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Preface 

The goal of the International Conference on Software Composition is to advance the 
state of research on modularity and reuse in the context of software development based 
on components, services, features, or models. Software composition is becoming more 
and more important as innovation in software engineering shifts from the development of 
individual components to their reuse and recombination in novel ways.  

To this end, for the 2010 edition, researchers were solicited to contribute on topics 
such as component adaptation techniques, composition languages, modeling, as well 
as emerging composition techniques such as aspect-oriented programming, service-
oriented architectures, and mashups. In line with previous editions of SC, contribu-
tions were sought focusing on both theory and practice, with a particular interest in 
efforts relating them. 

This LNCS volume contains the proceedings of the 9th International Conference on 
Software Composition, which was held during July 1–2, 2010, as a collocated event of 
the TOOLS 2010 Federated Conferences, in Malaga, Spain. 

We received 33 initial submissions from all over the world which were considered 
for evaluation by a Program Committee consisting of 23 international experts. Among 
these submissions, we selected 10 papers to be included in the proceedings and pre-
sented at the conference. Each paper went through a thorough revision process and 
was reviewed by three to four reviewers. We would like to thank all the authors of 
submitted papers for their hard work. We are very grateful to the members of the Pro-
gram Committee as well as to the external reviewers for providing high-quality rec-
ommendations that enabled us to select a set of diverse and excellent papers. Finally, 
we would like to thank the organizers of TOOLS 2010 Federated Conferences for 
hosting and providing an excellent organizational framework for SC 2010. 
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Composing Models at Two Modeling Levels to Capture 
Heterogeneous Concerns in Requirements 

Erwan Brottier1, Yves Le Traon2, and Bertrand Nicolas1 
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{erwan.brottier,bertrand.nicolas}@orange-ftgroup.com 

2 University of Luxembourg/CsC/SnT, 6 rue Richard Coudenhove-Kalergi,  
L-1359 Luxembourg 

yves.letraon@uni.lu 

Abstract. Requirements specification is initially scattered in numerous partial 
models (viewpoints), describing heterogeneous concerns (typically functional 
and non-functional ones). To define these concerns, requirements analysts pre-
fer describing them separately with metamodels so that they can be properly 
identified, reused and tooled. The production of one unified view of require-
ments from separate viewpoints is a complex issue which requires a composi-
tion process working at two levels of modeling. At the meta-level, separate  
“of-the-shelf” metamodels allow defining either concerns or variation in the op-
erational semantics. These metamodels have to be composed into a core meta-
model, which captures the information and semantics needed for expressing and 
analyzing the requirements of a dedicated application domain (e.g. real-time 
critical systems, telecom services). At the instance-level, viewpoints are com-
posed to produce a global requirements model, which has to be conformant with 
the core metamodel. Although the same composition mechanism is used for 
both levels, we emphasize in this paper the strong coupling between the two 
steps and the difficulty to make both compositions consistent with each other. 
We thus propose a process for dealing with two-level of composition. The proc-
ess is illustrated in the context of a platform specialized for requirements analy-
sis purposes. 

1   Introduction 

Model-Driven Engineering [1] (MDE) is a data-centric approach of software engi-
neering where heterogeneous information such as software specifications and domain 
knowledge is captured homogeneously by models and manipulated with various Do-
main Specific Languages [2] (DSL). This information is likely to be described by a 
collection of models, whatever the modelling-level it pertains to. At an instance-level, 
large-scale knowledge is distributed among numerous people and then specified sepa-
rately. At a meta-level, design of complex software need to be properly modularized 
as advocated by Aspect-oriented Software Development (AOSD) approaches [3, 4] to 
separate concerns and enhance reuse of design solutions.  Information modularization 
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thus coexists both at meta- and instance- levels, but with different purposes.  Compos-
ing metamodels expressing separated concerns is already complex, especially when 
the operational semantics of these concerns is taken into account. The models compo-
sition, each of them mixing several concerns, into a model conformant to one core 
metamodel and its semantics is also an arduous task. The hard point we deal with in 
this paper is to synchronize both levels when models and concerns are composed. 

This two-level separation of information is particularly true during the early stage of 
a software development process, where stakeholders define their own viewpoints of 
what the system must be [5]. Each viewpoint encapsulates partial requirements infor-
mation and may be expressed in different formalisms, chosen according to stake-
holders’ skills, preferences or enterprise habits. Furthermore, viewpoints may describe 
information relating to several concerns (e.g. functional, security, real-time) of the 
system-to-be  [3].  

In previous works [6, 7], we presented the R2A platform [8] (which stands for Re-
quirements to Analysis). Its analysis goal is requirements validation and it has been 
designed to perform validation techniques such as system test generation from and 
simulation of requirements (see [9] and [7] respectively). Its core feature is a model 
composition mechanism designed to compose viewpoints expressed in various for-
malisms such as constrained natural language and entity-relationship diagram (in-
stance-level composition). This platform has been designed using MDE technologies 
to make it adaptable to various input requirements languages. However, one mono-
lithic metamodel was used to capture concerns and operational semantics dedicated to 
validation techniques. This design hampered significantly the adaptability of the plat-
form to other industrial contexts where concerns to capture and analysis goals are 
different. We believe that this problem is common to most MDE based platforms.  

In this paper, we present how we deal with these two levels of information modu-
larization, and we illustrate the approach on the issue of capturing heterogeneous 
requirements with an evolvable meta-modelling platform. The hard point is to have a 
process and transformations which do not need to be modified each time the platform 
(in our case the R2A platform) is adapted to a new industrial context. Synchronization 
is thus needed between both levels of composition. We propose a two steps composi-
tion process working at two levels of modelling. Each step uses a generic composition 
mechanism presented in [6]. The first step consists in composing concerns and ca-
pacities to produce the Core Requirements Metamodel (CRM) of the platform. Con-
cerns define types of information to capture from viewpoints and capacities specify 
operational semantics of concerns for analysis goals. The second step produces a 
unified view of requirements by extracting and composing heterogeneous information 
from viewpoints. The global requirements model obtained is an instance of the CRM 
and is ready to perform the targeted analysis goals. 

This paper is organized as follows. Section 2 provides examples of viewpoints and 
an overview of the approach in the industrial contexts where the R2A platform has 
been initially developed. Some metamodels representing concerns and capacities used 
in these contexts are depicted in section 3. Section 4 illustrates the two steps of the 
process with viewpoints and metamodels introduced in section 2 and 3. Related work 
is discussed in section 5 and section 6 concludes.  
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2   Context and Overview of the Approach 

The R2A platform is the result of collaborations of the INRIA/Triskell team with 
Thalès Airborne System and France Télécom. The main goal for these industrial part-
ners is the evaluation of MDE approach to minimize the cost of Verification and 
Validation (V&V) activities based on Software Requirements Specifications (SRS). 
Requirements studied from France Télécom and Thalès Airborne System are low-
level (also termed operational) requirements that are the result of initial goals refine-
ment [10]. They were organized by viewpoints and must be composed to perform any 
V&V activity. 

The project with Thalès Airborne System [11] was to (i) validate requirements by 
simulation (prototyping) and (ii) generate system test objectives for weapon systems 
in combat aircrafts. The project with France Télécom aimed at (i) checking require-
ments consistency and (ii) producing a first high-level design (business model, use 
case and sequence diagrams, test plan) for telecom services, independently from sub-
contractors. 

This section presents an overview of our two-level composition process. Section 2.1 
describes two viewpoints for a Library Management System (LMS), illustrating het-
erogeneous information to be composed and give some definitions. Section 2.2 recalls 
the principles of our composition mechanism. Section 2.3 presents the two-level com-
position process using the composition mechanism and discusses the nature of the 
relationships between instance- and meta-level compositions. 

2.1   Example of Heterogeneous Viewpoints to Compose and Analyze 

In the context of this paper, we define viewpoint, concern and capacity and design 
notions as follows: 

 

Definition - Viewpoint: A set of models which describes a part of a system from a 
given perspective (i.e. for one or a group of stakeholder(s)). These models may be 
described in various formalisms [5].  

 

Definition - Concern: A type of information, such as security, business domain or 
real-time. A concern affects viewpoints [3] and may crosscut several viewpoints (in 
that case it can be considered as an aspect in AOSD approaches). A concern is de-
fined by at least one metamodel. 

 

Definition - Capacity: The operational semantics which may be attached to a (or a set 
of) concern(s). A capacity is thus related to a concern. A concern may embed a vari-
able number of capacities. A capacity is defined by at least one metamodel (in prac-
tice Kermeta1 metamodels). 

 

Definition - Design: A metamodel used to describe one (or a part of) concern or ca-
pacity. This terminology is used only for sake of clarity in the following. Designs are 
reusable units that have to be composed to produce a core requirements metamodel 
(CRM) for a specific industrial context. 

                                                           
1 The Kermeta Project Home Page: http://www.kermeta.org 
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Figure 1 provides two excerpts of viewpoints similar to those that we studied. They 
capture some requirements of a library management system (LMS) used as an illustra-
tion throughout this paper. Both viewpoints in Figure 1 contain a set of descriptions 
(numbered in the figure), expressed in terms of three different input requirements 
languages (IRL) which are: 

 

- the entity-relationship diagram notation (1 in Figure 1). 
- a controlled natural language called the RDL [6] which stands for Requirements 

Description Language (2-8 in Figure 1).  
- a first-order logic notation used to describe actions that actors of the system can 

trigger (9 in Figure 1). 

 

Librarian
Book
kind

borrowed
manageLibrarian

Book
kind

borrowed

Book
kind

borrowed
manage

(2) All “book” are not “damaged” after the librarian did “make an inventory”.
(3) The “customer” must be “registered” and the book must be not “borrowed” before the 
“customer” can “borrow” a “book”.
(4) The “customer” is “registered” after the “librarian” did “register” the “customer”.
(5) The book is borrowed by the “customer” after the “customer” did “borrow” the “book”.
(6) The “book” is “damaged” after the “customer” did “damage” the “book”.

Use Case return (b: Book, c:Customer)
Pre: borrowed(b,c), Post:  not borrowed (b, c).

(7) Globally, the action “borrow” eventually occurs.
(8) The “book” must be not “damaged” before the “customer” can “borrow” the “book”.

(1)

(9)

Viewpoint 1 (VP1)

Viewpoint 2 (VP2)

 

Fig. 1. Examples of viewpoints for a library management system 

Viewpoints include partial information on the system and are likely to overlap se-
mantically. For instance, information about the action “borrow” is scattered among 
viewpoints in descriptions (3, 5, 7, 8). The sentence (3) describes a condition to be 
satisfied by the customer to borrow a book while sentence (5) states that borrowing a 
book implies a particular relation (borrowed) between the book and the borrower. The 
notion “borrowed” in (5) is also involved in several descriptions, as a relation in (9) 
but also as a state of the business concept “Book” in (1, 3). 

Different concerns of the system crosscut these viewpoints, such as business con-
cepts definition, functional and non-functional descriptions of expected actions. While 
the diagram (1) defines only business concepts, the two other languages allow speci-
fying information of several concerns. For example, sentence (4) defines two business 
concepts (Customer and Librarian) and a boolean state of the first one (registered). 
But it specifies also one causal effect of the business action register. Sentence (7) 
refers the business action borrow but describes also a simple non-functional property 
(temporal property) that the system must fulfill: the action borrow must be triggerable 
with regard to causal chains defined by functional descriptions. These concerns 
should be defined separately to be properly identified, reused or modified. 
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Overlaps between information captured by viewpoints must be made explicit to 
analyze requirements. Viewpoints composition produces a global model of require-
ments which instantiate concerns defined by designers.  

Elements of the global model may be instances of several concerns. Concerns must 
be composed to explicit their overlaps. Capacities are also inputs of this composition 
since they describe operational semantics of concerns. In other words, viewpoints 
must be composed at an instance-level for analysis purposes while concerns and ca-
pacities must be composed at a meta-level to permit viewpoint composition. 

2.2   Overview of the Composition Mechanism 

We proposed in [6] a general MDE-based process for composing viewpoints and 
producing one global model instance of a Core Requirements Metamodel (CRM). In 
this previous work, we used it at an instance-level. We recall in this section the two 
steps of this process called interpretation and fusion, applied at two levels of model-
ing in the following. The interpretation extracts relevant information in viewpoints 
and translates it in terms of model fragments, which are instances of the CRM. Each 
IRL embeds interpretation semantics, defined by a set of interpretation rules (pattern 
matching rules). An interpretation rule focuses on a type of information that can be 
expressed by the IRL and transforms it in terms of one CRM model fragment. Fusion 
consists in combining all model fragments, each one being an interpretation of re-
quirement description (from a viewpoint), and results in a model of the requirements 
which is an instance of the CRM. Fusion is also specified with dedicated rules called 
fusion rules. 

 

:Entity
name : book

:Attribute
name:borrowed

:Entity
name : customer

:Relation
name:borrowed

:BooleanType

attributes

relations

type

:Event
name : borrow

:Existence

:True

observables

scope

MF1

:Entity
name : book

:Attribute
name:borrowed

:BooleanType
type

attributes

:Entity
name : book

MF2 MF3 MF4

:UseCase
name : borrow

:Parameter
role : activator

parameters

:Actor
name : customer

type

MF5

 

Fig. 2. Five RM model fragments obtained by interpreting viewpoints in Figure 1 

Figure 2 presents five model fragments obtained by applying the interpretation step 
on viewpoints in Figure 1 (a parsing step is required for textual IRLs as described in 
[6] since interpretation and fusion rules work on models). MF1 is the execution result 
of an interpretation rule dedicated to extract a business concept state from entity rela-
tionship diagrams. It has been extracted from the description (1) of Figure 1. MF2 has 
been extracted two times from the first part of the sentence (5) and from the logical 
expression (9). MF3 and MF4 have been extracted from sentences (2) and (7) respec-
tively. MF5 has been extracted three times from sentences (3, 5, 8). It captures the 
fact that the action borrow can be triggered by the actor customer.  

We can notice that model fragments reflect the partiality and the redundancy of in-
formation captured by viewpoints. MF1 is semantically included in MF3, MF2 will be 
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extracted twice from descriptions (5, 9) and all these model fragments overlap seman-
tically. The fusion step is used to resolve these overlaps. This step is also specified by 
a set of pattern matching rules called fusion rules and used to describe a fusion seman-
tics for a given metamodel. Fusion rules can be either equivalence or normalization 
rules. Equivalence rules specify how to resolve overlaps between model fragments 
while normalization rules are used to complete the global model after equivalence 
rules execution or instantiating capacities as presented in section 4. 

Figure 3 presents two examples of equivalence rules (ER1 and ER2). Basically, 
equivalence rule checks if objects in its scope (1) are equivalent. Two objects in the 
scope are identified as equivalent if they satisfy the equivalence range constructor (3) 
termed constructor. The result of this equivalence identification step is a set of equiva-
lence ranges. An equivalence range is a set of equivalent objects. Once equivalence 
ranges have been identified, each one is resolved i.e. objects in the range are replaced 
by a new object, instance of the resulting type (2). By default, values of the resulting 
object properties are the union of values of these properties for all objects in the 
equivalence range. This default policy can be overridden with resolution directives (4). 

 
ER1 (c1, c2 : MetaClass) : MetaClass {
?: c1.name = c2.name and c1.package = c2.package; }

ER2 (r1, r2 : Relation) : Relation {

?: r1.name = r2.name and fcs(union(r1.source, r2.source)) ≠ null
and fcs(union(r1.target, r2.target)) ≠ null;

source := fcs(equRanges.collect(r | r.source));
target := fcs(equRanges.collect(r | r.target)); }

(3)

(4)

(1) (2)

 

Fig. 3. Two fusion rules defined at a meta-meta-level 

For instance, ER1 of Figure 3 states that two METACLASS are merged if they have 
the same name. ER2 is more complex. The function fcs in the constructor and resolu-
tion directives takes as inputs a set of METACLASS and returns their first common super 
type if it exists, null otherwise. The keyword “equRanges” represents the equivalence 
range identified by the rule. Thus, ER2 states that two RELATION are equivalent if (i) 
they have the same name, (ii) their source METACLASS are linked by an inheritance 
relationship and (iii) their target METACLASS too. Resolution directives in ER2 deter-
mine which metaclasses must be source and target of the resulting RELATION. Execu-
tions of ER1 and ER2 will be illustrated in section 4. 

2.3   Overview of the Two-Level Composition Process 

Figure 4 gives an overview of the reason why we need a two-level composition proc-
ess. At meta-level, concerns and capacities are designed with distinct designs. De-
signs are separated for reusability and extensibility purposes, to allow for the creation 
of a core requirement metamodel (CRM), dedicated to a specific industrial context. 
The creation of a CRM is thus seen as a product line where the final metamodel is a 
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given product adapted to one specific context. Each design embeds one fusion seman-
tics (defined at the meta-level) which describes how a set of its instances must be 
composed using the fusion step of the composition mechanism. 

To compose several designs and their fusion semantics, we apply the composition 
mechanism at the meta-level. The interpretation step is not used at this level, since 
designs are instances of the MOF. The fusion step is applied with the fusion semantics 
embeds in the meta-metamodel MOF (FS0 in Figure 4). The result of this meta-level 
composition is the CRM and its associated fusion semantics (FSf). This FSf serves to 
compose the model fragments at the instance-level, as described in the following. 

The initial fusion rules embedded in one design refer its elements. Thus, modifica-
tions of this design impact these fusion rules. For instance, ER1 specification in Fig-
ure 3 will be modified if the concept METACLASS or properties name and package are 
modified. When designs are composed, fusion semantics FS1 to FSn will be impacted, 
since some METACLASS will be combined. Furthermore, elements in these designs 
become elements of the CRM after composition. Therefore, fusion rules associated to 
designs become fusion rules of FSf. The composition of fusion rules associated to 
designs is a side effect of the composition of designs. 

 

…

FS0

MOF

FS0FS0

MOF

FSf

CRM

FSf

CRM

FSfFSf

models included in viewpoints global  modelglobal  model

a composition with
fusion semantics a

« instance of »

FS0FS0

interpretation

model fragments

designs capturing
concerns and capacities

interpretation semantics

model

instance-level

meta-level

meta-meta-level

FS1FS1 FS2FS2 FSnFSn

IS1IS1 IS2IS2 ISnISn

input requirements
languages

IS

fusion semanticsFS

 

Fig. 4. Overview of the two-level composition process 

At instance-level, models included in viewpoints are instances of several IRLs. 
Each IRL embeds an interpretation semantics (IS1 to ISn in Figure 4) that produce, 
from models instance of it, a set of model fragments of different concerns. At meta-
level, the composition of designs will impact also interpretation rules. When designs 
have been composed, interpretation semantics produce CRM model fragments. The 
fusion semantics of the CRM (FSf) is applied on them and the global model is ob-
tained (see Figure 4).  
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To summarize, the two-level composition process consists in: 
 

- at the meta-level, applying the fusion step of the composition mechanism on de-
signs and embedded fusion semantics. In that case, the fusion semantics executed 
is FS0, defined at the meta-meta-level. The CRM and FSf are produced. FSf con-
tains modified fusion rules of FS1 to FSn. Interpretation semantics IS1 to ISn of 
IRLs are also modified. 

- at the instance-level, applying the composition mechanism on models included in 
viewpoints. The interpretation step produces a set of CRM model fragments. The 
fusion step is executed on them to obtain the global model. In that case, the fusion 
semantics executed is FSf, defined at the meta-level. 

 

Model fragments of Figure 2 have been produced in the case where concerns have 
not been composed (these concerns are presented in the next section). The CRM has 
not been produced and each model fragment obtained by interpretation is an instance 
of one concern. It is then not possible to have a unified view of requirements and to 
perform analysis. The remainder of this paper illustrates how concerns and capacities 
introduced in section 3 and viewpoints of Figure 1 are composed by using the process 
described in this section so that one global model of viewpoints is obtained. 

3   Examples of Concerns and Capacities 

Based on our experiments at Thalès Airborne System and France Télécom, we have 
defined a formalism which handles a significant subset of typical industrial require-
ments. This formalism relies on a state-based specification paradigm. It captures cur-
rently (i) business domain definition, (ii) functional description of the system and (iii) 
temporal constraint that the functional description must satisfy. The formalism is the 
current CRM of the platform. It is represented by a metamodel, called RM (which 
stands for Requirements Metamodel), and described by a set of designs (concerns and 
capacities). The rest of this section presents some parts of these designs. The reader 
could refer to [6-8] for more details. 

Designs of Figure 5 describe RM concerns. Design (a) gives an overview of the 
RM metamodel, structured in main views (we show only those that we present in the 
paper): the Functional View, Analysis View and Temporal Constraint View. Notice 
that grey metaclasses are interfaces. 

The functional view (b) describes system functions and actor actions, represented 
by the metaclass USECASE. Conditions and effects of use case activations are described 
by pre- and post-conditions (relationships preCondition and postCondition).  These 
conditions are expressed as first order logic expressions (metaclass EXPRESSION). Use 
case contains a set of formal parameters (metaclass PARAMETER). 

Each parameter represents a BUSINESSCONCEPT involved in the use case and its role 
in the use case (for instance "activator", which states that the parameter is responsible 
of the use case activation). A business concept is an ACTOR if it can trigger at least one 
use case, otherwise it is a CONCEPT. Expressions are instances of metaclasses (logical 
operators, boolean comparisons and atomic propositions) defined in the expression 
view, which is not described in this paper. The analysis view (c) captures roughly a 
UML class diagram. Entities have Properties with possible states (ATTRIBUTE) and 



 Composing Models at Two Modeling Levels to Capture Heterogeneous Concerns 9 

relationship with others relations (RELATION). Properties have a type (DATATYPE): 
BOOLEANTYPE or ENUMERATIONTYPE (a finite set of literal values, representing strings, 
integers or intervals). 

Instance of the functional concern can be also instantiated to represent a particular 
system behavior. In another words, instances of designs (b) and (c) can be also instan-
tiate in order to capture system states and transitions. Design (e) is a small excerpt of 
the design dedicated to this purpose (called InstanceView). Due to space limitation, we 
introduce here only two concepts used in the running example of this paper. 
USECASEINSTANCE represents an instance of the USECASE metaclass and UCSYSTEMSTATE 
corresponds to a state of the system at a given moment (see [7, 9] for more details).  
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(b) (e)
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Fig. 5. Some concerns of the current version of the R2A platform 

The temporal constraint view (d) captures temporal property patterns correspond-
ing to the Dwyer patterns [12]. A PATTERN captures a temporal constraint that the 
functional description of the system must satisfy. The pattern RESPONSE may capture 
for instance that if a condition (first element of observables) on the current system 
state holds, then the other condition (second element of observables) must hold. 
OBSERVABLE can be either a condition on the current system STATE or an EVENT. The 
SCOPE of a pattern restricts its domain of truth. In the description (7) in Figure 1, the 
scope is the keyword “Globally”. It means that the property must be always true (in a 
logical representation, it corresponds to the boolean constant true).  
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As introduced in section 2.1, concerns are specified by a set of designs. For ex-
ample, the business concern of the RM is represented by the design (c) while the 
functional concern is specified by the design (b) and the expression view. We can 
also notice that these concerns crosscut: the functional concern includes the business 
domain concern (some concepts in the expression view overlaps with the business 
concern) and the property concern shares the notion of use case with the functional 
one (we will see in section 4 that metaclasses EVENT and USECASE overlap). Model 
fragments of Figure 2 are instances of these concerns: MF1, MF2 and MF3 instanti-
ate the business concern, MF4 instantiate the temporal property concern and MF5 
the functional one. 

The RM metamodel embeds also capacities. Design (f) of Figure 6 is a capacity 
designed to weave simulation functionalities in a functional concern. The metaclass 
SYSTEM contains a method simulate which starts the simulation process. The metaclass 
SIMULATOR is linked to initial and current states of the system. It is also linked to the 
set of transitions which can be run according to the current state (relation runnables). 
This set is automatically calculated when one of the first third methods of SIMULATOR 
is executed. The first two methods allow defining the initial state for a simulation. 
The third method is used to run a transition, included in the runnables set. Further-
more, this design defines the notion of SCENARIO which is a sequence of 
EXECUTIONSTEP, starting from an initial STATE. Previous work [7] details the simulation 
semantics in deeper details.  

 

 initializeFromState()

 initializeFromScenario()

 runTransition()
 run()

 saveScenario()

Simulator

 isRunnable()
 run()

Transition

State

Scenario

ExecutionStep

 simulate()

 getAllTransitions()

System

 evaluate()
 update()

Expression

 isRunnable()
 run()

UseCaseInstance

 getAllUCs()

RequirementsModel

currentScenario

0..1

initialContext

1

currentContext

1

runnables

*

system 1
simulator

1

transition

1

initState1 newState0..1

steps*
(f)

(g)

 

Fig. 6. A generic capacity dedicated to simulation purpose (f) and design additions (g) used to 
specialize this capacity for concerns of Figure 5 

Methods defined in this design are implemented with the Kermeta language which 
is an open source meta-modeling environment, developed by the Triskell team at 
IRISA. The reasons of this choice are twofold. Firstly Kermeta has been especially 
designed to enable the description of operations in metamodels thus providing seman-
tics and behavior for metamodels [13]. This makes instances of capacities executable 
(see [7] concerning the capacity of Figure 6). Secondly Kermeta code can be loaded 
as a model. This is an important point since the meta-level composition may impact 
code defined in capacities as discussed in section 4. 

Design (f) is a high-level design of one possible simulation implementation. Some 
methods in its metaclasses are not implemented (the grey ones) and the metaclass 
TRANSITION and STATE are abstract concepts. Notice that grey methods are abstract (not 
implemented). Design (g) describes how to specialize the simulation capacity for the 
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RM. It specifies methods in concern metaclasses defined in Figure 5 so that abstract 
methods of design (f) will be implemented after meta-level composition (see section 4). 
For verifying whether a use case instance can be triggered, the EXPRESSION class has an 
evaluate method which returns true if the current system state implies the precondition. 
The method run in the USECASEINSTANCE metaclass modifies the current system state by 
calling the method update of the EXPRESSION class with the corresponding post-condition. 

4   Illustration of the Two-Level Composition Process 

This section explains how we use the fusion step to compose at two different levels of 
modeling designs and viewpoints. Some fusion rules are defined at a meta-meta-level 
to compose designs while others are defined at a meta-level in designs to compose 
viewpoints. Fusion rules embedded in designs are impacted by the meta-level compo-
sition since they refer designs elements and in particular metaclasses. 

Designs introduced in section 3 capture concerns and capacities. They are semanti-
cally linked, although they have been designed separately. Making explicit these rela-
tions is a prerequisite to any RM instantiations, in particular viewpoints composition. 
To compose them, we apply the fusion semantics embedded in MOF as described in 
section 2.3.  

ER1 and ER2 in Figure 3 are part of this fusion semantics. When these two rules 
are executed to produce the RM, ER1 identify and resolve an overlap between meta-
classes TYPEELEMENT of designs (b) and (c). This is an obvious case of equivalence 
between designs. Relations type in (b) and (c) overlap too. More precisely, relation 
type between TYPEDELEMENT and TYPE metaclasses in (c) subsumes relation type be-
tween PARAMETER and ENTITY metaclasses in (b). ER2 will identify and resolve it 
automatically. 

The equivalence identification of our approach is basically based on name matching 
and equivalence checking in the immediate context of observed objects. However, 
concerns and capacities to compose are described separately and overlapping meta-
classes may be named differently in distinct metamodels, according to the role they 
play. The pairs of notions (USECASEINSTANCE, TRANSITION) or (ENTITY, BUSINESSCONCEPT) 
in Figure 5 and Figure 6 are relevant examples of such a conflicting situation, known 
as terminology clash (see [14] for a classification of conflicting situations). Meta-
classes EVENT and USECASE overlap since they designate both actions of the system.  
But ER1 will not identify these three overlaps since names of these metaclasses are 
different. 

To overcome this issue, our composition mechanism provides a set of directives 
(called pre-composition directives) used to specify manually equivalence at the meta-
level. Figure 7 presents such directives to compose designs of Figure 5 and Figure 6. 
Refinement directive of the form “a refines b” declares that metaclass a is another 
representation of b. It sets name and package property values of a with those of b (a 
and b have then the same name and package). By this way, ER1 of Figure 3 will 
match a and b during composition. Override directive of the form “a overrides b” 
declares that the method b is replaced by a. It sets the name of b with the name of a. 
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B.BusinessConcept refines C.Entity
D.Scope refines E.SystemState.
D.State refines E.SystemSate.
D.Event refines B.UseCase.
F.System refines A.RequirementsModel.
F.Transition refines E.UseCaseInstance.
F.State refines E.SystemState.
G.RequirementsModel.getAllUcs overrides F.System.getAllTransitions.

 

Fig. 7. Pre-composition directives to compose concerns of Figure 5 and capacity of Figure 6 

Figure 8 depicts a piece of the RM obtained by composition where relations type 
and ENTITY notions of designs (b, c) have been automatically merged by ER2 and ER1 
respectively. Several metaclasses in Figure 8 have been impacted by directives of 
Figure 7. Among them, we can notice the metaclass REQUIREMENTSMODEL which is the 
composition result of metaclasses REQUIREMENTSMODEL and SYSTEM where the method 
getAllUcs returns all system transitions (i.e. USECASE instances by composition). 

 
TypedElement

role: EString

Parameter

Type

Entity

Scope

UseCase

Observable

SystemState

 Simulate()

 getAllUCs()

RequirementsModel

Scenario SimulatorAnalysisView

type

1

entities

*

initState1
functionalView

1

currentScenario

0..1  

Fig. 8. Piece of the RM after composition 

Each RM concerns and capacities embeds a fusion semantics as introduced in sec-
tion 2.3. Figure 9a provides few fusion rules from them, defined at a meta-level as 
opposite to the rules of Figure 3. ER3 to ER5 are defined on the business domain 
concern, ER6 and ER7 on the functional concern (design (b)), ER8 on the temporal 
property concern and NR1 on the simulation capacity. ER3 specifies that the concept 
of RELATION subsumes the concept of ATTRIBUTE. ER4 states that two ATTRIBUTEs are 
equivalent if they are contained by an equivalent ENTITY (attributes-1 means to navi-
gate the link attributes in the other side).  

NR1 is a particular type of fusion rule called normalization rule. It is part of the fu-
sion semantics of aspect (e). Normalization rules are executed at the end of the com-
position process, after equivalence rules. They are used to complete the global model 
without adding any new concern information. Examples of normalization rules are 
described in [6]. Such a rule consists of a guard and an action (respectively terminals 
“?” and ‘!’ in Figure 9). The action is executed if the guard is evaluated to true. NR1 
states that an instance of the SIMULATOR must be linked to an instance of SYSTEM. NR1 
is thus an imperative form of a contract that an instance of RM must fulfill if the 
simulation capacity has to be woven. 
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ER3 (a :Attribute, r : Relation) : Relation { ?: a.name = r.name;
linkedEntities := ER.collect(r: Relation|r.linkedEntities) ∪ c.collect(a: Attribute | a.owningEntity). }
ER4 (a1, a2 : Attribute) : Attribute { ?: a1.attributes-1 = a2.attributes-1 and a1.name = a2.name; }
ER5 (e1, e2 : Entity) : Entity { ? e1.name = e2.name; }
ER6 (u1, u2 :UseCase) : UseCase { ?: u1.name = u2.name; }
ER7 (a : Actor, c : Concept) : Concept { ? a.name = c.name; }
ER8 (e1, e2 : Event) : Event { ?: e1.name = e2.name; }

NR1 {  ?: card(model.instancesOf(Simulator)) < 1
!:  Simulator s := create(Simulator); s.system := model.instancesOf(System).one(); }

ER8’ (e1, e2 : UseCase) : UseCase { ?: e1.name = e2.name; }
NR1’ {  ?: card(model.instancesOf(Simulator)) < 1
!:  Simulator s := create(Simulator); s.system := model.instancesOf(RequirementsModel).one(); }

(a)

(b)

 

Fig. 9. Fusion rules at a meta-level 

Specifications of these rules may be impacted by the composition of designs as in-
troduced in section 2.3. For instance, ER8 depends on the metaclass EVENT which has 
been refined as USECASE. These rules are automatically rewritten since they are in-
stance of the fusion language metamodel (not presented here). Kermeta code specified 
in the simulation capacity of Figure 6 is rewritten in the same way. The fusion rules of 
Figure 9b are new versions of rules in Figure 9a that have been automatically refac-
tored by the meta-level composition (in this rule, only one element has been rewritten, 
the underlined one). We can notice that the ER8’ is semantically equivalent to ER6. 
In fact, conflicts between fusion rules may appear after the meta-level composition. 
The mechanism to detect them automatically is out the scope of this paper. 

It is possible that the resulting CRM is under-specified or inconsistent. So far, we 
have noticed three well-formed rules that must be satisfied by any CRM and its fusion 
semantics. The first two rules are OCL constraints defined on the MOF and imple-
mented with the invariant checker feature of Kermeta: 

 

(1) Leaf metaclasses of the CRM inheritance tree must be concrete. 
(2) All metaclass methods defined in the CRM must have a concrete implementation. 
(3) There are no conflicts in the CRM fusion semantics. 
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Fig. 10. A piece of the global RM model obtained by composing viewpoints of Figure 1 
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We have produced the RM and its fusion semantics by meta-level composition. To 
compose viewpoints in Figure 1, we use the two steps of the composition mechanism 
at an instance-level. First, the interpretation is used to extract RM model fragments 
from viewpoints. Second the fusion semantics of the RM is applied on model frag-
ments to produce the global requirements model. Figure 10 is a partial view of the 
global model produced from viewpoints of Figure 1. It includes information captured 
by model fragments of Figure 2. The result of ER3 execution on MF1 is illustrated in 
Figure 10. Only the notion of relation “borrowed” remains and it is properly linked to 
“customer” and “book” entities. 

