yi(t)yj(t)〉 = 0 for j < i

The SFA problem is to find an optimal set of weights {wi} such that the condi-
tions above are met. Fortunately, it is well known that the optimal solutions to
this problem depend only on the covariance matrix B = 〈xxT 〉 of the training
sequence x(t), and the covariance matrix A = 〈ẋẋT 〉 of the time derivative of
the training sequence ẋ(t). In practice, time is discrete and the time derivative is
approximated by the difference of consecutive samples in the training sequence.

Moreover, it is possible to state the SFA problem as a generalized eigenvalue
problem, and traditional algorithms for solving the latter problem can be used.
As a consequence, the algorithm has a similar complexity as PCA and is guar-
anteed to find an optimal solution.

3 Hierarchical Slow Feature Analysis

To apply even linear SFA on the whole training data would be too expensive,
since it would have a computational complexity of O(LN2 + N3) where L is
the number of samples and N is the dimensionality. This complexity problem
becomes more severe if a non-linear preprocessing step is applied to the images
to obtain non-linear SFA. Hierarchical SFA allows us to cope with this problem
by dividing the image sequence in smaller dimensionality sequences that are
separately processed by SFA units, cf. [4]. Afterwards, the slow signals separately
computed by these units can be grouped together and further processed by the
SFA units in the next layer. This process can be repeated and organized in a
multi-layer hierarchy until global slow features are extracted, where each layer
is trained separately from the first to the last.

Although hierarchical networks based on SFA have been successfully tested on
different stimuli before, e.g. images of fish, textured spheres [5] and the interior of
boxes [4], it is unclear whether this type of network would also succeed at learning
from frontal face images, because changes in the slow parameters in the training
data only produce subtle changes at the pixel level (compared for example to
fish identity or pose, which offer larger variability at the pixel level). We prove
that hierarchical SFA is powerful enough to learn these slow parameters.

The hierarchical SFA networks we have developed can be employed unchanged
to extract different relevant parameters from image sequences, where the learned
parameters are implicit in the training data. Thus, we only need to modify the
training set according to the particular parameter to be learned.

A special effort was made to keep the computational cost of the training
procedure low because, as in many learning algorithms, training is a relatively
expensive procedure. However, once trained the computational and memory cost
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for SFA are very low, and thus feature extraction from a single image is a fast
procedure.

We built several networks and tested several values of the parameters that
define its structure and the composition of the layers. In this article, we focus
only on one particular linear and a non-linear network. We remark that its struc-
ture is not problem-specific, except for the input dimensionality of the networks
which should agree with the image size. This is in accordance with the desire
of building a flexible architecture capable of tackling different problems without
modification.

Linear SFA Network. This is the simplest network we developed. As any
linear system, it has well known limitations that reduce the type of relevant
features that can be correctly extracted. This limitation is slightly reduced by
the use of a Gaussian classifier on top of the linear network (see Section 4.3 on
post-processing).

The network has 4 processing layers, which operate one after the other and
reduce the dimensionality from 135x135 pixel values in the input images to just
40 signals at the network output. Each layer can be further subdivided into a few
elementary sub-layers, which in turn are composed of elementary data processing
units arranged in a square array. These units can be, for example, SFA nodes
or PCA/whitening nodes. For reasons of space we omit here the details of the
network structure. The first layer contains an SFA sub-layer with 27x27 SFA
nodes, each one having a non-overlapping fan-in of 5x5x(1 pixel) and a fan-
out of 16 signals, thus reducing the data dimensionality by 36%. Similarly, the
second layer has a 9x9 grid structure, each unit has a fan-in of 3x3x(16 signals)
and a fan-out of 30 signals, which reduces the data dimensions from 27x27x16
to 9x9x30 signals, a further reduction of 79%. In the same way, the third layer
has a 3x3 grid structure, each unit has a fan-in of 3x3x(30 signals) and a fan-out
of 40 signals. The forth layer has a single SFA node that takes the whole output
of the previous layer and outputs only 40 signals. The complete network reduces
the amount of signals from 135x135 to just 40 signals, where only 3 of them are
given to the classifier.

Non-Linear SFA Network. Our non-linear network has the same architecture
as the linear network, with the only difference that non-linear expansion nodes
are added in each sub-layer before the SFA nodes. These nodes introduce some
amount of non-linearity that depends on the expansion function that was chosen.
The more powerful this expansion is, the more capable the network becomes in
extracting complex features. Therefore, it is tempting to use a complex expan-
sion, say a 5th degree product expansion, where all products up to degree five on
the input signal components appear. However, a large expansion increases the
computational cost and the amount of training data needed to avoid overfitting.

Therefore, more conservative non-linearities are typically preferred, such as a
quadratic expansion (including all terms of the form xi and xixj for 0 ≤ i, j < N ,
where (x0, . . . , xN−1) is the original signal). In this work, we use modest non-
linearities. The expansion function computes all terms xixi+1 for 0 ≤ i < N−1 in
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addition to the linear terms xi. Each non-linear expansion node roughly doubles
the number of signals. However, the number of slow signals extracted by the SFA
nodes is kept the same as in the linear case to avoid an explosion in the number
of signals.

Other expansions that we have tested include the product of pairs of variables
with similar slowness values, and sums or differences instead of products com-
bined with other non-linearities such as absolute values and square roots. We
did not find any advantage in using these expansions.

4 Training and Test Sequences for Age and Gender
Estimation

After having built suitable SFA networks, the next step was to generate an ap-
propriate data set for training and testing. The network learns to estimate gender
or age from artificial frontal images based solely on the particular sequence of
images used for training. After training we separately test its performance with
respect to these images and new images not seen before by the network. All the
training and test images were generated in software only once before training
took place.

The software used for face model generation is called FaceGen [2], image
rendering was done with POV-Ray [1], other tools were used for format conver-
sions, and the process was partially automated with many Perl scripts, and a
few Python scripts. The arguably large amount of images is required to reduce
overfitting.

4.1 Sequences for Gender Estimation

The first data set was created as follows. A large number of random subjects
was needed. In this case, we created 12000 random subjects, each one defined
by a unique 3D face model without hair, glasses, earrings or other accessories.
These models are generated with several randomized low- and high-level facial
parameters that include (at a high-level) age, symmetry, gender and racial com-
position, and it is possible to change any of these parameters. For example, the
gender parameter is a real value, defined by the software for face generation as:
-3 = very masculine, -1=masculine, 1=feminine to 3 = very feminine. This al-
lowed us to arbitrarily select the level of masculinity or femininity of the models,
and thus create sequences of images of random subjects where the gender value
slowly increases from very masculine to very feminine. We selected 60 fixed gen-
der values: (−3,−2.9, . . . , 2.9) and 200 subjects per gender value, thus requiring
12000 face images. A neutral expression was chosen, random vertical and hor-
izontal translations of +/- 2 pixels were added to each image, and pink-noise
like random backgrounds were used. Notice that the addition of a translation
and randomized backgrounds makes the problem more difficult and is inspired
by more realistic conditions of real photographs. The network should now learn
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to remain invariant to small translations. It should actually also become invariant
to the quickly changing randomized background since it is not a good source of
slow signals.

The training sequence (Figure 1) is composed of 180 of the subjects for each
gender value accounting for 10800 images, while the test sequence is composed
of the remaining 20 subjects per gender value accounting for 1200 images.

Fig. 1. A few examples of the images of the training sequence used for gender estima-
tion. The gender parameter varies here from -3.0 (left), -1.1, 0.9 to 2.9 (right).

4.2 Sequences for Age Extraction

The face generation software only allows for generating subjects from 15 to 65
years. For efficiency purposes, we selected 23 specific ages non-uniformly, increas-
ing from 15 to 65 years: (15, 16, 18, 20, . . ., 55, 60, 65 years). The separation
between samples was shorter for smaller ages because we expected a larger vari-
ability at the pixel level in young subjects than in older subjects.

We created 200 random subjects for each age value, accounting for 4600 ran-
dom subjects of different ages. Again, no hair, glasses, earrings or other acces-
sories were present. Also a neutral expression was chosen, pink-noise like random
backgrounds were used, and smaller random vertical and horizontal translations
of +/- 1 pixel were added to each centered image.

For the training set we took 180 of the generated subjects for each age value
accounting for 4140 images, while the test sequence is composed of the remaining
460 images.

4.3 Supervised Post-processing of the Slow Signals

A classifier is taught to relate the output of the network to the known values
of the relevant parameters, such as the true age or gender of the input samples
(while the network itself is unsupervised, the labels with the known gender or
age are used to train the classifier). For the linear network, this constitutes the
single non-linear step in the architecture.

Theoretically, we expect that the slow signals extracted by the network should
depend on the slow parameter that we want the network to learn. Notice however,
that the slowest signal does not have to be linearly related to the slow parameter,
so it might not be possible to use it directly to recover the parameter. What
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Fig. 2. Examples of the images of the training sequence used for age estimation. The
age parameter varies here from left to right from 15, 26, 44 to 65 years.

we need is a way to establish a connection between the domain of the slow
signals, and the parameter domain. The classifier takes advantage of the fact
that the slow parameter is redundantly coded in the slow signals, as the theory
indicates, as the slowest signal and as its harmonics. Additionally, we exploit
the fact that the training set is labelled (since we know gender and age during
image generation) to estimate the parameter. In theory, images with the same
slow parameter cluster in a single point in the output domain. We use a small
set of slow signals, here the 3 slowest output signals, to train a classifier. As
labels for the classifier we use the real gender or age parameter. If the network
generalizes well, then the classifier should be able to output the correct value of
the parameter for new images. Moreover, if class probabilities are present, we
can improve the estimation of the parameter aiming at minimizing the MSE.
Two classifiers were used: a closest center classifier and a Gaussian classifier. A
class was defined for each possible value of the labels.

We assumed that the Gaussian Classifier perfectly learned the distribution
of the data, and is able to perfectly estimate the class probabilities. Then, we
used the class probabilities and the labels to find the value that minimizes the
MSE. Let P (li) be the probability that a given image actually has label li, for
1 ≤ i ≤ C, then our estimate of the parameter is

∑
i liP (li), where i ranges over

the C classes.

5 Results

For the gender extraction experiment, the linear SFA network followed by a
simple Gaussian classifier on 3-dimensional signals was capable of estimating
the gender of new random subjects with a root mean squared error (RMSE) of
0.33 (Table 1). Recall that the gender parameter varies in the interval (−3, 2.9).
Thus the standard error from the true parameter is about 5% of the parameter’s
range.

In Figure 3 we can see the three slowest signals extracted by the linear network
from the training sequence of the gender estimation experiment. Notice that the
slowest signal (in black) is less noisy than the other signals. The same figure
for the test sequence (not shown) is very similar, except that it has fewer data
points.
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Table 1. Performance of the networks in terms of the root mean squared error (RMSE)
using a Gaussian classifier (GC) and a closest center classifier (CCC)

Linear Network Non-Linear Network
RMSE Gaussian RMSE CCC RMSE Gaussian RMSE CCC

Gender Estimation
Training Images 0.3084 0.6098 0.2229 0.3119

Test Images 0.3318 0.6857 0.4180 0.5858
Age Estimation (years)

Training Images 3.2963 5.6461 2.2313 3.3914
Test Images 3.8365 7.0697 5.3618 7.9660

Fig. 3. Linear network: slowest signals for the gender experiment. The black, dark grey
and light grey points are the slowest, second slowest and third slowest signals, resp.
The horizontal axis indicates the image number, and the vertical axis is the amplitude
of the slow signals.

The reported performance was achieved when the classifier was trained with
only the 3 slowest signals computed by the network. The precise number of
signals given to the classifier has a direct influence on the performance of the
system. Its optimal value depends on the combination of the network employed
and the training sequence.

Using only one signal degrades the quality of the estimation, because it reduces
the available redundancy. Using many signals, however, is not useful because
faster varying extracted signals are increasingly noisier than the slowest ones,
thus the classifier cannot take much advantage of them. Moreover, if the number
of signals is increased, the Gaussian classifier also needs more samples to reliably
learn the input distribution.

The non-linear network performs better on the training data than the linear
one, as expected, but suffers from more overfitting, which explains why it does
not outperform the linear network on new data. The non-linear network will
become superior for newer data once enough training samples are used.

The problem of age estimation is more difficult than gender estimation. In in-
formal tests, it was clear that the ability of a human operator at estimating age
from the images was limited. Thus we were not expecting a good performance
from the system. The linear network had an RMSE of 3.8 years from the true age
of the subjects, and 3.3 years for the training samples. The performance of the
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Fig. 4. The linear mask (weights) that encodes the slowest output signal and its neg-
ative (normalized for display purposes). Notice how the first image resembles more a
masculine face, while the second a feminine one.

non-linear network for the training samples was clearly superior with an RMSE
of only 2.2 years. Unfortunately, again it did not generalize as well because we
did not use enough samples.

6 Conclusion and Future Work

We developed two very flexible hierarchical networks for slow feature analysis.
These networks are application independent, and can be used to learn slow pa-
rameters from very different two-dimensional signals. Training was accomplished
in less than 30 minutes. Importantly, the output of the network agreed to a large
extent with the theoretically predicted properties of SFA on the whole images.

The expansion of the data in a non-linear way, even a small expansion, in-
creases the performance of the network, but has the disadvantage that larger
training sequences are required, otherwise the generalization property is dimin-
ished. The amount of training data was earlier shown to be related to the number
of features that the system must become invariant to. Hence the addition of ro-
tation, translation, scaling, glasses, clothes, etc. require more training data for
the network to be able to ignore such features.

It must be underlined that the networks learn slowly varying parameters ac-
cording to the underlying model used by the face generation software. Learning
from real face images is an interesting topic that we are currently studying. For
age and gender estimation using normalized real images we expect a small de-
crease in the performance. The development of a full SFA-based pipeline for face
detection, pose estimation and face recognition is also a challenging topic that
we would like to address.

As future work, we will develop more complex SFA hierarchies and design
methods to reduce the amount of training data and specially labelled data re-
quired, which is now the main factor required to handle real images with this
architecture.
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Abstract. In this paper we introduce a new approach to automatic at-
tribute and granularity selection for building optimum regression trees.
The method is based on the minimum description length principle (MDL)
and aspects of granular computing. The approach is verified by giving
an example using a data set which is extracted and preprocessed from
an operational information system of the Components Toolshop of Volk-
swagen AG.
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gression Tree, Decision Support, Intelligent Decision Algorithm.

1 Introduction

The ideas presented in this paper are motivated by an application in the Com-
ponents Toolshop of Volkswagen AG in Brunswick. This business area is re-
sponsible for producing tools in other divisions of Volkswagen AG for the the
serial production. The Components Toolshop has approximately 700 members
of staff and includes a 30.000m2 production area so that it can be considered as
one of the biggest tool shops in the world. The product range includes forming
tools, (like gearbox cases and engine boxes), injection moulds, casting moulds
and production lines and other machined tools.

These tools are denoted in this paper as products. In the Components Tool-
shop a very large data set is available describing the different processes of
manufacturing the products. This data set is mainly obtained from operational
information systems. A subset of this data set contains the production time of
the products. Every product contains an allocated time δs and an actual time
δi which can differ from each other. The subset contains additional information
on the manufacturing process which is used later in the analysis phase.
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This paper describes how a regression tree is built to predict the relative
deviation between these two time values. By building the model the regression
tree must fulfill the following two criteria as good as possible:

– The predicted deviation should deviate as little from the true deviation and
– the complexity of the constructed regression tree ΔK should be as small as

possible.

Another aspect which must be considered is that the input values have different
granularities. An example is the feature component which specifies the automo-
tive part, the feature component assembly in which the components are aggre-
gated and the feature component category in which the component assemblies
are combined.

It is obvious that identified rules containing features with fine granularity are
less general than rules which are composed of features with coarse granularity.
The developed algorithm has to decide in favour of the feature which delivers
the best result for both criteria described above.

The paper is organised as follows. Section 2 provides a brief overview on
the basics of regression trees and the minimum description length principle. In
Section 3, the motivation and discussion of the approach is presented in detail.
Section 4 describes how the generated model is evaluated and Section 5 concludes
with a discussion of the results and an outlook on future work.

2 Theoretical Background of Regression Tree and MDL

This section provides a brief introduction to regression trees and the minimum
description length principle. Further details can be found in [1,2].

2.1 The Regression Tree Idea

Regression is besides classification one of the most important problems in pre-
dictive statistics [1]. It deals with predicting values of a continuous variable from
one or more continuous and/or categorical predictor variables [3]. In general the
regression tree method allows input values to be a mixture of numerical and
nominal values. The output value has to be numerical. The result of this ap-
proach is that a tree is generated where each decision node contains a test on
some input values. The terminal nodes of the tree contain the predicted output
values [4]. In [5] an example is given how to build a regression tree using the
program XMLMiner with an example data set.

The CART algorithm is an example for building classification and regression
trees. This algorithm was developed by Leo Breiman in 1984. An important
property of this algorithm is that it delivers only binary trees. This means every
node of the tree is either a terminal node or followed exactly by two successor
nodes [6].
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The basic regression tree growing algorithm which is used in the different
approaches works in the following way:

1. The starting point is the initial node which contains the whole data set.
Here, the values mc, the regression value for the node and the error S are
calculated as defined below.

2. If all the points in the node have the same value for all the independent
variables, stop the algorithm. Otherwise, search over all binary splits of all
variables for the one which will reduce S as much as possible. If the largest
decrease in S is less than some threshold δ, or one of the resulting nodes
would contain less than q data objects, stop the algorithm. Otherwise, take
that split and create two new nodes.

3. Go back to step 1, in each new node.

In the above described algorithm S is the sum of squared errors for the regression
tree RT measured as follow:

S =
∑

c∈leaves(RT )

∑
i∈c

(yi −mc)2 (1)

where mc = 1
nc

∑
i∈c yi is the prediction for leaf c [7].

2.2 The Minimum Description Length Principle

The minimum description length principle (MDL) is based on the fundamental
idea that any regularity in a data set can be used to compress it [2]. Compression
means to describe the data set with fewer symbols than the number of symbols
which are needed to describe the data set literally. Such a data set can for
example be described by a decision tree which has fewer symbols as the initial
data set. The more regularities in the data set exist, the more the data set can be
compressed. Folowing this idea, it is possible to understand ’learning’ as ’finding
regularities’ in the data.

Therefore the MDL principle can be used in different ways for inductive infer-
ence such as to choose a model that trades-off the goodness-of-fit on the observed
data set with the complexity of the model (in statistical questions) or in a pre-
dictive interpretation where MDL methods can be used to search for a model
with good predictive performance on unseen data sets [2].

In the following example, the idea is illustrated that learning can be inter-
preted as data compression. In the sample below a 2000 bits long sequence S1 is
shown, where just the beginning and the end of it is listed.

′01110011100111001110.....01110011100111001110′ (2)

It seems that S1 is a 400-fold repetition of ’01110’. A decription method which
maps descriptions D in a unique manner to a data set D is needed to compress
S1. A programming language can be used as description method to carry out the
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compression of S1. In the sample below such a computer program is displayed in
the programming language C#. It describes the regularity in S1 and is shorter
than S1 itself.

Example of a computer program in C# describing the regularity in sequence S1

string sequence = "";
for (int i = 1; i <= 400; i++)
{

sequence = sequence + "01110";
}
Console.WriteLine("The sequence = " + sequence);

The example above is very theoretical, since in practical applications such highly
compressible data seldom exist. Usually sequences with lower compressibility
such as described in the sample below are given.

′00110000001100100001.....11001000000100110010000′ (3)

The sequence S2 has a recognizable regularity because it contains approximately
twice as many 0’s as 1’s. But the regularity S2 is more of statistical than of
deterministic character. So it seems possible to find a description which is able
to generate future sequences that is similar to S2.

If we consider that n is the length of the sequence (in both samples above is
n = 2000 bits long), S1 can be compressed to O(log n) and S2 can be compressed
to αn with 0 < α < 1. This fact allows to make the following case:

∃ D(s) where n(D(s)) ≤ n(s) with s ⊆ S (4)

where S is the initial sequence, s is a subsequence of S, D(s) is the description
of the subsequence s, n(D(s)) is the length of D(s) and n(s) is the length of s.

3 Motivation and Solution

As mentioned initially, in the Components Toolshop of Volkswagen AG different
operational information systems are in use, which are required to support the
manufacturing process. This means several of these systems are concerned with
the manufacturing process directly and some of them, for example organization-
ally attached, indirectly. The application of these systems delivers large amounts
of data which can contain interesting and hidden coherences. It is suspected that
the type of specific events depends on various facts and could not be detected by
a manual inspection of the large data set. The cycle time of a product could, for
example, depend on the milling machine which is used to manufacture it. Due
to this problem data mining approaches were used to detect these coherences in
the data.
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The considered application area has to deal with data containing divers infor-
mation like the machine on which the product was manufactured, by whom the
product was processed, to which greater category the product belongs etc. These
features are the input values for the decision model which has to be generated.
Furthermore, information about the real time which was needed to manufac-
ture the product δi and the expected time δs which is estimated initially by the
planner are available. The ratio Δr of these two features constitutes the output
value, which has to be predicted.

Δr =
δi
δs

(5)

Both time values are numerical. Therefore the output value has a continuous
character. Table 1 shows a fictitious data set with the following features:

– The machine which was planned to be used during manufacturing process:
Ms,

– the machine which was used in the real manufacturing process: Mi,
– the machine category of Mi: MCi,
– the component which has to be manufactured: C,
– the component assembly of C: Ca,
– the component category of C: Cc and
– the output value, the ratio between the two time values: Δr

A row (data object) in the data set to be analysed is characterised by the above
value and the data set might look as in Table 1. Of course, the real data sets are
much larger.

Table 1. A fictitious data set

Ms Mi MCi C Ca Cc Δr

a b B 10201 1020 10 0.76
a a A 10202 1020 10 0.74
a b B 10301 1030 10 0.75
c d D 20301 2030 20 0.44
a c C 20302 2030 20 0.46

We need an algortihm to build a regression tree which predicts Δr. During
building the regression tree, it is necessary to decide which granularity for the
input values makes sense to predict the output value as good as possible. The
simpler the constructed model (regression tree) is and the smaller the errors it
delivers in predicting the output value the better it is. In the following section
we describe our approach of the implemented algorithm in more detail in the
form of pseudo-code.
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Pseudo-code of the combined MDL and RegTree algorithm

program RegtreeMDL (Output)
var

mean; outputValue: double;
meanList: Dictionary<string, double>;
ds: DataSet;
dt1, dt2: DataTable;
dcc: DataColumnCollection;
rows: DataRow[];
colName, colValue, filter: string;

begin
ds = GetInitialData();
for int i = 0 to ds.rows.Count
step

outputValue = outputValue +
ds.rows[i][ds.IndexOf(lastColumn)];

next
mean = outputValue / ds.rows.Count;
meanList.Add("wholeDataSet", mean);
dcc = ds.dt1.Columns;
for int i = 1 to dcc.Count - 1
step

colName = dcc[i].ColumnName;
dt2 = SelectDistinct("tbl_AttValue",ds.dt1,colName);
for int j = 0 to dt.rows.Count
step

colValue = dt.rows[j]-ItemArray[0];
filter = colName + " LIKE " + colValue;
rows = ds.dt1.Select(filter);
for int k = 0 to rows.Count
step

outputValue = outputValue +
rows[k].ItemArray[rows[k].ItemArray.Length - 1];

next
mean = outputValue / rows.Count;
meanList.Add(colName + " _ " + colValue , mean);

next
next
for int i = 0 to meanList.Count - 1
step

if SumOfFailureRegtree(meanList[i]) <=
SumOfFailureRegtree(meanList[i+1])

then break;
else

next
end
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The above pseudo-code describes the functionality of the implemented algorithm.
In first step, the mean of the initial data set is calculated. First the numbers
of rows in the data table dt1 is identified. For each row in rows the sum of
the outputV alue is computed. Finally the mean of the numeric output value is
calculated by using the sum of the output values and dividing it by the num-
ber of rows. Afterwards, in the second step all other possibilities for splitting
are calculated. Therefore, all the columnNames of the input values have to
be considered. The codomain of the input values are identified by using these
columnNames. In the following step, these columnNames and codomains were
used to filter the data set and calculate the means for the subset. The last loop
of the algorithm deals with the method SumOfFailureRegtree() to calculate,
in which step the algorithm delivers the ’best’ result and has to terminate.

4 Validation with Generated Data

In this section, a brief example is given, how the algorithm handles the data
and which results it delivers. Therefore, the input value A with the value set
A = {a1, a2} is defined. The output value Z consists of continuous values. In
this fictitious case we define the target value Z as follows:

Z =
{

+
Δ

2
+R(0, 1),−Δ

2
+R(0, 1)

}
with R(0, 1) constituting a minimal random noise between 0 and 1 and Δ is a
constant. Furthermore it is suggested that both values of A occur equally often
in the whole data set. In Table 2 such a data set is displayed.

Table 2. Abstract data set containing random noise

A Z

a1 +Δ
2

+ R(0, 1)
a2 −Δ

2
+ R(0, 1)

a1 +Δ
2

+ R(0, 1)
a2 −Δ

2
+ R(0, 1)

a2 −Δ
2

+ R(0, 1)
a1 +Δ

2
+ R(0, 1)

A regression tree for this simple data set can have the following two forms
displayed in Figures 1 and 2. The first tree delivers the arithmetic mean x = 0.
The error F1 in predicting Z is

F1 =
Δ

2
+R1(0, 1)+

Δ

2
+R2(0, 1)+

Δ

2
+R3(0, 1)+

Δ

2
+R4(0, 1)+

Δ

2
+R5(0, 1)+

Δ

2
+R6(0, 1)
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= 3 ∗Δ+
6∑

i=1

Ri(0, 1)

Provided that the random noise Ri(0, 1) is close to zero, the error F1 becomes

F1 = 3 ∗Δ

The length of the regression tree L1 is 0. It has only one predicting value 0 which
is generaly valid for the whole data set. The MDL-value M1 consists of the sum
of F1 and L1. The result is that the MDL-value of the first tree is

M1 = F1 + L1 = 3 ∗Δ.

Fig. 1. Regression tree with one node including the whole data set and predicting Z
as x = 0

The second regression tree delivers a model which separates the data set into
two subsets. The error in predicting Z in this case is

F2 = R1(0, 1) +R2(0, 1) +R3(0, 1) +R4(0, 1) +R5(0, 1) +R6(0, 1)

=
6∑

i=1

Ri(0, 1)

Provided like above that the statistical noise Ri(0, 1) (almost) zero, the error
becomes F2 = 0. To get the MDL-value the length of the regression tree L2 is
needed to be calculated. ∣∣∣∣Δ2

∣∣∣∣+ ∣∣∣∣−Δ2
∣∣∣∣ = Δ

The MDL-value of the second tree is calculated as followed.

M2 = F2 + L2 = Δ.

Because of minimizing the MDL-value a split like described by the second re-
gression tree below makes sense.

The above considerations are only valid when the noise is small compared to
the constant Δ. When the noise becomes larger, the more complex decision tree
might not be favoured anymore. Let Δ

2 be the predicted value of the model and
assume Δ = 0.002 and therefore Δ

2 = 0.001
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Fig. 2. Regression tree with one root node and two leafs

In binary code this means

(0.002)2 = 0.0000000010000011

and
(0.001)2 = 0.0000000001000001

If the noise has the value N = 0.123

N = 0.123 → (0.123)2 = 0.0001111101111100

0.001 + 0.123 = 0.124

The sum of both binary values is calculated in binary coding as follows:

0.0000000001000001
+ 0.0001111101111100

0.0001111110111101

The error is much higher than the difference between the prediction of the Δ.
This means every bit in the predicted value has to be corrected so that the
deviation in the predicted Δ is not relevant any more.

5 Conclusion

Decision support is getting more and more important even for industrial applica-
tion areas such as the Components Toolshop. It has a wide range of topics where
the field of building models by generating decision and regression trees is a less
but itself established detail. If only the aspect of minimizing the predicting error
is considered, the model might exhibit a very high complexity. Additionally con-
sidering the fact to reduce the complexity of the model delivers a result, which
can be used to answer universally valid questions in decision support. With the
described approach the possibility to select automatically the ’best’ input values
by predicting a continuous output value is accomplished. This approach can be
adapted in different analysis problems to resolve decision support problems.
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Abstract. Formal Concept Analysis uses a simple representation frame-
work called ‘formal context’. In the classical setting, a formal context
specifies existing Boolean relationships between a set of objects and their
corresponding properties. Formal concepts are then defined as pairs con-
sisting of a set of objects and a set of properties that mutually character-
ize each other through a Galois connection. Another Galois connection
is also introduced in this setting on the basis of operators induced by a
recent possibility theory reading of Formal Concept Analysis. It is shown
that this second Galois connection enables us to characterize independent
sub-contexts inside the formal context. The second part of the paper dis-
cusses an extension of Formal Concept Analysis that has not been much
studied, namely the situation where one may be uncertain on the fact
that an object possesses or not a Boolean property. Uncertainty is here
represented in the possibilistic representation framework.

1 Introduction

The main aim of Formal Concept Analysis (FCA for short) is to extract in-
teresting clusters of knowledge, called formal concepts, from a particular rep-
resentation of data, called formal contexts. The original idea of FCA has been
introduced by Wille [23] and is becoming increasingly popular among various
methods of conceptual data analysis and knowledge processing.

In the classical setting [18,23], a formal context consists of a (crisp) binary
relation between a set of objects and a set of properties. This relation is usually
represented as a table with rows corresponding to objects, columns correspond-
ing to properties (or conversely) and table entries containing cross marks or
blank marks depending on whether an object possesses the corresponding prop-
erty or not. During the last years, FCA has been applied in a number of different
areas like psychology, sociology, anthropology, medicine, biology, linguistics, etc.
[24]. In such cases, FCA unavoidably deals with a Boolean relational information
structure (formal context) derived from human investigation (judgement, obser-
vation, measure, etc.). It is nevertheless widely agreed that this setting is very
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restrictive: such knowledge may often involve gradual properties, or be pervaded
with uncertainty.

In this paper, we exploit basic concepts of possibility theory and possibilistic
logic, so as to expand the framework of FCA.

A first line of investigation exploits the fact that that the notion of formal
concept relies on the notion of sufficiency operator, which corresponds to one of
the four basic set-functions in possibility theory [14]. Three other operators can
thus be introduced in FCA, and they lead to a new Galois connection whose role
seems to be very different from the usual one.

The second line of investigation consists in handling uncertainty about a
Boolean context. Indeed, in the classical setting, it is always assumed that for
any object:

i) either it is known (with complete certainty) that the object o satisfies the
property p,

ii) or it is known (with complete certainty) that the object o does not satisfy
the property p,

iii) only one of the two above cases is true.

In this paper, we shall address the extension of FCA to properties held as uncer-
tain for objects. For instance, one may not be completely certain that a person
is married, or being almost certain that another person is single. How to ac-
commodate that kind of information in a formal context? Only the case of total
ignorance has been considered by Burmeister and Holzer [6] until now. They
have proposed to introduce a third value, denoted “?”, in a formal context, that
they handle as a third truth value, beside “true” (the property holds for the
object) and “false” (the property does not hold for the object).

In the following, uncertainty will be represented by a pair of values express-
ing to what degree it is certain that the property holds for the object and what
degree it is certain that it does not hold, in the setting of possibility theory
[13]. At the limit, (1; 0) (resp. (0; 1)) indicates full certainty of truth (resp. fal-
sity), whereas the pair (0; 0) stands for total ignorance (and corresponds to the
question mark “?”).

The reason for choosing possibility theory here is that it is basically less
information-demanding than a probabilistic approach where one should know
with full precision the probability that an object possesses a property. Besides,
considering ignorance as a truth-value as done in [6] is also very questionable
(Dubois [12]), since it amounts to confusing ill-known Boolean properties and
gradual properties. The extension of FCA to fuzzy formal contexts with gradual
properties has received much attention [2]. In this case the extent to which an
object satisfies a property becomes a matter of degree, and properties are no
longer binary but gradual. This situation may be still further extended, when
the precise degree to which a property holds for an object is imprecisely known,
and only assessed under the form of an interval, which provides the ability to
encode partial/total ignorance about the value of a property grade for an object;
for instance, one may try to assess in a formal context, to what extent a person
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masters English, and we may use his/her score at TOEFL (maybe normalized
on [0,1]) when available as a grade in the fuzzy formal context relation, while in
other cases, on may just know for instance that the person has some practice of
English, meaning that the grade is strictly positive but not precisely assessed,
see e.g. [8]. Our paper is not along this line, as the notion of context remains
Boolean, while degrees are located at the meta-level.

This paper is structured in two sections : the first one exploits the analogy
between FCA and possibility theory and studies some properties of the new
Galois connexion that decomposes contexts into subcontexts. The next section
deals with the possibilistic view of uncertain formal concepts.

2 New Galois Connexions in Formal Concept Analysis

After recalling basic concepts of standard FCA, together with additional oper-
ators having their counterpart in possibility theory that have been recently dis-
cussed in the FCA setting [14,16], a new Galois connection is considered which
enables us to decompose a formal context in independent sub-contexts. Other
Galois compositions are also briefly introduced. They provide upper and lower
approximations of concepts.

2.1 Formal Concept Analysis: Basic Notions

Formal Concept Analysis [18] provides a theoretical framework for learning hi-
erarchies of knowledge clusters called formal concepts. A basic notion in FCA
is the formal context. Given a set O of objects and a set P of properties, a
formal context consists of a triple K := (O,P ,R) where R specifies (Boolean)
relationships between objects of O and properties of P . Usually, formal contexts
are given under the form of a table that formalizes these relationships. A table
entry indicates whether an object satisfies the property (this is usually denoted
by a cross mark), or not (it is often indicated by the absence of mark). We use
the following notation oRp (resp. oRp) to indicate that object o satisfies (resp.
does not satisfy) property p. Let R(o) = {p ∈ P | oRp} be the set of properties
satisfied by object o, and let R(p) = {o ∈ O | oRp} be the set of objects that
satisfy the property p.

By extending singleton operators R(.) to powerset operators between 2O and
2P , we obtain the so-called Galois operator, denoted here (.)Δ, which is at the
basis of FCA, and is sometimes named sufficiency operator, see e.g. [17]. It is
given as follows. For a set of objects X we define the set XΔ of properties that
are satisfied by all objects in X .

XΔ = {p ∈ P | ∀o ∈ O(o ∈ X ⇒ oRp)} = {p ∈ P | X ⊆ R(p)} (1)

Similarly, for a set of properties Y , we define the set Y Δ of objects that satisfy
all properties in Y as:

Y Δ = {o ∈ O | ∀p ∈ P(p ∈ Y ⇒ oRp)} = {o ∈ O | Y ⊆ R(o)} (2)
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Given X ∈ O and Y ∈ P , a formal concept is a pair 〈X,Y 〉 where XΔ = Y and
Y Δ = X . The set X (resp. Y ) is called extent (resp. intent). It is easy to see
that

Proposition 1. The pairs (X,Y ) are such that XΔ = Y and Y Δ = X if and
only if they are maximal in the sense of the inclusion X × Y ⊆ R.

The set of all formal concepts equipped with a partial order (denoted �) defined
as: 〈X1, Y1〉 � 〈X2, Y2〉 iff X1 ⊆ X2 (or, equivalently, Y2 ⊆ Y1), forms a complete
lattice, called the concept lattice of K. Its structure is given by the following
theorem.

Theorem 1. Ganter and Wille [18]. The concept lattice L (K) is a complete
lattice in which infimum and supremum are given by:

∧
j∈J

(Xj , Yj) = 〈
⋂
j∈J

Xj ,

( ⋃
j∈J

Yj

)ΔΔ

〉,
∨
j∈J

(Xj , Yj) = 〈
( ⋃

j∈J

Xj

)ΔΔ

,
⋂
j∈J

Yj〉

2.2 Alternative Power Set Operators

Taking lesson from the possibility theory setting where four set-valued functions
are defined for respectively evaluating the (potential) possibility, the (actual)
necessity, the actual (guaranteed) possibility, the potential necessity of an event
[15], it is natural to introduce three other powerset operators (among 2O and 2P),
namely the necessity operator (denoted (.)N ), the possibility operator (denoted
(.)Π) and the dual sufficiency operator (denoted (.)∇), on top of the (classical)
sufficiency derivation operator (.)Δ (which is the counterpart of the actual pos-
sibility measure) [14,16]. Note that these four operators are also used in [22] for
achieving rough approximations of crisp formal concepts.

– XΠ is the set of properties associated with at least one object in X :

XΠ = {p ∈ P | X ∩R(p) �= ∅} = {p ∈ P | ∃o ∈ X, oRp}

– XN is the set of properties s.t. any object that satisfies one of them is
necessarily in X :

XN = {p ∈ P | R(p) ⊆ X} = {p ∈ P | ∀o ∈ O (oRp⇒ o ∈ X)}

– X∇ is the set of properties that are not satisfied by at least one object in X :

X∇ = {p ∈ P | X ∪R(p) �= O} = {p ∈ P | ∃ o ∈ X, oRp}
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2.3 Formal Context Decomposition

A new Galois connection can be defined from (.)N [16] in a similar formal way
as when defining formal concepts. Namely consider pairs (X,Y ) s.t. XN = Y
and Y N = X . Note that (.)Π induces the same Galois connection as (.)N , while
(.)∇ gives back the one defined from (.)Δ.

The pairs (X,Y ) s.t. XN = Y and Y N = X allow us to characterize indepen-
dent sub-contexts (i.e. that have no common objects and no common properties),
and are thus of interest for the decomposition of a formal context into smaller
independent ones. That is expressed through the following property:

Proposition 2. The following properties of pairs (X,Y ) are equivalent

1. XN = Y and Y N = X
2. X

N
= Y and Y

N
= X

3. XΠ = Y and Y Π = X
4. R ⊆ (X × Y ) ∪ (X × Y )

Proof. Let us first show that property 1 implies property 4. First it is clear that:
XN = Y ⇔ ⋂

o∈X R(o) = Y ⇔ ⋃
o∈X R(o) = Y .

Denoting X + Y = X × Y , it implies R ⊆ X + Y .
Likewise due to Y N = X , R ⊆ Y +X.

Finally: R ⊆ (X + Y ) ∩ (Y +X) = (X × Y ) ∪ (X × Y ).
Conversely assume property 4. Then it is clear that XN ⊆ Y and Y N ⊆ X

hold since there is no property possessed by any object in X outside Y , and
no object outside X that possesses a property outside Y . Suppose XN ⊂ Y ,
i.e. ∃y∗ ∈ Y such that property y∗ is possessed by objects outside X . But then
R(x, y∗) = 1 for some x ∈ X, y ∈ Y . So property 4 does not hold. Contradiction.

Property 4 indicates that the choice of (X,Y ) versus (X,Y ) in property 1 is
immaterial. Hence the equivalence with property 2. For property 3, note that
XN = Y is equivalent to X

Π
= Y . ��

Thus, (X,Y ) and (X,Y ) are two independent sub-context in R, in the sense
that there is no object / property pair (o, p) of the context R in X × Y nor
in X × Y . The above proposition does not involve any minimality claim in the
inclusion property 4 of the above proposition. In particular, the pair (O,P)
trivially satisfies it. However, this result leads to a decomposition of R into a
disjoint union of minimal independent sub-contexts. Indeed, suppose two pairs
(X1, Y1), (X2, Y2) satisfy Proposition 2. It implies that for instance, the pair
(X1 ∩ X2, Y1 ∩ Y2) satisfies it (it can be checked that (X1 ∩ X2)N = Y1 ∩ Y2),
and likewise with any element of the partition refining both partitions (X1, X1)
and (X2, X2). Due to point 4 of Proposition 2, it yields

R ⊆ ((X1 × Y1) ∪ (X1 × Y1)) ∩ ((X2 × Y2) ∪ (X2 × Y2)),

where the intersection on the right-hand side comes down to the union of sub-
contexts (X1 ∩X2) × (Y1 ∩ Y2), (X1 ∩X2) × (Y1 ∩ Y2), (X1 ∩X2) × (Y1 ∩ Y2),
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(X1 ∩ X2) × (Y1 ∩ Y2). The decomposition of R into minimal subcontexts is
achieved by taking the following intersection⋂

(X,Y ):XN=Y,Y N=X

(X × Y ) ∪ (X × Y ).

Example
Figure 1 presents a formal context. Pairs ({6, 7, 8}, {c, d, e}), or ({5, 6, 7, 8}, {d,
e}), or ({2, 3, 4}, {g, h}) are examples of formal concepts, while ({5, 6, 7, 8}, {a, b,
c, d, e}), ({2, 3, 4}, ({f, g, h}), ({1}, {i}) are minimal subcontexts.

objects
p 1 2 3 4 5 6 7 8
r a ×
o b × ×
p c × × ×
e d × × × ×
r e × × × ×
t f × ×
i g × × ×
e h × × ×
s i ×

Fig. 1. Formal concepts and sub-contexts

2.4 Toward Composite Powerset Operators

Combining the four powerset operators leads to different Galois compositions
that differ from a semantic and an algebraic (topological) point of view. Indeed,
the composition (.)N◦Π = ((.)Π)N provides an upper approximation, whereas
the composition (.)Π◦N = ((.)N )Π provides a lower approximation of the set on
which these operators are applied. Indeed, we have:

Proposition 3. (X)Π◦N ⊆ X ⊆ (X)N◦Π .

Proof. ((X)N )Π = {o ∈ O | R(o) ∩ {p ∈ P | R(p) ⊆ X} �= ∅}, is the set
of objects that have properties of which some are among the ones that only
elements in X have. Those objects are clearly in X .

((X)Π)N = {o ∈ O | R(o) ⊆ XΠ}. Suppose o ∈ X. Then {o}Π = R(o) ⊆
XΠ , hence o ∈ ((X)Π)N .

When ((X)Π)N = X , itcorresponds to formal pairs (X,Y ) of fixed points such
that X = Y N and Y = XΠ , and ((X)N )Π = X to formal pairs of fixed points
such that X = Y Π and Y = XN . The semantic interpretation of such pairs
remains to be found, and a systematic investigation of these compositions to be
carried out.
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3 Uncertainty

Neither the standard FCA approach nor its fuzzy extension are equipped for
representing situations of partial or complete ignorance. To this end, in the
Boolean case, we need to introduce a proper representation of partial uncer-
tainty including ignorance in the relational table of the formal context. One may
think of introducing gradations of uncertainty by changing crosses and blanks
in the table into probability degrees, or by possibility or necessity degrees. In
the probabilistic case, one number shall assess the probability that a considered
property holds for a given object (its complement to 1 corresponding to the
probability it does not hold). However, this is assuming precise knowledge on
the probability values, which is not really appropriate if we have to model the
state of complete ignorance. It is why we investigate the use of the possibilistic
setting in the following. In the possibilistic setting, crosses may be replaced by
positive degrees of necessity for expressing some certainty that an object satisfies
a property. The blanks could be refined by possibility degrees less than 1.

In the possibilistic setting, possibility and necessity functions are related by
the duality relation N(A) = 1 − Π(A), that holds for any event A, where A
denotes the opposite event [13]. Then, for entries (o, p) in the table, we use a
representation as a pair of necessity degrees (α, 1− β) where α = N(oRp) (resp
1 − β = N(oRp)) corresponds to the necessity (certainty) that object o has
(resp. does not have) property p. Moreover, we should have min(α, 1 − β) = 0,
since min(N(A), N(A)) = 0 in agreement with complete ignorance for which
nothing (i.e., neither A nor A) is even somewhat certain. The pairs (1,0) and
(0,1) correspond to the completely informed situations where it is known that
object o has, respectively does not have, property p. The pair (0,0) reflects total
ignorance, whereas pairs (α, 1 − β) s.t. 1 > max(α, 1 − β) > 0 correspond to
partial ignorance.

An uncertain formal context is thus represented by

RU = {(α(o, p), 1 − β(o, p)) | o ∈ O, p ∈ P}
where α(o, p) ∈ [0, 1], β(o, p) ∈ [0, 1]. A relational database with fuzzily-known
attribute values is theoretically equivalent to a fuzzy set of all ordinary databases
corresponding to the different possible ways of completing the information con-
sistently with the fuzzy restrictions on the attribute values [4]. In the same
way, an uncertain formal context may be viewed as a weighted family of all
standard formal contexts obtained by changing uncertain entries into sure ones.
More precisely, one may consider all the completions of an uncertain formal
context. This is done by substituting entries (o, p) that are uncertain, i.e., such
that 1 > max(α(o, p), 1 − β(o, p)) by a pair (1,0), or a pair (0,1). Replacing
(α(o, p), 1 − β(o, p)) by (1, 0) is possible at degree β(o, p), the possibility that o
has property p. Similarly, replacing (α(o, p), 1 − β(o, p)) by (0, 1) is possible at
degree 1−α(o, p), the possibility that o has not the property p. In this way, one
may determine to what extent a particular completion (a context C) is possi-
ble, by aggregating the possibility degrees associated with each completed entry
(using min operator). Formally, one can write
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π(C) = min(min(o,p):oCpβ(o, p),min(o,p):oCp1 − α(o, p)).
Likewise the degree of possibility that (X,Y ) is a formal context of RU is
π(X,Y ) = sup{π(C) : C such that (X,Y ) is a formal context of C}.

Useful completions are those where partial certainty becomes full certainty.
Indeed, given an uncertain formal context and a threshold pair (a, b), let us re-
place all entries of the form (α, 0) such that α � a with (1, 0) and entries of
the form (0, 1 − β) such that 1 − β � b with (0, 1). All such replacements have
possibility 1 according to the above formula. Remaining entries, which are more
uncertain, will be all systematically substituted either by (1,0), or by (0,1), giv-
ing birth to two completions. In this way, two classical (Boolean) formal contexts,
denoted R∗

(a,b) and R∗(a,b) are obtained as respective results of the two comple-
tions. They allow to determine, for a given threshold (a, b), maximal extensions
(resp. minimal intensions) and minimal extensions (resp. maximal intensions) of
uncertain formal concepts. It is clear that R∗(a,b) ⊆ R∗

(a,b). Let us illustrate the
idea with an example.

Example (continued). Figure 2 exhibits a modified version of the Figure 1,
where some entries are now pervaded with uncertainty. Some of the ×’s or blanks
of the previous example have been replaced by uncertain entries. Let us examine
the situation regarding formal concepts first. Take a = 0.7, b = 0.5 for instance.
Context R∗(0.7,0.5), is the same as in Figure 1. Namely, pairs ({6, 7, 8}, {c, d, e}),
or ({5, 6, 7, 8}, {d, e}), or ({2, 3, 4}, {g, h}) are still examples of formal concepts,
although with a = 0.9, the last formal concept would reduce to ({2, 3}, {g, h}),
i.e. the extent of the concept is smaller.

objects
p 1 2 3 4 5 6 7 8
r a ×
o b × ×
p c (0.5,0) × × ×
e d × × × ×
r e × × × ×
t f (0, 0.8) × (0, 0.3)
i g × × (0.8, 0)
e h × × (0.8, 0)
s i ×

Fig. 2. Uncertain formal concepts and sub-contexts

Now consider R∗
(0.7,0.5), where the entries with low certainty levels (either in

favor or against the existence of the link between o and p) are turned into posi-
tive links. Then, ({2, 3, 4}, {g, h}) remains unchanged as a formal concept, while
a larger concept now emerges, namely ({5, 6, 7, 8}, {c, d, e}). However, one may
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prefer to consider the results obtained from R∗(0.7,0.5), where only the almost
certain information is changed into positive links. In the example, if we move
down a to 0.5, and use R∗(0.5,0.5) we still validate the larger former concept
({5, 6, 7, 8}, {c, d, e}). This illustrates the fact that becoming less and less de-
manding on the level of certainty, may enable the fusion of close concepts (here
({6, 7, 8}, {c, d, e}), and ({5, 6, 7, 8}, {d, e}), providing a more synthetic view of
the formal context.

Let us now examine the situation with respect to sub-contexts. In the example,
the situation will remain unchanged with respect to the non-uncertain version
of the example: ({5, 6, 7, 8}, {a, b, c, d, e}), ({2, 3, 4}, ({f, g, h}), ({1}, {i}) are still
minimal sub-contexts in R∗(a,b) for any value of a and b. Indeed in Figure 2, (5, f)
is the only possible link which would make the first two sub-contexts dependent.
However, we are 0.3-certain that (5, f) does not belong to the context.

This small example is intended to illustrate several points. First of all, it should
be clear that being uncertain about the existence of a link between an object and
a property is not the same as being certain about a gradual link. Second, under
uncertainty, there are formal concepts and formal sub-contexts whose boundaries
are not affected by uncertainty, while others are. Lastly, regarding certain enough
pieces of information as certain may help simplifying the analysis of the formal
context. Besides, the proposed setting may also handle inconsistent information
by relaxing the constraint min(α, 1− β) = 0. This would amount to introducing
paraconsistent links between objects and properties.

4 Concluding Remarks

This paper has shown how the parallel between possibility theory and FCA has
fruitfully led to introduce other operators and to define a new Galois connection
useful for decomposing a formal context into sub-contexts when possible. More-
over, the possibility theory setting may be also useful to model uncertain formal
contexts, which at least when considering the part that is sufficiently certain
could be handled as completely certain formal contexts, still keeping track of
the uncertainty, as briefly suggested in the final discussion. Relationships with
more logic-oriented views [5] would be also worth exploring in connection with
possibilistic logic. Note that several other extensions of FCA are worth inves-
tigating, apart from the handling of uncertain or gradual properties, such as
taking into account the typicality of objects and the importance of properties,
See [10,11] for preliminary discussions about these different extensions.
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Abstract. The paper offers a parallel between two approaches to con-
ceptual clustering, namely formal concept analysis (augmented with the
introduction of new operators) and bipartite graph analysis. It is shown
that a formal concept (as defined in formal concept analysis) corresponds
to the idea of a maximal bi-clique, while a “conceptual world” (defined
through a Galois connection associated of the new operators) is a dis-
connected sub-graph in a bipartite graph. The parallel between formal
concept analysis and bipartite graph analysis is further exploited by con-
sidering “approximation” methods on both sides. It leads to suggests new
ideas for providing simplified views of datasets.

Keywords: Formal concept analysis (FCA), bipartite graph.

1 Introduction

Human mind in order to make sense of a complex set of data usually tries to
conceptualize it by some means or other. Roughly speaking, it generally amounts
to putting labels on subsets of data that are judged to be similar enough. Formal
concept analysis [12,11] offers a theoretical setting for defining the notion of a
formal concept as a pair made of (i) the set of objects that constitutes the
extension of the concept and of (ii) the set of properties shared by these objects
and that characterize these objects as a whaole. This set of proporties defines
the intention of the concept. Thus, particular subsets of objects are biunivoquely
associated with conjunctions of properties that identify them. This provides a
formal basis for data mining algorithms [19]. Formal concept analysis exploits a
relation that links objects with properties. Such a relation can be viewed as well
as a bi-graph (or bipartite graph) i.e. a graph having two kinds of vertices, and
whose links are only between vertices of different kinds.

The recent discovery that real-world complex networks from many different
domains (linguistics, biology, sociology, computer science, ...) share some non-
trivial characteristics has a considerable raised an interest [25,1,17,13]. These
networks are sparse, highly clustered, and the average length of shortest paths
is rather small with regard to the graph size [25], hence their name of “small
worlds”. Moreover, most of parameters, and in particular their vertices degree,
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follow a power-law distribution [2,17]. One of the most active fields of this new
network science concerns the problem of graph clustering [21,10]. This problem
is often called “community detection” in the literature due to its application to
social networks. Intuitively a cluster (or community) corresponds to a group of
vertices with a high density of internal links and only a few links with external
vertices. Nevertheless there is no universally accepted formal definition [10] and
making a parallel with formal concept analysis may lead to some relevant way
to define graph clusters. Many real-world large networks are bipartite and it
has been shown that such networks also share properties similar to the above-
mentioned ones [15]. While clustering is usually done on projected graphs, some
authors address the problem of community detection directly on bipartite net-
works [3,16]. Besides, techniques inspired from formal concept analysis have been
also used for detecting human communities in social bipartite networks [23].

The purpose of this paper is to start to systematically investigate the parallel
between formal concept analysis and graph-based detection of communities. In
fact, we consider here not only standard formal concept analysis but also an
enlarged setting that includes new operators [8,9]. This is the graph counterpart
of this enlarged setting that is discussed here. Moreover, extensions of this setting
which allows various forms of approximations of the original setting are then
paralleled and compared with methods used in bi-graph clustering. The paper
is organized as follows, the basic elements of formal concept analysis are first
restated and the other operators are introduced. This leads to the definition
of two Galois connections, namely the classical one inducing formal concepts,
and another one identifying conceptual worlds. Then after a short background
on graphs, it is shown that a formal concept corresponds to a maximal bi-
clique in a bi-graph, while conceptual worlds, obtained by the second Galois
connection, correspond to disconnected sub-parts in the graph. Then different
ways of introducing graduality, uncertainty, or approximation in formal concept
analysis [7,6] are summarized, before briefly discussing their counterpart in the
bi-graph setting.

2 Extended Formal Concept Analysis

Let R be a binary relation between a set O of objects and a set P of Boolean
properties. We note R = (O,P, R) the tuple formed by these objects and prop-
erties sets and the binary relation. It is called a formal context. The notation
(x, y) ∈ R means that object x has property y. Let R(x) = {y ∈ P|(x, y) ∈ R}
be the set of properties of object x. Similarly, R−1(y) = {x ∈ O|(x, y) ∈ R} is
the set of objects having property y.

Formal concept analysis defines two set operators here denoted (.)Δ, (.)−1Δ,
called intent and extent operators respectively, s.t. ∀Y ⊆ P and ∀X ⊆ O:

XΔ = {y ∈ P|∀x ∈ X, (x, y) ∈ R} (1)
Y −1Δ = {x ∈ P|∀y ∈ Y, (x, y) ∈ R} (2)

XΔ is the set of properties possessed by all objects in X . Y −1Δ is the set of
objects having all properties in Y .
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These two operators induce a Galois connection between 2O and 2P : A pair
such that XΔ = Y and Y −1Δ = X is called a formal concept, X is its extent
and Y its intent. In other words, a formal concept is a pair (X,Y ) such that
X is the set of objects having all properties in Y and Y is the set of properties
shared by all objects in X .

A recent parallel between formal concept analysis and possibility theory [8]
has led to emphasize the interest of three other remarkable set operators (.)Π ,
(.)N and (.)∇. These three operators and the already defined intent operator can
be written as follows, ∀X ⊂ O:

XΠ = {y ∈ P|R−1(y) ∩X �= ∅} (3)
XN = {y ∈ P|R−1(y) ⊆ X} (4)

XΔ = {y ∈ P|R−1(y) ⊇ X} (5)
X∇ = {y ∈ P|R−1(y) ∪X �= O} (6)

Note that (5) is equivalent to the definition of operator (.)Δ in (1). Opera-
tors (.)−1Π , (.)−1N , (.)−1Δ and (.)−1∇ are defined similarly on a set Y of prop-
erties by substituting R−1 to R and by inverting O and P.

These new operators lead to consider the following Galois connections:

– the pairs (X,Y ) such that XΠ = Y and Y −1Π = X ;
– the pairs (X,Y ) such that XN = Y and Y −1N = X ;
– the pairs (X,Y ) such that X∇ = Y and Y −1∇ = X .

In fact only one new type of Galois connection appears, indeed (.)N and (.)Π as
well as (.)∇ and (.)Δ lead to the same remarkable pairs. But pairs (X,Y ) such
that XΠ = Y and Y −1Π = X do not define formal concepts, but rather what
may be called conceptual worlds (or sub-contexts). Indeed, it has been recently
shown [6] that pairs (X,Y ) of sets exchanged through the new connection op-
erators, are minimal subsets such that (X × Y ) ∪ (X × Y ) ⊇ R, just as formal
concepts correspond to maximal pairs (X,Y ) such that X×Y ⊆ R. For example
in Figure 1, pairs ({1, 2, 3, 4}, {g, h, i}) and ({5, 6, 7, 8}, {a, b, c, d, e, f}) are two
conceptual worlds, whereas pairs ({1, 2, 3, 4}, {g, h}), ({5, 6}, {a, b, c, d, f}) and
({5, 6, 7, 8}, {a, c, d}) are -among others- formal concepts.

1 2 3 4 5 6 7 8
a × × × ×
b × ×
c × × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×

Fig. 1. A formal context R and the corresponding bi-graph
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3 Graph Reading of Formal Concept Analysis

Let us start by restating some graph theory definitions. A graph is a pair of sets
G = (V,E), where V is a set of vertices and E a set of edges. In the paper only
undirected graphs will be considered, it means that edges are unordered pairs of
vertices. A graph is bipartite if the vertex set V can be split into two sets A and
B such that there is no edge between vertices of the same set (in other words
for every edge {u, v} either u ∈ A and v ∈ B or u ∈ B and v ∈ A). We note
G = (A,B,E) such a graph where A and B constitute two classes of vertices.

A vertex v is a neighbour of a vertex u if {v, u} ∈ E, we say that u and
v are adjacent. Γ (u) is the set of neighbours of a given vertex u, it is called
neighbourhood of u. An ordinary graph is complete if every couple of vertices
from V ×V are adjacent. A bi-graph is complete if every couple of vertices from
A×B are adjacent.

An induced subgraph on the graph G by a set of vertices S is a graph composed
of a vertex set S ⊆ V , and an edge set E(S) that contains all vertices of E that
bind vertices of S (∀u, v ∈ S, {u, v} ∈ E ⇔ {u, v} ∈ E(S)). A set of vertices S
that induces a complete subgraph is called a clique. If no vertex could be added
to this induced subgraph without loosing the clique property then the clique is
maximal. It is straightforward that every subgraph of a bi-graph is still bipartite,
every vertex keeping the same class. A set of vertices S that induces a complete
subgraph (in a bipartite sense) on a bi-graph G is called a bi-clique and if no
vertex could be added without loosing this bi-clique property then the bi-clique
is maximal.

A path from a vertex u to a vertex v is a sequence of vertices starting with u
and ending with v and such that from each of its vertices there exists an edge to
the next vertex in the sequence. The length of a path is the length of this vertices
sequence minus one (it is to say the number of edges that run along the path).
Two vertices are connected if there is a path between them. We note Sk the set
of vertices connected to at least one vertex of S with a path of length inferior
or equal to k. By definition S0 = S. One can observe that ∀k, Sk ⊆ Sk+1. S∗

is the set of vertices connected to at least one vertex of S with a path of any
length, we have S∗ =

⋃
k≥0 S

k. Two vertices are disconnected if there is no path
between them. Two subsets A,B of vertices are disconnected if every vertex of
A is disconnected from any vertex of B. A subset of vertices S is connected if
there is a path between every pair of vertices of S, An induced subgraph that
is connected is called a connected component. If no vertex could be added to
this induced subgraph without loosing the property of connectedness then the
connected component is maximal. Note that often “connected component” is
used for speaking of a “maximal connected component”.

3.1 From Formal Context to Bi-graph

For every formal context R = (O,P, R), we can build an undirected bi-graph
G = (Vo, Vp, E) s.t. there is a direct correspondence between: the set of ob-
jects O and a set Vo of “o-vertices”, the set of properties P and a set Vp of
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“p-vertices”, and between the binary relation R and a set of edges E. In other
words, there is one o-vertex for each object, one p-vertex for each property, and
one edge between an o-vertex and a p-vertex if and only if the corresponding
object possesses the corresponding property (according to R).

The four operators (.)Π , (.)N , (.)Δ and (.)∇ can be redefined for a set of
vertices in this graph framework by replacing, in equations (3) to (6), O by Vo,
P by Vp and R−1(y) by Γ (y). Operators (.)Π and (.)Δ can also be rewritten in
the following way:

XΠ = ∪x∈XΓ (x) (7) XΔ = ∩x∈XΓ (x) (8)
These notations are interesting since only the neighbourhood of vertices of X is
involved. It permits to immediately understand operators (.)Π and (.)Δ in terms
of neighbourhood in the bi-graph : XΠ is the union of neighbours of vertices
of X whereas XΔ is the intersection of these neighbours. Note that with this
writing and interpretation there is no difference between (.)Π and (.)−1Π neither
between (.)Δ and (.)−1Δ.

Graph interpretations of (.)N and (.)∇ are less straightforward, nevertheless
XN can be understood as the union of neighbours of vertices of X that have
no neighbours outside of X . In other words it is the set of vertices exclusively
connected with vertices of X (but not necessarily all). Whereas X∇ is −if we
ignore vertices of X− the set of p-vertices not connected to all o-vertices.

3.2 Galois Connections as Two Views of Graph Clusters

Galois connections induced by (.)Δ and (.)Π can also be understood in the graph
setting framework. On the bi-graph G = (Vo, Vp, E), with X ⊆ Vo and Y ⊆ Vp:

Proposition 1. X = Y −1Δ and Y = XΔ, iff X ∪ Y is a maximal bi-clique.

Proof. Let (X,Y ) be a pair such that X = Y −1Δ and Y = XΔ. For all x ∈ X
and y ∈ Y , as Y = ∩x∈XΓ (x) we have y ∈ Γ (x) thus {x, y} ∈ E. It means that
the subgraph induced by X ∪ Y is complete. Moreover there is no vertex that
are adjacent to all vertices of X (resp. Y ) which are not in XΔ (resp. Y −1Δ),
therefore X ∪ Y is a maximal bi-clique.

If X ∪Y is a maximal bi-clique, every vertex of X (resp. Y ) is adjacent to any
vertex of Y (resp. X) and there exists no vertex that is adjacent to all vertices
of X (resp. Y ) which are not in Y (resp. X), therefore it’s straightforward that
Y = XΔ (resp. X = Y −1Δ).

Proposition 2. For a pair (X,Y ) the two following propositions are equivalent:
1. X = Y −1Π and Y = XΠ.
2. (X ∪ Y )∗ = (X ∪ Y ) and ∀v ∈ (X ∪ Y ), Γ (v) �= ∅.

Proof. 1 ⇒ 2. By definition (X ∪ Y ) ⊆ (X ∪ Y )∗. We show by recurrence that
(X ∪ Y )∗ ⊆ (X ∪ Y ). (X ∪ Y )0 ⊆ (X ∪ Y ) is given by definition. We then
assume that it exists k such that (X ∪ Y )k ⊆ (X ∪ Y ). We can notice that
(X ∪ Y )k+1 ⊆ ((X ∪ Y )k)1, by considering that a k + 1 long path is a path
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of length k followed of a one edge setp. So (X ∪ Y )k+1 ⊆ (X ∪ Y )1. But as
X = Y −1Π and Y = XΠ all vertices connected to X ∪ Y with a path of length
1 are in X ∪ Y . So (X ∪ Y )k+1 ⊆ (X ∪ Y ). This implies by recurrence that
∀k ≥ 0, (X ∪ Y )k ⊆ (X ∪ Y ). Thus (X ∪ Y )∗ =

⋃
k≥0(X ∪ Y )k ⊆ (X ∪ Y ). We

still have to show that any vertex v of X ∪ Y has at least one neighbour, which
is straightforward if we consider that either v ∈ XΠ or v ∈ Y −1Π .

2 ⇒ 1. We show that X = Y −1Π , the proof is exactly the same for Y = XΠ .
Y −1Π is the set of vertices adjacent to one vertex of Y , so Y −1Π ⊂ Y ∗ and
then Y −1Π ⊂ (X ∪ Y )∗. That means that Y −1Π ⊂ (X ∪ Y ), but as the graph is
bipartite: Y −1Π ⊂ X . Let x be a vertex of X , x has at least one neighbour v, v
is in X∗ and therefore in (X ∪ Y )∗, so v ∈ X ∪ Y , but the graph is bipartite, so
v ∈ Y . It’s then straightforward that X ⊂ Y −1Π and therefore X = Y −1Π .

A set S such that S∗ = S is not exactly a maximal connected component but
it is a set of vertices disconnected from the rest of the graph. So if there is no
strict subset S′ of S satisfying S′∗ = S′ it means that there is no subset of S
disconnected from other vertices of S. In other words S is connected and then
S is a maximal connected component. Therefore, the following property:

Proposition 3. For a pair (X,Y ) the two following propositions are equivalent:

1. X = Y −1Π and Y = XΠ and there is no strict subset X ′ ⊂ X and Y ′ ⊂ Y
such that X ′ = Y ′−1Π , Y ′ = X ′Π .

2. X ∪ Y is a maximal connected component (which counts at least 2 vertices).

According to Prop. 1-3, it’s worthnoting that the two Galois connections corre-
spond to extreme definitions of what a cluster (or a community) could be:

1. a group of vertices with no link missing inside.
2. a group of vertices with no link with outside.

One the one hand a maximal bi-clique is a maximal subset of vertices with a
maximal edge density. Vertices can not be moved closer, and in that sense one
can not build a stronger cluster. On the other hand, a set of vertices disconnected
from the rest of the graph can not be more clearly separated from other vertices.
It corresponds to another type of cluster. In fact, only the smallest of such
sets are really interesting, and they are nothing else than maximal connected
components. This two extreme definitions were already pointed out by [24] for
clusters in unipartite graphs.

4 From Approximate Connections to Flexible Clustering

Formal concepts correspond to maximal bi-cliques, while conceptual worlds cor-
respond to disconnected subparts. These two notions need to be defined in a
non-crisp manner in practice, for several reasons. First, the data may be incom-
plete, a link between an object and a property may be just missing although it
exists, or the data may be pervaded with uncertainty when it is unsure if the
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considered object has or not the considered property. In graph terms, it means
that an edge may be missing, or be unsure. Second, one may think of forget-
ting some “details” in order to summarize the information more easily: thus one
may forget an unimportant property or an a-typical object. One may also for-
get that an edge is present only because it simplifies the view by disconnecting
weakly connected parts, or introducing some missing edges in order to reinforce
the connectedness inside a potential cluster in order to lay bare a simpler and
more general concept. There are some recent lines of research in formal concept
analysis that aim at making formal concept analysis more flexible. They are now
reviewed, and then the use of random walks in clustered small world graphs is
paralleled with these extensions of formal concept analysis.

4.1 Graded Extended Formal Concept Analysis

There are at least three different ways for making formal concept analysis (ex-
tended with the new −possibility theory-based− operators) more flexible [7,6].
The first way, which has been the most investigated until now, amounts to con-
sider that objects may have properties only to a degree. Such fuzzy formal con-
cept analysis [4] is based on the operator:

XΔ(y) =
∧

x∈O

(X(x) → R(x, y)) (9)

where now R is a fuzzy relation, and X and XΔ are fuzzy sets of objects and
properties respectively, and

∧
denotes the min conjunction operator and →

an implication operator. A suitable choice of connective (the residuated Gödel
implication: a→ b = 1 if a ≤ b, and a→ b = b if a > b) still enables us to see a
fuzzy formal concept in terms of its level cuts Xα, Yα such that (Xα×Yα) ⊆ Rα

where Xα × Yα are maximal, with Rα = {(x, y)|R(x, y) ≥ α}, Xα = {x ∈
O|X(x) ≥ α}, Yα = {y ∈ P|Y (y) ≥ α}.

Another way [7,6] is related to the idea of uncertainty. The possibilistic manner
of representing uncertainty here is to associate with each link (x, y) a pair of
number (α, β) such as α, β ∈ [0, 1] and min(α, β) = 0 expressing respectively to
what extent it is certain that the link exist (α) and does not exist (β). A link
in a classical formal context corresponds to a pair (1, 0), the absence of a link
to the pair (0, 1) and the pair (0, 0) models complete ignorance on the existence
or not of a link. On this basis a link may be all the more easily added (resp.
deleted) as α (resp. β) is larger.

A third idea [7,6] is to consider that in a formal concept some properties are
less important, or that some objects are more typical. Then weights are no longer
put on links or edges, but rather on the nodes. Thus forgetting a non compulsory
property (e.g. the ability to fly for a bird) may help building a larger concept
(e.g. birdness, although typical birds fly). Forgetting an object or a property also
suppresses links, which may also help obtaining disconnected subparts.

These three views may provide remedies for building larger formal concepts
and smaller conceptual worlds. Indeed a missing link (x0, y0) may cause that
a pair (X,Y ) is not a formal concept even if ∀x, y ∈ X × Y, (x, y) ∈ R except
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for (x0, y0) �∈ R (missing links (1, h) and (5, c) for example in Figure 2), while
a pair (X,Y ) is not a conceptual world just because it exists (x′0, y

′
0) ∈ R s.t.

(x′0, y′0) ∈ X × Y ∪ X × Y (for example the link (4, d) in Figure 2). In such
situations forgetting the “hole” (x0, y0) or the asperity (x′0, y

′
0) might be desirable

for simplifying the view of the general context/graph. But the suppression of
holes or asperities can not be done in a blind manner.

1 2 3 4 5 6 7 8
a × × × ×
b × ×
c × × ×
d × × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Fig. 2. R′: Relation R modified and the corresponding bi-graph

4.2 The Random Walk View

A large panel of approaches developed within community detection literature use
random walk for identifying communities. The underlying idea is that random
walkers tend to be trapped into communities. It may be, for instance, the basis
for assessing distances between vertices [13,14]. These distances can then be used
with a hierarchical clustering algorithm to compute communities [20]. In another
view, measuring “how well” random walkers stay into communities can lead to
a relevant quality measure of a given vertices partition [5,22].

We aim in this section to point out the potential benefits that may be ex-
pected from the parallel between the “diffusion” operator at the basis of random
walk methods and graded extensions of the possibility theory reading of formal
concept analysis operators. Let us consider a random walk on a bi-graph, R is
now replaced by a probabilistic transition matrix for going from a vertex x to
a vertex y, or conversely. The probability is generally equally shared between
the edges directly connected to the starting vertex. Let Px→y be the probability
for going from a vertex x to a vertex y. Then when X(x) is the probability for
a random walker to be in the vertex x ∈ O; the probability XP (y) to reach a
vertex y of P at the next step is given by:

XP (y) =
∑
x∈O

X(x).Px→y (10)

Such a formula can formally be paralleled with the formula defining the operator
at the basis of the definition of a formal concept:

XΔ(y) = min
x∈O
X(x) → R(x, y) (11)
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and with the formula of the operator inducing a conceptual world:

XΠ(y) = max
x∈O
X(x) ∗R(x, y) (12)

where R may now be graded, as well as X , XΠ and XΔ and where a usual
choice for ∗ is min, and a residuated implication for →.

Two general ways of relaxing the definition of a formal concept may be found
in the literature. The first line of works relies on the idea of allowing the formal
concept to be fuzzy (due to graded properties), or to be pervaded with uncer-
tainty as already discussed. Clearly this supposes that the information about
the graduality or the uncertainty is available. Another type of approach that
has been recently considered consists of looking for pseudo concept [18], it is to
say pairs (X,Y ) such that “almost” all properties are shared by “almost” all
objects. Roughly speaking, the idea is to find a minimal envelope of a set of
classical formal concepts that largely overlap.

This could be also handled differently by using generalized operators already
hinted in [9]. Namely XΔ may be changed into a relaxed operator yielding the
set of properties chaired by most objects in X rather than all :

XΔ
Q (y) = min

i
max(R(xσ(i), y), Q(

i− 1
n

)) (13)

where R(xσ(1), y) ≥ R(xσ(2), y) ≥ · · · ≥ R(xσ(n), y) and Q is an increasing
membership function in [0, 1] modelling some idea of “most”.

The parallel between random walks in bi-graph and extended formal concept
operators suggests several lines of research worth of interest:

− Random walk methods [13,14] can attach numbers to pairs of vertices (e.g.
distance between the two probability distributions to reach any vertex in the
graph starting from each of these two vertices). Such number may be renor-
malised in order to have a “fuzzy” context R′. Note that however these numbers
should not be confused with grades representing satisfaction degrees of proper-
ties, or uncertainty levels. Indeed they rather accounts for the vicinity of the
considered pairs of vertices. Then one may look for fuzzy formal concepts and
fuzzy conceptual worlds defined from the fuzzy context R′. Note that this enables
us to distinguish between the two views of a cluster either as a set of vertices
with no strong links missing inside, or as a set of vertices with only weak links
with outside.
− Random walk approaches rely on the idea that good clusters are sets of ver-

tices almost stable in the sense that a random walker that is inside can difficultly
escape [5,22]. In formal concept analysis, a formal concept is also a stable set for
the Galois connection operator (XΔΔ = X and Y −1Δ−1Δ = Y ). More generally,
one may also consider approximate formal concepts s.t.XΔ

Q = Y and Y −1Δ
Q = X ,

and similarly approximated conceptual worlds. This raises the questions of pos-
sibly adapting graph community detection algorithms for finding approximate
formal concepts and approximate conceptual worlds, or to use fuzzy concept
lattice machinery for detecting communities.
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5 Conclusion

Starting with a view of a formal context as a bi-graph, the paper has shown
that formal concepts correspond to the idea of maximal bi-cliques, whereas so-
called conceptual worlds, obtained thanks to the introduction of another Galois
connection, correspond to disconnected subsets of vertices. Noticeably enough,
these two constructs reflect two ideal views of the idea of graph cluster, namely a
set of vertices with no link missing inside and a group of vertices with no link with
outside. The last section of the paper has outlined different ways of using fuzzy
or approximate views of formal concept analysis, making also a parallel with
random walks methods. Clearly this is only a preliminary step which suggests
several topics worth of investigation.
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Abstract. Negotiation is a process that ranges from international issues to 
common society interactions. We present approaches to facilitate the process by 
exploring alternative spaces for this process.  We base the approach on explor-
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1   Introduction 

In this paper we propose an approach to the negotiation process which views this 
inexact process as a co-operative societal interaction among concerned parties. Nego-
tiation can be defined as a process in which explicit proposals are put forward for the 
purpose of reaching agreement on an exchange or on the realization of common inter-
est when conflicting interests are present [1].   Specifically we focus on ways to over-
come barriers in negotiations due to differences in the semantics of language and 
concepts used by the negotiating parties.  Since this is a complex issue we can view 
solutions as representing creative aspects of problem resolution.  

A specific mechanism we utilize to assist in this resolution is the use of concept hi-
erarchies to generalize specific terminology that occurred during the negotiations.  
We will assume that for each party there is a space of concept hierarchies that cap-
tures the semantics of terms under discussion in one or more relevant conceptual 
contexts. Thus when differences arise, some searching of the space of these concept 
hierarchies could discover common generalizations for the terms in dispute. Such 
generalizations can then be used to cast the discussions into a broader context that is 
more acceptable or amenable to both parties avoiding the otherwise contentious im-
plications of the original terminology.  

2   Background 

In this section we provide an overview of the generalization approach that can be used 
in exploration of the space of alternative terminology for the negotiation process. Next 
creativity as related to generalization and the exploration of alternatives is described. 
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2.1   Generalization 

Generalization is a broad concept that has been used in several contexts. One is the 
idea of data summarization, a process of grouping of data, enabling transformation of 
similar item sets, stored originally in a database at the low (primitive) level, into more 
abstract conceptual representations.  Summarization of data is typically performed 
with utilization of concept hierarchies [2,3], which in ordinary databases are consid-
ered to be a part of background knowledge In fuzzy set theory an important consid-
eration is the treatment of data from a linguistic viewpoint.  From this an approach 
has been developed that uses linguistically quantified propositions to summarize the 
content of a database, by providing a general characterization of the analyzed data [4-
7]. There have also been several approaches to the use of fuzzy hierarchies for data 
generalization [8-10].  Fuzzy gradual rules for data summarization have also been 
considered [11].  In a previous research effort [12] we developed an approach to data 
summarization that involves aspects of generalization and compression.  The use of 
concept hierarchies, ontologies, to provide categories to be utilized in this process has 
been well established [13].  

Now consider an example of data generalization letting D= {Oakland, San Jose, 
…., Sacramento} be a set of cities. However for a particular application, this data may 
be at too low a level, i.e. too specific.  

Figure 1 illustrates part of a concept hierarchy H1 for an attribute Location, describ-
ing US cities based on the geographical location. This concept hierarchy represents 
some of the domain background knowledge we have a priori.  

By ascending the hierarchy, for the attribute Location in the set D, the values 
San_Francisco, Santa_Cruz, Oakland, and San_Jose are generalized to the higher 
level category (also called the hypernym) Bay_Area, while the value (or hyponym) 
Sacramento is generalized to Sacramento_Metropolitan_Area. Thus R1 = G (D, H1) = 
{Bay_Area, Sacramento_Metropolitan_Area. }.   

As we have discussed depending on a semantic context there may be other hierar-
chy for the data being generalized.  These may represent another application for the 
data or another context that is desired to be related to the original one. For the domain 
of cities we have discussed, another context might be the classification of the city 
based on population compared to the geographical context of Figure 1. This is illus-
trated by H2 below in Figure 2. 

California 

Oakland San Jose Sacramento Santa Cruz 

Bay Area Sacramento Metropolitan Area 

San Francisco 
 

Fig. 1. Example Concept Hierarchy for Cities in California 
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Population 

Oakland San Jose Santa Cruz Sacrament

Large City Small City 

San Francisco  

Fig. 2. Concept Hierarchy Based on Population Size 

2.2   Creativity  

Generalization construed broadly is a central facet of intelligent behavior, an induc-
tive process going from the specific to the general.  Here we focus on a data generali-
zation process G for which relevant concept hierarchies are used to reduce the  
specific set of terms T into a small set of general concepts by an induction process. 

There have been a number of approaches to evaluating machine creativity and we 
discuss here some aspects relevant to generalization [14, 15].  Usually it is desired to 
use domain independent criteria to be as broadly applicable as possible. A creative act 
can be thought of in two stages – generation and evaluation. The basis for the evalua-
tion of creativity can be viewed as an assessment of the output of a generation process 
after factoring out the input to the process.   

The input to the process can be considered as the implicit and explicit knowledge 
termed the inspiring set I by Ritchie [16]  If we denote by R the results of the genera-
tion, then the items to be considered as creative must lie in R/I, i.e. R-I. For the gener-
alization process G we are considering that   I = T  ∪  Hi, where T is some set of 
terms and Hi ∈ {H1, H2, …Hn} is one hierarchy  of the set of hierarchies that may be 
used for generalization. Ri = G ( I ) therefore is the result of the generalization process 
on T using Hi.  

Often it may become difficult to exactly specify the input I so strong and weak ver-
sions of I have been introduced [15].  IS contains those values specifically known to 
the generalization process G, so a creative item must be completely new. Often the 
influence of other information on the process is difficult to quantify so IW is intro-
duced, containing items that are known to have influenced the generalization.  Since 
this information may be difficult to identify exactly, it may be desirable to consider IW 
as a fuzzy set.  

3   Negotiation 

The process of negotiation is a pervasive activity in human society ranging from ne-
gotiations between nations to individual negotiations in everyday life. The importance 
of negotiation is reflected by article 33, paragraph 1 of the United Nations charter 
which states that negotiation should be the first method to be used for peaceful set-
tlement of international disputes [17]. 
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In order for a negotiation to be successful, there must be common ground between 
parties for the process to bridge their respective positions.  This is an issue our ap-
proach addresses by investigating techniques to explore the space of concepts and 
terms used in negotiations by the involved parties. 

3.1   Formalization of Negotiation 

We can provide a general description of the negotiation process with respect to how 
generalization can be used.  Assume the negotiation involves N issues {I1,…,IN} and 
these issues encompass a domain X of the terminology involved relative to the issues 
under consideration. Also let there be two hierarchies over X:  H1 and H2 for sides 1 
and 2 respectively in the negotiation. Each specific issue Ik involves some set of terms 
Tk  ⊆  X.  So the problem can be described as that in order to negotiate an issue both 
sides must be in agreement A on a sufficient number of terms. 

Let an agreement A be a simple one – assume each side has partitioned the termi-
nology space X into two sets – terms with a positive import P and terms with a nega-
tive import N. Then for  issue Ik and the term set Tk,  side 1 has Tk = P1k ∪ N1k.  
Similarly for side 2,  Tk = P2k ∪ N2k.  Obviously if there is not enough overlap in 
positive / negative terms for both sides negotiations will not succeed. 

The negotiation process must obtain sufficient agreement to succeed.  Let us as-
sume in this case a simple agreement A is obtained for the positive terms, A(P1k, P2k) 
and for the negative A(N1k, N2 k).  The objective is that the positive terms agreed 
upon should mostly cover the term set Tk under negotiation and the negative terms 
agreed upon should mostly be avoided in the negotiation issue I k .  This means A(N1k, 
N2 k)  ∩ Tk should be small.  In order to achieve these agreements the sets of terms in 
dispute can be generalized by the two sides’ hierarchies H1 and H2. Then it might be 
possible that there are more general concepts that the two sides can accept as agree-
able. We will illustrate in the next section approaches to find consensus among the 
possible partitions of term sets induced by the hierarchies. 

Clearly much of the inexact negation process involves subjective and soft criteria 
mentioned above such as “sufficient” agreement or “most” coverage. The representa-
tion of such linguistic terms used during the negotiation can be assisted by the  
concept of linguistic quantifiers. Zadeh [18] noted that human dialogue makes con-
siderable use of terms such as most, about 50%, some, all which he referred to as 
linguistic quantifiers.  These terms are used to provide a linguistic explanation of 
some proportion and can be represented by fuzzy subsets over the unit interval such 
that the membership measures the satisfaction to the concept. In figure 3 we illustrate 
a typical graphical representation of the concept “Most”. 

 
1

10

Most 

 

Fig. 3. Example for criterion. “Most” 
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A specific example of this sort of function is illustrated by the function F1 below: 

0   x < a 

F1(x, a, b) =   {   (x-a) / (b-a) a < x < b 
1    x > b 

where the values of a and b might be 0.75 and 0.85 respectively. 
Often the negotiation process involves negotiators who are agents representing the 

actual parties. If parties are unable to resolve differences by negotiation, a third party 
may step in to lead the parties to a solution by compromise.  This is termed mediation.  
A mediator may even play an active role in this process and be flexible or innovative 
enough to obtain some consensus. Such an individual should have psychological 
understanding to appreciate the way in which the two parties are visualizing the issues 
between them.  

For example labor union representatives must produce a contract that the union 
members will ratify; lawyers, in a divorce case, must satisfy both wife and husband in 
the settlement. Often this will concern the varying interpretations of the language in 
the contract and so a final stage is the actual acceptance by the concerned parties.  So 
as part of the overall process, the negotiation agents may have to explore phrasing that 
can satisfy the involved parties [19]. 

Assume there are two negotiators N1 and N2 and that they agree to take an action 
A1. Next they must explain this to their constituents or audience.  Here there are a 
number of language semantics issues that must be  considered.  Let the action A1 
involve some set of terms in a subset X’ of the space X.  Then each audience has their 
own decomposition of X’ in the line of positive, negative and indifferent. 

D1 –  X’ = P1∪ N1 ∪ I1; and their own reduction rules 
D2 –  X’ = P2∪ N2 ∪ I2; and their own reduction rules 
Can the negotiators explore this space of possibilities to obtain an agreement be-

tween D1 and D2?  For example consider that there are 3 definite subsets of X, S1, S2 
and S3.  These are sets that generalize to some specific concept(s) in a given hierar-
chy H.  The remaining elements of X, S0 = X – S1 ∪ S2 ∪ S3.  This is a set of undif-
ferentiated elements that the party has no preference for generalization – so they 
might consider that the domain has positive and negative terms for them but the re-
maining ones – S0 – are undifferentiated and the person has no preferences relative to 
them. Note this means that S0 doesn’t have specific constraints in the context. 

Assume we have two elements of S0 – a and b. These could be generalized to mul-
tiple concepts – C and C’ – could be included in the generalization to say S2, could 
generalize independently to different concepts,  etc, etc.  This leads us to consider the 
issues of partially generalizing hierarchies and a space of concept hierarchies.  – a 
partially partitioned space.  So we consider the process of trying to reach agreements 
to do negotiations as a search thru this space – an exploration of such a space.  This 
fits into the aspect of creativity – exploration.  So we can see that inherently the proc-
ess of negotiation can be viewed as a creative process.   

3.2   Consensus and Partitions 

One approach to searching a space of hierarchies can be based on the how different the 
original data generalized from different hierarchies appears to be.  We consider the 
idea of a consensus of generalized data [20, 21] in terms of the concept of congruence. 



286 F.E. Petry and R.R.Yager 

 

One approach is to introduce a measure of similarity, congruence, between two 
partitions using the underlying equivalence relations.  Here we now consider formu-
lating a congruence measure from the perspective of the partitions themselves. 

Assume we have two partitions of the set D,  
 P1 = A1, ..., Aq 

 P2 = B1, ..., Bp 

where D = Aj∪
j = 1

q
 and Ai ∩ Aj = ∅ for i ≠ j and D = Bj∪

j = 1

p
 and Bi ∩ Bj = ∅ for i ≠ j. 

Without loss of generality we shall assume q = p.  If q > p we can augment the par-
tition P2 by adding q - p subsets, BP+1 = BP+2 = ...= Bq = ∅.  Thus in the following 

we assume the two partitions have the same number of classes, q. 
We now introduce an operation called a pairing of P1 and P2, denoted g(P1, P2), 

which associates with each subset Ai of P1 a unique partner Bj from P2.  Formally if 

Q = {1, 2, ..., q} then a pairing is a mapping g: Q → Q that is bijective, one to one and 
onto.  Essentially g is a permutation of Q.  We then have that a pairing g(P1, P2) is a 

collection of q pairs, (Aj, Bg(j)).   

We shall now associate with each pairing a score, Score(g(P1, P2)), defined as fol-

lows.  Denoting Cg.j = Aj ∩ Bg(j)  for j= 1 to q we obtain    

Score(g(P1, P
2
)) =  (∑

=

q

j 1

Card (Cg.j ) )/ Card (D) 

Example: Now we consider an example of a labor negotiation for a faculty union at a 
university for which the issues are D = [Medical, Retirement, Raises, Tenure, Intellec-
tual Property}. Based on negotiating positions of the two sides possible partitions 
might be: P1 consisting of: A1 = [Medical, Retirement, Tenure, Raises}, A2 = { Intel-

lectual Property }; and a partition P2 is B1 = [Medical, Retirement, Intellectual Prop-

erty, Raises }, and B2 = {Tenure}. In this case there are two pairings.  

One pairing is g(j) = j in which case we get the pairs (A1, B1), (A2, B2).  From this 

Cg.1 = A1 ∩ B1 = { Medical, Retirement,  Holidays } 

Cg.2  = A2 ∩ B2 = ∅ 

In this case Score(g(P1, P2)) = 3/5. 

The other pairing is g(1) = 2, g(2) = 1 and here our pairs are  (A1, B2), (A2, B1). 

and 

Cg.1 = A1 ∩ B2 = {Tenure}  

Cg.2 = A2 ∩ B1 = { Intellectual Property } 

In this case Score(g(P1, P2)) = 2/5 

We now shall use this to obtain a measure of congruence, Cong2(P1, P2).  Let G 

be the set of all pairings, g ∈ G.  We define  
Cong2(P1, P2) = Max

Gg∈
  Score(g(P1, P

2
)) 
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Thus this measure of congruence is the score of the largest pairing. We see that for 

any pairing g, 0 ≤ ∑
=

q

j 1

Card (Cg.j ) ≤ Card(D).  From this it follows that  0 ≤ 

Cong2(P1, P2) ≤ 1.  More precisely since for any two partitions we can always find a 

pairing g in which ∑
=

q

j 1

Card (Cg.j ) ≥ 1 we see that  

Card(D)

1
 ≤  Cong2(P1, P2) ≤ 1 

So this measure allows us to compare partitions produced by generalization using 
different hierarchies.  

Now we can discuss how to apply consensus measures to issues concerning nego-
tiation.  Consider the terms that might be part of the dispute in the negotiation.  For 
example one of disagreement on terms is seen in the set  

    D1 = P2 ∩ N1 

By generalizing this set D1 of contentious terms we can, so to speak, cast these 
into a different phrasing as higher level concepts on which the parties may be able to 
achieve more agreement. Again recall that negotiation is an inexact process so the 
degree of agreement on these concepts need not be complete but by mediation the 
agreement can be phrased as “Mostly” agreed upon. Since it is more likely that 
agreement can be found on a smaller set of higher level concepts, the search of the 
space of hierarchies to find a better consensus is the overall objective. Another way of 
viewing the result of the generalization is that a higher level concept corresponds to 
(covers) a larger subset of the terms in dispute.  Each of the sides in the negotiation 
may then be able to focus on different aspects or components of such a subset and 
which they may then find more satisfactory. 

Finally if there was not a satisfactory solution obtained, a creative approach could 
be to consider various combinations of partitions utilizing the sets of terms the parties 
are indifferent towards.  This would mean that the set D1 could be extended prior to 
generalizations.  Let S2 be the set of terms that the second party is indifferent to-
wards.  Note not all of these would be indifferent to the other side, indeed some might 
be viewed as positive, negative, or indifferent.  Certainly the subset of S2 viewed 
negatively (S2 ∩ N1) would not be included in an extension.  A variety of choices are 
to include some of the positive and / or indifferent terms of S2 in the extension de-
pending on what negotiators or mediators think would be most beneficial to obtaining 
a satisfactory resolution.  

4   Summary 

In this paper we described an approach to the negotiation process which views this 
inexact process as a co-operative social interaction. Negotiation is a process that 
ranges from international issues to common society interactions. We presented ap-
proaches to facilitate the process by exploring alternative spaces for this process. We 
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based the approach on exploring alternative terminology that can resolve conflicts in 
the negotiation solution.  Concept hierarchies were shown to provide higher level 
concepts that can be used to obtain agreement between parties in the negotiation 
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Abstract. One considers the problem of estimating the most frequent values in 
a data stream. In many cases an approximate answer may be enough. A novel 
algorithm is presented to approximate the most frequent values using a mixed 
approach between counter-based techniques and sketch-based ones. The algo-
rithm is then used to find the most frequent destinations of calls by individual 
customers of telecommunications operators. The use of fast and small footprint 
algorithms is critical due to the huge number of customers to check and ap-
proximate answers are enough in most situations. The problem is that such de-
tection needs to be performed for each individual customer and kept up to date 
at all times. This paper presents telecommunications customer’s behavior to jus-
tify the use of approximate algorithms. Although used in this paper on tele-
communications this algorithm may well be used in other contexts.  

Keywords: Approximate algorithms; estimation; data-stream frequencies; most 
frequent destinations; telecommunications. 

1   Introduction 

Classical top-k algorithms require the list of used destinations or products to be 
checked every time a new transaction or event is processed to see if the value is al-
ready in the list and update the counters. Exact top-k algorithms require large amounts 
of memory as they need to store the complete list of values. Storing 1000 values per 
customer if only the top-20 are needed seems a complete waste of space. The problem 
is not just keeping one single list, big or small, is keeping huge numbers of small lists. 
Telecom operators can range from less than 500 000 customers (a small operator) to 
more than 25 000 000 customers, and a list of the top-20 services or destinations 
might be needed for each one. Retail sellers have also similar or even bigger number 
of customers, in some cases identified by the use of fidelity cards. The number of 
elements to be stored per customer is usually small as people tend to make frequent 
calls to a relatively small number of destinations and to buy frequently the same 
products. 

The biggest challenge to the systems that gather this information is accurately iden-
tify this in near real time while not allocating huge amount of resources into it. To a 
company with several million customers making multiple transactions per day, this 
represents a huge challenge. Optimizing the process is therefore critical.  
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This paper proposes a new algorithm for identifying the approximate top-k values 
designed to be memory efficient. Although the focus is to produce large number of 
good top-k lists each based on a not that large set of transactions, it can also be used 
to efficiently produce a single top-k list for a huge number of transactions. The new 
proposed algorithm is innovative also by merging two distinct approaches commonly 
used to solve this sort of problems, counter-based and sketch-based techniques. It 
follows the principles presented by Metwally and al. [13] for Space-Saving algorithm 
but it tries to narrow down both the number of required counters and the error associ-
ated with the frequency estimate by filtering elements using a specially designed 
sketch. A simple implementation option is discussed to minimize memory foot-print 
and long term storage needs. A comparison between the Space-Saving algorithm and 
the new is presented using telecommunications examples. 

2   Relation with Previous Work 

Exact top-k algorithms require the list of used destinations or products to be checked 
every time a new element is processed to see if the value is already in the list and 
update the counters. Exact top-k algorithms also require large amounts of memory as 
they need to store the complete list of values.  

The Space Saving algorithm [13] underlying idea is to monitor only a pre-defined 
number of m elements and their associated counters. Counters on each element are 
updated to reflect the maximum possible number of times an element has been ob-
served and the error that might be involved in that estimate. If an element that is  
already being monitored occurs again, the counter for the frequency estimate is in-
cremented. If the element is not currently monitored it is always added to the list. If 
the maximum number of elements has been reached, the element with the lower esti-
mate of possible occurrences is dropped. The new estimate error is set to the estimate 
of frequency of the dropped element. The new element is set with that estimate error 
and a frequency estimate equal to the error plus 1. 

The Space Saving algorithm will keep in the list all the elements that may have oc-
curred at least the new estimate error value (or the last dropped element estimate) of 
times. This ensures that no false negatives are kept but it allows for false positives. 
Elements with low frequencies but that have been observed in the end of the stream 
may still be present at the list.  

As the Space Saving algorithm maintains both the frequency estimate and the 
maximum error this estimate may include, it also maintains implicitly the number of 
real observations registered while the element was monitored. This allows a check to 
be performed on the order of the monitored elements that may guarantee that under 
some cases, the order of the top-k elements is guaranteed to be the correct one. By 
allowing m, the number of elements in the retrieved list, to be larger than k this pro-
vides good results in most cases. In Metwally and al. [13] comparison between  
several algorithms in this area is provided. Space saving algorithm is already less 
demanding on counters than other algorithms like Lossy Counting as proposed by 
[12] or the Probabilistic Lossy Counting proposed by [5].  

Sketch-based algorithms are much better at providing estimates of frequencies for 
all elements by the use of bitmap counters. Each element is hashed into one or more 
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counters and the counters updated. There is an error associated as the hash function 
will generate collisions. Keeping big enough number of counters to minimize colli-
sion probability leads to higher memory footprint than for Space Saving algorithm. 
Additionally the entire bitmap counter needs to be scanned and elements sorted to 
answer to the top-k query.  

The algorithm proposed in this work uses a filtering approach to improve on Space 
Saving. It also gets some inspiration on previous work around probabilistic counting 
and sliding windows statistics [3, 6, 8, 9, 10 and 14]. A bitmap counter is used to filter 
and minimize updates on the monitored elements list and also to better estimate the 
error associated with each element. Instead of using a single error estimate value, an 
error estimate dependent on the hash counter is used. This will allow better estimates 
by using the maximum possible error for that hash value instead of a global value. 
Although this requires an additional bitmap counter to be kept, the idea is that this 
will help reducing the number of extra elements of the list needed to ensure high qual-
ity top-k elements. It will also help reducing the number of list updates. As the bitmap 
counter is used in conjunction with the list of elements, the collision problem of most 
sketch-based algorithms that forces the bitmap counter to be large will be minimized. 
This allows the bitmap counter size to be dependent on the number of k elements to 
be retrieved and not on the number of distinct elements of the stream, which is usually 
much higher. 

3   The Filtered Space-Saving Algorithm  

The Filtered Space-Saving (FSS) algorithm uses a bitmap counter with h cells, each 
containing two values, αi and ci, standing for the error and the number of monitored 
elements in cell i. The hash function needs to be able to transform the input values 
into a uniformly distributed integer range. The hashed value h(x) is then used to set 
increment the corresponding counter. Initially all values of αi and ci are set to 0. 

The second storage element is a list of monitored elements A with size m. The list 
is initially empty. Each element contains 3 parts; the value itself vj, the estimate count 
fj and the associated error ej.  

The minimum required value to be included in the monitored list is always the 
minimum of the estimate counts. While there are free elements in the list it is set to 0.  

 min = min {fj} 

The algorithm is quite simple. When a new value is received, the hash is calculated 
and the bitmap counter is checked. If there are already monitored elements with that 
same hash (ci > 0) the list is searched to see if this particular element is already there. 
If the element is in the list then the estimate count fj is incremented. If the element is 
not in the list then it is checked to see if it should be added.  

A new element will be inserted into the list if αi +1 >= min. If the elements are not 
monitored then αi is just incremented. In fact this αi stands for the number of elements 
with hash value i that have not been counted in the monitored list. It is the maximum 
number of times an element that is not in the list and that has this hash value could 
have been observed. If the element is included in the monitored list then ci is incre-
mented and set fj = αi +1 and ej = αi.  
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Fig. 1. FSS Algorithm Diagram 

If the list has exceeded its maximum allowed size then the element with the lower 
fj is selected. If there are several with the same value, the one of those with the larger 
value of ej is selected. The selected element is removed from the list and the corre-
sponding bitmap counter cell is updated, cj is decreased and αi set with the maximum 
error incurred for that position in a single element, the estimate for the removed ele-
ment, αi = fj.  

 
Algorithm: Filtered Space-Saving(h cells, m counters, S stream) 
begin 

for each element, x, in S {  
  set min to min {fj} 

let i be the hash(x) mod h 
if ci is not 0 {  

if x is monitored { 
 let j be the index of x in the list 
 increment counter fj 
 continue for next x 

   } 
  } // will only be executed if x is not monitored 
 
  if  αi +1 >= min { 
   if list size equals m { 
    let m be the index of one element with lower fj   

and for same fj with higher ej 
     let k be the hash(x) mod h 
     decrement ck 
     set αk = fi 

remove vm 
   } 
   include x in the list in index j 
   set vj to x 
   set ej to αi and fj to αi+1 
  } else { 
   increment counter αi 
  } 

}// end for 
end 

 
When h=1 FSS is exactly the Space-Saving algorithm. 
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At this stage one will not cover the obvious optimizations to this algorithm, such as 
the use of better structures to hold the list of elements, to keep up to date min or to 
speed up access to each element. 

4   Properties of Filtered Space-Saving 

It can be proved that FSS maintains all the properties of Space-Saving, inclusively the 
guarantee of a maximum error of the estimate. This is out of the scope of this paper 
and is detailed in [11]. 

Additionally to Space-Saving properties, FSS has the very interesting property of 
the error depending on the ratio between h and m and the number of samples N, and it 
can be shown that this error is lower than in Space-Saving with a given probability 
[11]. In fact for high values of N it gives a high probability of being even lower than 
Space-Saving. 

The intuitive justification for this is that by using an error filter to distribute errors 
throughout a large number of cells h, the estimate error α for each cell can be made 
lower than a certain value (per example 120%) of N/h for large enough values of N by 
using more cells in the filter than in the monitored list (in our simple implementation 
each entry in the monitored list requires space equivalent to 3 counters).  

5   Experimental Results  

The first set of tests between Space-Saving and FSS try to show performance of both 
algorithms in a typical telecommunications situation where the top-10 or top-20 desti-
nations are needed per customer. This analysis is based on 962 blocks of calls of dis-
tinct customers, each with 500 mobile voice calls (made during a 2 or 3 month period 
in most cases). Note that 500 calls is not a small number of calls, most of the custom-
ers make no more than 15 calls a day. On average, in 500 calls, each customer would 
call 98.67 distinct numbers (with a standard deviation of 34.99). 

Although FSS requires an additional bitmap counter to be kept, the fact that this 
bitmap counter only requires smaller counters allows a trade-off to be made. By re-
placing some of the entries in the Space-Saving monitored list by additional cells in 
this bitmap counter, it is possible to keep the same space but have better expected 
performance out of the algorithm. In this paper a single entry in the monitored list was 
exchanged for 6 additional cells in the bitmap counter. This seems to be a reasonable 
exchange rate specially if one considers the usual counter size (Space-Saving imple-
mentations usually use either 16 or 32 bits counters, FSS may use 8 bit or 16 bit 
counters). This exchange rate coupled to the probabilistic guarantees of FSS (spe-
cially for large values of N, the stream size) allows us to achieve better results. In fact 
FSS exchanges deterministic guarantees for tighter probabilistic ones. 

The practical implementation of FSS may include the Stream Summary data struc-
ture presented in [13], but depending on the number of elements in the monitored list 
other options may as well be used. For small number of m, a simple array of m ele-
ments can be a viable and fast option. To speed up insertions and replacements, an  
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additional array with the indexes of each element ordered by fi may be used. This 
trades some performance by a very compact implementation. This may be the pre-
ferred option for telecommunication related implementations where the total number 
of elements in the list is to be kept near 50 or even less.  

Full List Recall is the ratio between the correct top-k elements included in the full 
monitored list and k; Full List Precision is the ratio between the correct top-k ele-
ments included in the full monitored list and its size m.  

Top-k Recall (and Top-k Precision) is the ratio between correct top-k elements in-
cluded in the returned top-k elements and k. This is the main quality indicator of the 
algorithms as this reflects the number of correct values got when getting a top-k list.  

Estimate error is the square root of MSE of the frequency estimate for the top-k 
elements returned (out of k elements). It does not include incorrect elements or the 
error of estimate of top-k elements not returned. 

The first set of trials uses relatively small blocks of calls per customer and identi-
fies the top-10 or top-20 destinations. Note that for Space-Saving m = 3k is used, so 
30 elements are used in the list when finding top-10 elements and 60 when finding 
top-20 elements. Note that this is a significant size for the list, as an average of 98 
distinct numbers in a 500 call block is expected (and 130 in an 800 call block). 

Table 1. Comparative performance 

  Trial  1.0 Trial  1.1 Trial  2.0 Trial  2.1 

Block size 500 800 500 800 

Average Distinct 98 130 98 130 

Number of Samples 962 715 962 715 

Top-k   10 10 20 20 

SS m   30 30 60 60 

FSS m   15 15 30 30 

FSS h   90 90 180 180 

min 9.73 14.8 4.52 6.73 

Full List Recall 0.9758 0.9768 0.9892 0.9893 

Full List Precision 0.6916 0.6748 0.737 0.71 

Top-k Recall 0.9433 0.9409 0.9604 0.9633 

Top-k Precision 0.9433 0.9409 0.9604 0.9633 

FSS 

Estimate Error 1.27 1.52 0.81 0.95 

min 8.96 15.39 2.52 4.70 

Full List Recall 0.9705 0.9631 0.9958 0.9931 

Full List Precision 0.3475 0.3342 0.3856 0.3629 

Top-k Recall 0.9002 0.8858 0.9670 0.9560 

Top-k Precision 0.9002 0.8858 0.9670 0.9560 

SS 

Estimate Error 1.35 2.18 0.37 0.64 
 

In these trials it can be observed that Top-k Recall (and Top-k Precision) of FSS to 
be marginally better than that of Space-Saving for top-10. It’s interesting to see that in 
the top-20 trial the results are much closer. In fact Space-Saving as m = 60 is able to 
store a large part of the distinct values and therefore the improvement of FSS is not 
relevant.  
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Fig. 2. Top-k Precision for Space-Saving and FSS algorithms 

The second block of trials compares Space-Saving (SS) with FSS for larger num-
ber of calls made in a consecutive period of time. The number of distinct elements per 
block of calls is now much higher so the increased m and h proportionally for both 
algorithms. 

Table 2. Top-20 performance for large sets  

   Trial 3.0 Trial 3.1 Trial 3.2 

Block size   5000 10000 20000 

Average Distinct   3130 5322 8774 

Number of Samples   166 83 41 

min 13.79 25.4 48.41 

Recall and Precision 0.4996 0.4686 0.4439 
m=100, 
h=600 

Estimate Error 5.57 9.97 18.47 

min 8.04 14.48 27.07 

Recall and Precision 0.7894 0.7734 0.7597 
m=200, 
h=1200 

Estimate Error 2.36 3.37 5.34 

min 5 8.92 15.97 

Recall and Precision 0.9246 0.9265 0.939 

FSS 

m=400, 
h=2400 

Estimate Error 1.25 1.57 2.019 

min 23.92 48.86 98.8 

Recall and Precision 0.2539 0.1987 0.1585 m=200 

Estimate Error 14.87 31.09 63.82 

min 11.84 23.91 48.87 

Recall and Precision 0.4987 0.4138 0.3402 m=400 

Estimate Error 4.71 9.5 18.12 

min 5 11.42 23.82 

Recall and Precision 0.853 0.7903 0.7329 

SS 

m=800 

Estimate Error 1.25 2.12 4.08 
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Fig. 3. Top-20 Precision with increasing number of calls 

Table 3. Performance with full set of calls 

   Trial 4.0 Trial 4.1 Trial 4.2 

SS m     2000 4000 8000 

FSS m     1000 2000 4000 

FSS h     6000 12000 24000 

min 207 114 60 

Precision and Recall 0.8 0.9 0.9 Top-10 

Estimate Error 59.42 36.45 13.06 

min 207 114 60 

Precision and Recall 0.85 0.9 0.95 Top-20 

Estimate Error 59.67 31.27 14.3 

min 207 114 60 

Precision and Recall 0.86 0.94 0.96 Top-50 

Estimate Error 61.69 26.29 11.52 

min 207 114 60 

Precision and Recall 0.76 0.89 0.97 

FSS 

Top-100 

Estimate Error 60.38 25.95 11.39  
min 388 183 80 

Precision and Recall 0.8 0.8 0.9 Top-10 

Estimate Error 145.68 66.65 25.5 

min 388 183 80 

Precision and Recall 0.7 0.85 0.9 Top-20 

Estimate Error 170.97 69.87 27.05 

min 388 183 80 

Precision and Recall 0.68 0.84 0.92 Top-50 

Estimate Error 171.95 69.26 26.24 

min 388 183 80 

Precision and Recall 0.55 0.74 0.87 

SS 

Top-100 

Estimate Error 175.66 67.56 24.85 
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Overall the performance of FSS is consistently better than that of Space-Saving for 
similar memory usage. FSS performance does not degrade with the increasing of the 
number of calls as in the case of Space-Saving. FSS with m=200 and h=1200, for 
N=20000, behaves better than Space-Saving with m=800 using the double of space. 

Table 3 shows the results with N=800 000, with 112 462 distinct values the results. 
FSS is consistently better than that of Space-Saving for similar memory usage. 

 

Fig. 4. Top-k Precision with increasing space 

6   Conclusions  

This paper shows a new algorithm that builds on top of the best existing algorithm for 
answering the top-k problem and that effectively constitutes a merger of the of two 
existing and distinct approaches to this problem, the counter-based techniques and 
sketch-based ones.  

The FSS algorithm filters and splits the error of Space-Saving algorithm through 
the use of a bitmap counter. This helps to minimize the overall error and therefore the 
error associated with each element. This eliminates the excess of trail elements in the 
stream that Space-Saving usually includes in the monitored list and that have a very 
high estimation error. 

This paper shows experimental results that detail improvements over Space-Saving 
algorithm, both in precision and in performance when using similar memory space. 
Memory consumption was key in the analysis as the practical problem being solved is 
memory bound. In this regard the use of FSS is envisioned with even less memory 
than Space-Saving and with better precision.  

FSS is a low memory footprint algorithm that can answer not only the top-k prob-
lem for large number of transactions but also the problem of answering huge number 
of top-k problems for relatively small number of transactions. As such its applicability 
goes much beyond telecommunications or retail applications. It can be used in any 
other domain as long as the appropriate implementation choices and dimensioning are 
made. 
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Abstract. A new approach to the problem of temporal knowledge in-
duction from a collection of temporal events is presented. As a result, a
set of frequent temporal patterns is obtained, represented following the
Simple Temporal Problem (STP) formalism: a set of event types and
a set of constraints describing common temporal arrangements between
the events. The use of a clustering technique makes it possible to dis-
criminate between the frequent patterns that are found in the collection.

1 Introduction

Temporal Data Mining aims to search for interesting patterns in large collections
of temporal data. Every pattern represents a particular temporal arrangement
of a set of events, and the number of occurrences is a first measure of its possible
interest. Examples of collections susceptible to the application of temporal data
mining techniques are those that store event sequences; such as alarms in a
telecommunications network, or manifestations in the course of a disease.

In this sense, several techniques have been described in the bibliography, hav-
ing in common performing the mining procedure by means of the Apriori strat-
egy [1], following the premise that if an event sequence is frequent, then all of
its subsequences are also frequent. With this idea, frequent sequences of size i
are iteratively built from frequent sequences of size i− 1.

Agrawal et al. present in [2] three algorithms for the obtention of frequent
sequences in a set of transactions from several consumers, in the so called market
basket problem. Every element in a sequence consists of a set of products bought
in the same transaction, following a partial order relation between the elements
of the sequence. As a result of the mining procedure, the maximal sets of frequent
sequences from the data are presented.

The proposal by Mannila et al. [3] approaches the mining problem using a
technique that allows to obtain two types of episodes, named as parallel and
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sequential. The former allows to know what event types are frequently found
in the same temporal proximity, without any further information about their
temporal arrangement. The latter allows to obtain an order relation between the
event types found in temporal proximity, but provides no further quantitative
information about this relation except for its maximum duration.

The proposal by Dousson et al. [4] obtains a set of temporal patterns repre-
sented as a STP as the result of the mining process. Size-two patterns are found
using a heuristic approach that obtains a temporal constraint, represented as an
interval, for each pair of event types. Constraints between event types for larger
patterns are the result of the union of every constraint between the same pair
of event types in previously found frequent patterns. This results in only one
pattern for each set of event types.

The aim of our proposal is to provide a technique for temporal data mining
that increases the expressiveness of the results of the mining process, bringing
them closer to the knowledge representation model that a domain expert would
use. From a collection of temporal data, the goal is to discover a set of temporal
patterns that frequently appear in the collection, represented as a set of temporal
constraint networks, and introducing a clustering technique to make use of the
concept of similarity in the pattern induction.

Before describing our temporal data mining algorithm, we will introduce some
preliminary concepts and definitions in the following section. Section 3 describes
in detail the mining algorithm. Section 4 analyzes the computational complexity
of our proposal. Section 5 introduces some experimental results and section 6
presents the conclusions and future work.

2 Definitions

We assume a temporal framework isomorphic to the set of natural numbers N.
Every observation procedure locates an observable in time and establishes its
attributes by assigning a value to each of them. An event is the result of an
observation in a temporal instant.

Definition 1. An event is a tuple (o, a = v, t), where o ∈ O is an observable,
a is an attribute belonging to the observable with value v ∈ V (a) and t ∈ N is a
temporal instant.

An event may be characterized by a set of attributes but we will assume, without
loss of generality, that all events have only one attribute represented by its value.
From the set of different (o, v) pairs we can define an event type.

Definition 2. An event type is a tuple (o, v, T ), where T is a temporal variable
corresponding to an instant.

We call E = {E1, . . . , Ep} to the set of different event types provided by the
observation procedures.
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For example, the identification of an apnea in the evolution of a patient can
be represented by the event (apnea,central,02:03:46), where (apnea,central,T) is
the corresponding event type.

Let < be an order relation between two events ei = (oi, vi, ti) and ej =
(oj , vj , tj) such that (ei < ej) ⇔ (ti < tj) ∨ ((ti = tj) ∧ (oi < oj)) assuming a
lexicographical order between observable names. This relation allows to define
the concept of event sequence.

Definition 3. An event sequence is an ordered set of events S = {e1, . . . , em}
where ei < ei+1 for all i = 1, . . . ,m− 1. The size of the sequence is |S| = m. Its
beginning is bS = t1, its ending eS = tm and its duration dS = tm − t1. Every
subset of the sequence is a subsequence.

It is possible to identify events corresponding to different observables at the
same instant, but it is impossible to identify two different events of the same
observable at the same instant, that is, no attribute may take different values at
the same instant; ∀ ei, ej ∈ S, (oi = oj) ∧ (vi �= vj) ⇒ ti �= tj .

The mining procedure aims to obtain a set of temporal patterns that are
frequently found in a sequence S, or in a collection of sequences S = {S1, . . . , Sn}.
Every pattern obtained at the end of the data mining process is represented as
a temporal constraint network between a set of event types, according to the
STP formalism [5]. A STP defines a temporal constraint Lij between two event
types Ei = (oi, vi, Ti) and Ej = (oj , vj , Tj) as a closed interval Lij = [aij , bij ]
restricting the possible values of the interval duration between both events so
that aij ≤ Tj − Ti ≤ bij .
Definition 4. A temporal pattern is a directed graph P =< D,L > where
D = {E1, . . . , En} is a subset of E, Ei �= Ej for all i �= j, and L = {Lij; 1 ≤
i, j ≤ n} is a set of temporal constraints between the event types in D.

Definition 5. An event occurrence of an event type Ei = (oi, vi, Ti) is an
event ei = (oi, vi, ti) resulting from an observation in Ti = ti.

Definition 6. A pattern occurrence of a temporal pattern P is a subsequence
X = {e1, . . . , en} of S such that, for all i = 1, . . . , n, every ei is an occurrence
of one of the event types in D, satisfying all the temporal constraints in L.

The user of the mining procedures may be interested in searching for short, mid
or long-term relations between the events subject to analysis. His/her knowledge
of the domain allows to specify the scope of the search, defining a temporal
window of duration ω that scrolls through every sequence S ∈ S searching for
frequent patterns. This window constrains the search by only considering those
subsequencesW ⊂ S where dW ≤ ω, limiting the search space [6] and increasing
the efficiency.

Definition 7. A temporal window of size ω in a sequence S is every sub-
sequence W = {ei, . . . , ek} of S such that tk − ti ≤ ω, ei, . . . , ek ∈ S and
∀ tj ∈ [ti, tk] ∧ ej ∈ S ⇒ ej ∈ W .
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The mining procedure introduced in section 3 uses the concept of temporal
association to identify sets of event types frequently found together. The differ-
ent temporal arrangements of these associations will lead to different temporal
patterns. By introducing the order relation (Ei < Ej ⇔ (oi < oj) ∨ ((oi =
oj) ∧ (vi < vj)) we may represent event types Ei, Ej with capital letters A, B
in lexicographical order.

Definition 8. A temporal association is an ordered set of event types A =
{E1, . . . , En} where Ei < Ei+1 for all i = 1, . . . , n−1, and there exists a temporal
window W = {e1, . . . , em}, with n ≤ m, containing at least one event occurrence
of each Ei.

Definition 9. Given two temporal patterns P =< D,L > and P ′ =< D′,L′ >,
we say that P ′ is an extension of the pattern P , P � P ′, if D ⊆ D′ and
L′ij ⊆ Lij for all Lij ∈ L and L′ij ∈ L′.

A temporal pattern P ′ usually contains an extended set of the events in P , but
its temporal constraints are more restrictive [4]. We can extract an occurrence of
P from any occurrence of P ′. One of the main operations in the search procedure
proposed in section 3 combines two frequent temporal patterns of size i − 1 in
order to build a candidate temporal pattern of size i.

Definition 10. Given two temporal patterns P =< Dp,Lp > and Q =< Dq,
Lq >, we define their combination, P �� Q, as a temporal pattern R =<
Dr,Lr >, where Dr = Dp ∪Dq and Lr = {Lr

ij = Lp
ij ∩Lq

ij |Lp
ij ∈ Lp, L

q
ij ∈ Lq}.

The frequency of a temporal arrangement of events in a sequence or collection
of sequences is the criteria used to focus the attention of the mining process.

Definition 11. The frequency of a temporal pattern P in S is defined as the
number of occurrences of P in S and is denoted f(P ).

We can further specify the frequency calculation by taking into account the
time fraction in which the pattern occurs, as in [3]. The domain usually es-
tablishes the minimum frequency that makes a pattern relevant. Given a fre-
quency threshold fmin, we say that a temporal pattern P is frequent if f(P ) ≥
fmin.

3 Algorithms

We propose a temporal data mining procedure based on the Apriori strategy:
first we search for event types that are frequently found in the sequence, then we
search for patterns comprised by pairs of frequent event types that are frequently
found with a distinct temporal arrangement. We continue to increase the size of
the patterns until no new frequent pattern is found.
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3.1 Main Algorithm

Figure 1 shows the main algorithm for frequent pattern search. Given a collection
of event sequences S, a collection of event types E, a window size ω and a
frequency threshold fmin, the objective is to iteratively search in S for frequent
temporal patterns of increasing size where events are, at most, ω time units
apart. The algorithm uses three lists: Ai holds frequent temporal associations
comprised of i events, Ci stores candidate patterns of i events and P i represents
frequent patterns of i events. The result of the algorithm is a set of frequent
temporal patterns represented as STP.

procedure PATTERN SEARCH(S,E,ω,fmin)
begin
A1 ← {Ej |Ej ∈E ∧ f(Ej)≥fmin}
P1 ← A1

while (Pi−1 �= ∅) do begin
Ci ← CANDIDATE GENERATION(Ai−1,Pi−1)
Pi ← FREQUENCY CALCULATION(Ci,ω,fmin)
Ai ← {Dj |Pi

j= <Dj,Lj>∈Pi}
i ← i+1

end;

Fig. 1. Main algorithm

The procedure is divided in several steps. The first step searches for event
types in E that are frequent in S. Once frequent event types are found, an it-
erative process searches for increasing patterns until no new patterns are found.
Each iteration follows two steps: candidate pattern generation and frequent pat-
tern calculation. These steps are explained in detail in the next sections.

3.2 Candidate Generation

The procedure CANDIDATE GENERATION receives as arguments the frequent tem-
poral associations and frequent patterns found in the previous iteration, aiming
to build the candidate patterns for the iteration in course. Depending on the
size of the candidates this procedure presents some differences in execution.

Figure 2 shows the general case (i > 2) for candidate generation following the
Apriori strategy: from each pair Ai−1

j , Ai−1
k of frequent temporal associations

of size i− 1 that share all their event types save one, we generate temporal as-
sociations Ai

j of size i by adding the event types that make them different. For
the new temporal association to be frequent, the antimonotonicity property [1]
states that all temporal associations contained in Ai

j must be frequent. For ex-
ample, given the set of frequent temporal associations A3 = {ABC, ABD, ABE,
ACD, ACE, BCD, BCE}, the set of candidate associations is A4 = {ABCD,
ABCE}. The association ACDE cannot be frequent because association CDE is
not frequent.
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procedure CANDIDATE GENERATION(Ai−1,Pi−1)
begin
Ci ← ∅
for Ai−1

j ,Ai−1
k ∈Ai−1 ∧ Ej

1 = Ek
1 , ..., E

j
i−2 = Ek

i−2, E
j
i−1 < E

k
i−1 do begin

Ai
j ← Ai−1

j ∪ {Ek
i−1}

if all Ai−1
h ⊂Ai

j satisfies Ai−1
h ∈Ai−1 then

for all combination of Pi−1
hk

, Pi−1
hk

∈Pi−1 ∧ Di−1
h ⊂Ai

j do
if ��hP

i−1
hk

is consistent then
Ci ← Ci ∪ (��hP

i−1
hk

)
end;
return(Ci)

end;

Fig. 2. Candidate generation algorithm

In addition, for each Ai
j it is also necessary to find a consistent combination

of frequent temporal patterns P i−1
hk

of size i − 1 with Di−1
h ⊂ Ai

j . This results
in a pattern ��hPh extension of all of them. For example, a pattern consisting
of the event types ABCD is built by combining four patterns, with temporal
associations ABC, ABD, ACD and BCD. The constraint propagation and con-
sistency is checked by a Floyd-Warshall algorithm [5]. Consistent patterns of
size i obtained by this procedure are the candidate patterns of size i. Figure 3
presents an example of pattern combination to build a larger pattern, extension
of all the patterns used in the combination.

According to definition 10, the result of combining two patterns (in figure 3,
(a) and (b)) is a new pattern whose constraints are obtained by the intersection
of the contraints between common event types in both patterns, assuming there
is no constraint when it is not specified. If some of the resulting constraints is
given by the empty set, the pattern is inconsistent and any further combination
involving it is bound to be inconsistent. If the resulting pattern contains no
empty constraints then it is combined with the next pattern (c), and (d), until
no further patterns P i−1

hk
with different event types Di−1

h ⊂ Ai
j can be combined.

Fig. 3. Candidate building by combination of frequent patterns

The pattern combination step is not performed when i = 2 because there is no
information available about the different temporal arrangements at this point.
In this case, every candidate C2

j is a temporal association of two event types, and
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the corresponding frequent size-two patterns will be discovered in the frequency
calculation step described in the next section.

3.3 Frequent Pattern Calculation

In the particular case i = 2 the procedure FREQUENCY CALCULATION obtains fre-
quent patterns of size two. These patterns are defined as constraints between
pairs of event types that will be combined in later iterations to build candidates
of greater size. The set C2 contains temporal associations consisting of two event
types. For every occurrence of a temporal association C2

j found in S, its tempo-
ral arrangement is stored in the frequency distribution δC2

j , and the frequency
of the arrangement in the interval [−ω, ω] is increased by one. Then every fre-
quency distribution is subject to a clustering technique in order to obtain a set
of non-overlapping intervals I1, ..., Im where the occurrences of each association
concentrate. These intervals represent different constraints between the event
types of C2

j and therefore different frequent patterns P 2
j = {P 2

j1
, ..., P 2

jm
} in P 2.

Any clustering algorithm that can be used for unidimensional domains could
be used in this step. In our proposal, we have used an adaptation of the mountain
method proposed in [7].

Fig. 4. Clustering of the frequency distribution of a temporal association

Figure 4 shows an example of the clustering process, where the method used
conservatively identifies only one interval, because the rest of the maxima in the
frequency distribution do not present a frequency similar to the global maximum.

In the general case i > 2 the candidates in Ci are patterns instead of asso-
ciations. In this case, the procedure searches for occurrences of the candidate
patterns in S and returns those candidates that were found to be frequent.

4 Computational Complexity Analysis

The computational complexity of these algorithms in every iteration i is calcu-
lated as follows:
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procedure FREQUENCY CALCULATION(Ci,ω,fmin)
begin
if i=2 then
for C2

j ∈C2 do
P2 ← P2 ∪ CLUSTERING(δC2

j,fmin)
else
Pi ← {Ci

j |Ci
j ∈Ci ∧ f(Ci

j)≥fmin}
return(Pi)

end;

Fig. 5. Frequency calculation algorithm

– In the temporal association generation step, for a temporal association Ai
j

to be frequent, first all of the i temporal associations Ai−1
k ⊂ Ai

j must be
frequent. A binary search among these frequent associations has a complexity
of O(log|Ai−1|). Taking into account the combination step, the complexity of
generating all candidate temporal associations is O(|Ai−1|i2log|Ai−1|). This
result is slightly better than the approach in [4].

– In the candidate generation step, each of the i(i − 1)/2 constraints of a
temporal pattern P i

jk
is obtained by combining those patterns P i−1

hk
where

Di−1
h ⊂ Ai

j . The combination has a complexity of O(i2), with a maximum
number of

∏
h |Pi−1

h | possible combinations. Every combination is subject to
a consistency check, which has a complexity of O(i3), resulting in a complex-
ity of O(|Ai|i3∏h |Pi−1

h |) for this step. This result is worse than that found
in [4], because our approach is able to find more than just one temporal
arrangement amongst a set of event types.

– In the worst case scenario, every time unit may present an occurrence of all p
event types with a total of pn events in S. Every time the window is updated,
p events enter the window and another p leave. Thus, for every pattern of
size i up to iωi−1 new occurrences may be found in every window update for
every pattern. Checking that an occurrence fulfills all the constraints in a
pattern has a complexity of O(i2). Considering that the number of candidate
patterns is |Ci|, the overall complexity for this step is O(nωi−1i3|Ci|).

5 Experimental Results

We have run several experiments using the algorithms proposed. The purpose
of the experiments is to analyze the effect of the window size in the results and
the scalability of the algorithms. The database used for our experiments consists
of a collection of sequences of events found by inspection of polysomnograms
of patients diagnosed with Sleep Apnea-Hypopnea Syndrome. Only the events
regarding oxygen saturation decrease and increase, start and stop of an airflow
limitation, start and stop of thoracic movement limitation, and start and stop of
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Fig. 6. Processing time required as a function of window width, with a frequency
threshold of 30 occurrences

Table 1. Number of possible candidates, candidates generated and frequent patterns
in the database; window width 80 s., frequency threshold 30

Pattern size Possible candidates Candidates generated Frequent patterns

1 8 8 8
2 - - 69
3 768 407 347
4 81543 737 684
5 4’92·106 709 683
6 1’08·108 385 379
7 7’55·108 108 106
8 8’14·108 12 12

abdominal movement limitation are considered, totalling over 18000 events and
34 hours of sleep for the whole collection1.

Figure 6 shows the effect of the window width in the algorithms: the time
required increases rapidly with the window width. It is well known in the domain
that an airflow limitation may extend over a period of more than one minute,
thus the window size in some of our tests must be higher than 60 seconds.

Table 1 presents the number of candidate and frequent patterns found using
a window width of 80 seconds and a frequency threshold of 30 occurrences. The
’Possible candidates’ column represents the number of all possible combinations
of frequent patterns found in the previous iteration. ’Candidates generated’ rep-
resents the number of consistent candidates from all ’Possible candidates’. ’Fre-
quent patterns’ shows the number of candidate patterns that were found to be
frequent in ’Candidates generated’.

It is worth noting that one of the patterns of size 8 found by the algorithm
is similar to the notion physicians have of an apnea episode. The episode starts
with an airflow limitation, accompanied by the start of thoracic and abodminal
movement limitations almost immediatly and, at least ten seconds later, oxygen

1 http://www.gsi.dec.usc.es/datacollections/apnea

http://www.gsi.dec.usc.es/datacollections/apnea
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saturation decreases. Shortly after, airflow is resumed, as well as the thoracic
and abdominal movements, followed by an oxygen saturation increase.

6 Conclusions and Future Work

A new Temporal Data Mining technique that searches for frequent temporal pat-
terns in event sequences is proposed. Patterns found are represented with the STP
formalism, as in [4]. The novelty of our proposal lies in the use of a clustering tech-
nique to find the constraints in the temporal arrangement between pairs of event
types. This increases the expressiveness of the results, because the temporal pat-
terns gather those event types that are commonly found with a similar temporal
arrangement. The technique proposed in [4] results in one pattern for each set of
event types, which may not fully represent the data analyzed when the same set of
event types can be frequently found in several distinct temporal arrangements.

On the other hand, the algorithms proposed are intended to be computation-
ally efficient. The costly computation of a large number of clusters of tempo-
ral patterns, involving metric contraints between growing sets of event types is
avoided, and clustering is only carried out when searching for patterns of size
two. While searching for bigger patterns, it is enough to combine frequent pat-
terns found in the previous iteration, check their temporal consistency with a
Floyd-Warshall algorithm, and finally check their frequency in the data.

Our immediate goal is to evaluate our technique in different kinds of databases.
Preliminary results with both synthetic and real data are promising. Future work
is oriented to introducing previous knowledge of the domain in the form of seed
patterns. These patterns are defined by the user and allow him to prune the
search process by focusing on the events surrounding the occurrences of the
defined patterns.
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Abstract. Scientograms are a kind of graph representations depicting
the state of Science in a specific domain. The automatic comparison and
analysis of a set of scientograms, to show for instance the evolution of a
scientific domain of a given country, is an interesting but challenging task
as the handled data is huge and complex. In this paper, we aim to show
that graph mining tools are useful to deal with scientogram analysis. We
have chosen Subdue, a well-known graph mining algorithm, as a first
approach for this purpose. Its operation mode has been customized for
the study of the evolution of a scientific domain over time. Our case
study clearly shows the potential of graph mining tools in scientogram
analysis and it opens the door for a large number of future developments.

1 Introduction

The generation of a map of sciences or scientogram has been a persistent idea in
the modern ages. For instance, this could be achieved by the drawing of a graph
linking together different scientific research fields, topics or categories, using the
co-citation rate between the papers of these categories to denote the strength of
the links. It has been a persistent idea as the visualization of such information
graph has long been used to uncover and divulge the structure of Science [1,2].
However, analyzing scientific data is becoming increasingly difficult due to the
vast volumes of data generated nowadays. Up to our knowledge, no previous
fully automatic approaches have been designed to support the exploration of
large datasets in scientogram mining.

In general, the current scientogram analysis techniques perform a low-level,
non-automatic analysis and comparison of the maps [3,4,5]. To do so, they are
based on statistical techniques and macro- and micro-structure analysis for the
identification of thematic areas and scientific disciplines [6]. However, this ap-
proach shows a main limitation: only a single or a very reduced set of maps can
be analyzed or compared together. In fact, the field lacks an easy-to-use approach
allowing the identification and the comparison of scientific structures within sci-
entograms with a higher degree of automation. In our study, graph mining tools
are considered to perform a higher level analysis, allowing the joint comparison
of a larger number of maps (i.e., performing scientogram mining). Thanks to

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 310–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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that, the novel high-level analysis methodology introduced in the current con-
tribution and the existing low-level approaches can be used as complementary
frameworks for the analysis and comparison of scientograms.

Graph-based data mining (GBDM) [7] involves the automatic extraction of
novel and useful knowledge from a graph representation of data. It has been ap-
plied for frequent substructure discovery and graph matching in a large number
of domains including chemistry and applied biology, classification of chemical
compounds, and unsupervised and supervised pattern learning, among many
others. In particular, the first proposal in the topic, Subdue [8], based on the use
of the minimum description length (MDL) principle [9], has proved to be suc-
cessful in many different real-world applications. Since the MDL principle allows
the discovery of both large and frequent substructures we think that Subdue,
as well as any other GBDM technique based on the same idea (i.e., frequent
subgraph mining), is well recommended for scientogram analysis.

The structure of the current contribution is as follows. In the second section,
we review the current techniques to design and analyze scientograms as well as
the current state of the art of GBDM and the particular case of the Subdue
algorithm. In the third section we show how a scientogram analysis task, the
study of the evolution of a scientific domain over time, can be performed by
means of this algorithm. The fourth section presents the obtained results. Finally,
some concluding remarks and future works are pointed out in the last section.

2 Preliminaries

In this section we will present a state of the art of the current techniques used
to design and analyze scientograms, as well as a review of the GBDM field,
describing its scope and the most known techniques.

