
Construction of Asynchronous Communicating

Systems: Weak Termination Guaranteed!

Kees M. van Hee, Natalia Sidorova, and Jan Martijn van der Werf

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,n.sidorova,j.m.e.m.v.d.werf}@tue.nl

Abstract. Correctness of asynchronously communicating systems (ACS)
is known to be a hard problem, which became even more actual after the
introduction of Service Oriented Architectures and Service Oriented Com-
puting. In this paper, we focus on one particular correctness property,
namely weak termination: at any moment of the system execution, at least
one option to terminate should be available. We present a compositional
method for constructing an ACS that guarantees weak termination. The
method allows for refinement of single components, refinement of compo-
sitions of components and the creation of new components in the system.
For two important classes of ACS, weak termination follows directly from
their structure. These classes focus on the concurrency over components
and on the implementation of protocols and communicating choices.

1 Introduction

Verification of asynchronously communicating systems is known to be a hard
problem. In past years, modeling and verification mainly focussed on business
processes. With the introduction of paradigms like Service Oriented Architec-
tures (SOA) [1, 4, 7], the focus shifts more and more to the modeling and veri-
fication of inter organizational processes. Different organizations form a virtual
organization to deliver a certain service to other organizations. Languages like
the Business Process Execution Language (BPEL) [5] and the current draft of
the Business Process Modeling Notation 2.0 (BPMN2) [13] are introduced to
model the interaction between processes.

In the paradigm of SOA, components deliver services to other components.
Communication between components is via message sending, and therefore asyn-
chronous. One of the main aspects of SOA is dynamic coupling of components:
to perform a service, a component may need services of other components, which
might be chosen during runtime. This way, during runtime a tree of service in-
stances is formed. We call this a service tree. Due to the dynamic coupling, but
also for privacy reasons, components only know their direct neighbors. Hence,
the whole service tree is not known to any component in the tree, a compo-
nent only knows to whom it is connected to. This dynamic nature makes the

B. Baudry and E. Wohlstadter (Eds.): SC 2010, LNCS 6144, pp. 106–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Construction of Asynchronous Communicating Systems 107

verification of a service tree very hard, or even infeasible. In this paper we fo-
cus on one correctness property, called weak termination, that can be checked
compositionally, by checking pairwise compositions of components.

Weak termination means that at any moment of the system execution, at
least one option to terminate exists. Note that weak termination does not re-
quire that the system always eventually terminates, we only guarantee that the
option to terminate always remains open. Weak termination guarantees that a
system cannot deadlock nor can it be trapped in an infinite loop: in each infinite
loop there is always an option to exit the loop. As the communication between
components is asynchronous, Petri nets [14] are a natural choice for modeling
the components and their interactions. In [2], the authors provide a method to
verify weak termination of service trees compositionally. Each component should
be weakly terminating, and each connected pair of components should satisfy a
certain condition. This way, a given service tree can be checked by only verifying
each component and each connected pair of components.

In this paper, we show a different approach. Instead of checking an existing
service tree, we present a construction methodology for a class of service trees
which are always weakly terminating. The methodology consists of three rules.
The first rule allows for the refinement of existing components by refining a
single place by a new component. The second rule enables the enrichment of the
interaction between components by the replacement of pairs of places by coupled
components that have the weak termination property. The last rule allows for
the creation of new components as an offspring of an existing component. On
top of this rules, we may apply classical refinement rules, e.g., as defined by
Murata [12], Berthelot [8], and the workflow refinement rule [10], to refine the
internal structure of the component.

For two base classes of coupled components, weak termination can be decided
based on their structure. Both classes occur frequently in the design of compo-
nents, and are based on two subclasses of Petri nets: marked graphs and state
machines. The first class focusses on concurrency over components, whereas the
latter focusses on communicating choices over components and the design of
interaction protocols.

This paper is structured as follows. In Section 2, we introduce some basic
concepts and notations. The component framework is explained in Section 3. We
present the construction methodology in Section 4, and in Section 5 we introduce
the two base classes of coupled components that are weakly terminating by their
structure. Finally, we conclude our paper in Section 6.

2 Preliminaries

Let S be a set. The powerset of S is defined as P(S) = {S′ | S′ ⊆ S}. With
|S| we denote the number of elements in S. The empty set, i.e., the set without
any elements is denoted by ∅. Two sets S and T are disjoint if S ∩ T = ∅. A
partition P ⊆ P(S) is a set such that

⋂
A∈P A = S and A∩A′ �= ∅ =⇒ A = A′

for all A, A′ ∈ P . We denote the set of all natural numbers as IN = {0, 1, 2, . . .}.

