The .NET Primitives for Open, Dynamic and
Reflective Component Frameworks

Mircea Trofin!, Nicholas Blumhardt?, and Clemens Szyperski!

! Microsoft Corporation
{mirceat,clemens}@microsoft.com
2 Readify
nicholas.blumhardt@readify.net

Abstract. “Composition Primitives” is a novel component model tar-
geting .NET. The model facilitates composition across component pro-
gramming frameworks via an adaptation mechanism external to the
component. Constructing adapters is relatively inexpensive, because the
model is minimal and focused on just one concern: offering enough in-
formation to support composition. Although small, the model supports
static discovery of the services provided and consumed by a component—
in other words, it is reflective. To strengthen the value of its reflection
capabilities, it purposely does not rely on the Service Locator pattern
and it supports n—order composition scenarios. In this paper, we present
our model and support our claims.

1 Introduction

We present a component model that serves as a foundation for creating Open,
Dynamic .NET applications built out of Reflective components. These compo-
nents may have been developed in a domain—specific programming model, or
may have been developed in a different, possibly legacy, component framework.

We will use the acronym “ODR” for these kinds of applications. In ODR ap-
plications, third—party functionality (components) can be added or removed (the
“open” quality), possibly while the application is running (the “dynamic” qual-
ity), and there are first—class means to statically determine, for such third—party
functionality, what facilities it provides and what its requirements are (the “re-
flective” quality). Reflection typically needs to be performed without loading any
component code to avoid associated performance penalties. Eager loading tends
to become prohibitive in applications with a large number of components that do
not need to be all loaded upfront—Iike an integrated development environment
or a web browser.

Examples of existing component frameworks targeting the construction of
ODR applications include: CORBA Component Model [I], Castle MicroKer-
nel/Windsor [2], Autofac [3], and Fractal [4].

In our model we focus on discovery and basic composition. We believe this
is the core concern of any component framework, and, therefore, other aspects
commonly covered by component frameworks can be realized separately or built

B. Baudry and E. Wohlstadter (Eds.): SC 2010, LNCS 6144, pp. 138{I53] 2010.
© Springer-Verlag Berlin Heidelberg 2010

The .NET Primitives for Open, Dynamic and Reflective Component 139

on top of our model. We designed the Managed Extensibility Framework (MEF),
part of .NET 4.0, as one such more comprehensive framework, validating our
layering.

In particular, a characteristic property of components is that they form units
of versioning [6]. Like other higher-level concerns, the primitives do not address
versioning directly. Instead, it is left to component frameworks built on top of the
primitives to address such concerns appropriately. While the details are beyond
the scope of this paper, MEF, for instance, relies on the underlying versioning
semantics in .NET and supports adapters to deal with additional versioning issues.

In contrast to other models targeting ODR applications, we claim our model
offers the following novel and differentiating capabilities:

Our model supports creating domain-specific programming mod-
els and facilitates composition across component frameworks. A “pro-
gramming model”, in this context, is syntax and semantics defining compo-
nentd. Since .NET is a multi-language platform, the term “syntax” refers to
both language—specific, as well as language—independent means of expression.
An extreme example of the former would be a language supporting the keyword
component, with a compiler targeting the .NET Common Instruction Language
(CIL) specification [5]. An example of the latter is the use of generally—supported
.NET concepts, like custom attributes, types, or properties, to define what a
component is, regardless of language. For example: any type annotated with the
custom attribute Component is a component.

Choosing a component framework is an architectural decision [6]. It is hard
to move away from such decisions: As applications evolve, it becomes important
to enable interoperability with components written for other component
frameworks—perhaps more recent ones. It is always possible to enable this—one
can always write custom adapters and wrap components on a case-by-case basis.
This tends to be expensive. We offer a solution for some of the most repetitive prob-
lems, such as discovery, without using the classical solution of a Service Locator.

The Service Locator pattern, also known as the Lookup pattern [7], is a widely
used mechanism for late binding in open systems. It consists of a naming service,
where service providers register under a name (typically a string). Consumers of
services are bootstrapped to the naming service and use such a name (obtained
through bootstrapping or as a parameter) to imperatively find and utilize a service.

Similar to the designers of other frameworks for ODR applications [1I312], we
see the Service Locator pattern as hindering reflectivity and opted for a solution
pertaining to the alternative pattern, namely Inversion-of-Control [§].

Supporting domain-specific programming models, or other compo-
nent frameworks, is easy and inexpensive, from an engineering perspective,
because the model is small and focused just on core concerns. As cost is one of

! This definition makes the term “programming model” synonymous to “component
model”. We intentionally use the term “programming model” to indicate layering
with respect to the Composition Primitives, i.e. a component model adapted to the
Primitives.

140 M. Trofin, N. Blumhardt, and C. Szyperski

the primary concerns of any engineering team, ensuring the model imposes a
small cost is inherently important.