2.1 Scientogram Design

The generation of a scientogram following a top-down approach based on the ex-
istence of a previous document category structure requires the sequential appli-
cation of several techniques. The scientograms considered in this contribution are
built following De Moya-Anegón et al.’s methodology [10,5]. The SCOPUS-SJR
co-citation categories are used as units of analysis. Each category agglutinates
the journals that were categorized under that name, and likewise the documents
that were published in those journals. A co-citation measure is used to com-
pute the relational similarity between two categories i and j. It is defined as
CM(ij) = Cc(ij)+ Cc(ij)√

c(i)·c(j) , where Cc is the co-citation frequency and c is the

citation frequency. The Pathfinder algorithm [11,12] is considered to prune the
co-citation matrix. As a result, only the salient relationships between categories
are kept, capturing the essential underlying intellectual structure of the studied
scientific domain. The pruned network is then graphically represented using the
Kamada-Kawai’s graph drawing algorithm [13], chosen for its ability to repre-
sent naturally the most important elements in the center of the representation
(called the scientogram backbone).
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The rough considered data have been extracted from the Scimago Journal
& Country Rank portal1 (SCOPUS-SJR data) [5]. In this contribution, we will
deal with the United States and the Ukrainian maps from 1996 to 2005, based
on respectively 4 307 536 and 74 248 documents. Overall, the 20 scientograms
used have 4991 nodes and 5304 edges.

2.2 Graph-Based Data Mining and the Subdue Algorithm

The need of mining structural data to uncover objects or concepts that relate
objects (i.e., subgraphs that represent associations of features) has increased in
the past decade, thus creating the area of GBDM [7]. Nowadays, many GBDM
algorithms (Apriori-based GM, Frequent Subgraph Discovery, MoFa/MoSS, etc.)
have been proposed to deal with problems such as graph matching, graph visual-
ization, frequent substructure discovery, conceptual clustering, and unsupervised
and supervised pattern learning [14].

Among them, we can highlight Subdue [8], a graph-based knowledge discov-
ery system that finds structural, relational patterns in data representing entities
and relationships. This algorithm was the first proposal in the topic and has
been largely extended through the years. It uses the MDL principle [9] to dis-
cover interesting and repetitive (frequent) substructures in a structural database
(DB), extract them and replace them by a single node in order to compress the
DB. These extracted substructures represent structural concepts in the data.
Through the years, it has been successfully applied to a large range of real-world
problems such as aviation, chemistry, geology, counter-terrorism, bioinformatics,
and web structure mining.

Fig. 1 shows the outline of the Subdue GBDM algorithm. It takes as input the
original graph DB (comprised by a single graph or a set of graphs) from which
the substructures (i.e. subgraphs) have to be extracted and four parameters used
to limit the search while reducing the runtime. These parameters (BeamWidth,
MaxBest, MaxSubSize, and Limit) constrain the number of considered substruc-
tures and the total number of iterations of the algorithm. ChildList and BestList
are two ordered lists in which the substructures having the best evaluation values
appear first which guide the beam search process applied. The algorithm ends
up by returning the best substructures found considering the chosen evaluation
measure and the constraint parameters.

The evaluation of a substructure (see line 13) can be computed by different
measures, but the MDL-measure is the most popular. It measures how well
a substructure can compress the entire dataset. Hence, the algorithm aims to
maximize the following measure: valueMDLi(S,G) = I(G)

I(S)+I(G|S) where G is the
input graph, S is the candidate substructure, I(G) and I(S) are the number
of bits required to encode G and S, and I(G|S) is the number of bits required
to encode the graph obtained by compressing G with S, i.e. substituting each
occurrence of S in G by a single node.

1 http://www.scimagojr.com/

http://www.scimagojr.com/
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1. Subdue(Graph, BeamWidth, MaxBest, MaxSubSize, Limit)
2. ParentList = {Vertex v | v has a unique label in Graph}
3. Evaluate each vertex in ParentList
4. ChildList = {}
5. BestList = {}
6. ProcessedSubs = 0
7. WHILE ProcessedSubs ≤ Limit and ParentList �= ∅ DO
8. WHILE ParentList �= ∅ DO
9. Parent = RemoveHead(ParentList)

10. CandidateList = ExtendSubstructure(Parent)
11. FOR EACH Child ∈ CandidateList DO
12. IF SizeOf(Child) ≤ MaxSubSize THEN
13. Evaluate the Child
14. Insert Child in ChildList in order by value
15. ChildList = ChildList mod BeamWidth
16. ProcessedSubs = ProcessedSubs+1
17. Insert Parent in BestList in order by value
18. BestList = BestList mod MaxBest
19. Switch ParentList and ChildList
20. Return BestList

Fig. 1. The Subdue GBDM algorithm (reprinted from [8])

3 Subdue for Scientogram Analysis. Case Study:
Evolution of a Scientific Domain over Time

The application of Subdue as a powerful scientogram analysis tool will rely on
its frequent subgraph mining activity (i.e., we will perform scientogram mining).
Since the underlying scientogram structure is a social network (i.e., a graph),
the uncovering of common subgraphs (named Common Research Categories Sub-
structures or CRCSs in the following) to different scientograms in an automatic
fashion can provide the information analyst with very useful information to
explore the characteristics of the scientific domains represented. The latter ca-
pability can be applied to many different scientogram analysis and comparison
tasks. In the current contribution we have considered the use of Subdue to study
the evolution of the scientific domain of a single country over time. The consid-
ered Subdue implementation is that made by the original authors, available at
http://ailab.wsu.edu/subdue/.

Note that, by maximizing the MDLi measure, the optimization of two criteria
is jointly considered within Subdue:

– on the one hand, the measure highlights large substructures as a better com-
pression rate (or better MDLi value) is obtained when a bigger substructure
can be extracted and replaced (compressed) by a single node;

– on the other hand, the measure highlights substructures having a large sup-
port (the support of a substructure is the number of occurrences of this
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substructure in the DB) as a better compression rate is obtained when many
substructures are replaced (compressed) by a single node.

In our case, the graph DB G on which Subdue is applied is generally a single set
of scientograms. However, the alternative operation mode for Subdue considers
two distinct sets, a positive setGp and a negative set Gn, determined by the user.
In this operation mode, the goal of Subdue is to find the largest substructures
present in the maximum number of graphs in the positive set, which are not
included in the negative set. The MDLi measure is thus computed as follows:

valueMDLi(S,Gp, Gn) =
I(Gp) + I(Gn)

I(S) + I(Gp|S) + I(Gn)− I(Gn|S)
(1)

The use of negative maps allows the user to consider a given discriminative
criterion. For instance, for a given country, we can consider the scientograms of a
given (historical) time period as a positive set, and the remaining scientograms as
a negative set, to extract relevant information about the substructures appearing
or disappearing during this historical transition.

When considering the latter analysis of the evolution of a scientific domain
through time, an information science expert would be interested in knowing
which substructures appear in the analyzed domain, at which time, how big
they are, how many they are, where are they located, and so forth. This will
allow him to perform at least two kind of studies. On the one hand, an in-deep
analysis of the uncovered substructures themselves, which kind of categories are
they linking, etc. On the other hand, the study of some global statistics about
the size and the quantity of these substructures to respectively characterize the
importance of the evolution of the domain and its dynamics. This could be very
helpful to perform domain comparison or domain evolution analysis [5].

To do so, a scientific domain is first chosen. In our study, the scientific pro-
duction of a whole country is considered. As we want to look for CRCSs which
were appearing at a given time, we also need to pick two ranges of years, the
positive range and the negative range. The negative range is usually a set of
years from the past, in which these substructures (i.e. CRCSs) are not meant to
exist. The positive range is usually a set of years dated after the negative range,
in which the substructures are meant to be present. Subdue’s MDLi evaluation
criterion in equation (1) will be considered for this aim. As Subdue will be run
to extract the substructures present in the maps of the positive years but not
in the maps of the negative years, it will effectively uncover the CRCSs that
appeared at least once during the positive years.

4 Experiments and Analysis of Results

Two countries have been selected for this case study, Ukraine and United States.
The ten scientograms corresponding to the 1996-2005 period are considered for
each country. We have set up the parameters of Subdue so that it finds the
best 300 substructures regarding their MDLi-based evaluation, considering a
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BeamWidth of 4 to allow small response times. We performed our tests on an
Intel Quad-Core 2.40 GHz CPU with 2 GB of memory, obtaining a computa-
tion time inferior to 3 seconds. In all the following discussions the substructure
support is reported using two values (such as 3:4, for instance), with the first
number being the support in the positive set (corresponding to the scientograms
in the positive years), and the second number being the support in the negative
set (corresponding to the scientograms in the negative years). We consider a
substructure having a larger positive support and a smaller negative support as
having a better quality. In the same way, substructures having a larger size are
preferred over smaller ones as they are more specific.

Table 1. Support and size of the substructures extracted from the Ukrainian dataset

Support Size (nodes) Size (edges)
(pos:neg) #subs. min max avg min max avg

1:1 10 3 8 5.6 2 7 4.6
2:0 6 1 1 1 0 0 0
2:1 2 1 2 1.5 0 1 0.5
2:2 3 1 1 1 0 0 0
2:4 1 1 1 1 0 0 0
3:0 3 1 1 1 0 0 0
3:1 71 1 23 14.63 0 22 13.63
3:2 7 1 5 2.57 0 4 1.57
3:3 11 1 4 1.55 0 3 0.55
3:4 13 1 1 1 0 0 0
3:5 23 1 2 1.04 0 1 0.04
3:6 32 1 2 1.03 0 1 0.03
3:7 118 1 1 1 0 0 0

TOT. 300 4.45 3.45

First of all, we will look the Ukrainian scientograms domain with 7 negative
years (between 1996 and 2002) and 3 positive years (between 2003 and 2005).
Table 1 shows the global statistics of the 300 substructures found for this exper-
iment. The substructures have very diverse size, ranging from 1 to 23 nodes and
from 0 to 22 edges. Substructures having only one node are the most common
(a 70% of the total). Among them, 3 substructures have the optimal support of
3:0. These nodes are respectively Leadership and Management, Philosophy, and
Media Technology, indicating the Ukraine-based researchers developed research
in these categories exclusively after 2003. On the other hand, 71 substructures
were found with a support of 3:1, among them 5 have the maximal size of 23
nodes. Overall, the most interesting substructures, those having a null negative
support as well as the largest ones, are not numerous, thus allowing an expert
to quickly browse and analyze all of them.

As an example, Fig. 2 shows one of these substructures comprised by 23 nodes
and 22 edges, and its location within the full scientogram of the Ukrainian sci-
entific production in 2005. As can be seen, this substructure is quite large and
appears only during the last three years (actually the negative support of 1
comes from the fact that it also appears in the scientogram of 1998). This large
substructure has in fact two main clusters, Biochemistry and Physics and As-
tronomy, suggesting the research focuses on these topics during the three last
years. It occupies the center of the map, where the backbone of the Ukrainian
research is concentrated. Note also that, even if Biochemistry occupies in general
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Fig. 2. One of the substructures uncovered in Ukrainian scientograms during period
2003-2005 (on the left), and its location within the 2005 scientogram (on the right)

the central part of the scientograms [5], it could perfectly appear at any loca-
tion in an extracted substructure, or even not appear at all, depending on how
the maps are compared together and if this node is relevant given the chosen
criterion.

Table 2. Support and size of the substructures extracted from the USA dataset

Support Size (nodes) Size (edges)
(pos:neg) #subs. min max avg min max avg

1:2 2 2 3 2.5 1 2 1.5
2:0 8 1 1 1 0 0 0
2:1 32 4 13 9.41 3 12 8.41
3:0 3 1 1 1 0 0 0
3:2 3 1 1 1 0 0 0
3:3 7 4 6 5 3 5 4
3:4 1 1 1 1 0 0 0
3:7 244 1 4 1.05 0 3 0.05

TOT. 300 2.04 1.04

On the other hand, exploring what happens in the United States for the same
period shows us that significantly more smallest substructures are highlighted
(see Table 2). 300 substructures have been extracted, ranging from 1 to 13 nodes
and from 0 to 12 edges, having an average size of 2 nodes instead of 4.5 nodes as in
the Ukrainian case. Three substructures were obtained with the best maximum
support (that is, 3:0), but they are similar to those observed in the Ukrainian
domain, as they only have one node. Fig. 3 shows three more interesting sub-
structures, all of them having a support of 2:1 and a size of only 13 nodes. We
interpret that differences in the form of smaller substructures is an evidence of
countries having a more stable research infrastructure.

In order to have a deeper insight of the data, we have conducted another study
in which the time range is not fixed by the user, but it is defined by moving
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Fig. 3. Some substructures uncovered in the USA scientograms during years 2003-2005

windows. We start with five negative years and two positive years, and we add
a new positive year and remove the oldest negative year at each step.

Table 3. Support and size for some substructures extracted from the United States
dataset using a moving window of two positive years

Year ranges Support Size (nodes)
(negative) (positive) (pos:neg) #inst. min max avg
1996-1999 2000-2001 2:0 3 1 1 1
1996-1999 2000-2001 2:1 1 1 1 1
1996-2000 2001-2002 2:0 3 1 1 1
1996-2000 2001-2002 2:1 55 3 15 8.82
1996-2001 2002-2003 2:1 3 1 1 1
1996-2002 2003-2004 2:0 3 1 1 1
1996-2003 2004-2005 2:0 8 1 1 1
1996-2003 2004-2005 2:1 32 1 11 8.69

As a matter of comparison with the previous study, we will use the United
States dataset to detect smaller changes within the years. Many substructures
are extracted following this approach, but we kept only those corresponding to
a support of 2:1 or 2:0, i.e. the maximal possible support for this experiment.
Table 3 presents some statistics for this experiment. In general, all the uncov-
ered substructures present a small size, ranging from 1 to 15 nodes but being
equal to 1 in a 79% of the cases. All the substructures having a support of 2:0
are presented in Fig. 4. These substructures are small as they are composed of
only one node. However, even if they are independent, some relationships could
be found between them. For instance, during period 2001-2002 research areas
focused on care, diagnosis, and emergency are found. During period 2004-2005,
more research areas focused on medical specialities (orthodontics, periodontics,
oral surgery, pharmacology, etc.) made their apparition.

We should also remark an unusual fact, the high number of instances ob-
tained considering periods 2001-2002 and 2004-2005 with a support of 2:1. We
respectively obtained 55 and 32 substructures for those periods, two quite large
numbers when compared with the remaining statistics. During these periods, the
research in the United States evolved enough to produce a lot of changes in the
corresponding maps. These concerned categories mainly belong to the medical
domain, such as Emergency Nursing, Care Planning, Oral Surgery, Orthodontics,
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etc. Note also that only an automatic approach can quickly find and highlight
those periods with larger changes.

In view of the developed experiments, we can say that Subdue is a useful
tool to identify the new CRCSs in a given country and during a given set of
years. By looking into the specific research topics developed from one year to
another, or even looking at the global statistics, one can figure out some relevant
information about the evolution of research in that country. Notice how the
extracted substructures are not always located in the scientogram backbone but
in other different parts of the map, thus making the use of Subdue become a
complementary analysis tool to the existing low-level approaches.

5 Conclusions

In this paper, we showed how a GBDM technique, namely Subdue, can be suc-
cessfully applied to the complex task of scientogram analysis and comparison.
The scientific domains of two countries have been processed to study the evolu-
tion of research during time by extracting some interesting substructures as well
as some statistical parameters.

This methodology is scalable and it will not suffer if applied to an increased
volume of data. It has been shown that the generation of the graph visualiza-
tions, graph highlights (see Fig. 2), tables, and histograms is fully automatic.
Even if only the Subdue algorithm was used in this proposal, other GBDM al-
gorithms can be considered. For these reasons, GBDM can be viewed as a novel
scientogram analysis tool developed in complement to the current state-of-the-
art techniques. In the future, we plan to use other GBDM techniques (notably
multiobjective-optimization-based ones) and discover other uses of Subdue for
the analysis and comparison of scientograms.
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Abstract. This article proposes knowledge-based short-time prediction
methods for multivariate streaming time series, relying on the early
recognition of local patterns. A parametric, well-interpretable model
for such patterns is presented, along with an online, classification-based
recognition procedure. Subsequently, two options are discussed to predict
time series employing the fuzzified pattern knowledge, accompanied by
an example. Special emphasis is placed on comprehensible models and
methods, as well as an easy interface to data mining algorithms.

1 Introduction

Predicting “nasty” time series (instationary, multivariate etc.—stemming from
nonlinear dynamic processes) based on a global model, such as difference equa-
tions, resembles a David-sized answer to a Goliath-like problem, with question-
able success in the general case, though. In many real-world time series, however,
we may observe patterns that recur not in identical, but similar form according
to a regular or irregular scheme, often due to the diversity of loose or strict
rhythms and periodicities inherent in the gamut of many natural or social pro-
cesses. A modest but sound answer to time series prediction might therefore lie
in gaining data-based local knowledge of a process and employing this for pre-
dictions later on. In the following, an approach to the latter shall be outlined
which explicitely allows for the fundamental uncertainty attached to this task.

2 Fuzzy Time Series Patterns

2.1 A Multivariate Parametric Fuzzy Set

The elementary approach for modelling time series patterns followed in this
paper is a sample-point-wise model using fuzzy sets for each sample. In order to
cope with multivariate time series, a suitable multivariate fuzzy set from [1] will
be introduced beforehand. A rather unique feature of this set is that it can be
derived in parametric form from an intersection of univariate parametric fuzzy
sets of the following type:

μ(x) =
1

1 +
(

1
bl/r

− 1
)
·
∣∣∣∣x− rcl/r

∣∣∣∣dl/r
with

{
bl, cl, dl for x < r

br, cr, dr for x ≥ r (1)
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The effect of r and the side-specific parameters b and c can be understood from
Fig. 1a. While cl/r > 0 quantify the uncertainty (as in crisp sets), bl/r ∈ (0, 1] and
dl/r ≥ 2 account for the fuzziness of this uncertain information, where increasing
values of dl/r lead to sharper descents of the membership value to zero and
dl/r → ∞ result in rectangular (crisp) sets. For the multivariate extension, N
fuzzy sets of this type are being combined using a compensatory Hamacher
intersection (2), resulting in an N -dimensional parametric membership function
μ : IRN �→ (0, 1], cf. (3). Exemplary sets for N = 2 are shown in Fig. 1b.

∩N
Ham μi =

(
1
N

N∑
i=1

1
μi

)−1

(2)

μ(x) =

(
1 +

1
2N

N∑
i=1

[1− sgn(xi − ri)] ·
(

1
bli
− 1
)
·
∣∣∣∣xi − ri
cli

∣∣∣∣dli

+
1

2N

N∑
i=1

[1 + sgn(xi − ri)] ·
(

1
bri

− 1
)
·
∣∣∣∣xi − ri
cri

∣∣∣∣dri
)−1

(3)

r−cl r r+cr
0
bl

br

1

μ
(x

)

(a) One-dimensional case (b) Two examples of 2D-functions

Fig. 1. The multivariate parametric membership function (3)

2.2 Modelling and Classification of Time Series Patterns

Equation (3) can now be employed to model equidistantly sampled multivariate
time series patterns. For a pattern of length L (sample points), L membership
functions are being used and result in a progression of fuzzy sets that can be
interpreted and displayed as a fuzzy corridor for instances of the respective
pattern, cf. Fig. 2. We will denote the fuzzy set for the t-th sample point of a
pattern by μP,t(x). With (3) being an unimodal function, the mean course of a
pattern is therefore being captured along with the uncertainty in its realisations.

The parameters of the fuzzy sets μP,t may either be formulated by experts,
or—as described in [2]—determined automatically from sets of pattern instances.
The latter case is especially suited for joint use with time series motif mining
algorithms, e. g. [6], with the sole assumption that instances of one pattern are
equal in length and similar in the fuzzy sense of our model.
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Fig. 2. Fuzzy time series pattern along with a noisy candidate sequence

To classify whole time series x(1), . . . ,x(L) of the same length as the fuzzy
model given by μP,1(x), . . . , μP,L(x), it is only necessary to combine the indi-
vidual (elementary) classification results for all samples x(t) in their respective
classes μP,t(x):

μ = μP,1(x(1)) ∩ . . . ∩ μP,L(x(L)) (4)

If (2) is being used for the operator ∩ again, we essentially obtain an (N · L)-
dimensional fuzzy classifier as a natural extension of the multivariate set (3),
i. e. with the same parametric structure and mode of operation. Figure 2 gives
a visual example of a classifier for a univariate time series sequence.

One important advantage of this approach has to be seen in its ability to
classify subsequences of a pattern, i. e. instances of a length less than L, by
intersecting only classification results for sample points that are available. We
will rely on this property in Sect. 3.2 to classify incompleted pattern instances.

3 Online Recognition of Patterns

3.1 Problem Statement

In a context of streaming time series, with one new datum x(t) being available
at each point in time t, we want to be able to recognise previously known local
patterns (each of them modelled by the fuzzy means introduced in Sect. 2.2)
in an online manner. If we are able to detect a pattern before it is completed
(say, at a stage τ < L), a short-time prediction can be derived based upon the
knowledge still “left” for the pattern’s (L− τ) remaining sample points.

If we consequently follow a fuzzy approach, however, a recognition system
will (and should) recognise every known pattern in every possible stage of de-
velopment, all at the same time. Although this wealth of information will ob-
viously have to be narrowed down to usable “key” information later on, we
will show how to work with and modify the recognition results before. On the
other hand, this calls for a recognition approach with computational require-
ments which are not prohibitive, while still delivering every possible recognition
result.
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3.2 Motivation for Recursive Equations

At any point in time t, a pattern instance in a streaming time series x(t) may be
present and will, due to the fuzzy approach to pattern recognition, be detected
in every possible stage τ = 1, . . . , L. We will denote the classification result for
an incompleted pattern at stage τ by μ(t, τ), which means that L such results
form the complete recognition result for a pattern at one point in time t. For
every possible value of τ , μ(t, τ) can be computed as given by (5).

μ(t, τ) = μP,1(x(t− τ + 1)) ∩ . . . ∩ μP,τ (x(t)), τ = 1, . . . , L (5)

Unfortunately, this also means that
∑L

i=1 i =
1
2L·(L+1) elementary classification

results μP,1...L would have to be computed at every time step. If we compare pre-
vious recognition results μ(t− 1, τ) against the current results μ(t, τ), however,
it can be noticed that some of them share almost all elementary classification
results, as depicted in Fig. 3a. More precisely, μ(t, τ) could be recursively de-
rived from μ(t − 1, τ − 1) by incorporating μP,τ (x(t)), as shown in (6). As a
consequence, only L elementary classification results μP,1...L would have to be
computed at each point in time to update the recognition results. This equals
the computational cost of detecting only completed patterns by using (4), i. e.
there is no computational overhead regarding elementary classification steps to
obtain recognition results for incompleted patterns at every possible stage.

μ(t, τ) = [μP,1(x(t− τ + 1)) ∩ . . . ∩ μP,τ−1(x(t− 1))]︸ ︷︷ ︸
μ(t−1,τ−1)

∩ μP,τ (x(t)) (6)

μ(t, τ)

t

x

μ(t− 1, τ − 1)
(a) Motivation for recursion

x(t)
μτ(t)

z−1μτ(t− 1)

(b) Recursive classifier

Fig. 3. Recursive classification (recognition) of time series patterns

3.3 Update Equations for Recursive Pattern Recognition

In order to derive a recursive equation for μ(t, τ) like (6), which must deliver
equivalent results compared to the non-recursive equation (5), an intersection
operator ∩ is needed which preserves the weight of the left- and right-hand side
truth values, as μ(t− 1, τ − 1) is already the result of the intersection of (τ − 1)
truth values. In [3] we showed how to extend the compensatory Hamacher
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intersection (2) to a weighted conjunction (7) preserving given weights as needed
here. This allows to reformulate (6) to (8).

μa
Na∩Nb μb =

1
1

Na +Nb

(
Na

μa
+
Nb

μb

) (7)

μ(t, τ) = μ(t− 1, τ − 1) (τ−1)∩1 μP,τ (x(t)) (8)

If we rearrange the pattern recognition results μ(t, τ) ∀τ in a vector μτ(t), the
elementary classification results of x(t) to all classes μP,1...L in μP(x(t)), and
define a vector of weights nτ,

μτ(t) =

⎛⎜⎝μτ,1(t)
...

μτ,L(t)

⎞⎟⎠ =

⎛⎜⎝μ(t, 1)
...

μ(t, L)

⎞⎟⎠ , μP(x(t)) =

⎛⎜⎝μP,1(x(t))
...

μP,L(x(t))

⎞⎟⎠ , nτ =

⎛⎜⎜⎜⎝
0
1
...

L− 1

⎞⎟⎟⎟⎠ ,
we can—as done in [3]—obtain a vectorial update equation for the recursive
classifier depicted in Fig. 3b:

μτ(t) =
((

1
0

)
+
(
0T 0
I 0

)
· μτ(t− 1)

)
nτ∩1 μP(x(t)) (9)

3.4 Post-processing of Recognition Results

For prediction purposes, early recognition results μ(t, τ) with τ � L promise
the largest prediction horizon, but are quite unreliable, as based on only very
few data points. On the other hand, almost completed patterns (τ ≈ L) may be
detected reliably, but are rather pointless by leaving nothing to predict.

It appears difficult to define strict boundaries for both reliable and usable
values of τ , which is why we propose to formulate a soft compromise by means
of a fuzzy set μw : {1, . . . , L} �→ [0, 1], called the fuzzy window of interest w. r. t.
τ . This window may then be applied to μ(t, τ), leading to so-called windowed
recognition results in (10).1 Semantically, (10) corresponds to a coincidence of
interest in a certain stage τ and the actual recognition of a pattern in this stage.
An advantage of the fuzzy recognition results μ(t, τ) is that we can perfom this
windowing procedure in a completely fuzzy manner before any decision step.

μ̃(t, τ) = μ(t, τ) ∩ μw(τ) ∀τ (10)

When these results shall serve as a rationale for concrete actions such as predic-
tions, however, crisp values for the similarity and stage of the detected pattern
will often be necessary. For the time being, we will employ a first-of-maxima
(FOM) approach to the defuzzification of μ̃(t, τ) to obtain crisp results μ̃∗ and
τ∗ at every point in time.
1 Non-compensatory intersections (such as all T-norm operators) should be employed

for ∩ in (10). In this paper, the Hamacher product will be used.
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4 Pattern-Based Short-Time Prediction

As soon as one or more evolving patterns are being detected in a streaming time
series (resulting in μ̃∗ and τ∗ as described in the previous section), a short-time
prediction of the time series can be provided for a horizon of (L−τ∗) samples for
every detected pattern. While the fuzzy recognition system will be able to detect
any pattern at any time, dissimilar pattern instances (with small values of μ̃∗)
will obviously not form a good foundation for predictions and should therefore
be neglected, i. e. by requiring μ̃∗ to pass a certain threshold. Subsequently, two
prediction methods will be presented which work with one detected pattern; the
combination of several of these predictions will be discussed afterwards.

4.1 Prediction Methods

(I) Knowledge-based prediction based on a pattern’s mean course. Given the
fuzzy time series model of Sect. 2.2 and especially its visual representation in
Fig. 2, it almost suggests itself to base a prediction of a detected, but not yet
completed pattern (stage τ∗) on its mean course. In the underlying fuzzy sets
from Sect. 2.1, this corresponds to the modal parameters r in (3) for each sample
point. For a prediction horizon p, 1 ≤ p ≤ L−τ∗, we can simply use these values
for a prediction of the time series x beyond time t:

x̂(t+ p) = r(τ∗ + p) (11)

(II) Extrapolating prediction based on fuzzy implication. While this method from
[7] was first and foremost designed for univariate (N = 1) global time series and
their fuzzy models, it may be used for multivariate (N > 1) local time series
patterns as well, if applied for every component xi, i = 1, . . . , N of the time
series according to the following procedure.

In the fuzzy description of the τ∗-th sample point, the position of x(t) in
comparison to r(τ∗) is determined as in (12). For the predicted value of the next
time step x̂(t + 1) it is firstly assumed that the qualitative position δ(τ∗ + 1)
in relation to r(τ∗ + 1) will remain the same. Secondly it is implied that if the
overall recognition result for the known sample points is μ(t, τ∗), the predicted
value x̂(t+1) would produce the same value for its future classification result in
μP,τ∗+1(x̂(t+ 1)), cf. (13), similar to the propagation of a truth value from the
antecedent part of a fuzzy rule to its consequence.

δ(τ∗) =

{
−1 , x(t) < r(τ∗)
+1 , x(t) ≥ r(τ∗) (12)

μP,τ∗+1(x̂(t+ 1)) != μ(t, τ∗) (13)

With these premises and δ(τ∗) at hand, it is possible to obtain x̂(t + 1) by
rearranging the membership function μP,τ+1, given in (1), to (14).
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x̂(t+ 1) = r(τ∗ + 1) + (14)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
((

1
μ(t, τ∗)

− 1
)
·
(
bl(τ∗ + 1)

1− bl(τ∗ + 1)

)) 1
dl(τ

∗+1)

· cl(τ∗ + 1) , δ(τ∗) = −1

+
((

1
μ(t, τ∗)

− 1
)
·
(
br(τ∗ + 1)

1− br(τ∗ + 1)

)) 1
dr(τ∗+1)

· cr(τ∗ + 1) , δ(τ∗) = +1

For a multi-step prediction, (14) may either be recursively repeated (with x̂(t+
p − 1) being reclassified for the prediction of x̂(t + p)), or the implication of
constant relative position δ(τ∗ + p) and classification results μP,τ∗+p may be
extended to farther sample points p > 1. If x̂(t+p) is based on only one detected
pattern (cf. Sect. 4.2), both approaches lead to identical results.

4.2 To Combine or Not to Combine

If several (K) patterns are being detected and used for (different) predictions, the
latter have to be combined to obtain a compromise that reflects the reliability of
the individual recognition results. The center-of-gravity method is one approach
to this, resembling the defuzzification step for several active fuzzy rules:

x̂(t+ 1) =

K∑
k=1

μ̃∗k · x̂k(τ∗k + 1)

K∑
k=1

μ̃∗k

(15)

One has, however, to decide application-specifically if such a combination does
make sense from a semantic point of view: May different patterns be “active”
at the same time? This is especially questionable if the pattern knowledge was
gained through motif mining algorithms like [6], which almost always assume
only one active pattern at a time. Common sense would probably opt for basing
a prediction only on the latest information available. Figure 4 sketches a case
were it indeed seems advisable to discard older results and solely use the best and
most recently recognised pattern for a local prediction. In other cases, however,
(15) may just as well lead to (quantitatively) better results, despite the fact that
such a combination might (semantically) not be well justified.

x

tt1 t2

x̂(t1 + Δt)

x̂(t2 + Δt)xA

LBLA

xB

patterns time series and

t3 t4

local predictions

Fig. 4. Pattern-based prediction with varying horizons. From time t2, a prediction only
based on xA would yield better results than a combination of both patterns.
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4.3 Selection of a Suitable Method

While the prediction method (I) in Sect. 4.1 may be described as cautious or
conservative, only reproducing the knowledge about a pattern’s mean course,
method (II) is, in principle, able to extrapolate to the entire universe of discourse.
When should we select which of these methods?

This question ultimately leads to another, more philosophical question regard-
ing the fuzzy sets describing a pattern: What is the source of the uncertainty
and fuzziness represented by the parameters b, c and d in (1)? In time series
datasets, we encounter different phenomena that may help answering our initial
question. To mention two examples: In Fig. 5a, instances of the pattern and the
mean course run mostly in parallel—the instances “breathe”. Entirely different
is especially the second half of the pattern in Fig. 5b, where the instances exhibit
a large amount of high-frequency noise added to the mean course. In the latter
case, the cautious prediction method (I) would—on average—deliver better re-
sults, whereas method (II) is suited to extrapolate “breathing” instances of the
pattern in Fig. 5a.

100 200 L

0

20

40

t

x

(a) Example: ‘Coffee’ dataset

50 100 L

−2

0

2

t

x

(b) Example: ‘FaceAll’ dataset

Fig. 5. Different reasons for uncertainty in time series patterns (data from [4])

5 Example and Conclusion

In the random time series displayed in Fig. 6a, five randomly chosen instances
from each of the two patterns in Fig. 5 were embedded in alternating order, with
additional slight noise added. To complicate the recognition process, both pat-
tern ensembles were made more similar by normalisation and resampling to the
same mean, variance and length (100 samples). The random parts between the
instances were filtered and scaled to closely match the patterns’ properties and
shapes. For the recognition and prediction, fuzzy models as described in Sect. 2.2
were learned from the datasets, and a fuzzy window of interest formulated such
that pattern instances should be at least half-way completed.2

The results μ̃∗(t) of the decision step based on windowed recognition results
μ̃(t, τ) for both patterns are presented in Fig. 6b. Coming to a crisp decision

2 For μw(τ ), the membership function (1) was employed and parameterised with r =
60, cl = 10, cr = 40, bl = 0.5, br = 0.7, dl = 4, dr = 2 to obtain high values μw for
τ > 50 and a rather steep decrease of interest for lower values of τ .
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(a) Random time series with embedded pattern instances (marked black)
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(b) Results μ̃∗(t) of the fuzzy decision (black: ‘Coffee’ pattern, grey: ‘FaceAll’)
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(c) Embedded (grey) and crisp decision on detected patterns (black)

Fig. 6. Example for the recognition of patterns embedded in a random time series

on one active pattern and applying a threshold of μ̃∗(t) ≥ 0.5, we can see from
Fig. 6c that the embedded instances are recognised reliably throughout the time
series, each—as desired—in its second half of development. Using a more sophis-
ticated decision procedure, which is beyond the scope of this paper, additional
short-lived recognition results (the spikes in Fig. 6c) could be filtered out.

To compare the prediction methods qualitatively, two sections of the time se-
ries along with different short-time predictions are displayed in Fig. 7 in higher
detail. In Fig. 7a, the predictions based on method (II) yield better results, while
the simple method (I) outmatches (II) in Fig. 7b. One special property of the
prediction approach presented in this paper, which is also visible in Fig. 7, is
that a new prediction with a different horizon may be available at each point
in time. Due to this fact and that predictions may—depending on the size of
the knowledge base—not be available at any time, a quantitive comparison to
existing prediction approaches calls for new, suitable performance measures.
The comparability with (say: model-based) methods designed for fixed horizons,
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Fig. 7. Local predictions of x(t) (light grey) using method (I) (black) and (II) (grey)

however, will always be impaired by the missing flexibility on the one (model-
based) side, and the unguaranteed availability on the other (pattern-based).

In contrast to earlier works in similar fields [5,8], the pattern model of this
article can directly employ results of motif-oriented data mining algorithms. Be-
sides the possibility of soft windowing, subsequent work should explore further
advantageous uses of the fuzzy recognition results, especially a more sophisti-
cated decision strategy.
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1 Introduction

The process of managing great amounts of information referring to business
activities is a current hip topic nowadays. The time dimension is crucial in any
activity, either commercial or scientific, or even in daily routine, and, as such,
it uses to appear in historical databases. The analysis of this kind of databases
allows users to make decision making and forecasting [2]. Researchers within the
Information Systems field have focussed a large part of their efforts on searching
for this kind of Business Intelligence solutions, and they have found a very useful
tool in Data Mining techniques.

Time Series Data Mining is a topic of interest for many authors [1]. A key point
in Data Mining is that of understandability of information, to the extent that,
in many occasions, simply providing an understandable summary of data is the
most valuable contribution. In this process, linguistic summarization techniques
are specially helpful because they produce sentences close to natural language
for describing data, and this is a very convenient way to provide information to
the users.

Due to its well-known capability to fill the gap between understandable and
precise data, Fuzzy Set Theory provides us a powerful tool in order to deal with
the linguistic summarization problem. An essential part of the research in this
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field can be found in R. R. Yager’s works, where he uses quantified sentences
in the sense of L. A. Zadeh first [15], and OWA operators later [16,17]. Also
following Zadeh’s footsteps, we can find J. Kacprzyk et al. in [7,9,10,11,12],
proposing new quality measures and using the protoform concept. G. Raschia
et. al created a model named SaintEtiQ [13], working with hierarchies. From a
different point of view, P. Bosc and D. Dubois proposed the use of association
rules [3]. In previous work we have also centered our efforts in obtaining linguistic
summaries that briefly present the essential information regarding the evolution
of a given variable over time [4,5].

Linguistic description is specially interesting in the comparison of time series
as well. In [6] M. Umano et al. carry out a study about the description of time
series data using their global trend and local features. In another related work,
J. Kacprzyk and A. Wilbik [8] focus on the evaluation of similarity of time
series. They propose a fuzzy quantifier based aggregation approach and apply
their method to the analysis of investment fund quotations in order to show its
usefulness.

The aim of this paper is to present a method for the linguistic comparison of
time series. The method is based on the computation of a linguistic summary
of a special type of time series that represents the difference between the series
being compared. For that purpose we use as basis our previously developed sum-
marization techniques. The possibility of obtaining alternative semantics in the
summary is given by the use of several approaches to compute the difference be-
tween series. The paper is organized as follows: Section 2 defines the comparison
problem; Section 3 presents the proposed approach to obtain the linguistic com-
parison. Finally, a practical example appears in Section 4 and some conclusions
are presented in Section 5.

2 A Linguistic Framework to Describe Time Series

As we have mentioned in the introduction, our intention is to obtain a linguistic
summary that describes the difference in value between two series across time.
The series are required to be defined over the same variable scale and the same
time domain. In order to obtain the linguistic summary we will use a hierar-
chical fuzzy partition of the time domain and a fuzzy linguistic granulation of
the variable domain. In the following, we will present how the data series are
described at the start up.

As we can see, Figure 1.a) represents the behavior of a given variable V along
time in two different series. The y-coordinate displays the domain of the variable
V and the x-coordinate shows the time dimension.

We assume that the time dimension is described in its finest grained level of
granularity by T = {t1, ..., tm}. Then, we consider a couple of time series defined
on this time dimension, namely, TS1 and TS2. TSi(tj) represents the value of
the variable V under study in tj as given by TSi.

Once we have the difference time series data, we have to obtain an appropriate
linguistic summary of this new series. In order to do that, we will describe the
linguistic context [See Figure 1.b)]:
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TS

Difference

Time

0

0 1

a) Initial time series. b) General context for the
summarization of a time series.

Fig. 1. TS1, TS2, and ΔTS

– The basic domain of variable V is partitioned by a set of linguistic labels
E={E1, ..., Es}.

– The time dimension is hierarchically organized in n levels, namely, L=L1, ...,
Ln. Each level Li has associated a partition {Di,1, ..., Di,pi} of the basic time
domain.

There is no restriction concerning the form of the membership function of a label
apart from that it must be normalized. In our approach, we will use trapezoidal
functions. When necessary, labels Di,j in time dimension can be the union of a
set of trapezoidal functions. In this work, a set of labels {X1, ..., Xr} is a partition
on X iff:

1. Xi is normalized ∀i ∈ {1..r}.
2. ∀x ∈ X, ∃Xi, i ∈ {1..r}|μXi(x) > 0.
3. ∀i, j ∈ {1..r}, i �= j, core(Xi) ∩ core(Xj) = ∅.

Conditions 1 and 3 imply Xi �⊆ Xj ∀i �= j. Additionally, concerning the hierarchy
of the time dimension, we add the following constraints:

1. ∀i, j ∈ {1..n}, i < j, pi > pj (i.e, as we move upward in the hierarchy, the
number of labels of the partition decreases).

2. ∀i ∈ {2..n}, ∀j ∈ {1..pi}, ∀k ∈ {1..pi−1}|(Di,j ⊆ Di−1,k) → (Di,j = Di−1,k)
(i.e., labels cannot generalize another label of an upper level).

3 Linguistic Comparison of Time Series

The method we proposed is based in two main steps. The first step is the ob-
tention of a new time series as the difference ΔTS between the two series being
compared. The second one is the obtention of the linguistic summary of this new
series with information regarding the comparison.
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3.1 Three Semantics for the ΔTS Time Series

ΔTS time series can be obtained in several different ways. Let us consider the
following definition.

Definition 1 Let TS1 and TS2 be two time series defined over the same variable
V at a given period of time. Then,

ΔTSabs(ti) = TS1(ti) − TS2(ti) (1)

ΔTSglobal(ti) =

⎧⎨⎩ 0, if TS1(ti) − TS2(ti) = 0
TS1(ti) − TS2(ti)

M − m
, otherwise

(2)

ΔTSlocal(ti) =

⎧⎨⎩ 0, if TS1(ti) − TS2(ti) = 0
TS1(ti) − TS2(ti)

max(TS1(ti), TS2(ti)) − m
, otherwise

(3)

where ti is a specific point in the time domain, M is the global maximum of
TS1 and TS2, and m is the global minimum of TS1 and TS2.

Each of one of the above defined series proposes a different way to face the
computation of the new series that describes the difference between the two
initial ones. At a given time point ti,

– ΔTSabs(ti) is the difference, in absolute terms, between the two original
series at the point ti (Equation 1).

– ΔTSglobal(ti) is the difference, in relative terms, between the two original
series at the point ti, according to the scale of values of the two original
series (i.e., the difference between the global maximum and minimum of the
two series)(Equation 2).

– ΔTSlocal(ti) is the difference, also in relative terms, between the two original
series at ti, but now according to the scale of values of the given time point
in the two original series (i.e., the difference between the maximum value at
the given time point and the global minimum) (Equation 3).

The choice of the strategy depends on the necessities of the user or the problem
in each particular situation. ΔTSabs is the only option if we are interested in
the analysis of the difference between the series in absolute terms. Figure 2.a
depicts an example of the use of this first alternative. As can be seen, the new
series ranges over the same variable domain than the original one.

Nevertheless, if we are interested in the analysis of the difference between the
series in relative terms, we have two different alternatives. Figure 2.b shows the
ΔTSglobal and ΔTSlocal obtained for the previous example. The figure illustrates
the difference between the two strategies: while in ΔTSglobal the same difference
between the original series produces always the same value in the new one (see
points a and b), in ΔTSlocal the lower the original values the greater the signif-
icance of the difference (see points c and d). In this sense, ΔTSabs behaves like
ΔTSglobal (see Figure 2.a, points a and b).
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a) TS1, TS2 and ΔTSabs b)ΔTSlocal and ΔTSglobal

Fig. 2. Time series data

Once we have opted for a given strategy, we have to provide a linguistic
description of the domain of the new series. In our method, we use a linguistic
variable with the following features (we shall show an example later in this work):

– The linguistic variable covers both positive and negatives values.
– In the case of ΔTSabs, it is defined on the range [−M,M ].
– In the case of ΔTSglobal and ΔTSlocal, it is defined on the range [−1, 1].

3.2 The Obtention of the Summary

In the previous subsection, we have analyzed how to obtain a new time series
that describes the difference between the two time series under study. Now, we
have to obtain an appropriate linguistic summary of this new series.

In this work, we are interested in linguistic summaries that take the form
of a collection of quantified sentences describing the behavior of a time series.
We assume that the basic elements of these summaries are the linguistic labels
described in Section 2. That is, our approach will deliver a collection of sentences
of the form “Q of DS

i,j are AS” where:

– Di,j is a label member of a certain level i of the hierarchy associated to the
time dimension and DS

i,j(< t, v >) = Di,j(t).
– A is a label or the union of a subset of labels of the partition of the variable
V under study (in our case, according to the strategy followed in order to
obtain the new series, this partition will be defined on [-M,+M] or [-1,1]),
and AS(< t, v >) = A(v).
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Additionally, the user must provide a collection of quantifiers defining the kind
of fuzzy quantities and percentages she is interested in. This can be defined by
choosing among a collection of predefined quantifiers. In this work, we consider
that the user provides a totally ordered subset {Q1, ..., Qqmax} of a coherent
family of quantifiers Q [14] to be used in the summarization process. In addition,
the user will provide a threshold τ for the minimum accomplishment degree she
wishes for the quantified sentences comprising the summaries.

In [5] we presented two different approaches to obtain linguistic summaries.
Algorithm 1 represents one of the algorithms. For the sake of brevity in the
final summary, we start from the time periods in the top level of the hierarchy.
Following that premise, we try to avoid going down in the hierarchy levels: in
order to stay in more general levels, the methods try to use groups of labels in
the domain or try to use a less strict quantifier. Each level has its own quantifier
bound (Qboundi) and grouping bound (Gboundi) that, respectively, indicate the
less strict quantifier to be considered and the maximum number of labels Ei to
be aggregated in a sentence at this level of the time domain.

The set ToSummarize is the collection of time periods for which a quantified
sentence is missing. If it is possible to obtain an accomplishment degree greater
than τ for a certain period using a quantifier Q and a single label, then the
procedure considers the period is sufficiently described. If it is not possible,
the procedure tries with the union of different subsets of labels: couples, trios,
quartets, etc, until we obtain an accomplishment degree greater than τ . The
size of the subset is given by k being Gbound its maximum value (the second
procedure tries with a less strict quantifier being Qboundi the limit). When a
summary is found in a certain time period we say that the period is covered.
If all the groups were tried without success, the algorithm repeats the grouping
process again, but with a less strict quantifier, until Qboundi is reached (in the
second procedure, if all possible quantifiers were tried, the process is repeated
with a bigger group of labels, until Gbound is reached). If no result is found
for a given period Di,j , we try to obtain such sentences with the corresponding
children ch(Di,j) in the next level of the domain (line 21), where where ch(Di,j)
is defined as follows: ch(D1,j) = ∅ for all j. Otherwise, ch(Di,j) = {Di−1,k, k ∈
{1..pi−1}|Di−1,k∩Di,j �= ∅ and ¬∃D ∈ ToSummarize∪Summarized, (Di−1,k∩
Di,j) ⊆ D}, and Ck = {∪Eh∈FEh | F ⊆ E, |F | = k}. If ch(Di,j) = ∅, then a
sentence indicating the observed variability is added to the summary (Di,j is
highly variable1). The final set of linguistically quantified sentences comprising
the summary is Summary.

The second algorithm proposed in [5] is similar to that in Algorithm 1 with the
difference that when it is not possible to obtain an accomplishment degree greater
than τ for a certain period using a quantifier Q and a single label, the procedure
tries with less strict quantifiers before trying with aggregations of labels in E.

In any case, when the summary is obtained, the set of sentences is post-
processed in order to produce an easier to read paragraph. The repetitions can

1 Though variability is also analyzed in [9], we refer to this characteristic of the series
only when we cannot suitably summarize the values for a given time period.
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Algorithm 1 to obtain linguistic summaries.
Input

A time series S, a hierarchical fuzzy partition of the time dimension D, a linguistic variable E,
a totally ordered subset {Q1..Qqmax} of a coherent family of quantifiers Q, a threshold τ as
minimum accomplishment for quantified sentences, and, for each level i, maximum number of:
a) quantifiers to use (Qboundi), and b) labels to group together (Gboundi).

Output

A Summary of S comprised of a set of quantified sentences.

Algorithm
1: ToSummarize ← Ln;
2: Summary ← ∅; Summarized ← ∅;
3: while ToSummarize �= ∅ do
4: Take Di,j ∈ ToSummarize
5: ToSummarize ← ToSummarize\{Di,j};
6: p ← qmax; covered ← false;
7: while p ≥ Qboundi and not covered do
8: k ← 1;
9: while k ≤ Gboundi and not covered do
10: Let A ← argmaxB∈Ck

GDQp (BS/DS
i,j);

11: if GDQp (BS/DS
i,j) ≥ τ then

12: Summary ← Summary ∪ {Qp of DS
i,j are AS};

13: Summarized ← Summarized ∪ (Di,j);
14: covered ← true;
15: end if
16: k ← k + 1;
17: end while
18: p ← p − 1;
19: end while
20: if not covered and i > 1 then
21: ToSummarize ← ToSummarize ∪ ch(Di,j);
22: else if i = 1 then
23: Summary ← Summary ∪ {DS

i,j is highly variable};
24: end if
25: end while

be removed via merging sentences that cover different time periods but produce
the same trend. The merging process takes into account sentences with the same
quantifier and trend as well as sentences with the same quantifier. For example,
if the summary is In A, the difference was mostly low or very low. In B, the
difference was mostly low or very low, the function produces the shorter sentence
In A and B, the difference was mostly low or very low.

4 An Illustrative Example

In this section we will work with an illustrative example in order to apply our pro-
cess and clarify concepts or procedures introduced in formers sections. Figure 3
contains the time series that shows the patient inflow on two different medical
centers during a given year.

Using equations 2 and 3 we obtain the time series data depicted in Figure 4,
both relative differences. The y-coordinate represents the relative differences
and the x-coordinate represents the time dimension. In Fig. 4, the linguistic
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Fig. 3. Patient inflow in two medical centers

labels defined on the domain of the relative differences are depicted on the
y-axis as trapezoidal functions with parameters: much lower=(-1,-1,-0.8,-0.6),
lower=(-0.8,-0.6,-0.3,-0.1), similar=(-0.3,0,0,0.3), higher=(0.1,0.3,0.6,0.8), and
higher=(0.6,0.8,1,1). As we can see, the time dimension is hierarchically orga-
nized following a meteorological criteria thanks to three fuzzy partitions of the
time domain, namely: one based on approximate months (in order to avoid a
strong dependence of the obtained summaries with respect to the crisp bound-
aries of conventional months) and two others with different levels of granularity.
Fuzziness is specially useful in these two last partitions because transitions be-
tween periods are clearly fuzzy.

The example is carried out using a subset of trapezoidal quantifiers Q =
{Q1 = (0, 0.4, 0.6, 1), Q2 = (0, 0.6, 0.8, 1), Q3 = (0, 0.7, 0.9, 1)} (that we have
called at least half of, at least 70% of, and most of, respectively) and a threshold
τ = 0.7 and values Qboundi = Gboundi = 2 ∀i as parameters. For instance, we
will use Algorithm 1 with the time data taken from the local relative difference
(ΔTSlocal) between patient inflow in centers A and B. The set of quantified
sentences obtained is:

- At least 70% of the time with cold weather, the patient inflow is much higher in

center A than in center B

- At least 70% of the time with hot weather, the patient inflow is lower or much lower

in center A than in center B

- At least 70% of the time with cold to hot weather, the patient inflow is higher or

similar in center A than in center B

- The patient inflow difference between centers A and B in September presents variability

- At least 70% of the time in October, the patient inflow is similar or lower in center

A than in center B

- Most of the time in November, the patient inflow is much higher or higher in center

A than in center B.
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Fig. 4. Local relative difference ΔTSlocal in the example

5 Conclusions

The approach presented allows us to obtain a linguistic summary about the com-
parison of two time series. This summary is built using the difference in each
time point between the series being compared. Our method provides understand-
able summaries which help the users in the decision making process. We rely on
user-defined features like a hierarchical fuzzy partition of time dimension and a
coherent subset of quantifiers to achieve brief and understandable summaries.
As future work we plan to perform linguistic comparison on the basis of other
features, and to apply new summarization algorithms that are currently being
developed.

References

1. Batyrshin, I.Z., Sheremetov, L.: Perception-based approach to time series data
mining. Appl. Soft Comput. 8(3), 1211–1221 (2008)

2. Batyrshin, I.Z., Sudkamp, T.: Perception based data mining and decision support
systems. International Journal of Approximate Reasoning 48(1), 1–3 (2008)

3. Bosc, P., Dubois, D., Pivert, O., Prade, H., De Calmes, M.: Fuzzy summarization
of data using fuzzy cardinalities. In: Int. Conf. Inf. Process. Manag. Uncertainty
Knowl. Based Syst., pp. 1553–1559 (2002)
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5. Castillo-Ortega, R., Maŕın, N., Sánchez, D.: Linguistic summary-based query an-
swering on data cubes with time dimension. In: Andreasen, T., Bulskov, H. (eds.)
FQAS 2009. LNCS (LNAI), vol. 5822, pp. 560–571. Springer, Heidelberg (2009)



Time Series Comparison Using Linguistic Fuzzy Techniques 339

6. Humano, M., Okamura, M., Seta, K.: Improved method for linguistic expression of
time series with global trend and local features. In: FUZZ-IEEE 2009, pp. 1169–
1174 (2009)

7. Kacprzyk, J.: Fuzzy logic for linguistic summarization of databases. In: IEEE In-
ternational Fuzzy Systems Conference, pp. 813–818 (1999)

8. Kacprzyk, J., Wilbik, A.: Using fuzzy linguistic summaries for the comparison
of time series: an application to the analysis of investment fund quotations. In:
Kaymak, U., Carvalho, J.P., Dubois, D., Sousa, J.M.C. (eds.) IFSA-EUSFLAT
2009, pp. 1321–1326 (2009)

9. Kacprzyk, J., Wilbik, A., Zadrozny, S.: Linguistic summarization of time series
using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems 159(12), 1485–
1499 (2008)

10. Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. Inter-
national Journal of General Systems 30, 133–154 (2001)

11. Kacprzyk, J., Yager, R.R., Zadrozny, S.: A fuzzy logic based approach to linguistic
summaries in databases. International Journal of Applied Mathematical Computer
Science 10, 813–834 (2000)

12. Kacprzyk, J., Zadrozny, S.: Linguistic database summaries and their protoforms:
towards natural language based knowledge discovery tools. Inf. Sci. Inf. Comput.
Sci. 173(4), 281–304 (2005)

13. Raschia, G., Mouaddib, N.: Saintetiq: a fuzzy set-based approach to database sum-
marization. Fuzzy Sets Syst. 129(2), 137–162 (2002)

14. Vila, M.A., Cubero, J.C., Medina, J.M., Pons, O.: The generalized selection:
an alternative way for the quotient operations in fuzzy relational databases. In:
Bouchon-Meunier, B., Yager, R., Zadeh, L. (eds.) Fuzzy Logic and Soft Comput-
ing. World Scientific Press, Singapore (1995)

15. Yager, R.R.: A new approach to the summarization of data. Information Sci-
ences (28), 69–86 (1982)

16. Yager, R.R.: Toward a language for specifying summarizing statistics. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 33(2), 177–187 (2003)

17. Yager, R.R.: A human directed approach for data summarization. In: IEEE Inter-
national Conference on Fuzzy Systems, pp. 707–712 (2006)



Granular Approach for Evolving System
Modeling

Daniel Leite1, Pyramo Costa Jr.2, and Fernando Gomide1

1 University of Campinas, School of Electrical and Computer Engineering, Brazil
2 Pontifical Catholic University of Minas Gerais,

Graduate Program in Electrical Engineering, Brazil
danfl7@dca.fee.unicamp.br, pyramo@pucminas.br, gomide@dca.fee.unicamp.br

Abstract. In this paper we introduce a class of granular evolving sys-
tem modeling approach within the framework of interval analysis. Our
aim is to present an interval-based learning algorithm which develops
both, granular and singular approximations of nonlinear nonstationary
functions using singular data. The algorithm is capable of incrementally
creating/adapting both model parameters and structure. These are key
features in nonlinear systems modeling. In addition, interval analysis
provides rigorous bounds on approximation errors, rounding errors, and
on uncertainties in data propagated during computations. The learning
algorithm is simple and particularly suited to process stream of data in
real time. In this paper we focus on the foundations of the approach
and on the details of the learning algorithm. An application concerning
economic time series forecasting illustrates the usefulness and efficiency
of the approach.

1 Introduction

Recently, systems capable to extract knowledge online from data have been de-
veloped [1]-[8]. Approaches, algorithms and systems directed toward this end are
known as Evolving Intelligent Systems (EIS).

EIS target nonstationary processes and embody online learning methods and
one-pass incremental algorithms that evolve or gradually change individual mod-
els to guarantee life-long learning and self-organization of the system structure
[9]. According to Zadeh, a model (similarly for a variable and a datum) is gran-
ular if it is a carrier of granular information, and it is singular if it is a carrier of
singleton information. This paper focuses on evolving granular modeling in the
sense of gradual development of granules and associated rules. The emphasis is
on the use of singular data to develop interval-type granular models and singular
models associated with intervals.

More specifically, the approach we suggest here is an interval-based evolving
modeling (IBeM) approach rooted in interval mathematics [10]-[14] and machine
learning [15]-[16]. Basically, IBeM is an evolving rule-based modeling scheme that
gradually adapts its structure using a stream of data. By structure we mean in-
formation granules, the corresponding rules, and their antecedent and consequent
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parameters. IBeM develops global models using a one-pass learning algorithm
with modest memory requirements. It does not require prior knowledge about
learning data (probability distributions, belief intervals, possibility values), and
starts learning as soon as data are input.

The framework of interval mathematics supports the learning algorithm, the
core of IBeM, and gives simplicity, correctness, totality, closedness, optimality,
and efficiency [14]. An application example concerning economic time series fore-
casting illustrates the usefulness and efficiency of IBeM.

The remainder of this paper is organized as follows. Next section reviews the
notions of interval analysis necessary to develop the IBeM learning algorithm.
Section 3 details the IBeM approach. Section 4 addresses a stock market fore-
casting example using actual data. Section 5 concludes the paper and suggests
issues for further investigation.

2 Interval Vectors and Functions

Interval analysis is a theory oriented for computational implementation because
it supports the development of interval-based algorithms. These algorithms are
mainly designed to automatically provide rigorous bounds on approximation er-
rors, rounding errors, and propagated uncertainties in initial data. This is of
utmost importance because modeling of complex systems must trade-off com-
plexity and precision. Calculations involving imprecise objects must consider the
nature of the imprecision.

The main concern of the interval analysis is to provide a guaranteed approx-
imation of the set of solutions of the underlying problem. Guaranteed in this
context means that outer approximations of intervals can always be obtained
and, moreover, be made as precise as desired. Intervals acknowledge limited pre-
cision by associating with a variable of the model under investigation a set of
reals as possible values. For ease of storage and computation, these sets are
restricted to intervals [14].

The act of merely enclosing a solution might be seem at first shallower than
finding the solution itself. We should reflect that, while this is true, the degree
of satisfaction involved in enclosing a solution depends strongly on the tightness
of the enclosure obtained. Moreover, when processing exact values we very often
have no idea about the error involved. By contrary, if we can compute an interval
containing an exact solution to some problem, then we can take e.g. the midpoint
of the interval as an approximation. Hence, we obtain both an approximate
solution and error bounds on the approximation [11].

2.1 Interval Vectors

An interval I is a closed bounded set of real numbers

[l, L] = {x : l ≤ x ≤ L},
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where l and L denote its endpoints. An n-dimensional interval vector is an
ordered n-tuple of intervals (I1, ..., Ij , ..., In). If I is a e.g. two-dimensional
interval vector, then I = (I1, I2) for some I1 = [l1, L1] and I2 = [l2, L2].

Set-theoretic operations of intersection, ∩, and union, ∪, are applicable to
intervals. The intersection of two intervals, I1 and I2, is empty, I1 ∩ I2 = ∅, if
either l1 > L2 or L1 < l2. This indicates that I1 and I2 have no common points.
Otherwise, the intersection of I1 and I2 is again an interval:

I1 ∩ I2 = [max(l1, l2), min(L1, L2)].

The intersection of interval vectors is empty if the intersection of any of their com-
ponents is empty. Otherwise, for I1 = (I11 , ..., I

1
j , ..., I

1
n) and I2 = (I21 , ..., I2j , ...,

I2n) we have:

I1 ∩ I2 = (I11 ∩ I21 , ..., I1j ∩ I2j , ..., I1n ∩ I2n).

If two intervals have nonempty intersection, then their union,

I1 ∪ I2 = [min(l1, l2), max(L1, L2)],

is an interval. Disconnected sets must not be expressed as a single interval.
The hull of two intervals, I1 and I2, namely ch(I1, I2), is the smallest interval

containing all their elements. Then,

ch(I1, I2) = [min(l1, l2), max(L1, L2)]

is always an interval. Hull computations are efficient mechanisms to aggregate
and merge sets independently of their connection. It follows that I1 ∪ I2 ⊆
ch(I1, I2) for any intervals I1 and I2.

We denote the width of an interval vector, namely wdt(I), as the length of its
largest side:

wdt(I) = max(wdt(I1), ..., wdt(Ij), ..., wdt(In)).

Finally, it is worth defining the midpoint of an interval I:

mp(I) = (l + L)/2.

Analogously, if I = (I1, ..., Ij , ..., In) is an interval vector, then:

mp(I) = (mp(I1), ...,mp(Ij), ...,mp(In)).

2.2 Interval Functions

The image of an interval I under a real mapping f is

f(I) = {f(x) : x ∈ I}.
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More generally, the image of a specified n-dimensional vector I admitting a
multivariable real function f is:

f(I1, ..., Ij , ..., In) = {f(x1, ..., xj , ..., xn) : xj ∈ Ij ∀j}.
Generally, the image of an interval through f is not a box (see Fig. 1) and it
may be difficult to obtain in closed form. In practice, f(I) can be approximated
by an inclusion function F (I), which is a box in the range of f .

An interval function F from IRn to IRm is called inclusion function of f if

f(I) ⊆ F (I) ∀I ∈ IRn.

Inclusion functions are not unique and they depend on how we choose F. An
inclusion function is optimal if F (I) is the interval hull of f(I). In other words,
the optimal inclusion function for f(I) is the smallest box F ∗(I) that contains
f(I). Fig. 1 illustrates the idea. F ∗(I) is unique.

Fig. 1. Image f of box I and inclusion functions F and F ∗

Assume f monotonically increasing in I = [l, L]. Then we can obtain f(I) using:

f(I) = [f(l), f(L)].

Consequently,

f(x) ⊆ [f(l), f(L)] ∀x ∈ I.
With monotonic decreasing functions, we have to order the resulting endpoints
correctly. In these cases f(I) = [f(L), f(l)].

An interval function f(I) ∈ IR is called thin when it involves only degener-
ate interval parameters or, equivalently, singular parameters. For instance, the
interval function:

f(I) = a0 +
n∑

j=1

ajIj ,

is thin for (a0, ..., an) degenerated intervals. When an interval function involves
at least one interval parameter of nonzero width, it is called thick. In this paper
we consider thin interval functions only.



344 D. Leite, P. Costa Jr., and F. Gomide

3 Interval-Based Evolving Modeling

IBeM originated from recent research on how to process nonstationary data in
adaptive system modeling. IBeM models process data streams using incremen-
tal one-pass-through-the-data learning algorithm. It starts learning from scratch
and with no need of prior knowledge about the properties of the data. Models
developed by IBeM are transparent and interpretable. IBeM modeling adjusts
structures and parameters to learn new concepts; detects concept drift and shift;
can cope with uncertainty in the data; develops never-ending lifelong learning us-
ing constructive bottom-up and destructive top-down mechanisms; and provides
nonlinear approximators/classifiers. Before proceeding with algorithmic details
we overview the IBeM working principle in the next section.

3.1 Overview of IBeM

The basic idea behind interval-based evolving modeling (IBeM) is simple: enclose
real vectors into boxes. That is, wrap similar instances into boxes upon which
computations can be conducted more easily. In IBeM modeling wrappers are
intervals in R and interval vectors (boxes) in Rn.

Generally speaking, interval vectors are instances of granules. Recall that a
granule is a group of objects, subsets, classes, clusters, or elements of a uni-
verse drawn together by indistinguishability, similarity, functionality, or proxim-
ity [17]-[18]. A granular mapping from a space X to a space Y is a rule which
assigns to each granule of X a granule in Y . Granular mappings are encoded in
IBeM models in the form of IF-THEN rules.

An IBeM granule is a rule. A set of rules, namely the rule base, is a granular
mapping that gives a granular approximation of the function which models a
system. The granular approximation is an inclusion function P . Moreover, there
is, in IBeM, a local function p associated with each rule of P . Each local function
p gives a singular local approximation of the function which governs the system
behavior. Granular models are created adding rules in the rule base, and are
updated merging and revising existing granules and the respective parameters
of local functions. The rule base adapts whenever new information is found in
the input data.

3.2 Interval-Based Learning Approach

IBeM learns from data streams (x, y)[h], h = 1, 2, ..., where the desired output
vector y[h] is either known when the corresponding input vector x[h] arrives, or
will be known at some latter stage. IBeM encodes new information in input data
either creating a new granule, a rule describing the granule, or adapting existing
granules and corresponding rules. In both cases, parameters of the local function
associated with the corresponding granules are updated.

Figure 2 illustrates the granular model we are interested in this paper. Each
segment of the mapping is formed within a scope of the individual information
granules occurring in the input-output spaces. The case shown in the figure
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conveys a collection of three granules γi, i = 1, 2, 3, constructed in light of the
data being available to approximate the process function f . The collection of
rules Ri governing the granules γi, i = 1, 2, 3, is the rule base. Notice that each
function pi approximates f locally in domain of each granule γi, i = 1, 2, 3.

Fig. 2. Approximating a function f using 3 granules and 3 local linear models

More generally, let ρ ∈ X ⊆ Rn and σ ∈ Y ⊆ Rm be the width that a granule
can assume in the input and output spaces, respectively. Suitable choices of ρ
and σ are very important as they are directly related to the model accuracy.
Any granule larger than these values may result in losing some desirable regions.
A mechanism to deal with granularity is to learn values for ρ and σ themselves.
A simple procedure is as follows. Let β be the number of rules created after a
certain number of evolution steps H . If the number of rules grows faster than a
threshold rate value η, then ρ and σ are increased by a factor (1 + β/H) during
the next steps. Otherwise, if the number of rules grows at a rate smaller than η,
then ρ and σ are decreased by a factor (1− β/H).

In IBeM models, rules Ri associated with granules γi are of the type

Ri: IF (li1 ≤ x1 ≤ Li
1) AND (li2 ≤ x2 ≤ Li

2) AND ... AND (lin ≤ xn ≤ Li
n)

THEN (ui
1 ≤ y1 ≤ U i

1) AND pi1 = ai01 +
∑n

j=1 a
i
j1xj AND

(ui
2 ≤ y2 ≤ U i

2) AND pi2 = ai02 +
∑n

j=1 a
i
j2xj AND

...
(ui

m ≤ ym ≤ U i
m) AND pim = ai0m +

∑n
j=1 a

i
jmxj ,

where lij , L
i
j are the j − th lower and upper bounds of the antecedent x ∈ Rn;

ui
k, U i

k are the k − th lower and upper bounds of the consequent y ∈ Rm; and
pik, k = 1, ...,m, are singular local linear functions in this case. In general, each
pik, k = 1, ...,m, can be of different type and do not need to be linear, but
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here we adopt linear functions for simplicity. The recursive least mean square
(RLMS) algorithm can be used to determine the coefficients of the approximation
functions.

It is interesting to notice that outputs for singular inputs enrich IBeM mod-
els power because they provide both, an approximate singular output and error
bounds for the correspondent approximation. In forecasting problems, for in-
stance, intervals can be viewed as optimistic and pessimistic forecast values,
and the pointwise forecast as the most representative singular value. Singular
forecasts and bounds of granules enhance model acceptability.

In IBeM no rule must necessarily exist before learning starts. All rules can
be created during the evolving process. Whenever new data is input, rules can
be created and inserted into the IBeM model structure. A rule is created when
either i) the input data x[h] are not in [lij, L

i
j], j = 1, ..., n; i = 1, ..., c; where c is

the current number of existing granules, or y[h] are not in [ui
k, U i

k], k = 1, ...,m;
i = 1, ..., c; or ii) γi, i = 1, ..., c, can not expand their bounds beyond ρ and σ. The
new granule γc+1 initially has zero width and parameters lc+1

j = Lc+1
j = x[h]

j ∀j;
uc+1

k = U c+1
k = y[h]

k ∀k; pc+1
k ∀k are such that ac+1

jk = 0, j = 1, ..., n, and

ac+1
0k = y[h]

k ∀k.
Adaptation of existing rules expands the bounds of the rules antecedent and

consequent to accommodate new data and simultaneously adjusts the coefficients
of the local approximation functions. Bounds adaptation can be done as follows.
Consider the simplest single input, single output case. Let Ei

ν , ν = 1, ..., 4,
be the expansion regions of a generic granule γi, such that Ei

1 = [Li
j − ρ, lij ];

Ei
2 = [Li

j , l
i
j + ρ]; Ei

3 = [U i
k − σ, ui

k]; Ei
4 = [U i

k, u
i
k + σ]. If a input data (x, y)[h] is

within the current bounds of γi for any i, then the endpoints remain at the cur-
rent values and parameters of the local function pik updated using least squares
procedure. If x[h]

j ∈ Ei
1 or x[h]

j ∈ Ei
2, then the bounds of the granule γi is updated

setting lij = x[h]
j or Li

j = x[h]
j , respectively. Similarly, if y[h]

k ∈ Ei
3 or y[h]

k ∈ Ei
4,

then the granule γi is updated making ui
k = y[h]

k or U i
k = y[h]

k , respectively. Oth-
erwise, if either x[h]

j or y[h]
k does not fit the expanded range of any γi, then the

granule is not updated because they imply granules width beyond allowed values.
Clearly, in the multidimensional case, x[h]

j , j = 1, ..., n, and y[h]
k , k = 1, ...,m,

must be within the allowed expansion range of some γi to be accommodated.
New input data may cause revision of a rule Ri if values of the approximand

p of f in γi change abruptly or gradually. In these cases, a granule can be split
into smaller granules. Concept drifts may also cause rules revision. Rules can be
deleted when they become inactive during a certain number of steps. This may
mean that the process changed and the deletion of granules can be justified to
keep the rule base size reasonable.

After a number of evolution steps HM , two neighbor granules γw and γz can
be close enough to justify their combination into a unique granule formed by
their hull γψ = ch(γw, γz) whenever the width of γψ remains within the bounds
ρ and σ. Clearly, merging granules means reducing the number of rules and
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contributes to eliminate gaps between close enough granules. If γψ = ch(γw, γz)
forms a granule whose width is larger than bounds ρ and σ, then gaps can
be filled evaluating the endpoints of the neighbor granules. An approach we
suggest is to add a new granule γc+1 whose bounds are either [Lw, lz] or [Lz, lw],
depending on the relative order of the neighbor granules. This approach is simple
and particularly useful to extend the current model, to avoid gaps, and to reduce
the effect of data input sequence.

The IBeM modeling procedure can be summarized as follows:

————————————————————————————————
BEGIN
Initialize ρ, σ, HG, η, HD , HM , c = 0;
Do forever

Read (x, y)[h], h = 1, ...;

If (x[h]
j /∈ [Li

j − ρ, lij + ρ] || y
[h]
k /∈ [Ui

k − σ, ui
k + σ]), i = 1, ..., c; for any j, k

Create γc+1 and Rc+1; c = c + 1;

Else if (x[h]
j /∈ [lij, Li

j] || y
[h]
k

/∈ [ui
k, Ui

k]), ∀i; for any j, k

Update γi and Ri to accommodate (x, y)[h];
Adjust pi

k, k = 1, ..., m;
Else

Adjust pi
k, ∀k;

If (h = HG)
Update ρ and σ;

If (h = HD)
Delete inactive granules and rules;

If (h = HM )
If (ch(γw, γz) ≤ ρ, σ), with γw, γz neighbor granules

Merge γw and γz computing γψ = ch(γw, γz);
Else if ([Lw, lz] || [Lz, lw] ≤ ρ & [Uw, uz] || [Uz , uw] ≤ σ)

Create γc+1 and Rc+1 covering the gap between γw and γz; c = c + 1;
Discard (x, y)[h];

END

————————————————————————————————

4 Application Example

In this section we address an economic time series forecasting problem using
IBeM. In particular, we deal with daily (end of day) forecast of the Brazil
Bovespa BVSP Index. Data from January 2nd, 1998 to December 1st, 2009 were
used in the experiments. There are about 500 companies trading at BM&F
BOVESPA, the Sao Paulo Stock Market, which is the fourth largest stock ex-
change in the Americas in terms of market capitalization. The benchmark indi-
cator of BM&F BOVESPA is the Bovespa BVSP index. Forecasts aim at giving
information to support investment decisions.

The following parameter values were chosen to evaluate IBeM behavior: ρ[0]

= 0.12; σ[0] = 0.02; HG = 50; η = 3; HD = HM = 200. Figure 3 summarizes
the results. Figures 3(a)-(b) show how the learning algorithm self-adjusts the
granules size during evolution and uses more or less granules to capture the non-
linearities and novel behaviors occurring in the time series. When the behavior
of the time series changes quickly, the IBeM learning algorithm automatically
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reduces the size of the granules to avoid losing information and the number
of rules increases accordingly. Figures 3(c)-(d) show the one-step singular and
granular interval forecasts of the BVSP index. We notice that IBeM provides
accurate singular forecasts from the point of view of the root mean square error
(RMSE = 0.079). In addition, IBeM provides interval forecasts (optimistic and
pessimistic bounds), an important information which helps to reduce investment
risk. The results illustrate the potential of IBeM models to solve forecasting
problems that demand online incremental adaptability.

Fig. 3. Evolution of (a) granules size, and (b) number of rules during evolution steps. (c)
One-step-ahead forecasts produced by IBeM, and (d) IBeM interval-valued forecasts.

5 Conclusion

This paper has introduced IBeM, a granular evolving approach for system model-
ing, focusing in intervals. IBeM is a rule-based modeling procedure that gradually
reshapes granular model structures using singular data streams. IBeM develops
global models using a one-pass learning algorithm, does not require any prior
knowledge about learning data and system behavior, and may start learning
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as soon as data are input. IBeM is able to model nonlinear nonstationary sys-
tems and provides singular numerical outputs simultaneously with the bounds of
the intervals. Experiments with an actual stock market forecasting problem have
shown that IBeM is a feasible and efficient approach. Further work shall consider
extensions to handle granular information and models within the framework of
interval, fuzzy set, and stochastic evolving modeling.
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Abstract. Precision Agriculture is the application of state-of-the-art GPS tech-
nology in connection with site-specific, sensor-based treatment of the crop. It can
also be described as a data-driven approach to agriculture, which is strongly con-
nected with a number of data mining problems. One of those is also an inherently
important task in agriculture: yield prediction. The question is: can a field’s yield
be predicted in-season using available geo-coded data sets?

In the past, a number of approaches have been proposed towards this prob-
lem. Often, a broad variety of regression models for non-spatial data have been
used, like regression trees, neural networks and support vector machines. But
in a cross-validation learning approach, issues with the assumption of the data
records’ statistical independence keep emerging. Hence, the geographical loca-
tion of data records should clearly be considered while establishing a regression
model and assessing its predictive performance. This paper gives a short overview
of the available data, points out in detail the main issue with the classical learning
approaches and presents a novel spatial cross-validation technique to overcome
the problems with the classical approach towards the aforementioned yield pre-
diction task.

Keywords: Precision Agriculture, Spatial Data Mining, Regression, Spatial
Cross-Validation.

1 Introduction

Information technology has become part of our everyday lives. Information-driven man-
agement techniques have become necessary and common in industry and services. Im-
provements in efficiency can be made in almost any part of businesses. This is especially
true for agriculture, due to the modernization and better affordability of state-of-the-art
GPS technology. Agricultural companies nowadays harvests not only crops but also
growing amounts of data. These data are site specific – which is essentially why the
combination of GPS, agriculture and data has been termed site-specific crop manage-
ment (SSM). A large amount of information about the soil and crop properties enabling
a higher operational efficiency is often contained in these data – appropriate techniques
should therefore be applied to find this information. This is a rather common problem
for which the term data mining has been coined. Data mining techniques aim at finding
those patterns in the data that are both valuable and interesting for crop management.

Yield prediction is a specific agricultural problem commonly occurring. As early as
possible, a farmer would like to know how much yield he is about to expect. The ability

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 350–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to predict yield used to rely on farmers’ long-term knowledge of particular fields, crops
and climate conditions. However, this knowledge is assumed to be available in the data
collected during normal farming operations throughout the season(s) [23]. A multitude
of sensor data are nowadays collected, measuring a field’s heterogeneity. These data
are fine-scale, often highly correlated and carry spatial information which must not be
neglected.

The problem of yield prediction encountered can be treated as a problem of data
mining and, specifically, multi-variate regression. This article will serve as a reference
of how to treat a regression problem on spatial data with a combination of classical
regression techniques using a novel data sampling idea. Furthermore, this article will
serve as a continuation of [19]: in the previous article, the spatial data were treated
with regression models which do not take the spatial relationships into account. In the
present work, we will adapt existing approaches for error estimation using spatial cross-
validation approaches [4,5] to the context of crop yield prediction and spatial regression
more generally. Resampling-based estimation methods (such as cross-validation and the
bootstrap) for dependent data in general have been investigated recently in the context
of time series data [7] and paired data [6].

1.1 Research Target

The main research target of this work is to improve and further substantiate the validity
of yield prediction approaches using multi-variate regression modeling techniques. Pre-
vious work, mainly the regression work presented in [19,22], will be used as a baseline
for this work. Some of the drawbacks of the previous approach will be clearly pointed
out in this article. Nevertheless, this work aims to improve upon existing yield predic-
tion models and, furthermore, incorporates a generic, yet novel spatial clustering idea
into the process. Therefore, different types of regression techniques will be incorpo-
rated into a novel spatial cross-validation framework (compare [4,5]). A comparison of
using spatial vs. non-spatial cross-validation will be presented.

1.2 Article Structure

This article will start with a brief introduction into the area of precision agriculture and
a more detailed description of the available data in Section 2. This will be followed by
an outline of the key techniques and the novel spatial sampling technique described in
this work in Section 3. The results obtained from the modeling phase will be presented
in Section 4. The article will be completed with a short conclusion in Section 5, which
will also point out further lines of research.

2 Data Description

The data available in this work were collected during the growing season of 2007 on
two fields south of Köthen, Germany. The data for the two fields, called F440 and
F611, respectively, were interpolated using kriging [24] to a grid with 10 by 10 me-
ters grid cell sizes. F440 is geographically located around N51.68, E11.99 and has a
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size of roughly 95 hectares, whereas F611 has a size of around 50 hectares and is lo-
cated around N51.68, E11.85. Each grid cell represents a record with all available in-
formation. The fields grew winter wheat. Nitrogen fertilizer (N) was applied three times
during the growing season. Overall, for each field there are six input attributes, accom-
panied by the respective current year’s yield (2007) as the target attribute. In total, for
the F440 field there are 6446 records, for F611 there are 4970 records.

Yield is measured in metric tons per hectare ( t
ha ), along the harvesting lanes (spaced

8 m apart), roughly every ten meters. The yield ranges, as well as those of the remain-
ing attributes, are provided in Table 1. Apparent electrical soil conductivity (EC25) as
a measure for a number of soil properties is acquired. Satellite or aerial image process-
ing provides a measure of vegetation called the red edge inflection point (REIP) value,
at two points into the growing season (REIP32, REIP49), according to the growing
stage defined in [15]. The REIP value may also be used directly for guiding fertiliza-
tions [11]. A simplified assumption is that a higher REIP value means more vegetation.
Three nitrogen fertilizer dressings are applied (N1, N2, N3, in kg

ha ). In the available data,
due to the fields being experimental agriculture sites, the nitrogen dressings were not
temporally autocorrelated. However, this phenomenon may be considered in production
sites. EC, REIP and N are measured in 10-m-intervals along the lanes which are spaced
24 meters apart.

Table 1. Statistical summary of data sets

F440 F611
min mean median max min mean median max

EC25 39.47 50.13 50.22 60.69 38.41 54.44 53.17 81.98
N1 50.00 63.57 70.00 70.00 42.00 65.09 68.00 70.00
N2 2.00 47.60 48.00 80.00 0.00 47.89 50.00 80.00
N3 0.00 37.98 40.00 95.00 0.00 45.61 50.00 68.00
REIP32 721.33 725.11 725.19 728.14 721.41 724.37 724.41 726.09
REIP49 724.50 727.20 727.34 729.82 721.30 727.12 727.23 729.41
YIELD07 0.49 7.37 6.89 13.92 1.32 5.42 5.51 11.88

2.1 Spatial vs. Non-spatial Data Treatment

According to [10], spatial autocorrelation is the correlation among values of a single
variable strictly attributable to the proximity of those values in geographic space, in-
troducing a deviation from the independent observations assumption of classical statis-
tics. Given a spatial data set, spatial autocorrelation can be determined using Moran’s
I ([16]) or semivariograms. For the data sets used in this article, each of the attributes
exhibits spatial autocorrelation. Figure 1 shows two representative experimental omni-
directional semivariograms, while the remaining attributes behave similarly. In practice,
it is usually also known from the data origin whether spatial autocorrelation exists. For
further information it is referred to, e.g., [8].

In previous articles using the above data, such as [20,19], the main focus was on
finding a suitable regression model to predict the current year’s yield sufficiently well.
However, the used regression models, such as neural networks [20,21] or support vector
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Fig. 1. Semivariograms (omnidirectional, experimental) for REIP32 (F440) and EC25 (F611)

regression [19], among others, generally assume statistical independence of the data
records. However, with the given geo-tagged data records at hand, this is clearly not
the case, due to (natural) spatial autocorrelation. Therefore, the spatial relationships
between data records have to be taken into account, which the following section will
deal with.

3 Regression Techniques on Spatial Data

Due to the shortcomings in classical regression and cross-validation learning approaches
when using them on spatial data, this section will present a novel regression model for
data sets which exhibit spatial autocorrelation. In non-spatial regression models, data
records which appear in the training set are not supposed to appear in the test set dur-
ing a cross-validation learning setup. Classical sampling methods do not take spatial
neighborhoods of data records into account. Therefore, the above assumption may be
rendered invalid when using non-spatial models on spatial data. This inevitably leads to
overfitting and underestimates the true prediction error of the regression model (com-
pare [4,6] for similar observations in a classification context). Therefore, the main issue
is to avoid having neighboring or the same samples in training and testing data subsets
during a cross-validation learning approach. The basic idea therefore is to apply changes
to the resampling method and keep the regression modeling techniques as-is. The re-
sulting procedure can be seen as spatial cross-validation technique.

3.1 From Classical to Spatial Cross-Validation

Traditionally, k-fold cross-validation for regression randomly subdivides a given data
set into three parts: a training set, a validation set and a test set. A 10- to 20-fold cross-
validation is usually considered appropriate to remove bias [13]. The regression model
is trained on the training set until the prediction error on the validation set starts to
rise. Once this happens, the training process is stopped and the error on the test set is
reported for this fold. This procedure is repeated r times to remove a possible sampling
bias. In our case, r has been empirically determined as 100.



354 G. Ruß and A. Brenning

In spatial data, due to spatial autocorrelation, almost identical data records may end
up in training, validation and test sets. In essence, the model overfits the training data
and returns an overoptimistic (biased) estimation of the prediction error. Therefore,
one possible solution might be to ensure that only a very small number (if any) of
neighboring and therefore similar samples end up in training and test subsets. This may
be achieved by adapting the sampling procedure for spatial data. Once this issue has
been accommodated, the cross-validation procedure may continue in the usual way.

3.2 Employing Spatial Clustering for Data Sampling

Given the data sets F440 and F611, a regular tessellation using a grid-based approach
may be used to subdivide the fields into spatially disjunct areas. However, even though
the data have been sampled on a regular grid, there are irregularities in the field. These
are due to the fields’ outer shape, “holes” in the data (power poles, buildings etc.) or the
lanes of machinery, among other reasons. This would lead to some grid cells being much
less equally dense populated than others. Therefore, a grid-based approch is rather rigid
and would have to be adapted manually for each field. Hence, a more flexible method
will be used here.

We assume that a spatial clustering procedure can be employed to subdivide the fields
into spatially disjunct clusters or zones. The clustering algorithm can easily be run on
the data records’ spatial map, using the data records’ longitude and latitude. Depending
on the clustering algorithm parameters, this results in a tesselation map which does not
consider any of the attributes, but only the spatial neighborhood between data records.
A depiction of this clustering process can be found in Figure 2(a). As may be seen
in the figure, the clustering leads to clusters (spatial areas) covering roughly the same
number of points, due to the relatively regular data point density encountered here. In
analogy to the non-spatial regression treatment of these data records, now a spatially-
aware cross-validation regression problem can be handled using the k resulting zones
of the clustering algorithm as an input for k-fold cross-validation. This ensures that the
training set has only a small amount of spatial autocorrelation with the test set. Standard
models, as described below, can be used straightforwardly, without requiring changes
to the models themselves. The experimental setup and the results are presented in the
following section.

The training and test sets are selected from the clusters using random sampling.
Therefore, a small number of points in neighboring areas are still possibly spatially
autocorrelated. This could be avoided by using a sampling method which takes the
spatial relationships between the clusters into account. However, when comparing the
standard, non-spatial regression setup to the one described here, it is assumed that
the difference in the error underestimation is much higher than the one of introducing a
space-aware sampling method on the clusters.

The spatial clustering procedure may be considered as a broader definition of the
standard cross-validation setup. This can be seen as follows: when refining the cluster-
ing further, the spatial zones on the field become smaller. The border case is reached
when the field is subdivided into as many clusters as there are data records, i.e. each
data record describes its own cluster. In this special case, the advantages of spatial clus-
tering are lost since no spatial neighborhoods are taken into account in this approach.
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Therefore, the number of clusters should be seen as a tradeoff between predictive preci-
sion and statistical validity of the model. The parameter k for the size of the tessellation
has to be determined heuristically.

3.3 Regression Techniques

In previous work ([19,20]), numerous regression modeling techniques have been com-
pared on similar data sets to determine which of those modeling techniques works best.
Support vector regression has been determined as the best modeling technique. It has
furthermore recently been shown to work rather successfully in spatial classification
tasks, albeit without spatial cross-validation, as in [17]. Hence, in this work support vec-
tor regression will serve as a benchmark technique against which further models will
have to compete. Experiments are conducted in R [18]. It is assumed that the reader is
mostly familiar with the regression techniques below. Therefore, the techniques used are
described in short. References to further details are given, where appropriate. The per-
formance of the models will be determined using the root mean squared error (RMSE).

Support Vector Regression. Support Vector Machines (SVMs) are a supervised learn-
ing method discovered by [1]. They were originally described for the use in clas-
sification, but can also be applied to regression tasks, where optimization of a cost
function is achieved. The model produced by support vector regression depends
only on a subset of the training data – which are essentially the support vectors.
Further details can be found in [19]. In the current experiments, the svm implemen-
tation from the e1071 R package has been used.

Regression Trees. Regression trees have seen some usage in agriculture [9,12,14]. Es-
sentially, they are a special case of decision trees where the outcome (in the tree
leaves) is a continuous function instead of a discrete classification. The rpart R
package has been used.

Random Forests. According to [3], random forests are a combination of tree predic-
tors such that each tree depends on the values of a random vector sampled inde-
pendently and with the same distribution for all trees in the forest. In the version
used here, the random forest is used as a regression technique. Basically, a random
forest is an ensemble method that consists of many regression trees and outputs a
combined result of those trees as a prediction for the target variable. Usually, the
generalization error for forests converges to a limit as the number of trees in the
forest becomes large. The randomForest R package has been used.

Bootstrap Aggregating. Bootstrap aggregating (or bagging) has first been described
in [2]. It is generally described as a method for generating multiple versions of a
predictor and using these for obtaining an aggregate predictor. In the regression
case, the prediction outcomes are averaged. Multiple versions of the predictor are
constructed by taking bootstrap samples of the learning set and using these as new
learning sets. Bagging is generally considered useful in regression setups where
small changes in the training data set can cause large perturbations in the predicted
target variables. Since random forests are a variant of bagging where regression
trees are used as the internal predictor, both random forests and bagging should de-
liver similar results. Running them on the data sets should therefore deliver similar
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results as well, since the bagging implementation in the R ipred package internally
uses regression trees for prediction. Therefore, the main difference between ran-
dom forests and bagging in this article is that both techniques are implicitly run
with different parameters.

4 Results

The main research target of this article is to assess whether existing spatial autocorrela-
tion in the data sets may fail to be captured in standard, non-spatial regression modeling
setups. Therefore, the approach consists of a comparison between a non-spatial and a
spatial regression with cross-validation setup. The non-spatial setup was described in
Section 3.1, the spatial setup has been presented in Section 3.2.

The results in Table 2 confirm that the spatial autocorrelation inherent in the data set
leads classical, non-spatial regression modeling setups to a substantial underestimation
of the prediction error. This outcome is consistent throughout the results, regardless of
the used technique and regardless of the parameters. Furthermore, it can be seen that
Random Forests seem to yield better performance in terms of lower prediction error,
regardless of the setup used. For an illustrative depiction of the RMSE in the spatial
approach see Figure 2(b), which shows the dataset partitioned into 50 spatial clusters
with the cross-validation RMSE displayed.

Moreover, the spatial setup can be easily set to emulate the non-spatial setup: set k
to be the number of data records in the data set. Therefore the larger the parameter k is
set, the smaller the difference between the spatial and the non-spatial setup should be.
This assumption also holds true for almost all of the obtained results.

Table 2. Results of running different setups on the data sets F440 and F611; comparison of
spatial vs. non-spatial treatment of data sets; root mean squared error is shown, averaged over
clusters/folds; k is either the number of clusters in the spatial setup or the number of folds in the
non-spatial setup

F440 F611
k spatial non-spatial spatial non-spatial

Support Vector Regression 10 1.06 0.54 0.73 0.40
20 1.00 0.54 0.71 0.40
50 0.91 0.53 0.67 0.38

Regression Tree 10 1.09 0.56 0.69 0.40
20 0.99 0.56 0.68 0.42
50 0.91 0.55 0.66 0.40

Random Forest 10 0.99 0.50 0.65 0.41
20 0.92 0.50 0.64 0.41
50 0.85 0.48 0.63 0.39

Bagging 10 1.09 0.59 0.66 0.42
20 1.01 0.59 0.66 0.42
50 0.94 0.58 0.65 0.41
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5 Conclusions and Future Work

This article elaborated upon a central data mining task: regression. Based on two data
sets from precision agriculture, a continuation and improvement over previous work
([19,20]) could be achieved. The important difference between spatial data and non-
spatial data was pointed out. The implications of spatial autocorrelation in these data
sets were mentioned. From an information management point of view, neighboring data
records in a spatially autocorrelated data sets are not supposed to end up in training
and test sets since this leads to a considerable underestimation of the prediction error,
regardless of the used regression model.

It can be concluded that it is indeed important to closely consider spatial relationships
inherent in the data sets. As a suggestion, the following steps should be taken: for those
data, the spatial autocorrelation should be determined. If spatial autocorrelation exists,
standard regression models must be adapted to the spatial case. A straightforward and
illustrative approach using simple k-means clustering has been described in this article.

5.1 Future Work and Acknowledgements

Despite having improved and validated upon the yield prediction task, the data sets carry
further information. Variable importance refers to the question which of the variables
is actually contributing most to the yield prediction task. Management zones refers to
discovering interesting zones on the (heterogeneous) field which should be managed
differently from each other.

The data in this work have been obtained on the experimental farm Görzig and were
acquired from Martin Schneider and Peter Wagner from Martin-Luther-Universität
Halle-Wittenberg, Lehrstuhl für landwirtschaftliche Betriebslehre.
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Abstract. This paper suggests an approach for fault detection and diagnosis
capable to detect new operation modes online. The approach relies upon an evolv-
ing fuzzy classifier able to incorporate new operational information using an in-
cremental unsupervised clustering procedure. The efficiency of the approach is
verified in fault detection and diagnosis of an induction machine. Experimental
results suggest that the approach is a promising alternative for fault diagnosis of
dynamic systems when there is no a priori information about all failure modes.
It is also attractive for incremental learning of diagnosis systems with streams of
data.

Keywords: Evolving Fuzzy Systems, Participatory Learning, Adaptive Fault
Detection and Diagnosis.

1 Introduction

Fault detection and diagnosis (FDD) of dynamical systems has been systematically pur-
sued by many researchers during the last decade. Basically, this is due to the high impor-
tance of FDD in real world applications, specially in industry. Conventional methods for
FDD use complete operation information to identify all operation modes, i.e., normal
and faulty operation modes [1].

However, in practical situations some operation modes may be unknown and/or may
change due to wear off, maintenance, repair or replacement of parts and components. In
these situations, conventional fault detection and diagnostics approaches are impracti-
cal, but health monitoring approaches can be used to detect abnormal operation modes
related to failures. Health monitoring literature emphasizes methods based on statistical
process control [2], machine learning approaches [3, 4, 5], and on the notion of nov-
elty detection [6]. These health monitoring approaches can be used for fault detection
but normally they lack diagnosis ability because they can detect, but can not classify
faults [3].

This paper suggests an online fault detection and diagnosis approach capable to de-
tect faults and to perform adaptive diagnostic. The proposed method uses an evolving
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fuzzy classifier for fault diagnosis. Evolving fuzzy systems (eFS) are a synergy between
fuzzy systems, as a mechanism for information compactation and representation, and
recursive methods of machine learning [7, 8].

The evolving fuzzy classifier is a set of linguistic fuzzy rules built using features
extracted from data of the monitored process. The classifier uses an incremental unsu-
pervised clustering algorithm and information provided by the process operator. Each
cluster created by the clustering algorithm generates a corresponding fuzzy rule with
antecedent parameters extracted from the cluster. New clusters may indicate new oper-
ation conditions or faults. The process operator is notified whenever a novel operation
condition is detected and prompted to identify the corresponding operation mode. The
mode identified defines the consequent of the new rule.

The clustering algorithm adopted by the evolving fuzzy classifier is based on the idea
of participatory learning [9]. Participatory learning (PL) is a learning paradigm which
assumes that learning beliefs about the system depend on what the learning mechanism
has already learned. An essential characteristic of this learning mechanism is that a new
observation impact in causing learning or belief revision depends on its compatibility
with the current system belief. Therefore, clustering algorithms based on participatory
learning [10], and hence the classifier suggested herein, tend to be robust to noisy data
because outliers are likely to be incompatible with the current system belief and can be
either discarded or have their effect smoothed. The evolving clustering procedure devel-
oped here is as an extension of the one addressed in [10]. Differently from the algorithm
of [10], here the clustering procedure assumes that each cluster can be represented by a
multivariable Gaussian distribution and, based on this assumption, statistical tests help
to find the cluster structure (number and shape of clusters) at each step of the algorithm.

Different evolving fuzzy fault detection approaches have been developed [11,12,13,
14], but none of them is capable to perform online diagnosis of a system. This paper
differs from the ones reported in literature because it addresses a fault and diagnosis ap-
proach capable to perform online detection of new operation modes using an algorithm
robust to noisy data. It also performs model-free adaptive diagnosis with simultaneous
update of operation modes, and incorporates information about new operation modes.

The remaining of the paper is organized as follows. Next Sect. 2 details the evolving
fuzzy classifier. Section 3 addresses the fault detection and diagnosis approach. Section
4 illustrates an application in online fault detection and diagnosis of induction machines.
Conclusions and further developments are summarized in Sect. 5.

2 Gaussian Participatory Evolving Clustering

The clustering algorithm assumes that knowledge about the system to be modeled is a
cluster structure, i.e, the number of clusters and the corresponding cluster centers cki for
i = 1, · · · , nck, where nck is the number of clusters at step k. The shape of clusters is
encoded in Σk. At each step, the learning process may create a new cluster, modify the
parameters of an existing one, or merge two similar clusters.

The cluster structure is updated using a compatibility measure ρki ∈ [0, 1] and an
arousal index, aki ∈ [0, 1]. The compatibility measure shows how much an observation
is compatible with the current cluster structure. The arousal index is the output of a
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arousal device that acts as a critic which prompts the learning mechanism when the
current structure should be revised in front of new information.

Thresholds are defined for the compatibility measure (Tρ) and the arousal index (Ta).
At each step, if the compatibility measure of the current observation is smaller than the
threshold for all clusters, i.e, ρki < Tρ ∀ i = 1, · · · , nck, and the arousal index of the
cluster with the greatest compatibility is greater than its threshold, i.e, aki > Ta for
i = arg maxi ρ

k
i , then a new cluster is created. Otherwise the cluster with the highest

compatibility is adjusted as follows:

ck+1
i = cki +Gk

i (xk − cki ) (1)

Gk
i = α(ρki )1−ak

i (2)

where α ∈ [0, 1] is the basic learning rate.
If aki = 0, then Gk

i = αρki and the PL procedure has no arousal. The basic learning
rate is modulated by the compatibility measure.

The arousal index is the output of an arousal device used to measure the confidence
about the current knowledge of the system. For example, while a single low value of
the compatibility measure causes aversion to learning, a sequence of low values of the
compatibility measure should imply on a revision of the current knowledge about the
system. The arousal device is a monitoring mechanism of the dynamics of the compat-
ibility measure that monitors the values of the compatibility level. Its output is inter-
preted as the complement of the confidence about the current knowledge. A low value
of aki implies in a high confidence about the system belief, while a high value indicates
the necessity to revise the current belief. Analysis of (2) shows that as the arousal index
increases the compatibility measure reduces its effect. This means that if a sequence
of observations presents low compatibility values, then it is more likely that the cur-
rent knowledge is incorrect and should be revised. As explained later in this section,
the extreme case is when the arousal index exceeds a threshold and a new cluster is
generated.

This paper assumes each cluster is modeled by a multivariable Gaussian distribution,
similarly as in Gaussian mixture models [15]. In particular, the compatibility measure
ρki suggested herein uses the squared of the normalized distance between the new ob-
servation and cluster centers (M-Distance):

M(xk, cki ) = (xk − cki )(Σk
i )−1(xk − cki )T (3)

To compute the M-Distance, the dispersion matrix of each clusterΣk
i must be estimated

at each step. The recursive estimation of the dispersion matrix proceeds as follows [16]:

Σk+1
i = (1−Gk

i )(Σk
i −Gk

i (xk − cki )(xk − cki )T ) (4)

It is interesting to note that, in the particular case whenGk
i = 1/k = δk, it can be easily

shown that (1) is the recursive estimation of the mean vector for each cluster and (4) is
the recursive estimation of the covariance matrix.

The compatibility measure at each step k is computed as follows:

ρki = F (xk, cki ) = exp
[
−1

2
M(xk, cki )

]
(5)
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To find a threshold value for the compatibility measure, we notice that, since it is as-
sumed that each cluster is a multivariable Gaussian distribution,M(xk, cki ) can be mod-
eled by a Chi-Square distribution. Thus, given a significance level λ, the threshold can
be computed as follows

Tρ = exp
[
−1

2
χ2

m,λ

]
(6)

where χ2
m,λ is the λ upper unilateral confidence interval of a Chi-Square distribution

withm degrees of freedom (m is the number of inputs).
This paper adopts an arousal mechanism to monitor the compatibility index using a

sliding window assembled by the last w values. More specifically, the arousal index is
defined as the probability of observing less then v violations of the compatibility thresh-
old on a sequence ofw observations. Low values of the arousal index are associated with
no or few violations of the compatibility threshold, implying a high confidence about
the system knowledge. High values of the arousal index are associated with several
threshold violations, which means that the current cluster structure must be revised.

The arousal index for each observation is computed using occurrence values ok

ok =
{

0 for M(xk, cki ) < χ2
n,λ

1 otherwise
(7)

Assuming that the current observation fits a cluster, the probability of observing ok = 1
is known, i.e., it is equal to the confidence level used to estimate the threshold given by
(6). This assumption means that the random variableOk can be described by a Bernoulli
distribution with a probability of success λ.

For a sequence assembled by the last w observations, the number of threshold viola-
tions (ok = 1), vk is

vk =
w−1∑
i=0

ok−i (8)

The discrete probability distribution of observing v threshold violations on a window
of size w is p(V k = v), with V k assuming the values v = 0, 1, · · · , w. Since V k is the
sum of a sequence of i.i.d. random variables drawn from a Bernoulli distribution with
the same probability of success λ, p(V k = v) can be described by a binomial distribu-
tion. The binomial distribution gives the probability of observing v threshold violations
in a sequence of w observations, assuming that the observations used to compute the
M-Distance fits the multivariable Gaussian distribution of a current cluster. High prob-
ability values enforce the assumption that observations can be described by the current
cluster structure while low probability values suggests that the observations should be
described by a new cluster. The arousal index is the value of the cumulative probability
of V k, aki = p(V k < v), i.e., the cumulative probability of a binomial distribution.

The threshold value of the arousal index Ta (used to decide creation of new clusters)
is defined for a given significance level λ (the same as the one that defines the thresh-
old for the compatibility measure). However, since each observation is in w windows,
a multiple-comparison correction must be used to avoid spurious cluster creation. The
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Bonferroni correction [17] must be performed dividing the desired significance level by
the number of tests. Thus, for a significance level λ, a new cluster is created only if

aki > 1− λ
w

(9)

As discussed later, the clustering algorithm continuously revises the current cluster
structure and eventually merges two similar clusters. The compatibility between all
pairs of cluster centers is computed at each step. If, for each pair, the compatibility
exceeds the threshold Tρ, then the two clusters are merged.

The clustering process can be started using either a single observation or an initial
data set. If an initial data set is available, then an off-line clustering algorithm can be
used to estimate an initial number of clusters and their parameters. If the clustering
process starts with a single observation, then an initial dispersion matrix Σinit must be
chosen, eventually using a priori information.

Whenever a new cluster is created, the new cluster center is set as the current obser-
vation and the new dispersion matrix set to an initial valueΣinit. When two clusters are
merged, the center of the resulting cluster is the average of the corresponding clusters
centers and the dispersion matrix the average of the corresponding dispersion matrices.

3 Online Fault Detection and Diagnosis Approach

The online fault detection and diagnosis (FDD) approach proposed in this paper is an
evolving fuzzy classifier. The classifier is an adaptive set of linguistic fuzzy rules de-
fined and updated using the incremental unsupervised Gaussian participatory clustering
procedure. The classifier inputs are features extracted from data of the monitored pro-
cess. We assume that the feature extraction procedure selects all features needed to
distinguish the different operation modes. Initially, these features are used to estimate
the current operation mode using the current rule base. Next, these features are input to

Feature
Extraction

Evolving
Classifier

Process
Operator

Online
Clustering

Monitored
System

u y

New operation mode

Estimated
operation modeCluster updates

(New cluster)

Feature

Fig. 1. Online fault detection and diagnosis approach
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the online clustering procedure which may update the parameters of the clusters, merge
two clusters, or create a new cluster. Clusters update causes adaptation of the fuzzy
rules. Figure 1 summarizes the online FDD approach.

Whenever a new cluster is created, if the membership degree of the current oper-
ation mode estimation is bellow threshold Tμy ∈ (0, 1], then the operator is notified
and he informs if the associated event is either a new operation mode or a mode al-
ready identified. If the event is a new operation mode, then the operator must identify
it. This information is incorporated in the evolving fuzzy classifier as a new rule whose
antecedent parameters are extracted from the cluster found, and the consequent is the
operation mode defined by the operator. When a new cluster is created, but the mem-
bership degree of the current operation mode estimation is above threshold Tμy , then a
new rule is created. The rule antecedent parameters are extracted from the new cluster,
and the rule consequent is the operation mode estimated by the classifier.

Rules merge only when they have the same consequent because, otherwise, they
represent distinct operation modes.

Procedure FDD Algorithm
Estimate the current operation mode;
[ŷkμŷk ] = classifier.classify(xk)
Compute ρi and ai for all clusters;
ρi = exp

[− 1
2
M(xk, ci)

] ∀i;
ai = p(V k < v) ∀i;
idx = arg maxi(ρ);
if ρi < Trho ∀i and aidxk > Ta then

Create new rule;
cnew = xk;
Σnew = Σinit;
if μŷk > Tμy then

Rule consequent defined by classifier;
ynew = ŷk

else
Rule consequent defined by operator;
ynew = operator.classify(xk)

end
else

Update an existing rule antecedent parameters (eq. (1) and (4));
end
Check for redundant rules;
for i = 1, num_rules do

for j = 1, num_rules do
if ρi(cj , ci) > Tρ and yi == yj then

Merge two redundant rules;
ci = mean(cj , ci);
Σi = Σinit;

end
end

end

Fig. 2. Fault detection and diagnosis algorithm
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Clearly, the evolving fuzzy classifier is an adaptive set of fuzzy classification rules.
The number of classification rules is the same as the number of clusters found by the
clustering algorithm at each step. Rules have antecedents in the form:

xk IS Ai (10)

where xk is a 1 × m input vector and Ai is fuzzy set with a multivariable Gaussian
membership function:

μ(x) = exp
[
−1

2
(x− c)Σ−1(x− c)T

]
(11)

where c is a 1 ×m cluster center and Σ is the m ×m dispersion matrix of the corre-
sponding cluster. The dispersion matrix plays the same role of a covariance matrix if
we assume that c is the mean.

The classifier is formed by a set of rules of the form:

Ri : IF xk IS Ai THEN yi IS OMj (12)

where i = 1, · · · , ck, ck is the number of rules at step k andOMj is the operation mode
defined by the operator when the corresponding cluster is created. More than one rule
can be associated with the same operation mode. Therefore, the classifier aggregates
rule outputs with the same consequent using a s-norm.

The estimated operation mode associated with the current input is the one with the
highest membership value.

Figure 2 summarizes the algorithm of the online FDD approach.

4 Experimental Results

This section illustrates the use of the FDD approach to monitor the operation of indus-
trial induction motors. The aim is to evaluate and validate its performance.

Induction motors are commonly used electrical drives because they are rugged, me-
chanically simple and adaptable to a wide variety of operation conditions. Motors are
often exposed to different loading and environmental conditions. Monitoring the mo-
tor condition is crucial to detect faults in early stage to eliminate the hazards of severe
motor damages [18].

All experiments reported here were performed using data from a dynamic model of
an induction motor. The model is based on the classical fourth order transient model for
symmetrical induction machines and is able to simulate normal operation and several
failure modes. A complete description of the dynamic model is provided in [19]. The ex-
periments consider normal and six failure modes, Table 1. Gaussian random values with
zero mean and 1% variance were added to the measured variables to simulate noisy data.

The feature extraction technique used was simply the calculation of the root mean
square (RMS) values of the currents and voltages for all three phases, resulting in a
set of six features. The set of six inputs is the input of the incremental unsupervised
clustering procedure.

To validate the FDD approach developed, the following experiment was done. Ini-
tially, a data stream with all seven operation modes was input to the FDD. The data
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Table 1. Operation modes

Index Description

0 Normal Operation
1 Short Circuit on phase A
2 Short Circuit on Phase B
3 Short Circuit on phase C
4 Short Circuit on phase A and B
5 Short Circuit on phase A and C
6 Short Circuit on phase B and C

stream was generated using an integration time of 0.2 ms during approximately 70 sec-
onds. First, 15 seconds of normal operation was simulated followed by all six failure
modes to verify the online detection of new operation modes. Next, random failures
were simulated to check the adaptive diagnosis. Because all operation modes have been
input in the evolving classifier, it should be capable to identify all of them afterwards.

The FDD approach was initialized assuming normal operation after the transient
phase. The clustering procedure parameters were set to Σinit = I , w = 100, λ = 0.01,
α = 0.01 and the classifier parameter to Tμy = 0.01. Transient phase data were not
used during the experiments.

Figure 3 shows (a) the sequence of operation modes that occurred during simulation,
and (b) the operation modes estimated. Time instants marked by ’*’ represent time
instants at which new clusters were created and identified by operator. From the total
of 9248 input values, only 17 (0.2%) needed operator intervention. Comparing Fig. 3
(a) and (b) we notice that the FDD is able to detect all failure modes and to identify
all of them afterwards. Notice also that as soon as all failure modes were input to the
classifier for the first time (t > 70 sec), only 3 new clusters needed to be identified by
the operator, two related with normal operation condition (t ≈ 140 sec and t ≈ 150
sec) and one associated with failure mode 5 (t ≈ 110 sec).
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Fig. 3. Sequence of operation modes simulated (a) and estimated by the online FDD approach (b)
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Table 2 summarizes the values of two additional performance indexes: detection
delay time (DDT) in seconds, i.e., the time lag between the occurrence of a failure
mode and its detection, and the final number of rules (FNR) for each operation mode.
Looking at this Table one can note that most failure modes were detected with a DDT
≈ 0.1 sec, with the exception of failure mode 1 (DDT = 0.63 sec). However, the next
time failure mode 1 was seen by the FDD, it was able to detect and classify it in 0.02
sec. One can also note that the classifier is very compact, containing only 1 or 2 rules
for each operation mode.

Table 2. Performance indexes

Index Description DDT (sec) FNR

0 Normal Operation - 2
1 Short Circuit on phase A 0.63 1
2 Short Circuit on phase B 0.08 2
3 Short Circuit on phase C 0.13 2
4 Short Circuit on phase A and B 0.13 1
5 Short Circuit on phase A and C 0.13 1
6 Short Circuit on phase B and C 0.13 2

5 Conclusion

This paper has introduced a new approach for online fault detection and diagnosis of
dynamical systems. The approach is model-free and only uses features extracted from
raw data to perform diagnosis. The approach is an evolving fuzzy classifier capable to
incorporate information about new operation modes as soon as they are detected, and
to perform adaptive fault diagnosis.

The method can be used in both, off-line and on-line, real-time environments. The
clustering algorithm used to develop and update the fuzzy rule base of the classifier
uses the concept of participatory learning and is robust to noisy data because it filters
the effect of single outliers during clustering.

The method was evaluated using fault simulations of an induction machine. The ex-
periments performed and the results suggest that the approach is a promising alternative
for fault diagnosis applications which lack information about all failure modes, and as
an alternative to incremental learning of diagnosis systems with data streams. Future
work shall address comparisons with alternative approaches.
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Abstract. One considers the problem of estimating the call destination disper-
sion on telecommunications usage to use in fraud detection. The problem is that 
such detection needs to be performed for each individual customer and kept up 
to date at all times. The use of fast and small footprint algorithms is critical due 
to the huge number of events and customers to verify and since approximate an-
swers are enough in most situations. This paper presents telecommunications 
customer behavior to justify the use of approximate estimators and then pre-
sents multiple options of algorithms to solve the problem. These algorithms 
present a novel approach to the moving window dispersion problem by the use 
of a probabilistic time decay mechanism. 

Keywords: Approximate estimation, sliding window algorithms, probabilistic 
counters. 

1   Introduction 

Estimating the call destination dispersion on telecommunications usage is critical in 
systems used to detect fraud in Telecom operators. Call destination patterns may point 
to abnormal uses of services and can help identifying fraud situation. One such situa-
tion is the so-called bypass fraud. Telecom operators establish agreements on how 
traffic between them is handled and how are the costs assigned for each of the opera-
tors. An operator may route an international call through several networks to reach a 
final destination: each operator involved receives a fee for routing the call through its 
network and pays the next in route a cost for him to deliver the call. Each country 
regulates who and how can participate in this scheme. Subverting these rules in a 
manner that avoids these agreed interconnection points is bypass fraud. 

Sending voice calls from one country to another through Internet or owned IP net-
works is easy and cheap. A long distance call can now be routed through VoIP and 
delivered locally at the destination country without paying the costs of interconnec-
tion. Local calls are usually much cheaper than long distance, therefore, the difference 
easily out pays the increased IP traffic and required equipment.  

For a telecom operator, long distance calls may represent a large part of its reve-
nues, in the order of several thousand million Euros per year. Although bypassing the 
operator is legal in some countries and might be allowed for personal use in others, it 
is a crime in most. Bypass fraud is therefore a huge threat for operator profitability. 
The problem is made worse by the fact that not only individuals and small companies 
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engage in such fraudulent schemes: global telecommunication operators can also 
establish local hubs for traffic transfer to avoid interconnection costs. 

Classical call dispersion detection algorithms require the list of used destinations to 
be checked every time a new call is processed to see if the call is already in the list. 
Even if a time limited window is to be checked (last hour, last day) this may require a 
large list of destinations to be maintained. Moving time windows require additionally a 
timestamp to be maintained for each destination. The problem is not just keeping one 
estimate or an estimate for a large set, is keeping huge number of estimates on medium 
size sets. Operators range from less than 500 000 customers (a small operator) to more 
than 25 000 000 customers; for each one a reasonable estimate of dispersion might be 
needed.  The number of destinations for each customer is not a huge number, but the 
number of customers for which one has to compute individual dispersion is. 

The paper introduces new algorithms for counting distinct values over time based on 
the use of Probabilistic Counters [9] and Bloom filters [2], based on a simple probabilis-
tic time decay process of bitmaps that allow building simple and compact estimators. 

2   Typical Behavior of Mobile Users 

To better understand bypass fraud is important to analyze typical behavior of individ-
ual customers. In this case a set of calls from mobile customers was used as a sample. 
Mobile telecommunication operators suffer more from bypass fraud as the intercon-
nection fees they charge to deliver calls are higher. This makes them ideal for use as a 
reference in the analysis. 

The following analysis is presented only to illustrate the typical use by mobile us-
ers of their service. It is based on 962 blocks of calls of distinct customers, each with 
500 mobile voice calls (made during a 2 or 3 month period in most cases). 

Note that 500 calls is not a small number of calls, most of the customers make no 
more than 15 calls a day. However as the average mobile call duration is not very 
long (119 seconds in this sample) a single SIM Box system (basically a PBX – private 
branch extension – that includes a mobile phone to connect to a mobile network) is 
capable of achieving that number in a single day.  

For each block the call frequency to distinct numbers (with distinct number ranked 
per received calls) is presented in the following charts. On average, in 500 calls, each 
customer would call 98.67 distinct numbers (with a standard deviation of 34.99), the 
30 more frequent numbers will include around 80% of the total calls. 

 

Fig. 1. Percentage of distinct destinations per customer 
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The highest value in this sample was 262 destinations for a single customer. A 500 
call block having 262 distinct destinations is not common in individual customers. In 
fact this particular case is a SIM Box, a mobile service being used by a company to 
deliver calls from its fixed network to the operators network. This particular case is 
not fraud as the telecom operator is aware of its existence and allows it. 

3   Using a Probabilistic Counter (PC) as a Dispersion Indicator 

As the algorithm for exact counting of the distinct number of destinations is quite 
demanding on memory (requires each distinct number to be stored for each user) and 
computational power, a probabilistic counter was used to estimate the number of 
distinct calls. This follows Whang et al. [9] and subsequent work [5, 6, 7, 8]. 

This particular implementation uses a bitmap to store pseudo-distinct values. In 
this process the destination numbers are never stored. It assumes that every destina-
tion number will be transformed by the use of a hash function into a position in the 
bitmap. The hash function needs to be able to transform the destination numbers into 
a uniformly distributed integer range. The hashed value (the normalized destination 
number) h(x) is then used to set the corresponding position in the bitmap, by setting 
the corresponding bit to 1. Since the hash function will probably generate collisions, 
the distinct number of destinations can be obtained by correcting the number of set 
bits (cardinality of the bitmap).  

In this process, initially all bits are set to 0.  

 

Fig. 2. Probabilistic Counter 

The total number of set bits in the bitmap Un is: 

Un = ∑
i
 ui    where ui = 1, with probability pi and  ui = 0, with probability 1-pi 

The number of distinct calls N is estimated in En [9] for Un ≤ m-1, where m is the 
number of bits in the bitmap. From [9] we also have the expected value and variance 
of the estimator:  

 En = -m log (V)  where V = (m-Un)/m   (Eq. 1) 
 E(En) = N + ½(eN/m – N/m -1)    (Eq. 2) 
 Var(En) = m(eN/m – N/m -1)    (Eq. 3) 

For Un > m-1 one uses the estimate for Un = m-1 and add m: 
 En = m log(m) + m 
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4   The Need for Sliding Window Indicators 

The increase in traffic and specially the sophistication of the fraud schemes has in-
creased the challenge for fraud detection.  

Fraud needs to be identified as soon as possible and within the shortest possible 
time after it has begun. Sophisticated fraudsters are able to use the fixed periods of 
time the operators may use in fraud detection to their benefit. 

There is therefore interest in having the dispersion indicator over a sliding window 
of time instead of a fixed period. This will allow detection processes to be spread over 
time instead of being concentrated at specific moments. 

Once again the challenge is to provide a relevant indicator without consuming too 
much memory or computer resources. The objective is to maintain a count of the 
distinct values of called numbers over the last T period of time ending in the moment 
of the measure, without the need to keep a list of timed events to process every time. 

5   Decaying Probabilistic Counter (PD) 

A novel approach to this problem is the use of a decaying mechanism for estimating 
dispersion on a time sliding window period. 

Based on the probabilistic counter used before and on the idea of a time decaying 
counter with a average time to live of T, one can propose the following algorithm: 
assuming a probabilistic counter with a bitmap or length m, one will decay one bit  
(i.e., clear the bit) every t=2T/m in sequence. On average every set bit will take T to 
be cleared. Clearing the bits in sequence (returning to the start when it reaches the 
end) will ensure that a bit that is set once, will never take more than 2T to be cleared.  

The system can be seen as a continuous time system receiving events during a 2T pe-
riod and distributing then uniformly over m bits, each with a different time buffer [1].  

For the purpose of this analysis, the set of events to be considered can be consid-
ered as arriving at a rate of λ = N/T. 

 
Fig. 3. Decaying Probabilistic Counter 
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By establishing the bit order as the reverse order in which the bits have been 
cleared, one can illustrate the algorithm as follows. 

To estimate the N number of distinct values received during the period of time T, 
one assumes that events are received in a Poisson distribution, and that the rate is kept 
uniformly over the averaging period 2T. Although this assumes something about the 
behavior of the customer, this is a reasonable assumption as a random uniformly dis-
tributed arrival over a period of time will show event Poisson distribution. Consider: 

 λ = N/T 

Note that approximating the real arrival of distinct events by a random variable with 
Poisson distributed time arrival time introduces an error in the analysis. In fact, al-
though the expected value of this random variable is the same as the considered initial 
value, the variance is much higher being equal to the expected value. This will trans-
late in introducing a higher variance in the analysis of the algorithm.  

One will consider that the hash function h(x) distributes x uniformly over the m 
bits. The average rate of events falling in bit i can then be calculated at λi = λ/m. For 
simplicity one will inverse time for the following analysis and will consider the time 
of analysis the final of the 2T period Tf . 

E(Un) = E(∑
i
 ui) = ∑

i
 pi = ∑

i
 Pi1(ui|t=Tf) = ∑

i
 Pi1(ui|t=2T) 

The probability Pi0 of bit i receiving 0 events in [0, t] is given by: 

 Pi0(t) = e –λi t 

The probability of bit i not receiving an event in the time since it was last cleared is: 

 Pi0(t=2i T/m) = e – 2iλ T/m
2
  

This remains unchanged for t in ]2iT/m, 2T]. 
Therefore, the expected value for this bit to be set ui is: 

 E(ui|t=2T) = Pi1(ui|t=2T)  = 1-Pi0(t=2iT/m) = 1 - e – 2iλT/m
2
 

and the expected value for the entire Probabilistic Counter is: 

 E(Un) = ∑
i
 [1 - e – 2iλT/m

2
] = m-∑

i
 e – 2iN/m

2
= m-∑

i
 (e – 2N/m

2
) 

i

 

Considering N >= 0, β =2/m2 and α = e – βN  < 1, one has: 

 ∑
 i =1..m

 αi = (1- αm+1)/(1-α)-1  = α (1- αm)/(1-α) 

 ∑
 i

 (e – βN) i= e – βN (1- e –βmN)/(1- e –βN) = g(N) 

E(Un)  = m - g(N) = m - e -βN (1 – e -β mN)/(1- e -βN)              (Eq.4) 

The function g(N), for a continuous N >= 0 is a finite sum of positive decreasing 
exponentials, each converging to 0, so it is a continuous decreasing function as well 
and converges to 0. It therefore admits an inverse function in U [0, m[. 

The estimator for N, can then be defined as (for Un ≤  m-1): 

 En = f(Un) = g-1(m – Un)          (Eq. 5) 
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For Un >  m-1 consider: 

 En = g-1(1) + m  

For Un ≤  m-1, one cannot invert g function analytically, but it is possible to construct 
an inverse table for this function. As Un can only take integer numbers this is not a 
complex task. 

6   Decaying Averaged Probabilistic Counter (PAD) 

To smooth the decay and minimize the impact of a single bit being set to 0 too soon 
or too late it is possible to devise an alternate algorithm. In this algorithm, from now 
on designated as Decaying Averaged Probabilistic Counter, one will set 2 bits for 
each distinct value, the first by mapping the hash value into the bitmap range [0, m/2[ 
and the second by setting another bit with an offset of m/2. 

By keeping the same clearing rate of one bit every tc=2T/m in sequence and using 
the appropriate function, one can obtain an equivalent estimate. The average time a bit 
takes to decay is still T. Please note that if one wants to keep the same rate of colli-
sions as for the previous algorithm one should double the m value. 

This new approach should lead to better error value when using increased size bit-
maps, larger m values. Using the same m may lead to better results as the increase in 
collision rate may be compensated by the use of a smoother average function, espe-
cially for low distinct values as one can observe in typical telecom usages. 

To calculate the correction table, one applies the same reasoning as before (as the 
events λi = 2N/Tm were doubled). 

 

Fig. 4.  Decaying Averaged Probabilistic Counter 
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This allows the determination of the probability of this bit being set in the final 
time as: 

 Pi1(ui|t=2T) = 1-Pi0(t=2iT/m) = 1 - e – 2iλiT/m 

The expected value for the entire Probabilistic Counter is: 

 E(Un) = ∑
i
 [1 - e – 4iN/m

2
] = m-∑

i
 e – 4iN/m

2
 

The main problem with this approach is that it still estimates the number of distinct 
values in T as an average over a 2T period. A further step to minimize this relies in 
the correction formula. In fact this allows the estimation of the number of distinct 
values based on any period of time by changing the clearing rate and the formula. 
Consider the parameter τ in ]0,2] and:  

 tc=τT/m 

 ti = i tc  

One has: 

 E(Un) = ∑
i
 [1 - e – iλitc] = m-∑

i
 e – 2i N τ /m2

 

This can then be resumed into Eq. 4 with β = 2τ/m2.  

 E(Un) = m-g(N)       (Eq. 6) 

The estimator for PAD for Un ≤ m-1can then be defined as: 

 En = f(Un) = g-1(m – Un)                                         (Eq. 7) 

For Un > m-1 one uses the estimate for Un = m-1 and add m/2: 

 En = g-1(1) + m/2 

This allows a sampling period of τT instead of just 2T. With τ below 2 the the accu-
racy on the number of distinct values in the T period should increase but one can 
expect that bringing this value to near T will generate a greater error as many bits are 
cleared without being counted. 

7   Decaying Bloom Counter (BD) 

Another interesting possibility is the use of the Bloom filter, as presented by Bloom 
[2] and following studies [4], as a counter in a similar approach with time decay.  

The idea is quite similar to the PAD but instead of using a single hash function one 
uses k independent hash functions and set each of the hj(x) bits. When k equals 1 one 
has in fact a PD. Note that this is very similar to the PAD algorithm but with random-
ized gap between bits to be set instead of a fixed value.   

Designing k different independent hash functions can be quite problematic for 
large k. For a good hash function with a wide output, there should be little if any  
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correlation between different bit-fields of such a hash, so this type of hash can be used 
to generate multiple different hash functions by slicing its output into multiple bit 
fields. Alternatively, one can pass k different initial values (such as 0, 1, ..., k-1) to a 
hash function that takes an initial value. 

This algorithm leads to a correction formula similar to the PAD, where the number 
of bits to be set equals the number of hash functions to be set.  

To calculate the correction table one has to apply the same reasoning as before (as 
one has k events λi = kN/Tm and tc=τT/m). 

This allows the determination of the probability of this bit being set in the final 
time: 

 Pi1(ui|t=τT) = 1-Pi0(t=iτT/m) = 1 - e – iτλiT/m 

The expected value for the entire Probabilistic Counter is: 

 E(Un) = ∑
i
 [1 - e – ikτN/m

2
] = m-∑

i
 e –i kτN/m

2
 

This can then be resumed into Eq. 4 with β = kτ/m2. 

 E(Un) = m-g(N)                     (Eq. 8) 

The estimator for BC for Un ≤ m-1 can then be defined as: 

 En = f(Un) = g-1(m – Un)                               (Eq. 9) 

For Un > m-1 one uses the estimate for Un = m-1 and add m/k: 

 En = g-1(1) + m/2 

Better averaging could be achieved by increasing the number of set bits per distinct 
value (and increasing the bitmap size to avoid excessive collisions). 

8   Evaluating Sliding Window Algorithms 

To evaluate these algorithms the call blocks presented in section 2 are used with the 
calls distributed uniformly over a period of 3T, keeping the order of the calls. Each 
block is processed 3 times with distinct random call times. Measures every T/10 are 
taken and the error against an exact indicator is computed: 

 e = sqrt(E{(xest(ti)-x(ti))
2}),  ti = {T/10, 2T/10, 3T/10 … 3T} 

Using a relative measure: 

 er = sqrt(E{((xest(ti)-x(ti))/x(ti))
2}) 

The results obtained for 962 blocks are shown in Table 1.  
Note that all estimates were rounded to the nearest integer before applying the error 

formula. Note also that no change in computational load happens when m is changed, 
only memory requirements double when changing from m=100 to 200, and from 
m=200 to 400. 
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Table 1. Algorithm evaluation 

  e er 

m=100 4.22 11.5% 

m=200 4.01 12.6% 

PD 

m=400 3.85 11.1% 

m=200 3.55 10.6% 

m=400 3.48 10.5% 

τ=7/8 3.42 9.4% 

τ=3/4 4.09 12.0% 

PAD 

m=200 

τ=5/8 5.62 17.1% 

k=2 3.52 9.8% m=200 

k=3 3.41 8.8% 

k=2 3.48 10.5% 

BD 

m=400 

k=3 3.17 8.6% 
 

9   Conclusions and Discussion 

Using 100 bits, it is possible to estimate dispersion with an average error of 4.22,  
relative error of 11.5%, over time (although only PD results are shown, other algo-
rithms were tested for this m but with higher error results mainly due to the bitmap 
getting over-crowded). For the intended application, detecting a high dispersion 
situation, it will generate a good enough indicator of possible fraud situations (it will 
not be the single indicator). In fact for the presented estimators both the relative error 
and the average error are more than adequate for the purpose of distinguishing be-
tween low and high dispersion values required for this sort of fraud detection  
algorithms. 

Using 200 bits, the relative error is reduced to 3.41, relative error to 8.8%, by using 
a BD with 3 hash functions. All variants of PD, PAD and BD could not get below this 
error value even for much higher m values. The increase in accuracy might not justify 
the double memory needs. 

Using 400 bits, the relative error can be reduced to 3.11, relative error 8.6%, by us-
ing a BD with 3 hash functions. In fact only BD seems to take advantage of additional 
bits (and additional hash functions).  

In fact for this range of dispersions you get reasonable estimators from 100 bits 
onwards. Increasing this value does not translate in a much increased performance, 
100 bits will be a good compromise between accuracy and memory usage.  
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Abstract. We define and study the link prediction problem in bipartite
networks, specializing general link prediction algorithms to the bipartite
case. In a graph, a link prediction function of two vertices denotes the
similarity or proximity of the vertices. Common link prediction func-
tions for general graphs are defined using paths of length two between
two nodes. Since in a bipartite graph adjacency vertices can only be con-
nected by paths of odd lengths, these functions do not apply to bipartite
graphs. Instead, a certain class of graph kernels (spectral transforma-
tion kernels) can be generalized to bipartite graphs when the positive-
semidefinite kernel constraint is relaxed. This generalization is realized
by the odd component of the underlying spectral transformation. This
construction leads to several new link prediction pseudokernels such as
the matrix hyperbolic sine, which we examine for rating graphs, author-
ship graphs, folksonomies, document–feature networks and other types
of bipartite networks.

1 Introduction

In networks where edges appear over time, the problem of predicting such edges
is called link prediction [1,2]. Common approaches to link prediction can be de-
scribed as local when only the immediate neighborhood of vertices is considered
and latent when a latent model of the network is used. An example for local
link prediction methods is the triangle closing model, and these models are con-
ceptually very simple. Latent link prediction methods are instead derived using
algebraic graph theory: The network’s adjacency matrix is decomposed and a
transformation is applied to the network’s spectrum. This approach is predicted
by several graph growth models and results in graph kernels, positive-semidefinite
functions of the adjacency matrix [3].

Many networks contain edges between two types of entities, for instance item
rating graphs, authorship graphs and document–feature networks. These graphs
are called bipartite [4], and while they are a special case of general graphs, link
prediction methods cannot be generalized to them. As we show in Section 2,
this is the case for all link prediction functions based on the triangle closing
model, as well as all positive-semidefinite graph kernels. Instead, we will see that

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 380–389, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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their odd components can be used, in Section 3. For each positive-semidefinite
graph kernel, we derive the corresponding odd pseudokernel. One example is the
exponential graph kernel exp(λ). Its odd component is sinh(λ), the hyperbolic
sine. We also introduce the bipartite von Neumann pseudokernel, and study the
bipartite versions of polynomials with only odd powers. We show experimentally
(in Section 4) how these odd pseudokernels perform on the task of link prediction
in bipartite networks in comparison to their positive counterparts, and give an
overview of their relative performances . We also sketch their usage for detecting
near-bipartite graphs.

2 Bipartite Link Prediction

The link prediction problem is usually defined on unipartite graphs, where com-
mon link prediction algorithms make several assumptions [5]:

– Triangle closing: New edges tend to form triangles.
– Clustering: Nodes tend to form well-connected clusters in the graph.

In bipartite graphs these assumptions are not true, since triangles and larger
cliques cannot appear. Other assumptions have therefore to be used. While a
unipartite link prediction algorithm technically applies to bipartite graphs, it
will not perform well. Methods based on common neighbors of two vertices will
for instance not be able to predict anything in bipartite graphs, since two ver-
tices that would be connected (from different clusters) do not have any common
neighbors.

Several important classes of networks are bipartite: authorship networks, in-
teraction networks, usage logs, ontologies and many more. Many unipartite net-
works (such as coauthorship networks) can be reinterpreted as bipartite networks
when edges or cliques are modeled as vertices. In these cases, special bipartite
link prediction algorithms are necessary. The following two sections will review
local and algebraic link prediction methods for bipartite graphs. Examples of
specific networks of these types will be given in Section 4.

Definitions. Given an undirected graph G = (V,E) with vertex set V and edge
set E, its adjacency matrix A ∈ RV ×V is defined as Auv = 1 when (u, v) ∈ E
and Auv = 0 otherwise. For a bipartite graph G = (V +W,E), the adjacency
matrix can be written as A =

[
0B;BT 0

]
, where B ∈ RV ×W is the biadjacency

matrix of G.

2.1 Local Link Prediction Functions

Some link prediction functions only depend on the immediate neighborhood of
two nodes; we will call these functions local link prediction functions [1].

Let u and v be two nodes in the graph for which a link prediction score is to be
computed. Local link prediction functions depend on the common neighbors of u
and v. In the bipartite link prediction problem, u and v are in different clusters,
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(a) Unipartite network (b) Bipartite network

Fig. 1. Link prediction by spreading activation in unipartite and bipartite networks.
In the unipartite case, all paths are used. In the bipartite case, only paths of odd
length need to be considered. In both cases, the weight of paths is weighted in inverse
proportion to path length.

and thus have no common neighbors. The following link prediction functions
are therefore not applicable to bipartite graphs: The number of common neigh-
bors [1], the measure of Adamic and Adar [6] and the Jaccard coefficient [1].
These methods are all based on the triangle closing model, which is not valid
for bipartite graphs.