108 K.M. van Hee, N. Sidorova, and J.M. van der Werf

A sequence σ of length n ∈ IN over S is a function σ : {1, . . . , n} → S. We
denote the length of a sequence by |σ| = n. We denote a sequence of length n
by σ = 〈a1, . . . , an〉 for some a1, . . . , an ∈ S. If |σ| = 0, it is the empty sequence
ε. The set of all finite sequences over S is denoted by S∗. Concatenation of
two firing sequences σ, υ ∈ S∗ is a function σ; υ : {1, . . . , |σ| + |υ|} defined by
(σ; υ)(i) = σ(i) for 1 ≤ i ≤ |σ| and (σ; υ)(i) = υ(i − |σ|) for |σ| < i ≤ |σ| + |υ|.
The Parikh vector of a sequence σ, denoted by −→σ , is a bag representing the
number of occurrences of each element in σ. A bag m (multiset) over S is a
function m : S → IN . For s ∈ S, m(s) denotes the number of occurrences of s in
m. We denote a bag by square brackets. E.g., in a bag [a, b2, c], element a occurs
once, element b twice, and element c once. All other elements have a multiplicity
of 0. We write INS for the set of all bags over S. The empty bag, i.e., for all
elements the multiplicity is 0, is denoted by ∅. We use + and − for the sum and
difference of two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which
are defined in a standard way. Sets can be seen as a special kind of bag were all
elements occur only once.

A Petri net N is a tuple (P, T, F) where P is the set of places, T is the set of
transitions, P and T are disjoint, and F ⊆ (P × T) ∪ (T × P) is the set of arcs.
An element of P ∪ T is called a node. Graphically, we denote places by circles,
transitions by squares, and arcs as arrows between places and transitions. The
preset •n of a node n ∈ P ∪ T is defined as •n = {n′ ∈ P ∪ T | (n′, n) ∈ F}.
Its postset n• is defined as n• = {n′ ∈ P ∪ T | (n, n′) ∈ F}. The state of
a Petri net, called a marking is a bag over the places P of N . A marking is
graphically represented by placing tokens in each place. A marked Petri net is a
pair (N, m0), where N is a Petri net and m0 a marking of N . A transition t ∈ T is
enabled in (N, m0), denoted by (N : m0

t−→) if •t ≤ m0. An enabled transition
in (N, m0) can fire resulting in a new marking m′ = m0 − •t + t•, denoted
by (N : m0

t−→ m′). We lift the notation of transition firing and enabledness
to sequences in a standard way. A sequence σ ∈ T ∗ of length n ∈ IN is a
firing sequence of (N, m0) if there exist markings mi−1, mi ∈ INP such that

(N : mi−1
σ(i)−→ mi) for all 1 ≤ i ≤ n, and is denoted by (N : m0

σ−→ mn). The
set of all reachable markings of (N, m0) is defined as R(N, m0) = {m | ∃σ ∈
T ∗ : (N : m0

σ−→ m)}. The set of all possible firing sequences from m0 to m is
denoted by L(N, m0, m) = {σ ∈ T ∗ | (N : m0

σ−→ m)}. A place is k-bounded
in (N, m0) for some k ∈ IN if m(p) ≤ k for all m ∈ R(N, m0). A marked Petri
net is k-bounded if all places are k-bounded. A place or marked Petri net is safe
if it is 1-bounded. A marking m of N is a deadlock if there are no transitions
enabled in (N, m). It is a home marking of (N, m0) if m ∈ R(N, m′) for all
m′ ∈ R(N, m0).

Two Petri nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2) are isomorphic with
respect to some function ρ : P1 ∪ T1 → P2 ∪ T2 if ρ is bijective, ρ(p) ∈ P2 for all
p ∈ P1, ρ(t) ∈ T2 for all t ∈ T1 and (p, t)ıF1 if and only if (ρ(p), ρ(t)) ∈ F2.

If for a Petri net N = (P, T, F) we have |•t| ≤ 1 and |t•| ≤ 1 for all t ∈ T , the
Petri net is an S-net, also called a state machine. If |•p| ≤ 1 and |p•| ≤ 1 for all

Construction of Asynchronous Communicating Systems 109

p ∈ P , it is a T-net, also called a marked graph. If a net is a state machine, we
graphically omit the transitions between places.