Our model supports n-order composition without imposing require-
ments on the component author. Complex applications take complex
dependencies—such as dependencies on providers of services (other components)
rather than just the services themselves. We refer to these as n-order dependen-
cies, and we will define them in more detail later in the paper. It will be ex-
plained that it is important to facilitate discovery of these kinds of dependencies
without forcing component developers into modeling for each such concern—i.e.
a solution and guidance is necessary in the framework, rather than be left to
component and application authors to decide upon.

The remainder of this paper is organized as follows: We provide an outline
of our model to offer support for our claims in the next section. A broader
comparison and contrast with related work in the area of component-oriented
software as well as other technologies follows. We conclude with an outline of
current applications of our model in commercial and in open-source projects that
validate the applicability of our solution.

Other literature in the area of component frameworks uses mathematical for-
malism to introduce and prove properties of the respective component frame-
work [4]; we believe that, for our purposes in this paper, using a well-established
programming language (and its semantics) is sufficient. Given that our model
targets the .NET platform, we use C#. For compactness and enhanced readabil-
ity, we removed unnecessary (for this paper) annotations like visibility keywords
(“public”) or, in some places, type casts. As such, we assume basic familiarity
with C#and .NET, but provide an appendix with an overview of less familiar
features that our model relies on, such as lambda expressions, delay—compiled
expressions, and the functional model of sets (features commonly known as “Lan-
guage Integrated Query”, or LINQ, which were introduced to the scientific com-
munity as Cw [9] and have been part of C#since .NET 3.5).

2 The Primitives Model

The Primitives model (see figure [Il) consists of: Services, Service Definitions,
Instances, Components, and Dependencie&ﬂ.

Somewhat different from other component frameworks, ours is a management
model, meaning that instances of the Primitives model are separate from opera-
tional program instances, used only for composition, and can be discarded after
composition occurred, thus imposing no runtime overhead once composition or
re-composition completes.

2 This ontology happens to translate into the .NET Managed Extensibility Frame-
work (MEF) model, which builds on the Primitives, using different names: Ex-
port, ExportDefinition, ComposablePart, ComposablePartDefinition, and Import-
Definition. The paper uses the Service, Instance, Component terminology. Refer to
http://mef . codeplex.com|for more information on MEF, including the open-source
implementation and samples.

http://mef.codeplex.com

The .NET Primitives for Open, Dynamic and Reflective Component 141

ServiceDefinition Service
+ContractName: string +Definition: ServiceDefinition
+Metadata: IDictionary<string,object> +GetServiceObject(): object
Component Dependency
+Dependencies: IEnumerable<Dependency> +Cardinality: Cardinality
+ServiceDefinitions: IEnumerable<ServiceDefinition> +Constraint: Expression<Func <ServiceDefinition, bool> >
+Instantiate(): Instance +IsPrerequisite: bool
+IsRecomposable: bool

Instance «enumeration»
+Dependencies: IEnumerable<Dependency> Cardinality
+ServiceDefinitions: IEnumerable<ServiceDefinition> ZeroOrOne
+Activate():void ExactlyOne
+GetService(definition:ServiceDefinition): Service ZeroOrMore
+BindDependency(dep:Dependency, values:IEnumerable<Service>):void
+Deactivate():void

Fig. 1. Overview of the Primitives Model

A Service Definition is a semi-structured data object. It describes a kind
of functionality that is offered for utilization, or consumption. It is the kind of
information that one would use to decide whether a Service is interesting, without
requiring the loading of code, which is a feature desirable in ODR applications.

A Service Definition is modeled as an atomic and opaque contract name (a
string) and a string—keyed dictionary of objects, referred to as “metadata”. The
contract name identifies a document in the general sense, i.e., information, referred
to as “contract”, that describes the functionality offered for consumption. This de-
scription may be parameterized, in which case the contract must also describe how
to encode such parameters using the metadata part of the Service Definition.

Let us consider an extensible stack-based calculator application—a perhaps
contrived example, but suitable for illustrative purposes. The calculator can be
extended with new operators. The contract for a particular operator may use, for
the contract name, the string Operator, which implies the requirement that meta-
data contain the key Symbol and an associate string-typed value, such as “+”.

A Service is an association between a mechanism (GetServiceObject) for ob-
taining an object satisfying a Service Definition, and the Service Definition. This
is the basic building block for the rest of the model and it represents functional-
ity ready-to-use by a consumer. Consumers may expect that the object obtained
via GetServiceObject respect whatever prescriptions the contract requires—
typically, that it implements some interface.

A Component represents a unit of reusable code. The code may be used if
its dependencies are satisfied. Since dependencies may be satisfied with differ-
ent values, an Instance (discussed further below) represents a particular such
satisfaction which can be used independent from others.

A component advertises the set of Dependencies that all its Instances will
need to have satisfied (the Dependencies property), and the set of statically—
known Service Definitions all these Instances will offer (the ServiceDefinitions

property).