Preferential Attachment. Taking only the degree of u and v into account for
link prediction leads to the preferential attachment model [7], which can be used
as a model for more complex methods such as modularity kernels [8,9].

If d(u) is the number of neighbors of node u, the preferential attachment mod-
els gives a prediction between u and v of d(u)d(v)/(2|E|). The factor 1/(2|E|)
normalizes the sum of predictions for a vertex to its degree.

3 Algebraic Link Prediction Functions

Link prediction algorithms that not only take into account the immediate neigh-
borhood of two nodes but the complete graph can be formulated using algebraic
graph theory, whereby a decomposition of the graph’s adjacency matrix is com-
puted [10]. By considering transformations of a graph’s adjacency matrix, link
prediction methods can be defined and learned. Algebraic link prediction meth-
ods are motivated by their scalability and their learnability. They are scalable
because they rely on a model that is built once and which makes computation
of recommendations fast. These models correspond to decomposed matrices and
can usually be updated using iterative algorithms [11]. In contrast, local link pre-
diction algorithms are memory-based, meaning they access the adjacency data
directly during link prediction. Algebraic link prediction methods are learnable
because their parameters can be learned in a unified way [12].

In this section, we describe how algebraic link prediction methods apply to bi-
partite networks. LetG = (V,E) be a (not necessarily bipartite) graph. Algebraic
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link prediction algorithms are based on the eigenvalue decomposition of its adja-
cency matrix A:

A = UΛUT

To predict links, a spectral transformation is usually applied:

F (A) = UF (Λ)UT

where F (Λ) applies a real function f(λ) to each eigenvalue λi. F (A) then contains
link prediction scores that, for each node, give a ranking of all other nodes, which
is then used for link prediction. If f(λi) is positive, F is a graph kernel, otherwise,
we will call F a pseudokernel.

Several spectral transformations can be written as polynomials of the adja-
cency matrix in the following way. The matrix power Ai gives, for each vertex
pair (u, v), the number of paths of length i between u and v. Therefore, a polyno-
mial of A gives, for a pair (u, v), the sum of all paths between u and v, weighted
by the polynomial coefficients. This fact can be exploited to find link prediction
functions that fulfill the two following requirements:

– The link prediction score should be higher when two nodes are connected by
many paths.

– The link prediction score should be higher when paths are short.

These requirements suggest the use of polynomials f with decreasing coefficients.

3.1 Odd Pseudokernels

In bipartite networks, only paths of odd length are significant, since an edge
can only appear between two vertices if they are already connected by paths of
odd lengths. Therefore, only odd powers are relevant, and we can restrict the
spectral transformation to odd polynomials, i.e. polynomials with odd powers.

The resulting spectral transformation is then an odd function and except in
the trivial and undesired case of a constant zero function, will be negative at
some point. Therefore, all spectral transformations described below are only
pseudokernels and not kernels.

The Hyperbolic Sine. In unipartite networks, a basic link prediction function
is given by the matrix exponential of the adjacency matrix [13,14,15]. The matrix
exponential can be derived by considering the sum

exp(αA) =
∞∑

i=0

αi

i!
Ai

where coefficients are decreasing with path length. Keeping only the odd com-
ponent, we arrive at the matrix hyperbolic sine [16].

sinh(αA) =
∞∑

i=0

α1+2i

(1 + 2i)!
A1+2i

Figure 2 shows the hyperbolic sine applied to the (positive) spectrum of the
bipartite Slovak Wikipedia user–article edit network.
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Fig. 2. In this curve fitting plot of the Slovak Wikipedia, the hyperbolic sine is a good
match, indicating that the hyperbolic sine pseudokernel performs well

The Odd von Neumann Pseudokernel. The von Neumann kernel for uni-
partite graphs is given by the following expression [13].

KNEU(A) = (I − αA)−1 =
∞∑

i=0

αiAi

We call its odd component the odd von Neumann pseudokernel:

Kodd
NEU(A) = αA(I − α2A2)−1 =

∞∑
i=0

α1+2iA1+2i

The hyperbolic sine and von Neumann pseudokernels are compared in Figure 3,
based on the path weights they produce.

Rank Reduction. Similarly, rank reduction of the matrix A can be described
as a pseudokernel. Let λk be the eigenvalue with k-th largest absolute value,
then rank reduction is defined by

f(λ) =
{
λ if |λ| ≥ |λk|
0 otherwise

This function is odd, but does not have an (odd) Taylor series expansion.

3.2 Computing Latent Graph Models

Bipartite graphs have adjacency matrices of the form

A =
(

B
BT

)
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Fig. 4. Learning a pseudokernel that matches an observed spectral transformation in
the MovieLens 10M rating network and English Wikipedia edit history

where B is the biadjacency matrix of the graph. This form can be exploited
to reduce the eigenvalue decomposition of A to the equivalent singular value
decomposition B = ŨΣṼ .

A =
(
U U
V −V

)(
+Σ

−Σ
)(
U U
V −V

)T

with U = Ũ/
√

2, V = Ṽ /
√

2 and each singular value σ corresponds to the
eigenvalue pair {±σ}.

3.3 Learning Pseudokernels

The hyperbolic sine and the von Neumann pseudokernel are parametrized by α,
and rank reduction has the parameter k, or equivalently λk. These parame-
ters can be learned by reducing the spectral transformation problem to a one-
dimensional curve fitting problem, as described in [12]. In the bipartite case, we
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can apply the curve fitting method to only the graph’s singular value, since odd
spectral transformations fit the negative eigenvalue in a similar way they fit the
positive eigenvalues. This kernel learning method is shown in Figure 4.

4 Experiments

As experiments, we show the performance of bipartite link prediction functions
on several large datasets, and present a simple method for detecting bipartite or
near-bipartite datasets.

4.1 Performance on Large Bipartite Networks

We evaluate all bipartite link prediction functions on the following bipartite
network datasets. BibSonomy is a folksonomy of scientific publications [17].
BookCrossing is a bipartite user–book interaction network [18]. CiteULike is
a network of tagged scientific papers [19]. DBpedia is the semantic network of
relations extracted from Wikipedia, of which we study the five largest bipar-
tite relations [20]. Epinions is the rating network from the product review site
Epinions.com [21]. Jester is a user–joke network [22]. MovieLens is a user–movie
rating dataset, and a folksonomy of tags attached to these movies [23]. Netflix
is the large user–item rating network associated with the Netflix Prize [24]. The
Wikipedia edit graphs are the bipartite user–article graphs of edits on various
language Wikipedias. The Wikipedia categories are represented by the bipar-
tite article–category network [25]. All datasets are bipartite and unweighted. In
rating datasets, we only consider the presence of a rating, not the rating itself.
Table 1 gives the number of nodes and edges in each dataset.

In the experiments, we withhold 30% of each network’s edges as the test set
to predict. For datasets in which edges are labeled by timestamps, the test set
consists of the newest edges. The remaining training set is used to compute link
prediction scores using the preferential attachment model and the pseudokernel
learning methods described in the previous sections. For the pseudokernel learn-
ing methods, the training set is again split into 70% / 30% subsets for training.
Link prediction accuracy is measured by the mean average precision (MAP),
averaged over all users present in the test set [26]. The evaluation results are
summarized in Table 1.

4.2 Detecting Near-Bipartite Networks

Some networks are not bipartite, but nearly so. An example would be a net-
work of “fan” relationships between persons where there are clear “hubs” and
“authorities”, i.e. popular persons and persons being fan of many people. While
these networks are not strictly bipartite, they are mostly bipartite in a sense
that has to be made precise. Measures for the level of bipartivity exist in sev-
eral forms [4,27], and spectral transformations offer another method. Using the
link prediction method described in Section 3.3, nearly bipartite graphs can be
recognized by the odd shape of the learned curve fitting function.
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Table 1. Overview of datasets and experiment results. See the text for a descrip-
tion of the datasets and link prediction methods. Link prediction methods: Poly: odd
polynomials, NN-poly: odd nonnegative polynomials, Sinh: hyperbolic sine, Red: rank
reduction, Odd Neu: odd von Neumann pseudokernel, Pref: preferential attachment.

Dataset Nodes Edges Poly. NN-poly. Sinh Red. Odd Neu. Pref.
BibSonomy tag-item 975,963 2,555,080 0.921 0.925 0.925 0.782 0.917 0.924
BibSonomy user-item 777,084 2,555,080 0.748 0.771 0.771 0.645 0.750 0.821
BibSonomy user-tag 210,467 2,555,080 0.801 0.820 0.820 0.777 0.295 0.878
CiteULike tag-item 885,046 2,411,819 0.593 0.608 0.608 0.510 0.635 0.698
CiteULike user-item 754,484 2,411,819 0.853 0.856 0.856 0.735 0.855 0.838
CiteULike user-tag 175,992 2,411,819 0.812 0.836 0.836 0.782 0.202 0.881
DBpedia artist-genre 47,293 94,861 0.824 0.971 0.833 0.736 0.841 0.961
DBpedia birthplace 191,652 273,695 0.952 0.977 0.978 0.733 0.813 0.968
DBpedia football club 41,846 131,084 0.685 0.678 0.674 0.505 0.159 0.680
DBpedia starring 83,252 141,942 0.908 0.916 0.924 0.731 0.570 0.897
DBpedia work-genre 156,145 222,517 0.879 0.941 0.908 0.746 0.867 0.966
Epinions 876,252 13,668,320 0.644 0.690 0.546 0.501 0.061 0.690
French Wikipedia 3,989,678 41,392,490 0.667 0.744 0.744 0.654 0.108 0.803
German Wikipedia 3,357,353 51,830,110 0.673 0.699 0.699 0.651 0.156 0.799
Japanese Wikipedia 1,892,869 18,270,562 0.740 0.752 0.755 0.618 0.076 0.776
Jester 25,038 616,912 0.575 0.571 0.581 0.461 0.579 0.501
MovieLens 100k 2,625 100,000 0.822 0.774 0.738 0.718 0.631 0.812
MovieLens 10M 136,700 10,000,054 0.683 0.682 0.663 0.500 0.298 0.680
MovieLens 1M 9,746 1,000,209 0.640 0.662 0.538 0.500 0.221 0.662
MovieLens tag-item 24,129 95,580 0.860 0.860 0.860 0.737 0.865 0.863
MovieLens user-item 11,610 95,580 0.755 0.741 0.728 0.659 0.674 0.812
MovieLens user-tag 20,537 95,580 0.782 0.798 0.798 0.672 0.663 0.915
Netflix 497,959 100,480,507 0.674 0.671 0.670 0.500 0.322 0.672
Spanish Wikipedia 2,684,231 23,392,353 0.634 0.750 0.750 0.655 0.094 0.799
Wikipedia categories 2,036,440 3,795,796 0.591 0.659 0.663 0.500 0.589 0.675

(a) Advogato trust network (b) English Wikipedia hyperlinks

Fig. 5. Detecting near-bipartite and non-bipartite networks: If the hyperbolic sine fits,
the network is nearly bipartite; if the exponential fits, the network is not nearly bi-
partite. (a) the Advogato trust network, (b) the English Wikipedia hyperlink network.
These graphs show the learned transformation of a graph’s eigenvalues; see the text
for a detailed description.
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Figure 5 shows the method applied to two unipartite networks: the Advogato
trust network [28] and the hyperlink network in the English Wikipedia [25].
The curves indicate that the Advogato trust network is not bipartite, while the
Wikipedia link network is nearly so.

5 Discussion

While technically the link prediction problem in bipartite graphs is a subproblem
of the general link prediction problem, the special structure of bipartite graphs
makes common link prediction algorithms ineffective. In particular, all methods
based on the triangle closing model cannot work in the bipartite case. Out of
the simple local link prediction methods, only the preferential attachment model
can be used in bipartite networks.

Algebraic link prediction methods can be used instead, by restricting spectral
transformations to odd functions, leading to the matrix hyperbolic sine as a link
prediction function, and an odd variant of the von Neumann kernel. As in the
unipartite case, no single link prediction method is best for all datasets.
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Abstract. Ordered modular aggregation functions (OMAF in short)
can be seen as symmetrized modular aggregation functions and they are
characterized by comonotone modularity. As such, OMAFs generalize
OWA operators. We show a one-to-one correspondence between idem-
potent OMAFs and copula-based integrals with respect to a symmetric
capacity.
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1 Introduction

The OWA functions (Ordered Weighted Averages) were introduced in 1988 by
Yager [13] and since then they are used in many theoretical papers and several
applications. Among generalizations of OWA recall WOWA [12], IOWA [14],
GOWA [1], IGOWA [9] functions, etc. For more details see also [15,16]. The OWA
functions can be characterized as a symmetrization [6] of a weighted arithmetic
mean, i.e., as a symmetrization of an additive aggregation function. In [5,10]
it was shown that OWA function is a particular case of the Choquet integral,
where the considered capacity (fuzzy measure) is symmetric (see also [7]).

Recall that modularity generalizes additivity. The aim of this contribution is
to introduce a symmetrization of modular aggregation functions – OMAF func-
tions and show a relation of this class of functions to a class of non-additive
integrals, namely, to the class of copula-based integrals with respect to a sym-
metric capacity.

2 Ordered Modular Aggregation Functions

Definition 1. Let n ∈ N. The mapping A : [0, 1]n −→ [0, 1] is called an aggrega-
tion function whenever it is non-decreasing and A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.
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For more details on aggregation functions see [6].
Two classes of aggregation functions that are important for our work are

additive and modular aggregation functions. For details see [2,6].

Definition 2. Let A : [0, 1]n −→ [0, 1] be an aggregation function. Then
(i) A is additive whenever

A(x + y) = A(x) +A(y) (1)

for all x,y,x + y ∈ [0, 1]n.

(ii) A is modular whenever

A(x ∨ y) +A(x ∧ y) = A(x) +A(y). (2)

for all x,y ∈ [0, 1]n.

Due to the valuation equality x ∨ y + x ∧ y = x + y, each additive aggregation
function is necessarily also modular. For each of these two classes we have the
following characterization (see [2,6]).

Proposition 1. Let A : [0, 1]n −→ [0, 1] be an aggregation function. Then
(i) A is additive if and only if

A(x) =
n∑

i=1

wixi (3)

for some weights (w1, . . . , wn) ∈ [0, 1]n,
n∑

i=1
wi = 1 (and A is called a

weighted arithmetic mean).

(ii) A is modular if and only if

A(x) =
n∑

i=1

wifi(xi). (4)

for some weights (w1, . . . , wn) ∈ [0, 1]n,
n∑

i=1
wi = 1, where for i = 1, . . . , n,

fi : [0, 1] −→ [0, 1] are 1-dimensional aggregation functions, i.e., fi is non-
decreasing and fi(0) = 0, fi(1) = 1.

Observe that a modular aggregation function A can be written equivalently in
the form

A(x) =
n∑

i=1

gi(xi),

where gi : [0, 1] −→ [0, 1]are non-decreasing functions satisfying gi(0) = 0 and
n∑

i=1
gi(1) = 1. In this paper we prefer the form (4) to stress the relationships of

modular n-ary aggregation functions with unary aggregation functions.
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Evidently, each additive aggregation function is also modular (fi = id for
all i = 1, . . . , n in this case). On the other hand, for example the function
A : [0, 1]2 −→ [0, 1] given by

A(x, y) =
x2 + y

2
is modular but not additive. Hence modularity of aggregation function general-
izes the additivity.

Yager [13] has introduced OWA function as a symmetrization of a weighted
arithmetic mean (of an additive aggregation function).

Definition 3. Let A : [0, 1]n −→ [0, 1] be an aggregation function. The sym-
metrized aggregation function SA : [0, 1]n −→ [0, 1] is given by

SA(x) = A(xσ(1), . . . , xσ(n)), (5)

where σ is a permutation of (1, . . . , n) such that xσ(1) ≥ · · · ≥ xσ(n). In par-
ticular, if A is additive (with weights w1, . . . , wn) then SA = OWA is called an
Ordered Weighted Average,

SA(x) = OWA(x) =
n∑

i=1

wixσ(i). (6)

Though there may exist more permutations fitting the requirements of Definition
3, both (5) and (6) are well-defined, independently of the choice of such σ. We
propose the following extension of the concept of OWA functions – the OMAF
functions arising from modular aggregation functions by symmetrization.

Definition 4. Let A : [0, 1]n −→ [0, 1] be a modular aggregation function,

A(x) =
n∑

i=1

wifi(xi).

Then its symmetrization SA is called Ordered Modular Aggregation Function,
shortly OMAF, i.e., SA = OMAF,

OMAF(x) =
n∑

i=1

wifi(xσ(i)),

where the permutation σ satisfies xσ(1) ≥ · · · ≥ xσ(n).

In the following we show that OMAF functions cover the class of ordered weighted
maximum functions.

Definition 5. Let 1 = v1 ≥ v2 ≥ · · · ≥ vn ≥ 0 be given weights. Then the
Ordered Weighted Maximum function OWMax: [0, 1]n −→ [0, 1] is given by

OWMax(x) =
n∨

i=1

(vi ∧ xσ(n−i+1)). (7)
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Proposition 2. Let OWMax function be given by formula (7). Then OWMax =
SA, where A : [0, 1]n −→ [0, 1] is a modular aggregation function,

A(x) =
n∑

i=1

wifi(xσ(i)),

where wi = vn−i+1 − vn−i+2, for i = 1, . . . , n, with convention vn+1 = 0, and
fi(x) = max(0,min(x−vn−i+2

wi
, 1)), for i = 1, . . . , n.

Example 1. (i) Let w1 = · · · = wn−1 = 0, wn = 1, and

fn(x) =

{
0 if x ∈ [0, 1[ ,
1 if x = 1,

(i.e., fn is the weakest 1-dimensional aggregation function). Then

OMAF(x) =

{
1 if x = 1
0 else,

i.e., we have recovered the weakest n-ary aggregation function on [0, 1].
Similarly, if w1 = 1, w2 = · · · = wn = 0, and

f1(x) =

{
0 if x = 0,
1 else,

i.e., here f1 is the strongest 1-dimensional function, then the corresponding
OMAF is the strongest n-ary aggregation function on [0, 1],

OMAF(x) =

{
0 if x = 0
1 else.

(ii) for n = 2, put w1 = w2 = 0.5, f1(x) = x and f2(x) = x2. Then the
corresponding function OMAF: [0, 1]2 −→ [0, 1] is given by

OMAF(x, y) =
1
2
(max(x, y) + min(x, y)2).

If we reverse the order of functions in (ii), i.e., if we put f1(x) = x2 and
f2(x) = x, then

OMAF(x, y) =
1
2
(max(x, y)2 + min(x, y)).

(iii) for n = 3, let w1 = 0.3, w2 = 0.2, w3 = 0.5 and f1(x) = min( x
0.3 , 1), f2(x) =

max(0,min(x−0.3
0.2 , 1)) and f3(x) = max(0, 2x − 1). Then OMAF(x, y, z)

= OWMax(x, y, z), where weights for OWMax operator are v1 = 1, v2 =
0.5, v3 = 0.3.
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(iv) for n = 3, let w1 = 0.5, w2 = 0.2, w3 = 0.3, f1(x) = max(0, 2x−1), f2(x) =
max(0,min(x−0.3

0.2 , 1)) and f3(x) = min( x
0.3 , 1). Then OMAF(0.7, 0.3, 1) = 1

and OMAF(0.6, 0.2, 0.9) = 0.8.

An aggregation function A is called a kernel aggregation function [3] (or, equiv-
alently, it has minimal Chebyshev norm) if

|A(x) −A(y)| ≤ ||x− y||L∞ = max
i
|xi − yi|.

Moreover, an aggregation function A is called 1-Lipschitz (with respect to L1-
norm) if

|A(x)−A(y)| ≤ ||x− y||L1 =
n∑

i=1

|xi − yi|.

OWA’s and OWMax’s are examples of kernel aggregation functions [4]. Taking
the OMAF function from Example 1(iv) we have

OMAF(0.7, 0.3, 1)−OMAF(0.6, 0.2, 0.9) � 0.1,

and thus this OMAF is not a kernel aggregation function. However, it is
1-Lipschitz.

Theorem 1. Let A be an ordered modular aggregation function given by A(x) =
n∑

i=1
wifi(xσ(i)), with xσ(1) ≥ · · · ≥ xσ(n). Assume gi(x) =

i∑
j=1
wjfj(x) for x ∈

[0, 1], i = 1, . . . , n. Then A is kernel if and only if for all i ∈ {1, . . . , n} the
function gi is concave, and gn = id.

Theorem 2. Let A be an ordered modular aggregation function given by A(x) =
n∑

i=1
wifi(xσ(i)), with xσ(1) ≥ · · · ≥ xσ(n). Then A is 1-Lipschitz if and only if

each fi, i = 1, . . . , n, is 1
wi

-Lipschitz, i.e., wi · |fi(x) − fi(y)| ≤ |x − y| for each
x, y ∈ [0, 1].

Observe that a sufficient condition ensuring the 1- Lipschitz property of an
OMAF A is gn = id, i.e., each idempotent OMAF A is 1-Lipschitz. Note that all
OMAFs introduced in Example 1 are 1-Lipschitz. However, only Example 1 (iii)
brings a kernel OMAF. A : [0, 1]2 −→ [0, 1] given by A(x, y) = 1

2 (max(x, y) +
min(x, y)4) is an OMAF function which is not 1-Lipschitz.

In [5] it was shown that OWA operators are exactly those aggregation func-
tions that are symmetric and comonotone additive. We have a similar result for
OMAF operators in the following theorem.

Theorem 3. An aggregation function A : [0, 1]n −→ [0, 1] is an OMAF function
if and only if it is symmetric and comonotone modular.
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3 Copula-Based Integrals with Respect to Symmetric
Capacities and Idempotent OMAFs

An aggregation function C : [0, 1]2 −→ [0, 1] is called a copula whenever 1 is its
neutral element, i.e., C(x, 1) = C(1, x) = x for all x ∈ [0, 1], and C is supermod-
ular, i.e., for all x,y ∈ [0, 1]2, C(x ∨ y) + C(x ∧ y) ≥ C(x) +C(y). Copulas are
applied in statistics and probability to model the structure of stochastic depen-
dence of random vectors, and for more details we recommend Nelsen’s lecture
notes [11]. In [8] Klement et al. introduced the concept of copula-based integrals.
In our contribution we will assume these integrals defined on a discrete universe
X = {1, . . . , n} for some n ∈ N. We will use a capacity m on X, i.e., a mapping
m : 2X −→ [0, 1] which is non-decreasing, m(E) ≤ m(F ) whenever E ⊆ F ⊆ X,
and satisfies the boundary conditions m(∅) = 0, m(X) = 1.

Definition 6 ([8]). Let m be a given capacity on X and C a fixed copula. Then
a mapping Cm : [0, 1]n −→ [0, 1] given by

Cm(x) =
n∑

i=1

(C(xσ(i),m({σ(1), . . . , σ(i)})− C(xσ(i),m({σ(1), . . . , σ(i− 1)}))
(8)

(with convention {σ(1), σ(0)} = ∅), where σ : X −→ X is a permutation such
that xσ(1) ≥ · · · ≥ xσ(n), is called a (C,m)-based integral.

The aggregation function Cm is idempotent and 1-Lipschitz and it is symmetric if
and only if m is a symmetric capacity. Recall that if the capacitym is symmetric
then it is uniquely given by values m(#i), where the symbol #i denotes any set
with cardinality i. If we denote vn−i+1 = m(#i) and wi = m(#i) −m(#i − 1)

we get
i∑

j=1
wj = vn−i+1. Thus also m(X) = 1 =

n∑
i=1
wi = v1, and for such a

symmetric capacity m, the formula (8) can be rewritten into

Cm(x) =
n∑

i=1

(C(xσ(i) , vn−i+1)− C(xσ(i), vn−i+2)) (9)

(with convention vn+1 = 0).

Example 2. (i) For copula C = Π given by Π(x, y) = xy (product is a cop-
ula describing the independence of random variables) and for a symmetric
capacity m we have

Πm(x) =
n∑

i=1

xσ(i) · wi,

i.e., Πm is just an OWA function.
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(ii) For the strongest copula Min, Min(x, y) = min(x, y), and a symmetric ca-
pacity m, we have

Minm(x) =
n∑

i=1

(min(xσ(i), vn−i+1)−min(xσ(i), vn−i+2) =∨
i

min(xσ(i), vn−i+1) =
∨
i

min(vi, xσ(n−i+1)),

i.e., Minm is an OWMax function.

The following results show the one-to-one correspondence between idempotent
OMAF functions and copula-based integrals with respect to symmetric capacities.

Theorem 4. Let C be a copula and m a symmetric capacity on X. Then Cm is
an n-ary idempotent OMAF.

Theorem 5. Let A : [0, 1]n −→ [0, 1] be an idempotent OMAF. Then there is a
copula C and a symmetric capacity m on X such that A = Cm.

Observe that additional constraints on idempotent OMAFs relate them to special
fuzzy integrals. For example, comonotone additive OMAFs are exactly OWAs,
i.e., Choquet integral based on symmetric capacities. Similarly, comonotone max-
itivity relates idempotent OMAFs and Sugeno integral.

4 Conclusion

We have introduced and studied some elementary properties of a new class
of symmetric aggregation functions – Ordered Modular Aggregation Functions,
OMAF in short. These aggregation functions naturally generalize the concept of
OWA operators, with striking similarities in integral representation and charac-
terization by comonotone modularity (comonotone additivity). A detailed study
of this new type of aggregation functions will be the topic of our further inves-
tigations. Moreover, we expect the application of OMAFs in all domains where
OWAs have shown their usefulness.
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4. Calvo, T., Kolesárová, A., Komorńıková, M., Mesiar, R.: Aggregation Operators:
Properties, Classes and Construction Methods. In: Calvo, T., Mayor, G., Mesiar,
R. (eds.) Aggregation Operators, pp. 3–107. Physica-Verlag, Heidelberg (2002)

5. Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Sys-
tems 69, 279–298 (1995)

6. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cam-
bridge University Press, Cambridge (2009)

7. Grabisch, M.: OWA operators and nonadditive integrals. In: [16] (to appear)
8. Klement, E.P., Mesiar, R., Pap, E.: Measure-based aggregation operators. Fuzzy

Sets and Systems 142(1), 3–14 (2004)
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Abstract. In this paper smooth aggregation functions on a finite scale
are studied and characterized as solutions of a functional equation anal-
ogous to the Frank functional equation. The particular cases of quasi-
copulas and copulas are also characterized through a similar functional
equation. Previous characterizations of these kind of operations through
special matrices are used jointly with the new ones to derive some in-
variant properties on quasi-copulas and copulas on finite scales.

Keywords: Aggregation functions, smoothness, finite scale, quasi-
copulas, copulas.

1 Introduction

The fact that the theory of aggregation functions and their applications is a field
of increasing interest is clear from the great number of researchers working on
this topic and it is corroborated by the different and complementary monographs
that have been appeared in last years (see [2], [3] and [7]). On the other hand,
the study of operations defined on a finite chain is also in a hight development
because in practical situations it is necessary to reduce the range of calculations
and reasonings to a finite set of values.

In this direction many different classes of aggregation functions have been
considered in the framework of finite scales. Such kind of operations are usually
known as discrete operations. In almost all cases, this study is devoted to discrete
aggregation operations with the smoothness property (or at least with some kind
of smoothness), usually considered as the counterpart of continuity for operations
defined on finite chains. For instance, t-norms and t-conorms in [15], weighted
ordinal means in [11], uninorms and nullnorms in [12], non-commutative versions
of these operations in [5] and [13], idempotent uninorms in [4], copulas in [14] and
quasi-copulas in [1]. However, the whole class of smooth aggregation functions
has not been considered yet in this framework.

In this paper we want to deal with smooth aggregation functions on a finite
scale in general, and we present a characterization theorem for them based on
the Frank functional equation in a similar way as it was done in the case of
[0,1] (see [10]). Moreover quasi-copulas, as a special kind of smooth aggregation
functions, are also characterized as solutions of a similar functional equation and

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 398–407, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the particular case of copulas is adapted. These new characterizations, jointly
with previous characterizations based on special kinds of matrices (given in [1]
and [14]), are used in deriving some invariant properties for discrete quasi-copulas
and copulas.

2 Preliminaries

In this section we recall some definitions and basic facts on discrete aggregation
operators. As in this framework any finite chain is equivalent (see for instance
[15]) we will deal with the most simple one with n+ 1 elements:

Ln = {0, 1, 2, . . . , n}

and we will use also the notation [a, b] to denote the finite subchain given by
[a, b] = {x ∈ L | a ≤ x ≤ b}. For details on smooth discrete t-norms not included
here see for instance [15].

Definition 1. A (binary) discrete aggregation function is a binary operation
F : L2

n −→ Ln such that it is non-decreasing in each component, F (0, 0) = 0
and F (n, n) = n.

Definition 2. ([15]) A function f : Ln → Ln is said to be smooth if it satisfies:

| f(x)− f(x− 1) | ≤ 1 for all x ∈ Ln with x ≥ 1.

Definition 3. ([15]) A binary operation F on L is said to be smooth when each
one of its vertical and horizontal sections (F (x,−) and F (−, y), respectively) are
smooth.

The importance of the smoothness condition lies in the fact that it is generally
used as a discrete counterpart of continuity and it is equivalent to the Lipschitz
condition (see [15]).

Definition 4. ([14]) A discrete copula C on Ln is a binary operation C : L2
n −→

Ln such that

(C1) C(x, 0) = C(0, x) = 0 for all x ∈ Ln

(C2) C(x, n) = C(n, x) = x for all x ∈ Ln

(C3) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y)
for all x, x′, y, y′ ∈ Ln with x ≤ x′, y ≤ y′ (2-increasing condition)

Definition 5. ([1]) A discrete quasi-copula Q on Ln is a binary operation Q :
L2

n −→ Ln such that

(Q1) Q(x, 0) = Q(0, x) = 0 and Q(x, n) = Q(n, x) = x for all x ∈ Ln

(Q2) Q is non-decreasing in each component
(Q3) Q is smooth.
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We will call a discrete dual quasi-copula to any operation satisfying conditions
of quasi-copula but replacing condition (Q1) by the following one

(D1) Q(x, 0) = Q(0, x) = x and Q(x, n) = Q(n, x) = n for all x ∈ Ln.

In fact operations introduced in Definitions 4 and 5 were called “irreducible”
discrete copulas and quasi-copulas in [14] and [1], respectively. For simplicity we
will avoid the word irreducible in this paper. Note also that conditions (Q1) and
(Q2) in Definition 5 can be derived one of each other because smoothness and
so only one of them is necessary in the definition.

Clearly each copula is a quasi-copula but not vice versa. Quasi-copulas which
are not copulas are called proper quasi-copulas. These classes of operations were
characterized through special kinds of matrix representations as follows. Recall
that an n × n permutation matrix A is an n × n matrix (ai,j) such that there
exists a permutation σ of {1, 2, . . . , n} such that

ai,j =
{

1 if i = σ(j)
0 otherwise

Note that this is equivalent to say that in each row and each column of A all
entries are equal to 0 except one which is 1.

Proposition 1. ([14]) A binary operation C on Ln is a discrete copula if and
only if there exists an n× n permutation matrix A = (ai,j) such that

C(r, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if r = 0 or s = 0∑
i≤r
j≤s

ai,j otherwise (1)

for all (r, s) ∈ L2
n. Given the discrete copula C, the matrix A is obtained as

ai,j = C(i, j) + C(i− 1, j − 1)− C(i, j − 1)− C(i− 1, j) (2)

Definition 6. ([1], [16]) An n×n Alternating-Sign Matrix (ASM matrix) is an
n× n matrix A = (ai,j) such that

1. ai,j ∈ {−1, 0, 1} for all i, j ∈ {1, . . . , n}
2. The first and the last elements ai,j �= 0 of each row and each column are 1.
3. All the elements ai,j �= 0 of each row and each column have alternating signs.

Remark 1. In particular, the sum of each row and each column equals 1 and
consequently each ASM with no negative entries is in fact a permutation matrix.

Proposition 2. ([1]) A binary operator Q : Ln×Ln −→ Ln is a discrete quasi-
copula if and only if there exists an n× n ASM matrix A = (ai,j) such that

Q(r, s) =

⎧⎪⎨⎪⎩
0 if r = 0 or s = 0∑
i≤r
j≤s

ai,j otherwise (3)
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for all (r, s) ∈ L2
n. Given the quasi-copula Q, the matrix A is obtained as

ai,j = Q(i, j) +Q(i− 1, j − 1)−Q(i, j − 1)−Q(i− 1, j) (4)

Finally, let us recall that a smooth t-norm T (t-conorm S) on Ln is Archimedean
if and only if T (x, x) < x (S(x, x) > x) for all x ∈ Ln \ {0, n}, and that there is
one and only one Archimedean smooth t-norm (t-conorm) on Ln, usually called
the �Lukasiewicz t-norm (t-conorm), which is given by

TL(x, y) = max(0, x+ y − n) (SL(x, y) = min(x+ y, n)) (5)

3 Smooth Discrete Aggregation Functions

Let us deal in this section with smooth aggregation functions on L. We begin
with the characterization of the general case through the well known Frank
functional equation (see [6]). We do not include the proof of this result because
it is very similar as the one given in the case of [0, 1] (see [10]).

Theorem 1. Let F be a binary aggregation function on Ln. Then F is smooth
if and only if there is a binary aggregation function F ′ such that

F (x, y) + F ′(x, y) = x+ y for all x, y ∈ Ln.

Moreover, in this case, the binary aggregation function F ′ is also smooth.

This result implies in particular that for any smooth aggregation function F we
have

x+ y − n ≤ x+ y − F ′(x, y) ≤ x+ y for all x, y ∈ Ln

and consequently, TL ≤ F ≤ SL. Also, if we denote by F the set of all binary,
smooth aggregation functions on Ln, from the theorem above we can define the
function Φ : F → F given by Φ(F ) = F ′ leading to a kind of duality of F , because
we clearly have (F ′)′ = F . Note that this assignation preserves commutativity
and moreover, Φ interchanges neutral elements with annihilator elements in the
following sense:

If α ∈ Ln is a neutral element of F , then F ′(x, α) = x+α−F (x, α) = α and
similarly for F ′(α, x). That is, α is an annihilator element of F ′ and vice versa,
if α is an annihilator element of F then α is a neutral element of F ′.

Now, we can characterize the particular cases when the smooth aggregation
function has an annihilator or a neutral element.

Theorem 2. Consider α ∈ Ln and let F : L2
n → Ln be a discrete binary

operation. Then F is a smooth discrete aggregation function with annihilator
element α if and only if there exist a quasi-copula QF on [α, n] and a dual
quasi-copula DF on [0, α] such that F is given by

F (x, y) =

{
DF (x, y) if x, y ∈ [0, α]
QF (x, y) if x, y ∈ [α, n]
α otherwise.

(6)
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Proof. If F is a smooth aggregation function with annihilator α, the restriction
of F to [α, n]2 is a smooth aggregation function on the finite chain [α, n] with
the least element α as annihilator and consequently is a quasi-copula on [α, n].
Similarly, the restriction of F to [0, α]2 is a dual quasi-copula. Moreover, for all
x, y ∈ Ln such that x < α < y we have

α = F (x, α) ≤ F (x, y) ≤ F (α, y) = α,

that is, F (x, y) = α and the same is true when y < α < x.
Conversely, it is clear that functions given by equation (6) are smooth aggre-

gation functions with annihilator α.

Theorem 3. Consider α ∈ Ln and let F : L2
n → Ln be a discrete binary

operation. Then F is a smooth discrete aggregation function with neutral element
α if and only if there exist a quasi-copula QF on [0, α] and a dual quasi-copula
DF on [α, n] such that F is given by

F (x, y) =

⎧⎨⎩QF (x, y) if x, y ∈ [0, α]
DF (x, y) if x, y ∈ [α, n]
x+ y − α otherwise.

(7)

Proof. If F is a smooth aggregation function with neutral element α, the restric-
tion of F to [0, α]2 is a smooth aggregation function on the finite chain [0, α] with
the greatest element α as neutral element and consequently is a quasi-copula on
[0, α]. Similarly, the restriction of F to [α, n]2 is a dual quasi-copula. Moreover,
from Theorem 1 we have that F ′ is a smooth aggregation function with annihi-
lator element α and, applying Theorem 2, we can ensure F ′(x, y) = α whenever
min(x, y) < α < max(x, y). Thus, for all these values

F (x, y) = x+ y − F ′(x, y) = x+ y − α.
Conversely, it is clear that functions given by equation (7) are smooth aggrega-
tion functions with neutral element α.

The structure of smooth discrete aggregation functions with annihilator and with
neutral element can be viewed in Figure 1.

4 Discrete Quasi-copulas and Copulas

In this section we give a new characterization of discrete quasi-copulas, in this
case as the solutions of a functional equation. Let us begin with the commutative
case.

Theorem 4. Let F be a commutative discrete aggregation function on Ln. Then
F is a commutative discrete quasi-copula if and only if there is an aggregation
function F ∗1 such that

F (x, y) + F ∗1(n− x, y) = y for all x, y ∈ Ln. (8)

Moreover, in this case, the binary aggregation function F ∗1 is also a discrete
quasi-copula.
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x + y − α
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α

Fig. 1. Structure of smooth discrete aggregation function with annihilator element α
(left) and with neutral element α (right)

Proof. If F is a commutative quasi-copula on Ln then defining

F ∗1(x, y) = y − F (n− x, y) for all x, y ∈ Ln (9)

we obtain a binary function on Ln with F ∗1(0, 0) = 0 and F ∗1(n, n) = n satis-
fying equation (8). Moreover, for all x > 0 we have

F ∗1(x, y)− F ∗1(x− 1, y) = y − F (n− x, y)− (y − F (n− x+ 1, y))
= F (n− x+ 1, y)− F (n− x, y) ≥ 0

which proves that F ∗1 is non-decreasing in the first component. Since non-
decreasingness in the second component can be prove similarly, we have that
F ∗1 is an aggregation function. Moreover, the arguments before prove also that
F ∗1(x, y)− F ∗1(x− 1, y) ≤ 1 and that F ∗1 is smooth. Since it also satisfies

F ∗1(x, n) = n− F (n− x, n) = x and F ∗1(n, x) = x− F (n− n, x) = x

we have that F ∗1 is in fact a quasi-copula.
Conversely, if the aggregation function F ∗1 exists let us prove first that F

must be smooth. For all y > 0 we have

F (x, y)− F (x, y − 1) = y − F ∗1(n− x, y)− (y − 1− F ∗1(n− x, y − 1))
= 1− (F ∗1(n− x, y)− F ∗1(n− x, y − 1)) ≤ 1

where the inequality holds because F ∗1 is non-decreasing. Since F is commu-
tative we have smoothness in both components. Finally, note that F (n, 0) =
F (0, n) = 0 − F ∗1(n − n, 0) = 0 which also implies that F has annihilator
element 0 and then is a quasi-copula.

A similar characterization can be done for copulas but then F ∗1 needs to be also
a copula, leading to the result: If F is commutative then F is a copula if and
only if F ∗1 is a copula. Note that this result for copulas is in fact true also for
non-commutative operations and can be proved directly as in the framework of
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[0,1] (see for instance [9]). What is not true in general is that the quasi-copula
F ∗1 obtained from a commutative quasi-copula F is itself commutative. Next
proposition characterizes all commutative quasi-copulas for which F ∗1 is also
commutative.

Proposition 3. Let F be a commutative discrete quasi-copula and let F ∗1 be
the quasi-copula obtained from F through equation (9). Then the following items
are equivalent.

(i) F ∗1 is commutative
(ii) F and its dual quasi-copula F d(x, y) = n−F (n− x, n− y) satisfy the Frank

functional equation.

Proof. Note that by equation (9) we obtain that F ∗1 is commutative if and
only if y − F (n − x, y) = x − F (n − y, x) for all x, y ∈ Ln. Now, changing
z = n− x, this is equivalent to y − F (z, y) = n− z − F (n− y, n− z) or also to
F (z, y) + F d(z, y) = z + y for all z, y ∈ Ln, proving the equivalence between (i)
and (ii).

For the non-commutative case we have the following result with proof very sim-
ilar to the one given for the commutative case.

Theorem 5. Let F be a discrete binary aggregation function on Ln. Then F is
a discrete quasi-copula if and only if there exist two aggregation functions F ∗1

and F ∗2 such that

F (x, y) + F ∗1(n− x, y) = y and F (x, y) + F ∗2(x, n− y) = x (10)

for all x, y ∈ Ln. Moreover, in this case, both binary aggregation functions F ∗1

and F ∗2 are also discrete quasi-copulas.

5 Invariant Quasi-copulas and Copulas

Note that in the framework of copulas on [0,1], operations F ∗1 and F ∗2 are
well known transformations of copulas. Characterizations of those copulas that
are invariant for these kinds of transformation were studied in [9]. There is
another transformation commonly used for copulas on [0,1], which is given by
Ĉ(x, y) = x + y − n+ F (n− x, n− y) for all x, y ∈ [0, 1] and for any copula C.
Transformation Ĉ is known as the survival copula (see again [9]), but we can
extend this notion to discrete quasi-copulas on Ln in general and we have the
following result.

Lemma 1. Let Q : L2
n → Ln be a binary operation on Ln. Then Q is a discrete

quasi-copula if and only if Q̂ is a discrete quasi-copula, where Q̂ is defined by

Q̂(x, y) = x+ y − n+Q(n− x, n− y) for all x, y ∈ Ln.
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Proof. If Q is a quasi-copula, it is clear that Q̂(n, x) = x for all x ∈ Ln. To see
the other conditions note that

Q̂(x+ 1, y)− Q̂(x, y) = 1− (Q(n− x, n− y)−Q(n− x− 1, n− y))
and since Q is a quasi-copula we have 0 ≤ Q̂(x + 1, y) − Q̂(x, y) ≤ 1, proving
both, non-decreasingness and smoothness. The converse follows similarly.

Remark 2. In the framework of [0,1] it is well known that a binary operation
C is a copula if and only if Ĉ is a copula. Of course for discrete copulas on Ln

this is also true and it can be proved similarly as in the case of [0,1] or through
matrix arguments from the previous lemma and the matrix representation given
in Propositions 1 and 2 (see Proposition 4 below).

From this result one can wonder if there exist discrete quasi-copulasQ : L2
n → Ln

being invariant for these kinds of transformation, as it was studied in [9]. To
answer this question we will use the matrix representations given in Propositions
1 and 2. Recall that any discrete quasi-copula has associated an ASM matrix
in such a way that equation (3) holds. Thus, if a quasi-copula Q has associated
matrix A = (ai,j), then a straightforward computation proves that the associated
matrices of the quasi-copulas Q∗1 , Q∗2 and Q̂ are given by A∗1 = bi,j , A∗2 = b′i,j
and Â = (ci,j), where

bi,j = an+1−i,j for all i, j = 1, . . . , n, (11)

b′i,j = ai,n+1−j for all i, j = 1, . . . , n, (12)

ci,j = an+1−i,n+1−j for all i, j = 1, . . . , n. (13)

That is, the matrix A∗1 is obtained from A just by reversing columns, A∗2 is
obtained similarly by reversing the rows of A, and Â is obtained by reversing
both rows and columns.

Taking into account the previous equations we can easily give characteriza-
tions of invariant quasi-copulas and copulas through these transformations.

Proposition 4. Let Q be a discrete quasi-copula (copula) with associated ASM
matrix (permutation matrix) given by A = (ai,j). Then the following items are
equivalent.

(i) Q = Q̂
(ii) Q and its dual quasi-copula (copula) Qd(x, y) = n−Q(n− x, n− y) satisfy

the Frank functional equation
(iii) A satisfies ai,j = an+1−i,n+1−j for all i, j =, 1, . . . , n.

Proof. The equivalence between (i) and (ii) is clear from the fact that Q̂ can
be written as Q̂(x, y) = x+ y −Qd(x, y). Now the equivalences between (i) and
(iii) follows from the matrix associated to Q̂ given in equation (13). Finally, note
that for the case of copulas the reasonings are the same taking into account that
if A is a permutation matrix then also Â is a permutation matrix.
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Remark 3. Note that when Q is a commutative quasi-copula we can obtain the
following equivalent property

Q = Q̂ if and only if an+1−i,j = an+1−j,i for all i, j =, 1, . . . , n,
that directly follows from Proposition 3 and equation (11).

With respect to the other transformations we have the following result.

Proposition 5. Let Q be a discrete quasi-copula (copula) with associated ASM
matrix (permutation matrix) given by A = (ai,j). Then

(i) Q∗1 = Q if and only if A satisfies an+1−i,j = ai,j for all i, j =, 1, . . . , n.
(ii) Q∗2 = Q if and only if A satisfies ai,n+1−j = ai,j for all i, j =, 1, . . . , n.

Proof. Again the result is clear from equations (11) and (12).

Let us illustrate the previous results with some examples.

Example 1. It is clear from Proposition 5 that there are no discrete copulas
invariant with respect to the transformations ∗1 and ∗2 (each row and/or column
must be self-reverse but it has only one entry 1 and all the others 0). The same
is true for quasi-copulas on Ln when n is an even number. However, when n is
odd, consider for instance the following matrices

M1 =

⎛⎜⎜⎜⎝
0 0 0 1 0
0 1 0 0 0
1 −1 1 −1 1
0 1 0 0 0
0 0 0 1 0

⎞⎟⎟⎟⎠ and M2 =

⎛⎜⎜⎜⎝
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0

⎞⎟⎟⎟⎠
Both are ASM matrices and if we take Q1 and Q2 the quasi-copulas with as-
sociated matrices M1 and M2 respectively, we have Q1 = Q∗1

1 and Q2 = Q∗2
2

(because matrices M1 and M2 satisfy equations given in Proposition 5 (i) and
(ii), respectively).

Example 2. With respect to the survival transformation it is well known (see
[15]) that all smooth t-norms on Ln are associative copulas. Moreover, if T is
one of them then T and its dual t-conorm T d satisfy the Frank equation if and
only if the set of idempotent of T , J = {x ∈ Ln | T (x, x) = x}, is self-dual, that
is, N(J) = J where N(J) = {n − x | x ∈ Ln} (see again [15]). Thus, from
Proposition 4 all these t-norms are examples of invariant copulas, T = T̂ .

On the other hand, if we consider the ASM matrix

M =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0
0 0 0 0 1

⎞⎟⎟⎟⎠
the quasi-copula Q with associated matrix M is also invariant, Q = Q̂, because
M satisfies equation (13).
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Conclusions. In this paper smooth aggregation functions on finite scales are
studied, devoting special attention to the particular case of quasi-copulas and
copulas. Some characterizations as solutions of functional equations are pre-
sented and, in the case of quasi-copulas and copulas, this characterization is
used to derive some invariant properties in terms of their associated representa-
tion matrices (see [1], [14]).
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Abstract. In this paper dual representable aggregation functions
(DRAF’s) are introduced and studied. After giving a representation the-
orem for them, it is proved that they can be viewed as a non-associative
generalization of nilpotent t-conorms, some basic properties are proved
and some examples are given. On the other hand, using DRAF’s a new
kind of strong implications are derived and some usual properties are
studied for this new class of implications. In particular, it is shown that
they have an easy structure always divided into three parts depending
on the strong negation.
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1 Introduction

Aggregation functions are operations that perform the process of merging several
inputs (numerical or qualitative) into a single output that must be representa-
tive of the initial information. From their nature, aggregation functions become
essential in many pure and applied fields, such as mathematics, economics, deci-
sion making, image processing, data fusion, etc. Many researchers are currently
working on this topic from both, theoretical and applicational point of view.
This is corroborated by the different and complementary monographs that have
appeared in last years (see [4], [7], [14] and [23]).

Many kinds of aggregation functions have been studied and characterized clas-
sifying them usually into four general classes: conjunctive when they lie under the
minimum, disjunctive when they lie over the maximum, averaging or compen-
satory when they lie between the minimum and the maximum, and mixed in any
other case. In the conjunctive class we obviously find t-norms, t-subnorms, cop-
ulas, quasi-copulas and semicopulas (see for instance [4]). On the other hand,
representable aggregation functions (RAF’s for short, see Definition 2 below)
are another kind of conjunctive aggregation functions that appear for the first
time in [19] and also recently in [8] introducing residual implications derived
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from them. RAF’s admit a representation through a unary increasing function
g : [0, 1] → [0, g(1)] and a strong negation N , generalizing the well known nilpo-
tent t-norms.

On the other hand, implication functions play a crucial role in fuzzy logic
and approximate reasoning because they are used to perform conditionals and
to manage forward and backward inferences. Moreover, they are also useful in
many applications like fuzzy control, mathematical morphology and image pro-
cessing, fuzzy relational equations, computing with words, fuzzy measures (see
for instance [5], [6], [12], [13], [16], [18]). Implication functions are also stud-
ied from the theoretical point of view ([1], [2], [18]). In many cases they are
derived from t-norms and t-conorms but recently, more general classes of aggre-
gation functions have also been considered in this framework, like uninorms ([9],
[17], [20], [21], [22]), conjunctors including copulas and quasi-copulas ([10]) and
RAF’s ([8]).

In this paper we want to deal with dual (with respect to the strong negation
N) representable aggregation functions (DRAF’s) that obviously belong to the
disjunctive class, and their derived implications. Directly from duality we obtain
that DRAF’s are representable in the same way as RAF’s through a decreasing
function f : [0, 1] → [0, f(0)] and the proper negation N . Some basic properties
are proved pointing out that they can be viewed as a non-associative generaliza-
tion of nilpotent t-conorms. Moreover, some representative examples are studied
in detail showing a very simple structure easy to manipulate. On the other hand,
strong implications derived from DRAF’s are introduced (via the generalization
of the classical meaning p → q ≡ ¬p ∨ q) and some properties are studied. It
is proved that such implications have a very simple structure divided in three
parts depending on the negation N and some usual properties are studied for
this new class of implications.

2 Preliminaries

We will suppose the reader to be familiar with the basic theory of t-norms, t-
conorms, and strong negations (see for instance [15]). We recall here only some
facts on aggregation functions and fuzzy implications.

Definition 1. ([7], [10]) A binary function F : [0, 1]×[0, 1]→ [0, 1] will be called
an aggregation function when it is non-decreasing in each place, F (0, 0) = 0 and
F (1, 1) = 1.

Aggregation functions are usually classified in conjunctive (when they are under
the minimum), disjunctive (when they lie over the maximum), compensative
(when they are between the minimum and the maximum) and mixed (all the
others).

The following special kind of aggregation functions was introduced in [19].
Along the paper we will use indistinctly the notation min(x, y) and x ∧ y to
denote the minimum of the numbers x and y. Analogously, we will use max(x, y)
and x ∨ y to denote their maximum.
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Definition 2. ([19]) A binary function F : [0, 1] × [0, 1] → [0, 1] will be called
a representable aggregation function (RAF in short) if there is a continuous
strictly increasing function g : [0, 1] → [0,+∞] with g(0) = 0 and a strong
negation N such that F is given by

F (x, y) = g−1 (max(0, g(x ∧ y)− g(N(x ∨ y))) for all x, y ∈ [0, 1] (1)

The pair (g,N) is called a generating pair of F and we will denote it by F =
< g,N >.

The importance of representation (1) lies in the fact that it is unique up to a
positive multiplicative constant as it is stated in next proposition.

Proposition 1. ([19]) Let F1 =< g1, N1 > and F2 =< g2, N2 > be two RAF’s.
Then they are equal if and only if N1 = N2 and there exists a constant k > 0
such that g2 = kg1.

RAF’s are specially interesting because they are conjunctive, continuous, com-
mutative aggregation functions with neutral element 1, and they have the rep-
resentation theorem stated before. That is, they have the same properties as
nilpotent t-norms except associativity. In this sense, we say that RAF’s are a
non-associative generalizations of nilpotent t-norms, and moreover we have the
following result.

Proposition 2. ([19]) Let F =< g,N > be a RAF. Then F is a t-norm if and
only if g(1) < +∞ and

N(x) = g−1(g(1)− g(x)) for all x ∈ [0, 1]

Moreover, in this case F is a nilpotent t-norm with additive generator given by
the composition gN .

There are two different classes of RAF’s depending on whether the value g(1) is
finite or not. In the first class, we have all nilpotent t-norms, and also the family
of RAF’s: F =< g,N > with g(x) = x. Functions in this family will be denoted
simply by FN and they are given by

FN (x, y) = max (0, x ∧ y −N(x ∨ y)) for all x, y ∈ [0, 1].

In the class where g(1) = +∞, we have the family F =< g,N > with g(x) =
− ln(1 − x). In this case they will be denoted by FN and are given by

FN (x, y) = max
(

0,
x ∧ y −N(x ∨ y)

1−N(x ∨ y)
)

for all x, y ∈ [0, 1].

Definition 3. ([11], [2]) A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to
be an implication operator, or an implication, if it satisfies:

I1) I is decreasing in the first variable and increasing in the second one.
I2) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.
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Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.

A special kind of fuzzy implications are strong implications usually derived
from a t-conorm and a negation through the expression I(x, y) = S(N(x), y)
for all x, y ∈ [0, 1] (see the survey [1]). Recently also other kinds of aggregation
functions have been used, specially uninorms (see [3]).

3 Dual Representable Aggregation Functions (DRAF’s)

It is well known that, given a fuzzy negation N , the N -dual of a conjunctive
aggregation function F is always a disjunctive aggregation function, given by

F ∗(x, y) = N(F (N(x), N(y))) for all x, y ∈ [0, 1].

In this way, we can dualize any RAF, F = 〈g,N〉, with respect to the proper
strong negation N and we obtain

F ∗(x, y) = N(g−1 (max(0, g(N(x) ∧N(y))− g(N(N(x) ∨N(y))))))
= N(g−1 (max(0, g(N(x ∨ y)− g(x ∧ y)))))
= f−1 (max(0, f(x ∨ y)− f(N(x ∧ y))))

where f = g ◦N is a continuous strictly decreasing function f : [0, 1] → [0,+∞]
with f(1) = 0.

Thus, we can give the following definition.

Definition 4. ([19]) A binary function G : [0, 1]× [0, 1] → [0, 1] will be called a
dual representable aggregation function (DRAF in short) if there is a continuous
strictly decreasing function f : [0, 1] → [0,+∞] with f(1) = 0 and a strong
negation N such that G is given by

G(x, y) = f−1 (max(0, f(x ∨ y)− f(N(x ∧ y)))) for all x, y ∈ [0, 1] (2)

The pair (f,N) will be called a generating pair of G (similarly as for RAF’s)
and we will denote it by G =< f,N >. From this definition we can easily prove
the following result on duality, (here and from now on gN and fN denote the
composition of these functions).

Proposition 3. Let F =< g,N > a RAF. Then the dual F ∗ is a DRAF with
generating pair 〈gN,N〉, and reciprocally, the dual of a DRAF G =< f,N > is
a RAF with generating pair 〈fN,N〉.
The importance of the representation (2) lies in the fact that it is unique up to
a positive multiplicative constant.

Proposition 4. ([19]) Let G1 =< f1, N1 > and G2 =< f2, N2 > be two
DRAF’s. Then they are equal if and only if N1 = N2 and there exists a constant
k > 0 such that f2 = kf1.
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Proof. If N1 = N2 and there exists a constant k > 0 such that f2 = kf1, it is a
straightforward computation to show that G1 = G2.

Conversely, if G1 = G2 then their N -duals RAF’s G∗
1 = 〈f1N1, N1〉 and

G∗
2 = 〈f2N2, N2〉 are also equal. Thus, by Proposition 1 we necessarily have
N1 = N2 and there must be a positive constant k > 0 such that f2N = kf1N .
That is,

f2(N(x)) = kf1(N(x)) for all x ∈ [0, 1]

and taking y = N(x) we obtain f2(y) = kf1(y) for all y ∈ [0, 1].

Also we can derive the following properties of DRAF’s directly from the duality
with RAF’s.

Proposition 5. ([19]) Let G =< f,N > be a DRAF. Then

– G is a continuous, commutative disjunctive aggregation function with neutral
element 0.

– The one-region of G, that is, the set of points (x, y) ∈ [0, 1]2 such that
G(x, y) = 1, is given by

O(F ) = {(x, y) | y ≥ N(x)}.
– G is strictly increasing in each place in the region {(x, y) | y ≤ N(x)}.
– G(x, x) > x for all x ∈ (0, 1).

These properties show the importance of DRAF’s because they allow to view
them as a non-associative generalization of nilpotent t-conorms. Thus, they could
be useful in those fields where nilpotent t-conorms are usually applied although
the associative property is not necessary. This fact is reinforced by the following
proposition.

Proposition 6. Let G = 〈f,N〉 be a DRAF. Then G is a t-conorm if and only
if f(0) < +∞ and

N(x) = f−1(f(0)− f(x)) for all x ∈ [0, 1]

Moreover, in this case G is a nilpotent t-conorm with additive generator given
by the composition fN .

Proof. If G = 〈f,N〉 is such that f(0) < +∞ and

N(x) = f−1(f(0)− f(x)),
it is a straightforward computation to prove that G is a nilpotent t-conorm with
additive generator fN .

Conversely, if G = 〈f,N〉 is a t-conorm then its N -dual G∗ = 〈fN,N〉
is a t-norm and by Proposition 2, it must be fN(1) < +∞ and N(x) =
(fN)−1(fN(1) − fN(x)) for all x ∈ [0, 1]. That is, f(0) < +∞ and x =
f−1(f(0) − f(N(x))) or, taking y = N(x), N(y) = f−1(f(0) − f(y)) for all
y ∈ [0, 1].
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There are two different classes of DRAF’s depending on whether the value f(0)
is finite or not.

– In the first class, we have all nilpotent t-conorms as we have seen just before.
We can also consider the family of DRAF’s: G =< f,N > with f(x) = 1−x.
Functions in this family will be denoted simply by GN and they are given
by

GN (x, y) = min(1, 1− (N(x ∧ y) + x ∨ y)) for all x, y ∈ [0, 1].

Another particular family in this class, is given by dualizing the family FN

of RAF’s. Specifically, we will denote by F ∗
N = 〈N,N〉 the DRAF N -dual of

FN given by

F ∗
N (x, y) = N(max(0, N(x ∨ y)− x ∧ y)) for all x, y ∈ [0, 1].

– In the second class, where f(0) = +∞, we can consider also two different
families. One is given by DRAF’s G =< f,N > with f(x) = − lnx. In this
case they will be denoted by GN and are given by

GN (x, y) = min
(

1,
x ∨ y
N(x ∧ y)

)
for all x, y ∈ [0, 1].

The other one is obtained again by dualizing the family FN . Specifically, we
will denote by (FN )∗ the DRAF N -dual of FN . In this case we obtain

(FN )∗(x, y) = N
(

max
(

0,
N(x ∨ y)− x ∧ y

1− x ∧ y
))

for all x, y ∈ [0, 1].

4 S-Implications Derived from DRAF’s

In this section we want to study S-implications derived from G where G = 〈f,N〉
is a DRAF, that is,

IG(x, y) = G(N(x), y) for all x, y ∈ [0, 1]. (3)

Note that the same strong negation N from the function G is considered in
Equation (3). However, any other strong negation N1 could be used to derive
S-implications, but this general case is left for further work.

Since G(1, 0) = G(0, 1) = 1, expression (3) always gives an implication in the
sense of Definition 3.

Proposition 7. Let G = 〈f,N〉 be a DRAF. Then IG is given by

IG(x, y) =

⎧⎨⎩
1 if x ≤ y
f−1(f(y)− f(x)) if x > y ≥ N(x)
f−1(f(N(x)) − f(N(y))) if min(x,N(x)) > y

(4)



414 I. Aguiló et al.

Proof. If x ≤ y, then clearly IG(x, y) = f−1(0) = 1. On the other hand, if x > y,
we have two cases:

a) N(x) ≤ y. In this case, we have

IG(x, y) = f−1 (max(0, f(N(x) ∨ y)− f(N(N(x) ∧ y)))) = f−1(f(y)−f(x))

b) N(x) > y. In this case, we have

IG(x, y) = f−1 (max(0, f(N(x) ∨ y)− f(N(N(x) ∧ y))))
= f−1(f(N(x)) − f(N(y)))

The structure of IG can be viewed in Figure 1.

Fig. 1. Structure of the S-implication IG obtained from the DRAF, G = 〈f, N〉, where
(∗1) = f−1(f(N(x)) − f(N(y))) and (∗2) = f−1(f(y) − f(x))

From the definition and the proposition above we can easily derive the fol-
lowing properties.

Proposition 8. Let G = 〈f,N〉 be a DRAF and IG the S-implication derived
from G. Then the following properties hold:

i) IG satisfies the left neutrality principle: IG(1, y) = y for all y ∈ [0, 1].
ii) IG(x, 0) = N(x) for all x ∈ [0, 1].
iii) IG satisfies the ordering property:

IG(x, y) = 1 ⇐⇒ x ≤ y, for all x, y ∈ [0, 1].

iv) IG is continuous.

Next we present some examples derived from the special families of DRAF’s
introduced in the previous section.
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Example 1.

1) If we take f(x) = 1− x, then we have

IGN (x, y) =

⎧⎨⎩
1 if x ≤ y
1 + y − x if x > y ≥ N(x)
1−N(y) +N(x) if min(x,N(x)) > y

(5)

Note that in the particular case when N is the classical negation N(x) = 1−
x, the corresponding GN is the �Lukasiewicz t-conorm and the S-implication
is given by the well known �Lukasiewicz implication:

ILK(x, y) = min{1, 1− x+ y} for all x, y ∈ [0, 1].

2) The S-implication of F ∗
N = 〈N,N〉, the DRAF N -dual of FN , is given by

IFN
∗(x, y) =

⎧⎨⎩
1 if x ≤ y
N(N(y)−N(x)) if x > y ≥ N(x)
N(x− y) if min(x,N(x)) > y

(6)

3) If we take f(x) = − lnx, then

IGN (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if x ≤ y
y

x
if x > y ≥ N(x)

N(x)
N(y)

if min(x,N(x)) > y

(7)

Moreover, when N(x) = 1−x, let us denote by G0 the corresponding DRAF
and by IG0 the derived S-implication. Then they are respectively given by
G0(x, y) = max{0, x+y−1

x∨y } and

IG0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if x ≤ y
y

x
if x > y ≥ 1− x

1− x
1− y if min(x, 1 − x) > y

4) The S-implication of (FN )∗ = 〈− ln(1 −N), N〉, the DRAF N -dual of FN ,
is given by

I∗F N (x, y) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ≤ y
N
(

N(y)−N(x)
1−N(x)

)
if x > y ≥ N(x)

N
(

x−y
1−y

)
if min(x,N(x)) > y

(8)
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Another important property for fuzzy implications is the contraposition property
with respect to a strong negation N , that is,

I(N(y), N(x)) = I(x, y) for all x, y ∈ [0, 1].

Let us investigate now whether the implications derived from DRAF’s satisfy
this property.

Proposition 9. Let G = 〈f,N〉 be a DRAF and IG the S-implication derived
from G. Then IG satisfies contraposition with respect to a fuzzy negation N ′ if
and only if N ′(x) = N(x) for all x ∈ [0, 1].

Proof. First of all, it is clear that IG satisfies contraposition with respect to N
due to the commutativity of G. On the other hand, since IG satisfies the left
neutrality principle with N , this is the only possible negation for which IG can
satisfy contraposition (see [2]).

Conclusions and Future Work

In this paper dual representable aggregation functions (DRAF’s) have been in-
troduced. Obtained by duality from representable aggregation functions (RAF,
see [8]), these operators have all usual properties of nilpotent t-conorms except
associativity. In particular, any DRAF G admits a representation theorem from
a continuous and strictly decreasing function f : [0, 1] → [0,+∞] with f(1) = 0
and a strong negation N that limits the one-region of G = 〈f,N〉. We have
also studied strong implications derived from DRAF’s obtaining their expres-
sion from f and N . Some properties of these implications have been analyzed
including contraposition with respect to a fuzzy negation N ′.

As a future work, we want to deal with many other possible properties of
such implications like the exchange principle, the law importation, the modus
ponens and modus tollens, some distributive properties with conjunctions and
disjunctions, and so on.
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2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft
Computing, vol. 231. Springer, Berlin (2008)
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Abstract. Following the ideas of stronger forms of monotonicity for
unary real functions and for capacities, k-monotone and strongly k-
monotone aggregation functions are introduced and discussed. In the
special case k = 2 also some applications are given.

1 Introduction

The monotonicity of a real function f : I → R, where I ⊆ R is some real interval,
can be strengthened into the total monotonicity. Recall that a real function f
is totally monotone if it is smooth and all its derivatives are nonnegative. In
particular, a real function f : [0, 1] → [0, 1] is totally monotone if and only if
f(x) =

∑∞
i=0 ai · xi with ai ≥ 0 for all i ∈ N ∪ {0} and

∑∞
i=0 ai ≤ 1. Ob-

serve that if f(0) = 0 and f(1) = 1 are required then necessarily a0 = 0 and∑∞
i=0 ai = 1. Similarly, the monotonicity of capacities can be strengthened into

the k-monotonicity, k = 2, 3, . . . ,∞. Recall that, for a measurable space (X,A),
a mapping m : A → [0, 1] is called a capacity if m(∅) = 0, m(X) = 1 and m is
monotone, i.e., m(E) ≤ m(F ) whenever E ⊆ F . For a fixed k ∈ N \ {1}, m is
called k-monotone if for all E1, . . . , Ek ∈ A we have

m

(
k⋃

i=1

Ei

)
≥

∑
∅�=J⊆{1,...,k}

(−1)|J|+1m

(⋂
j∈J

Ej

)
(1)

Moreover, if a capacity m satisfies (1) for all k ∈ N \ {1} then m is called
an ∞-monotone capacity (or, equivalently, a belief measure). For more details
see [8, 10].
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The k-monotonicity (1) of a capacity m can be formulated in an equivalent
way: m is k-monotone if for all r ∈ {2, . . . , k} and for all pairwise disjoint
E,E1, . . . , Er ∈ A, ∑

J⊆{1,...,r}
(−1)r−|J|m

(
E ∪

⋃
j∈J

Ej

)
≥ 0. (2)

Inequality (2) can be generalized to an arbitrary bounded lattice (L,∨,∧,0,1).
Indeed, let g : L → R be a non-decreasing mapping, i.e., g(a) ≤ g(b) whenever
a ≤ b. Then g is k-monotone, k ∈ N \ {1}, if for all r ∈ {2, . . . , k}, for all a ∈ L,
and for all pairwise disjoint a1, . . . , ar ∈ L (i.e., a1 ∧ a2 = 0, etc.) we have∑

J⊆{1,...,r}
(−1)r−|J|g

(
a ∨

∨
j∈J

aj

)
≥ 0. (3)

If the lattice L under consideration is a sublattice of some vector lattice (and
if 0 is the neutral element of the addition on that vector space) then another
condition equivalent to (3) can be given: a non-decreasing mapping g : L→ R is
k-monotone if for all r ∈ {2, . . . , k} and for all a, a1, . . . , ar ∈ L with

a = a+
∨
ai = a+ a1 + · · ·+ ar ∈ L

we have ∑
J⊆{1,...,r}

(−1)r−|J|g
(
a+
∑
j∈J

aj

)
≥ 0. (4)

(observe that
∨
ai = a1 + · · · + ar is equivalent to a1, . . . , ar being pairwise

disjoint).
Moreover, in this case the following strong k-monotonicity related to (4) can

be introduced: a non-decreasing mapping g : L→ R is called strongly k-monotone
if for all r ∈ {2, . . . , k} and for all a, a1, . . . , ar ∈ L with a + a1 + · · · + ar ∈ L
we have ∑

J⊆{1,...,r}
(−1)r−|J|g

(
a+
∑
j∈J

aj

)
≥ 0. (5)

Observe that if (L,∨,∧,0,1) = (A,∪,∩, ∅, X) then conditions (2) and (3) coin-
cide (if we put m = g). Moreover, taking into account that each set E ∈ A is
represented by the corresponding characteristic function 1E , then ι : A → RX

defined by ι(E) = 1E provides an embedding of (A,∪,∩, ∅, X) into the vector
lattice (RX , sup, inf,0,1), where 0 and 1 are the constant functions assuming
only the value 0 and 1, respectively. Then ι(A) is a bounded sublattice of RX

(and even a sublattice of {0, 1}X). Putting g(1E) = m(E), we see the equivalence
of (2), (4) and (5).

This contribution aims at discussing aggregation functions A : [0, 1]n → [0, 1]
which are k-monotone or strongly k-monotone. As more details on aggregation
functions can be found in the recent monograph [3], here we only recall that, for
a fixed n ∈ N, a real function A : [0, 1]n → [0, 1] is called an aggregation function
if it is non-decreasing and satisfies A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.
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The paper is organized as follows. In Section 2, k-monotone and strongly k-
monotone aggregation functions are discussed in general, i.e., for k = 2, 3, . . . ,∞.
Under some specific requirements, well-known aggregation functions are recov-
ered. Section 3 is devoted to the particular cases k = 2 and k = ∞, while in
Section 4 some possible applications are indicated. Finally, several open problems
are posed.

2 (Strongly) k-Monotone Aggregation Functions

Based on (4) and (5), we introduce the following stronger forms of monotonicity
for aggregation functions.

Definition 1. Let A : [0, 1]n → [0, 1] be an aggregation function and k ∈ N\{1}.

(i) The aggregation function A is called k-monotone if for each r ∈ {2, . . . , k}
and for all x,x1, . . . ,xr ∈ [0, 1]n with x + x1 + · · ·+ xr = x +

∨
xi ∈ [0, 1]n

we have ∑
J⊆{1,...,r}

(−1)r−|J|A
(
x +

∨
j∈J

xj

)
≥ 0. (6)

(ii) The aggregation function A is said to be strongly k-monotone if for each
r ∈ {2, . . . , k} and for all x,x1, . . . ,xr ∈ [0, 1]n with x+x1+· · ·+xr ∈ [0, 1]n

we have ∑
J⊆{1,...,r}

(−1)r−|J|A
(
x +

∑
j∈J

xj

)
≥ 0. (7)

(iii) The aggregation function A is called strongly ∞-monotone (totally mono-
tone) if it is strongly k-monotone for each k ∈ N \ {1}.

Note that if x+x1+· · ·+xr = x+
∨

xi ∈ [0, 1]n then formulae (6) and (7) coincide
(and then x1, . . . ,xr have pairwise disjoint supports, i.e., min(xi,xj) = 0 for all
i �= j). Clearly, for an n-ary aggregation function A, its k-monotonicity for
k > n is equivalent to the n-monotonicity of A, which is not true for strong
monotonicity. For example, for a unary aggregation function f : [0, 1] → [0, 1],
k-monotonicity is just the non-decreasingness of f, while strong 2-monotonicity
of f is equivalent to its convexity.

The following results can be found in [1].

Proposition 1. Let f : [0, 1] → [0, 1] be an aggregation function. Then we have:

(i) f is strongly k-monotone for some k ∈ N \ {1} if and only if all derivatives
of f of order 1, . . . , k − 2 are nonnegative and f (k−2) is a non-decreasing
convex function.

(ii) f is strongly ∞-monotone if and only if f is a totally monotone real function,
i.e., it has non-negative derivatives of all orders on [0, 1[.
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Proposition 2. Let A : [0, 1]n → [0, 1] be an aggregation function. Then A is
totally monotone if and only if all partial derivatives of A are nonnegative. In
particular, this means that

A(u1, . . . , un) =
∑
ai1,...,in · u1i1 · · ·un

in ,

where i1, . . . , in run from 0 to∞, a0,...,0 = 0, all ai1,...,in ≥ 0, and
∑
ai1,...,in = 1.

As a particular consequence of Proposition 2 we see that, for each n ∈ N, the
productΠ : [0, 1]n → [0, 1] is a totally monotone aggregation function. Also, each
weighted arithmetic meanW : [0, 1]n → [0, 1] given byW (u1, . . . , un) =

∑
wi ·ui

is totally monotone.

Proposition 3. Fix k ∈ {2, 3, . . . ,∞}. Then for all n,m ∈ N and for all
strongly k-monotone n-ary aggregation functions A : [0, 1]n → [0, 1] and for all
strongly k-monotone m-ary aggregation functions B1, . . . , Bn : [0, 1]m → [0, 1]
also the composite function D : [0, 1]m → [0, 1] given by

D(x) = A(B1(x), . . . , Bn(x))

is strongly k-monotone.

It is possible to show that for each fixed n ∈ N and k ∈ {2, 3, . . . ,∞}, the class
of all (strongly) k-monotone n-ary aggregation functions is convex and compact
(with respect to the topology of pointwise convergence).

For n ∈ N \ {1} and for n-ary aggregation functions A : [0, 1]n → [0, 1], the
notion of n-increasingness was introduced in the framework of copulas [7, 9]:

Definition 2. Let n ≥ 2. An aggregation function A : [0, 1]n → [0, 1] is called
n-increasing if for all x,y ∈ [0, 1]n with x ≤ y we have∑

J⊆{1,...,n}
(−1)n−|J|A(zJ ) ≥ 0, (8)

where zJ ∈ [0, 1]n is given by zj = yj if j ∈ J , and zj = xj otherwise.

It is not difficult to check that, under the hypotheses of Definition 2, formu-
lae (8) and (6) coincide, i.e., n-monotonicity and n-increasingness for n-ary ag-
gregation functions mean the same. Hence, k-monotonicity extends the notion
of n-increasingness to higher dimensions.

Remark 1

(i) Because of [1], strong k-monotone aggregation functions are important in
the theory of non-additive measures: for k-monotone capacities m1, . . . ,mn

acting on a fixed measurable space (X,A) and for a strongly k-monotone
n-ary aggregation function A, the set function A(m1, . . . ,mn) : A → [0, 1]
given by

A(m1, . . . ,mn)(E) = A(m1(E), . . . ,mn(E))

is a k-monotone capacity whenever A is strongly k-monotone (if |X | ≥ k,
this is also necessary condition if the claim should be valid for arbitrary
k-monotone capacities m1, . . . ,mn).
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(ii) k-monotonicity is an axiom for k-dimensional copulas [9].
(iii) Strong 2-monotonicity is known also as ultramodularity, and it was discussed

in general in [6] (see also [4]). Another name for 2-monotonicity is super-
modularity, a widely used concept in the theory of non-additive measures
and of aggregation functions.

3 (Strongly) 2-Monotone Aggregation Functions

Recall that an aggregation function C : [0, 1]2 → [0, 1] which is 2-monotone and
satisfies C(x, 1) = C(1, x) = x for all x ∈ [0, 1] is called a 2-copula (or, shortly,
a copula). Copulas play a key role in the description of the stochastic depen-
dence of two-dimensional random vectors and they are substantially exploited
in several applications in finance, hydrology, etc. The construction of new types
of copulas is one of the important theoretical tasks allowing a better modelling
of real problems involving stochastic uncertainty. From [2] we have the following
representation result:

Proposition 4. An aggregation function A : [0, 1]2 → [0, 1] is 2-monotone if and
only if there are non-decreasing functions g1, g2, g3, g4 : [0, 1] → [0, 1] with gi(0) =
0 and gi(1) = 1 for each i ∈ {1, 2, 3, 4}, a binary copula C : [0, 1]2 → [0, 1], and
numbers a, b, c ∈ [0, 1] with a+ b+ c = 1 such that, for all (x, y) ∈ [0, 1]2,

A(x, y) = a · g1(x) + b · g2(y) + c · C(g3(x), g4(y)). (9)

If 0 is an annihilator of the aggregation function A : [0, 1]2 → [0, 1], i.e., if
A(x, 0) = A(0, x) = 0 for all x ∈ [0, 1], then (9) reduces to

A(x, y) = C(f(x), g(y)), (10)

where f, g : [0, 1] → [0, 1] are non-decreasing functions with f(0) = g(0) = 0 and
f(1) = g(1) = 1. Note that then we have f(x) = A(x, 1) and g(x) = A(1, x) for
all x ∈ [0, 1]. The following result can be derived from [6].

Proposition 5. An aggregation function A : [0, 1]2 → [0, 1] is strongly 2-mono-
tone if and only if A is 2-monotone and each horizontal and each vertical section
of A is a convex function.

In the class of copulas, the greatest strongly 2-monotone copula is the product
copulaΠ , while the smallest strongly 2-monotone copula is the Fréchet-Hoeffding
lower bound W given by W (x, y) = max(x + y − 1, 0). Note that the only
totally monotone 2-copula is the product copula Π . The following theorem will
be helpful in the construction of copulas.

Theorem 1. Let A : [0, 1]n → [0, 1] be an aggregation function and k ≥ 2. Then
the following are equivalent:

(i) A is strongly 2-monotone.
(ii) If B1, . . . , Bn : [0, 1]k → [0, 1] are non-decreasing 2-monotone functions then

the composite D : [0, 1]k → [0, 1] given by D(x) = A(B1(x), . . . , Bn(x)) is a
2-monotone function.
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4 Construction of Copulas

Theorem 2. Let A : [0, 1]n → [0, 1] be a continuous, strongly 2-monotone ag-
gregation function. Let C1, . . . , Cn : [0, 1]2 → [0, 1] be copulas and assume that
the functions f1, . . . , fn, g1, . . . , gn : [0, 1] → [0, 1] satisfy fi(1) = gi(1) = 1 for
each i ∈ {1, . . . , n} and A(f1(0), . . . , fn(0)) = A(g1(0), . . . , gn(0)) = 0. Define
ξ, η : [0, 1] → [0, 1] by

ξ(x) = sup{u ∈ [0, 1] | A(f1(u), . . . , fn(u)) ≤ x},
η(x) = sup{u ∈ [0, 1] | A(g1(u), . . . , gn(u)) ≤ x}.

Then the function C : [0, 1]2 → [0, 1] given by

C(x, y) = A
(
C1(f1 ◦ ξ(x), g1 ◦ η(y)), . . . , Cn(fn ◦ ξ(x), gn ◦ η(y))

)
(11)

is a copula.

For k-monotone aggregation functions we have the following result.

Theorem 3. Let A : [0, 1]n → [0, 1] be a totally monotone aggregation function,
and let B1, . . . , Bn : [0, 1]m → [0, 1] be k-monotone aggregation functions. Then
the composite function D : [0, 1]m → [0, 1] given by D(x) = A(B1(x), . . . , Bn(x))
is a k-monotone aggregation function.

This result can be applied to the construction of k-dimensional copulas (i.e.,
k-monotone aggregation functions C : [0, 1]k → [0, 1] satisfying

C(x, 1, . . . , 1) = C(1, x, . . . , 1) = C(1, . . . , 1, x) = x

for all x ∈ [0, 1]) in a way similar to Theorem 2.

Example 1

(i) If we put n = 2, A =W , C1 = C2 =M and define the functions f1, f2, g1, g2
by f1(x) = g2(x) = x+2

3 and f2(x) = g1(x) = 2x+1
3 , then the construction

in (11) yields the copula C given by

C(x, y) =
1
3
·max(min(x+ 1, 2y) + min(2x, y + 1)− 1, 0).

(ii) Consider the totally monotone aggregation function A : [0, 1]n → [0, 1] given
by A(x) = xp1

1 · · ·xpn
n , where p1, . . . , pn ∈ N∪{0} and p =

∑
pi > 0. Then for

all k-dimensional copulas C1, . . . , Cn : [0, 1]k → [0, 1], the aggregation func-
tion C : [0, 1]k → [0, 1] given by C(x) = A(C1(τ(x)), . . . , Cn(τ(x))), where
τ : [0, 1]k → [0, 1]k is given by τ(x) = (x1/p

1 , . . . , x
1/p
k ), is a k-dimensional

copula. This result can be derived also from [5]. For example, for n = 2
and A(x, y) = x · y2 (i.e., p = 3) and for the ternary copulas C1 = M (i.e.,
M(x, y, z) = min(x, y, z)) and C2 = Π (i.e., Π(x, y, z) = xyz), the composite
function C : [0, 1]3 → [0, 1] given by

C(x, y, z) = min
(
x(yz)

2
3 , y(xz)

2
3 , z(xy)

2
3
)

is a ternary copula.
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5 Concluding Remarks

We have introduced two properties which are stronger than the monotonicity of
aggregation functions, with some representation results and with an application
for constructing copulas. Our proposal opens several new questions for future
research. For example, it is not clear whether there are strongly 3-monotone
copulas different from the product Π . Also it is still open whether/how the con-
ditions of Theorem 3 can be relaxed yielding still the same result — is the strong
k-monotonicity of A sufficient? We also expect applications in the construction
of copulas of higher dimensions, and subsequently, in the modeling of stochastic
dependence of random vectors with dimension n ≥ 3 (note that, so far, there
are only few methods in this case known in the literature).
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Abstract. In this paper the characterization of idempotent uninorms
given in [21] is revisited and some technical aspects are corrected. Ex-
amples clarifying the situation are given and the same characterization is
translated in terms of symmetrical functions. The particular cases of left-
continuity and right-continuity are studied retrieving the results in [7].
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1 Introduction

Uninorms are a special kind of associative and commutative aggregation oper-
ators allowing a neutral element in the unit interval. They were introduced in
1996 in [30] and their structure was characterized in 1997 in [14]. Since then,
many works on this kind of operators have appeared and many authors have
devoted their efforts to this topic. Uninorms are specially interesting from the
theoretical point of view because of their structure as a special combination of a
t-norm and a t-conorm, but their major significance is due to the great quantity
of fields where they have proved to be useful for applications. Some of these
application fields are: aggregation in general (see [30], [5]), expert systems ([8]),
neural networks ([1]), fuzzy system modelling ([27], [28], [29]), pseudo-analysis
and measure theory ([2], [18], [23]), fuzzy DI-subsethood measures and image
processing ([3] and [4]) and data mining ([31]).

Taking into account that uninorms are divided into conjunctive and disjunc-
tive ones, they have also used as logical connectives modeling AND and OR
operators, implication functions derived from uninorms have been introduced
(see [9] and [25]) and so they become interesting and useful also in fuzzy logic
(see for instance [15]), approximate reasoning ([26]), mathematical morphology
and image processing ([11], [16], [17]) and so on.
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Among different classes of uninorms, the class of idempotent uninorms is
specially interesting because of its simplicity, any idempotent uninorm is a special
combination of minimum and maximum. Thus they have been studied in several
papers (see [7], [21], [9], [24], [25]). Moreover, operators defined on finite chains
are a topic of increasing interest ([22]) and idempotent uninorms in this context
have been also characterized in [10].

Those idempotent uninorms that are left-continuous or right-continuous were
characterized in [7] and the whole characterization was given in [21]. From then
many papers dealing with idempotent uninorms have appeared using such a
characterization.

This paper wants to go deeply into the characterization theorem of idempo-
tent uninorms, to debug some mistakes in its original statement and to present
an equivalent characterization in terms of identity-symmetrical functions. Some
examples clarifying the situation are given and the particular cases of left-
continuity and right-continuity are studied in detail retrieving the results in [7].

2 Idempotent Uninorms

Definition 1. ([14]) A uninorm is a two-place function U : [0, 1]×[0, 1] → [0, 1]
which is associative, commutative, increasing in each place and such that there
exists some element e ∈ [0, 1], called neutral element, such that U(e, x) = x for
all x ∈ [0, 1].

It is clear that the function U becomes a t-norm when e = 1 and a t-conorm
when e = 0. For any uninorm we have U(0, 1) ∈ {0, 1} and a uninorm U is said
conjunctive when U(1, 0) = 0 and disjunctive when U(1, 0) = 1.

Definition 2. A binary operator U : [0, 1]× [0, 1] → [0, 1] is said to be idem-
potent whenever U(x, x) = x for all x ∈ [0, 1].

In [6], the general form of idempotent, associative and increasing binary opera-
tors with a neutral element was given. Particular cases of operators with these
properties are of course, idempotent uninorms. A detailed characterization for
the cases of left-continuous and right-continuous idempotent uninorms is given
in the following theorems.

Theorem 1. ([7]) A binary operator U is a left-continuous idempotent uninorm
with neutral element e ∈ [0, 1] if and only if there exists a decreasing function
g : [0, 1] → [0, 1] with fixed point e, satisfying g(g(x)) ≥ x for all x ≤ g(0) and
g(x) = 0 for all x > g(0) such that, for all x, y ∈ [0, 1], U is given by

U(x, y) =
{

min(x, y) if y ≤ g(x) and x ≤ g(0)
max(x, y) elsewhere.

Theorem 2. ([7]) A binary operator U is a right-continuous idempotent uni-
norm with neutral element e ∈ [0, 1] if and only if there exists a decreasing func-
tion g : [0, 1] → [0, 1] with fixed point e satisfying: g(g(x)) ≤ x for all x ≥ g(1)
and g(x) = 1 for all x < g(1) such that, for all x, y ∈ [0, 1], U is given by
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U(x, y) =
{

max(x, y) if y ≥ g(x) and x ≥ g(1)
min(x, y) elsewhere.

A complete characterization of idempotent uninorms can be found in [21], as
follows.

Theorem 3. ([21]) Let U be a binary operator on [0, 1]. U is an idempotent
uninorm with neutral element e ∈ [0, 1] if and only if there exists a decreasing
function g : [0, 1] → [0, 1] with fixed point e, satisfying

g(x) = 0 for all x > g(0),
g(x) = 1 for all x < g(1) (1)

and
inf{y | g(y) = g(x)} ≤ g(g(x)) ≤ sup{y | g(y) = g(x)} (2)

for all x ∈ [0, 1], such that

U(x, y) =

⎧⎨⎩
min(x, y) if y < g(x) or y = g(x) and x < g(g(x))
max(x, y) if y > g(x) or y = g(x) and x > g(g(x))
x or y if y = g(x) and x = g(g(x))

(3)

in such a way that U is commutative on the set of points (x, y) such that y = g(x)
with x = g(g((x)). Such function g is usually called the associated function of U .

This is the theorem that we want to study in depth. We will see that conditions
required on the function g are in fact not sufficient in order to be U always a uni-
norm. Note that in [12] (see also [13]) some necessary properties on the function
g associated to an idempotent uninorm U are derived from the associativity and
commutativity of U . The mistake in the proof of Theorem 3 in [21] lies precisely
in the commutativity property which cannot be derived from conditions (1) and
(2) as we will see below1. Let us begin by recalling what can be actually derived
from these two conditions.

Let g : [0, 1] → [0, 1] be a decreasing function with g(e) = e. Note that
condition (2) implies that:

i) If g is strictly decreasing and continuous on an interval ]a, b[⊆ [0, 1] and
g(]a, b[) =]c, d[, then g must be strictly decreasing and continuous also in
the interval ]c, d[ and g2(x) = x for all x ∈ ]a, b[∪ ]c, d[. That is, g must be
involutive in these points deriving in a commutative behavior of U in the
vertical and horizontal regions determined by these subintervals.

ii) If g is constant in an interval ]a, b[ then a ≤ g(g(x)) ≤ b for all x ∈]a, b[.

1 Note that from conditions (1) and (2) neither, associativity nor commutativity can
be derived, but when we assume commutativity, then associativity follows (see [21],
Proposition 2).
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Example 1

i) Function g can be, for instance, a strictly decreasing function. In such case,
we obtain g2(x) = x for all x ∈ [0, 1] and then g is in fact a strong negation.
This is the situation for instance of the idempotent uninorm given by

U(x, y) =
{

max(x, y) if y ≥ 1− x
min(x, y) otherwise.

Note that there are infinitely many different idempotent uninorms U with
associated function such a strong negation g, because for each x ∈ [0, 1] the
values U(x, g(x)) can be the minimum or the maximum independently, just
being careful to maintain commutativity in these points.

ii) Other possibility lies in g being stepwise constant. For instance, the following
functions g given respectively by:

g(x) =
{

1 if 0 ≤ x < e
e if e ≤ x ≤ 1

and

g(x) =
{
e if 0 ≤ x ≤ e
0 if e < x ≤ 1,

give respectively the only idempotent uninorm in Umin and in Umax with
neutral element e.

iii) Note that depending on function g, there can be different idempotent uni-
norms with the same associated function g and neutral element e (even
infinitely many), as in Example (i), or there can be one and only one idem-
potent uninorm as in Example (ii).

However, some peculiar situations can occur violating commutativity (and asso-
ciativity) as the following examples show.

Example 2. Consider an element e ∈]0, 1[ and let g : [0, 1] → [0, 1] be the de-
creasing function given by:

g(x) =

{ 1 if x < e
e if x = e
0 if x > e.

For such a function g, let us consider an idempotent aggregation function U
given by equation (3). Then function g satisfies conditions (1) and (2), but
clearly U is neither commutative nor associative (just take x, y, z ∈ [0, 1] such
that 0 < z < x < e < y).

Example 3. Let g : [0, 1] → [0, 1] be the decreasing function given by:

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.9 if x = 0
0.75 if 0 < x < 0.25
1− x if 0.25 ≤ x ≤ 0.75
0.1 if 0.75 < x < 0.9
0 if x ≥ 0.9.
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For such a function g, let us consider any idempotent aggregation function U
given by equation (3). Then function g satisfies conditions (1) and (2), but again
U is neither commutative nor associative. Note for instance that in this case we
have for all x < 0.25 < 0.75 < y < 0.9,

U(x, y) = max(x, y) �= min(x, y) = U(y, x).

The functions g used in the Examples 2 and 3, together with the corresponding
idempotent aggregation functions U given by (3), can be viewed in Figures 1
and 2 respectively.

� �

�

�

e

e

min

max

�

Fig. 1. Function g given in Example 2, jointly with the corresponding idempotent
aggregation function given by equation (3)

Thus, from an idempotent uninorm with neutral element e ∈]0, 1[ we obtain
a decreasing function g with fixed point e satisfying conditions (1) and (2),
but for the converse more conditions on g will be necessary. In fact, in [12]
and [13] functions g from idempotent uninorms were studied in detail and it
was proved that they must satisfy some additional property related with their
possible discontinuity points (see condition (C) below).

On the other hand, idempotent uninorms defined on finite chains were re-
cently characterized very similarly through decreasing functions, but using the
terminology of Id-symmetrical functions. Let us recall some definitions about
this topic, that can be found in [20].

Definition 3. Let g : [0, 1] → [0, 1] be any decreasing function and let G be the
graph of g, that is

G = {(x, g(x)) | x ∈ [0, 1]}.
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Fig. 2. Function g given in Example 3, jointly with the corresponding idempotent
aggregation function given by equation (3)

For any point of discontinuity s of g, let s− and s+ be the corresponding lateral
limits. Then, we define the completed graph of g, denoted by Fg, as the set
obtained from G by adding the vertical segments in any discontinuity point s,
from s− to s+.

Definition 4. A subset F of [0, 1]2 is said to be Id-symmetrical if for all (x, y) ∈
[0, 1]2 it holds that

(x, y) ∈ F ⇐⇒ (y, x) ∈ F .
The above definition expresses that a subset F of [0, 1]2 is symmetrical w.r.t.
the diagonal of the unit square. A similar notion of symmetry is introduced for
decreasing functions (see [20]) as follows.

Definition 5. A decreasing function g : [0, 1] → [0, 1] is called Id-symmetrical
if its completed graph Fg is Id-symmetrical.

With this notations and to sum up, let us prove a more detailed and correct ver-
sion of Theorem 3. First, let us introduce the following condition on a decreasing
function g:

Condition (C) g is constant, say g(x) = s in the interval ]p, q[ with p < q,
where

p = inf{x ∈ [0, 1] | g(x) = s}
and

q = sup{x ∈ [0, 1] | g(x) = s},
if and only if, s ∈ ]0, 1[ is a point of discontinuity of g or s = 0, 1 and it is satisfied
that

p =
{
s+ if s < 1
0 if s = 1

and q =
{
s− if s > 0
1 if s = 0
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Theorem 4. Consider e ∈]0, 1[. The following items are equivalent:

i) U is an idempotent uninorm with neutral element e.
ii) There exists a decreasing function g : [0, 1] → [0, 1] with fixed point e, sat-

isfying conditions (2) and (C), such that U is given by equation (3), being
commutative on the set of points (x, g(x)) such that x = g2(x).

iii) There exists a decreasing, Id-symmetrical function g : [0, 1] → [0, 1] with
fixed point e such that U is given by equation (3), being commutative on the
set of points (x, g(x)) such that x = g2(x).

Proof. i) ⇒ ii). If U is an idempotent uninorm with neutral element e it is
proved in [21] that such a decreasing function g with fixed point e exists satisfying
condition (2). Moreover, it is proved in [12] that g must also satisfy condition
(C) (see Lemma 5 in this reference and note that in the case s = 0, 1 it is not
necessary to have a discontinuity in such points).
ii) ⇒ iii). In this case we only need to prove that a decreasing function g

satisfying conditions (2) and (C) must be Id-symmetrical. In order to prove that
Fg is Id-symmetrical we distinguish some cases:

– If (x, y) ∈ G and x is a point where g is strictly decreasing. Then y = g(x)
and g2(x) = x. That is, x = g(y) and (y, x) ∈ G ⊆ Fg.

– If (x, y) ∈ G and g is constant on the interval ]p, q[ with p < x < q, then y
is a point of discontinuity with p = y− and q = y+ and so (y, x) is in the
vertical segment from y− to y+. That is (y, x) ∈ Fg.

– If (x, y) ∈ Fg \ G, then x is a point of discontinuity and we can deduce
similarly as above that (y, x) ∈ G ⊆ Fg.

iii) ⇒ i). If U is given by equation (3), it is clear that U is increasing in each
variable and has neutral element e. The fact that g is Id-symmetrical implies
that such U must be commutative and then U must be also associative (see
Proposition 2 in [21]).  !
Remark 1. Note that in particular condition (C) implies that g(x) = 0 for all
x < limx→0+ g(x), and similarly g(x) = 1 for all x < limx→1− g(x). Moreover,
this happens whether 0, 1 are points of discontinuity or whether they are not.
(Compare with the initial condition (1) and see also Example 3).

Let us point out that this characterization includes those given in Theorems 1
and 2 for left-continuous and right-continuous idempotent uninorms (see [7]). In
fact, we have the following results from Theorem 4:

i) If the idempotent uninorm U is left-continuous (right-continuous) then its
associated function g must be also left-continuous (right-continuous).

ii) If the idempotent uninorm U is left-continuous (right-continuous) then its
associated function g must satisfy g(g(x)) ≥ x for all x ≤ g(0) and g(x) = 0
for all x > g(0) (g(g(x)) ≤ x for all x ≥ g(1) and g(x) = 1 for all x < g(1)).

iii) If the idempotent uninorm U is left-continuous (right-continuous) it must
be given by the minimum (maximum) in all points (x, y) such that y = g(x)
and x ≤ g(0) (x ≥ g(1)).
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Now, it is clear from the three points before that Theorems 1 and 2 follow easily
from the general case.

Note that from condition (i), if we take a function g with no lateral continuity
then, among all idempotent uninorms with associated function g, there will be
neither any left nor right-continuous one.

Example 4. Let g : [0, 1] → [0, 1] be the decreasing function given by:

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x ≤ 0.25
1.25− x if 0.25 < x < 0.5
0.75 if 0.5 ≤ x < 0.6
0.6 if 0.6 ≤ x ≤ 0.75
1.25− x if x > 0.75.

For such a function g, that is nor left neither right-continuous, there not ex-
ists any left-continuous nor right-continuous uninorm U such that U has g as
associated function. Function g can be observed in Figure 3.

�
�

�
�� �

� �

�

�
�

�
��0.25

0.5

0.6

0.75

0.25 0.5 0.6 0.75

Fig. 3. Function g given in Example 4

3 Conclusion

One part of Theorem 3 published originally in [21] states that binary operations
U on [0, 1] defined by (3) using a decreasing function g : [0, 1] → [0, 1] with fixed
point e ∈ [0, 1] that satisfies conditions (1) and (2) are uninorms with neutral
element e. However, Examples 2 and 3 reveal that such a U is neither commu-
tative nor associative in general. This anomaly can occur if g is not continuous,
and it is due to the permissive nature of conditions (1) and (2) at discontinuity
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points of g. Fortunately, we can guarantee commutativity and associativity of
U by adding a new condition (C) to control the behaviour of g at its possible
discontinuity points. This is formulated and proved in Theorem 4, providing
alternative characterizations of idempotent uninorms.
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Abstract. We review various representations of the median and related
aggregation functions. An advantage of the median is that it discards ex-
treme values of the inputs, and hence exhibits a better central tendency
than the arithmetic mean. However the value of the median depends
on only one or two central inputs. Our aim is to design median-like ag-
gregation functions whose value depends on several central inputs. Such
functions will preserve the stability of the median against extreme values,
but will take more inputs into account. A method based on graduation
curves is presented.

Keywords: Median, aggregation functions, means, OWA.

1 Introduction

The median is one of the best known aggregation functions. Along with the
arithmetic mean, it plays an important role in statistics, regression analysis,
pattern recognition, decision sciences and image processing. Various classes of
aggregation functions have been considered in detail in the recent monographs
[5, 10, 17].

In statistics, the median of a sample is a number dividing the higher half of a
sample, from the lower half. The median of a finite list of numbers can be found
by arranging all the numbers in increasing or decreasing order and picking the
middle one. If the number of inputs is even, one takes the mean of the two middle
values.

The median is a type of average which is more representative of a “typical”
value than the mean. It essentially discards very high and very low values (out-
liers). For example, the median price of houses is often reported in the real estate
market, because the mean can be influenced by just one or a few very expensive
houses, and will not represent the cost of a “typical” house in the area.

An attractive property of the medians is that they are applicable to inputs on
the ordinal scale, i.e., when only the ordering, rather than the numerical values
matter. For example, one can use medians for aggregation of inputs like labels
of fuzzy sets, such as very high, high, medium, low and very low.

In this paper we look at various representations of the median and its exten-
sions. We review the existing representations of the median and its relation to

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 435–444, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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other aggregation functions. Then we define a new class of median-like aggre-
gation functions by using the process of data approximation, similar to Gini’s
graduation curves [9]. Our goal is to account for more than one or two inputs,
as is the case with the mean, while at the same time discard extreme values.

The paper is organized as follows. We provide definitions and background
material in Section 2. We discuss various extensions in Section 3 and conclude
in Section 4.

2 Representations of the Median

2.1 First Definitions

Let X = [a, b] ⊆ "̄ = [−∞,∞] be a nonempty closed interval. Unless specified
otherwise, we will deal with aggregation functions defined on Xn.

Definition 1. A function f : [a, b]n → [a, b] is called an aggregation function if
it is monotone non-decreasing in each variable and satisfies f(a) = a, f(b) = b,
with a = (a, a, . . . , a),b = (b, b, . . . , b).

Definition 2. An aggregation function f is called averaging if it is bounded by
the minimum and maximum of its arguments

min(x) := min(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤ max(x1, . . . , xn) =: max(x).

It is immediate that averaging aggregation functions are idempotent (i.e., ∀t ∈
X : f(t, t, . . . , t) = t) and (because of monotonicity) vice versa. Then clearly
the boundary conditions f(a) = a, f(b) = b are satisfied. Often averaging
aggregation functions collectively are referred to as means.

Our focus is on the median.

Definition 3. The median is the function

Med(x) =
{ 1

2 (x(k) + x(k+1)), if n = 2k is even
x(k), if n = 2k − 1 is odd,

where x(k) is the k-th largest (or smallest) component of x.

Of course, Definition 3 is meaningful only if the arithmetic mean is properly
defined, which is not the case if x ∈ Dn, and D is a discrete chain. In this case
one can use the concepts of the lower and upper median, which guarantee that
the output of this operation coincides with one of the inputs.

Definition 4. The lower (upper) median is the function

Medl(x) = x(k)

where x(k) is the k-th smallest component of x, and k = #n
2 $, the nearest integer

smaller or equal to n
2 , for the lower median, and k = %n

2 & for the upper median.

A related notion is the a-median.
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Definition 5. Given a value a ∈ [0, 1], the a-median is the function

Meda(x) =Med(x1, . . . , xn,

n−1 times︷ ︸︸ ︷
a, . . . , a ).

The concept of the weighted median was treated in detail in [18].

Definition 6. Let w be a weighting vector with wi ≥ 0,
∑
wi = 1, and let

u denote the vector obtained from w by arranging its components in the order
induced by the components of the input vector x, such that uk = wi if xi = x(k)
is the k-th largest component of x. The lower weighted median is the function

Medw,l(x) = x(k), (1)

where k is the index obtained from the condition

k−1∑
j=1

uj <
1
2

and
k∑

j=1

uj ≥ 1
2
. (2)

The upper weighted median is the function Medw,u defined as in(1) where k is
the index obtained from the condition

k−1∑
j=1

uj ≤ 1
2

and
k∑

j=1

uj >
1
2
.

The mean of Medw,l and Medw,u gives the weighted median Medw.

It is clear that the usual median, the upper and the lower medians are averaging
homogeneous symmetric aggregation functions.

The following result allows us to define the concept of quasi-median. To
shorten the notation we will use h(x) = (h(x1), . . . , h(xn)) for any h : X → "̄.

Proposition 1. [6] Let f be an averaging aggregation function on Xn, and h
be a continuous strictly monotone function Y → X, called scaling (or generat-
ing) function, and X,Y ⊆ "̄. Then fh(x) = h−1(f(h(x)) is also an averaging
aggregation function on Y n.

By applying scaling functions to the median we obtain

Definition 7. Let Medw be a weighted median and h be a generating function.
The function f(x) = h−1(Medw(h(x))) is called a weighted quasi-median with
respect to h.

If h is a power function or a logarithm, the resulting quasi-median is also
homogeneous.
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2.2 Median as an OWA Function

OWA functions and their generalizations are also well known examples of aver-
aging functions.

Definition 8. For a given weighting vector w, the OWA function is given by

OWAw(x1, . . . , xn) =
n∑

i=1

wix(i),

where x(i) denotes the i-th largest value of x.

The median can be conveniently expressed as an OWA function with a special
weighting vector. For an odd n let wn+1

2
= 1 and all other wi = 0, and for an

even n let wn
2

= wn
2 +1 = 1

2 , and all other wi = 0. Then Med(x) = OWAw(x).
Based on the weighted median, Yager [18] also defined an ordinal OWA func-

tion, using the following construction.

Definition 9. The ordinal OWA function is

OOWAw(x) =Medw(x↘),

where x↘ denotes the vector obtained from x by arranging its components in
non-increasing order.

Since the components of the argument of the weighted median in Definition 9
are already ordered, calculation of the ordinal OWA is reduced to the formula

OOWAw(x) = x(k),

where k is the index obtained from the condition

k−1∑
j=1

wj <
1
2

and
k∑

j=1

wj ≥ 1
2
.

Note that the ordinal OWA is a symmetric aggregation function, whereas the
weighted median is not. A more general class of aggregation functions on an
ordinal scale is that of weighted ordinal means, presented in [12].

2.3 Median as a Fuzzy Integral

Since OWA functions are a special case of discrete Choquet integral, it will be
worth to look at other fuzzy integrals, and in particular the Sugeno integral, to
establish its relation to the median. Fuzzy integrals are defined with respect to
a fuzzy measure.

Definition 10. Let N = {1, 2, . . . , n}. A discrete fuzzy measure is a set function
v : 2N → [0, 1] which is monotonic (i.e. v(S) ≤ v(T ) whenever S ⊆ T ) and
satisfies v(∅) = 0, v(N ) = 1.
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Choquet integral

Definition 11. The discrete Choquet integral with respect to a fuzzy measure v
is given by

Cv(x) =
n∑

i=1

x(i)[v(Hi)− v(Hi+1)], (3)

where x↗ = (x(1), x(2), . . . , x(n)) is a non-decreasing permutation of the input
x, x(n+1) = ∞ by convention, and Hi = {(i), . . . , (n)}.
The class of Choquet integrals includes weighted arithmetic means and OWA
functions as special cases. As such, it includes the median as a special case.

Sugeno integral

Definition 12. The Sugeno integral with respect to a fuzzy measure v is given
by

Sv(x) = max
i=1,...,n

min{x(i), v(Hi)}, (4)

where x↗ = (x(1), x(2), . . . , x(n)) is a non-decreasing permutation of the input
x, and Hi = {(i), . . . , (n)}.
Sugeno integrals can be expressed, for arbitrary fuzzy measures, by means of the
Median function in the following way:

Sv(x) =Med(x1, . . . , xn, v(H2), v(H3), . . . , v(Hn)).

In the special case of a symmetric fuzzy measure (i.e., when v(Hi) = v(|Hi|)
depends only on the cardinality of the set Hi), Sugeno integral becomes the
median Sv(x) =Med(x1, . . . , xn, 1, v(n− 1), v(n− 2), . . . , v(1)).

The Sugeno integral with respect to a symmetric fuzzy measure given by
v(A) = v(|A|) is the Median Med(x1, . . . , xn, v(n− 1), v(n− 2), . . . , v(1)).

Ordered weighted maximum OWMAXw(x) = max
i=1,...,n

min{wi, x(i)} with a

non-increasing weighting vector 1 = w1 ≥ w2 ≥ . . . ≥ wn can can be expressed by
means of the Median function as OWMAXw(x) =Med(x1, . . . , xn, w2, . . . , wn).

Ordered weighted minimum OWMINw(x) = min
i=1,...,n

max{wi, x(i)} with a

non-increasing weighting vector w1 ≥ w2 ≥ . . . ≥ wn = 0 can can be expressed
by means of the Median function as OWMINw(x) = Med(x1, . . . , xn, w1, . . . ,
wn−1).

2.4 Median as a Nullnorm

a-medians can be considered as the limiting cases of idempotent nullnorms. They
have absorbing element a and are continuous, symmetric and associative (and,
hence, bisymmetric). They can be expressed as

Meda(x) =

⎧⎨⎩
max(x), if x ∈ [0, a]n,
min(x), if x ∈ [a, 1]n,
a otherwise.
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2.5 Median as a Penalty Based Aggregation Function

We can look at the average of n inputs as a representative value for these inputs.
A measure of deviation from this value has been studied in various works [17,
20, 8, 11, 2, 9, 7]. It was already known to Laplace (quoted from [17], p.15), see
also [9], that the weighted arithmetic and geometric means, the median and the
mode are functions that minimize some simple penalty functions. In particular,
the weighted arithmetic mean is a solution to the following problem

Mw(x) = arg min
y

n∑
i=1

wi(xi − y)2,

whereas the median is a solution to

Medw(x) = argmin
y

n∑
i=1

wi|xi − y|.

Note that the latter equation has multiple solutions for even n = 2k, which
are values y∗ ∈ [x(k), x(k+1)]. The median takes the midpoint of this interval,
whereas the lower and upper medians take the extreme points.

In [7,20,8,13,14] the authors have studied penalty-based aggregation functions
from several perspectives. Any averaging aggregation function can be expressed
as a penalty-based aggregation function [7]. The authors of [8] studied a special
class of penalty functions called “faithful” penalty functions.

Definition 13. The function p : X2 → "+ is called faithful penalty function, if
it satisfies

1) p(t, s) = 0 if and only if t = s, and
2) it can be represented as p(t, s) = K(h(t), h(s)), where h : X → " is some

continuous monotone function (scaling function) and K : "2 → "+ is convex.

Definition 14. Let the penalty function P be given by

P (x, y) =
n∑

i=1

wip(xi, y),

where p is a faithful penalty function. The function

f(x) = argmin
y
P (x, y)

is a faithful penalty based function.

Faithful penalty based function f in Definition 14 is not always monotone, but
in a special case of p given by p(t, s) = K(h(t) − h(s)) it is, as shown in [13],
and therefore it is an aggregation function.

If p(t, s) = |t− s|, then the corresponding faithful penalty based aggregation
function is a weighted median. Now, let us consider faithful penalty-based func-
tions with p(t, s) = |t−s|r, r ≥ 1. Consider the limiting case r→ 1. Interestingly,
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it does not correspond to the median when n = 2k (see [11]), but to a solution
of the following equation, called Jackson’s equation

(y − x(1))(y − x(2)) . . . (y − x(k)) = (y − x(k+1)) . . . (y − x(n)).

For example, for n = 4 we have

f(x) =
x(1)x(2) − x(3)x(4)

(x(1) + x(2))− (x(3) + x(4))
,

whereas the standard definition of median gives f(x) = x(2)+x(3)

2 . Weighted
medians were considered from this perspective in [2].

What is also remarkable about the Jackson’s equation is that the actual value
of the median (for even n) is not determined by just two extremes of the interval
[x(k), x(k+1)], but all the components of x. We will return to this issue in the
next section.

3 Extensions

One arguably weak point in using the median is that it discards all but one
(or two) inputs. On one hand, one wants to preserve its central tendency and
insensitivity to the extreme values of the inputs (often considered to be outliers),
but on the other hand one wishes to take into account contributions of several
central inputs. Jackson’s equation provides one solution when n is even. In the
following we explore two other constructions which address these issues.

3.1 Centered OWA

We have seen that one can express the median as an OWA function with a special
weighting vectorw = (0, . . . , 0, 1, 0, . . . , 0) for oddn andw =(0, . . . , 0, 12 ,

1
2 , 0, . . . ,

0) for even n. The concept of centered OWA operators was proposed by Yager
in [19] and later also investigated in [21]. Here the weights are symmetric (wj =
wn+1−j), strongly decaying (wi < wj if either i < j ≤ (n + 1)/2 or i > j ≥
(n+ 1)/2), and inclusive (wj > 0), although we will relax the latter condition.

We can now take weighting vectors with several non-zero values, for example
w = (0, . . . , 0, 16 ,

1
3 ,

1
3 ,

1
6 , 0, . . . , 0), and take into account as many central inputs.

3.2 Means Defined by Using Graduation Curves

The following construction based on graduation curves was inspired by [9]. Con-
sider unweighted means first. Order the inputs in non-decreasing order and take
the points (0, x(1)), ( 1

n−1 , x(2)), . . . , (
n−2
n−1 , x(n−1)), (1, x(n))). We can draw these

points in the coordinate plane and obtain a picture presented on Fig. 1.
Now let us interpolate (or approximate) the resulting points with a mono-

tone non-decreasing function g, whose graph is called the graduation curve. To
underline its dependence on the data, we will use the notation g(t;x1, . . . , xn)
where necessary. The value M(x1, . . . , xn) = g(1

2 ;x1, . . . , xn) is a mean of the
components of x. We can formulate the following general results.
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Fig. 1. An example of graduation curve. g(t) approximates the data ( i−1
n−1

, xi). The
average is the value y = g( 1

2
).

Proposition 2. If g preserves the range of the data, i.e., min(x1, . . . , xn) ≤
g(t;x1, . . . , xn) ≤ max(x1, . . . , xn) for all 0 ≤ t ≤ 1, then M is an averaging
function.

Proof. Clearly x(1) ≤ g(1
2 ) =M(x) ≤ x(n) �

Corollary 1. If g interpolates the data and is monotone in t, then M is an
averaging function.

Proposition 3. If g is monotone non-decreasing in x1, . . . , xn, then M is also
monotone, and hence an aggregation function.

Proposition 4. If g is scale invariant, i.e., when all the data xi are multiplied
by a scalar, the values of g are also multiplied by the same scalar, λg(t;x) =
g(t;λx), then M is homogeneous. If g is shift invariant, i.e. , g(t;x) + λ =
g(t;x + λ), then M is shift invariant.

Not all methods of interpolation or approximation deliver these properties of g.
However several known methods do, and below we consider several examples.

Example 1. Let g be a piecewise linear interpolant to the data, also called broken
line or linear spline. g is monotone in x, scale invariant and shift invariant. The
resulting value of g(1

2 ) =Med(x).

Example 2. Let g be a constant function fitted to the data in the least squares
sense. In this case g(t) =M(x) for all t ∈ [0, 1], the arithmetic mean.

Example 3. Let g be a linear function fitted to the data, g(t) = at + b. From
the theory of linear regression we know that if t̂ = 1

n

∑
ti then g(t̂) = ax̂+ b =

1
n

∑
xi. So we again obtain the arithmetic mean y = g(1

2 ) = M(x). Note that
linear regression function g is monotone in x, scale invariant and shift invariant.

If we use polynomial interpolation, the resulting polynomial g is not always non-
decreasing in t, nor in x, hence this method is not suitable. Below we present
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three advanced monotone approximation techniques which yield suitable grad-
uation curves.

Let us now take monotone interpolating, smoothing or regression splines as
g. Splines are piecewise continuous functions joined at the knots ti, i = 1, . . . , n.
In our case ti = i−1

n−1 . There are several possibilities here.

Example 4. g is monotone interpolating spline in tension [16, 15] given by

g(t) = h2
i

ui sinh(ui)
[ci sinh(uiz) + ci+1 sinh(ui(1 − z))]

+(xi − h2i ci/u2i )z + (xi+1 − h2i ci+1/u
2
i )(1− z),

where ti ≤ t ≤ ti+1, z = (ti+1 − t)/hi, ti = phi, hi = ti+1 − ti, p ≥ 0 is tension
parameter, and ci are spline coefficients found by solving a linear system of
equations with a tridiagonal matrix. We note that for odd n we obtain g(1/2) =
Med(x), because this spline is interpolating and g(ti) = xi for all i = 1, . . . , n.

Example 5. g is monotone smoothing spline presented in [1]. The coefficients of
the spline are found by solving a convex optimization problem. Here the value
M(x) = g(1/2) is different from the median for both even and odd n.

Example 6. g is monotone regression spline presented in [3, 4]. The coefficients
of the spline are found by solving a quadratic optimization problem.

In the three examples above, the value of the spline depends on several data,
located just around the central value (the number of such data depends on the
order of the spline). Because B-splines have local support, the extreme values
are excluded. In these examples g is scale and shift invariant and so is M .

Now we look at weighted averages. In the proposed scheme based on gradua-
tion curves, this is achieved by changing the abscissae of the data: given a weight-
ing vector w, we position the data in the following way. Partition the interval
[0, 1] into n subintervals, the length of each is ui, i.e. ti+1 − ti = ui, i = 1, . . . , n
with t1 = 0 and tn+1 = 1, and the components of vector u are a permutation
of components of w induced by x, i.e., uk = wi if xi = x(k), as in Definition
6. The data to be fitted is (εi, xi) where the points εi ∈ [ti, ti+1] are chosen as
either the centers or extremes of the respective interval. When εi is in the cen-
ter we obtain the usual median-like function, otherwise we obtain the analogues
of the lower and upper weighted medians respectively. This coincides with the
definition of the lower and upper median when g is a piecewise linear function
interpolating the data as in Example 3. All the examples we presented except
Example 2 remain valid for weighted averages.

4 Conclusion

We have summarized various representation of the median function, and looked
at some of its extensions. Our aim was to design median-like aggregation func-
tions which depend on a few central values of the vector of arguments. The
method based on graduation curves provides one such construction, in which
extreme values can be discarded.
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Abstract. In this work, we focus on an improvement of a multi-script
handwritting recognition system using a HMM based classifiers combi-
nation. The improvement relies on the use of Dempster-Shafer theory to
combine in a finer way the probabilistic outputs of the HMM classifiers.
The experiments are conducted on two public databases written on two
different scripts : IFN/ENIT (latin script) and RIMES (arabic script).
The obtained results are compared with the classical algorithms of the
field and the superiority of the proposed approach is shown.

1 Introduction

Classifier combination is a widely used technique in handwritting recognition to
improve the classification rates, or to preserve them when dealing whith more
difficult vocabularies or scripts. This is why, several reviews propose an exhaus-
tive description of the state-of-the-art in this field [1,2,3]. Most of them stress the
real interest of Dempster-Shafer Theory (DST) [4,5] to combine classifiers in a
manner accurate and robust to difficult conditions (set of weak classifiers, degen-
erated training phase, too specific training sets, large vocabulary, etc.). Nonethe-
less, to our knowledge, no work precisely follows these conclusions in the field
of multiple script handwritting recognition. On the contrary, such DST-based
classifiers have largely been used in other fields.

Let us mention a few of them: in [6], the authors present a DST-based combi-
nation classifier built on a neural network architecture for speech recognition. In
[7,8], different classifiers (resp. SVMs and HMMs) are combined for automatic
recognition of gestural languages (resp. Cued Speech and Sign Languages). In
[9], the authors merge several modalities for audio-visual speech recognition. The
authors of [10] present a model to fuse the decisions of several optical scanners
to improve the reading of addresses in postal mails. Finally, in [11] a generic
theoretical framework for DST-based ensemble classifier is provided.
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We propose the following explanation for the lack of DST-based combination
classifiers which deal with handwritting recognition: in the very popular [2], a
general method is provided to combine a set of classifiers of type I. Type I is the
most general type of classifiers, as the ouput is simply a membership function
indicating the class, whithout any additional information, such as an ordered
list of the “best” classes (Type II), or a distance to each class (Type III). Now,
most of the efficient classification techniques are of Type III, as they provide a
posterior probability of belonging to any of the classes (For example Support
Vector Machines, HMM classifiers, AdaBoost, Bayesian belief network, neural
networks, etc. see [12] for a complete review). The advantages of outputs of Type
III are known, but are lost when the method described in [2] is used.

Thus, the first contribution of this paper is to adapt the method described in
[2] and to derive a complete handwritten recognition strategy. Then, the second
goal is to evaluate the performances of this strategy. Section 2 is a background
review on the basis of Dempster-Shafer Theory, and on handwritting recognition.
In section 3, we present how to adapt the algorithm of [2] to classifiers with
probabilistic outputs, and how to derive a complete recognition algorithm. This
algorithm is evaluated and discussed in section 4.

2 Background

First, we rapidly cover the basis of the Dempster-Shafer Theory. Readers inter-
ested in a more complete understanding should refer to [4,5]. Then, the most
classical procedure to recognize handwritting is summarized, as well as the prin-
ciple of the DST-based combination classifier of [2].

2.1 Dempster-Shafer Theory

In general, the various pieces of information that must be combined to make a
decision (or to perform a classification) may be of rather heterogeneous quality,
so that, in case of difficult problems, each evidence may be (1) imprecise (it is
not focused enough on which decision to make), (2) uncertain (when modeling
random events), (3) incomplete (when representing a partial point of view on the
problem), (4) conflictive (the evidences do not concur). Bayesian decision theory
does not provide tools to model all these imperfections of data. Nonetheless, it
is efficient, as its purpose is to convert imprecision, incompleteness, partiality
and conflict into subjective uncertainty. In this set-up, the uncertainty can be
used to model not only randomization (in a frequentist interpretation), but also
the subjectivity of an agent. On the contrary, the purpose of DST is to provide
richer models, so that decision making is more robust to the quality of the data.

The probability of any event B for the realization of a random variable X is
noted P(X ∈ B). In case of discrete models, B can be a singleton (usually noted
x), and if we write p(x) = P(X = x), ∀x, it defines the probability distribution p
followed by X . A random set (usually noted S) is more general than a random
variable, as its outcomes are not necessarily singleton events, but sets (of random
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size). Then, to define the distribution m followed by S (in a discrete setting), we
have to considerm(A) = P(S = A), ∀A. The central idea of the DST is to use the
theory of random sets to model problems so that a distinction is made between
uncertainty and imprecision at the very definition of the evidence. Intuitively, the
random aspect of S models the uncertainty (as with random variables), whereas
the cardinality of the outcome of S models the imprecision.

Formaly, let Ω = {ω1, ..., ωK} be a finite set called the frame or the state-
space which is made of exclusive and exhaustive hypotheses. A mass function
m is defined on the power set of Ω, noted P(Ω) and it maps onto [0, 1] so that∑

A⊆Ωm (A) = 1 and m(∅) = 0.
A subset F ⊆ Ω such that m (F ) > 0 is called a focal set of m. If the c focal

sets of m are nested (F1 ⊆ F2 ⊆ . . . ⊆ Fc), m is said to be consonant.
Two mass functions m1 and m2, based on the evidences of two independant

and reliable sources can be combined into a new mass function m∩ by the use
of the conjunctive combination, noted ∩©. It is defined ∀A ⊆ Ω as:

m∩(A) = [m1 ∩©m2] (A) =
1

1−K12

∑
B∩C=A

m1 (B) ·m2 (C) (1)

where K12 =
∑

B∩C=∅
m1 (B) ·m2 (C) measures the conflict between m1 and m2.

When all the evidences have been combined, the problem is summarized by a
single mass function which represents all the knowledge of the agent who makes
the decision. This mass function is defined on P(Ω). Hence, the description of
the problem is richer than with a probabilistic expression, as expected.

Most of the time, the final decision is made in the context of the theory of
games of chance, as a statistically winning bet is expected. In this setting, the
imprecision of the evidence is equivalent to some uncertainty, as stated by the
insufficient reason principle [13]. Thus, there is no more interest in working on
a mass function rather than on a probability (of course, postponing to the very
last step the use of a rougher probabilistic description has prevented early loss
of information). There are numerous ways to convert a mass function onto a
probability. Here, we use the pignistic transform [5]. Intuitively, it is based
on the idea that the imprecision encoded in the final mass function should be
shared equally, as there is no reason to promote a choice rather than another
one. If |A| is the cardinality of the subset A ⊆ Ω, the pignistic probability
BetP is defined on Ω as:

BetP (ωi) =
∑

A�ωi

m (A)
|A| ∀ωi ∈ Ω (2)

2.2 Handwritting Recognition and DST-Based Combination
Classifier

One of the most popular technique for automatic handwritting recognition is to
use generative classifiers based on Hidden Marov Models (or HMM) [14]. For
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each word ωi of a lexicon Ωlex = {ω1, ..., ωV } of V words, a HMM λi is defined,
so that λi best fits a training set made of several different instances of the word
ωi. Practically, this training phase is conducted by using the Viterbi EM or the
Baum-Welch algorithm.

Then, when a new word ω∗ is considered, the likelihoods P(ω ∗ |λi), ∀i ≤ V
are approximated by the likelihoods provided by the Viterbi decoding algorithm
(noted L(ωi), ∀i), and the ω∗ is recognized as the word ωj for which L(ωj) ≥
L(ωi), ∀i ≤ V . Generally, in the evaluation step, not only the “best” class is
given, but an ordered list of the TOP N best classes. Then, for each value of
n ≤ N , a recognition rate is computed as the percentage of words for which the
ground truth class is proposed in the first n elements of the TOP N list.

This complete set-up is called a HMM classifier. In order to improve the
recognition accuracy, it is possible to define several HMM classifiers, each work-
ing on different features (then, the likelihood of the q-th classifier for ωi is noted
Lq(ωi)). Hence, in [15], it is shown that it is more efficient to define several
HMM classifiers and to fuse their results: somes working on directional contours
density (upper and lower contours), and somes working on foreground (black)
pixel densities. Notice that in order to build the feature vector sequence, the
word image is divided into vertical overlapping windows. The sliding window is
shifted along the word image from right to left (in case of arabic words) or left
to right (in case of latin words) and a feature vector is computed for each frame
(see figure 1 and [15]). There are several ways to combine these classifiers in a
probabilistic setup. A simple and efficient technique is to multiply their output
[16]. As, for computational constraint, the likelihoods are rescaled and converted
to log-likelihoods, the outputs of the HMM classifiers are summed to achieve the
best results (see Section 4).

Fig. 1. Features extraction illustration

HMMs are Type III classifiers, whereas the DST-based combination classifier
of [2] is based on classifiers of Type I. For the latter, the following procedure is
proposed: let us consider Q classifiers. Each classifier q provides the following
information: (1) its output is the index of a class, noted output(q). Obviously,
ωoutput(q) ∈ Ωlex = {ω1, ..., ωV }. (2) its global accuracy is the rate rq ≤ 1 of
words it correctly recognizes on its own. The idea is simply to define Q mass
functions m1, . . . ,mQ on Ωlex, so that ∀q ≤ Q:

mq({ωoutput(q)}) = rq , mq({Ωlex \ ωoutput(q)}) = 1− rq
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and mq(.) = 0 otherwise. Here, mq(ωoutput(q)) represents the confidence in the
fact that ωoutput(q) is the true class, and mq(Ωlex \ ωoutput(q)) represents the
confidence that the q-th classifier provides a wrong estimation of the class. Then,
the Q mass functions are combined, m∩ = ∩©Q

q=1 mq and a decision is made by
any adapted decision process, such as the pignistic transform. This method is
interesting as it allows modeling the reliability of each classifier.

3 The Proposed Strategy

We aim at using Q HMM classifiers on Q different features to perform hand-
writting recognition, while improving the naive probabilistic combination of the
classifiers (the product of their outputs) by using a DST-based combination clas-
sifier. To do so, we have to (1) convert the probabilistic output of each of our
Q classifiers into a mass function, (2) modify the mass function associated to
each classifier so that it takes into account its reliability, (3) compute the con-
junctive combination of the Q mass functions, and (4) make a decision by using
the pignistic transform. Nonetheless, at each step, there are several difficulties
to overcome, which are described in this section.

3.1 Converting Log-Likelihoods into Mass Functions

The conversion of the probabilistic outputs into mass functions rises two diffi-
culties. First of all, in case of HMM classifiers, the “real” probabilities are not
available as output: the probability propagation algorithm underlying HMM im-
plies a very wide range of numerical values that leads to overflows. This is why,
instead of a classical likelihood, a log-likelihood is used. Moreover, it is regularly
re-scaled during the computation, so that, at the end, R-values are given rather
than [0, 1]-values.

The second problem is that, a mass function provides a richer description
than a probability function. Thus, the conversion from a probability into a mass
function requires additional information.

Finally, we have to convert a R-valued set of V scores (the Lq(ωi)) onto a mass
function which is a richer description, as it is defined with 2V distinct values.
Amongst the various methods that have been tested to achieve this conversion
[16], we have choosen the following procedure:

1. Convert the set of Lq(ωi) onto a new subjective probability distribution pq.
Note that pq(ωi) is supposed to be a fair evaluation of P(ω ∗ |λi, q), in spite
of that

∑
i P(ω ∗ |λi, q) �= 1, whereas

∑
i pq(ωi) = 1.

2. Convert this subjective probability into a mass function by adding the con-
straints that (1) the mass function is consonant, (2) the pignistic transform of
the mass function corresponds to the subjective probability pq. Under these
two assumptions, it is proven that the mass function is uniquely defined [7].

The choice of this procedure rather than the two others described in [16] is
sensible, as it provides the best balance between the accuracy, the robustness
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to the variation of the parameters, and the computation cost. Moreover, the
link with the inverse of the pignistic function ensure that the conversion process
is coherent with the decision making process. Finally, it is really interesting to
obtain a consonant mass function as output of each classifier: as a matter of fact,
the classifiers are assumed independant sources of information conditionnaly to
the dataset. Thus, each source, as a whole, is suppose to provide a view on the
problem which does not contradict itself. Consonant mass functions are coherent
in the meaning that a self conjunctive combination does not provide any conflict.
Hence, a model in which the sources provide consonant mass functions is fair.
Finally, a consonant output intuitively corresponds to an ordered list (like the
TOP N list).

Pratically, the conversion from the R-valued scores Lq(ωi), i ≤ V to subjective
probabilities pq(ωi) is achieved by applying the following sigmoid function that
maps R onto [0, 1]:

pq(ωi) =
1

1 + e−λ(Lq(ωi)−L̃q)
with λ =

1
max

i
|Lq(ωi)− L̃q|

(3)

where L̃q is the median of the Lq(ωi), ∀q. Then, the set of pq(ωi), i ≤ V is re-
scaled so that it sums up to 1, and the index i is chosen so that, it corresponds
to the order pq(ω1) ≥ pq(ω2) ≥ . . . ≥ pq(ωV ). We define mq as:

mq ({ω1, ω2, . . . , ωV }) = mq (Ω) = V × pq(ωV )
mq ({ω1, ω2, . . . , ωi}) = i× [pq(ωi)− pq(ωi+1)] ∀ i < V

mq (.) = 0 otherwise

3.2 Dealing with the Computation Cost Involoved by the Powerset

When dealing with a lexicon set of V words, the mass functions involved are
defined on 2V values, which implies a exponential growth of the computation
needs. In order to remain efficient on large vocabularies, we propose to control
the size of the frame: Instead of working on Ωlex = {ω1, ..., ωV }, we use another
frame Ω, which is dynamically defined. For each classification task, the TOP N
outputs of all the Q classifiers are considered for increasing values of N , until
a particular value N = M is reached, and until at minimum m words are in
common to all the outputs of the classifiers: if the Q classifiers globally concur,
their respective TOP M lists are similar and an important proportion of the M
words are likely to be found in common. On the contrary, if the Q classifiers
mostly disagree, among the TOP M lists, very few words are in common (less
than m), and it is necessary to consider the TOP N for values of N > M in
order to find m common words. Consequently, it garantees a frame of size ≥ m
and ≤ M . We call that a m/M-sized frame. This method allows controling
the size of the frame, as it is independant of V the size of the vocabulary.
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3.3 Taking into Account the Reliability of the Classifiers

In [2], each of the Q mass functions is categorical, i.e., the entire mass is asso-
ciated to the class given by the classifier. Then, the reliability of the classifiers
is taken into account: rq corresponds to the TOP 1 accuracy, and this value is
used to decrease the mass associated to the class given by the classifier, and
to rise the mass associated to the complement of this class in Ω. This approch
can be generalized to situations in which the mass functions are not necessarily
categorical, but consonant. Let us call rNq the recognition rate of classifier q at
TOP N, N ≤ M , and let us suppose that all the rNq , ∀N, q are known. We
apply the following modification to the q-th mass function:

mq ({ω1}) ← mq ({ω1}) ∗ rrank(q,ω1)
q

mq (Ω \ {ω1}) ← mq ({ω1}) ∗
(
1− rrank(q,ω1)

q

)
mq ({ω1, ω2}) ← mq ({ω1, ω2}) ∗ rrank(q,ω2)

q

mq (Ω \ {ω1, ω2}) ← mq ({ω1, ω2}) ∗
(
1− rrank(q,ω2)

q

)
...

mq ({ω1, ω2, . . . , ωM−1}) ← mq ({ω1, ω2, . . . , ωM−1}) ∗ rrank(q,ωM−1)
q

mq ({ωM}) ← mq ({ω1, ω2, . . . , ωM−1}) ∗
(
1− rrank(q,ωM−1)

q

)
where M represents the number of element in Ω (thus,m ≤ M ≤M), and where
rank(q, ωi) is a function which gives the rank of ωi in the ordered list provided
by classifier q (it plays a role similar to the one of the function output(q), in
case of a Type I classifier). It is important to notice that if the element of Ω are
orderd, ωi is at the i-th position in the ordered list of the common words. On
the contrary, rank(q, ωi) gives the position in the list without omiting the words
which are not present in the Q lists. Hence, rank(q, ωi) ≥ i. This redistribution
of the mass is only possible thanks to the consonancy of the mq.