A special class of Petri nets are workflow nets. A workflow net is a Petri net
N = (P, T, F) such that there exist exactly one place i ∈ P with •i = ∅, called
the initial place, one place f ∈ P with f• = ∅, called the final place, and all
nodes n ∈ P ∪ T are on a path from i to f . A workflow net is sound if [f] is a
home marking of (N, [i]) and for all transitions t ∈ T : ∃m ∈ R(N, [i]) : •t ≤ m.
A workflow net N is generalized sound if [fk] is a home marking of (N, [ik]) for
all k ∈ IN .

3 Asynchronous Communicating Systems

A system consists of components that communicate asynchronously with each
other via interfaces, and to each interface at most one component is connected.
In this approach, we model a component by a Petri net [14]. As communication
is asynchronous, we model the communication via special places, called interface
places (cf. [11]). An interface place is either an input place, i.e., the component
receives a message via this place, or an output place, i.e., the component sends
a message via this place. As a component needs to communicate with other
components, the interface places are partitioned into ports. Transitions have a
sign with respect to a port. For each port, a transition either sends messages (sign
!), it receives messages (sign ?), or it is silent (sign τ). Consider the component
shown in Figure 1. In this example, component N has three ports, G, H , and J .
Port G consists of two input places b and e, and three output places a, c and d.
Transition t has sign ! with respect to port G and sign τ with respect to port H .

The internal places together with the transitions form the inner structure
of the component, which we call the skeleton. The input and output places
determine the interfaces to the exterior. A component has one initial and one
final marking, in which only internal places are marked, i.e., in the initial and
final markings no interface places can be marked. The final marking does not
need to be a deadlock.

Definition 1 (Component, skeleton, sign). A component is an 8-tuple (P,
I, O, T, F,G, i, f) where ((P ∪ I ∪ O, T, F), i) is a marked Petri net; P is a set
of internal places; I is a set of input places, and •I = ∅; O is a set of output
places, and O• = ∅; P , I, O are pairwise disjoint; G ⊆ P(I ∪ O) is a partition
of the interface places, called the ports. A transition either sends to or receives
from a port, i.e., •G∩G• = ∅ for all G ∈ G. i ∈ INP is the initial marking; and
f ∈ INP is the final marking. We call the set I ∪ O the interface places of the
component. Two components N and M are called disjoint if PN , PM , IN , IM ,
ON , OM , TN and TM are pairwise disjoint.

The skeleton of an OPN N is defined as the Petri net S(N) = (PN , TN , F)
with F = FN ∩((PN ×TN)∪(TN ×PN)). The sign of a transition with respect to
a port G ∈ G is a function λG : T → {!, ?, τ} defined by λG(t) =! if t• ∩ G �= ∅,
λG(t) =? if •t ∩ G �= ∅, and λG(t) = τ otherwise, for all t ∈ TN .

110 K.M. van Hee, N. Sidorova, and J.M. van der Werf

G J

H
iN=fN

a

b

c

d

e

g

h

n

o

t

iM=fM

G

a

b

c

d

e

N

M

Fig. 1. A component with three ports G, H and J

Even if a component is not connected to any other component, it should work
correctly, i.e., it should always be possible to reach the final marking of the
component. This property is called weak termination.

Definition 2 (Weak termination of a component). A component N is
weakly terminating if fN is a home marking of (S(N), iN).

We do not require the final marking to be a deadlock. Instead, the final marking
can be a state from which it is always possible to return to, called an idle state
in which the component is in rest. For example, if the initial marking and final
marking are identical, this is the case.

Components communicate via their ports. Communication is only possible
if the input places of the one component are the output places of the other
component and vice versa. In our approach we compose components by fusing
interface places with the same name.

Definition 3 (Composition). The components A and B are composable if
there exists a port G ∈ GA ∩ GB such that (IA ∩ OB) ∪ (OB ∩ IB) = G and
PA ∩ PB = TA ∩ TB = IA ∩ IB = OA ∩ OB = ∅. If A and B are composable,
their composition is a component A ⊕G B = (P, I, O, T, F,G, i, f) defined by:
P = PA ∪ PB ∪ G, T = TA ∪ TB, F = FA ∪ FB; I = (IA \ G) ∪ (IB \ G);
O = (OA \G)∪ (OB \G); G = (GA ∪GB) \ {G} ; i = iA + iB; and f = fA + fB.
If there exists a unique port G ∈ GA ∩ GB such that A ⊕G B, we write A ⊕ B.

Consider again the example of Figure 1. Components N and M share port G,
and all input places of port G in N are output places of port G in M and vice

Construction of Asynchronous Communicating Systems 111

versa. Hence, we can compose the two components via port G. In the resulting
net, the interface places of port G become internal places of the composition
N ⊕G M .