142 M. Trofin, N. Blumhardt, and C. Szyperski

Components produce Instances via the Instantiate method. Separate calls
to this method must always result in different Instances being produced. Such
Instances may end up offering more Services than statically advertized by a
Component.

To enable composition, a given component’s dependencies need to be analysed
and candidate components must be determined that could satisfy these depen-
dencies. Candidates whose own dependencies cannot be satisfied in the given
composition context need to rejected. Component analysis and selection/rejec-
tion may occur without loading any code—based solely on the information pro-
vided by its ServiceDefinitions and Dependencies properties. Code loading
can be deferred to the point a first request for utilizing a Service offered by an
Instance is made. Compared to systems that load component code early, com-
position analyses and resulting selection/rejection decisions that are performed
without loading component-specific code can have significant performance ad-
vantages, as validated by our use of MEF in Visual Studio 2010.

An Instance represents a set of Services and a set of Dependencies. Over time,
more or less Services may be available, depending, for example, on the satisfac-
tion of some optional Dependencies, or other runtime conditions. Mandatory
Dependencies (“prerequisites”) need to be satisfied before an Instance can be
asked for Services.

To satisfy a Dependency, an external agent calls BindDependency and pro-
vides a set of Services. The agent may use GetService to retrieve a particular
Service that is offered by the Instance.

Once all dependencies are satisfied, the Instance is ready to be used, meaning
any of its offered Services may be utilized. In particular, this is the time an
implementation may decide to load the actual component code and perform the
actual satisfaction of dependencies.

Dynamic composition or recomposition is supported by allowing Instance de-
pendencies be rebound on a live Instance.

Finally, a Dependency is defined through a Constraint. This is an Expres-
sion object applicable on a Service Definition and producing a boolean (a filter,
essentially). Expressions are typed, delay—compiled functions. In our context,
they are assumed to be pure. For more information, refer to Appendix [Al

The key feature of using .NET expressions for the Constraint is that we can de-
scribe arbitrarily complex boolean expressions, with terms that may be arbitrary,
type—safe navigations in the structure of the metadata of a Service Definition. We
will discuss how this is the basis for supporting complex composition scenarios
(section [ZH]), as well as how this simplifies the composition process (section 2.2]),
when compared to known alternatives used in related work (section [BJ).

Other concepts exposed on a Dependency, but not explored in this paper,
are: cardinality of the Dependency (ZeroOrOne, ExactlyOne, or ZeroOrMore);
whether it is prerequisite (a generalization of the notion of constructor parame-
ter); and whether if it can be rebound (support for dynamic scenarios).

The .NET Primitives for Open, Dynamic and Reflective Component 143

An example of a Constraint would be the expression, using C#lambda notation:
(sd)=>sd.ContractName=="Operator” &&

sd.Metadata . ContainsKey (”Symbol”) &&
sd.Metadata [” Symbol”]=="4"

This Constraint expresses a dependency on services respecting the “Operator”
contract, and, in particular, on those that have a metadata key called Symbol.

The calculator in our example could expose itself as a component with two de-
pendencies: one on a stack, with cardinality ExactlyOne, and one on a collection
of Operators, with cardinality ZeroOrMore. The constraints of these dependen-
cies would be as follows:

//stack

(sd)=>sd . ContractName=="Stack” ;

//any operator

(sd)=>sd . ContractName==" Operator” &&

sd.Metadata . ContainsKey (” Symbol”)

In the case of a dependency on operators, the only statically known data is that the
contract name needs to have a particular value, and that the metadata must con-
tain the “Symbol” key—our calculator will use this for user interaction purposes,
to identify each operator. In the case of a dynamic dependency (one that is satis-
fied based on dynamic system behavior), the Constraint should still be expressed
in terms of statically—known properties of Service Definitions, and the Cardinality
should always be ZeroOrMore. With that, it is possible to reason about composi-
tion of even dynamic dependencies—and still before loading component code.

As a final note about the Primitives, it is not necessary that Services be pro-
duced by Instances, nor that Instances be produced by Components. For exam-
ple, a Service representing external functionality (e.g. a web service) may simply
be instantiated by the application and subsequently considered for composition
just like Services produced by Components. An implementation provided by a
host that must be shared as a singleton by all hosted components may be repre-
sented as an Instance. This is also the reason that both Services and Instances
carry their descriptions (i.e. Service Definitions and Dependencies)—in order to
allow for analysis in the absence of a Component object.

2.1 Simple Example

We use the calculator example to illustrate the Primitives model. To avoid noise,
in this example, the programming model used s the Primitives, however, in
practice this is atypical - the Primitives are meant to be implemented by adapters
to programming models, while the components would be implemented in such
programming models.