4 Evaluations

In this section, we evaluate the performances of the algorithm described above
and we compare it to an equivalent technique in a probabilistic setting. Ex-
periments have been conducted on two publicly available databases: IFN/ENIT
benchmark database of arabic words and RIMES database for latin words. The
IFN/ENIT [17] contains a total of 32,492 handwritten words (arabic symbols)
of 946 Tunisian town/villages names written by 411 different writers. Four dif-
ferent sets (a, b, c, d) are predefined in the database for training and one set (e)
for testing. The RIMES database [18] is composed of isolated handwritten word
snippets extracted form handwritten letters (latin symbols). In our experiments,
36000 snippets of words are used to train the different HMM classifiers and 3000
words are used in the test.
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Three classifiers are defined, each working on different feature sets: upper con-
tour, lower contour and density. As it appears latter, the lower contour is really
not informative: When using only two of the three classifiers, the performances
are better. Nonetheless, we keep it in order to investigate the behaviour of our
method in case of the presence of a very weak classifier. The values of m and
M are respectively set to 5 and 20. These values are only choosen with respect
to computation time constraints. The TOP N performances of each classifier
(expressed as a rate of the number of recognized words divised by the total
number of words) is computed on a dedicated part of the database for any nec-
essary value of N : These rates are used to modify the masses according to the
reliability of the classifiers (section 3.3).

There is no more parameter to set in the algorithm of the DST-based combi-
nation classifier. Once the pignistic probability is computed, the results can be
interpreted in a probabilistic setting. Thus, we present the result in the classical
form of the handwritting recognition community, by using TOP 1 and TOP 2
performance rates. These TOP 1 and TOP 2 performances are compared to the
results obtained in a probabilistic setting. As explained in section 2, the most
classical way to combine the output of the classifiers in a probabilitistic setting
is to multiply the corresponding likelihoods. In [16], we have also tested their
sum, as well as the Borda count [19], which is a ranked vote procedure. From our
experiments the product of the likelihoods is clearly the most efficient method.
Nonetheless, we compare the results of the DST-based combination classifier to
these three probabilistic methods.

Table 1 provides the TOP 1 and TOP 2 performances of each of the three
HMM classifiers. It clearly shows that the two data sets are of heterogeneous
difficulty. Moreover, the lower contour is always the less informative feature,
and in the case of the RIMES database, it is really not informative. In Table 2,
we present the performance of the combination of these HMM classifiers on
the IFN/ENIT database (arabic). We use the DST-based combination classifier
presented in the previous sections and we compare it to the sum, the product
and the Borda count rules. The results are given for all possible combination of
two classifiers among the three, as well as for the three of them. Similarly, we
present in Table 3 the results for the RIMES (latin) database.

All these comparaisons show that the DST-based combination classifier is
more efficient than the other methods. The improvement in terms of points is
not really important, as the original scores are rather hight, and as the combina-
tion results mainly depend on the results of the original classifiers. Nontheless,

Table 1. Individual performances of the HMM classifiers

IFN/ENIT RIMES
Top 1 Top 2 Top 1 Top 2

HMM 1: Upper contour 73.60 79.77 54.10 66.40
HMM 2: Lower contour 65.90 74.03 38.93 51.57

HMM 3: Density 72.97 79.73 53.23 65.83
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Table 2. IFN/ENIT recognition performance for different combination rules

DST Sum Product Borda
Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2

1-2 76.50 82.30 76.00 80.53 76.27 80.70 76.27 80.07
1-3 79.40 84.17 76.90 82.13 79.43 83.17 77.77 83.03
2-3 76.97 82.30 72.97 79.47 76.67 80.50 74.63 80.20

1-2-3 80.13 84.00 78.47 82.87 79.53 83.10 79.43 83.20

Table 3. RIMES recognition performance for different combination rules

DST Sum Product Borda
Top 1 Top 2 Top 1 Top 2 Top 1 Top 2 Top 1 Top 2

1-2 59.53 70.47 60.73 70.03 60.83 70.10 54.87 66.63
1-3 65.90 76.33 63.47 73.60 65.27 74.60 63.93 73.87
2-3 59.63 71.07 57.70 68.97 58.13 67.37 54.97 66.27

1-2-3 65.50 74.90 63.03 70.63 63.33 70.83 62.30 70.53

in terms of proportion of mistakes which are avoided, the results are meaning-
ful. Moreover, the DST-based combination is more robust to the presence of a
weak classifier (here, HMM classifier 2, working on the lower contour), which
corresponds to the conclusions of [2].

5 Conclusion

In this paper, we have presented an combination classifier based on Dempster-
Shafer theory, which combines the outputs of several HMM classifiers. This com-
bination classifier is interesting as (1) it can easily be generalized to other classi-
fiers of Type III, as long as they provide a probabilistic output, (2) it generalizes
the DST-based combination classifier of [2] which was restricted to classifiers of
Type I, (3) it improves the results with respect to classical probabilistic combi-
nation of HMM classifiers, (4) the complexity is kept under control in spite of
the use of the DST, which is known for its computation cost (due to the ma-
nipulation of the power set). But the main interest of the use of DST is to open
new insights to refine the decision process. For instance, it is possible to consider
the conflict during the conjunctive combination, or the cardinality of the focal
sets of highest masses, or even, the value N to which it has been necessary to
search for the common word of the frame, in order to assess the reliability of
the decision process. In case of lack of reliability, it would be possible to remain
imprecise in the decision process, or on the contrary to decide that the word
does not belong to the database. These refinements of the decision process are
in the scope of our future extensions of this study.
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Abstract. The classification of remote sensing images performed with different 
classifiers usually produces different results. The aim of this paper is to investi-
gate whether the outputs of different soft classifications may be combined to in-
crease the classification accuracy, using the uncertainty information to choose 
the best class to assign to each pixel. If there is disagreement between the out-
puts obtained with the several classifiers, the proposed method selects the class 
to assign to the pixel choosing the one that presents less uncertainty. The pro-
posed approach was applied to an IKONOS image, which was classified using 
two supervised soft classifiers, the Multi-layer Perceptron neural network clas-
sifier and a fuzzy classifier based on the underlying logic of the Minimum-
Distance-to-Means. The overall accuracy of the classification obtained with the 
combination of both classifications with the proposed methodology was higher 
than the overall accuracy of the original classifications, which shows that the 
methodology is promising and may be used to increase classification accuracy.   

Keywords: Soft classifiers, uncertainty information, combining soft  
classifications.  

1   Introduction 

A variety of different classification outputs can be obtained applying different classifi-
ers to the same image with the same training sets. The classifiers have different  
capabilities and their performance depends of the application fields and image charac-
teristics [1].  Through the combination of the outputs of a set of classifiers it is possible 
to obtain a classification that is often more accurate than the individual classifications 
([1], [2], [3], [4]). To this aim several approaches have already been proposed. For 
example, [5] used an approach in which the class membership values for each class, 
derived from different methods, were summed and the class with the highest combined 
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value is the one assigned to the pixel. In [6], Lu integrated classification results derived 
from individual classifiers using Dempster-Shafer’s theory of evidence. In [1], the 
authors applied two methods to improve accuracy of hard classifications, one, that he 
called a consensus builder system, to adjust classification output in the case of  
disagreement in classification between the maximum likelihood classifier, an expert 
system classifier and a neural network classifier. The second method integrated a rule-
based expert system and a neural network classifier. The output of the expert system 
classifier was used as an additional new input layer in the neural network classifier. 
Doan and Foody [4] applied four methods for combining soft classifications. These 
methods were based on: 1) the selection of the most accurate prediction on a class-
specific basis; 2) the average of the outputs of the individual classifications for  
each case; 3) the direct combination of classifications using reasoning and 4) the adap-
tation of the outputs to enable the use of a conventional (hard classification) ensemble 
approach. 

Although several approaches have been proposed for combining hard classifica-
tions, the development of methods to combine soft classifications is still a field of 
investigation and the application of uncertainty information in this process is at an 
early stage. 

The use of soft classifiers to perform image classification enables the generation of 
possibility or probability distributions for each pixel, depending of the classifiers 
used, where each probability or possibility is associated with a class of the nomencla-
ture. The spatial units are assigned to the class presenting the larger degree of possi-
bility or probability. The additional information provided by these classifiers may be 
used as indicators of the classifier difficulty to assign only one class to the spatial 
unit, and, together with the application of uncertainty measures, may provide valuable 
information that can be used in combined classification methods. 

This study tests whether the proposed combining approach, that uses the uncertainty 
information obtained with two soft classifiers, improves the classification accuracy. 
The approach developed includes the following steps: 1) pixel-based soft classifica-
tion; 2) application of an uncertainty measure to the outputs of the previous step to 
obtain the ambiguity information; 3) evaluation of the accuracy of the classification 
obtained in the first step; 4) development of rules to combine the soft classifications, 
that incorporate the information provided by the previous pixel-based classification 
and the results given by the uncertainty measure; 5) evaluation of the combined classi-
fication accuracy. 

2   Data 

The study was conducted in a rural area with a smooth topographic relief, occupied 
mainly by agriculture, pastures, forest and agro-forestry areas. The dominant forest 
species in the region are eucalyptus, coniferous and cork trees. An image obtained by 
the IKONOS sensor was used, with a spatial resolution of 4m in the multi-spectral 
mode (XS). The product acquired was the Geo Ortho Kit and the study was performed 
using the four multi-spectral bands. The geometric correction of the multi-spectral 
image consisted of its orthorectification. The average quadratic error obtained for the 
geometric correction was of 1.39m, less than half the pixel size, which guarantees an 
accurate geo-referencing. 
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3   Methodology  

Two soft classification methods were used in this application: 1) the neural network 
Multi-Layer Perceptron (MLP); 2) a pixel-based supervised fuzzy soft classifier based 
on the underlying logic of Minimum-Distance-to-Means (FMDM). Both classifiers 
were trained using the same sampling protocol that included 100 pixels per-class.  
The classes used in this study are: Eucalyptus Trees (ET); Cork Trees (CKT), Conif-
erous Trees (CFT); Shadows (S); Shallow Water (SW), Deep Water (DW), Herba-
ceous Vegetation (HV), Sparse Herbaceous Vegetation (SHV) and Non-Vegetated 
Area (NVA). These classification methods assign, to each pixel, different degrees of 
assignment, in the case of MLP, and different degrees of possibility, in the case  
of FMDM, to the several classes under consideration. This extra data provide addi-
tional information at the pixel level which allows the assessment of the classification 
uncertainty.  

3.1   Classifiers 

The MLP is a non-parametric method and is the most commonly used neural network 
in remote sensing. Details of the MLP can be found in [7] and in [8].  The MLP pro-
vides an activation level for every output class of each pixel, and for hard classifica-
tions each pixel is allocated to the class with the largest activation level. A soft classi-
fication may be derived from this classifier by considering the activation levels of the 
network output units for each pixel. These activation levels range from 0 to 1, and 
may be used as the measures of class membership that reflect the class composition of 
the pixel [9] or indicators of the uncertainty associated with the pixel allocation to the 
classes. The second interpretation is used in this paper and the output values assigned 
to the pixels are used to compute classification uncertainty measures. 

The second classification method used in this study is a pixel-based supervised 
fuzzy classifier based on the underlying logic of the Minimum-Distance-to-Means 
classifier. The underlying logic of this method is that the mean of a given signature 
represents the ideal point for the class, where fuzzy set membership is one. The fuzzy 
set membership is calculated based on a standardized Euclidean distance from each 
pixel reflectance, on each band, to the mean reflectance for each class signature, using 
a sigmoid membership function ([10]; [11]). When distance increases, fuzzy set 
membership decreases, until it reaches the user-defined Z-score distance where fuzzy 
set membership decreases to zero. To determine the value to use for the standard 
deviation unit, the information of the training data set was used to study the spectral 
separability of the classes and to determine their average separability. 

With this classification methodology, the sum of the degrees of membership of 
each pixel to each class may sum up to any value between zero and the number of 
classes. Since fuzzy sets induce possibility distributions [12], a possibility distribution 
associated to each pixel is obtained. 

Unlike traditional hard classifiers, the output obtained with these classifiers is not a 
single classified map, but rather a set of images (one per class) that expresses the 
probability, for the first classifier, and the possibility, for the second one, that each 
pixel belongs to the class in question. 
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To evaluate the classification accuracy of the two individual soft classifications a 
stratified random sampling with about 100 pixels per class was selected considering 
the entire image scene, which also included mixed pixels. The number of pixels was 
chosen to obtain a standard error of 0.05 for the estimation of the accuracy indexes of 
each class [13]. Each land cover class was sampled independently and the accuracy 
assessment was made with an error matrix. 

3.2   Combination of Classifiers 

The outputs of the two individual soft classifiers were combined through the use of an 
uncertainty measure. If the output classes for each individual pixel differed, the uncer-
tainty information was compared and the class assigned with the lower value of un-
certainty is chosen to be the one assigned to the pixel. In this approach the uncertainty 
measure E, developed by [14], was used to quantify the uncertainty at each spatial 
unit. This measure is given by 

( )1E 1 p x= −  (1) 

where ( )1p x  is the largest degree of possibility or probability of the possibility dis-

tributions or probability distributions assigned with the pixel. This measure is also 
called ambiguity measure [15]. 

The first phase of the algorithm developed to combine classifications checks 
whether the same class is assigned to each pixel by both classifiers. If this condition is 
satisfied the class is accepted. If the two classifiers have different results for a certain 
pixel, the ambiguity information is used to make a judgement. The class with the 
lower ambiguity value is taken as the output for the pixel.  

To evaluate if the combined classification improves the results, the accuracy as-
sessment was made with the same protocol used with the single classifiers and the 
results were compared.  

4   Results 

4.1   Individual Soft Classifications 

The accuracy assessment for both classifications was made with an error matrix and 
was undertaken with the same testing datasets. The error matrixes are generated as-
signing each pixel to the class with highest degree of possibility or activation level (in 
the case of the MLP classifier), corresponding to hard versions of the classifiers. The 
Global Accuracy was computed as well as the Users’ Accuracy (UA) and the Produc-
ers’ Accuracy (PA) for all classes. In terms of the overall accuracy, the classifications 
were similar. With the FMDM classifier method the overall accuracy was 66% and 
with the MLP classifier 65%. However, on a per–class basis, differences in accuracy 
are more evident. The results are shown in Fig.1 and Fig.2. The pixels that are not 
classified (NC) are also considered. 
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DW SW NVA ET S HV CKT CFT SHV

NC 4 1 7 1 5 2 1 1 2
DW 96 0 0 0 1 0 0 0 0 99.0
SW 6 92 2 0 0 0 0 0 0 92.0

NVA 0 0 81 0 0 19 0 1 51 53.3
ET 0 0 0 39 1 6 11 18 7 47.6

S 3 0 0 0 87 0 10 1 1 85.3
HV 0 0 1 0 0 107 0 6 10 86.3

CKT 0 0 11 14 8 0 54 11 25 43.9
CFT 0 0 0 8 0 24 6 31 4 42.5
SHV 0 1 13 2 0 9 11 2 36 48.6

Reference Label of the Classification with FMDM UA   
(%)

PA (%) 88.1 97.9 70.4 60.9 26.5 65.5%85.3 64.1 58.1 43.7

M
A
P

L
A
B
E
L

 

Fig. 1. Error matrixes of the classifications obtained with the FMDM 

DW SW NVA ET S HV CKT CFT SHV

NC 0 0 0 0 0 0 0 0 0
DW 104 1 2 0 1 0 0 0 0 96.3
SW 4 92 1 0 0 0 0 0 0 94.8

NVA 0 0 56 0 0 0 2 0 1 94.9
ET 0 0 0 8 0 0 0 2 0 80.0

S 1 0 4 1 83 0 18 0 1 76.9
HV 0 0 0 2 0 78 0 0 2 95.1

CKT 0 1 5 18 18 0 40 9 16 37.4
CFT 0 0 1 32 0 59 22 56 20 29.5
SHV 0 0 46 3 0 30 11 4 96 50.5

Reference Label of the Classification with MLP UA    
(%)

PA (%) 95.4 97.9 48.7 12.5 70.6 64.5%81.4 46.7 43.0 78.9
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Fig. 2. Error matrixes of the classifications obtained with the MLP classifiers 

Fig. 3 a) and Fig. 3 b) show the classification results when each pixel is assigned to 
the class with higher degree of possibility with the FMDM classifier, and with the 
largest activation level with the MLP classifier. 

 

Fig. 3. Hard version of the classification results with a) FMDM and b) MLP 

The error matrix shows that water classes (DW and SW) were well identified by 
both classifiers. Forestry species were often confused between each other and with 
other classes, such as Sparse Herbaceous Vegetation (SHV) and Herbaceous Vegeta-
tion (HV).  
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With the MLP classifier the class with the smaller value of PA is Eucalyptus Trees 
(ET) (12.5%), which means it is the class with more omission error. With the FMDM 
classifier the class with the smaller value of PA is Sparse Herbaceous Vegetation 
(SHV) (26.5%). The class with smaller UA for both classifiers is Coniferous Trees 
(CFT). The MLP classification results for the UA was 29.5% and with the FMDM 
was 42.5%, and therefore it is the class with more commission errors. 

The results obtained also shows that different classifications outputs were derived 
from the application of these two classifiers (Fig. 3). For example, with the MLP 
classifier the class NVA presents more omission errors then commission error and 
with the FMDM classifier it’s the opposite. With the FMDM classifier a great amount 
of sites that should have been assigned to other classes, such as SHV and HV, were 
assigned to NVA, and were therefore absent from those classes, increasing their omis-
sion errors. With the MLP classifier a great amount of sites that should have been 
assigned to the NVA class were assigned to SHV class. 

Images shown in Fig. 4 correspond to the spatial distribution of the ambiguity E 
committed when the pixel is assigned to the class corresponding to the largest degree 
of assignment. The regions with larger ambiguity (dark zones) are the ones where the 
assignment degrees were lower. 

 

Fig. 4. Spatial distribution of ambiguity for the classifications obtained with: a) FMDM classi-
fier b) MLP classifier 
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Fig. 5. Mean uncertainty per class 
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The comparison of the mean ambiguity per class shows that forest species, such as 
CKT and CFT were assigned to the pixels with similar ambiguity by both classifiers 
(see Fig. 5). The class DW was assigned to the pixels with lower ambiguity with 
FMDM classifier, but all the other class presenter higher values of ambiguity with this 
classifier.  

4.2   Combined Classifications 

The accuracy assessment of the combined classification was made with the same 
testing datasets used to evaluate the individual classifications. The overall accuracy of 
the combined output was 4.5% higher than that of the most accurate individual classi-
fication. An improvement in some individual class accuracy was also observed (see 
Fig. 7 and Fig. 8). For example, the UA of classes SW, NVA, HV, CKT, SHV in-
creased when compared with those of the most accurate individual classification (Fig. 
1, Fig. 2, Fig. 6, Fig. 7). However, for some classes, the UA and PA of the combined 
classification didn’t improve when compared to one of the initial classifications, such 
as the UA of the class ET when compared to the UA obtained with the MLP, or the 
UA of the class S when compared to the UA obtained with the FMDM. Although, the 
mean value of the UA and PA of all classes is higher than the mean values obtained 
for either of the initial classifications. 

DW SW NVA ET S HV CKT CFT SHV

NC 0 0 0 0 0 0 0 0 0
DW 104 1 1 0 1 0 0 0 0 97.2
SW 2 92 2 0 0 0 0 0 0 95.8

NVA 0 0 56 0 0 0 2 0 0 96.6
ET 0 0 0 29 0 2 6 6 2 64.4

S 3 0 2 1 91 0 14 0 1 81.3
HV 0 0 0 2 0 85 0 0 2 95.5

CKT 0 1 7 20 10 0 54 10 15 46.2
CFT 0 0 1 10 0 50 10 53 18 37.3
SHV 0 0 46 2 0 30 7 2 98 53.0

Reference Label of Combining Classification UA    
(%)

PA (%) 95.4 97.9 48.7 45.3 72.1 70%89.2 50.9 58.1 74.6

M
A
P

L
A
B
E
L

 

Fig. 6. Error matrix of the combined classification 
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Fig. 7. User’s Accuracy of the classes obtained with the FMDM, MLP and combined (COMB) 
classifications 
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Fig. 8. Producer’s Accuracy of the classes obtained with the FMDM, MLP and combined 
(COMB) classifications 

5   Conclusions 

The classifiers tested in this study performed differently when applied to the same 
image, considering the same nomenclature and testing sets, and produced different 
results. Although the overall accuracy was similar for both individual classifications, 
on a per–class basis, differences were more evident. The proposed new classification 
methodology, integrating the results of both individual classifications, improved the 
overall accuracy of the classification. These results show that the information pro-
vided by the uncertainty measure was useful to determine the best class to assign to 
the pixels. The results achieved in this study indicate that the proposed approach 
seems to be promising, providing valuable information to the user, and deserves 
therefore further attention. Additional experiments will have to be made with other 
classifiers and uncertainty measures as well as the integration, in the combining deci-
sion process, of the uncertainty with the individual class accuracy information ob-
tained with each classifier. 
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Abstract. The use of fusion systems has known a wide growth and
they now need reliable ways to evaluate their performance. Fusion sys-
tems are complex because they involve a complete information treatment
chain (from the information extraction to the decision). This paper stud-
ies the different approaches used for system evaluation and proposes a
local evaluation method for the evaluation of each subpart of the fusion
system. The approach is then illustrated on cooperative fusion system
devoted to 3D image interpretation.

Keywords: Cooperative fusion system, complex system, performance
evaluation.

1 Introduction

This paper presents a means that combines analysis, modeling and evaluation to
assess overall as well as detailed system performance compared to the needs of
system users. Information fusion systems are more and more complex. They are
composed of many subparts which have many parameters. They also require an
important computation time. The analysis and the evaluation of such systems
are important and not easy to achieve. For complex entities, especially when
subjective evaluations are involved, the problem can be difficult so much so that
comprehensive assessments are often just not attempted.

The traditional approach to evaluate a complex system is based on a multi-
parameter (multi-attribute, multi-criterion) vector-like description of the system.
As result, we get a point in a multi-dimensional (multi-parameter) space. After
that many approaches can be used to map the point above (i.e., a vector system
description) into a quantitative or ordinal scale of system quality (quality metric,
effectiveness, productivity, performance, excellence). Many real-world problems
involve simultaneous optimization of several incommensurable and often com-
peting objectives. Often, there is no single optimal solution, but rather a set
of alternative solutions. These solutions are optimal in the wider sense that no
other solutions in the search space are superior to them when all objectives are
considered. They are known as Pareto optimal solutions [1].

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 464–473, 2010.
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Recent years have seen an increase in the use of ROC graphs in the machine
learning and pattern recognition communities. One advantage of ROC graphs
is that they enable visualizing and organizing classifier performance without
regard to class distributions or error costs. Unfortunately, such methods have
an inherent limitation. ROC graphs plot true positive rate against false positive
rate, treating all errors of a given type to be equivalent [2].

In image analysis, the result evaluation is always a difficult task mainly due
to the subjective definition of regions of interest. In the literature, there are a lot
of quantitative measurements to quantify the performance of the result [3,4,5,6].
However, in such kind of application in which the experts work in cooperation
with the system and in which an entire reference set does not exist, the quanti-
tative measurements are not enough to achieve a relevant evaluation. They must
be complete with another kind of subjective information. This paper presents
an evaluation method which depends on the variability of the input and on the
subpart of the system we want to evaluate.

This paper is organized as follow: section 2 presents the fusion system de-
veloped for 3D gray level image interpretation and the classical image analysis
system evaluation. Performance evaluation of our fusion system based on local
evaluation is explained in section 3. Finally, in section 4 gives an illustration of
the proposed approach with synthetic images and real images.

2 A Fusion System for 3D Image Interpretation

Fusion systems are mainly designed to help experts in the analyze of complex
phenomena. Its aim is to build a new interesting information from many pieces
of information (measures, attributes, partial decisions, . . . ). Applied to image
interpretation, these systems are mainly used for typical region detection to
facilitate expert tasks [7].

2.1 Working Environment of a Cooperative Fusion System

To evaluate a fusion system, it is first important to precise the environment in
which the system evolved. Figure 1 shows that the working environment of the
fusion system is the same than the one of the experts. Input information, noted
E, of the fusion system is the same set of data analyzed by the experts. This set
is “imposed” to the fusion system generally by the context of the application (to-
mography images in medical application, video in surveillance application, . . . ).
Output information, noted S, generally corresponds to objects experts are inter-
ested by. This set is also imposed to the fusion system and it corresponds to an
understandable space for the end-users (regions of interest in medical images, . . . ).
Moreover, experts are able to give some result examples which means that they
have their own transfer function noted fexpert. The result samples given by experts
are generally used as references to evaluate the final output of the information
fusion systems.
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Aggregation InterpretationExtraction RepresentationE S

Fusion system
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Result samples

Expert

Cooperation

Raw information

ffusion

fexpert

f

Fig. 1. Cooperative fusion system working environment

The design of an information fusion system consists in finding a computer
science based system able to model expert behavior. Fusion system can be di-
vided in four main subparts (illustrated on figure 1) that generally come from the
manner experts analyze the input data E: they look at the data and search for
typical characteristics (extraction steps), then they have some rules (represen-
tation and fusion steps) based on their experience in order to detect a possible
occurring situation. Finally, they decide between the set of possible relevant
cases (interpretation step).

Conception of a fusion system consists to make several choices for each sub-
part in order to approach as soon as possible the behavior of the experts. Au-
tomatic minimization of fexpert − ffusion is obviously not possible for two rea-
sons: Analytic expression of fexpert is unknown and ffusion is generally complex
(composition of non-linear and non-continuous functions). This specific working
environment will influence the performance evaluation of a fusion system.

2.2 The Studied Cooperative Fusion System

The cooperative fusion system concerned in this paper, was designed for 3D gray
level image interpretation. In the concerned application, experts introduce their
knowledge by pointing references of the regions directly on the input image (i.e.
the input space E). The designed system is presented on figure 2. Its efficiency
was demonstrated in [7].

First, different image characteristic measurements based on image process-
ing techniques have been implemented to acquire pertinent information on the
sought-after regions. The main family measures are based on:

– local organization measure: based on voxel intensity gradient analysis.
– coocurrence matrix evaluation: useful for texture characterization
– morphological measurement : specific form of the object in the images are

taken into account.

The representation step consists in building similarity maps for each attribute
and for each region. All the information is thus expressed in a common and
commensurable space. Then, Choquet integrals are applied to compute a be-
longing degree for each voxel to the sought-after regions. The main advantage of
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Fig. 2. Fusion system designed for 3D image analysis

this aggregation tool is its capacity to take into account the interaction between
attributes [8]. An interpretation stage is then necessary to build the complete
mapping of the 3D image.

2.3 Classical Image Analysis System Evaluation

Existing image quality evaluation methods can be divided into subjective and
objective evaluations.

- Subjective evaluation: subjective or perceptual evaluation methods have
been established as a reliable method for general image and video quality as-
sessment with well established experimental procedures and practice. They need
ground truth for evaluation and validation of objective fusion metrics. These
methods are classified as full reference (FR) methods.

However, subjective evaluations are inconvenient, time consuming, expensive,
and the conditions cannot be guaranteed to be exactly the same. Although widely
accepted for their credibility and robustness in evaluating image fusion perfor-
mance, subjective tests are impractical in many cases due to heavy organiza-
tional and equipment requirements and strict test conditions that have to be
observed [9].

- Objective evaluation: many image quality evaluations in the literature use
an ideal fused image as reference for comparison with the image fusion results.
However, ideal fusion images are not available to most real world applications.
Therefore, objective quality evaluation methods have been developed that do not
need a reference image. A mutual information metric was used to evaluate fusion
performance by Qu and al [10]. Xydeas and Petrovic [11] evaluated the fusion
performance by calculating the relative amount of edge information transferred
from the input images to the fused image. Recently, an image quality index
based on the structure metric proposed by Wang and Bovik [5] was improved
for image fusion assessment by Piella and Heijmans [6] into a pixel by pixel or
region by region method, giving weighted averages of the similarities between
the fused image and each of the source images. These methods are classified as
no reference (NR) methods. One interesting development in image quality
assessment research is to design reduce reference (RR) methods for quality
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assessment [4]. These methods do not require full access to reference images,
but only need partial information, in the form of a set of extracted features.
Conceptually, RR methods make the quality assessment task easier than NR
methods by paying the additional cost of transmitting some information to the
users.

The direct objective evaluation can be further divided into analytical meth-
ods and empirical methods, based on whether the method itself, or the results
that the method generated are being examined. Analytic methods assess fusion
systems independently of their outputs, evaluating them based on certain prop-
erties of the fusion algorithms, such as processing strategy (parallel, sequential,
iterative, or mixed), processing complexity, resource efficiency, and resolution,
which are usually not deemed effective for assessing the fusion quality. In other
words, analytical methods are only applicable for evaluating algorithms or imple-
mentation properties of fusion algorithms. These properties are generally inde-
pendent of the fused result quality, so these properties are not considered effective
at characterizing the performance difference between fusion algorithms [12].

Most fusion systems are evaluated by comparing the similarity between the
global result of the fused image and the source image. But here, we want to know
the effect of the adjustment of one of the parameters. Possible conflicting impacts
on the global result of two adjustments must be kept without more information.
So we proposed a local evaluation, which could inform the end-users on which
part he must adjust parameters to have a better result.

3 Performance Evaluation of a Fusion System

3.1 Fusion Subpart Evaluation Layout

Let be a system (fig. 1) represented by its transfer function noted f , between an
input space E and an output space S. The global evaluation considers implicitly
that the input information is “imposed” and not questionable. Thus, an evalua-
tion of the result quality is directly correlated to the function f characterizing
the system.

Each subpart of a fusion system (noted fi) cannot be considered as the generic
system of figure 1 because their inputs are conditioned by the output of the
previous one. In this situation, the evaluation of fi must be independent to the
quality of its inputs. The evaluation consists thus to evaluate the correct role of
fi and not its adequacy to a given type of input.

A layout of subpart evaluation is thus proposed on figure 3. It can be resume
by three questions : what’s kind of evaluation criteria use? is there reference
on the output of the system? and what kind of input the system has? The two
first questions correspond to the currently used cases in the literature (see sec-
tion 2.3). The last one, concerns the type of the input regarding to the system.
Two situations are listed : (1) “raw information” which is a non questioning in-
formation (considered as non editable), (2) “intermediate information ” (coming
from another subpart) considered as a relative information.
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Evaluation criteria
− quantitative
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Reference on outputKind of input
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Fig. 3. Complex system evaluation layout

This distinction between the input type has consequences on the evaluation
process. In the context of 3D image interpretation, we proposed to define the
missions of each subpart fi and to evaluate their achievement. The evaluation
uses only the output when inputs are raw information or it compares the out-
puts to the inputs when inputs are intermediate information. This idea is now
illustrated on the extraction and representation subparts.

3.2 An Example of Local Evaluation

In this example we focuses on the extraction and representation subparts, and
we propose a process to evaluate their performance. In the context of the image
segmentation, the missions of the two subparts can be expressed by:

– Extraction subpart: this block extracts information from the original data.
It must bring an efficient separability between the sought-after regions.

– Representation subpart: it consists in representing the extracted infor-
mation in another commensurable space. The objective is to preserve the
separability during the transformation.

The evaluation of the separability uses the reference regions initially pointed out
by the expert on the original image. It consists in comparing the voxel distri-
bution of the attribute values between points of different sought-after regions.
The approach is illustrated on figure 4 : the reference regions pointed out on the
original image are reported on the attribute images. It allows to select voxels for
which output classes are well-known. Then, the distribution corresponding to a
region can be compared to the other one. For example the distribution of region
R1 is compared to the distribution of the region R1 (R1 = R2 ∪R3) for a given
parameter adjustment of attribute Aj .

The region separability measure is built in comparing the two normalized his-
tograms H̃Aj

Ri
and H̃Aj

Ri
. Measures between histograms are numerous [13] and

the choice was guided by the main objective: the separation between them in-
dependently to their forms and stretchness. In this case a simple intersection
surface evaluation like the Manhattan distance could be enough, the separabil-
ity measure is detailed in [14]. Its expression for two histograms is given by:

S
Aj

Ri
= dMan.(H̃

Aj

Ri
, H̃

Aj

Ri
) =

1
2

∑
∀index

|H̃Aj

Ri
(index)− H̃Aj

Ri
(index)| (1)
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Fig. 4. Utilization of the references given by experts

The obtained distance is equal to 1 when the two histograms have an empty
intersection and 0 when they are overlapping. The representation step consists
in building similarity maps CRi

Aj
for each attribute and for each sought-after

region. The evaluation of the representation subpart cannot be based only on
the quality of the maps, because this quality depends also of the attributes.
The idea is to evaluate the conservation of separability after the representation
process. The separability computed on the similarity map is thus compared to
the separability obtained on the attribute. We define the loss of separability by
L

Aj

Ri
as follows:

L
Aj

Ri
= |dMan.(H̃

Aj

Ri
, H̃

Aj

Ri
)− dMan.(H̃

C
Ri
Aj

Ri
, H̃

C
Ri
Aj

Ri
)| (2)

The representation subpart is efficient when it is able to maintain the
separability.

4 Illustration of the Proposed Local Evaluation

The proposed quantitative criteria is illustrated on synthetic images and on
tomographic images. In the first illustration, a full reference (FR) is available
on the output whereas reduce reference (RR) characterize the second one.

4.1 Illustration on Synthetic 3D Image

The local evaluation is first illustrated on a synthetic 3D image (presented on
figure 5(a)). Image sizes are 245× 200× 250 (12 250 000 voxels). Three textured
regions are sought-after : R1 a region with low intensity variance, R2 is a region
with high intensity variance compared to R1 and R3 is composed by a succession
of two textures that form a kind of oriented region.

Attribute A1 is based on texture measurement and attributes A2 and A3
are based on intensity gradient organization. The attributes were adjusted to
have an interesting separability of the sought-after regions. The results of the
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Fig. 5. Illustration on a synthetic 3D image

Table 1. Local evaluation for synthetic image

Extraction Representation Global evaluation
Measure Separability Loss of separability Detection rate

S
Aj

R1
S

Aj

R2
S

Aj

R3
L

Aj

R1
L

Aj

R2
L

Aj

R3
TR1 TR2 TR3

A1 0.95 0.92 0.94 0.02 0.06 0.03
A2 0.84 0.82 0.84 0.05 0 0 90.36% 93.88% 94.30%
A3 0.90 0.88 0.91 0.03 0 0.03

TGlobal = 93.32%.

local evaluation are illustrated in Table 1. Detection rates TRi are obtained by
computing a confusion matrix. The global detection rate TGlobal is satisfactory.
A weak loss of separability can be found for region R1 which can explain the
lowest detection rate for this region but the lost is not significant. The classified
3D image is illustrated on figure 5(b) (Dark voxels represent the region R1,
gray level voxel the region R2 and white voxels the region R3). In this case,
the extraction subpart has an interesting discrimination and the representation
subpart achieves well its mission.

4.2 Illustration on 3D Tomographic Image

This application concerns the analysis of electro-technical parts manufactured
by Schneider Electric Company. Experts try to understand the inside part orga-
nization to find the better fabrication process. The method chosen by Schneider
Electric to analyze the parts is based on X-ray computed tomography images
illustrated on figure 6.

Three regions are also sought-after in this application the oriented regions
(noted R1) which have a regular and organized texture with a single preferential
orientation. They are made up of long white fibres giving the impression of a
flow. The Disordered regions (noted R2) appear as not organized on the images,
locally “chaotic”, i.e. for which there is not a clearly defined principal orientation.
The regions called Lack of reinforcement (noted R3) that only contain resin (or
paste) and no glass fibres. They appear in clear and homogeneous gray level
on the images. Three attributes are computed: A1 and A2 based on texture
measurement and A3 based on intensity gradient organization.
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Table 2. Local evaluation for 3D tomographic image

Extraction Representation Global evaluation
Measure Separability Loss of separability Detection rate

S
Aj

R1
S

Aj

R2
S

Aj

R3
L

Aj

R1
L

Aj

R2
L

Aj

R3
TR1 TR2 TR3

A1 0.71 0.75 0.98 0 0.05 0
A2 0.51 0.27 0.92 0.04 0.14 0 79.44% 75.93% 100%
A3 0.65 0.90 0.46 0 0.01 0.04

TGlobal = 81.93%.

In the real case where the images are more complexe (noisy, shape, organi-
zation, resolution, . . . ), it is almost impossible for an attribute to separate all
the regions in same time, For this reason, attributes have been chosen so that at
least one sought after region is well separate. The results of local evaluation are
illustrated in Table 2. Global detection rate TGlobal remains interesting for this
kind of application. The region R2 is relatively less detected than the two others
regions, this is due to the lower separability of this region on the attribute A2
and to the loss of information in the representation step. To improve the detec-
tion, attribute A2 should be replace by an attribute that bring more separability
on regions R1 and R2. The results obtained are illustrated in the figure 6.

Lak of reinforcement

Oriented region
Desordred region

(a) A 3D tomographic image (b) obtained cartography

(Dark voxels represent the region R1, gray level voxel the region R2 and white voxels
the region R3.)

Fig. 6. Input and output of the fusion system for tomographic images

5 Conclusion

This paper expressed the problem of fusion system performance evaluation by a
local evaluation of each subpart that composes the system. Subpart evaluation
needs to differentiate the kind of input and two situations have been listed. A
mission is then proposed for subparts and its achievement is measured thanks
to objective functions.
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The approach is illustrated on two consecutive subparts of a fusion system
devoted to 3D image interpretation. The obtained results are promising for at-
tribute selection and parameter adjustment. They allow a better understanding
of the system behavior which is important in a context of cooperation with ex-
perts. Work is being done to evaluate the aggregation and representation steps
in the same way to finally quantify the global performance of the fusion systems.
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Abstract. Usually, in a group decision context, the importance level,
confidence degree and amount of knowledge are very different among in-
dividuals. So, when all the individuals have to reach agreement, is quite
important to model these kind of features in order to get more appro-
priate decisions. Last related works are focussed in the selection process
to model the importance of the experts, but such approach, under some
circumstances, can behave badly. In this contribution, we present a new
adaptive consensus reaching model specifically designed to undertake
group decision making situations in which the experts have different im-
portance or confidence levels.

1 Introduction

Group decision making (GDM) consists of multiple individuals interacting to
reach a decision. Each decision maker (expert) may have unique motivations or
goals and may approach the decision process from a different angle, but have a
common interest in reaching eventual agreement on selecting the “best” option(s)
[3,16]. To do this, experts have to express their preferences by means of a set of
evaluations over a set of alternatives.

There exist different representation formats that experts can use to express
their preferences [1,2]. Fuzzy Preference Relations (FPRs) [1,2,3,6,8] have been
widely used because they are a very expressive format and also they present
good properties that allow to operate with them easily.

Two processes are necessary to solve GDM problems: a consensus process
and a selection process. The consensus process is necessary to reach a final
solution with a certain level of agreement among the experts. On the other
hand, the selection process computes all individual preferences in order to obtain
a collective solution. Clearly, it is preferable that the set of experts reach a high
degree of consensus before applying the selection process. In order to measure
the degree of consensus, different approaches have been proposed [7,9,10,17,18].
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To achieve a good consensus among the experts, it is necessary to provide the
whole group of experts with some advice (feedback information) on how far the
group is from consensus, what are the most controversial issues (alternatives),
whose preferences are in the highest disagreement with the rest of the group,
how their change would influence the consensus degree, and so on.

There are some GDM situations defined in homogeneous decision contexts,
i.e., all experts’ opinions are considered with equal importance, and others in
heterogeneous decision contexts, i.e., where the importance levels or confidence
degrees experts are quite different. To model such situations, the most of authors
suggest to assign weight values in order to compute a weighted aggregation of the
preferences [4,5,9,11,19,20]. This approach tries to focus on the discussion on a
weighted collective preference and, in such a way, the most considerable experts
are the main leaders of the discussion. They try to focuss the negotiation to close
the remaining preferences in order to reach agreement. On the other hand, in
some situations with many low-important experts, this mechanism could miss
the target resulting in the opposite effect to the desired. That is, the moderator
could send several recommendations to the high-important experts, who have
at their disposal a larger amount of knowledge, in order to change their prefer-
ences to narrow them to the remaining experts’ opinions. Consequently, the less
important experts become the leaders of the discussion.

In this paper we propose a new consensus approach to overcome such problem.
We take into account the importance weights not only to aggregate the experts’
preferences but also when advising experts to change their preferences. Firstly,
the most important experts are advised in order to reach some agreement among
them. Then, the remaining experts receive some advice to achieve a high global
consensus level. Furthermore, this new approach computes the recommendations
in a different way depending on experts’ importance in such a way that the
experts with lower level of knowledge will need more advice than those experts
that previously have at their disposal much more information to make good
decisions.

In order to do this, the paper is set out as follows. Some general considerations
about GDM and consensus reaching process are presented in Section 2. Section 3
presents the new importance-based consensus reaching process. Finally, Section 4
draws our conclusions.

2 Related Works

2.1 Group Decision Making

A decision making process, consisting in deriving the best option from a feasible
set, is present in just about every conceivable human task. It is obvious that
the comparison of different actions according to their desirability in decision
problems, in many cases, it cannot be done by using a single criterion or an
unique person. Thus, we interpret the decision process in the framework of GDM.

In a classical GDM situation there is a problem to solve, a solution set of
possible alternatives, X = {x1, x2, . . . , xn}, (n ≥ 2) and a group of two or
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more experts, E = {e1, e2, . . . , em}, (m ≥ 2) characterized by their own ideas,
attitudes, motivations and knowledge, who express their opinions about this set
of alternatives to achieve a common solution [12,14,15]. To do this, each expert
has to express his preferences on the set of alternatives by means of a fuzzy
preference relation, that is defined as P k ⊂ XxX , with a membership function,
μP k : XxX → [0, 1], where μP k(xi, xj) = pkij denotes the preference degree of
the alternative xi over xj for the expert ek.

– pkij > 1/2 indicates that xi is preferred to xj .
– pkij < 1/2 indicates that xj is preferred to xi.
– pkij = 1/2 indicates indifference between xi and xj .

When cardinality of X is small, the preference relation may be conveniently
represented by the n x n matrix P k = (pkij).

Usual resolution methods for GDM problems are composed by two different
processes [3] (see Figure 1):

1. Consensus process: Clearly, in any decision process, it is preferable that the
experts reach a high degree of consensus on the solution set of alternatives.
Thus, this process refers to how to obtain the maximum degree of consensus
or agreement among the experts on the solution alternatives.

2. Selection process: This process consists in how to obtain the solution set of
alternatives from the opinions on the alternatives given by the experts.

2.2 Classical Consensus Reaching Process

A consensus reaching process in a GDM problem is an iterative process composed
by several discussion rounds, in which experts are expected to modify their

Fig. 1. Resolution process of a GDM
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preferences according to the advice given by the moderator. The moderator
plays a key role in this process. Normally, the moderator is a person who does
not participate in the discussion but knows the preferences of each expert and the
level of agreement during the consensus process. He is in charge of supervising
and driving the consensus process toward success, i.e., to achieve the maximum
possible agreement and reduce the number of experts outside of the consensus
in each new consensus round.

Usually, the moderator carries out three main tasks: (i) to compute the con-
sensus measures, (ii) to check the level of agreement and (iii) to produce some
advice for those experts that should change their minds. (See Figure 2)

Fig. 2. Classical consensus reaching process

In order to evaluate the agreement, it is required to compute similarity mea-
sures among the experts [3,7,17,18]. Two types of measurements to guide the
consensus reaching process were proposed in [3]:

1. Consensus degrees to evaluate the level of agreement among all the experts.
They will be used to identify the preference values where the agreement is
not sufficient.

2. Proximity measures to evaluate the distance among the experts individual
preferences and the group or collective one. They will be used to identify the
experts who should change their preferences in the next rounds.

These measurements are computed at the three different levels of representation
of a preference relation: pairs of alternatives, alternatives, and relation.

3 Importance-Based Consensus Reaching Process

In heterogeneous GDM scenarios that include a large number of experts with dif-
ferent levels and kind of knowledge, could be necessary to take into account the im-
portance degree of each expert in order to compute the global consensus degree in



478 I.J. Pérez et al.

a more appropriate and realistic way. Usually, these situations have been modeled
by some authors by including the weights in the computation of the global pref-
erences [4,5,9,11,19,20]. In this contribution, we use the experts’ importance on
the discussion phase to generate importance based recommendations and present
a new importance based feedback mechanism that sends different recommenda-
tions to the experts according to their own importance degrees.

When the agreement among all experts is low, we can notice one of the follow-
ing two different reasons. The first one is that the opinions of a few important
experts were far away from each other. The second possibility is that, being
agreement among all the important experts, there exists many low-important
experts in disagreement [11].

Anyway, it seems reasonable to change only those particular opinions that are
hindering the agreement [11,13]. In such a case, in order to bring the preferences
closer to each other, we propose to model that situation with a two-step feedback
mechanism. The first step tries to reach consensus between the most important
experts and then, if the global consensus is not high enough, the second step
deal with all the low-important experts sending them some recommendations to
change their preferences in order to reach agreement among all the opinions.

Besides to take into account the importance degree of each expert, we are
taking another step further to compute more precise recommendations by con-
sidering only the preferences with low agreement degree (Adaptive Search for
Preferences), this process can be studied with more detail in [13]. In summary, we
try to adapt the search for preferences in disagreement to the current state of the
consensus process. To do so, we distinguish two kind of states, “reaching high-
important experts agreement” and “reaching low-important experts agreement”.
When we are dealing with hight-important experts, it is obvious that their opin-
ions belong to a wider knowledge than the remaining ones. In such a case, only
a few number of changes of opinions might lead to consensus. Similarly, when
the experts have low-importance, a high number of changes of opinions might
be necessary to achieve consensus. Thus, two different methods to identify the
preferences that each expert should modify, in order to increase the consensus
level in the next consensus round, are defined.

Then, we present an importance-based consensus reaching process in order to
compute more suitable advice composed of three stages (see Figure 3).

1. Computing Consensus Degrees and Control the Consensus Process.
2. Importance-Based Search for Preferences.
3. Production of advice.

3.1 Computing Consensus Degree and Control the Consensus
Process

Once the preferences have been given, we can compute the level of agreement
achieved in the current round. To do so, we firstly define for each pair of experts
(ek, el) (k < l) a similarity matrix SMkl =

(
smkl

ij

)
where

smkl
ij =

(
1− ∣∣pkij − plij ∣∣)
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Fig. 3. Importance-based consensus reaching process

Then, a consensus matrix, CM , is calculated by aggregating all the similarity
matrices using the arithmetic mean as the aggregation function φ:

cmij = φ(sm12
ij , sm

13
ij , . . . , sm

1m
ij , sm

23
ij , . . . , sm

(m−1)m
ij ).

Once the similarity and consensus matrices are computed we proceed to obtain
the consensus degrees at the three different levels to obtain a global consensus
degree, called consensus on the relation:

1. Consensus degree on pairs of alternatives. The consensus degree on a pair
of alternatives (xi, xj), denoted copij , is defined to measure the consensus
degree amongst all the experts on that pair of alternatives:

copij = cmij

2. Consensus degree on alternatives. The consensus degree on alternative xi,
denoted cai, is defined to measure the consensus degree amongst all the
experts on that alternative:

cai =

∑n
j=1;j �=i(copij + copji)

2(n− 1)
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3. Consensus degree on the relation. The consensus degree on the relation, de-
noted CR, is defined to measure the global consensus degree amongst all the
experts’ opinions:

CR =
∑n

i=1 cai
n

When the consensus measure CR has not reached the required consensus level
CL and the number of rounds has not reached a maximum number of iterations
(defined prior to the beginning of the decision process), the experts’ opinions
that are hindering the agreement must be modified.

The consensus indicators make it possible to point out the most controversial
alternatives and/or experts isolated in their opinions. Thus, we propose a new
importance-based search for preferences to obtain some advice that can narrow
the experts’ minds.

3.2 Importance-Based Search for Preferences

The importance-based search for preferences is developed with the aim of mod-
eling those group decision making situations in which the experts’ knowledge is
quite different among each others.

In such a case, experts are assigned weights of importance ( it means relevance,
competence, confidence,...) modeled as a fuzzy subset I where the membership
function μI(ek) ∈ [0, 1] denotes a degree of importance of the expert ek.

The preferred method for some authors [4,5,9,19,20] is to use the weight values
like an aggregation operator’s parameter and, in this way, to obtain a weighted
collective opinion. However, in this contribution, we are modeling the importance
in a different way [11].

To do so, the experts are included by their own importance degree into two
different subsets EHigh and ELow in the following way:

– if μI(ek) > λ1 → ek ∈ EHigh, and
– if μI(ek) < λ2 → ek ∈ ELow.

Where λ1 and λ2 are two threshold parameters whose values depend on the
problem dealt with.

At first, the process is focused on reaching consensus between the experts
in EHigh. Then, the second step tries to narrow the opinions of the experts
in ELow to the global opinion. Consequently, if the consensus degree among
experts in EHigh is not high enough, we should identify the preferences of the
high-important experts to be changed in order to reach agreement between them.
Otherwise, if that agreement has been already reached, we should identify the
preferences of the low-important experts to be changed in order to reach a global
agreement.

1. Identify High-Important Experts’ Controversial Preferences
In this situation, we are only dealing with experts whose knowledge level
is so high that does not need to be strongly modified in order to get a
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good solution. Therefore, the agreement can be improved by suggesting a
few changes, that is, we only need to change the mind of those experts who
have proximity values on the pairs of alternatives identified in disagreement
smaller than an specific proximity threshold at level of pairs of alternatives.

2. Identify Low-Important Experts’ Controversial Preferences
In the last consensus rounds, the system advises experts with low knowledge
or confidence level. It seems reasonable that, a priori, these experts can make
more mistakes. Thus, the agreement should be improved by suggesting more
changes that in the previous case. To do this, the procedure tries to modify
the preference values on all the pairs of alternatives where the agreement is
not high enough.

It is worth noting that both searching methods have been previously used to solve
a different adaptive reaching consensus model based on the current consensus
level. It can be studied with more detail in [13].

3.3 Production of Advice

Once that the system has identified the preferences to be changed depending
on the importance degree of the experts, the model shows the right direction of
the changes in order to achieve the agreement. For each preference value to be
changed, the model will suggest increasing or decreasing the current assessment.

In this contribution, we use a mechanism based on a set of direction rules to
identify and suggest the changes [13]. These rules compare the central values
of the individual and collective preference assessments cv(pkij) and cv(pcij). The
central value represents the center of gravity of the information contained in the
set [13].

As there are two different consensus levels to be reached, at first, in order to
reach agreement between high-important experts, the collective preference refers
the aggregated preferences from experts in EHigh and is noted as p∼c

ij .
The direction rules in this case are as follows.

– if (cv(pkij)−cv(p∼c
ij ) < 0), then the expert ek should increase the assessments

associated with the pair of alternatives (xi, xj).
– if (cv(pkij)−cv(p∼c

ij ) > 0), then the expert ek should decrease the assessments
associated with the pair of alternatives (xi, xj).

– if (cv(pkij)− cv(p∼c
ij ) = 0), then the expert ek should not modify the assess-

ments associated with the pair of alternatives (xi, xj).

Once the first objective has been achieved, the next one is to close the preferences
of the remaining experts. So, the direction rules are similar, the only change
is that the collective preference refers the aggregated preferences from all the
experts instead of only the important ones.

– if (cv(pkij)− cv(pcij) < 0), then the expert ek should increase the assessments
associated with the pair of alternatives (xi, xj).

– if (cv(pkij)− cv(pcij) > 0), then the expert ek should decrease the assessments
associated with the pair of alternatives (xi, xj).
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– if (cv(pkij) − cv(pcij) = 0), then the expert ek should not modify the assess-
ments associated with the pair of alternatives (xi, xj).

Finally, it is worth noting that the changes suggested are only recommendations
presented for consideration to the experts and they decide if and how to take
them into account.

4 Concluding Remarks

In this contribution we have presented a novel consensus approach which has
been specially designed to model heterogeneous decision contexts. Assuming
fuzzy preference relations to express experts’ preferences and different levels
of importance in their preferences we present a consensus model in which the
more important experts lead the discussion of the consensus reaching process.
Moreover, the feedback mechanism computes different kind of recommendations
according to the expert importance levels.
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Abstract. Preference modeling consists in constructing a preference re-
lation from initial preferences given by a decision maker. We are inter-
ested in the preference relation obtained from the use of the Choquet
integral. We give some properties related to the completeness of the
necessary preference relation and its comparison with the traditional
approach where the preference obtained from a unique fuzzy measure.
Moreover, an axiomatization of the necessary and possibility preference
relations is proposed.

1 Introduction

Multi-Criteria Decision Aid (MCDA) aims at representing the preferences of a
Decision Maker (DM) over some options described by a finite set N = {1, . . . , n}
of points of view or attributes. Attribute i ∈ N is described by a set Xi, and
the set of potential options is the Cartesian product X = X1× · · ·×Xn. We are
interested in this paper in the case where the preference relation can be described
by an overall utility in which the aggregation of the criteria is obtained with the
Choquet integral. The preference model is then thoroughly constructed once the
parameters of the Choquet integral - namely the fuzzy measure - are determined.
The DM is usually not interested in all options in X . We denote by Y ⊆ X the
set of alternatives of interest for the DM. The goal of decision aid is to propose
a recommendation regarding the options in Y .

To this end, the DM provides some preferential information. Unfortunately,
there does not usually exist one single fuzzy measure that fulfills this preferential
information. Up to recently, most of the elicitation methods based on the Cho-
quet integral consisted in selecting the fuzzy measure that fulfills the preferential
information, and that maximizes some functional [1,2,3]. Then the recommen-
dation on Y was made on the basis of the preference relation obtained by the
Choquet integral w.r.t. this unique fuzzy measure. This will be referred to as the
traditional approach in this paper. This preference relation has been extensively
studied in the literature. There are several axiomatic characterizations of this
representation [4,5].

� The work has been sponsored by the MOVIDA project funded by the ANR (French
National Research Agency).
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However, the recommendation made by this unique fuzzy measure infers much
more than what the DM originally said. The concepts of necessity and possibility
preference relations have been recently introduced to overcome this limitation
by providing robust recommendations [6,7]. It has been applied to the Choquet
integral in [8]. An option is necessarily preferred to another option according to
the necessity preference relation, if the first option is preferred to the second one
according to all models that fulfill the preferential information provided by the
DM. This necessity preference relation can thus be incomplete.

The DM usually has two requirements on the recommendation: the recom-
mendations on Y shall be (i) sure (the recommendation shall be a deduction
of the preferential information) and (ii) complete (i.e. a comparison is proposed
for each pair of options in Y ). Generally speaking, the robust preference rela-
tions satisfy (i) but not (ii), and the opposite for the traditional approach. Since
the concept of robust preference relations is new, one may wonder whether the
recommendations prior to the introduction of this concept were meaningless.
Actually, it depends on the subset Y .

The aim of this paper is twofold.
First, we are interested in the special case when Y = X (see Section 4). In

the literature, the set Y of the options of interest for the DM is often assumed
to be finite and of small cardinality. The situation where Y = X occurs when
the options of interest for the DM are not known during the construction of the
multi-criteria model. We show that, when Y = X , these two requirements (i)
and (ii) are satisfied if and only if the preferential information is sufficient to
uniquely fix the values of the fuzzy measure. This is the only case when the use
of the traditional approach and the robust one yield the same recommendation.
However, the DM must provide a large amount of data to uniquely fix the fuzzy
measure and one cannot expect this from the DM. When the preferential infor-
mation is significant (but not sufficient to uniquely specify the fuzzy measure),
we show that the necessary preference relation is almost complete. Moreover, we
provide an a priori estimate of the worse error in the computation of the overall
utility when using the traditional approaches. This gives a justification of the
traditional approach when Y = X .

When Y �= X , one feels that it is sufficient that the DM provides less infor-
mation (compare to when Y = X). This cannot be easily exploited with the
traditional approach, and the necessity and possibility preference relations are
very useful tools in an interactive approach with the DM to construct sure pref-
erences over Y . However, unlike the preference obtained from a unique fuzzy
measure (traditional approach), very little is known about the robust preference
relations. Although a few properties have been identified [6,7], there is still no
axiomatic characterization. The behavior of the necessary preference relation
was studied on several particular cases of preferential information [9]. These ex-
amples show that the completion produced by the necessity preference relation
is quite natural. It is crucial for applications to better understand the behav-
ior of the robust preference relations. We propose in Section 5 an axiomatic
characterization of the necessary and possibility preference relations.
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2 Background

2.1 Choquet Integral

A fuzzy measure (also called capacity) on a set N = {1, . . . , n} of criteria is a set
function μ : 2N → [0, 1] such that [10]

– μ(∅) = 0, μ(N) = 1 (boundary conditions),
– ∀A ⊆ B ⊆ N , μ(A) ≤ μ(B) (monotonicity).

LetM be the set of all fuzzy measures. The Choquet integral of a = (a1, . . . , an) ∈
IRn defined w.r.t. a capacity μ has the following expression [11] :

Cμ(a1, . . . , an) =
n∑

i=1

(
aσa(i) − aσa(i−1)

)× μ ({σa(i), · · · , σa(n)}) ,

where σa is a permutation on N such that aσa(1) ≤ aσa(2) ≤ · · · ≤ aσa(n), and
aσa(0) := 0. The Choquet integral has been proved to be able to model both the
importance of criteria and the interaction between criteria.

2.2 k-Additive Capacities

We introduce a useful linear transformation of fuzzy measures. The Möbius trans-
form m of a fuzzy measure μ is the unique solution of the equation

∀A ⊆ N μ(A) =
∑
B⊆A

m(B), (1)

and is given by mμ(A) :=
∑

B⊆A(−1)|A|−|B|μ(B).
A fuzzy measure is defined by 2n coefficients, which is much more than a

weighted sum. The concept of k-additive fuzzy measure has a complexity in-
between a fuzzy measure and a weighted sum. More precisely, a fuzzy measure
μ is said to be k-additive [12] if mμ(A) = 0 whenever |A| > k and there exists
A with |A| = k such that mμ(A) �= 0. We denote by Mk the set of fuzzy
measures that are at most k-additive (i.e. 1, or 2, or . . ., or k additive). Note
that M = Mn. For the rest of the paper, we fix k ∈ {1, . . . , n} and we will
consider only k-additive capacities, unless explicitly specified.

3 Robust Preference Relations

We focus in this paper on the aggregation part of the multi-criteria model. The
utility functions which maps the attributes onto a commensurate scale IR are
not our concern here. Hence, we assume that the attributes are directly given in
the commensurate scale – i.e. Xi = IR – and thus that X = IRN .

In order to give a recommendation to the DM on the options in Y , some pref-
erential information is asked to the DM. Many types of preferential information
are considered in the literature [1,2,3,8]. In practice, it turns out that the most
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meaningful preferential information for the DM is composed of comparisons of
options in X . For the sake of simplicity, we assume thus that the preferential
information is composed of a partial order � over X . For x, y ∈ X , relation x�y
means that the DM finds x at least as good as y. � is seen as a subset of X×X .
This type of preferential information is the most widely used one. Incorporating
other types of preferential information would not change the results that are
shown in this paper.

We denote by Mk(�) the set of fuzzy measures in Mk that satisfy the pref-
erential information �:

Mk(�) =
{
μ ∈ Mk : ∀a, b ∈ X a� b ⇒ Cμ(a) ≥ Cμ(b)

}
We can show the following results.

Lemma 1. We have for all �,�′ ⊆ X ×X
(i) � ⊆ �′ =⇒ Mk(�) ⊇Mk(�′)
(ii) Mk(� ∪�′) = Mk(�) ∩Mk(�′)
(iii) Mk(� ∩�′) ⊇Mk(�) ∪Mk(�′)

Our aim is to construct a preference relation denoted by �� depending on �. In
order to produce a precise recommendation on Y , �� should be a total preorder
(i.e. reflexive, transitive and complete) over Y . We now describe several ways to
obtain ��.

As said in the introduction, the traditional approach to construct a recom-
mendation on the set Y of options of interest consists in selecting a particular
fuzzy measure in Mk(�). It is chosen as a (the) solution to an optimization
problem

max
μ∈Mk(�)

F�(μ)

where F� is a function depending on � to be maximized. Given a solution μ of
the previous problem, the recommendation provided to the DM over the options
in Y is then based on �μ, where �μ is the preference relation derived from Cμ:

∀a, b ∈ X a �μ b ⇐⇒ Cμ(a) ≥ Cμ(b). (2)

A preference relation �� is said to be representable by a Choquet integral if there
exists a fuzzy measure μ ∈Mk such that ��=�μ.

The necessity preference relation (NPR in short) on X is a cautious way to
take into account the fact that the aggregation model is not uniquely determined
from �, and is defined by [8,6,7]:

∀a, b ∈ X , a �N,� b ⇐⇒ [∀μ ∈ Mk(�) Cμ(a) ≥ Cμ(b)] .

It is easy to see that �N,� is usually incomplete, but is transitive and reflexive.
One can also define [9]

∀a, b ∈ X , a ∼N,� b ⇐⇒ [∀μ ∈Mk(�) Cμ(a) = Cμ(b)]

∀a, b ∈ X , a )N,� b ⇐⇒ [∀μ ∈Mk(�) Cμ(a) > Cμ(b)]
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Another interesting order relation derived from � is the so-called possibility
preference relation (PPR in short) defined as follows [8,6,7]:

∀a, b ∈ X , a �Π,� b ⇐⇒ [∃μ ∈Mk(�) Cμ(a) ≥ Cμ(b)] .

4 The Particular Case of Y = X

Let us first give some motivating examples of the case when Y = X . The deci-
sion model can be implemented in a decision support system. There are many
applications in which a decision has to be taken repetitively. One may think
of a training system that assesses trainees. Another example of this situation is
the multi-criteria decision function that recommends the assignment of priorities
to the radar tasks in radar management [13]. A third example is the design of
complex systems in which A last example is the call for tenders in which, for
transparency reasons, the multi-criteria evaluation model must be made before
the proposals are sent [14]. In these examples, at the time when the decision
support system is designed, one does not know the options that will be evalu-
ated. One acts as if all potential options could later be assessed with the model.
This means that the multi-criteria model shall produce relevant and precise rec-
ommendations for all elements of X .

4.1 Completeness of the Robust Preference Relation

Let us denote by �Pa the Pareto dominance order:

�Pa:= {(a, b) ∈ IRn , ∀i ∈ N ai ≥ bi} .
The comparisons obtained from the Pareto order are clearly satisfied for every
possible fuzzy measure. Hence these comparisons are also obtained by the NPR
and PPR:

∀� ⊆ X ×X �N,�⊇�Pa and �Π,�⊇�Pa . (3)

The following result shows that when Y = X , robust preference relations provide
the same recommendations as traditional preference relation (2). It requires to
completely specify the fuzzy measure from �.

Proposition 1. Let � ⊆ X ×X. The following statements are equivalent

(i) �N,�=�Π,�,
(ii) �N,� is complete in X,
(iii) �N,� is representable by a Choquet integral,
(iv) Mk(�) is reduced to a singleton.

4.2 Case When Mk(�) Is Small

We wish to know how a variation in a fuzzy measure induces a variation in
the associated preference relation. It would be desirable that a small difference
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between two fuzzy measures implies a small difference between their preference
relations. If we are able to quantify these differences and to relate them, we will
have a way to quantify the completeness of the NPR when Mk(�) is reduced
to a singleton. In order to achieve that, we are going to define distances in both
the set of admissible fuzzy measures (i.e., the set of fuzzy measures satisfying
the preferential information) and the set of preference relations.

Definition 1. We define the distance between two fuzzy measures μ1, μ2 as

dfm(μ1, μ2) := max
A⊆N

|μ1(A)− μ2(A)| ∀μ1, μ2 ∈Mk.

We define the diameter of M ⊆Mk as

diam(M) = max
μ1,μ2∈M

dfm(μ1, μ2).

The diameter ofMk(�) measures the maximum distance between two admissible
fuzzy measures.

Definition 2. We define the distance between two preference relations repre-
sentable by a Choquet integral by

dpr(*μ1 ,*μ2) = max
a∈X : ‖a‖�=0

|Cμ1 (a)− Cμ2(a)|
‖a‖ ∀μ1, μ2 ∈M

where ‖a‖ = maxi∈N ai −mini∈N ai.

As in the case of the fuzzy measures, dpr is distance. The following lemma shows
that the distance on the fuzzy measures is strongly related to the distance on
the preference relations.

Lemma 2. Let M ⊆Mk. We have

dpr(*μ1 ,*μ2) = dfm(μ1, μ2)
max

μ1,μ2∈M
dpr(*μ1 ,*μ2) = diam(M) .

This lemma is very important. In order to make sure that all possible prefer-
ence relations within Mk(�) are close enough one another, one shall check that
maxμ1,μ2∈Mk(�) dpr(*Cμ1

,*Cμ2
) is small enough. This quantity is not quite easy

to compute. Lemma 2 states that it is sufficient to compute diam(Mk(�)), which
is easy to obtain. Indeed, let us define μ� and μ� by

∀A ⊆ N μ�(A) := min
μ∈Mk(�)

μ(A) and μ�(A) := max
μ∈Mk(�)

μ(A) .

These two values are computed with the help of a linear programming solver.
Then the diameter of Mk(�) is computed from the formulae

diam(Mk(�)) = max
A⊆N

(
μ�(A)− μ�(A)

)
.
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Since the DM is not able to provide sufficiently many preferential information
to uniquely specify the preference relation, one cannot expect for instance that
indifference corresponds to a strict equality. Then indifference is no longer transi-
tive, which yields to a semi-order. Semi-orders are defined by a threshold λ ∈ IR+
where the strict preference holds when the difference of scores is larger than the
threshold λ. Applying this for the PPR, we define �λ

Π,� by

∀a, b ∈ X a �λ
Π,� b ⇐⇒ [∃μ ∈ Mk(�) Cμ(a) ≥ Cμ(b) + λ] .

When a is preferred to b, we have a margin λ.

Proposition 2. Let ε > 0, r > 0 and s ∈ IR. Assume that diam(Mk(�)) ≤ ε.
Then

�2rε
Π,� ∩ [s, s+ r]N ⊆ �N,� ∩ [s, s+ r]N .

If ε is small and r = 1 (considering the standard [0, 1] scale), �2ε
Π,� is almost

complete (since �Π,� is complete) and so is �N,�. A preorder � is said to be
almost complete in [s, s + r]N if the set of pairs (a, b) in [s, s + r]N for which
we have neither a � b nor b � a has a small measure compare to the measure
rN of [s, s+ r]N . This shows that the NPR is almost complete when ε is small.
Moreover, we see that the larger the evaluation scale (i.e. the larger r), the worse
the estimate becomes.

5 An Axiomatization of the Robust Preference Relations

The NPR and the PPR are both useful in an interactive decision aid process [9].
The NPR is used to provide the (final) recommendations to the DM over the
options in Y . If the DM finds that the recommendation made is not sufficient, he
may add new preferential information to �. In this case, these new preferential
information shall belong to the PPR.

In this section, we are interested in an axiomatic characterization of the NPR
and the PPR. The problem is stated as follows:

Given the preferential information � provided by the DM, what is the
preference relation over X that extends �?

This statement has some similarities with decision making under risk (DMUR).
In DMUR, the elements of N are the states representing the possible situations,
X1 = · · · = Xn =: C is the set of possible consequences, and an alternative (also
called act) is a mapping from N to C, that is X = CN . The consequence of
selecting a particular alternative depends on which state of nature will occur.
Moreover the attitude of the DM towards risk influences his choice strategy
[15]. In DMUR, a specification of the uncertainty over the states of nature is
known. This is quite close to the preferential information �. In DMUR, one
aims at constructing a preference relation over X from the specification of the
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uncertainty over the states of nature. However, the parallel cannot go further
since the preference relation in DMUR is always complete, which is not the case
for us.

We suppose that � is given. We denote by �� the wished preference model.

5.1 General Properties

First of all, the preferential information � shall be satisfied by the preference
model ��, which yields the following property.

A1. � ⊆ ��.

As we have already said in the introduction, the preference relation �� has been
axiomatized by Schmeidler [4]. This preference relation is a total preorder. We
wish to subsume into this situation the case where �� turns out to be a total
preorder. When �� is complete, we are in the situation of Section 4.1. Since
we are interested in the Choquet integral, we assume that this complete order
is representable by a Choquet integral. Following Proposition 1, we propose the
following property on ��.

A2. If �� is complete, then �� is representable by a Choquet integral.

The NPR and PPR satisfy the two above properties.

5.2 Case of the NPR

The mapping � �→�� is isotone. With the NPR, the larger preferential infor-
mation (i.e. the larger � in the sense of the set inclusion), the more recommen-
dations one can make.

A3N . If � ⊆ �′, then ��⊆��′ .

The following result provides a characterization of the NPR.

Theorem 1. �N,� is the largest (in the sense of ⊆) order relation �� satisfying
A2 and A3N .

We consider other axioms satisfied by the NPR.

A4N . �� ∪ ��′⊆��∪�′.

A5N . If � = ∅, then ��=�Pa.

This property, which can be found in [9], extends [6, Remark 4.1] to the case of
the Choquet integral. It is related to (3).

5.3 Case of the PPR

A first property of the PPR is that there are complete (unlike the NPR).
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The mapping � �→�� is anti-isotone. With the PPR, the larger preferential
information (i.e. the larger � in the sense of the set inclusion), the less compar-
isons are possible.

A3Π . If � ⊆ �′, then ��⊃��′ .

The following result provides a characterization of the PPR.

Theorem 2. �Π,� is the smallest (in the sense of ⊆) order relation �� satis-
fying A2 and A3Π .

We consider other axioms satisfied by the PPR.

A4Π . ��∪�′⊆�� ∩ ��′ .

Let us denote by )Pa the strict Pareto dominance order:

)Pa:= {(a, b) ∈ X , ∀i ∈ N ai ≥ bi and ∃i ∈ N ai > bi} .

A5Π . If � = ∅, then ��= X ×X \ )Pa
−1.

5.4 Discussion

We can make a connection between the NPR and PPR, and the necessity and
possibility distributions.

Assume that a variable V ranging on a domain U can be described by a pos-
sibility distribution πV : U → [0, 1], where πV (u) is the degree of possibility that
V is equal to u [16]. A possibility distribution aims at discarding the elements
of the set U that are inconsistent with the knowledge. In particular, two pieces
of information “V is A1” and “V is A2” (where A1 and A2 are fuzzy sets on U
represented by the membership functions πA1 and πA2 respectively) are repre-
sented by the inequality πV (u) ≤ min(πA1(u), πA2(u)) for all u ∈ U . It is easy
to see that A4Π is the counterpart of this inequality. Indeed � and �′ play the
role of the two pieces of information, ��∪�′ plays the role of the distribution of
the variable V (i.e. what is sought), the ⊆ and ∩ operators becomes the ≤ and
min operators respectively. Hence property A4Π is similar to the usual fusion
operator for possibility distributions.

With the necessity distributions, two pieces of information “V is A1” and “V
is A2” are represented by the inequality πV (u) ≥ max(πA1(u), πA2(u)) for all
u ∈ U . It is easy to see that A4N is the counterpart of this inequality.

From Theorem 1, the NPR appears to be the largest order relation satisfying
two properties. It shows that �� cannot provide more information than the
NPR, if one wishes to remain cautious and accurate with respect to �.

The PPR relation is the smallest order relation satisfying two relations (see
Theorem 2). It shows that �� cannot less information than the PPR, if one
wishes to tell all what is contained in �.
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Abstract. We provide sufficient conditions for a Sugeno integral to be
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1 Introduction

Aggregation functions essentially model the process of merging a set of values
into a single representative one. The need to aggregate values in a meaningful
way has become more and more present in an increasing number of areas in
mathematics and physics, and especially in applied fields such as engineering,
computer science, and economical and social sciences. For recent references, see
[2,14,15].

In this paper, we are interested in aggregation functions f :An → A satisfying
the following identity

f
(
f(a11, . . . , a1n), . . . , f(an1, . . . , ann)

)
=

f
(
f(a11, . . . , an1), . . . , f(a1n, . . . , ann)

)
,

for all aij ∈ A (1 ≤ i, j ≤ n). The relevance of this property is made apparent
in works pertinent to different areas of mathematical research. In functional
equation theory, and in particular in aggregation function theory, this property
is referred to as bisymmetry and it is naturally interpreted when reading off data
provided by square matrices: essentially, it expresses the fact that aggregating the
data by rows and then aggregating the resulting column outputs the same value
as that of aggregating the data by columns and then aggregating the resulting
row. For motivations and general background, see [1,14]. In the algebraic setting,
bisymmetry appears as the natural generalization of the notion of “mediality”. It
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is also called self-commutation and it is tightly related to the notions of entropic
algebras and centralizer clones.

Among noteworthy aggregation functions are the (discrete) Sugeno integrals,
which were introduced by Sugeno [21,22] as a way to compute the average of a
function with respect to a nonadditive measure. Since their introduction, Sugeno
integrals have been thoroughly investigated and are now considered as one of
the most relevant families of aggregation functions in the qualitative setting of
ordinal information (e.g., when the values to be aggregated are simply defined
on a chain without further structure). This is partially due to the fact that,
unlike other aggregation functions, Sugeno integrals can be defined over ordered
structures where the usual arithmetic operations are not necessarily available.
For general background, see [2,14].

A convenient way to introduce the discrete Sugeno integral is via the concept
of (lattice) polynomial functions, i.e., functions which can be expressed as com-
binations of variables and constants using the lattice operations ∧ and ∨. As it
was observed in [17], Sugeno integrals can be regarded as polynomial functions
f :Xn → X which are idempotent, that is, satisfying f(x, . . . , x) = x.

In this paper, we address the question of characterizing those Sugeno inte-
grals fulfilling the bisymmetry property. This question is answered for discrete
Sugeno integrals over bounded chains. In Sect. 2, we recall basic notions in the
universal-algebraic setting and settle the terminology used throughout the pa-
per. Moreover, by showing that bisymmetry is preserved under several operations
(e.g., permutation of variables, identification of variables and addition of dummy
variables), we develop general tools for tackling the question of describing bisym-
metric functions.

In Sect. 3, we survey well-known results concerning normal form representa-
tions of lattice functions which we then use to specify those Sugeno integrals on
bounded chains which are bisymmetric. This explicit description is obtained by
providing sufficient conditions for a Sugeno integral to be bisymmetric, and by
showing that these conditions are also necessary in the particular case of Sugeno
integrals over bounded chains. In Sect. 4 we point out problems which are left
unsettled, and motivate directions of future research.

2 Preliminaries

In this section, we introduce some notions and terminology as well as establish
some preliminary results that will be used in the sequel. For an integer n ≥
1, set [n] := {1, 2, . . . , n}. With no danger of ambiguity, we denote the tuple
(x1, . . . , xn) of any length by x.

Let A be an arbitrary nonempty set. An operation on A (or function) is a
map f :An → A for some integer n ≥ 1, called the arity of f . We denote by
O(n)

A the set of all n-ary operations on A, and we denote by OA the set of
all finitary operations on A, i.e., OA :=

⋃
n≥1O(n)

A . We assume some familiarity
with basic notions of universal algebra and lattice theory, and we refer the reader
to [3,4,10,11,12,16,20] for general background.
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2.1 Simple Minors

Let f ∈ O(n)
A , g ∈ O(m)

A . We say that f is obtained from g by simple variable
substitution, or f is a simple minor of g, if there is a mapping σ: [m] → [n] such
that

f(x1, . . . , xn) = g(xσ(1), xσ(2), . . . , xσ(m)).

If σ is not injective, then we speak of identification of variables. If σ is not
surjective, then we speak of addition of inessential variables. If σ is bijective,
then we speak of permutation of variables. For distinct indices i, j ∈ [n], the
function fi←j :An → A obtained from f by the simple variable substitution

fi←j(x1, . . . , xn) := f(x1, . . . , xi−1, xj , xi+1, . . . , xn)

is called a variable identification minor of f , obtained by identifying xi with xj .
For studies of classes of operations that are closed under taking simple minors,

see, e.g., [5,19].

2.2 Bisymmetry

Recall that f ∈ O(n)
A is bisymmetric if

f
(
f(a11, . . . , a1n), . . . , f(an1, . . . , ann)

)
=

f
(
f(a11, . . . , an1), . . . , f(a1n, . . . , ann)

)
,

for all aij ∈ A (1 ≤ i, j ≤ n).
The following proposition asserts that the class of bisymmetric operations on

A is minor closed.

Proposition 1. If f ∈ OA is bisymmetric, then every simple minor of f is
bisymmetric.

In the particular case when A is finite, Corollary 1 translates into saying that
the class of bisymmetric operations on A is definable by functional equations in
the sense of [6].

The set of bisymmetric functions is also closed under special type of sub-
stitutions of constants for variables, as described by the following lemma. Let
f :An → A and c ∈ A. For i ∈ [n], we define f i

c:A
n−1 → A to be the function

f i
c(a1, . . . , an−1) = f(a1, . . . , ai−1, c, ai, . . . , an−1).

Lemma 2. Assume that f :An → A preserves c ∈ A, i.e., f(c, . . . , c) = c. If f
is bisymmetric, then for every i ∈ [n], f i

c is bisymmetric.

3 Bisymmetric Sugeno Integrals

Let (L;∧,∨) be a lattice. With no danger of ambiguity, we denote lattices by
their universes. In this section we study bisymmetry on Sugeno integrals. As
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mentioned, Sugeno integrals can be regarded as certain lattice polynomial func-
tions, i.e., mappings f :Ln → L which can be obtained as compositions of the
lattice operations and applied to variables (projections) and constants. This
view has several appealing aspects, in particular, concerning normal form repre-
sentations of Sugeno integrals. Indeed, as shown by Goodstein [13], polynomial
functions on bounded distributive lattices coincide exactly with those functions
which are representable in disjunctive normal form (DNF). Thus, in what fol-
lows we assume that L is a bounded distributive lattice with least and greatest
elements 0 and 1, respectively.

We recall the necessary results concerning the representation of lattice poly-
nomials as well as introduce some related concepts and terminology in Sub-
sect. 3.1. Then, we consider the property of bisymmetry on Sugeno integrals. In
Subsect. 3.1, we present explicit descriptions of bisymmetric Sugeno integrals on
chains as a corollary of Theorem 3.6 in [8].

3.1 Preliminary Results: Representations of Lattice Polynomials

An n-ary (lattice) polynomial function from Ln to L is defined recursively as
follows:

(i) For each i ∈ [n] and each c ∈ L, the projection x �→ xi and the constant
function x �→ c are polynomial functions from Ln to L.

(ii) If f and g are polynomial functions from Ln to L, then f ∨ g and f ∧ g are
polynomial functions from Ln to L.

(iii) Any polynomial function from Ln to L is obtained by finitely many appli-
cations of the rules (i) and (ii).

If rule (i) is only applied for projections, then the resulting polynomial functions
are called (lattice) term functions [4,16,11]. Idempotent polynomial functions
are referred to as (discrete) Sugeno integrals [9,14]. In the case of bounded
distributive lattices, Goodstein [13] showed that polynomial functions are exactly
those which allow representations in disjunctive normal form (see Proposition 3
below, first appearing in [13, Lemma 2.2]; see also Rudeanu [20, Chapter 3, §3]
for a later reference).

Proposition 3. Let L be a bounded distributive lattice. A function f :Ln → L
is a polynomial function if and only if there exist aI ∈ L, I ⊆ [n], such that, for
every x ∈ Ln,

f(x) =
∨

I⊆[n]

(aI ∧
∧
i∈I

xi). (1)

In particular, a function f :Ln → L is a Sugeno integral if and only if it can be
represented by a formula (1) where

∧
I⊆[n] aI = 0 and

∨
I⊆[n] aI = 1.

The expression given in (1) is usually referred to as the disjunctive normal form
(DNF) representation of the polynomial function f .

The following corollaries belong to the folklore of lattice theory and are im-
mediate consequences of Theorems D and E in [13].



498 M. Couceiro and E. Lehtonen

Corollary 4. Every polynomial function is completely determined by its restric-
tion to {0, 1}n.

Corollary 5. A function g: {0, 1}n → L can be extended to a polynomial func-
tion f :Ln → L if and only if it is nondecreasing. In this case, the extension is
unique.

It is easy to see that the DNF representations of a polynomial function f :Ln → L
are not necessarily unique. For instance, in Proposition 3, if for some I ⊆ [n] we
have aI =

∨
J⊂I aJ , then for every x ∈ Ln,

f(x) =
∨

I �=J⊆[n]

(aJ ∧
∧
i∈J

xi).

However, using Corollaries 4 and 5, one can easily set canonical ways of con-
structing these normal form representations of polynomial functions. (For a dis-
cussion on the uniqueness of DNF representations of lattice polynomial functions
see [9].)

Let 2[n] denote the set of all subsets of [n]. For I ⊆ [n], let eI be the char-
acteristic vector of I, i.e., the n-tuple in Ln whose i-th component is 1 if i ∈ I,
and 0 otherwise. Note that the mapping α: 2[n] → {0, 1}n given by α(I) = eI ,
for every I ∈ 2[n], is an order-isomorphism.

Proposition 6 (Goodstein [13]). Let L be a bounded distributive lattice. A
function f :Ln → L is a polynomial function if and only if for every x ∈ Ln,

f(x) =
∨

I⊆[n]

(
f(eI) ∧

∧
i∈I

xi

)
.

Moreover, if f is a Sugeno integral, then f(e∅) = 0 and f(e[n]) = 1.

It is noteworthy that Proposition 6 leads to the following characterization of
the essential arguments of polynomial functions in terms of necessary and suf-
ficient conditions [7]. Here, xi is said to be essential in f :Ln → L if there are
a1, . . . , an, bi ∈ L, ai �= bi, such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) �= f(a1, . . . , ai−1, bi, ai+1, . . . , an).

Proposition 7. Let L be a bounded distributive lattice and let f :Ln → L be a
polynomial function. Then for each j ∈ [n], xj is essential in f if and only if
there exists a set J ⊆ [n] \ {j} such that f(eJ) < f(eJ∪{j}).

Remark 8. The assumption that the lattice L is bounded is not very crucial. Let
L′ be the lattice obtained from L by adjoining new top and bottom elements
- and ⊥, if necessary. Then, if f is a polynomial function over L induced by a
polynomial p, then p induces a polynomial function f ′ on L′, and it holds that
the restriction of f ′ to L coincides with f . Similarly, if L′ is a distributive lattice
and f ′ is a polynomial function on L′ represented by the DNF∨

I⊆[n]

(aI ∧
∧
i∈I

xi),
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then by omitting each term aI ∧
∧

i∈I xi where aI = ⊥ and replacing each term
aI ∧

∧
i∈I xi where aI = - by

∧
i∈I xi, we obtain an equivalent polynomial

representation for f ′. Unless f ′ is a constant function that takes value - or ⊥
and this element is not in L, the function f on L induced by this new polynomial
coincides with the restriction of f ′ to L.

3.2 Bisymmetric Sugeno Integrals on Chains

A Sugeno integral f :Ln → L is said to be a weighted disjunction if it is of the
form

f(x1, x2, . . . , xn) =
∨

i∈[n]

(ai ∧ xi) (2)

for some elements ai (i ∈ [n]) of L such that
∨

i∈[n] ai = 1. Observe that every
weighted disjunction (2) is idempotent since for every x ∈ L,

f(x, . . . , x) =
∨

i∈[n]

(ai ∧ x) = (
∨

i∈[n]

ai) ∧ x = 1 ∧ x = x.

Thus every weighted disjunction is a Sugeno integral.
We say that f has chain form if

f(x1, x2, . . . , xn) =
∨

i∈[n]

(ai ∧ xi) ∨
∨

1≤�≤r

(aS�
∧
∧

i∈S�

xi), (3)

for a chain of subsets S1 ⊆ S2 ⊆ · · · ⊆ Sr ⊆ [n], r ≥ 1, |S1| ≥ 2, and some
elements ai (i ∈ [n]), aS�

(1 ≤ � ≤ r) of L such that aSl
≤ aSt whenever l ≤ t,∨

i∈[n] ai ∨
∨

�∈[r] aS�
= 1, and for all i /∈ S1, there is a j ∈ S1 such that ai ≤ aj .

As in the case of weighted disjunctions, it is easy to verify that every function
which has chain form is a Sugeno integral.

Theorem 9. Let L be a bounded chain. A Sugeno integral f :Ln → L is bisym-
metric if and only if it is a weighted disjunction or it has chain form.

Theorem 9 is a consequence of the following two results proved in [8]. The first
provides sufficient conditions for a Sugeno integral to be bisymmetric in the
general case of distributive lattices. Its proof was achieved by case analysis.

Lemma 10. Let L be a distributive lattice. Assume that a function f :Ln → L
is a weighted disjunction or has chain form. Then f is bisymmetric.

The necessity of the conditions in Theorem 9 followed from the lemma below,
which can be verified by induction on the arity of functions.

Lemma 11. Let L be a bounded chain. If a Sugeno integral f :Ln → L is bisym-
metric, then it is a weighted disjunction or it has chain form.
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Observe that every binary Sugeno integral is bisymmetric. This is not the case
for n ≥ 3. For instance, let f : [0, 1]3 → [0, 1] be given by f(x1, x2, x3) = (0.5 ∧
x3) ∨ (x1 ∧ x2). Then

f
(
f(1, 0, 1), f(1, 1, 0), f(0, 0, 0)

)
= 0.5 �= 0 = f

(
f(1, 1, 0), f(0, 1, 0), f(1, 0, 0)

)
.

Clearly, this function is not a weighted disjunction and it does not have chain
form because the condition “for all i /∈ S1, there is a j ∈ S1 such that ai ≤ aj” is
not fulfilled. However, a minor modification of f yields a function that has chain
form (and is hence bisymmetric): f ′(x1, x2, x3) = (0.5∧x1)∨(0.5∧x3)∨(x1∧x2).

4 Concluding Remarks and Future Work

We have obtained an explicit form of bisymmetric Sugeno integrals on chains. How-
ever, we do not know whether Theorem 9 still holds in the general case of Sugeno
integrals over distributive lattices. This constitutes a topic of ongoing research.

Another problem which was not addressed concerns the following generaliza-
tion of bisymmetry. Two operations f :An → A and g:Am → A are said to
commute, denoted f ⊥ g, if for all aij ∈ A (1 ≤ i ≤ n, 1 ≤ j ≤ m), the following
identity holds

f
(
g(a11, a12, . . . , a1m), g(a21, a22, . . . , a2m), . . . , g(an1, an2, . . . , anm)

)
=

g
(
f(a11, a21, . . . , an1), f(a12, a22, . . . , an2), . . . , f(a1m, a2m, . . . , anm)

)
.

Commutation has been considered in the realm of aggregation function theory.
In this context, functions are often regarded as mappings f :

⋃
n≥1A

n → A, and
bisymmetry is naturally generalized to what is referred to as strong bisymmetry.
Denoting by fn the restriction of f toAn, the map f is said to be strongly bisymmet-
ric if for any n,m ≥ 1, we have fn ⊥ fm. This generalization is both natural and
useful from the application point of view. To illustrate this, suppose one is given
data in tabular form, say an n ×m matrix, to be meaningfully fused into a single
representative value. One could first aggregate the data by rows and then aggregate
the resulting column; or one could first aggregate the columns and then the result-
ing row. What is expressed by the property of strong bisymmetry is that the final
outcome is the same under both procedures. Extending the notion of Sugeno inte-
gral (as a polynomial function) to such families, we are thus left with the problem
of describing those families of Sugeno integrals which are strongly bisymmetric.
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Abstract. Fuzzy integrals are very useful for fusing confidence or opinions 
from a variety of sources. These integrals are non-linear combinations of the 
support functions with the (possibly subjective) worth of subsets of the sources, 
realized by a fuzzy measure. There have been many applications and extensions 
of fuzzy integrals and this paper deals with a Sugeno integral where both the 
integrand and the measure take on fuzzy number values. A crucial aspect of 
using fuzzy integrals for fusion is determining or learning the measures. Here, 
we propose a genetic algorithm with novel cross-over and mutation operators to 
learn fuzzy-valued fuzzy measures for a fuzzy-valued Sugeno integral. 

Keywords: Fuzzy-valued fuzzy measure, Fuzzy-valued Sugeno integral, 
Learning fuzzy measures, Genetic algorithms. 

1   Introduction 

The fusion of information using the fuzzy integral (Sugeno or Choquet) has a rich 
history.  Much of the theory and several applications can be found in [1,2]. With 
respect to this problem, we consider a finite set of sources of information, 

{ }E21 x,,x,xX =  and a function that maps X into some domain (initially [0,1]) that 

represents the partial support of a hypothesis from the standpoint of each source of 
information. Depending on the problem domain, X can be a set of experts, sensors, 
features, pattern recognition algorithms, etc. The hypothesis is usually thought of as 
an alternative in a decision process or a class label in pattern recognition. Both 
Sugeno and Choquet integrals take partial support for the hypothesis from the 
standpoint of each source of information and fuse it with the (perhaps subjective) 
worth of each subset of X in a non-linear fashion. This worth is encoded into a fuzzy 

measure [1]. Initially, the function ]1,0[X:h → , and the measure ]1,0[2:g X →  took 

real number values in [0,1]. Certainly, the output range for both function and measure 
can be (and have been) defined more generally, but it is convenient to think of them in 
the unit interval for confidence fusion.  

More formally, for a finite set X, a (numeric) fuzzy measure is a function 

]1,0[2:g X → , (a real valued set function) such that 
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1. 0)(g =φ and 1)X(g = ; 

2. If XB,A ⊆ with BA ⊆ , then )B(g)A(g ≤ . 

Note that if X is an infinite set, a third condition guaranteeing continuity is required, 
but it is a moot point for finite X.  Given a finite set X, a fuzzy measure 

]1,0[2:g X →  and a function ]1,0[X:h → , the (numeric) Sugeno integral of h with 

respect to g is given by 

{ }( ))x,,x(g)x(hgh )i()1()i(

E

1i
∧=∫ ∨

=
 (1)

where { })E()1( x,,xX =  has been sorted so that )x(h)x(h)x(h )E()2()1( ≥≥≥ . 

This finite realization of the actual definition [1,2] highlights the fact that the Sugeno 
integral represents the best pessimistic agreement between the objective evidence in 
support of a hypothesis (the h function) and the subjective worth of the supporting 
evidence (the fuzzy measure g).   

The Choquet integral is a direct extension of the Lebesque integral and has a 
similar finite set formulation. This paper deals only with Sugeno integrals and so, the 
Choquet formulae are not given. 

Sometimes numbers are not sufficient to represent the uncertainty in a situation. 
With respect to fusion by fuzzy integration, this uncertainty can exist in the partial 
support function and/or in the fuzzy measure.  Extensions of both Sugeno and 
Choquet integrals to the case where the partial support function outputs are fuzzy 
numbers (normal convex fuzzy subsets of the reals, ℜ , called )(FN ℜ ) are direct 

results of the Extension Principle [3]. They are computable from level set 
representations using the Decomposition Theorem and results from [1]. Interval logic 
and arithmetic operations make the extension possible in a practical sense. In this 
case, we denote the partial support function as )(FNX:H ℜ→ . While not actually 

necessary, we will restrict ourselves to fuzzy numbers over the unit interval, 
])1,0([FN . Applications of these generalized integrals to real world data sets are 

given in [4]. This works because the theory that shows that the level sets of the 
generalized fuzzy integral reduce to the fuzzy integrals of the endpoints of the 
intervals of reals that form the level cuts of fuzzy numbers.   

2   Fuzzy-Valued Fuzzy Measures and Fuzzy-Valued Sugeno Fuzzy 
Integral 

It is just as likely that uncertainty exists in the assessment of the worth of various 
subsets of sources of information. With respect to this case, a general theory of fuzzy 
number-valued fuzzy measures and a fuzzy number valued Sugeno integral was 
developed in [5]. That paper represents extensions of [6-9], all of which dealt with the 
mathematics in a general manner. Much of the theory concerned itself with the 
situation where the base domain is infinite, in which case convergence theory of 
infinite sequences plays a major role. Our goal is to examine the practicality of 
implementing this generalization for the purposes of information fusion.   
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For completeness, and to establish our notation, we briefly reproduce a few of the 
results in [5] for the finite set case. To define fuzzy number-valued measures, we first 
need to describe appropriate interval operations and then base fuzzy number 

definitions on them.  Let { }rlrl uu,]u,u[uu)(I ≤=ℜ⊂=ℜ ++  be the set of all 

closed intervals over the positive reals.  The usual interval-based definitions of min, 
max, scalar multiplication hold. Because ordering is important for fuzzy measures, 

rrll vu and vu iff  vu ≤≤≤ . Let A be a fuzzy number over +ℜ , then for ]1,0[∈α , 

the level cut, ]a,a[A rl ααα = is a closed interval.  For two fuzzy numbers, A, B over 
+ℜ , we define ]1,0[ allfor  BAiff  BA ∈α≤≤ αα .  

A fuzzy-valued fuzzy measure is defined (adapted from [5]) as follows.  Let 

{ }E21 x,,x,xX = be a finite set and let ])1,0([FN2:G X → be a fuzzy number-

valued set function satisfying: 

1. Z)(G =φ ( Z  stands for Zero) where 
⎩
⎨
⎧

≠
=

=
0y,0

0y,1
)y(Z  

2. If XB,A ⊆ with BA ⊆ , then )B(G)A(G ≤ . Note here, both G(A) and 

G(B) are fuzzy numbers. 

The corresponding definition holds for the restriction to an interval-valued measure, 

G . 

Let H (respectively H) be a partial support function 

])1,0I([:XH → (respectively, ])1,0([FNX:H → ) with respect to some hypothesis 

under consideration.  Then the generalized interval Sugeno integral is defined as 

⎥⎦
⎤

⎢⎣
⎡= ∫∫∫

rrll
GH,GHGH , whereas the full generalized fuzzy-number 

Sugeno integral is defined as ( ) { }∫∫ αα∈∈α= GHu ]1,0[sup)u(GH . The following 

Theorem (4.1 of [5]) provides the mechanism to perform efficient computation of this 
extended Sugeno integral. 

Theorem. Let { }E21 x,,x,xX = , ])1,0([FNX:H → and ])1,0([FN2:G X → . 

Then 

( ) ∫∫ ααα = GHGH . (2)

Hence, just as with the other forms of generalizing numeric fuzzy integrals, this 
theorem shows that the realization ultimately reduces to interval-based operations.  In 
the next section we demonstrate these calculations on two examples of fuzzy-valued 
Sugeno fuzzy integrals. In the cases we consider, the fuzzy numbers are all symmetric 
triangles, but in general, the fuzzy numbers only have the restriction that we can 
enumerate their level cuts. 
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3   Fuzzy-Valued Sugeno Fuzzy Integral Examples 

We model fuzzy sets as symmetric triangles, which are characterized according to 
three ordered numbers }c,b,a{ , where b=(a+c)/2. The ground truth fuzzy-valued 

fuzzy measure, G, is shown in Table 1 for a set { }4321 x,x,x,xX =  of sources of 

information. It is easy to see that these fuzzy numbers satisfy the properties of a 
fuzzy-valued fuzzy measure. 

Table 1. Fuzzy set parameters for this papers fuzzy-valued fuzzy measure ground truth 

Evidence sets Triangle Parameters Evidence sets Triangle Parameters 

Ø {0,0,0} { }32 x,x  {0.45,0.55,0.65} 

{ }1x  {0.1,0.2,0.3} { }42 x,x  {0.65,0.75,0.85} 

{ }2x  {0.2,0.3,0.4} { }43 x,x  {0.68,0.78,0.88} 

{ }3x  {0.4,0.5,0.6} { }321 x,x,x  {0.8,0.85,0.9} 

{ }4x  {0.6,0.7,0.8} { }421 x,x,x  {0.82,0.87,0.92} 

{ }21 x,x  {0.22,0.32,0.42} { }432 x,x,x  {0.84,0.9,0.96} 

{ }31 x,x  {0.42,0.52,0.62} { }431 x,x,x  {0.86,0.92,0.98} 

{ }41 x,x  {0.62,0.72,0.82} { }4321 x,x,x,x  {1,1,1} 

 
Now consider the partial support functions 1H  and 2H  given by 

}7.0,5.0,3.0{)x(H 11 = , }9.0,7.0,5.0{)x(H 21 = , }0.1,9.0,8.0{)x(H 31 = , 

}0.1,8.0,6.0{)x(H 41 = , }8.0,5.0,2.0{)x(H 12 = , }9.0,5.0,1.0{)x(H 22 = , 

}5.0,3.0,1.0{)x(H 32 = , and }0.1,75.0,5.0{)x(H 42 = .  Fig. 1(a) shows the function 

values for 1H  along with its fuzzy-valued fuzzy Sugeno integral with respect to the 

fuzzy-valued fuzzy measure G in Table 1, and Fig. 1(b) depicts the corresponding 
information for 2H .  Here, 201 evenly spaced alpha cuts are used for representation. 

  

(a)                                                         (b) 

Fig. 1. Two example computations of the fuzzy-valued fuzzy Sugeno integral. (a), 1H  and 

∫ GH1 ; (b), 2H and  ∫ GH2  for the measure G reported in Table 1. 
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4   Genetic Algorithm for Learning Fuzzy-Valued Fuzzy Measures 

The “secret” to using fuzzy integration (whether it be Sugeno or Choquet integrals) in 
a real application is an ability to learn the fuzzy measures from training data.  There 
are many optimization approaches that have found success for numeric fuzzy 
integrals, some of which can be found in [2, 10].  For fuzzy-valued fuzzy Sugeno 
fuzzy integrals, the problem is more complex, though decomposable.  We chose to 
use a genetic algorithm approach to learn the fuzzy triangular number fuzzy measures 
for a particular problem. Genetic algorithms (GA) are an optimization procedure 
inspired by evolution. The general format of a GA is as follows [11]. 
 

 
General Structure of a Genetic Algorithm 
 

1. Set generation counter q = 1 
2. Create the initial generation }C,...,C{P N11 =  

3. Do until convergence (e.g. maximum number of iterations) 
a. Evaluate the fitness of each chromosome 
b. Increment the generation counter q = q + 1 
c. Select parents from 1qP −  

d. Recombine selected parents through cross-over to form '
qP   

e. Mutate offspring '
qP  

f. Select the new generation qP  from the previous generation 1qP −  

and the offspring '
qP  

 

The optimization task must first be encoded into a chromosome representation. 
Herein, chromosome iC , Ni0 ≤< , is a fuzzy-valued fuzzy measure. For E  different 

experts, }x,...,x{X E1= , there are 22E −  fuzzy sets that need to be learned, 

}G,...,G,G{ E
1E

2
1

1
1 − , where j

kG  is the  jth fuzzy set at level k, i.e. k=1 is all the 

singletons, k=2 is all the pairs, and so forth. The fuzzy sets for )(G φ , 1
0G , and 

X)(G , 1
EG , are fixed at }0,0,0{  and }1,1,1{  respectively. 

Learning is conducted with respect to a collection of labeled training data,  
}}O,H{},...,O,H{},...,O,H{{I DDdd11= , where )(FNX:Hd ℜ→  is a function and 

)x(H kd  is the strength in the hypothesis according to expert k. The fuzzy number 

dO  is the dth desired/target output, i.e. the combined decision of the experts. Herein, 

)x(H kd  is a symmetric triangle and dO  is an ordered set of intervals (e.g. a discrete 

number of α -cuts). The fitness (quality) of iC , given the training data I , is  
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P

d

D

1d
idi D/)O,CH(s)I,C(f

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∫

=
,       (3) 

where ∫ id CH  is the fuzzy-valued Sugeno fuzzy integral with respect to iC , s  is a 

similarity measure, and P  is a parameter for changing the weighting/importance of 
the average score. The similarity measure used is  

( )
( )∑

∑

=

=

−

−
=

M

1m

lM/mlM/mrM/mrM/m

M

1m

lM/mlM/mrM/mrM/m

0),)C,()Bmin(())C,()Bmax((max

0),)C,()Bmax(())C,()Bmin((max

)C,B(s ,     (4) 

where B  and C  are fuzzy numbers and ])B,()B[( rM/mlM/m  and 

])C,()C[( rM/mlM/m  are their respective intervals at level cut M/m=α . 

Learning is not a trivial task. The Sugeno fuzzy integral does not have a well-
behaved continuous error space (calculation involves maximums and minimums), as 
with the case of the Choquet fuzzy integral. In addition, random selection of fuzzy set 
parameters for all fuzzy subsets in a fuzzy-valued fuzzy measure is not possible. As 
discussed in the prior section, a fuzzy measure has a set of constraints. Thus, the  
initialization and the crossover and mutation operations must guarantee that each 

chromosome is a valid fuzzy-valued fuzzy measure. Initialization of j
kG , for 

Ek0 << , in iC  is performed pseudo-randomly,  

)1,0(Ua = , (5a)

a)1,0(U)a1(c +−= , (5b)

a2/)ac(b +−= , (5c)

where )1,0(U  represents a random number generated from a uniform probability 
distribution over ]1,0[  and the sequence of calculations is (5a), (5b), then (5c). After 
pseudo-random parameter initialization, iC  is not guaranteed to be a fuzzy-valued 

fuzzy measure. The individual j
1G  sets are valid; however, in order for iC  to be a 

fuzzy-valued fuzzy measure, each j
kG , for Ek1 << , needs to be checked for  

validity in the context of iC . This check is performed in the order 1E,...,2k −= . 

Because symmetric triangles are used here, only parameters a and c (for an α-cut of 0) 

need be checked. A fuzzy set j
kG  is invalid (thus iC  is not a fuzzy-valued fuzzy 

measure) if there exists an l such that l
1k

j
k GG −< , where l is an index corresponding 

to one of the fuzzy sets at k-1 involving k-1 sources included in j
kG  (e.g. 
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})}x,x({G}),x,x({G}),x,x({G{ 323121  for })x,x,x({G 321 ). If j
kG  is invalid, i.e. 

one or both of its interval endpoints of the 0 α-cut are invalid, then the invalid interval 

endpoint is set to the largest value from the corresponding respective set at j
1kG − .  

At each generation, a population undergoes recombination (crossover) with a 
probability of ]1,0[1 ∈λ . Two chromosomes (candidate fuzzy-valued fuzzy 

measures), nC  and mC  are pseudo-randomly selected. In the order 1E,...,1k −= , a 

fuzzy set is pseudo-randomly selected from nC  (at level k ) and another fuzzy set is 

pseudo-randomly selected from mC  (at level k). These sets are swapped based on a 

probability of ]1,0[2 ∈λ  and constraints are then verified up the chain, }1E,...,k{ − . 

While crossover explores an already opened subset of the search space, mutation 
helps preserve and introduce diversity. Three different mutation operators have been 
identified in this work. The first mutation operator is shrinking.  Shrinking is 
performed with a probability of ]1,0[3 ∈λ . Shrinking is an attempt at narrowing the 

fuzzy sets and making them more certain. A chromosome is pseudo-randomly 
selected and each individual fuzzy set in that chromosome is potentially shrunk based 

on another probability of ]1,0[4 ∈λ . If fuzzy set j
kG  is selected for shrinking, then its 

new parameters are calculated as 

)1,0(U=β ,         (6a) 

β−−= )ab(ba ,            (6b) 

β−+= )ab(bc ,            (6c) 

a2/)ac(b +−= ,            (6d) 

in the order (6a), (6b), (6c), followed by (6d). Again, after all sets are mutated at level 
k, levels }1E,...,1k{ −+  are verified.      

The second mutation operator, with probability ]1,0[5 ∈λ , is shifting. In the order 

1E,...,1k −= , each j
kG  is potentially translated with probability ]1,0[6 ∈λ . If j

kG  

passes, then it is translated by )1,1(U7 −λ , ]1,0[7 ∈λ . The purpose of this operator is 

to explore the area around the set while keeping its size (or certainty) fixed. Again, 
when any set is modified, verification up the chain, }1E,...,k{ − , is performed to 

ensure that the chromosome represents a valid fuzzy-valued measure. 
The last mutation operator, with probability ]1,0[8 ∈λ , is pseudo-random 

exploration. In this work, },,{ 853 λλλ  are selected such that their sum equals 1. If a 

chromosome is selected for this type of mutation, then each j
kG , in the order 

1E,...,1k −= , is potentially mutated with probability ]1,0[9 ∈λ . If j
kG  is chosen, 

then its parameters are modified according to      

θ+θ−= )1,0(U)b(a ,       (7a) 
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a)1,0(U)a1(c +−= ,       (7b) 

a2/)ac(b +−= ,        (7c) 

where θ  is the maximum a  value from all respective corresponding l
1kG −  subsets. 

The operations are performed in the order (7a), (7b), then (7c), and after all mutations 
are performed at level k, levels }1E,...,k{ −  are checked for validity. 

At each generation, a proportion of the existing population is selected to breed a 
new generation. First, the fitness of each chromosome is calculated. Next, the best 
(highest fitness) ⎣ ⎦N10λ , ]1,0[10 ∈λ , chromosomes are included in roulette wheel 

selection. The best chromosome is always selected for inclusion in the next 
generation. Additionally, },...1,0{11 ∞∈λ  randomly initialized chromosomes are 

added at each generation to encourage additional exploration.       

5   Experiments 

The measure G, in Table 1, and 50 randomly generated dH  are used to demonstrate 

the proposed learning procedure. Algorithm parameters, E = 4, M = 51, N = 50, D = 
50, 3.01 =λ , 5.02 =λ , 1.03 =λ , 5.04 =λ , 2.05 =λ , 5.06 =λ , 2.07 =λ , 

7.08 =λ , 25.09 =λ , 5.010 =λ , and 511 =λ , were empirically selected. The only  
 

 

Fig. 2. Fuzzy-valued Sugeno fuzzy integral intervals at different generations for the proposed 
genetic algorithm for one of the target outputs. Green intervals are the learned results and blue 
intervals are for the ground truth. 
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sensitive parameters appear to be },,{ 853 λλλ . In particular, the value 8λ  needed to 
be large for reasonable convergence properties; it encourages exploration of the 
search space. Fig. 2 is the result of learning at four different generations, Fig. 3 is the 
learned fuzzy-valued fuzzy measures in relation to the target output, and Fig. 4 is the 
plot of the average population fitness versus the fitness of the best chromosome at 
each generation. 

 

Fig. 3. Visualization of the best chromosome (fuzzy-valued fuzzy measure) after convergence 
along with the ground truth fuzzy measure. Solid triangles are the learned fuzzy sets and lines 
depict the fuzzy sets from the ground truth measure (Table 1). 

 

Fig. 4. Plot of the average population fitness versus the most fit chromosome fitness for 1000 
algorithm iterations 

Fig. 4 shows that the proposed algorithm learns a good solution relatively quickly 
(the first 100 iterations). More care is needed after that point to refine the exact final 
parameter positions; thus, learning slows down. Interestingly, Fig. 3 shows that the 
learned solution closely resembles our ground truth (Table 1). That is, the technique 
did not just acquire any solution, but one that is highly similar to our desired fuzzy-
valued fuzzy measure.      
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6   Conclusions and Future Work  

We demonstrated techniques for computing the generalized Sugeno integral for 
fuzzy-valued integrands with respect to a fuzzy-valued measure in an information 
fusion framework with a finite number of sources of information.   We introduced a 
genetic algorithm approach to learn the fuzzy-valued measures from a set of training 
data and demonstrated the technique with synthetic data.   

Future work includes extending the theoretical foundation of this research to a 
fuzzy-valued fuzzy measures for the fuzzy-valued Choquet integral, exploring this 
information fusion approach in the context of computing with words, further 
exploring the learning algorithm and attempting to speed up learning in later 
generations, analyzing a larger set of test data, and attempting learning for measures 
with greater number of information sources.   
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Abstract. We present a framework for a general Choquet integral on systems F
of measurable sets relative to a finite universe N that do not necessarily include
all nonempty subsets. In this context, many functions become nonmeasurable,
and the classical Choquet integral does not apply. By considering a lower ap-
proximation by step functions, we arrive at a natural notion of an integral which
generalizes the classical Choquet integral and is meaningful for any function. We
observe that the Choquet integral of a measurable function can be computed by
a Monge-type algorithm and we characterize so-called weakly union-closed sys-
tems as those set systems that allow the Monge algorithm to compute the general
Choquet integral. In addition, we characterize the superadditivity of the Choquet
integral on these systems.

1 Introduction

The Choquet integral and the notion of capacity [3] have become popular tools in de-
cision making since they permit to compute expectation w.r.t. nonadditive probabilities
that represent the preference of the decision maker.

While the classical approach almost always assumes the family of measurable sub-
sets of N to form an algebra, many practical situations (e.g., cooperative games, mul-
ticriteria decision making) require a more general setting with only the members of a
certain subfamily F ⊆ 2N being feasible and no particular ”nice” algebraic structure
apparent. In this case, many functions are nonmeasurable because their level sets may
not belong to the family F , which makes the use of the Choquet integral difficult.

It is the purpose of the present paper, to extend the notion of a Choquet integral
to arbitrary families F of subsets in such a way that any function can be integrated
with respect to general set functions (and capacities being a particular case). This study
was initiated in [5], although our present approach, established in [4], is considerably
different from the former model.

Our approach to discrete integration is similar to the idea of Riemannian sums in
the classical theory. We consider the approximation of functions by step functions from
below, focussing on belief functions as integration measures first. We then extend our
definition to any set function through its decomposition in belief functions (Sections 2
and 3). Then we present a Monge-type algorithm for integrals of measurable functions.
We furthermore prove that it computes our general Choquet integral correctly if and

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 512–520, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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only if the underlying set system is weakly union-closed (Section 3.2). Finally, in Sec-
tion 4 we study the issue of superadditivity of the integral and arrive at a generalization
of a result of Lovász [8] for the classical Choquet integral. We establish the equivalence
between superadditivity and the supermodularity of the capacity in the wide model of
weakly union-closed systems.

2 Preliminaries

Let f ∈ RN be a real-valued function on the finite set N . For any α ∈ R, set {f ≥
α} := {i ∈ N | fi ≥ α}. Let α1 < . . . < αk be the distinct values of f . Then the
nonempty level sets of f are:

N = {f ≥ α1} ⊃ {f ≥ α2} ⊃ . . . ⊃ {f ≥ αk}.
Let F be a family of m nonempty subsets of N and call f F -measurable if every
nonempty level set of f belongs to F . Note that every f ∈ RN is measurable if (and
only if) F includes all nonempty subsets of N .

W.l.o.g., we assume N ∈ F in the sequel. We furthermore let 1X ∈ {0, 1}F be the
incidence function of a subsetX ⊆ N . So 1F is F -measurable for any F ∈ F .

We set 〈x, x′〉 :=
∑

i∈N xix
′
i for any x, x′ ∈ RN . Similarly, 〈y, y′〉 denotes the inner

product of arbitrary vectors y, y′ ∈ RF .

2.1 Games, Capacities and Möbius Representation

A game on F is any mapping v : F → R. We let F0 := F ∪ {∅} and extend v by
setting v(∅) := 0. A capacity c is a nonnegative game which is monotone, that is, if
F ⊆ G, F,G ∈ F , then c(F ) ≤ c(G).

For any F ∈ F we introduce the unanimity game ζF : F → {0, 1} defined by
ζF (G) = 1 if and only if G ⊇ F .

The m unanimity games ζF are linearly independent and form the so-called inci-
dence basis of the vector space V of all games. To see the basis property, choose an
arrangementF = (F1, . . . , Fm) so that for all 1 ≤ i, j ≤ m,

Fi ⊇ Fj =⇒ i ≤ j, (1)

and observe that the (0, 1)-matrix Z = [zi,j ] with zij = 1 if and only if Fi ⊇ Fj is
upper triangular and of full rank. Therefore, any game can be written uniquely as

v =
∑
F∈F
mF ζ

F .

The above equation is known as the Möbius representation of v, and the mapping F �→
mF is the Möbius transform or Möbius inverse of v. Note that for any F ∈ F

v(F ) =
∑
G⊆F

mG.
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Games with a nonnegative Möbius transform are necessarily monotone (and hence ca-
pacities), and are often called positive games. If in addition v(N) = 1 holds, we call v a
belief function (following the terminology of Shafer [12] in the classical caseF0 = 2N ).
We denote by

V+ := {v =
∑
F∈F
mF ζ

F | mF ≥ 0}

the convex cone of positive games in Rm.

3 Integrals

Let β be a belief function. An integral (relative to β) is a real-valued functional [β] on
RN such that for all f, g ∈ RN , λ ∈ R+ and F ∈ F one has:

(i) [β](λf) = λ[β](f) (positive homogeneity).
(ii) [β](f + g) ≥ [β](f) + [β](g) (superadditivity).

(iii) [β](1F ) = β(F ) (β-extension).

Let ΔN := {x ∈ RN
+ | 〈1N , x〉 = 1} be the simplex of all probability distributions

on N .

Lemma 1. There is a unique integral β∗ such that

β∗(f) ≤ [β](f) holds for all belief functions β.

Moreover, one has

β∗(f) = min{〈f, x〉 | x ∈ ΔN , 〈1F , x〉 ≥ β(F ), ∀F ∈ F}
= max

{
〈β, y〉 |

∑
F∈F
yF 1F ≤ f, yF ≥ 0, ∀F �= N

}
. (2)

Remark 1. Formula (2) exhibits β∗(f) as the minimal expected value of f relative to
the probability distributions x onN that dominate the belief function β.

Lemma 1 may be proved similarly to [4, Lemma 1], by establishing

[β](f) = min
x∈ker(β)

〈f, x〉,

where ker[β] := {x ∈ ΔN | 〈f, x〉 ≥ [β](f), ∀f ∈ RN}, which follows with argu-
ments from convex analysis (see e.g. [10]), since [β](f) is concave. We thus define the
Choquet integral (on F) with respect to the belief function β as∫

F
f dβ := β∗(f) for all f ∈ RN . (3)

Example 1. An algebra is a family A of subsets of N that is union and complementa-
tion closed. Given a probability measure π on A, Lehrer [7] (see also [13]) defines an
integral ∫

A
f dπ := sup

{
〈π, y〉 |

∑
A∈A
yA1A ≤ fyA ≥ 0, ∀A ∈ A

}
, (4)
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for nonnegative functions f ∈ RN
+ . It is not difficult to see that a probability measure

π is a belief function relative to A. The Monge algorithm below and formula (2) of
Lemma 1 exhibit Lehrer’s integral as a special case of the Choquet integral.

Lemma 2. For every unanimity game ζF , one has∫
F
f dζF = min

i∈F
fi for all f ∈ RN .

Proof. Let p ∈ F satisfy fp = mini∈F fi and choose xp ∈ ΔN as the pth unit vector,
i.e., xp

i = 1 if and only if i = p. Define yF ∈ RF by

yFN := min
j∈N
fj, y

F
F := fp − yFN and yFG := 0 otherwise.

Then one finds

min{〈f, x〉 | x ∈ ΔN , 〈1G, x〉 ≥ ζF (G), ∀G ∈ F}
≤ 〈f, xp〉 = 〈ζF , yF 〉
≤ max

{
〈ζF , y〉 |

∑
G∈F
yG1G ≤ f, yG ≥ 0, ∀G �= N

}
.

So the claim follows from Lemma 1.

3.1 The General Choquet Integral

For the game 0 (identically zero everywhere), we define∫
F
f d0 := 0.

If v ∈ V+ \ {0} is a non-trivial positive game, then v′ := v/v(N) is a belief function
and we set ∫

F
f dv := v(N) ·

∫
F
f dv′

and note that Lemma 1, in fact, holds for all positive games in V+. For a general game
v ∈ V , we group the Möbius coefficients mF according to their sign and thus obtain
the representation

v = v+ − v− for unique positive functions v+, v− ∈ V+,

which motivates the definition∫
F
f dv :=

∫
F
f dv+ −

∫
F
f dv−.

Theorem 1. The general Choquet integral functional f �→ ∫
F f dv on RN is positively

homogeneous and continuous for every fixed game v ∈ V , and enjoys the extension
property ∫

F
1F = v(F ) for all F ∈ F .

Proof. The Choquet functional relative to a belief function is a concave R-valued func-
tion on RN and hence continuous. Its extension to general games preserves continuity,
positive homogeneity and the extension property.
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3.2 Computation of the Choquet Integral

Consider the following algorithm relative to a given f ∈ RN , where we have indexed
F = {F1, . . . , Fm} as in (1), and write

F(X) := {F ∈ F | F ⊆ X} for anyX ⊆ N .

MONGE ALGORITHM (MA):

(M0) Initialize:X ← N , c← f , y ← 0;
(M1) Let M = Fi ∈ F(X) be the set with minimal index i and choose an element

p ∈M of minimal weight cp = minj∈M cj ;
(M2) Update:X ← X \ {p}, yM ← cp, c← (c− cp1M );
(M3) If F(X) = ∅, Stop and output y. Else goto (M1);

Employing a tie-breaking rule for the selection of p in step (M1), if necessary, we can
assume w.l.o.g. that the output y is uniquely determined by the input f . So we obtain
the linear Monge functional

v �→ [f ](v) := 〈v, y〉
on the game space V and observe:

Theorem 2. (a)
∫
F
f dv = [f ](v) holds for all F -measurable f ∈ RN and all v ∈ V .

(b)
∫
F
f dv = [f ](v) holds for all f ∈ RN and all v ∈ V

⇐⇒ [∀F,G ∈ F : F ∩G �= ∅ =⇒ F ∪G ∈ F].

Proof. One shows that the equalities hold for v if (and only if) they hold for all una-
nimity games ζF , F ∈ F , by using the linearity of the Monge functional (cf. [4, Theo-
rem 1]). Then one checks that the Theorem is true for these unanimity games.

The set-theoretic condition in (b) defines weakly union-closed systems (see Section 4.2).

Corollary 1. (i) Take an arbitrary family F and assume that f ∈ RN is F -
measurable. Then∫

F
f dv =

∑
F∈F
mF min

i∈F
fi for all v =

∑
F∈F
mF ζ

F ∈ V . (5)

(ii) Take an arbitrary function f ∈ RN and a weakly union-closed family F . Then
again (5) holds.

Remark 2. Since an algebra A is union-closed, formula (2) of Lemma 1 and Theo-
rem 2 (b) imply that Lehrer’s integral (4) can be computed by the Monge algorithm.

The classical Choquet integral. Assume F0 = 2N and recall Choquet’s [3] classical
integral ∫

f dv :=
k∑

i=1

(αi − αi−1)v{f ≥ αi} =
∑
F∈F
mF min

i∈F
fi, (6)
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where α1 < . . . < αk are the distinct values of f and α0 := 0. (The second equality
results from the Möbius representation of v and is well-known for the classical Choquet
integral (cf. [2]).

Every function f ∈ RN is measurable in the classical context, where the underlying
family F = 2N \ {∅} is union-closed. So Corollary 1 exhibits the classical Choquet
integral (6) as a special case of our Choquet integral.

3.3 Extension of v

The classical Choquet integral (i.e., F0 = 2N ) with respect to a capacity was charac-
terized by Schmeidler [11], essentially using the comonotonic additivity property. Two
functions f, f ′ ∈ RN are comonotonic if there are no i, j ∈ N such that fi > fj and
f ′i < f

′
j (equivalently, if the combined level sets {i ∈ N | fi ≥ α}, {j ∈ N | gj ≥ α}

form a chain). A functional I : Rn → R is comonotonic additive if I(f + f ′) =
I(f) + I(f ′) is true for any two comonotonic f, f ′ ∈ Rn.

The next result is a direct consequence of Theorem 4.2 in [9] and generalizes Schmei-
dler’s result.

Proposition 1 (Characterization w.r.t. a Game). The functional I : Rn → R is the
Choquet integral w.r.t. a game v on 2N if and only if I is positively homogeneous,
comonotonic additive, and I(0) = 0. v is then uniquely determined by the extension
property v(F ) = I(1F ).

We can show the next fundamental result.

Proposition 2. Let F be weakly union-closed (i.e., for all F,G ∈ F , F ∪G ∈ F holds
provided F ∩G �= ∅). Then the Choquet integral is comonotonic additive.

Proof. From Corollary 1 we know that the Choquet integral satisfies (5), from which it
is easy to show comonotonic additivity.

From Proposition 1 we therefore deduce the following important observation [4].

Theorem 3. Let v : F → R be a game on the weakly union-closed system F . Then
there exists a unique game v̂ : 2N → R such that∫

F
f dv =

∫
2N

f dv̂, ∀f ∈ RN ,

where the right-hand side integral is the classical Choquet integral. Moreover, v̂ is
determined by

v̂(A) =
∫
F

1A dv =
∑

B maximal in F(A)

v(B), ∀A ∈ 2N .

The last equality is implied by the Monge algorithm.
Clearly v = v̂ on F . This shows that v̂ is an extension of v on 2N .

Remark 3. Even if v is monotone relative to F , v̂ is not necessarily monotone relative
to 2N . Of course, there are many other extensions of v possible, each of them leading
to a different integral with specific properties.
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Another natural extension of v is the following v∗, given by

v∗(A) := max
B maximal in F(A)

v(B), ∀A ∈ 2N . (7)

The extensions v̂ and v∗ always coincide if and only if for any A ⊆ N , F(A) contains
a unique maximal element, which is equivalent to saying that F is closed under union.
If v is a capacity, then v∗ is the smallest extension of v being a capacity. Therefore,
by monotonicity of the Choquet integral w.r.t. the set function and the characterization

theorem of Schmeidler,
∫
f dv∗ is the smallest functional I being nondecreasing w.r.t.

the integrand, comonotonic additive and such that I(1F ) = v(F ) for each F ∈ F .

4 Superadditivity

4.1 Monge Extensions

As in ([6]), we associate with any game v ∈ V its Monge extension

f �→ v̂(f) = 〈v, y〉,
where y is the output of the Monge algorithm on input f ∈ RN . It is an extension of
v since for every F ∈ F , v̂(1F ) = v(F ) holds by Theorems 1 and 2. Moreover, we
define the core of v as the convex set

core(v) := {x ∈ RN | 〈f, x〉 ≥ v̂(f), ∀f ∈ RN}.
As in ([6], Theorem 4.1) one can now show

Lemma 3. Let v : F → R+ be a nonnegative game. Then

core(v) = {x ∈ RN
+ | 〈1N , x〉 = v(N), 〈1F , x〉 ≥ v(F ), ∀F ∈ F}.

As in the discussion of Lemma 1, we thus find

Theorem 4. Let v be a nonnegative game on F . Then the functional f �→ v̂(f) is
superadditive if and only if for all f ∈ RN ,

v̂(f) = min{〈f, x〉 | x ∈ core(v)}
= max

{
〈v, y〉 |

∑
F∈F
yF 1F ≤ f, yF ≥ 0, ∀F �= N

}
. (8)

Moreover, if f �→ v̂(f) is superadditive, then v is necessarily a capacity.

4.2 Weakly Union-Closed Systems

Assume now that F is weakly union-closed in the sense that it satisfies the condition in
Theorem 2 (b) (i.e., F ∩G �= ∅ =⇒ F ∪G ∈ F).

Remark 4. Weakly union-closed systems have been studied by Algaba et al. [1] as
union-stable systems with respect to games on communication graphs.
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For weakly union-closed families, the Monge extension is identical with the Choquet
functional for any game v on F . Theorem 4 thus characterizes superadditive Choquet
integrals relative to nonnegative games.

Given a nonnegative game v, we will refine this observation. We extend F to the
family F̃ of all those subsets F̃ ⊆ N with the property (*) F̃ = F 1 ∪ . . . ∪ F k for
some suitable pairwise disjoint sets F t ∈ F and define ṽ(F̃ ) := v(F 1) + · · ·+ v(F k)
accordingly. Then one can verify:

Lemma 4. F̃ is union-closed and ṽ is a nonnegative game on F̃ . Moreover, one has

core(ṽ) = core(v).

Using the arguments in the proof of [4, Corollary 4], we now arrive at a generaliza-
tion of Lovász’ [8] characterization of superadditivity of the classical Choquet integral,
which complements the characterization of supermodularity given in [6] and extends
[4, Corollary 4]. We recall that a game v on 2N is supermodular if

v(F ∪G) + v(F ∩G) ≥ v(F ) + v(G)

for every F,G ⊆ N .

Theorem 5. Assume that F is weakly union-closed. Then the following statements are
equivalent for every capacity v : F → R+:

(a) The functional f �→ ∫
F f dv is superadditive on RN .

(b) There exists a supermodular function v : 2N → R+ with v(∅) = 0 such that
v(F ) = v(F ) holds for all F ∈ F .
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Abstract. Possibilistic decision theory is a natural one to consider when
information about uncertainty cannot be quantified in probabilistic way.
Different qualitative criteria based on possibility theory have been pro-
posed the definition of which requires a finite ordinal, non compensatory,
scale for evaluating both utility and plausibility. In presence of heteroge-
neous information, i.e. when the knowledge about the state of the world
is modeled by a possibility distribution while the utility degrees are nu-
merical and compensatory, one should rather evaluate each decision on
the basis of its Necessity-based Choquet value. In the present paper, we
study the use of this criterion in the context of sequential decision trees.
We show that it does not satisfy the monotonicity property on which
rely the dynamic programming algorithms classically associated to deci-
sion trees. Then, we propose a Branch and Bound algorithm based on
an optimistic evaluation of the Choquet value.

1 Introduction

Decision under uncertainty is one of the main fields of research in decision theory,
due to its numerous applications (e.g. medicine, robot control, strategic decision,
games...). In such problems, the consequence of a decision depends on uncertain
events. In decision under risk, it is assumed that a precise probability is known
for each event. A decision can thus be characterized by a lottery over possible
consequences. In multistage decision making, one studies problems where one has
to make a sequence of decisions conditionally to observable states. The problem
is to choose a strategy assigning a decision (i.e. a lottery) to each state.

A popular criterion to compare lotteries and therefore strategies is the ex-
pected utility (EU ) model axiomatized by von Neumann and Morgenstern [9].
This model relies on a probabilistic representation of uncertainty, while the pref-
erences of the decision maker are supposed to be captured by a utility function
assigning a numerical value to each outcome. The evaluation of a lottery is then
performed via the computation of its expected utility (the greater, the better).
Since strategies can be viewed as compound lotteries, they can also be compared
on the basis of their expected utility. When the decision problem is sequential,
the number of possible strategies grows exponentially. Hopefully, the EU model
satisfies a monotonicity property that guarantees completeness of a polytime
algorithm of dynamic programming.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 521–531, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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When the information about uncertainty cannot be quantified in a simple,
probabilistic way the topic of possibilistic decision theory is often a natural one
to consider [2] [4] [6]. Giving up the probabilistic quantification of uncertainty
has led to give up the EU criterion as well. In [4], two qualitative criteria based on
possibility theory, are proposed and axiomatized whose definitions only require a
finite ordinal, non compensatory scale for evaluating both utility and plausibility.
This yielded the development of sophisticated qualitative models for sequential
decision making, e.g. possibilistic markov decision processes [13] [12], possibilistic
ordinal decision trees [5] and possibilistic ordinal influence diagrams [5].

In presence of heterogeneous information, i.e. when the knowledge about the
state of the world is possibilistic while the utility degrees are numerical and
compensatory the previous models do not apply anymore. Following [14] and
[7], Choquet integrals [1] appear as a right way to extend expected utility to
non Bayesian models. Like the EU model, this model is a numerical, compen-
satory, way of aggregating uncertain utilities. But it does not necessarily resort
on a Bayesian modeling of uncertain knowledge. Indeed, this approach allows the
use of any monotonic set function 1, and thus of a necessity measure (integrals
based on a possibility measure are generally given up since too adventurous). Un-
fortunately, the use of Necessity-based Choquet integrals in sequential decision
making is not straightforward: Choquets integrals do not satisfy the principle of
monotony in the general case. As a consequence, the optimality of the solution
provided by dynamic programming is not granted. Hence a question arises: do
the Necessity-based Choquet integral satisfy the monotony principle and if not,
which algorithm should we use to compute an optimal strategy?

In the present paper, we show that the Necessity-based Choquet integral does
not satisfy the monotonicity property and propose a Branch and Bound algo-
rithm based on an optimistic evaluation of the Choquet value of possibilistic
decision trees. This paper is organized as follows: the background notions are
recalled in Section 2. Possibilistic decision trees are developed in Section 3. Sec-
tion 4 is devoted to the algorithmic issues.

2 Background on Possibility Theory and Possibilistic
Decision Making under Uncertainty

The basic building block in possibility theory is the notion of possibility distri-
bution [3]. Let x be a variable whose value is ill-known and denote Ω the domain
of x. The agent’s knowledge about the value of x can be encoded by a possibility
distribution π : Ω → [0, 1] ; π(ω) = 1 means that value ω is totally possible
for variable x and π(ω) = 0 means that x = ω is impossible. From π, one can
compute the possibility Π(A) and necessity N(A) of an event ”x ∈ A”:

Π(A) = supv∈Aπ(v) (1)

N(A) = 1−Π(Ā) = 1− supv/∈Aπ(v) (2)
1 This kind of set function is often called capacity or fuzzy measure.
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Measure Π(A) evaluates at which level A is consistent with the knowledge rep-
resented by π while N(A) corresponds to the extent to which ¬A is impossible
and thus evaluates at which level A is certainly implied by the knowledge.

Given n non interactive (independent) possibilistic variables x1,...,xn respec-
tively restricted by π1,...,πn, the joint possibility distribution π on Ω1,...,Ωn is
a combination of π1,...,πn:

π(ω1, ..., ωn) = π1(ω1)⊗ ...⊗ πn(ωn). (3)

The particularity of the possibilistic scale is that it can be interpreted in twofold:
when the possibilistic scale is interpreted in an ordinal manner, i.e. when the pos-
sibility degree reflect only an ordering between the possible values, the minimum
operator is used to combine different distributions (⊗ = min). In a numerical
interpretation, possibility distributions are related to upper bounds of imprecise
probability distributions - ⊗ then corresponds to product operator (⊗ = ∗).

Following [4][2]’s possibilistic approach of decision making under uncertainty
a decision can be seen as a possibility distribution over a finite set of states. In
a single stage decision making problem, a utility function maps each state to a
utility value in a set U = {u1, ..., un} ⊆ R (we assume without loss of generality
that u1 ≤ · · · ≤ un). This function models the attractiveness of each state for the
decision maker. An act can then be represented by a possibility distribution on
U , also called a (simple) possibilistic lottery, and denoted by (λ1/u1, ..., λn/un):
λi is the possibility that the decision leads to a state of utility ui.