4 Construction Rules

To guarantee weak termination of a system consisting of asynchronous commu-
nicating components is in general very hard due to high degree of concurrency
of the components. In [2], a sufficient condition has been presented to pairwise
verify weak termination for a tree-structured composition of components. In this
section we present an approach that guarantees this condition by construction.
The approach consists of three rules to refine a system. The first rule is refine-
ment within a single component. In the second rule, two so called “synchronized
places” can be refined by a composition of two components. The last rule involves
the creation of a new coupled component in a system.

4.1 Refinement within Components

For Petri nets there already exist many refinement rules, like the rules of Mu-
rata [12] and Berthelot [8]. These rules guarantee weak termination: applying
them on a weakly terminating component results again in a weakly terminating
component. However, these rules are all applied on internal parts of the com-
ponent and do not extend the ports of a component. In [10], the authors show
that a place in a workflow net may be refined by a generalized sound workflow
net, while preserving the soundness condition. We redefine this refinement op-
eration on components and refine an internal safe place p of a component N
by a workflow component M . A workflow component is a component which has
a workflow net as skeleton, the only marked place in the initial marking is the
initial place of the skeleton, and the only marked place in the final marking is
the final place of the skeleton.

Definition 4 (Workflow component). A component N is a workflow com-
ponent if S(N) is a workflow net with initial place i and final place f , and
iN = [i] and fN = [f].

When we refine a place p in a component N by a new workflow component M ,
all transitions in the preset of p are connected to the initial place of M , and all
transitions in the postset of p are connected to the final place of M . Place p is
then removed from N . The ports of M are added to the ports of N . Consider
the example of Figure 2. In this example, place p of component N is refined by
component M . In the refined net N ′, the port G of M is added to the already
existing ports of N .

Definition 5 (Place refinement). Let N be a component and M be a workflow
component, such that N and M are disjoint. Let p ∈ PN be a place that is safe in
(S(N), iN). The refined component N�pM = (P, I, O, T,G, F, i, f) is defined as:

112 K.M. van Hee, N. Sidorova, and J.M. van der Werf

p p)=(

N

M N’

H

G G

H

iM

fM

Fig. 2. Refinement of place p in N by component M

P = (PN \ {p})∪PM ; I = IN ∪ IM ; O = ON ∪OM ; T = TN ∪TM ; G = GN ∪GM

F = FN \ ((•p×{p})∪({p}×p•))∪FM ∪(•p×{iM})∪({fM}×p•); i(s) = iN(s)
and f(s) = fN(s) for all s ∈ PA \ {p}, i(iM) = iN (p) and f(fM) = fN (p).

This definition of place refinement propagates the ports of the refining com-
ponent to the original component. At a first glance, this definition seems to
contradict the paradigm of information hiding. However, the definition allows
for the refinement of a component by a composed component, as long as this
composition remains a workflow component. This way, the ports remain invisible
to the environment of the original component.

Since we only allow to refine safe places, we do not need to require the com-
ponent with which the place will be refined to be generalized sound as in [10],
but weak termination as defined in the previous section is sufficient.

Theorem 6 (Refinement of safe places preserves weak termination).
Let N be a component and let M be a weakly terminating workflow component.
Let p ∈ PN be a safe place in (S(N), iN). If both N and M are weakly terminat-
ing, then N �p M is weakly terminating.

4.2 Refinement over Components

In system construction, component interaction is often established in several cy-
cles. In each cycle the interaction is refined, until the desired communication
protocol is designed. The first rule, i.e., refinement of a single place in a com-
ponent, does not suffice, as it creates a new port. Thus, it cannot create a more
elaborate interaction protocol between components, it can only create new in-
teractions. Moreover, we want to refine the scheme of interacting components.
For example, a simple request-response pattern could be refined in a more elab-
orated negotiation pattern. Therefore, we introduce refinement of special pairs

Construction of Asynchronous Communicating Systems 113

¬p ¬q

p ¬q

¬p q

p ¬q

¬p q

p q

•p

•p

•q

•q

p•

p•q•

p•

R

s0

s1

s2

s3

s4

s5

R

R

R

R

R

(a) Syncp,q(N)

•p

•q
q•

p•
R

R

RerrorU

W

V
X

Y

Z

p ¬q

¬p q

p ¬q

¬p q

p q¬p ¬q

•p

•q

q•

p•

R

R

R

TN

(b) Syncp,q(N)

Fig. 3. Desired behavior for synchronized places p and q in component N

of places in a composition. Refinement of a single place in a weakly terminating
component by a weakly terminating subcomponent results again in a weakly
terminating component. Refinement of two places by a composition of two com-
ponents is in general not weakly terminating. As we refine a pair of places by a
composition, we need to be sure that there exists markings in which both places
are marked. If such a marking cannot be reached, the interaction we refine the
components with cannot be executed properly, and thus the refined composition
is not weakly terminating. An intuitive approach would be to apply this refine-
ment only to “synchronizable” places, i.e., two places such that whenever one is
marked before the other, it is always possible to keep the place marked until the
other is marked as well.