Figure 2l shows the implementation of Component, and Figure Bl for the corre-
sponding Instance for a generic operator. The example assumed a few construc-
tors for some of the Primitives, which we have previously excluded from the
model for brevity. In Figure 2l line 10, a new Service Definition is constructed
with the contract name “Operator” and the metadata being a dictionary with
only one key value pair, the key being “Symbol” and the value the variable
symbol. Line 12 assumes a constructor for Dependency that constructs a con-
straint on a contract name (“Stack” in this case), and assumes an ExactlyOne

144 M. Trofin, N. Blumhardt, and C. Szyperski

1 class OperatorComponent: Component {
2 internal Func<double,double,double> Op{get;set;}
3 private ServiceDefinition offeredSvc;
4 private Dependency dep;
5
6 OperatorComponent (string symbol, Func<double,double,double> f){
7 Op = f;
8 offeredSve = new ServiceDefinition (
9 ”?Operator” , {”Symbol” ,symbol}));
10 dep = new Dependency (” Stack”);
11 }
12 override IEnumerable<ServiceDefinition> ServiceDefinitions{
13 get { yield offeredSvec; }
14 }
15 override IEnumerable<Dependency> Dependencies{
16 get { yield dep; }
17
18 public override Instance Instantiate (){
19 return new Operatorlnstance(this);
20
21}
Fig. 2. Example Operator Component
1 class Operatorlnstance : Instance
2
3 private OperatorComponennt theComp;
4 private Stack<double> stack ;
5 private Service theService:;
6
7 Operatorinstance (OperatorComponent comp){
8 theComp = comp;
9
10 override IEnumerable<ServiceDefinition> ServiceDefinitions{
11 get { return theComp.ServiceDefinitions ;
12
13 override IEnumerable<Dependencies> Dependencies{
14 get { return theComp.Dependencies;
15
16 override void BindDependency (Dependency dep, IEnumerable<Service> values){
17 var stackExp = values.First ();
18 stack = (Stack<double>)(stackExp.GetServiceObject ());
19
20 override Service GetService(ServiceDefinition svcDef){
21 if (sveDef.Name == ” Operator”){
22 if (theService == null){
23 Func<double> operator = () => theComp.Op(Stack.Pop(), Stack.Pop());
24 theService = new Service(svcDef, () => operator);
25 }
26 return theService ;
27
28 return null;
29 }
30 }

Fig. 3. Example Operator Instance

cardinality. In Figure Bl line 24, we construct a Service object based on a given
service definition, and where GetServiceObject delegates to the provided func-
tion (in this case, a function returning the operator function).

In this example, one would obtain the component for the “4” operator as
follows:

Component plus=new OperatorComponent ("+" ,(x,y)=>x + y)

As it can be seen, the “Operator” contract stipulates that the service object
have the type Func<double,double,double>, and the “Stack” contract requires
a Stack<double> object. This illustrates the fact that the Primitives do not im-
pose any limitations over the kinds of types that may constitute valid operational
interfaces to services. Concretely, Func<> is a sealed type, while Stack<> may
be inherited from (both are part of the core .NET Framework).

The .NET Primitives for Open, Dynamic and Reflective Component 145

Because the Service Definitions used are pure data, one can reason over a
space of such Service Definitions using the Constraint of a Dependency and,
without loading any component code, make determinations over feasibility of
composition.

2.2 Composition in the Primitives Model

Composition in the context of the primitives consists of creating Instances out
of Components and resolving their Dependencies with Services obtained out
of other Instances. The composition may be controlled by an agent, generally
referred to as “composition engine”, external to the components involved. The
composition engine is expected to satisfy a dependency d with a Service s for
which the following expression evaluates to true (where Compile is a standard
method on .NET expression objects—see Appendix [Al):

d.Constraint.Compile() (s.Definition)

Our goal for domain independent composition is supported by the fact that
the engine need not understand the constraint in order to determine whether a
service may be used to satisfy dependencies. Parsing the Constraint is possible
(since it is an Expression) and may be useful for optimizations, such as indexing.
It is also useful if the engine is capable of recognizing and treating specially
particular kinds of contracts.

A characteristic of the Primitives design is that it has no built—in notion of
identity. In particular, this allows for defining new Components from existing
Components through an equivalent of the notion of partial application found
in functional languages. A custom implementation of Component can be con-
structed that, based on an existing Component and a set of pairs (Dependency,
IEnumerable<Service>), presents itself as exposing the same Service Definitions
as the original component, and the same Dependencies, except for those provided
in the set of pairs. Calls to Instantiate lead to the creation of instances of the
original component, where the Dependencies provided in the set are hidden and
pre—satisfied by the values they were associated with.

2.3 Supporting Other Component Frameworks and Domain—Specific
Programming Models

We implemented an extensible chatting applicatiorﬁ. Components for this appli-
cation can be developed using the attributed programming model that is provided
as reference implementation with .NET Framework 4.0, or as “plain old CLR”
(POCO) types typically composed by Autofac[3]. In turn, these components may
be composed using either the composition engine that is part of .NET Framework
4.0, or with the Autofac container. The former was designed upfront to be based
on our model, while the latter was adapted to support our model.

The ChatClient.ManagedExtensibilityComponents project comprises MEF
components, while the ChatClient. AutofacComponents project comprises POCO
types for Autofac.