In the following, L denotes the set of simple lotteries (i.e. the set of possibility
distributions over U). We shall also distinguish the set Lc ⊆ L of constant
lotteries over L. Namely, Lc = {π s.t. ∃ui, π(ui) = 1 and ∀uj �= ui, π(uj) = 0}.
A possibilistic lottery L ∈ L is said to overcome a lottery L′ ∈ L iff:

∀ui, N(L ≥ ui) ≥ N(L′ ≥ ui) (4)

A possibilistic compound lottery (λ1/L1, ..., λm/L
m) is a possibility distribution

over L. The possibility πi,j of getting a utility degree uj ∈ U from one of its
sub-lotteries Li depends on the possibility λi of getting Li and on the possibility
λi

j of getting uj from Li i.e. πi,j = λj ⊗ λi
j . More generally, the possibility of

getting uj from a compound lottery (λ1/L1, ..., λm/L
m) is simply the max, over

all Li, of πi,j . Thus, [4][2] have proposed to reduce (λ1/L1, ..., λm/L
m) into a

simple lottery defined by:

λ1⊗L1⊕ ...⊕λm⊗Lm = (maxj=1,mλ
j
1⊗λj/u1, . . . ,maxj=1,mλ

j
n⊗λj/un) (5)

where ⊗ = min (resp. ⊗ = ∗) if the possibilistic scale is interpreted in an ordinal
(resp. numerical) way. λ1 ⊗ L1 ⊕ ... ⊕ λm ⊗ Lm is considered as equivalent to
(λ1/L1, ..., λm/L

m) and is called the reduction of the compound lottery.
Under the assumption that the utility scale and the possibility scale are com-

mensurate and purely ordinal, [4] have proposed the following qualitative pes-
simistic and optimistic utility degrees for evaluating any simple lottery L =
(λ1/u1, ..., λn/un) (possibly issued from the reduction of a compound lottery):
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Upes(L) = maxi=1,n min(ui, N(L ≥ ui)) and Uopt(L) = maxi=1,n min(ui, Π(L ≥ ui))
(6)

where Π(L ≥ ui) = maxj=i,nλj and N(L ≥ ui) = 1 − Π(L < ui) = 1 −
maxj=1,i−1λj are the possibility and necessity degree that L reaches at least
the utility value ui. The Upes degree estimates to what extend it is certain (i.e.
necessary according to measure N) that L reaches a good utility. Its optimistic
counterpart, Uopt, estimates to what extend it is possible that L reaches a good
utility. Both are instances of the Sugeno integral [15] expressed as follows:

Sμ(L) = maxi=1,n min(ui, μ(L ≥ ui)) (7)

where μ is any capacity function, i.e. any set function s.t. μ(∅) = 0, μ(Ω) =
1, A ⊆ B ⇒ μ(A) ≤ μ(B). Upes is recovered when μ is a necessity measure.

Under the same assumption of commensurability, but assuming that the utility
degrees have a richer, cardinal interpretation, one shall synthesize the utility of
L by a Choquet integral:

Chμ(L) = Σi=n,1(ui − ui−1) . μ(L ≥ ui) (8)

If μ is a probability measure then Chμ(L) is simply the expected utility of L.
In the present paper, we are interested by studying Choquet decision criterion
in the possibilistic framework - this lead to let the capacity μ be a necessity
measure N (integrals based on a possibility measure are generally given up
since too adventurous). In this case, Equation (8) is expressed by ChN (L) =
Σi=n,1(ui − ui−1) . N(L ≥ ui).

3 Possibilisitic Decision Trees

Decision trees [11] are graphical representations of sequential decision problems
under the assumption of full observability (i.e. once a decision has been executed,
its outcome is known and observed). A decision tree (see e.g. Figure 1) is a tree
GT = (N , E). The set of nodes N contains three kinds of nodes:

– D = {D0, . . . , Dm} is the set of decision nodes (represented by rectangles).
The labeling of the nodes is supposed to be in accordance with the temporal
order i.e. if Di is a descendant of Dj, then i > j. The root node of the tree
is necessarily a decision node, denoted by D0.

– LN = {LN1, . . . , LNk} is the set of leaves, also called utility leaves: ∀LNi ∈
LN , u(LNi) is the utility of being eventually in node LNi.

– C = {C1, . . . , Cn} is the set of chance nodes represented by circles. Chance
nodes represent the possible action outcomes.

For any Xi ∈ N , Succ(Xi) ⊆ N denotes the set of its children. Moreover, for
any Di ∈ D, Succ(Di) ⊆ C: Succ(Di) is the set of actions that can be decided
when Di is observed. For any Ci ∈ C, Succ(Ci) ⊆ LN ∪ D: Succ(Ci) is indeed
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the set of outcomes of action Ci - either a leaf node is observed, or a decision
node is observed (and then a new action should be executed).

In classical, probabilistic, decision trees the uncertainty pertaining to the more
or less possible outcomes of each Ci is represented by a probability distribution
on Succ(Ci). Here, we obviously use a possibilistic labeling, i.e. for any Ci ∈ C,
the uncertainty pertaining to the more or less possible outcomes of each Ci is
represented by a possibility degree πi(X), ∀X ∈ Succ(Ci).

Solving the decision tree amounts to building a strategy that selects an action
(i.e. a chance node) for each reachable decision node. Formally, we define a
strategy as a function δ from D to C ∪ {⊥}. δ(Di) is the action to be executed
when a decision node Di is observed. δ(Di) = ⊥ means that no action has been
selected for Di (because either Di cannot be reached or the strategy is partially
defined). Admissible strategies must be:

– sound : ∀Di, δ(Di) ∈ Succ(Di) ∪ {⊥}
– complete: (i) δ(D0) �= ⊥ and (ii) ∀Di s.t. δ(Di) �= ⊥, ∀Xj ∈ Succ(δ(Di)),

either δ(Xj) �= ⊥ or Xj ∈ LN

Let Δ be the set of sound and complete strategies that can be built from the
decision tree. Any strategy in Δ can be viewed as a connected subtree of the
decision tree whose arcs are of the form (Di, δ(Di)).

In the present paper, we interpret utility degrees in a numerical, compensatory,
way and we are interested in strategies in Δ that maximize the Necessity-based
Choquet criterion. The Choquet value of a (sound and complete) strategy can
be determined thanks to the notion of lottery reduction. Recall indeed that
leaf nodes ln in LN are labeled with utility degrees, or equivalently constant
lotteries in Lc. Then a chance node can be seen as either a lottery in L, or as a
compound lottery. The principle of the evaluation of a strategy is to reduce it in
order to get an equivalent simple lottery, the Choquet value of which can then be
computed. Formally, the composition of lotteries will be applied from the leafs
of the strategy to its root, according to the following recursive definition:

∀Xi ∈ N , L(Xi, δ) =

⎧⎨⎩
< 1/u(Xi) > if Xi ∈ LN
L(δ(Xi), δ) if Xi ∈ D
MaxXj∈Succ(Xi)πi(Xj)⊗ L(Xj, δ) if Xi ∈ C

(9)

Depending on the interpretation of the possibility degrees labeling the arcs of
the tree, we can distinguish between ordinal, min-based possibilistic decision
trees (for which ⊗ = min) and numerical, product-based possibilistic decision
trees (for which ⊗ = ∗). Equation 9 is simply the adaptation to strategies of
lottery reduction (Equation 5). We can then compute L(δ) = L(D0, δ) : L(δ)(ui)
is simply the possibility of getting utility ui when δ is applied from D0. The
Choquet value of δ can then be computed:

ChN (δ) = ChN (L(D0, δ)) (10)
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Fig. 1. Example of possibilistic decision tree with C = {C1, C2, C3, C4, C5, C6}, D =
{D0, D1, D2} and LN = U = {0, 1, 2, 3, 4, 5}

4 Finding the Choquet Optimal Strategy in Possibilistic
Decision Trees

Given a possibilistic decision tree encoding a set of admissible strategies Δ =
{δ1 . . . δn}, we are looking for a strategy δ∗ such that ∀δ ∈ Δ, ChN (δ∗) ≥
ChN (δ). Unfortunately, finding optimal strategies via an exhaustive enumeration
ofΔ is a highly computational task. For instance, in a decision tree with n binary
decision nodes, the number of potential strategies is in O(2

√
n).

For standard probabilistic decision trees, where the goal is to maximize ex-
pected utility [11], an optimal strategy can be computed in polytime (with re-
spect to the size of the tree) thanks to an algorithm of dynamic programming
which builds the best strategy backwards, optimizing the decisions from the
leaves of the tree to its root. Regarding possibilistic decision trees, Garcia and
Sabbadin [5] have shown that such a method can also be used to get a strategy
maximizing Upes. The reason is that like EU, Upes satisfies the following key
property of monotonicity:

Definition 1. Let V be a decision criterion. V is said to be monotonic iff what-
ever L, L′ and L”, whatever the normalized distribution (α,β):

V (L) ≥ V (L′) ⇒ V ((α ⊗ L) ⊕ (β ⊗ L”)) ≥ V ((α ⊗ L′) ⊕ (β ⊗ L”)). (11)

This property states that the combination of L (resp. L′) with a third one, L”,
does not change the order induced by V between L and L′ - this allows dynamic
programming to decide in favor of L before considering the compound decision.

Unfortunately monotonicity is not satisfied by any criterion. Some Choquet
integrals, e.g. the one encoding the Rank Dependent Utility model, may fail to
fulfill this condition (see e.g. [8]). We show in the following counter examples
that this can also be the case when using Necessity-based Choquet integrals:
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Counter Example 1 (Numerical Setting). Let L =< 0.1/1, 1/2, 0/3 >, L′

=< 0.9/1, 0/2, 1/3> and L” =< 1/1, 0.1/2, 0/3>; let L1 = (α⊗ L)⊕ (β ⊗ L”)
and L2 = (α⊗ L′)⊕ (β ⊗ L”), with α = 1 and β = 0.9.
Using equation (5) with ⊗ = ∗ we have: L1 =< 0.9/1, 1/2, 0/3>
and L2 =< 0.9/1, 0.09/2, 1/3>
It is easy to show that ChN (L) = 1.9 and ChN (L′) = 1.2, then L ) L′. But
ChN (L1) = 1.1 < ChN (L2) = 1.2: this contradicts the monotonicity property.

Counter Example 2 (Ordinal Setting). Let L =< 0.2/0, 0.5/0.51, 1/1>,
L′ =< 0.1/0, 0.6/0.5, 1/1> and L” =< 0.01/0, 1/1 >; ; let L1 = (α⊗L)⊕ (β ⊗
L”) and L2 = (α⊗ L′)⊕ (β ⊗ L”), with α = 0.55 and β = 1.
Using equation (5) with ⊗ = min we have: L1 =< 0.2/0, 0.5/0.51, 1/1 > and
L2 =< 0.1/0, 0.55/0.5, 1/1>.
Computing ChN (L) = 0.653 and ChN (L′) = 0.650 we get L ) L′. But ChN (L1)
= 0.653 < ChN (L2) = 0.675: this contradicts the monotonicity property.

As a consequence, the application of dynamic programming to the case of the
Necessity-based Choquet integral may lead to a suboptimal strategy. As an al-
ternative, we have chosen to proceed by implicit enumeration via a Branch and
Bound algorithm, following [8] for the case of another (non possibilistic) Cho-
quet integral, namely the one encoding the Rank Dependent Utility criterion.
The fact that implicit enumeration performs better for RDU than the resolute
choice approach proposed in [10] encourages us to adapt it to our case.

The Branch and Bound algorithm (outlined by Algorithm 1.1) takes as ar-
gument a partial strategy δ and an upper bound of the best Choquet value it
can reach. It returns the value Chopt

N of the best strategy found so far, δopt. As
initial value for δ we will choose the empty strategy (δ(Di) = ⊥, ∀Di). For δopt,
we can choose the one provided by the dynamic programming algorithm. Indeed,
even not necessarily providing an optimal strategy, this algorithm may provide
a good one, at least from a consequentialist point of view.

At each step, the current partial strategy, δ, is developed by the choice of an
action for some unassigned decision node. When several decision nodes need to
be developed, the one with the minimal rank (i.e. the former one according to
the temporal order) is developed first. The recursive procedure stops when either
the current strategy is complete (then δopt and Chopt

N may be updated) or proves
to be worst than δopt in any case. To this extent, we call a function that com-
putes a lottery Lottery(δ) that overcomes all those associated with the complete
strategies compatible with δ and use ChN (Lottery(δ)) as an upper bound of the
Choquet value of the best strategy compatible with δ - the evaluation is sound,
because whatever L,L′, if L overcomes L′, then ChN (L) ≥ ChN (L′). When-
ever ChN (Lottery(δ)) ≤ Chopt

N , the algorithms backtracks, yielding the choice
of another action for the last decision nodes considered. Moreover when δ is
complete, Lottery(δ) returns L(D0, δ); the upper bound is equal to the Choquet
value when computed for a complete strategy.

Function Lottery (see algorithm 1.2) inputs a partial strategy. It proceeds
backwards, assigning a simple lottery < 1/u(NLi) > to each terminal.
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Algorithm 1. BB
Data: A (possibly partial) strategy δ, the evaluation its Choquet value, Chδ

N

Result: Chopt
N % also memorizes the best strategy found so far, δopt

begin
if δ = ∅ then Dpend = {D1} else

Dpend = {Di ∈ D s.t.
δ(Di) = ⊥ and
∃Dj , δ(Dj) �= ⊥ and Di ∈ Succ(δ(Dj))

}

if Dpend = ∅ (% δ is a complete strategy) then
if Chδ

N > Chopt
N then

δopt ← δ
return Chδ

N

else
Dnext ← arg minDi∈Dpend i
foreach Ci ∈ Succ(Dnext) do

δ(Dnext) ← Ci

Eval ← ChN (Lottery(D0, δ))
if Eval > Chopt

N then
Chopt

N ← max(Chopt
N , δ, Eval)

return Chopt
N

end

Algorithm 2. Lottery
Data: a node X, a (possibly partial) strategy δ

Result: LX % LX [ui] is the possibility degree to have the utility ui

begin
for i ∈ {1, .., n} do LX [ui] ← 0
if X ∈ LN then LX [u(X)] ← 1
if X ∈ C then

foreach Y ∈ Succ(X) do
LY ← Lottery(Y, δ)
for i ∈ {1, .., n} do LX [ui] ← max(LX [ui], πX(Y ) ⊗ LY [ui])
% ⊗ = min in the ordinal setting ; ⊗ = ∗ in the numerical setting

if X ∈ D then
if δ(X) �= ⊥ then LX = Lottery(δ(X), δ) else

if |Succ(X)| = 1 then
LX = Lottery(δ(Succ(X)), δ)

else
foreach Y ∈ Succ(X) ∩ Nδ do

LY ← Lottery(Y, δ)
for i ∈ {1, .., n} do Gc

Y [ui] ← 1 − maxuj<uiL
Y [uj ]

% Compute the upper envelop of the cumulative functions)
for i ∈ {1, .., n} do Gc[ui] ← maxY ∈Succ(X)∩Nδ

Gc
Y [ui]

% Compute Rev(Gc)
LX [un] ← 1
for i ∈ {n − 1, .., 1} do LX [ui] ← 1 − Gc[ui+1]

return LX

end
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node LNi . At each chance node Ci, we perform a composition of the lotteries
in Succ(Ci) according to Equation (9). At each decision node Di we ascend a
lottery that overcomes all those in Succ(Di). To this end, let us use the following
notations and definitions:

– Given a simple lottery L ∈ L, Gc
L is the possibilistic decumulative function

of L: ∀u ∈ U,Gc
L(u) = N(L ≥ u)

– Given a set G = {Gc
L1
, . . . , Gc

Lk
} of decumulative functions, the upper envelop

of G is the decumulative function Gc
G defined by:

∀u ∈ U,Gc
G(u) = maxGc

Li
∈GGc

Li
(u)

– Given a decumulative function Gc on U , Rev(Gc) is the lottery defined by:

Rev(Gc)(ui) =
{

1 if i = n
1 − Gc(ui+1) if i ∈ {1, . . . , n − 1}

Now it is easy to show that the possibilistic decumulative function associated to
a lottery Rev(Gc) is equal to Gc. As a consequence:

Proposition 1. 2 Given a set {L1, . . . , Lk} ⊆ L of simple lotteries over U ,
G = {Gc

L1
, . . . , Gc

Lk
} the set of their decumulative functions, we have: Rev(Gc

G)
overcomes any lottery Li ∈ {L1, . . . , Lk}.
Hence, the Choquet value of Lottery(D0, δ) is an upper bound of the Choquet
value of the best complete strategy compatible with δ, which proofs the correct-
ness of our algorithm.

Example 1. The major steps executed by the BB algorithm on the min-based
possibilistic decision tree of Figure 1 can be summarized as follows (we suppose
that δopt has been initialized with ((D0, C2)), the Choquet value of which is 1).

– δ = ∅ and Chopt
N = 1. BB calls ChN (Lottery(D0, (D0, C1)))

LD2 = (0/0, 0.2/1, 0.2/2, 1/4, 1/5), LD3 = (0/0, 0/1, 1/2, 1/4, 1/5).
So, Lottery(D0, (D0, C1)) = (0/0, 0.2/1, 0.5/2, 0.5/3, 1/4, 1/5)
and Eval = ChN (Lottery(D0, (D0, C1))) = 2.8 > 1.

– δ = (D0, C1) and Chopt
N = 1. BB calls ChN (Lottery(D0, ((D0, C1), (D2, C3)))).

Lottery(D0, ((D0, C1), (D2, C3))) = (0/0, 1/1, 0.5/2, 0.5/3, 0.5/4, 0.5/5)
and Eval = ChN (Lottery(D0, ((D0, C1), (D2, C3)))) = 1 = 1.
δ = (D0, C1) and Chopt

N = 1. BB calls ChN (Lottery(D0, ((D0, C1), (D2, C4))))
Lottery(D0, ((D0, C1), (D2, C4))) = (0.2/0, 0/1, 0.5/2, 0.5/3, 1/4, 0.5/5)
and Eval = ChN (Lottery(D0, ((D0, C1), (D2, C4)))) = 2.6 > 1.

– δ = ((D0, C1), (D2, C4)) and Chopt
N = 1. BB calls ChN (Lottery(D0, ((D0, C1), (D2, C4),

(D3, C5)))),
Lottery(D0, ((D0, C1), (D2, C4), (D3, C5))) = (0.2/0, 0.5/1, 0/2, 0/3, 1/4, 0/5)
and Eval = ChN (Lottery(D0, ((D0, C1), (D2, C4), (D3, C5)))) = 2.3 > 1.

– δ = ((D0, C1), (D2, C4), (D3, C5)) and Chopt
N = 1.

There is no more pending decision node. δopt ← ((D0, C1), (D2, C4), (D3, C5)), Chopt
N ← 2.3

– δ = ((D0, C1), (D2, C4)) and Chopt
N = 2.3. BB calls ChN (Lottery(D0, ((D0, C1), (D2, C4),

(D3, C6)))),
Lottery(D0, ((D0, C1), (D2, C4), (D3, C6))) = (0.2/0, 0/1, 0.5/2, 0/3, 1/4, 0.5/5)
and Eval = ChN (Lottery(D0, ((D0, C1), (D2, C4), (D3, C6)))) = 2.6 > 2.3.

2 Obviously, Gc
Rev(Gc)(u1) = 1 = Gc(u1). Note that ∀i = 2, n, Rev(Gc)(ui) ≥

Rev(Gc)(ui−1). Hence Gc
Rev(Gc)(ui) = 1 − maxj=1,i−1Rev(Gc)(uj) = 1 −

Rev(Gc)(ui−1). Since Rev(Gc)ui−1 = 1 − Gc(ui), we get Gc
Rev(Gc)(ui) = Gc(ui).

Thus Gc
Rev(Gc) = Gc.
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– δ = ((D0, C1), (D2, C4), (D3, C5)) and Chopt
N = 2.3.

There is no more pending decision node. δopt ← ((D0, C1), (D2, C4), (D3, C6)), Chopt
N ← 2.6

– etc.

The algorithm eventually terminates with δopt = ((D0, C1), (D2, C4), (D3, C6)) and
Chopt

N = 2.6.

5 Conclusion

In this paper, we have proposed to use the Necessity-based Choquet Integral to
optimize decision in heterogeneous possibilistic decision trees, where the utility
levels of consequences are numerical in essence. We have shown that dynamic
programming cannot be applied to find optimal strategies since the monotonicity
property on which this algorithm relies is not satisfied by this criterion. As an
alternative solution, we have developed a Branch and Bound algorithm based
on an optimistic evaluation of the Choquet value (namely by taking the upper
envelop of the decumulative functions of the concurrent possible actions). The
implementation of this approach is under progress.

The further development of this work deals with the optimization of Necessity-
based Choquet integrals and Sugeno Integrals in heterogeneous possibilistic in-
fluence diagrams, considering, again, both the numerical and the purely ordinal
interpretation of possibility degrees.

References
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Abstract. In this paper, we propose a fuzzy-rule-based model for the
representation of contextual preferences in a database querying frame-
work. We discuss the augmentation of a query with preferences deduced
from information regarding the current context of the user. To this end,
we present an approach based on generalized modus ponens pattern.

Keywords: Preferences, Context, Fuzzy rules, Query augmentation.

1 Introduction

Personalization systems exploit user preferences for selecting the most relevant
data from a potentially huge amount of information. According to his/her con-
text or situation, a user may have different preferences. For instance, a tourist
visiting Paris may prefer to visit La Tour Eiffel on a nice sunny day and Le
Louvre museum on a rainy day. In other words, the result of a preference query
may depend on the context.

Context is a term which captures any information that can be used to char-
acterize the situation of an entity [1], i.e. of a person, place or object considered
relevant to the interaction between a user and an application. Common context
types involve the user context (e.g., profile, location), the physical context (e.g.,
noise levels, temperature), and time. A system is said to be context-aware if it
uses context to provide relevant information and/or services to its users.

Contextual preferences have recently attracted considerable attention in many
research fields [2,3]. In the approach to contextual preferences proposed in [4], a
context state is represented as a situation. Situations are uniquely linked through
an n:m relationship with qualitative preferences. A knowledge-based context-
aware preference model for database querying is proposed in [5] where preferences
and associated applicable contexts are treated uniformly through description
logic concept expressions. Context as a set of dimensions is also considered in
[6] where the problem of representing context-dependent semi-structured data
is studied. Context has also been used in information filtering to define filters
which have attributes whose values change frequently [7].

In the approach by Stefanidis et al. [8], the context is represented as a set
of multidimensional parameters. Each one takes values from a hierarchical do-
main which enhances the expressiveness of the model. The objective is to find

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 532–541, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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the most interesting data items based on user preferences which are enriched
with contextual information. However, this approach does not deal with gradual
contextual parameters. Moreover, it uses a numeric score (called interest score,
whose purpose is to rank tuples) without a clear semantics and which is managed
in an ad hoc way (e.g., when aggregating preferences).

In this paper, we propose a fuzzy-rule-based model for the representation
of user preferences and context-related information. This approach allows to
capture gradual concepts and to describe the context in a flexible way, thus
offering more user-friendliness and robustness. In particular, we show how user
queries can be augmented with preferences deduced from rules which describe
the current context of the user.

The rest of the paper is structured as follows. Section 2 provides a critical re-
view of Stefanidis et al.’s approach that constitutes a starting point of our work.
Section 3 presents a fuzzy-rule-based context modeling approach. In Section 4,
we address the issue of augmenting user query by inferring new preferences re-
garding context information. Section 5 deals with algorithmic aspects of the
query augmentation process and provides a detailed example to illustrate the
approach. Section 6 concludes the paper with a summary of its contributions
and outlines some perspectives for future work.

2 Stefanidis et al.’s Approach to Contextual Preferences

We take as a starting point the approach by Stefanidis et al. [8,9] whose principle
is recalled hereafter.

2.1 Context Modeling

In [8,9], the context is modeled as a finite set {C1, C2, . . . , Cn} of multidi-
mensional parameters, for instance, {location, weather, accompanying people}.
Each parameter Ci takes its values from a hierarchical domain, called extended
domain, edom(Ci). For example, a weather context parameter can be defined
on three levels (see Figure 1): the detailed level Conditions(L1) whose domain
includes freezing, cold, mild, warm and hot ; the level weather characterization
(L2) which just refers to whether the weather is good (grouping mild, warm, and
hot) or bad (grouping freezing and cold) ; and the level ALL (L3) that groups all
values into a single value “all”. Thus, each context parameter can be viewed from

ALL (L )3

Weather
Characterisation (L )2

Conditions (L )1 {freezing, cold, mild, warm, hot}

{bad, good}

{all}

Fig. 1. Extended domain of weather parameter
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different levels of detail. An instantiation of the context, called context state, is
a tuple ω = (c1, c2, . . . , cn) where, ci ∈ edom(Ci), 1 ≤ i ≤ n. For instance, ω
may be (Athens, warm, friends) for the example above.

A contextual preference is modeled as a triple (cod, attributes clauses, in-
terest score) where cod is a context descriptor representing a set of context
states, the attributes clauses {A1 θ1 a1, . . . , An θn an} specify a set of attributes
(which represent non-contextual parameters) and their values a1, . . . , an with
ai ∈ dom(Ai) — the domain of attribute Ai —, θ ∈ {=, �=,≤,≥, <,>} and
interest score is a real number between 0 and 1. The meaning is that in the set of
context states specified by cod, all tuples for which the attributes A1, A2, . . . , An

satisfy the conditions Ai θ ai, i = 1, n get the interest score interest score.

2.2 Context Resolution

Let P be a user profile tree representing a set of contextual preferences and Q
a contextual query, i.e., a query enhanced with an extended context descriptor
(a set of context states with each state having a specific value for each context
parameter). The problem addressed by Stefanidis et al. is to identify the con-
textual preferences that are the most relevant to the context states of the query
Q. To this end, for every context state s of Q, a context resolution technique is
used to locate in the profile tree P , the paths which exactly or approximately
matches s. In particular, distance-based measures are used to express similarity
between two context states.

The main advantages of Stefanidis et al.’s approach are its simplicity and its
ability to capture the context at different levels of abstraction. Moreover, when
a contextual query does not match any of the given preferences, possible relax-
ations of the query context can be considered by replacing the value of a context
parameter by a more general one. However, some major limitations can be no-
ticed, notably in the ability of the approach to make profit of the profile tree,
from which no additional preference can be inferred. Only the preferences ex-
plicitly defined by the user are used to enhance the query. Besides, the approach
fails to capture gradual concepts when describing the context (as for instance,
the weather is fairly cold) and forces the user to manually set the values of the
scores and specify the functions to aggregate these scores.

3 Fuzzy Model to Contextual Preferences

In this section, we show how fuzzy rules can be used for modeling contextual
preferences. For the sake of illustration, the following reference example is used.

Reference example: Let travAg(id dest, dest, cost, dateb, datee, animation,
calm, charm) be a relation representing a set of trips (flight + hotel) proposed
by a travel agency, where dest represents the name of the destination and the
country where it is located, dateb and datee define the interval of time wherein
the trip is available, animation, calm and charm are criteria used for describ-
ing the destination’s surroundings. We assume that a rating score in [0, 100] is
assigned to each criterion (defined, e.g., on the basis of user’s experiences).
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3.1 Fuzzy Context Modeling

We use a finite set of parameters to represent a context that we call context
parameters. For a given applicationX , we define its context environment CEX as
a set of n context parameters {C1, C2, . . . , Cn}. An instantiation of the context,
called context state, writes:

ω = (C1 is E′
1 ∧ C2 is E′

2 ∧ . . .∧ Ck is E′
k), k ≤ n

where each Ci ∈ CEX , 1 ≤ i ≤ k and E′
i ⊆ dom(Ci) stands for a fuzzy set de-

scribing the parameter Ci. In our example, four context parameters may be con-
sidered: accompanying people acc people = {nobody, family, wife, friends},
professional status status = {student, unemployed, executive, employee, retired
person}, age of the traveler and period when the traveler wishes to leave. As it
will be seen, age and period may be described either in a crisp or a fuzzy way.

An example of a context state is (acc people is {friends}, age is young,
period is begin summer) where young (resp. begin summer) is a fuzzy set whose
trapezoidal membership function1 (t.m.f.) is (17, 19, 25, 27, 0) (resp. (Jun. 21,
Jun. 21, Jul. 7 , Jul. 31, 0 )).

3.2 Contextual Preferences

Definition 1 (Contextual Preference). A contextual preference CP is a
fuzzy rule of the form: if C1 is E1 ∧ . . . ∧ Cm is Em then A is F , where
Ei, 1 ≤ i ≤ m ≤ n, represents a crisp or fuzzy value of the context parameter Ci

and F is a fuzzy set describing the preference related to attribute A.

The meaning of CP is that in the context state specified by the left part of the
rule, the preference A is F is inferred. Roughly speaking, the premise of the rule
describes the context wherein the preference contained in the conclusion part of
the rule is relevant to the user.

Example 1. Young travelers generally prefer inexpensive trips. This may be ex-
pressed as (CP1): if age is young then cost is inexpensive.

Example 2. A young traveler accompanying his/her friends usually prefers ani-
mated destinations, i.e., trips having a high animation score. This yields (CP2):
if age is young and acc people is {friends} then animation is high.

Without loss of generality, only rules with a single conclusion are considered.
Let us also emphasize that it is not necessary for a contextual preference to
depend on all contextual parameters. In Example 1, contextual preference CP1
means that a young traveler prefers an inexpensive trip independently from
other contextual parameters. From a formal viewpoint, contextual preferences
are faithfully represented by gradual rules [10]. Such rules are of the form “if x
is A then y is B” and express “the more x is A, the more y is B”.
1 We use t.m.fs of the form (a, b, c, d, Δ) where [a, d] and [b, c] are the support and the

core resp., and Δ is an indetermination level which will be explained further.
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1

Fig. 2. t.m.f of F ′

dom(cost)dom(age) 200 40030025 2726

Fig. 3. t.m.f of young, inexpensive and
inexpensive′

4 Selection of Relevant Preferences

In this section, we focus on the first step of the query augmentation process
that consists in identifying the set of relevant preferences and their semantics
regarding the user context. Let BCP = {CP1, . . . , CPm} be a fuzzy rule base
modeling a set of contextual preferences and Q a user query formulated in a
given context ω. We refer to the set of contextual parameters present in ω (resp.
CPi, i = 1,m) by context(ω) ⊆ CEX (resp. context(CPi)).

4.1 Principle of the Approach

The goal is to infer a set of relevant preferences from the fuzzy rules base BCP

regarding the context ω. To achieve this, we make use of the generalized modus
ponens as an inference pattern. In its simplest form, it reads:

from the rule: if C is E then A is F
and the fact: C is E′

the following preference A isF ′ can be inferred, where F ′ is computed using
E′, E and F . For v ∈ dom(A), μF ′(v) is computed by means of the combina-
tion/projection principle [10]:

μF ′(v) = supu∈dom(C)-(μE′(u), μE(u) → μF (v)))

where - stands for a triangular norm and → a fuzzy implication. Assuming that
the operator → represents Gödel’s implication, i.e., a → b = 1 if a ≤ b and b
otherwise, and - the min operator, we write F ′ = [E′ ◦ (E → F )] where ◦ is the
sup-min composition operator. In practice, if E, E′ and F are represented by
(a1, a2, a3, a4, 0), (a′1, a

′
2, a

′
3, a

′
4, 0) and (b1, b2, b3, b4, 0) respectively, the t.m.f.

(b′1, b
′
2, b

′
3, b

′
4, Δ) (where Δ expresses a global indetermination level) associated

with F ′ is computed in the following way (see [11] for more details):

Δ = sup{u∈dom(C) | μE(u)=0}μE′(u), b′1 = b1 and b′4 = b4
b′2 = b2 − (1−H)(b2 − b1), b′3 = b3 + (1−H)(b4 − b3),

withH = min(μE(a′2), μE(a′3)).H is the smallest degree of an element belonging
to the core of E′ in E. As we can see in Figure 2, in the case where Δ > 0, any
value outside [α, β] is considered acceptable with a degree Δ. In particular, if
Δ = 1 (i.e., core(E′) � support(E)), μF ′(v) = 1, ∀v ∈ dom(A). This means that
no preference about attribute A is inferred regarding the current context. As a
consequence, the smaller Δ, the more certain the inferred preference is.
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Obviously, one can choose other fuzzy implication operators. However, the
major advantage of Gödel implication is the fact that it is the least sensitive to
the mismatching between E and E′. Indeed, the global indetermination level is
non-zero only in the case where the support of E′ is not included in the support
of E. Approximate matching between two context states is then naturally sup-
ported by our approach. For a precise input, i.e., E′ = {e′}, the t.m.f of F ′ is
such that: Δ = 1 and H = 0 if e′ /∈ E, Δ = 0 and H = μE(e′) otherwise.

Example 3. Let CP1 be a contextual preference defined by if age is young then
cost is inexpensive, where young and inexpensive are fuzzy sets represented by
(0, 0, 25, 27, 0) (0, 0, 200, 400, 0) respectively, see Figure 3. For a person with
26 years old (which also writes as (26, 26, 26, 26, 0) in terms of t.m.f.), his/her
preference inferred about the attribute cost is: cost is inexpensive′ where the
fuzzy predicate inexpensive′ is represented by (0, 0, 300, 400, 0), see Figure 3.

When a context state involves several contextual parameters, we have:

Rule CP : if C1 is E1 ∧ . . . ∧ Cq is Eq then A is F
Fact ω: C1 is E

′
1 ∧ . . . ∧ Cq is E

′
q,

Where the t.m.f. associated with Ei (resp. E′
i) is (a1i, a2i, a3i, a4i) (resp. (a′1i, a

′
2i,

a′3i, a
′
4i), for i = 1, q. In this case, the t.m.f. of the conclusion F ′ is computed

in the same way as previously, except for Δ and H which are given by Δ =
maxi=1,qΔi and H = mini=1,qHi, with Δi = sup{u∈dom(Ci),μEi

(u)=0}μE′
i
(u)

and Hi = min(μEi(a′2i), μEi(a′3i)).

4.2 Aggregating Preferences

It is usual in practice to have different contextual preferences pertaining to a
same attribute A. A same context state can (approximately) match such con-
textual preferences. Let us consider two rules with a single premise to illustrate
this case. We assume also that the coherence of each rule as well as the coherence
of the set of rules are fulfilled (see [10] for more details about this issue).

Case 1: CP1: If C1 is E1 then A is F1
CP2: If C1 is E2 then A is F2

For a context ω = C1 is E′ and under the assumption E′∩Ei �= ∅, i = 1, 2, both
CP1 and CP2 are triggered. To obtain a single overall preference on attribute
A, two methods can be applied [10,11]. The first one, called FITA (First Infer
Then Aggregate), consists in triggering the rules separately, then combining
conjunctively the partial preferences inferred. Let “A is F ′

1” and “A is F ′
2” be

the preferences deduced respectively from CP1 and CP2. The overall preference
on A is computed as follows (conjunctive aggregation is adopted due to the
implication-based modeling of rules) : F ′ =

⋂
i=1,2 F

′
i =
⋂

i=1,2[E
′ ◦ (Ei → Fi)].

Example 4. Let CP1 and CP2 be two contextual preferences defined as follows:
CP1: if period is begin summer then cost is attractive1
CP2: if period is middle summer then cost is attractive2
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where the t.m.f of begin summer, middle summer, attractive1 and attractive2
are respectively: (Jun.21, Jun.21, Jul.10, Jul.31, 0), (Jun.25, Jul.10, Jul.25,
Aug.10, 0), (0, 0, 350, 600, 0) and (0, 0, 600, 700, 0). Predicates attractive1
and attractive2 describe the concept “good price” for two different periods. For
a user wishing to travel between Jul. 02 and Jul. 21 with 10 days of margin2,
CP1 and CP2 are triggered and we respectively obtain the following preferences:
attractive′1 = (0, 0, 420.5, 500, 0) and attractive′2 = (0, 0, 655, 700, 0).

Now, since attractive′1 ⊆ attractive′2, the final preference about “cost” is
attractive′1. This method may result in a non-trapezoidal function, and then a
trapezoidal approximation technique from the literature [11,12] must be used.

The second method, called FATI, first combines the rules, then infers. The
semantics of F ′ is then computed as follows: F ′ = E′ ◦ [

⋂
i=1,2(Ei → Fi)]. It has

been shown in [10] that: E′ ◦ [
⋂

i=1,2(Ei → Fi)] ⊆
⋂

i=1,2[E
′ ◦ (Ei → Fi)]. This

means that the FATI method leads to a preference which is more informative
than the one obtained with FITA. However, building a t.m.f thanks to FATI is
not an easy task as shown in [11,12]. It is worth noticing that for a precise input,
both methods yield the same result.

Case 2: CP1: If C1 is E1 then A is F1
CP2: If C2 is E2 then A is F2

This second case can be seen as a variant of the first one where the premises of the
contextual preferences concern different context parameters, but the conclusion
is still over the same attribute. Thus, for a context state {C1 is E′

1 ∧ C2 is E′
2}

such that E′
1 ∩E1 �= ∅ and E′

2 ∩E2 �= ∅, we get in the same situation that in the
first case and, in a similar way, we aggregate the partial preferences inferred.

5 Query Augmentation Algorithm

We now show how a fuzzy query [13] can be enhanced with contextual prefer-
ences. LetQ be a query formulated in a context ω = (C1 is E1, . . . , Ck is Ek), k ≤
n. Let AQ be the set of attributes on which there exists at least one preference
in Q. The augmentation process (see Algorithm 1) can be divided into four main
steps. The first step (line 1.3) aims to identify the subset CPQ ⊆ BCP of con-
textual preferences matching wholly or partially ω. Only contextual preferences:
i) about attributes which are not present in AQ

3 (line 2.6); ii) whose context
parameters are present in ω (line 2.8); and iii) that result in an indetermina-
tion level Δ < threshold, are added to CPQ. The second step (lines 1.4-1.7)
builds the set of candidate preferences P by inferring a new preference from
each cp ∈ CPQ using function GMP (see line 1.5). In the third step (line 1.8),
the set P is reduced into a set P ′ where the preferences about the same attribute
A are aggregated into one preference p′A. The final step (lines 1.9-1.12) adds each
preference p ∈ P ′ to Q, then processes the augmented query Q′.

2 It corresponds to the period represented by the t.m.f: (Jun.26, Jul.02, Jul.21, Jul.-31).
3 We assume that a preference specified by the user is more prioritary than one deduced
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Algorithm 1. Query Augmentation Algorithm.
Input: rule base BCP = {CP1, CP2, . . . , CPm}, the query Q and the set of attributes

AQ = {A1, A2, . . . , Al}, the user context ω.
Output: An augmented version of Q, denoted by Q′.
Variables: CPQ ← ∅, P ← ∅, P ′ ← ∅, Q′ ← Q.1.1
begin1.2

CPQ ← load cp(CP, AQ, ω);1.3
foreach cp in CPQ do1.4

/*GMP: Generalized Modus Ponens function*/1.5
P ← P ∪ GMP(cp, ω);1.6

end1.7
P ′ ← agg pref(P );1.8
foreach p ∈ P ′ do1.9

Q′ ← Q′ ∧ {p};1.10
end1.11
return Q′;1.12

end1.13

Algorithm 2. Function load cp.
Input: BCP , AQ and ω.
Output: CPQ, set of contextual preferences matching the context ω.
Variables: CPQ ← ∅;2.1
Constants: threshold ← 1; /* constraint: threshold ∈ [0, 1]*/2.2
begin2.3

foreach cp in BCP do2.4
/* function attribute returns the attribute over which cp is defined*/2.5
if attribute(cp) /∈ AQ then2.6

/* function context returns the context parameters present in a cp (resp.2.7
ω)*/
if context(cp) ⊆ context(ω) then2.8

if Delta(cp, ω) < threshold then2.9
CPQ ← CPQ ∪ {cp};2.10

end2.11
end2.12

end2.13
end2.14
return CPQ;2.15

end2.16

5.1 A Detailed Example

Let itravAg (see Table 1) be an instance of the relation travAg defined in Sub-
section 3, and BCP be a set of contextual preferences represented by the rules:

CP1: if age is young then cost is attractive1
CP2: if age is young ∧ acc people is {wife} then charm is good1
CP3: if age is young ∧ acc people is {friends} then animation is good2
CP4: if status is {executive} then cost is attractive2
CP5: if status is {retired} ∧ acc people is {wife} ∧ period is summer

then calm is good1

Assume that the fuzzy predicates in BCP are defined as follows: young = (18,
20, 25, 27, 0), attractive1 = (0, 0, 200, 500, 0), attractive2 = (0, 0, 400, 700,
0), good1 = (50, 80, 100, 100, 0), good2 = (30, 50, 100, 100, 0), summer
= (15/06/2010, 21/06/2010, 22/09/2010, 30/09/2010, 0); wife = {1/wife},
friends = {1/friend} and executive = {1/executive} are crisp predicates.
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Table 1. An instance of travAg relation

tuple id dest dest cost (e) date b date e animation calm charm
t1 1 Spain-malaga 527 01/09/09 01/09/10 90 60 67
t2 2 Spain-malaga 540 01/09/09 01/09/10 10 66 60
t3 3 Spain-malaga 629 01/09/09 01/10/10 76 70 80
t4 4 Spain-malaga 400 01/10/09 01/02/10 43 50 30
t5 5 Spain-malaga 525 01/09/09 01/01/10 23 80 56

Let us consider a young executive who would like to visit Malaga (Spain) in
springtime with his wife and formulates the following query:

Q: SELECT * FROM itravAg WHERE

dest = ‘Spain-malaga’ AND dateb ≤ ’1/04/10’ AND datee ≥ ’10/04/10’

The context state wherein Q is formulated writes ω = (age is around 26, status
is executive, acc people is wife) with around 26 = (24, 26, 26, 28, 0). Then, it
is easy to see that AQ = {dest, dateb, datee}.

0.5

1

350 500425 cost cost400 700

1

350 425 700550

the nearest trapezoidal 
form of attractive'
attractive'

attractive'2

attractive'1

Fig. 4. t.m.fs of attractive′1, attractive′2 and attractive′

Algorithm 1 yields CPQ = {CP1, CP2, CP4}. Indeed, CP5 is quickly elimi-
nated since it does not match the context state ω. CP3 results in an indeter-
mination level greater than the threshold defined in load cp (see Algorithm 2)
is also ruled out. Then, the preferences inferred from CPQ are P={p1: cost is
attractive′1, p2: charm is good′1, p4: cost is attractive′2} with the following se-
mantics (0, 0, 350, 500, 0.5), (50, 65, 100, 100, 0.5), (0, 0, 400, 700, 0) respectively
(see Figure 4). Now, by aggregating the preferences p′1 and p′4, which concern
the same attribute cost, we obtain a reduced set of preferences P ′ = {p′1: cost
is attractive′, p2: charm is good′1} with (0, 0, 350, 700, 0) as the semantics of
attractive′. Finally, the query Q′ obtained after augmenting Q with P ′ writes:
SELECT * FROM itravAg WHERE dest = ‘Spain-malaga’ AND dateb ≤ ’1/04/10’

AND datee ≥ ’10/04/10’ AND cost is attractive′ AND charm is good′
1.

The evaluation of Q′ against the instance itravAg leads to the following re-
sults: {0.5/t5, 0.5/t4, 0.49/t1, 0.45/t2, 0.2/t3}, where the score of each tuple t is
computed using the formula: μQ′(t) = mini=1,4max(Δi, μp∗i(t · vi)) where each
p∗i represents a preference present in Q′.

6 Conclusion

In this paper, we have proposed a fuzzy-rule-based model for representing con-
text and contextual preferences. We have also shown how an initial user query
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can be enhanced with new inferred preferences regarding contextual information.
An algorithm for query augmentation has been presented and illustrated on a
small practical example. Our approach deals with gradual contextual features
and offers a natural and user-friendly way to describe contextual parameters. As
for future work, it would be interesting to study the different ways to interpret
the preferences inferred (for instance, as wishes or constraints with low-priority)
when augmenting the query at hand. We also plan to extend this work for han-
dling potential conflictual preferences resulting from an inconsistent rule base.
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Abstract. Dialogue moves influence and are influenced by the agents’ prefer-
ences. We propose a method for modelling this interaction. We motivate and
describe a recursive method for calculating the preferences that are expressed,
sometimes indirectly, through the speech acts performed. These yield partial CP-
nets, which provide a compact and efficient method for computing how prefer-
ences influence each other. Our study of 100 dialogues in the Verbmobil corpus
can be seen as a partial vindication of using CP-nets to represent preferences.

1 Introduction

It is well accepted that dialogues are structured by various moves that the participants
make—e.g., answering questions, asking follow-up questions, elaborating and defend-
ing prior claims, and so on. Such moves often affect the way interlocutors view a
speaker’s preferences and consequently influence how they respond. Dialogue (1) from
the Verbmobil corpus [13] illustrates this.

(1) π1 A: Shall we meet sometime in the next week?
π2 A: What days are good for you?
π3 B: Well, I have some free time on almost every day except Fridays.
π4 B: Fridays are bad.
π5 B: In fact, I’m busy on Thursday too.
π6 A: Well next week I am out of town Tuesday, Wednesday and Thursday.
π7 A: So perhaps Monday?

Intuitively, A’s question π1 reveals his preference for meeting next week but it does
so indirectly: the preference is not asserted and accordingly responding with I do too
(meaning “I want to meet next week too”) would be highly anomalous. Nevertheless,
B’s response π3 to π5 to A’s elaborating question π2 reveals that he has adopted A’s
preference. This follows his answer π2 which specifies a non-empty extension for what
days. Semantically, inferring π3 to π5 answers A’s question and inferring that the tem-
poral expressions refer to next week are logically dependent.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 542–553, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Inferences about B’s preferences evolve as he gives his extended answer: from π3

alone one would infer a preference for meeting any day next week other than Friday
and its explanation π4 would maintain this. But the continuation π5 compels A to revise
his inferences about B’s preference for meeting on Thursday. These inferences about
preferences arise from both the content of B’s utterances and the semantic relations
that connect them together. A’s response π6 reveals he disprefers Tuesday, Wednesday
and Thursday, thereby refining the preferences that he revealed last time he spoke. A’s
follow-up proposal π7 then reinforces the inference from π6 that among Monday, Tues-
day and Wednesday—the days that B prefers—A prefers Monday. This may not match
his preferred day when the dialogue started: perhaps that was Friday. Further dialogue
may compel agents to revise their preferences as they learn about the domain and each
other.

The dialogue moves exhibited in (1) are typical of the Verbmobil corpus, and we
suspect typical also of task-oriented dialogues generally. [3] annotated 100 randomly
chosen dialogues from the Verbmobil corpus with their discourse structure according to
Segmented Discourse Representation Theory (SDRT, [2,1])—these structures represent
the types of (relational) speech acts that the agents perform. According to this labelled
corpus, 40% of the discourse units are either questions or assertions that help to elabo-
rate a plan to achieve the preferences revealed by a prior part of the dialogue—these are
marked respectively with the discourse relations Q-Elab and Plan-Elab in SDRT, and
the interpretations of utterances π2, π6 and π7 and the segment π3–π5 in dialogue (1)
invoke these relations (see Section 2)). Moreover, 10% of the moves revise or correct
preferences from the context (like π5 in (1)); and 15% of them explain prior content or
prior moves (like π4 in (1)). The remaining 35% are not pertinent to our modeling of
preferences.

Inferring an agents’ preferences from the speeh acts they perform is an important task
because preferences are crucial for planning appropriate conversational moves, ensuring
that responses in dialogue remain relevant and natural. We will model the interaction
between dialogue content in dialogues of the Verbmobil corpus and preferences using
(partial) CP-nets. These allow us to exploit dependencies between dialogue moves and
mental states in a compact and intuitive way. But we start by motivating and describing
the semantic representation of dialogue from which CP-nets will be constructed.

2 The Logical Form of Dialogue

Agents express commitments to beliefs and preferences through the speech acts they
perform [7]. It is these commitments that concern us here, but in what follows we shall
treat a commitment to a preference (or a belief) as an actual preference (or belief).

Our starting point is the aforementioned theory of discourse interpretation SDRT [1].
Like many theories [8,10], it structures discourse into units that are linked together with
rhetorical relations such as Explanation, Question Answer Pair (QAP), Q-Elab, Plan-
Elab, and so on. Logical forms in SDRT consist of Segmented Discourse Representation
Structures (SDRSs). As shown in Def. 1, an SDRS is a set of labels each representing
a unit of discourse, and a mapping from each label to an SDRS-formula representing
its content—these formulas are based on those for representing clauses or elementary
discourse units (EDUs) plus rhetorical relation symbols between labels:
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Table 1. The DSDRS for Dialogue (1)

Turn A’s SDRS B’s SDRS

1 π1A : Q-Elab(π1,π2) /0
2 π1A : Q-Elab(π1,π2) π2B : Q-Elab(π1,π2)∧QAP(π2,π)∧Plan-Elab(π2,π)

π : Plan-Correction(π′,π5)
π′ : Explanation(π3,π4)

3 π3A : Q-Elab(π1,π2)∧QAP(π2,π)∧ π2B : Q-Elab(π1,π2)∧QAP(π2,π)∧Plan-Elab(π2,π)
Plan-Elab(π2,π)∧Plan-Elab(π1,π6)∧ π : Plan-Correction(π′,π5)

Plan-Elab(π1,π7)∧Plan-Elab(π6,π7) π′ : Explanation(π3,π4)

Def. 1: An SDRS is a pair 〈Π,F 〉,1 where Π is a set of labels; and F : Π −→
SDRS-formulas, where:

– If φ is an EDU-formula, then φ is an SDRS-formula.
– If π1, . . . ,πn are labels and R is an n-ary rhetorical relation, then R(π1, . . . ,πn) is

an SDRS-formula.
– If φ,φ′ are SDRS-formulas, then so are (φ∧φ′), ¬φ.

[9] represent a dialogue turn (where turn boundaries occur whenever the speaker changes)
as a set of SDRSs—one for each agent representing all his current commitments, from
the beginning of the dialogue to the end of that turn. The representation of the dialogue
overall—a Dialogue SDRS or DSDRS—is that of each of its turns. Each agent constructs
the SDRSs for all other agents as well as his own. For instance, (1) is assigned the DS-
DRS in Table 1, with the content of the EDUs omitted for reasons of space.2 We adopt a
convention of indexing the root label of the nth turn, spoken by agent d, as nd; and π : φ
means F (π) = φ.

A’s SDRS for turn 1 in Table 1 commits him to ‘caring’ about the answer to the
two questions π1 and π2 (because Q-Elab is veridical). We take π1 to commit A to
the implicature that he prefers to meet next week. And Q-Elab(π1,π2) entails that any
answer to π2 must elaborate a plan to achieve the preference revealed by π1; this makes
π2 paraphrasable as “What days next week are good for you?”, which doesn’t add new
preferences. B’s contribution in the second turn attaches to π2 with QAP; also Plan-
Elab because of its non-empty extension for what days. [9] argue that this means that
B is also committed to the illocutionary contribution of π2, as shown in Table 1 by the
addition of Q-Elab(π1,π2) to B’s SDRS. This addition commits B also to the preference
of meeting next week, with his answer making the preference more precise: π3 and
π4 reveal that B prefers any day except Friday; but with π5 he retracts the preference
for Thursday. A’s third turn exploits B’s answer to identify a time to meet: his Plan-
Elab move π6 reveals he disprefers Tuesday through Friday; and the suggestion π7 is a
solution to the constraints imposed by his preferences, which have evolved through the
dialogue.

1 We omit the distinguished label Last from [1] as it plays no role here.
2 We also ignore here how to construct this DSDRS from linguistic form and context; see [9] for

details.
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3 CP-Nets

We saw earlier that dialogue reveals information about preferences. These preferences
influence subsequent utterances—people plan strategically so as to achieve outcomes
that are most preferred. So in addition to a method for computing preferences from
dialogue, we also need a method for computing which of all possible outcomes is the
most preferred. We will use CP-nets [4,5] for this.

A CP-net offers a compact representation of preferences. This graphical model
exploits conditional preferential independence so as to structure the decision maker’s
preferences under a ceteris paribus assumption. Representing dependencies among
preferences while also exploiting their independence when appropriate is a major mo-
tivation for using CP-nets in our framework. As we shall demonstrate in Section 5,
CP-nets have a major advantage for us in that it is relatively straightforward to build a
CP-net compositionally from a DSDRS, exploiting recursion over SDRSs.

Although CP-nets generally consider variables with a finite range of values, for sim-
plicity we consider here only propositional variables with binary values (think of each
variable as the description of an action that an agent can choose to perform, or not).
Moreover, we also introduce indifference relations in these CP-nets, that is the possibil-
ity to be indifferent between both values of a variable. More formally, let V be a finite
set of propositional variables and LV the language built from V via Boolean connectives
and the constants- (true) and ⊥ (false). Formulas of LV are denoted by φ,ψ, etc. 2V is
the set of interpretations for V , and as usual for M ∈ 2V and x ∈ V , M gives the value
true to x if x ∈ M and false otherwise. Let X ⊆ V . 2X is the set of X-interpretations.
X-interpretations are denoted by listing all variables of X , with a ¯ symbol when the
variable is set to false: e.g., where X = {a,b,d}, the X-interpretation M = {a,d} is
denoted abd.

A preference relation * is a reflexive and transitive binary relation (not necessarily
complete) on 2V . Where M,M′ ∈ 2V , as usual, strict preference M)M′ holds iff M*M′
and not M′ *M.

As we stated earlier, CP-nets exploit conditional preferential independence to com-
pute a preferential ranking over outcomes:

Def. 2: Let V be a set of propositional variables and {X ,Y,Z} a partition of V . X is
conditionally preferentially independent of Y given Z if and only if ∀z∈ 2Z, ∀x1,x2 ∈ 2X

and ∀y1,y2 ∈ 2Y we have: x1y1z* x2y1z iff x1y2z* x2y2z.

For each variable X , the agent specifies a set of parent variables Pa(X) that can af-
fect his preferences over the values of X . Formally, X is conditionally preferentially
independent of V \ ({X}∪Pa(X)). This is then used to create the CP-net:

Def. 3: Let V be a set of propositional variables. N = 〈G ,T 〉 is a CP-net on V , where
G is a directed graph over V , and T is a set of conditional preference tables with
indifference CPT (Xj) for each Xj ∈ V . CPT (Xj) specifies for each instantiation p ∈
2Pa(Xj) either x j )p x j, x j )p x j or x j ∼p x j.

Exploiting the CP-net formalism and semantics enables us to “flip” the value of a vari-
able X within an outcome to obtain a different outcome, which the agent may prefer,
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disprefer or be indifferent to. An outcome o is better than another outcome o′ iff there
is a chain of flips from o′ to o which yield either preferred or indifferent outcomes,
and there is at least one improving flip. This definition induces a partial order over the
outcomes.

Despite their many virtues, classical CP-nets won’t do for representing the prefer-
ences expressed in dialogue. Suppose an agent says “I want to go to the mall to eat
something”. We can infer from this that he prefers to go to the mall given that he wants
to eat, but we do not know his preferences over “go to the mall” if he does not want to
eat. We thus need partial CP-nets. A partial CP-net, as introduced by [11], is a CP-net
in which some features may not be ranked. Partiality forces us to relax the semantics:

– An improving flip in a partial CP-net changes the value of a variable X such that:
if X is ranked, the flip is improving with respect to (wrt) the CPT of X ; and if X is
not ranked, it is improving wrt the CPT of all features that depend on X .

– An indifferent flip changes the value of a variable X such that: if X is ranked, the
flip is indifferent in CPT (X); otherwise wrt all CPT, the change in the value of X
leaves the outcome in the same position.

– Incomparable flips are all those flips which are neither worsening, nor improving,
nor indifferent.

As before, an outcome o is preferred to outcome o′ (o ) o′) iff there is a chain of flips
from o′ to o which are all improving or indifferent, with at least one improving one.
An outcome o is indifferent wrt o′ (o ∼ o′) iff at least one chain of flips between them
consists only of indifferent flips. o is incomparable to o′ iff none of o ) o′, o′ ) o or
o∼ o′ hold.

Unlike classical CP-nets, partial CP-nets with indifference can have more than one
optimal outcome even if their dependency graph is acyclic. However, we can still easily
determine a best outcome, using the forward sweep procedure [4] for outcome opti-
mization (this procedure consists in instantiating variables following an order compat-
ible with the graph, choosing for each variable (one of) its preferred value given the
value of the parents).

Partial CP-nets are expressive enough for the examples we have studied in the Verb-
mobil corpus. Section 5 will show how discourse structure typically leads to a depen-
dence among preferences that is similar to the one exploited in CP-nets.

4 From EDUs to Preferences

Speech acts are relations between sets of commitments, just as factual statements in dy-
namic semantics are relations between information states. While some speech acts, like
greetings, don’t affect preference commitments, many speech acts do affect them, as we
have seen. We must therefore extract (commitments to) preferences from speech acts.
We will compute preferences in two stages: we extract them from EDUs; and modify
them recursively via the discourse structure (see Section 5).

EDUs include what we call atomic preference statements (e.g., I want X or We need
X). They can be complex, expressing boolean combinations of preferences (e.g. I want
X and Y ); they can also express preferences in an indirect way (e.g., interrogatives like
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Shouldn’t we go home now? or expressions of sentiment or politeness). We regiment
such complexities via a function P that recursively exploits the logical structure of an
EDU’s logical form to produce a boolean preference representation (BPR), expressed as
a propositional formula. For the purposes of this paper, we define the BPR output of P
manually, although in principle it is possible to learn this mapping from labelled corpus
data. This BPR will then affect preferences expressed as partial CP-nets (see Section 5).

SDRT’s description logic (glue logic or GL) is designed to express statements about
the logical structure of SDRS-formulae, and so we use it here to define the function P.
Formulae in GL partially describe DSDRSs in general, and the formulae associated with
EDUs in particular. For instance, π : Not(π1) means that the label π in the DSDRS being
described is associated with a formula ¬φπ1 , where ¬ is the constructor from the SDRS

language that’s denoted by Not, and φπ1 is the SDRS-formula associated with π1. We
define P recursively over these GL-formulae.

We treat disjunction non-exclusively: i.e., I want X or Y means I prefer one of the
literals or both. If the preference is exclusive, we rely on model constraints to rule
out states where X and Y are satisfied. Conjunctions are ambiguous with respect to
preferences, but in certain cases we can resolve the ambiguity. I want X and Y can
mean that my most preferred state is one where both X and Y are satisfied, but I would
still prefer to satisfy one of them to neither being satisfied. This disambiguation for and
will be represented with the GL predicate &. On the other hand, this EDU could mean
that I prefer the “fusion” of X and Y while not preferring either X or Y separately; we
mark this in GL with ∧. A final case has to do with questions. Although not all questions
entail that their author commits to a preference, in many cases they do. That is, if A asks
can we meet next week? he implicates a preference for meeting. For negative and wh-
interrogatives, the implication is even stronger. This yields the following axioms in GL

for mapping EDUs to a BPR:

1. P(π) = Xπ for atomic π
2. π : Not(π1)→ P(π) = ¬P(π1)
3. π : Or(π1,π2)→ P(π) = P(π1)∨P(π2)
4. π : &(π1,π2)→ P(π) = P(π1)&P(π2)
5. π : ∧(π1,π2)→ P(π) = P(π1)∧F(π2)
6. π :?(π1)→ P(π) = P(π1)
7. π :?(¬π1)→ P(π) = P(π1)

5 From Discourse Structure to Preferences

We now define how to update CP-nets representing an agent’s preferences with the BPRs
of EDUs and by discourse structure. More formally, we define a function Commit from a
label π or discourse relation R(π1,π2) and a contextually given CP-net N to an updated
CP-net. We focus here on the relations that are prevalent in the Verbmobil corpus (see
Section 1).

Below, X denotes a propositional variable and φ a propositional formula from BPR.
Var(φ) are the variables in φ, and )X the preference relation associated with CPT (X).
Sat(φ) is a conjunction of literals from Var(φ) that satisfy φ, while non-Sat(φ) is a
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conjunction of literals from Var(φ) that do not satisfy φ. Sat(φ)−X is the formula that
results from removing the conjunct with X from Sat(φ).

1. Where P(π) = X (e.g., I want X), Commit(π,N ) updates N by adding X ) X .
2. Where P(π) = φ∧ψ (the agent prefers both φ and ψ, but is indifferent if he can’t

have both), Commit(π,N ) updates N as follows:
– For each X ∈Var(φ), add Var(ψ) to Pa(X) and modify CPT (X) as follows:

a. If Sati(ψ), Sat j(φ) 2 X (resp. X), then Sati(ψ), Sat j(φ)−X : X ) X (resp.
X ) X), for all satisfiers i and j.

b. If Sati(ψ), Sat j(φ) �2 X and �2 X , then Sati(ψ), Sat j(φ)−X : X ∼ X , for all
satisfiers i and j

c. non-Sati(ψ), Sat j(φ)−X : X ∼ X and Sati(ψ), non-Satj(φ)−X : X ∼ X
for all satisfiers i and j

– Similarly for each Y ∈Var(ψ).
Where φ and ψ are literals X and Y , this rule yields the following: X : Y ) Y ,
X : Y ∼Y . Y : X ) X , Y : X ∼ X .
And we obtain the following preference relation:

XY

XY XY XY
Even though the dependencies are cyclic here, the use of indifference allows us to
find the best outcome XY easily.

3. P(π) = φ&ψ (the agent prefers to have both φ and ψ and prefers either one if he
can’t have both). We use a similar definition to that for ∧, where if φ and ψ are
literals X and Y we get Y ) Y and X ) X .
We obtain the following preference relation:

XY
XY XY

XY
4. P(π) = φ∨ψ (the agent prefers to have at least one of φ and ψ satisfied). The

definition is similar to that for ∧, where if φ and ψ are X and Y , we get:
– Var(X) ∈ Pa(Var(Y)) and X : Y ∼ Y , X : Y ) Y .
– Var(Y ) ∈ Pa(Var(X)) and Y : X ∼ X , Y : X ) X .

We have the following preference relation:
XY

XY XY XY

As before, the use of indifference allows us to find the best outcomes (XY , XY and
XY ) easily.

Due to lack of space, we won’t describe rule for P(π) = ¬φ.

Iexplanation. Iexplanation(π1,π2), as illustrated with example (2), means that P(π1)
(here, going to the mall) is causally dependent upon P(π2) (eating something).

(2) π1 I want to go to the mall
π2 to eat something

Being a veridical relation (and assuming that a commitment to content implies a com-
mitment also to the preferences expressed by it), Commit(Iexplanation(π1,π2),N )
starts by applying Commit(π2, Commit(π1,N )) to the contextually given CP-net N .
Then, the preferences arising from the illocutionary effects of Iexplanation, given its
semantics, must ensure that CPTs are modified so that each variable in P(π1) depends
on each variable in P(π2): i.e., ∀X ∈ Var(P(π1)), ∀Y ∈ Var(P(π2)), Y ∈ Pa(X). So,
∀X ∈Var(P(π1)), CPT (X) is constructed by simply adding all conjunctions Sat(P(π2))
to the conditional part of CPT (X). On the other hand,)X when the condition includes
non-Sat(P(π2)) is undefined (i.e., we don’t know preferences on X if P(π2) is false).
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For example, let P(π1) = X ∨ Z and P(π2) = Y . That is, the agent explains his
preferences on X ∨ Z by Y : he wants either X or Z if Y is satisfied. We first apply
Commit(Y,Commit(X ∨Z,〈 /0, /0〉)). By rules 4 and 1, we obtain:

– X ∈ Pa(Z) and X : Z ∼ Z, X : Z ) Z.
– Z ∈ Pa(X) and Z: X ∼ X , Z: X ) X .
– Y ) Y

Then, the rule for Iexplanation modifies CPT (X) and CPT (Z):

– Y ∈ Pa(X) and Z∧Y :X ∼ X , Z∧Y : X ) X .
– Y ∈ Pa(Z) and X ∧Y :Z ∼ Z, X ∧Y : Z ) Z.

This yields the following, partial, preference relation. As we
do not have any information on the preference on X and Z if
Y is false, the states in which Y is false are incomparable, as
required.

XY Z

XY Z

XY Z

XY Z

XY ZXY Z

XY ZXY Z

The causal dependence in Iexplanation is very close to the logical dependence exhibited
in an Elab:

(3) π1 I want wine
π2 I want white wine

That is, a preference for white wine depends on a preference for wine. This leads us to
the following Elab rule: Commit(Elab(π1,π2),N ) = Commit(Iexplanation(π2,π1),N )
when π1 and π2 express a preference (i.e., P(π1) and P(π2) are defined); otherwise there
is no modification of the given CP-net.

Plan-Elab. Marks those cases where the second term of the relation details a plan to
achieve the preferences expressed in the first term (see Table 1). So Commit(Plan-Elab
(π1,π2),N ) = Commit(Elab(π1,π2),N ).

We now turn to questions.

Q-Elab. Q-ElabA(π1,π2) implies that the speaker A who utters the question π2 takes
over the preferences expressed in π1 (in future, we may often identify the agent who’s
committed to the speech act as a subscript on the relation, as done here). More for-
mally, Q-ElabA(π1,π2) implies that we update A’s CP-net N by applying the rule
for Elab(π1,π2), where if π2 expresses no preferences on their own, we simply set
P(π2) = P(π1). Note that this means that A’s CP-net is updated with the preferences
expressed by utterance π1, regardless of who said π1.

QAP. Answers to questions affect preferences in complex ways. The first case concerns
yes/no questions and there are two cases, depending on whether B replies yes or no:

Yes QAPB(π1,π2) where π2 is yes. B’s preferences N are updated by applying Commit
(ElabB(π1,π2),N ) (and so B’s preferences include those expressed by π1 and π2).

No QAPB(π1,π2) where π2 is no. If P(π1) and P(π2) are consistent, then B’s prefer-
ences N are updated by applying CommitB(ElabB(π1,π2),N ); if they are not con-
sistent, B’s preferences are updated by applying Commit(Plan-Correction(π1,π2),
N ) (see below).
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Now consider QAPB(π1,π2), where π1 is a wh-question. Then B’s preferences over
variables in π1 and π2 are exactly the same as the ones defined for a yes/no question
where the answer is yes: variables in π2 will refine preferences over variables in π1. So,
B’s preferences N are updated by applying CommitB(ElabB(π1,π2),N ).

Alternatives. The last and most complex sort of question and answer pair involves
so called alternative questions such as would you like fish or pizza? Suppose agent A
asks B an alternative question π1 involving n variables. Then B’s answer QAPB(π1,π2)
provides information about B’s preferences. Suppose π2 : &(Xi, . . .Xn). Intuitively, this
response provides several answers as good as any other: for i≤ j≤ n, B wants to satisfy
the literal Xj. Therefore, we add the following preferences for each Xj, or we change
the existing preferences if appropriate: Pa(Xj) = /0 and Xj ) Xj.

Plan-Correction. may affect preferences in several ways. For example, it can correct
what variables are operative. That is, given Plan-Correction(π1,π2), some variables
in P(π1) are replaced by variables in P(π2). We have a set of rules of the form X ←
{Y1, . . . ,Ym}, which means that the variable X ∈ Var(P(π1)) is replaced by the set of
variables {Y1, . . . ,Ym} ⊆Var(P(π2)). We assume that X cannot depend on {Y1, . . . ,Ym}
before the Plan-Correction is performed. Then replacement proceeds as follows:

6. If Pa(X) = /0, we add Yk )Y k for all k ∈ {1, . . . ,m} and remove X ) X (or X ) X).
Otherwise, we replace every preference statement in CPT (X) with an equivalent
statement using Yk (to create CPT (Yk)), for all k ∈ {1, . . .m}.

7. For all W such that Var(X) ∈ Pa(W), we re-define CPT (W ) so that every occur-
rence of X and X is replaced by a set of k statements where each statement replaces
replaces X with X respectively with

∧
1≤k≤mYk and

∨
1≤k≤m Yk.

Plan-Corrections, like the one in (1), can also remove certain options from consideration
in realizing a particular plan or it can put certain options into play that were previously
excluded. In particular, suppose, π1 countenances k options X1, . . . ,Xk and rules out n
options Y1, . . . ,Yn; thus, P(πi) =

∨
1≤i≤k Xi∧∧1≤r≤n¬Yr. Suppose π2 removes an option

Xm from π1. Then we must replace P(π1) with
∨
{1≤i≤k\{m}}Xi ∧ (

∧
1≤r≤n¬Yr)∧¬Xm.

The rule for putting an option into play that was previously excluded is similar; one
removes one of the conjuncts in P(πi) and adds to the disjunction. It seems impossible
to state the effects of Plan-Correction without the level of boolean preference represen-
tations afforded by the function P; we have not found a way to modify CP-nets directly.

6 Treatment of Our Example

Dialogue (1) illustrates how our rules work to refine preferences as conversation pro-
ceeds. While this dialogue doesn’t feature all of our rules, other examples in the Verb-
mobil corpus verify the other rules.

π1 A: Shall we meet sometime in the next week?
CommitA(π1,〈 /0, /0〉) = P(π1) = M, where M means Meet.

M M )M

Fig. 1. A’s preferences
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π2 A: What days are good for you?
Q-Elab(π1, π2). A continues to commit to M on π2 and no new preferences are
introduced by π2 (i.e. P(π2) = P(π1)).

π3 B: Well, I have some free time on almost every day except Fridays.
π4 B: Fridays are bad.

π4 is linked to π3 with explanation, but this has no effect on preferences. In π3, B
says he has some free time on Monday, Tuesday, Wednesday and Thursday (and
so can meet on these days); he does not want to meet on Friday. So, we update B’s
CP-net 〈 /0, /0〉 with Q-Elab(π1,π2) and then QAP(π2,π3), where P(π3) = (J1∨J2∨
J3∨ J4)∧¬J5, with J1 being Monday, J2 Tuesday, J3 Wednesday, J4 Thursday and
J5 Friday. Where I = {1,2,3,4,5} this update yields:

M

J1

J2 J3 J4

J5

M )M

M∧ (
∨

i∈I\{1} Ji) : J1 ∼ J1

M∧ (
∧

i∈I\{1} Ji) : J1 ) J1

M∧ (
∨

i∈I\{2} Ji ) : J2 ∼ J2

M∧ (
∧

i∈I\{2} Ji) : J2 ) J2 M∧ (
∨

i∈I\{3} Ji) : J3 ∼ J3

M∧ (
∧

i∈I\{3} Ji) : J3 ) J3

M∧ (
∨

i∈I\{4} Ji) : J4 ∼ J4

M∧ (
∧

i∈I\{4} Ji) : J4 ) J4

M∧ (
∨

i∈I\{5} Ji) : J5 ) J5

M∧ (
∧

i∈I\{5} Ji) : J5 ∼ J5

Fig. 2. B’s preferences

π5 B: In fact, I’m busy on Thursday too.
This is a Plan-Correction with P(π5) = ¬J4, and thus J4 ← ¬J4. Thus J4 is no
longer an option. The above rule for updating a CP-net N with this dialogue move
Plan-Correction(π,π5) (where π outscopes π3 and π4) therefore removes the dis-
junct J4 from the BPR for the first argument π, and adds the conjunct¬J4. The effect
of the resulting BPR is this update to B’s CP-net:

M

J1

J2 J3 J4

J5

M )M

M∧ (
∨

i∈I\{1} Ji) : J1 ∼ J1

M∧ (
∧

i∈I\{1} Ji) : J1 ) J1

M∧ (
∨

i∈I\{2} Ji ) : J2 ∼ J2

M∧ (
∧

i∈I\{2} Ji) : J2 ) J2 M∧ (
∨

i∈I\{3} Ji) : J3 ∼ J3

M∧ (
∧

i∈I\{3} Ji) : J3 ) J3

M∧ (
∨

i∈I\{4} Ji) : J4 ) J4

M∧ (
∧

i∈I\{4} Ji) : J4 ∼ J4

M∧ (
∨

i∈I\{5} Ji) : J5 ) J5

M∧ (
∧

i∈I\{5} Ji) : J5 ∼ J5

Fig. 3. B’s preferences

π6 A: Well next week I am out of town Tuesday, Wednesday and Thursday.
The above rule for updating A’s prior CP-net (see Figure 1) with Plan-Elab(π1,π6),
where P(π6) = ¬J2∧¬J3∧¬J4, yields the following CP-net.

M

J2 J3 J4

M )M

M∧ (
∨

i∈{3,4} Ji) : J2 ∼ J2

M∧ (
∧

i∈{3,4} Ji) : J2 ) J2 M∧ (
∨

i∈{2,4} Ji) : J3 ∼ J3

M∧ (
∧

i∈{2,4} Ji) : J3 ) J3

M∧ (
∨

i∈{2,3} Ji) : J4 ∼ J4

M∧ (
∧

i∈{2,3} Ji) : J4 ) J4

Fig. 4. A’s preferences
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π7 A: So perhaps Monday?
Commit updates the CP-net in Figure 4 with the move Q-Elab(π1,π7), where P(π7)
= J1. Using the same rules as before this yields:

M
J1

J2 J3 J4

M )M

M : J1 ) J1

M∧ (
∨

i∈{3,4} Ji) : J2 ∼ J2

M∧ (
∧

i∈{3,4} Ji) : J2 ) J2 M∧ (
∨

i∈{2,4} Ji) : J3 ∼ J3

M∧ (
∧

i∈{2,4} Ji) : J3 ) J3

M∧ (
∨

i∈{2,3} Ji) : J4 ∼ J4

M∧ (
∧

i∈{2,3} Ji) : J4 ) J4

Fig. 5. A’s preferences

Our rules suffice to analyse the dialogues we have examined from the Verbmobil corpus.
We have also analyzed examples from a tourism corpus where our rules suffice to extract
preferences.

7 Conclusion

Computing preferences expressed in texts is important for many NLP applications. We
have shown how to use CP-nets and models of discourse structure, together with the
intermetiate level BPR, to investigate this task formally. Our rules for preference mod-
elling are straightforward, intuitive and of low complexity. While CP-nets can loose
their polynomial time complexity for computing best outcomes, if conjunctive (∧) or
disjunctive (∨) preferences occur, on the whole the formalism remains tractable. Once
we can extract preferences, we are in a position to broaden current analyses of dia-
logue beyond the usual Gricean cooperative settings [6], in which agents’ preferences
are assumed to be aligned, and to use game-theoretic techniques to analyze strategic
conversations, in which preferences are not aligned or not known to be aligned. Thus,
our work here opens a way to attack the complex interaction between what agents say,
what their preferences are, and what they take the preferences of other dialogue agents
to be. Of course, all this depends on extracting discourse structure from text, which has
proved to be a difficult task. Nevertheless [3,12] show how one can begin to extract
discourse structure automatically from texts like those found in the Verbmobil corpus.
So we hope that our proposal will eventually find its way into automatic systems. In
any case, our formal approach serves as a model for what such systems should aim to
accomplish with respect to preference modeling.
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Abstract. Dung’s argumentation developed in Artificial Intelligence is
based on a binary attack relation. An important particular case arises
when there is a Boolean preference relation between the arguments. We
propose to extend this argumentation framework to a fuzzy preference
relation. This implies that an argument can attack another one to a
certain degree. It turns out that the acceptability semantics in this new
framework can be obtained in two ways: either from the concept of fuzzy
kernel defined in fuzzy preference modeling, or from the acceptability
semantics defined on weighted attack relations. Finally, we obtain some
requirements on the fuzzy preference relation in the case when it shall
be constructed from weights assigned to the arguments.

1 Introduction

Argumentation as developed in Artificial Intelligence is a model for reasoning
about an inconsistent knowledge. It consists first in constructing arguments, de-
termining conflicts between them, identifying acceptable ones and finally draw-
ing conclusions. Argumentation can be used in many fields such as autonomous
agent, decision making and non-monotonic reasoning. Dung has proposed an
abstract argumentation framework that is composed of a set of arguments and a
binary relation which is interpreted as an attack relation between arguments [4].
Dung’s argumentation framework relies on two principles to define sets of accept-
able arguments called acceptable extensions. An extension should be conflict-
free, i.e., there are no arguments in the extension related by the attack relation.
An extension should also defend each of its arguments, i.e., if an argument in the
extension is attacked then there is an argument in the extension that attacks the
attacker argument. This framework has been instantiated to take into account
the importance of the arguments, yielding several preference-based argumenta-
tion frameworks [10,1,2,7].
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In the previous frameworks, the preference relation is Boolean. We are in-
terested in this paper to extend these frameworks to fuzzy preference relations.
This implies that the attack between arguments becomes fuzzy. Dung’s frame-
work has already been extended to weighted attack relations [9,5]. We instantiate
this to the case where a fuzzy preference relation exists. In Section 4, we wish to
define acceptable arguments from a fuzzy attack relation. We investigate two al-
ternative ways. The idea behind the first one is to exploit the similarity between
argumentation framework and preference modeling (see Section 4.1). The stable
extensions in argumentation are similar to the kernels in preference modeling
[3]. The stable extensions of a fuzzy argumentation framework can be defined as
the fuzzy kernels of an associated fuzzy preference framework. The idea of the
second way comes from [9] namely a subset A defends an argument a against
the attack of an argument b if the intensity of the attack of A over b is larger
than that of b over a. Once this central concept is re-defined, the acceptability
semantics is defined as in the standard case.

In practice, the arguments are often constructed from a set of propositional
logic formulas [10], and the preference relation on the arguments is then usually
derived from some weights associated to these formulas. Section 5 focuses on
this particular situation. We compare the notion of defense in the crisp and
the fuzzy preference-based argumentation frameworks. From this comparison,
we show that some requirements on the construction of the fuzzy preference
relation from the weights on the arguments can be derived.

2 Background

2.1 Preference Modeling

A preference framework is a tuple 〈D,)〉, where D is a finite set of alternatives
and ) is a binary relation over D. Relation x ) y (with x, y ∈ D) means that
x is strictly preferred to y. The binary relation ) is usually supposed to be an
order, i.e. it is antisymmetric and transitive. One of the leading approaches to
identify the best alternatives given 〈D,)〉 comes from cooperative game theory
and is called the stable set (also named kernel in preference modeling) [11].

Definition 1. A ⊆ D is a kernel of 〈D,)〉 if conditions (i) and (ii) hold:
(i) internal stability: �a, b ∈ A : a ) b,
(ii) external stability: ∀a ∈ D \A, ∃b ∈ A : b ) a.

2.2 Dung’s Argumentation Theory

Argumentation is a reasoning model based on constructing arguments, deter-
mining potential conflicts between them and selecting acceptable arguments. In
Dung’s framework [4], arguments are supposed to be given, and conflicts between
arguments are represented by a binary attack relation.

Definition 2. An argumentation framework (AF) is a tuple 〈A,⇀〉 where A is
a finite set (of arguments) and ⇀ is a binary (attack) relation defined on A×A.
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One then wishes to predict what would be the winning arguments in a contro-
versy dialogue based on exchanging and attacking arguments only from 〈A,⇀〉.
The outcome is sets of arguments, called extensions, that are robust against at-
tacks. We say that A defends a if ∀b ∈ A such that b ⇀ a, ∃c ∈ A such that
c ⇀ b. We say that A ⊆ A is conflict-free if there are no a, b ∈ A such that
a ⇀ b. A subset A ⊆ A is a stable extension iff it is conflict-free, it defends all
elements in A, and it attacks any argument in A \ A. The set of stable exten-
sions is denoted by Accsta(⇀). Other semantics of extensions can be found in
the literature [4].

2.3 Preference-Based Argumentation Framework

Preference-based argumentation framework [1] is an instantiation of Dung’s
framework that is based on a binary attack relation between arguments and
a preference relation over the set of arguments.

Definition 3. A preference-based argumentation framework (PAF) is a 3-tuple
〈A,�,)〉 where A is a set of arguments, � is a binary attack relation defined
on A×A and ) is a complete or partial order on A×A.

A PAF 〈A,�,)〉 is said to represent 〈A,⇀〉 (⇀ is then called a defeat) if

∀a, b ∈ A : a ⇀ b ⇐⇒ [a� b and ¬(b ) a)]. (1)

A defeat is an attack that succeeds thanks to the support of the preference
relation. The stable extensions of a PAF are simply the stable extensions of the
AF it represents.

The most usual way to construct a PAF is to start from a set K of weighted
propositional logic formulas [10]. An argument is a pair 〈H,h〉 where (1) h is a
formula of the language, (2) H is a consistent subset of K, (3) H entails h and
(4) H is minimal (i.e., no strict subset of H satisfies (1), (2) and (3)). Then for
two arguments a, b, we have a ) b iff w(a) > w(b), where w is a function of the
weights of formulas involved in the support of the argument (H is the support
of an argument 〈H,h〉).

3 Argumentation Framework with Fuzzy Attack Relation

Dung’s framework has been extended to weighted attack relations in [9,5]. We
propose the following definition that is closer to the spirit of fuzzy sets.

Definition 4. A fuzzy argumentation framework (FAF) is a tuple 〈A,Att〉
where A is the set of arguments and Att : A × A → [0, 1] is called a fuzzy
attack relation.

In [5], a weighted argumentation system is a triplet 〈A,⇀,W 〉, where⇀ is binary
attack relation and W : A × A → (0, 1] is a weight of the attacks. It is similar
to our framework with the correspondence: Att(a, b) = W (a, b) if a ⇀ b, and
Att(a, b) = 0 otherwise.
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We now extend FAF to accommodate a preference over the arguments. An
attack fails in PAF as soon as the attacked argument is strictly preferred to the
attacker one (see (1)). However this is no longer sufficient when preferences over
arguments ar graded. Rather we should state that the defeat of a over b exists
but it is somehow weak. The degree to which the defeat holds shall be based on
the intensity of preference among the arguments.

A fuzzy preference-based argumentation framework (FPAF) is a 3-tuple
〈A,�, P 〉 where A is the set of arguments, � is a binary attack relation defined
on A×A and P is a fuzzy strict preference relation. The fuzzy strict preference
relation P : A × A → [0, 1] is defined from a De Morgan triple (T, S, n) where
T is a t-norm, S is a t-conorm and n is a negation [6]. P is usually assumed to
be T -antisymmetric and T -transitive [6]. In this paper, the standard negation
n(x) = 1−x will be used. P (a, b) is the degree of credibility of the statement “a
is strictly preferred to b”. Value P (a, b) = 1 means that the previous statement
is certainly validated, P (a, b) = 0 means that the previous statement is certainly
non-validated, and P (a, b) = 1

2 means that it is unknown whether the previous
assertion is validated or not.

The simplest way to derive a Boolean relation )P from P is to use a cut [3]:

∀a, b ∈ A , a )P b iff P (a, b) >
1
2
. (2)

Given an order ), a fuzzy preference relation denoted by P� can be defined:

P�(a, b) = 1 if a ) b and P�(a, b) = 0 otherwise. (3)

Note that this definition is consistent with (2) since we have that )P�=).
Relation (1) can be easily fuzzyfied: A FPAF 〈A,�, P 〉 represents a FAF

〈A,Def 〉 iff

Def (a, b) =
{

0 if not(a� b)
1− P (b, a) if a� b

(4)

Def (a, b) is the degree of credibility of the statement “a defeats b”. The larger
Def (a, b), the larger the defeat of a on b.

4 Acceptability Semantics in FAF

Given a FAF, we now need to define ways to compute acceptability semantics.
Starting from a FPAF 〈A,�, P 〉 and the corresponding defeat relation Def

(see (4)), let us define a binary attack relation⇀Def from the Boolean order )P

(see (2)) in such a way that 〈A,�,)P 〉 represents 〈A,⇀Def 〉. Then for a, b ∈ A,
a ⇀Def b iff [a � b and ¬(b )P a)] iff [a � b and P (b, a) ≤ 1

2 ] iff [a � b and
1− P (b, a) ≥ 1

2 ] iff Def (a, b) ≥ 1
2 . Hence

∀a, b ∈ A, a ⇀Def b iff Def (a, b) ≥ 1
2
. (5)
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4.1 FAF vs. Fuzzy Preference Modeling

Dung [4] has shown a strong relationship between AF and preference framework
in the crisp case. This relationship mainly relies on the correspondences between
internal (resp. external) stability in preference modeling and conflict-free (resp.
attack of external elements) in AF. See Table 1 for a complete picture of these
correspondences. The assumptions made on the attack relation and the binary
preference relation are different. But this is minor. On the other hand, we know
that internal and external stability are also defined in fuzzy preference modeling
[3]. They define to which degree a set is a kernel. Thus the extensions of FAF can
be defined by translating the notions of internal, external stability and kernel
from fuzzy preference modeling to FAF. Let us establish such a translation.

Table 1. Correspondences between Dung’s AF and crisp preference modeling

Argumentation Preference Modeling
Argument Alternative/choice

Attack relation binary preference relation
Conflict-free Internal stability

Attack all external elements External stability
Stable extension Stable sets / Kernel

Let P be a fuzzy strict preference relation over a set D. In fuzzy preference
modeling [3], the degree to which a set A is a kernel combines the internal
stability index

Δint
D,P (A) = min

b∈A
min

a∈A\{b}
(1− P (a, b)), (6)

and the external stability index

Δext
D,P (A) = min

a∈D\A
max
b∈A
P (b, a). (7)

These two degrees clearly extend the concepts of internal and external sta-
bility given in Definition 1. The degree to which the subset A is a kernel is
ΔD,P (A) = min(Δint

D,P (A), Δext
D,P (A)). The kernels of 〈D,P 〉 are

K(〈D,P 〉) = {A ⊆ D | ΔD,P (A) >
1
2
}. (8)

Translating the above notions to FAF consists in replacing P in equations (6) and
(7) by Att . Therefore Δint

A,Att (A) (resp. Δext
A,Att (A)) corresponds to the degree to

which A is conflict-free (resp. attacks external elements). Then, stable extensions
in a FAF 〈A,Att〉 are

K(〈A,Att〉) = {A ⊆ A | ΔA,Att (A) >
1
2
}. (9)

From [8], we have the following result:
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Proposition 1. Let 〈A,Att〉 be a FAF. Let 〈A,⇀Att 〉 be Dung’s AF, where
⇀Att is defined from 〈A,Att〉 following equation (5). Let K(〈A,Att〉) be the
stable extensions of 〈A,Att〉 following equation (9). Then,

K(〈A,Att〉) ⊆ Accsta(⇀Att ).

It is important to notice that when the fuzzy relation Att never takes the inde-
terminate value 1

2 (i.e. Att(a, b) �= 1
2 for all a, b ∈ A), then we have K(〈A,Att〉) =

Accsta(⇀Att ) in Proposition 1 [3]. However this is rather an undesirable result
since it means that the use of a fuzzy attack relation brings nothing. Moreover,
it is easy to see that the elements of Accsta(⇀Att ) that are not in K(〈A,Att〉)
are the subsets A ∈ Accsta(⇀Att ) for which there exists a, b ∈ A, a �= b such
that [a ∈ A or b ∈ A] and Att(a, b) = 1

2 . There is no intuitive reason to remove
these particular elements from Accsta(⇀Att ). As shown in the following result, a
slight modification in the definition of K(〈A,Att〉) suffices to obtain an equality
with Accsta(⇀Att ). Indeed, Accsta(⇀Att ) is equal to the set of subsets A ⊆ A
such that Δint

A,Att (A) > 1
2 and Δext

A,Att (A) ≥ 1
2 .

Proposition 2. A set A ⊆ A is conflict free w.r.t. ⇀Att iff Δint
A,Att (A) > 1

2 .
Moreover, a set A attacks all external elements w.r.t. ⇀Att iff Δext

A,Att (A) ≥ 1
2 .

In the light of the above facts, we conclude that the kernel of 〈A,Att〉 or its
extension is not suitable since it does not use the richness of information con-
tained in Att . For these reasons, we do not want to continue in this direction to
compute acceptability semantics of a FAF.

4.2 Extension of the Concept of a Defense

In [9], the concept of a defense has been extended to weighted attacks. The idea
is to say that the defense provided by A in favor of a is successful if the defeat
of c on b is stronger than the defeat of b on a.

Definition 5. Let 〈A,Att〉 be a FAF. The set A ⊆ A defends a ∈ A w.r.t. Att
iff

∀b ∈ A ∃c ∈ A : Att(c, b) ≥ Att(b, a).

A subset A ⊆ A is conflict-free w.r.t. Att in the FAF 〈A,Att〉 if A is conflict-
free w.r.t.⇀Att (see (5)) in the AF 〈A,⇀Att 〉. From the concepts of defense and
conflict-free defined above, we can define in a similar way as for the Boolean case
the stable extensions. The stable extensions of a FPAF are stable extensions of
the FAF it represents.

Note that the definition of defense and conflict-free in FAF is faithful with
the crisp case. Starting from a PAF 〈A,�,)〉, we define the associated AF
〈A,⇀〉. We can also define the FPAF 〈A,�, P�〉 where P� is constructed from
) following equation (3), and the associated FAF 〈A,Def 〉. Then 〈A,⇀〉 and
〈A,Def 〉 have the same stable extensions.
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5 Existence of a Valuation of the Arguments

We assume here that a weight w : A → [0, 1] is obtained as depicted in Section
2.3, and that an attack relation � is also given. From w and �, we can construct
a PAF 〈A,�,)〉 (see Section 2.3 for the relation between ) and w). Another
possibility is to construct a FPAF 〈A,�, P 〉, where P is defined from w. We refer
to the former (resp. the latter) as the crisp (resp. fuzzy) case. In this section we
compare the notion of defense in both frameworks. From this comparison, some
requirements on the construction of P from w will be derived.

5.1 A Case Study

We assume in this section that P is defined from w in the following way:

PN(a, b) =
{

1 if w(a) > w(b)
w(a) − w(b) + 1 if w(a) ≤ w(b) (10)

The N in underscore means that PN is not constant when w(a)−w(b) is negative.
According to PN, the strict preference between two arguments a and b is certain
as soon as w(a) > w(b). Hence by Definition 4 we have

Def (a, b) =
{

0 if w(a) < w(b) or not(a� b)
w(a)− w(b) if w(a) ≥ w(b) and a� b

Let a, b and c be three arguments such that c� b and b� a. Then we have the
following five situations:

– Situation α: w(c) < w(b) < w(a). Then Def (c, b) = Def (b, a) = 0. We also
have neither b ⇀ a nor c ⇀ b since a ) b and b ) c. The crisp and fuzzy
cases yield the same conclusion: there is no defeat of b on a.

– Situation β: w(a) < w(b) and w(c) < w(b) (written in a compact way as
{w(a), w(c)} < w(b)). Then Def (c, b) = 0 and Def (b, a) > 0. We also have
b ⇀ a but not(c ⇀ b). The defense of c fails both in the crisp and the fuzzy
cases.

– Situation γ: w(b) < {w(a), w(c)} with the compact notation. We have
Def (c, b) > 0 and Def (b, a) = 0. We also have not(b ⇀ a) but c ⇀ b. Hence
c defeats b and b does not defeat a in both the crisp and the fuzzy cases.

– Situation δ1: w(a) < w(b) � w(c) which means that w(b)−w(a) < w(c)−
w(b). Hence Def (c, b) = w(c) − w(b) > Def (b, a) = w(b) − w(a). We also
have b ⇀ a and c ⇀ b. Indeed c defends a both in the crisp and the fuzzy
cases.

– Situation δ2: w(a) � w(b) < w(c), which means that w(b) − w(a) >
w(c) − w(b). Hence, Def (c, b) = w(c)− w(b) < Def (b, a) = w(b)− w(a). On
the other hand, we have b ⇀ a and c ⇀ b. Indeed the crisp and the fuzzy
cases yield different conclusions: c defends a in the crisp case but not in the
fuzzy case.
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In sum, the crisp and the fuzzy cases yield the same conclusion, except in the
fifth situation in which the defeat of b on a is large whereas the defeat of c on
b is weak. However, the intuition of the crisp case is valid: c is stronger than
both b and a, and, because of that, c deserves to defend a against the attack
of b (even if c is just slightly stronger than b). Consequently, we conclude that
the expression PN is not suitable with Definition 5. In the next subsection, we
propose a strict preference relation compatible with Definition 5.

5.2 Strict Preference P Compatible with Definition 5

In order to determine which expressions of P are compatible with Definition
5, we assume that the strict preference relation can be written as P (a, b) =
p(w(a), w(b)) where p : [0, 1]2 → [0, 1]. Function p shall be continuous, non-
decreasing in the first argument and non-increasing in the second argument.
Moreover, we have the boundary conditions:

p(0, 1) = 0 and p(1, 0) = 1.

Replacing P (b, a) by p(w(b), w(a)) in Definition 4, we get:

Def (a, b) =
{

0 if not(a� b)
1− p(w(b), w(a)) if a� b

The situation p(t, t) for t ∈ [0, 1] corresponds to two arguments a and b having
the same weight t. The degree of preference of a over b shall not depend on t.
Hence, for symmetry reasons, we assume the following condition:

∀t, v ∈ [0, 1] , p(t, t) = p(v, v). (11)

We assume that p satisfies all previous requirements.
The condition raised by the situation 5 described in Section 5.1 can be for-

malized in the following way.

Unrestricted positive defense (UPD): Let A ⊆ A, a, b ∈ A and c ∈ A. If
c� b, b� a and w(c) ≥ w(b) ≥ w(a) then c defends a against b.

One can easily show the following result.

Proposition 3. Under UPD, P (a, b) = 0 whenever w(a) ≤ w(b).

Proposition 3 shows that axiom UPD implies that the strict preference relation
P is unipolar in the sense that P takes the saturation value 0 whenever w(a) ≤
w(b). Expression (10) is ruled out by Proposition 3. From Proposition 3, there is
no way the statement ”a is strictly preferred to b” is validated when w(a) < w(b).
By continuity, when w(a) is slightly larger than w(b), then the credibility of the
previous statement is still low. One is sure about the credibility of this assertion
only when w(a) is significantly larger than w(b). The simplest expression of P
is the following one

PP(a, b) =
{

0 if w(a) < w(b)
w(a) − w(b) if w(a) ≥ w(b)
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The P in underscore means that PP has non-constant values only when
w(a)− w(b) is positive. Hence

Def (a, b) =

⎧⎨⎩
1 if w(a) > w(b) and a� b
1 + w(a)− w(b) if w(a) ≤ w(b) and a� b
0 if not(a� b)

Let us assume that c� b and b� a. Then we have the following five situations:

– Situation α1: w(c) � w(b) < w(a) (i.e. w(b) − w(c) > w(a) − w(b)). Then
we have Def (c, b) = 1 +w(c)−w(b) < Def (b, a) = 1 +w(b)−w(a). We also
have neither b ⇀ a nor c ⇀ b. Hence the crisp and the fuzzy cases yield
different conclusions: c defends a in the crisp case but not in the fuzzy case.

– Situation α2: w(c) < w(b) � w(a) (i.e. w(b)−w(c) < w(a)−w(b)). Hence
Def (c, b) = 1 + w(c) − w(b) > Def (b, a) = 1 + w(b) − w(a). We also have
neither b ⇀ a nor c ⇀ b. Hence c defends a both in the crisp and the fuzzy
cases.

– Situation β: {w(a), w(c)} < w(b). We have Def (c, b) < 1 and Def (b, a) = 1.
We also have b ⇀ a but not(c ⇀ b). The defense of c fails both in the crisp
and the fuzzy cases.

– Situation γ: w(b) < {w(a), w(c)}. We have Def (c, b) > 0 and Def (b, a) = 0.
We also have not(b ⇀ a) but c ⇀ b. Hence c defeats b and b does not defeat
a in both the crisp and the fuzzy cases.

– Situation δ: w(a) < w(b) < w(c). Hence Def (c, b) = 1 and Def (b, a) = 1.
We also have b ⇀ a and c ⇀ b. Indeed c defends a both in the crisp and the
fuzzy cases.

The situation α in Section 5.1 is decomposed in the two situations α1 and α2 in
Section 5.2. The situation δ in Section 5.2 is decomposed in the two situations δ1
and δ2 in Section 5.1. Having these correspondences in mind, we obtain different
results with PN and PP. Situation δ actually follows from UPD. In situations
α1 and α2, c is weaker than b, and b is weaker than a. Hence the defeats of c
over b, and of b over a are weak. In situation α1, w(c) � w(b) < w(a) means
that c, that is supposed to defend a, is much weaker than a and b. It is thus
reasonable that the defense of a by c fails in this case. In situation α2, condition
w(c) < w(b) � w(a) means that the weight of c is not too far from that of b
compared to a. One then may admit that c is sufficiently strong to defend a
against b. Hence the results obtained with PP are natural.

6 Conclusion

We have extended the preference-based argumentation frameworks to deal with
fuzzy preference relation. We have shown that this new framework requires to
extend the basic notions of conflict-freeness and defense in the fuzzy framework.
The intensity in the preference relation is propagated to the defeat relation: the
larger the preference between two arguments, the larger the defeat.
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The acceptability semantics in this new framework can be obtained in two
ways: either from the concept of fuzzy kernel defined in fuzzy preference modeling
[3], or from the acceptability semantics defined on weighted attack relations [9].
We have seen that the first way is not satisfactory since it does not basically
differentiate between the crisp and the fuzzy cases.

When the fuzzy preference relation is constructed from a weight function w
defined on the set A of arguments, a natural property, called UPD, comes up.
It says that the defense of an argument a by an argument b against the attack
of c shall holds whenever w(c) ≥ w(b) ≥ w(a). Then we showed that, for every
a, b, a is clearly not strictly preferred to b (i.e. P (a, b) = 0) if w(a) ≤ w(b).
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Abstract. We establish an iterative algorithm to generate for any given
reciprocal relation and any given type of transitivity fitting into the
framework of cycle-transitivity, a unique reciprocal relation that approx-
imates the given reciprocal relation and possesses the given transitivity
property. In the context of decision making, the algorithm can be used to
generate a consistent approximation of a non-consistent reciprocal pref-
erence relation.

Keywords: Consistency, cycle-transitivity, iterative algorithm, recipro-
cal relation, stochastic transitivity.

1 Introduction

Often, a decision maker is asked to express his/her preferences on a set of al-
ternatives in a pairwise manner. Preference relations are used to model this
information in decision problems of various fields, such as politics, psychology,
engineering, managment, business and economics. In the last two decades, prefer-
ence relations have received increasing attention in the literature (see e.g. [14,21]
and references therein).

Consistency is a serious challenge when dealing with decision making prob-
lems. It refers to the capability of experts to express their preferences without
contradiction. To deal with consistency, it is important to characterize what
consistency properties the preferences should comply with. In a crisp context,
the concept of consistency has traditionally been defined in terms of acyclicity.
This condition is closely related to the transitivity of the corresponding pref-
erence relation. In a graded context, the consistency properties that have been
proposed for reciprocal preference relations attempt to extend the Boolean no-
tion of transitivity of preferences. Most widespread is the property of additive
consistency [16], sometimes abusively called additive transitivity, but many al-
ternative proposals have been formulated [3,11,15,16], among which different
types of stochastic transitivity.
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Once the decision analyst has made his/her choice of consistency property,
he/she often encounters the following problems: how to repair the inconsis-
tency of preference relations and how to estimate missing values? The first
problem has been primordially dealt with in the context of additive consis-
tency [17,22]. However, the proposed algorithms usually generate consistent pref-
erence relations far from the given preference relation. Much more research has
been devoted to the second problem, mostly again in the context of additive
consistency [1,2,12,13,23].

In the present paper, we contribute to the algorithmic solution of the first
problem, where we broaden the context from additive consistency to a wide va-
riety of transitivity types. We can cover such different types of transitivity by
making use of the unifying cycle-transitivity framework, tailor-made for describ-
ing transitivity properties of reciprocal relations [7,9].

The outline of the paper is as follows. In Section 2 we briefly review the con-
cepts of transitivity and consistency of reciprocal preference relations, whereas
Section 3 contains an introduction to the cycle-transitivity framework. In Sec-
tion 4, the problem of repairing inconsistency is analyzed. In Section 5, we de-
scribe our new iterative algorithm for generating a transitive approximation of
reciprocal relations. Finally, Section 6 reports the numerical experiments we have
performed.

2 Transitivity and Consistency of Reciprocal Preference
Relations

Reciprocal preference relations have been widely used to model preferences in
decision-making problems. In that case, the scale [0, 1] is used to measure the
intensity of preference of one alternative over another [1]. A reciprocal preference
relation P on a finite set of n alternatives A = {a1, . . . an} is represented by
means of a comparison matrix P = [pij ], where every value pij represents the
preference degree or intensity of preference of alternative ai over alternative aj :
pij = 1/2 indicates indifference between ai and aj , whereas aij > 1/2 indicates
that ai is reather preferred to aj . Furthermore, it holds that pij + pji = 1, for
all i, j. In this paper we deal with reciprocal preference relations only.

The degree of consistency of a reciprocal preference relation is defined as the
degree to which it is not contradictory. Consistency is usually characterized by
a type of transitivity, which represents the idea that the degree of preference
obtained by directly comparing two alternatives should be greater than or equal
to the degree of preference between those two alternatives obtained using an
indirect chain of alternatives. In literature, different properties to model the
concept of transitivity have been suggested. We mention two types of fuzzy
transitivity, three types of stochastic transitivity and additive consistency.

(i) TL-transitivity: pik ≥ TL(pij , pjk), where TL denotes the �Lukasiewicz t-
norm, i.e. TL(x, y) = max(x+y−1, 0) for all (x, y) ∈ [0, 1]2. This transitivity
condition is equivalent with pij + pjk ≥ pik, also known as the triangle
condition.
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(ii) TM-transitivity: pik ≥ min(pij , pjk), where TM denotes the minimum opera-
tor, i.e. TM(x, y) = min(x, y) for all (x, y) ∈ [0, 1]2. This type of transitivity
is also called max-min transitivity.

(iii) Weak stochastic transitivity: min(pij , pjk) ≥ 1/2 ⇒ pik ≥ 1/2.
(iv) Moderate stochastic transitivity: min(pij , pjk) ≥ 1/2 ⇒ pik ≥ min(pij , pjk).

This type of transitivity is also known as restricted max-min transitivity.
(v) Strong stochastic transitivity: min(pij , pjk) ≥ 1/2 ⇒ pik ≥ max(pij , pjk).

This type of transitivity is also known as restricted max-max transitivity.
(vi) Additive consistency: (pij − 1/2) + (pjk − 1/2) = (pik − 1/2). Further on

we will argue that, strictly speaking, this property cannot be regarded as a
type of transitivity.

3 The Cycle-Transitivity Framework

There is lack of uniformity in the mathematical description of the types of
transitivity summed up in Section 2. In view of constructing widely applica-
ble algorithms for generating transitive reciprocal preference relations, it is ad-
vantageous to reformulate these types within a general transitivity framework.
The so-called FG-transitivity framework, established by Switalski [20], is such a
framework that has the property of yielding simple descriptions of the stochastic
transitivity types. Two of the present authors have developed a more expressive
alternative, called cycle-transitivity framework, that is tailor-made for decribing
in a uniform manner the various types of transitivity of reciprocal relations en-
countered in various domains of application. We briefly recall the fundamentals
of the cycle-transitivity framework [7,9].

For a reciprocal relation Q : A2 → [0, 1] with matrix representation [qij ] we
define the quantities

αijk = min(qij , qjk, qki) , βijk = med(qij , qjk, qki) , γijk = max(qij , qjk, qki) . (1)

Obviously, it holds that αijk ≤ βijk ≤ γijk. We introduce the notation Δn =
{(x1, x2, . . . , xn) ∈ [0, 1]n | x1 ≤ x2 ≤ · · · ≤ xn}.

A function U : Δ3 → R is called an upper bound function if it satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;
(ii) for any (α, β, γ) ∈ Δ3:

U(α, β, γ) + U(1− γ, 1− β, 1− α) ≥ 1 . (2)

The function L : Δ3 → R defined by

L(α, β, γ) = 1− U(1− γ, 1− β, 1− α) (3)

is called the dual lower bound function of a given upper bound function U .
Inequality (2) simply expresses that L ≤ U .

A reciprocal relation Q : A2 → [0, 1] with matrix representation [qij ] is called
cycle-transitive w.r.t. an upper bound function U if for any i, j, k it holds that

L(αijk , βijk, γijk) ≤ αijk + βijk + γijk − 1 ≤ U(αijk, βijk, γijk) , (4)

where L is the dual lower bound function of U .
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Note that condition (i) ensures that the reciprocal 3-valued representation
Q(a, b) = (1+R(a, b)−R(b, a))/2 of any transitive complete {0, 1}-valued relation
R is cycle-transitive w.r.t. any upper bound function.

Due to the built-in duality, it holds that if (4) is true for some (i, j, k), then
this is also the case for any permutation of (i, j, k). In practice, it is therefore
sufficient to check (4) for a single permutation of any (i, j, k). Alternatively, due
to the same duality, it is also sufficient to verify the right-hand inequality (or
equivalently, the left-hand inequality) for two permutations of any (i, j, k) not
being cyclic permutations of one another, e.g., (i, j, k) and (k, j, i).

Hence, the double inequality (4) can be replaced by

αijk + βijk + γijk − 1 ≤ U(αijk, βijk, γijk) . (5)

Note that a value of U(α, β, γ) equal to 2 will often be used to express that for
the given arguments there is no restriction at all. Indeed, α+β+ γ− 1 is always
upper bounded by 2.

We now convert the types of transitivity given in Section 2 into the cycle-
transitive framework.

(i) A reciprocal relation satisfies the triangle inequality (is TL-transitive), iff
it is cycle-transitive w.r.t. the upper bound function UL defined by UL

(α, β, γ) = 1.
(ii) A reciprocal relation is TM-transitive, iff it is cycle-transitive w.r.t. the

upper bound function UM defined by UM(α, β, γ) = β.
(iii) A reciprocal relation is weak stochastic transitive iff it is cycle-transitive

w.r.t. the upper bound function Ug, defined by

Ug(α, β, γ) =

⎧⎨⎩
β + γ − g(β, γ) , if α < 1/2 ≤ β ,
1/2 , if α ≥ 1/2 ,
2 , if β < 1/2 ,

(6)

where the [0, 1]2 → [0, 1] function g is the constant function g = 1/2.
(iv) A reciprocal relation is moderate stochastic transitive iff it is cycle-transitive

w.r.t. the upper bound function Ug, formally defined by (6) where the func-
tion g is given by g(β, γ) = min(β, γ) = β.

(v) A reciprocal relation is strong stochastic transitive if it is cycle-transitive
w.r.t. the upper bound function Ug, formally defined by (6), where the
function g is given by g(β, γ) = max(β, γ) = γ.

(vi) The function U(α, β, γ) = 1/2 is not suitable as an upper bound function as
the condition U(0, 1, 1) ≥ 1 is not satisfied. Reciprocal relations satisfying
the condition αijk + βijk + γijk = 3/2, i.e. condition (4) for this specific U ,
are called (additive) consistent in the literature [16]. Although it is often
presented as a type of transitivity, it does not deserve to be called so, as it
is even in general not satisfied by the reciprocal 3-valued representation of
a transitive complete {0, 1}-valued relation [8].
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4 Generating Transitive Approximations

Consider a reciprocal relation without missing entries and assume that the de-
cision analyst requires, for the sake of consistency, the reciprocal relation to
exhibit a prescribed type of transitivity. If the reciprocal relation does not have
this transitivity, he/she accepts to minimally modify the preference degrees w.r.t.
some loss function, such that the newly obtained reciprocal relation, regarded as
an approximation or update of the given one, has the desired transitivity. The
problem of finding an optimal transitive reciprocal approximation of a given
reciprocal relation is our main concern in this paper.

Let Q denote the given reciprocal relation and Qa a reciprocal relation that
approximates Q. As Q and Qa are reciprocal relations on a set of n > 2 alter-
natives, we define the distance between Q = [qij ] and Qa = [qaij ] as

d(Q,Qa) =
√

2
n(n− 1)

∑
i<j

(qij − qaij)2 .

Note that other definitions of a distance could be used as well.
Let Qn denote the class of all reciprocal relations on a set of n alternatives

and Qt
n the class of all transitive reciprocal relations on the same set, where

t refers to a fixed type of transitivity. Then the basic optimization problem of
interest is:

for given Q ∈ Qn find min
Qa∈Qn

d(Q,Qa) s.t. Qa ∈ Qt
n .

For n = 3, the optimization problem can be solved exactly for each type of transi-
tivity. Also, in the context of additive consistency, the problem can be solved for
any n > 3 by means of standard techniques. Indeed, the transitivity conditions
are linear, i.e. qij + qjk + qki = 3/2 and 0 ≤ qij ≤ 1, and the solution is obtained
from the Karush-Kuhn-Tucker conditions [18]. For the other types of transitivity
and for n > 4, the optimization problem becomes practically intractable and the
need emerges for constructing algorithms that generate suboptimal transitive
approximations.

With the aim of finding such an algorithm, we have put forward the following
criteria:

1. The algorithm should be an iterative algorithm applicable for any value of n.
2. The approximation generated by the algorithm should be independent of the

order in which the data are provided, i.e. changing rows and columns in the
matrix representation of the reciprocal relation should not have an influence
on the resulting approximation.

3. Reciprocity should be guaranteed at any intermediate step of the iteration
process.

4. The algorithm should converge sufficiently fast towards a suboptimal
approximation.
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Note that the elements of the approximation relation can be smaller or greater
than the corresponding elements of the given reciprocal relation. Even reversion
of preferences is not excluded. This is in contrast with many algorithms for
generating transitive symmetric approximations of symmetric fuzzy relations
which either lead to the transitive closure or a transitive opening of the given
relation (in this context one usually requires T -transitivity for some t-norm
T ) [4,5,6,10,19].

On Qn we can define a partial order ≤ by means of

∀Q,Q′ ∈ Qn : Q ≥ Q′ ⇔
{
q′ij ≥ qij , if qij ≥ 1/2 ,

q′ij ≤ qij , if qij ≤ 1/2 .

According to this order, the greatest reciprocal relation Q1/2 is represented by
a matrix with all its elements equal to 1/2. It is easily verified that Q1/2 is
transitive, irrespective of the transitivity type considered. Note that the expected
distance d(Q,Q1/2) from a reciprocal relationQ selected at random inQn toQ1/2
is 0.5. It therefore would make sense to look for transitive reciprocal closures of a
reciprocal relation, i.e. transitive approximations that are greater than the given
relation. However, in the context of decision making, forcing preferences to move
systematically in the direction of indifference entails serious loss of information;
one should therefore allow for strenghtening of preferences as well.

5 Description of the Algorithm

Assume a transitivity type has been selected, which in the cycle-transitivity
framework is characterized by an upper bound function U . Given a reciprocal
relation Q ∈ Qn (n > 2), a transitive reciprocal approximation of Q is obtained
by the application of the algorithm TRA given below. As it is an iterative
numerical algorithm, a stopping criterion must be provided. To that aim, define
the degree of non-transitivity σ(Q,U) as

σ(Q,U) = max
i,j,k

(qij + qjk + qki − 1− U(αijk, βijk, γijk)) .

and stop the iteration as soon as Qa satisfies σ(Qa, U) < ε for some given
tolerance ε.

In each iteration step of algorithm TRA, i.e. in each pass of the outer repeat
loop, two (multiple for) loops are consecutively executed. The first loop extends
over all couples (i, j). For each fixed couple (i, j) all the triplets (i, j, k) for k
running from 1 to n are considered and for each it is checked whether inequality
(5) is violated. In that case αijk + βijk + γijk − 1 − U(αijk, βijk, γijk), called
the excess in the triplet (i, j, k), is strictly positive. If the generic transitivity
condition α + β + γ − 1 ≤ U(α, β, γ) can be simplified into an inequality in
which one or two of the variables α, β, γ have disappeared, and if qij matches
with a missing variable, then qij is called inactive. Only when qij is active,
it is meaningful to lower its value in order to restore transitivity. Finally, the
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minimum excess over all triplets (i, j, k) in which qij is active, is stored in eij .
If in all the triplets (i, j, k) there is either no excess or qij is inactive, then eij
keeps its initial value 1. When the first loop has been completely executed, all
eij have been computed.

Algorithm TRA
Input: reciprocal relation Q ∈ Qn, upper bound function U ,

tolerance ε, fraction parameter λU

repeat
for i := 1 to n do for j := 1 to n do
eij := 1
for k := 1 to n do
α := min(qij , qjk, qki), β := med(qij , qjk, qki), γ := max(qij , qjk, qki)
d := α+ β + γ − 1− U(α, β, γ)
if (d > ε) and (qij is active) and (d < eij) then eij = d endif

endfor k
endfor j endfor i
for i := 1 to n do for j := 1 to n do

if eij < eji then qij := max(qij − λU eij , 0), qji := 1− qij endif
endfor j endfor i

until σ(Q,U) ≤ ε

The second loop also extends over all couples (i, j). For each (i, j), it is first
decided whether qij should be lowered or not. If eij < eji ≤ 1, the answer is
affirmative. Indeed, it is necessary that eij < 1, so that in at least one (i, j, k)
the transitivity is violated while qij is active. Two subcases can be distinguished.
Either eji = 1 and there is no necessity to lower qji, or eij < 1 and both qij and
qji should be lowered, which are conflicting requirements. Here it is opted to lower
qij when the associated minimal excess eij is strictly lower than the minimal
excess eji. Note that by lowering qij then the increase of qji can strenghten the
violation of transitivity in some triplets (j, i, k). Note also that if eij = eji then
qij and qji remain unchanged, an option that might cause a slowing effect on
the rate of convergence. On the other hand, allowing for a random choice would
no longer make the algorithm satisfy criterion 2 put forward in Section 4.

Finally, in case qij must be lowered, a fraction of the minimal excess eij is
subtracted. This fraction depends on the type of transitivity. If in the generic
transitivity condition none of the variables α, β, γ is explicitly absent (e.g. for
transitivity types (i) and (vi)), then qij is lowered by eij/3 (λ = 1/3); if one
variable is missing (e.g. for transitivity types (ii), (iv) and (v)), then qij is lowered
by eij/2 (λU = 1/2); if just one variable remains (e.g. for transitivity type (iii)),
then qij is lowered by eij (λU = 1). For the transitivity types (i)–(v) it always
holds that qij − λU eij ≥ 0. For additive consistency, being not a true type of
transitivity, the difference can become negative, in which case qij is set equal
to 0.
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6 Numerical Experiments

For all types of transitivity (i)–(vi) and for n ≤ 4, algorithm TRA generates the
optimal transitive reciprocal approximation. However, we found counterexamples
showing that, in general, this is no longer true for n > 4.

Note that for weak stochastic transitivity, algorithm TRA only needs one
iteration step to converge to the smallest solution that is greater than the given
reciprocal relation. For the other types of transitivity, a rigorous proof that
the iterative algorithm TRA always converges, has not been found so far. But
neither counterexamples have been found. In practice, a stopping criterion is
added to the algorithm that puts an upper bound on the number of iteration
steps.

Table 1. Average number of iteration steps and average distance to input matrix
obtained with algorithm TRA from 1000 experiments with random input matrices of
dimension n and elements rounded off to input precision 0.5, 0.1 and 0.001, respectively.
Property: TL-transitivity. Tolerance: ε = 10−4. Fraction parameter: λU = 1/3.

n = 5 n = 10 n = 15
input average average average
precision steps distance steps distance steps distance
0.5 1.63 0.072 2.00 0.127 2.00 0.141
0.1 3.18 0.090 11.0 0.151 21.4 0.174
0.001 3.71 0.090 14.0 0.156 27.8 0.182

Table 2. Same as in Table 1 but matrix elements rounded off to input precision 0.5, 0.1
and 0.01, respectively. Property: additive consistency. Tolerance: ε = 1.0−3. Fraction
parameter: λU = 1/3.

n = 5 n = 10 n = 15
input average average average
precision steps distance steps distance steps distance
0.5 8.36 0.231 358 0.264 1635 0.275
0.1 11.7 0.237 485 0.276 2030 0.278
0.01 12.6 0.239 533 0.276 2060 0.279

We have conducted a number of numerical experiments with four types of
transitivity, of which the results are listed in Tables 1–4. The average number
of iteration steps for obtaining a transitive approximation with ε-accuracy gives
insight in the rate of convergence of the algorithm, whereas the average distance
from the approximation to the given matrix yields an indication of the strenght
of the transitivity condition. Averages have each time been computed on 1000
cases. We have done tests with matrices of dimension 5, 10 and 15. Input matrices
have been generated at random, whereafter matrix elements have been rounded
off to different decimal positions. Input precision 0.5, for instance, means that
matrix elements are in {0, 0.5, 1}.
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Table 3. Same as in Table 1. Property: moderate stochastic transitivity. Tolerance:
ε = 10−4. Fraction parameter: λU = 1/2.

n = 5 n = 10 n = 15
input average average average
precision steps distance steps distance steps distance
0.5 1.71 0.113 2.52 0.194 2.83 0.216
0.1 4.26 0.151 20.3 0.216 46.3 0.234
0.001 5.30 0.140 24.9 0.207 56.0 0.224

Table 4. Same as in Table 1. Property: TM-transitivity. Tolerance: ε = 10−4. Fraction
parameter: λU = 1/2.

n = 5 n = 10 n = 15
input average average average
precision steps distance steps distance steps distance
0.5 2.81 0.235 3.26 0.248 2.47 0.250
0.1 9.55 0.218 49.3 0.329 128 0.373
0.001 10.5 0.224 54.1 0.347 144 0.408

The results from Tables 1,3,4 illustrate the fact that TM-transitivity is stronger
than moderate stochastic transitivity, and that in turn TM-transitivity is stronger
than TL-transitivity. However, somewhat surprisingly, for large matrices it seems
more difficult to impose TM-transitivity than additive consistency.

Especially for the strong properties (such as TM-transitivity and additive
consistency), the rate of convergence is poor. We could accelerate convergence
without significant loss of the quality of the approximation by letting the value of
λ vary during execution of the algorithm (i.e. letting λ tend to 1 as the number of
iteration steps increases). Details of this interesting modification will be reported
on elsewhere.
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Abstract. Multiobjective optimization and decision making are strongly
inter-related. This paper presents an interactive approach for the integra-
tion of expert preferences into multi-objective evolutionary optimization.
The experts underlying preference is modeled only based on comparative
queries that are designed to distinguish among the non-dominant solu-
tions with minimal burden on the decision maker. The preference based
approach constitutes a compromise between global approximation of a
Pareto front and aggregation of objectives into a scalar utility function.
The model captures relevant aspects of multi-objective decision making,
such as preference handling, ambiguity and incommensurability. The ef-
ficiency of the approach in terms of number of expert decisions and con-
vergence to the optimal solution are analyzed on the basis of an artificial
decision behavior with respect to optimization benchmarks.

Keywords: Multi-objective evolutionary algorithms, optimization,
preferences, interaction, instance based learning.

1 Introduction

Decision making is a task inherently intertwined with multi-objective optimiza-
tion [1]. A decision is made with respect to the optimization objectives either
a priori to the optimization, or a posterior by selecting the best solution from
the set of Pareto optimal compromise solutions or during optimization as pro-
posed by Branke et al. [2]. Many research activities focus either on the evolu-
tionary multiobjective optimization (EMO) to achieve a good approximation of
the Pareto optimal set or on the multicriteria decision making (MCDM) which
selects a single optimal solution from a set of Pareto optimal compromises. How-
ever the progressive consideration of decision making during optimization offers
some advantages. The search within a preferred local region is more efficient
than the exploration of the entire Pareto front, in particular in high dimensional
spaces. Assuming a limited number of evolutionary fitness evaluations, the final
decision for a optimal compromise gets easier and more precise on the basis of
a preferred subset due to the focused exploration in this region. An interest-
ing approach of systematically including several decision making techniques into
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multiobjective optimization is presented by Chaudhuri and Deb in [3]. Our ap-
proach for interactive integration of preferences into a multi-objective evolution
strategy is based on learning a preference model from interactive decisions of
an expert. Utilization of expert preferences improves the convergence of opti-
mization in the context of complex and high dimensional problems without the
limitations of a priori or a posteriori decision approaches. The preference relation
among arbitrary solutions is inferred from training solution pairs for which the
decision maker explicitly states his preferences. Our scheme also accounts for
the incommensurability of solutions, a concept that is not captured by ordinary
comparison of solution pairs. Only comparable solutions are subject to compe-
tition in the multi-objective selection step, whereas incommensurable subsets of
solutions evolve independently. In case of complete comparability among solu-
tions, the evolutionary search converges to the single best solution according to
the experts preferences. In case of complete incommensurability, the selection
only differentiates among dominated and non-dominated solutions and approx-
imates the entire Pareto front. The preference modeling is basically integrated
as a selection method that complements the non dominated sorting approach of
the NSGA-II [4] that constitutes the basis of the algorithm, similar to the ap-
proach of the outranking mechanism proposed by Fernandez et al. in [5]. In real
world interactive optimization scenarios the effective runtime of the interactive
evolutionary algorithm is largely determined by the periods of waiting for an
expert response. The time for evolutionary search and in most cases even the
time for the fitness evaluation is small compared with the effort that a compari-
son of candidate solutions demands from the expert. What is proposed here is a
preference model that is build incrementally at runtime by querying the expert
with comparisons that provide the most discriminative information for selection.
This model management decreases the burden of decisions on the expert without
sacrificing convergence.

2 Interactive Preference Articulation

It is difficult for an expert to quantify preferences and trade-offs among multiple
objectives in particular when lacking knowledge about feasible alternative solu-
tions. It is much easier for a decision maker to articulate his preferences during
the optimization in cognizance of alternative solutions. Interactive preference
articulation raises a number of questions, that have been previously addressed
in numerous publications on decision making in multi-objective evolutionary
optimization [6,7]:

1. When and which prototype solutions are presented to the decision maker?
2. Which decision does the expert take?
3. How does the expert decision effect the selection in future evolutionary

optimization?

Ideally the expert states his mutual preference or ranking among all solutions of
the current population. In this case selection exactly mimics the experts true util-
ity function rather than an approximation of that function. However, complete
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interaction exceeds the human capability of data processing even in modest opti-
mization problems. The set of non-dominated solutions typically contains many
more alternatives than the expert is willing to evaluate and compare against
each other.

2.1 Pairwise Solution Comparison Scheme

Our approach for modeling preferences based on an interactive integration of de-
cision making on pairwise comparison is initially presented in [8]. In our scheme
a hierarchical clustering algorithm identifies N clusters that best represent the
set of n solutions, of which each is associated to its nearest cluster center. The
expert expresses his preferences by pairwise comparison of the cluster prototypes
in terms of mutual quality and comparability. The number of clusters N bur-
dens the decision maker with N × (N − 1)/2 pairwise comparisons. Solutions
Si = {xi, f(xi)} are represented by their parameter vector xi and their crite-
ria vector f(xi). The expert compares two solutions Si, Sj in terms of their
mutual preference σ(Si, Sj) ∈ [−1, 1]. In the extreme cases σ(Si, Sj) = 1 and
σ(Si, Sj) = −1 either Si is totally preferred over Sj and vice versa. The expert
deems two solutions as equal for σ(Si, Sj) = 0, whereas any rating in between
indicates weaker preference for either of the solutions. In addition the expert
classifies the degree of comparability ρ ∈ [0, 1] of two solutions. In case ρ = 1
the two solutions are fully comparable. The set Dσ of pairwise evaluations of
prototype solutions {Si, Sj} are stored in a database and provide the training
instances.

2.2 Preference Estimation Based on Pairwise Similarity

The preference relationship among all individuals in the current generation is
imposed from the preference model set Dσ based on the similarity with the
training instances. The similarity of the query pair {Pk, Pl} with an instance
{Si, Sj} in Dσ is computed based on their distance in the normalized objective
space. The similarity weight w({Pk, Pl}, {Si, Sj}) of a training pair is determined
by a distance based Gaussian kernel scaled with the mean minimal distance of the
current population in objective space. The estimated preference of the query pair
is computed by the similarity weighted average preference relation of training
pairs

σ̂(Pk, Pl) =

∑
i,j σ(Si, Sj)w({Pk, Pl}, {Si, Sj})∑

i,j w({Pk, Pl}, {Si, Sj}) . (1)

The comparability ρ̂ for each pair is estimated in the same manner.

2.3 Preference Controlled Selection Mechanism

The instance based preference model predicts the pairwise preference and compa-
rability of each solution with the n−1 other members of the set of non-dominated
solutions. The solutions are ranked according to their estimated preference and
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comparability based on a relative performance index γσ that captures the aver-
age preference of a solution in the context of its comparable competitors. Rather
than to strive for a global preference order, the comparability ρ̂ restricts com-
petition to more or less disjunct subsets of similar solutions. A comparability
index γρ captures the relative density of solutions in the preference space. The
objective is to simultaneously maximize the preference γσ and minimize the den-
sity of comparable solutions γρ in order to balance exploration and exploitation.
The μ best solutions with respect to preference and comparability are selected
according to the dominance ranking scheme proposed by Fonseca [9].

2.4 Benchmarking with a Decision Model

It would be problematic to rely on a human decision maker for a thorough
evaluation and analysis of the proposed interactive optimization algorithm. The
burden of interaction would be substantial and it is questionable that a human
is able to take consistent and reproducible decisions over a long time span.
In order to overcome this limitation, the expert is replaced with an artificial,
transparent expert decision model for this purpose. This allows the evaluation of
the method in reproducible scenarios. The decision model captures the proximity
of a solution to either a single or multiple hypothetical optimal targets in the
normalized objective space. The hypothetical targets R lie close to the Pareto
front albeit in the unfeasible region of the objective space. The mutual preference
for a solution pair {Si, Sj} is

σM (Si, Sj) =
||f(xj)−R|| − ||f(xi)−R||
||f(xi)−R||+ ||f(xj)−R|| . (2)

The relative preference depends on the relative distance of the two candidate so-
lutions to the target R, such that the solution closer to the target R is preferred
over the remote one. In case of multiple targets, only solution pair of solutions
with the same nearest target obtain a mutual preference according to equation
2, whereas pairs belonging to different targets are deemed incommensurable
(ρ = 0). For a set of uniformly distributed solutions with either one and or two
reference solutions, the corresponding expert model results in a preference and
comparability model shown in figure 1. The figure shows the true (model based)
preference and comparability as well as those approximated based on different
numbers of uniformly distributed sample solution instances. The left figure shows
the preferences for a single reference solution, the right figure shows preference
and comparability for two incommensurable goals. Both figures show that, apart
from a smoothing caused by the Gaussian kernel, the preference model converges
to the true preference function with increasing number of instances. The com-
parability, mainly influenced by the number of incommensurable solution pairs,
changes in magnitude but always leads to a clear separation of the two local
maxima in the preference model. By selecting solutions that are Pareto optimal
with respect to these two indices, a focus on the desired references is combined
with a diversification to all regions of interest.
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Fig. 1. Quality of preference and comparability approximation for different numbers
of sample solutions

3 Selection of Interaction Candidates

The main burden for the expert, which is the number of queries, is further
reduced by focusing on those queries that provide the largest information gain.
Similar to the concept of active learning in machine learning, in which the learner
decides about the next query, those solution pairs are presented to the decision
maker which explicit preference evaluation causes potentially the most signif-
icant impact on the induced ranking. That way the two relevant aspects of
optimization effort, namely the number of interactions as well as the number of
overall fitness evaluations are reduced. The most informative queries are those
for which either positive or negative hypothetical preference articulation most
drastically changes the induced ranking of solutions according to the preference
index γσ compared to the current model without knowledge of the answer to the
additional query. Practically speaking, one should pose those queries for which
the answer might change the future course of evolution and avoid queries for
which the expert decision is either predictable or irrelevant for the selection. For
a potential comparison {Si, Sj} the preference decision σ̂ for the current model
is estimated. The true expert decision is likely to be similar with the decision
predicted by the current, but usually differs such that it influences the overall
preference model which in turn effects the selection. This deviation is emulated
by two prototype hypothetical decisions, σ̂{Si, Sj}+ε and σ̂{Si, Sj}−ε. For both
alternative answers the induced selection decision (R+ε,R−ε) is computed based
on the modified preference estimation. The amount of deviation between esti-
mated and actual preference articulation is assumed to be constant ε = 0.2. The
first μ potentially selected individuals from both selection rankings are compared
to the original selection ranking in ignorance of the new additional comparative
information R0. The sensitivity is measured as the sum of permutations in the
ranking of the first μ best solutions. The quantity Δ in the selection decision is
the gradient of hypothetical information gain.

Δ(+) =
μ∑

i=1

(R+ε (i)−R0 (i)) Δ(−) =
μ∑

i=1

(R−ε (i)−R0 (i)) (3)
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Assuming that the larger deviation is caused by a decision that is directed against
the local trend, the smaller of both possible changes Δ = min

(
Δ(+), Δ(−)

)
de-

scribes the potential information gain of this comparison. For N prototypes out
of the N × (N −1) potential comparisons only those with the largest smaller po-
tential of information gain in the selection are selected as queries to be presented
to the expert. The interactive evolution leads to a faster and better approxima-
tion of the preference compared to the purely dominance based selection scheme.
The selection of prototypes based on their potential information profit increases
the convergence speed of the algorithm due to an improved preference model.

An incorrect preference model results in convergence of the evolutionary al-
gorithm to suboptimal solutions. Thus it is important to monitor the quality of
the preference model. A model error is attributed to the uncertainty inherent
in modeling from a limited set of examples in which case more frequent queries
help to refine the model. Ambiguity or inconsistency of expert decisions is a
second cause for an incorrect model. Inconsistent decisions often emerge as the
expert preferences are non-static but change over the course of optimization in
light of novel alternatives or stronger focus on exploitation. In general more re-
cent expert decisions bear more relevance than decisions from the past. In the
later case preference model management resolves the conflicting answers, either
by removing inconsistent answers based on their age or by explicit re-querying.
In addition since queries are generated according to information gain, but not
absolute preference the presented solution pairs might mislead the expert about
the actual progress of optimization. This misinformation is overcome by visualiz-
ing the currently best solution with respect to the preference model irrespective
of the queries. The model quality index Qi measures the absolute difference
between the preference values for the expert evaluated pairs in the current gen-
eration i and the answer predicted by the model. The following experiments are
based on the optimization of the Kursawe test-function [10] with 8 parameters.
The left plot of figure 2 (left) shows the influence of the interaction rate on the
evolution of the model quality index. In general, the prediction error is reduced
significantly faster with a higher rate of queries. The comparison of the devel-
opment for one and two decisions per generation shows the limitation of this
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Fig. 2. Evolution of the decision prediction error for changing interaction rates (left),
dependency between decision prediction error and age of databse instances (right)
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observation as the model quality does not increase significantly due to the ongo-
ing convergence of the optimization. To eliminate such misleading instances and
to reduce the size of the database, an aging-mechanism is introduced that limits
the training set to those examples evaluated within the recent past. Figure 2
(right) shows the relation of the maximum database age to the mean prediction
error during an optimization run. It compares the same decision model based
interactive optimization with a single preference decision each generation and
different subsets of instances of different maximum age. The compromise is sup-
posed to balance the effort for preference estimation with additional queries and
the prediction error.