This model illustrates the interest of our approach. First, the action “borrow” is 
represented in the global model of Figure 10 by one object (the use case “borrow”) 
which is linked to other objects via instances of relationship defined in different con-
cerns (e.g. observables and preCondition). If concerns have not been composed, this 
action will be represented separately by an instance of USECASE and an instance of 
EVENT and no semantic relations will appear between them. Second, viewpoints com-
position has combined all information scattered in viewpoints concerning the use case 
borrow. Third, an instance of Simulator has been properly created and linked the 
REQUIREMENTSMODEL since the simulation capacity has been composed with concerns. 
The model is then directly executable to perform simulation by executing methods of 
the simulator object. In other words, if the composition mechanism is applied only at 
the instance-level, the composition result will be a set of separated models (each one 
instance of a concern) without operational semantics, instead of one global model 
(fusion semantics of each concern will be applied on model fragments, each one an 
instance of one concern). 

5   Related Work 

To the best of our knowledge, we are not aware of any work identifying and address-
ing the issue of composing information at two-level of modelling and discussing the 
strong coupling between these levels during composition. First we present related 
work in the requirements engineering domain [15-18] where viewpoints composition 
is an important issue since it produces a global model which reflects the global com-
plexity of the stakeholder’s need [15]. Second, we describe related work in the AOSD 
domain [3, 4], where capacities and concerns must be properly composed after sepa-
ration to face of complexity involved by crosscutting concerns in software develop-
ment processes. 

Concrete composition solutions have been proposed in requirements engineering as 
a way to perform analysis goals [16, 17]. In [17], the authors define a framework to 
produce an HOL (High Order Logic) model from viewpoints expressed in different 
notations. Authors of [16] propose a method for composing viewpoints expressed in 
Z. These two approaches are tedious since much of the work is not automatic and are 
specialized to one IRL. 

Sabetzadeh and Easterbrook [15] provide an interesting composition framework 
based on a formal definition of models to compose. The composition operator (cate-
gory-theoretic concept of colimit) is formally defined and traceability links are auto-
matically inferred. However this operator requires a model type definition which 
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restricts highly the accepted IRLs (the mathematical framework is too much restric-
tive). Furthermore viewpoints must be expressed in the same input requirements lan-
guage and overlaps are identified manually. 

Zave and Jackson outline in [18] main issues and foundations of multi-formalism 
composition of heterogeneous information. They describe a formal CRM designed to 
formalize a wide range of conceptual modeling language where composition is the 
conjunction of elements extracted from viewpoints. They describe a notion of func-
tions dedicated to each IRL for assigning input model semantics in the CRM. They 
point out that these functions may be adapted since semi-formal languages include 
semantic variability points. Our composition mechanism conforms to these ideas. In 
our approach, these functions are sets of interpretation rules and can be easily adapted 
because we have a rule-based approach. The major difference with this work is that 
we describe a concrete composition mechanism. 

Kompose [4] is a meta-modeling approach to compose metamodels, in particular 
aspects capturing capacities. It is built on the Kermeta language. Similar to our ap-
proach, fusion semantics is described by a set of rules. Equivalences between objects 
are automatically calculated with regards to object structures and resolved. The main 
differences with our composition mechanism are threefold: (i) Kompose take as in-
puts models expressed in one language, (ii) complex compositions can not be speci-
fied since equivalent objects must be instance of the same type and (iii) specification 
of resolution directives are not allowed. 

The approach [3] targets the identification of crosscutting concerns in viewpoints in 
order to measure influences between concerns and viewpoints and help negotiations 
between stakeholders. This is done by using composition rules, which does not allow 
to obtain a global model of the requirements but to state how concerns are related.  

6   Conclusion 

In this paper we studied a problem of models composition, (1) when metamodels and 
their semantics have to be composed into one core metamodel, and (2) when partial 
instances of this core metamodel have to be composed to produce a complete model. 
This problem occurs when dealing with requirements models but we believe that this 
is a general problem which occurs each time a meta-modeling platform is built with a 
product line approach. The core metamodel (a specific product) is the composition of 
several concerns and capacities which are needed in a given industrial context to sup-
port specific analysis goals.  

It is clear that having distinct concerns and distinct capacities implies another com-
plexity i.e. to resolve their overlaps when composing them to enable models composi-
tion at the instance level. We believe that the composition process presented here can 
help to handle this complexity. In future work, it could be interesting to study in more 
details the relationship between fusion semantics defined at the meta-meta- and meta-
level. A formalization of this relationship may be helpful to detect automatically con-
flicts between fusion rules obtained after the composition at the meta-level. It is in-
deed an important point with regard to the scalability of the approach. 
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Abstract. In grid-based scientific applications, building a workflow es-
sentially involves composing parameterized services describing families
of services and then configuring the resulting workflow product line. In
domains (e.g., medical imaging) in which many different kinds of highly
parameterized services exist, there is a strong need to manage variabili-
ties so that scientists can more easily configure and compose services with
consistency guarantees. In this paper, we propose an approach in which
variable points in services are described with several separate feature
models, so that families of workflow can be defined as compositions of
feature models. A compositional technique then allows reasoning about
the compatibility between connected services to ensure consistency of an
entire workflow, while supporting automatic propagation of variability
choices when configuring services.

1 Introduction

In grid-based scientific collaboration communities, scientists build workflows by
assembling services that, in many cases, perform complex tasks [1]. For example,
in the grid-based medical imaging community, scientists compose diverse image
processing services to create chains that meet their specific needs. To support
reuse, services can be parameterized, thus allowing a scientist to tailor a service
to a particular context. Current approaches to assembling grid-based services
are labour-intensive [2] and require scientists to manually manage knowledge
about i) the variable points supported by services, and ii) the restrictions on
how services must be tailored and composed to meet end-to-end Quality of Ser-
vice (QoS) or other requirements. When a wide variety of parameterized services
exists, the tasks of identifying, tailoring and composing services become tedious
and error-prone [3], especially in grid-based medical imaging. As identified in
previous work [4, 5], the difficulty of provisioning and composing such services
stems from the lack of mechanisms for managing variabilities within and across
services. The above problems give rise to the following challenges. The first
challenge is to provide mechanisms that enable service providers (e.g., research

B. Baudry and E. Wohlstadter (Eds.): SC 2010, LNCS 6144, pp. 17–33, 2010.
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scientists, workflow or grid experts) to capture the commonalities and variabili-
ties in parameterized services that are offered on the grid. The second challenge
is concerned with providing support for tailoring and composing services such
that service consumers can ensure the consistency of resulting workflows with
well-defined properties.

In order to meet these challenges, we describe in this paper a rigorous approach
to composing parameterized services into workflows. The approach utilizes Soft-
ware Product Line (SPL) and Aspect-Oriented Modeling (AOM) techniques.
The goal of SPL engineering is to produce reusable artifacts that can be used
to efficiently build members of a software product family [6]. The reusable arti-
facts encapsulate common and variable aspects of a family of software systems
in a manner that facilitates planned and systematic reuse. A parameterized grid-
based service can be viewed as an SPL. We observe that the variabilities in a
parameterized service can be described along a variety of dimensions. For ex-
ample, in a medical imaging service, three commonly used dimensions concern
QoS features, image formats and communication protocols for data transmission.
We rely on prior results [7] to separate aspect models which exhibit variability
and compose them to produce a comprehensive variability model. This modular
technique allows applying separation of concerns principles and thus limits the
considered variabilities only to relevant concerns.

In the present approach, a workflow is created by first composing families
of services and then configuring the resulting workflow product line. Feature
models [8,9,10] (FMs) are used to describe the common and variable features in
a tailorable service. The variable points in a parameterized service are described
by multiple separate FMs, where each FM describes a set of variable points in a
particular dimension. A set of composition operators is used to i) insert a concern
with variability into the description of services and ii) merge variability models
of connected services. The FM composition operators are used to reason, at the
FM level, on services’ dependencies specified by the user and identified as active
in the workflow. Using these operators, it is possible i) to analyze the entire
workflow by checking the consistency of families of dependent services and ii) to
infer variability information and propagate user choices according to variability
information described in each family of services. We also consider the impact
that workflow constructs (sequence, concurrency, if-then-else condition) have
on service composition. The approach assists users with their decision-making
process and can largely reduce the sets of configurations to be considered when
tailoring and composing services.

2 Motivation and Overview of the Approach

Scientific workflows are increasingly used for the integration of existing, legacy
tools and algorithms to form larger and more complex applications, e.g., for sci-
entific data analysis or computational science experiments. In the medical imag-
ing area (e.g., see [11]), scientific workflows are deployed on grids for addressing
the computing and storage needs arising from manipulation of large fragmented
medical data sets on wide area networks. Service-oriented architectures (SOA)
are especially suited to such a domain: There is a need for reusable self-contained
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services that provide standardized interfaces for calling application code as well
as information exchange protocols [12]. In SOA, services are atomic entities that
are composed to produce complex (business) processes implementing workflows.

Managing Many Concerns. Many scientific services have a large number of
input ports and parameters, but not exclusively. Individual data items processed
by scientific workflows are very much related to each other and there is a need
to maintain data cohesion: Dependencies between different services within a
workflow system must be managed from several perspectives. More generally,
deployed services contain a lot of information related to the environment in
which they are deployed and composed. In the case of medical imaging services
on the grid, service providers supply basic imaging services, implemented in a
variety of languages, packaged with information needed to compose the services
with other services. In addition, providers have to manage the numerous non-
functional properties that are exploited during deployment or runtime, in order
to meet quality of service (QoS) goals. The overall issue for users of the workflow
is to deal with services’ dependencies in the workflow while addressing a large
amount of concerns.

An SPL Approach. Rather than providing services in hopes that opportunities
for reuse will arise during the design of a workflow, a proactive strategy is to
apply SPL principles and plan which characteristics of a service are likely to
be systematically reused. The ability to efficiently create many variations of a
service and capitalize on its commonalities can improve its composability and
increase the extent to which service logic is sufficiently generic so that it can be
effectively reused. Our previous work indicates that there is significant variability
in medical imaging services on the grid [4, 5]. For example, a service is able
to read and process several medical image formats; some services use network
protocols that do not support the transmission of a “receive acknowledge” to
indicate that the packet has been received whereas some other services do have
this capability. A medical imaging service that exhibits variability can thus be
treated as an SPL or family of services. For each concern of a service, there are
several alternatives that the user has to consider and choose from to derive an
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Fig. 1. Workflow, Services, Concerns and Variants
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actual service. Adopting an SPL approach, a family of services is described from
a variety of variable concerns, i.e., a concern with variation points, and thus can
be represented as a set of variants.

We believe that separation of functional and non-functional concerns with
variability can improve the reusability of services. In Figure 1, three concerns
are woven into elements of the Intensity Correction service to augment its de-
scription. Medical Image describes the medical images input formats that the
service is able to process. Grid Deployment provides information about service
deployment on the grid, e.g., the operating system needed to run the service on
the grid. Network Protocol represents the network protocol used by the service.
When the service Intensity Correction is connected to the services Segmentation
and Unbias, several concerns of Intensity Correction may be related to several
concerns of Segmentation and Unbias. For instance, users may require that the
medical image output of Intensity Correction be compatible with the medical
image input of Segmentation and Unbias; or that the network protocol used by
Intensity Correction be consistent with the network protocol used by Unbias.
Key Issues. The goal of the SPL approach promoted in the paper is to man-
age not only the variability of the family of services but also the variability of
the resulting composed services. The following key challenges are targeted by
our approach. A first challenge is to cope with multiple dimensions of a family
of services by providing mechanisms to augment the service description with
variants from the concerns dimension. These variants can be woven in at several
points (e.g., port, interface) in the service description. A second challenge is to
ensure that families of services are consistently composed in the workflow. At the
workflow level, the links between services and their semantics exist in various
forms (complex dependencies, input/output dataflow, provided/required inter-
faces compatibility, etc.). A developer must identify and specify how concerns
with variability are treated when services are composed. The actual selection of
variants in a large and complex SPL can be a tedious and error-prone task [13].
A third challenge is to assist the user in selecting the right variant for each fam-
ily of services and for each dimension. These choices should be consistent for the
entire workflow and should not violate the specified restrictions on concerns.

3 Modeling Concerns with Variability in Workflow

A medical imaging service should have high variability, that is, a user should be
able to efficiently extend, change, customize or configure the service in a partic-
ular context [13]. The medical image format provides an example: some formats
can anonymize the medical image by removing all patients metadata; some can
compress and/or reduce the image size while the format header may differ. Ser-
vices often must address several concerns. In this paper, the term concern is
used in a broad sense and may range from high-level requirements to low-level
implementation issues, refer to measurable properties or to the behaviour of the
system.

Separation of Concerns (SoC). The number of variants and choices for each
concern of a service can be extremely large and can be a threat to scalability:
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variability descriptions quickly become too complex to manage, evolve or analyze
by users. When modeling variants of a service, applying SoC principles and
providing support to the modularisation of variability description can make them
scale better. In our approach, the SoC is twofold. Firstly, concerns are associated
with and described according to precisely defined elements of a service (e.g.,
Dataport). Secondly, we support the separation of variability models instead of
the use of a large and monolithic variability model: The variability description
of a service can be modularized, where each modular model focuses on a well-
identified concern.

Modeling Workflow and Service. We first need to model what is a ser-
vice, what its elements are and how services are assembled in workflows. Fig-
ure 2 shows a metamodel1 that describes the form of services supported by our
approach.

Dataport

FunctionalInterface

Parameter

ServiceDeploymentInformation

GridDeploymentInformation

ComputingNode

Workflow

Process Relation

GuardVariable

Source Sink

Fig. 2. Metamodel of Service and Workflow

A service describes data items in Dataports. Input dataports hold references
to the data to be processed and output data ports contain references to the
data produced by a service. FunctionalInterface represents the interfaces (legal
operations with their parameters) exposed by a service. DeploymentInformation
provides information about the deployment of the service, and a specialized
GridDeploymentInformation references the ComputingNodes on which services are
deployed. In addition, the metamodel describes how services can be connected
in a workflow represented as a set of Processes. Two special processor nodes
are also defined: Sources produce data to feed the workflow and Sinks collect the
data produced. For the purpose of the paper, we consider that a Process is bound
to one and only one Service in the sense that a service realizes a process. The
connection between processes is specified as a partial ordering: The right part of
1 While there exists more comprehensive metamodels for service descriptions, we chose

to use a simple metamodel that shows only the service concepts needed to understand
our approach.
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Relation is a process that must wait for the end of the left part to start its own
execution. If-then-else conditions can be expressed with a Guard which evaluates
a predicate on objects of Variable.

Modeling Variability. A concern (e.g., medical image format) of a service
can exhibit a set of variable points (e.g., alternatives, optionality). We choose
to describe its variability with a Feature Model (FM). FMs are widely used to
model a family (e.g., an SPL) in terms of common and variable features. Several
definitions of feature appear in the literature, ranging from “anything users or
client programs might want to control about a concept” [8] to “an increment in
product functionality” [9]. These definitions indicate that FMs, like concerns,
are not only relevant to requirement engineering but they can also be applied to
design or implementation [14].

AnonymizedFormat

DICOM Nifti Analyze

Modality Acquisition

MRI CT SPEC

T1 T2

PET

Medical Image

Fig. 3. Medical Image FM

In Figure 3, a family of medical im-
ages is represented by a FM and has
two mandatory features, ModalityAcquisi-
tion and Format, which imply that each
valid configuration of a medical image
should include these two features. An op-
tional feature is Anonymized, which states
whether all patients metadata of the
medical image are included or not. There
are also three alternatives of medical im-
age format: Nifti, DICOM or Analyze fea-
tures form a Xor-group. It means that at
least and at most one feature must be selected. Finally, an MRI medical image
has either the parameter T1 or T2 or both of them: T1 and T2 form an Or-group.
A FM thus describes the set of valid feature combinations. Every member of
a family is represented by a unique combination of features. For instance, each
valid feature combination of a FM representing a family of requirements corre-
sponds to an actual requirement. In the remainder of the paper, a combination
of selected features is called a configuration of a FM and is represented as a set of
features. In Figure 3, a valid configuration of the FM is as follows: {MedicalImage,
ModalityAcquisition, Format, CT, DICOM}. A configuration is valid if all features
contained in the configuration and the deselection of all other features are al-
lowed by the semantics of FM [9,10].

Weaving Concern. Figure 4 describes how concerns which exhibit variability
(called VariableConcerns) can be composed in a service description. We consider
that a FM (resp. configuration) is an abstract view of a variable concern (resp.
variant): A VariableConcern is described with a FeatureModel where each Config-
uration of a FeatureModel corresponds to a concrete Variant.

There is need to specify where the concern is inserted in the description of a
service. A mechanism is required to weave a concern into a service model that
conforms to the service metamodel of Figure 2. We propose that each model
element of the service metamodel (e.g., Dataport, FunctionalInterface, etc.) can
inherit from JoinPoint. Join points represent well-defined places in the struc-
ture of a service where additional behaviour can be attached. In our case, a
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Fig. 4. Join Point Modeling

VariableConcern can be attached to any JoinPoint. For example, a concern deal-
ing with the description of medical images supported by a service can be attached
to the Dataport. Another concern can be attached to Dataport, e.g., to describe
the security of data. It is also possible to describe how medical images will be
stored on the grid. As a result, several concerns along several Dimensions can be
associated to a JoinPoint. The actual weaving of a VariableConcern in a specific
JoinPoint can be achieved using AOM composition approaches. In the rest of
the paper, a dotted arrow which links a FM to a dashed border box means that
we weave the FM into an instance of a JoinPoint. For example, in Figure 5 of
Section 4, FMo1, is woven to an actual output Dataport of FService1. (Output
Dataport is the name mentioned in the box and is a shortcut to name an instance
of an output Dataport of a service.)

4 Reasoning on Workflow Concerns

Services are composed in the workflow while several concerns can be weaved into
various elements of services. For some reasons, mainly due to the interconnection
of services in the workflow, elements of services may be dependent. As a result,
concerns attached to these elements may, in turn, be dependent on each other.
This typically occurs when concerns belong to the same dimension.

Dependency Modeling. For instance, the medical image output format of a
service S1 is considered to be compatible with the medical image input format of
another connected service S2 in the workflow (see Figure 5). We need to express,
at the model level, that an output Dataport of S1 has to be compatible with
an input Dataport of S2 if they are to be connected. We define some Dependen-
cyRule(s), which are associated to JoinPoint elements of the service metamodel
and that restrict in some way2 the VariableConcerns.

The compatibility relation between two concerns vc1 and vc2 only considers
concerns that belong to the same dimension. It is defined as follows: For at
least one Variant of vc1, there is an equal Variant in vc2 (and vice-versa). The

2 The use of constraints between FMs is not considered in the paper (see Section 6).
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same relation applies to all dependency rules. In our implementation [15] of
the approach, we formalize these rules using the Kermeta language [16] and
the compatibility relation corresponds to the function checkV ariableConcerns.
Rule 1 defines the compatibility between S1 and S2 Dataports as described above.
It is expressed in Kermeta as follows:

s1 . output . each{op |
i f op . connectInput . s i z e > 0 then

// some input ports ( o f s e r v i c e s2 ) are connected to op
op . connectInput . each{ ip |

// merge conce rns o f output port op and input port ip o f s2
checkVariableConcerns ( op . concerns , ip . conce rns )

}
end

}

Another rule, Rule 2, states that when two services are connected, the con-
cerns associated to their FunctionalInterfaces are to be compatible. If a service
S1 does not support HTTP whereas the service S2 only supports HTTP, users
can be prevented from an inconsistency of service S1 and service S2. It is also
possible to define dependency rules between concerns without considering the
connection between services in the workflow. For instance, Rule 3 states that if
services are deployed on an equal computing node (a resource on the grid), all
concerns must be compatible with each other. The concern can refer to the set
of operating systems in which the services can be deployed and executed. In this
case, if a service S1 can only run on the Linux operating system whereas another
service S2 can only run on the BSD operating system, the two services cannot
be deployed on the same computing node.
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Fig. 5. Consistency checking concerns while shrinking variability choices
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As a summary, DependencyRules express restrictions on the variants that can
be derived from concerns attached to families of service elements. This boils
down to ensuring the consistency of each set of Variant(s) associated with a
Join Point of a Service. To implement the reasoning, we rely on our previous
work, defining a set of composition operators for FMs. In [7], the semantics of
each operator has been given in terms of the expressed configurations. Here, we
focus on the merge operator which is dedicated to the composition of FMs that
represent variable concerns along the same dimension.

Merge Operator. When two FMs share several features and are different view-
points of a concern, the goal of the merge operator is to merge the overlapping
parts of the two FMs to obtain an integrated model of the system. For example,
users want to merge two medical image descriptions represented by two FMs,
FMI2 and FM01 , depicted in Figure 5. The merge operator uses a name-based
matching: two features match if and only if they have the same name. The merge
process starts from the root features of FMI2 and FM01 . Medical Image of FMI2

and FM01 match. Then, when two features have been merged, the whole pro-
cess proceeds with their children features. Two modes are defined for the merge
operator. The intersection mode is the most restrictive option: The merged FM,
FMr, expresses the common valid configurations of FMI2 and FM01 . The union
mode is the most conservative option: the merged FM, FMr, can express either
valid configuration of FMI2 or valid configuration of FM01 . The variability in-
formation associated to features in the merged FM is set according to the defined
rules. These rules (see [7] for more details) are different according to the merge
mode and the properties that one may want to preserve.

We now formalize some properties of the merged FM with respect to the
sets of configurations of input FMs. Let f be a FM and �f� denotes its set of
configurations. The relationship between a merged FM Result in intersection
mode and two input FMs FM1 and FM2 is denoted FM1 ⊕∩ FM2 = Result.
It can be expressed in terms of sets of configurations:

�FM1�
⋂

�FM2� = �Result� (M1)

According to the example of Figure 5, a valid configuration of the merged FM,
FMr, is valid in FMI2 and in FM01 at the same time. The DICOM feature
is always part of any valid configuration of FMI2 and FM01 whereas the Nifti
feature cannot be part of any valid configuration of FM01 . As a result, DICOM
is a mandatory feature of the merged FM while the Nifti feature is not part
of the merged FM. The following relation can be shown to hold: �FMr� =
�FMI2�

⋂
�FM01�.

In the union mode, we want to obtain a merged FM that represents the set
of configurations of FMI2 and FM01 . The merge operator in the union mode is
denoted FM1 ⊕∪ FM2 = Result. In the same way, we define the relationship
between a merged FM Result and two input FMs FM1 and FM2 in terms of
sets of configurations:

�FM1�
⋃

�FM2� = �Result� (M2)
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Using FMs, the user can configure a family and thus derive an individual product
(see Section 3). Observing that a FM in which there is no variability represents
exactly one configuration, we decide to consider that a configuration of a FM is
a FM. The rationale behind considering configuration as an FM is that it allows
one to use the merge operator at each step of the configuration process.

Reasoning on Dependencies. In Figure 5, we focus on the medical image
format concern. To illustrate our approach, we consider a very simple work-
flow where two processes are executed in sequence. FService1 is connected to
FService2. FMO1 (resp. FMI2) represents the medical image format informa-
tion of FService1 (resp. FService2) and is associated to the output (resp. input)
dataport. In this context Rule 1 applies: The connection between FService1 and
FService2 implies that FMO1 and FMI2 must be compatible. It is thus neces-
sary to check if the set of configurations of FMO1 is equal or included in the
set of configurations of FMI2 (and vice versa). Our technique is to compute the
merge in intersection mode between FM01 and FMI2 . If the merged FM does
not represent an empty set of configurations, then there must be at least one
configuration that is valid in FMO1 and FMI2 . The consistency checking can
thus be achieved. In the example, such an FM exists (see FMr).

The benefits of computing the merged model are threefold. (1) The restriction
on the concerns shrinks the variability choices in FMO1 and FMI2 . This restric-
tion is represented by the merged FM. In this case, there is no longer need to
consider the Nifti feature in FMI2 or Anonymized feature in FMO1 . (2) The user
can use the merged FM to configure FMs of FService1 and FService2 at a time.
One configuration of the merged FM corresponds to the same configuration in
FService1 and FService2. For example, if the user selects T 1 in the merged FM,
then it implies that the feature T 1 associated to FService1 and FService2 are
also selected. (3) The merged FM can be the basis for reasoning on the compat-
ibility with another FM. Let us now consider that FService1 is also connected
to another service FService3 (see Figure 7(a), Section 5). The output dataport
of FService1 is thus dependent on the input dataport of FService3. As a result,
the new restriction on FMO1 , represented by the merged FM, should be used to
reason on the compatibility between FService1 and FService3.

5 Consistent Workflow Configuration

5.1 Impact of Workflow Constructs

We have seen in Section 4 how we can reason on two services that are connected.
Workflows usually have more than two services executed in sequence, and others
with parallel computations and branching through if-then-else constructs. It is
necessary to ensure the consistency of concerns configurations considering the
various workflow constructs (e.g., sequence, concurrency, condition).

Sequence. Figure 6 shows three services FService1, FService2 and FService3
connected in sequence. In this example, checking each pair of connected services
independently may not be enough. Let us address two situations illustrated in
Figure 6.



Managing Variability in Workflow 27

FMep1 FMep2 FMep3

FB

A

DC G H

I

FMep'2

FB

A

E G H

I

FMep'3

Error

FMo1 FMi2
FMi3

FMepn

FMin
FMo2

FMo3

FService1

Functional Interface

Input
Dataport

Output
Dataport

FService2

Functional Interface

Input
Dataport

Output
Dataport

FMi1
FMon

FService3

Functional Interface

Input
Dataport

Output
Dataport

FServicen

Functional Interface

Input
Dataport

Output
Dataport

Fig. 6. Sequence of services

When the join point is the Dataport, the dependency between services is driven
by Rule 1. The output dataport of FServicei, which is connected to the input
dataport of FServicei+1, has to be compatible for i ∈ 1...n. In this case, the
reasoning applies on a pair of services independently from the others. When
the join point is the Functional Interface, Rule 2 defined in Section 4 requires
that the exchange protocol associated to FServicei must be compatible with
the ones of FServicei+1 for i ∈ 1...n. This requires the following checks to be
made: i) FMep1 and FMep2 are consistent and also that ii) FMep2 and FMep3
are consistent. Let us now explain why it is necessary to reason globally on the
entire sequence for this case. If we apply the same strategy as in Figure 5, we
obtain:

FMep′2 = FMep1 ⊕∩ FMep2 (a)
FMep′3 = FMep2 ⊕∩ FMep3 (b)

However, the composition (a) has a side effect: some features of FMep1 or FMep2
may no longer be available. It is then possible that some features FMep2 may not
be involved in composition (b). Both compositions are therefore dependent on
each other and should be addressed as a whole. Not following the above technique
leads to an error, as shown in the bottom part of Figure 6: FMep1 and FMep2 are
consistent as well as FMep2 and FMep3, but the results of the two compositions
are not compatible. We can generalize and state that: A sequence of FService1,
FService2, . . . , FServicen is consistent according to a concern if and only if
SCR = ((FMep1 ⊕∩ FMep2) ⊕∩ (FMep2 ⊕∩ FMep3) ⊕∩ . . . ⊕∩ (FMep(n−1) ⊕∩ FMepn)) �= nil,
nil being the empty FM.

The merge operator properties M1 and M2 defined in Section 4 rely on the
intersection or union of sets of configurations. In set theory, for the operations of
intersection and union, associative, commutative and idempotent laws notably
hold. The expression SCR can thus be simplified as follows:

SCR = (FMep1 ⊕∩ FMep2 ⊕∩ FMep3 . . . ⊕∩ FMepn) �= nil
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(a) Concurrency execution (b) Condition in the workflow

Fig. 7. Other Workflow Constructs

Concurrency. When two services are concurrently executed, the same situation
occurs and it may not be sufficient to reason on pairs of services independently.
In Figure 7(a), FService1 is connected to FService2 and FService3 which are
concurrently executed. The medical image output supported by FService1 is
described with FMo1 which is attached to Output Dataport. The medical image
input supported by FService2 (resp. FService3) is described with FMi2 (resp.
FMi3) which is attached to Input Dataport. We are considering that the medical
image of FService1 is transmitted to FService2 and FService3 (an output
Dataport of FService1 is connected to an input Dataport of FService2 and
an input Dataport of FService3). In this case, the Rule 1 applies but, as in the
previous example, it is not sufficient to independently check each pair of services.
Ensuring the satisfiability of the following formula is not sufficient:

FMo1 ⊕∩ FMi2 �= nil ∧ FMo1 ⊕∩ FMi3 �= nil

since the restrictions on the set of configurations of FMo1, due to the merge of
FMo1 and FMi2, are not considered when composing FMo1 and FMi3. As a
result, the following relation must hold:

FMo1 ⊕∩ FMi2 ⊕∩ FMi3 �= nil

It can be extended to n concurrent services as follows:

FMo1 ⊕∩ FMi2 ⊕∩ FMi3 . . . ⊕∩ FMin �= nil

Condition. When a condition is present in a workflow, different execution paths
can be followed. This impacts the way (variable concerns of) services are depen-
dent and thus consistency checking must be adapted. In Figure 7(b), the connec-
tion between services in the workflow means that FService1 is executed, followed
by an if-then-else condition: If the condition is true (resp. false), then FService2
(resp. FService3) is executed. In addition, FService2 and FService3 are con-
nected to FService4. The Rule 2 applies between FService1 and FService2,
FService1 and FService3, FService2 and FService4, as well as FService3 and
FService4. There are two alternative paths (mutually exclusive) considering the
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execution flow: i) the execution of FService1, then FService2 and FService4
or ii) the execution of FService1, then FService3 and FService4. As a result,
the following relation must hold:

P1 = (FMep1⊕∩FMep2⊕∩FMep4) �= nil∧P2 = (FMep1⊕∩FMep3⊕∩FMep4) �= nil

We propose to compute these restrictions as new FMs associated to each
service. The new FM, FMep′1, associated to FService1 is the union of the two
paths in terms of sets of configuration: FMep′1 = P1 ⊕∪ P2. Then, the new FM,
FMep′4, associated to FService4 is also the union of the two paths in terms
of sets of configuration: FMep′4 = P1 ⊕∪ P2. Finally, new FMs associated to
FService2 (resp. FService3) are FMep′2 = P1 and FMep′3 = P2.

6 Assessment

Benefits and Strengths. If the variability manipulated by the user leads to
some inconsistency but is considered to be more important than the workflow
structure, the user has to correct the workflow itself. Using our approach, such
inconsistencies can be systematically detected and several correction strategies
can be applied. The separation of concerns provides the ability to precisely lo-
cate the source of errors and to give information to assist users in correcting
the workflow. Hence, users can identify which specific services assembled in the
workflow are causing inconsistency. In this case, a straightforward strategy is to
choose another service. Another solution is to identify and correct inadequate
concerns, either by relaxing some variability description of services or by config-
uring differently some services (e.g., choosing a feature instead of another in a
Xor-group). Another option is to detect and solve the shimming problem [17] by
introducing intermediary workflow processes, called shims, that act as adapters
between otherwise incorrectly wired services. The implementation of shims can
solely focus on the inadequate concerns previously detected.

Collaborative and distributive development can also be implemented, e.g.,
several grid and medical imaging experts can independently and incrementally
configure services and associated concerns with respect to their know-how. The
merge operator deals with synchronizing choices and guarantees their coherence
at each step.

Properties of the merge operator can then be exploited. The various com-
positions of FMs may be performed in any order because of the associativity
property of the merge operator. Heuristics, such as merging larger FMs first,
can thus be planned to detect an earlier source of errors. The idempotent and
commutative properties can reduce the number of merge calls: In Figure 6, for n
services sequentially executed, there are n− 1 calls before simplification instead
of 2 ∗ n − 1. The merge between FMs contributes to decrease the number of
remaining variability choices.

An additional property of the merge in intersection mode is as follows: The
number of features of the resulting FM is lesser than or equal to the number of
features commonly shared by input FMs. This property can dramatically reduce
the set of configurations to be considered by the user during workflow configura-
tion. As a result, the amount of time and effort needed during the configuration
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process can be reduced. For instance, let us consider that the average of the num-
ber of features of each FM FMo1, FMi2, FMi3 and FMin of Figure 7(a) is 30
and the number of features commonly shared by FMs is 20. After applying the
merge operator, the new computed FM has a number of features which is neces-
sary lesser than or equal to 20. As a result, a user only has to consider less than
20 features instead of 30 ∗ 4 = 120 features. Such benefits can also be observed
for other workflows.
Current Limits and Threats. Currently we do not handle constraints be-
tween FMs whether they are internal or between several FMs. This is useful
when concerns related to FMs are not independent, e.g., the QoS provided by
a medical imaging service can be dependent on the kind of input images ma-
nipulated. More generally, the feature interaction problem is still an open and
hard research challenge [14]. Constraints between FMs and feature interactions
are threats to incremental and modular development, as well as to independent
reasoning on FMs. They may cancel out some of the benefits presented above.

In the current proposal, we make the assumption that FMs to be merged have
the same granularity, e.g., they share the same hierarchical structure. Given the
open nature of the grid and the autonomy of the data and service providers,
users may want to align concepts (features) and/or to negotiate some parts of
FMs that are not present in another like in the viewpoints approach.