Consider two places p and q that satisfy this intuitive requirement, i.e, if p
becomes marked, then it is always possible to keep it marked until q is marked,
or vice versa. To describe the desired behavior on places p and q, we use a state
machine as shown in Figure 3(a). The initial marking s0 is also the final marking.
In the annotation of places, p means that p contains a token, and ¬p means that
p does not contain tokens (similarly for q). The arcs are annotated by sets of
transitions: for each element in the set on an arc from s to s′ there is a transition
with preset {s} and postset {s′}. The set R is defined as R = TN\(•p∪p•∪•q∪q•).
Initially, both places p and q are unmarked. If a transition in the preset of p or q
fires, we reach a state in which either p or q is marked. Then, if p is marked only
transitions in R or •q are able to fire, or, if q is marked, only transition in R or
•p are able to fire. If such a transition fires, we reach a marking in which both
places p and q are marked. From this state, first both places need to become
unmarked, before they can become marked again.

If any accepting firing sequence, i.e., a firing sequence from initial marking to
the final marking, in the skeleton of the component is also an accepting firing
sequence of Syncp,q(N), a pair of places is synchronized. Consider the example of
Figure 4. In this example, there exist accepting firing sequences of A⊕G B that
are also accepting firing sequences of Syncp,q(A ⊕G B). Consider the accepting

114 K.M. van Hee, N. Sidorova, and J.M. van der Werf

firing sequence 〈t, u, w, v, x, y, z〉. Then this is not an accepting firing sequence of
Syncp,q. However, since transition v does not depend on the input of transition
w, we can swap these transitions. This way, we can shuffle the firing sequence σ
to the new firing sequence 〈t, u, v, w, x, y, z〉. This firing sequence is an accepting
firing sequence for both A ⊕G B and Syncp,q. Hence, if for any accepting firing
sequence of A⊕GB there exists such a shuffled firing sequence that is an accepting
firing sequence of both A ⊕G B and Syncp,q, places p and q are synchronized.
If there would exist an accepting firing sequence that cannot be reshuffled into
an accepting firing sequence of both, the interaction we refine with cannot be
initiated properly, and thus the refined composition is not weakly terminating
anymore.

Definition 7 (Synchronized places). Let A and B be two component com-
posable with respect to some port G ∈ GA ∩ GB. Two places p ∈ PA and q ∈ PB

are synchronized, denoted by p �N q if and only if

∀σ ∈ L(N, i, f) : σ ∈ L(Syncp,q(N))

A direct consequence of the definition of p �N q is that the synchronized places
p and q are safe in the skeleton of N .

Lemma 8. Let N be a component, and p, q ∈ PN such that p �N q. Then p
and q are safe in (S(N), iN).

Checking whether two places are synchronized is decidable. The state machine
Syncp,q(N) extends Syncp,q(N) by adding an extra state annotated with error.
Let U = p•∪q•, V = U∪•p, W = U∪•q, X = •q∪•p, Y = X∪p•, and Z = X∪q•.
Connect the states as shown in Figure 3(b). Then, state error is a live lock,
which can only be reached if places p and q are not synchronizable. Hence, in
the synchronous product of component N and Syncp,q(N), no marking should
be reachable in which place error is marked, which is a classical coverability
problem that is decidable for Petri nets.

Given a composition N = A⊕G B, the refinement of two synchronized places
by a composition of two workflow components C ⊕H D results in a new compo-
sition, where in component A place p is refined by C, and in component B place
q is refined by D. The interface places of ports G and H become internal places.

Definition 9 (Refinement of synchronized places). Let A and B be two
components that are composable with respect to port G ∈ GA∩GB and let C and D
be two workflow components that are composable with respect to port H ∈ GC∩GD

and A⊕GB and C⊕H D are disjoint. Let p ∈ PA and q ∈ PB such that p �A⊕GB

q. The refined component (A⊕GB)p�q(C⊕HD) = (P, I, O, T, F,G, i, f) is defined
by: P = (PA⊕GB ∪PC⊕HD)\ {p, q}; T = TA⊕GB ∪TC⊕HD; I = IA⊕GB ∪ IC⊕HD;
O = OA⊕GB ∪OC⊕HD; F = (PA⊕GB ∪PC⊕HD \ ((•p×{p})∪ ({p}× p•)∪ (•q ×
{q}) ∪ ({q} × q•))) ∪ (•p × {iC}) ∪ ({fC} × p•) ∪ (•q × {iD}) ∪ ({fD} × p•);
i = iA⊕GB; and f = fA⊕GB.