4 Results

The interactive scheme is compared with the global approximation of the Pareto
front without preference model and the optimal a priori decision in terms of a
scalar aggregated objective. The efficiency of the optimization is evaluated in
terms of proximity of the population to an artificial reference solution in the un-
feasible part of objective space. Figure 3 shows the convergence of the interactive
MOEA on a Kursawe benchmark function [10]. For the sake of illustration, the
graph shows the evolution of a population of ten solutions over the course of
ten generations. The black line in the left plot represents the true Pareto front,
the cross marks the reference of the artificial expert preference model. The dots
indicate the propagation of solutions, in which earlier generations are marked
by a lighter shade. The initial generations evolve similar to a standard MOEA,
selection is merely based on dominance alone. With progress of optimization
the ratio of non-dominated solutions increases such that preference based se-
lection becomes more relevant. This biases the evolution of population towards
the region of the Pareto front closest to the reference point. In addition, the
preference model becomes more accurate with increasing number of examples
further promoting progress towards the reference goal. The right plot in figure 3
shows the convergence with respect to expert preferences in terms of the minimal
distance between the current population and the unfeasible reference goal. This
performance is visualized for a scalar evolutionary algorithm utilizing this exact
distance fitness, a MOEA that approximates the global Pareto front without any
bias towards the reference and the interactive scheme. The scalar EA with per-
fect knowledge of the true objective converges in an optimal manner. The MOEA
progresses towards the Pareto front, the final distance is mainly attributed to
the density of solutions along the Pareto front. The interactive algorithm scheme
initially demonstrates the same convergence rate as the blind MOEA. However,
with gradual improvement of the preference model, it ultimately achieves the
same proximity as the scalar optimization with a priori trade-offs. The delay
in convergence is the price to pay for gathering information to infer the expert
preferences during the optimization.

The rate of interaction, and thereby the number of preference model samples,
affects the accuracy of the preference model and thereby directly relates to the
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Fig. 3. Convergence of the interactive MOEA in the objective space (left), compared
with a scalar EA and a MOEA (right)

convergence of the optimization. The analysis of the selection error is based on
an evolution strategy with μ = 25 parents and λ = 100 offspring evolved over
the course of 50 generations on the eight parameter Kursawe function with an
artificial expert decision model. The selection error is defined as the discrep-
ancy between the true expert ranking and the ranking induced by the preference
model. The difference of the two rankings is computed by the number of permu-
tations required to match both rankings. Ranking errors for solutions closer to
the reference goal are weighted more strongly than distant solutions. All plots
show the average of the ranking error over ten runs. The plots in figure 4 show
the influence of the model size or quality on the selection error. The two plots
with crosses reveal the advantage of controlled, informative queries over random
queries on the selection error. Selection with the controlled query model results
in improved model quality not only in the initial generations but even more so
towards the final stages of optimization. With convergence of the population to-
wards the Pareto front solutions become more similar, thus it requires targeted
queries to distinguish among these similar solutions. The remaining plots com-
pare different rates of queries and a purely dominance based selection without
preference consideration. There is a direct relationship between selection error
and query rate, even though the selection error does not only depend on model
quality but also on the convergence of the optimization itself. In practical prob-
lems the query rate is largely determined by the effort to be imposed on the
expert. Beyond more than one query per generation on average, the improve-
ment in convergence does not outweigh the extra burden on the expert. On the
other hand too few queries might result in misleading preference model which
performs worse than pure dominance based selection.

The advantages of the interactive preference modeling in the context of evo-
lutionary optimization become increasingly important for a large number of ob-
jectives. Dominance based selection provides slow progress with large number
of objectives as after some optimization almost all solutions are non-dominated
and thus indistinguishable on the basis of dominance alone. A preference model
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focuses optimization on regions of interest to the expert, thus effectively increas-
ing the local density of solutions. Figure 5 illustrates the convergence in terms
of distance to the reference goal for different number of objectives generated by
duplicating the original binary objective problem. The comparison reveals that
the advantage of the interactive algorithm with respect to the MOEA is more
pronounced with increasing number of objectives. The left plot shows, that the
preference guided optimization even outperforms a scalar EA with weighted ob-
jective aggregation, in case the fitness landscape exhibits a local minima in the
vicinity of the reference goal.

5 Conclusion

This contribution presents a novel scheme for expert preference incorporation in
multi-objective evolutionary algorithms. The main advantages of our scheme are
its general applicability and the tight integration of decision making and opti-
mization. The instance based preference model makes no prior assumption about
the structure of preferences and allows multiple incommensurable targets. The
comparison with global purely dominance based selection and a priori aggrega-
tion of objectives reveals that the proposed scheme combines the advantages of
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both conventional approaches, namely efficient optimization with flexible, unbi-
ased and intuitive decision making. Even though sampling queries to generate
model delays optimization, the scheme eventually achieves the same optimization
results compared to an omniscient decision maker. The analysis shows that even
with a low query rate of only one expert comparison per generation the model
quality suffices to find optimal solutions efficiently. The utility of a preference
model for faster convergence increases with increasing number of objectives. Fu-
ture work is concerned to deal with ambiguous expert decision in case the expert
preferences change over the course evolution. Non static preferences require a
model management in which conflicts among contradictory expert decision are
resolved either by re-querying or based on actuality of decisions.
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1 Faculty of Economics, University of Catania,
Corso Italia, 55, 95129 Catania, Italy

2 Institute of Computing Science, Poznań University of Technology,
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Abstract. We deal with preference learning from pairwise comparisons,
in case of decision under uncertainty, using a new rough set model based
on stochastic dominance applied to a pairwise comparison table. For the
sake of simplicity we consider the case of traditional additive probability
distribution over the set of states of the world; however, the model is
rich enough to handle non-additive probability distributions, and even
qualitative ordinal distributions. The rough set approach leads to a rep-
resentation of decision maker’s preferences under uncertainty in terms
of “if. . . , then. . . ” decision rules induced from rough approximations of
sets of exemplary decisions. An example of such decision rule is “if act
a is at least strongly preferred to act a′ with probability at least 30%,
and a is at least weakly preferred to act a′ with probability at least 60%,
then act a is at least as good as act a′.

Keywords: Decision under uncertainty, Dominance-based Rough Set
Approach, Pairwise Comparison Table, Decision rules, Preference
learning.

1 Introduction

Decision under uncertainty has been intensively investigated by many researchers
(for a comprehensive review see, e.g., [7]). In this field, the basic model is the
expected utility, which has been axiomatized by von Neumann and Morgenstern
[27] in case of objective probability, and by Savage [22] in case of subjective
probability. Much experimental work uncovered, however, systematic violation
of expected utility hypotheses (see, e.g., [1], [4] and [17]). For this reason, many
alternative models weakening some of the original axioms have been proposed
(for a survey, see [26]). In this context, it is relevant to refer to the literature on
ambiguity (see [18], [10], [23], [5],[9],[20]). Another approach to decision under
uncertainty has been based on the concept of coherent measure of risk ([2])
applied to financial management problems (see, e.g., [3]).
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In this paper, we propose yet another way of preference modeling for deci-
sion under uncertainty, with the aim of weakening the underlying assumptions
as much as possible. We assume that the preference information elicited by a
Decision Maker (DM) is available in terms of pairwise comparisons of acts de-
scribed by probabilistic distributions of gains, and we employ for the analysis
of this information a stochastic dominance relation. We approach this problem
using rough set theory [21]. Since the decisions we are considering, and, in gen-
eral, all decision problems, involve data expressed on preference-ordered scales
(larger outcomes are preferable to smaller outcomes), we use the Dominance-
based Rough Set Approach (DRSA) [12,14,15,25] that explicitly takes into ac-
count also this important feature of data. DRSA to decision under uncertainty
has been already proposed in [13,16]. In this paper, we propose rough approxi-
mation of a non-transitive preference relation over uncertain acts, using DRSA
applied to Pairwise Comparison Table (PCT ) [12,11]. Let us remember that
non-transitive preference relation over acts have been considered in the litera-
ture on decision under uncertainty in the expected regret theory [19], in the skew
symmetric additive theory [8], and in the skew symmetric bilinear theory [6].

The paper has the following plan. Section 2 recalls basics of DRSA applied
to PCT . Section 3 introduces DRSA to decision under uncertainty for PCT .
Section 4 contains conclusions.

2 The Pairwise Comparison Table (PCT ) as Preference
Information and as a Learning Sample

2.1 Basic Concepts

We consider a set of reference objects (acts) A on which a DM can express
his/her own preferences by pairwise comparisons. More precisely, we take into
consideration a weak preference relation * on A and a negative weak preference
relation x *c y on A such that, for a pair of objects (x,y) ∈ A×A, x * y means
that x is at least as good as y and x *c y means that it is not true that x is at
least as good as y. The only assumptions with respect to (wrt) these relations
are that * is reflexive and *c is irreflexive, and they are incompatible in the
sense that, for all x, y ∈ A, it is not possible that x * y and x *c y.

For each pair of reference objects (x,y) ∈ A×A, the DM can select one of the
three following possibilities:

1. Object x is as good as y, i.e., x * y.
2. Object x is not as good as y, i.e., x *c y.
3. The two objects are incomparable at the present stage, in the sense that

neither x * y nor x *c y can be asserted.

Let * ∪ *c= B, with card(B) = m. We also suppose that objects from A are
described by a finite set of criteria C = {g1, . . . , gn}. Without loss of generality,
for each gi ∈ C we suppose that gi : A → ", such that, for each x, y ∈ A,
gi(x) ≥ gi(y) means that x is at least as good as y wrt criterion gi, which
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is denoted by x *i y. For each criterion gi ∈ C, we also suppose that there
exists a quaternary relation *∗

i defined on A, such that, for each x, y, w, z ∈ A,
(x, y) *∗

i (w, z) means that, wrt gi, x is preferred to y at least as strongly as w
is preferred to z. We assume that, for each gi ∈ C, the quaternary relation *∗

i

is monotonic wrt to evaluations on criterion gi, such that, for all x, y, w, z ∈ A,

gi(x) ≥ gi(w) and gi(y) ≤ gi(z) ⇒ (x, y) *∗
i (w, z).

We shall denote by )∗
i and ∼∗

i the asymmetric and the symmetric part of *∗
i ,

respectively, i.e., (x, y) )∗
i (w, z) if (x, y) *∗

i (w, z) and not (w, z) *∗
i (x, y), and

(x, y) ∼∗
i (w, z) if (x, y) *∗

i (w, z) and (w, z) *∗
i (x, y). The quaternary relation

*∗
i , gi ∈ C, is supposed to be a complete preorder on A × A. For each (x, y) ∈
A × A, Ci(x, y) = {(w, z) ∈ A × A : (w, z) ∼∗

i (x, y)}, is the equivalence class
of (x, y) wrt ∼∗

i . Intuitively, for each (x, y), (w, z) ∈ A × A, (w, z) ∈ Ci(x, y)
means that w is preferred to z with the same strength as x is preferred to y. We
suppose also that, for each x, y ∈ A and gi ∈ C, (x, x) ∼∗

i (y, y) and, consequently,
(y, y) ∈ Ci(x, x). Assuming that they are finite, we denote the equivalence classes
of ∼∗

i by )αi

i ,)αi+1
i , . . . ,)−1

i ,)0
i ,)1

i , . . . ,)βi−1
i ,)βi

i , such that

– for all x, y, w, z ∈ A, x )h
i y, w )k

i z, and h ≥ k implies
(x, y) *∗

i (w, z),
– for all x ∈ A, x )0

i x.

We call strength of preference of x over y the equivalence class of *∗
i to which

pair (x, y) belongs. For each gi ∈ C, we denote by Hi the set of indices (grades)
of the equivalence classes of *∗

i , i.e.

Hi = {αi, αi + 1, . . . ,−1, 0, 1, . . . , βi − 1, βi} .
Therefore, there exists a function f : A × A × C → Hi, such that, for all
x, y ∈ A, x )f(x,y,gi)

i y, i.e., for all x, y ∈ A and gi ∈ C, function f gives
the strength of preference of x over y wrt gi. Taking into account the depen-
dence of *∗

i on evaluations by criterion gi ∈ C, there also exists a function
f∗ : "×"×C → Hi, such that f(x, y, gi) = f∗(gi(x), gi(y), gi) and, consequently,
x )f∗(gi(x),gi(y),gi)

i y. Due to monotonicity of *∗
i wrt to evaluations on gi, we

have that f∗(gi(x), gi(y), gi) is non-decreasing wrt gi(x) and non-increasing wrt
gi(y). Moreover, for each x ∈ A, f∗(gi(x), gi(x), gi) = 0.

Anm×(n+1) Pairwise Comparison Table (PCT ) is then built up on the basis
of this information. The first n columns correspond to the criteria from set C,
while them rows correspond to the pairs fromB, such that, if the DM judges that
two objects are incomparable, then the corresponding pair does not appear in
PCT . The last, i.e. the (n+ 1)-th, column represents the comprehensive binary
preference relation * or *c. For each pair (x, y) ∈ B, and for each criterion
gi ∈ C, the respective strength of preference f∗(gi(x), gi(y), gi)) is put in the
corresponding column.

In terms of rough set theory, the pairwise comparison table is defined as a data
table PCT = 〈B, C∪{d}, HC ∪ {*,*c}, f〉, where B ⊆ A×A is a non-empty



DRSA to Preference Learning from Pairwise Comparisons 587

set of exemplary pairwise comparisons of reference objects, HC =
⋃

gi∈C
Hi, d

is a decision corresponding to the comprehensive pairwise comparison resulting
in * or *c, and f :B × (C∪{d})→ HC ∪ {*,*c} is a total function, such that
f(x, y, gi) = f∗(gi(x), gi(y), gi) ∈ Hi for every (x, y) ∈ B and for each gi ∈ C,
and f(x, y, gi) ∈ {*,*c} for every (x,y) ∈ B. Thus, binary relations * and *c

induce a partition of B. In fact, PCT can be seen as a decision table, since the
set of considered criteria C and the decision d are distinguished.

On the basis of preference relations )h
i , h ∈ Hi, gi ∈ C, upward cumulated

preference relations )≥h
i , and downward cumulated preference relations )≤h

i ,
can be defined as follows: for all x, y ∈ A,

x )≥h
i y ⇔ x )k

i y with k ≥ h,

x )≤h
i y ⇔ x )k

i y with k ≤ h.
Given P ⊆ C (P �= ∅), (x,y),(w,z) ∈ A × A, the pair of objects (x,y) is said to
dominate (w,z) wrt criteria from P (denoted by (x,y)DP (w,z)), if x is preferred
to y at least as strongly as w is preferred to z wrt each gi ∈ P , i.e.,

(x, y)DP (w, z) ⇔ (x, y) *∗
i (w, z) for all gi ∈ P,

or, equivalently,

(x, y)DP (w, z) ⇔ f(x, y, gi) ≥ f(w, z, gi) for all gi ∈ P.

Since *∗
i is a complete preorder for each gi ∈ C, the intersection of complete

preorders is a partial preorder, and DP =
⋂

gi∈P

*∗
i , P ⊆ C, then the dominance

relation DP is a partial preorder on A× A.
Let R ⊆ P ⊆ C and (x,y),(w,z) ∈ A×A; then the following implication holds:

(x, y)DP (w, z) ⇒ (x, y)DR(w, z).

Given P ⊆ C and (x,y) ∈ B, the P -dominating set, denoted byD+
P (x, y), and

the P -dominated set, denoted by D−
P (x, y), are defined as follows:

D+
P (x, y) = {(w, z) ∈ B : (w, z)DP (x, y)},
D−

P (x, y) = {(w, z) ∈ B : (x, y)DP (w, z)}.
The P -dominating sets and the P -dominated sets are “granules of knowledge”
that can be used to express P -lower and P -upper approximations of the com-
prehensive weak preference relations * and *c, respectively:

P (*) = {(x, y) ∈ B : D+
P (x, y) ⊆ * },

P (*) = {(x, y) ∈ B : D−
P (x, y)∩ *�= ∅},

P (*c) = {(x, y) ∈ B : D−
P (x, y) ⊆ *c },

P (*c) = {(x, y) ∈ B : D+
P (x, y)∩ *c �= ∅},
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The following properties hold [12]:

P (*) ⊆ * ⊆ P (*) , P (*c) ⊆ *c ⊆ P (*c) .

Furthermore, the following complementarity properties hold:

P (*) = B − P (*c) , P (*) = B − P (*c) ,

P (*c) = B − P (*) , P (*c) = B − P (*) .

The P -boundaries (P -doubtful regions) of * and *c are defined as

BnP (*) = P (*)− P (*) , BnP (*c) = P (*c)− P (*c) .

From the above, it follows that BnP (*)=BnP (*c).
The rough set theory concepts of the quality of approximation, reducts and

core can be extended to the considered approximations of the weak preference
relations.

In particular, the coefficient

γP =
|P (*) ∪ P (*c)|

|B|
defines the quality of approximation of * and *c by P ⊆ C. It expresses the
ratio of all pairs of reference objects (x,y) ∈ B correctly assigned to * and *c by
the set P of criteria to all the pairs of objects contained in B. Each minimal (wrt
inclusion) subset P ⊆ C, such that γP = γC , is called a reduct of C (denoted by
REDPCT ). Note that PCT can have more than one reduct. The intersection of
all B-reducts is called the core (denoted by COREPCT ).

It is also possible to use the Variable Consistency Model on PCT [24], being
aware that some of the pairs in P -dominating or P -dominated sets belong to the
opposite relation, but at least l∗100% of pairs belong to the correct one. Then,
the definition of the lower approximations of * and *c boils down to:

P l (*) =
{

(x, y) ∈ B : |D
+
P (x,y)∩�|
|D+

P (x,y)| ≥ l
}
,

P l (*c) =
{

(x, y) ∈ B : |D
−
P (x,y)∩�c|
|D−

P (x,y)| ≥ l
}
.

2.2 Induction of Decision Rules from Rough Approximations of
Weak Preference Relations

Using the rough approximations of* and*c, it is possible to induce a generalized
description of the preference information contained in PCT in terms of suitable
decision rules, having the following syntax:

1. D≥-decision rules:

If x )≥h(i1)
i1 y, and, ..., and x )≥h(ip)

ip y, then x * y,
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where P={gi1,...,gip}⊆ C and (h(i1),...,h(ip))∈ Hi1 × ...×Hip. These rules
are supported by pairs of objects from the P -lower approximation of * only.

2. D≤-decision rules:

If x )≤h(i1)
i1 y, and, ..., and x )≤h(ip)

ip y, then x *c y,

where P={gi1,...,gip}⊆ C and (h(i1), ..., h(ip)) ∈ Hi1× ...×Hip. These rules
are supported by pairs of objects from the P -lower approximation of *c only.

3. D≥≤-decision rules:

If x )≥h(i1)
i1 y, and, ..., and x )≥h(ie)

ie y,
and x)≤h(ie+1)

ie+1 y, ..., and x )≤h(ip)
ip y, then x * y or x *c y,

where P={gi1,. . . ,gie, gie+1, . . . , gip} ⊆ C and (h(i1), . . . , hie, hie+1,
. . . , h(ip)) ∈ Hi1 × . . . ×Hie, Hie+1 × . . . ×Hip. These rules are supported
by pairs of objects from the P -boundary of * and *c only.

3 DRSA for Decision under Uncertainty

3.1 Basic Concepts

To perform rough set analysis of PCT data in case of decision under uncertainty,
we consider the following basic elements:

– a set S={s1, s2, . . . , su} of states of the world, or simply states, which are
supposed to be mutually exclusive and collectively exhaustive,

– an a priori probability distribution P over the states of the world; more pre-
cisely, the probabilities of states s1, s2, . . . , su are p1, p2, . . . , pu, respectively,
(p1 + p2+. . . +pu=1, pi ≥0, i=1,. . . ,u),

– a set A={a1, a2, . . . , ao} of acts,
– a set X={x1, x2, . . . , xr} of consequences,
– function g: A × S → X assigning to each pair act-state (ai,sj) ∈ A × S an

outcome xk ∈ X ,
– a quaternary relation *∗ on X being a complete preoder on X × X with
)α,)α+1, . . . ,)0, . . . ,)β−1,)β being the equivalence classes of ∼∗, H =
{α, α+ 1, . . . , 0, . . . , β − 1, β}, such that for all x ∈ A, x )0 x,

– a function z:X×X → H, such that, for any (xi1 , xi2) ∈ X×X , xi1 )z(xi1 ,xi2)

xi2 , i.e. z(xi1 , xi2 ) assigns to each pair (xi1 , xi2) some strength of the pref-
erence relation of xi1 over xi2 ,

– a weak preference relation * and a negative weak preference relation *c on
A, such that * ∩ *c= ∅ (i.e. * and *c are incompatible because for any
a, b ∈ A it is not possible that a * b and a *c b) and * ∪ *c= B ⊆ A× A
(i.e. * and *c are not necessarily exhaustive, because we can have pairs of
actions (a, b) ∈ A×A for which not a * b and not a *c b).
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On the basis of preference relations )h, h ∈ H, upward cumulated preference
relations )≥h and downward cumulated preference relations )≤h can be defined
as follows: for all x, y ∈ X ,

x )≥h y ⇔ x )k y with k ≥ h, and x )≤h y ⇔ x )k y with k ≤ h.

On the basis of the quaternary relation *∗ on X , for each s ∈ S one can define
a quaternary relation *∗

s on A as follows: for all a, b, c, d ∈ A,

(a, b) *∗
s (c, d) ⇔ (g(a, s), g(b, s)) * (g(c, s), g(d, s)).

Analogously, for each s ∈ S and for each a, b ∈ A, the strength of preference of
g(a, s) over g(b, s) can be extended to the strength of preference of a over b wrt
state of nature s, i.e.,

a )h
s b⇔ g(a, s) )h g(b, s).

In the same way, upward and downward cumulated preference relations defined
above on X can be extended to A: for any a, b ∈ A, s ∈ S and h ∈ H,

a )≥h
s b⇔ g(a, s) )≥h g(b, s),

a )≤h
s b⇔ g(a, s) )≤h g(b, s).

For each a, b ∈ A, h ∈ H and s ∈ S, it is possible to calculate the probability
ρ≥(a, b, h) that a is preferred to b with a strength at least h, and the probability
ρ≤(a, b, h) that a is preferred to b with a strength at most h:

ρ≥(a, b, h) =
∑

s∈S: a�≥h
s b

ps, ρ≤(a, b, h) =
∑

s∈S: a�≤h
s b

ps.

Given a, b, c, d ∈ A, (a, b) stochastically dominates (c, d) if, for each h ∈ H, the
probability that a is preferred to b with a strength at least h is not smaller than
the probability that c is preferred to d with a strength at least h, i.e., for all
h ∈ H, ρ≥(a, b, h) ≥ ρ≥(c, d, h).

The stochastic dominance of (a, b) over (c, d) can be equivalently expressed in
terms of downward cumulated preference ρ≤(a, b, h) and ρ≤(c, d, h) as follows:
given a, b, c, d ∈ A, (a, b) stochastically dominates (c, d) if, for each h ∈ H, the
probability that a is preferred to b with a strength at most h is not greater than
the probability that c is preferred to d with a strength at most h, i.e., for all
h ∈ H, ρ≤(a, b, h) ≤ ρ≤(c, d, h).

It is natural to expect that for any a, b, c, d ∈ A, if (a, b) stochastically
dominates (c, d), then

– if c * d, then also a * b,
– if a *c b, then also c *c d.
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Considering 2S , the power set of the set of states of nature S, one can define
the set

Prob =

{∑
s∈T

ps, T ⊆ S
}
.

For any q ∈ Prob and a, b ∈ A, let

f+(a, b, q) = max{h ∈ H : ρ≥(a, b, h) ≥ q}
and

f−(a, b, q) = min{h ∈ H : ρ≤(a, b, h) ≥ q}.
The above definitions can be interpreted as follows: for any q ∈ Prob and a, b ∈ A,

– there is a probability at least q that a is preferred to b with a strength not
smaller than f+(a, b, q),

– there is a probability at least q that a is preferred to b with a strength not
greater than f−(a, b, q).

Observe that for any a, b ∈ A,

f+(a, b, qπ(i)) = f−(a, b, 1− qπ(i+1)), (1)

where π is a permutation of the probabilities from Prob, such that

0 = π(1) < π(2) < . . . < π(k) = 1, k = card(Prob).

Using values f+(a, b, q) and f−(a, b, q), we can give an equivalent definition of
stochastic dominance of (a, b) over (c, d), for any a, b, c, d ∈ A: (a, b) stochasti-
cally dominates (c, d) if, for any q ∈ Prob, f+(a, b, q) ≥ f+(c, d, q), or, equiva-
lently, f−(a, b, q) ≤ f−(c, d, q).

In this context, setting m = card(B) and n = card(Prob), an m× (n+1),
Pairwise Comparison Table (PCT ) can be set up as follows. The first n columns
correspond to the probabilities q ∈ Prob, while the m rows correspond to the
pairs from B. The last (n+1)-th column represents the comprehensive binary
preference relation * or *c. For each pair (a, b) ∈ B, and for each probability
q ∈ Prob, the respective value f+(a, b, q) is put in the corresponding column.

In terms of rough set theory, the Pairwise Comparison Table is defined as
a data table PCT = 〈B, Prob∪{d}, H ∪ {*,*c}, f〉, i.e. we can apply the
DRSA in this context, considering as set of exemplary pairwise comparisons of
reference objects the set of pairs of acts B ⊆ A × A, as set of attributes (criteria)
the set Prob ∪ {d}, where to each q ∈ Prob corresponds a condition attribute
assigning some strength of preference h ∈ H to each pair (a, b) ∈ B through
function f+(a, b, q), and d is a decision attribute representing the assignments
of pairs of acts (a, b) ∈ B to classes of weak preference (a * b) or negative weak
preference (a *c b), as set V the set H∪{*,*c}, and as information function a
function f , such that, for all q ∈ Prob, f(a, b, q) = f+(a, b, q), and f(a, b, d) =*
if a * b, and f(a, b, d) =*c if a *c b. A similar PCT can be defined in terms of
f−(a, b, q) replacing f+(a, b, q).
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3.2 Decision Rules

The aim of the rough set approach to decision under uncertainty is to explain
the preferences of the DM on the pairs of acts from B in terms of stochastic
dominance on values given by functions f+(a, b, q) and f−(a, b, q). The resulting
preference model is a set of decision rules induced from rough set approximations
of weak preference relations. The syntax of decision rules is as follows:

1. D≥-decision rules:
If f+(a, b, qγ1) ≥ h1, and,. . . , and f+(a, b, qγz) ≥ hz , then a * b,
(i.e. “if with a probability at least qγ1 act a is preferred to act b with a
strength at least h1, and,. . . , with a probability at least qγz act a is preferred
to act b with a strength at least hz, then a * b”),
where qγ1 , . . ., qγz ∈ Prob, hγ1 , . . ., hγz ∈ H;

2. D≤-decision rules:
If f−(a, b, qγ1) ≤ h1, and,. . . , and f−(a, b, qγz) ≤ hz, then a *c b,
(i.e. “if with a probability at least qγ1 act a is preferred to act b with a
strength at most h1, and,. . . , with a probability at least qγz act a is preferred
to act b with a strength at most hz , then a *c b”),
where qγ1 , . . ., qγz ∈ Prob, hγ1 , . . ., hγz ∈ H;

3. D≥≤-decision rules:
If f+(a, b, qγ1) ≥ h1, and,. . . , and f+(a, b, qγe) ≥ he, and
f−(a, b, qγe+1) ≤ he+1, and,. . . , and f−(a, b, qγz) ≤ hz then a * b or a *c b,
(i.e. “if with a probability at least qγ1 act a is preferred to act b with a
strength at least h1, and,. . . , with a probability at least qγe act a is preferred
to act b with a strength at least he, and if with a probability at least qγe+1

act a is preferred to act b with a strength at most he+1, and,. . . , with a
probability at least qγz act a is preferred to act b with a strength at most
hz, then a * b or a *c b”),
where qγ1 , . . ., qγe , qγe+1 , . . ., qγz ∈ Prob, hγ1 , . . ., hγe , hγe+1 , . . ., hγz ∈ H.

4 Conclusions

We applied the Dominance-based Rough Set Approach (DRSA) to PCT in or-
der to learn a rule preference model for decision under uncertainty. Preference
information provided by the DM is a set of pairwise comparisons of some rep-
resentative acts. The resulting preference model expressed in terms of “if. . . ,
then. . . ” decision rules is much more intelligible than any utility function. More-
over, it permits to handle inconsistent preference information. Let us observe
that the approach handles an additive probability distribution as well as a non-
additive probability, and even a qualitative ordinal probability. If the elements of
sets Prob were very numerous (like in real life applications), it would be enough
to consider a subset Prob′ ⊂ Prob of the most significant probability values
(e.g., 0, 0.1, 0.2,. . . , 0.9, 1).
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In the future, we plan to extend this approach to deal not only with uncertain
consequences but also with consequences distributed over time. Moreover, we
envisage taking into account also non-cardinal criteria, i.e. criteria for which it
is not possible to define a set of graded preference relations. Finally, instead of
distinguishing only two comprehensive preference relations (* and *c), we will
also consider a graded preference relation*h, with h ∈ {−r,−r+1, ...,−1, 0, 1, ...,
r − 1, r}.

Acknowledgement. The third author wishes to acknowledge financial sup-
port from the Polish Ministry of Science and Higher Education, grant N N519
314435.
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Abstract. Retrieving data from large-scale databases often leads to
plethoric answers. To overcome this problem, we propose an approach
which selects a set of predicates that the user may use for intensifying
his/her query. These predicates are selected among predefined ones ac-
cording principally to their degree of semantic correlation with the initial
query in order to avoid a deep modification of its semantic scope.

Keywords: Plethoric answers, query intensification, correlation.

1 Introduction

The practical need for endowing intelligent information systems with the ability
to exhibit cooperative behavior has been recognized since the early ’90s. As
pointed out in [7], the main intent of cooperative systems is to provide correct,
non-misleading and useful answers, rather than literal answers to user queries.

Two antagonist problems are addressed in this field. The first one is known
as the “Empty Answer” (EA) problem, that is, the problem of providing the
user with some alternative data when there is no item fitting his/her query.
The second one is the “Plethoric Answers” (PA) problem which occurs when
the amount of returned data is too large to be manageable. Then, users have to
go through this large set of answers to examine them and keep only the most
relevant ones, which is a tedious and time-consuming task. This paper focuses
on this second problem in the context of fuzzy queries. The fuzzy counterpart of
the plethoric answers problem can be stated as follows: there are too many data
in the database that satisfy a fuzzy query Q with a highest degree h.

The PA problem has been intensively addressed by the information systems
community and two main approaches have been proposed. The first one, that
may be called data-oriented, aims at ranking the answers in order to return the
best k ones to the user. However, this strategy is often faced with the difficulty
of comparing and distinguishing between tuples that entirely satisfy the initial
query. In this data-oriented approach, we can also mention works which aim at
summarizing the set of answers to a query [13].

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 595–604, 2010.
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The second type of approach may be called query-oriented as it performs a
modification of the initial query in order to propose a more selective query. For
instance, a strategy consists in intensifying the specified predicates (as an exam-
ple a predicate A ∈ [a1, a2] becomes A ∈ [a1 + γ, a2 − γ]) [3]. However, for some
predicates, this intensification leads to a deep modification of the initial predi-
cate’s sense. For example, if we consider a query looking for fast-food restaurants
located in a certain district delimited by geographical coordinates, an intensi-
fication of the condition related to the location could lead to the selection of
restaurants in a very small area (like a block of houses), and the final answers
would not necessarily fit the user’s need. Another type of approach advocates
the use of user-defined preferences on attributes which are not involved in the
initial query [8,6,2]. Such a subjective knowledge can then be used to select the
most preferred items among the initial set of answers.

Still another category of query-oriented approaches aims at automatically
completing the initial query with additional predicates to make it more de-
manding. Our work belongs to this last family of approaches but its specificity
concerns the way additional predicates are selected. Indeed, we consider that the
predicates added to the query must respect two properties: i) they must reduce
the size of the initial set of answers, ii) they must modify the scope of the initial
query as little as possible. To reach this latter goal, we propose to identify the
predicates which are the most correlated to the initial query. Such correlation
relations are inferred from the data and express semantic links between possible
additional predicates and those present in the initial query.

The remainder of the paper is structured as follows. Section 2 introduces the
basic underlying notions: fuzzy queries and the PA problem. In Section 3, we
discuss related work, in particular the approach proposed by Ozawa et al. [9].
The principle of our approach is then described in Sections 4 and 5. Before
concluding and drawing some perspectives, Section 6 illustrates our approach on
a concrete example.

2 Preliminaries

2.1 Plethoric Answers to Fuzzy Queries

We consider a database fuzzy querying framework such as the SQLf language
introduced in [4].

A typical example of a fuzzy query is: "retrieve the recent and low-mi
leage cars", where recent and low-mileage are gradual predicates which
could be represented by means of fuzzy sets as illustrated in Figure 1.

Let Q be a fuzzy query. We denote by ΣQ the set of answers to Q when
addressed to a regular relational database D. ΣQ contains the items of the
database that somewhat satisfy the fuzzy requirements involved in D. Formally,

ΣQ = {t ∈ D/μQ(t) > 0},



Trimming Plethoric Answers to Fuzzy Queries 597

Fig. 1. Fuzzy predicates (a) recent and (b) low-mileage (where 30K means 30.000 km)

where t stands for a database tuple. Let h, h ∈ ]0, 1] be the height of ΣQ, i.e.
the highest membership degree assigned to an item of ΣQ. Let now Σ∗

Q (⊆ ΣQ)
denote the set of answers that satisfy Q with a degree h.

Σ∗
Q = {t ∈ D/μQ(t) = h}

Definition 1. Let Q be a fuzzy query, we say that Q leads to a PA problem if
the set Σ∗

Q is too large.1

To reduce the set Σ∗
Q, we propose an approach aiming at integrating additional

predicates as new conjuncts to Q. By doing so, we obtain a more restrictive
query Q′ which may lead to a reduced set of answers Σ′∗

Q ⊂ Σ∗
Q.

2.2 Correlation Notion

In the approach we propose, predicates added to the initial query as new conjuncts
are chosen among a set of possible predicates pertaining to the attributes of the
schema of the database queried (see Section 4.1). This choice is made according to
their relative correlation with the initial query. The notion of correlation is used
to qualify and quantify the extent to which two fuzzy sets (one associated with a
predefined predicate P p

i , the other corresponding toΣ∗
Q) are semantically related.

This degree of correlation is denoted by μcor(P
p
i , Q). Roughly speaking, we con-

sider that a predicate P p
i is somewhat correlated with a query if they characterize

similar groups of items. For instance, one may notice that a fuzzy predicate “high
powerful engine” is more correlated with the predicate “fast cars” than with “low
consumption”. Adding predefined predicates that are semantically correlatedwith
the user-specified ones makes it possible to comply with the scope of the query (i.e.,
the user’s intent) while making it more demanding. It is worth mentioning that the
term correlation used in this approach means a mutual semantic relationship be-
tween two concepts, and does not have the meaning it has in statistics where it
represents similarities between series variations.

3 Related Work

In their probabilistic ranking model, Chaudhuri et al. [5] propose to use such a cor-
relation relation between attributes and to take it into account when computing
1 Obviously, the notion “too large” depends on the user and the applicative context.
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ranking scores. However, correlation links are identified between attributes and
not predicates, and the identification of these correlations relies on a workload of
past submitted queries. As we will see in section 4, in our approach correlations
are directly inferred from data distributions.

Su et al. [12] have also emphasized the difficulty to manage such a workload
of previously submitted queries or users feedbacks. This is why they have pro-
posed to learn attribute importances regarding to a price attribute and to rank
retrieved items according to their commercial interest. Nevertheless, this method
is domain-dependent and can only be applied for e-commerce databases.

The approach advocated by Ozawa et al. [9,10] is also based on the analysis
of the database itself, and aims at providing the user with information about the
data distributions and the most efficient constraints to add to the initial query
in order to reduce the initial set of answers. The approach we propose in this
paper is somewhat close to that introduced in [9], but instead of suggesting an
attribute on which the user should specify a new constraint, our method directly
suggests a set of fuzzy predicates along with some information about their rela-
tive interest for the user needs. The main limit of the approach advocated in [9]
is that the attribute chosen is that which maximises the dispersion of the initial
set of answers, whereas most of the time, it does not have any semantic link
with the predicates that the user specified in his/her initial query. To illustrate
this, let us consider a relation Cars of schema (id, model, brand, price, hPower,
mileage, year, type, secLevel, comfortLevel, maxSpeed). Let Q be a fuzzy query
on Cars: “select estate cars which are recent” resulting in a PA problem. In
such a situation, Ozawa et al. [9] first apply a fuzzy c-means algorithm [1] to
classify the data, and each fuzzy cluster is associated with a predefined linguistic
label. After having attributed a weight to each cluster according to its represen-
tativity of the initial set of answers, a global dispersion degree is computed for
each attribute. The user is then asked to add new predicates on the attribute
for which the dispersion of the initial answers is maximal. In this example, this
approach may have suggested that the user should add a condition on the at-
tributes mileage or brand, on which the recent estate cars are probably the most
dispersed. We claim that it is more relevant to reduce the initial set of answers
with additional conditions which are in the semantic scope of the initial query.
Here for instance, it would be more judicious to focus on cars with a high level of
security and comfort as well as a low mileage, which are features usually related
to recent estate cars.

The problem of plethoric answers to fuzzy queries has been addressed in [3]
where a query intensifying mechanism is proposed. Let us consider a fuzzy set
F = (A,B, a, b) representing a fuzzy query Q. Bosc et al. [3] define a fuzzy
tolerance relation E which can be parameterized by a tolerance indicator Z,
where Z is a fuzzy interval centered in 0 that can be represented in terms of a
trapezoidal membership function by the quadruplet Z = (−z, z, δ, δ). From a
fuzzy set F = (A, B, a, b) and a tolerance relation E(Z), the erosion operator
builds a set FZ such that FZ ⊆ F and FZ = F 3Z = (A+ z,B− z, a− δ, b− δ).
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As it as been mentioned in Section 1, such an erosion-based approach can lead
to a deep modification of the meaning of the user-defined predicate and thus
may drift too far away from the initial user’s intent.

4 Predicate Correlation

4.1 A Priori Knowledge

Let us consider a relation R containing w tuples {t1, t2, . . . , tw} defined on
a set Z of q categorical or numerical attributes {Z1, Z2, . . . , Zq}. Let Q =
{P s

i1,1, P
s
i2,2, . . . , P

s
in,n}, ik ∈ [1..q] ∀k be a fuzzy query submitted to R. If Q

leads to a plethoric answer set, we propose to intensify Q in order to obtain a
more restrictive query Q′ such that Σ∗

Q′ ⊂ Σ∗
Q. Query Q′ is obtained through

the integration of an additional predefined fuzzy predicate P p
i defined on an

attribute Zi, i = 1..q, i �= ik for k = 1..n.
As mentioned before, background knowledge is obtained in [10] by means of

a fuzzy classification process. In our approach, it is defined a priori by means
of a Ruspini partition of each attribute domain. These partitions are specified
by an expert during the database design step and represent “common sense
partitions” of the domains instead of the result of an automatic process which
may be difficult to interpret.

Fig. 2. A partition of the domain of attribute year from relation Cars

Thus, a partition Pi associated with an attribute Zi is composed of a set of m
fuzzy predicates {P p

i,1, P
p
i,2, ..., P

p
i,m}, such that ∀zi ∈ D(Zi),

∑m
j=1 μP p

ij
(zi) = 1.

Each Pi is associated with a set of linguistic labels {Lp
i,1, L

p
i,2, . . . , L

p
i,m}, each

of them corresponding to an adjective which translates the meaning of the fuzzy
predicate. For example, if we consider the relation Cars again, a common sense
partition and labelling of attribute year is illustrated in Fig. 2.

4.2 Correlation between a Predefined Predicate and a User Query

In this approach, we consider that a predefined predicate P p
i,j (Section 4.1) is

correlated to a query Q, if the sets of tuples contained respectively in Σ∗
P p

i,j
and
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Σ∗
Q are somewhat close. The quantification of the semantic link between P p

i,j and
Q relies on a correlation measure defined on [0, 1] and denoted by μcor(P

p
i,j , Q).

Among the measures that can be used to quantify the similarity between
two sets or fuzzy sets [11], we choose the well-known Jaccard indice because of
its simplicity. However, other similarity mesures should be considered in future
work, so as to experimentally assess which is the most appropriate in general.

μcor(P
p
i,j , Q) =

card(Σ∗
P p

i,j
∩Σ∗

Q)

card(Σ∗
P p

i,j
∪Σ∗

Q)
.

It is trivial to check that this measure is reflexive (μcor(P, P ) = 1) and symmetric
(μcor(P, P ′) = μcor(P ′, P )).

4.3 Balancing Correlation and Reduction

As it has been pointed out in Section 1, besides being correlated to the query, the
predicates used for the intensification must reduce the initial set of results. This
is why the intensification process can not only be based on the maximization
of this measure as, in some (rare) circumstances, it could lead to the selection
of a predefined predicate that does not greatly reduce the initial fuzzy set of
answers. For example, if we consider the extreme case of a predicate P p

i,j , whose
answer set (Σ∗

P p
i,j

) is completely correlated to the answer set of a query Σ∗
Q

(μcor(P
p
i,j , Q) = 1), one notices that the addition of P p

i,j to Q does not reduce
the initial answer set at all (card(Σ∗

Q′ ) = card(Σ∗
Q)).

To avoid this situation, we propose to revise the correlation degree computed
between the answer set Σ∗

P p
i,j

of a predefined predicate P p
i,j and an initial answer

set Σ∗
Q in order to take into account the reduction capability of a predefined

predicate. The idea is to obtain a balance between correlation and reduction so
as to have a good chance of significantly reducing the plethoric set of answers.

Starting with an initial correlation degree μcor(P
p
i,j , Q), we use a triangular

membership function defined by a core value γ to compute a revised degree noted
μcorRed(P

p
i,j , Q). As it is illustrated in Fig. 3, parameter γ represents a degree

of balance between correlation and reduction.
One can remark that the closer γ is to 1 the higher the priority given to

correlation over the reduction capability of the chosen predefined predicate. In
the current version of our approach, this technical parameter is set to a default
value γ = 0.7. Obviously, it should be adapted to fit the particularities of the
query (more precisely, the size of the initial result as well as the number of
answers desired by the user). This nontrivial issue is left for future work.

5 Query Intensification

5.1 Table of Correlation Degrees

Let us consider an initial query Q resulting in a plethoric answer set. It would
be inefficient to dynamically compute correlation degrees between Q and all
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Fig. 3. Balancing correlation and reduction for a predicate P p
i,j and a query Q

the predefined predicates to identify those which are the most correlated to
Q. So, we propose to compute and maintain a correlation table containing the
degree of correlation μcor(P

p
i,j , P

p
k,l) between each pair of predefined predicates

(P p
i,j , P

p
k,l), j, l = 1..q. To improve the efficiency of the intensification process, we

also store for each predefined predicate an ordered list of its κ most correlated
predefined predicates, where κ has been initially set to 5. This restriction to the
five most correlated predicates is motivated by the fact that an intensification
process involving too many predicates would significantly alter the semantic
scope of the initial query. Since the correlation degrees needed for establishing
these rankings are available in the correlation table, this limit can easily be
adapted to the applicative context.

The table stores correlation degrees between each pair of predefined predicates.
When faced with a PA problem, the first step is thus to identify, for each user-
specified predicate P s

k,l involved in the query, its closest predefined predicate P p
k,j

among those belonging to the partition P(Zk) of the domain of attribute Zk.
In order to evaluate how close a user-specified fuzzy predicate is to a predefined
one, we use the same measure as for correlation. However, in this case, the
calculus is based on the membership functions of the predicates, not on the
number of elements in the database which somewhat satisfy these predicates.
This closeness measure between two fuzzy predicates P s

k,l and P p
k,j is denoted by

close(P s
k,l, P

p
k,j) and is defined as follows:

close(P s
k,l, P

p
k,j) =

∑
x∈domain(Zk)min(μP s

k,l
(x), μP p

k,j
(x))∑

x∈domain(Zk)max(μP s
k,l

(x), μP p
k,j

(x))
.

As illustrated in Fig. 4, the predefined predicate P s′
k,j the closest to a user-

specified predicate P s
k,l is that which maximizes the closeness measure wrt P s

k,l:

P s′
k,j = P p

k,j0
, such that close(P s

k,l, P
p
k,j0

) = supj=1..m(close(P s
k,l, P

p
k,j0

)),

where m is the number of elements of the fuzzy partition associated with Zk.
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Fig. 4. Identification of the closest predicate of P s
k,l

5.2 Atomic Queries

When faced with an atomic fuzzy query Q = P s
k,l resulting in a PA problem,

the intensification is straightforward. P s
k,l is first compared with the predefined

predicates P p
k,j , j = 1..m belonging to the partition Pk of the attribute Zk in

order to identify its closest predefined predicate P s′
k,l. From the correlation table,

we can then retrieve the κ predefined predicates the most correlated to P s′
k,l

denoted by {P c1

P s′
k,l

, P c2

P s′
k,l

, ..., P cκ

P s′
k,l

}.
These κ predefined predicates are re-ranked according to their corrected cor-

relation degree, which is calculated using γ. This ranking is then suggested to the
user for the intensification of the initial query. The selected additional predicate
is then added as a new conjunct to the initial query and the new answer set is
computed w.r.t. the set of tuples Σ∗

Q. If the new answer set is still plethoric, the
user can integrate another correlated predicate from the list and so on.

5.3 Conjunctive Queries

In case of conjunctive fuzzy queries, which are of the form Q = P s
k1,1∧P s

k2,2∧. . .∧
P s

kn,n, ki ∈ [1..q] ∀i where ∧ stands for the connector and (interpreted by min),
the process is slightly revisited. For each user predicate P s

kl,l
, kl ∈ [1..q], l ∈ [1..n]

we still retrieve the κ predicates {P c1

P s′
kl,l

, P c2

P s′
kl,l

, ..., P cκ

P s′
kl,l

} the most correlated

with P s′
kl,l

(i.e., with the predefined predicate the closest to P s
kl,l

). The corrected
degree of correlation associated with each of these κ predicates is then computed.

Finally, the average corrected degree of correlation associated with each of
these predefined predicates P ci

P s′
kl,l

is computed:

μcorRed(P ci

P s′
kl,l

, Q) =
1
n
.
∑
h∈El

μcorRed(P ci

P s′
kl,l

, P s
kl,h)

where El is the set of predicates from Q which concern attribute Zl. This ranked
set of predicates and their associated degrees are suggested to the user for the
intensification of his/her query as described in Section 5.2.
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6 Example

Let us consider relation Cars from Section 2, which is assumed to describe 936
cars. Let Q be the fuzzy query looking for the 30 best recent family cars where
the predicate recent is defined by the trapezoidal membership function (0, 3, 0, 2)
and family car as {minivan/1, estate/0.9, 4× 4/0.7, sedan/0.5, SUV/0.2}. The
result of Q may be considered plethoric since |Σ∗

Q| = 61. To reduce this set of
answers, we first identify the closest predefined predicates, which are respectively
P p

year,1 associated with the label “very recent” (see Fig. 2) and the predicate
P p

type,2 with label family defined as {estate/1, minivan/1, sedan/0.6}.
For the attributes hPower, price, mileage, secLevel and comfortLevel, Table 1

gives the correlation degrees between the elements of their partitions and the
two predefined predicates P p

year,1 and P p
type,2. The cardinality of the core of each

predefined predicate is mentioned in brackets next to its linguistic label and the
cardinality of its intersection with P p

year,1 and P p
type,2 is given after the correlation

degree. It is assumed that |P p
year,1| = 309 and |P p

type,2 = 98|.

Table 1. Extract of the correlation table for P p
year,1 and P p

type,2

hPower
LhP ower,i low(279) medium(482) high(175)

P p
year,1 0.19 (92) 0.2 (131) 0.22 (86)

P p
type,2 0.03 (11) 0.09 (48) 0.17 (39)

price
Lprice,i veryCheap(102) cheap(227) acceptable(301) expensive(204) veryExpensive(102)
P p

year,1 0.02(9) 0.02(11) 0.08(43) 0.49(168) 0.23(78)
P p

type,2 0.02(3) 0.02(9) 0.07(25) 0.17(43) 0.1(18)
mileage

Lmileage,i veryLow(109) low(290) medium(296) high(161) veryHigh(80)
P p

year,1 0.51(142) 0.25(120) 0.07(39) 0.02(8) 0(0)
P p

type,2 0.1(18) 0.07(26) 0.08(29) 0.06(15) 0.05(8)
secLevel

LsecLevel,i low(120) medium(340) high(296) veryHigh(180)
P p

year,1 0.02(8) 0.07(41) 0.26(125) 0.38(135)
P p

type,2 0.02(3) 0.04(18) 0.1(33) 0.19(44)
comfortLevel

LcomfortLevel,i low(120) medium(361) high(305) veryHigh(150)
P p

year,1 0.02(9) 0.16(92) 0.45(190) 0.35(118)
P p

type,2 0.01(2) 0.03(12) 0.12(43) 0.2(41)

The five predicates most correlated to P p
year,1 are {veryLow mileage/0.51,expensive price/0.49,

high comfortLevel/0.45, veryHigh secLevel/0.38, veryHigh comfortLevel/0.35} ; for P p
type,2, we

get {veryHigh comfortLevel/0.2, veryHigh secLevel/0.19, expensive price/0.17, high hPower/0.17,

high comfortLevel/0.12}. These correlation degrees are then corrected
using γ = 0.7 and the following ranked candidates are presented to the user:

{veryHigh secLevel/0.41, high comfortLevel/0.41, veryHigh comfortLevel/0.39,

veryLow mileage/0.37, expensive price/0.24, high horsePower/0.12}

As expected, these predicates fit well with the semantics of the initial query.
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7 Conclusion

The approach presented in this paper deals with the plethoric answers problem
by identifying relevant predicates that can be used to intensify the initial query.
These predicates are selected among a set of predefined fuzzy terms and are
ranked according to their degree of semantic correlation with the initial query.
As shown, this is achieved without requiring much information from the end-
user. What makes the approach tractable is the fact that it uses a table which
stores the correlation degrees between the predefined predicates.

This work opens many perspectives for future research. For instance, we are
currently working on a method to infer the “best” value for parameter γ, taking
into account the number of results expected by the user. Another important
aspect concerns the experimental assessment of the approach. We are currently
implementing a prototype which will use imdb (http://www.imdb.com) as a test
database.
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Abstract. The detection of aligned groups of objects is important for
satellite image interpretation. This task can be challenging when objects
have different sizes. In this paper, we propose a method for extracting
aligned objects from a labeled image. In this method we construct a
neighborhood graph of the objects of the image, and its dual graph where
we incorporate information about the relative direction of the objects,
evaluated using fuzzy measures of relative position. The groups of objects
satisfying the fuzzy criterion of being locally aligned are extracted from
the dual graph. These groups are the candidates for being (globally)
aligned. The method was tested on synthetic images, and on objects
extracted from real images demonstrating that the method extracts the
aligned groups of objects even if the objects have different sizes.

1 Alignment and Related Work

Alignment can be defined as the spatial property possessed by a group of objects
arranged in a straight line1. Determining the groups of aligned objects is crucial
for image interpretation. According to the Gestalt theory, the human perceptual
vision system groups objects together using certain rules. Among these rules
there is one called continuity of direction which groups together objects in the
same direction, and one particular case is the constancy of direction that refers
to alignments [5]. An aligned group of objects has the characteristic that it
should be seen as a whole, since if its elements are observed in an independent
manner then the alignment property is lost. Having to look it as a whole makes
alignment detection a difficult task.

Identifying the aligned groups of objects in satellite images is important for
several applications. Satellite images provide a huge amount of geographical in-
formation, and aligned groups of objects can be seen as a way to reduce this
information in a pertinent way. For example in cartography, it is necessary to
find groups of aligned buildings for map generalization [12]. Observing if a group
of buildings is aligned can give information about the structure of their arrange-
ment, and whether they belong to a urban, rural or residential area [6]. In ob-
ject detection, complex semantic classes such as parking areas (car parkings,
1 Definition taken from ThinkMap Visual Thesaurus
http://www.visualthesaurus.com/

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 605–613, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.visualthesaurus.com/
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ports, truck parkings or airports) comprise aligned groups of transport vehicles.
Therefore, the identification of aligned groups of transport vehicles can be useful
for detecting instantiations of these complex classes, and is meaningful for the
description of this kind of scenes.

Alignment extraction has been studied in image processing as a low level
feature. For instance methods relying on the Hough transform [5] or the Radon
transform [7] are used to find groups of points in digital images which fall into
a line. Other examples are the identification of aligned segments which have the
same orientations as the alignment [5,10,11,8]. However, alignment extraction as
a high level feature has been less studied. One example is the work of [4], where
an algorithm to detect aligned groups of buildings in maps is presented. In this
algorithm buildings with aligned barycenters are extracted, and the quality of
the alignments is evaluated based on the criteria of proximity and similarity
laws of Gestalt theory. Nevertheless, when the groups are composed of objects
of different sizes, it is not possible to detect the alignment by observing just
their barycenters (see Fig. 1). Thus, when considering extended objects and not
only points the notion of “falling into a line” becomes imprecise. Therefore it is
necessary to consider a degree of satisfaction of the relation of alignment.

In this work we propose a novel method to detect alignments of objects that
can be applied to objects of different sizes, or to fuzzy objects. In our approach,
we use the direction orientation between any two elements of the group to deter-
mine their degree of alignment. To measure the orientation between two objects
we make use of what we call orientation histogram which is based on the angle
histogram introduced by Mijama and Ralescu in [9] (Sec. 2). Our strategy con-
sists in first determining the locally aligned groups which are the candidates to
form an aligned group of objects. Then we measure the degree of alignment of
each candidate group (Sec. 3) and solve conflicts. The results of the method are
shown on synthetic and real images in Sec. 5.

Fig. 1. Problems encountered when the group has objects of different sizes: an aligned
group of objects with not aligned barycenters

2 Angle and Orientation Histograms

Angle histograms have proved to be an adequate way for evaluating the direc-
tional spatial relation between two objects, since they take into account the
shape of the regions [9]. They can be interpreted as a function that captures
the directional position between two objects. Let a and b be two objects defined
by two regions in the image space I, that we denote by a and b. The angle
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histogram from a to b is obtained by computing for each pair of points pa ∈ a
and pb ∈ b the angle between the segment joining them and the horizontal axis,
denoted by ∠(pa, pb). Angles are organized in a histogram, normalized by the
largest frequency:

Ha(b)(θ) =

∑
pa∈a,pb∈b|∠(pa,pb)=θ 1

maxφ∈[0,2π)
∑

pa∈a,pb∈b|∠(pa,pb)=φ 1
. (1)

To determine if an object a is in a given direction with respect to an object b (for
example “right of”), we can compute the angle histogram Ha(b) and compare
it with a template for the relation “right of” by using for instance a conjunctive
operator or the compatibility between the computed histogram and the template
[9]. Angle histograms are easily extended to fuzzy objects. In addition, they are
invariant to simultaneous translation, scaling and rotation of both objects. They
are not symmetrical, but they satisfy: Ha(b)(θ) = Hb(a)(θ + π).

Since we are interested in the orientation of two objects with respect to the
horizontal axis, we introduce the notion of orientation histogram, which is simply
an angle histogram where the angles are computed modulus π and its support
has a length equal to π. For the case where a and b are fuzzy objects with mem-
bership function μa : I → [0, 1] and μb : I → [0, 1], respectively, the orientation
histogram is given by:

O(a, b)(θ) =

∑
pa,pb∈I|mod(∠(pa,pb),π)=θ μa(pa) ∧ μb(pb)

maxφ∈[0,π)
∑

pa,pb∈I|mod(∠(pa,pb),π)=φ μa(pa) ∧ μb(pb)
, (2)

where ∧ is a t-norm. The orientation histogram is a fuzzy subset of [0, π[ that
represents the orientation between two objects with respect to the horizontal
axis, it preserves the same properties as the angle histogram, and in addition it
is symmetrical.

To compare if two orientation histograms are similar, it is important to con-
sider the imprecision that is linked to the comparison of two angles that are
approximately the same. When a fuzzy morphological dilation [3] is performed
on an orientation histogram using a structuring element ν0, then the high values
of the histogram will be propagated to the similar angle values according to ν0.
The structuring element ν0 is designed such that ν0(θ− θ̃) represents the degree
to which θ̃ and θ are “approximately” equal (modeled by a trapezoid function
in our experiments). Then the similarity degree between two orientation his-
tograms can be given by the maximum height of the intersection of the dilated
histograms:

sim(O(a, b), O(c, d)) = max
θ∈[0,π)

[Dν0(O(a, b)) ∧Dν0(O(c, d))] (θ), (3)

where ∧ is a t norm, and the fuzzy morphological dilation is given byDν0(μ)(θ) =
supθ̃∈[0,π[ min(μ(θ̃), ν0(θ − θ̃)) [3].
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This degree of similarity can be extended to evaluate the similarity degree
between several orientation histograms. Let {O(ai, bi)}N

i=0 be a set of orientation
histograms. Then the degree of similarity between them is given by:

sim (O(a0, b0), . . . , O(aN , bN)) = max
θ∈[0,π[

N∧
i=0

Dν0(O(ai, bi))(θ). (4)

3 Alignment Detection

In this section we propose the definitions of globally aligned and locally aligned,
both relations depend on a neighborhood relation. Let a, b be two objects. We
define Nd(a) as the Voronoi neighborhood of a constrained by a distance d, and
the binary relation Neigh(a, b) is satisfied if b ∩Nd(a) �= ∅.

A group S is said to be globally aligned if all its members are connected by
the Neigh relation, and if there exists an angle θ such that every member of the
group is able to see the other members of the group in a direction θ or θ + π
with respect to the horizontal axis. Thus, it is possible to define the degree of
global alignment as follows:

Definition 1. Let S = {a0, . . . , aN}, with N ≥ 3, be a group of objects in I,
connected by the Neigh relation. The degree of global alignment of S is given by:

μALIG(S) = sim (O(a0, S \ {a0}), . . . , O(aN , S \ {aN})) . (5)

A group S with μALIG(S) = β is called a globally aligned group to a degree β.A
group S = {a0, . . . , aN} is said to be locally aligned to a degree β, if for every
two pairs of neighboring objects, having one object in common, the orientations
between the objects of each pair are similar to a degree β , and also if the group
is connected by the neighbor relation. The latter can be summarized by saying
that a group S with |S| ≥ 3 is locally aligned to a degree β if it satisfies the
following relations:

R1 : ∀x, y, z (Neigh(x, y) ∧ Neigh(y, z)) ⇒ (sim(O(x, y), O(y, z)) ≥ β)

R2 : ∀a, b ∃x0, . . . , xm for m > 1 such that x0 = a, xm = b and
m−1∧
i=0

Neigh(xi, xi+1)

Extracting Locally Aligned Groups of Objects: To extract the locally
aligned groups, first we construct a neighborhood graph GN to obtain the infor-
mation of which objects are connected via the Neigh relation. In a neighborhood
graph GN = (V,E) the vertices represent the objects of the group, and there is
an edge between two vertices if and only if the corresponding objects are neigh-
bors. Notice that only the connected subsets of three vertices x, y and z in GN

which share a common vertex, for example y, satisfy Neigh(x, y)∧Neigh(y, z).
These connected subsets are called triplets. According to R1, only the triplets
{x, y, z} for which sim(O(x, y), O(y, z)) ≥ β can belong to a locally aligned
group. Triplets can be easily identified as the edges of the dual graph, when the
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dual graph is constructed in the following manner. The dual graph is denoted by
G̃N = {Ṽ , Ẽ} where each vertex ṽi represents an edge in the graph GN . An edge
exists between two vertices ṽi and ṽj of G̃N if the two corresponding edges of
the graph GN have a common vertex. If, additionally, we attribute to each edge
(i, j) the similarity degree between the orientation histograms of ṽi and ṽj that
we denote by s̃ij , then it will be possible to verify whether the relation R1 holds
for its corresponding triplet. Figure 2 shows an example of neighborhood graph
and its dual graph. Notice that the edges of G̃N with a high value represent the
triplets of objects with a similar orientation histogram. For instance, in the dual
graph the edge between the nodes (1 - 2) and (2 - 3) has a similarity value of
1, this edge corresponding to the objects labeled 1, 2 and 3 of Fig. 2(a). In a
similar way, edges with a low value represent objects which are not aligned, for
example in the dual graph the edge between the nodes (1 - 2) and (6 - 2) has a
similarity value of 0.11 and corresponds to the objects labeled 1, 2 and 6, which
do not form a globally aligned triplet.
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Fig. 2. (a) Labeled image (b) Neighborhood graph (c) Dual graph of (b)

Returning to the conditions expressed by the relations R1 and R2 of locally
alignment, the first one states that triplets should be globally aligned, and the
second one that the group should be formed by connected objects according to
the Neigh relation. Then a group S satisfies these relations if and only if the
subset S̃ ⊆ Ṽ which represents the dual of S satisfies the following relations:

R̃1 : ∀ṽi, ṽj Conn(ṽi, ṽj) ⇒ (s̃ij ≥ β)

R̃2 : ∀ṽi, ṽj ∃ũ0, . . . ũK for K > 1 such that ũ0 = ṽi, ũN = ṽj and
K−1∧
k=0

Conn(ũ0, ũk),

where Conn(ũ, ṽ) is true if there exists an edge between ũ and ṽ. Condition
R̃2 expresses that S̃ should be connected, since if S̃ is not connected then S is
not connected. Therefore, a locally aligned group is a subset S ⊆ V for which
its dual set S̃ ⊆ Ṽ is connected in G̃ and the value of all the edges joining the
vertices within S̃ is greater than or equal to β.
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To extract the S̃i ⊆ Ṽ corresponding to the dual sets of the locally aligned
sets Si ⊆ V , first we extract the connected components {Ck} of Ṽ which are
connected by an edge value greater that β. Then for each Ck we obtain the
minimum value of its edges denoted by cons(Ck):

cons(Ck) = min{s̃ij |ṽi, ṽj ∈ Ck}
If cons(Ck) < β then Ck does not satisfy R̃1, thus vertices are removed until
cons(Ck) ≥ β. The vertices which are removed are the ones having more conflict
with their neighbors in Ck. We say that two connected vertices ũi and ṽj are in
conflict if s̃ij is close to zero, that is if the corresponding orientation histograms
of both vertices are not similar. We measure the conflict of a vertex ṽt with its
neighbors in Ck by using what we call the degree of the vertex in Ck given by:

deg(ṽt) =

∑
ṽj∈Ck

s̃tj

|{(i, j)|ṽj ∈ Ck}| . (6)

It is clear that if ṽt is in conflict with several of its connected vertices in Ck then
deg(ṽt) will be close to 0, and it will be close to 1 if there is no conflict. Then
the conflict of a vertex will be given by 1− deg(ṽt).

Candidates Evaluation: The locally aligned groups S to a degree β are the
possible candidates for being a globally aligned group with a degree of satisfaction
β. The evaluation is performed by measuring the degree of global alignment using
Equation (5). Usually the locally aligned groups to a degree β are globally aligned
to a degree β. If the degree of global alignment is inferior to β in a group S,
then we divide the group by eliminating the vertices in S̃ with the minimum
vertex degree (Eq. 6) in S̃, and we repeat this step until there is no conflict in
the vertices.

Adding More Elements to the Group: Once the globally aligned groups of
objects are identified, it is possible to add new objects to the group or fusion two
globally aligned groups to obtain a larger globally aligned group. For each group Si

we perform two morphological directional dilations of the group in the directions θ
and θ+π, where θ is the orientation of the alignment (the angle which maximizes
the conjunction of the orientation histograms O(ai, S \ {ai})). These dilations
will be denoted by Dνθ

(Si) and Dνθ+π
(Si). An object a which satisfies the Neigh

relation with one of the members of Si and which is seen by Si to a degree greater
than or equal to β (that is μinclude(a,Dνθ

(Si) ∪ Dνθ+π
(Si)) ≥ β, where μinclude

denotes a degree of inclusion [2]) is added to Si. If a whole group Sj is seen by
Si and one of the elements of Si is connected to one of the members Sj and both
groups have similar orientation, then both groups are fusioned into one.

4 Complexity Analysis

In this section we deal with the cost of the basic operations of the algorithm for
extracting locally aligned groups and globally aligned groups.
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First, we consider the complexity of extracting locally aligned groups. Consider
we have N objects each with at most no points. The complexity of the algorithm
is O(N2) since most of steps of the algorithm deal with operations over the
graph or its dual. It should be noticed that the step which corresponds to the
construction of the orientation histograms has a complexity of O(N2n2

o), since at
maximum there areN(N−1) edges on the graph and for each edge an orientation
histogram is constructed and the construction of an orientation histogram has a
complexity of O(n2

o).
The complexity of finding a globally aligned group from a locally aligned group

with NA elements each having at most no points lies on the following steps. The
first step consists in evaluating the degree of global alignment and division of
the group in the case where it is not aligned, and this step has a complexity of
O(N2

An
2
o). The second step consists in performing the morphological directional

dilations of the group in the directions of alignment θ and θ + π, and has a
complexity ofO(NI) [1], whereNI is the number of points in the image (see [1] for
the implementation of the directional morphological dilation using a propagation
method). And finally, the complexity of the step of evaluating the degree of
inclusion of each object not belonging to the group into the directional dilations
of the group is O((N −NA)n2

o), where N is the total number of objects. Hence,
summing the three steps we obtain that the total complexity is O(N2

An
2
o +NI).

5 Results

We applied the method to the objects of the synthetic image of Fig. 3. The
method obtains the locally aligned group shown in Fig. 3(b) with degree 0.9, and
this group is also globally aligned with degree 0.85. The group is then extended to
add new objects: Fig. 3(c) shows the degree to which each pixel is observed by the
group, and finally Fig. 3(d) shows the aligned group after adding the elements.
The degree of global alignment of the whole group is 0.8. In this example we
used objects of different sizes and the method was able to extract the globally
aligned group. This example highlights the flexibility of the method, since the
green and orange objects fall into the line but the orientation between them is
different from the one of the global alignment.

(a) (b) (c) (d)

Fig. 3. (a) Labeled image (b) Locally aligned group (c) The region seen by the group
of (b) in the direction of the alignment (white = high value of visibility) (d) Group
obtained after adding new elements
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We also applied the method to the houses extracted from the satellite image
of urban area objects in Fig. 4(b). Figure 4(c) shows some of the globally aligned
subsets of houses obtained. It is not possible to show all the globally aligned
groups found by the algorithm since there are objects which belong to more
than one group. We can observe that the algorithm obtains the most distinctive
groups of the image (pink, orange, white, red and blue sets). However, not all
the obtained groups are meaningful for the description of the scene (purple and
light green sets), since these are subsets which are globally aligned but do not
give any information about the arrangement of the houses. Finally, note that all
the obtained groups satisfy the notion of global alignment discussed in Sec. 3.

(a) Original Image (b) Segmented buildings (c) Subsets of aligned
buildings

Fig. 4. Some of the globally aligned subsets found by the algorithm with a degree
greater than 0.9

6 Conclusions

In this work we have introduced the definitions of globally and locally aligned
groups as fuzzy relations, and gave a method to extract them from an image
of labeled objects. Both definitions are appropriate to determine alignments
of objects of different sizes. The methods and the definitions were tested on
objects extracted from real images, giving satisfactory results. In the obtained
results, it is possible to notice that not all the obtained groups are meaningful
for the interpretation of a scene. Hence it is necessary to combine the obtained
alignments with other relations to put the globally aligned groups into context,
for example find if the global or local alignments are parallel between them or
parallel to a linear structure.
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Abstract. The paper describes a general two-step procedure for the numerical 
translation of linguistic terms using parametric fuzzy potential membership 
functions. In an empirical study 121 participants estimated numerical values 
that correspond to 13 verbal probability expressions. Among the estimates are 
the most typical numerical equivalent and the minimal and maximal values that 
just correspond to the given linguistic terms. These values serve as foundation 
for the proposed fuzzy approach. Positions and shapes of the resulting member-
ship functions suggest that the verbal probability expressions are not distributed 
equidistantly along the probability scale and vary considerably in symmetry, 
vagueness and overlap. Therefore we recommend the proposed empirical pro-
cedure and fuzzy approach for future investigations and applications in the area 
of decision support. 

Keywords: Linguistic terms, fuzzy potential membership functions, probability 
expressions, probabilistic reasoning, decision making. 

1   Introduction 

Since the 1960s up to the present time researchers of different scientific areas have 
sustained an interest in studying the relationship between verbal and numerical prob-
ability expressions [1, 2 and 3]. Among these are cognitive psychologists that inquire 
about the influence of uncertainty expressions on basic cognitive processes such as 
reasoning and decision making [4] as well as engineers, computer scientists and  
others that focus on the characterization [5] or on the treatment of uncertainty in  
applications such as medical decision support systems [6]. This broad interdiscipli-
nary interest may be motivated by the essential role language plays in our daily life. 
Verbal probability terms, such as probably or thinkable are very widely used to ex-
press uncertainty about the occurrence of future events or about the degree of belief in  
hypotheses. A typical statement that illustrates the use of linguistic terms in the  
conversation of market traders exemplarily is: “It is very unlikely that there will be a 
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significant increase in the price of oil in the next month.” [7] (p.233). Several studies 
consistently show that people prefer words over numbers to express uncertainty [8, 9]. 
This preference may be explained by the possibility of saying something about two 
different kinds of subjective uncertainty by using only one word. First, the stochastic 
uncertainty about the occurrence of an event (e.g. the probability of an increase of the 
oil price) and second, the vagueness of the event or the speakers opinion (e.g. what is 
meant by “a significant increase” and the speakers subjective belief is only vaguely 
defined). 

The understanding of these kinds of uncertainty, their relations to each other and 
the way in which they influence human reasoning and decision making is crucial for 
any application that aims to support decision makers for example in medicine, busi-
ness, risk management, marketing or politics. In our view, in order to contribute to the 
understanding of uncertainty, it is essential to first uncover the underlying relationship 
between word meaning and mathematical concepts such as subjective probability or 
fuzzy membership. Therefore we propose a general two-step procedure for the nu-
merical translation of verbal probability expressions based on (1) empirical estimates 
modelled by (2) fuzzy membership functions [10, 11].  

At first we compare verbal and numerical probability expressions and discuss ex-
isting translation approaches. Then we present our proposal that goes beyond existing 
methodical issues and the results of an empirical investigation. The contribution to the 
basic understanding of uncertainty for decision processes is highlighted and conse-
quences, e.g. in the construction of questionnaires and for practical applications in 
decision support systems, are discussed.  

1.1   Verbal and Numerical Probabilities 

There is broad agreement concerning the different features of verbal and numerical 
expressions (see [2] for an overview). Numerical probabilities are commonly de-
scribed as precise, unambiguous and especially useful for calculations. Additionally, 
the quality of numerical expressions can be evaluated and compared to predictions of 
normative models such as Bayes nets. Currently many researchers in the area of  
cognitive psychology utilize subjective probabilities for the modelling of human rea-
soning (e.g. Bayes nets in inductive learning and reasoning [12]). This enables the 
formulation of precise predictions of human behaviour and facilitates the falsification 
of hypotheses but at the same time it focuses only on the probabilistic understanding 
of uncertainty. Generally, vagueness is another facet of people’s subjective uncer-
tainty and should not be neglected. Zadeh [10] proposed the fuzzy framework for the  
handling of vagueness and pointed out that probability theory and fuzzy approaches 
are complementary rather than competitive [13]. Hence, it is possible to combine 
probability and fuzzy accounts and develop a broad understanding of cognitive uncer-
tainty. The advantages of bridging the gaps have been discussed recently in the  
cognitive sciences [14, 15]. 

In contrast to numerical probabilities, probability words are vague, with ambiguous 
meaning. They cannot easily be used for calculations and their meaning is often only 
clarified by means of a context (such as domain, speakers’ prior knowledge and ex-
perience, reference point or prior probabilities and base rates of events). But neverthe-
less, most people in most everyday situations use words rather than numbers when 
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describing their own uncertainty. Words are perceived as more natural, easier to  
understand and communicate and they are useful in situations when uncertainty can 
not at all be verbalized exactly [16]. An example of an approach that deals with words 
from natural language is computing with words (CW) methodology. It is applied in 
decision making (see [17] for a review).  

Numerical and verbal expressions are closely associated and refer to the underlying 
concept of probability and there is evidence that people can use numbers and words 
interchangeably [18] but at the same time they do not mean exactly the same thing. 
Furthermore it can be assumed from various experimental studies in cognitive psy-
chology that the use of numbers versus words affects human reasoning processes. 
Windschitl and Wells [4] show that numeric measures of uncertainty tend to sway 
people toward rule-based, deliberate thinking, whereas verbal expressions tend to 
elicit more associative and intuitive reasoning. These findings are of particular impor-
tance for reasoning situations that create conflicts between logical reasoning and in-
tuitive beliefs (e.g. the belief-bias effect [19]). In belief updating processes, such as 
customers product evaluation, there is evidence for the influence of information for-
mat (verbal vs. numerical) on order effects. An order effect is a judgmental bias that 
occurs, when the order of information influences opinions in such a way that deci-
sions after A – B differ from those after B – A [20]. There are two types of order 
effects: a primacy effect appears when the first information is overestimated and a 
recency effect when the last one is weighted stronger. Order effects can be predicted 
by situational and individual variables (e.g. length of information series or individual 
sensitivity to positive/negative information) and they are known to have severe  
consequences for real-world decisions (e.g. in medical diagnostic reasoning [21] or 
tactical military decision making [22]). Shen and Hue [23] report that the use of nu-
merical information leads to order effects whereas the use of verbal expressions do 
not. Generally, it can be assumed that the utilization of numerical vs. verbal expres-
sion formats result in different cognitive processes that in turn have different  
consequences for decisions. 

1.2   Translating Words into Numbers 

In order to investigate the impact of verbal versus numerical probability expressions 
on order effects, decision making and the communication of uncertainty means have 
to be developed for the “translation” of verbal into numerical expressions. There are 
already a number of translation studies that utilized different estimation and transla-
tion procedures. Among these are empirical approaches using direct estimation tech-
niques for instance on a scale from 0 to 100 [24] or pair comparison methods [25] as 
well as expert consultations for example to create knowledge bases for expert systems 
[6]. A summary and discussion of different estimation approaches, that map verbal 
probabilities onto the numerical probability scale, is provided in [2, 11 and 25].  

Recurrent findings in the studies using empirical estimations [2] are that the mean 
estimates of the verbal probability expressions are reasonably similar supporting the 
idea that words are translatable. But, at the same time, there is a large variability be-
tween different individuals indicating inconsistency in word understanding which 
may lead to communication problems. Although there are different views on whether 
verbal probability expressions are quantifiable or not [2], we agree with Budescu et al. 
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[11]. They propose to treat probability words as fuzzy sets and use fuzzy membership 
functions (MFs) over the probability scale to represent their vague meanings. They 
elicited judgments of membership by using a multiple stimuli estimation method in 
which probability values (0, 0.1, …, 0.9, 1) are presented simultaneously with a  
verbal probability expression. Their results show that the peak value and skew of the 
MF describing a probability expression depends on the words meaning. Therefore, 
they conclude that properties of the MF can predict for example the directionality 
(positive vs. negative verbal expressions, such as probable vs. improbable) of  
probability words. 

1.3   Objective of the Paper 

The present paper has the goal to present a general two-step procedure for the nu-
merical translation of linguistic terms. It is composed of (1) a direct empirical estima-
tion method that yields numerical data participants assigned to presented words and 
(2) a fuzzy approach for the analysis of the data resulting in parametric membership 
functions (MFs) of the potential type [26]. We outline this method for verbal prob-
ability expressions (e.g. possible) but the proposed procedure can also be applied for 
other linguistic terms such as expressions of frequency (e.g. occasionally), strength 
(e.g. strong) or others and is therefore of potential interest for many broad research 
areas and applications. Furthermore, our method goes beyond existing approaches 
[e.g. 11] for two reasons: at first, the presented direct estimation method is frugal, 
efficient and easy to use to yield data from human decision makers. Therefore, it is 
especially suitable for applications where expert knowledge is crucial but also rare or 
expensive. Secondly, the proposed parametric MFs of the potential type bring along 
advantages compared to other MFs [10, 11]. For instance, they are able to account for 
asymmetric probability terms and are defined continuously over the numerical  
probability scale. Hence, linguistic terms can be modelled very realistically. In addi-
tion, the MFs can be implemented directly in applications (e.g. in fuzzy decision  
support systems).  

In contrast to Boegl et al. [6] we do not expect that the MFs of the probability 
words are distributed equidistantly along the numerical probability scale and just like 
Budescu et al. [11] we predict the functions to be skewed and asymmetric in shape. 

2   Two-Step Translation Procedure 

In this section we present the details of the two-step translation procedure for the 
numerical translation of verbal probability expressions. At first, the estimation tech-
nique and the method of the empirical study is outlined. Thereafter, the fuzzy analysis 
and the MFs are specified.  

2.1   Empirical Investigation 

Participants. 121 participants (19 males) took part in the study mainly for exchange 
of credits. The majority were undergraduate students of the Universities of Chemnitz, 
Göttingen and Zürich with an average age of 23 years (SD=4.6).  
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Materials and Procedure. Participants read a short contextual story from the area of 
medical decision making and they were requested to see things from the perspective 
of a physician. Then they assigned three numerical values to each of 13 exemplars of 
probability words (see Table 1) that were chosen from previous studies [11, 24 and 
25]. Among the three numerical values that had to be estimated were (1) the one that 
represents the given probability word best and the (2) minimal and (3) maximal val-
ues that just correspond. The estimations can be interpreted according to the semantic 
meaning of the words: the first value characterizes the most typical numerical equiva-
lent for the word whereas the other values indicate the lower and upper border of the 
verbal probability expression. Participants were instructed to give their estimates in 
the frequency format (e.g. “In how many of 100 cases a certain diagnosis is correct if 
it is for instance improbable?”). This frequency format of estimation was proved to be 
better than for instance the estimation of percentages [27]. Participants used a PDF 
online questionnaire to provide their estimations.  

2.2   Fuzzy Analysis 

Fuzzy Membership Functions. Membership functions are truth value functions. The 
membership value (μ) represents the value of truth that an object belongs to a specific 
class (e.g. that the numerical probability value 0.25 belongs to the word doubtful). For 
the analysis of the empirical data provided by the 121 participants a parametric mem-
bership function of the potential type [26, 28] was used.  

This function (see Figure 1) is based on a set of eight parameters: r marks the posi-
tion of the mean value, a is representing the maximum value of the membership func-
tion. Regarding a class structure, a expresses the “weight” of the class in the given 
structure (we use a normalized a = 1). The parameters bl and br assign left and right-
sided membership values at the borders of the function. Hence, they represent the 
border memberships whereas cl and cr characterize the left and right-sided expansions 
of the class and therefore mark the range of the class (in a crisp sense). The parame-
ters dl and dr specify the continuous decline of the membership function starting from 
the class centre, being denoted as representative of a class. They determine the shape 
of the function and hence the fuzziness of the class.  
 

 

Fig. 1. Parameters of the membership function (for r=0) 

A continuous range of membership functions, varying from a high degree of fuzzi-
ness to crisp, is available. This function type allows considering asymmetry in fuzzy 
classes by individual parameters for the left and right hand branches of the function. 
As we expect the MFs for the probability expressions to be asymmetric, this feature is 
especially important for the present study. 
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3   Results 

In this paragraph we present the results of the statistical and fuzzy analysis of the 
present study. The descriptive statistics were calculated with the help of SPSS soft-
ware. For the fuzzy analysis and the modelling of the MFs a software package (Fuzzy 
Toolbox) was used [30]. 

3.1   Descriptive Statistics 

Table 1 shows the descriptive statistics for the empirical estimates of the most typical 
values that correspond to the presented words. The minimal and maximal estimates, 
that indicate the borders of the semantic meaning of the linguistic terms, were neces-
sary for the modelling of the MFs and so further details are not reported here.  

Table 1. Descriptive statistics for the estimates (most typical values) 

probability words Mean      SDev Skewness Kurtosis 
impossible 1.44 3.009 3.250 13.388 
very improbable 5.53 5.477 1.709 2.717 
quite improbable 9.99 7.937 1.415 2.200 
improbable 11.68 9.027 1.429 1.820 
hardly probable 17.01 11.045 1.145 1.023 
sparsely probable 18.57 12.185 1.115 .889 
doubtful 21.34 13.610 .721 .320 
thinkable 49.33 20.241 .347 .100 
possible 51.49 21.602 .544 .527 
probable 67.68 12.491 -.005 -.850 
quite probable 75.07 12.889 -1.012 1.015 
very probable 83.95 9.081 -1.023 1.195 
certain 96.28 6.453 -2.864 9.987 

 
Results show that the probability words are distributed all over the numerical prob-

ability scale with variable distance to each other. The standard deviation and kurtosis 
show a systematic pattern: probability words near to the borders of the numerical 
probability scale (e.g. impossible and certain) have small standard deviations but high 
values of kurtosis and probability words in the middle (e.g. thinkable and possible) 
offer a larger spread but smaller kurtosis values. There are also systematic differences 
for the skewness indicating that probability expressions with means smaller than 
P=0.5 are skewed to the right whereas words with means higher than P=0.5 are 
asymmetric to the left. These findings are consistent with the results reported by 
Budescu et al. [11]. 

3.2   Fuzzy Analysis 

Figure 2 shows the MFs for the 13 verbal probability expressions. The representative 
values (r) indicating the highest memberships are identical to the reported means in 
table 1.  

 



620 F. Bocklisch, S.F. Bocklisch, and J.F. Krems 

 

    

Fig. 2. Membership functions of the 13 verbal probability expressions 

Obviously, the functions differ considerably in shape, symmetry, overlap and 
vagueness. Functions at the borders (e.g. impossible) are narrower than those in the 
middle (e.g. thinkable) which is consistent with the observed standard deviations and 
kurtosis values. Most functions are asymmetric and are not distributed equidistantly 
along the probability scale. From the functions’ positions, three clusters arise, that 
may be described by (1) low (MFs 1-7), (2) medium (MFs 8 and 9) and (3) high (MFs 
10 - 13) probability ranges. The 13 MFs overlap in large part and especially when 
they belong to the same cluster. To test whether the probability expressions are dis-
tinct or not, the participants’ estimates were reclassified. Table 2 shows the results of 
the reclassification. 

Table 2. Percentages correct reclassification 

probability words Scale (13)   Scale (5) 
impossible 80.0 95.0 
very improbable 33.1  
quite improbable 24.8  
improbable 2.5  
hardly probable 15.1  
sparsely probable 2.5  
doubtful 42.4 77.1 
thinkable 41.2 61.3 
possible 6.6  
probable 44.2 72.5 
quite probable 33.9  
very probable 18.4  
certain 93.5 93.5 
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The second column of the table shows the percentages of the corresponding esti-
mation data that was reclassified correctly. According to these results, some of the 
probability words are unambiguous and the reclassification was very successful (e.g. 
certain; 93.5% reclassified correctly). Others are inconclusive and almost no estima-
tion data point that was used to describe the MF was reclassified correctly (e.g.  
improbable; 2.5 % classified correctly). Instead, the data was classified as belonging 
to the neighbor functions.  

For a verbal probability scale that could be employed in psychological research or 
application, a scale with 13 probability words would not be useful because the words 
are too indifferent according to their meanings. But if a few words with small over-
laps are selected, it is possible to create a scale that differentiates very well (see  
reclassification rate in column three of Table 2). Figure 3 shows an example scale 
with five probability words described by their MFs. 
 

        

Fig. 3. Membership functions of 5 selected verbal probability expressions 

4   Discussion 

This paper aims to present a two-step procedure for the numerical translation of lin-
guistic terms that goes beyond existing approaches. First of all, the estimation of three 
numerical values for each linguistic term (the most typical, minimal and maximal 
corresponding values) is very frugal and data can be gained very efficiently whereas 
most alternative procedures are more costly [11]. The resulting estimation data can be 
analyzed using the proposed parametric MFs of the potential type. Results show, that 
the functions are able to model the data in a very efficient way, creating averaged 
membership functions that describe the linguistic terms continuously over the nu-
merical probability scale.  

Because of the eight parameters, the functions take into account asymmetry, which 
was indeed found in the empirical data. Parametric MFs with fewer parameters would 
model the data without considering asymmetry and would therefore be less accurate 
and suitable for the reported data. Another advantage of the proposed function type is 
that the parameters can be interpreted in terms of content on a meta level and illustrate 
the vague meaning of probability words very realistically.  
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Large overlaps of the functions (see Figure 2) indicate that the words are very simi-
lar in their meanings. Despite the imprecision of natural language, the MFs allow to 
identify words that are more distinct in their meaning than others. This is especially 
useful for the creation of verbal probability scales for purposes of research and appli-
cation that should include unambiguous words when possible. 

Finally, the presented translation procedure serves as foundation for future investi-
gations concerning the influence of contexts on word understanding and communica-
tion. For instance, it is probable that some of the ambiguous probability words are 
clarified by the context in which they are used and therefore will become less vague 
which can be observed in the MFs. 
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Abstract. Many geographical applications need to model spatial phe-
nomena with vague or indeterminate boundaries and interiors. A popular
paradigm adopted by the GIS community for this task at the modeling
level is fuzzy set theory. A spatial object is fuzzy if locations exist that
cannot be assigned completely to the object or to its complement. In
previous work, we have proposed an abstract data model of fuzzy spatial
data types for fuzzy points, fuzzy lines, and fuzzy regions to represent the
indeterminacy of spatial data. This paper focuses on the problem of find-
ing an appropriate implementation approach to fuzzy regions. The idea
is to approximate a fuzzy region by a so-called plateau region consisting
of a finite number of crisp regions that are all adjacent or disjoint to
each other and associated with different membership values determining
the degree of belonging to the fuzzy region. Geometric union, geometric
intersection, and geometric difference on fuzzy regions are expressed by
corresponding operations on the underlying crisp regions. We leverage
that several implementations are already available for crisp regions.

1 Introduction

Spatial databases as the data management foundation of Geographical Infor-
mation Systems (GIS) represent point, line, and region objects by special data
types called spatial data types [7]. These data types can be used in the same
way as attribute data types as integers, floats, or characters. Their objects
have the fundamental feature that they are crisp, that is, they have a definite
extent, boundary and shape. However, many spatial objects cannot be described
by crisp concepts since they are fuzzy, vague, or indeterminate. A spatial object
is fuzzy if locations exist that cannot be assigned completely to the object or to
its complement. Hence, spatial fuzziness captures the property of objects that
do not have sharp boundaries but rather vague or indeterminate boundaries
and interiors. Examples are natural, social, or cultural phenomena like oceans,
pollution areas, and English speaking regions. It is impossible to say with preci-
sion where the Indian Ocean ends and the Arabian Sea begins. So far, indetermi-
nate spatial objects cannot be represented by available spatial database systems
and GIS.
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From a modeling standpoint, especially the GIS field has proposed fuzzy
set theory to characterize and describe indeterminate spatial data. The spa-
tial database field has provided a few proposals to conceptually model such data
through fuzzy spatial data types. Fuzzy points, fuzzy lines, and fuzzy regions have
been defined by appropriately assigning a membership value ranging from 0 to 1
to each point of such an object. A membership value indicates here how strongly
or weakly a point belongs to an object. While conceptually some progress has
been made, adequate implementation approaches to representing fuzzy spatial
data types in spatial database systems are lacking. The main reason is that the
sole approximation of the boundary of a fuzzy region is insufficient; the challenge
consists in representing its interior with its varying membership values.

The goal of this paper is to provide discrete representations of fuzzy region
objects and to specify geometric set operations like union, intersection, and dif-
ference on these representations. The idea is to approximate a fuzzy region by a
so-called plateau region consisting of a finite number of crisp regions that are all
adjacent or disjoint to each other and associated with different membership val-
ues determining the degree of belonging to the fuzzy region. The benefit of this
approach is that we can leverage widely available concepts and implementations
of well known crisp region objects. Geometric set operations on plateau regions
are expressed by corresponding operations on the underlying crisp regions.

Section 2 discusses related work on approaches to fuzzy spatial data han-
dling. Section 3 reviews our abstract definition of fuzzy regions, describes our
approach to representing them by means of plateau regions, and provides a for-
mal definition of plateau regions. Section 4 focuses on the plateau versions of
the geometric set operations fuzzy union, fuzzy intersection, and fuzzy differ-
ence. These versions are named plateau union, plateau intersection, and plateau
difference. Section 5 draws some conclusions and considers future work.

2 Related Work

The geoscience and GIS communities have proposed a large number of conceptual
approaches to handling spatial vagueness that are based on fuzzy set theory [10].
Unfortunately, all these approaches have not been devised for a use in a spatial
database context and thus do not enable fuzzy spatial data representation, han-
dling, and querying in databases. The work in [1] has been the first approach in
this direction. It presents fuzzy set theoretic approaches for handling imprecision
in spatial analysis and introduces fuzzy regions as a binary relation on the do-
main of N2 (N denotes the set of natural numbers). The authors themselves have
designed an abstract model of fuzzy spatial data types [8] based on fuzzy point
set topology. This model provides data types for fuzzy points, fuzzy lines, and
fuzzy regions as special fuzzy sets from R2 and also includes important opera-
tions on these types like fuzzy geometric union, fuzzy geometric intersection, and
fuzzy geometric difference. These concepts have been deliberately developed as a
specification for a possible implementation in spatial database systems. A simi-
lar type system of so-called vague spatial data types is introduced in [5]. Instead
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of the term “fuzzy”, the authors use the term “vague”. They distinguish vague
points, vague lines, and vague regions with single and multiple components. The
operations are similar to our approach described above. All approaches do not
provide an implementation of these data types in a spatial database system.

Implementation approaches are only available for a limited class of indetermi-
nate spatial objects. The approaches in [3,4] and our own approach, the Vague
Spatial Algebra (VASA) [6], leverage a three-valued logic with the truth values
true, false, and maybe. They approximate a fuzzy region by identifying parts
which definitely belong to the object, parts which do definitely not belong to the
object and parts which maybe belong to the object. The attractiveness and bene-
fit of these approaches rest on the fact that their conceptual and implementation
framework is based on well known, general, and exact models of crisp spatial data
types and thus on a wide range of existing definitions, techniques, data struc-
tures, and algorithms for crisp spatial objects that need not be redeveloped but
only modified and extended, or simply used. However, these approaches are not
general enough to represent fuzzy region objects due to their restriction to three
truth values and thus three membership values (0, 0.5, 1). On the other hand,
plateau region objects with their n-valued logic extend these approaches and
preserve their benefits. They provide a better approximation of fuzzy regions as
there is no restriction on the number of approximation levels.

3 Plateau Regions

In this section, we propose so-called plateau regions as an implementation con-
cept for the fuzzy spatial data type fregion for fuzzy regions. We first informally
review our earlier abstract definition of fuzzy regions from [8] in Section 3.1.
Section 3.2 informally introduces plateau regions for their implementation. In
Section 3.3, we give a formal definition of plateau regions.

3.1 Fuzzy Regions

Spatial data handling in available GIS and spatial database systems rests on the
assumption that spatial objects like region objects are precisely determined, that
each interior point fully belongs to that object, and that the object is delimited by
a precisely specified boundary. Many spatial objects, especially those describing
natural, social, and cultural phenomena, do not follow this pattern. They are
characterized by the feature of spatial vagueness. For indeterminate regions this
means that the interior may be vague and that the boundary may be blurred.

Figure 1a illustrates an air-polluted area around a chemical factory located
at position A. The exhaust fumes emitted by the factory spread around in the
region surrounding the factory at A and create a pollution cloud. The shaded
region shows the area which has been affected by the pollution particles. The
density of pollution particles around the factory is not uniform but varies. The
central zone indicated by a darker gray shading has a higher pollution density,
and the surrounding zone shown by a lighter gray shading has a lower density.



Plateau Regions: An Implementation Concept for Fuzzy Regions 627

A

(r9, 1.0)

(r8, 0.8)

(r7 ,0.7)

(r1, 0.1)

(r2, 0.2)

(r3, 0.3)

(r3, 0.3)

(r4, 0.4)

(r5, 0.5)

(r5, 0.5)

(r6, 0.6)

A

(a) (b)

Fig. 1. An example of a fuzzy region modeling an air-polluted area (a) and its repre-
sentation as a plateau region (b)

There is no clear boundary of this region. We model such a spatial phenomenon
by a fuzzy region.

Fuzzy set theory [10] has been a popular approach to modeling vague spatial
objects and resulted in a concept of fuzzy regions [5,8]. A crisp region object is
conceptually modeled as a particular point set of the Euclidean plane [7,9]. Each
of its points belongs definitely and completely to it. Let region be the spatial data
type for crisp region objects. In contrast, a fuzzy region object is conceptually
modeled as a particular point set of the Euclidean plane such that each of its
points may completely, partially, or not at all belong to it. This especially means
that a point can belong to multiple fuzzy spatial objects. Let fregion be the
spatial data type for fuzzy region objects. If Ã ∈ fregion, this means that each
point of R2 is mapped to a value of the real interval [0, 1] that represents the
degree of its membership in Ã. Hence, for a fuzzy region Ã, μÃ : R2 → [0, 1] is
its membership function, and Ã = {(p, μÃ(p)) | p ∈ R2} describes all its points in
R2 with their membership values. The distribution of membership values within
a fuzzy region may be smooth, continuous, or piecewise continuous.

3.2 Plateau Regions as a Representation of Fuzzy Regions

To the authors’ best knowledge, implementations of fuzzy regions are not avail-
able, especially not in a spatial database and GIS context. A crisp, curvilinear
region is usually approximated by well known polygonal structures for outer cy-
cles and holes cycles of its components with the assumption that the enclosed
interior belongs completely to the region. However, such an approximation is not
so easy to obtain for fuzzy regions since first, they usually have an indetermi-
nate boundary and a blurred interior, second, they have infinitely many interior
points but only finitely many representations can be kept in a computer, and
third, each point can have a different membership value.

In this paper, the fundamental idea for representing and approximating fuzzy
regions is to leverage available crisp spatial data types [7] and software packages
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implementing them. Several reasons have led to this design decision. First, this
strategy enables us to take advantage of existing definitions, techniques, data
structures, algorithms, etc., that need not be redeveloped but only modified
and extended, or simply used. Second, at the conceptual level, the correctness
of the definitions of fuzzy spatial concepts largely rests on the correctness of
the already defined crisp spatial concepts; thus, we reduce the chance of errors
in our definitions. Third, operations and predicates can be easily translated to
the implementation level (see Section 4). This means that having an available
correct implementation of crisp regions and their operations, we can correctly
implement fuzzy regions and their operations on top of them.

Our implementation concept for fuzzy regions is called plateau region. A
plateau region is a finite collection of crisp regions where each region is as-
sociated with a membership value and thus forms a “plateau” consisting of a
conceptually infinite number of points of equal membership. Figure 1b illus-
trates the concept and shows a representation of the fuzzy region in Figure 1a
as a plateau region with the nine crisp regions r1, . . . , r9 and their associated
membership values. All membership values are different, and any pair of crisp
regions is either disjoint (e.g., r1 and r9) or adjacent (e.g., r2 and r5). A single
crisp region can consist of several components (e.g., r3) that all have the same
membership value. Any two crisp regions of a plateau region must be either dis-
joint or adjacent since otherwise two crisp regions would share interior points
with different membership values. While this can be avoided for interior points,
this is not the case for the boundaries of two or more adjacent crisp regions since
they have common points with different membership values. In Figure 1b, e.g.,
r3 and r5 have the membership values 0.3 and 0.5, respectively, and r4, r6, and
r8 have the membership values 0.4, 0.6, and 0.8 respectively. We solve this in-
consistency by assigning the highest membership value to all common boundary
points of two or more adjacent crisp regions (e.g., in Figure 1b, this is 0.5 for r3
and r5, and 0.8 for r4, r6, and r8). The reason is that a boundary point shared
by n crisp regions (n ≥ 2) is guaranteed to belong to the fuzzy region with the
highest membership value among the membership values of the n regions.

3.3 Formal Definition of Plateau Regions

We are now able to give a formal definition of the spatial data type fregion for
fuzzy regions based on the concept of plateau regions.

fregion = {pr1, . . . , prk |
(i) k ∈ N
(ii) ∀ 1 ≤ i ≤ k : pr i = 〈(ri,1,mi,1), . . . , (ri,ni ,mi,ni)〉
(iii) ∀ 1 ≤ i ≤ k : ni ∈ N ∪ {0}
(iv) ∀ 1 ≤ i ≤ k ∀ 1 ≤ j ≤ ni : ri,j ∈ region
(v) ∀ 1 ≤ i ≤ k ∀ 1 ≤ j ≤ ni : mi,j ∈ ]0, 1]
(vi) ∀ 1 ≤ i ≤ k ∀ 1 ≤ j < l ≤ ni : ri,j disjoint ri,l ∨ ri,j meets ri,l
(vii) ∀ 1 ≤ i ≤ k ∀ 1 ≤ j < l ≤ ni : mi,j < mi,l

(viii) ∀ 1 ≤ i ≤ k ∀ 1 ≤ j ≤ ni ∀ p ∈ r◦i,j : μ(p) = mi,j

(ix) ∀ 1 ≤ i ≤ k ∀ p ∈ ⋃ni

j=1 ∂ri,j : μ(p) = max{mi,j | 1 ≤ j ≤ ni, p ∈ ∂ri,j}}
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Each plateau region is represented as a finite sequence of pairs (condition (ii)) con-
sisting of an object of the well known spatial data type region [7] for complex crisp
regions (condition (iv)) and a membership value (condition (v)) indicating the de-
gree of belonging of the crisp region to the fuzzy region. We call such a crisp region
a subregion of the plateau region. The number of pairs, and hence regions, depends
on each plateau region and can thus be different for different plateau regions (con-
dition (iii)). If the number of pairs is equal to zero, we obtain the empty plateau
region. Condition (vi) states that any two crisp regions associated with a plateau
region are topologically either disjoint or adjacent to each other. This is expressed
by the well known topological predicates disjoint and meet on complex regions [9].
Condition (vii) requires that all membership values are different and that all pairs
of the sequence are ordered by their membership values. This caters for a unique
representation of a plateau region. Conditions (viii) and (ix) take care of a precise
assignment of membership values to the points of a plateau region. The ◦ opera-
tor and the ∂ operator used in the conditions are point-set topological operators
which determine all interior points and boundary points, respectively, of a point
set. All interior points of a crisp subregion obtain the membership value associ-
ated with the region in a corresponding pair of the sequence (condition (viii)) of
a plateau region. Each boundary point obtains the highest membership value of
all crisp subregions of a plateau region to which the point belongs (condition (ix),
compare to Section 3.2). Note that we do not explicitly represent and store single
boundary points or linear boundary parts that have a different membership value
than the interior of a pertaining subregion.

4 Geometric Set Operations on Plateau Regions

Geometric set operations belong to the most important operations on spatial ob-
jects. In the fuzzy region case, the operations fuzzy intersection, fuzzy union, and
fuzzy difference all have the signature fregion × fregion → fregion and are sup-
posed to be represented by corresponding operations on plateau regions. These
operations are defined on the basis of the already existing geometric set opera-
tions intersection (⊗), union (⊕), and difference (3) on crisp regions.

Their formal definition requires an auxiliary construction operator 4 that
enables us to insert a pair (r,m) ∈ region× [0, 1] into the ordered representation
of a plateau region pr = 〈(r1,m1), . . . , (rn,mn)〉 for some n ∈ N. We define:

pr 4 (r,m) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pr if r = ∅ or m = 0
〈(r,m)〉 if pr = 〈〉 and r �= ∅
〈(r1,m1), . . . , (ri ⊕ r,mi), . . . , (rn,mn)〉

if r �= ∅ and n ≥ 1 and ∃ i ∈ {1, . . . , n} : mi = m
〈(r1,m1), . . . , (ri,mi), (r,m), (ri+1,mi+1), . . . , (rn,mn)〉

if r �= ∅ and n ≥ 2 and ∃ i ∈ {1, . . . , n− 1} : mi < m < mi+1

〈(r,m), (r1,m1), . . . , (rn,mn)〉 if r �= ∅ and n ≥ 1 and m < m1

〈(r1,m1), . . . , (rn,mn), (r,m)〉 if r �= ∅ and n ≥ 1 and m > mn
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(r1,1, 0.3)

(r1,2, 0.6)

(r2,2, 0.6)
(r1,3, 0.7)

(r2,1, 0.2)

(r1,3, 0.7)
(r3,1, 0.6)

(a) (b)

Fig. 2. A scenario of two fuzzy regions modeled as plateau regions pr1 and pr2 (a) and
their geometric intersection pr3 = fintersection(pr1, pr2) (b)

Note that 4 is left-associative, i.e., pr 4 (r1,m1)4 (r2,m2) = (pr 4 (r1,m1))4
(r2,m2). For pr 4 (r1,m1)4 . . .4 (rn,mn) we also write pr 4⊙n

i=1(ri,mi).
As an illustrating example for demonstrating the geometric set operations,

we use the spatial scenario of two plateau regions pr1 = 〈(r1,1, 0.3), (r1,2, 0.6),
(r1,3, 0.7)〉 and pr 2 = 〈(r2,1, 0.2), (r2,2, 0.6)〉 given in Figure 2a. Note that each
subregion in our example is a simple region but might be a complex region that
includes multiple components labeled with the same membership value and that
contains holes in the general case.

4.1 Plateau Intersection

Intersecting two plateau regions pr1 and pr 2 means that each subregion of pr 1
must be geometrically intersected with each subregion of pr2 and that their
smaller membership value is assigned to the resulting non-empty subregion [8].
In our example in Figure 2a, we obtain 3 · 2 subregion pairs that have to be
intersected since pr1 contains three components and pr2 contains two compo-
nents. If the geometric intersection of two subregions is empty, we discard this
result. Otherwise, the found subregion is part of the resulting plateau region,
and we assign the smaller membership value of both operand subregions to it.
The reason is that only the smaller membership value guarantees that the points
of the intersection belong to both subregions. For example, in Figure 2a, the in-
tersection of the subregions r1,3 and r2,2 leads to a non-empty subregion that is
assigned the membership value 0.6.

Since the creation of subregion pairs and their intersection is a local opera-
tion, it can happen that different resulting subregions are labeled with the same
membership value. For example, in Figure 2a, the intersection of r1,3 and r2,2
will obtain the membership value 0.6. Similarly, the intersection of r1,2 and r2,2
will obtain the same membership value. Since according to the plateau region
definition in Section 3.3 all subregions of a plateau region must have different
membership values, we have to compute the geometric union of both subregions
obtained so far and assign the common membership value 0.6 to it. Figure 2b
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shows the result of the plateau intersection for our example. It is a plateau region
pr3 = 〈(r3,1, 0.6)〉.

The formal definition of the plateau intersection operation leverages the 4
operator that takes care of all the aforementioned particular situations when
constructing the resulting plateau region.

Let pr1, pr2 ∈ fregion with prk = 〈(rk,1,mk,1), . . . , (rk,nk
, mk,nk

)〉 for k ∈
{1, 2}. Then

fintersection(pr 1, pr 2) = 〈〉 4
⊙

1≤i≤n1
1≤j≤n2

(r1,i ⊗ r2,j ,min(m1,i,m2,j))

This definition uses an incremental strategy by starting with the empty plateau
region 〈〉 and incrementally adding local results from intersections of subregion
pairs.

4.2 Plateau Union

Forming the union of two plateau regions pr1 and pr2 means that each subre-
gion of pr 1 must be geometrically merged with each subregion of pr2 and that
their larger membership value is assigned to the resulting non-empty subregion
[8]. Two main spatial configurations can arise. If the intersection of the two
subregions is empty, both subregions are copied with their respective (equal or
unequal) membership values into the resulting plateau region. In Figure 2a, this
is the case for the subregions r1,1 and r2,1. Otherwise, if the two subregions in-
tersect, three new subregions are stored in the resulting plateau region, namely
the subregion that is the result of the intersection and that is labeled with the
larger membership value, and the two subregions from which we subtract the
intersection and which we label with their original membership values. A subre-
gion obtained as an intersection of two subregions gets their larger membership
value since at least one of them can guarantee the higher extent of belonging.
In Figure 2a, the intersections of r1,3 and r2,2 as well as of r1,2 and r2,2 are
non-empty. In the first case, we obtain a subregion as an intersection with the
membership value 0.7, the subregion of r1,3 from which we subtract the inter-
section with the membership value 0.7, and the subregion of r2,2 from which we
subtract the intersection with the membership value 0.6. In the second case, the
same strategy leads to three subregions that all have the membership value 0.6.
Subregions with the same membership value have always to be merged in the
resulting plateau region. Figure 3a shows the result of the plateau union for our
example. It is a plateau region pr4 = 〈(r4,1, 0.2), (r4,2, 0.3), (r4,3, 0.6), (r4,4, 0.7)〉.

For the formal definition of the plateau union operation we assume again two
plateau regions pr 1, pr2 ∈ fregion with prk = 〈(rk,1,mk,1), . . . , (rk,nk

, mk,nk
)〉

for k ∈ {1, 2}. Then

funion(pr 1, pr2) = 〈〉 4
⊙

1≤i≤n1
1≤j≤n2

(
(r1,i ⊗ r2,j ,max(m1,i,m2,j))
4 (r1,i 3 r2,j ,m1,i)
4 (r2,j 3 r1,i,m2,j)

)
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(a) (b)

Fig. 3. The geometric union pr4 = funion(pr1, pr2) (a) and the geometric difference
pr5 = fdifference(pr1, pr2) (b) of the two plateau regions pr1 and pr2 in Figure 2a

Again, the 4 operator merges different subregions with equal membership val-
ues and orders the resulting subregions with respect to increasing membership
values.

4.3 Plateau Difference

Forming the difference of two plateau regions pr1 and pr 2 means that each sub-
region of pr 2 must be geometrically subtracted from each subregion of pr1 and
that the membership value of the latter subregion is diminished by the member-
ship value of the former subregion [8]. Two main spatial configurations can arise.
If the two subregions do not intersect, then the subregion of pr 1 is copied with its
membership value into the resulting plateau region. In Figure 2a, this is the case
for the subregion pairs r1,1 and r2,1, r1,1 and r2,2, r1,2 and r2,1, and r1,3 and r2,1.
Otherwise, if the two subregions intersect, we first add the geometric difference of
the subregion of pr1 and the subregion of pr2 with the membership value of the
former subregion to the resulting plateau region. Finally, we add the intersection
of both subregions with the difference of both membership values to the result-
ing plateau region. Figure 2a shows two such scenarios. First, the subregions of
r1,3 and r2,2 intersect. The geometric difference of both subregions is added with
the membership value 0.7 to the resulting plateau region. Then the intersection
of both subregions is added with the membership value 0.7 − 0.6 = 0.1 to the
new plateau region. Hence, the second subregion “weakens” the first subregion.
Second, the subregions of r1,2 and r2,2 intersect. Again the geometric difference
is added in a similar way as before. For the intersection of both subregions we
obtain a subregion with membership value 0. This corresponds to an empty
region. The 4 operator prevents such a region from being inserted into the re-
sulting plateau region. Figure 3b shows the result of the plateau difference for our
example. It is a plateau region pr5 = 〈(r5,1, 0.1), (r5,2, 0.3), (r5,3, 0.6), (r5,4, 0.7)〉.

For the formal definition of the plateau difference operation let pr1, pr 2 ∈
fregion with prk = 〈(rk,1,mk,1), . . . , (rk,nk

, mk,nk
)〉 for k ∈ {1, 2}. For a, b ∈ R,

we define further that a −̇ b = a− b if a > b, and a −̇ b = 0 otherwise. Then
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fdifference(pr 1, pr2) = 〈〉 4
⊙

1≤i≤n1
1≤j≤n2

(
(r1,i 3 r2,j ,m1,i)
4 (r1,i ⊗ r2,j ,m1,i −̇ m2,j)

)
5 Conclusions and Future Work

This paper introduces plateau regions as an implementation concept of fuzzy
regions in the context of spatial databases and GIS. A special characteristic of
our approach is that plateau regions rest on well known concepts, data structures,
algorithms, and implementations of crisp regions. Since crisp regions are designed
and implemented as abstract data types, all structural details are hidden, and
all crisp concepts only have to be called and applied.

This paper is the beginning of a larger effort to design and implement a so-
called Spatial Plateau Algebra that is supposed to offer a type system including
plateau points, plateau lines, and plateau regions together with a comprehen-
sive collection of plateau operations and predicates as implementations of their
fuzzy counterparts. As to operations, our particular interest relates to metric
operations and to topological predicates for fuzzy spatial objects.
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Abstract. This paper is devoted to the original idea of fuzzy control — to ap-
ply genuine linguistic description of a control strategy. We present the concept of
fuzzy logic control which differs from the generally used techniques (based on
Mamdani-Assilian or Takagi-Sugeno rules). The leading idea is to “teach” com-
puter to “understand” genuine linguistic description of a control strategy and
follow it analogously as people do. Our technique applies mathematical theory of
the meaning of special expressions of natural language and mathematical theory
of formal logical deduction on the basis of (vague) linguistic descriptions. The
result is a specific control technique which has several advantages, namely in-
telligibility, robustness, generality, and also adaptation and learning. We present
several examples and mention practical applications.

Keywords: Fuzzy control, evaluative expressions, fuzzy/linguistic IF-THEN
rules, linguistic description.

1 Introduction

Fuzzy control is now the standard control method which is a constituent of many indus-
trial systems and companies advertise it no more. The used technique is mostly based
on application of fuzzy IF-THEN rules; either of the form first used by Mamdani [1], or
by Takagi and Sugeno [2]. Surprisingly, this technique has been theoretically explained
and justified only a couple of years ago (cf., e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]).

The success of fuzzy control is based on the fact that description of real systems is quite
often imprecise. The imprecision raises from several factors — too large complexity of
the controlled system, insufficient precise information, presence of human factor, neces-
sity to spare time or money, etc. Very often, combination of more such factors is present.

It should be stressed, however, that despite the authors’ proclaim that fuzzy control
is based on expert knowledge expressed in natural language, the reality is different.
Though the rule base of a fuzzy controller is sometimes initially formed on the basis
of such knowledge, the used fuzzy sets have in most cases triangular shape and they
are further modified to obtain the best control. Consequently, the resulting rule base
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comprises of fuzzy sets which have minimal, if any, relation to the original meaning of
the words used by experts when presenting their knowledge. Explanation of this fact is
easy — the control engineers use, in fact, a system which provides efficient, mathemat-
ically well justified approximation of a control function. This is the reason why modifi-
cation of shapes of fuzzy sets is usually necessary. However, it is not linguistic control.

In this paper we will demonstrate that the original idea of fuzzy control — to apply
genuine linguistic description of a control strategy — can be realized and that it is
sufficiently powerful. We will present the concept of fuzzy logic implementation which
differs from the above discussed fuzzy control technique. Two specific aspects make it
distinguished from the common fuzzy control:

(i) application of a mathematical theory of the meaning of special expressions of
natural language. The computer then behaves as if “understanding” them.

(ii) application a mathematical theory of formal derivation (genuine logical deduc-
tion) of a conclusion on the basis of (vague) linguistic description.

At present, item (i) requires to limit our use of natural language to narrow but very impor-
tant part of natural language, namely to the, so called, evaluative linguistic expressions,
and to simple conditional statements formed of the latter. Below, we will speak about
fuzzy/linguistic IF-THEN rules. A set of such rules is called linguistic description.

Using linguistic description we can characterize the control strategy. Each rule in
the description has its own local meaning which is respected during derivation of the
conclusion. Furthermore, it is necessary to specify a linguistic context of each included
variable. The control can be then improved by modifying either the linguistic context,
or by modifying (changing) linguistic expressions forming the rule. It should be em-
phasized that the membership functions are not modified; they are even hidden to the
user. This is natural with respect to the main goal of this approach since people also do
not specify membership functions to each other when talking.

The conclusion is derived using a special inference rule called perception-based log-
ical deduction. This is essentially logical modus ponens realized in fuzzy logic with
specific features. The whole concept and the corresponding technique is called Linguis-
tic Fuzzy Logic Controller (LFL Controller) and it was implemented in the University
of Ostrava in the Czech Republic.

Let us emphasize that the linguistic control realized by means of LFL Control tech-
nique is very powerful and general. It enables us to control many kinds of processes
with quite different characteristics. The control has a lot of nice properties, namely it
is intelligible (the description of the control strategy is well understandable even after
years), robust with respect to disturbances and change of conditions, very general, and
it can be automatically adapted and it has also good learning abilities. We will discuss
them in this paper.

2 Perception-Based Logical Deduction

2.1 Linguistic Descriptions — The Knowledge of Control Strategy

The Linguistic Fuzzy Logic Controller (LFL Controller) is the result of application of
the formal theory of the fuzzy logic in broader sense (FLb) ([13]). The fundamental
concepts of FLb are evaluative linguistic expressions and linguistic description.
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Evaluative (linguistic) expressions are natural language expressions such as small,
medium, big, about twenty five, roughly one hundred, very short, more or less deep,
not very tall, roughly warm or medium hot, roughly strong, roughly medium important,
and many others. They form a small, but very important constituent of natural language
since we use them in commonsense speech because to be able to evaluate phenomena
around. Evaluative expressions have important role in our life because they help us
to determine our decisions, help us in learning and understanding, and in many other
activities. Let us stress that the evaluative adjectives small, medium, big are canonical
and, of course, they can be replaced by other proper adjectives depending on the context,
for example deep, shallow, nice, intelligent, beautiful, ugly, weak, etc. All the details of
the theory of evaluative expressions, i.e., their definition, syntactic structure, logical
analysis and formal theory of their meaning can be found in the paper [14].

Simple evaluative linguistic expressions (possibly with signs) have the general form

〈linguistic modifier〉〈TE-adjective〉 (1)

where 〈TE-adjective〉 is one of the adjectives (also called gradable) “small, medium,
big” (and possibly other specific adjectives), or “zero” (possibly also arbitrary symmet-
ric fuzzy number). The 〈linguistic modifier〉 is an intensifying adverb such as “very,
roughly, approximately, significantly”, etc. Simple evaluative expressions of the form
(1) can be combined using logical connectives (usually “and” and “or”) to obtain
compound ones.

Fig. 1. A general scheme of intension of evaluative expressions (extremely small, very small,
small, medium, big) as a function assigning to each context w ∈ W a specific fuzzy set. The
position of the central point vS can vary and so, shapes of the fuzzy corresponding fuzzy set vary
as well.

Two basic kinds of linguistic modifiers can be distinguished in (1), namely those
with narrowing and extending effect. Narrowing modifiers are, for example, “extremely,
significantly, very” and widening ones are “more or less, roughly, quite roughly, very
roughly”. We will take these modifiers as canonical. Note that narrowing modifiers
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make the meaning of the whole expression more precise while widening ones do the
opposite. Thus, “very small” is more precise than “small”, which, on the other hand, is
more precise (more specific) than “roughly small”. The case when 〈linguistic hedge〉 is
not present is dealt with as a presence of empty linguistic hedge. Thus, all the simple
evaluative expressions have the same form (1).

We distinguish evaluative expressions introduced above from evaluative predica-
tions, which are expressions of natural language of the form ‘X is A’. The A is an
evaluative expression and X is a variable which stands for objects, for example “de-
grees of temperature, height, length, speed”, etc. Examples are “temperature is high”,
“speed is extremely low”, “quality is very high”, etc. In control, values ofX will usually
be real numbers.

The semantic model of evaluative expressions in FLb makes distinction between their
intension (a property) and extension in a given context of use. This follows the gener-
ally accepted idea that intension can be modeled as a function which assigns to each
context an extension1 where the latter is, in our case, a specific fuzzy set. The concepts
of intension and extension formalize typical real situations. For example, the expres-
sions high temperature, high pressure, high tree, etc. contain the same word “high”. In
various situations, however, “high temperature” may mean 100◦C at home but 1000◦C
in metal melting process; similarly in the other cases. No satisfactory formalization of
such situation without the mentioned concepts is not possible. Thus, the meaning of
each evaluative expression is identified with its intension. The scheme of intension is
in Fig. 1.

Small Medium BigExtremely
Very

0 4 10

0 4 10

Roughly

(a)

(b)

Fig. 2. A scheme of extensions of basic evaluative expressions. Part (a) depicts an intuitive mean-
ing of extensions of the expressions “small, medium”, and “big” in a given context 〈0, 4, 10〉.
Part (b) characterizes them by fuzzy sets.

As can be seen from this example, the meaning of evaluative expressions as well as
predications relates always to some linguistic context. We will model it by an ordered
triple of real numbers 〈vL, vS , vR〉where vL < vS < vR. The number vL is a left bound
so that all small values fall between vL and vS . Similarly, vR is a right bound and all
big values fall between vS and vR. Finally, all values around vS are “medium”. Thus,
intension in a given context gives rise to extension (cf. Fig. 2). We can thus construct
the meaning of expressions in various situations and, at the same time, still keep their
essential properties.

1 This idea has been formulated by R. Carnap but roots already to W. Leibniz.
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By linguistic description we will understand a finite set of fuzzy/linguistic IF-THEN
rules

R1 = IF X is A1 THEN Y is B1,

R2 = IF X is A2 THEN Y is B2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rm = IF X is Am THEN Y is Bm

where “X is Aj”, “Bj is Y ”, j = 1, . . . ,m are evaluative linguistic predications. Lin-
guistic description can be understood as a specific kind of a (structured) text which can
be used for description of various situations or processes, or for effective description
of a control or decision strategy. Therefore, elaboration of linguistic descriptions has
many interesting applications in various areas. In this paper, we will focus on control.

Perception-Based Logical Deduction (PbLD). This is the main technique of finding
a conclusion on the basis of linguistic description. It should be emphasized that the
standard Mamdani–Assilian technique [1] widely used in fuzzy control is a fuzzy ap-
proximation technique. Using it we can effectively approximate continuous functions
(cf. [9, 4]). PbLD, on the other hand, is a logical method developed in the frame of
FLb, which enables us to mimic the way how people make their decision on the basic
of expert information. The detailed mathematical explanation of PbLD can be found in
[15, 16]. In this paper, we will illustrate its behavior on a simple example.

Let us consider control strategy of

Fig. 3. Demonstration of the control for a traffic
junction with green switched to red. The figure
shows all actions (break/accelleration) depending
on the distance from the junction: first acceleration
for very small distance and then break for small one.
Otherwise no action.

a driver who approaches a traffic junc-
tion and the green light which has been
on, suddenly switches to red one. The
driver’s strategy is the following: if the
distance is medium or big then do noth-
ing (i.e., we easily finish the ride and
stop without problems). If the distance
is small then quickly break. If the dis-
tance is very small then accelerate very
much because this is safer than rapid
brake. This strategy can be described
using the following linguistic
description:

R1 := IF Distance is very small THEN Break is -very big

R2 := IF Distance is small THEN Break is big

R3 := IF Distance is medium or big THEN Break is zero

where “break is −very big” means “acceleration is very big”. Note that such linguistic
description characterizes general driver’s behavior independently on the concrete place
and so, people are able to apply it in a junction of arbitrary size.

Let the linguistic context of Distance be the triple 〈0, 40, 100〉 (in metres) and lin-
guistic context of Break force be the triple 〈0, 0.4, 1〉 (relative position of the break/acce-
leration pedal). If one sees that the distance from the junction is around 10–15 m (and
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smaller) then his/her perception is is that the junction is very near (the “distance is very
small”). Therefore, it is necessary to “accelerate very much” which might correspond
to values about 0.8–0.9. On the other hand, if the distance is around 20–28 m then
the perception of the distance of the junction is near and so, it is necessary to break
strongly. The result of PbLD on the basis of the linguistic description above is depicted
in Fig. 3. Note that PbLD can distinguish among the rules and though vague, the result
corresponds to the knowledge obtained in this linguistic description.

The basic kind of PbLD leads to monotonous but not continuous behavior. We have
also developed a smooth PbLD which is monotonous and continuous (see [16]). It is a
combination of logical deduction with a special soft computing technique called fuzzy
transform introduced by I. Perfilieva in [17].

Comparison of PbLD with Mamdani-Assilian Technique. The latter is a a technique
providing approximation of a function which is known imprecisely but we have an idea
about its course. It works very well with fuzzy sets of triangular (trapezoidal) shape
using which a certain imprecise area is characterized. Such fuzzy sets, however, can-
not be considered as extensions of evaluative expressions since the latter require the
shapes depicted in Figure 2 (for the detailed justification, see [14]). Since they essen-
tially overlap, the Mamdani-Assilian technique cannot cope with linguistic descriptions
of the above described form. For example, we can demonstrate that the the driver’s be-
havior would be “break” at any case, but break only “a little” when being very near the
junction which would probably lead to car accident. This does not mean, however, that
this technique is wrong. It interpolates among the rules and therefore, it cannot distin-
guish properly the specific rules themselves as is the case of PbLD. The latter, on the
other hand, is worse when approximation of a specific function is the main goal. This
raises the question which kind of control technique should be used in a specific case.

The Mamdani-Assilian technique is convenient for fuzzy control if the linguistic char-
acter of the expert knowledge on the basis of which the control strategy is derived is
unimportant and the control engineer thinks mainly in terms of a proper control function.
The LFL Controller technique is more general in the sense that it can be used not only
for control problems but also for decision-making. It effectively utilizes expert knowl-
edge specified in natural language and, because of that, it can be reconsidered for vari-
ous kinds of modification even after years because the user (control engineer) can very
easily capture meaning of the linguistic description.

3 LFL Controller

3.1 Characteristics of Linguistic Control

The LFL Controller is a special mechanism which applies the above described PbLD
method to control. Because of its abilities, the control engineer can focus only on the
control strategy which is described in natural language and needs not care about shapes
of fuzzy sets; these can even be hidden to him. Instead, the control engineer modifies
the used evaluative expressions.

Let us now consider the following variables: error Et, its derivative/change dEt,
its second derivative/change d2Et, control action Ut and its derivative dUt. Then the
following linguistic descriptions can be used for process control:
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(i) PD-controller
IF Et is A AND dEt is B THEN Ut is C.

(ii) PI-controller
IF Et is A AND dEt is B THEN dUt is C.

(iii) PID-controller

IF Et is A AND dEt is B AND d2Et is B THEN dUt is D

whereA,B, C,D are specific evaluative expressions. Of course, any other kinds of vari-
ables can also be considered.

The LFL Control control shares nice properties of classical fuzzy control (cf. [8]) but
has several additional nice properties:

(a) The linguistic description is written in genuine linguistic form which is well under-
standable to people, even after years. Therefore, it is easy to modify the description
any time without big effort, if necessary.

(b) The linguistic description characterizes a general control strategy which is often
common to many kinds of processes. Therefore, the same description can be used
for control of various kinds of processes with no, or with only little modifications.

(c) The control is very robust and does not require modifications even if the conditions
are varying a lot and/or the control is subject to many random disturbances.

(d) The concept of linguistic context turned out to be quite powerful since not only it
is possible to learn it partially, but also it can be continuously modified to obtain
precise control comparable with classical controllers.

4 Learning

The LFL Control technique has powerful learning abilities. Special algorithms for the
following learning problems have been developed:

1. Learning of the linguistic description, i.e. finding a set of linguistic IF-THEN rules.
2. Partial learning of the linguistic context.

4.1 Learning of the Linguistic Description

Let us consider a dynamic process controlled manually by a human operator. The only
known general characteristics of the process is that it is a stable process. Our task is
to monitor the course of the manual control and to learn the linguistic description on
the basis of the obtained data in such a way that LFL Control technique will be similar
to that done by the operator. Furthermore, we suppose that the control has proceeded
on the basis of errors and their derivations using one of the above considered types of
fuzzy PI, PD, or PID control.
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The learning procedure has the following steps:

1. Specify a corresponding context for each variable.
2. Find a suitable evaluative predication to each data item. The result is a fuzzy/linguistic

rule.
3. Repeat 2. for all the data and generate the linguistic descriptionR1, . . . ,Rn.
4. Reduce the generated linguistic description as follows.

(a) Replace all the identical rules by one only.
(b) Let Ri and Rj be two generated rules such that all terms have the same sign

and their succedents be identical. Let the meaning of the antecedent of Ri be
wider than that of Rj . Then exclude the latter rule.

(c) Let Ri and Rj be two generated rules such that all terms have the same sign
and their antecedents be identical. Let the meaning of succedent of Ri be nar-
rower than that of Rj . Then exclude the latter rule.

Fig. 4. Comparison of linguistic control using LFLC-technique without and with disturbance
which was randomly generated in the input in the range of 20% of the control action. The con-
troller is fuzzy-PI and the controlled proces has the transfer function 1

(s+1)2)
.

4.2 Learning and Adaptation of the Linguistic Context

Learning of the Linguistic Context. By this we mean to find optimal values of the
right bound vR for all the variables. Let us first consider the case of the context of the
error e and its changeΔe. The idea behind learning of e andΔe is very simple. We start
with the assumption that any non-zero error in the beginning is big. Hence, the context
is defined according to the value of the initial error e(0) = v − y(0) where y(0) is the
initial process output and v is the required value. Experiments show that this works quite
well if we put V − = [−kee(0), 0], V + = [0, kee(0)] andW− = [−kΔee(0), 0],W+ =
[0, kΔee(0)] where ke and kΔe are suitable constants (for example, by experiments we
have found the values ke = 0.7 and kΔe = 2.4).

Concerning the context for control action, the situation is more complicated for the
context depends on the nature of the controlled process, and also on the technical device
used for the control. Therefore, the context must be set by an expert. To set the context
for the (change of) control action, we can employ two approaches. First, the context
is given by the maximal technically possible position of the “control cap”. The other
possibility proposed in [18] is based finding optimal values on the basis of two initial
values given by expert.
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Fig. 5. Linguistic control using LFL Controller technique when the context of error and change
of error are learned (left) and when the context is adapted depending on the distance from the
set-point (right). The controller is fuzzy-PI and the controlled proces has the transfer function

1
(s+1)2

.

Adaptation of the Linguistic Context. A very important possibility offered by the
LFL Controller technique is adaptation of linguistic context of all variables depending
on the distance from the set-point value. The idea is to check whether is the output of
the system sufficiently long time sufficiently close to the set-point. If this is the case then
contexts of all the used variables are shrinked. The situation repeats until the output is
ε-close to the set-point for some small ε > 0. If the output is suddenly disturbed then
the system immediately returns all the context to their initial values.

5 Practical Applications

There are many various kinds of applications of the LFL Control technique. For exam-
ple, control of plaster kiln, control system of hydraulic transition water–oil, control of
massive 100t steam generator, and few other ones. The most successful application is
control of 5 smelting furnaces TLP9 in Al Invest company in a small village Břidličná
in the Czech Republic. The applications has been in detail described in [19].

Example of the fuzzy/linguistic rules is the following:

IF E1 is +Extremely Big AND ΔE1 is ignored AND E2 is +Extremely Big

THEN U is Extremely Big

IF E1 is +Big AND ΔE1 is +Extremely Big AND E2 is +Big THEN U is Small

where E1 = w − T1 is the error of the temperature above the melted metal level,ΔE1
is its derivative, E2 = w − T2 is the error of the temperature inside the melted metal,
and U is the control action (the amount of the gas brought to the jet). Measuring of the
temperature of the metal on two places has been chosen to represent behavior of the
metal temperature in two different stages of its melting (melting begins from the top to
down, so that some parts may be already fully melted while the others not yet).

The form of rules corresponds to the PD-fuzzy controller. Their number is 155.
Though fairly high, we decided not to reduce it. First of all, it was not too difficult
to prepare all of them. Moreover, tuning of the whole linguistic description was quite
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simple because of their linguistic nature (recall that tuning means only replacing less
suitable expressions inside the rules by more suitable ones according to their linguis-
tic meaning). Furthermore, the systems turned out to be able to react correctly also in
the emergency situations, such as the work of only one sensor instead of two ones. Of
course, the control in such a case is worse, but still acceptable.

Because of lack of space, we cannot demonstrate other features of LFL Controller,
for example, that just one kind of linguistic description can be used for control of
processes with quite different dynamical characteristics. The only thing that must be
changed is the linguistic context.

6 Conclusion

This paper is devoted to the original idea of fuzzy control — to apply a genuine lin-
guistic description of a control strategy. We have presented the concept of fuzzy logic
implementation (LFL Controller) which differs from the classical fuzzy control tech-
nique. Its leading idea is to teach computer to understand genuine linguistic description
of the control strategy in a way to be able to follow it analogously as people do. Our
technique applies mathematical theory of the meaning of special expressions of natural
language so that the computer behaves as if “understanding” them. To accomplish the
latter, we apply mathematical theory of formal logical deduction. There are hundreds
of successful simulations as well as several real working applications of our technique.

The LFL Controler technique has been continuously improved, namely its method-
ology, adaptation, learning and also improvement in understanding natural language.
Let us recall that tuning of our controller means modification of the linguistic descrip-
tion (i.e., changing the words to more suitable ones) or, occasionally modification of
the context (but not touching the fuzzy sets which the user may not be aware of). One
of the theoretical problems of our technique is proving stability of the proposed con-
troller. This is a conceptual problem because our technique has been proposed for the
situations in which the knowledge of the controlled process is very limited and impre-
cise. Assuring stability in this case is impossible in principle. We can only demonstrate
that the PbLD method mimics the way of human reasoning so that if expert control is
successful (and stable) then our control accomplishes the same. Mathematical proof of
the latter, however, is again impossible in principle.
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Abstract. Here we propose a method for contour detection of cells on medical 
images. The problem that arises in such images is that cells' color is very simi-
lar to the background, because the cytoplasm is translucent and sometimes 
overlapped with other cells, making it difficult to properly segment the cells. To 
cope with these drawbacks, given a cell center, we use hue and saturation histo-
grams for defining the fuzzy sets associated with cells relevant colors, and 
compute the membership degree of the pixels around the center to these fuzzy 
sets. Then we approach the color gradient (module and argument) of pixels near 
the contour points, and use both the membership degrees and the gradient in-
formation to drive the deformation of the region borders towards the contour of 
the cell, so obtaining the cell region segmentation. 