7 Related Work
Feature models. A few other approaches use multiple FMs during the SPL
development. In [18], separate FMs are used to model decisions taken by differ-
ent stakeholders or suppliers. The authors recognize the need to compose and
merge FMs during multi-stage and multi-step configuration process, but do not
achieve it. In [19], several FMs are used to separate feature descriptions related
to requirements, problem world context and software specifications. Constraints
then inter-relate features of FMs. Metzger et al. proposed a formal approach
for separating PL variability (e.g., economical-oriented variability) and software
variability, thereby enabling automatic analysis [20]. The two kinds of variabil-
ity can be considered as concerns of an SPL. Previous contributions do not
consider FMs or concerns that are sharing some features. This can happen when
concerns along the same dimension interact, when multiple perspectives on a
concern needs to be managed or when SPLs are composed with SPLs. A few
works [10, 21, 22, 23] suggested the use of a merge operator: Our proposal goes
further in this direction and clarifies the semantics of the merge and, most im-
portantly, shows how this operator can be used in practice. In [24], an algorithm
is designed to compute the kind of relations between two FMs. We have shown
that reasoning on more than two FMs can happen for some constructs of the
workflow and then, why the merge operator is required. In [25], the configuration
process is represented as a workflow and different stakeholders are configuring
the same FM. The first difference with our work is that the term workflow used
in the approach does not refer to a processing pipeline, but to the activities
completed during configuration. The second difference is that only a single FM
is considered during the whole configuration process.
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Multiple SPLs. In our case study, a medical imaging service can be seen as an
SPL provided by different researchers or scientific teams. The entire workflow is
then a multiple SPL in which different SPLs are composed. In many domains,
organizations or architectures, the need to “shift from variation to composition”
and to support multiple SPLs (also called product populations) is more and
more patent [26]. Van der Storm considered not only variability at the level of
one software product, but also each variable component as an entry-point for a
certain software product (obtained through component composition) [27]. Hart-
mann and Trew dealt with multiple SPLs and identified several compositional
issues in the context of software supply chains. They notably recognized that
“merging FMs, especially when they are overlapping, requires a significant engi-
neering activity” [23]. They did not provide a set of operators, a semantics nor a
mechanism to automate this task. Reiser and Weber proposed to use multi-level
feature trees consisting of a tree of FMs in which the parent model serves as a
reference FM for its children [28]. Their purpose is mostly to cope with large
diagrams and large-scale organizations, rather than different concerns.

Service composition. A large amount of work exists in (automatic) service
composition (e.g. see [29]). To the best of our knowledge, there is no specific ap-
proach combining separation of concerns while managing variability in the same
kind of context. In [30], AO4BPEL promotes a well-modularized specification of
concerns and dynamic strategy for web service composition. Our work focuses
on how to ensure in a processing chain, at design time, consistency between
concerns with respect to variability. Work in [31] focused on how to map a FM
to a business process model described in BPEL; each feature of a FM corre-
sponds to a business process. The motivation of our work is rather to describe
the variability within a process; we also consider that the processing chain is
fixed.

8 Conclusion and Future Work

Creating workflows from many different kinds of highly parameterized services
is a cumbersome and error-prone task as important variabilities have to be man-
aged by the user. In this paper, we have presented an approach that organizes
services as a product line architecture and that uses feature models (FMs) to
structure necessary information in terms of service variabilities. In the proposed
approach, a family of services is defined as a set of concerns which exhibit vari-
ability, each being represented with one or several FMs. To reason on these arti-
facts, we rely on several related metamodels, reifying services, their dependencies
in workflows and the join point related concepts. To enable the multiple compo-
sition of the concerns while taking variability into account, we have proposed a
set of composition operators. Using these operators, we have defined consistency
rules that enable the reasoning about the compatibility between families of con-
nected services. Moreover, the consistency checking process makes it possible to
automatically propagate variability choices into the whole workflow and thus to
assist the user in selecting tailor-made services.
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Future work aims at tackling current restrictions: i) handling inter- or intra-
constraints between FMs in the composition process; ii) providing mechanisms
to enable users to align FMs. The building of a large SPL dedicated to med-
ical imaging services on the grid has already started. The services are part of
a service-oriented architecture in which data-intensive workflows are built to
conduct numerous computations on very large sets of images [4, 5]. The con-
struction of such an SPL gives us an opportunity to obtain validation elements
and feedback on the approach.
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Abstract. Component models for autonomous robots control architec-
tures are much more constrained than traditional ones: obeying strict
timing constraints, coping with a large spectrum of rapidly changing
hardware (e.g. sensors and actuators), etc. Beyond introducing new con-
cepts into components themselves, composition in such models must go
much farther than the standard connection through method signature
interfaces. Viewing components as full-fledged sensori-motor behaviors,
our model follows the concept of rich interfaces introduced by Henzinger
et al. to attach to each component all the necessary syntactical and be-
havioral information to make them externally composable. This paper
presents two kinds of composition, parallel and by modes, their seman-
tics, their compositionality properties and the impact of these on the
composition model. A prototype implementation in Java is backed by
a constructive semantics defined as a constraint system solved in this
prototype with the ECLIPSe constraint programming system.

1 Introduction

As autonomous robot control architectures grow ever more complex, means to
build them incrementally from existing pieces of software are becoming a key
issue. Component-based architectures appear as a promising approach, yet no
component model deals with all the constraints from autonomous robotics such
as obeying strict timing constraints, mixing computationally intensive computa-
tions with hard real-time tasks, taking into account a large spectrum of rapidly
changing hardware such as sensors and actuators and allowing for coordination
with other autonomous robots. This paper addresses the impact of these con-
straints on the component definition as well as the kinds of compositions to
which they can be submitted, and their semantics and implementation.

In our model [1,2], components strive to represent full-fledged sensori-motor
behaviors of autonomous robots. For example, simultaneous localisation and
mapping (SLAM), a crucial functionality, intertwines distance and positioning
measures as well as obstacle identification done in real-time with map construc-
tion as a non real-time computation; this map is also used to localize and control
movements of the robot in real-time. To implement such sensori-motor behav-
iors, the model mixes reactive components for real-time and active components
for non real-time computations, the two communicating through asynchronous
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message passing. Components provide for an explicit representation of prece-
dence, timing, communication and hardware related constraints by declaring in
interfaces all the necessary information to make them externally composable.

The challenge addressed in this paper is the definition of a composition model
that produces correct-by-construction deployable reactive component assemblies
from these declarative interfaces. To do so, formal composition rules as well as
generative programming techniques are developed. Because of the heterogeneity
of the deployment contexts (monoprocessor, multiprocessor, networking, etc.),
and the domain-specific needs, the composition model aims to offer different com-
position operators as well as different context-dependent variants, as many of
these, like the concurrent one, take different meanings depending on the deploy-
ment context. One goal of the composition model is to abstract the programmer
away from these to make components more reusable in different contexts.

The rest of the paper is organized as follows. Section 2 presents the background
on the current approaches to component models for autonomous robotics, as well
as issues related the building of correct control architectures. The section 3 intro-
duces the proposed component model, and then develops the composition model
itself as the building blocks for a future full-fledged architecture definition lan-
guage. The section 4 presents the different composition operators included in the
model to date, and ends with a short description of a prototype implementation.
Related work (§5) and conclusions are then discussed.

2 Components and Composition for Autonomous Robots
Control Architectures

This section presents the required background on component composition.

2.1 Rich Interfaces for Component Composition

Viewing components as sensori-motor behaviors raises central issues when com-
posing for control architectures: schedulability of real-time tasks, resource shar-
ing among behaviors using the same sensors and actuators, etc. Current com-
ponent models cannot address these issues because traditional interfaces do not
represent such behavioral and timing constraints.

Acknowledging the central role of interfaces, de Alfaro and Henzinger [3] have
proposed the concept of rich interfaces to capture whole aspects of component
interactions at their boundaries. In concurrent programming, synchronisation
comes along on top of more traditional method signatures concerns. In real-
time programming, time plays a central role, introducing temporal dependencies
among pieces of code, and time constraints (worst-case execution time, maximal
and minimal delays between pieces of code producing and consuming data, fre-
quencies in the triggering of readings on sensors or writing on actuators, etc.).
Robotic control architectures exhibit all of these aspects, requiring therefore a
much richer model of interfaces than the one of traditional components.

Rich interfaces, at large, expose all the necessary and sufficient information to
verify if components can be composed (compatibility) and then to compose them.
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The precise definition of component compatibility depends upon the component
model and the properties defined in its rich interfaces. Beyond traditional syn-
tactic compatibility, behavior [3], timing [4] and resources consumption [5] have
been considered. Beyond the predictability of assemblies, rich interfaces allow for
the incremental design of applications as well as independent implementation of
components, two of the strengths of component-based approaches.

The introduction of required and offered rich interfaces allows compositions to
make early decisions based on timing, resources and hardware requirements for
the deployment context expressed in the required interfaces of components. At
deployment-time, the validation of these decisions, and therefore of the assembly,
amounts to checking the compatibility of the required interfaces of the assembly
with the offered interfaces of the containers.

2.2 Composition Semantics and Compositionality

Real-time programs are built from elementary tasks with bounded execution
times that execute periodically under strict constraints. Tasks also produce and
consume data, or signals. Hence, the composition semantics must take several
aspects into account:

– communication, by producing connections to send and receive signals;
– scheduling, by producing a schedule that respects all of the precedence and

timing constraints of the different components;
– resource sharing, by synchronizing code accessing them; and
– hardware dependencies, by connecting abstract required hardware interfaces

to available (offered) concrete ones.

Scheduling is in fact concerned with several other aspects of composition and
plays a central role. Signals introduce precedence constraints between producer
and consumer tasks, which can be solved by ordering them correctly in the sched-
ule. Tasks can explicit the resources they use, and provided that they release the
acquired resources before they finish, synchronization amounts to mutual exclu-
sion constraints among them to be observed by the schedule. Besides ensuring
the compatibility of the actual hardware to the required one, hardware depen-
dencies also introduce timing constraints when several sensori-motor behaviors
need the same sensors and actuators but at different times and frequencies. The
scheduling of sensor readings and actuator writings must provide for compatible
frequencies among the different users while respecting the maximal and minimal
frequency constraints imposed by the hardware.

Scheduling challenges the definition of a compositional semantics for com-
position operators. The semantics of a construct is compositional if it is di-
rectly constructed from the semantics of its subconstructs. Compositionality
enables proofs by structural induction. Pragmatically, it also eases the produc-
tion of reusable deployable components by simplifying their late-composition.
Non-compositionality arises when the semantics of subconstructs influences di-
rectly one another. Proofs then become much more involving, since they must
proceed from subconstructs to subconstructs along the dependencies. Processor
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time management is the key issue when composing over schedules. As compo-
nents in assemblies compete for the access to processors, and therefore depend on
each others scheduling decisions, compositionality is hard to obtain. A possible
solution is to preallocate processor time slots to the components, but with the
caveat of suboptimal processor usage and overconstrained feasible assemblies.

3 The Composition Model

This section introduces the proposed component and composition model.

3.1 Component Model

Reactive components are periodic, executing repeatedly the same code with a
period p so to respect their time constraints. Their code consists of elemen-
tary pieces called codels (code elements). Codels have a bounded execution time
(WCET), explicit communication, and no synchronization instruction to ensure
that they can be scheduled to run to completion when activated. All the prece-
dence, time and resource usage constraints of codels must be provided explicitly:

– a precedence constraint between two codels indicates that one codel must
finish its execution before the second can start;

– a minimum (resp. maximum) delay constraint between two codels indicates
that a minimum (resp. maximum) delay must be enforced between the finish
time of the first codel and the start time of the second;

– a minimum (resp. maximum) frequency constraint on a codel indicates that
a maximum (resp. minimum) delay must be enforced between two successive
activations of the codel;

– a resource usage constraint on a codel indicates that the codel access that
resource during its execution; if the resource is not sharable, two codels using
the same resource will have a mutual exclusion constraint between them;

– a communication constraint between two codels establishes a signal pro-
ducer/consumer relationships between them.

More formally, a reactive component is a tuple C(n, Π, cdls, csts, R) where

– n ∈ IC is a unique component identifier,
– Π is the set of communication ports, themselves tuples π(n, τ, ic, δ) where

• n ∈ Iπ is a unique port identifier,
• τ ∈ {in, out} is the kind of port,
• ic is a communication interface,
• δ ∈ {int, f loat, ...} is the type of data transmitted;

– cdls is a set of codels, themselves tuples κ(n, σin, σout, w, ρ) where
• n ∈ Iκ is a unique codel identifier,
• σin and σout are the sets of input and ouput signals respectively,
• w ∈ N

+ is the worst-case execution time of the codel (or WCET ),
• ρ is a set of resources used by the codel, themselves tuples ρ(n, T ) where

∗ n ∈ Iρ is a unique resource identifier,
∗ T is the resource type.

with σin ∩ σout = ∅,
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Fig. 1. A graph representation of the exemple : the nodes represent the codels and
the arcs the time constraints. The non-valued arcs represent precedence dependencies
between codels. The worst case execution times tex are attached to the nodes.

– csts is a set of constraints, themselves tuples cst(ct, ns, nt, e) where
• ct ∈ {temporal, timed, ...} is the type of constraints,
• ns ∈ Iκ is the source codel identifier,
• nt ∈ Iκ is the target codel identifier,
• e is the constraint expression, depending upon the type of constraint;

– R is the resource interface, itself a tuple R(procs, ct), where
• procs ∈ P(IProcs), is a set of processor identifiers,
• ct : IProcs × IProcs → N, the worst-case communication times.

Signals are tuples σ(n, δ) where

– n ∈ Iσ is a unique signal identifier,
– δ ∈ {int, f loat, ...} is the type of data transmitted;

Example. The robot must follow a black line on a clear surface. At each cycle, it
reads two sensors for reflected light, and correct its trajectory accordingly using
the two motors (see also Figure 1). The graph shows examples of precedence
(e.g. between c and m1) and timed constraints (e.g. maximum frequency on m1
or maximum delay between l1 and m1). In the formal model, it gives:

C(LineFollower,
{ κ(l1, ∅, {σ1}, 1, {ρ1}),

κ(l2, ∅, {σ2}, 1, {ρ2}),
κ(c, {σ1, σ2}, {σ3, σ4}, 3, ∅),
κ(m1, {σ3}, ∅, 2, {ρ3}),
κ(m2, {σ4}, ∅, 2, {ρ4})},

∅,
{ cst(temporal, l1, c, ·),

cst(f max, l1, 14),
...

R({p1, p2}, ·)

codel l1, 1st light sensor
codel l2, 2nd light sensor
codel c, computation module
codel m1, actuator, 1st motor
codel m2, actuator, 2nd motor
no communication ports
l1 produces the signal s1 consumed by c
l1 may be launched at most once every 14 units
...
a list of processors available to the component
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inBounds(p, IC) V alidSched(IC)
V alidCompInst(IC(·, ·, ·, ·, ·, p, ·, ·)) (1)

(∀iκ(n, o, s, f) ∈ iCodels(IC)) p ≥ f

inBounds(p, IC)
(2)

(∀cst ∈ csts) IsV alid(cst, icdls)
(∀iκ ∈ icdls) Proc(iκ) ∈ procs ∧ CV alid(iκ, cdls, n mc)

(∀iκ(n, o, s, f), iκ(n′, o′, s′, f ′) ∈ icdls) n �= n′ ⇒ o �= o′

V alidSched(IC(·, ·, cdls, csts, R(procs, f), ·, n mc, icdls))
(3)

(∃ ! κ(n′, ·, ·, wcet, ·) ∈ cdls) n = n′ ∧ f = s + wcet ∧ no ≤ n mc

CV alid(iκ(n, s, f, no, p), cdls, n mc)
(4)

Fig. 2. Single deployable component instance

where σ1 = σ(s1, int) and σ2 = σ(s2, int) signal the intensity of light read
while σ3 = σ(s3, int) and σ4 = σ(s4, int) send out an order to the motors in
terms of a rotation angle, and the ressources are ρ1 = ρ(sens l1, light sensor),
ρ2 = ρ(sens l2, light sensor), ρ3 = ρ(act m1, motor) et ρ4 = ρ(act m2, motor).

When ready to be deployed, a reactive component instance is a tuple IC(n, Π,
cdls, csts, R, p, n mc, icdls) which adds the following to the component:

– p ∈ N
+ is the period

– n mc ∈ N
+ is the number of microcycles this component needs to match the

period of the embedding component (equals to 1 if not embedded),
– icdls is a set of codel instances, themselves tuples iκ(n, o, s, f, ρ) where

• n ∈ Icdl is the unique identifier of the instantiated codel,
• o ∈ N

+ is the occurrence number of the codel in the macro-cycle,
• s ∈ N

+ is start time of the codel within the component period,
• f ∈ N

+ is finish time of the codel within the component period,
• ρ is the set of ressources used by the codel.

The algorithm to construct a component instance from the more abstract
component description is implementation-dependent. On the other hand, formal
rules can express the constraints and properties that a valid component instance
must obey. For the sake of conciseness, the rules of Figure 2, 3, 5 and 6 con-
centrate on behavioral properties rather than syntactic correctness ones like the
unicity of identifiers and so on. Checking the validity of a component instance
then amounts to prove:

(∃p)(∃n mc)(∃icdls) V alidCompInst(IC(n, Π, cdls, csts, R, p, n mc, icdls))

A constructive proof for this sentence provides for a valid deployable compo-
nent instance, where p, n mc and icdls are found so to satisfy the constraints.
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(∀iκ1(n1, o, s1, f1, ·), iκ2(n2, o, s2, f2, ·) ∈ icdls) s1 < s2

IsV alid(prec(n1, n2, ·), icdls, ·) (5)

(∀iκ1(n1, o, s1, f1, ·), iκ2(n2, o, s2, f2, ·) ∈ icdls) s1 + d ≤ s2

IsV alid(max delay(n1, n2, d), icdls, ·) (6)

(∀iκ1(n1, o, s1, f1, ·), iκ2(n2, o, s2, f2, ·) ∈ icdls) s1 + d ≥ s2

IsV alid(min delay(n1, n2, d), icdls, ·) (7)

(∀iκ1(n, o1, s1, f1, ·), iκ2(n, o′1, s
′
1, f

′
1, ·) ∈ icdls) o1 + 1 = o′1 ∧ s1 + d ≥ s′1

IsV alid(min freq(n, ·, d), icdls, ·) (8)

(∀iκ1(n, o1, s1, f1, ·), iκ2(n, o′1, s
′
1, f

′
1, ·) ∈ icdls) o1 + 1 = o′1 ∧ s1 + d ≤ s′1

IsV alid(max freq(n, ·, d), icdls, ·) (9)

(∀iκ1(n1, o, s1, ·, p1), iκ2(n2, o, s2, ·, p2) ∈ icdls) s1 + f(p1, p2) ≤ s2

IsV alid(prec(n1, n2, ·), icdls, R(procs, f))
IsV alid(comm(n1, n2, ·), icdls, R(procs, f))

(10)

Fig. 3. Constraints for a valid schedule

3.2 Composition and Its Semantics

A reactive component can be executed either on a single processor or on multiple
processors, such as modern multicores. To enable external composition, codel
identifiers, precedence, timed and resource usage constraints forms rich inter-
faces used in component composition. Altogether, this information forms what
is called the membrane of the component. When bound to the actual codels,
provided with a schedule for running them and bound to the required hardware,
a component instance is obtained, ready to be deployed. A component instance
is valid if it is bound to suitable resources such as required sensors and actuators,
and if its execution period p as well as the start and finish times of all of its
codel constitutes a valid schedule with respect to the component constraints.

When composed with other reactive components with different execution peri-
ods, a unique period must be sought for the composite. Hence, several replicated
execution periods of a component may need to be unfolded to match side-by-
side the periods of other components and form a composite component with
a unique overall execution period. The period of each composed component is
called its microcycle period, while the overall period of the composite is called
its macrocycle period. Each inner component has its own number of microcycle
occurrences in the composite macrocycle, which also corresponds to the number
of occurrences of its codels in the composite macrocycle.

3.3 Operator Hierarchies

One goal of the composition model is to abstract the programmer away from
these to make components reusable in different contexts. Operators are therefore



Composition and Compositionality in a Component Model 41

(∃period ∈ N) (samePeriod(period, e1) ∧ samePeriod(period, e2))
compose(e1 || e2 : cst)

globalCompose(e1 || e2 : cst)
(11)

(∃period ∈ N) (∀i ∈ [1, n])(samePeriod(period, ei) compose(mode e∗ : cst)
globalCompose(mode e∗ : cst)

(12)

samePeriod(period, e1) samePeriod(period, e2)
samePeriod(period, e1 || e2)

(13)

(∀i ∈ [1, n]) samePeriod(period, ei)
samePeriod(period, mode [e1, ..., en])

(14)

period = p × n mc

samePeriod(period, IC(·, ·, ·, ·, ·, p, n mc, ·)) (15)

Par(e1, e2, cst))
compose(e1 || e2 : cst)

Mode(e∗, cst)
compose(mode e∗ : cst)

(16)

Fig. 4. Composition expressions

organized in hierarchies, which specialization goes from context-independent
operators used by programmers to context-dependent ones. The derivation of
the latters from generic ones is done automatically in the process of produc-
ing deployable assemblies. For exemple, a generic concurrent composition will
be turned into a multiprocessor one and then a distributed and furthermore a
tightly-coupled one if the deployment context offers many processors intercon-
nected through a time-guaranteed network.

4 Composition Operators

This section presents the composition operators included in the model to date.

4.1 Composition Expressions and Composites

Component instances are composed to form composites using composition ex-
pressions which current abstract grammar is (ic is a component instance):

e ::= e || e : cst | mode e∗ : cst | ic

In this paper, only parallel and mode compositions are addressed. Each of
these can impose composition constraints cst (communication, precedence, time,
resource sharing, ...). Parallel compositions can be done over a single processor,
or over multiple processors with known communication delays. Mode compo-
sition allows for the definition of composites with mutually exclusive operating
modes represented by subcomponents and triggered by internal state transitions.

In the current compositions, the same macrocycle period is imposed to all com-
ponents to provide for the satisfaction of inter-component communication and
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resource sharing cross-constraints. Hence, as shown by the composition rules 11
and 12, verifying the composition amounts to impose the same period (see rules
13 to 15) and then to apply the composition rule for the operator (see Figure 5),
which are detailed in the next subsections.

Although rules 13 to 15 explicit the constraints that must be observed, finding
a common period is far from trivial. In general, this can be done in two steps:
(1) computing lower and upper bounds on the period of each of the components
and then (2) determining of a composite execution cycle length. Deduced from
its constraints, the duration of each component microcycle can be expressed as
an interval lcyc = [dmin, dmax], where dmax, dmin ∈ [0,∝] and dmax ≥ dmin.
The cases dmin = 0 and dmax =∝ represent the absence of constraints on
the minimum and maximum cycle lengths respectively. The case dmin = dmax

corresponds to a unique possibility for the cycle length. The period length of
a component is a multiple of the number of clock ticks and is therefore always
an integer. The macrocycle length of the composite is deduced from its sub-
components microcycle lengths. For two components A and B, two cases are
possible (the idea generalizes to n components):

1. There exists a macrocycle length dmacro ∈ N
+ such that :

– dmacro > dex(A) + dex(B) where dex is the cycle length,
– dmacro ∈ lcyc(A) and dmacro ∈ lcyc(B),
– there exists a combined schedule for A and B that fits inside the time

allotted for the macrocycle and respects all the individual component
constraints as well as those imposed by the composition.

2. If such a cycle length does not exist, a combination of n cycles of A and
of m cycles of B, such that it satisfies the three conditions above and the
constraints of A and B when unfolded (repeated) n and m times respectively
to form a macrocycle, must be found.

To compute the length of the macrocycle, microcycle lengths for A and B must
be chosen and the number of microcycles in the macrocycle must be calculated.
The cycle length for a component, whether simple or composite, is represented
by an interval, that contains one or more acceptable integer bounds, as long as
the composition for that component is not completed. At the end, a unique cycle
length for that component is set and a concrete schedule is found.

4.2 Concurrent Composition: The Monoprocessor Case

Given that a common macrocycle period has been imposed globally on the com-
posite, applying a parallel composition amounts to the handling of subcompo-
nents and cross-component constraints. In this paper we deal with two types
of cross-component constraints: precedence constraints and communication con-
straints. The precedence constraint prec(A.a, B.b) states simply that the codel
a of component A must finish its execution before codel b of component B can
start its execution (Figure 6). Communication is done through ports which are
declared by each component as entrance and exit points. The communication
constraints are explicitly specified in the composition expression, therefore the
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�(Procs(e1) ∪ Procs(e2)) = 1 ParMono(e1, e2, cst)
Par(e1, e2, cst)

(17)

�(Procs(e1) ∪ Procs(e2)) > 1 ParMulti(e1, e2, cst)
Par(e1, e2, cst)

(18)

AllDisjoint(iCodels(e1) ∪ iCodels(e2))
base(e1) ⇒ V alidSched(e1) base(e2) ⇒ V alidSched(e2)

(∀c ∈ cst) IsV alid(c, iCodels(e1) ∪ iCodels(e2))
¬base(e1) ⇒ compose(e1) ¬base(e2) ⇒ compose(e2)

ParMono(e1, e2, cst)
(19)

base(e1) ⇒ isSetProc(e1) ∧ V alidSched(e1)
base(e2) ⇒ isSetProc(e2) ∧ V alidSched(e2)

(∀c ∈ cst) IsV alid(c, iCodels(e1) ∪ iCodels(e2))
(∀p inProcs(e1) ∪ Procs(e2))

AllDisjoints({iκ ∈ iCodels(e1) ∪ iCodels(e2) | Proc(iκ) = p})
¬base(e1) ⇒ compose(e1) ¬base(e2) ⇒ compose(e2)

ParMulti(e1, e2, cst)
(20)

(∀i ∈ [1, n]) N mc(ei) = 1 (∀i ∈ [1, n]) V alidSched(ei)
(∀c ∈ cst) IsV alid(ic,

S
i∈[1,n] iCodels(ei))

(∀i ∈ [1, n]) ¬base(ei) ⇒ compose(ei)
Mode([e1, ..., en], cst)

(21)

(∀iκ(n, o, s, f, proc), iκ(n′, o′, s′, f ′, proc) ∈ icdls)
n �= n′ ⇒ ((s < s′ ∧ f ≤ s′) ∨ (s > s′ ∧ s ≥ f ′))

AllDisjoints(icdls)
(22)

Fig. 5. Composition operators

in and out ports to be connected do not need to have the same name. They do
however need to have the same datatype and the same kind of communication
protocol (Figure 6).

In the case where the number of microcycles of A and B are the same, the
enforcement of these constraints is trivial and is translated simply into a con-
straint on the order of execution of the codels. If the number of microcycles of A
and B is different, then special constructs called converters are deployed. In the
simplest representation, converters are codels with a negligible length that are
placed on each of the communicating components, between the emission port
and the codels. They have the following behaviour:

– if the frequency of emission is higher than the frequency of consumption,
then the emission side converter will discard the extra data;

– if the frequency of consumption is higher that the frequency of emission,
then the reception side converter will reiterate the last message received the
necessary number of times.
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(∀iκ(n, ·, ·, ·, proc′) ∈ icdls) proc = proc′

IsV alid(assign proc(n, ·, proc), icdls)
(23)

(∀iκ1(n1, o, s1, f1, ·), iκ2(n2, o, s2, f2, ·) ∈ icdls)
(s1 < s2 ∧ f1 < s2 ∨ s2 < s1 ∧ f2 < s1)

IsV alid(mutually exclusive(n1, n2, ·), icdls)
(24)

(∀ic(nc, Π, ·, ·, ·, ·, ·, ·), ic(n′
c, Π

′, ·, ·, ·, ·, ·, ·) ∈ ics)
(∃ ! π(nπ, τ, ·, δ) ∈ Π)(∃ ! π(n′

π, τ ′, ·, δ′) ∈ Π ′) τ = τ ′ ∧ δ = δ′

IsV alid(communication(nc, nπ, n′
c, n′

π), ics)
(25)

Fig. 6. Additional rules for validity of constraints

Since the length of these codels is negligible and they do not need to be taken
into account in schedule calculation. This mechanism is the default one for con-
verters, but it can be replaced by more sophisticated user-defined mechanisms.
The user must then provide in the communication constraint the converter to
be used for that communication and the implementation of this converter. In
the case where the user-defined converter has a non-negligible length, it will be
scheduled like any other codel.

Given the imposed macrocycle length and the obtained composition, a new
set of constraints is calculated by unfolding the necessary number of cycles of A
and B. Both the individual and the cross-constraints must also be unfolded. A
feasible schedule for this constraint set is then calculated.

4.3 Concurrent Composition: The Homogeneous Multiprocessor
Case

To extend concurrent composition to include the multiprocessor case, homoge-
neous processors defined solely by their names are introduced into the component
model. These are introduced in three ways in the component definition process:

– for individual components to be made deployable, a list processors will ap-
pear in (currently) simplified resource interfaces, where every codel can be
executed indifferently on any processor;

– for any given codel, the use of processors can be forced by adding ressource
constraints:
• cst(assign processor, nκ, ·, pid), where nκ is a unique codel identifier and

pid is a unique processor identifier, restricts the scheduling of the codel
nκ to the processor pid,

• cst(mutual exclusion, nκ, n′
κ, ·), where nκ and n′

κ are unique codel iden-
tifiers, sets a mutual exclusion constraint between codels nκ and n′

κ;
– for composition expressions, processor use can also be restricted through

cross-constraints assign processor and mutual exclusion with a syntax sim-
ilar to that of the above constraints, but with codel names that must be
prefixed by the names of their components.
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Fig. 7. The representation of the line follower and obstacle avoider componenets mod-
ified for mode composition

The communication between codels running on parallel processors depends on
the type of medium. For processors communicating through a shared memory,
the communication time is instantaneous, whereas for processors communicating
by a bus or a network, the connection time can be taken into consideration by
annotating the resource interface with the communication times for every couple
of processors. Once the processors are set for all the codels, the communication
times are represented by automatically generating a min delay constraints be-
tween the emitting and the receiving codels.

The algorithm for common period length computation is adapted to estimate
the periods with respect to the number of processors available and the enforce-
ment of the processor constraints is verified by the rules presented in Figure 6.

4.4 Operating Modes Composition

Mode composition combines two or more components out of which only one runs
in at any given cycle. Modes can represent different patterns:

– competitive behaviors such as the example presented in this paper, where
one behavior inhibits another one, and the mode change is triggered by the
inhibition signal

– stages of a plan, such as moving until a target is located, collecting samples
and getting back. In this case the mode change corresponds to a certain stage
of the plan being attained

– addressing rare events (sensor failure, panic mode, ...). A mode change can
only happen at the end of a cycle though, therefore if a really quick reaction
to an error in necessary, it must be scheduled into the same mode

– a transitory mode, when a mode change requires adaptation (ex : sensor
or actuator reconfiguration) a transitory mode containing the instructions
necessary to sustain the minimum necessary robotic activity and execute the
necessary changes can be defined. This mode is run for a limited number of
cycles, triggering the target mode as soon as the changes are in place.
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– roles in a plan, in the context of distributed robotics, robots are often devised
to be able to take on different roles in their mission, and according to the
configuration they must be able to switch between these roles, taking care
to respect all the temporal and ressource constraints of the system.

A mode composition requires the modules to share a signal that contains the
state of the composite. At the beginning of each cycle a codel common to all
modes is run to determine which mode needs to be activated for that cycle.
During the execution of the cycle, a new signal must be emitted to signify that a
mode change is necessary. A mode change can be triggered by an external event
(a message from another node, data from a sensor) or by an internal change (as
a result of evaluations, an automatic transition).

To be compatible for mode composition, components must:

– have a common cycle length
– satisfy a ressource interface, by providing the minimum and maximum fre-

quencies required on the ports specified in the interface in every mode. If
a minimal/maximal frequency is specified on a port of the interface, then
for every mode a schedule emitting the signal with at least/ at most the
required frequency must be found. If no frequency is specified, this means
that the post is not required to be present in all the modes.

The resulting component will use the union of the time slots occupied by the
different modes satisfying the ressource interface provided.

Example. The example presented in the previous sections can be also used to
illustrate composition by modes. The default behaviour (mode) is to follow the
line. As soon as an obstacle is detected, the component switches into obstacle
avoider mode until the obstacle is succesfully avoided, when it switches back
to “line follower” mode. Figure 7 presents the changes in the models of the
components. The codel s, whose role is to switch between modes based on the
value of a shared signal, is added at the beginning of each mode. Another codel,
st is added to the end of each cycle to update the value of the signal used to switch
modes. The result of the composition in the formal model is given in Figure 8.

In the presented example, the time required to switch between the two modes
is negligible, and can therefore be considered as included in the execution time
of c. In other cases to make all the necessary changes a transition through an
intermediary mode might be required.

4.5 A Prototype Java/ECLIPSe Implementation

A prototype implementation of the component model and the accompanying
composition model has been done using Java as backbone language for compo-
nent representation. Each component is represented by a class, and the different
constraints and rich interfaces forming the membrane of the component are rep-
resented as annotations. A Javassist program has been written to load such
components and generate code required by the calculation kernel to generate
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Cmode(
{C(LineFollower,
{κ(s, {σ7}, ∅, 1, ∅), κ(l1, ∅, {σ1}, 1, {ρ1}),
κ(l2, ∅, {σ2}, 1, {ρ2}), κ(ct, ∅, {σ3}, 1, {ρ3}),
κ(c, {σ1, σ2, σ3}, {σ4, σ5, σ6}, 3, ∅),
κ(m1, {σ4}, ∅, 2, {ρ4}), κ(m2, {σ5}, ∅, 2, {ρ5}),
κ(st, {σ6}, {σ7}, 1, ∅)},

∅,
{cst(temporal, s, l1, ·),
...
cst(max delay(l1, m1, 20),
...
cst(max freq, l1, 14),
cst(max freq, ...), ...},

R({ρ(p1, proc)}, ·), 24, 1,
{iκ(s, 1, 0, 1, {ρ(p1, proc)}),
... }),

C(ObstacleAvoider,
{κ(s, {σ8}, ∅, 1, ∅),
κ(ct, ∅, {σ9}, 1, {ρ3}),
κ(cu, {σ9}, {σ10, σ11, σ12}, 2),
κ(m1, {σ10}, ∅, 1, {ρ4}),
κ(m2, {σ11}, ∅, 1, {ρ5}),
κ(st, {σ12}, {σ8}, 1, ∅)},

{cst(temporal, s, ct, ·),
...
cst(max freq, ct, 18),
cst(min freq, m1, 24),
cst(min freq, m2, 24)},

R({ρ(p1, proc)}, ·), 24, 1,
{iκ(s, 1, 0, 1, {ρ(p1, proc)}),
...})}).