3 http://nblumhardt.com/archives/composition-primitives/

http://nblumhardt.com/archives/composition-primitives/

146 M. Trofin, N. Blumhardt, and C. Szyperski

The ChatClient.ManagedExtensibilityHost project uses the MEF Composition-
Container and PocoAdapter types to host both MEF and POCO components.

The ChatClient.AutofacHost project hosts the same components, but uses the
Autofac.Integration.CompositionPrimitives adapters to host both MEF and
POCO components in the same (Autofac) container.

2.4 Cost of Constructing Adapters

The adapter that allows Autofac components to be composed by the .NET com-
position engine operating on our model can be seen in the PocoAdapter project
of the chatting application. The adapter consists of an implementation of the
Component and Instance concepts. This adapter totals 125 lines of code, sup-
porting our claim of low-cost adapter construction.

2.5 Modeling Higher—Order Dependencies

In our model, a dependency is taken on a Service, via a condition over the de-
scription of that Service. Typically, that Service represents a value with meaning
in the application domain, and no meaning in the Primitives model. It is possi-
ble, however, that we represent a Component, for example, as a Service: after all,
it provides the service of generating Instances. In this case, the value represented
by the Service has a meaning in the Primitives model, which is understood and
utilized by its consumer. We call this a higher—order dependency.

Scenarios where higher—order dependencies are required are apparent in com-
plex composite applications, where some components act as generic containers for
other components, managing their life—cycle and controlling access to them. An
example would be an Integrated Development Environment (IDE) that can be ex-
tended with custom designers for Graphical User Interfaces (GUIs). Such design-
ers may be usable as independent applications (i.e. they can be used as a compo-
nent), however, internally, such designers may be themselves extended, and may
use other components (like an editor, a canvas, etc). Hence, designers are higher-
order components that also compose (and expose services of) other components.

To support such kinds of dependencies, one option would be to manufacture
contracts that make the high—order dependency implicit, for example, a depen-
dency on a component that produces an “Operator” would be encoded as a
dependency on a Service respecting the contract “Operator Component”. The
problem with this approach is that it does not scale—the set of such contracts
is a power set of the set of “simple” service contracts.

The options we discuss in what follows express higher—order dependencies
through a description of structure, and require composers to understand a few
contracts, one for each kind of higher—order dependency. Our goal for program-
ming model-independent composition is still supported, however, components
exposing such higher-order dependencies end up being less reusable than “sim-
ple” components. Still, any composition engine would be able to assess at least
that it is unable to compose them.

In this paper, we will only illustrate support for dependencies on components.

The .NET Primitives for Open, Dynamic and Reflective Component 147

Dependencies on Components. Consider a scenario where we want to pack-
age the wiring of a given stack with a private instance of a calculator user
interface component and a private instance of each of the operator components
available in some set of components. Then, we want to treat this package as a
component.

Next, suppose we want to create a new Component, where each Instance
would internally instantiate two Calculator aggregates and connect them to a
shared instance of a Stack. The dependency of this new Component would be
solely on other components: a Stack Component, a set of Operator Components,
and an Aggregate Component (as defined above). It can be observed that this
mechanism allows for recursive definitions of “Components”.

To model such dependencies, we introduce a contract named “Component”
which requires that the describing ServiceDefinition have a metadata property
called “ServiceDefinitions”, which should be a collection of ServiceDefinitions.
Said metadata property maps to the corresponding property of a Component.
A Service exposing the “Component” contract produces a Component when
GetServiceObject is called. All that is required is that a composition engine
understand the contract name “Component” and map its set of available Com-
ponents into a set of Services correspondingly.

A dependency on the addition operator component we used in our examples
so far would be expressed through a constraint as follows (where Any is the NET
LINQ operator for existential quantification over an enumerable; also, some type
casts removed for brevity):

(sd)=>sd.ContractName==" Component” &&
sd.Metadata . ContainsKey (” ServiceDefinitions”) &&

sd.Metadata [” ServiceDefinitions”] is
IEnumerable<ServiceDefinition> &&
sd.Metadata [” ServiceDefinitions”] . Any(
s=>s.ContractName==" Operator” &&
s.Metadata . ContainsKey (” Symbol”) &&
s.Metadata [” Language”]=="+4")

This illustrates the rationale for using expressions for describing constraints in
dependencies: they are sufficiently powerful to describe the conditions the Service
Definition needs to exhibit, yet, since they represent delay—compiled code, a com-
poser need not interpret their contents. The composer simply needs to search the
expression tree for the equality test between the Service Definition contract name
and the string Component, then compile the whole expression (via the Compile
method expression objects expose in .NET) and evaluate the resulting function
over the Service Description representation of currently available components.

3 Related Work

The area of component—based programming [6] features a large number of com-
ponent models. This Section will only focus and contrast a relevant sample of
those that can be used to build ODR applications. For instance, models that
focus on static ahead-of-time composition, such as Koala [10], are not discussed.