Keywords: Color image segmentation, fuzzy characterization, cell contour, 
color histograms, color gradient. 

1   Introduction 

Everyday more doctors count on a huge variety of images from which they must ex-
tract information, usually in a manual, time consuming and subjective way. Image 
segmentation, the task of splitting image into homogeneous regions, plays a crucial 
role in medical areas, since these techniques assist them in diagnosis tasks [1]. 

Compared with common image segmentation algorithms, the ones used for medi-
cal images need more specific background and must satisfy complex and practical 
requirements. It is due to the partial volume effect, the inhomogeneity of detective 
fields, the noise and excessive exposition of images at the capture, the focusing prob-
lems, the resemblance between the target elements and the background, the presence 
of translucent objects or the overlapping of elements (like cells), which make medical 
images imprecise, blurred, and difficult to model and treat [2,13]. 

The main categories usually distinguished in image segmentation proposals [3] are 
clustering methods, that only consider resemblance in color and require a post process-
ing to incorporate spatial information to get regions; region based algorithms that search 
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for homogeneous areas, taking into account resemblance in color and spatial informa-
tion; and contour based techniques where great changes and discontinuities in the inten-
sity or color define the borders and limits of the regions, used later to define the regions.  

More recent methods specifically developed for medical imaging, such as deform-
able models, aim to incorporate both the advantages of edge-based and region-based 
approaches. These methods start with a shape surrounding the target area and define a 
set of energy functions or force vectors that push the borders of the shape to the con-
tours of the regions. To perform the contour deformation process some methods use 
edge-functions [1, 2, 4, 5] that stop the curve evolution, but usually only detect ob-
jects with edges defined by gradient, and are likely to yield undesirable local minima. 
To solve this problem other proposals [1, 2, 4, 5] use statistics inside and outside the 
contour, in addition to the information near the evolving contour. Some improvements 
on these methods Chan and Vese [6] can handle objects with boundaries not necessar-
ily defined by gradient, but assume highly constrained models for pixel intensities 
within each region having high computational cost. To overcome this problem some 
proposals simply use the k-means algorithm [8], or directly calculate the energy al-
terations [7]. However they usually are quite sensitive to noise and cannot handle 
objects with ill defined boundaries. In addition soft or imprecise contours, as well as 
overlapping objects can not be dealt with these proposals. 

This is why the latter proposals in the literature are based on fuzzy sets theory. 
Concretely Krinidis and Chatzis proposed in [9] an algorithm based on an energy 
minimization where the energy function, based on fuzzy logic, can be seen as a par-
ticular case of a minimal partition problem. It is used as the model motivation power 
evolving the active contour until reaching the desired object boundary, by the fuzzy 
energy alterations. The stopping term is related to the image color and spatial seg-
ments, instead to the gradient. Incorporating fuzziness the method acquires strong 
robustness to noise and great ability to reject “weak” local minima, as well as inde-
pendence from the initial position of the model (not necessarily surrounding the target 
area). Though this proposal remarks the usefulness of incorporating fuzzy logic, it has 
the main inconvenience that only uses intensity information, which makes that objects 
without intensity variation are not properly detected.  

In [10] Vélez et al. also use, in gray scale images, fuzzy logic and snake models. 
The snake models are used as energy-minimizing splines, to be applied as shape 
memory models for biometric identification (signature, palm-print,…). In this case the 
main objective is fitting the whole contour as much as possible, without loosing it at 
any point, so the snake can later be used, by comparison, for identification tasks. To 
do this a new external energy term is introduced: the difference between the angle of 
the tangent to the snake in a control point and the angle of the tangent to a specific 
stroke point (for all the strokes of the test pattern).  

Our aim here is to incorporate both the advantages of fuzzy logic and contour angle 
information to the segmentation of medical cells. This way we solve the topology 
problem of snake methods, and we can adapt and model imprecise contours and over-
lapping translucent areas, fitting the borders better. Even more, our proposal incorpo-
rates the use of the chromatic information, and is applied to medical cell images to 
show its capabilities. 
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The majority of the segmentation methods are focused on the RGB space. How-
ever, its lack of distinction between chromatic and achromatic information makes it 
unsuitable for obtaining color edges in an image [11]. This is why we have chosen the 
HIS color space. In particular, the Smith’s HSV model [12] is our preferred transfor-
mation since it shows high independence between the three components. 

The rest of the paper is structured as follows: first, in section 2, the main structure 
of our proposal is outlined. Section 3 reviews the computation of the image gradient. 
Section 4 describes how to obtain the fuzzy sets representing color patterns of cells. 
Section 5 explains the evolution of contours based on the profiles of image gradient 
and color fuzzy sets. Finally, sections 6 and 7 show the results and conclusions. 

2   General Structure 

The algorithm we propose here can be summarized in the following stages.  

• Approach the color gradient of the input image (module and argument) 
• Load a file with the central position (x, y) of each cell. The centers can be manu-

ally given or obtained following proposals in the literature. 
• For each cell, define the fuzzy sets for the relevant colors of the cytoplasm, based 

on hue and saturation histograms of a set of sampling pixels around the cell center. 
• Define a set of contour points around each cell center. 
• Move the contour points inwards or outwards following its normal direction, ac-

cording to membership degree and color gradient of the neighboring areas. 
• Evolve contour points until their change is less than a certain minimum threshold. 

The whole process is depicted in Fig. 1 and detailed in next sections. 

 

Fig. 1. Workflow of the proposed method 

3   Color Gradient Approach 

Our proposal to obtain the gradient information is based on the combination of the 
module and the argument of the chromatic gradient vector (CGV). To obtain this 
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module and angle we first combine the chromatic information and later the directional 
variation, approaching so the two components of the chromatic gradient vector 
(CGV). More information can be found in [14]. 

3.1   Hue and Saturation First Order Derivatives 

Given a pixel pij of the source image I, we approach the Saturation partial derivatives, 

ijS x∂ ∂  and ijS y∂ ∂ , by taking the saturation plane of the image, and convolving 

3x3 kernels of Sobel operator with a window centered on that pixel. We have chosen 
this operator because of its slightly superior noise-suppression characteristics [13] 
regarding other similar operators, and its allowance to convolve separately the Hue 
and Saturation channels of the image. 

We perform the same process to approach the hue partial derivatives ijH x∂ ∂  

and ijH y∂ ∂ , but using the circular distance measure defined in [14]. 

3.2   Directional Chromaticity Variations 

In this step we combine the chromatic information obtained in the previous step into 
one value for each direction. 

Here we consider two reference systems, one for the x direction, RSx, and other for 
the y direction, RSy, whose axes are the partial derivatives of H and S in the corre-
sponding directions. These systems are painted as black lines in Fig. 2 (a) and (b). On 

these systems, we represent the vectors given by ( ),ij ij ijChr x H x S x= ∂ ∂ ∂ ∂  and 

( ),ij ij ijChr y H y S y= ∂ ∂ ∂ ∂  respectively. These vectors, called the Directional Chro-

maticity Variations, are represented as blue line-dot arrows in Fig. 2 (a) and (b),  
respectively. 

3.3   Chromatic Partial Derivatives 

Next step combines these modules to obtain a value proportional to the components of 
the CGV, i.e. to approach the Chromatic Partial Derivatives, CPDs.  

Since ijChr x and ijChr y  are represented into two different reference systems, to 

be able to mix and merge the information they contain is necessary to get a reference 
system wherein both vectors can be represented.  

To do it, we make the assumption that the axes, ij ijH x S x∂ ∂ = ∂ ∂  and 

ij ijH y S y∂ ∂ = ∂ ∂ , point to the higher potentials of H and S, and that both compo-

nents grow equally within these axes. Hence we propose to project the chromaticity 
vectors into them, approaching the above mentioned CPDs as 

ij u ijC x proj Chr x∂ ∂ = ∂  and ij u ijC y proj Chr y∂ ∂ = ∂ , with  ( ) ( )( ) cos 45º ,sin 45ºu= . 

These new vectors appear as dotted arrows in Fig. 2 (a) and 2 (b). 
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3.4   Approach to Obtain the Module and Argument of the CGV 

Translating the modules of these vectors to the coordinate system of axes ijC x∂ ∂
 and 

ijC y∂ ∂
, as indicated in Fig. 2 (c), we get the approach to the module and argument 

of the Chromatic Gradient Vector as ( ) ( )2 2

ij ij ijC C x C y∇ = ∂ ∂ + ∂ ∂  and 

ij
ij

ij

C y
C arctg

C x
α

⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 respectively. 

This argument provides us with a direction that is perpendicular to the contour and 
so it is 0 for a vertical edge and increases for edges moving anti-clockwise of it. 

 

Fig. 2. Coordinate systems to obtain the chromaticity variations in the horizontal (a) and verti-
cal (b) directions; and approach to the chromatic partial derivatives (c) 

4   Fuzzy Color Characterization 

Our method starts by selecting some sampling pixels around each nucleus position, 
provided by an external procedure (see Fig. 3.a). We use several concentric circles 
(e.g. 3) and pick pixels at a certain number of angles (e.g. 8, as in Fig 3.b). 

 (a)  (b) 

Fig. 3. (a) Cell centers on the test image. (b) Sampling points at Cell 3. 

The hue and saturation histograms for cell number 3 are represented in Fig. 4. The 
range of coordinates has been discretized to 32 bins, since we use a low number of 
sampling pixels (e.g. 24). The final histograms roughly approximate the shape of 
more detailed histograms, and also imply a certain degree of smoothing. 
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a)    b)  

Fig. 4. Hue and Saturation histograms (bars) and their membership functions (lines) 

Thereafter, our method segments the main peaks of each histogram, and builds a 
membership function for each peak. The details of the calculus of the membership 
functions are out of the scope of this paper, but in general it consists in segmenting 
the histograms into proper peaks and defining a sufficiently spread membership func-
tion on each peak (see Fig. 4). Typical sizes of such membership functions are about 
64 units (of 256) with their membership values above 0.4. 

The definition of such membership functions can be formulated as follows. For a 
given cell c, a set of fuzzy sets for each chromatic component (H and S), which we 

denote as c
Hμ  and c

Sμ , are obtained as in equation (1): 
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where sampling pixels(c) are the set of sampling pixels around the center of cell c, 
binsize is the selected size for histogram bins (e.g. 8), Hue and Saturation are the 
chromatic values of the selected pixels, SHistoi represents a segmented part of the 
histogram collecting the corresponding bins around peak i, and F is a generic function 
that provides a membership function [ ] ℜ∈→ 1,0)(, xic

Xμ , with output values decreas-

ing monotonically as long as the input coordinate x gets far from the peak i in the 
chromatic coordinate X. Each aggregation of hue-saturation fuzzy sets define a more 
general fuzzy set μc,k, which is a Color Pattern. The collection of those fuzzy sets, 

cμ , is given in equation (2), where Aggreg is the aggregation function, that provides 

another membership function [ ] ℜ∈→ 1,0),(, shkcμ , with output values decreasing 

as long as the input coordinates get far from the respective peaks i and j. 
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The chosen aggregation function is the minimum, since we only want high member-
ship degree on the general fuzzy set if both components have high degrees. 

Since some of the aggregated fuzzy sets may not correspond to a real color of the 
cell, we suggest to get rid of fuzzy sets with support below a given threshold, i.e. less 
than 10% of sampling points with maximum membership degree on the candidate 
fuzzy set. 
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Once the method has found the most significant color fuzzy sets, we can show the 
area of influence of those patterns visually as in Fig. 5, where pixels within a radius of 
40 pixels have been shaded according to its membership degree, i.e. lighter shades 
mean higher membership degrees (pixels with less than 0.10 are not shaded). This is 
what we call the Membership Field. 

Figures 5.a and 5.b show two membership fields around cell 3, for two significant 
color patterns. In Fig. 5.a, one can appreciate high membership degrees inside cell 3 
and also inside cell 2, because their colors are similar. In Fig. 5.b, pixels with high 
membership degree roughly correspond to the intersection between cells 2 and 3. This 
means that the method has correctly detected two color patterns for two complimen-
tary cytoplasm areas (double and single cytoplasm). 

5   Contour Evolution 

The final process starts by positioning a number of Contour Points (e.g. 8) at equally 
distributed angles and at a fixed distance to the center. Centered on each contour point 
there is a straight line of a certain number of pixels (e.g. 11), following the normal 
direction to the contour, which we name as Normal Segments (Fig. 5.c). 

(a) (b) (c) 

Fig. 5. (a, b) Membership fields of the chromatic patterns of cell 3. (c) Eight contour points and 
their normal segments around cell number 0. 

5.1   Profiles of Membership Degree and Gradient Relevance 

For each normal segment NSj, the method computes the membership degrees of its 
pixels pNS j

i  to each color pattern of the cell (i.e. each μ c,k), as well as their Gradient 

Relevance, which is defined as the product of the gradient module at the target pixel 

∇CGV ( pNS j

i )  by the degree of coincidence between its gradient argument αCGV ( pNS j

i )  

and the normal direction of the contour point, noted as ⊥ j  in next equation. 

( ) ( )
2

)(1)()( πα j
i
NS

i
NS

i
NS jjj

pCGVCGVMaxpCGVpGR ⊥−−⋅∇∇=  . (3) 

Both module and argument information are normalized so as to provide values  
between 0 and 1. Fig. 6 shows the profiles of membership degrees and gradient rele-
vance of three normal segments of cell 0.  
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5.2   Motion Forces of the Contour Points 

The motion of each contour point is obtained from the corresponding profiles. For 
membership profiles, we suggest to add the membership degrees of the normal pixels 
with positive offsets (outside the contour), and to subtract the complimentary of 
membership degrees of the normal pixels with negative offsets (inside the contour). 
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=
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In previous equation, MMotion means the motion due to the membership degrees, 

pNS j{ } is the set of normal pixels, ( )i
NS

C

j
pμ  is the membership degree of a given pixel, 

and np is the total number of normal pixels, so indices i indicate normal positions. 
The gradient motion GMotion is computed as the difference between gradient rele-

vance at positive and negative parts of the profile, multiplied by a constant KGR that 
scales the gradient motion to ranges similar to the ones obtained with membership 
motion (usually KGR = 3). 
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This motion “forces” are exemplified, for cell 0 in the plots of Fig. 6. 

a) b)  c)  

Fig. 6. Membership degree profiles (high) and gradient relevance (low) for contour points 0 (a), 
4 (b) and 6 (c) of cell 0; negative values in x correspond to normal pixels inside the contour 

The final motion is computed as the sum of MMotion and GMotion, multiplied by 
a decay factor that decreases exponentially as the number of the evolution steps s 
increases, modulated by a constant Kd (e.g. 10): 

{ }( ) { }( ) { }( )[ ] ( )dNSNSNS KspGMotionpMMotionpMotion
jjj

/exp −⋅+=  . (6) 

Thus, at each step of the contour evolution process, the total motion value is added to 
the distance of the contour point to the cell’s center. Therefore, the contour points 
move inward or outward following its normal direction. The profiles and motion val-
ues are recomputed on the new position of contour points. The iteration continues 
until the contour points move less than a certain small threshold. The next figure 
shows three snapshots of the contour evolution of cell number 0. 
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 (a)        (b)        (c) 

Fig. 7. Motion of the contour of cell number 0 at steps 1 (a), 4 (b) and 10 (c) 

As can be seen, the contour quickly converges to a stationary position, which 
roughly corresponds to the real border of the cytoplasm. We have verified that the 
contour approaches the limits of the membership field in a robust manner, and that the 
nearby gradient information attracts the contour points to more precise positions. 

6   Results 

In Fig. 8 the result of our cytoplasm detection (Fig. 8.a) can be compared with the one 
obtained with a hybrid snake method proposed in [15] (Fig. 8.b). The snake method 
wrongly joined cells into three blobs. It is due to the very low brightness contrast 
between touching cytoplasm. 

This problem is solved with our proposal, where all the cells are distinguished. We 
have set 16 contour points. As can be seen, most of the contour points approach to 
real cell borders, although some points get far from neighboring points because of 
local minima on membership fields and gradient relevance. Moreover, some contours 
get inside neighboring cells, which is a first step in detecting overlapping cytoplasm. 

 (a)  (b) 

Fig. 8. Comparison of cytoplasm detection: our proposal (a) and the proposal in [15] (b) 

As future lines, we will improve the method by including the neighbor point’s dis-
tance as another motion force, and we will perform a quantitative comparison with 
other methods. Finally, we want to remark that our method is really fast, since it con-
verges in few steps (20) and in fractions of a second. 

7   Conclusions 

We have proposed a method to approximate the contour of cells with imprecise bor-
ders and overlapping translucent areas. To this purpose we incorporated chromatic 
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information using hue and saturation histograms, defined a set of color fuzzy sets for 
each cell and approached a color gradient profile. To fit the contours of the cell we 
suggested computing the membership degree and the gradient relevance of normal 
segments centered on each contour point, which determines the motion forces of the 
contour points that are moved inwards or outwards through rather vague information 
fields. Color information provides a rough approximation to the contour, while gradi-
ent information helps in adjusting the final contour more tightly to the real border of 
the cell. 
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Abstract. Controlled Query Evaluation (CQE) is a logical framework
for the protection of secrets in databases. In this article, we extend the
CQE framework to possibilistic logic: knowledge base, a priori knowl-
edge and privacy policy are expressed with necessity-valued formulas
that represent several degrees of certainty. We present a formal security
definition and analyze an appropriate controlled evaluation algorithm for
this possibilistic case.

1 Introduction

A major security goal for databases is keeping secret entries in a database in-
stance confidential. Two general mechanisms for the enforcement of confidential-
ity are modification of data (like perturbation, noise generation, cover stories, or
“lied” answers) and restriction (refusal, denial of access, blocking, cell suppres-
sion, generalization, data upgrading etc).

The framework of Controlled Query Evaluation (CQE; see for example [1–
3]) uses both mechanisms (in the form of lying and refusal) in a logic-based
framework. In this article, we extend the CQE framework to possibilistic logic
such that degrees of certainty can be specified and attached to logical formulae.
This offers the following advantages:

– Certainty degrees can express confidence in some information in a finer-
grained way than just returning the values true, false or undefined in incom-
plete databases (as used in [1]).

– In the same sense, “weakening” of some degrees as a means to restrict access
to information is a more cooperative way of communication than denying
access to information altogether.

– Certainty degrees are intuitively understood by users as a means to rank
confidence in some information.

– Possibilistic logic is well-suited for inferential reasoning as argued in [4, 5].

We consider a client-server architecture where a user issues queries to a knowl-
edge base system. The knowledge base kb contains public as well as private
data; to achieve confidentiality of the private data, the system maintains a per-
sonalized privacy policy policy and a user history log for each particular user

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 655–664, 2010.
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registered at the system. Based on policy and log , queries are then evaluated
in the knowledge base in a controlled way by the evaluation function cqe that
makes use of a subroutine called censor . The censor module takes care of the
modifications and restrictions of data that are necessary to keep entries of the
privacy policy confidential.

As the syntactical basis we consider a propositional logic L that involves
a finite alphabet P of propositional variables and the connectives negation ¬,
conjunction ∧, and disjunction ∨; on occasion, material implication → is used
as an abbreviation (for a negation and a disjunction).

If to a formula p of L a weight α ∈ (0, 1] is attached, we get the “standard
possibilistic logic” (SPL; see [6]). As usual, we write possibilistic formulas as
(p, α). The weight α denotes a lower bound for a “necessity degree” N of p. A
necessity degree specifies the certainty of formulas: it “evaluates to what extent p
is entailed by the available knowledge” [4]. In other words, with (p, α) we express
that N(p) ≥ α: the certainty of p is at least α. A high certainty for p denotes
that a countermodel of p (that is a model of ¬p) is relatively impossible to be
the “real” world; we will give a precise definition below. In this reading, it is
natural that 0 is excluded as a weight: N(p) ≥ 0 (denoting that the certainty of
p is somewhere between 0 and 1) always holds for any formula p.

We now recall how a necessity measure can be induced by a possibilistic
knowledge base. A possibilistic knowledge base can be defined as a set of n
possibilistic formulas (pi, αi). In this article, we let kb denote such a knowledge
base. The formulas in kb have as possible interpretations all 2card(P) classical
interpretations (“worlds”) of the propositional variables P . On these possible
worlds, kb induces a possibility distribution πkb . This possibility distribution
assigns to each world u a value from the interval [0, 1]. This value specifies how
possible it is for u to be the real world – that is, the right one of all the possible
interpretations for kb. πkb(u) = 0 means that it is totally impossible for u to be
the real world. Hence, worlds that violate formulas in kb have a lower value than
worlds that propositionally satisfy all formulas in kb. The worlds with possibility
value 1 are “models” (denoted |=) of the propositional formulas in kb:

πkb(u) :=
{

1 iff u |= p1 ∧ . . . ∧ pn
1−max{αi | (pi, αi) ∈ kb and u |= ¬pi} otherwise

There need not exist a world with possibility 1 (that is, not all formulas pi can be
satisfied at the same time); in this case, πkb is called subnormalized. Otherwise,
it is called normal if there is at least one world with possibility 1. However, there
may also exist more than one world with possibility 1 for a given kb. Knowledge
bases with a subnormalized possibility distribution have an inconsistency level
Inc(kb) above 0; it is defined as follows:

Inc(kb) := 1−max
u
{πkb(u)}

Based on the possibility distribution, we can compute the possibility degree
for any formula p′:

Πkb(p′) := max{πkb(u) | u |= p′}
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That is, the possibility degree identifies the world with maximal possibility that
satisfies p: it “it evaluates to what extent p is consistent with the available
knowledge” [4].

Then we are interested in the necessity degree of a formula p′′ induced by
Πkb by subtracting from 1 the possibility degree of ¬p′′ (that is, the maximal
possibility of a countermodel of p′′):

Nkb(p′′) := 1−Πkb(¬p′′)
Note that we could also skip computation of the possibility degree (Πkb(¬p′′))
by letting Nkb(p′′) = min{1− πkb(u) | u is model of ¬p′′}.

Lastly, implication in SPL is defined. We say that kb implies p with maximal
necessity degree α (written kb |=SPL (p, α)) if Nkb(p) = α.1 It has been shown
in [6] that this implication can (soundly and completely) be implemented with a
set of syntactic inference rules (where 2 denotes syntactic entailment). This set
of rules includes the following:

– resolution: (¬p ∨ q, α); (p ∨ r, β) 2 (q ∨ r,min{α, β})
– weight fusion: (p, α); (p, β) 2 (p,max{α, β})
– weight weakening: for β ≤ α, (p, α) 2 (p, β)

With such rules, the implication kb |=SPL (p, α) can be decided by the refu-
tation kb ∪ {(¬p, 1)} 2 (⊥, α). Alternatively, entailment of (p, α) can also be
expressed as the inconsistency level α = Inc(kb ∪ {(¬p, 1)}). Moreover, algo-
rithmically entailment takes only a bounded number propositional satisfiability
checks: the bound is the logarithm of the number of certainty degrees occurring
in the knowledge base. We refer to [4–6] for further details.

The remainder of this article is organized as follows: Section 2 describes the
system settings. Section 3 formally defines “confidentiality-preservation” and
Section 4 presents a CQE algorithm for possibilistic knowledge bases. The article
concludes in Section 5 with a discussion of our approach and related work.

2 System Components

In this article, we transfer the CQE framework to a possibilistic setting where
the knowledge base consists of formulas at differing degrees of certainty and the
privacy policy and the user history are maintained in possibilistic logic, too.

The possibilistic knowledge base kb is a finite set of possibilistic formulas
(pi, αi) for i = 1 . . . n; hence pi ∈ P is a propositional formula and each αi ∈
(0, 1] is the necessity degree of pi. For the time being, we assume here that
kb is a consistent set of formulas – although possibilistic logic has the ability
to cope with inconsistencies in the knowledge base. That is, we assume that
the set of the propositional formulas occurring in kb (denoted Propkb) form a
propositionally consistent set and as such do not lead to a contradiction. In
1 We say “maximal necessity degree” because it also holds that for all α′ ∈ (0, α] that

kb |=SPL (p, α′).
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other words, the inconsistency level of kb is 0. To illustrate the settings, we give
a small example of a medical knowledge base that contains information about
some medical treatment (med) and some diagnoses (aids and cancer):

kb = {(med, 0.9), (aids, 0.8), (cancer, 0.7)}

The knowledge base is able to answer queries based on the necessity degree in-
duced by kb, and hence on implication |=SPL in SPL. That is, the input is a
propositional query formula p and evaluation of this query outputs the pos-
sibilistic formula (p, α) such that α is Nkb(p) (that is, the maximal degree of
necessity for p in the knowledge base kb) and hence kb |=SPL (p, α):

evalkb(p) := (p, α) where α = Nkb(p)

For example, the necessity degree for query aids∨cancer is Nkb(aids∨cancer)
= 1−Πkb(¬aids∧¬cancer) = 0.8 and hence evalkb(aids∨ cancer) = (aids∨
cancer, 0.8). For the query aids ∧ cancer we have Nkb(aids ∧ cancer) =
1 − Πkb(¬aids ∨ ¬cancer) = 0.7 and hence evalkb(aids ∧ cancer) = (aids ∧
cancer, 0.7).

The privacy policy policy is a finite set of possibilistic formulas. Semanti-
cally, a policy entry (q, β) specifies that the user is never allowed to know that
q is certain in kb at a necessity degree above β. He may however learn that
q is certain at least with degree β. For example the following policy states
that a user may know aids with a lower bound of certainty of 0.3 (that is,
Nkb(aids) ≥ 0.3) and cancer with a lower bound of certainty of 0.2 (that is,
Nkb(cancer) ≥ 0.2); he must however never learn greater lower bound values
for Nkb(aids) and Nkb(cancer):

policy = {(aids, 0.3), (cancer, 0.2)}

As an exceptional value, we explicitly allow entries with necessity degree 0 in
policy : an entry (q, 0) ∈ policy denotes that we do not want to reveal any in-
formation on the state of p in kb, that is, we do not give the user any certainty
about p.

The user history log records all answers (as possibilistic formulas) that were
given by the knowledge base to a sequence of user queries Q = 〈q1, q2, . . . qm〉 for
propositional formulas qj ; that is, we have a sequence of history logs where logj

denotes the state of the history after the j-th answer was given. In particular log0
may contain additional a priori knowledge that the user has before starting the
query sequence. For example the a priori knowledge may state that a treatment
with some medicine implies both diagnoses but at different levels of certainty:

log0 = {(med→ aids, 0.6), (med→ cancer, 0.5)}

It may occur, that some answer with necessity degree 0 is returned to the user –
either because the necessity degree in kb is 0 indeed or because the privacy policy
prohibits any more specific return value; yet, in this case while the answer (qj , 0)
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is given to the user to acknowledge his query, it is not added to the user history
logj because from a reasoning point of view it has no effect.

In the following we will devise a controlled query evaluation function
cqe(Q, kb, log0, policy) that shields the eval kb-function from direct access by the
user. The cqe-function will – whenever necessary – modify the eval kb-answers;
that is, the cqe-function will answer the query sequence Q in such a way that
the sequence of history files logj will reveal an entry of the privacy policy
at most at the level of certainty specified in the policy. For example, for the
query sequence Q = 〈aids, cancer〉 (and kb, log0 and policy as in the exam-
ples above) we will have the answer sequence A = cqe(Q, kb, log0, policy) =
〈(aids, 0.3), (cancer, 0.2)〉; hence the only knowledge that the user receives is
that Nkb(aids) ≥ 0.3 and Nkb(cancer) ≥ 0.2. Without controlling the eval-
uation, the normal evaluation would be evalkb(aids) = (aids, 0.8) (revealing
Nkb(aids) ≥ 0.8) and eval kb(cancer) = (cancer, 0.7) (revealing Nkb(cancer) ≥
0.7); and hence both truthful answers would violate policy .

3 A Formal Security Definition

In this section, we adapt the formal definition of confidentiality preservation
of a controlled query evaluation function to the possibilistic case. Appropriate
definitions were already established for complete databases [2] and incomplete
databases with policies in modal logic [1, 3].

Confidentiality preservation of a controlled query evaluation function cqe is
ensured by the following Definition 1. It demands that there exists an alternative
knowledge base that is compatible with the a priori knowledge log0 and for which
the cqe-function returns the same answers (Item 1 ); that is, from the observable
behavior (via the cqe-function) kb and kb ′ are indistinguishable. However the
alternative knowledge base does not violate the privacy policy when queries are
evaluated without control (Item 2 ).

Definition 1 (Confidentiality Preservation). A controlled query evaluation
function cqe is confidentiality-preserving iff for all admissible inputs Q, kb, log0
and policy there is an alternative knowledge base kb ′ such that kb′ ∪ log0 is
consistent, and the following two properties hold:

1. [same controlled answers]
cqe(Q, kb, log0, policy) = cqe(Q, kb′, log0, policy)

2. [alternative knowledge base is secure]
there is no policy entry (q, β) ∈ policy such that evalkb′(q) = (q, β′) with
β′ > β.

Preconditions for Q, kb, log0 and policy can be defined to specify what inputs are
“admissible” in Definition 1. More precisely, we allow inputs with the following
properties:

1. As already mentioned in Section 2, kb is assumed to be a consistent possi-
bilistic knowledge base; that is, Inc(kb) = 0.
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2. The a priori knowledge log0 is consistent: Inc(log0) = 0.
3. Moreover, kb and log0 must be compatible; that is, when combined they are

also consistent: Inc(kb ∪ log0) = 0.
4. Lastly, the user does not know a policy entry a priori and hence log0 must

be compatible with policy : there is no policy entry (q, β) ∈ policy such that
log0 |=SPL (q, β′) with β′ > β.

4 A Censor for Possibilistic Knowledge Bases

As a subroutine of a controlled query evaluation function cqe, the censor is re-
sponsible to decide whether a modification or restriction of a database answer
is necessary and if so, compute the modified or restricted answer. We list a cen-
sor that is appropriate for controlled query evaluation in possibilistic knowledge
bases in Figure 1. This censor proceeds as follows: given the current query qj ,
it checks whether there are any violated policy entries when adding the correct
evaluation eval kb(qj) to the current user history logj−1. The set of the neces-
sity degrees of all those violated entries is determined. If there are no violated
entries, this set is empty and the correct evaluation can be returned without
modification. If however there are violated entries, the minimal necessity degree
γ is determined and as the modified answer the query with necessity degree γ is
returned.

censor (logj−1, qj):

S := {β | (q, β) ∈ policy such that logj−1 ∪ eval kb(qj) |=SPL (q, β′) with β′ > β}
if S = ∅

return eval kb(qj)
else

γ := min S
return (qj , γ)

Fig. 1. Possibilistic censor

Note that if the policy is ordered in ascending order of the necessity degrees,
the violation check could start with policy entries at the least degree and move on
to greater degrees until a violation is encountered. In this manner, the minimum
of S can easily be determined without checking all policy entries in the optimal
case.

A complete implementation of the cqe-function can be made by calling the
censor for every query qj in the query sequence, constructing and returning
the answer sequence A and updating the user history logj ; see Figure 2. When
updating the user history, answers with necessity degree 0 are filtered out: the
fact that Nkb(qj) ≥ 0 does not carry any information and need not be recorded.

We continue our example with the query sequence Q = 〈aids, cancer, med〉.
Obviously, with the correct answer eval kb(aids) = (aids, 0.8) the first policy en-
try (aids, 0.3) is violated; the censor thus modifies the first answer to (aids, 0.3).
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cqe(Q, kb, log0, policy):

A = 〈a1, . . . , am〉
for j = 1 . . . m

aj := censor (logj−1, qj)
if aj = (qj , γ) with γ > 0

logj := logj−1 ∪ {(qj , γ)}
else

logj := logj−1

return A

Fig. 2. cqe implementation

Equivalently, the second answer is modified to (cancer, 0.2). As for the third
query, log2 = log0 ∪ {(aids, 0.3), (cancer, 0.2)} combined with eval kb(med) =
(med, 0.9) violates both policy entries, because log2 ∪ {(med, 0.9)} |=SPL (aids,
0.6) and log2 ∪ {(med, 0.9)} |=SPL (cancer, 0.5). That is, we have S = {0.3, 0.2}
(due to the policy entries). We take its minimum and return (med, 0.2). The com-
plete answer sequence is thus A = 〈(aids, 0.3), (cancer, 0.2), (med, 0.2)〉. The
resulting user history is logm = log0 ∪ {(aids, 0.3), (cancer, 0.2), (med, 0.2)}.

On our way to show that the above cqe-function is compliant with Definition 1,
we need the following two lemmas and then move on to the main theorem:

Lemma 1 (User History is Consistent). For j = 1 . . .m the user history
logj is consistent; that is, Inc(logj) = 0.

Proof. By assumption, kb is consistent in itself and with the a priori knowledge
log0 (see the preconditions at the end of Section 3). But then also the set of
database answers eval kb(qk) with necessity degree above 0 for k = 1 . . . j is
consistent. Reducing the correct necessity degree of qj to a lower value (but still
above 0) with the censor -function does not influence consistency. As all answers
with necessity degree 0 are left out of the user history and the a priori knowledge
log0 is consistent by assumption, each logj is consistent.

Lemma 2 (User History is Secure). For each user history logj it holds that
there is no policy entry (q, β) ∈ policy such that logj |=SPL (q, β′) with β′ > β.

Proof. By assumption, the security property holds for log0. Inductively, we ar-
gue that if logj−1 is secure, then also logj is. In the censor -function there are
two cases: if upon adding the correct answer to the history the policy is not
violated (S = ∅), logj is obviously secure. However, when adding the correct
answer violates some policy entries (S �= ∅), taking the minimal necessity degree
minS avoids the violation. This is due to the fact that in possibilistic logic a
logical consequence is only supported up to the necessity degree of the “weakest
link” in its proof chain for the entailment; see [6] for details. For example, the
possibilistic resolution rule in Section 1 also takes the minimum of the degrees
of the input formulas. In other words, because logj−1 is secure, addition of the
current answer enables the entailment of a violation in a proof chain; we thus
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weaken the necessity degree of the answer such that no harmful inference is
possible anymore.

Theorem 1 (Possibilistic cqe Preserves Confidentiality). The cqe-
function presented in Figure 2 is confidentiality-preserving.

Proof. We have to identify an alternative knowledge base kb ′, such that kb′∪log0
is consistent and the two properties of Definition 1 hold. Let kb ′ := logm. Clearly,
log0 ⊆ logm and kb′ is consistent by Lemma 1.

Indistinguishability of kb and kb ′ (Item 1 ) can be established by induction on
the query sequence and the user history. Base case: Both cqe-answer sequences,
for kb and kb′, start with the same log0 by definition of the cqe-function. Induc-
tive case: Assume that calling the cqe-function on kb and kb ′ led to the same
logj−1. We show that for query qj , the same answer is generated (for kb and
kb′) and hence both cqe answer sequences lead to the same logj . Assume to the
contrary that qj is answered differently: cqe on kb returns (qj , βj) and cqe on kb′

returns (qj , β′j) with βj �= β′j . We consider two cases:

– Case 1 (βj > β
′
j): Then, (qj , βj) ∈ logj (because it is returned by cqe on

kb and βj > 0). By definition of kb′, logj ⊆ kb ′; by Lemma 2 and the rule
of weight fusion (see Section 1) kb ′ |=SPL (qj , βj) and (qj , βj) will also be
returned as the answer of kb′. Hence the assumption that βj > β

′
j leads to a

contradiction.
– Case 2 (βj < β

′
j): It holds that (qj , βj) ∈ logj if βj > 0; otherwise βj = 0

and logj = logj−1. To deduce (qj , β′j) in kb ′, all formulas in the proof chain
for (qj , β′j) must have necessity degree β′j or above (see Proposition 9 in
[6]). But such formulas cannot exist in kb ′ because formulas in kb ′ have
same or lower degrees than formulas in kb and logj−1; indeed, for every
(r, γ) such that kb ∪ logj−1 |=SPL (r, γ) it holds that kb′ |=SPL (r, γ′) with
γ ≤ γ′ due to weight minimization in the cqe-function. Hence again we have
a contradiction.

We conclude that βj = β′j and thus the same answer and history sequence is
generated both from cqe calls on kb as well as kb ′. Security of kb ′ (Item 2 ) follows
directly from Lemma 2, because eval kb is based on implication |=SPL.

Lastly, we argue that the runtime complexity of the cqe-function is dominated
by the complexity of solving the satisfiability (SAT) problem for propositional
formulas. In particular for fixed sizes of the query sequence Q and privacy policy
policy , a number of SAT checks that is bounded by the logarithm of the number
of necessity degrees occurring in the inputs kb and log0 and policy suffices.

Theorem 2 (Complexity of Possibilistic cqe). For fixed-sized Q and policy,
the number of SAT checks used in the cqe-function is logarithmically bounded by
the number of necessity degrees occurring in the inputs kb, log0 and policy.
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Proof. For one single query qj , the censor -function determines evalkb(qj). This
can be done with %log dkb& SAT checks (with Propkb and qj as inputs to the
SAT solver) where dkb is the number of necessity degrees occurring in kb; see
[6]. Next, for each of the card(policy) many policy entries, the censor determines
logj−1 ∪ eval kb(qj) |=SPL (q, β′); this takes accordingly %log(dlogj−1

+ 1)& SAT
checks (with Prop logj−1

, qj and q as inputs) where dlogj−1
is the number of

necessity degrees occurring in logj−1. In the worst case, in logj−1 all necessity
degrees mentioned in kb and log0 and policy occur. Hence let d be the number
of necessity degrees mentioned in kb and log0 and policy . Then the combined
runtime of the cqe-function for the whole query sequence Q = 〈q1, . . . , qm〉 is
bounded by

m · [%log d& · SAT + (card(policy) · %log(d+ 1)& · SAT)]

By taking m and card(policy) as constants, the result follows.

Note that although the propositional SAT problem is the classical NP-complete
problem, several highly efficient SAT solving programs exist. In the context of
CQE, such SAT solvers have been used to preprocess a secure (“inference-proof”)
view of an input database (see [7]). Hence, it appears to be the case that also
possibilistic CQE is efficiently implementable.

5 Related Work and Conclusion

In summary, we presented a security definition and a Controlled Query Evalu-
ation function that avoids harmful inferences which would disclose confidential
information in a possibilistic database. Hence this work adds another applica-
tion of possibilistic logic to information systems to the ones listed in [5]. We
used weakening of necessity degrees to achieve compliance with a personalized
privacy policy. This can be seen as a form of data restriction: the query formulas
are not modified, instead less specific answers are returned to the user where –
as a last resort – answers with necessity degree 0 are the most general (and least
informative) answers that can be given. However all returned answers are opti-
mal in the sense that the highest possible necessity degree is determined that
can safely be given to the user without violating confidentiality.

The presented possibilistic cqe-function is akin to generalization techniques for
k-anonymity [8] or minimal upgrading of attributes in multilevel secure databases
[9]. Yet, in contrast to these, we apply weakening of necessity degrees in an in-
teractive setting with respect to query sequences. A security definition similar to
ours (Definition 1) is the one in [10] for retroactive detection of disclosures: they
consider gaining confidence in confidential information harmful (but not losing
confidence). Previous approaches for CQE in incomplete databases (see [1, 3])
and approaches that detect inferences in ontological knowledge bases [11] handle
the case that a query can have one of the three values true, false or undefined.
In comparison to these, weakening of necessity degrees offers a finer-grained way
to protect secret information while still returning useful answers. [12] analyze
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secrecy in multi-agent systems in the “runs and systems” framework and provide
several formal secrecy definitions including a setting with plausibility measures
to represent uncertainty. It would be worthwhile to study the connection of CQE
to this setting in more detail.

Further open questions for the possibilistic CQE setting include whether a
loss of utility of the weakened answers can be measured or heuristics can be
applied to the weakening process to avoid a high loss of utility; for example, if
α > α′ prefer weakening (p′, α′) to weakening (p, α). Possibly other preferences
on the possible worlds (like Φ- orΔ-based preferences; see [4]) or other base logics
(like fragments of first-order logic) can be included. Lastly, the possibilistic CQE
approach could be extended to handle inconsistent knowledge bases or knowledge
bases with updates or it could be used in a preprocessing approach that computes
a secure (“inference-proof”; see [7]) view of the knowledge base.
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Abstract. In the paper we deal with fuzzy sets under the interpretation
given in a coherent probabilistic setting. We provide a general Bayesian
inference process involving fuzzy and partial probabilistic information by
showing its peculiarities.

Keywords: Coherence, Fuzzy sets, Inference, Choquet integral, Lower
probabilities.

1 Introduction

Randomness and fuzziness may act jointly [15, 16], then this opens new problems
in probability and statistics. Many methods and technics have been proposed,
which combine probability, statical and fuzzy methods (for recent results see e.g.
the following volumes [6, 9, 11–13]).

This paper deals with the specific problem of finding the most probable ele-
ment among those of a database, when we dispose of a probability assessment
and a fuzzy information expressed by a membership function.

We refer to the interpretation, given in [2], of a membership as a coherent
conditional probability, regarded as a function of the conditional events, which
coincides with a likelihood, from a syntactic point of view. In this frame the
problem is amenable to a Bayesian updating of an initial probability, also if the
Bayes formula is applied in an unusual semantic way: the distribution, which
plays the role of “prior” probability, is here usually obtained by statistical pro-
cedure based on data, whereas the membership function, which plays the role of
“likelihood” is a subjective evaluation. Starting from this simple case, we ana-
lyze the problem in more general situations, in which both the available “prior
probability” and “likelihood” are related to sets of events different from those
of interest. This reduces to a problem of joint propagation of fuzzy and proba-
bilistic information, maintaining the consistency with a model of reference (in
this case that of coherent conditional probabilities). In order to obtain this goal,
first of all we need to check whether probabilistic and fuzzy information is glob-
ally coherent: they can in fact be separately coherent, but not globally coherent
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(see Example 1). When the global assessment is coherent we need to coherently
extend it to the new events of interest. In particular, we need to update the
probability of the relevant variable, given a fuzzy event. In general this (poste-
rior) probability is not unique (in fact many coherent extensions can exist), so
we can compute its upper and lower envelope.

In this paper we study the general case and moreover we analyze some spe-
cific situations in which the lower envelope of the coherent extensions (posterior
probabilities) can be directly computed, by means of a the lower envelope of the
coherent extensions of the prior, as a Choquet integral.

2 Conditional Probability

What is usually emphasized in the literature – when a conditional probability
P (E|H) is taken into account – is only the fact that P (·|H) is a probability
for any given H : this is a very restrictive (and misleading) view of conditional
probability, corresponding trivially to just a modification of the “world” Ω. It
is instead essential to regard the conditioning event H as a “variable”, i.e. the
“status” of H in E|H is not just that of something representing a given fact, but
that of an (uncertain) event (like E) for which the knowledge of its truth value
is not required.

We start from the direct definition of a conditional probability, by using the
classic set of axioms introduced by de Finetti [7], which is equivalent to that
introduced by Popper [14].

Definition 1. Given a set C = G×Bo of conditional events E|H, with G Boolean
algebra, B ⊆ G closed with respect to (finite) logical sums, and Bo = B \ {∅} ,
a function P : C → [0, 1] is a conditional probability if satisfies the following
conditions:

(i) P (H |H) = 1, for every H ∈ Bo ,
(ii) P (·|H) is a (finitely additive) probability on G for any given H ∈ Bo ,
(iii) P

(
(E ∧ A)|H) = P (E|H) · P (A|(E ∧ H)

)
, for every E, A ∈ G and E,

E ∧H ∈ Bo.

A conditional probability P is defined on G×Bo : however it is possible, through
the concept of coherence, to handle also those situations where we need to assess
P on an arbitrary set C = {Ei|Hi}i∈J of conditional events.

Definition 2. The assessment P (·|·) on an arbitrary set of conditional events
C = {Ei|Hi} is a coherent conditional probability assessment if there is a con-
ditional probability P ′ on C′ = G × Bo (where G is the Boolean algebra spanned
by the events {Ei, Hi} and Bo the additive set, spanned by the events {Hi}),
extending P .

There are in the literature many characterizations of coherent conditional prob-
ability assessments, we recall the following one proposed in [1].
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Theorem 1. Let C be an arbitrary family of conditional events. For a real func-
tion P on C the following statements are equivalent:

(a) P is a coherent conditional probability on C;
(b) For every finite subfamily F ⊆ C all systems of the following sequence, with

non-negative unknowns xβ
r for Ar ∈ Aβ for β = 0, 1, 2, . . . , k ≤ n (A0 =

AF
o , Aβ = {E ∈ Aβ−1 :

∑
Ar⊆E

xβ−1 = 0}), are compatible:

(Sβ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
Ar⊆Eji

∧Hji

xβ
r = P (Eji |Hji)

∑
Ar⊆Hji

xβ
r ,

[
for all Eji |Hji ∈ C such that

∑
Ar⊆Hji

xβ−1
r = 0

]
∑

Ar⊆Hβ
o

xβ
r = 1 ,

(put, for all Hji ’s ,
∑

Ar⊆Hji
x−1

r = 0), where Ho
o = Ho = H1 ∨ . . . ∨Hn ,

and xβ−1
r denotes a solution of (Sβ−1) and Hβ

o is, for β ≥ 1, the union of
the Hji ’s such that

∑
Ar⊆Hji

xβ−1
r = 0 .

Coherence of an assessment P (·|·) on an infinite set C of conditional events is
equivalent to coherence on any finite subset F of C . This is absolutely convenient
for proving coherence in particular sets of events, such as that considered in the
following Corollary 1, given in [2], which provides the syntactic basis for the
interpretation of fuzzy sets as coherent conditional probability, recalled in the
following session.

Corollary 1. Let C be a family of conditional events {Ei|Hi}i∈I , where card(I)
is arbitrary and the events Hi’s are a partition of Ω. Any function f : C → [0, 1]
such that f(Ei|Hi) = 0 if Ei∧Hi = ∅ and f(Ei|Hi) = 1 if Hi ⊆ Ei is a coherent
conditional probability.

Moreover if the only coherent assessment on C take values in {0, 1}, then it
is Hi ∧ E = ∅ for every Hi ∈ Ho , and it is Hi ⊆ E for every Hi ∈ H1 , where
Hr = {Hi : P (E|Hi) = r} , r = 0, 1 .

We recall a foundamental result [7] showing that any coherent conditional prob-
ability can be extended by preserving coherence.

Theorem 2. Let K be any family of conditional events, and take an arbitrary
family C ⊆ K. Let P be an assessment on C; then there exists a (possibly not
unique) coherent extension of P to K if and only if P is coherent on C.

3 Coherent Conditional Probability and Fuzzy Sets

We adopt the interpretation of fuzzy sets in terms of coherent conditional prob-
abilities, introduced in [2, 3]. We briefly recall here the main concepts.
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Let Z be a (not necessarily numerical) random variable, with range CZ , let
Az be, for any z ∈ CZ , the event {Z = z}. The family {Az}z∈CZ is obviously a
partition of the certain event Ω . Let ϕ be any property related to the random
variable Z .

Let us refer to the state of information of a real (or fictitious) person that
will be denoted by “You”. It is natural to think that You have some information
about possible values of Z, which allows You to refer to a suitable membership
function of the fuzzy subset of “elements of CZ with the property ϕ”.

For example, if Z is the numerical quantity expressing the diameter of balls
in a box in cm and ϕ is the property “large”, then the interest is in fact directed
toward conditional events such as Eϕ|Az, where z ranges over the possible value
of the diameters, with

Eϕ={You claim that Z is ϕ} , Az={the value of Z is z}.
It follows that You may assign to each of these conditional events a degree of
belief (subjective probability) P (Eϕ|Az), without any restriction (see Corollary
1). Note that this conditional probability P (Eϕ|Az) is directly introduced as
a function on the set of conditional events (and without assuming any given
algebraic structure).

Thus, it seems sensible to purpose the coherent conditional probability
P (Eϕ|Az) as a good interpretation of the membership function μϕ(z). More
precisely it is possible to put, for any random variable Z with range CZ and a
related property ϕ, fuzzy subset E∗

ϕ of CZ as the pair

E∗
ϕ = {Eϕ , μEϕ},

with μEϕ(z) = P (Eϕ|Az) for every z ∈ CZ .
So a membership function μEϕ(z) is a measure of how much is probable that

You claim that Z is ϕ, when Z assumes the different values of its range.
Given two fuzzy subsets E∗

ϕ, E
∗
ψ , with Eϕ and Eψ logically independent,

the definitions of the binary operations of union and intersection related to
(archimedean t-norms and t-conorms) and that of complementation are obtained
directly by using the rules of coherent conditional probability [2].

3.1 Updating Membership Functions

The above interpretation of fuzzy set as a coherent conditional probability ob-
viously provides a very natural method for choosing the most probable element
of CZ by using both statistical information and fuzzy information.

Suppose now to extract one ball from the box containing balls with different
diameters, we are interested on the most probable diameter of the ball under
the hypothesis that You claim that the ball is large.

More in general, if P is a probability distribution on the elements of CZ and
fuzzy information is expressed by a membership function μϕ(·) = P (Eϕ|·), then
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we can find the most probable element z ∈ CZ under the hypothesis Eϕ. By
using Bayes theorem we can compute, for every z ∈ CZ , the value P (Az|Eϕ) as

P (Az |Eϕ) = αP (Az)μϕ(z)

where α =
∑

z μϕ(z)P (Az).
So, to get our goal it is sufficient to compute

maxz{P (Az)μϕ(z)} (1)

In the following we have the same aim in a more general context, in which
both “probability” and “membership” can be partial or/and imprecise. For that
some problems must be taken into account. First of all we recall that, when
a probability is defined on all the events Ai of a partition, this probability is
coherent also with μ whenever μ is defined on the same partition. In this case the
extension of the membership is uniquely defined on all the events with positive
probability and it is obtained by disintegration rule, as remarked above.

Some time however our data base consists on a probability assessed on a
different set of events: for instance, considering again the example of balls, let
B1 =“diameter di is less than x”, B2 = “diameter di is greater than y”, B2
=“diameter di is in the interval [z, z′]”.

Nevertheless, the global coherence of a coherent probability assessment P and
of a membership μ is already preserved under a suitable condition, as the next
result shows:

Theorem 3. Let μ(·) = p(Eϕ|·) be a membership function on CZ and let H the
algebra generated by CZ . Consider a coherent probability P on a set D ⊆ H, then
μ and P are globally coherent.

Proof: Any probability on H is globally coherent with μ on CZ . Then, in par-
ticular, any coherent extension of P on H is globally coherent with μ on CZ .
Therefore μ is globally coherent also with its restriction P .

Hence, by using Theorem 2, the coherent assessment P, μ can be extended.
However, we need to stress that if D �⊆ H, then, also in the case the events of

D are incompatible, the coherence of the assessments P and μ does not imply
the global coherence of {P, μ}, as the following example shows.

Example 1. Consider the probability distribution P (A1) = 3
40 , P (A2) = 17

40 ,
P (A3) = 1

8 , P (A4) = 15
40 ; and let Z be a binary random variable and ϕ a related

property, consider the membership function μϕ(z1) = 2
5 and μϕ(z2) = 1

8 .
Note that μϕ(·) = P (Eϕ|·) on CZ is a coherent conditional probability as well

as P on A1, ..., A4.
Suppose now that Eϕ ∧A3 = ∅ and (Z = z1) = A1 ∨A3, (Z = z2) = A2 ∨A4.

We need to check whether the assessment {μ, P} is globally coherent, then we
consider the atoms generated by Ai and Eϕ: A′

i = Ai ∧ Eϕ for i = 1, 2, 4 and
A′

3 = A3 ∧ Ec
ϕ, moreover A′

j+4 = Aj ∧ Ec
ϕ for j = 1, 2 and A′

7 = A4 ∧ Ec
ϕ.
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The relevant system to check the coherence is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x5 = 3
40

x2 + x6 = 17
40

x3 = 1
8

x4 + x7 = 15
40

x1 = 2
5 (x1 + x3 + x5)

x2 + x5 = 1
8 (x2 + x4 + x6 + x7)∑

i xi + 1
xi ≥ 0

From the first, the third and the fifth equation we have x1 = 2
5 ( 3

40 + 1
8 ) = 7

20 >
3
40 ,

which contradicts equation 1.
Then, the above system admits no solution and so the assessment {μ, P} is

not globally coherent even if P is defined on a partition finer than that generated
by Z.

When the assessment {μ, P} is globally coherent, we are interested on the lower
and upper envelope of the possible extensions, which are described through the
following result:

Theorem 4. Let D = {K1, ...,Km} be a set of incompatible events of the algebra
H, generated by the partition P = {z1, ..., zn}. Let μ be a membership function
on P and P a coherent probability on D. Let P (Km+1) = 1 −∑m

j=1Kj where
Km+1 = (∨m

j=1Kj)c.
Then, the lower envelope φ∗ and the upper envelope φ∗ of the extensions of μ

on the algebra H is such that for any H ∈ H0

φ∗(H)
∑

Kj⊆H

P (Kj) =
∑

Kj⊆H

( inf
zi⊆Kj

μ(zi))P (Kj),

φ∗(H)
∑

Kj∧H �=∅
P (Kj) =

∑
Kj∧H �=∅

( sup
zi⊆Kj∧H

μ(zi))P (Kj).

Proof: Since μ(·) = P (Eϕ|·) and P on D are globally coherent, from Theorem
2 there is (at least) an extension on E × H0, then for any H ∈ H0 we can
compute φ∗(H) = inf P ′(Eϕ|H) where the infimum is computed over the possible
extensions P ′ of P .

For every H ∈ H, there is an extension μ(·) = P (Eϕ|·) (among the possible
ones) such that for any Kj ⊆ H

P∗(Eϕ|Kj) = inf
zi⊆Kj

μ(zi).

This follows from Theorem 4 in [5] by giving to atom Aji probability equal to
P (Kj) for ji such that

inf
zs⊆Kj

μ(zs) = μ(zji)
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for any j = 1, ...,m,m + 1 such that Kj ⊆ H , while for j such that Kj ∧H �=
∅ �= Kj ∧Hc, ji is chosen among zr such that zr ⊆ Kj ∧Hc and 0 to the other
ones.Then, φ∗ is an extension of μ obtained through the above assignment on
the atoms.

Analogously, φ∗ can be obtained by considering the supremum of the likeli-
hood over any Kj with Kj ∧H �= ∅ and it is obtained by giving to the atom Aji

probability equal to P (Kj) if

sup
zr⊆Kj∧H

μ(zr) = μ(zji)

and 0 to the others.
The previous result includes the case in which D coincides with the set of

atoms {zr}, where the classic disintegration rule can be applied.
The situation in Theorem 4 is the simplest one. In fact, the lower envelope

P of the extensions of the coherent probability on D is infinitely monotone (see
e.g. [10]), and so 2-monotone (convex), that is for any H,K ∈ H :

P (H ∨K) ≥ P (H) + P (K)− P (H ∧K)

Actually, when D is an arbitrary subset of H0, we can have different situations.
In general, the lower envelope P of the coherent extensions of P on H is a

lower probability P , i.e. the lower envelope of extensions P = {Pi} to the algebra
H, spanned by D, of the coherent probability P on D. More precisely, for any
H ∈ H

P (H) = inf
Pi∈P

Pi(H).

When the set of events D is finite the above infimum is a minimum (see e.g. [3]),
in the sense that there is a finite family of Pj ∈ P such that P (H) = minPj Pj(H)
for any H ∈ H.

In the following we deal with the coherent extensions of the membership and
the coherent probability. We first study the general case and then the particular
case when the lower probability is convex (2-monotone).

In the general case μ and P can be extended on H ∈ H0, first of all, by looking
for the minimum of

∑
Ar⊆H xr under

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
Ar⊆Ai

xr = P (Ai) for Ai ∈ D∑
Ar

xr = 1

xr ≥ 0 for zr ∈ CZ

If the minimum is positive, then the extension is obtained by looking for

min /max

∑
Ar⊆H μ(zr)xr∑

Ar⊆H xr
(2)
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under the system S. This is a fractional optimization problem, which can be
reformulated in terms of a liner problem by finding

min /max
∑

Ar⊆H

μ(zr)yr (3)

under the following system

S∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
Ar⊆Ai

yr = P (Ai)
∑
Ar

yr for Ai ∈ D∑
Ar⊆H

yr = 1

yr ≥ 0 for Ar ∈ CZ

Note that the solutions {xr}r of the system S coincide, unless of a normalization
constant, with the solutions {yr}r of the system S∗, i.e.

xr =
yr∑

Ar∈CZ
yr
.

Otherwise, if the minimum of
∑

Ar⊆H xr, under the system S, is 0, the coherent
extension of {μ , P} on H ∈ H are in the interval [p∗, p∗] with

p∗ = min
Ar⊆H

μ(zr) and p∗ = max
Ar⊆H

μ(zr).

Then, we show that in both cases the extension of {μ , P} on H ∈ H is an
interval and the extreme values can be found by solving an optimization linear
problem. However, we cannot find the extension, in the general case, directly by
resorting to the lower envelope of the extensions of P . In fact we need to refer
to the solutions of the linear systems S∗.

Notice that, according to equation (3), we are interested on the unconditional
lower probability rather than to the conditional one.

Actually, for those events H ∈ H0, such that the conditional lower probability
PH(·) = P (·|H), obtained as the lower envelope of the extensions of P , is 2-
monotone we can compute the extension of {P, μ} directly by means of PH as a
Choquet integral since μ is upper H-measurable (see [8]). More precisely, being
μ a function with values in [0,1]

C

∫
μdPH =

∫ 1

0
PH(s : μ(s) ≥ x)dx

which, in the discrete case, reduces to:

C

∫
μdPH =

n∑
i=1

μ(s(j))(PH(A(s(j)))− PH(A(s(j+1))),

where (s(j))’s are such that

0 ≤ μ(s(1)) ≤ μ(s(2)) ≤ ... ≤ μ(s(n))

and A(s(j)) = ((s(j)), (s(j+1)), ..., (s(n))) with A(s(n+1)) = ∅.
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Notice that, if P (H) = 0 , then PH is 2-monotone, and, as noted before, the
above Choquet integral reduces to the minimum of the function μ on H .

For the maximum we are interested in the conditional upper probability, and
the computation of the maximum extensions follows analogously.

Now, in order to choose the most probable element of CZ , under the hypothesis
Eϕ, by using both statistical information and fuzzy information, we need to
compute the coherent extensions of (Ai|Eϕ). In this general setting, they are
an interval and so we need to find the bounds of such interval by looking for
the lower conditional probability and the upper conditional probability of that
conditional event. When P (Eϕ) is equal to 0, the interval is [0,1], but this case
is not so interesting because it implies that the membership function is greater
than 0 only on an event of 0 lower probability.

Then, we examine the interesting case, which is P (Eϕ) > 0, in that case

P (Ai|Eϕ) = min
xiμ(zi)∑
j xjμ(zj)

under the system S. Analogously what done before, this problem can be refor-
mulated by finding P (Ai|Eϕ) as

min yiμ(zi)

under the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
Ar⊆Ai

yr = P (Ai)
∑
Ar

yr for Ai ∈ D∑
j

yjμ(zj) = 1

yr ≥ 0 for zr ∈ CZ

Then also in this case the value is found through an optimization linear problem.

4 Conclusion

In this paper we deal with the problem of updating a probability assessment
on the basis of a fuzzy information, by using a generalized Bayesian inference.
For this aim we start from an interpretation of fuzzy set in terms of coherent
conditional probability assessment given in [2]. In particular we study this prob-
lem when either prior probability assessment and membership are defined on
sets of events different from those directly involved in the inferential process.
This fact requires to make inference starting from a set of probabilities (and so
their lower and upper envelops). In the paper we study the most general case
and some particular cases. The study of the relevant cases is not exhaustive, for
instance we need to face the case where logical relations among the events of the
initial probability P and the domain D of the available membership give rise to
an upper envelope of the coherent extensions of P to D, which is a possibility
(see [4]).
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Abstract. Upon engineering a Bayesian network for the early detection
of Classical Swine Fever in pigs, we found that the commonly used ap-
proach of separately modelling the relevant observable variables would
not suffice to arrive at satisfactory performance of the network: explicit
modelling of combinations of observations was required to allow identify-
ing and reasoning about patterns of evidence. In this paper, we outline a
general approach to modelling relevant patterns of evidence in a Bayesian
network. We demonstrate its application for our problem domain and
show that it served to significantly improve our network’s performance.

1 Introduction

Over the last decades, researchers developed Bayesian networks to support med-
ical and veterinary practitioners in their diagnostic reasoning processes for a
variety of biomedical domains. Examples from our own engineering experiences
include a Bayesian network for establishing the stage of oesophageal cancer in
patients who have been diagnosed with the disease [1], naive Bayesian networks
for deciding upon the most likely causal pathogen of clinical mastitis in dairy
cows [2], and a dynamic Bayesian network for diagnosing ventilator-associated
pneumonia in critically ill patients in an intensive care unit [3]. Our most recent
engineering efforts concern a network for the early detection of an infection with
the Classical Swine Fever (CSF) virus in individual pigs.

Upon constructing our Bayesian network for the early detection of Classical
Swine Fever, we found that the commonly used engineering approach of sepa-
rately modelling the clinical signs found with the disease, would not suffice to
arrive at satisfactory performance of the network. In-depth interviews with re-
searchers and veterinary practitioners across the European Union showed that
the aspecificity of especially the early signs of the disease makes a clinical di-
agnosis highly uncertain and that satisfactory diagnostic performance can only
be reached by reasoning about the presence or absence of specific combinations

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 675–684, 2010.
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of observations hidden in the presented evidence. These combinations of obser-
vations are associated with the successive phases of the disease, which cannot
be observed in practice yet may or may not be evidenced by clinical signs. To
show satisfactory diagnostic performance, therefore, our Bayesian network for
the early detection of CSF should reason not just about separate clinical signs
but also about relevant patterns in the evidence presented by an animal.

In this paper we present a generally applicable approach to modelling relevant
patterns of evidence in a Bayesian network. The basic idea of our approach is to
distinguish combinations of observations which are relevant for reasoning in the
application domain and to model these by means of hidden variables. The hidden
variables then are used to organise the variables which describe the observations
themselves. By capturing not just the observations but also their important com-
binations, the resulting network is able to identify and reason about the synergis-
tic information hidden in the entered evidence. We illustrate how the approach
is used to describe combinations of observations commonly seen in the successive
phases of a disease. We further show that its application significantly improved
the detection abilities of our network for Classical Swine Fever.

The idea of introducing hidden variables in a Bayesian network was described
before for the Hailfinder model [4]. In that model, a single hidden variable was
introduced as an approach to managing the complexity of the set of observations:
the hidden variable was used to abstract from the details hidden in the evidence.
In the current paper, we introduce a collection of hidden variables modelling an
unobservable disease process, not with the aim of summarising information but
for the purpose of identifying significant additional information from the set
of observations. The idea of introducing hidden variables thus is taken a step
further. Although motivated by our specific application in veterinary science,
we feel that the approach of modelling patterns of evidence is more generally
applicable. In fact, we expect the approach to be advantageous also for other
applications which require identifying and reasoning about the presence or ab-
sence of specific combinations of observations, be they related to the separate
phases of a disease process or otherwise of relevance for the domain at hand.

The paper is organised as follows. In Section 2, we introduce the problem
of early detection of Classical Swine Fever in individual pigs and describe the
Bayesian network initially constructed for the problem; in this section we also
elaborate on the need to explicitly capture patterns of evidence in the network.
In Section 3, we outline our approach to modelling combinations of observations
in a Bayesian network in general and demonstrate its application in the CSF
network. In Section 4, we compare the performances of the initially constructed
and enhanced CSF networks on a variety of pig cases. We end in Section 5 with
our conclusions and directions for further research.

2 A Bayesian Network for Classical Swine Fever

We provide some background information on Classical Swine Fever and briefly
describe our initial Bayesian network for early detection of the disease.
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2.1 Classical Swine Fever

Classical Swine Fever is a highly infectious pig disease with a potential for rapid
spread. When a pig is first infected with the CSF virus, it will show an increased
body temperature and a sense of malaise, associated with such signs as a lack
of appetite and lethargy. Later in the infection, the animal is likely to suffer
from abnormal faeces, mostly diarrhoea, as a result of an inflammation of the
intestinal tract. Further on, problems of the respiratory tract will be revealed
through such signs as a conjunctivitis, nasal secretion, and coughing. The final
phases of the disease are associated with circulatory problems, causing cyanotic
colouring and pin-point skin haemorrhages, and with a paralysis of the hind legs,
respectively. Ultimately, as a result of the accumulating failure of body systems,
the pig will die [5]. The disease can be caused by a variety of strains differing in
virulence. While highly virulent strains cause the disease to develop aggressively
over a short time with a large proportion of affected animals dying, less virulent
ones cause the disease to develop more slowly and less prominently.

Classical Swine Fever is a notifiable disease: any suspicion of its presence
should be reported immediately to the agricultural authorities and control mea-
sures, involving for example closure of the farm, should be installed. The longer
a CSF infection remains undetected, the longer the virus can circulate without
hindrance, not just within a herd but also between herds. Because of the major
socio-economical consequences that an outbreak may have, reducing the high-
risk period of time between first infection of a herd and first detection is of major
importance. Improving early detection based upon clinical signs is a first step
towards reduction of this period. The aspecificity of especially the early signs of
the disease causes the clinical diagnosis of CSF to remain highly uncertain for a
relatively long period after the infection occurred, however [6].

2.2 The CSF Network

In collaboration with an experimental CSF expert and a senior epidemiologist
from the Central Veterinary Institute of the Netherlands, we designed a Bayesian
network for the early detection of Classical Swine Fever. An investigation of cur-
rent practices showed that a veterinarian visits a pig farm with disease problems
when called for by the farmer. After investigating a limited number of diseased
animals, the veterinarian has to formulate a differential diagnosis for the prob-
lems at hand, without having information available about the disease history of
the individual pigs. During the visit, the veterinarian also has to decide about
whether or not to report a CSF suspicion to the agricultural authorities. Since
our Bayesian network was aimed at supporting veterinarians in their current
practices, we decided to focus engineering efforts on the clinical signs which are
typically associated with a CSF infection and can be observed in an individual
animal at a single moment in time without reference to disease history.

For the construction of the network, in-depth interviews were held with the
two participating experts; in addition, case reviews were conducted with Dutch
swine practitioners, both with and without clinical CSF experience, and with
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Fig. 1. The graphical structure of the initial network for the early detection of CSF

pig experts in six other countries within the European Union. The graphical
structure of the resulting network is shown in Figure 1. It includes 42 stochastic
variables. Half of these variables describe clinical signs relevant for confirming or
ruling out CSF; the remaining variables capture internal effects of the presence
of the virus, risk factors for contracting the virus, and alternative explanations
for observed signs. The dependencies among the variables are captured by 84
arcs, which are quantified by some 1500 (conditional) probabilities. The network
takes for its input the clinical signs observed in an individual pig and returns
the posterior probability of these signs being caused by a CSF infection.

2.3 A Preliminary Evaluation

The performance of the initially constructed network for the early detection of
Classical Swine Fever was evaluated informally, using a small number of negative
cases from veterinary practice, that is, of pigs without CSF. The findings sug-
gested, unfortunately, that our network would result in an unacceptably large
number of false CSF warnings when used in practice; in fact, it performed inad-
equately in attributing negative cases to primary infections other than CSF.

The pig cases used for the informal evaluation of the CSF network were re-
viewed by veterinary practitioners from across the European Union. The reviews
showed that veterinarians could relatively easily dismiss a diagnosis of CSF for
these cases. Subsequent elicitation revealed that the practitioners used their
knowledge of the course of a CSF infection in an individual animal for reasoning
about the cases. More specifically, we found that a veterinarian would consider
not so much the separate signs associated with a CSF infection but would look
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for the typical combinations of signs associated with the successive phases of the
disease. For example, a pattern of cyanosis and paralysis of the hind legs, which
are typical late signs of CSF, would not very likely incite them to issue a CSF
warning in the absence of diarrhoea and respiratory problems, simply because
an animal in which the disease had progressed into the final phases would also
show the clinical signs from the earlier phases of the disease.

The initially constructed network described above clearly was able to relate
the clinical signs observed in a pig to CSF, but could not reason about the
significance of the presence and/or absence of specific combinations of signs. To
arrive at a better performance, therefore, the network should be able to identify
and reason about relevant combinations of signs hidden in the observed evidence.

3 Modelling Patterns of Evidence in a Bayesian Network

Motivated by our experiences, we designed a generally applicable approach to
modelling relevant patterns of evidence in a Bayesian network. The basic idea of
the approach is to introduce hidden variables in the network to describe combi-
nations of observations which are relevant for reasoning about the uncertainties
in a domain at hand. These hidden variables are subsequently used to organise
the stochastic variables which describe the observations themselves. By captur-
ing not just the observations but also their important combinations, the resulting
network is able to take the synergistic information hidden in entered evidence
into consideration. We describe the basic idea of our approach and outline its
application for our network for the early detection of Classical Swine Fever.

3.1 The Basic Idea

Our approach to modelling patterns of evidence in a Bayesian network is to
introduce hidden, so-called pattern variables for relevant combinations of ob-
servations and to organise the observable variables as contributing evidence to
these pattern variables. More formally, we consider n ≥ 1 combinations of ob-
servations which are relevant for reasoning in the domain at hand. For each
such combination i, we introduce a pattern variable Φi, i = 1, . . . , n, modelling
whether or not the combination is present in the entered evidence. Dependent
upon the role and meaning of the patterns of evidence in the domain, the newly
introduced variables may or may not be (conditionally) dependent. The pattern
variables are subsequently used to organise the observable variables, by linking
each pattern variable Φi to the mi ≥ 1 observable variables Xji , ji = 1, . . . ,mi,
from which the presence or absence of the pattern is established. The direction of
the arcs linking the pattern variable to the observable variables, that is, pointing
from or to the hidden variable, is again dependent upon the role and meaning
of the patterns in the domain of application.

3.2 Enhancing the CSF Network

The basic idea of modelling patterns of evidence was used to enhance the pre-
viously constructed Bayesian network for the early detection of Classical Swine
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Fever. In the domain of application, the patterns to be modelled are related to
the phases of the course of a CSF infection in an individual animal. For each
of the five disease phases, therefore, an intermediate phase variable Φi was in-
troduced. Since a CSF infection progresses linearly through the various phases,
the newly introduced variables could not be considered mutually independent.
To describe the progression of the infection, therefore, the phase variables Φi

were interrelated by means of arcs Φi → Φi+1, i = 1, . . . , n− 1; an arc between
two successive phase variables thus describes the transition relation between the
modelled disease phases. The conditional probability tables associated with the
phase variables capture the likelihood that the infection progressed to a specific
phase. The probability table for the first phase variable φ1 essentially expresses
the prior probability Pr(φ1 = yes) of the animal having been infected. The con-
ditional probability table for the phase variable φi, i = 2, . . . , n, describes the
probability of the disease having entered into the i-th phase given that phase i−1
had, or had not, been entered; the table thus specifies the transition probabilities

Pr(φi = yes | φi−1 = yes)
Pr(φi = yes | φi−1 = no)

The latter probability was set to 0 since a CSF infection is known to progress
linearly through the separate phases without skipping any of them. Moreover,
since the likelihood of progression of the disease to the next phase is known to
depend upon some predisposing factors, the actual transition probabilities for the
network were further conditioned on these variables. All transition probabilities
were assessed by one of our experts. He was requested to consider a group of 100
pigs in the first phase of the disease. For each phase, he was asked to distribute
the group of remaining animals over three subgroups: the group of animals that
would enter the next phase, the group that would die, and the group of animals
that would successfully fight the infection and be cured. From the estimated
group sizes, the transitional probabilities were readily established.

We would like to note that modelling the relevant patterns of evidence in our
CSF network by introducing phase variables and their transitional relations bears
a strong resemblance to the modelling of stochastic processes in hidden Markov
models and their extensions [7,8]. A major difference between our approach and
these types of model, however, is that the arcs between our phase variables are
not associated with a time interval; also the transition probabilities describing
the relationships between the phases do not involve any reference to time. The
enhanced CSF network still captures just snapshots of the disease process and
thereby allows establishing the current phase of the process, yet does not provide
for predicting further evolution of the disease over time.

The five phase variables introduced to capture knowledge of the course of a
CSF infection were embedded in the originally constructed CSF network, along
with their transitional relations. While the disease phases themselves are not
observable in practice, they are evidenced by clinical signs which may, or may
not, be seen in an individual animal. The initial network already included various
observable variables Xji to describe these signs. These variables were now linked
to the appropriate phase variable Φi, essentially by means of arcs Φi → Xji .
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Fig. 2. The graphical structure of the enhanced network for the early detection of CSF

The conditional probability tables for the variables Xji describe the probability
of seeing the associated clinical sign in an animal suffering from the disease in
phase i; the tables thus in essence specify the conditional probabilities

Pr(Xji = yes | Φi = yes)
Pr(Xji = yes | Φi = no)

Since a disease phase sometimes is known to induce a hidden process which in
turn may cause the associated clinical signs to arise, some phase variables were
linked to variables modelling hidden processes rather than to the observable
variables themselves. Elicitation had further shown that a pig’s body systems
are mostly irreversibly affected in the course of a CSF infection. Clinical signs
arising in a specific phase would therefore most likely persist throughout subse-
quent phases of the disease. This knowledge was incorporated implicitly in the
network’s graphical structure by not including any links from later disease phases
to earlier signs. Figure 2 shows the graphical structure of the thus constructed
network for the early detection of Classical Swine Fever; we would like to note
that the enhanced CSF network includes fewer variables than the originally con-
structed one, because we decided to not just include the phase variables but to
also remove some variables which had proved to not contribute, either positively
or negatively, to the network’s performance.

The enhanced network for Classical Swine Fever now captures the information
that, for example, the first phase of a CSF infection is associated with an elevated
body temperature and a sense of malaise. Through the transition probabilities
for Phase 2, these signs are modelled as being equally likely in an animal in the
second phase of the disease. One of the effects of the introduction of the disease
phases into our network thus is that the presence of clinical signs from a later
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phase of the disease will only be construed as evidence for a CSF infection if
most signs from the earlier phases of the disease are also observed. Note that this
effect could not easily be attained by introducing just a single hidden variable
into the network.

4 The Performances of the CSF Networks Compared

To study the effectiveness of our approach to modelling patterns of evidence in
Bayesian networks, we compared the performance of the enhanced CSF network
with that of the initially constructed model. We conducted the comparison with
real data collected by veterinary pig experts using a standardised protocol in
which information was asked on some 15 clinical signs per animal.

To express the performances of the two networks, we use the well-known con-
cepts of sensitivity and specificity. A model’s specificity is the percentage of
individuals without the disease whom the model singles out as indeed not hav-
ing the disease; the model’s sensitivity is the percentage of diseased individuals
whom it identifies as having the disease. A model with perfect detection abilities
would thus have both a sensitivity and a specificity of 100%. The concepts of
sensitivity and specificity cannot be used directly for a Bayesian network, since
its ouput is a probability distribution rather than a determinate diagnosis. For
establishing the sensitivity and specificity characteristics of the two CSF net-
works, therefore, all computed probabilities were compared against a threshold
probability α: if the posterior probability of CSF computed for a pig exceeded
this threshold probability, we assumed that the diagnosis of CSF was sufficiently
confirmed and that a warning was issued for the pig. Small values of α were used
to account for the currently small prior probability of Classical Swine Fever.

For comparing the specificities of the two CSF networks, data from pigs with-
out Classical Swine Fever were used; these data were collected by 11 pig vet-
erinarians in the Netherlands and amounted to a total of 375 cases. For each
of these cases, the posterior probability of the clinical signs being caused by a
CSF infection was computed from both networks and subsequently compared
with a threshold probability α as described above. From the numbers of issued
warnings, the specificities of the networks were calculated; Table 1 records these
specificities for various realistic values of α.

Table 1. The specificities of the initial CSF network and of the enhanced network,
given different realistic values of the threshold probability α for issuing a CSF warning

threshold specificity specificity
α initial network enhanced network

0.05 92% 99%
0.01 86% 98%
0.005 83% 96%
0.001 71% 89%
0.0005 58% 84%
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Fig. 3. The cumulative number of CSF warnings issued by the two CSF networks, at
α = 0.001, for 91 pigs, as a function of the number of days post infection (DPI)

Since commercial pig farms in the European Union have been free from Clas-
sical Swine Fever for a long time, the collected field data pertained to animals
without the disease only and could not be used to gain insight in the sensitivities
of the two CSF networks. For that purpose, experimental data were used. These
data were collected from experiments within three countries in the European
Union, involving small groups of pigs in which some individuals were inoculated
with the CSF virus. A total of 91 animals were followed over a period of 35
days; data were recorded at least every two or three days. For each recording
day, for each pig, the posterior probability of the observed clinical signs being
caused by a CSF infection was computed from both networks and subsequently
compared against a threshold probability α as before. Figure 3 shows, for the
two networks, the cumulative number of animals which would receive a CSF
warning, as a function of the number of days post infection using the threshold
probability α = 0.001; similar results were found for other realistic values of α.

Table 1 and Figure 3 show that the enhanced CSF network outperforms the
initially constructed network with respect to both its sensitivity and its speci-
ficity. The inclusion of patterns of evidence clearly served to improve the detec-
tion abilities of the network for our domain of application.

5 Conclusions and Future Research

Engineering Bayesian networks is a creative process in which an engineer is
guided by best practices and experiences. While for many diagnostic applications
the common approach of separately modelling the relevant observable variables
suffices to arrive at satisfactory performance of a network, we found that for our
application in veterinary medicine explicit modelling of combinations of obser-
vations was required for reasoning about patterns hidden in the evidence. Moti-
vated by this consideration, we presented in this paper an approach to modelling
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patterns of evidence in a Bayesian network. The basic idea of our approach is to
distinguish significant combinations of observations and to model these explicitly
by means of hidden pattern variables; the other stochastic variables of interest
then are related explicitly to these pattern variables. We used this approach to
enhance our Bayesian network for the early detection of Classical Swine Fever
in pigs and thereby significantly improved its detection abilities.

Although motivated by a specific application in veterinary science, we feel
that our approach to modelling patterns of evidence in Bayesian networks is
more generally applicable. In the near future, we intend to further investigate the
modelling of disease processes in Bayesian networks for diagnostic applications;
more specifically, we will study and detail the modelling of different scenarios
for persistence of observations over subsequent disease phases. By investigating
further possible uses of the approach, we hope that it will prove advantageous
also for other applications which require identifying and reasoning about the
presence or absence of specific combinations of observations.

Acknowledgment. The research in this paper was supported by the Nether-
lands Organisation for Scientific Research.
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Abstract. The introduction of expert knowledge when learning
Bayesian Networks from data is known to be an excellent approach to
boost the performance of automatic learning methods, specially when the
data is scarce. Previous approaches for this problem based on Bayesian
statistics introduce the expert knowledge modifying the prior probabil-
ity distributions. In this study, we propose a new methodology based
on Monte Carlo simulation which starts with non-informative priors and
requires knowledge from the expert a posteriori, when the simulation
ends. We also explore a new Importance Sampling method for Monte
Carlo simulation and the definition of new non-informative priors for
the structure of the network. All these approaches are experimentally
validated with five standard Bayesian networks.

1 Introduction

Bayesian networks [1] allow to represent graphically a multivariate joint prob-
ability distribution exploiting the dependency structure among the variables.
This property together with the graphical nature of BNs make them excellent
models to display the complex probabilistic relationships which appear in many
real problems. This is one of the main reasons why the problem of automatic dis-
covering of the structure of a BN from data has attracted a great deal of research
[2,3,4]. Most of these approaches recovers the model (or its Markov equivalence
class) which best explains the data. However, it is well known that if the size of
the problem domain is relatively high and there is a limited data sample, there
usually are several models that explain the data reasonably well.

The introduction of expert knowledge has been proposed in many studies
as an excellent approach to help automatic learning methods to extract more
reliable and accurate BN models and to deal with arbitrariness in model selection
[2,5,6]. The graphical nature of BNs greatly eases the required interaction with
the expert for this purpose.
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E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 685–695, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



686 A. Cano, A.R. Masegosa, and S. Moral

The Bayesian learning framework has been successfully applied to infer BN
models because it allows to integrate expert knowledge and deals with several
plausible models [2,3,4,5]. The main device explored so far to integrate the expert
knowledge within this framework is the elicitation of informative priors. If an
expert consider that the presence of an edge is very likely, this knowledge would
be represented giving higher prior probabilities to those BN structures containing
that edge, as it is proposed in [2,5].

However, we find that there are severe limitations when asking to an expert to
provide a priori knowledge about any feature of a BN. The main disadvantages
we find in this approach are the followings:

– The expert would be requested to submit a priori knowledge for each one of
the possible edges of the graph. What makes unfeasible the elicitation of the
prior distribution for the structure of the graph in large problem domains.

– The expert could be biased to provide the most “easy” or clear knowledge,
that is to say, the most strong direct probabilistic dependencies among vari-
ables, which happen to be the easiest ones to be discovered.

– The learning algorithm does not help to the user to introduce information
about the BN structure.

In this paper we propose a different methodology to take advantage of expert
knowledge. We consider the absence of a priori knowledge and we will ask to
the expert to provide a posteriori knowledge, once the learning algorithm has
been run in order to refine the output model. The motivation of this approach
is to mitigate the above mentioned flaws, so our approach aims: to limit the
number of questions that are submitted to the expert; to ask to the expert only
the most uncertain structural features; and, finally, to help to the expert to
submit his/her knowledge showing him/her the information found in the data.
This approach employs a new Importance Sampling (IS) method [7] to sample
from the posterior distribution of the space model given the learning data. We
also explore some of the possibilities that there are to define non-informative
priors about the structure of the BN apart from the common uniform prior.

In that sense, our approach is close to the NPC learning algorithm [8] im-
plemented in Hugin [9] which allows the interaction with an expert to solve,
when found, conflicts in the independence statements or arc directions after the
learning of the graph structure. However, we employ a full Bayesian framework
which considers all plausible BN models. In this way, in the NPC approach the
expert interaction is restricted to solve, if found, some conflictive specific parts
of the model, while in our approach the expert interaction could range from non
interaction at all to a full assessment by the expert of each one of the edges.

This approach will assume that a total causal order of the variables (it could
be provided by the expert) is known. We impose this strong requirement to limit
the super-exponential model space of the BNs and, also, because we have not
yet developed an extension of the IS method without this restriction.

In Section 2, we give details about the notation and the Bayesian Learning
framework. After that, in Section 3, we present our IS approach [7] to compute
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marginal probabilities. The methodology to introduce expert knowledge is pre-
sented in Section 4. All these approaches are experimentally evaluated in Section
5. Finally, in Section 6, we give the main conclusions and future works.

2 Previous Knowledge

2.1 Notation

We consider the problem of inferring a BN defined over a set of n variables
X = (X1, ..., Xn) each of which takes values in some finite domain V al(Xi). We
are also given a fully observed data set D.

The description of a BN model, B, consists in two parts: the directed acyclic
graph G and an associated numerical parameter vector ΘG. In the graph struc-
ture each node corresponds to a random variable and has a set of parents denoted
as PaG(Xi) (the subindex G will be omitted when is clear from the context),
which is a subset of X. At the same time, the parameters ΘG corresponds to
numeric values of the conditional probability tables of that network structure.

As we commented before, throughout this paper we will assume it is given
a total causal order of the variables X = {X1, ..., Xn} in such a way that the
graph G is consistent with this order if Xj ∈ Pa(Xi) then j < i. We also define
Ui as a random variable taking values in the space of all possible parent sets of
Xi, V al(Ui) = {U : U ⊂ {X1, ..., Xi−1}}. So, a graph G can be decomposed
as a vector of parent sets G = (Pa(X1), ..., Pa(Xn)) where each parent set
Pa(Xi) ∈ V al(Ui). We will denoted as G to the random variable taking values
in the set of all possible graph structures consistent with the total order.

2.2 The Bayesian Learning Framework

The Bayesian learning framework [7] of BNs has been previously presented in
several papers [5,2,4]. Within this framework it is defined a prior probability
over all candidate BNs, P (B), and this prior probability is updated in the light
of the data, P (B|D), the posterior probability of the models. The maximum a
posteriori (MAP) model is returned as the model that the best explain the data.

Due to space reasons and that the basic settings of this approach are clearly
detailed in the literature [4], we only show the equations than lead us to the
computation of the posterior probability of some structural features of the BN:

The posterior probability of a graph: This posterior probability can be
factorized and, then, efficiently computed employing the Bayesian Dirichlet
equivalent score, BDe score [2],which assumes parameter modularity, parameter
independence and a modular structure prior, P (G) =

∏
i Pi(PaG(Xi)), where

Pi(Ui) is the prior probability over the parent sets of Xi. We get the following
expression:

P (G = G|D) = P (G|D) ∝ P (G)P (D|G) =
∏

i

score(Xi, PaG(Xi)|D) (1)
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So, the posterior is decomposed as a product of local score functions: score(Xi,
PaG(Xi)|D). This score function has a simple closed form [2] and it is easily
computed knowing the prior Pi(PaG(Xi)) and certain sufficient statistics of the
data. We implemented the BDeu version, which assumes uniform Dirichlet prior
over the parameters ΘG, with a equivalent sample size equal to 1.

Factorization of P (G|D): The main advantage of the assumption of a total
order is that the posterior probabilities of the parent sets for the variables Xi,
P (Ui|D), become independent among them. So we have the following equality:

P (G|D) =
∏

i

P (Ui|D) (2)

So, the problem of approximating this posterior probability P (G|D) can be de-
composed in n independent problems, which are much simpler to compute.

Marginal Probability of an edge: Under the Bayesian framework, we can
compute the marginal probability of a feature f of a graph, i.e, the presence of
an edge, summing the posterior probabilities of all graph structures consistent
with that feature. Because we can use the decomposition of Equation 2, the
marginal probability of an edge Xj → Xi or of a parent set U ∈ V al(Ui) for Xi

are equally computed as the following expected value:

P (Xj → Xi|D) = EP (Ui|D)(I→(U)) =
∑

U∈V al(Ui)

I→(U)P (U|D) (3)

where I→(U) is the indicator function and is equals to 1 if Xj ∈ U, and 0
otherwise. The same expression is employed to compute P (Ui = U|D) using the
indicator function IU.

2.3 Monte Carlo Simulation

A natural approach to estimate Equation 3 is the employment of Monte Carlo
simulation techniques. Madigan et al. [10] proposed a method based on Markov
Chain Monte Carlo (MCMC) simulation for the structural learning of BNs. This
MCMC method can be easily adapted to our problem considering Ui as the
space model of the Markov Chain. Using the operations of arc adding, deleting
or switch, we could move through this chain and guarantee that it converges to
the stationary distribution P (Ui|D).

However it is well known [3,10] that MCMC simulations usually shows poor
mixing rates when the data sample is limited and the space model is high. In our
case although the space model is strongly reduced, informal experiments with
this approach showed us that these problems are still present, specially when
the number of samples is low (less than 500). This fact motivates us to explore
other Monte Carlo integration techniques such as Importance Sampling to face
this problem.
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3 Importance Sampling

Importance sampling (IS) [7] is based on the use of an auxiliary distribution q
which roughly approximates the target distribution p which is easier to sample
from. Under mild regularity conditions [7], we get that:

Ep(f(x)) =
∫
p(x)
q(x)
f(x)q(x)dx = Eq(w(x)f(x)) (4)

where w(x) = p(x)
q(x) acts as a weight function. It could also happen that p and

q are only known up to a multiplicative constant, as in our problem. In that
way, a set of T samples x1, ..., xT are generated form q and, then, it is computed
wt = p(xt)

q(xt) . The estimator μ̂ of Ep(f(x)) is finally computed as follows:

μ̂ =
∑T

t=1 w(xt)f(t)∑T
t=1 w(xt)

(5)

In our case the sample space model is Ui, the target distribution is P (Pa(Xi)|D)
∝ score(D|Pa(Xi)). Sampling directly from this distribution is not feasible be-
cause the space model is exponential. So, we try to approximate it defining an
importance sampling distribution that samples full parent sets by sampling, inde-
pendently, every single parent node with a probability that tries to approximate
the real one. The exact description of this distribution q is as follows:

Algorithm 1. Importance Sampling Distribution

Let {Xσ(1), ..., Xσ(i−1)} be a random permutation of variables Xj preceding Xi, j < i.

Ut = ∅, q = 1;
For each j = 1 to i − 1:

– Compute: v = score(Xi,Ut ⋃{Xσ(j)}|D)
score(Xi,Ut

⋃{Xσ(j)}|D)+score(Xi,Ut|D)

– Accepts Xσ(j) as parent of Xi with probability v.

Then: Ut = Ut⋃{Xσ(j)} and q = q ∗ v;

– Otherwise: q = q ∗ (1 − v);
return U t as a sampled parent set for Xi with probability q;

With this algorithm we generate T candidate parent sets for Xi and proceed
to estimate EP (Ui|D)(f(U)) using Equation 5. So, fixing f to the corresponding
indicator function, we can compute the posterior probability of given parent set
and the posterior probability of an edge using Equation 3.

4 Integrating Expert Knowledge

4.1 Non-informative Structure Priors

As in [5], let us assume that the prior probability of any edge is independent of
any other and equals to P (y → x) = ρ. In [11] it is justified the employment
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of this assumption. With the previous settings, a model with r edges out of
s candidate edges would have a prior probability determined by a Binomial
distribution with probability of success ρ. To avoid the explicit definition of ρ,
it is proposed a Beta prior distribution over ρ. So the prior distribution over a
set of parents would be as follows:

Pi(PaG(Xi)) =
B(r + α, (i− 1)− r + α)

B(α, α)

where r is the cardinality of the set PaG(Xi) and B(·, ·) is the two parameter
Beta function. We also fix s = i− 1 because assuming a total order the variable
Xi can have up most i− 1 candidate parents nodes.

Two possible α values are proposed: α = 0.5 to resemble the non-informative
Jeffrey’s prior for the Beta-Binomial model; and α = 1, which would lead to the
prior P (PaG(Xi)) = ((s+ 1)

(
s
r

)
)−1, which were also previously proposed in [3].

As can be easily seen in this last combinatorial formulation, these priors penalize
those parent sets which belong to subsets with higher cardinality.

We also point out that both structure prior distributions are modular and
score equivalent [2]. Throughout the rest of the paper, we will refer to them as
Beta structure priors (β-prior).

4.2 A Posteriori Expert Knowledge

In this study we propose the employment of the posterior probability P (Ui|D),
approximated by means of any MC method, as an excellent source of informa-
tion to carry out an efficient and effective interaction with the expert in order
to allow him/her to introduce his/her experience to refine the set of plausi-
ble models. Let us denote by E this information provided by the expert about
the presence/absence of edges. At the beginning E is empty. We then define a
methodology to ask a minimum number of queries to the expert in order to let
P (Ui|E,D) concentrates around one single model.

The methodology we propose for this purpose is quite simple and intuitive.
It resembles widely known recursive conditioning method for entropy reduction
applied for learning decision trees [12]. It can be describe as follows:

Step 1: Compute the information gain measure [12] of Ui respect to each pos-
sible edge e, that is to say, find the edge e that if known most would reduce
the entropy of P (Ui|E,D). It is easy to check that this edge is the one with
probability closest to 0.5.

Step 2: Ask to the expert about the presence or the absence of this edge e with
the highest information gain (E = E ∪ e). It would be also displayed the
posterior probability of this edge to help her/him in the decision.

Step 3: We then update the posterior probability P (Ui|E,D) and we start again
from Step 1 until a stop condition is met.

The stop point could be also provided by the expert. Here we propose a simple
stop condition that can be tuned with two parameters. The system stops to ask
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to the expert when either the ratio between the posterior probability of the MAP
(most probable a posteriori) model and the second best model is higher than a
factor K; or the level of the number of queries submitted for a single variable,
|E|, is higher than a given threshold L. The K parameter is somehow a measure
of confidence in the MAP model (how much the posterior concentrates around
it); and L is a parameter that prevents against excessive number of queries.

5 Experiments

5.1 Experimental Set Up

To evaluate this approach we have employed 5 standard BNs usually employed
for these evaluations [4]: Alarm network with 37 variables; boblo network with
23 variables; boerlage92 network with 23 variables; hailfinder network with 56
variables; and insurance network with 27 variables. For each of these networks
we randomly generate 10 data samples with the same size and we considered
different sample sizes: 50, 100, 500 and 1000 cases (there will be displayed on the
X-axes of Figures 1 and 2). To measure the effectiveness of each learning method,
we recover some the usual measures: number of structural errors (missing plus
extra links), Kullback-Leibler (KL) distance w.r.t the true model and number of
links. Due to space limitations, we do not detail the error measures for each one
of the 5 evaluated BNs, we only show average values across these 5 networks.
We recognized the problems of considering the average value, but we think that
the main conclusions can be perfectly understood with this evaluation.

The number of samples T generated by the MCMC, see Section 2.3, when
learning the parent sets of the variable Xi was set to 1000 · ln(i). The first
100 · ln(i) samples were discarded (the burn-in phase). MCMC was also initial-
ized with the configuration recovered by a simple greedy search with the same
Bayesian settings, see Section 2.2 (the initialization with an empty structure
was also evaluated and the results were almost identical in all the evaluated
measures). We also generated the same number of samples with the Importance
sampling method. In both cases, the MAP model was returned as the optimal
estimated model.

5.2 Structure Prior Evaluation

In the first subsection we analyze the impact of the employment of different
structure prior distributions. We evaluate the impact of the structure prior on
both Monte Carlo approaches: MCMC (lines with triangle markers) and IS (lines
with square markers). Each one of them is run with the classic uniform prior over
the different structures (lines with light grey color) and with the Beta structure
prior (lines in black color). For the last prior, we evaluate the two proposed α
values (0.5 and 1.0) and we hardly found differences between them. Only results
for α = 0.5 are reported here. The different evaluation metrics for this four BN
learning configurations are displayed in Figure 1.
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.

N. of Errors N. of Links

KL Distance N. of different sampled models

Fig. 1. Structure Prior Evaluation: Lines with triangle markers are the MCMC
results; while square markers corresponds to the IS results. The light grey lines are the
results with U-prior while the black lines corresponds to the β-prior(α = 0.5).

As can be seen, with low sample sizes the employment of the β-prior supposes
relevant improvements in the number of structural errors and the KL distance in
both approaches MCMC and IS. When the sample size is high (1000 cases), as
expected, the impact of the prior decreases in both KL and Number of structural
errors. However, β-prior always returns BN models with a low number of links
even when there is a higher number of samples. In fact, if we looked at the extra
and missing links errors (no depicted in this paper due to space limitations), we
would see as the introduction of β-prior strongly reduces the number of extra
links. So, this prior reduces the number of false positives structural errors with
the help of its new combinatorial penalization (see Section 5.2).

When comparing MCMC and IS, we can see as IS gets better results in terms
of number of structural errors and KL distance when the sample size is low,
although the differences diminish when the number of available samples grows.
Moreover, IS with the β-prior is the only approach where the number of links of
the retrieved models constantly grows with the size of the data set and always
recover the most simple models (with a lower number of links) and with the best
prediction capacity (lower KL distance).

Other interesting evaluation is the comparison of the number of different sam-
pled models in the IS and MCMCM simulations. As can be seen in Figure 1,
IS always samples a high number of different models than MCMC, specially when



An Importance Sampling Approach to Integrate Expert Knowledge 693

N. of Structural Errors KL Distance

N. of Interactions Interaction Accuracy

Fig. 2. Expert Interaction Evaluation: Black line with the square markers cor-
responds to the baseline method (no interaction); Grey lines with triangle (K = 3),
diamonds (K = 5) and circles (K = 5) markers (lighter grey colors are also employed)
corresponds to methods which interacts with the expert

the number of data samples grows. This indicates that IS has a lower trend to
get trapped in local maxima (but deeper analysis are of course needed).

5.3 Query Evaluation

To evaluate the effectiveness of the proposed approach to integrate posterior
expert knowledge, see Section 4, we simulate the interaction with an expert by
asking to the true BN model about the presence/absence of any edge. We fix the
limit of questions L = 3 and we evaluate different confidence factorsK = 3, 5, 10.
We employed the IS learning method with the β-prior (α = 0.5). The results are
displayed in Figure 2. The black line with the square markers are the baseline
results: no interaction with the expert. The results with interaction with the
expert for the three evaluated K values are displayed by the lines with triangle,
diamonds and circles respectively (lighter grey colors are also employed).

As can be seen in Figure 2, the number of structural errors and the KL distance
is reduced by the interaction with the expert. Moreover, as higher the confidence
in the MAP model (higher K values), the most the structural errors are reduced.
However, when the data sample is high, there hardly is any improvement in the
KL distance. That means that the IS approach is recovering the most relevant
links and although the interaction could recover some lost links, those do not
significantly improve the prediction capacity of the model.
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When looking at the number of queries or interactions performed, we can see
as they are very low and the number decreases when the data sample grows. It is
very interesting to know that if we asked to the expert to give his/her subjective
belief about every possible edge (consistent with the previously given order), we
would required to submit

(
n
2

)
queries, what is equivalent to about 600 queries, in

average, for the 5 evaluated nets. In the worst case we asked around 26 queries,
a much more realistic number for human experts.

We also measured some sort of effectiveness score as the ratio between the
improvement in the number of structural errors (w.r.t to the baseline method)
and the number of queries. As expected, this accuracy measure is lower when
we require higher confidence levels (or K values) in the MAP model. Moreover,
as also expected, this accuracy improved with higher data samples.

6 Conclusions and Future Works

We have introduce a methodology to integrate expert knowledge a posteriori,
after learning a BN. We have also proposed a new Importance Sampling method
to perform MC simulations which has found to be more reliable and accurate
than classic Markov Chain approaches in this problem. The definition of non-
informative structure priors was also analyzed here and a new structure prior,
the β-prior, was introduced. We found that this prior helps to find simpler (less
number of links) and accurate models (lower KL distance).

The requirement of the total order could be overcome using any of the Monte
Carlo approaches for learning BNs [3,10] without causal order assumptions.
Thus, our methodology will have be extended to ask about the causal order of
two variables. We also plan to consider the case in which experts might submit
wrong decisions about the structure of the true model.
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Abstract. This contribution deals with conflicts of belief functions. In-
ternal conflicts of belief functions and conflicts between belief functions
are described and analyzed here. Differences between belief functions
are distinguished from conflicts between them. Three new different ap-
proaches to conflicts are presented: combinational, plausibility, and com-
parative. The presented approaches to conflicts are compared to Liu’s
interpretation of conflicts.

Belief functions, Dempster-Shafer theory, internal conflict, conflict be-
tween belief functions, combinational conflict, plausibility conflict, com-
parative conflict.

1 Introduction

When combining belief functions (BFs) by the conjunctive rules of combination,
conflicts often appear which are assigned to ∅ by non-normalized conjunctive rule
∩© or normalized by Dempster’s rule of combination⊕. Combination of conflicting
BFs and interpretation of conflicts is often questionable in real applications, thus
a series of alternative combination rules was suggested and a series of papers on
conflicting belief functions was published, e.g. [2,5,8,12].

This contribution introduces new ideas to the interpretation, definition and
measurements of conflicts of BFs. Three new approaches to interpretation and
computation of conflicts are presented here.

The first one, the combinational approach, is a modification of commonly used
interpretation of conflict of BFs. An internal conflict within individual BFs is
distinguished from a conflict between two BFs which are combined (Section 3).

The second one, the plausibility approach also distinguishes internal conflict
and conflict between BFs. This approach uses the normalized plausibility trans-
formation and is based on support / opposition of elements of Ω by the BFs
in question. Differences of BFs are distinguished from conflicts between them
in this approach; as relatively highly different BFs are not necessarily mutually
conflicting (Section 4).
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E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 696–705, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Conflicts within and between Belief Functions 697

The third approach, the comparative one, is based on a specification of bbms
of some focal elements to smaller focal elements and on measuring difference
between such more specified BFs (Section 5).

After the presentation of new ideas, the presented approaches are compared
and a series of open problems is suggested.

2 Preliminaries

Let us assume an exhaustive finite frame of discernment Ω = {ω1, ..., ωn}, whose
elements are mutually exclusive.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1], such
that

∑
A⊆Ωm(A) = 1, m(∅) = 0; the values of bba are called basic belief

masses (bbm).1 A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1],
Bel(A) =

∑
∅�=X⊆Am(X); let us further recall a plausibility function Pl(A) =∑

∅�=A∩Xm(X); bba m, belief function Bel and plausibility Pl uniquely corre-
spond each to others.

A focal element is a subsetX of the frame of discernment, such thatm(X) > 0.
If all focal elements are singletons (i.e. one-element subsets of Ω), then we speak
about a Bayesian belief function (BBF), it is a probability distribution on Ω
in fact. Let us denote Un the uniform Bayesian belief function on n-element
frame Ωn = {ω1, ..., ωn}, i.e. the uniform probability distribution on Ωn. The
belief function with the only focal element m(Ω) = 1 is called the vacuous belief
function (VBF); a belief function with the only focal element m(A) = 1 is called
categorical (or logical [1]) belief function; a belief function with two focal elements
m(A) = A and m(Ω) = 1−A is called a simple support (belief function; a belief
function which focal elements are nested is called a consonant belief function.

The normalized plausibility of Bel is the BBF (a probability distribution)
(Pl P (m))(ωi) = Pl({ωi})∑

ω∈Ω Pl({ω}) . The pignistic probability of Bel is the following

probability distribution BetP (ωi) =
∑

ωi∈X⊆Ω
m(X)
|X| .

Any BF onΩ2 = {ω1, ω2} is uniquely specified by two bbmsm({ω1}),m({ω2})
as m({ω1, ω2}) = 1− (m({ω1}) +m({ω2})). We can represent it as m = (a, b).

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑
X∩Y =AKm1(X)m2(Y ) for A �= ∅, where K = 1

1−κ , κ =
∑

X∩Y =∅m1(X)
m2(Y ), and (m1 ⊕m2)(∅) = 0, see [10]; putting K = 1 and (m1 ⊕m2)(∅) = κ
we obtain the non-normalized conjunctive rule of combination ∩©, see e. g. [11].

3 Combinational Conflicts of Belief Functions

3.1 Internal Conflict of Belief Functions

When combining two belief functions Bel1, Bel2 given by bbms m1 and m2
conflicting masses m1(X) > 0, m2(Y ) > 0 for X ∩ Y = ∅ often appear. The
1 m(∅) = 0 is often assumed in accordance with Shafer’s definition [10]. A classical

counter example is Smets’ Transferable Belief Model (TBM) which admits m(∅) ≥ 0.
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sum of all pair-wise products of such belief masses corresponds to m(∅) when
non-normalized conjunctive rule of combination is applied and m = m1 ∩©m2.
This sum is called weight of conflict between belief functions Bel1 and Bel2 in
[10], and it is commonly used when dealing with conflicting belief functions.
Unfortunately, the name and the interpretation of this notion does not correctly
correspond to reality in general. We often obtain positive sum of conflicting belief
masses even if two numerically same independent belief functions are combined,
see e.g. Example 1 [1], analogical example for n = 5 is discussed in [8]. For a
generalization to uniform BBFs on Ωn see [7], for general BFs see Example 2.

Example 1. Let us assume two BFs expressing that a six-sided die is fair. Ω6 =
{ω1, ..., ω6} = {1, 2, 3, 4, 5, 6}, mj({ωi}) = 1/6 for i = 1, ..., 6, j = 1, 2, mj(X) =
0 otherwise. Let m = m1 ∩©m2. We obtain m({ωi}) = 1/36 for i = 1, ..., 6,
m(∅) = 5/6, m(X) = 0 otherwise.

Example 2. Let us suppose for simplicity Ω2 = {ω1, ω2} now. Let mj({ω1}) =
0.5, mj({ω2}) = 0.4, mj({ω1, ω2}) = 0.1 for j = 5, 6, mj(X) = 0 otherwise. Let
m = m5 ∩©m6 now. We obtain m({ω1}) = 0.35, m({ω2}) = 0.24, m({ω1, ω2}) =
0.01, m({ω1}) = 0.4 m(∅) = 0.4, m(X) = 0 otherwise.

Almond mentions that m(∅) is hardly interpretable as conflict between BFs in
such cases [1]. Liu correctly says in [8], that m(∅) cannot be always interpreted
as a degree of conflict between belief functions. On the other hand, many of
particular couples of belief masses are really in conflict with each other. From
this we can see that the sum of all products of conflicting belief masses, what
we call total combinational conflict, somehow includes also a conflict which is
included within the individual combined belief functions. We will call this inter-
nal conflict2. It is not known whether the internal conflicts are included in total
conflict partially or entirely. On the other hand, a source of total combinational
conflict TotC arises either from internal combinational conflicts of individual
BFs or from their mutual conflicting interrelations. Thus, we can describe this
as

TotC(m1,m2) ≤ IntC(m1) + IntC(m2) + C(m1,m2).

In the special case when two identical belief functions are combined, we obtain
TotC(m,m) ≤ IntC(m) + IntC(m), as we expect no conflict between two same
pieces of evidence because they fully agree with each other thus, they are not in
any mutual conflict. We further suppose IntC(m) ≤ TotC(m,m) thus, we have

IntC(m) ≤ TotC(m,m) ≤ IntC(m) + IntC(m)

and 1
2TotC(m,m)) ≤ IntC(m) ≤ TotC(m,m).

2 We have to note, that Smets uses the name ’internal conflict’ for m(∅) within indi-
vidual non-normalized BFs [2]; nevertheless, there are also other interpretations of
m(∅) in non-normalized BFs. However, in our situation internal conflicts appear in
classic BFs each satisfying m(∅) = 0, see Examples 1, 2 and other examples in this
contribution.
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Unfortunately, we have no precise formula how to precisely compute conflict
C(m1,m2) between BFs m1 andm2. Nevertheless, we assume that it is less than
total conflict TotC(m1,m2) and the above inequality. We can summarize this as
it follows:

TotC(m1,m2)− (IntC(m1)+IntC(m2)) ≤ C(m1,m2) ≤ TotC(m1,m2).

3.2 Belief Functions with and without Internal Conflict

There are many BFs without any internal conflicts: all categorical and all simple
support BFs have no internal conflict, further all consonant BFs, finally all BFs,
whose all focal elements have non-empty intersection, have no internal conflict,
i.e., all BFs such that there exist X ⊆ Ω, P l(X) = 1.

Example 3. Let us suppose Ω6 = {ω1, ..., ω6} and the following simple inter-
nally non-conflicting BFs: m7({ω1, ω2, ω3, ω4}) = 0.4, m7({ω2, ω3, ω4}) = 0.3,
m7(Ω6) = 0.3; m8({ω2, ω3, ω5}) = 0.6, m8({ω2, ω3, ω6}) = 0.1,
m8({ω2, ω3, ω4, ω5, ω6}) = 0.2, m8(Ω6) = 0.1.

As an example of BFs with internal conflict we can refer BFs from both Examples
1, 2. Un is the BF with the greatest internal conflict on Ωn(= {ω1, ..., ωn}). For
detail and other examples see [7].

3.3 Couples of Totally Non-conflicting Belief Functions

We say that mi and mj form a pair of totally non-conflicting BFs if there is
no internal conflict within these BFs, and simultaneously there is no conflict be-
tween them. This happens whenever all focal elements of both BFs have common
non-empty intersection, i.e. whenever both BFs have non-empty intersections
I =

⋂
mi(X)>0X �= ∅, J =

⋂
mj(X)>0X �= ∅ and I ∩ J �= ∅.

As an example we can mention m7 and m8 from the Example 3 because
the following holds true: I =

⋂
m7(X)>0X = {ω2, ω3, ω4}, J =

⋂
m8(X)>0X =

{ω2, ω3} and I ∩ J = {ω2, ω3} �= ∅ and (m7 ∩©m8)(∅) = 0.

3.4 Combination of Belief Functions with the Uniform BBF Un

For mutual non-conflictness of Uniform BBF Un with any general BF (see [7]).
Note also that m⊕ Un = Pl P (m) holds true for any BF m (see [6,7]).

4 Plausibility Conflicts of Belief Functions

As in the previous section, we will further distinguish internal conflicts of in-
dividual BFs from a mutual conflict between them. Let us first discuss what
should belief functions really mean.

There is an unknown element ω0 ∈ Ω and we have only a partial uncertain
evidence about the fact which one is it. This evidence is represented by a BF
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or by its corresponding bba. If all pieces of our evidence are correct and fully
compatible with the situation, all focal elements should contain the unknown
element ω0 and there is now conflict within the corresponding BF. The more
precise our evidence is the smaller should be the focal elements. In the extreme
limit case of correct complete certain evidence there is the only focal element
{ω0}, such that m({ω0}) = 1. When obtaining new correct fully compatible
pieces of evidence represented by BFs, their focal elements should also contain
ω0 and new BFs should be both internally and mutually non-conflicting. When
combining such BFs their focal elements are decreasing keeping ω0 as their ele-
ment. Unfortunately real pieces of evidence often contain some conflicts or they
are mutually conflicting or the situation itself may be (internally) conflicting.
Hence we obtain internally and/or mutually conflicting BFs.

How is it possible that uniform BBFs m1,m2 from Example 1 (both of them
equal to uniform BBF U6) have the high internal conflict? Let us notice that
BF U6, which was used in the example for description of behaviour of a fair
die, does not express any belief about the fact which side of the die is up. It
expresses a meta-information about the die, the information which is necessary
within a decision making for redistribution of bbms of focal elements among
their singletons. It does not express anything about an uncertain case of the
die. It is rather related to the betting/pignistic level than to the credal level of
beliefs.

4.1 Internal Plausibility Conflict of Belief Functions

Element ω0 should be element of all focal elements in correct non-conflicting
cases, thus Pl({ω0}) should be equal to 1. When Pl({ω0}) < 1 there is some focal
element X which does not include ω0, thus m(X) cannot be simply transferred
to any Y ⊆ X which includes ω0. Such a BF is conflicting and it is often mutually
conflicting with other BFs. On the other hand there can be more focal elements
with plausibility 1 in less informative cases.

Let us define internal plausibility conflict of belief function Bel as

Pl-IntC(Bel) = 1−maxω∈ΩPl({ω}),
where Pl is the plausibility equivalent to Bel. This definition is in accordance
with the assumption from Section 3 that a BF is internally non-conflicting (BF
has no internal conflict) whenever there exist X ⊆ Ω, P l(X) = 1. Maximal
internal (plausibility) conflict has Un: Pl-IntC(Un) = 1 − 1

n = n−1
n as all ele-

ments ωi have the same plausibility 1
n in the case of Un and any change of belief

masses increases plausibility of some ω ∈ Ω, hence internal plausibility conflict
is decreased.

4.2 Plausibility Conflict between Belief Functions on Two-Element
Frame of Discernment Ω2

For simplicity, first let us suppose two-element frame of discernment Ω2 =
{ω1, ω2} in this subsection.
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Let us assume BBFs m1 = (0.6, 0.4), m2 = (0.8, 0.2), m3 = (0.45, 0.55) and
m4 = (0.40, 0.45). There is a relatively high difference between m1 and m2,
and (m1 ∩©m2)(∅) = 0.44, but both BBFs support ω1 thus m1 and m2 should
not be in mutual conflict. m1 and m2 are different but non-conflicting. There
is a less difference between m1 and m3, and (m1 ∩©m3)(∅) = 0.51 is higher. m1
and m3 support different ωi thus they should be in a mutual conflict. Finally,
there is less difference between m1 and m4, than between m1 and m2, and
(m1 ∩©m4)(∅) = 0.43 is also smaller. However, m1 and m4 support different ωi

thus they should be in mutual conflict, despite of mutually non-conflicting m1
and m2 which have both greater difference and greater mutual m(∅).

Similarly, all BFs which support ω1 (i.e., all bbas (a, b) such that a > b,
i.e., Pl P ((a, b))(ω1) > 1

2 > Pl P ((a, b))(ω2), i.e. (a, b) > 0′) should not be in
mutual conflict. On the other hand, there is a conflict between any two BFs which
support different ωi (i.e., (a, b), (c, d) such that a > b, c < d or a < b, c > d).

Hence, we have to distinguish conflict from difference of belief functions:
Let us define difference between two BFs Bel1, Bel2 on Ω represented by

m1,m2 asDiff(m1,m2) =
∑

X⊂Ω
1
2 |m1(X)−m2(X)|, i.e.,Diff((a, b), (c, d)) =

1
2 (|a− c|+ |b− d|).

Let us further define Pl-difference between two BFs Bel1, Bel2:
Pl-Diff(m1,m2) = Diff(Pl P (m1), P l P (m2)) which is more related to a sup-
port/opposition of elements ωi by mi and to their plausibility conflictness.

Example 4. m1 =(0.4, 0.4), m2 =(0.9, 0.1), Diff(m1,m2)=Pl-Diff(m1,m2)=
0.4.

For more detail motivation, more examples, and for definition of the plausibility
conflict on Ω2 see [7].

4.3 Plausibility Conflict between Belief Functions on General Ωn

Plausibility conflict between belief functions is based on normalized plausibility
of elements of Ω. It is computed separately for all elements of the frame of
discernment Ω. VBF is usually assumed to be neutral when belief functions
are combined. Normalized plausibility masses (see e.g. [3,6]) of all ω ∈ Ω are
Pl P (V BF )(ω) = 1

n in the case of VBF. Entire normalized plausibility of VBF
is Pl P (V BF ) = Un (which is idempotent and neutral w.r.t. combination ⊕ of
BBFs).

Let us suppose a decision with respect to a given BF Bel: Whenever normal-
ized plausibility Pl P (Bel)(ω) is greater than 1

n , ω is supported by the BF in
question. On the other hand, ω is opposed when Pl P (Bel)(ω) < 1

n . ω is fully
opposed (rejected) when Pl P (Bel)(ω) = 0 as bbms of all X (ω ∈ X) are zeros
and all positive bbms are assigned only to focal elements Y such that ω �∈ Y .

If normalized plausibility masses Pl P (Bel1)(ω), Pl P (Bel2)(ω) are both ≥ 1
n

or both ≤ 1
n we wil say that they are non-conflicting. It seems that these

normalized plausibility masses are conflicting whenever one of them is > 1
n

and the other < 1
n . Let us denote the set of all elements which have not
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non-conflicting normalized plausibility masses by ΩPlC(Bel1, Bel2) = {ω ∈
Ω | (Pl P (Bel1)(ω)− 1/n)(Pl P (Bel2)(ω)− 1/n) < 0}.

We want to define plausibility conflict between belief functions Bel1, Bel2 (rep-
resented by bbas m1 and m2) as the sum of differences of conflicting normalized
plausibility masses by the following formula

Pl-C0(Bel1, Bel2) =
∑

ω∈ΩP lC(Bel1,Bel2)

1
2
| Pl P (Bel1)(ω)− Pl P (Bel2)(ω) |

Unfortunately this expression produces/classifies conflicts even in some cases
of simple intuitively non-conflicting BFs, see Example 5. Pl-C0(Bel1, Bel2) is
usually less than m(∅) in general examples, nevertheless in the case similar to
those from Example 5 we have to use the following modified definition:

Pl-C(Bel1, Bel2) = min(Pl-C0(Bel1, Bel2), (m1 ∩©m2)(∅)).
Example 5. Let us suppose Ω6 and intuitively non-conflicting bbasm1,m2, now,
such that m1({ω1}) = 1, m2({ω1, ω2, ω3, ω4} = 1. We obtain Pl P (m1)(ω1) =
1 > 1

6 , Pl P (m1)(ωi) = 0 < 1
6 for i > 1; Pl P (m2)(ωi) = 1

4 >
1
6 for i = 1, 2, 3, 4,

Pl P (m2)(ωi) = 0 < 1
6 for i = 5, 6; normalized plausibility masses are conflicting

for ω2, ω3, ω4, thus Pl-C0(m1,m2) = 1
2 (1

4 + 1
4 + 1

4 ) = 3
8 . But this is not a conflict.

5 Comparative Conflict between Belief Functions

Thirdly, let us suggest another idea of conflictness/non-conflictness between be-
lief functions, which is motivated by interpretation of BFs and their correspond-
ing bbas. We know that our belief on a specific situation can be usually specified
by obtaining new evidence tending to decrease size of focal elements. The idea
of comparative conflictness/non-conflictness is a specification of bbms to smaller
focal elements such that they fit to focal elements of the other BF as much as
possible. The comparative conflict between BFs Bel1 and Bel2 is defined as the
least difference of these more specified bbms derived from the input m1 and m2.

Example 6. Let us start with a simple example on Ω2. Let m1 = (0.4, 0), m2 =
(0, 0.4), m3 = (0.6, 0), m4 = (0, 0.6).

All considered BFs are simple support functions thus, they have no internal
conflicts either combinational or plausibility one. On the other hand, BFs m1
and m2 are mutually conflicting in the previous sense, there are both combi-
national and plausibility conflicts between them, similarly for BFs m3 and m4.
(m1 ∩©m2)(∅) = 0.16, (m3 ∩©m4)(∅) = 0.36, Pl P (m1) = (10

16 ,
6
16 ), Pl P (m2) =

( 6
16 ,

10
16 ), Pl P (m3) = (10

14 ,
4
14 ), Pl P (m4) = ( 4

14 ,
10
14 ), and Pl-C(m1,m2) = 6

16 =
0.375, Pl-C(m3,m4) = 6

14 = 0.42857.
In the first case (of m1 and m2) we can specify part of bbms mi(Ω) to single-

tons to obtain numerically same, thus mutually non-conflicting BFs; in the sec-
ond case (of m3 and m4) none of the specifications of the entire mi(Ω) produces
non-conflicting BFs: m′

1 = (0.4, 0.4), m′
2 = (0.4, 0.4), m′

3 = (0.6, 0.4), m′
4 =
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(0.4, 0.6), and cp-C(m1,m2) = 0, cp-C(m3,m4) = 0.2. Thusm1 andm2 are com-
paratively non-conflicting, and there is a comparative conflict cp-C(m3,m4) =
0.2 between m3 and m4. The result for the later couple of BFs m3, m4 is not
qualitatively different from combinational and plausibility approaches, however
also both combinational and plausibility mutual conflicts between these BFs are
greater than those between comparatively non-conflicting m1 and m2.

Example 7. Let us assume more general example on Ω3 now. Let m5({ω1}) =
0.3, m5({ω1, ω2}) = 0.6, m5({ω1, ω2, ω3}) = 0.1, m6({ω2}) = 0.3, m6({ω3}) =
0.1, m6({ω1, ω3}) = 0.5, m6({ω2, ω3}) = 0.1. There is neither combinational
nor plausibility internal conflict in m5, there is 0.18 ≤ IntC(m6) ≤ 0.36,
Pl-IntC(m6)=0.3, (m5 ∩©m6)(∅) = 0.21, there are the following normalized plau-
sibilities Pl P (m5)=(10

18 >
1
3 ,

7
18 >

1
3 ,

1
18 <

1
3 ), Pl P (m6)=( 5

16<
1
3 ,

4
16 <

1
3 ,

7
16 >

1
3 ),

all the elements ωi supported bym5 are opposed bym6 and vice versa, thus there
is both combinational and plausibility conflict between m5 and m6.

We can specify bbms of focal element to smaller ones (uniquely to singletons
in this case) as it follows: m′

5({ω1}) = 0.5, m′
5({ω2}) = 0.4, m′

5({ω3}) = 0.1,
m′

6({ω1}) = 0.5, m′
6({ω2}) = 0.4, m′

6({ω3}) = 0.1. We have obtained the nu-
merically same BFs thus m5 and m6 are comparatively non-conflicting.

The comparative approach to conflicts classifies less conflicting BFs than the
previous two approaches do. Unfortunately, no algorithm for specification of
bbms to smaller focal elements has been yet created. Thus, this new approach
can be applied only to simple illuminative examples now. An elaboration of this
approach remains an open problem for the future.

6 Comparison of the Presented Approaches

Let us compare the presented approaches and Liu’s two-dimensional measure of
conflict cf(mi,mj) = (m⊕(∅), difBetPmj

mi )3 on the following example.

Example 8. Let us suppose Ω3 = {ω1, ω2, ω3} now.
m1({ω1}) = 0.2, m1({ω2}) = 0.1, m1({ω1, ω2}) = 0.3, m1({ω1, ω3}) = 0.1,
m2({ω1}) = 0.3, m2({ω2}) = 0.1, m2({ω1, ω2}) = 0.1, m2({ω2, ω3}) = 0.1,
m3({ω2}) = 0.1, m3({ω3}) = 0.3, m3({ω1, ω2}) = 0.1, m3({ω2, ω3}) = 0.1,
m1(Ω3) = 0.3, m2(Ω3) = 0.4, m3(Ω3) = 0.4,
Pl P (m1)(ω1) = 0.45, Pl P (m1)(ω2) = 0.35, Pl P (m1)(ω3) = 0.20,
BetP1(ω1) = 0.50, BetP1(ω2) = 0.35, BetP1(ω3) = 0.15,
Diff(m1,m2) = 0.25, Pl-Diff(m1,m2) = 0.05, Diff(BetP1, BetP2) = 0.033,
Diff(m1,m3) = 0.45, Pl-Diff(m1,m3) = 0.2, Diff(BetP1, BetP3) = 0.333,
(m1 ∩©m1)(∅) = 0.06, (m2 ∩©m2)(∅) = 0.12, (m1 ∩©m2)(∅) = 0.08,
0.03 ≤ IntC(m1) ≤ 0.06, 0.06 ≤ IntC(m2) ≤ 0.12, 0 ≤ C(m1,m2) ≤ 0.08,
TotC(m1,m2) = 0.08, cf(m1,m2) = (m⊕(∅), difBetPm2

m1
) = (0.08, 0.033),

3 This is Liu’s notation from [8], m⊕(∅) should be rather m ∩©(∅) in fact (more pre-
cisely (mi ∩©mj)(∅)); difBetP

mj
mi = maxA⊆Ω(|BetPmi(A) − BetPmj (A)|) what is

Diff(BetPmi , BetPmj ), see[7].
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Pl-IntC(m1) = 0.1, Pl-IntC(m2) = 0.2, Pl-C(m1,m2) = 0, cp-C(m1,m2) = 0,
0.03 ≤ IntC(m1) ≤ 0.06, 0.06 ≤ IntC(m3) ≤ 0.12, 0.14 ≤ C(m1,m3) ≤
0.23, TotC(m1,m3) = 0.23, cf(m1,m3) = (m⊕(∅), difBetPm3

m1
) = (0.23, 0.333),

Pl-IntC(m1)=0.1, Pl-IntC(m3)=0.2, Pl-C(m1,m3)=0.2, cp-C(m1,m3)=0.

We can notice that all of the approaches agree with the high conflictness of the
Zadeh’s example (see [7]), the common for these results (incl. Zadeh’s ex.) is that
the commonly used m(∅) = TotC is the most conflicting and that combinational
conflict between mis is not precise (as its precise definition is missing).

All of the approaches have similar results when comparing the least conflicting
case m1 and m2 (see Ex. 8). The most important difference in this case is the
fact, that there is no plausibility or comparative conflict between m1, m2.

The greatest differences among the results are in the most general case of m1
and m3. There is again no comparative conflict between the bbas (as there exist
non-conflicting common specification of both bbas), but there is the plausibility
conflict between them. If we assume that combinational conflict is somewhere
close to the middle of its interval, the highest conflict is classified by the common
m(∅) and Liu’s approaches. It reflects that there are no internal conflicts consid-
ered in these approaches. There is also none internal conflict in the comparative
approach, but this approach more reflects the individual input bbms and usually
produces the least conflict.

Both Liu’s and plausibility approaches use a probabilistic transformation for
computation of conflict, pignistic and normalized plausibility. Thus Liu’s conflict
is more related to decisional pignistic level, while the plausibility conflict is more
related to credal combinational level (especially when Dempster’s rule or the
non-normalized conjunctive rule is used), because normalized plausibility trans-
formation commutes with Dempster’s rule [3,6]. Nevertheless the main difference
between these two approaches is not in different pignistic transformations but
in the fact that Liu does not distinguish differences from conflicts. Hence any
two different BFs supporting and opposing the same element(s) of Ω are con-
flicting in Liu’s interpretation, but such BFs are never mutually conflicting in
the plausibility approach; this speaks in favour of the plausibility approach.

7 Future Research

The ideas presented in this contribution are brand new, thus they open a lot of
questions and open problems. The principal ones are the following:

– to find more precise specification of combinational conflict C(Bel1, Bel2);
– elaboration of plausibility approach to conflicts;
– to create algorithms for belief mass specification needed for comparative

conflict managing;
– to study mathematical properties of defined measures of conflicts;
– to make a detail comparison of the presented combinational, plausibility and

comparative approaches; including classic m(∅) and Liu’s approach [8];
– to analyze a relation of internal plausibility conflict and Liu’s degree of in-

consistency of possibility distribution in possibility theory [9].
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8 Conclusion

In this theoretical contribution we introduce three new approaches to conflicts of
belief functions: new approach to combinational conflicts, plausibility approach
and comparative approach. Further, internal conflict of individual belief func-
tions from their mutual conflict between them are distinguished, and important
distinctness of differences of belief functions from their mutual conflicts is intro-
duced and underlined. On the other hand, the important role ofm(∅) for conflict
measurement was strenghtened (see combinational and plausibility conflicts).

The presented ideas enable new, deeper understanding of conflicts of belief
functions. They can be applied to studies of belief combination and fusion of
beliefs. The series of open problems may be challenging for a future research.
The ideas presented in this paper are here to open new scientific discussions
about this interesting and complex topic.
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Abstract. Much information sources model imprecision by the way of
unimodal, consonant and continuous probability density functions (pdfs).
We consider here in the framework of belief functions on real numbers,
agents of evidence deduced from such pdfs. First are singletons plau-
sibilities in conjunctive and disjunctive combinations proposed to basi-
cally merge agents of evidence with consonant focal elements. Second
are partial and global conflict calculation methods provided. An appli-
cation shows the plausibility curves and conflict values obtained in case
of combination operations done on Gaussian based agents and at last,
an example of conflict management based on an RCR-S adaptive rule of
combination is given.

Keywords: Continuous belief functions, Conjunctive and disjunctive
combination, Partial and global conflict calculation.

1 Introduction

The focal elements of agents of evidence obtained from consonant pdfs can be
ordered and thus labeled by a continuous index. Under the assumption of cog-
nitive independence between agents, this is useful to simplify expressions of the
conjunctive [1] and disjunctive rule of combination [2]. As we will see, this also
helps to calculate the partial and global conflict weights when much pieces of
evidence are merged.

2 Characteristics of Focal Intervals

2.1 Focal Intervals

Let f be a continuous unimodal and consonant pdf of mode μ and support
Ω = [Ω−, Ω+] with bounds in R, the extended set of real numbers [1]. Focal
elements of the piece of evidence E based on f are nested intervals that we label
according to their fitting order by an continuous index called z. These intervals
correspond to Az = [Az−, Az+], Az− ∈ [Ω−, μ], Az+ ∈ [μ,Ω+] and are deduced
from the pdf by horizontal cuts such that f(Az−) = f(Az+) in case of ’bell
shaped’ pdfs [1].

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 706–715, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2.2 The z Index

Suppose that the focal elements bounds Az− and Az+ are defined according to
the distances to the pdf’s mode Δ−(z)z and Δ+(z)z such that:

Az = [μ−Δ−(z)z, μ+Δ+(z)z], z ∈ [0,∞] . (1)

When Δ− and Δ+ differ from 0, the focal elements bounds are linked by a bijec-
tive function called γ [1]. This happens in case of symmetrical pdfs as illustrated
in figure 1 or for some triangular distributions for instance [2].

When possible, z has to be expressed by a linear relation depending on the
r.v x ∈ Ω and the pdf’s parameters, giving thus constant values for Δ− and Δ+

in some occasions. Defining z using the pdfs parameters provides in most cases
single belief functions expressions for a same family of pdfs [2]. For Gaussian or
Laplace pdfs for instance, Δ equals to the standard deviation σ if the z index is
expressed by the absolute value of the standard score:

z =
|x− μ|
σ
, z ∈ R+ = [0,∞] . (2)

Focal intervals Az correspond in that case to:

Az = [μ− σz, μ+ σz], z ∈ [0,∞] . (3)

2.3 Focal Set Graphical Representation

The Grey area in figure 1 illustrates the domain representing the focal intervals
set Fi corresponding to a pdf Betfi with intervals ordered according to their
z label value. For a Gaussian pdf and when z is defined as in (2) like done by
Ristic et al. [3], Fi has a triangular shape.

Betfi

X0

z

�i x

Betfi ( )X ��(x)Betfi ( )

��(x)

�i-
= �i

x

�i
xZi

xZi
= [x, ]��(x)Ai(x)

Fi

Fig. 1. Focal intervals domain Fi resulting from a Gaussian pdf
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3 Singleton Plausibilities in Combination Operations of
Independent Consonant Basic Belief Densities

3.1 Introduction

We propose to construct the plausibility curve resulting of the combination of
cognitively independent consonant pieces of evidence.

Suppose two such pieces of evidence Ei and Ej related to unimodal (μi ≤ μj)
and consonant basic belief densities (bbd) mi and mj and at last a r.v x on
Ω = [−∞,∞]. Focal sets are called Fi and Fj . According to x, ordering indexes
are zxi and zxj . We note Fx

i and Fx
j the subsets of Fi and Fj that intersect with

x, Fx
i and Fx

j their complements such that:{Fi = Fx
i ∪ Fx

i , Fx
i = {A ∈ Fi, x ∈ Ω,A ∩ x �= ∅},

Fj = Fx
j ∪ Fx

j , Fx
j = {A ∈ Fj , x ∈ Ω,A ∩ x �= ∅} . (4)

3.2 Graphical Representation of Combined Focal Sets

Figure 2 illustrates a Venn diagram of the intervals of FixFj concerned in a
combination operation of Ei and Ej relatively to x. The whole domain represents
FixFj into a Cartesian coordinate system that becomes a n-dimensional space
when n agents have to be combined. Axes correspond to the focal sets Fi and
Fj , ordered in accordance to their respective z labels. Fx

i , Fx
j sets and their

complements Fx
i and Fx

j are thus separated on axes at locations zxi and zxj .
When focal domains have a triangular shape as illustrated in figure 1, linear

relations link pairs (zxi , z
x
j ), x ∈ Ω and draw the lines ①, ② and ③ shown in

figure 2. According to zxi and zxj expressions given for Gaussian pdfs by relation
(2) and the inter-modal distance |μi − μj |, these line relations correspond to:⎧⎪⎪⎨⎪⎪⎩

① : zxj = |μi−μj |+σiz
x
i

σj
, x ∈ [−∞, μi],

② : zxj = |μi−μj |−σiz
x
i

σj
, x ∈ [μi, μj ],

③ : zxj = −|μi−μj |+σiz
x
i

σj
, x ∈ [μj ,+∞] .