Fig. 8. The mode composition example in the formal model

the schedule and composition instructions that are fed back into Java, allowing
to construct the deployable assembly.

All the calculations are done by a kernel based on the formal component
model, independent of the chosen implementation and modelling languages. The
high-level declarative component representation is thus transformed into a formal
model description of the constraint used to calculate a correct by construction
formal icomponent model. The current implementation of the kernel is written in
ECLiPSe (an extension of Prolog for constraint programming, chosen for the ease
it allows in expressing the component constraints) using resolution, backtracking
and labelling techniques to build constructive proofs of composite validity.

5 Related Work

Even though several component models for robotics have been proposed (see
[2,6] for a recent wide coverage of the area), few models take a component as
sensori-motor behavior point of view. CoSARC [7] or the recent work on GenoM
with BIP controllers developed at Verimag [8] are notable exceptions. Yet, these
do not explicitly address composition problems. CoSARC uses OO Petri-nets
as basic schedulers and simply connects components through tokens exchanged
among the differents schedulers. GenoM/BIP defines components under the syn-
chronous hypothesis where compositions always produce centralized (monopro-
cessor) schedulers. Schlegel looks at the composition problem in the context of
robotics, but not beyond the mere connection of components, by postulating
that they can be made of only a limited number of patterns providing for low
coupling, management of heterogeneity and dynamic wiring [9].
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Related works in the field of component-based real-time systems do not cover
all the issues addressed in this paper. Dominguez and Day [10] propose com-
positional rules to reason about liveness properties of communication protocols
port-based components. Maraninchi and Bouhadiba [11] study the composition
of components under the synchronous hypothesis where no time constraints are
given. Gu and He [12] concentrate on scheduling under time constraints but do
not address resource usage constraints, nor do they consider the composition
issues per se. Lipari et al. [13] compose components having time constraints
but imposing their own scheduler; hence, they concentrate on verifying assem-
blies rather than producing valid ones. Sandström et al. [14] also address time-
constrained scheduling but not in the context of different composition operators.
We share with Wuyts et al. [15] the use of CLP in producing schedules under
time constraints, but complement this work by better tackling resource usage
constraints and by fitting the approach in a composition-oriented setting.

6 Conclusion

Composition of autonomous robotic software components is still a grand chal-
lenge. Beyond the traditional compatibility of method signatures, several other
aspects must be taken into account, such as the communication, precedence, tim-
ing and resource usage constraints. We have developed a kernel of composition
operators over a component model adapted to autonomous robotics. This model
aims to produce correct-by-construction assemblies from components which de-
clares in rich interfaces all the information needed to perform the composition.
Our contributions are threefold:

– an extensible set of composition operators aiming to cover the domain-
specific needs for assembling components as full-gledged sensori-motor robot
behaviors;

– the organization of operators into hierarchies from generic to deployment
context-dependent, which enables an automatic process taking programmer-
written composition expressions to turn them into fully deployable assem-
blies given context information declared by containers; and

– a formal semantics for these composition operators in the form of composi-
tion rules and constraints, which constructive proofs produce the necessary
information to generate the deployable assemblies.

Short term future work includes developing more composition operators and
studying the compositionality of their semantics to address large-scale assem-
blies. On a medium term, properties of operators as an algebra, which commu-
tativity, associativity and distributivity properties need a deeper study. On a
longer term, a programming methodology and associated tools (e.g. better and
more robust implementation algorithms) will be needed to manage the lifecycle
of these components and assemblies, and more precisely taming the progressive
introduction of the precise deployment context information in order to tune the
generation of assemblies to this context.
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Abstract. Context-oriented programming (COP) introduces dedicated
abstractions for the modularization and dynamic composition of cross-
cutting context-specific functionality. While existing COP languages offer
constructs for control-flow specific composition, they do not yet consider
the explicit representation of event-specific context-dependent behavior,
for which we observe two distinguishing properties: First, context can
affect several control flows. Second, events can establish new contexts
asynchronously. In this paper, we propose new language constructs for
event-specific composition and explicit context representation and intro-
duce their implementation in JCop, our COP extension to Java.

1 Introduction

With the increasing demand for personalization and mobility of applications,
context awareness gains growing relevance as a distinguishing feature of software
systems. To meet the challenges of developing and managing context-specific
behavior, several approaches have emerged, each providing its own definition
of context. We adopt a notion where context is constituted by a set of predi-
cates and a set of variation modules. The former are evaluated to determine the
context’s presence, and the latter are composed based on the result of predi-
cate evaluation. Variation implementations are often scattered over application
source code and can so be characterized as crosscutting concerns. With that, a
major task of context representation is the modularization of such crosscutting
concerns. In addition to modularization, context-specific crosscutting concerns
require means for dynamic composition.

Context-oriented programming [22] (COP) is an approach to representing
context-specific concerns, focusing on dynamic composition of control flows.
COP allows for the definition of layers, modules that crosscut object-oriented
decomposition and encapsulate the implementation of behavioral variations. For
instance, a security layer can extend various methods with access control features
without affecting the original method declarations. Depending on the execution
context, layers are composed into a system at run-time. A layer composition de-
fines the order in which layers adapt the base system. This way, COP separates
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the definition of adaptations from their composition, distinguishing it from al-
ternative multi-dimensional modularization techniques such as aspect-oriented
programming [26] (AOP), Mixins [12], or Classboxes [11]. The aforementioned
security layer could be applied for specific control flows, while at the same time
other computations can be executed with the basic functionality.

In the following, we distinguish between the separation of adaptation code
and composition code from the base code. While the former is adequately han-
dled by layers, the latter deserves better language support. The COP languages
implemented so far [2] support selective activation and deactivation of layer com-
positions, expressing programmatically when the application enters and leaves
certain contexts. It is, however, not enough to regard context as being entirely
under programmer control; instead, context can impose itself on the running ap-
plication “from the outside”. Based on this observation, we distinguish control-
flow specific from event-specific contexts. Two key properties characterize them:

1. Event-based context can overlap several control flows, unlike control-flow
specific context, which is confined to a single control flow. For instance,
context change in graphical user interface (GUI) applications can affect the
behavior of several event handler methods at once.

2. Event-based context entry and exit often cannot be localized at fixed points
in the control flow. Instead, context entry depends on asynchronous events
independent from main control flow. Moreover, a certain context is often
active until another event changes the composition. Any kind of sensor data,
such as localization or temperature, are examples of independent context
information that may asynchronously trigger system recomposition.

The former property implies that event-based context (de)activation leads to
layer composition statements’ being scattered over several locations, each of
which corresponds to one of the affected control flows. The latter property im-
plies that it is impossible to determine the locations where to place layer com-
position (de)activation. Also, asynchronous composition can lead to inconsistent
system state within a control flow. With the abstractions of state-of-the-art
COP languages, event-based context (de)activation cannot be represented with-
out scattering layer composition statements over the program. Instead, first-class
support for contexts is required, enabling declarative description of events that
constitute context entry and exit. In addition, a possible solution must take
composition consistency of asynchronous context change into account.

Contribution. In this paper, we motivate the need for explicit representation of
event-specific context-dependent composition along a case study that we con-
ducted using ContextJ [5, 3], our earlier COP extension to the Java program-
ming language. We present appropriate abstractions adopted from AOP to cope
with event-based behavioral variations. We introduce the JCop programming
language extension that supports these constructs while preserving composition
consistency as defined by COP. As a proof of concept, we apply JCop to our
case study and discuss its expressiveness.
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Outline. The rest of the paper is structured as follows. Section 2 introduces COP
and describes our case study in which we developed a context-aware event-based
GUI application using ContextJ. We discuss our experience concerning the case
study in Section 3. Section 4 introduces JCop, Section 5 discusses the expres-
siveness of JCop with respect to the GUI implementation. Section 6 presents
related work, while Section 7 summarizes the paper.

2 Event-Specific Behavioral Variations

Any computation in a program flow is executed within a specific context, such as
system state or user-specific configuration, that can influence system behavior.
The COP approach provides a first-class representation of context-specific be-
havioral variations that can be dynamically composed for a specific control flow.
COP focuses on control-flow specific composition of behavioral variations and
omits providing dedicated abstractions for event-specific composition, which we
will address in the next sections.

2.1 Context-Oriented Programming

COP extends object-oriented programming with first-class abstractions for be-
havioral variations that can be composed into a system depending on execution
context. COP assumes context to be everything that is computationally accessi-
ble, such as object state, network bandwidth, or user interaction.

COP provides layers [9] as a modularization concept that can crosscut an
object-oriented decomposition and encapsulate context-specific behavioral vari-
ations, represented as partial method definitions. COP extends object-oriented
method dispatch with dynamic composition of crosscutting concerns. To dis-
tinguish between the different kinds of method definitions, we introduce the
terms plain method definition and layered method definition. A plain method is
one whose execution is not affected by layers. Layered methods consist of a base
method definition, which is executed when no active layer provides a correspond-
ing partial method, and at least one partial method definition.

Layers can be activated and composed with others at run-time. When acti-
vated, layered method calls are dispatched to the partial method provided by the
layer. Partial methods can be executed before, after, or around the base method
definition. In a composition, multiple layers may provide partial definitions of
the same method. In that case, a partial method can proceed to the next partial
definition in the composition or, if none exists, to the base method definition.
This feature has been previously introduced by other languages such as Common
Lisp [24] and AspectJ [25]. Layer composition is controlled per thread and is by
default scoped to the dynamic extent of a block of statements.

ContextJ1 [2, 3] is a COP implementation for Java. It supports layer decla-
ration within classes and explicit layer composition. In the following, we will
explain ContextJ’s main features along an example.
1 ContextJ is available for download at http://www.hpi.uni-potsdam.de/swa/cop

http://www.hpi.uni-potsdam.de/ swa/ cop
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Fig. 1. Screenshots of CJEdit. Left : rich-text editing with format toolbars and menus.
Right : program development is supported by an outline and focus on source code blocks.

2.2 Case Study: CJEdit

As a case study [4], we have developed a little IDE using ContextJ, whose GUI
provides context-specific behavior.

Figure 1 shows two screenshots of our CJEdit application, a simple program-
ming environment that provides different UI elements and behavior for the
user-driven activities programming and commenting. The left-hand screenshot
presents the application’s commenting mode in which the toolbar offers various
text formatting actions. The right-hand image shows the programming mode,
where the editor comes with an outline and a different toolbar. To support focus-
ing on source code, any rich text within the document is displayed in gray. The
editor supports syntax highlighting, an outline view, a compilation/execution
toolbar, and rich text commenting features, such as font and color modifications.
Based on the user’s actual task (i. e., context), the UI only offers relevant tools,
menus, and widgets. The UI is recomposed upon context switches, which are ei-
ther directly triggered by the user, or by text cursor changes. To enter program-
ming context, the user can push a toolbar button. Moreover, context is changed
whenever the text cursor moves from text to code and vice versa. CJEdit’s core
is implemented using ContextJ and the Qt Jambi GUI Framework2. The editor
consists of approximately 3,000 lines of code in 38 classes.

Figure 2 shows the implementation of the programming activity-specific wid-
gets using layers. In ContextJ, layers, denoted by the keyword layer, can be

2 Nokia Corporation, Whitepaper: A Technical Introduction to Qt, 2008
www.qtsoftware.com

www.qtsoftware.com
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1 import layer CodeWidgets;
2 import layer Outline ;
3 import layer RTFWidgets;
4

5 public class CJEditWindow extends QMainWindow {
6 ...
7 private void drawToolBars() {...}
8 private void drawMenus() {...}
9 private void drawWidgets() {... drawMenus(); drawToolbars(); }
10

11 layer CodeWidgets {
12 // partial methods
13 after private void drawToolBars() {...}
14 after private void drawMenus() {...}
15 // auxiliary members
16 private CodeToolBar codeToolBar;
17 private Menu codeMenu ;
18 private CodeToolBar createToolBar() {...}
19 private Menu createMenu() {...}
20 }
21 layer Outline {
22 ...
23 }
24 layer RTFWidgets {
25 ...
26 }
27 }

Fig. 2. Layered specification of task-dependent GUI Widgets

defined in classes3 and contain partial method definitions that are executed—
depending on their modifiers—before, after, or around their base method.

The same layer can be partially defined in multiple classes; for instance,
CodeWidgets can also provide partial methods for CJEditTextEdit, which im-
plements the text editor widget. The layers shown in Figure 2 provide partial
methods responsible for drawing UI elements, and auxiliary methods accessible
from within the layer only to create these objects.

Each text block object of the underlying document tree holds a list of layers
that should be activated when its text is focused by the user. A focus is set by
text cursor selection. By default, text blocks refer to the layers responsible for
rich text commenting behavior. If the user switches to the programming activity
(by pressing the code button in the toolbar), subsequently created text blocks
are linked with programming environment-specific layers.

The application is recomposed and its GUI redrawn whenever the current
block type switches. The dynamic composition of our previously specified lay-
ers is depicted in Figure 3. For layer composition, ContextJ provides a with
statement that specifies the layers to be activated, and the dynamic extent for
which the composition is valid. To explicitly disable a layer for a control flow,
the without statement can be used. Recomposition can be triggered by the
onCursorPositionChanged event handler that checks if the block type of the

3 Note that this is a design decision in ContextJ and not a general restriction of COP.
The JCop language introduced in Section 4 allows for the specification of layers as
top-level elements.
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1 public class CJEditWindow extends QMainWindow {
2 private List <Layer > getLayersOfCurrentBlock() {
3 if (currentBlock.getType () == BlockType.TEXT)
4 // returns RTFWidget
5 if (currentBlock.getType () == BlockType.CODE)
6 // returns CodeWidget and Outline
7 }
8 private boolean blockTypeChanged() {
9 // true if the focused block has a different type than its predecessor
10 ...
11 }
12 void onCursorPositionChanged() {
13 if (blockTypeChanged()) {
14 with (getLayersOfCurrentBlock()) { drawWidgets(); }
15 }
16 }
17 void onPrint () {
18 with (getLayersOfCurrentBlock()) { ... }
19 }
20 void onSave () {
21 with (getLayersOfCurrentBlock()) { ... }
22 }
23 void onFileNew() {
24 with (getLayersOfCurrentBlock()) { ... }
25 }
26 }

Fig. 3. Dynamic composition in CJEdit

previously focused block is different to that of the current block. If so, the method
calls drawWidgets to update the UI using the current block’s layer composition.

3 Lessons Learned

Although CJEdit is a relatively small application with only a few context-
dependent concerns, its ContextJ-based implementation eases the development
process compared to a plain Java solution. From a structural point of view, lay-
ers allow for a better separation of concerns. Base methods only have to care for
the editor’s default behavior, while layers completely encapsulate their context-
specific variations. In our scenario, context-specific behavior is strongly coupled
with private state of extended classes, thus layer declaration within classes is
the appropriate strategy for layer implementation. Dynamic GUI adaption is
also expressed naturally by layer compositions.

These benefits aside, some characteristics of GUI-based programming had to
be considered that led to additional challenges for the ContextJ-based imple-
mentation. In the following, we discuss the two most important findings.

3.1 Problems

Scattered Composition Statements. User interaction with a GUI is event-
driven rather than control flow-centric. This complicates dynamic extent-based
layer composition as originally proposed by COP. Figure 4 depicts an execution
sequence in CJEdit, where user interaction triggers several event handlers, such
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Fig. 4. Scattered layer compositions for event handlers in CJEdit

as printing the document, writing new text, or moving the text cursor through
the document. Each event handler activates the layers of the currently focused
text block for their respective control flows. In the source code, this issue is mani-
fested in the form of identical with statements occurring in several event callback
methods, as shown in Figure 3. More formally, we identify two different kinds of
cross-cutting concerns, according to [1]: The actual behavioral variations imple-
mented using layers are heterogeneous concerns, therefore they should be defined
close to their respective objects. ContextJ serves this purpose well. Conversely,
layer composition statements in CJEdit constitute a homogeneous cross-cutting
concern that is not modularized by COP abstractions.

Event-specific Context Representation. COP generally defines context as
everything that is computationally accessible, meaning that any event a system
can recognize can influence the current layer composition. With the intention to
avoid further restrictions, COP does not provide means for explicitly describing
when context influences an execution. In general, it is impossible to globally
describe the circumstances under which a composition should be used, since,
for different executions, these properties can entirely change. The explicit with
statement in COP exists due to this fact. However, the nature of what we denote
as event-specific context is more predictable. In CJEdit, the programming context
is constituted by the fact that the focused text contains source code; for the
commenting context, the text must contain rich text elements. However, it is
impossible to simply express these properties using the original COP abstractions
provided by ContextJ. Instead, the application must provide information about
the composition to be activated and must check for the context change itself.

3.2 Our Solution

To address the aforementioned problems, we propose an alternative to explicit
composition statements. A declarative specification supporting the description
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of control flow entry points helps avoid scattered composition statements. For
event-based composition, we suggest a declarative definition of the event condi-
tion and its respective layer composition.

4 Event-Specific COP with JCop

From our CJEdit experiments, we conclude that scattered with statements and
event-based layer composition deserve appropriate lingual abstractions. In this
section, we present the JCop language that provides new constructs for declara-
tive and event-based layer composition and a first-class event-based context rep-
resentation. We discuss issues regarding module consistency within a dynamic
extent and explain how JCop ensures consistent event-specific adaptations.

4.1 JCop Overview

The JCop language combines COP features provided by its predecessor ContextJ
with alternative layer declaration and composition features.

Layers can either be defined within the classes for which they provide be-
havioral variations (layer-in-class), or in a dedicated top-level layer similar to
an aspect (class-in-layer)4 [22,2]. Besides the structural differences of the two
declaration styles, layer-in-class can access and extend the host object’s internal
state and methods, we restrict class-in-layer to public interfaces in order to sus-
tain encapsulation. Developers can decide per situation if they prefer to define
a layer within its enclosing class, allowing private member access, or to declare
all partial definitions of a layer as one layer module to reduce scattering. For
layer composition, JCop provides the control-flow specific with and without
statements known from ContextJ.

The JCop compiler is implemented based on the JastAdd [20] meta-compiler
framework and extends the Java 1.5 specification JastAddJ [16]. In addition, we
adopted the AspectJ method pattern grammar used by the abc compiler [7]. It
compiles JCop source code to Java 1.5 byte code.

4.2 Declarative Layer Composition

As stated above, event-based systems can handle multiple events whose behavior
depends on identical layer composition. A layer composition spanning several
control flows requires an explicit composition statement at the beginning of each
of them. Thus, layer composition can be a homogeneous crosscutting concern
applying the same functionality at several points in the system.

JCop introduces a declarative layer composition statement. It consists of
a logic concatenation of predicates and a composition block. A composition

4 If both styles are used to define the same layer, the compiler avoids ambiguities by
asserting that a partial method must not be defined in both a class-in-layer and a
layer-in-class declaration simultaneously.
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1 in( CJEditWindow win) &&
2 (
3 on(* CJEditWindow.onPrint (..)) ||
4 on(* CJEditWindow.onSave (..)) ||
5 on(* CJEditWindow.onFileNew(..)) ||
6 on(* CJEditWindow.drawWidgets(..))
7 )
8 {
9 with(win.getLayersOfCurrentBlock());
10 }

Fig. 5. Using the on predicate in CJEdit

block contains a with and/or without statement specifying the layers to be
(de)activated5. Like for the general with statement, any expression returning a
layer or a list of layers is a valid parameter, so layer compositions can also be
computed. Declarative with statements are re-evaluated for every execution of
the methods they are bound to.

Quantify Over Control Flows. To address the issue of scattered with state-
ments, we adopted features of AOP [26, 18], where scattered functionality is
expressed by advice blocks bound to pointcuts quantifying over a set of join
points, well-defined events in the execution graph. JCop introduces a pointcut
designator denoted on. It contains an AspectJ-like method pattern [25] specify-
ing those methods to whose dynamic extent a layer composition is to be applied.
We restrict the pattern to describe only those methods visible to the declara-
tion without breaking encapsulation rules. The optional in predicate allows for
binding the object on which the composition declaration should be evaluated.

Figure 5 presents a declarative layer composition that specifies the scope of
layer activation for CJEdit. For all event handler callbacks and createWidgets,
the composition of the currently focused block is used.

Conditional Composition. For a clearly specifiable set of method executions
participating in a layer composition, the on predicate is our preferred means.
For more complex structures, however, the explicit specification of control-flows
becomes increasingly verbose.

In addition to on, JCop allows for a more implicit description of composition
time independent of the actual execution in the main control flow. We support
the fact that a context activation event is reflected in the change of some prop-
erty that is computationally accessible and provide a when predicate that allows
for the specification of a Boolean expression evaluating this property. The pred-
icate is evaluated before the execution of any layered method that is potentially

5 If a layer is referred by both lists, it is activated and deactivated at the same time
and thus will be ignored for composition.
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1 import layer RTFWidgets;
2 import layer CodeWidgets;
3 import layer Outline ;
4

5 context Commenting {
6 in(CJEditWindow win) &&
7 when(win.getCurrentBlockType() ==
8 BlockType.Commenting)
9 {
10 with(RTFWidgets);
11 without (CodeWidgets , Outline );
12 }
13 }
14 context Programming {
15 in(CJEditWindow win) &&
16 when(win.getCurrentBlockType() ==
17 BlockType.Programming)
18 {
19 with(CodeWidgets , Outline );
20 without (RTFWidgets);
21 }
22 }

Fig. 6. Using the when predicate in CJEdit

affected by the respective layer composition. If the when predicate is evaluated
to true, these layered methods are executed using the composition.

Figure 6 shows two declarations of event-based composition for CJEdit
(Lines 6–12, 15–21). In both statements, the when predicates specify the cur-
rent block type required to activate the composition. The predicate expressions
are evaluated on a CJEditWindow instance that is bound by an in designator.

The when predicate completely relieves the developer from having to specify
where a layer composition should begin and only requires the declaration of when
composition takes place. Nevertheless, the combination of on and when is useful
to restrict the scope in which when should be evaluated.

4.3 First-Class Context Representation

Since declarative and event-based composition statements are independent of
specific objects, they should be defined in a dedicated location. For this reason,
JCop provides a first-class context construct. Like layers, contexts are special
singleton types that cannot be instantiated. The construct can host both declar-
ative and event-based composition statements and auxiliary methods and fields.

Figure 6 presents context declarations for our programming and comment-
ing contexts. The contexts contain an event-based composition statement that
declares when the context changes and which layers are composed.

4.4 Composition Consistency in a Dynamic Extent

Programming languages and frameworks that support dynamic recompositions
offer extended expressiveness. This, in turn, can lead to inconsistent and unin-
tuitive control flows. A typical example is the recomposition of a method while
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Fig. 7. Layer composition scopes and activation

it is being executed. To aid the developer in avoiding such undesired behavior,
the original COP approach restricts layer composition to a dynamic extent. Our
event-based composition evaluates the when predicate every time a method invo-
cation is potentially dispatched to a layer involved in the composition. Without
additional restrictions, this approach cannot guarantee that a dynamic extent is
executed with a consistent layer composition.

Figure 7(a) exemplifies this issue for CJEdit. Assume that text focus can be
changed asynchronously to the UI drawWidgets operation, which, among others,
calls drawMenus. Both methods are layered and draw the UI according to the
current context. If we apply the contexts declared in Figure 6 using the strategy
described above, and block focus changes during drawWidgets, the redrawn GUI
would partially consist of both programming and commenting context parts.

Besides the fact that such behavior is obviously undesired, the implicit and
asynchronous composition activation is hard to debug. Tracing this kind of fail-
ures is tedious. JCop prevents such inconsistencies by ensuring that, once when
is evaluated, the predicate will not be re-evaluated within the dynamic extent
originating from this evaluation, as depicted in Figure 7(b). This strategy con-
forms to the original context-oriented programming model: once a composition
has been activated, it is consistent and valid until its with block terminates.
In our extension, this assumption holds: a composition is valid until the control
flow returns to the point at which the composition has been created.

5 Discussion

In Section 3, we identified some issues concerning the representation of event-
based behavioral variations using programming language abstractions provided
by the original COP approach. First, if layer compositions range over several
control-flows, their respective composition statements must be repeated at any
of their potential entry points. Second, event-specific composition cannot be
explicitly declared but must be handled by application logic. In the following,
we discuss how our new JCop language constructs solve these issues.

Composition Declarations to Solve Scattering. The phenomenon of scat-
tered functionality that requires code repetition is well known as crosscutting
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concern for which AOP provides encapsulation mechanisms. In JCop, we fuse
COP with some concepts of AOP to address this problem.

JCop introduces context types that contain a declarative composition state-
ment similar to a pointcut-advice construct. Declarative compositions allow for
the layer composition of several control flows. Scattered composition statements
can be avoided using the declarative composition in combination with the on
predicate, which allows for the specification of all method executions to be in-
cluded in the scope of a layer composition.

When-Declarations for Event-based Composition. In addition to on,
JCop provides a when predicate for composition declarations. It describes the
property that must be fulfilled for the activation of a composition and thus reliefs
the application logic from managing compositions and their respective events.
One of the key properties of COP is the consistency of a layer composition within
a dynamic extent. JCop ensures that this property is not violated by event-based
composition, as described in Section 4.4.

Context Types Encapsulate Context Specification. JCop’s context types release
the application logic from handling layer compositions and event-specific context
changes. Besides composition declarations, context types can contain auxiliary
members to compute layer compositions or store relevant context information.

6 Related Work

Other COP Languages. Most COP extensions have been developed for dynamic
languages, such as Lisp [13, 14] Smalltalk [21], Python [31,23], and the delMD-
SOC kernel [29]. They all implement the original semantics of COP, based on
meta-programming facilities of their respective host language. A detailed com-
parison of COP language features is provided in [2]. JCop is the first language
that fuses COP with AOP for a more declarative composition scope specification.
Except for the Python extension PyContext [31] that provides implicit layer ac-
tivation, none of the mentioned languages support event-based layer activation.
The Ambience language is another approach to context-orientation. Based on
the Ambient Object System [19], it supports behavior adaptations with partial
method definitions and context objects, which correspond to COP layers. Am-
bience does not support implicit context activation based on the evaluation of
an expression as supported by JCop’s when predicate.

Aspect-oriented Programming. The main distinction between AOP and COP (in-
cluding JCop) is that the former allows for a joint specification of when in the
execution flow what kind of functionality should be used, while COP separates
when (using explicit with statements) from what (using layers and partial meth-
ods). JCop exceeds COP by introducing declarative composition statements.

AspectJ [25] is a popular Java language extension that established the notion
of join points, well-defined events in the execution of a program that can be
described by pointcut predicates and can be adapted by advice blocks. JCop’s on
predicate is equivalent to AspectJ’s execution pointcut, except that the former’s
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method patterns are restricted to public methods to preserve encapsulation.
AspectJ’s if pointcut contains an expression that is evaluated at a join point.
It is of use only when concatenated with other pointcuts that provide the set of
join points on which if is evaluated. JCop’s when predicate is similar to if as
it dynamically evaluates a condition. However, when uses an implicit set of join
points, namely all executions of layered methods.

Most AspectJ-like languages do not support dynamic aspect weaving that
could simulate COP layer activation. However, they can mimic COP behavior
using pointcuts and advice, though in an unwieldy manner since the pointcut
specifications get complex. In some languages, such as CaesarJ [6], aspects can
be deployed for a dynamic extent at run-time, much like explicit with statements.
However, CaesarJ does not provide first-class context and behavioral variations
but rather supports variability at a different level of abstraction.

Alternative Adaptation Techniques. Modularization approaches such as traits
[30,15] and mixins [12] allow for an additional inheritance relationship next to the
class hierarchy, but do not offer dynamic adaptation like layers. Feature-oriented
programming (FOP) [10] and its Java-based implementation AHEAD [8] provide
layer-like modules to specify adaptations of methods and classes (and other soft-
ware artifacts). However, FOP and AHEAD apply compile-time composition of
feature variations in contrast to run-time composition as provided by COP and
JCop. The Classbox/J [11] module system extends Java’s packaging and scoping
mechanism. A classbox is an explicitly named scope in which classes and their
members can be defined. Besides common subclassing, Classbox/J supports local
refinement of imported classes by adding or modifying their features without af-
fecting the originating classbox, much like layers and partial methods. However,
it does not provide means for dynamic composition.

Event-based Programming. An important difference between event-based pro-
gramming and event-based context (de)activation deserves to be highlighted.
Event-based programming supports the synchronous or asynchronous trigger
of action as events are signaled. Conversely, event-based context (de)activation
triggers recomposition, which influences the binding of actions at interfaces. Ob-
viously, context (de)activation events have a certain influence on action charac-
teristics, but this is expressed only in terms of bindings of actions to interfaces;
actions are not immediate (synchronous or asynchronous) results of events.

The CaesarJ extension ECaesarJ [27] supports the definition of context as
a class implementing two events representing context entry and exit. Unlike
JCop, ECaesarJ does not provide a layer-like representation and composition
mechanism of behavioral variations. Moreover, objects must explicitly handle
context change, whereas event-based context implicitly changes the composition.

EventJava [17] models events as asynchronous methods and compound events
by correlation patterns. Event-specific behavior is encapsulated in method bodies
of correlation patterns that allow access to application-specific data and to im-
plicit context information of the event, which can be customized for application-
specific purposes. The execution of event methods can be restricted through
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predicates specified in a when clause. Contrary, JCop’s when construct specifies
the constraints under which an event is triggered.

In Ptolemy [28], code blocks are bound to events, similar to pointcut-advice
binding in AOP. Classes can contain binding definitions to such events or to
compositions of multiple events. Events are explicitly announced, contrary to
JCop’s implicitly evaluated when. Ptolemy’s event handling mechanism allows
for the immediate execution of functionality on event announcement, while JCop
ensures that event-based layer compositions wait until the execution stack has
reached a safe point for recomposition.

7 Summary and Conclusion

We discussed the requirements for context-oriented programming languages
to support event-specific context-dependent behavioral variations along a case
study implemented using a conventional COP language. For a better separation
of layer composition from application logic, we adopted pointcuts from AOP and
developed declarative composition statements. As an implementation of these
concepts, we presented JCop, our new language extension to Java. We applied
JCop to our case study to show that our new language abstractions allow for a
more declarative and intuitive specification of event-based behavioral variations.

As we have shown in this paper, different types of context require different
programming language representations in its support. In future work, we will
conduct a thorough analysis of variations of possible layer composition scopes
beyond control-flow and event-based scope.
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Abstract. This paper presents predicated generic functions, a novel pro-
gramming language abstraction that allows the expression of context-
dependent behaviour in a declarative and modular manner, providing
fine-grained control of method applicability and method specificity. Meth-
ods are guarded by predicates with user-defined orderings, thereby in-
creasing the expressiveness of existing method dispatching approaches.
We have prototyped our proposal in Lambic, an extension of the standard
Common Lisp Object System. We illustrate and motivate our approach
by discussing the implementation of a collaborative graphical editor.

1 Introduction

The lack of linguistic support for encoding context-dependent behaviour forces
programmers to scatter these dependencies throughout application code in the
form of conditional statements. In object-oriented programming, ad hoc poly-
morphism alleviates this problem by means of dynamic method dispatch, en-
abling behavioural variations based on a receiver argument. Methods and their
overriding relationships are driven by the inheritance hierarchies of the objects
received as arguments. Although an improvement, object-oriented dispatch has
been found to be limiting in many situations. A number of solutions have been
proposed, ranging from design patterns and multiple dispatch to those based on
metaobject protocols and aspects. Still, most approaches do not offer linguistic
abstractions to influence the semantics of method dispatch based on more general
criteria, while still preserving the benefits of encapsulation and polymorphism
—with one remarkable exception, predicate dispatch [11].

Predicate dispatch offers fine-grained control on method applicability by
means of logical predicates. Logical implication between predicates defines the
overriding relationship between corresponding methods. However, predicate dis-
patching has limited capacities to resolve method overriding ambiguities since
the logical implications between predicates cannot be decided in the general case.
Thus, the set of method predicates must be restricted to a well-chosen subset
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and thus can be statically analysed. This leads to a viable approach, but can be
limiting in some circumstances, since users cannot extend predicate dispatching
with their own arbitrary predicates in a straightforward way. Predicates with-
out logical implications can still be added but they are treated as black boxes
and the overriding relationship between two syntactically different expressions
is considered ambiguous [5,11].

This paper proposes a generic function-based multiple dispatch mechanism,
called predicated generic functions, that alleviates the restrictions of predicate
dispatching to cope with method overriding ambiguities. Instead of requiring a
logical implication order between predicates, this model fosters the definition
of context-specific priorities. Predicated generic functions enable users to estab-
lish a priority order between logically unrelated predicates. These priorities are
specified in a per-generic-function basis: predicated generic functions contain not
only the methods with a common name and argument structure (as in standard
generic function models [3,7]), but also the predicates on which such methods
can be specialised. A method is selected for execution when its predicate expres-
sion is satisfied, and the order of the predicates specified in a generic function
determines the order of applicability of its methods.

We implement the mechanism of predicated generic functions in Lambic [23],
a prototype extension of the Common Lisp [20] programming language. We il-
lustrate the benefits of predicated generic functions by developing a scenario of
context-aware computing. Lambic allows application developers to modularise
behavioural adaptations in methods and declaratively specify the context con-
ditions for these adaptations as predicates. Manual definition of predicate prior-
ities in generic functions provides developers with fine-grained control over the
composition of adaptations, ensuring that the “most suitable” composition of
behaviour is selected by the dispatch mechanism for any given method call.