Construction of Asynchronous Communicating Systems 115

)=(p q

A

B

Gp

q

C

D

H

iC

fC

iD

fD
x

v u

t

w

y

z

w

v

t

u

x

y

z

Fig. 4. The refinement (A ⊕G B)p�q (C ⊕H D)

Consider the example of Figure 4. In this example, place p of component A and
place q of component B are synchronized in A ⊕G B. Components C and D
are workflow components. Both compositions A ⊕G B and C ⊕H D are weakly
terminating. The refined component (A ⊕G B)p �q (C ⊕H D) is also weakly
terminating.

Theorem 10 (Weak termination for refinement of synchronized places).
Let A and B be two components that are composable with respect to port G ∈ GA ∩
GB and let C and D be two workflow components that are composable with respect
to port H ∈ GC ∩GD and A⊕G B and C⊕H D are disjoint. Let p ∈ PA and q ∈ PB

such that p �A⊕GB q. If A ⊕G B and C ⊕H D are weakly terminating, then the
refined component (A ⊕G B)p�q (C ⊕H D) is also weakly terminating.

4.3 Creating New Components

The first two rules only allow to extend existing components. With the third
rule, it is possible to connect new components in a system such that the system
remains weakly terminating. The rule is based on the principle of outsourcing.
Consider Figure 5. For example, if place p has the meaning that when a token
resides in it, “an item is produced”, and the decision is taken to outsource the
production activity, we can add two transitions: a “start producing item” and a
“finish producing item”. Then the start transition initiates the component pro-
ducing the item, and the finish transition fires if the item is produced. Creating
a new port for these transitions allows the connection of a new component to
the existing system. To realize the intended refinement, a place p in a compo-
nent N is refined by the component M1 – a component that sends a message
over a new port G and then waits in place x until it receives a message on port G.

116 K.M. van Hee, N. Sidorova, and J.M. van der Werf

=(p) G

N

G
p

iM1

fM1

M1

M2

G
x y x y

Fig. 5. Extending the composition with a new coupled component

Component M1 is composed to a component M2 that waits in an idle state until
it receives a message on port G, thus marking place y. M2 then sends a message,
and returns to its idle state. In BPEL, this corresponds to an invoke activity,
where a message is sent to execute an operation, and the activity waits for the
result of the operation. There are many variants of this rule possible.

If in a weakly terminating component the place we extend is safe, the newly
created system is again weakly terminating. Furthermore, the newly added places
x and y are synchronized by construction. Hence, we can apply the second rule of
the approach on these places to refine the interaction between N �p M1 and M2.

Theorem 11. Let N be a component, M1 ⊕ M2 the request-response net as
depicted in Figure 5, such that N and M1 are disjoint and N and M2 are disjoint.
Define N ′ = (N �p M1) ⊕ M2. Then N ′ is weakly terminating and x �N ′ y.

5 Basic Classes of Weakly Terminating Compositions

In the previous section, we presented a construction approach to build systems
that are weakly terminating by construction. However, for the second rule, i.e.,
to refine two synchronized places, we need a weakly terminating composition of
two workflow components. In this section, we present two basic classes of com-
municating components for which the communication condition can be decided
based on their structure. The first class is based on marked graphs, and intro-
duces concurrency within components and concurrent communication in com-
positions. The second class is based on state machines, to build more complex
communication interactions and protocols.

Construction of Asynchronous Communicating Systems 117

5.1 Acyclic Marked Graph Components

A special subclass of Petri nets are marked graphs. In a marked graph, or T-
net, all places have a preset and postset of length at most one. We extend this
notion to components: a workflow component is a T-component if its skeleton is
a marked graph, and all interface places are connected to exactly one transition.
In [10], the authors show that if a T-workflow, i.e., a workflow that is also a
T-net, is acyclic, it is generalized sound. We can use these results to obtain a
similar result for T-components: if a T-component is acyclic, it is safe and weakly
terminating.

Lemma 12 (Weak termination and safeness and T-components [10]).
Let N be a T-component such that S(N) is acyclic. Then it is weakly terminating
and safe.