The two traditional areas supported by ODR component models are extensible
enterprise and rich-client applications. Representative for the enterprise area

148 M. Trofin, N. Blumhardt, and C. Szyperski

are the Enterprise JavaBeans (EJB) framework [11], the CORBA Component
Model (CCM) [1], and more recently, Dependency Injection containers. Rich-
client applications use frameworks such as COM [12]. Besides these, there are
several frameworks that developed out of research, such as Fractal [4]. In the
following, we contrast these frameworks and our model.

A component in EJB is a bundle consisting of a lifecycle manager (“home”,
optional as of EJB 3.x), component code, and a deployment descriptor (addi-
tional EJB-specific information). Offered services are modeled as Java interfaces,
and composition is driven by component code, by using the Java Naming and
Directory Interface (JNDI) [I3]—a Service Locator mechanism. Only component
homes can be found and bound via JNDI, component instances are subsequently
obtained via the component home.

EJB features a hybrid between Service Locator-based mechanisms and ex-
plicit dependency declaration. The home of a component “A” is registered at
deployment time with a server—wide name (e.g. “Server—A”). Another compo-
nent, “B”, wishing to use “A”, uses a relative name (e.g. “B-A”) when using
JNDI programatically to lookup “A”. Then, the relative name and the expected
home interface are listed, by the component developer of B, in the deployment
descriptor. Finally, at deployment time, the application composer associates the
relative name to the server—wide name.

This mechanism may be considered a way to expose component dependen-
cies, however, nothing stops a component from attempting (and succeeding
at) a lookup using a “guessed” server-wide name. As such, knowledge of an
EJB component’s dependencies is generally incomplete, when such knowledge
is based solely on information supported by the component model. Given the
introspectable nature of Java bytecode, it is possible to construct tools to ex-
tract complete inter-component dependency information (e.g. [14]), however,
this is something the component model supports accidentally, and the mecha-
nisms required may not be suitable for all applications, since they require time—
consuming bytecode parsing, and since some EJB containers generate merged
container/component code at deployment time.

CCM is an extension of CORBA, and aims at allowing the creation and com-
position of components developed on a variety of operating system platforms
and using different languages. In CCM, a component features “ports”, describ-
ing: (i) implemented IDL interfaces (“facets”), (ii) required implementations of
IDL interfaces (“receptacles”), (iii) produced and consumed events (“sources”
and “sinks”), and (iv) “attributes”, which are configurable properties. Except
for attributes, which are intended to be primitive types (e.g. integers, strings),
the ports are expressed in terms of IDL interfaces. For example, a receptacle is
expressed in terms of the interface the component wishes to consume, as well as
an optional indication on whether this is rather a collection of such interfaces.
Just like in our model, and in contrast to EJB, a CCM component does not rely
on a Service Locator to be composed—composition is externally managed.

Components themselves are described using IDL. In contrast to our approach,
IDL describes the operational interface of the consumed service, not the service

The .NET Primitives for Open, Dynamic and Reflective Component 149

itself. For example, all calculator operations in our example would implement
the same IDL interface. However, the operation that they implement would not
be part of that interface, while it would be an interesting criterion for expressing
dependencies. Our model provides the notions of Contract, as separate from
operational interface, and Metadata for this purpose.

The closest to our Service Definition concept is the concept of WSDL [15] doc-
uments in the area of Web Services. WSDL, however, is heavily Web—oriented.
Conceptually, both utilize semi-structured data to describe a service. In the
same area, the Component Object Model framework (COM) [12] uses the Win-
dows registry as basis for component discovery. The information that may be
stored in the registry is similar conceptually to the notion of Service Definitions.
Similarly, the enterprise-oriented COM+ uses a registration database to store
component metadata.

The Vienna Framework [I6] has similar inter-component framework compos-
ability goals to our effort. It takes the approach of ”"wrapping” components, thus
imposing a constant runtime penalty. A second effect of this approach is a larger
solution space, with a model trying to address the different operational inter-
face features that are currently popular - e.g. methods, properties, events. More
importantly, it does not have a model for dependencies. The metadata concept
in Vienna revolves around operational contracts, while our concept of metadata
models a broader kind of contracts - similar, as noted, to the Web Services notion
of contracts.

A number of Dependency Injection frameworks describe components in terms
of offered and required interfaces. Examples include the Castle Microkernel [2]
and Autofac [3]. Both target the enterprise space, and both use a conventions—
based approach to comprehending a plain .NET class as a component. For exam-
ple, constructor parameters are treated as dependencies, and their type is used
for matching with the types offered by other components. In turn, the interfaces
implemented by a type are considered as offered services. There are policies for
matching requirements expressed on collections, or inheritance-based matching.
While both these frameworks use plain .NET types to model components, since
the translation between a type and the internal notion of a component differs,
interoperability is hard to achieve.