2 Motivation: Context-Dependent Behaviour

Context dependency is the ability of software services to perceive and react
to changes in their execution environment, adapting their behaviour accord-
ingly [15]. This ability is already an integral part of some business applications,
but it is becoming even more critical in application domains such as mobile and
ubiquitous computing, in which context adaptability requirements play a central
role.

In this section we show the need for language constructs that ease the ex-
pression of context-dependent behaviour, discussing the suitability of existing
object-oriented approaches to cope with this requirement. We use as running
example a distributed graphical editor called Geuze. This editor can be used in
different hosts to work collaboratively on a same graphical document. For the
sake of simplicity, in this section we focus only on the graphic user interface
of Geuze, and discuss other cases of context dependency we have found in the
implementation of this editor, in Section 5.
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Table 1. Context conditions for Geuze operations

Context GUI events
Mouse down Mouse move Mouse up

Painting shape shape found, — —
brush selected

Moving shape shape found, drag status found, drag status found,
brush not selected brush not selected brush not selected

Drawing shape shape not found, drag status not found line status found
brush selected

Drawing selection — brush not selected, brush not selected,
drag status not found drag status not found

Selecting shape shape found — —
Deselecting shape shape not found — —

2.1 Handling User Interface Events

Consider some of the main graphical operations that Geuze can perform. The
editor allows creating, selecting, moving and painting shapes in a canvas. Each
operation has its own interaction pattern defined in handlers for Graphical User
Interface (GUI) events. A pattern can require a combination of GUI events, and
the same GUI event can be used in several patterns. For instance, the operation
for painting a shape is defined in a handler for the mouse-down event (clicking
inside a shape with the mouse pointer paints the shape). The operations for
drawing and moving a shape follow a drag-and-drop pattern, which is specified
in handlers for the mouse-down, mouse-move and mouse-up events.

The context of use plays a key role, as it determines the operation that handles
an event. This is illustrated in Table 1. For example, the operation that should be
executed upon a mouse-down event depends on context information such as the x
and y coordinates of the mouse pointer, on the shape found at these coordinates
(if any) and on the state of the editor’s brush (whether the brush button is
selected or not). Depending on this information, the operation corresponding to
the mouse-down gesture might be painting, moving and so forth.

The mode of operation (painting, moving, etc.) is also part of the context.
Pressing the mouse button will trigger a different set of actions depending on
the currently active operation, as illustrated in Table 2. For instance, a same
mouse-move event provokes a displacement of the shape when the editor is in
moving mode, whereas a line is drawn —a completely different behaviour—
when the mode is drawing. Further, there are cases in which two operations
correspond to the same mouse-down event. If a deselected shape is painted, the
shape is first selected, and then painted. This order of operations, although not
apparent in Tables 1 and 2, is integral part of the normal behaviour of the editor
and needs to be properly encoded. We will come back to this when we discuss
the implementation in Lambic.
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Table 2. Actions for Geuze operations

Context Actions
Mouse down Mouse move Mouse up

Painting shape paint shape — —
Moving shape set drag status update drag status, delete drag status

move shape
Drawing shape set line status, update line status, delete line status,

draw initial point draw line create a shape object
out of the drawn line

Drawing selection — draw selection square, remove selection square
select found shape

Selecting shape select shape — —
Deselecting shape deselect shape — —

2.2 Design Analysis of Running Example

At first sight, programming a basic graphical editor such as the one described
previously is straightforward. Nevertheless, a detailed analysis of the possible
solutions reveals that the programming tools we have at hand today fall short
of expressiveness to allow the production of a cleanly modularised solution.

Naive solution. The most immediate implementation of the handler for the
mouse-down event is through conditional statements. Such a handler would
squeeze all the information contained in Tables 1 and 2 into one monolithic piece
of code: both the conditions that are necessary for execution of context-specific
behaviour, and the behaviour itself, for every operation of the editor that is con-
cerned by the mouse-down event. The downsides are clear —context conditions
would be hard coded using conditional statements, and the implementations of
the different context actions would be tangled in the handler. This solution is
unacceptable, as it hinders maintainability and code reuse [16].

Object-oriented solution. In traditional object-oriented systems, method in-
vocation is triggered by messages being sent to objects where the objects then
decide which method to execute based on a mapping from message signatures
to actual methods. Typically, such mappings are fixed for specific types of ob-
jects, which means that the dynamic state of a running system cannot (easily)
influence the dispatch mechanism for a particular object anymore.

One solution is to use forwarding, which means that an object that receives a
message forwards it to another object, based on some arbitrary criteria. A popu-
lar example of that approach is the State pattern [12], which enables separation
of method definitions according to the state of a particular receiver object. Fig. 1
shows a diagram for a possible use of the State pattern in our example. Using
this architecture, the editor may behave differently according to whether it is in
the state painting, moving, and so forth.

A drawback of message forwarding is that it introduces object identity prob-
lems: the self or this reference in the method corresponding to the current
state is not the original receiver of the message (note in Fig. 1 that the first
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mouse-down
mouse-up
mouse-move
...

Editor
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mouse-move
...

EditorState
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mouse-move
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MovingState
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mouse-up
mouse-move
...

DrawingState

(mouse-down state shape x y)
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Fig. 1. Architecture of the Geuze editor using the State pattern

argument passed to mouse-down is the state attribute of the editor). This is
typically referred to as the object schizophrenia problem [6]. There are a number
of suggestions to solve certain aspects of this problem, for example by rebind-
ing self or this to the original receiver in delegation-based languages [17], or
by grouping delegating objects in split objects and letting them share a com-
mon object identity [1]. However, the core problem remains, namely that it is
not straightforward to unambiguously refer to a single object anymore. The pro-
grammer must ensure that the right object in a delegation chain is being referred
to, and even in split objects, the correct role of an object has to be selected.

Predicate dispatching. Predicate dispatching [11] is very convenient for the
declaration of method applicability constraints: the conditions —or context—
under which a method can be invoked. However, it falls short in helping to
express method specificity in the general case —that is, when methods should be
invoked, taking precedence over other applicable methods. Precedence by logical
implication is a natural choice, but it sometimes cannot be established by mere
static analysis of the predicates. Unfortunately, predicate dispatching does not
support user-defined orderings of predicates for cases that cannot be decided
solely on the grounds of the structure of the predicates. Furthermore, automatic
disambiguation of methods by means of logical implication does not always yield
the desired semantics. For instance, in Table 1 the condition for moving shape is
stronger than (implies) that of selection. Predicate dispatching will thus consider
moving behaviour more specific than selection behaviour. However, in Geuze the
selection behaviour must be performed before the moving behaviour.1 Lambic
allows to encode this semantics, as will be shown in the explanation of Listing 1.

In this section we have shown that it is difficult to cleanly encode context-
dependent behaviour within the traditional object-oriented paradigm. We have
identified predicate dispatching as a possible solution path, but have discussed
1 This requirement has to do with the distributed part of the editor, not explained in

this paper. The selection of a shape is used for control access. Selecting a shape means
obtaining a lock from the leader that coordinates the interaction in the network.
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its shortcomings when it comes to defining method specificity. Next we introduce
our answer to still use the underlying idea of predicated applicability, albeit in
an adapted form that also allows fine-tuning of specificity.

3 Predicated Generic Functions

Predicated generic functions are an extension of the generic function-based mech-
anism of the Common Lisp Object System (CLOS) [3]. CLOS supports multiple
dispatch semantics by detaching methods from classes, allowing developers to
specialise methods on the classes of all received arguments, as opposed to only
the first argument in singly dispatched languages. We extend such mechanism
by enabling methods to also specialise on predicates. In this section, we briefly
explain the syntax and informal semantics of predicated generic functions, show-
ing a small example of use. To this end, we use Lambic [23], our extension of the
Common Lisp programming language that implements predicated generic func-
tions. In the remainder of this paper we refer to predicated generic functions and
to Lambic interchangeably.

3.1 Syntax and Semantics

This section describes the very essentials of Lambic’s syntax and semantics for
the definition and invocation of predicated generic functions and methods. Fur-
ther details of this mechanism are available in Section 5.

Defining Generic Functions and Methods. In Lambic, as in CLOS, a
generic function is a container of methods with a common name and a parame-
ter list the methods can specialise. Additionally, Lambic’s generic functions can
contain a list of predicate declarations. The definition of such generic functions
follows the syntax:

(defgeneric function-name function-parameters
[(:predicates {pred-symbol | (pred-name pred-params pred-body)}∗)])

A generic function is defined with the defgeneric construct which receives
as arguments a name, a parameter list and an optional list of predicate declara-
tions (denoted with the :predicates keyword). Predicates are standard (CLOS)
functions with a boolean-valued expression as body, following an arbitrary user-
defined specificity order represented by the order of the predicate declarations in
the generic function: the first predicate of the list is the most general predicate
and the last one the most specific. A predicate can be defined either outside or
inside the generic function. In the former case it suffices to indicate only the
symbol associated to the predicate’s definition (which can correspond to an al-
ready existing function). Internally defined predicates, on the other hand, should
indicate the predicate’s name, parameter list and body. These internal predicates
are available exclusively for the methods belonging to the generic function.

Methods are defined independently from their containing generic functions,
using the defmethod construct:
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(defmethod method-name method-parameters
[(:when {(pred-name arguments)}∗)]
method-body)

A method is defined with a name, a parameter list and an optional predicate
expression (specified with the :when keyword). This expression is composed of
one or more invocations to the predicates declared in the method’s generic func-
tion, using one or more parameters of the method as arguments.

Invoking Generic Functions. In Lambic, as in CLOS, object-oriented pro-
grams are written in terms of generic function invocations rather than messages
exchanged between objects. Yet, both approaches result in the invocation of
a method or a method chain. When a generic function is called with particu-
lar arguments, it selects the methods to be executed —known as the applicable
methods— by evaluating each of the method’s predicate expressions. This eval-
uation occurs in the lexical environment of the method, augmented with the
generic function’s parameters bound to the received arguments. The applica-
ble methods are those whose predicate expression evaluates to true, and the
methods that do not specify any predicate.

The execution order of the applicable methods is determined by the specificity
of their predicates: the method with the most specific predicate is executed first.
A method without predicate expression is considered more general than any
method with predicates and thus it is always executed at last.

Finally, the most specific method is called. The other methods can be invoked
by the programmer inside of method definitions by way of call-next-method,
much like with super calls in other object-oriented languages.

3.2 Example of Use

Consider as illustrative example the factorial function. In this function we want
to distinguish between negative and positive numbers, and the number zero. We
therefore define a factorial generic function using as predicates the functions
for aritmethic comparison <, =, and >. Since these are already defined in Common
Lisp, we just need to declare them as predicates for the factorial generic
function, indicating the corresponding symbols as follows:

(defgeneric factorial (n)
(: predicates < = >))

(defmethod factorial (n)
(: when (> n 0))
(* n (factorial (- n 1))))

(defmethod factorial (n)
(: when (= n 0))
1)

(defmethod factorial (n)
(: when (< n 0))
(error “Factorial not defined for negative numbers.”))
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Each method indicates one of the predicates declared in the generic function
using the :when keyword. The first method is called if the argument n is a
positive number and computes the general case of the factorial function. The
second method is called if n is 0 and returns 1. The third method will be called
if n is a negative number and signals an error.

4 The Geuze Editor in Lambic

We now describe the development in Lambic of the scenario introduced in Sec-
tion 2, the Geuze drawing editor. First, we focus on the implementation of a
GUI event handler to illustrate the benefits of the predicated generic functions
in terms of modularity and reusability. We then show that by supporting method
dispatch based on the state of received arguments, Lambic enables expressing
State-like patterns without object identity problems.

4.1 Context-Dependent Event Handlers

Listing 1 shows the implementation in Lambic of the actions that handle the
mouse-down event in the Geuze drawing editor. Each of these actions correspond
to (part of) a graphical operation, which is selected depending on a number of
context conditions, detailed in Table 1. In Lambic, we can cleanly separate such
actions in methods specialised on predicates representing the different graphical
operations. These methods act as context-dependent handlers which can conve-
niently associate actions to context conditions. For instance, the first method
definition in Listing 1 describes how to handle the mouse-down event when the
editor is in the painting context (indicated by means of the painting predicate).2

All the methods in Listing 1 are contained in the mouse-down generic function
which declares the predicates with the context conditions for the graphical op-
erations. Listing 2 shows the definition of such generic function with the moving
and drawing predicates defined internally. The other three predicates are de-
fined as external functions as in the case of the selecting predicate shown in
Listing 2. Section 4.2 explains the reason for this difference in the declaration of
the predicates.

Combining Context-dependent Handlers. In Section 2, we discuss the sit-
uation in which an event is handled by more than one operation, e.g. painting
a deselected shape results in the shape first being selected and then painted.
In Lambic, the selection and proper combination of methods is internally com-
puted in accordance to the predicates and their order of declaration in the generic
function. Hence, in the Geuze editor, such case is transparently handled by the
mouse-down generic function, which selects for execution the methods defined for
selecting and painting shapes (shown in Listing 1), denoted with the selecting
and painting predicates respectively. Since the selecting predicate is declared
2 For the sake of clarity, the handling action in this case is reduced to the invocation

of a paint-shape method.
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Listing 1. Untangled GUI event handlers in Lambic. Application concerns are indi-
cated on the right side.

(defmethod mouse -down (editor shape x y)
(: when (painting shape editor )) → context
(paint -shape editor shape)) → painting

(defmethod mouse -down (editor shape x y)
(: when (moving shape editor )) → context
(set -drag -status editor x y)) → moving

(defmethod mouse -down (editor shape x y)
(: when (drawing shape editor )) → context
(set -line -status editor x y)
(draw -point editor x y)) → drawing

(defmethod mouse -down (editor shape x y)
(: when (selecting shape editor )) → context
(select -shape editor shape) → selection
(call -next -method ))

(defmethod mouse -down (editor shape x y)
(: when (deselecting shape editor )) → context
(deselect -shapes editor )) → deselection

more specific than the painting predicate (the latter predicate appears first
in the list of predicates of the mouse-down generic function), the method for
selecting the shape is executed first. Finally, as we explained in Section 3, by
default only the most specific method is executed. Therefore, we need to include
the call-next-method construct in the method specialised on the selecting
predicate, so that the one specialised on painting is invoked next.

4.2 State Pattern without Object Schizophrenia

Lambic enables developers to express State-like patterns without object identity
problems. As example, assume that the graphical operations of the Geuze editor
represent its different states, just like in the original State pattern. Each state
groups the behaviour required by an operation to handle one or more GUI events,
as detailed in Table 2 of Section 2. In Lambic, this corresponds to describing
a state as a number of methods using the same predicate expression. Simple
examples are the states representing the operations for selecting, deselecting
and painting shapes, which only require one method definition to handle the
mouse-down event, shown in Listing 1. A bigger example is the moving state
presented in Listing 3 which defines its behaviour in the methods mouse-down
(to set a drag status used during the move), mouse-move (to move the shape)
and mouse-up (to remove the drag status at the end of the move).

Notice how this way of specifying the behaviour of the Geuze editor cleanly
separates the definition of its several states (embodied by the predicates) from
the behaviour corresponding to those states. This State-like idiom avoids any



Predicated Generic Functions 75

Listing 2. The mouse-down generic function.

(defgeneric mouse -down (editor shape x y)
(: predicates painting

(moving (shape editor)
(and shape (not (brush -active? editor ))))

(drawing (shape editor)
(and (not shape) (brush -active? editor )))

selecting
deselecting ))

(defun selecting (shape)
shape)

Listing 3. The moving state.

(defmethod mouse -down (editor shape x y)
(: when (moving shape editor ))
(set -drag -status editor x y))

(defmethod mouse -move (editor shape x y)
(: when (moving shape editor ))
(move -shape shape editor x y))

(defmethod mouse -up (editor shape)
(: when (moving shape editor ))
(delete -drag -status editor ))

object identity problems: a particular editor always retains its identity, no matter
what state it is in. Since the state of the editor is automatically derived from
the current context conditions, one does not have to worry about managing
an explicit state with explicit state switches in the corresponding mouse-down,
mouse-move and mouse-up event handlers.

Finally, note in Section 2 that Table 1 identifies different context conditions
that characterise the operation for moving a shape at the different mouse events.
In particular, there is a set of conditions for the mouse-down event and another
set for the mouse-move and mouse-up events. However, we can still define the
moving state in terms of the three methods using the moving predicate. In
Lambic, this is possible by enabling predicates to be defined inside the generic
functions which are only available to the generic function’s methods. Thus, the
mouse-move and mouse-up generic function refer to a globally defined moving
predicate (as shown in Listing 4) whereas the mouse-down generic function de-
fines its own version of such predicate (shown in Listing 2). This example makes
clear that the State pattern in Lambic is mostly a naming convention for the
predicate used to identify the state. Further, this example shows the fine-grained
control that developers have to influence the applicability of methods based on
the context.
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Listing 4. Reuse of the moving predicate.

(defun moving (shape editor)
(and (drag -status? editor) (not (brush -selected ?))))

(defgeneric mouse -move (editor shape x y)
(: predicates ... moving ...))

(defgeneric mouse -up (editor shape x y)
(: predicates ... moving ...))

5 Validation and Discussion

Lambic’s predicated generic functions allow methods to specialise on
programmer-defined predicates, providing fine-grained control of method appli-
cability, as predicate dispatching also does. Additionally, method dispatch is
driven by the predicates’ specificity order declared in generic functions which
avoids the problems caused by potential ambiguities when comparing arbitrary
predicates that do not designate instance subsets of each other.

We have illustrated the benefits of predicated generic functions by discussing
the implementation of the graphical user interface of the Geuze editor. How-
ever, this is only part of our current implementation of Geuze.3 As mentioned
in Section 2, Geuze is an application for collaborative edition that enables its
users to create peer-to-peer drawing sessions. Predicated generic functions have
contributed significantly to define context-dependent behaviour for this appli-
cation, allowing a clean separation of the code required for collaborative work
from the plain editor logic, a clear distinction between the behaviour for the
roles required for the coordination of the session (the session leader and the rest
of the participants), and the modularisation and dynamic composition of the
graphical operations (which is discussed in this paper). In the implementation of
Geuze we have used 4 instances of the State-like idiom described in Section 4.2
to handle events related to network connection (to deal with network failures),
synchronisation (to control edition locks), replication (to ensure a consistent col-
laborative edition), and graphic user interface (partially shown in Section 4.2).
None of these instances require additional infrastructure beyond the methods
associated to states by means of context predicates. Geuze is composed of 44
methods grouped in 16 generic functions. None of these methods contain entan-
gled concerns in their body.

5.1 Predicated Generic Functions and CLOS

In the current implementation of predicated generic functions in Lambic we have
adopted a rather conservative approach which preserves the method dispatching

3 The full implementation is available at http://soft.vub.ac.be/lambic.

http://soft.vub.ac.be/lambic
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semantics of CLOS. For instance, Lambic still enables the methods to specialise
on the classes of the arguments, and to use qualifiers (e.g. :around, :before and
:after). We achieve this compatibility by reflectively introducing our predicate
dispatch mechanism as an internal step in the method selection and ordering
process, leaving unchanged the rest of the semantics of CLOS that computes ap-
plicable methods and their ordering. Actually, predicate expressions correspond
to implicit generic function arguments which are added at the end of the pa-
rameter list. Each predicate is associated to a type, and the predicate ordering
is encoded by means of subtyping. Given this encoding, behaviour selection is
performed following normal CLOS dispatch semantics. In particular, a generic
function containing methods specialised on classes and predicates, selects and
sorts the methods according to the classes first, and then according to predicates.
Our current implementation of Geuze3 illustrates this case.

5.2 Limitations

Although Lambic can help in tackling some of the challenges for modelling
generic functions with context-specific predciates, a number of challenging is-
sues needs to be further explored. Currently, predicated generic functions are
implemented using the Meta-Object Protocol (MOP) of CLOS, and can be used
only in the LispWorks R© Enterprise Edition4 development environment for Com-
mon Lisp. We have not considered efficiency issues in detail yet, and have not
explored more general implementation techniques. However, efficient implemen-
tation techniques for generalised predicate dispatch have been investigated in
detail in the past [5] and can probably be adapted to the implementation of
predicated generic functions as well.

In this paper, we propose an alternative to logical implication order used by
existing predicate dispatching approaches to disambiguate method overriding.
However, there are situations in which such approach would still be desired,
e.g. to disambiguate methods using the same predicate expression. For instance,
using predicated generic functions the method definitions

(defmethod foo (n)
(: when (> n 1))
(print “Number bigger than 1”))

(defmethod foo (n)
(: when (> n 2))
(print “Number bigger than 2”))

would lead to an ambiguous situation if foo is invoked with n greater than 2, as
both methods would be selected for execution but none of them is more specific
than the other. While Lambic avoids this problem by accepting only one method
definition with the same predicate expression, this is clearly a case in which the
inclusion of logical implication in Lambic would increase its expressiveness.

4 See http://www.lispworks.com.

http://www.lispworks.com
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6 Related Work

We divide related techniques in two categories, according to whether they pro-
mote flexible method dispatch or flexible software composition to enable be-
haviour adaptability.

6.1 Flexible Behaviour Selection Schemes

Predicated generic functions build on previous work on filtered dispatch [9],
which in turn draws inspiration from specialisation-oriented programming [19].
Filtered dispatch introduces filter expressions that map actual arguments to rep-
resentatives. Filtered arguments are then used in place of the original arguments
for method selection and combination. The chosen method is invoked using the
original arguments.5 As Lambic’s predicates, filters are associated to generic
functions. One of the motivating examples for developing filtered dispatch has
been the implementation of an interpreter for a Lisp dialect [14]. In this inter-
preter, values of the interpreted language are represented in the standard way,
as wrapped values in the implementation. However, the object-oriented imple-
mentation of the interpreter needs to dispatch on the unwrapped values, not on
the wrappers themselves. Using filtered dispatch, this can easily be expressed by
turning the unwrap function into a filter.

Predicated generic functions and filtered dispatch are closely related, albeit
there are examples which are easily expressed in Lambic that cannot be expressed
using filtered dispatch, and the other way around. Firstly, even though many fil-
ters can be defined for a given generic function in filtered dispatch, corresponding
methods can use only one of those filters at a time. As a consequence, each pos-
sible combination of the filters that could prove useful needs to be anticipated
and encoded as an additional filter in the generic function. Secondly, filtered ex-
pressions are parameterised exclusively on the argument they filter; they cannot
depend on the value of other arguments of the method. This restriction renders
filtered dispatch less amenable to express context adaptations, because the con-
ditions for applicability (the predicates) cannot harness all available contextual
information. On the other hand, the example where an interpreter dispatches on
unwrapped interpreter values [9,14], seems to be less straightforward to do in
Lambic.

Mode classes [21] enable dispatching on the explicit state of an object. Predi-
cate classes [4] extend this idea by dispatching on computed states. Mode classes
correspond to an explicit management of state, while predicate classes compute
state implicitly. Predicate classes were a precursor to generalised predicate dis-
patch [11], discussed in Section 2.2.

Clojure6 is a recent dialect of Lisp that provides a generic dispatch frame-
work that can accommodate many different semantics. A Clojure multimethod
5 This corresponds to the lookup ◦ apply decomposition of method dispatch investigated

by Malenfant et al. [18]. In filtered dispatch, lookup receives the filtered arguments,
and apply receives the unfiltered (original) ones.

6 See http://clojure.org.

http://clojure.org
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is a combination of a dispatching function and one or more methods with the
same name. The dispatching function maps passed arguments to arbitrary values
which are associated to methods. The ordering of values combines Java’s typ-
ing mechanism with Clojure’s own ad-hoc hierarchy system. When no method
dominates the others, Clojure provides a means to manually disambiguate mul-
tiple matches. An implementation of predicated generic functions in the dispatch
framework of Clojure seems feasible.

Ambience [13] proposes a prototype-based object system that reifies the con-
text as an object, and exploits multiple dispatch to enable selection of context-
dependent behaviour. Ambience does not propose however a predefined mech-
anism to choose which context should be activated; in contrast, in Lambic the
conditions that enable different behaviours are readily encoded in the method
predicates.

6.2 Dynamic Composition Schemes

Classboxes [2] are a mechanism for lexically-scoped structural refinements. Sim-
ilar to open classes, refinements in classboxes make it possible to extend a class
definition from the outside, with new fields and methods, as well as extending
methods with a mechanism similar to overriding in standard object-oriented pro-
gramming. However, while changes made with open classes are globally visible,
classboxes introduce a dynamic scoping mechanism based on import relations
between modules: a refinement to a class is only visible for all execution that
originates from a client of the module in which the refinement is defined.

Aspect-Oriented Programming (AOP) [16] allows the programmer to encap-
sulate concerns that cross-cut modularisation boundaries (e.g. classes) in a con-
struct called an aspect. Aspects are designed to supplement the basic composition
mechanisms provided by the host language. There are three main binding times
for aspects: compile time, load time and run time. Dynamic aspect weaving oc-
curs at run time. Dynamic aspect weaving can be thought of as a tool for dynamic
behaviour adaptation, since it allows for base application logic to change at run
time —for instance, to be adapted to non-functional concerns such as security or
low power computation. Dynamic aspects can be woven and unwoven according
to context. Context-Aware Aspects explore this idea [22]. The idea is to extend
pointcut languages with context-specific restrictions, allowing both parameteri-
zation of context definitions and exposure of context state to the aspect action.
This and other aspect weaving approaches are related to ours insofar as the ap-
plicability of advice is determined by dynamically evaluated pointcut definitions
—advice is analog to filtered methods, and pointcuts are analog to predicates
which limit the applicability of advice to specific contexts.

Costanza [8] argues that the advantages of (dynamic) AOP can be obtained
with less conceptual and technical burden thanks to dynamic scoping of func-
tions. This idea has been integrated reflectively into CLOS, and the result is
ContextL [10]; ContextL features a form of dynamic scoping of methods to en-
able adaptation to context.
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7 Conclusion and Future Work

In this paper we have introduced predicated generic functions, a novel mechanism
to allow flexible behaviour selection according to context. This mechanism has
been realised in Lambic, an extension of CLOS. Lambic method definitions can
be guarded by predicates, which are used to decide on the applicability of the
method for a list of actual arguments. If more than one predicated method is
applicable, the order in which the predicates are declared in the corresponding
generic function is used as tiebreaker. These are the main tools Lambic offers
for fine-grained control of applicability and specificity of methods.

The development of Geuze, a non-trivial application for the collaborative edi-
tion of graphical objects, has shown us that predicated generic functions allow
the modular implementation of various concerns. The modes of operation of the
application (whether it is working on painting, moving or some other mode) can
be regarded as contexts, and behaviour is specialised on such contexts.

The assessment of predicated generic functions presented in this paper leads
us to believe that they are well suited to the expression of behaviour that de-
pends non-trivially on context. However, some work remains. Among our next
steps, we plan to look into efficient implementation techniques to avoid unneces-
sary computation when deciding method applicability. Also, we will consider the
formalisation of the semantics of predicated generic functions. Finally, we will
continue exploring the possibilities of predicated generic functions in combina-
tion with distribution —one of the flagships of Lambic, offering many possibilities
yet to be explored.
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Abstract. Runtime adaptability and delivered quality are two impor-
tant concerns for every system. One way to achieve runtime adaptability
is by specifying variants in the system model at design time to allow
switching between runtime configurations. The fulfillment of system’s
quality requirements depends on parameters that can change at run-
time. In order to meet its quality requirements, the system must be
able to dynamically adapt to changes that affect the delivered quality.
We outline our approach to enhance system adaptability through auto-
matic evolution of the system model. Our approach periodically updates
the model by re-evaluating the delivered quality based on runtime in-
formation. We use a service composition model to represent the system
functional requirements and annotate it with delivered quality evalua-
tions. We ensure system runtime adaptability by selecting the variant to
execute at runtime based on the evolved model.

1 Introduction

Systems are increasingly required to feature autonomic capabilities. Systems
that need to be continuously available and be able to change behavior depending
on environmental conditions require a higher degree of autonomic capabilities.
These systems must dynamically adapt to changes in the environment, switching
between different runtime configurations without disrupting the running system.
Software engineers can develop such dynamically adaptive systems by providing
variants that determine the runtime configurations, respectively the execution
paths of the system.

Quality requirements1 are important concerns for every system. When reason-
ing about design decisions, software engineers must also ensure that the system
will meet its quality requirements. The engineers face two issues:

1. The variants provided at design time are limited to the knowledge of the
engineers and to their capability to foresee changes. Unanticipated changes
in the environment or changes demanded by new user needs require modifi-
cation and redeployment of the system.

1 In this paper we use the term quality requirements for non-functional requirements,
such as performance, reliability, and cost.

B. Baudry and E. Wohlstadter (Eds.): SC 2010, LNCS 6144, pp. 82–89, 2010.
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2. To estimate the fulfillment of the quality requirements, software engineers
use parameters provided at design time that estimate the behavior of system
components in a given environment. In a changing environment, parameter
changes can result in quality degradation or violations of the system’s quality
requirements.

To address these issues, we automatically evolve the model of the system,
periodically update it with observed quality information, and use the evolved
model to drive the choice of the system runtime configuration. We present a
framework for automated model evolution that uses a service composition model
to represent the running system. The choice of the model allows us to leverage
the advantages of service oriented architectures: flexibility, loose coupling, and
ease of integration. Changes in our model are immediately incorporated in the
implementation and runtime configuration. By using the model at runtime, our
approach can easily integrate new variants and modify existing ones without
disrupting the running system.

The Quality of Service (QoS) parameters of a service-oriented system depend
on the QoS of its composing services. QoS estimates are expressed as guarantees,
called service level objectives (SLO [1]), in service level agreements (SLA [1]).
However, given the dynamic and distributed nature of service-oriented systems,
QoS can vary in time and the system cannot enforce its composing services to
meet their SLOs. Our framework monitors service execution and periodically re-
evaluates the QoS parameters of the system based on monitoring information.
It then updates the model with the new QoS values that are used for selecting
the runtime configuration.

In this paper we outline our approach to enhance runtime adaptation capabil-
ities for dynamically adaptive systems by updating the system model according
to runtime information and using the updated model at runtime to drive the
system runtime configuration. We give an overview of a possible implementation
of our approach using service compositions and the BPEL standard.

2 Approach Overview

An important concept that we use in our approach is the variant. A variant rep-
resents one possible implementation of a system functional requirement. Variants
can increase fault tolerance by specifying alternative ways of fulfilling a func-
tional requirement. Take for example the case of the alarm function in a smart
home system. The engineer specifies one variant of fulfilling the functionality by
setting off the alarm, and a second variant by blinking the lights.

Fig. 1 presents the conceptual phases in our approach: (1) automatically evolv-
ing the system model based on runtime information; and (2) using the updated
model at runtime to adapt the running system.

Initially, the delivered quality values of the system are estimated using param-
eters available at design time, such as QoS guarantees specified by SLAs. Due
to system evolution and environmental changes, these parameters might change,
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Fig. 1. Approach overview diagram

making the initially estimated quality values obsolete. By monitoring the run-
ning system, it is possible to gather information that reflects the current state of
the environment. The quality values are re-estimated based on the monitoring
information and the model is then updated according to the new estimations.

The algorithms used to estimate the quality values can help detect the sys-
tem’s inability to meet its quality requirements. The estimations can also help
detect the cause of a quality degradation, such as a malfunctioning component.
The system can improve the delivered quality and prevent violations of quality
requirements by leveraging the estimations when selecting the variant to execute.

A second concern for model evolution are changes that provide a new variant,
or that invalidate an existing variant. Consider for example the case of introduc-
ing a new component. New variants using the component become available. The
model is updated by integrating the new discovered variants.

System adaptation is done by using the updated model to decide the system
runtime configuration and the execution path for each functional requirement.
To use this adaptation technique, a framework implementing our approach must
ensure that implementation always conforms to the current model. The frame-
work must provide a way to automatically implement the model changes into the
running system without requiring user intervention or system interruption. The
choice of the system model plays an important part in achieving the required
autonomic capabilities.

3 A Framework Based on Service Compositions

This section presents a framework illustrating the approach introduced above
and describes the system model and the components of the framework that play
an important part in the automated model evolution and system adaptation.

3.1 Model

Fig. 2 presents the generation of the system model from the developer input
model. In the input model the developer defines variability points, that is, func-
tional (sub)requirements of the system which can have different variants. The
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Variant Finder generates the model of the running system from the input model
by finding solutions to the variability points. A solution to a variability point is
a variant.

The Variant Finder is an automated service composition engine that takes
the variability point description and queries the service repository finding the set
of service compositions that solve the requirement, such as [2,3]. The variability
points must be expressed in a query language understood by the Variant Finder,
and the services must be semantically annotated. In previous work we have
introduced a query language for directories in support for automated service
composition [4].

The input model must represent a system that can be implemented as a service
composition. Currently we consider the input model to be a goal model with
functional goals (functional requirements) as presented in [5]. A goal model is an
AND/OR graph showing how higher-level goals are satisfied by lower-level ones
(goal refinement) [6]. The AND-refinement link relates a goal to a set of subgoals
that must be satisfied in order for the goal to be satisfied. A goal node can be
OR-refined into multiple AND-refinements that each represent an alternative,
i.e. the parent goal can be satisfied by satisfying the subgoals in any of the
alternative AND-refinements. In our input model, the bottom subgoals must be
queries in order to be able to automatically generate the system implementation.
In this case, the whole system implementation is provided through automatic
service composition.

The generated model is an annotated AND/OR graph in which the variability
points are expanded with the variants found by the Variant Finder. A variant
node is a node that is parent to at least one variant. All OR-link nodes and
nodes corresponding to variability points in the input model are variant nodes.
Variant nodes are annotated with information that is used at runtime to select
the variant to execute. A variant node contains as data for each child variant
a set of estimated QoS values and the deviation percentage from the required
QoS. At model generation, the QoS values are computed based on the SLAs of
the variant’s composing services.
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In Fig. 2 we show a fragment of the generated model for a smart home sys-
tem. We detail the graph branch representing the temperature control functional
requirement. The requirement is to adapt the temperature in the room accord-
ing to weather conditions. The Variant Finder provides two variants for the
temperature control variability point:

1. The system reads the weather forecast from an online service, gets the rec-
ommended temperature value for the external temperature forecast and sets
the room heater to the recommended value.