By definition of a T-component, each interface place in a component has at
most one transition connected to it. Hence, if two T-components are compos-
able with respect to some port, in their composition these interface places have
one transition in their preset and one transition in their postset, and thus the
composition is again a T-component. From Lemma 12, we may directly con-
clude that if the composition of two T-components is acyclic, the composition is
weakly terminating and safe.

Theorem 13 (Weak termination and safeness for compositions of T-
components). Let N and M be two acyclic T-components composable with
respect to some port G ∈ GN ∩GM such that N ⊕G M is acyclic. Then N ⊕G M
is safe and weakly terminating.

As a result, we may refine two synchronized places in a composition by an
acyclic composition of T-components. The algorithm presented in the previous
section can be used to determine the pairs of synchronized places. If places in
a T-component are causal independent, i.e., it is possible that both places are
marked in a place, then they are synchronized.

5.2 Isomorphic State Machine Components

A second subclass of Petri nets are state machines. A state machine is the dual
of a marked graph: each transition has a preset and a postset of length at most
one. A workflow component is an S-component if its skeleton is a state machine,
and each interface place is connected to exactly one transition. From [10], it is
easy to conclude that S-components are always weak terminating and safe.

Lemma 14 (Weak termination and safety of S-components). Let N be
an S-component. Then it is weakly terminating and safe.

Although S-components have a simple structure, their composition is not. Com-
posing S-components introduces concurrency; it is very simple to compose two

118 K.M. van Hee, N. Sidorova, and J.M. van der Werf

A

B

iA

iB

fB fB

Fig. 6. Classical problem with
point where decision is taken. A re-
ceiving gives problems.

A B

G

a

b

c

d

iA iB

fA fB

Fig. 7. The direction of communi-
cation via b and c matters. If both
have the same sign, the composi-
tion A ⊕ B is not sound.

S-components such that the resulting composition can never reach the final mark-
ing, or even has deadlocks. We illustrate this with some examples. In Figure 6 we
see a classical example showing that the composition of two sound S-components
is not sound anymore. The choice A made is not communicated to component
B. Hence, both can make a different choice, thus entering a deadlock. A solution
to overcome this problem is to only connect S-components that have isomorphic
skeletons, and communicate all choices. However, in Figure 7 we see two isomor-
phic S-components and although all choices made by A are communicated, we
see that A ⊕ B is not weakly terminating, since in A the loop may be executed
more times than component B executes the loop. Hence, tokens remain in the
interface places, and thus the composition is not weakly terminating.

The composition of two T-components resulted in a T-component again. A
similar property does not hold for S-components. The communicating transitions
violate the state machine property in the composition: in the composition either
their preset or their postset contain two places. These examples show that we
need strong requirements to allow the composition of two S-components. First,
we require the S-components to have isomorphic skeletons, and all transitions
communicate, but only to the transition it is isomorphic to. Hence, all transitions
either send or receive on the port that is used for the composition. Secondly,
we require that if a component makes a choice, i.e., two or more transitions
are enabled in a marked place, this choice is communicated, since otherwise
the other component does not know in what state the first component is. This
means that if two transitions share a place in their preset, they have the same
sign. Last, we require that in every loop, there are at least two transitions with

Construction of Asynchronous Communicating Systems 119

a different sign. As all transitions either send or receive, the last requirement
implies the existence of both a sending transition and a receiving transition in
each loop. If all the requirements hold, we say that the composition agrees on
the isomorphism.

Definition 15 (Composition agrees on isomorphism). Let A and B be
two S-components such that their skeletons are isomorphic with respect to ρ.
The composition N = A ⊕G B for some port G ∈ GA ∩ GB agrees on ρ if and
only if:

– for all transitions t ∈ TA, t′ ∈ TB, there exists a place s ∈ G such that
{(t, s), (s, t′)} ⊆ FN or {(t′, s), (s, t)} ⊆ FN if and only if ρ(t) = t′;

– All transitions in the postset of a place have the same sign, i.e. ∀p ∈ PN , t1, t2
∈ p• : λG(t1) = λG(t2);

– For all markings m ∈ R(S(A), iA) and firing sequences σ ∈ T ∗
A such that

(S(A) : m
σ−→ m) there are i, j ∈ {0, . . . |σ|} such that λG(σ(i)) =! ∧

λG(σ(j)) =?.

Although isomorphism is a strong requirement, in practice it is often used for
protocol design between agents. First a state machine is designed that represents
the communication between the two agents. In each state of choice, only one
agent can make a choice. Then the state machine is copied for both agents, and
the communication between the transitions is added. Definition 15 gives a set of
rules for asynchronous communication between these transitions such that the
composition is always weakly terminating and safe.