Outside of the enterprise space, the Fractal component model [4] was de-
signed explicitly to permit language—specific implementations, albeit without
the interoperation goal that CCM has. It relies on Service Locators to drive
binding to other components, through a binding controller, which a component
may expose. Binding controllers expose offered interfaces, but do not expose
requirements, which is one contrasting difference to our model. Fractal models
explicitly components that aggregate other components, through the concept of
a content controller, which, if implemented by a component, it allows for other
components to be added or removed from it.

The capability offered via content controllers is simlar to the capability, in the
Primitives model, to model dependencies on components (see Section [Z3]). The
main difference is that the Primitives do not need a separate concept to achieve

150 M. Trofin, N. Blumhardt, and C. Szyperski

the same result, in fact, the concept used (the Dependency model) is reusable
for a variety of other kinds of dependencies, as was illustrated in section 2

OSGi [17], the component model foundation of systems like Eclipse, addresses
features similar to our model. Despite its layered architecture, and unlike our
Primitives model, OSGi has a large surface area with complex protocols around
aspects like deactivation and reactivation. Primitives relegate such protocols to
the space of normal contracts and expects that, in the context of specific systems
like MEF, such contracts are published and well-known. There is no expectation
that such protocols are necessarily used across all systems build on top of Prim-
itives. As a result, it is much easier to build implementations or adapters to and
from our model. As a further point of distinction: OSGi uses LDAP query expres-
sions to describe constraints. While LDAP is a broadly accepted directory access
standard, it was not designed for the specific needs of a higher-order component
model. Our model draws on a general-purpose delay-compiled and type-safe ex-
pression model (a standard part of the .NET framework) that we apply over a
general metadata design, to support higher-order composition directly.

The mechanism used to express dependencies is somewhat reminiscent of the
way design-by—contract languages Eiffel [I§], ESC/Java [19], or SpecSharp [20]
specify pre— or post—conditions by using a rich expression language describing
Boolean constraints.

The concept of decoupling the concern of modeling components from the con-
cern of composing them is found in the area of Architecture Description Lan-
guages (ADL). An ADL is a formal language that describes how components
are instantiated and connected. Typically, ADLs are used for architectural vali-
dation. Interesting examples, in the context of this paper, are the Darwin ADL
and ArchJava, a Java extension that can express architectural constraints.

Darwin[2T22] introduced the notion of hierarchical composition—which is sim-
ilar to the kind of second order composition the Primitives support (Section [Z.3]).

ArchJava [23] is an ADL extension to the Java language, mainly aimed at vali-
dating communication integrity. It offers keywords for defining components with
ports (component, port). A port specifies method signatures that it provides and
that it requires (the provides and requires keywords) . A connect keyword
can be used to compose components, by connecting provides and requires
port elements of various components. Like Darwin, ArchJava also supports hi-
erarchical composition through the concept of “composite components”. Unlike
our model, and similar to CCM, ArchJava does not specify a notion of contract
separate from operational interface contracts.

4 Conclusion

We have presented a component model for building reflective components for
open and dynamic applications in .NET. Using a publicly—available sample chat
application, we showed how the model supports arbitrary programming models
and domain-specific component frameworks. Using this example, we showed how
the development effort required to adapt such programming models or compo-
nent frameworks to our model is relatively small.

The .NET Primitives for Open, Dynamic and Reflective Component 151

A key feature of our model is the utilization of the .NET delay—compiled
code model, or expressions, for describing dependencies. This offers support for
higher—order dependencies, without significant complexity on the side of compo-
sition engines, and without requiring that component authors be aware of such
potential consumption scenarios.

The model has current practical applications. It forms the foundation for the
Managed Extensibility Framework (MEF), which is part of the .NET Frame-
work 4.0, In turn, MEF is used by Visual Studion 2010 as both an internal
component model and as an external third-party extensibility mechanism. Other
implementations of the primitive model have been contributed by third—partiesﬁ,
for example, an IronRubyﬁ programming modeld.

References

1. Object Management Group. Corba Component Model (2002),

http://www.omg.org

2. The Castle Project. Microkernel, http://www.castleproject.org

Nicholas Blumhardt. Autofac, http://www.autofac.org

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open com-
ponent model and its support in java. In: Crnkovié, 1., Stafford, J.A., Schmidt,
H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 7—22. Springer, Hei-
delberg (2004)

5. ECMA International. Standard ECMA-335 - Common Language Infrastructure
(CLI), 4 edn. (June 2006)

6. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. Component Software. Addison-Wesley/ACM
Press (2002)

7. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture. In: Patterns for
Resource Management, vol. 3. Wiley, Chichester (2004)

8. Johnson, R.E., Foote, B.: Designing reusable classes. Journal of Object-Oriented
Programming 1(2), 22-35 (1988)

9. Black, A.P. (ed.): ECOOP 2005. LNCS, vol. 3586. Springer, Heidelberg (2005)

10. van Ommering, R.: Software reuse in product populations. IEEE Transactions on
Software Engineering 31(7), 537-550 (2005)