2. The system reads the external temperature sensors installed on the building,
computes the temperature value using a dedicated function and sets the room
heater to the computed value.

3.2 Architecture

Fig. 3 presents the architecture of our framework. BPEL [7] is the de facto
standard for service compositions. BPEL process definitions are deployed to
BPEL engines that instantiate and execute a process instance when a request
for the deployed process arrives. Our framework leverages the BPEL technology
to implement the system.

The System model is the one introduced in Section 3.1. Our framework auto-
matically generates BPEL processes from the system model. The processes are
instrumented to allow monitoring the component services and the system QoS
parameters. Based on monitoring information the framework estimates QoS val-
ues, periodically updating the model. The updated model is used to decide the
runtime configuration.
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The BPEL Generator creates a BPEL process for every variant in the model.
All generated processes are registered to the System Manager (the arrow labeled
register in the figure).

The System Manager is responsible with selecting the variants to be executed
for fulfilling the system requirements. Some systems that are an aggregation
of distributed applications, such as service-oriented systems, can be seen as a
composition of functional requirements implemented independently. The system
core is a dispatcher that forwards requests to the System Manager. We can
automatically generate the dispatcher from the model. The developer can choose
not to use the fully automated version, but only to forward requests for variability
points execution to the System Manager.

The System Manager keeps a mapping between variants in the model and
the corresponding BPEL processes. A variant is mapped to exactly one pro-
cess. When the execution of a variability point is triggered, the System Manager
checks the model for the variant to execute. The System Manager starts the
variant execution by invoking the process corresponding to the selected vari-
ant (start). This approach allows the system to evolve with the system model,
changes in the model being reflected in the system implementation.

Changes in the environment affect the system so that variants can become
outdated, or new variants can be found. Variant Finder provides new possible
variants based on runtime information, such as the availability of a new service.
The Variant Finder updates the model with new variants, which can be then
selected to be executed. In this way, new variants are easily integrated without
disrupting the running system.

Our framework uses the monitoring capabilities of ADULA, a framework for
fault tolerant execution of BPEL processes introduced in previous work [8,9].
The Monitor component of ADULA provides statistics on QoS parameters of
services used by processes. Service invocations are redirected through Dynamic
Proxies that measure the response time of the service. The Monitor observes the
service execution, collects measurements and provides aggregated performance
statistics.

Variant Validators test the fulfillment of the system quality requirements for
each variant using statistic methods, such as Bayesian inference [10] or statistical
hypothesis testing [11]. In previous work [9] we have used statistical methods to
detect SLO violations for BPEL processes.

QoS Evaluators compute the estimated value of the QoS making use of mon-
itoring information. Based on the estimated values, Variant Validators compute
the deviation for each variant and each QoS parameter, and update the model
with the new values (triggerUpdate). The deviation value is computed for each
QoS using a provided function.

4 Related Work

KAMI [12] is a framework for model evolution by runtime parameter adapta-
tion. KAMI focuses on Discreete Time Markov Chain [13] (DTMC) models that
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are used to reason about non-functional properties of the system. The authors
adapt the non-functional properties of the model using bayesian estimations to
update the parameters that influence the non-functional properties. The esti-
mations are computed based on runtime information, and the updated model
allows verification of requirements. Our framework focuses on using the model
at runtime to improve a system’s autonomic capabilities. We also consider new
variants for functional requirements and use the evolved model to dynamically
adapt the system.

Similarly to KAMI, the approach in [14] considers the non-functional proper-
ties of a system in a web-service environment. The authors provide a language,
SLAng, that allows to specify QoS to be monitored.

There are different approaches to provide self-adaptive systems. Mod-
els@Run.Time [15] propose leveraging software models and extending the ap-
plicability of model-driven engineering techniques to the runtime environment
to enhance systems with dynamic adapting capabilities. The system adaptation
in our approach leverages this idea using the model to determine the system
runtime configuration.

In [16], the authors use an architecture-based approach to support dynamic
adaptation. Rainbow [17] also updates architectural models to detect inconsis-
tencies and correct certain types of faults. In [18] the authors implement an
architecture-based solution in the context of mobile applications to adapt the
system by replacing the implementation of components at runtime. None of
these solutions considers the impact of environmental changes on the quality
requirements of the system.

A different approach to using models at runtime for system adaptation is taken
in [19]. The authors update the model based on execution traces of the system.
Our approach provides new execution paths for the system by integrating new
and modified variants into the model.

The work in [20] provides a solution to a different issue concerning dynamically
adaptive systems, which is the control over the wide number of variants that a
system with many variability options can have. The authors introduce a solution
to maintain dynamically adaptive systems by using aspects to evolve the model.

5 Conclusion

In this paper we outlined our approach to enhance a system’s autonomic capa-
bilities by using an automatically evolving model of the system at runtime. The
model is periodically updated with re-evaluated QoS values based on runtime
information. The evaluations can be used to predict and prevent QoS violations.

We gave an overview of a BPEL-based framework implementing our approach
and introduced a system model leveraging service compositions. Variants repre-
sented in our flow graph model are implemented as BPEL processes that can be
switched at runtime allowing the system to adapt to changes in the environment.
In this way, the system can integrate new variants without requiring interruption
of the running system.
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Abstract. In the context of Services Oriented Architecture (Soa), com-
plex systems are realized through the design of business–driven processes.
Since the design of a complete process can be complex, composition tools
such as aspects and features propose to define large systems by compos-
ing smaller artifacts, easier to understand. But these techniques shift the
system complexity into the definition of composition directives able to
build it. At composition time, process designers need support to assist
them and assess their designed systems. We propose in this article a
set of visualizations to represent compositions of business–processes and
then identify patterns and categorizations. We use the Adore frame-
work as the underlying process composition platform. We validate this
work by visualizing and assessing a Car Crash Crisis Management sys-
tem (CCCMS, a comparison referential for Aspect Oriented Modeling
techniques). We use these visualizations to assess the Cccms realization.

Note for the proceeding reader: this paper makes use of colors. Although not
mandatory for its understanding, an online (colored) version of this paper will
ease the reading.

1 Introduction

An application that follows the Service Oriented Architecture paradigm (Soa,
[1]) is an assembly of services that realizes business processes. Business processes
are defined by business specialists and typically involve many services that are
composed in a variety of ways. Furthermore, the need to extend a Soa applica-
tion with new business features (to follow market trends) arises often in practice.
In the technological context of Web Services, business processes can be imple-
mented as orchestrations of services [2]. Existing tools and formalisms related to
business processes (e.g. Bpmn notation [3], Bpel industrial language [4]) use a
design–in–the–large approach and do not intrinsically provide language construc-
tions and frameworks to support the introduction of new features into existing
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processes. Using these technology, one can define “composition of services” to
reify business–process and then visualize such entities [5].

In this paper, we address the “composition of process” problematic, i.e., the
composition of existing composition of service to obtain more complex process at
the end. New paradigms such as aspects [6] and features [7] model application in
terms of composing smaller units. Assuming that a complex system is difficult to
understand by humans, they propose to reduce the complexity by defining several
smaller artifacts instead of a single and large one. They identify and encapsulate
parts of models that are relevant to a particular concern. A same feature may be
shared and integrated into several processes simultaneously. These artifacts are
then composed to produce the expected system. These approaches help taming
the complexity of business processes design [8,9]. As a consequence, the intrinsic
complexity of the system is shifted into the composition directives used to build
it. When a system involves many processes, it is necessary to have a holistic
point of view on features, compositions and business processes to grasp it. In
this paper we examine visualization method to tackle complexity of compositions
at the application level.

The paper makes the following contributions and innovations:

– a number of visualizations dedicated to support designers when they define
business processes using a compositional approach.

– benefits and design weakness are revealed using a number of patterns to
assess compositions quality.

– scalability of the approach is sketched by using a very large case study as
running example.

We motivate this contribution by presenting in section 2 our running exam-
ple. Visualizations used to represent and assess compositions are then described
in Section 3. Section 4 briefly presents implementation details. We propose a
discussion on the approach benefits (associated to interesting perspectives) in
Section 5. Finally, Section 6 describes an overview of related work, and Section
7 concludes this paper.

2 Running Example: Realizing a CCCMS Using ADORE

This section presents the running example used to validate the visualization
approach defended in this paper. It also presents the composition framework we
used to realize this example, and highlights our identified needs of visualization.

2.1 Case Study: A Car Crash Crisis Management System

In Kienzle et al. [10], authors propose a common case study (a Crisis Manage-
ment System, Cms) to compare existing Aspect Oriented Modeling approaches
between each other. We consider this case study as a reference, and use it as a
running example to illustrate the problematic tackled in this paper and the con-
tribution we made. According to the definition given by this case study, a Cms
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is “a system that facilitates coordination of activities and information flow be-
tween all stakeholders and parties that need to work together to handle a crisis”.
Many types of crisis can be handled by such systems, including terrorist attacks,
epidemics, accidents. To illustrate the case study, they provide an instance of a
Cms in the context of car accidents. They define this system as the following:

“The Car Crash CMS (Cccms) includes all the functionalities of general
crisis management systems, and some additional features specific to car
crashes such as facilitating the rescuing of victims at the crisis scene and
the use of tow trucks to remove damaged vehicles.”

The requirement document defines ten use cases, described using textual sce-
nario. Each scenario defines first a main success scenario which represents the
normal flow of actions to handle a crisis (e.g., retrieve witness identity, contact
firemen located near to the crash location). Then, a set of extensions are de-
scribed to bypass the normal flow when specific actions occurs (e.g., witness
provides fake identification, firemen are not available for a quick intervention).

2.2 Composition Framework: ADORE

The Adore framework defines a compositional approach to support complex
business processes modeling, using the orchestration of services paradigm. Mod-
els describing business–driven processes (abbreviated as orchestrations, defined
as a set of partially ordered activities) are composed with process fragments (de-
fined using the same formalism) to produce a larger process. Fragments realize
models of small behavior and describe different aspects of a complex business
process. Adore thus allows a business expert to model these concerns separately
and then compose them.

Using Adore, designers can define composition units (abbreviated as compo-
sition) to describe the way fragments should be composed with orchestrations.
The merge algorithm used to support the composition mechanism [11] computes
the set of actions to be performed on the orchestration to automatically pro-
duce the composed process. Implementation details, environment screenshots
and video demonstrations are available on the project web site1.

We proposed in our previous work [12] a realization of the Cccms system
using Adore. We realized all the use cases main scenarios as orchestration of
services, and extensions as fragments to be integrated into these orchestrations.
The complete set of designed models (12 orchestrations & 24 fragments, repre-
senting 1216 activities scheduled by 895 relations in terms of implementation) is
available on the Cccms realization web page2.

2.3 Need for Visualization Techniques

When developing a large system, designers handle a large set of initial orches-
trations, and a large set of fragments to apply in these orchestrations. Adore

1 http://www.adore-design.org
2 http://www.adore-design.org/doku/examples/cccms/

http://www.adore-design.org
http://www.adore-design.org/doku/examples/cccms/
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tackles the complexity of integrating fragments into orchestrations, at the activ-
ity level. We depict in Fig. 1 an extract of the Cccms case study (authentication
use case, #2.10). The composition algorithm identify several unification (repre-
sented using dashed lines) between an initial orchestration (which realize the
“main success scenario”) and a fragment (realizing a business extension). Such
a detailed and focused view of composition is not scalable to support the design
of large system (non-functional concerns introduction in the Cccms raises the
number of unification to more than a thousand).

Fig. 1. Detailed visualization of a composition (at the activity level)

Visualization techniques of large data set such as fish–eye [13] can tame the
readability problems, but do not reduce the amount of details visualized in this
representation. When designing a complete set of business processes using a
compositional approach, the objectives of designers are to retrieve a holistic
representation of the involved entities to understand easily what they are doing.
Such a global visualization is needed at both design and analysis time.

Design Phase. When building a complete system using a compositional ap-
proach, designer needs to understand at a coarse–grained level the interactions
between the different composition entities they are manipulating. At this step, a
designer focuses on the fragments in terms of impact (e.g., “the fragment throws
a fault”) instead of their detailed behavior (e.g., “when a resource takes too
much time to reach the crisis location, a timeout fault must be thrown”).

Analysis Phase. After the composition directives execution, a composed sys-
tem is obtained. At this step, critical points in the composed system need to
be manually identified, for example to design unit tests. This step focuses on
the comparison between the intrinsic complexity of the original entities and the
composed result.

3 Visualizing Compositions Using Mondrian

We describe in this section the polymetrics view techniques, used to define three
different visualizations of compositions. These visualizations are then described
and applied to the Cccms example.



94 S. Mosser, A. Bergel, and M. Blay–Fornarino

The common objective of these three visualizations is to provide dashboards
to designers. Composition dashboards are graphical representations meant to
help designers to (i) get a scalable and global overview of the compositions
present in an orchestration-based application, (ii) identity abnormal composition
and (iii) facilitate the comprehension of a large composition by categorizing
compounds. The idea of these dashboards is to enable a better comparison of
elements constituting a program structure and behavior.

3.1 Polymetric Views Technique Description

The visualizations we propose are based on polymetric view [14]. A polymetric
view is a lightweight software visualization technique enriched with software
metrics information. It has been successfully used to provide “software maps”
intended to help software comprehension and visualization. Figure 2 illustrates
the principle of polymetric view.

width property

height
property

color
property

edge width and 
color properties

X property

Y
property

Fig. 2. Principle of polymetric view

Given two-dimensional nodes representing entities, we can map up to 5 metrics
on the node characteristics: position properties X and Y , height property, width
property and color property:

– Size. The width and height of a node can render two measurements. We
follow the intuitive notion that the wider and the higher the node, the bigger
the measurements its size is telling.

– Color. The color interval between white and black may render one measure-
ment. The convention that is usually adopted [15] is that the higher the
measurement the darker the node is. Thus light gray represents a smaller
metric measurement than dark gray.

– Position. The X and Y coordinates of the position of a node may reflect two
other measurements.
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3.2 Fragments Dashboard (Design Phase)

This visualization represents all the fragments (as square) involved in a system,
focusing on their impact. We have identified several impact properties repre-
sented as boxes : (i) hooked variable modification, (ii) exception throw, (iii)
fault handling, (iv) initial process execution inhibition and finally (v) restricted
process inhibition. To illustrate this visualization, we instantiated it on the Cc-
cms example (Fig. 3). It represents the 24 fragments defined to answer to the
different use–cases extensions defined in the requirements.

Fig. 3. Fragments dashboard instantiated on the Cccms example

Interpretation. Based on the graphical representation obtained in this view,
we have identified 7 different fragment categories, grouped into 3 main families:
business extensions (B), fault handling (F) and control–flow inhibition (I).

– Business extensions (B): The white fragments only enrich existing process
with new additional behavior. They do not modify the initial logic of the
business process, and only add new features to enrich it.

– Fault handler (F): Yellow boxes represent fault handling property. There
are several ways to deal with a fault when it occurs in a process: (i) doing
a re–throw (green property) to customize the fault, (ii) bypassing the fault
(by modifying data to handle the problem, blue property) locally and (iii)
handling the fault by using a business-driven reaction (no other property).
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– Control–flow inhibition (I): The red property represents the inhibition of
an activity and its followers in a business process. The pink property is a
restriction of the red one, since the fragment only inhibits the followers of
an activity. Correlated with the fault thrower property (green color), we
can identify precondition (activity inhibition & throw) and postcondition
(followers inhibition & throw) checker. The pink–only fragments represents
“dangerous” fragments, which inhibit several activities using a non–standard
behavior. A deep understanding of the business–domain is necessary to grasp
their behavior properly. The timeout fragment is a typical example of this
kind of fragments: instead of “simply” throwing an exception when the sys-
tem detects that a resource takes too much time to reach the crisis location,
the Cccms business model asks to stop whatever the system was doing and
urgently inform a human coordinator able to decide what to do to counter-
balance the situation.

Consequently, this view helps designers to perform a coarse–grained identifica-
tion of their critical fragments. We have shown this criticality by explaining the
pink–only fragments in the previous paragraph. Other dangerous color scheme
are green–only (error throwing in parallel with legacy activities) and red–only
(control–flow inhibition with a business–driven reaction).

3.3 Composition Dashboard (Design Phase)

The previously defined view helps designer to understand the different fragments
used in a system. We focus now on the composition visualization defined between
fragments and business processes. The composition dashboard visualization rep-
resents business processes as rectangles, and fragment using the 4 squares pat-
tern previously defined. A link between two entities means that they are used
together in a composition. The Cccms case study instance of this visualization
is depicted in Fig. 4. It represents the 24 fragments and their application on the
11 orchestrations used to realize the use cases.

Interpretation. This visualization helps the designer to understand the de-
picted system in a holistic way. We identify the following composition categories:

– Orphans (O): Orphans orchestrations are never involved in a composition
(e.g., executeMission and execSupObMission). Their identification helps
to detect forgotten composition directives in a complex system. In the Cc-
cms context, they realize very basic use cases which do not define any sce-
nario extensions. As a consequence, there is no fragment associated to these
entities.

– Lack of Fault–handlers (Lf ): yellow–tagged fragments represent fault han-
dlers. This visualization allows designers to easily identify a composition
which does not involve any fault handler. The lack of fault handling in a pro-
cess may leads to uncaught fault and jeopardize the behavior of the global
system. It can also detect very basic processes which cannot fail.
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Fig. 4. Composition dashboard instantiated on the Cccms example

– Conditioned behaviors (C): Several fragments realize precondition (red &
green) and postcondition (pink & green) checkers. Processes involved in a
composition which relies on such checkers must be considered as a good
candidate for integration test definition.

– Cross-cutting / Shared concern (S): We can easily identify two shared frag-
ments in this case study. The first one is a precondition checker (“is the user
authenticated?”), and the second one is a business driven preoccupation (“re-
handle the crisis due to a change of external circumstances”). They clearly
represent preoccupations which cross-cuts several scenarios. Their identifi-
cation helps to identify cross–cutting concerns and can drive system testing
and re–engineering.

– Critical / Dangerous behavior (D): Thanks to the fragments dashboard, the
pink–only fragments were identified as critical (with other color scheme).
Such fragments can inhibit the execution of a process subpart without using
usual mechanism (e.g. fault throwing) to counter–balance their inhibition.
As a consequence, orchestrations enriched using these fragments will require
a specific attention from the designer.

– Fragment composed on other fragments (FoF): We can notice that several
fragments are also composed with other fragments. This view lets designer
identify such compositions and helps to grasp a semantic link between frag-
ments when discovering an unknown system.
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This view lets us identify business–driven processes (using white–only frag-
ments) from technical ones. Technical processes deal with precondition and post-
condition checking, and do not involve any business driven fragment. On the
contrary, high–level business processes rely on business–driven fragments to
change the initial control–flow. It produces a dichotomy between technical pro-
cesses (assignIntRes, authUser, resolveCrisis) and business–driven pro-
cesses (the others). Based on this categorization, we can notice two things in
the context of the Cccms:

– Categorizing the resolveCrisis process as technical seems weird as it corre-
sponds to the main use case of the Cccms. But the scenario realized through
this process is clearly technical (i.e., opening a crisis case, asking partners to
handle this crisis, closing the case when the crisis is ended) and does not in-
volve any business–driven logic (realized in the other processes, which really
handle the crisis).

– We can notice the captureWitnessReport process, which involves fragments
dealing with postcondition checking, fault–handling and business–driven ex-
tension in the same composition. As a consequence, this process is both
technical and business–driven. This process is critical in terms of Cccms
business–domain: it realizes the retrieval of car crash witness information in
a report and drives the trigger of specific missions according to this report.
As a consequence, it does not fulfill a single objective and it uses very dif-
ferent fragments to achieve its complete behavior. This process can be then
considered as a subsystem in the Cccms context.

Moreover, this visualization supports designers when debugging their com-
positions. This view identifies in a user–friendly way forgotten composition
(through orphans processes) and the lack of fault handler/checker.

3.4 Composition Zoom (Design Phase)

When multiple fragments are composed with a process, designers need to restrict
their visualization on the system to focus on a given composition. This zoomed
visualization opens the orchestration box, describing where the fragments are
integrated into the initial process. To emphasize the scalability of this visual-
ization, we use the handleAWorker process, which is the biggest composition in
this case study. The obtained instance is represented in Fig. 5.

Interpretation. This visualization supports a focus on a specific composition
and facilitates navigations throughout the orchestration set. Based on this rep-
resentation, we can easily identify the following concerns in a given composition:

– Isolated activities (I): some activities are not involved in any composition.
They represent technical activities which do not interfere with the realized
scenario. In this particular example, they implement initial message recep-
tion, final response sending and other technical activities.
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Fig. 5. Composition zoom instantiated on the handleAWorker process

– Shared activities (Sa): this visualization lets us clearly identify when several
fragments are applied at the same location to a business process (i.e. a6 and
a7 activities). Adore supports the automatic composition of these fragments
into a merged one. However one may need to visualize them simultaneously
to understand the merged behavior. In this example, fragments applied to
a6 deal with the non–arrival of a resource at the crisis location. Focusing
only on these 3 fragments helps to support the design of the system: are
all the non–arrival reasons handled by the process? Are these fragments
semantically conflicting?

– Shared Fragments: this view lets the designer identify shared (i.e. used sev-
eral times) fragments for a given composition. Such fragments usually rep-
resent cross-cutting concerns. The fact that a fragment is shared with other
artifacts gives extra–information when working on its composition:
• Multiple / Shared targets (St): this fragment is related to others pro-

cesses. This information is a fine–grained version of the “shared concern”
one (from composition dashboard), linking a process activity to others
processes through the use of a common fragment. It can drive the explo-
ration of an unknown system by following such links from a process to
another one.

• Multiple / Shared usage (Su): this fragment is a factorized enrichment
of the initial scenario. As a consequence, it represents a chronic situation
which requires special attention when testing and debugging the system.
When a fragment is merged several times in the same process, it may
introduce redundant activities in the final composition result. This view
helps to understand the origin of such redundancy.

3.5 Complexity Dashboard (Analysis Phase)

When building a system using a compositional approach, the fragments added
into the legacy business process enrich the initial behavior. It is interesting to
visualize the differences between the initial and composed processes to identify
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composition families. We use several indicators to model business process com-
plexity (inspired by the ones defined by Vanderfesten et. al, [16]). In this view,
we use the following indicators to represent the system. The complete Cccms
system is represented in Fig. 6.

– width: The width of a process represents the maximum number of activities
concurrently executed in the control–flow.

– height: The height of a process represents the maximal length of the process.
– maze: The maze of a process represents the number of different paths avail-

able in the process. We map the maze indicator to the color dimension of
the polymetric view.

Fig. 6. Complexity dashboard instantiated on the Cccms example

Interpretation. Using this visualization, designers identify composition fami-
lies, in terms of process complexity evolution (denoted as Δi, where i is a business
process indicator).

– Δw (width expansion): When the composed process is larger than the initial
one, it implies that several activities are executed in parallel of the initial
behavior. Such an intensive parallelism is resource-consuming, and may be
deployed on specific high–performance servers. As a consequence, design-
ers are able to identify from this visualization processes requiring a spe-
cific attention about performances after composition. In this example, the
handleSupObsMissions process is a typical case of Δw. Fragments used in



Visualizing and Assessing a Compositional Approach 101

this composition introduce several notifications and interactions with other
systems (e.g., national crisis management center, internal message bus) done
concurrently to the initial scenario.

– Δh (height expansion): The augmentation of a process height induces an
execution control–flow longer than the initial one. The composition impacts
the process execution time and the quality of service is then identified using
this visualization. In the execRescMission composition, the fragment in-
troduces an interaction with an external system (retrieving victim’s medical
history before starting the health-care process).

– Δm (maze expansion): A dark color identifies a complex process, defining
a lot of different paths in its control flow. A contrast change between an
initial process and its composed result indicates that the activities defined
in this process are more connected between each others. In the Cccms ex-
ample, the captureWitnessReport process is enriched with several small
fragments. According to their impact properties, these fragments deal with
condition checking and fault handling. As a consequence, the composed pro-
cess contains a lot of new paths (e.g. fault bypass) available during the
execution of the process. One should pay attention to the possible semantic
interactions introduced by such a composition (e.g the process handles two
faults f and f ′ but does not define what to do if these two faults happens
at the same time).

Based on the previously explained Δi expansions, we identify three critical
situations identifiable in this visualization:

– Global Expansion (G): This phenomenon is identified by an expansion of
all the Δi indicators. The handleAMission process illustrates this global ex-
pansion. This strongly indicates that the process designer should particularly
focus on this process when designing test, as its apparent initial simplicity
hides a very complex process once composed.

– Initial Process Absorption (A): A process is absorbed by an extension when
the composition output looks like the absorber in terms of complexity. Se-
mantically, it often highlights a requirement granularity problem, where the
behavior defined as scenario extensions is more complex than the initial
scenario. The requestExtRes process illustrates this phenomenon, as it is
absorbed by the degradedRes fragment. In this case, the system initially re-
quires an external resource, and the extension defines all the actions to be
performed when such a resource is not fully available to handle this particular
crisis.

– Resonant Composition (R): Resonance is a particular case of the Δm ex-
pansion. It indicates a lot of interactions between activities in fragments and
process, resulting into a labyrinthine process after composition. Designers
should handle these processes by taking care of their inherent complexity,
focusing on test design and condition checking. The handleAWorker process
is a typical example of such a resonance.
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4 Implementation and Validation

Composition engine implementation. The concrete Adore engine (process rep-
resentation & composition algorithm) is implemented as a set of logical rules,
using the Prolog language. To make Adore interoperable with other tools, we
provide an export mechanism, based on Xml. Adore internal representation of
orchestrations and business indicators can be exported as Xml documents.

Visualization engine implementation. Our composition dashboards are rendered
using Mondrian3, an agile visualization engine. For the purpose of the experi-
ment, Mondrian operates directly on a metamodel that reifies all the notions
introduced in this paper4.

Validation. The Adore framework was used in five different case studies5, from
a simple proof of concept to real-life systems. Business domain handled in these
case studies are very diversified (e.g., integer arithmetic, web 2.0 folksonomies,
information broadcasting inside academic institution). Visualization techniques
presented here were applied with success to these five examples. We present the
Cccms example in this paper because of its pertinence to describe the approach
(important set of processes leads to a scalability challenge).

5 Discussions and Perspectives

The visualization techniques described in this paper really helps the design of a
very large system when using a compositional approach. Considering composi-
tions of processes as first class entities, we provide to designers a framework able
to support their design process. Based on these techniques, we identify chronic
fragment patterns and sketch a categorization of these entities. Moreover, when
analyzing the composed result, we identify critical points where process exten-
sions interact violently with initial behavior. These critical points are easily iden-
tifiable using our graphical representation, and may leads to design weaknesses
detection. Assuming the fact that the design fits the described requirements,
such points can then highlight client requirements weaknesses.

In this paper, we voluntarily focus our visualization work on composition def-
initions. Our goal is to “understand” a system defined by composition, and sup-
port the designer during the design process. We never addressed performances
visualization. In an Soa realized using orchestrations of Web Services, partner-
ships between services and processes is a key point for performance measurement.
The invocation of an external partner costs a lot (in terms of data exchanged
over the network). Even if Adore proposes a simple visualization of process
partners, a Mondrian visualization of the global choreography of services [2]
helps the designer to easily identify bottlenecks and dangerous patterns in the
designed system.
3 http://www.moosetechnology.org/tools/mondrian
4 http://www.moosetechnology.org/tools/adore
5 Details here: http://www.adore-design.org/doku/examples/start

http://www.moosetechnology.org/tools/mondrian
http://www.moosetechnology.org/tools/adore
http://www.adore-design.org/doku/examples/start
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Defining a software using composition techniques often leads to conflicting sit-
uations [17,18]. Adore defines a set of conflict detection rules to identify conflicts
in the composed processes. For the same reasons that Adore raw visualizations
do not scale large system representations (too detailed data), designers retrieve
from the framework a lot of details concerning the different conflicts detected
by the application of detection rules over their models. The composition zoom
visualization helps designers to identify interaction niche (e.g. shared activities),
and then tend to reduce the scope of informations handled by the designer. Even
if conflict detection mechanisms can be used to automate the detection of con-
flict, pragmatic conflicts6 will always need an intervention of the designer to be
handled properly. Consequently the definition of a Mondrian visualization to
support conflict resolution will support the global approach and helps designers
during the composition process.

6 Related Work

The Aspect Visualizer is a visualization-based tool contained in AspectJ Devel-
opment Tool (AJDT7). Source files are represented as rectangles, and lines are
colored according to its corresponding advices. This visualization is of a great
use when one wants to know which aspects is involved in the definition of a par-
ticular class. However, it tells little about the kind of composition mechanism
used an essential requirement for understanding aspect-based applications.

Pfeiffer and Gurd address the problematic of aspect visualization [19] (using
treemaps [20]) to provide a very abstract visualization of aspect oriented pro-
grams, based on a hierarchical organization of visualized entities (e.g., package,
class). The counter balance of treemaps is that it provides little help when rela-
tions between elements have their importance, as this is the case in our work. We
also propose in this work an intermediate representation, focused on fragment
(advice) semantic and independent of any hierarchical relation between entities.
Moreover, the use of polymetrics views let us map process metrics to visualized
entities.

Fabry et al. [21] addressed the issue of visualizing large amount of aspects re-
lated hooks (join point shadows) in the base code. AspectMaps enable one to un-
derstand a large amount of code bases and permit drilling down to one single join
point using a selective structural zooming. AspectMaps differs from composition
dashboards essentially on the level of the analysis realized. The AspectMaps tool
essentially operates on source code of the base system and its related aspects.
Composition dashboards deals essentially with business processes.

All the visualizations presented in this paper are polymetric views. This visu-
alization mechanism has been essentially used to assess software source code [22].
Using polymetric views to assess a software process models has not been consid-
ered so far. However, a number of related research efforts are presented below.
6 Which are induced by the business domain (e.g., fault exclusion, overlapped condi-

tions).
7 http://www.eclipse.org/ajdt

http://www.eclipse.org/ajdt
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Assessing and visualizing inter software component dependencies and relation-
ships has received a great attention from the software comprehension community.
For example, D’Ambros et al. [23] visualize how bugs are related to software com-
ponents. A number of visualizations are providing, ranging from tree maps to
complex graph-like structures, on which different layouts are applied.

Byelas and Telea [24] proposed a technique based on “splat texture” that
identity areas in a software architecture. The idea is to fill a contoured area
using this texture. This representation is efficient when dealing with scalability.
Their approach is complementary to our, and may be well combined.

7 Conclusions

The composition mechanisms as such defined in the Adore framework help
designers to build business process. Visualization techniques can then be used to
graphically represent the compositions, and support designers when they assess
their systems.

In this paper, we propose three visualizations intended to support designers’
understanding of processes compositions. These representations allow designers
to easily identify graphical patterns in their composition, and then identify key–
points in the resulting composed systems. These key–points are intended to
be used in several different ways (e.g., to define unit tests, to catch designers
attention on a dangerous situation). We illustrate the scalability of the approach
by visualizing the Cccms system. This large system was initially defined to be a
comparison referential for Aom techniques. The different visualizations described
in this paper are scalable enough to let us represent in an understandable way
all the artifacts of this case study.

We focus our work on static visualization of compositions as first–class enti-
ties. An interesting perspective of this work is to define new representation deal-
ing with composition conflict detection (e.g., conflict highlighting) or business–
process partnerships (e.g., execution bottleneck).
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15. Ĝırba, T., Lanza, M.: Visualizing and characterizing the evolution of class hierar-
chies. In: WOOR 2004 (5th ECOOP W. kshp. on OO Reengineering) (2004)

16. Vanderfesten, I., Cardoso, J., Mendling, J., Reijers, H.A., Van Der Aalst, W.M.:
Quality Metrics for Business Process Models. BPM and Workflow Handbook, 179–
190 (2007)

17. Barais, O., Lawall, J., Le Meur, A.F., Duchien, L.: Safe Integration of New Con-
cerns in a Software Architecture. In: 13th Annual IEEE International Conference
on Engineering of Computer Based Systems (ECBS 2006), Potsdam, Germany,
March 2006. IEEE, Los Alamitos (2006)

18. Szyperski, C.: Independently Extensible Systems – Software Engineering Potential
and Challenges. In: Proceedings of the 19th Australian Computer Science Confer-
ence, Melbourne, Australia (1996)

19. Pfeiffer, J.H., Gurd, J.R.: Visualisation-based tool support for the development of
aspect-oriented programs. In: AOSD 2006: Proceedings of the 5th International
Conference on Aspect-Oriented Software Development, pp. 146–157. ACM, New
York (2006)

20. Balzer, M., Deussen, O., Lewerentz, C.: Voronoi treemaps for the visualization of
software metrics. In: SoftVis 2005: Proceedings of the 2005 ACM Symposium on
Software Visualization, pp. 165–172. ACM Press, New York (2005)

21. Fabry, J., Kellens, A., Ducasse, S.: Aspectmaps: A scalable visualization of join
point shadows. Tr/dcc-2010-2, University of Chile (April 2010)

22. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer, Heidel-
berg (2006)

23. D’Ambros, M., Lanza, M.: Visual software evolution reconstruction. J. Softw.
Maint. Evol. 21(3), 217–232 (2009)

24. Byelas, H., Telea, A.C.: Visualization of areas of interest in software architecture
diagrams. In: SoftVis 2006: Proceedings of the 2006 ACM Symposium on Software
Visualization, pp. 105–114. ACM, New York (2006)



Construction of Asynchronous Communicating
Systems: Weak Termination Guaranteed!