Theorem 16. Let N and M be two composable S-components with respect to
some port G ∈ GN ∩GM such that their skeletons are isomorphic with respect to
some bijective function ρ. If the composition N ⊕G M agrees on ρ, N ⊕G M is
weakly terminating and safe.

If the skeletons of two components B and C are isomorphic, and their compo-
sition agrees on this isomorphism, the markings reachable in the composition
have a special form: each marking consists of a marked place of B, a marked
place of C and some marked interface places. As a consequence of the structure
of the composition, it is always possible to mark a place p and its isomorphic
place ρ(p), without any interface marked.

In Figure 8 an example system is shown that is constructed using the presented
approach. The system was constructed by starting with a single marked place.
By the standard refinement rules of Murata [12], the component is refined to
a simple marked graph with two places in parallel. Using the third rule, for
both places a new component is created. Next, the second rule is applied twice
to refine the two synchronized places by a composition of two S-components
that agree on the isomorphism of their skeletons, and an acyclic composition of
T-components. By construction, the system is weakly terminating.

120 K.M. van Hee, N. Sidorova, and J.M. van der Werf

Fig. 8. System constructed using the constuction method

6 Conclusions

In this paper, we presented a construction methodology for asynchronously com-
municating systems that guarantees weak termination. We model components
and their interaction with Petri nets. The construction method consists of three
rules. The first rule allows for the refinement of safe places by a weakly termi-
nating workflow component. If the initial component is weakly terminating, the
refined component is also weakly terminating. In the second rule, we refine two
synchronized places by a weakly terminating composition of two workflow com-
ponents. A pair of places is synchronized if it is always the case that if one place
is marked before the other, it is always possible to keep that place marked until
the other is marked as well. If the original composition is weakly terminating,
the refined composition is weakly terminating as well. The third rule allows the
creation of new coupled components.

We studied two classes of coupled components that are weakly terminating
by their structure. The first class is based on marked graphs. If a composition
of two workflow T-components is an acyclic marked graph, the composition is
weakly terminating. The second class is based on state machines. If the compo-
sition of two S-components that are isomorphic on their skeleton agrees on the
isomorphism, the composition is weakly terminating.

In [6] the authors give a constructive method preserving the inheritance of
behavior, which can be used to guarantee the correctness of interorganizational

Construction of Asynchronous Communicating Systems 121

processes. Other formalisms, like interface automata [3] use synchronous commu-
nication, whereas we focus on asynchronous communication, which is essential
for our application domain, since the communication in SOA is asynchronous.

In [9], the authors propose to model choreographies using Interaction Petri
nets, which is a special class of Petri nets, where transitions are labeled with the
source and target component, and the message type being sent. To check whether
the composition is functioning correctly, the whole network of components needs
to be checked, whereas in our approach this is guaranteed by construction.

To keep our results at a conceptual level, we present our results on Petri net
models. Our method can easily instaciated for industrial languages like BPEL,
to facilitate the construction of web services in development environments like
Oracle BPEL or IBM Websphere.

References

1. van der Aalst, W.M.P., Beisiegel, M., van Hee, K.M., König, D., Stahl, C.: An
SOA-Based Architecture Framework. International Journal of Business Process
Integration and Management 2(2), 91–101 (2007)

2. van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., Sidorova, N., van der
Werf, J.M.E.M.: Compositional service trees. In: Franceschinis, G., Wolf, K. (eds.)
ICATPN 2009. LNCS, vol. 5606, pp. 283–302. Springer, Heidelberg (2009)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001)

4. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2004)

5. Alves, A., Arkin, A., Askary, S., et al.: Web Services Business Process Execution
Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

6. Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and
Algebraic Programming 47(2), 47–145 (2001)

7. Bell, M.: Service-Oriented Modeling (SOA): Service Analysis, Design, and Archi-
tecture. Wiley, Chichester (2008)

8. Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 360–376. Springer, Hei-
delberg (1987)

9. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

10. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In: van der Aalst, W.M.P., Best,
E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)

11. Kindler, E.: A compositional partial order semantics for petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)

12. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

13. Object Management Group. Business Process Model and Notation (BPMN) Spec-
ification 2.0 V0.9 (November 2008)

14. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science: An EATCS Series, vol. 4. Springer, Berlin (1985)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

	Construction of Asynchronous Communicating Systems: Weak Termination Guaranteed!
	Introduction
	Preliminaries
	Asynchronous Communicating Systems
	Construction Rules
	Refinement within Components
	Refinement over Components
	Creating New Components

	Basic Classes of Weakly Terminating Compositions
	Acyclic Marked Graph Components
	Isomorphic State Machine Components

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