11. Sun Microsystems. Java 2T™ Platform Enterprise Edition Specification, v1.4
(November 2003), http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

12. Box, D.: Essential COM. Addison-Wesley, Reading (1998)

13. Lee, R., Seligman, S.: The Jndi API Tutorial and Reference: Building Directory-
Enabled Java Applications. Addison-Wesley Longman Publishing Co., Inc., Boston
(2000)

14. Trofin, M., Murphy, J.: Static verification of component composition in contextual
composition frameworks. International Journal on Software Tools for Technology
Transfer 10(3), 247-261 (2008)

@

4 For reference, the open source code is available at http://mef . codeplex.com

5 Available at http://www.codeplex.com/MEFContrib

5 IronRuby is an open source implementation of Ruby for .NET. More information is
available at http://ironruby.net/

" Used in http: //www.mahtweets.com/| Twitter client

http://www.omg.org
http://www.castleproject.org
http://www.autofac.org
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://mef.codeplex.com
http://www.codeplex.com/MEFContrib
http://ironruby.net/
http://www.mahtweets.com/

152 M. Trofin, N. Blumhardt, and C. Szyperski

15. World Wide Web Consortium (W3C). Web services description language (WSDL)
v. 2.0, http://www.w3.org/TR/wsd120

16. Oberleitner, J., Gschwind, T., Jazayeri, M.: The vienna component framework
enabling composition across component models. In: ICSE 2003: Proceedings of the
25th International Conference on Software Engineering, Washington, DC, USA,
pp. 25-35. IEEE Computer Society, Los Alamitos (2003)

17. OSGi Alliance. Osgi service platform — release 4, version 4.2 (2009)

18. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1992)

19. Flanagan, C., Leino, K., Lillibridge, M., Nelson, C., Saxe, J., Stata, R.: Extended
Static Checking for Java. In: Proceedings of Programming Language Design and
Implementation (2002)

20. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49-69. Springer, Heidelberg (2005)

21. Ng, K., Kramer, J.: Automated support for distributed software design. In: CASE
1995: Proceedings of the Seventh International Workshop on Computer-Aided Soft-
ware Engineering, Washington, DC, USA, p. 381. IEEE Computer Society, Los
Alamitos (1995)

22. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software
Architectures. In: Botella, P., Schafer, W. (eds.) ESEC 1995. LNCS, vol. 989.
Springer, Heidelberg (1995)

23. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architecture
to implementation. In: ICSE 2002: Proceedings of the 24th International Confer-
ence on Software Engineering, pp. 187-197. ACM, New York (2002)

A .NET Framework Features

The model relies on two features in the .NET framework, which, for the purpose
of clarity, are briefly described in what follows. These features are: type—checked
delay—compiled code, also known as “Lambda Expressions” (in short, “expres-
sions” in this paper), and a monadic functional model for collections, commonly
referred to as “LINQ” (Language—INtegrated Query).

An expression is an object of type Expression<Func <...>> and may be
constructed in two ways: either through explicit construction of an abstract syn-
tax tree, by using typed nodes, or through language facilities, in languages that
support that. For example, C#provides syntax and compile-time verification for
constructing such objects. The following line of code constructs the object that
represents the division computation of two integers, returning a double:

Expression<Func<int ,int ,double>>
divisionExpression = (x,y)=>x/y;

Expressions can be used two ways. One way is to compile them, which results in
a typed function (“delegate” in .NET nomenclature), which can then be applied:

Func<int ,int ,double> division =
divisionExpression . Compile ()}

double result = division (1,2);

Alternatively, expressions can be passed to interpreters. LINQ-to—SQL, for ex-
ample, translates an expression to SQL statement, which is then evaluated by a
relational database server.

http://www.w3.org/TR/wsdl20

The .NET Primitives for Open, Dynamic and Reflective Component 153

The second feature we mentioned is LINQ, which allows for the definition of
lazily—enumerated collections in a functional style. For example, given a collec-
tion of integers integers, the following defines the subset of even numbers.

IEnumerable <int> evens =

integers . Where (i=>i%2==0);
Besides the Where operator, Ling defines a large number of further standard op-
erators over IEnumerables: functions from enumerable to enumerable. In com-
bination, these can be used to express a full range of queries. Some languages,
such as C#, provide syntactic sugar for a large subset of these operators. For
example, the following form yields the same even numbers:

IEnumerable <int> evens =
from i in integers where i%2 == 0 select i}

The rich support of expressions and enumerator operators, C#language sugar,
and dynamic compilation, in combination, create a potent foundation for the
constraint system of the Composition Primitives presented in this article.

	The .NET Primitives for Open, Dynamic and Reflective Component Frameworks
	Introduction
	The Primitives Model
	Simple Example
	Composition in the Primitives Model
	Supporting Other Component Frameworks and Domain–Specific Programming Models
	Cost of Constructing Adapters
	Modeling Higher–Order Dependencies

	Related Work
	Conclusion
	References
	.NET Framework Features

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