Kees M. van Hee, Natalia Sidorova, and Jan Martijn van der Werf

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,n.sidorova,j.m.e.m.v.d.werf}@tue.nl

Abstract. Correctness of asynchronously communicating systems (ACS)
is known to be a hard problem, which became even more actual after the
introduction of Service Oriented Architectures and Service Oriented Com-
puting. In this paper, we focus on one particular correctness property,
namely weak termination: at any moment of the system execution, at least
one option to terminate should be available. We present a compositional
method for constructing an ACS that guarantees weak termination. The
method allows for refinement of single components, refinement of compo-
sitions of components and the creation of new components in the system.
For two important classes of ACS, weak termination follows directly from
their structure. These classes focus on the concurrency over components
and on the implementation of protocols and communicating choices.

1 Introduction

Verification of asynchronously communicating systems is known to be a hard
problem. In past years, modeling and verification mainly focussed on business
processes. With the introduction of paradigms like Service Oriented Architec-
tures (SOA) [1, 4, 7], the focus shifts more and more to the modeling and veri-
fication of inter organizational processes. Different organizations form a virtual
organization to deliver a certain service to other organizations. Languages like
the Business Process Execution Language (BPEL) [5] and the current draft of
the Business Process Modeling Notation 2.0 (BPMN2) [13] are introduced to
model the interaction between processes.

In the paradigm of SOA, components deliver services to other components.
Communication between components is via message sending, and therefore asyn-
chronous. One of the main aspects of SOA is dynamic coupling of components:
to perform a service, a component may need services of other components, which
might be chosen during runtime. This way, during runtime a tree of service in-
stances is formed. We call this a service tree. Due to the dynamic coupling, but
also for privacy reasons, components only know their direct neighbors. Hence,
the whole service tree is not known to any component in the tree, a compo-
nent only knows to whom it is connected to. This dynamic nature makes the
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verification of a service tree very hard, or even infeasible. In this paper we fo-
cus on one correctness property, called weak termination, that can be checked
compositionally, by checking pairwise compositions of components.

Weak termination means that at any moment of the system execution, at
least one option to terminate exists. Note that weak termination does not re-
quire that the system always eventually terminates, we only guarantee that the
option to terminate always remains open. Weak termination guarantees that a
system cannot deadlock nor can it be trapped in an infinite loop: in each infinite
loop there is always an option to exit the loop. As the communication between
components is asynchronous, Petri nets [14] are a natural choice for modeling
the components and their interactions. In [2], the authors provide a method to
verify weak termination of service trees compositionally. Each component should
be weakly terminating, and each connected pair of components should satisfy a
certain condition. This way, a given service tree can be checked by only verifying
each component and each connected pair of components.

In this paper, we show a different approach. Instead of checking an existing
service tree, we present a construction methodology for a class of service trees
which are always weakly terminating. The methodology consists of three rules.
The first rule allows for the refinement of existing components by refining a
single place by a new component. The second rule enables the enrichment of the
interaction between components by the replacement of pairs of places by coupled
components that have the weak termination property. The last rule allows for
the creation of new components as an offspring of an existing component. On
top of this rules, we may apply classical refinement rules, e.g., as defined by
Murata [12], Berthelot [8], and the workflow refinement rule [10], to refine the
internal structure of the component.

For two base classes of coupled components, weak termination can be decided
based on their structure. Both classes occur frequently in the design of compo-
nents, and are based on two subclasses of Petri nets: marked graphs and state
machines. The first class focusses on concurrency over components, whereas the
latter focusses on communicating choices over components and the design of
interaction protocols.

This paper is structured as follows. In Section 2, we introduce some basic
concepts and notations. The component framework is explained in Section 3. We
present the construction methodology in Section 4, and in Section 5 we introduce
the two base classes of coupled components that are weakly terminating by their
structure. Finally, we conclude our paper in Section 6.

2 Preliminaries

Let S be a set. The powerset of S is defined as P(S) = {S′ | S′ ⊆ S}. With
|S| we denote the number of elements in S. The empty set, i.e., the set without
any elements is denoted by ∅. Two sets S and T are disjoint if S ∩ T = ∅. A
partition P ⊆ P(S) is a set such that

⋂
A∈P A = S and A∩A′ �= ∅ =⇒ A = A′

for all A, A′ ∈ P . We denote the set of all natural numbers as IN = {0, 1, 2, . . .}.
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A sequence σ of length n ∈ IN over S is a function σ : {1, . . . , n} → S. We
denote the length of a sequence by |σ| = n. We denote a sequence of length n
by σ = 〈a1, . . . , an〉 for some a1, . . . , an ∈ S. If |σ| = 0, it is the empty sequence
ε. The set of all finite sequences over S is denoted by S∗. Concatenation of
two firing sequences σ, υ ∈ S∗ is a function σ; υ : {1, . . . , |σ| + |υ|} defined by
(σ; υ)(i) = σ(i) for 1 ≤ i ≤ |σ| and (σ; υ)(i) = υ(i − |σ|) for |σ| < i ≤ |σ| + |υ|.
The Parikh vector of a sequence σ, denoted by −→σ , is a bag representing the
number of occurrences of each element in σ. A bag m (multiset) over S is a
function m : S → IN . For s ∈ S, m(s) denotes the number of occurrences of s in
m. We denote a bag by square brackets. E.g., in a bag [a, b2, c], element a occurs
once, element b twice, and element c once. All other elements have a multiplicity
of 0. We write INS for the set of all bags over S. The empty bag, i.e., for all
elements the multiplicity is 0, is denoted by ∅. We use + and − for the sum and
difference of two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which
are defined in a standard way. Sets can be seen as a special kind of bag were all
elements occur only once.

A Petri net N is a tuple (P, T, F ) where P is the set of places, T is the set of
transitions, P and T are disjoint, and F ⊆ (P × T ) ∪ (T × P ) is the set of arcs.
An element of P ∪ T is called a node. Graphically, we denote places by circles,
transitions by squares, and arcs as arrows between places and transitions. The
preset •n of a node n ∈ P ∪ T is defined as •n = {n′ ∈ P ∪ T | (n′, n) ∈ F}.
Its postset n• is defined as n• = {n′ ∈ P ∪ T | (n, n′) ∈ F}. The state of
a Petri net, called a marking is a bag over the places P of N . A marking is
graphically represented by placing tokens in each place. A marked Petri net is a
pair (N, m0), where N is a Petri net and m0 a marking of N . A transition t ∈ T is
enabled in (N, m0), denoted by (N : m0

t−→) if •t ≤ m0. An enabled transition
in (N, m0) can fire resulting in a new marking m′ = m0 − •t + t•, denoted
by (N : m0

t−→ m′). We lift the notation of transition firing and enabledness
to sequences in a standard way. A sequence σ ∈ T ∗ of length n ∈ IN is a
firing sequence of (N, m0) if there exist markings mi−1, mi ∈ INP such that

(N : mi−1
σ(i)−→ mi) for all 1 ≤ i ≤ n, and is denoted by (N : m0

σ−→ mn). The
set of all reachable markings of (N, m0) is defined as R(N, m0) = {m | ∃σ ∈
T ∗ : (N : m0

σ−→ m)}. The set of all possible firing sequences from m0 to m is
denoted by L(N, m0, m) = {σ ∈ T ∗ | (N : m0

σ−→ m)}. A place is k-bounded
in (N, m0) for some k ∈ IN if m(p) ≤ k for all m ∈ R(N, m0). A marked Petri
net is k-bounded if all places are k-bounded. A place or marked Petri net is safe
if it is 1-bounded. A marking m of N is a deadlock if there are no transitions
enabled in (N, m). It is a home marking of (N, m0) if m ∈ R(N, m′) for all
m′ ∈ R(N, m0).

Two Petri nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2) are isomorphic with
respect to some function ρ : P1 ∪ T1 → P2 ∪ T2 if ρ is bijective, ρ(p) ∈ P2 for all
p ∈ P1, ρ(t) ∈ T2 for all t ∈ T1 and (p, t)ıF1 if and only if (ρ(p), ρ(t)) ∈ F2.

If for a Petri net N = (P, T, F ) we have |•t| ≤ 1 and |t•| ≤ 1 for all t ∈ T , the
Petri net is an S-net, also called a state machine. If |•p| ≤ 1 and |p•| ≤ 1 for all
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p ∈ P , it is a T-net, also called a marked graph. If a net is a state machine, we
graphically omit the transitions between places.

A special class of Petri nets are workflow nets. A workflow net is a Petri net
N = (P, T, F ) such that there exist exactly one place i ∈ P with •i = ∅, called
the initial place, one place f ∈ P with f• = ∅, called the final place, and all
nodes n ∈ P ∪ T are on a path from i to f . A workflow net is sound if [f ] is a
home marking of (N, [i]) and for all transitions t ∈ T : ∃m ∈ R(N, [i]) : •t ≤ m.
A workflow net N is generalized sound if [fk] is a home marking of (N, [ik]) for
all k ∈ IN .

3 Asynchronous Communicating Systems

A system consists of components that communicate asynchronously with each
other via interfaces, and to each interface at most one component is connected.
In this approach, we model a component by a Petri net [14]. As communication
is asynchronous, we model the communication via special places, called interface
places (cf. [11]). An interface place is either an input place, i.e., the component
receives a message via this place, or an output place, i.e., the component sends
a message via this place. As a component needs to communicate with other
components, the interface places are partitioned into ports. Transitions have a
sign with respect to a port. For each port, a transition either sends messages (sign
!), it receives messages (sign ?), or it is silent (sign τ). Consider the component
shown in Figure 1. In this example, component N has three ports, G, H , and J .
Port G consists of two input places b and e, and three output places a, c and d.
Transition t has sign ! with respect to port G and sign τ with respect to port H .

The internal places together with the transitions form the inner structure
of the component, which we call the skeleton. The input and output places
determine the interfaces to the exterior. A component has one initial and one
final marking, in which only internal places are marked, i.e., in the initial and
final markings no interface places can be marked. The final marking does not
need to be a deadlock.

Definition 1 (Component, skeleton, sign). A component is an 8-tuple (P,
I, O, T, F,G, i, f) where ((P ∪ I ∪ O, T, F ), i) is a marked Petri net; P is a set
of internal places; I is a set of input places, and •I = ∅; O is a set of output
places, and O• = ∅; P , I, O are pairwise disjoint; G ⊆ P(I ∪ O) is a partition
of the interface places, called the ports. A transition either sends to or receives
from a port, i.e., •G∩G• = ∅ for all G ∈ G. i ∈ INP is the initial marking; and
f ∈ INP is the final marking. We call the set I ∪ O the interface places of the
component. Two components N and M are called disjoint if PN , PM , IN , IM ,
ON , OM , TN and TM are pairwise disjoint.

The skeleton of an OPN N is defined as the Petri net S(N) = (PN , TN , F )
with F = FN ∩((PN ×TN)∪(TN ×PN )). The sign of a transition with respect to
a port G ∈ G is a function λG : T → {!, ?, τ} defined by λG(t) =! if t• ∩ G �= ∅,
λG(t) =? if •t ∩ G �= ∅, and λG(t) = τ otherwise, for all t ∈ TN .
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Fig. 1. A component with three ports G, H and J

Even if a component is not connected to any other component, it should work
correctly, i.e., it should always be possible to reach the final marking of the
component. This property is called weak termination.

Definition 2 (Weak termination of a component). A component N is
weakly terminating if fN is a home marking of (S(N), iN ).

We do not require the final marking to be a deadlock. Instead, the final marking
can be a state from which it is always possible to return to, called an idle state
in which the component is in rest. For example, if the initial marking and final
marking are identical, this is the case.

Components communicate via their ports. Communication is only possible
if the input places of the one component are the output places of the other
component and vice versa. In our approach we compose components by fusing
interface places with the same name.

Definition 3 (Composition). The components A and B are composable if
there exists a port G ∈ GA ∩ GB such that (IA ∩ OB) ∪ (OB ∩ IB) = G and
PA ∩ PB = TA ∩ TB = IA ∩ IB = OA ∩ OB = ∅. If A and B are composable,
their composition is a component A ⊕G B = (P, I, O, T, F,G, i, f) defined by:
P = PA ∪ PB ∪ G, T = TA ∪ TB, F = FA ∪ FB; I = (IA \ G) ∪ (IB \ G);
O = (OA \G)∪ (OB \G); G = (GA ∪GB) \ {G} ; i = iA + iB; and f = fA + fB.
If there exists a unique port G ∈ GA ∩ GB such that A ⊕G B, we write A ⊕ B.

Consider again the example of Figure 1. Components N and M share port G,
and all input places of port G in N are output places of port G in M and vice
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versa. Hence, we can compose the two components via port G. In the resulting
net, the interface places of port G become internal places of the composition
N ⊕G M .

4 Construction Rules

To guarantee weak termination of a system consisting of asynchronous commu-
nicating components is in general very hard due to high degree of concurrency
of the components. In [2], a sufficient condition has been presented to pairwise
verify weak termination for a tree-structured composition of components. In this
section we present an approach that guarantees this condition by construction.
The approach consists of three rules to refine a system. The first rule is refine-
ment within a single component. In the second rule, two so called “synchronized
places” can be refined by a composition of two components. The last rule involves
the creation of a new coupled component in a system.

4.1 Refinement within Components

For Petri nets there already exist many refinement rules, like the rules of Mu-
rata [12] and Berthelot [8]. These rules guarantee weak termination: applying
them on a weakly terminating component results again in a weakly terminating
component. However, these rules are all applied on internal parts of the com-
ponent and do not extend the ports of a component. In [10], the authors show
that a place in a workflow net may be refined by a generalized sound workflow
net, while preserving the soundness condition. We redefine this refinement op-
eration on components and refine an internal safe place p of a component N
by a workflow component M . A workflow component is a component which has
a workflow net as skeleton, the only marked place in the initial marking is the
initial place of the skeleton, and the only marked place in the final marking is
the final place of the skeleton.

Definition 4 (Workflow component). A component N is a workflow com-
ponent if S(N) is a workflow net with initial place i and final place f , and
iN = [i] and fN = [f ].

When we refine a place p in a component N by a new workflow component M ,
all transitions in the preset of p are connected to the initial place of M , and all
transitions in the postset of p are connected to the final place of M . Place p is
then removed from N . The ports of M are added to the ports of N . Consider
the example of Figure 2. In this example, place p of component N is refined by
component M . In the refined net N ′, the port G of M is added to the already
existing ports of N .

Definition 5 (Place refinement). Let N be a component and M be a workflow
component, such that N and M are disjoint. Let p ∈ PN be a place that is safe in
(S(N), iN ). The refined component N�pM = (P, I, O, T,G, F, i, f) is defined as:
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Fig. 2. Refinement of place p in N by component M

P = (PN \ {p})∪PM ; I = IN ∪ IM ; O = ON ∪OM ; T = TN ∪TM ; G = GN ∪GM

F = FN \ ((•p×{p})∪({p}×p•))∪FM ∪(•p×{iM})∪({fM}×p•); i(s) = iN(s)
and f(s) = fN(s) for all s ∈ PA \ {p}, i(iM ) = iN (p) and f(fM ) = fN (p).

This definition of place refinement propagates the ports of the refining com-
ponent to the original component. At a first glance, this definition seems to
contradict the paradigm of information hiding. However, the definition allows
for the refinement of a component by a composed component, as long as this
composition remains a workflow component. This way, the ports remain invisible
to the environment of the original component.

Since we only allow to refine safe places, we do not need to require the com-
ponent with which the place will be refined to be generalized sound as in [10],
but weak termination as defined in the previous section is sufficient.

Theorem 6 (Refinement of safe places preserves weak termination).
Let N be a component and let M be a weakly terminating workflow component.
Let p ∈ PN be a safe place in (S(N), iN ). If both N and M are weakly terminat-
ing, then N �p M is weakly terminating.

4.2 Refinement over Components

In system construction, component interaction is often established in several cy-
cles. In each cycle the interaction is refined, until the desired communication
protocol is designed. The first rule, i.e., refinement of a single place in a com-
ponent, does not suffice, as it creates a new port. Thus, it cannot create a more
elaborate interaction protocol between components, it can only create new in-
teractions. Moreover, we want to refine the scheme of interacting components.
For example, a simple request-response pattern could be refined in a more elab-
orated negotiation pattern. Therefore, we introduce refinement of special pairs
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Fig. 3. Desired behavior for synchronized places p and q in component N

of places in a composition. Refinement of a single place in a weakly terminating
component by a weakly terminating subcomponent results again in a weakly
terminating component. Refinement of two places by a composition of two com-
ponents is in general not weakly terminating. As we refine a pair of places by a
composition, we need to be sure that there exists markings in which both places
are marked. If such a marking cannot be reached, the interaction we refine the
components with cannot be executed properly, and thus the refined composition
is not weakly terminating. An intuitive approach would be to apply this refine-
ment only to “synchronizable” places, i.e., two places such that whenever one is
marked before the other, it is always possible to keep the place marked until the
other is marked as well.

Consider two places p and q that satisfy this intuitive requirement, i.e, if p
becomes marked, then it is always possible to keep it marked until q is marked,
or vice versa. To describe the desired behavior on places p and q, we use a state
machine as shown in Figure 3(a). The initial marking s0 is also the final marking.
In the annotation of places, p means that p contains a token, and ¬p means that
p does not contain tokens (similarly for q). The arcs are annotated by sets of
transitions: for each element in the set on an arc from s to s′ there is a transition
with preset {s} and postset {s′}. The set R is defined as R = TN\(•p∪p•∪•q∪q•).
Initially, both places p and q are unmarked. If a transition in the preset of p or q
fires, we reach a state in which either p or q is marked. Then, if p is marked only
transitions in R or •q are able to fire, or, if q is marked, only transition in R or
•p are able to fire. If such a transition fires, we reach a marking in which both
places p and q are marked. From this state, first both places need to become
unmarked, before they can become marked again.

If any accepting firing sequence, i.e., a firing sequence from initial marking to
the final marking, in the skeleton of the component is also an accepting firing
sequence of Syncp,q(N), a pair of places is synchronized. Consider the example of
Figure 4. In this example, there exist accepting firing sequences of A⊕G B that
are also accepting firing sequences of Syncp,q(A ⊕G B). Consider the accepting
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firing sequence 〈t, u, w, v, x, y, z〉. Then this is not an accepting firing sequence of
Syncp,q. However, since transition v does not depend on the input of transition
w, we can swap these transitions. This way, we can shuffle the firing sequence σ
to the new firing sequence 〈t, u, v, w, x, y, z〉. This firing sequence is an accepting
firing sequence for both A ⊕G B and Syncp,q. Hence, if for any accepting firing
sequence of A⊕GB there exists such a shuffled firing sequence that is an accepting
firing sequence of both A ⊕G B and Syncp,q, places p and q are synchronized.
If there would exist an accepting firing sequence that cannot be reshuffled into
an accepting firing sequence of both, the interaction we refine with cannot be
initiated properly, and thus the refined composition is not weakly terminating
anymore.

Definition 7 (Synchronized places). Let A and B be two component com-
posable with respect to some port G ∈ GA ∩ GB. Two places p ∈ PA and q ∈ PB

are synchronized, denoted by p �N q if and only if

∀σ ∈ L(N, i, f) : σ ∈ L(Syncp,q(N))

A direct consequence of the definition of p �N q is that the synchronized places
p and q are safe in the skeleton of N .

Lemma 8. Let N be a component, and p, q ∈ PN such that p �N q. Then p
and q are safe in (S(N), iN ).

Checking whether two places are synchronized is decidable. The state machine
Syncp,q(N) extends Syncp,q(N) by adding an extra state annotated with error.
Let U = p•∪q•, V = U∪•p, W = U∪•q, X = •q∪•p, Y = X∪p•, and Z = X∪q•.
Connect the states as shown in Figure 3(b). Then, state error is a live lock,
which can only be reached if places p and q are not synchronizable. Hence, in
the synchronous product of component N and Syncp,q(N), no marking should
be reachable in which place error is marked, which is a classical coverability
problem that is decidable for Petri nets.

Given a composition N = A⊕G B, the refinement of two synchronized places
by a composition of two workflow components C ⊕H D results in a new compo-
sition, where in component A place p is refined by C, and in component B place
q is refined by D. The interface places of ports G and H become internal places.

Definition 9 (Refinement of synchronized places). Let A and B be two
components that are composable with respect to port G ∈ GA∩GB and let C and D
be two workflow components that are composable with respect to port H ∈ GC∩GD

and A⊕GB and C⊕H D are disjoint. Let p ∈ PA and q ∈ PB such that p �A⊕GB

q. The refined component (A⊕GB)p�q(C⊕HD) = (P, I, O, T, F,G, i, f) is defined
by: P = (PA⊕GB ∪PC⊕HD)\ {p, q}; T = TA⊕GB ∪TC⊕HD; I = IA⊕GB ∪ IC⊕HD;
O = OA⊕GB ∪OC⊕HD; F = (PA⊕GB ∪PC⊕HD \ ((•p×{p})∪ ({p}× p•)∪ (•q ×
{q}) ∪ ({q} × q•))) ∪ (•p × {iC}) ∪ ({fC} × p•) ∪ (•q × {iD}) ∪ ({fD} × p•);
i = iA⊕GB; and f = fA⊕GB.
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Fig. 4. The refinement (A ⊕G B)p�q (C ⊕H D)

Consider the example of Figure 4. In this example, place p of component A and
place q of component B are synchronized in A ⊕G B. Components C and D
are workflow components. Both compositions A ⊕G B and C ⊕H D are weakly
terminating. The refined component (A ⊕G B)p �q (C ⊕H D) is also weakly
terminating.

Theorem 10 (Weak termination for refinement of synchronized places).
Let A and B be two components that are composable with respect to port G ∈ GA ∩
GB and let C and D be two workflow components that are composable with respect
to port H ∈ GC ∩GD and A⊕G B and C⊕H D are disjoint. Let p ∈ PA and q ∈ PB

such that p �A⊕GB q. If A ⊕G B and C ⊕H D are weakly terminating, then the
refined component (A ⊕G B)p�q (C ⊕H D) is also weakly terminating.

4.3 Creating New Components

The first two rules only allow to extend existing components. With the third
rule, it is possible to connect new components in a system such that the system
remains weakly terminating. The rule is based on the principle of outsourcing.
Consider Figure 5. For example, if place p has the meaning that when a token
resides in it, “an item is produced”, and the decision is taken to outsource the
production activity, we can add two transitions: a “start producing item” and a
“finish producing item”. Then the start transition initiates the component pro-
ducing the item, and the finish transition fires if the item is produced. Creating
a new port for these transitions allows the connection of a new component to
the existing system. To realize the intended refinement, a place p in a compo-
nent N is refined by the component M1 – a component that sends a message
over a new port G and then waits in place x until it receives a message on port G.
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Fig. 5. Extending the composition with a new coupled component

Component M1 is composed to a component M2 that waits in an idle state until
it receives a message on port G, thus marking place y. M2 then sends a message,
and returns to its idle state. In BPEL, this corresponds to an invoke activity,
where a message is sent to execute an operation, and the activity waits for the
result of the operation. There are many variants of this rule possible.

If in a weakly terminating component the place we extend is safe, the newly
created system is again weakly terminating. Furthermore, the newly added places
x and y are synchronized by construction. Hence, we can apply the second rule of
the approach on these places to refine the interaction between N �p M1 and M2.

Theorem 11. Let N be a component, M1 ⊕ M2 the request-response net as
depicted in Figure 5, such that N and M1 are disjoint and N and M2 are disjoint.
Define N ′ = (N �p M1) ⊕ M2. Then N ′ is weakly terminating and x �N ′ y.

5 Basic Classes of Weakly Terminating Compositions

In the previous section, we presented a construction approach to build systems
that are weakly terminating by construction. However, for the second rule, i.e.,
to refine two synchronized places, we need a weakly terminating composition of
two workflow components. In this section, we present two basic classes of com-
municating components for which the communication condition can be decided
based on their structure. The first class is based on marked graphs, and intro-
duces concurrency within components and concurrent communication in com-
positions. The second class is based on state machines, to build more complex
communication interactions and protocols.
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5.1 Acyclic Marked Graph Components

A special subclass of Petri nets are marked graphs. In a marked graph, or T-
net, all places have a preset and postset of length at most one. We extend this
notion to components: a workflow component is a T-component if its skeleton is
a marked graph, and all interface places are connected to exactly one transition.
In [10], the authors show that if a T-workflow, i.e., a workflow that is also a
T-net, is acyclic, it is generalized sound. We can use these results to obtain a
similar result for T-components: if a T-component is acyclic, it is safe and weakly
terminating.

Lemma 12 (Weak termination and safeness and T-components [10]).
Let N be a T-component such that S(N) is acyclic. Then it is weakly terminating
and safe.

By definition of a T-component, each interface place in a component has at
most one transition connected to it. Hence, if two T-components are compos-
able with respect to some port, in their composition these interface places have
one transition in their preset and one transition in their postset, and thus the
composition is again a T-component. From Lemma 12, we may directly con-
clude that if the composition of two T-components is acyclic, the composition is
weakly terminating and safe.

Theorem 13 (Weak termination and safeness for compositions of T-
components). Let N and M be two acyclic T-components composable with
respect to some port G ∈ GN ∩GM such that N ⊕G M is acyclic. Then N ⊕G M
is safe and weakly terminating.

As a result, we may refine two synchronized places in a composition by an
acyclic composition of T-components. The algorithm presented in the previous
section can be used to determine the pairs of synchronized places. If places in
a T-component are causal independent, i.e., it is possible that both places are
marked in a place, then they are synchronized.

5.2 Isomorphic State Machine Components

A second subclass of Petri nets are state machines. A state machine is the dual
of a marked graph: each transition has a preset and a postset of length at most
one. A workflow component is an S-component if its skeleton is a state machine,
and each interface place is connected to exactly one transition. From [10], it is
easy to conclude that S-components are always weak terminating and safe.

Lemma 14 (Weak termination and safety of S-components). Let N be
an S-component. Then it is weakly terminating and safe.

Although S-components have a simple structure, their composition is not. Com-
posing S-components introduces concurrency; it is very simple to compose two
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S-components such that the resulting composition can never reach the final mark-
ing, or even has deadlocks. We illustrate this with some examples. In Figure 6 we
see a classical example showing that the composition of two sound S-components
is not sound anymore. The choice A made is not communicated to component
B. Hence, both can make a different choice, thus entering a deadlock. A solution
to overcome this problem is to only connect S-components that have isomorphic
skeletons, and communicate all choices. However, in Figure 7 we see two isomor-
phic S-components and although all choices made by A are communicated, we
see that A ⊕ B is not weakly terminating, since in A the loop may be executed
more times than component B executes the loop. Hence, tokens remain in the
interface places, and thus the composition is not weakly terminating.

The composition of two T-components resulted in a T-component again. A
similar property does not hold for S-components. The communicating transitions
violate the state machine property in the composition: in the composition either
their preset or their postset contain two places. These examples show that we
need strong requirements to allow the composition of two S-components. First,
we require the S-components to have isomorphic skeletons, and all transitions
communicate, but only to the transition it is isomorphic to. Hence, all transitions
either send or receive on the port that is used for the composition. Secondly,
we require that if a component makes a choice, i.e., two or more transitions
are enabled in a marked place, this choice is communicated, since otherwise
the other component does not know in what state the first component is. This
means that if two transitions share a place in their preset, they have the same
sign. Last, we require that in every loop, there are at least two transitions with
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a different sign. As all transitions either send or receive, the last requirement
implies the existence of both a sending transition and a receiving transition in
each loop. If all the requirements hold, we say that the composition agrees on
the isomorphism.

Definition 15 (Composition agrees on isomorphism). Let A and B be
two S-components such that their skeletons are isomorphic with respect to ρ.
The composition N = A ⊕G B for some port G ∈ GA ∩ GB agrees on ρ if and
only if:

– for all transitions t ∈ TA, t′ ∈ TB, there exists a place s ∈ G such that
{(t, s), (s, t′)} ⊆ FN or {(t′, s), (s, t)} ⊆ FN if and only if ρ(t) = t′;

– All transitions in the postset of a place have the same sign, i.e. ∀p ∈ PN , t1, t2
∈ p• : λG(t1) = λG(t2);

– For all markings m ∈ R(S(A), iA) and firing sequences σ ∈ T ∗
A such that

(S(A) : m
σ−→ m) there are i, j ∈ {0, . . . |σ|} such that λG(σ(i)) =! ∧

λG(σ(j)) =?.

Although isomorphism is a strong requirement, in practice it is often used for
protocol design between agents. First a state machine is designed that represents
the communication between the two agents. In each state of choice, only one
agent can make a choice. Then the state machine is copied for both agents, and
the communication between the transitions is added. Definition 15 gives a set of
rules for asynchronous communication between these transitions such that the
composition is always weakly terminating and safe.

Theorem 16. Let N and M be two composable S-components with respect to
some port G ∈ GN ∩GM such that their skeletons are isomorphic with respect to
some bijective function ρ. If the composition N ⊕G M agrees on ρ, N ⊕G M is
weakly terminating and safe.

If the skeletons of two components B and C are isomorphic, and their compo-
sition agrees on this isomorphism, the markings reachable in the composition
have a special form: each marking consists of a marked place of B, a marked
place of C and some marked interface places. As a consequence of the structure
of the composition, it is always possible to mark a place p and its isomorphic
place ρ(p), without any interface marked.

In Figure 8 an example system is shown that is constructed using the presented
approach. The system was constructed by starting with a single marked place.
By the standard refinement rules of Murata [12], the component is refined to
a simple marked graph with two places in parallel. Using the third rule, for
both places a new component is created. Next, the second rule is applied twice
to refine the two synchronized places by a composition of two S-components
that agree on the isomorphism of their skeletons, and an acyclic composition of
T-components. By construction, the system is weakly terminating.
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Fig. 8. System constructed using the constuction method

6 Conclusions

In this paper, we presented a construction methodology for asynchronously com-
municating systems that guarantees weak termination. We model components
and their interaction with Petri nets. The construction method consists of three
rules. The first rule allows for the refinement of safe places by a weakly termi-
nating workflow component. If the initial component is weakly terminating, the
refined component is also weakly terminating. In the second rule, we refine two
synchronized places by a weakly terminating composition of two workflow com-
ponents. A pair of places is synchronized if it is always the case that if one place
is marked before the other, it is always possible to keep that place marked until
the other is marked as well. If the original composition is weakly terminating,
the refined composition is weakly terminating as well. The third rule allows the
creation of new coupled components.

We studied two classes of coupled components that are weakly terminating
by their structure. The first class is based on marked graphs. If a composition
of two workflow T-components is an acyclic marked graph, the composition is
weakly terminating. The second class is based on state machines. If the compo-
sition of two S-components that are isomorphic on their skeleton agrees on the
isomorphism, the composition is weakly terminating.

In [6] the authors give a constructive method preserving the inheritance of
behavior, which can be used to guarantee the correctness of interorganizational



Construction of Asynchronous Communicating Systems 121

processes. Other formalisms, like interface automata [3] use synchronous commu-
nication, whereas we focus on asynchronous communication, which is essential
for our application domain, since the communication in SOA is asynchronous.

In [9], the authors propose to model choreographies using Interaction Petri
nets, which is a special class of Petri nets, where transitions are labeled with the
source and target component, and the message type being sent. To check whether
the composition is functioning correctly, the whole network of components needs
to be checked, whereas in our approach this is guaranteed by construction.

To keep our results at a conceptual level, we present our results on Petri net
models. Our method can easily instaciated for industrial languages like BPEL,
to facilitate the construction of web services in development environments like
Oracle BPEL or IBM Websphere.
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Abstract. Aspect composition often involves advice interference and
this is a crucial problem in aspect oriented programming. When multiple
advices are woven at the same join point, the advices often interfere with
each other. Giving appropriate precedence order is a typical solution
of this problem but it cannot resolve all kinds of advice interference.
To address this problem, we propose a novel language extension named
Airia, which provides a new kind of around advice for resolving advice
interference. This kind of advice named a resolver is invoked only at the
join points when given advices conflict with each other. The resolvers
can call an extended version of proceed, which takes as an argument
precedence order among remaining advices. Furthermore, the resolvers
are composable. They can be used to resolve interference among other
resolvers and advices.

1 Introduction

In aspect-oriented programming, crosscutting concerns are modularized into as-
pects. Composing a new aspect by combining existing aspects is not easy. The
aspects often conflict with each other and cause undesirable interference. This
problem is called aspect interference. In particular, resolving interference among
advices in the aspects is a serious issue that has been investigated in the research
community. This paper addresses this issue called advice interference.

A typical solution is to allow programmers to control the precedence order
among conflicting advices. For example, AspectJ [10] provides declare precedence
for this control. However, for some combinations of advices, there is no correct
precedence order with which the composed behavior is acceptable. Such combi-
nation needs modifying the bodies of the conflicting advices to explicitly imple-
ment the merged behavior. This is not desirable since the programmers have to
be aware of the composition when they write an individual advice. The imple-
mentation of the composition should be described separately from the conflicting
advices.

This paper proposes a novel extension of AspectJ, which is named Airia.
In this language, a new kind of around advice called resolvers are available. A
resolver is used to implement the composition of conflicting advices. It is invoked
at the join points when the given set of advices conflict with each other. Since
a resolver has higher precedence than those conflicting advices, it overrides the
implementation of those advices. In the body of the resolver, a proceed call takes

B. Baudry and E. Wohlstadter (Eds.): SC 2010, LNCS 6144, pp. 122–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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public class Expression extends ASTNode {...}

public class Plus extends Expression {
private Expression left;
private Expression right;

public Plus(Expression left, Expression right) {...}

public Expression getLeft() {...}
public Expression getRight() {...}
// :

}

public class Constant extends Expression {
Object value;
public Constant(Object value) {

this.value = value;
}}

aspect Evaluation {
public Object Expression.eval() {

return null;
}}

Listing 1. Classes representing the AST

as an argument the precedence order among those conflicting advices. It can
thereby control the execution order of the remaining advices. In our language
Airia, therefore, declare precedence is not available. Furthermore, a resolver is
composable. It can implement the composition of other resolvers and advices.
Our language Airia has been implemented by using the AspectBench compiler
[4] and JastAdd [8] 1. In summary, the contribution of this paper is to propose
a new language construct named a resolver. The advantages are two. (1) It
enables separation of the implementation of advice composition while keeping
sufficient expressive power. Also, (2) it is composable and thus we can implement
composition of several advices in a hierarchical manner.