(5)

The line segment called ② corresponds to the inter-modal interval [μi, μj ] and
pairs (zxi , z

x
j ) satisfying the inequality (11) correspond to disjoint focal intervals

Az
i and Az

j . Relatively to the partial conflict ki,j existing between the agents Ei

and Ej , the values of the z indexes zμj

i and zμi

j are called Ki,j and Kj,i such
as: {

Ki,j = zμj

i = |μj−μi|
σi

,
Kj,i = zμi

j = |μj−μi|
σj

.
(6)

And we note Ki, j and Kj, i the bounds of the line segment ② such as:{
Ki, j = (Ki,j , 0),
Kj, i = (0,Kj,i) . (7)
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Fig. 2. Venn diagram of two Gaussian pdfs combination (μi < μj)

At last, as we can see in figure 2, each pair (zxi , z
x
j ) separates the domain FixFj

in four subsets of interest as in a Karnaugh map. These subsets correspond to
Fx

i xFx
j , Fx

i xFx
j , Fx

i xFx
j , Fx

i xFx
j .

3.3 Singleton’s Plausibility in Conjunctive and Disjunctive
Combination of Consonant Bbds

The plausibility of a singleton relatively to a piece of evidence E with focal
elements indexed by z based on a consonant and unimodal pdf is:

P l(x) = P l(zx) =
∫ z=zxmax

z=zx

m(z)dz = 1 − M(zx) (8)

with M the integral of the bbd m and zxmax the upper bound of z’s domain.
The singletons plausibility after conjunctive combination of Ei and Ej (Ei⊥Ej)

corresponds to:
P li ∩©j(x) = P li(zx

i )P lj(zx
j ) . (9)

In case of the disjunctive combination of Ei and Ej [2] and as for Smets Disjunc-
tive Rule of Combination (DRC) [5], the plausibility Pli ∪©j(x) is given by:

P li ∪©j(x) = 1 − (1 − P li(zx
i ))(1 − P lj(zx

j )),
= 1 − Mi(zx

i )Mj(zx
j ) . (10)

Relations (9) and (10) can be generalized to merge n agents [2].

4 Conflict Calculation in Case of Consonant Bbds

4.1 Partial Conflict

The domain of the partial conflict ki,j existing between two cognitively indepen-
dent pieces of evidence Ei and Ej based on unimodal and consonant pdfs can
be observed graphically. It corresponds in figure 2 to the triangle (0;Ki, j;Kj, i).
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The intervals concerned by this area are disjoint and in case of Gaussian pdfs
for instance, satisfy:

0 ≤ zx
j ≤ |μi − μj | − σiz

x
i

σj
. (11)

Calculation of ki,j following this is expressed here according to the z labels and
the inter-modal distance.

Consider modes μi < μj , bounded or infinite supports Ωi = [Ω−
i , Ω

+
i ] and

Ωj = [Ω−
j , Ω

+
j ], labels zi ∈ [0, zmaxi], zj ∈ [0, zmaxj ] satisfying (1).

If Ωi ∩Ωj �= ∅, the partial conflict ki,j differs from 1 and corresponds to:

ki,j = mi ∩©j(∅) =
∫ zi=zMaxi

zi=0

∫ zj=zMaxj

zj=0

mi(zi)mj(zj)dzjdzi (12)

where: ⎧⎪⎨⎪⎩
zMaxi = min( |μi−μj |

Δ+
i

, zmaxi),

zMaxj = min( |μi−μj |−Δ+
i zi

Δ−
j

, zmaxj ) .
(13)

Partial conflict kj,i = ki,j can also be calculated from the variable zj.
Note that in case of pdfs with infinite support, relations (13) reduce to:⎧⎪⎨⎪⎩

zMaxi = |μi−μj |
Δ+

i

,

zMaxj = |μi−μj |−Δ
+
i zi

Δ−
j

.
(14)

For symmetrical pdfs as Gaussian or Laplace ones, relations (13) become:{
zMaxi = |μi−μj |

σi
,

zMaxj = |μi−μj |−σizi

σj
.

(15)

Relation (12) can be reduced to a single integral by using the bbd’s cumulative
expression M (or equivalently 1− Pl) [2]. The weight of conflict becomes thus:

ki,j = mi ∩©j(∅) =
∫ zi=zMaxi

zi=0

mi(zi)Mj(zMaxj )dzi . (16)

Since bbds resulting from pdfs are normalized, it is possible to calculate the
partial conflict from intersecting intervals instead of those that do not. When
μi ≤ μj , ki,j corresponds to:

ki,j = 1 − ∫ zi=zmaxi
zi=0

∫ zj=zMaxj
zj=zMinj

mi(zi)mj(zj)dzjdzi

= 1 − ∫ zi=zmaxi
zi=0

mi(zi)(P lj(zMinj ) − P lj(zMaxj ))dzi

(17)

with: ⎧⎪⎨⎪⎩
zMinj = max(0,

|μi−μj |−Δ+
i zi

Δ−
j

),

zMaxj = max(zmaxj ,
|μi−μj |−Δ+

i
zi

Δ−
j

) .
(18)

Relations (18) are justified for zMinj by the fact that |μi−μj |−Δ+
i zi

Δ−
j

< 0 when

Azi+ > μj and means in that case, that all the focal elements of Ej have to be
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Fig. 3. Conflicting domains F and G included in the Fx
i xFx

j and Fx
i xFx

j sets

considered (zMinj = 0). zMaxj ’s relation takes into account the case of a bounded
support pdf for Ej leading to a total conflicting situation when Azi

i ∩ Ωj = ∅,
corresponding thus to zMinj = zMaxj .

Relations (17) and (18) can be simplified in case of infinite supports and
symmetrical pdfs.

4.2 Conflict Abacus for Least Committed Bbds Based on Gaussian
Pdfs

Figure 4 presents an abacus of the partial conflict for bbds deduced from two
Gaussian pdfs (N1(x;μ1, σ

2
1), N2(x;μ2, σ

2
2)). Parameters Ki, j and Kj, i are de-

fined using relations (6) and correspond to the bounds of the line segment ②

showed in figure 2.
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Fig. 4. Conflict’s map in case of two Gaussian based agents of evidence combination

4.3 Conflict’s Part in Disjunctive Combination

The disjunctive combination of two agents includes the XOR combination of sets
Fx

i and Fx
j . This may take into account non convex focal intervals located in

the partial conflict’s domain as we can see in figures 2 and 3. Singletons x con-

cerned take values in [μi−Δ−
i

Δ+
i

|μi−μj|, μj+
Δ+

j

Δ−
j

|μi−μj|] when μi ≤ μj and figure 3
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illustrates this for x ∈ [μi, μj ] with the grey areas F and G. In case of infinite
support pdfs, F and G are defined as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F (x) =
∫ zi=Ki,j

zi=zx
i

Mi(zi)mj(
|μi−μj |−Δ

+
i zi

Δ−
j

)dzi if 0 ≤ zx
i ≤ Ki,j

= 0 otherwise,

G(x) =
∫ zj=Kj,i

zj=zx
j

Mj(zj)mi(
|μi−μj |−Δ−

j zj

Δ+
i

)dzj if 0 ≤ zx
j ≤ Kj,i

= 0 otherwise .

(19)

Figure 5 shows the degrees of conflict F and G taken into account in disjunctive
combination of two bbds based on Gaussian pdfs. The maximum conflicting
situations correspond as an evidence to singletons μi and μj and thus respectively
to index pairs (zi, zj) equal to (0,Kj,i) and (Ki,j ,0).

4.4 Global Conflict

When n pieces of evidence have to be merged, the global conflict do not cor-
respond to the sum of the partial conflicts because the domains of intervals on
which they are based intersect. Consequently, the global conflict K can never be
lower than the most important partial conflict ki,j value existing between the n
pieces of evidence.

Depending on the pdfs characteristics, the hyper-volume’s shape of conflicting
elements (z1, . . . , zn) is complex. It is thus easier to calculate the global conflict
from intervals combinations providing an non empty intersection as done in
relation (17). When all supports of unimodal and consonant pdfs related to n
agents of evidence intersect, and if we consider μi ≤ μj , ∀i, j ∈ {1, . . . , n}, i ≤ j
and to simplify, integrals infinite upper bounds assuming that mi(zi) = 0 if
zi > zmaxi, the global conflict K existing between these agents corresponds thus
to:

K = 1 − ∫ z1=∞
z1=0

∫ z2=∞
z2=zMin2

. . .
∫ zn=∞

zn=zMinn
m1(z1)m2(z2) . . . mn(zn)dzn . . . dz2dz1 (20)

with:

zMinj = max(0,
|μj − μi| − Δ+

i zi

Δ−
j

∀i ∈ {1, . . . , j − 1}) ∀j ∈ {2, . . . , n} . (21)
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Relatively to the bounds of the considered intervals, relation (20) is equivalent
to:

A
zMinj

−
j ≤ (min(Az1+

1 , . . . , Azi+
i ) ∀i ∈ {1, . . . , j − 1}) ∀j ∈ {2, . . . , n} . (22)

5 Applications

5.1 Conjunctive and Disjunction Combinations of Gaussian Based
Agents of Evidence

Under the assumption of cognitive independence, we consider three agents of evi-
dence E1, E2 and E3 based on Gaussian pdfsN1(x;μ1 = 8, σ2

1 = 4),N2(x;μ2, σ
2
2 =

0.5) andN3(x;μ3, σ
2
3 = 1). μ3 and μ2 are supposed to decrease until to reach μ1’s

value. Partial and global conflicts calculations are given in table 1 when figure 6
illustrates the plausibility curves resulting of the conjunctive and disjunctive
combination of these three agents of evidence.

As suggested by the plausibility curves of the conjunctive combination in
figure 6 and the corresponding values of K, there is no linear relation between
the maximum of the plausibility of this combination and the conflict. Exam-
ples illustrated in figures 6(c), 6(d) and 6(e) show also the sensitivity of the
conjunctive combination to the agreement of precise sources of information.

Table 1. Partial and global conflicts amounts

μ1 μ2 μ3 k1,2 k1,3 k2,3 K

a) 8 10.5 14.5 0.092 0.867 0.929 0.976
b) 8 10.5 12.5 0.092 0.451 0.195 0.522
c) 8 10.5 10.5 0.092 0.050 0 0.109
d) 8 10.5 8.5 0.092 0.000 0.195 0.257
e) 8 10.5 8 0.092 0 0.415 0.454
f) 8 8 8 0 0 0 0

5.2 Conflict Management by RCR-S Adaptive Combination

Many authors propose adaptive combination rules weighting conjunctive and
disjunctive rules of combination. Florea et al. [6] give a general formulation
of most of them and propose robust combination rules referred as RCR. To
illustrate our work, we apply our relations to a RCR-S combination rule defined
as:

P lRCR−S1...n(x) = K
1−K+K2 P l1 ∪©... ∪©n(x) + 1−K

1−K+K2 P l1 ∩©... ∩©n(x) . (23)

Figure 7 illustrates from left to right, the RCR-S plausibility curves obtained for
the examples shown in respectively figures 6(b) and 6(c). We observe that the
trend in conjunctive combination is preserved even if K > 0.5. When applied in
a very high conflicting situation as illustrated in figure 6(a) (K = 0.976), the
RCR-S combination operation is equivalent to the disjunctive one as expected.
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(b) K = 0.522
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(c) K = 0.109
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(d) K = 0.257

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X

pl1

pl2

pl3

pl_conj

pl_disj

(e) K = 0.454
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Fig. 6. Basic combinations of 3 Gaussian based agents of evidence (plausibility curves)
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Fig. 7. Plausibilities of Conjunctive, disjunctive and RCR-S combinations



Consonant Continuous Belief Functions Conflicts Calculation 715

6 Conclusions

Much existing adaptive combination rules can be applied on the plausibilities
of conjunctive and disjunctive combinations presented here, mixed according to
the global conflict value. But such a conflict’s management is inefficient when
one source of information is in total conflict with the other ones. Coherent sets
of information sources could then be defined using partial conflicts values to
perform more accurate combinations.
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Abstract. Credal sets are closed convex sets of probability mass func-
tions. The lower probabilities specified by a credal set for each element
of the power set can be used as constraints defining a second credal
set. This simple procedure produces an outer approximation, with a
bounded number of extreme points, for general credal sets. The approx-
imation is optimal in the sense that no other lower probabilities can
specify smaller supersets of the original credal set. Notably, in order to
be computed, the approximation does not need the extreme points of the
credal set, but only its lower probabilities. This makes the approxima-
tion particularly suited for credal networks, which are a generalization of
Bayesian networks based on credal sets. Although most of the algorithms
for credal networks updating only return lower posterior probabilities,
the suggested approximation can be used to evaluate (as an outer ap-
proximation of) the posterior credal set. This makes it possible to adopt
more sophisticated decision making criteria, without having to replace
existing algorithms. The quality of the approximation is investigated by
numerical tests.

Keywords: Imprecise probability, lower probabilities, credal sets, credal
networks, interval dominance, maximality.

1 Introduction

Consider the problem of modelling a condition of uncertainty about the state
of a categorical variable. In the Bayesian framework, this problem is faced by
assessing the probability of each possible outcome, thus specifying a (single)
probability mass function. Yet, there are situations where the assessment of
a precise probabilistic value for each outcome can be difficult. In such cases,
multiple assessments (e.g., through intervals) can be considered, leading to the
specification of sets of, instead of single, probability mass functions. These sets,
which are required to be convex by compelling rationality criteria related to
the behavioural interpretation of probability, are called credal sets (CS, [1]) and
represent a very general class of uncertainty models [2].
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A (partial) characterization of a CS can be obtained by considering its lower
probabilities, i.e., the infima over all the probability mass functions in the CS,
of the probabilities assigned to the elements of the power set.1 These bounds
correspond to a number of constraints satisfied by the original CS. Yet, this is
only a partial characterization, as the set of probability mass functions consistent
with these constraints is in general a proper superset of the original CS.

This simple procedure is intended in this paper as an outer approximation
for CSs. The approximation is proved to be optimal, in the sense that no other
outer approximation based on lower probabilities can specify more informative
CSs. Furthermore, the number of extreme points2 of the approximating CS is
bounded by the factorial of the number of possible values of the variable.

Notably, in order to achieve this approximation, only the lower probabilities
of the CS are needed, while an explicit enumeration of its extreme points is not
necessary. This makes the approximation particularly suited for credal networks
[3], which are a generalization of Bayesian networks based on CSs. In fact, most
of the algorithms for credal networks updating only return the lower posterior
probabilities, and not the posterior CS. We show that the outer approximation
of this posterior CS, as returned by the transformation we consider, can be
computed by means of these standard algorithms. This makes it possible to adopt
more refined criteria for making decisions on a credal network, without the need
to replace existing algorithms. Although the outer approximation can eventually
lead to over-cautious decisions, we show by extensive numerical simulations that
this happens only in a minority of cases.

The paper is organized as follows. First, we review some background infor-
mation about CSs (Section 2.1), lower probabilities (Section 2.2), and credal
networks (Section 2.3). Then, in Section 3, we provide a characterization of the
class of CSs associated to lower probabilities and we detail the transformation
to obtain an outer approximation of a CS by means of its lower probabilities.
Also some theoretical results characterizing the proposed technique are reported.
The transformation is applied to credal networks in Section 4. Numerical tests
to investigate the quality of the approximation are in Section 5. Conclusions and
future outlooks are finally in Section 6, while the proofs of the theorems can be
found in the Appendix.

2 Background

2.1 Credal Sets

LetX denote a generic variable, taking values in a finite set X := {x(1), . . . , x(n)}.
A probability mass function over X , which is a nonnegative real map over X
normalized to one, will be denoted by P (X). A credal set (CS) over X , which is
a convex set of probability mass functions over X , will be be denoted by K(X).

1 The power set of a variable is made by all the subsets of its set of possible values.
2 A point in a convex set is extreme if it cannot be obtained as a convex combination

of other points in this set.
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The extreme points of K(X) (see Footnote 2) are denoted as ext[K(X)]. Here
we only consider CSs with a finite number of extreme points, i.e., such that
|ext[K(X)]| < +∞.3 Geometrically, a CS is therefore a polytope in the proba-
bility simplex, and can be equivalently specified through an explicit enumeration
of its extreme points (V-representation) and a finite set of linear constraints (H-
representation). Unlike the V-representation, which is clearly uniquely defined,
different H-representations can specify the same CS. The notation K(X) is used
for the vacuous CS, i.e., the (convex) set of all the probability mass functions
over X . It is easy to note that |ext[K(X)]| = |X |.

2.2 Lower Probabilities

A conjugate pair of lower/upper probability operators [1] is defined as a pair
(P , P ) of nonnegative real maps over the power set 2X , such that: (i) P (∅) = 0;
(ii) the operators are respectively super- and sub-additive, i.e.,

P (A ∪B) ≥ P (A) + P (B)

P (A ∪B) ≤ P (A) + P (B),

for each A,B ∈ 2X ; (iii) the following conjugacy relation holds for each A ∈ 2X

P (A) = 1− P (X \A). (1)

According to (1), the operator P is completely determined by its conjugate P
(and vice versa). In this paper, we only consider lower probability operators.

2.3 Credal Networks

Consider a collection of categorical variables X1, . . . , Xv.4 Let these variables
be in one-to-one correspondence with the nodes of a directed acyclic graph,
and assume that this graph depicts conditional independence relations among
the variables according to the Markov condition. In the Bayesian framework,
this implies the following factorization for the joint probability P (x1, . . . , xv) =∏v

i=1 P (xi|pa(Xi)), where Pa(Xi) is the joint variable made of the parents of Xi

according to the graph. This implicitly defines a Bayesian network over X .
In order to define a credal network [3] over the same variables and the same

graph, we simply leave each conditional probability mass function P (Xi|pa(Xi))
free to vary in a conditional CS K(Xi|pa(Xi)). This defines a set of joint prob-
ability mass functions, whose convexification is a joint CS K(X1, . . . , Xv), to
be called the strong extension of the credal network. Each extreme point of the
strong extension factorizes as the joint probability mass function of a Bayesian
network, and its conditional probability mass functions are extreme points of
the conditional CSs K(Xi|pa(Xi)).
3 The notation |S| is used for the cardinality of the set S.
4 The background information in this section is particularly brief for sake of space.

More insights on credal networks can be found in [3] or [4].
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A typical inference problem to be addressed in a credal network is updating,
i.e., given some evidence xE about a set of variables XE , evaluate the lower
probability P (x|xE) (with respect to the strong extension) for each possible value
x ∈ X of a variable of interest X . Despite its hardness [5], various algorithms
for this particular problem have been developed (see [6] for a survey and [7, 8]
for recent advances).

3 Credal Sets Associated to Lower Probabilities

Given a lower probability operator P , let us consider the CS of its consistent
probability mass functions, i.e.,

KP (X) :=

{
P (X) ∈ K(X)

∣∣∣∣∣∑
x∈A

P (x) ≥ P (A), ∀A ∈ 2X
}
. (2)

The following result (conjectured by Weichselberger and proved by Wallner in
[9]) provides a characterization of the the maximum number of extreme points
of the CS in (2):

|ext[KP (X)]| ≤ |X |!, (3)

this being true for each lower probability operator P defined as in Section 2.2.
Note that, in the case of belief functions, stronger results on the form of the
extreme points can be proven [10].

Example 1. Given a ternary variable X, consider the following CS

K(X) = CH

⎧⎨⎩
⎡⎣ .90
.05
.05

⎤⎦ ,
⎡⎣ .10
.40
.50

⎤⎦ ,
⎡⎣ .20
.20
.60

⎤⎦ ,
⎡⎣ .20
.70
.10

⎤⎦ ,
⎡⎣ .80
.05
.15

⎤⎦ ,
⎡⎣ .45
.25
.30

⎤⎦ ,
⎡⎣ .05
.80
.15

⎤⎦⎫⎬⎭ ,
where CH denotes the convex hull operator, while probability mass functions are
denoted as vertical arrays. Standard techniques (e.g., [11]) can be used to verify
that none of these seven probability mass functions is a convex combination of
the remaining six, and hence |ext[K(X)]| = 7.

Example 1 violates (3). This simply proves that not any CS can be obtained
from a lower probability operator as in (2). The class of CSs associated with
lower probability operators should be therefore regarded as a special class of
CSs.5 The idea of this paper is that this class is sufficiently large to provide
a reasonable approximation of general CSs (at least from the point of view of
decision making based on them, see Section 5).

In fact, the lower probabilities of a CS define a lower probability operator,
which can be employed indeed to define a (new) CS. The whole procedure is
formalized as follows.
5 The only exception is the case of CSs over binary variables. If general CSs can have

an arbitrary number of extreme points, a CS over a binary variable has at most two
extreme points. In fact, for binary variables, any CS can be associated with a lower
probability operator.
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Transformation 1. Given a CS K(X), consider its extreme points ext[K(X)]
(i.e., its unique, V-representation). Then, for each A ∈ 2X , compute the lower
probability:6

PK(A) := min
P (X)∈ext[K(X)]

∑
x∈A

P (x). (4)

Finally, consider the CS K̃(X) associated as in (2) with the lower probability
operator in (4).7

It is straightforward to verify that (4) specifies a lower probability operator as in
Section 2.2. Thus, given a generic non-empty CSK(X), Transformation 1 always
returns a non-empty CS K̃(X). The following is an example of the application
of this transformation.

Example 2. The application of Transformation 1 to the CS K(X) in Example 1
returns a CS K̃(X) whose H-representation, according to (2), is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P ({x(1)}) ≥ .05
P ({x(2)}) ≥ .05
P ({x(3)}) ≥ .05
P ({x(1)} ∪ {x(2)}) ≥ .40
P ({x(1)} ∪ {x(3)}) ≥ .20
P ({x(2)} ∪ {x(3)}) ≥ .10.

from which (e.g., see [11]) the following V-representation follows:

K̃(X) = CH

⎧⎨⎩
⎡⎣ .05
.35
.60

⎤⎦ ,
⎡⎣ .05
.80
.15

⎤⎦ ,
⎡⎣ .15
.80
.05

⎤⎦ ,
⎡⎣ .35
.05
.60

⎤⎦ ,
⎡⎣ .90
.05
.05

⎤⎦⎫⎬⎭ .
Thus, as expected, (3) is now satisfied. Fig. 1 depicts the polytopes associated
with K(X) and K̃(X) on the same probability simplex.

A characterization of this transformation is provided by the following result.

Theorem 1. Consider a CS K(X). Let PK denote the corresponding lower
probability operator as in (4), and K̃(X) the output of Transformation 1. Then:

(i) K(X) ⊆ K̃(X);
(ii) K(X) = K̃(X) if and only if a lower probability operator P ′ such that
KP ′(X) = K(X) exists;

(iii) A lower probability operator P ′ �= PK such that K(X) ⊆ KP ′(X) ⊆ K̃(X)
cannot exist.

It is worth noting that, for its application, Transformation 1 does not need the
extreme points of the CS, but only its lower probabilities. This feature suggests
a possible application to credal networks, which is detailed in the next section.
6 The minimum in (4) is the same we obtain by minimizing over the whole CS [12].
7 We prefer to avoid the somehow heavy notation KP K

(X).
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Fig. 1. The CS K(X) as in Example 1 (dark gray), and the output K̃(X) of Transfor-
mation 1 as in Example 2 (medium gray) on the same simplex (light gray)

4 Computing Posterior Credal Sets in a Credal Network

As noted in Section 2.3, a typical inference task to be discussed on a credal
network is updating knowledge about a variable of interest, after the observation
of some evidence xE about XE . This is generally intended as the computation of
the posterior probability P (x|xE) (with respect to the strong extension) for each
x ∈ X , and this is what most of the updating algorithms for credal networks do.
Yet, in the imprecise-probabilistic framework, the proper model of the posterior
knowledge about X should be better identified with the posterior CS K(X |xE).
In order to estimate this CS, Transformation 1 can be used to obtain an outer
approximation (thus, in a sense, an over-cautious model) of K̃(X |xE).

To this aim, the lower probabilities P (A|xE) for each A ∈ 2X are needed,
while standard updating algorithms only return the lower probabilities of the
singletons. To overcome this limitation, we introduce the notion of coarsening.8

Given a variable X and an element of its power set A ∈ 2X , the coarsening of
X based on A, is a variable XA such that XA := {A} ∪ X \ A. In other words,
the coarsening of a variable shrinks the set of possible values by clustering all
the elements of A into a single value (denoted as {A}). The coarsening over
A of a probability mass function P (X) is indeed defined as a probability mass
function PA(XA) such that PA({A}) :=

∑
x∈A P (x) and PA(x) := P (x) for each

x ∈ X \A. Finally, the coarsening over A of a CSK(X) is a CSKA(XA) obtained
as the convex hull of the coarsening of the extreme points of K(X), i.e,

KA(XA) := CH{PA(XA)}P (X)∈ext[K(X)].

The following result holds.

8 This is based on a development of the ideas introduced in [13, Transformation 2].
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Theorem 2. Consider a credal network over the variables (X,X1, . . . , Xv) and
a subset A ∈ 2X , where X corresponds to a node with no children. Obtain a
second credal network over the variables (XA, X1, . . . , Xv) with same graph and
same conditional CSs, except those associated with XA, which are the coarsening
of those originally associated to X, i.e., K(XA|pa(XA)) := KA(XA|pa(X)).
Then:

P (A|xE) = PA({A}|xE), (5)

where P and PA denote inferences on the first and on the second network.

Note that, in the statement of Theorem 2, the variable of interest is assumed
to correspond to a node without children. If X has a children, say Y , the only
problem is how to define the conditional CSK(Y |{A}) in terms of {K(Y |x)}x∈A.
The problem can be easily solved if X corresponds to a node without parents
(see the extension of Theorem 2 in the Appendix), while in more general cases,
further inferences on the network should be computed.

According to Theorem 2, we can therefore regard the lower probabilities for
non-singletons in a credal network as lower probabilities of singletons in a “coars-
ened” network. Thus, K̃(X |xE) can be obtained through standard updating
algorithms, by simply iterating the computation in (5) for each A ∈ 2X .

This result is important in order to make decisions based on the posterior
state of X after the observation of xE . In fact, as only lower posterior probabil-
ities of the singletons are typically available, decision are based on the interval
dominance criterion, i.e., we reject the states of X whose upper probability is
smaller than the lower probability of some other state. The set of unrejected
states is therefore:

X ID
P :=

{
x ∈ X | �x′ ∈ X s.t. P (x′) > P (x)

}
,

and it is regarded as the set of optimal states according to this criterion.9

Other, more informative, decision criteria (see [14]) cannot be adopted unless
the posterior CS is available. As an example, if decisions are based on the max-
imality criterion, a state is rejected if, for each point (or equivalently extreme
point) of the CS, there is another state with higher probability, i.e.,

XMAX
K := {x ∈ X | �x′ ∈ X s.t. P (x′) > P (x), ∀P (X) ∈ K(X)} . (6)

This clearly requires that the (extreme) points of the posterior CS are available.
Yet, by exploiting the result in Theorem 2, we can use Transformation 1 to
compute the outer approximation K̃(X |xE) of K(X |xE), and make decisions
on the basis of the maximality criterion (or any other criterion) with the CS
K̃(X |xE). As the CS we work with is an outer approximation of the true CS,
this can eventually lead to over-cautious decisions, i.e., we can include in the
set of optimal decisions some states which in fact are not. Nevertheless, the
numerical simulations in the next section show that this tends to happen only
in a minority of cases.
9 We can similarly proceed if a linear utility function has been defined.
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5 Numerical Tests

Different techniques can be adopted to evaluate the quality of the outer approxi-
mation associated with Transformation 1. As an example, a geometrical approach
would consist in comparing the area of the polytopes associated with the two
CSs. Yet, as CSs model uncertain knowledge to be used for decision-making, it
seems more reasonable to compare decisions based on the two CSs.

In order to do that, we consider randomly generated CSs over variables with
an increasing number of possible values and extreme points, and we compare
the number of optimal states according to maximality in the original CS and
in its outer approximation. As an obvious consequence of (i) in Theorem 1 and
(6), we have that XMAX

K ⊆ XMAX
K̃

. Thus, the difference between the two sets
can be simply characterized by the difference between the cardinality of the
corresponding sets of optimal states. This is shown in the following table.

Table 1. Numerical evaluation of the quality of the approximation associated with
Transformation 1. The third column reports the average of the difference between the
number of states recognized as optimal by using the outer approximation and those
associated with the original CS. For each row, 10000 randomly generated CSs over a
variable with |X | states and |ext[K(X)]| extreme points have been generated.

|X | |ext[K(X)]| |XMAX
K̃

| − |XMAX
K |

3 3 0.235
4 4 0.317
5 5 0.353
6 6 0.359
7 7 0.255

As a comment, we note that, on average, the approximation introduces a non-
optimal state once every three or four CSs. These values might be regarded as
a reasonable approximation, especially for variables with many states.

6 Conclusions

An outer approximation for CSs based on lower probabilities, together with some
theoretical and numerical characterizations, has been presented. The approxima-
tion is particularly suited for applications to decision making on credal networks,
and makes it possible to adopt more sophisticated decision criteria, without the
need of newer inference algorithms. As a future work, we want to investigate
possible analytical characterizations of the quality of the approximation, and
identify an inner approximation with similar features.
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Appendix

Proof (Theorem 1). As an obvious consequence of (4), for each P (X) ∈ K(X),∑
x∈A

P (x) ≥ PK(A).

Thus, according to (2), we have that P (X) ∈ K̃(X), and hence (i). Now we
prove (ii). The if implication is trivial, as we simply have P ′ = PK . To prove
the only if implication, note that the existence of P ′ implies that PK = P ′,
and hence K̃(X) = KP ′(X) = K(X). In order to prove (iii), let us follow an ad
absurdum scheme. Accordingly, let P ′ �= PK be the lower probability operator
such that K(X) ⊆ KP ′(X) ⊆ K̃(X). Thus, for each A ∈ 2X :

P ′(A) = min
P ′(X)∈KP ′(X)

∑
x∈A

P ′(X) ≤ min
P (X)∈K̃(X)

∑
x∈A

P (X) = min
P (X)∈K(X)

∑
x∈A

P (X),

where the inequality holds because of the set inclusion and the last equality
is because of the definition of Transformation 1. But, as KP (X) ⊇ K(X), the
inequality should be an equality, this contradicting the assumption P ′ �= PK .

 !
Proof (Theorem 2). Let us first assume A := {x(1)} ∪ {x(2)} and the network
Bayesian. Consider the joint states (x(1), x1, . . . , xv) and (x(2), x1, . . . , xv) in the
original network, and the joint state ({A}, x1, . . . , xv) in the “coarsened” net-
work. By exploiting the factorization described in Section 2.3, we have:

P ({x(1)} ∪ {x(2)}, x1, . . .) = P (x(1), x1, . . .) + P (x(2), x1, . . .) = PA({A}, x1, . . .),

from which the thesis follows by simple marginalization and application of Bayes’
rule. The same result holds for credal networks, because of the notion of strong
extension and by simply observing that coarsening for CSs consist in the Bayesian
coarsening of each extreme point.

Extension (of Theorem 2) to the case where X correspond to a parentless node.
Let Y be a children of X , and set A = {x(1)} ∪ {x(2)}. In the Bayesian case:

P (y|{x(1)} ∪ {x(2)}) =
P (y, {x(1)} ∪ {x(2)})
P ({x(1)} ∪ {x(2)}) =

P (y|x(1))P (x(1)) + P (y|x(2))P (x(2))
P (x(1)) + P (x(2))

.

Thus, in the credal case:

K(Y |x(1)∪x(2))=CH
{

Pi(Y |x(1))Pk(x(1)) + Pj(Y |x(2))Pk(x(2))
Pk(x(1)) + Pk(x(2))

}
Pi(Y |x(1)) ∈ K(Y |x(1))
Pj (Y |x(2)) ∈ K(Y |x(2))
Pk(X) ∈ K(X)

.

We similarly proceed if A has cardinality greater than two.
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Abstract. In this paper, we deal with the problem of rule discovery
process based on rough sets from partially uncertain data. The uncer-
tainty exists only in decision attribute values and is handled by the
Transferable Belief Model (TBM), one interpretation of the belief
function theory. To solve this problem, we propose in this uncertain en-
vironment, a new method based on a soft hybrid induction system for
discovering classification rules called GDT-RS which is a hybridization of
the Generalization Distribution Table and the Rough Set
methodology.
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1 Introduction

The Knowledge Discovery from Databases (KDD) is usually a multi-phase pro-
cess consisting of numerous steps, including attribute selection, discretization of
real-valued attributes, and rule induction. Rough set theory constitutes a sound
basis for KDD. It offers useful tools for discovering patterns hidden in data
[10,12]. It can be used in different phases of the knowledge discovery process,
like feature selection, data reduction, decision rule generation and pattern ex-
traction. Techniques based on standard rough sets do not perform their tasks in
an environment characterized by uncertain or incomplete data. Many researchers
have adapted rough sets to this kind of environment [8,9]. These extensions deal
with incomplete decision tables which may be characterized by missing condition
attribute values and not with partially uncertain decision attribute. This kind
of uncertainty exists in many real-world applications such as marketing, finance,
management and medicine. For the latter, the diseases (classes) of some patients
may be totally or partially uncertain. This kind of uncertainty can be repre-
sented by belief functions as in the Transferable Belief Model, one interpretation
of the belief function theory [14]. In fact, this theory is considered as a useful
tool for representing and managing totally or partially uncertain knowledge be-
cause of its relative flexibility [11]. The belief function theory is widely applied
in machine learning and also in real life problems related to decision making and
classification.
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In this paper, we deal with the problem of rule discovery process based on
rough sets from partially uncertain data. The uncertainty exists only in decision
attribute values and is represented by belief functions. To solve this problem,
we propose under the belief function framework a new approach based on a soft
hybrid induction system called GDT-RS. The GDT-RS system, presented origi-
nally in [4,19], is a combination of Generalization Distribution Table [20] and
the Rough Setmethodology [10]. It should be noted that our approach is comple-
mentary to the previous study of the relationship between rough sets and belief
functions by Busse and Skowron [13]. Busse and Skowron’s work can be used to
enhance practical application of the proposed approach. The standard version of
GDT-RS system deals with certain decision tables (known condition and deci-
sion attribute values) or incomplete decision tables (missing condition attribute
values and known decision attribute). The advantage of our new approach named
belief GDT-RS is that it can generate in an automatic way from decision table
characterized by uncertain decision attribute a set of rules with the minimal
description length, having large strength and covering all instances. There are
some classification techniques such as Belief Decision Tree (BDT) [3,5,18] that
can generate classification decision rules from this kind of databases. However
to perform this task well, we need at first to build the decision tree and then
prune it [16].

This paper is organized as follows: Section 2 provides an overview of the
Generalization Distribution Table and Rough Set methodology (GDT-RS).
Section 3 introduces the belief function theory as understood in the TBM. In
Section 4, we propose a belief GDT-RS approach for discovering classification
rules from partially uncertain data under the belief function framework. Finally,
in Section 5, we carry experiments on real databases, based on two evaluation
criteria: accuracy and time complexity. To evaluate our belief GDT-RS, we com-
pare the results with those obtained from BDT after pruning.

2 Generalization Distribution Table and Rough Set
System (GDT-RS)

GDT-RS is a soft hybrid induction system for discovering classification rules
from databases with noisy data [4,19]. The system is based on a hybridization
of the Generalization Distribution Table (GDT) and the Rough Set method-
ology (RS). The GDT-RS system can generate a set of rules with the minimal
description length, having large strength and covering all instances.

2.1 Generalization Distribution Table (GDT)

Any GDT [20] consists of three components: possible instances, possible gen-
eralizations of instances, and probabilistic relationships between possible in-
stances and possible generalizations. Possible instances, represented at the top
row of GDT , are defined by all possible combinations of attribute values from a
database. Possible generalizations of instances, represented by the left column of
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a GDT , are all possible cases of generalization for all possible instances. A wild
card ‘*’ denotes the generalization for instances. The probabilistic relationships
between possible instances and possible generalizations, represented by entries
Gij of a given GDT . The prior distribution is assumed to be uniform if back-
ground knowledge is not available. Thus, it is defined by:

Gij = p(PIj |PGi) =

{ 1
NP Gi

if PGi is a generalization of PIj

0 otherwise.
(1)

where PIj is the j-th possible instance, PGi is the i-th possible generalization,
and NPGi is the number of the possible instances satisfying the i-th possible
generalization,

NPGi =
∏

k∈{l|PGi[l]=∗}
nk (2)

where PGi[l] is the value of the l-th attribute in the possible generalization PGi,
and nk is the number of values of the k-th attribute.

2.2 Rough Sets (RS)

Let us recall some basic notions regarding rough sets and rule discovery from
databases represented by decision tables [10]. A decision table (DT) is defined as
A= (U, C, {d}), where U = {o1, o2, .....on} is a nonempty finite set of n objects
called the universe, C = {c1, c2, .....ck} is a finite set of k condition attributes
and d /∈ C is a distinguished attribute called decision. The value set of d is called
Θ ={d1, d2, .......ds}. By IND(B) we denote the indiscernibility relation defined
by B ⊆ C, [oj ]B denotes the indiscernibility (equivalence) class defined by oj ,
and U/B is the set of all indiscernibility classes of IND(B).

2.3 Hybrid System GDT-RS

From the decision table (DT), we can generate decision rules expressed in the
following form: P → Q with S,

‘if P then Q with strength S’, where P is a conjunction of descriptors over C, Q
denotes a concept that the rule describes, and S is a ‘measure of the strength’
of the rule. According to the GDT-RS, the strength S [4,19] is equal to:

S(P → Q) = s(P ) ∗ (1− r(P → Q)) (3)

where s(P ) is the strength of the generalization P (the condition of the rule) and
r is the noise rate function. The strength of a given rule reflects incompleteness
and noise. On the assumption that the prior distribution is uniform, the strength
of the generalization P = PG is given by:

s(P ) =
∑

l

p(PIl|P ) =
1
NP
card([P ]DT ) (4)
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where [P ]DT is the set of all the objects in DT satisfying the generalization P
and NP is the number of the possible instances satisfying the generalization P
which is computed using eqn. (2). The strength of the generalization P represents
explicitly the prediction for unseen instances. On the other hand, the noise rate
is given by:

r(P → Q) = 1− card([P ]DT ∩ [Q]DT )
card([P ]DT )

(5)

It shows the quality of classification measured by the number of the instances
satisfying the generalization P which cannot be classified into class Q.

3 Belief Function Theory

In this Section, we briefly review the main concepts underlying the belief function
theory as interpreted in the TBM [14]. Let Θ be a finite set of elementary events
to a given problem, called the frame of discernment. All the subsets of Θ belong
to the power set of Θ, denoted by 2Θ. The impact of a piece of evidence on the
subsets of the frame of discernment Θ is represented by a basic belief assignment
(bba). The bba is a function m : 2Θ → [0, 1] such that:∑

E⊆Θ

m(E) = 1 (6)

The value m(E), called a basic belief mass (bbm), represents the portion of
belief committed exactly to the event E. The bba’s induced from distinct pieces
of evidence are combined by the rule of combination [14]:

(m1 ∩©m2)(E) =
∑

F,G⊆Θ:F∩G=E

m1(F )×m2(G) (7)

4 Rule Discovery Process from Partially Uncertain Data

In this Section, we propose our method for discovering a set of classification rules
from partially uncertain data. The uncertainty exists in decision attribute values
and is represented by the TBM. This method is based on the hybrid system
GDT-RS developed originally in [4,19]. Our solution, so-called belief GDT-RS
can generate from partially uncertain databases a set of rules with the minimal
description length, having large strength and covering all instances.

4.1 Uncertain Decision Table

Our uncertain decision table is given by A = (U,C ∪ {ud}), where U = {oj :
1 ≤ j ≤ n} is characterized by a set of certain condition attributes C={c1,
c2,...,ck}, and an uncertain decision attribute ud. We represent the uncertainty
of each object oj by a bba mj expressing beliefs on decisions defined on the
frame of discernment Θ={ud1, ud2,...,uds} representing the possible values of
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ud. These bba’s are generally given by an expert (or several experts) and in
addition to partial uncertainty, they can also present the two extreme cases of
total knowledge and total ignorance.

Example: To illustrate this idea by a simple example, let us use Table 1 to
describe our uncertain decision table. It contains eight objects, three certain
condition attributes C={a, b, c} and an uncertain decision attribute ud with
two values {yes, no} representing Θ.

Table 1. An example of uncertain decision table

U a b c ud
o1 0 0 1 m1({yes}) = 0.95 m1({no}) = 0.05
o2 0 1 1 m2({yes}) = 1
o3 0 0 1 m3({yes}) = 0.5 m3(Θ) = 0.5
o4 1 1 0 m4({no}) = 0.9 m4(Θ) = 0.1
o5 1 1 0 m5({no}) = 1
o6 0 0 1 m6({no}) = 0.9 m6(Θ) = 0.1
o7 0 2 1 m7({no}) = 1
o8 1 1 1 m8({yes}) = 1

4.2 Belief GDT-RS Method

In this subsection, we detail the main steps of our belief GDT-RS method al-
lowing to discover of classification rules from partially uncertain decision table
under the belief function framework based on the hybrid system GDT-RS.

Step 1. Creation of the GDT: Since the GDT depends only on condition
attributes, and not in decision attribute values, our GDT will have the same
structure as in [20]. In fact, this step can be omitted because the prior distribu-
tion of a generalization can be calculated using eqns. (1) and (2).

Step 2. Definition of the compound objects: Consider the indiscernibility
classes with respect to the condition attribute set C as one object, called the
compound object o′j . For objects composing each compound object, combine
their bba’s using the mean operator as follows:

m′
j(E) =

1
card(o′j)

∑
oj∈o′

j

mj(E), ∀E ⊆ Θ (8)

In our case, the mean operator is more suitable to combine these bba’s than the
rule of combination in eqn. (7) which is proposed especially to combine different
beliefs on decision for one object and not different bba’s for different objects.

Let us continue with the same example. By applying the step 2, we obtain the
following table:
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Table 2. The compound objects

U a b c ud
o′1(o1, o3, o6) 0 0 1 m′

1({yes}) = 0.48 m′
1({no}) = 0.31 m′

1({Θ}) = 0.21
o′2 0 1 1 m′

2({yes}) = 1
o′4 (o4, o5) 1 1 0 m′

4({no}) = 0.95 m′
4({Θ}) = 0.05

o′7 0 2 1 m′
7({no}) = 1

o′8 1 1 1 m′
8({yes}) = 1

Step 3. Elimination of the contradictory compound objects: For any
compound object o′j from U and for each decision value udi, compute rudi(o′j)
representing a noise rate. If there exists a udi such that rudi(o′j) =min {rudi′ (o

′
j)

|udi′ ∈ Θ} < Tnoise (threshold value), then we assign the decision class corre-
sponding to udi to the object oj . If there is no udi ∈ Θ such that rudi(o′j) <
Tnoise, we treat the compound object o′j as a contradictory one, and set the
decision class of o′j to ⊥(uncertain). The noise rate is calculated originally using
eqn. (5). The latter is not appropriate in our uncertain context since the decision
value is represented by a bba. So, we propose to compute the noise rate based
on a distance measure as follows:

rudi(o
′
j) = dist(m′

j ,m), such that m({udi}) = 1 (9)

Where dist is a distance measure between two bba’s.

dist(m1,m2) =

√
1
2
(‖ m→

1 ‖2 + ‖ m→
2 ‖2 −2 < m→

1 ,m
→
2 >) (10)

0 ≤ dist(m1,m2) ≤ 1 (11)

Where < m→
1 ,m

→
2 > is the scalar product defined by:

< m→
1 ,m

→
2 >=

|2Θ|∑
i=1

|2Θ|∑
j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj | (12)

with Ai, Aj ∈ 2Θ for i, j = 1, 2, · · · , |2Θ|. ‖ m→
1 ‖2 is then the square norm of

m→
1 . The idea is to use the distance between two bba’s m′

j and a certain bba m
(such that m({udi}) = 1). With this manner, we can check that the decisions
of all instances belong to the compound object are near from a certain case. So,
it is considered as a not contradictory object. Many distance measures between
two bba’s were developed. Some of them are based on pignistic transformation
[1,6,15,21]. For these distances, one unavoidable step is the pignistic transforma-
tion of the bba’s. This kind of distances may lose information given by the initial
bba’s. However, the distance measures developed in [2,7] are directly defined on
bba’s. In our case, we choose the distance measure proposed in [2] which satisfies
more properties such as non-negativity, non-degeneracy and symmetry.
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By applying the step 3 to the Table 2, we obtain the Table 3:

Table 3. Contradictory and not contradictory compound objects

U a b c ud
o′1(o1, o3, o6) 0 0 1 ⊥

o′2 0 1 1 yes
o′4(o4, o5) 1 1 0 no

o′7 0 2 1 no
o′8 1 1 1 yes

Step 4. Minimal description length of decision rule: Let U’ be the set
of all the compound object except the contradictory ones. Select one compound
object o′j from U ′, create a discernibility vector (the row or the column with
respect to o′j in the discernibility matrix) for o′j . The discernibility matrix of
A is a symmetric n*n matrix with entries aij as given below. Each entry thus
consists of the set of attributes upon which objects oi and oj differ.

aij = {c ∈ C|c(oi) �= c(oj)} for i, j = 1, ..., n (13)

Next, we compute all the so-called local relative reducts for the compound object
o′j by using the discernibility function fA(oj). It is a boolean function of k boolean
variables corresponding to the k condition attributes defined as below:

fA(oj) =
∧
{
∨
aij |1 ≤ i ≤ n, aij �= ∅} (14)

The set of all prime implicants of fA(oj) determines the sets of all reducts of oj .
According to the Table 3, the discernibility vector for the compound object o′2
(a0b1c1) is as follows: We obtain two reducts, {a, b} and {b, c} by applying the
indiscernibility function : fA(o′2)=(b) ∧ (a ∨ c) ∧ (b)= (a ∧ b) ∨ (b ∧ c)

Table 4. Discernibility vector for o′2

U’ o′1(⊥) o′2(yes) o′4(no) o′7(no) o′8(yes)
o′2(yes) b ∅ a,c b ∅

Step 5. Selection of the best rules: Construct rules from the local reducts
for object o′j , and revise the strength of each rule using eqn. (3). Select the best
rules from the rules for o′j having the best strength.

According to the same example, the following rules are acquired for object o′2:
{a0b1} → yes with S = (1

2 ∗1)∗(1)= 0.5 and {b1c1} → yes with S = (1
2 ∗2)∗(1)= 1.

The rule {b1c1} → yes is selected for the compound object o′2 due to its strength.
Let U ′ = U ′ − {o′j}. If U ′ �= ∅, then go back to Step 4. Otherwise, STOP.
As a result, we obtain a set of decision rules able to classify unseen objects

shown in the Table 5.
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Table 5. Decision rules

U rules strengths
o′2, o′8 b1 ∧ c1 → yes 1

o′4 c0 → no 0.167
o′7 b2 → no 0.25

Note that the time complexity of the algorithm is O(mn2Nrmax), where n
is the number of instances in a given database, m stands for the number of
attributes, Nrmax is the maximal number of reducts for instances. We can apply
a method for attribute selection [17] in pre-processing stage before using our
belief GDT-RS to avoid the costly calculation.

5 Experimentation

In our experiments, we have performed several tests on real databases obtained
from the U.C.I. repository1 to evaluate our proposed classifier based on our belief
GDT-RS. A brief description of these databases is presented in Table 6. These
databases were artificially modified in order to include uncertainty in decision
attribute. We took different degrees of uncertainty (Low, Middle and High) based
on increasing values of probabilities P used to transform the actual decision value
di of each object oj to a bba mj({di}) = 1−P and mj(Θ) = P . A larger P gives
a larger degree of uncertainty.

– Low degree of uncertainty: we take 0 < P ≤ 0.3
– Middle degree of uncertainty: we take 0.3 < P ≤ 0.6
– High degree of uncertainty: we take 0.6 < P ≤ 1

Table 6. Description of databases

Database #instances #attributes #decision values
W. Breast Cancer 690 8 2

Balance Scale 625 4 3

C. Voting records 497 16 2

Zoo 101 17 7

Nursery 12960 8 3

Solar Flares 1389 10 2

Lung Cancer 32 56 3

Hyes-Roth 160 5 3

Car Evaluation 1728 6 4

Lymphography 148 18 4

Spect Heart 267 22 2

Tic-Tac-Toe Endgame 958 9 2

1 http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
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The relevant criteria used to judge the performance of our new method are the
accuracy of the model (PCC2) and the time complexity (seconds). To more eval-
uate our belief GDT-RS, we compared its results3 with those obtained from the
BDT after pruning in averaging and conjunctive approaches [5,16]. We taked best
results between the two approaches related to BDT. Table 7 summarizes the differ-
ent results relative to our belief GDT-RS and to the BDT for all chosen databases
using different degrees of uncertainty (Low, Middle, High) and according to two
evaluation criteria: accuracy and time complexity. The latter is almost the same
for the different uncertain cases. From the Table 7, we can conclude that belief
GDT-RS gives better PCC’s than the pruned BDT for all databases and for all
degrees of uncertainty. Besides, we can also conclude that our new method is faster
than the construction of the BDT after pruning. On the other hand, we note that
the PCC slightly increases when the uncertainty decreases.

Table 7. The experimentation results relative to belief GDT-RS and BDT

Belief GDT-RS Pruned BDT Belief GDT-RS Pruned BDT

Database PCC (%) PCC (%) Time complexity Time complexity

Low Middle High Low Middle High (seconds) (seconds)

W. Breast Cancer 83.77 83.48 83.05 83.46 83.01 82.17 65 156

Balance Scale 81.46 80.21 80.03 78.15 77.83 77.76 42 139

C. Voting records 98.44 98.16 97.92 98.28 97.76 97.71 69 117

Zoo 93.52 93.47 92.87 91.94 91.36 91.41 34 103

Nursery 96.06 95.81 95.27 95.84 95.13 95.11 198 386

Solar Flares 89.67 89.61 89.56 85.78 85.61 85.46 123 160

Lung Cancer 75.50 75.50 66.33 66.33 66.33 66.33 21 56

Hyes-Roth 97.46 97.11 96.75 83.66 83.31 82.14 34 93

Car Evaluation 81.46 81.01 81.17 73.49 73.11 72.97 135 189

Lymphography 84.24 84.03 83.67 79.25 78.97 78.94 66 108

Spect Heart 87.34 87.28 87.07 83.46 83.01 82.17 72 111

Tic-Tac-Toe Endgame 86.26 86.21 86.18 83.91 83.75 83.42 106 149

6 Conclusion and Future Work

In this paper, we have proposed a method called belief GDT-RS of rule discovery
process based on the hybrid system called GDT-RS, in order to generate a subset
of classification rules from partially uncertain databases. Our belief GDT-RS al-
lows dealing with uncertainty in decision attributes that may characterize objects
of a decision table and where uncertainty is represented through the belief function
theory. Experimentations done on real databases show interesting results, based
on accuracy and time complexity, comparing with those obtained from BDT after
pruning. Busse and Skowron [13] suggested the use of rough set theory to develop
belief functions. We will explore the use of Busse and Skowron’s proposal to com-
pute the bba’s in the uncertain decision attributes in the future applications.
2 Percent of correct classification.
3 A 10-fold cross validation process has been used for making all experimentations.
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Abstract. We introduce a general definition for the independence of a number
of finite-valued variables, based on coherent lower previsions. Our definition has
an epistemic flavour: it arises from personal judgements that a number of vari-
ables are irrelevant to one another. We show that a number of already existing
notions, such as strong independence, satisfy our definition. Moreover, there al-
ways is a least-committal independent model, for which we provide an explicit
formula: the independent natural extension. Our central result is that the indepen-
dent natural extension satisfies so-called marginalisation, associativity and strong
factorisation properties. These allow us to relate our research to more traditional
ways of defining independence based on factorisation.

Keywords: Epistemic irrelevance, epistemic independence, independent natural
extension, strong product, factorisation.

1 Motivation

In the literature on probability we can recognise two major approaches to defining inde-
pendence. In the Kolmogorovian tradition, independence is defined by requiring a prob-
ability model to satisfy a factorisation property. We call this the formalist approach. It
views independence as a mathematical property of the model under consideration. On
the other hand, the tradition of subjective probability follows an alternative route by
regarding independence as an assessment: it is a subject who for instance regards two
events as independent, because he judges that learning about the occurrence of one of
them will not affect his beliefs about the other. We call this the epistemic approach.

We investigate the relationships between the formalist and epistemic approaches to
independence in a generalised setting that allows probabilities to be imprecisely speci-
fied. We consider a finite number of logically independent variables Xn assuming values
in respective finite sets Xn , n ∈ N. We want to express that these variables are inde-
pendent, in the sense that learning the values of some of them will not affect the beliefs
about the remaining ones. We base our analysis on coherent lower previsions, which
are lower expectation functionals equivalent to closed convex sets of probability mass
functions. In the case of precise probability, we refer to an expectation functional as a
linear prevision.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, LNAI 6178, pp. 737–746, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



738 G. de Cooman, E. Miranda, and M. Zaffalon

After discussing the basic notational set-up in Sec. 2, we introduce the formalist
approach in Sec. 3. We define three factorisation properties with increasing strength:
productivity, factorisation, and strong factorisation. For the product of linear previsions
—the classical independence notion—all these properties coincide. For lower previsions,
the strong product is a straightforward generalisation obtained by taking a lower en-
velope of products of linear previsions. We show that the strong product is strongly
factorising.

In Sec. 4 we move on to the epistemic approach. We introduce two notions: many-
to-many independence, where a subjects judges that knowing the value of any subset
of the variables {Xn : n ∈ N} is irrelevant to any other subset; and the weaker notion of
many-to-one independence, where any subset of the variables of {Xn : n ∈ N} is judged
to be irrelevant to any other single variable. We show that the strong product is a many-
to-many (and hence a many-to-one) independent product of its marginals, and that it is
uniquely so in the case of linear previsions.

There is no such uniqueness for lower previsions: the strong product is only one of
the generally infinitely many possible independent products. In Sec. 5, we focus on the
point-wise smallest ones: the least-committal many-to-many, and the least-committal
many-to-one, independent products of given marginals. It is an important result of our
analysis that these two independent products turn out to be the same object. We call it
the independent natural extension. The independent natural extension generalises to any
finite number of variables a definition given by Walley for two variables [7, Sec. 9.3].
Observe that in the case of two variables, there is no need to distinguish between many-
to-one and many-to-many independence.

The relation with the formalist approach comes to the fore in our next result: the in-
dependent natural extension is strongly factorising. We go somewhat further in Sec. 6,
where we show that a factorising lower prevision must be a many-to-one independent
product. Under some conditions, we also show that a strongly factorising lower previ-
sion must be a many-to-many independent product. And since we already know that
the smallest many-to-one independent product is the independent natural extension, we
deduce that when looking for least-committal models, it is equivalent whether we focus
on factorisation or on being an independent product. This allows us to establish a solid
bridge between the formalist and epistemic approaches.

In a number of other results we provide useful properties of assorted independent
products. Most notably, we show that each independent product (strong, many-to-many,
many-to-one, and the independent natural extension) is in some sense associative, and
that the operation of marginalisation preserves the type of independent product. We also
give an explicit formula for the independent natural extension, as well as simplified
expressions in a number of interesting particular cases.

In order to keep this paper reasonably short, we have to assume that the reader has a
good working knowledge of the basics of Walley’s theory of coherent lower previsions
[7]. For a fairly detailed discussion of the coherence notions and results needed in the
context of this paper, we refer to [4,5]. An interesting study of some of the notions
considered here was done by Vicig [6] for coherent lower probabilities.
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2 Set-Up and Basic Notation

Consider a finite number of variables Xn assuming values in the finite sets Xn, n ∈ N.
We assume that for each of these variables Xn, we have an uncertainty model for the
values that it assumes in Xn, in the form of a coherent lower prevision Pn on the set
L (Xn) of all gambles (real-valued maps) on Xn.

For a coherent lower prevision P on L (X), there is a corresponding closed convex
set of dominating linear previsions, or credal set, M (P), and a corresponding set of ex-
treme points ext(M (P)). Then P is the lower envelope of both M (P) and ext(M (P)):

P( f ) = min{P( f ) : P∈M (P)}= min{P( f ) : P∈ ext(M (P))} for all f ∈L (X) .

For any linear prevision P on L (X), the corresponding mass function p is defined by
p(x) := P(I{x}), x ∈X, and then of course P( f ) = ∑x∈X f (x)p(x).

If I is any subset of N, then denote by XI the tuple of variables whose components are
the Xi, i ∈ I. We denote by XI :=×i∈IXi the Cartesian product of the sets Xi, which is
the set of all maps xI from I to

⋃
i∈I Xi such that xI(i) ∈Xi for all i ∈ I. The elements

of XI are generically denoted by xI or zI , with corresponding components xi := xI(i) or
zi := zI(i), i ∈ I. We will assume that the variables Xi are logically independent, which
means that for each non-empty subset I of N, XI may assume all values in XI . We can
then consider XI to be a variable on XI .

We will frequently use the simplifying device of identifying a gamble on XI with a
gamble on XN , namely its cylindrical extension. To give an example, if K ⊆L (XN),
this trick allows us to consider K ∩L (XI) as the set of those gambles in K that
depend only on the variable XI . As another example, this device allows us to identify the
indicator gambles I{xR} and I{xR}×XN\R

, and therefore also the events {xR} and {xR}×
XN\R. More generally, for any event A ⊆ XR, we can identify the gambles IA and
IA×XN\R

, and therefore also the events A and A×XN\R. In the same spirit, a lower
prevision on all gambles in L (XI) can be identified with a lower prevision defined on
the set of corresponding gambles on XN (those that depend on XI only), a subset of
L (XN).

If PN is a coherent lower prevision on L (XN), then for any non-empty subset I of N
we can consider its XI -marginal PI as the coherent lower prevision on L (XI) defined
by PI( f ) := PN( f ) for all gambles f on XI .

3 The Formal Approach

3.1 Basic Definitions

We begin our discussion of independence by following the formalist route: we introduce
interesting generalisations of the notion of an independent product of linear previsions.

The first is a stronger, symmetrised version of the notion of ‘forward factorisation’
introduced elsewhere [3].

Definition 1 (Productivity). Consider a coherent lower prevision PN on L (XN). We
call this lower prevision productive if for all proper disjoint subsets I and O of N, all
g ∈L (XO) and all non-negative f ∈L (XI), PN( f [g−PN(g)])≥ 0.
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In a paper [3] on laws of large numbers for coherent lower previsions, which generalises
and subsumes most known versions in the literature, we prove that the condition of for-
ward factorisation (which is implied by the present productivity condition) is sufficient
for a law of large numbers to hold.

Theorem 1 (Weak law of large numbers). Let the coherent lower prevision PN on
L (XN) be productive. Let ε > 0 and consider arbitrary gambles hn on Xn, n ∈ N. Let
B be a common bound for the ranges of these gambles and let minhn ≤mn ≤ PN(hn)≤
PN(hn)≤Mn ≤maxhn for all n ∈ N. Then

PN

({
xN ∈XN : ∑

n∈N

hn(xn)
|N| /∈

[
∑

n∈N

mn

|N| − ε,∑
n∈N

Mn

|N| + ε

]})
≤ 2exp

(
−|N|ε

2

4B2

)
.

Next comes a generalisation of the linear independence condition that was inspired by,
and found to be quite useful in the context of, our research on credal networks [2].

Definition 2 (Factorisation). Consider a coherent lower prevision PN on L (XN). We
call this lower prevision (i) factorising if for all o ∈ N and all non-empty I ⊆ N \ {o},
all g∈L (Xo) and all non-negative fi ∈L (Xi), i ∈ I, PN( fIg) = PN( fIPN(g)), where
fI := ∏i∈I fi; and (ii) strongly factorising if PN( f g) = PN( f PN(g)) for all g ∈L (XO)
and non-negative f ∈L (XI), where I and O are any disjoint proper subsets of N.

Consider a real interval a := [a,a] and a real number b, then we define a4 b to be
equal to ab if b≥ 0, and equal to ab if b≤ 0. It then follows from the coherence of PN
that we also get PN( fIPN(g)) = PN( fI)4PN(g) and PN( f PN(g)) = PN( f )4PN(g) in
Definition 2.

In general, the following relationships hold between these properties. It can be shown
by means of counterexamples that the implications are strict.

Proposition 1. Consider a coherent lower prevision PN on L (XN). If PN is strongly
factorising, then it is factorising, and if PN is factorising, then it is productive.

We now look at a number of special cases.

3.2 The Product of Linear Previsions

If we have linear previsions Pn on L (Xn) with corresponding mass functions pn, then
their product SN := ×n∈NPn is defined as the linear prevision on L (XN) with mass
function pN defined by pN(xN) := ∏n∈N pn(xn) for all xN ∈XN , so

SN( f ) = ∑
xN∈XN

f (xN) ∏
n∈N

pn(xn) for all f ∈L (XN) .

One of the very useful properties of the product of linear previsions, is that it is associa-
tive in the following sense.
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Proposition 2. Consider arbitrary linear previsions Pn on L (Xn), n ∈ N.

(i) For any non-empty subset R of N, SR is the XR-marginal of SN: SN(g) = SR(g)
for all gambles g on XR;

(ii) For any partition N1 and N2 of N, ×n∈N1∪N2 Pn = (×n∈N1 Pn)× (×n∈N2Pn), or in
other words, SN = SN1 ×SN2 .

Importantly, for linear previsions, all the properties introduced in Sec. 3.1 coincide.

Proposition 3. Consider any linear prevision PN on L (XN). Then the following state-
ments are equivalent: (i) PN =×n∈NPn is the product of its marginals Pn, n ∈ N; (ii) PN

(∏n∈N fn) = ∏n∈N PN( fn) for all fn in L (Xn), n ∈ N; (iii) PN is strongly factorising;
(iv) PN is factorising; and (v) PN is productive.

3.3 The Strong Product of Coherent Lower Previsions

In a similar vein, if we have coherent lower previsions Pn on L (Xn), then [1,7] their
strong product SN := ×n∈NPn is defined as the coherent lower prevision on L (XN)
that is the lower envelope of the set of independent products:

{×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))} .
So for every f ∈L (XN):

SN( f ) = inf{×n∈NPn( f ) : (∀n ∈ N)Pn ∈ ext(M (Pn))} .
The set ext(M (SN)) has the following nice characterisation, which guarantees that the
infimum in the equation above is actually a minimum:

ext(M (SN)) = {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))} .
Like the product of linear previsions, the strong product of lower previsions satisfies the
following very interesting marginalisation and associativity properties:

Proposition 4. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N.

(i) For any non-empty subset R of N, SR is the XR-marginal of SN: SN(g) = SR(g)
for all gambles g on XR;

(ii) For any partition N1 and N2 of N, ×n∈N1∪N2 Pn = (×n∈N1Pn)× (×n∈N2Pn), or in
other words, SN = SN1

×SN2
.

This readily leads to the conclusion that the strong product of lower previsions shares
many of the interesting properties of the product of linear previsions:

Proposition 5. The strong product SN is strongly factorising, and therefore factorising
and productive. As a consequence, it satisfies the weak law of large numbers of Thm. 1.

This ends our discussion of the formalist approach to independence for coherent lower
previsions. We next turn to the treatment of independence following an epistemic ap-
proach, where independence is considered to be an assessment a subject makes.
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4 Epistemic Irrelevance and Independence

Consider two disjoint proper subsets I and O of N. We say that a subject judges that XI

is epistemically irrelevant to XO when he assumes that learning which value XI assumes
in XI will not affect his beliefs about XO.

Now assume that our subject has a joint lower prevision PN on L (XN). If a subject
assesses that XI is epistemically irrelevant to XO, this implies that he can infer from his
joint PN a conditional model PO∪I(·|XI) on the set L (XO∪I) that satisfies

PO∪I(h|xI) := PN(h(·,xI)) for all gambles h on XO∪I . (1)

4.1 Epistemic Many-to-Many Independence

We say that a subject judges the variables Xn, n ∈ N to be epistemically many-to-many
independent when he assumes that learning the value of any number of these variables
will not affect his beliefs about the others. In other words, if he judges for any disjoint
proper subsets I and O of N that XI is epistemically irrelevant to XO.

Again, if our subject has a joint lower prevision PN on L (XN), and he assesses that
the variables Xn, n∈N to be epistemically many-to-many independent, then he can infer
from his joint PN a family of conditional models

I (PN) := {PO∪I(·|XI) : I and O disjoint proper subsets of N} ,
where PO∪I(·|XI) is the conditional lower prevision on L (XO∪I) given by Eq. (1).

Definition 3. A coherent lower prevision PN on L (XN) is called many-to-many in-
dependent if it is coherent with the family I (PN). For a collection of coherent lower
previsions Pn on L (Xn), n ∈ N, any many-to-many independent coherent lower pre-
vision PN on L (XN) that coincides with the Pn on their domains L (Xn),n ∈ N is
called a many-to-many independent product of these marginals.

4.2 Epistemic Many-to-One Independence

There is weaker notion of independence that we will consider here. We say that a subject
judges the variables Xn, n ∈ N to be epistemically many-to-one independent when he
assumes that learning the value of any number of these variables will not affect his
beliefs about any single other. In other words, if he judges for any o ∈ N and any non-
empty subset I of N \ {o} that XI is epistemically irrelevant to Xo.

Once again, if our subject has a joint lower prevision PN on L (XN), and he assesses
the variables Xn, n ∈ N to be epistemically many-to-one independent, then he can infer
from his joint PN a family of conditional models

N (PN) :=
{

P{o}∪I(·|XI) : o ∈ N and I ⊆ N \ {o}
}
,

where P{o}∪I(·|XI) is a coherent lower prevision on L (X{o}∪I) that is given by:

P{o}∪I(h|xI) := PN(h(·,xI)) = Po(h(·,xI)) for all gambles h on X{o}∪I ,
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where of course Po is the Xo-marginal lower prevision of PN . So we see that the family
of conditional lower previsions N (PN) only depends on the joint PN through its Xn-
marginals Pn, n ∈ N. This, of course, explains our notation for it.

Definition 4. A coherent lower prevision PN on L (XN) is called many-to-one inde-
pendent if it is coherent with the family N (PN). For a collection of coherent lower
previsions Pn on L (Xn), n ∈ N, any coherent lower prevision PN on L (XN) that is
coherent with the family N (PN) is called a many-to-one independent product of these
marginals.

Obviously, if a joint lower prevision PN is many-to-many independent, then it is also
many-to-one independent. Another immediate property is that any independent product
of a number of lower previsions must have these lower previsions as its marginals:

Proposition 6. If the coherent lower prevision PN on L (XN) is a many-to-one inde-
pendent product of coherent lower previsions Pn on L (Xn), n∈N, then PN(g) = Pn(g)
for all g ∈L (Xn) and for all n ∈ N.

Moreover, independent products satisfy a number of basic marginalisation and associa-
tivity properties.

Proposition 7. Consider arbitrary coherent lower previsions Pn, n ∈ N. Let PN be any
many-to-one independent product and Q

N
any many-to-many independent product of

the marginals Pn, n ∈ N. Let R and S be any proper subsets of N.

(i) The XR-marginal of PN is a many-to-one independent product of its marginals Pr,
r ∈ R;

(ii) The XR-marginal of Q
N

is a many-to-many independent product of its marginals
Pr, r ∈ R;

(iii) If R and S constitute a partition of N, then Q
N

is a many-to-many independent
product of its XR-marginal and its XS-marginal.

A basic coherence result [7, Thm. 7.1.6] states that taking lower envelopes of a fam-
ily of coherent conditional lower previsions again produces coherent conditional lower
previsions. This implies that many-to-many independence and many-to-one indepen-
dence are preserved by taking lower envelopes. There is also another interesting way of
concluding that a given coherent lower prevision is a many-to-one independent product.

Proposition 8. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N,
and let Q

1
and Q

2
be coherent lower previsions on L (XN) with these marginals Pn.

Let Q
3

be any coherent lower prevision on L (XN) such that Q
1
≤Q

3
≤Q

2
. Then (i) if

Q1 and Q2 are many-to-one independent products, then so is Q3; and (ii) if Q1 and Q2
are factorising, then so is Q

3
.

We deduce that a convex combination of many-to-one independent products of the same
given marginals is again a many-to-one independent product of these marginals.
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5 Independent Natural Extension

The (strong) product turns out to be the central notion when we want to take independent
products of linear previsions, as the following proposition makes clear.

Proposition 9. Any collection of linear previsions Pn, n ∈ N has a unique many-to-
many independent product and a unique many-to-one independent product, and both of
these are equal to their strong product SN =×n∈NPn.

However, when the marginals we want to combine are lower rather than linear pre-
visions, the situation is decidedly more complex, as we intend to show in the rest of
this section. We begin by showing that there always is at least one many-to-many (and
therefore also many-to-one) independent product:

Proposition 10. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N.
Then their strong product ×n∈NPn is a many-to-many and many-to-one independent
product of its marginals Pn. As a consequence, the collection N (PN) of conditional
lower previsions P{o}∪I(·|XI) is coherent.

Because all the sets Xn are finite, we can invoke Walley’s Finite Extension Theorem [7,
Thm. 8.1.9] to conclude that there always is a point-wise smallest joint lower prevision
EN that is coherent with the coherent family N (PN). So there always is a smallest
many-to-one independent product. Interestingly, this coherent lower prevision EN can
be proved to be also a many-to-many independent product. Summarising:

Theorem 2 (Independent natural extension). Consider arbitrary coherent lower pre-
visions Pn on L (Xn), n ∈ N. They always have a point-wise smallest many-to-one in-
dependent product, and a point-wise smallest many-to-many independent product, and
these products coincide. We call this smallest independent product the independent nat-
ural extension of the marginals Pn, and denote it by EN :=⊗n∈NPn.

Since the strong product×n∈NPn is a many-to-one independent product of the marginals
Pn, n∈N by Prop. 10, it has to dominate the independent natural extension⊗n∈NPn: i.e.,
we have ×n∈NPn ≥ ⊗n∈NPn. But these products do not coincide in general: Walley [7,
Sect. 9.3.4] discusses an example where the many-to-one independent natural extension
is not a lower envelope of independent linear products, and as a consequence does not
coincide with the strong product.

The independent natural extension can be derived from the marginals constructively.
The following theorem establishes a workable expression for it.

Theorem 3. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N. Then
for all gambles f on XN:

EN( f ) = sup
hn∈L (XN)

n∈N

inf
zN∈XN

[
f (zN)− ∑

n∈N

[hn(zN)−Pn(hn(·,zN\{n}))]
]
. (2)

The special independent products introduced so far satisfy a monotonicity property:

Proposition 11. Let Pn and Q
n

be coherent lower previsions on L (Xn) such that Pn ≤
Q

n
, n ∈ N. Then ⊗n∈NPn ≤⊗n∈NQ

n
and ×n∈NPn ≤×n∈NQ

n
.
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Like the strong product, the independent natural extension satisfies very useful marginal-
isation and associativity properties.

Theorem 4. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N.

(i) For any non-empty subset R of N, ER is the XR-marginal of EN: EN( f ) = ER( f )
for all gambles f on XR;

(ii) For any partition N1 and N2 of N, ⊗n∈N1∪N2 Pn = (⊗n∈N1Pn)⊗ (⊗n∈N2Pn).

Using the associativity of the independent natural extension, and the factorising charac-
ter of the strong product, we are led to the following practically important conclusion:

Theorem 5. Consider arbitrary coherent marginal lower previsions Pn on L (Xn),
n ∈ N. Then their independent natural extension ⊗n∈NPn is strongly factorising, and
therefore factorising and productive.

Amongst other things, this implies that, like the strong product, the independent natural
extension satisfies the weak law of large numbers of Thm. 1, and as a consequence also
any many-to-one independent product.

When some of the marginals are linear or vacuous previsions, the expression for the
independent natural extension in Eq. (2) simplifies. Because of the associativity result
in Thm. 4, it suffices to consider the case of two variables X1 and X2, so N = {1,2}.

Proposition 12. Let P1 be any linear prevision on L (X1), and let P2 be any coherent
lower prevision on L (X2). Let P{1,2} be any (many-to-many) independent product of
P1 and P2. Then for all gambles f on X1×X2:

P{1,2}( f ) = (P1×P2)( f ) = (P1⊗P2)( f ) = P2(P1( f )) ,

where P1( f ) is the gamble on X2 defined by P1( f )(x2) := P1( f (·,x2)) for all x2 ∈X2.

Proposition 13. Let PA1
1 be the vacuous lower prevision on L (X1) relative to the non-

empty set A1 ⊆X1, and let P2 be any coherent lower prevision on L (X2). Then for
all gambles f on X1×X2:

(PA1
1 ×P2)( f ) = (PA1

1 ⊗P2)( f ) = min
x1∈A1

P2( f (x1, ·)) .

6 Factorisation and Independence

Since we know from Prop. 5 and Thm. 5 that both the strong product and the inde-
pendent natural extension are strongly factorising, we wonder if we can use factorising
lower previsions as many-to-one or many-to many independent products.

Theorem 6. Consider an arbitrary coherent lower prevision PN on L (XN). If it is
factorising, then it is a many-to-one independent product.

In the same vein, one could expect strong factorisation to be sufficient for being a many-
to-many independent product. So far, we are only able to prove this for coherent lower
previsions that satisfy an extra positivity property. It is still unclear whether we can
extend the theorem below to general strongly factorising joints.

Theorem 7. Let PN be a strongly factorising coherent lower prevision on L (XN). If
PN({xn})> 0 for all xn ∈Xn and n ∈ N, then PN is many-to-many independent.
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7 Conclusions

This paper is an attempt to lay down the foundations for a general notion of indepen-
dence of finite-valued variables for imprecise probability models. We have taken the
epistemic stance in that we regard a number of variables as independent when they are
irrelevant to one another; and we have distinguished many-to-many from many-to-one
independence based on whether the independence judgements affect sets of variables
or single variables, respectively. This distinction turns out to vanish when we focus on
least-committal models, as there is a unique smallest model for any (and therefore both)
type of requirement: we have called it the independent natural extension. This gener-
alises a proposal by Walley originally made for the case of two variables [7, Sec. 9.3].
Moreover, the independent natural extension satisfies a practically important strong fac-
torisation property. This brings the independent natural extension closer to more tradi-
tional definitions of independence that are indeed based on factorisation, and it should
make it easier to work with epistemic independence, since we can impose it through fac-
torisation. Finally, other interesting contributions in this paper concern the relationship
between epistemic independence and strong independence, and the proof of a number
of their basic properties.
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and 200020-121785/1, projects TIN2008-06796-C04-01 and MTM2007-61193, and
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Abstract. Our work is a contribution to the model-theoretic study of
equality-free fuzzy predicate logics. We give a characterization of ele-
mentary equivalence in fuzzy predicate logics using elementary exten-
sions and introduce an strengthening of this notion, the so-called strong
elementary equivalence. Using the method of diagrams developed in [5]
and elementary extensions we present a counterexample to Conjectures
1 and 2 of [8].
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1 Introduction

This work is a contribution to the model-theoretic study of equality-free fuzzy
predicate logics. Model theory is the branch of mathematical logic that studies
the construction and classification of structures. Construction means building
structures or families of structures, which have some feature that interest us.
Classifying a class of structures means grouping the structures into subclasses in
a useful way, and then proving that every structure in the collection does belong
in just one of the subclasses. The most basic classification in classical model
theory is given by the relations of elementary equivalence and isomorphism. Our
purpose in the present article is to investigate and characterize the relation of
elementary equivalence between two structures in terms of elementary exten-
sions. We introduce also an strengthening of this notion, the so-called strong
elementary equivalence.

The basic notion of elementary equivalence between models is due to A. Tarski
(see [11]) and the fundamental results on elementary extensions and elementary
chains were introduced by A. Tarski and R. Vaught in [1]. In the context of fuzzy
predicate logics, elementarily equivalent structures were defined in [8] (Definition
10), there the authors presented a characterization of conservative extension
theories using the elementary equivalence relation (see Theorems 6 and 11 of
[8]). A notion of elementary equivalent models in a degree d was presented in
[10] (see Definition 4.33).
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P. Hájek and P. Cintula proved in Theorem 6 of [8] that, in core fuzzy log-
ics, a theory T2 is a conservative extension of another theory T1 if and only if
each exhaustive model of T1 can be elementarily embedded into some model of
T2. Then, they conjectured the same result to be true for arbitrary structures
(Conjecture 2 of [8]). In this paper we present a counterexample to Conjecture
2, using the method of diagrams developed in [5] and elementary extensions.

The paper is structured as follows: Section 2 is devoted to preliminaries on
fuzzy predicate logics. In Section 3 we introduce some known definitions and
basic facts on canonical models (see section 4 and 5 of [8]) and of the method
of diagrams for fuzzy predicate logics developed in [5]. Later on we prove some
new propositions related to canonical models and diagrams. In Section 4 we
present a counterexample to Conjectures 1 and 2 of [8], using the results of
Section 3. Finally, in Section 5 we prove a characterization theorem of elementary
equivalence in fuzzy predicate logics. We conclude the paper with a section of
work in progress and future work.

2 Preliminaries

Our study of the model theory of fuzzy predicate logics is focused on the basic
fuzzy predicate logic MTL∀ and stronger t-norm based logics, the so-called core
fuzzy logics. For a reference on the logic MTL see [6]. We start by introducing
the notion of core fuzzy logic in the propositional case.

Definition 1. A propositional logic L is a core fuzzy logic iff L satisfies:

1. For all formulas φ, ϕ, α, ϕ↔ φ 2 α(ϕ) ↔ α(φ).
2. (LDT) Local Deduction Theorem: for each theory T and formulas φ, ϕ:

T, ϕ 2 φ iff there is a natural number n such that T 2 ϕn → φ.
3. L expands MTL.

For a thorough treatment of core fuzzy logics we refer to [8], [4] and [3]. A
predicate language Γ is a triple (P,F,A) where P is a non-empty set of predicate
symbols, F is a set of function symbols and A is a mapping assigning to each
predicate and function symbol a natural number called the arity of the symbol.
Functions f for which A(f) = 0 are called object constants. Formulas of the
predicate language Γ are built up from the symbols in (P,F,A), the connectives
and constants of L, the logical symbols ∀ and ∃, variables and punctuation.
Throughout the paper we consider the equality symbol as a binary predicate
symbol not as a logical symbol, we work in equality-free fuzzy predicate logics.
That is, the equality symbol is not necessarily present in all the languages and
its interpretation is not fixed. Given a propositional core fuzzy logic L we denote
by L∀ the corresponding fuzzy predicate logic.

Let L be a fixed propositional core fuzzy logic and B an L-algebra, we in-
troduce now the semantics for the fuzzy predicate logic L∀. A B-structure for
predicate language Γ is a tuple M = (M, (PM)P∈Γ , (FM)F∈Γ , (cM)c∈Γ ) where:
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1. M is a non-empty set.
2. For each n-ary predicate P ∈ Γ , PM is a B-fuzzy relation PM :Mn → B.
3. For each n-ary function symbol F ∈ Γ , FM :Mn →M .
4. For each constant symbol c ∈ Γ , cM ∈M .

Given a B-structure M, we define an M-evaluation of the variables as a mapping
v which assigns to each variable an element from M . By φ(x1, . . . , xk) we mean
that all the free variables of φ are among x1, . . . , xk. Let v be an M-evaluation,
we denote by v[x→ d] the M-evaluation such that v[x→ d](x) = d and for each
variable y different from x, v[x → d](y) = v(y). Let M be a B-structure and
v an M-evaluation, we define the values of the terms and truth values of the
formulas as follows:

‖c‖BM,v = cM, ‖x‖BM,v = v(x)

‖F (t1, . . . , tn)‖BM,v = FM(‖t1‖BM,v, . . . , ‖tn‖BM,v)

for each variable x, each constant symbol c ∈ Γ , each n-ary function symbol
F ∈ Γ and Γ -terms t1, . . . , tn, respectively.

‖P (t1, . . . , tn)‖BM,v = PM(‖t1‖BM,v, . . . , ‖tn‖BM,v)

for each n-ary predicate P ∈ Γ ,

‖δ(φ1, . . . , φn)‖BM,v = δB(‖φ1‖BM,v, . . . , ‖φn‖BM,v)

for each n-ary connective δ ∈ L and Γ -formulas φ1, . . . , φn. Finally, for the
quantifiers,

‖∀xφ‖BM,v = inf{‖φ‖BM,v[x→d] : d ∈M}

‖∃xφ‖BM,v = sup{‖φ‖BM,v[x→d] : d ∈M}

Remark that, since the L-algebras we work with are not necessarily complete,
the above suprema and infima could be not defined in some cases. It is said
that a B-structure is safe if such suprema and infima are always defined. From
now on we assume that all our structures are safe. In particular, throughout the
paper we will work only with B-structures such that B is an L-chain.

If v is an evaluation such that for each 0 < i ≤ n, v(xi) = di, and λ is either
a Γ -term or a Γ -formula, we abbreviate by ‖λ(d1, . . . , dn)‖BM the expression
‖λ(x1, . . . , xn)‖BM,v. A Γ -sentence is a Γ -formula without free variables. Let φ
be a Γ -sentence, given a B-structure M, for predicate language Γ , it is said that
M is a model of φ iff ‖φ‖BM = 1. And that M is a model of a set of Γ -sentences
Σ iff for all φ ∈ Σ, M is a model of φ.

From now on, given an L-algebra B, we say that (M,B) is a Γ -structure
instead of saying that M is a B-structure for predicate language Γ . Let (M,B) be
a Γ -structure, by Alg(M,B) we denote the subalgebra of B whose domain is the
set {‖φ‖BM,v : φ, v} of truth degrees of all Γ -formulas φ under all M-evaluations v
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of variables. Then, it is said that (M,B) is exhaustive iffAlg(M,B) = B. Now let
(M1,B1) and (M2,B2) be two Γ -structures, we denote by (M1,B1) ≡ (M2,B2)
the fact that (M1,B1) and (M2,B2) are elementarily equivalent, that is, that
they are models of exactly the same Γ -sentences.

Finally we recall two notions of preserving mappings: elementary mapping
and quantifier-free preserving mapping.

Definition 2. Let (M1,B1) and (M2,B2) be Γ -structures. We say that the pair
(f, g) is a quantifier-free preserving mapping iff

1. g : B1 → B2 is an L-algebra homomorphism of B1 into B2.
2. f :M1 →M2 is a mapping of M1 into M2.
3. For each quantifier-free Γ -formula φ(x1, . . . , xn) and elements d1, . . . , dn ∈
M1, g(‖φ(d1, . . . , dn)‖B1

M1
) = ‖φ(f(d1), . . . , f(dn))‖B2

M2

Moreover, if condition 3. holds for every Γ -formula, it is said that (f, g) is an
elementary mapping. And it is said that (f, g) is an elementary embedding when
both f and g are one-to-one.

We have presented so far only a few definitions and basic notation. A detailed
introduction to the syntax and semantics of fuzzy predicate logics can be found
in [7].

3 Diagrams and Canonical Models

In this section we recall first some definitions and basic facts on canonical models
(see section 4 and 5 of [8]) and of the method of diagrams for fuzzy predicate
logics developed in [5]. Later on we prove some new propositions related to
canonical models and diagrams.

Definition 3. Let (M,B) be a Γ -structure, we define:

1. Th(M,B) is the set of Γ -sentences true in the model (M,B).
2. ΓM is the expansion of Γ by adding a constant symbol cd, for each d ∈M .
3. (M

′
,B) is the expansion of (M,B) to the language ΓM, by interpreting for

each d ∈M , the constant cd by d.
4. The Elementary Diagram of (M,B), denoted by EDIAG(M,B), is the set

of all ΓM-sentences true in (M
′
,B).

5. The Complement of the Elementary Diagram of (M,B), denoted by EDIAG
(M,B) is the set of all ΓM-sentences φ such that φ /∈ EDIAG(M,B).

Definition 4. Let (M,B) be a Γ -structure, we expand the language further
adding new symbols to the predicate language ΓM and we define:

1. Γ(M,B) is the expansion of ΓM by adding a nullary predicate symbol Pb, for
each b ∈ B.

2. (M∗,B) is the expansion of (M
′
,B) to the language Γ(M,B), by interpreting

for each b ∈ B, the nullary predicate symbol Pb by b.
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3. EQ(B) is the set of Γ(B,M)-sentences of the form δ(Pb1 , . . . , Pbn) ↔
ε(Pa1 , . . . , Pak

) such that B |= δ(b1, . . . , bn) = ε(a1, . . . , ak), where δ, ε are L-
terms and a1, . . . , ak, b1, . . . , bn ∈ B

4. NEQ(B) is the set of Γ(B,M)-sentences of the form δ(Pb1 , . . . , Pbn) ↔
ε(Pa1 , . . . , Pak

) such that B |= δ(b1, . . . , bn) �= ε(a1, . . . , ak), where δ, ε are L-
terms and a1, . . . , ak, b1, . . . , bn ∈ B

5. The Basic Full Elementary Diagram of (M,B), denoted by FEDIAG0(M,B),
is the set

EDIAG(M,B) ∪ EQ(B) ∪ {φ↔ Pb : φ ∈ ΓM and ‖φ‖BM∗ = b}
6. The Full Elementary Diagram of (M,B), denoted by FEDIAG(M,B), is the

set of all Γ(M,B)-sentences true in (M∗,B).

Proposition 5. [Proposition 32 of [5]] Let (M,B) and (N,A) be two Γ -struc-
tures. The following are equivalent:

1. There is an expansion of (N,A) that is a model of FEDIAG0(M,B).
2. There is an elementary mapping (f, g) from (M,B) into (N,A).

Moreover, g is one-to-one iff for every sentence ψ ∈ NEQ(B) the expansion of
(N,A) (defined in condition 1.) is not a model of ψ.

Corollary 6. [Corollary 38 of [5]] Let (M,B) and (N,A) two Γ -structures such
that (M,B) is exhaustive. The following are equivalent:

1. There is an expansion of (N,A) that is a model of EDIAG(M,B).
2. There is an elementary mapping (f, g) from (M,B) into (N,A).

Moreover, g is one-to-one iff for every sentence of ΓM, ψ ∈ EDIAG(M,B), the
expansion of (N,A) (defined in condition 1.) is not a model of ψ.

Remark that, as pointed out in [5], the mapping f of Proposition 5 and of
Corollary 6 is not necessarily one-to-one, because we do not work with a crisp
equality. Now we will see that, using canonical models, we can improve these
results finding elementary expansions of a given model, in which f is one-to-one.
We start by recalling some definitions from [4].

Definition 7. A Γ -theory T is linear iff for each pair of Γ -sentences φ, ψ ∈ Γ ,
T 2 φ→ ψ or T 2 ψ → φ.
Definition 8. A Γ -theory Ψ is directed iff for each pair of Γ -sentences φ, ψ ∈
Ψ , there is a Γ -sentence χ ∈ Ψ such that both φ→ χ and ψ → χ are probable.

Definition 9. Let Γ and Γ ′ be predicate languages such that Γ ⊆ Γ ′ and let T
be a Γ ′-theory. We say that T is Γ -Henkin if for each formula ψ(x) ∈ Γ such
that T �2 ∀xψ, there is a constant c ∈ Γ ′ such that T �2 ψ(c). And we say that T is
∃-Γ–Henkin if for each formula ψ(x) ∈ Γ such that T 2 ∃xψ, there is a constant
c ∈ Γ ′ such that T 2 ψ(c). Finally, a Γ -theory is called doubly-Γ -Henkin if it is
both Γ -Henkin and ∃-Γ -Henkin. In case that Γ = Γ ′, we say that T is Henkin
(∃-Henkin, doubly Henkin, respectively).
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Theorem 10. [Theorem 2.20 of [4]] Let T0 be a Γ -theory and Ψ a directed set
of Γ -sentences such that T0 �2 Ψ . Then, there is a linear doubly Henkin theory
T ⊇ T0 in a predicate language Γ ′ ⊇ Γ such that T �2 Ψ .

Definition 11. Let T be a Γ -theory. The canonical model of T, denoted by
(CM(T ),LindT ), where LindT is the Lindenbaum algebra of T (that is, the L-
algebra of classes of T-equivalent Γ–sentences) is defined as follows: the domain
of CM(T ) is the set of closed Γ -terms, for every n-ary function symbol F ∈ Γ ,
F(CM(T ),LindT )(t1 . . . tn) = F (t1 . . . tn) and for each n-ary predicate symbol P ∈
Γ , P(CM(T ),LindT )(t1 . . . tn) = [P (t1 . . . tn)]T .

From now on we write CM(T ) instead of (CM(T ),LindT ).

Lemma 12. [Lemma 2.24 of [4]] Let T be a Henkin Γ -theory. Then,

– LindT is an L-chain iff T is linear
– For every sentence φ ∈ Γ , ‖φ‖LindT

CM(T ) = [φ]T
– For every sentence φ ∈ Γ , T 2 φ iff CM(T ) |= φ
– CM(T ) is exhaustive

Now we prove some new facts on diagrams and elementary extensions, using
canonical models.

Proposition 13. Let (M,B) be a Σ-structure and T0 ⊇ FEDIAG0(M,B) a
consistent theory in a predicate language Γ ⊇ Σ. If Ψ ⊇ NEQ(B) is a directed
set of Γ -sentences such that T0 �2 Ψ , then there is a linear doubly Henkin theory
T ⊇ T0 in a predicate language Γ ′ ⊇ Γ such that T �2 Ψ and an elementary
mapping (f, g) from (M,B) into CM(T ), with f and g one-to-one.

Proof: By Theorem 10, there is a linear doubly Henkin theory T ⊇ T0 in a
predicate language Γ ′ ⊇ Γ such that T �2 Ψ . By Lemma 12, CM(T ) is a model
of FEDIAG0(M,B). Then, by Proposition 5 (Proposition 32 of [5]), there is
an elementary mapping (f, g) from (M,B) into CM(T ), defined as follows: for
each d ∈ M , f(d) = cd and for each b ∈ B, g(b) = [Pb]T . Moreover, since T �2
NEQ(B), for every sentence ψ ∈ NEQ(B), CM(T ) is not a model of ψ and thus,
g is one-to-one: indeed, if b �= b′, then Pb ↔ Pb′ ∈ NEQ(B) and, by assumption,
it is not true in CM(T ) and consequently, [Pb]T �= [Pb′ ]T and thus g(b) �= g(b′).
Finally, by definition of CM(T ), f is also one-to-one. �

Now as a Corollary of Propositions 6 and 13 we obtain the following result for
exhaustive structures:

Corollary 14.Let (M,B) be an exhaustive Σ-structure and T0 ⊇ EDIAG(M,B)
a consistent theory in a predicate language Γ ⊇ Σ. If Ψ ⊇ EDIAG(M,B) is a
directed set of formulas of Γ such that T0 �2 Ψ , then there is a linear doubly
Henkin theory T ⊇ T0 in a predicate language Γ ′ ⊇ Γ such that T �2 Ψ and an
elementary mapping (f, g) from (M,B) into CM(T ), with f and g one-to-one.
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Now we recall the notion of witnessed model and show a direct application of
Proposition 13, giving a generalization of Lemma 5 of [8] for non-exhaustive
models. Let (M,B) be a Γ -structure. We say that (M,B) is witnessed iff for
each Γ -formula φ(y, x1, . . . , xn) and for each d1, . . . , dn ∈M , there is an element
e ∈ M such that ‖∃yφ(d1, . . . , dn)‖BM = ‖φ(e, d1, . . . , dn)‖BM, and similarly for
the universal quantifier. In [8] the following axiom schemes, originally introduced
by Baaz, are discussed: (C∀) ∃x(φ(x) → ∀yφ(y)) and (C∃) ∃x(∃yφ(y) → φ(x)).
Proposition 15. Let T be a Γ -theory and T ′ its extension with axioms C∀ and
C∃. Then every Γ -structure model of T ′ can be elementarily embedded into a
witnessed model of T .

Proof: Let (M,B) be a Γ -structure model of T ′. We consider the theory T0 =
FEDIAG(M,B). Now let Ψ be the closure of NEQ(B) under disjunctions. Clearly
Ψ is a directed set. We show that T0 �2 Ψ : it is enough to prove that for every
α, β ∈NEQ(B), T0 �2 α∨β. Assume the contrary, since B is an L-chain, we have
that either α → β ∈ T0 or β → α ∈ T0. Then, since L is a core fuzzy logic, we
will have either that T0 2 α or T0 2 β, which is absurd, by the same definition
of NEQ(B).

Then, by Proposition 13, since T0 ⊇ FEDIAG0(M,B) and Ψ ⊇ NEQ(B),
there is a linear doubly Henkin theory T ∗ ⊇ T0 such that T ∗ �2 Ψ and (M,B)
is elementarily embedded into CM(T ∗). The rest of the proof follows the same
lines that the corresponding part of the proof of Lemma 5 of [8]. �

4 Counterexample to Conjectures 1 and 2 of [8]

Given two theories T1 ⊆ T2 in the respective predicate languages Γ1 ⊆ Γ2, it
is said that T2 is a conservative extension of T1 if and only if each Γ1-formula
provable in T2 is also provable in T1. P. Häjek and P. Cintula proved in Theorem
6 of [8] that, in core fuzzy logics, a theory T2 is a conservative extension of
another theory T1 if and only if each exhaustive model of T1 can be elementarily
embedded into some model of T2. In Theorem 7 of [8], they conjectured the
same result to be true for arbitrary structures, showing that the following two
conjectures were equivalent:

Conjecture 1 of [8]: Let P be a nullary predicate symbol and for i ∈ {1, 2},
Ti be a Γi-theory, and T+

i be a Γi ∪ {P}-theory such that T+
i = Ti. If T2 is a

conservative extension of T1, then T+
2 is a conservative extension of T+

1 .
Conjecture 2 of [8]: A theory T2 is a conservative extension of another theory
T1 if and only if each model of T1 can be elementarily embedded into some model
of T2.

We present here a counterexample to Conjecture 2 (and thus to Conjecture 1)
using the method of diagrams. Our example is based in one used by F. Montagna
in the proof of Theorem 3.11 of [9]. Let L be the logic that has as equivalent alge-
braic semantics the variety generated by the union of the classes of �Lukasiewicz
and Product chains, for an axiomatization of this extension of BL we refer to [2]
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(in this article it is proved that the only chains of the variety are precisely the
�Lukasiewicz and Product chains). Let now (M, {0, 1}) be a classical first-order
structure in a predicate language Γ , and let B1 = [0, 1]Π and B2 = [0, 1]�L be
the canonical Product and �Lukasiewicz chains, respectively.

Remark that the structure (M, {0, 1}) can also be regarded as a Γ -structure
over both B1 and B2 chains, since for every two-valued n-ary predicate PM :
Mn → {0, 1}, PM is also a fuzzy relation PM : Mn → [0, 1]Π and PM : Mn →
[0, 1]�L. Thus, we have (M,B1) ≡ (M,B2) (in fact we have that (M′′,B1) ≡
(M′′,B2), where M′′ is the structure of Definition 3).

Let T1=EDIAG(M,B1) and T2=FEDIAG(M,B2). We have that T2 is a con-
servative extension of T1: for every ΓM-formula φ, if T2 2 φ, then ‖φ‖B2

M′′=1
and since (M′′,B1) ≡ (M′′,B2), φ ∈ T1. Now we show that there is a model of
T1 that can not be elementarily embedded into some model of T2, this model
is (M, [0, 1]Π). Suppose, contrary to our claim, that there is a model of T2, say
(N,A), in which (M, [0, 1]Π) is elementarily embedded. By Proposition 5, since
(N,A) is a model of T2, there is an elementary mapping from (M, [0, 1]�L) into
(N,A). Consequently, there is an L-embedding k from [0, 1]Π into A and at the
same time there is an L-homomorphism h from [0, 1]�L into A (not necessarily
one-to-one). If A is an L-chain, it is clear that this is not possible. We show now
that, for any arbitrary L-algebra A, this fact leads to a contradiction.

If such embeddings k and h exist, and c and b are the images of 1/2 under h
and k respectively, we have b = ¬b (because h is an L-homomorphism), c < 1
and ¬c = 0 (because k is an L-embedding and the negation in [0, 1]Π is Gödel).
If we decompose A as a subdirect product of an indexed family of subdirectly
irreducible BL-chains, say (Ai : i ∈ I), every such Ai is either a �Lukasiewicz, or
a Product chain (for a reference see [7] and [2]). Therefore, if we take an index
i such that the i-component, ci, satisfies 0 < ci < 1, we will have at the same
time ¬ci = 0 and for the i-component bi, bi = ¬bi, which is absurd, because Ai

can not be, at the same time, a �Lukasiewicz and a Product chain.

5 A Characterization Theorem of Elementary
Equivalence

In this section we characterize when two exhaustive structures are elementarily
equivalent in terms of elementary extensions. We provide an example showing
that the result can not be extended to arbitrary models.

Theorem 16. Let (M1,B1) and (M2,B2) be two exhaustive Γ -structures. The
following are equivalent:

1. (M1,B1) ≡ (M2,B2).
2. There is a Γ -structure (N,A), such that (M1,B1) and (M2,B2) are ele-

mentarily mapped into (N,A).

Proof: 2. ⇒ 1. is clear. 1. ⇒ 2. First we expand the language introducing two
disjoint sets of new constants, CM1 and CM2 for the elements of M1 and M2,
respectively, that are not interpretations of the constant symbols in Γ .
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Now consider the theory T0 = EDIAG(M1,B1)∪ EDIAG(M2,B2) in the lan-
guage expanded with the set of constants CM1 and CM2 respectively. Let us
show that T0 is consistent: If T0 2 ⊥, since EDIAG(M2,B2) is closed under
conjunction and the proof is finitary, there is ψ ∈ EDIAG(M2,B2) such that
EDIAG(M1,B1), ψ 2 ⊥. Then, by the Local Deduction Theorem (see Defini-
tion 1), there is a natural number n such that EDIAG(M1,B1) 2 (ψ)n → ⊥.
Let ψ̂ be the formula obtained by replacing each constant c ∈ CM2 by a new
variable x. Thus we have EDIAG(M1,B1) 2 (ψ̂)n → ⊥ and by generalization
over the new variables we obtain EDIAG(M1,B1) 2 (∀...)((ψ̂)n → ⊥), thus
(∀...)((ψ̂)n → ⊥) ∈ Th(M1,B1) = Th(M2,B2) (because (M1,B1) ≡ (M2,B2))
and consequently, ⊥ ∈ Th(M2,B2), which is absurd.

Now let Ψ = EDIAG(M1,B1). It is easy to check that Ψ is a directed set:
given α, β ∈ Ψ , we show that α∨β ∈ Ψ . If α∨β ∈ EDIAG(M1,B1), using the fact
that B1 is an L-chain, we have that either α→ β ∈ EDIAG(M1,B1) or β → α ∈
EDIAG(M1,B1). Then, since L is a core fuzzy logic, we will have either that
α ∈ EDIAG(M1,B1) or β ∈ EDIAG(M1,B1) which is absurd because α, β ∈ Ψ .

We show now that T0 �2 Ψ . Otherwise, if for some α ∈ Ψ , T0 2 α, since
EDIAG(M1,B1) is closed under conjunction and the proof is finitary, there is
ψ ∈ EDIAG(M1,B1) such that EDIAG(M2,B2), ψ 2 α. Then, by the same kind
of argument we have used to show that T0 is consistent, we would obtain that
α ∈ EDIAG(M1,B1), which is absurd.

Then, by Corollary 14, there is a linear doubly Henkin theory T ⊇ T0 in a
predicate language Γ ′ ⊇ Γ such that T �2 Ψ and an elementary mapping (f, g)
from (M1,B1) into CM(T ), with f and g one-to-one. Moreover, since CM(T )
is also a model of EDIAG(M2,B2), by Corollary 6, (M2,B2) is elementarily
mapped into CM(T ). Finally, by Lemma 12, LindT is an L-chain. �

Remark that Theorem 16 can not be generalized to arbitrary structures. If we
take the structures of the counterexample to Conjectures 1 and 2 of Section 4,
we have (M, [0, 1]Π) ≡ (M, [0, 1]�L), but there is not a Γ -structure (N,A) in
which both are elementary mapped.

6 Future Work

When working with models over the same L-algebra, we can introduce a stronger
notion of elementary equivalence. Given a Γ -structure (M,B) let ΓB be the
expansion of Γ by adding a nullary predicate symbol Pb for each b ∈ B. Let
(M�,B) be the expansion of (M,B) to the language ΓB, by interpreting for
each b ∈ B, the nullary predicate symbol Pb by b. Then we say that two Γ -
structures, (M1,B) and (M2,B), are strong elementarily equivalent (denoted
by (M1,B) ≡s (M2,B)) if and only if (M�

1,B) ≡ (M�
2,B).

By an argument analogue to the one in Theorem 16 (but using Proposition 13
instead of Corollary 14), it is not difficult to check that two strong elementary
equivalent structures (not necessarily exhaustive), over the same L-algebra, are
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elementary embedded in a third structure. Future work will be devoted to the
study of the properties of this stronger notion of equivalence.

The work we have done so far can be extended to Δ-core fuzzy logics, by
finding analogues to Theorem 10 and Proposition 13 for these logics. Work in
progress includes characterizations of elementary equivalence for other expan-
sions of MTL and the study of the relationship between elementarily embed-
dability and amalgamation properties.
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Abstract. Given a 4-tuple of Boolean variables (a, b, c, d), logical pro-
portions are modeled by a pair of equivalences relating similarity indica-
tors (a ∧ b and ¬a ∧ ¬b), or dissimilarity indicators (a ∧ ¬b and ¬a ∧ b)
pertaining to the pair (a, b) to the ones associated with the pair (c, d).
There are 120 distinct logical proportions. One of them models analogi-
cal proportions which correspond to statements of the form “a is to b as
c is to d”. The paper inventories the whole set of logical proportions by
dividing it into 5 subfamilies according to what their logical proportions
express, and then identifies the proportions that satisfy noticeable prop-
erties such as full identity (the pair of equivalences defining the propor-
tion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion
holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency
(if the proportion holds for (a, b, c, d), it also holds for (¬a,¬b,¬c,¬d)).
Finally, the paper provides a discussion of the potential interest of logical
proportions, which clearly have a cognitive appeal.

1 Introduction

In mathematics, a proportion is a statement of equality between two ratios, i.e.,
a/b = c/d. Thus, it amounts to a relative comparison between numbers, as a
statement of equality between two differences, i.e., a − b = c − d, will do as
well. Assuming that the fourth value, say d, is unknown, such statements are
at the basis of reasoning procedures that enable us to “extrapolate” its value
as d = c × b/a in the first case, which corresponds to the well-known rule of
three, or as d = c+ (b− a) in the second case. Due to their structural similarity
with the previous equations, statements of the form “a is to b as c is to d” are
called analogical proportions, where a, b, c, d are no longer necessarily numbers,
but may refer to situations described through words, equations, pictures, ... In
this paper, we take the simple, but quite general view that such a situation is
described as a vector of considered Boolean properties that are true, or false in
this situation.

Starting from the pioneering works of [5], [11], [6] on the formal modeling
of analogical proportions, a logical representation has been proposed for these
proportions [7], which amounts to state that “a is to b as c is to d” is to be
understood as “a differs from b as c differs from d, and b differs from a as d differs
from c”. This view has recently led the authors of this paper to introduce two
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other related proportions named paralogy and reverse analogy also expressed in
terms of compared similarity /dissimilarity of the pairs (a, b) and (c, d) [9]. These
three proportions can be expressed by equating the truth values of similarity
indicators (a ∧ b and ¬a ∧ ¬b), or dissimilarity indicators (a ∧ ¬b and ¬a ∧ b)
pertaining to the pair (a, b) together with the ones associated with the pair
(c, d). These proportions can be applied component by component on the vectors
describing four situations in order to extrapolate missing values in the fourth
vector [8].

More recently, the authors [10] have identified and studied the properties and
the inferential power of a larger family of 15 proportions that are also defined
on the basis of the equivalence between similarity and dissimilarity indicators
pertaining to two pairs of situations, and obey a “full identity” postulate requir-
ing that the proportion holds between the particular pairs (a, a) and (a, a). The
purpose of the present paper is to investigate the whole set of logical propor-
tions (there are in fact 120 distinct proportions as we shall see), and to try to
understand their role.

The paper is organized as follows. The next section, after providing the for-
mal definition of a logical proportion, identifies 5 subfamilies of proportions,
counts their members, and studies a transformation based on negation that pre-
serves subfamilies or exchanges them. The first subfamily, which corresponds to
proportions that are purely defined either in terms of similarity or in terms of
dissimilarity, has four members, three already known: analogy, reverse analogy,
paralogy, and a new one called inverse paralogy. Section 3 studies the truth ta-
bles of the proportions (which can be viewed as quaternary logical connectives),
their semantic behavior with respect to requirements expressing symmetry, or
independence w. r. t. the way the vectors describing the situations are encoded.
Section 4 discusses the interest and the intended use of these proportions.

2 Syntactic View of Similarity/Dissimilarity-Based
Proportions

When comparing situations, one determines what features make them similar
and what features make them dissimilar. Let a and b be two Boolean variables
describing the truth status of the same binary property for two situations. If a∧b
is true, the property is true in both situations, while it is false if ¬a∧¬b is true.
The property is true in the first (resp. second) situation if a ∧ ¬b (resp. ¬a ∧ b)
is true. Proportions involve four items. Let c and d be two Boolean variables
corresponding to the same property for a third and a fourth situation. We have
again two similarity indicators, a positive one c ∧ d and a negative one ¬c ∧ ¬d,
and two dissimilarity indicators c ∧ ¬d and ¬c ∧ d. Then the comparison of two
pairs of situations can be only based on these indicators.

2.1 Definition

Let us introduce the following notations: S1 = a∧ b, S2 = ¬a∧¬b, D1 = a∧¬b,
D2 = ¬a∧b, S′1 = c∧d, S′2 = ¬c∧¬d, D′

1 = c∧¬d, and D′
2 = ¬c∧d (letters with
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a ′ will refer to the right hand side of equivalences). Then logical proportions
are defined as:

Definition 1. A logical proportion T (a, b, c, d) is a logical expression of the
form (X ≡ X ′) ∧ (Y ≡ Y ′), where X,Y ∈ {S1, S2, D1, D2} and X ′, Y ′ ∈
{S′1, S′2, D′

1, D
′
2}. The cases X = Y and X ′ = Y ′ are forbidden.

For instance, (S2 ≡ D′
1) ∧ (D2 ≡ D′

2) defines the proportion whose logical
expression is ((¬a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)). As can be seen,
stating that the proportion T (a, b, c, d) holds (i.e. is true) amounts to require
that the truth values of the corresponding X and X ′ are equal and the truth
values of Y and Y ′ are also equal.

Let us view the description of a situation A as a vector of Boolean values
(a1, ..., ai, ..., an) corresponding to the truth values of n properties (ai = 1 if prop-
erty i holds, and ai = 0 otherwise). Then if the same proportion T (ai, bi, ci, di)
holds for the n properties between four situations A, B, C, D, then the pro-
portion translates into set-valued constraints x = x′ and y = y′ where x, y ∈
{A∩B,A ∩B,A∩B,A ∩B} and x′, y′ ∈ {C ∩D,C ∩D,C ∩D,C ∩D}, where
A (resp. A) denotes the set of properties true (resp. false) in A. Since there are
4 choices for choosing X and 4 choices for choosing Y , it makes 16 choices for
(X ≡ X ′), and similarly 16 choices for (Y ≡ Y ′). Hence, there are 16×16 = 256
potential choices for (X ≡ X ′) ∧ (Y ≡ Y ′) minus 16 choices corresponding to
the forbidden cases X = Y and X ′ = Y ′, i.e., 240 cases which are to be divided
by 2 since the ordering between (X ≡ X ′) and (Y ≡ Y ′) is not relevant. Thus,

Proposition 1. There are 120 logical proportions that are syntactically
different.

2.2 Typology

Depending on the way X , X ′, Y , Y ′ are chosen, one may mix the similarity
and the dissimilarity indicators differently in the definition of a proportion. This
leads us to distinguish between 5 subfamilies. In the four first subfamilies it is
required that both X �= X ′ and Y �= Y ′, while in the fifth subfamily of so-called
degenerated proportions, one has X = X ′ or Y = Y ′ (but not both, which is
forbidden). Let us identify the first four subfamilies first.

The homogeneous proportions. They involve similarity (or dissimilarity)
indicators only. They are of the form (Si ≡ S′j)∧(Sk ≡ S′l), or (Di ≡ D′

j)∧(Dk ≡
D′

l) with i �= k and j �= l, and i, j, k, l ∈ {1, 2}.
Thus, there are 4 homogeneous proportions:

- paralogy: ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)), denoted a; b :: c; d
- inverse paralogy: ((a ∧ b) ≡ (¬c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (c ∧ d)), denoted

a†b :: c†d
- analogy: ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)), traditionally denoted

a : b :: c : d
- reverse analogy: ((a∧¬b) ≡ (¬c∧d))∧((¬a∧b) ≡ (c∧¬d)), denoted a!b :: c!d
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Analogy already appeared under this form in [7]; paralogy and reverse analogy
were first introduced in [9]. While the analogical proportion (analogy, for short)
reads “a is to b as c is to d”, reverse analogy reads “a is to b as d is to c”,
and paralogy reads “what a and b have in common, c and d have it also”.1

Thus, inverse paralogy reads “what a and b have in common, c and d miss it,
and conversely”. As can be seen, inverse paralogy expresses a form of antagonism
between pair (a, b) and pair (c, d). Note that we use two different words, “inverse”
and “reverse”, since the changes between analogy and reverse analogy on the one
hand, and paralogy and inverse paralogy on the other hand, are not of the same
nature. The meanings of the four above proportions is perhaps still more easy to
grasp when moving from Boolean variables, to situations described in terms of
sets of properties. From now on, to alleviate the notations, let us agree to denote
analogy with A, paralogy with P , reverse analogy with R, inverse analogy with
I. When we need to denote any proportion, we will use the letter T .

The conditional proportions. Their expression is made of the conjunction
of an equivalence between similarity indicators and of an equivalence between
dissimilarity indicators. Thus, they are of the form (Si ≡ S′j)∧(Dk ≡ D′

l), where
i, j, k, l ∈ {1, 2}. There are 16 conditional proportions (4 choices per equivalence).
Those with i = j which do not mix positive and negative similarity are

- ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)), denoted b|a :: d|c
- ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ b) ≡ ¬c ∧ d)), denoted a|b :: c|d
- ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)), denoted ¬b|¬a :: ¬d|¬c
- ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)), denoted ¬a|¬b :: ¬c|¬d

and as for reverse analogy, one may switch c and d, which yields:

- ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (¬c ∧ d)), denoted b|a :: c|d
- ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ b) ≡ (c ∧ ¬d)), denoted a|b :: d|c
- ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (c ∧ ¬d)), denoted ¬b|¬a :: ¬c|¬d
- ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ∧ ((a ∧ ¬b) ≡ (¬c ∧ d)), denoted ¬a|¬b :: ¬d|¬c

Changing the first half of the above expressions into ((a ∧ b) ≡ (¬c ∧ ¬d)) and
into ((¬a ∧ ¬b) ≡ (c ∧ d)) yield 8 new proportions (with i �= j): b|a :: ¬c|¬d,
a|b :: ¬d|¬c, ¬b|¬a :: c|d, ¬a|¬b :: d|c, b|a :: ¬d|¬c, a|b :: ¬c|¬d, ¬b|¬a :: d|c,
and ¬a|¬b :: c|d. The first 8 proportions are considered in [10], but not the
last 8, since they do not satisfy full identity as we shall see in the next section.
We use the notation | for all of them, since the conditions that define them are
reminiscent of the semantical equivalence between conditional objects. Indeed,
it has been advocated in [3] that a rule “if a then b” is a three valued entity
that is called ‘conditional object’ and denoted b|a (true if a ∧ b is true, false if
a ∧ ¬b is true, and not applicable if ¬a is true), and where equivalence between
two conditional objects b|a and d|c amounts to state that they have the same

1 Although we have been using the term “paralogy” since we introduced this propor-
tion in [9], “parallelogy” could be more accurate for expressing a logic of parallelism
between situations (a, b) and (c, d).
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examples, i.e. (a∧b) ≡ (c∧d)) and the same counter-examples (a∧¬b) ≡ (c∧¬d).
It is worth noticing that such proportions have equivalent forms, e.g.: b|a :: d|c =
¬b|a :: ¬d|c, which agrees with the above semantics, and more generally with the
idea of conditioning. The next two subfamilies have not been considered before.

The hybrid proportions. They are characterized by equivalences between
similarity and dissimilarity indicators in their definitions. They are of the form
(Si ≡ D′

j) ∧ (Sk ≡ D′
l), or (Di ≡ S′j) ∧ (Dk ≡ S′l), or (Si ≡ D′

j) ∧ (Dk ≡ S′l),
with i �= k and j �= l, and i, j, k, l ∈ {1, 2}.

There are 20 hybrid proportions (2 of the first kind, 2 of the second kind, 16
of the third kind: there are 4 choices for Si ≡ D′

j , and 4 choices for Dk ≡ S′l).
The semi-hybrid proportions. One half of their expressions involve indica-
tors of the same kind, while the other half requires equivalence between indicators
of opposite kinds. They are of the form (Si ≡ S′j) ∧ (Dk ≡ S′l) with j �= l, or
(Si ≡ S′j) ∧ (Sk ≡ D′

l) with i �= k, or (Di ≡ D′
j) ∧ (Sk ≡ D′

l) with j �= l, or
(Di ≡ D′

j) ∧ (Dk ≡ S′l) with i �= k, and i, j, k, l ∈ {1, 2}.
There are 32 semi-hybrid proportions (8 of each kind: 4 choices for the first

equivalence, times 2 choices for the element that is not of the same type as the
three others (D or S) in the second equivalence). Let us consider an example:
T (a, b, c, d) = ((a∧ b) ≡ (c∧ d))∧ ((¬a∧¬b) ≡ (¬c∧ d)). It can be checked that
T (a, b, c, d) is true if and only if d ≡ (a ≡ b) holds and (c ≡ a or c ≡ b), due to
(a ≡ b) = (a∧ b)∨ (¬a∧¬b). This suggests that the semi-hybrid proportions are
already partially degenerated.

The degenerated proportions. In all the above categories, the 4 terms related
by equivalence symbols should be all distinct. In degenerated proportions, they
are only 3 different terms. So, they are of the form, for i, j, k, l ∈ {1, 2},

- (Si ≡ S′j) ∧ (Si ≡ S′l) with j �= l, or (Si ≡ D′
j) ∧ (Si ≡ D′

l) with j �= l,
or (Si ≡ S′j) ∧ (Si ≡ D′

l), or
- (Si ≡ S′j) ∧ (Sk ≡ S′j) with i �= k, or (Di ≡ S′j) ∧ (Dk ≡ S′j) with i �= k,

or (Si ≡ S′j) ∧ (Dk ≡ S′j), or
- (Di ≡ D′

j) ∧ (Di ≡ D′
l) with j �= l, or (Di ≡ S′j) ∧ (Di ≡ S′l) with j �= l,

or (Di ≡ D′
j) ∧ (Di ≡ S′l), or

- (Di ≡ D′
j) ∧ (Dk ≡ D′

j) with i �=k, or (Si ≡ D′
j) ∧ (Sk ≡ D′

j) with i �=k,
or (Di ≡ D′

j) ∧ (Sk ≡ D′
j).

There are 48 degenerated proportions (there are 12 proportions for each of the
four above dashes: 2 choices in each of the two first expressions, and 8 choices
for the third one: 2 choices for the common indicator × 4 combinations for the
two other indicators that should be of different types). Note that 8 degenerated
proportions are homogeneous in the sense that they involve similarity (or dis-
similarity) indicators only. Let us consider one expression of the first three types
in the first “-”. Their expressions are respectively

- ((a∧b) ≡ (c∧d))∧((a∧b) ≡ (¬c∧¬d), which is true if and only if (a∧b) ≡ ⊥
and ((c ≡ ⊥ and d ≡ -) or (c ≡ - and d ≡ ⊥))
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- ((a∧b) ≡ (¬c∧d))∧((a∧b) ≡ (c∧¬d), which is true if and only if (a∧b) ≡ ⊥
and ((c ≡ ⊥ ≡ d) or (c ≡ - ≡ d))

- ((a∧b) ≡ (c∧d))∧((a∧b) ≡ (c∧¬d)), which is true if and only if (a∧b) ≡ ⊥
and c ≡ ⊥.

As can be seen, degenerated proportions correspond to mutual exclusiveness
conditions between component(s) (and/or negation of component(s)) of one of
the pairs (a, b) or (c, d).

2.3 Transformation: Negating One Term in a Proportion

Let us observe that negating anyone of the two terms of a dissimilarity indica-
tor turns it into a similarity indicator, and conversely. From this observation, it
follows that changing a into ¬a (and ¬a into a), or applying a similar transfor-
mation with respect to b, c, or d, turns

- a degenerated proportion into a degenerated proportion;
- a semi-hybrid proportion into a semi-hybrid proportion;
- an hybrid proportion into an homogeneous or a conditional proportion;
- an homogeneous or a conditional proportion into an hybrid proportion.

This indicates the close relationship of hybrid proportions with homogeneous
and conditional proportions. In fact hybrid proportions can be written as homo-
geneous or as conditional proportions, e.g. ((¬a∧b) ≡ (c∧d))∧((a∧b) ≡ (¬c∧d))
can be written as ¬a|b :: c|d.

3 Semantics: Truth Tables of Logical Proportions

It is now time to consider logical proportions from a semantic perspective. Since
a, b, c, d are Boolean variables, proportions can be considered as Boolean opera-
tors whose semantics is given via their truth tables.

First of all, let us recall the truth table of the 4 core proportions A,P,R, I. It
is an easy game to build up these tables that we exhibit in Table 1.

Table 1. Analogy, Reverse analogy, Paralogy, Inverse Paralogy truth tables

A R P I
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Note that there are only 8 distinct 4-tuples that appear in Table 1, which go
by pairs where 0 and 1 are exchanged. There is one fact immediately appearing
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when building up these tables: only 6 lines among 16 in the tables have truth
value 1, all the remaining lines (not shown here) lead to 0. It can be proved that
this is a general result for all logical proportions:

Proposition 2. The truth table of a logical proportion has 6 and only 6 lines
with truth value 1.

Proof (sketch): By considering patterns of the previous sections that satisfy this
property, and then by permutation reasoning over the other ones. �

Proposition 3. The truth tables of the 120 proportions are all distinct.

It appears that despite their similar structure, logical proportions are semanti-
cally distinct and then they cover distinct situations. This result may look all the
more amazing as our proportions are rather rare. Indeed we know that we have
C6

16 = 16× 15× 14× 13× 12× 11/6! = 5765760/720 = 8008 tables with exactly
6 lines leading to 1 but only 120 of them are tables of logical proportions. It has
been shown [9] that the three main proportions A,R, P are defined via a set of
3 axioms (see Table 2), describing their characteristic properties. Now, instead
of having 3 proportions, we have 120 ones and it is legitimate to consider if they
satisfy the A,R, P axioms, or if we have new properties to study.

Table 2. Axioms for Analogy, Reverse analogy and Paralogy

Analogy Reverse analogy Paralogy

A(a, b, a, b) (or A(a, a, b, b)) R(a, b, b, a) (or R(a, a, b, b)) P (a, b, a, b) (or P (a, b, b, a))
A(a, b, c, d) → A(a, c, b, d) R(a, b, c, d) → R(c, b, a, d) P (a, b, c, d) → P (b, a, c, d)
A(a, b, c, d) → A(c, d, a, b) R(a, b, c, d) → R(c, d, a, b) P (a, b, c, d) → P (c, d, a, b)

3.1 Full Identity Axiom

As can be seen in Table 2 A and P satisfy the following axiom: T (a, b, a, b).
Obviously, this is not the case for R which satisfies a dual axiom: T (a, b, b, a).
When it comes to I, none of these axioms is satisfied.

It appears that a minimal agreement between A,R, P i.e., a common axiom
satisfied by these 3 proportions is T (a, a, a, a). This property means that when
a, b, c, d involves a unique value (i.e. a, b, c, d = 1111 or 0000), then the proportion
is satisfied and thus has truth value 1. We call this axiom full identity . Obviously
I does not satisfy this axiom because of the exchange of the negation operator
between pairs (a, b) and (c, d) in the definition. Still this axiom can be considered
as intuitively appealing, and it is interesting to identify the proportions that
satisfy it. The following result can be established:

Proposition 4. There are only 15 proportions satisfying full identity: 3 of them
are homogeneous (they are A, R, and P), 8 of them are conditional proportions
and the 4 remaining ones are degenerated.
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Table 3. The 15 proportions satisfying full identity axiom

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 3 shows these proportions (∧ are omitted, ¬x is written x for a compact
notation). A, R, P are on the first line, while degenerated ones are the last four.

Then a new question arises: Are there proportions satisfying only “half” of the
full identity axiom, i.e., with truth value 1 for 1111 and 0 for 0000, or vice-versa?
We have the following result:

Proposition 5. There are 30 proportions satisfying 1111 but not 0000. Dually,
there are also 30 proportions satisfying 0000 but not 1111.

Each of the above two categories satisfying “half of full identity” contains 4
hybrid proportions, 12 semi-hybrid ones, and 14 degenerated ones. The four
hybrid ones satisfying 1111 are defined by ab ≡ cd and ab ≡ cd, ab ≡ cd and
ab ≡ cd, ab ≡ cd and ab ≡ cd, ab ≡ cd and ab ≡ cd. Thus they correspond to
the conditionals b|a :: c|d, a|b :: c|d, b|a :: d|c, a|b :: d|c. The four hybrid ones
satisfying 0000 correspond to a|b :: c|d, b|a :: c|d, a|b :: d|c, b|a :: d|c.

As a consequence of the previous results, there are 45 (= 120− 15− 30− 30)
proportions that are false for both 1111 and 0000. They include 1 homogeneous
proportion (the inverse paralogy), 8 conditional ones, 12 hybrid ones, 8 semi-
hybrid ones and 16 degenerated ones. Among hybrid ones, let us mention the
presence of the proportions corresponding to analogy (or paralogy) where one
literal is negated, such as a : b :: c : d = a ; b :: c ; d.

3.2 Symmetry Axiom

As seen in [9], there is a common axiom satisfied by P , A and R, the so-called
symmetry axiom: T (a, b, c, d) → T (c, d, a, b). This axiom tells us that we can
exchange the pair (a, b) with the pair (c, d) in these logical proportions. This is
a required property for analogical proportion for instance since if a is to b as c
is to d, we want to have also that c is to d as a is to b. This property holds as
well for I, but symmetry is a quite rare property. Indeed, it can be checked that
we have the following result:

Proposition 6. There are only 12 proportions satisfying symmetry axiom. Apart
from P,A, I, R (homogeneous proportions), there are 4 conditional proportions
and 4 hybrid proportions.

We exhibit the 4 conditional and the 4 hybrid proportions in Table 4.
This result points out that we have to be careful: despite the definitions of pro-

portions are based on equality between 2 terms (involving negation and conjunc-
tion), the symmetrical nature of equality is not sufficient to ensure the symmetry
of all logical proportions. Only few of them satisfy the symmetry axiom.
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Table 4. The 4 conditional (1st line) and 4 hybrid proportions satisfying symmetry

ab = cd | ab = cd ab = cd | ab = cd ab = cd | ab = cd ab = cd | ab = cd

ab = cd | ab = cd ab = cd | ab = cd ab = cd | ab = cd ab = cd | ab = cd

3.3 Code Independency Axiom

Finally, we consider a very important property that we call code independency.
The main idea underlying this axiom is the fact that, from a semantical view-
point, a proportion should be independent from the coding convention, i.e., true
represented by 1 and false by 0. That is why if we switch the values (0, 1) in
the coding of the 4 variables (a, b, c, d), the proportion should lead to the same
result. This is formally expressed by the so-called code independency axiom:

T (a, b, c, d) → T (a, b, c, d)

When examining our proportions, we get the following result:

Proposition 7. There are exactly 8 proportions satisfying the code indepen-
dency axiom. Apart from the homogeneous proportions P,A, I, R, there are 4
hybrid proportions.

We exhibit the 4 hybrid proportions in Table 5. It is remarkable that, apart from
P,A, I, R which are homogeneous proportions, we get the hybrid proportions
simply by adding a negation operator on the right hand-side of the equalities.
For instance, the first hybrid one corresponds to the definition of a ; b :: c ; d,
the second to a ; b :: c ; d, the third one to a : b :: c : d, and the 4th one
to a : b :: c : d. It appears that the code independency property is the most
effective “filter” for all the proportions. This results confirms the central role
played by the proportions P , A, R and I as the most important ones, enjoying
all the properties, and allowing here to simply generate the 4 hybrid proportions
satisfying code independency. It remains to see how we could make an effective
use of all these proportions. In the following section, we provide some hints on
this issue.

Table 5. The 4 hybrid proportions satisfying code independency

ab = cd | ab = cd ab = cd | ab = cd ab = cd | ab = cd ab = cd | ab = cd

4 Intended Use

As said in the introduction, the idea of a proportion is closely related to the
idea of extrapolation. Given an equation of the form T (a, b, c, x) = 1, for some
logical proportion T , where a, b, c are binary truth values, and x ∈ {0, 1} is
unknown, two natural concerns are the existence and the unicity of solutions.
First of all, it is easy to see that there are always cases where the equation has no
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solution. Indeed, the triple a, b, c may take 23 = 8 values, while any proportion
T is true only for 6 distinct triples (Proposition 2). For instance, for the analogy
a : b :: c : x, the condition of existence is (a ≡ b) ∨ (a ≡ c) = 1 [7], and the
(unique) solution, already hinted in [4], is given by c ≡ (a ≡ b).

Regarding the unicity of the solution when it exists, the solution will be always
unique for proportions T such that each of the 6 lines of their truth tables starts
with a different triple of values for a, b, c. There are 64 proportions that have
this property, and 56 proportions for which the equation T(a,b,c,x)=1 may have
2 solutions for some entries. These 56 proportions divide into 8 conditional ones,
8 hybrid ones, 8 semi-hybrid ones, and 32 degenerated ones. Thus, homogeneous
proportions P , A, R and I always lead to a unique solution when it exists.
Remarkably enough, this is true for half of the conditional ones (e.g., b|a :: ¬c|¬d,
which is true for 1100, 1010, 0111, 0101, 0011, 0001), and false for the other half
(e.g. b|a :: d|c, which is true for 1111, 1010, 0101, 0100, 0001, 0000). This suggests
that these two kinds of conditional proportions play different roles, and this has
to be further investigated.

Let us envisage now a practical context where we have a set S of data, repre-
sented as binary vectors. A new piece of data d is considered, but is incompletely
specified, i.e., d = (0, 1, 1, 0, 1, x) and x is unknown. The problem is then to try
to complete d in a way consistent with the previously observed data in S. The
main principle is to consider that, if a proportion T holds for the known fea-
tures of d with respect to completely known data a, b, c, then this proportion
should hold for the unknown component of d as well. Then, by solving the logical
equation, we find a solution for x (when it exists and is unique).

It has been shown in [1,6], that this kind of technique, using only the analogical
proportion, can be successfully used for classification purpose. In that case, the
missing information for the 4th item d is only its binary class: d is then classified
according to analogical patterns extracted from the data at hand. This suggests
that, when having more than one pattern available (as it is the case when we
use A,P,R, I), alternative solutions may be found, helping to achieve a better
accuracy.

5 Conclusion

Beyond our previous work [9,8] initially centered on 3 proportions that can be
related to analogy proportion, and then expanded to the 15 proportions satisfy-
ing full identity [10], it has appeared that many other options are available for
defining new proportions: we have called these proportions, defined via a pair of
equivalences, logical proportions. These equivalences relate the basic similarity
and dissimilarity indicators that can be considered when comparing two states
of fact. In this paper, we have provided the first inventory of the 120 existing
proportions both through a syntactic typology, and through a semantical clas-
sification based on expected properties. Despite the fact that numerous other
proportions exhibit interesting properties, only our initial P,A,R proportions
satisfy full identity, symmetry and code independency. When relaxing this trio
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of properties by removing full identity, a new remarkable proportion appears,
namely I (for Inverse paralogy). Despite their obvious appeal, these proportions
could not be the only ones to provide good induction power. Our 16 condi-
tional proportions, allowing to model exceptions via conditional objects, could
be of valuable help for real life induction-oriented applications. Then, it is clear
that logical proportions, which apparently have never been considered before
in spite of their conceptual simplicity, have to be further investigated. We have
indicated that these proportions may be used to complete an existing pattern,
taking into account some regularities with respect to an existing set of data, then
paving the way to a machine learning technique, similar in nature to the well
known k-nearest neighbor technique, but offering many more options. Finally,
let us also mention another line of research worth investigating: one may think
of associating measures to these proportions. First, for a systematic study of
graded proportions based on similarity/dissimilarity indexes, such as the ones
built from the contrast model proposed by Tversky [12] where the same similarity
and dissimilarity indicators appear. Besides, we may also consider to associate
uncertainty measures (such as possibility or probability) to the similarity and
dissimilarity indexes involved in the equivalences defining the proportions [2].
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Prados-Suárez, Belen 645

Quirin, Arnaud 310

Ralescu, Anca 11
Recasens, Jordi 39
Richard, Gilles 757
Rifqi, Maria 1, 19
Romańı, Santiago 645
Ruiz-Aguilera, Daniel 425
Runkler, Thomas A. 29
Ruß, Georg 350

Sánchez, Daniel 330
Schneider, Markus 624
Shelokar, Prakash 310
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