In the rest of this paper, Section 2 shows a motivating example. Section 3
presents the design of a resolver. Section 4 describes implementation of Airia
compiler. Section 5 mentions related work and Section 6 concludes this paper.

2 A Motivating Example

We first show an example of aspect interference that is not resolved in existing
approaches.

2.1 A Simple Interpreter

We present a simple interpreter with a binary operator +, which is written
in AspectJ. Listing 1 shows classes representing AST (Abstract Syntax Tree)
nodes. The Plus class expresses a binary operator +. It has two fields, left and
1 The source code of Airia is available from:
http://www.csg.is.titech.ac.jp/
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aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval();
}}

Listing 2. An aspect for integer values

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

return t.getLeft().eval().toString() + t.getRight().eval().toString();
}}

Listing 3. An aspect for character strings

right, representing its operands and it extends the Expression class. We declare a
method for evaluating an AST in the EvaluationAspect aspect. Since our inter-
preter currently does not support any data types, this aspect appends an empty
eval method to the Expression class by an inter-type declaration.

We then extend the interpreter to support integer values. We do not have
to modify the existing classes. We have only to write a new aspect shown in
Listing 2. The around advice in the IntegerAspect aspect is invoked when the
Plus.eval method is executed; it returns a summation of the two operands. The
following code makes an AST representing 1 + 2. When e.eval is executed on
this tree, it returns 3.

Expression e = new Plus(new Constant(1), new Constant(2));

Next, we extend the original interpreter to support character strings. Again,
we do not have to modify the existing classes. We implement this extension by the
StringAspect in Listing 3. Since the operator + now represents concatenation of
character strings, the around advice implements the behavior of the eval method.
If we compile the classes and the aspects in Listing 1 and 3, then the resulting
interpreter will correctly handle character strings.

The last step is to build an interpreter supporting both integers and character
strings. Some readers might expect that we could easily obtain the interpreter if
the two aspects IntegerAspect and StringAspect are compiled and woven together.
However, these two aspects conflict with each other, i.e. multiple advices are
woven at the same join point. The resulting behavior of the eval method is
different from our naive expectation. This paper deals with this unexpected
behavior of the combined advices, which we call advice interference. It is one
kind of aspect interference; other kinds of aspect interference such as [9] are out
of the scope of this paper.

If the two advices are combined, the resulting eval method cannot process all
acceptable ASTs. In AspectJ, when the eval method is called, the advice with
the highest precedence is executed. Suppose that IntegerAspect has the highest.



An Advice for Advice Composition in AspectJ 125

aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof Integer && rvalue instanceof Integer) {

return (Integer)lvalue + (Integer)rvalue; // not for composition
} else {

return proceed(t);
}}}

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

return lvalue.toString() + rvalue.toString(); // not for composition
} else {

return proceed(t);
}}}

Listing 4. A composable version of the conflicting advices

Then the eval method does not process the AST e constructed by the following
code:

Expression e = new Plus(

new Constant("Hello "), new Constant("world!"));

It will throw ClassCastException since the operands are character strings but the
around advice in IntegerAspect assumes that the operands are integer values.
Changing the precedence order does not solve this problem. In AspectJ, we can
explicitly specify precedence. For example,

declare precedence: StringAspect, IntegerAspect;

this declaration specifies that StringAspect has higher precedence than Inte-
gerAspect. The eval method now returns an unexpected value when the AST
e2 shown below is evaluated:

Expression e2 = new Plus(new Constant(1), new Constant(2));

The returned value will be a character string ”12” although both operands are
integer values.

2.2 An Incomplete Solution in AspectJ

A partial solution of the problem above is to make advices composable by lin-
earization. Since AspectJ provides proceed calls, we can reimplement advices and
connect them by proceed to make a single chain. If proceed is called in an advice
body, it invokes the advice with the next highest precedence in the chain. If
there is no other advice, the original computation at the join point is executed.

Listing 4 shows the result of the reimplementation to use the linearization. The
resulting code can be regarded as an AspectJ version of the chain of responsibility
pattern. Now the two around advices call proceed to invoke the next advice when
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aspect IntegerStringAspect {
Object resolver plusEvalIntStr(Plus t)

and(IntegerAspect.plusEvalInt(t), StringAspect.plusEvalStr) {
Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

return [StringAspect.plusEvalStr].proceed(t);
} else if (lvalue instanceof Integer && rvalue instanceof Integer) {

return [IntegerAspect.plusEvalInt].proceed(t);
} else {

throw new RuntimeException();
}}}

Listing 5. The aspect for combining IntegerAspect and StringAspect

they cannot deal with the given operands. Although the combination of some
advices requires an explicit declaration of the precedence order for linearization,
the two aspects in Listing 4 do not require it; they correctly work under any
precedence order. The interpreter containing these two aspects can deal with
the AST constructed by this code:

Expression e = new Plus(new Constant("Str") + new Constant("1"));

However, this solution is not satisfactory from the software engineering view-
point. Programmers need global reasoning for combining advices; they must be
aware of other (maybe unknown yet) advices. Furthermore the implementation
of each advice body includes the composition code for linearization, which con-
nects it to other advices. Programmers have to design a composition protocol
for the advice chain before implementing each advice body. The protocol design
is not easy since the advices must be able to correctly work with and without
other advices.

The composition is a crosscutting concern. Note that most statements in List-
ing 4 are for the composition by the linearization. Only the two return statements
marked by a comment implement the behavior of the eval method in the Plus
class. The composition code scatters over the two advices.

3 A New Approach for Resolving Interference

To resolve the problem mentioned above, we propose a novel language extension
of AspectJ. This new language named Airia allows programmers to separately
describe how to resolve advice interference. Instead of the conflicting advices
themselves, the resolving code is described in a new kind of around advice called
a resolver. Hence the implementation of each conflicting advice is independent
of the other conflicting advices and their composition protocol.

Listing 5 is an example of an aspect including a resolver. It resolves the ad-
vice interference presented in the previous section. Details of this resolver are
mentioned below. Since the resolving code is separated into this resolver, the
conflicting advices do not include the code for composition or resolution of the
interference. See Listing 6, which presents the three conflicting advices written
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aspect Evaluation {
public Object Expression.eval() {

return null;
}}

aspect IntegerAspect {
Object around plusEvalInt(Plus t): target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval();
}}

aspect StringAspect {
Object around plusEvalStr(Plus t): target(t) && execution(Object Plus.eval()) {

return t.getLeft().eval().toString() + t.getRight().eval().toString();
}}

Listing 6. The aspects written in our language

in our language. They are simpler than the composable version of the aspects
shown in Listing 4. They are the same as the original aspects in Listing 2 and
3 except that every advice has a unique name. These advice names are used by
the resolver.

A resolver is composable. Programmers can write a resolver that resolves in-
terference among other resolvers and normal advices. Suppose that we write
a new aspect EvaluationCacheAspect and its advice causes interference with the
advices of IntegerAspect and StringAspect. For these three conflicting advices, we
can write a new resolver by reusing the existing resolver of IntegerStringAspect.
Since the resolver of IntegerStringAspect deals with the advice interference be-
tween IntegerAspect and StringAspect, the new resolver will be declared to deal
with the interference between the resolver of IntegerStringAspect and the new
advice of EvaluationCacheAspect. The implementation of that new resolver will
call proceed to execute the resolver of IntegerStringAspect.

3.1 A Resolver

A resolver is a special around advice, which is declared with a keyword resolver
instead of around. The syntax of resolver declaration is the following:

RetrunType resolver ResolverName(ArgumentType ArgumentName, ...)

and|or(ConflictingAdviceName[(BoundArgumentName, ...)], ...)

[uses HelperAdviceName, ...] { Body }

The resolver keyword is followed by a resolver name. A parameter list to the
resolver follows the resolver name if any. Unlike normal advices in AspectJ, it
does not take a pointcut but it takes an and/or clause, which specifies a list of
potentially conflicting advices. The resolver is expected to resolve interference
among these advices. Except the resolver keyword, its name, and the and/or
clause, a resolver is the same as an around advice. The return type of a resolver
is Object if the join points bound to the resolver have different return types. The
body of the resolver may include a proceed call.
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In Listing 5, a resolver is named plusEvalIntStr and takes an and clause, which
lists the names of the around advices in the two aspects IntegerAspect and
StringAspect. Note that an advice also has a unique name. See Listing 6. The In-
tegerAspect aspect has an advice named plusEvalInt and the StringAspect has an
advice named plusEvalStr. IntegerAspect.plusEvalInt and StringAspect.plusEvalStr
are their fully-qualified names.

The join points when a resolver is executed are specified by an and/or clause.
Since the resolver in Listing 5 has an and clause, it is executed at the join points
that all the given advices are bound to, that is, when the eval method in the Plus
class is executed. Note that those advices of the two aspects IntegerAspect and
StringAspect conflict at those join points. A resolver has higher precedence than
the advices specified by its and/or clause. Hence, it overrides all the conflicting
advices at the join points. In our example, when the eval method in the Plus
class is called, the body of the resolver is executed first.

The advices given to the and/or clause of a resolver work as pointcuts. Thus,
a resolver can take parameters and pass them to those advices. For example,
the resolver in Listing 5 takes a parameter t and passes it to the advice in the
IntegerAspect. The parameter t is bound to the value that this advice binds its
parameter to, that is, the target object of the call to the eval method.

A resolver may have an or clause. This specifies that the resolver is executed
at the join points that at least one advice given to the or clause is bound to.
For example, the next resolver is executed at the join points that only the two
advices A and B are bound to but C is not:

Object resolver precedence() or(A, B, C) {

return [A, B, C].proceed();

}

The or clause can be used for specifying precedence order among advices as we
do with declare precedence in AspectJ. The resolver shown above specifies that
the precedence order is A, B, and C. [A, B, C].proceed() executes the three
advices in that order (we below mention this proceed call again).

We introduced an or clause for reducing the number of necessary resolvers.
If we could not use an or clause, we would have to define many resolvers for
all possible combinations of potentially conflicting advices. Suppose that we
have three advices A, B, and C. We would have to define resolvers for every
combination: A and B, B and C, C and A, and all the three, if they conflict at
different join points. Since we expect that those combinations would share the
same body, using an or clause would reduce the number of resolvers we must
describe.

To be precise, the join points selected by an and/or clause are the intersec-
tion/union of the join point shadow [14] selected for the advices given to that
and/or clause, respectively. Dynamic pointcuts such as cflow and target are ig-
nored. Thus, a resolver may be executed at the join points that the advices in
its and/or clause are not bound to.

We adopted this language design since it is extremely difficult to detect con-
flicts among advices even at runtime. Since an advice in AspectJ can change
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the dynamic contexts, after its body is executed, an advice with a lower prece-
dence than that advice may be removed from the set of the executable advices at
that point. Suppose that the pointcut of an advice includes if(Expr.flag) and the
value of Expr.flag is true. If an advice with higher precedence than that advice
sets Expr.flag to false before calling proceed, the advice with if(Expr.flag) will not
be executed by the proceed call.

3.2 A Proceed Call with Precedence

Like a normal advice, a resolver can call proceed to invoke another advice with
the next highest precedence. The proceed call from a resolver explicitly specifies
the precedence order of the advices given to the and/or clause, which will be
invoked by the proceed call. Note that unlike AspectJ our language Airia does not
provide declare precedence. The precedence order is described between brackets
preceding .proceed.

Suppose that there are two advices A and B and they conflict at the join point
selected by a pointcut pc(). We assume that there is no other advices. Then a
resolver AorB can call proceed twice with different precedence order:

void resolver AorB() or(A, B) {

[A, B].proceed();

[B, A].proceed();

}

pointcut pc(): ...;

void around A(): pc() {

proceed();

}

void around B(): pc() {

proceed();

}

When [A, B].proceed() is called, A is invoked. B is invoked by the proceed call
in A. The proceed call in B executes the original computation at the join point.
On the other hand, when [B, A].proceed() is called, B is invoked. A is the next.
Note that [A, B].proceed() does not mean that A and then B. It means that A
has higher precedence than B; A or B may not be executed when their pointcuts
do not match the current join point.

The proceed call can remove advices from the set of the remaining advices,
which will be invoked by later proceed calls. If the advice list between brackets
does not include an advice given to the and/or clause, the advice is removed.
In Listing 5, both proceed calls remove one advice. The former removes Inte-
gerAspect.plusEvalInt and the other removes StringAspect.plusEvalStr. For exam-
ple, [IntegerAspect.plusEvalInt].proceed() invokes the plusEvalInt advice in Inte-
gerAspect and then, if it calls proceed again, the original eval method is invoked.
The plusEvalStr advice in StringAspect is never invoked.
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aspect EvaluationCacheAspect {
Object Expression.cachedValue;
boolean Expression.isChanged = false;
void around plusEvalCache(Expression t): execution(Object Plus.eval()) && args(t) {

if (t.isChanged) {
cachedValue = proceed(t);
isChanged = false;

}
return cachedValue;

}
after changed(): ... {

isChanged = true;
}}

Listing 7. The EvaluationCacheAspect aspect

aspect IntegerStringCacheAspect {
Object resolver evalIntStrCache():

and(IntegerStringAspect.evalIntStr, EvaluationCacheAspect.plusEvalCache)
return [EvaluationCacheAspect.plusEvalCache,

IntegerStringAspect.evalIntStr].proceed();
}}

Listing 8. A resolver resolving conflicts between a normal advice and another resolver

3.3 Composability of Resolvers

A resolver, which is a special around advice, may also conflict with other resolvers
or normal advices. This conflict can be also resolved by another resolver; a
resolver is composable. An advice given to an and/or clause may be a resolver. A
proceed call with precedence specifies precedence order among conflicting advices
and/or resolvers.

Let us consider a new advice shown in Listing 7. The join point of this advice
is the execution of the eval method. Thus, this advice conflicts with the two
advices in IntegerAspect and StringAspect shown in Listing 2 and 3. Since the
conflict between these two advices has been already resolved by the resolver in
IntegerStringAspect, we reuse this resolver to resolve the conflicts among the new
advice and these two advices. See Listing 8. This resolver in IntegerStringCacheA-
spect has an and clause, which lists the new advice in EvaluationCacheAspect and
the resolver in IntegerStringAspect. It resolves conflicts between the advice and
the resolver.

The behavior of a resolver for another resolver is the same as normal resolvers.
When the eval method is called, this resolver in IntegerStringCacheAspect is in-
voked first since it has higher precedence than the other advices and resolver.
When this resolver calls proceed with precedence, the advice with the next high-
est precedence is executed, which is the advice in EvaluationCacheAspect. After
that if the advice calls proceed, the resolver in IntegerStringCacheAspect is ex-
ecuted. Note that this resolver does not explicitly describe how the conflicts
between IntegerAspect and StringAspect are resolved. It is encapsulated in the
resolver of IntegerStringAspect. The composition of IntegerStringCacheAspect is
hierarchical.



An Advice for Advice Composition in AspectJ 131

Table 1. A summary of precedence relations declared by constructs in Airia

Construct Precedence relations

Type resolver R() and/or(A, B, C) R ≺ A, R ≺ B, R ≺ C
[A, B, C].proceed() A ≺ B, B ≺ C

Existing resolvers can be overridden when it cannot be reused. To implement
a new resolver that changes the precedence order given by another resolver, pro-
grammers explicitly remove the other resolver. For example, if a new resolver
requires the resolver in IntegerStringAspect should have higher precedence
than the advice in EvaluationCache, the resolver in IntegerStringCacheAspect
is removed by the same way that a resolver removes a normal advice. The re-
moved resolver is not executed; the new resolver can define a new precedence
order among the advices that were resolved by the removed one.

Unlike declare precedence in AspectJ, a resolver can flexibly modify precedence
order among conflicting advices even during runtime by a proceed call with
precedence. Thus, declare precedence is not available in our language Airia. The
precedence order must be explicitly specified; there is no default precedence order
unlike AspectJ.

3.4 A Compile Time Check of Conflict Resolution

Our language Airia requires that all conflicts among advices should be explicitly
resolved by resolvers. Our compiler checks this requirement at compile time.
If programmers declare inconsistent precedence or forget to specify precedence
among advices, then our compiler will report errors.

To enable statically checking whether conflicts are resolved or not, our defi-
nition of conflict is conservative like AspectJ. If advices partly share their join
point shadow, they conflict. Due to our specification mentioned in Section 3.1,
a resolver cannot have dynamic residue. Thus our compiler can statically deter-
mine conflicting advices at every join point shadow and the resolvers executed
at that shadow.

Our compiler recognizes that a conflict has been resolved if the advice or re-
solver with the next highest precedence is always determinable. Also the highest
resolver executed first at the join point must be uniquely determined. Recall
that, in our language Airia, constructs that declare precedence order are a re-
solver and a proceed call with precedence as summarized in Table 1. The and/or
clause declares that the resolver has higher precedence than the advices or re-
solvers specified in it. Then the proceed call declares precedence order as specified
between its brackets. This declarations are effective only in the remaining chain
of advices. Here we use a binary relation; X ≺ Y represents that X has higher
precedence than Y. This relation is transitive, i.e., if X ≺ Y and Y ≺ Z then X
≺ Z. It must be total order; otherwise, it causes an error. Suppose three advices
A, B, C and the following resolvers:
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void resolver R() and(A, C, S) {

[S, C, A].proceed();

}

void resolver S() and(A, B) {

[A, B].proceed();

}

They conflict at the same join point shadow and no other advices nor resolvers
exists. The first executed resolver is R because of R ≺ S given by the and clause
of R. After S is invoked by the proceed call in R, the proceed call in S invokes
C. This is because of S ≺ C and C ≺ A given by the proceed call in R. Thus
this conflict is resolved. On the other hand, if we rewrite R as follows, then the
conflict is not resolved:

void resolver R() and(C, S) {

[S, C].proceed();

}

The declared relations are only R ≺ S, S ≺ C, S ≺ A, and A ≺ B; there is no
precedence order between A and C.

The precedence order declared by a and/or clause cannot be removed. Even if
S is removed by another resolver in the example above, S ≺ A and S ≺ B are still
effective. Without this rule, the check of conflict resolution would be extremely
complicated. The following resolvers would be valid:

void resolver T() and(U, D) {

[D].proceed(); //remove U

}

void resolver U() and(T, D) {

[D].proceed(); //remove T

}

They declare T ≺ U and U ≺ T and thus the precedence order seems to have a
cycle. However, if we first pick up T, since T removes U, the result would be only
T ≺ U and T ≺ D, which has no cycle. On the other hand, if we first pick up U,
since U removes T, the result would be different precedence order including no
cycle. We have introduced the rule to avoid this complication and ambiguity.

Some resolvers include multiple proceed calls declaring different precedence
order. The next advice invoked at a proceed call is determined dependently on
the chain of proceed calls executed so far at the current join point. Our compiler
checks conflict resolution along every conservatively possible control path. Please
refer to our companion paper [17] for more detail.

3.5 A Helper Advice

A resolver can add a new advice for helping composition. Since a resolver has
higher precedence than conflicting advices, the added advice is normally given
intermediate precedence among those conflicting advices.
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aspect TraceLogging {
before log(): ... {

Logger.getInstance().debug(thisJoinPointStaticPart.toString());
}}

aspect ArgumentLogging {
before log(): ... {

Object[] args = thisJoinPoint.getArgs();
Logger.getInstance().debug("Arguments: " + Arrays.toString(args));

}}

Listing 9. Two aspects for logging

aspect LoggingWithSync {
before lock() {

Logger.getInstance().lock(); //reentrant lock
}
before unlock() {

Logger.getInstance().unlock();
}

void resolver sync()
and(TraceLogging.log, ArgumentLogging.log) uses lock, unlock {

[lock, TraceLogging.log, ArgumentLogging.log, unlock].proceed();
}}

Listing 10. A resolver for synchronizing two aspects

Suppose that we have two logging aspects shown in Listing 9. The advice in
the TraceLogging aspect records executed methods during program execution.
The ArgumentLogging aspect records the values of arguments when a method is
invoked. If the precedence order specifies that TraceLogging is executed before
ArgumentLogging, then a printed method name is followed by argument values.
However, if a program is multi-threaded, the two advices must be synchronized.
Otherwise, printed log messages will be interleaved as the following:

[DEBUG] execution(Object Main.run(String))

[DEBUG] execution(void Test.test())

[DEBUG] Argument: []

[DEBUG] Argument: [--debug]

Here, the fourth line shows the value of the argument to the run method.
Listing 10 shows a resolver for synchronizing the two logging advices. This

resolver uses two helper advices lock and unlock. Note that this resolver has a
uses clause, which specifies the helper advices for that resolver. The pointcut of
a helper advice is not explicitly specified; a helper advice is bound to the same
join points that the resolver using that helper advice is bound to. The helper
advices are included in the precedence order of proceed. In Listing 10, the lock
advice is given the highest precedence while the unlock advice is given the lowest
precedence among the four advices. Thus, the lock advice acquires a lock, the
logging advices print messages, and then the unlock releases before the method
logged by the aspects is executed. Without these helper advices, the resolver
could not implement synchronization since it had to release a lock between the
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aspect IntegerStringAspect {
Object around(Plus t): execution(Object Plus.eval()) && target(t) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

return lvalue.toString() + rvalue.toString();
} else if (lvalue instanceof Integer && rvalue instanceof Integer) {

return (Integer)lvalue + (Integer)rvalue;
} else {

throw new RuntimeException();
}}
declare precedence: IntegerStringAspect, IntegerAspect, StringAspect;

}

Listing 11. Another incomplete solution in AspectJ

logging advices and the logged method but the resolver automatically obtains
higher precedence than the logging advices.

Multiple resolvers may use the same helper advice. If those resolvers are bound
to the same join points, that helper advice is executed only once at every join
point (shadow). If a resolver removes another resolver using a helper advice, that
helper advice is not removed together. It must be explicitly removed.

3.6 Discussion

A resolver does not take a normal pointcut but an and/or clause — a list of
conflicting advices. It can call proceed with precedence. These are unique fea-
tures of our language Airia. To clarify their benefits, we show another aspect
in Listing 11. Like the aspect written in Airia, this aspect does not require us
to modify the conflicting aspects in Listing 2 and 3. We wrote this aspect in
AspectJ to be similar to the aspect written in Airia shown in Listing 5. The
aspect has a normal around advice. We manually translated the and clause of
the resolver into a normal pointcut for this around advice. In the body of this
around advice, we also manually inlined the body of the conflicting advices since
a proceed call with precedence is not available.

This aspect has two drawbacks. First, the pointcut of the advice is fragile.
We will have to modify the pointcut of this advice when the pointcuts of the
conflicting advices are modified. Second, the body of this advice contains code
duplication since we manually inlined the body of the conflicting advices. We will
also have to modify the advice body when the bodies of the conflicting advices
are modified. The aspect written in Airia does not have these problems.

4 Implementation

We have implemented an Airia compiler by extending an AspectJ compiler
named the AspectBench compiler (abc). Its front-end is implemented as an
extension of the JastAddJ extensible compiler. The extension to abc is imple-
mented by aspects like the example in Section 2.
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The current implementation of our compiler does not support the same level
of optimization as abc. Unlike abc, our proceed call is implemented only by using
closure objects. The size of generated code could be large. A closure is created for
each proceed call of every path of advice chain because the selection of invoked
advice by the proceed call depends on which proceed calls have been executed at
the join point.

5 Related Work

Resolving aspect interference for aspect composition is a classic research topic
and hence there have been a number of proposals. For example, Douence et al.
proposed an approach for detecting and resolving conflicts between aspects on
their formal framework, Stateful Aspect [6,7]. Their approach is making a com-
position operator extensible so that the operator will generate correctly merged
behavior when the operands are conflicting with each other. Although this ap-
proach is similar to ours, we provide a single composition operator (i.e. a re-
solver) but we do not make the semantics of the operator extensible. We also
propose an extension of AspectJ based on our approach.

Most previous approaches are categorized into meta programming. POPART
[5] provides a meta-aspect protocol. Advice composition can be dynamically
customized by an instance of MetaAspectManager. Programmers can define an
appropriate MetaAspectManager to implement a custom composition policy for
resolving conflicts among particular advices. JAsCo [16] also provides a mech-
anism like this. However, meta programming is often complicated and difficult.
Thus, in OARTA [13], the ability for meta programming is restricted. For resolv-
ing aspect interference, OARTA allows an advice to modify only the pointcut of
another advice. On the other hand, our approach does not need meta program-
ming. A resolver is a special around advice but it is still a base-level language
construct.

Context-Aware Composition Rules [11,12] allows programmers to control
precedence order among advices for every join point. It also allows removing
an existing advice at some join points. However, as we mentioned in Section 2,
some kinds of advice interference cannot be resolved by only reordering advices.
On the other hand, our language Airia also provides the ability for adding a new
advice only at the join points where advices are conflicting with each other.

Reflex [18] is an infrastructure for building an aspect system. It provides an
application-programming interface (API) for implementing a new policy for ad-
vice composition. Programmers can exploit this API for customizing the aspect
system to resolve conflicts among particular advices. On the other hand, our
language Airia provides a base-level language construct for resolving conflicts.
The users of Airia do not have to consider the implementation of the language.

Aspect refinement and mixin-based aspect inheritance [2,3] enable program-
mers to incrementally extend the behavior of an existing advice. JastAdd also
supports refinement. On the other hand, our language Airia enables extending
the behavior of a combination of multiple advices.
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The relationship between an around advice and the original computation at
the join point is similar to the relationship between a mixin and a class. A
proceed call corresponds to a super call. The former executes the next advice
or the original computation while the latter executes the method in the next
mixin or class. While advice interference is a problem, interference among mixins
given to the same class is also a problem. Traits [15] is a solution for mixin
interference. Our approach can be regarded as an application of the idea of traits
to aspects. Both approaches allow programmers to define a new advice/method
for overriding advices/methods and resolving their conflicts.

6 Conclusion

We presented a language extension of AspectJ. This language named Airia can
resolve interference among conflicting advices, which we could not satisfactorily
resolve in original AspectJ. Airia enables programmers to separate composition
code into an independent resolver, which is a new kind of advice. A resolver is
composable. It can resolve interference between another resolver and an advice.
We have implemented an Airia compiler by extending the AspectBench compiler
using JastAdd.

Our future work includes improving the expressive power of proceed calls.
There are some proposals such as [1], which are used to detect whether or not
advices are commutative, i.e. whether or not their combined behavior is inde-
pendent of their precedence order. In the current design of Airia, programmers
have to explicitly specify the precedence order among advices even though they
are commutative. This is annoying.
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Abstract. “Composition Primitives” is a novel component model tar-
geting .NET. The model facilitates composition across component pro-
gramming frameworks via an adaptation mechanism external to the
component. Constructing adapters is relatively inexpensive, because the
model is minimal and focused on just one concern: offering enough in-
formation to support composition. Although small, the model supports
static discovery of the services provided and consumed by a component—
in other words, it is reflective. To strengthen the value of its reflection
capabilities, it purposely does not rely on the Service Locator pattern
and it supports n–order composition scenarios. In this paper, we present
our model and support our claims.

1 Introduction

We present a component model that serves as a foundation for creating Open,
Dynamic .NET applications built out of Reflective components. These compo-
nents may have been developed in a domain–specific programming model, or
may have been developed in a different, possibly legacy, component framework.

We will use the acronym “ODR” for these kinds of applications. In ODR ap-
plications, third–party functionality (components) can be added or removed (the
“open” quality), possibly while the application is running (the “dynamic” qual-
ity), and there are first–class means to statically determine, for such third–party
functionality, what facilities it provides and what its requirements are (the “re-
flective” quality). Reflection typically needs to be performed without loading any
component code to avoid associated performance penalties. Eager loading tends
to become prohibitive in applications with a large number of components that do
not need to be all loaded upfront—like an integrated development environment
or a web browser.

Examples of existing component frameworks targeting the construction of
ODR applications include: CORBA Component Model [1], Castle MicroKer-
nel/Windsor [2], Autofac [3], and Fractal [4].

In our model we focus on discovery and basic composition. We believe this
is the core concern of any component framework, and, therefore, other aspects
commonly covered by component frameworks can be realized separately or built
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on top of our model. We designed the Managed Extensibility Framework (MEF),
part of .NET 4.0, as one such more comprehensive framework, validating our
layering.

In particular, a characteristic property of components is that they form units
of versioning [6]. Like other higher-level concerns, the primitives do not address
versioning directly. Instead, it is left to component frameworks built on top of the
primitives to address such concerns appropriately. While the details are beyond
the scope of this paper, MEF, for instance, relies on the underlying versioning
semantics in .NET and supports adapters to deal with additional versioning issues.

In contrast to other models targeting ODR applications, we claim our model
offers the following novel and differentiating capabilities:

Our model supports creating domain-specific programming mod-
els and facilitates composition across component frameworks. A “pro-
gramming model”, in this context, is syntax and semantics defining compo-
nents1. Since .NET is a multi–language platform, the term “syntax” refers to
both language–specific, as well as language–independent means of expression.
An extreme example of the former would be a language supporting the keyword
component, with a compiler targeting the .NET Common Instruction Language
(CIL) specification [5]. An example of the latter is the use of generally–supported
.NET concepts, like custom attributes, types, or properties, to define what a
component is, regardless of language. For example: any type annotated with the
custom attribute Component is a component.

Choosing a component framework is an architectural decision [6]. It is hard
to move away from such decisions: As applications evolve, it becomes important
to enable interoperability with components written for other component
frameworks—perhaps more recent ones. It is always possible to enable this—one
can always write custom adapters and wrap components on a case-by-case basis.
This tends to be expensive. We offer a solution for some of the most repetitive prob-
lems, such as discovery, without using the classical solution of a Service Locator.

The Service Locator pattern, also known as the Lookup pattern [7], is a widely
used mechanism for late binding in open systems. It consists of a naming service,
where service providers register under a name (typically a string). Consumers of
services are bootstrapped to the naming service and use such a name (obtained
throughbootstrapping or as a parameter) to imperativelyfind and utilize a service.

Similar to the designers of other frameworks for ODR applications [1,3,2], we
see the Service Locator pattern as hindering reflectivity and opted for a solution
pertaining to the alternative pattern, namely Inversion-of-Control [8].

Supporting domain-specific programming models, or other compo-
nent frameworks, is easy and inexpensive, from an engineering perspective,
because the model is small and focused just on core concerns. As cost is one of

1 This definition makes the term “programming model” synonymous to “component
model”. We intentionally use the term “programming model” to indicate layering
with respect to the Composition Primitives, i.e. a component model adapted to the
Primitives.
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the primary concerns of any engineering team, ensuring the model imposes a
small cost is inherently important.

Our model supports n-order composition without imposing require-
ments on the component author. Complex applications take complex
dependencies—such as dependencies on providers of services (other components)
rather than just the services themselves. We refer to these as n-order dependen-
cies, and we will define them in more detail later in the paper. It will be ex-
plained that it is important to facilitate discovery of these kinds of dependencies
without forcing component developers into modeling for each such concern—i.e.
a solution and guidance is necessary in the framework, rather than be left to
component and application authors to decide upon.

The remainder of this paper is organized as follows: We provide an outline
of our model to offer support for our claims in the next section. A broader
comparison and contrast with related work in the area of component-oriented
software as well as other technologies follows. We conclude with an outline of
current applications of our model in commercial and in open-source projects that
validate the applicability of our solution.

Other literature in the area of component frameworks uses mathematical for-
malism to introduce and prove properties of the respective component frame-
work [4]; we believe that, for our purposes in this paper, using a well-established
programming language (and its semantics) is sufficient. Given that our model
targets the .NET platform, we use C#. For compactness and enhanced readabil-
ity, we removed unnecessary (for this paper) annotations like visibility keywords
(“public”) or, in some places, type casts. As such, we assume basic familiarity
with C#and .NET, but provide an appendix with an overview of less familiar
features that our model relies on, such as lambda expressions, delay–compiled
expressions, and the functional model of sets (features commonly known as “Lan-
guage Integrated Query”, or LINQ, which were introduced to the scientific com-
munity as Cω [9] and have been part of C#since .NET 3.5).

2 The Primitives Model

The Primitives model (see figure 1) consists of: Services, Service Definitions,
Instances, Components, and Dependencies2.

Somewhat different from other component frameworks, ours is a management
model, meaning that instances of the Primitives model are separate from opera-
tional program instances, used only for composition, and can be discarded after
composition occurred, thus imposing no runtime overhead once composition or
re-composition completes.
2 This ontology happens to translate into the .NET Managed Extensibility Frame-

work (MEF) model, which builds on the Primitives, using different names: Ex-
port, ExportDefinition, ComposablePart, ComposablePartDefinition, and Import-
Definition. The paper uses the Service, Instance, Component terminology. Refer to
http://mef.codeplex.com for more information on MEF, including the open-source
implementation and samples.

http://mef.codeplex.com
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Fig. 1. Overview of the Primitives Model

A Service Definition is a semi–structured data object. It describes a kind
of functionality that is offered for utilization, or consumption. It is the kind of
information that one would use to decide whether a Service is interesting, without
requiring the loading of code, which is a feature desirable in ODR applications.

A Service Definition is modeled as an atomic and opaque contract name (a
string) and a string–keyed dictionary of objects, referred to as “metadata”. The
contractname identifies a document in the general sense, i.e., information, referred
to as “contract”, that describes the functionality offered for consumption. This de-
scription may be parameterized, in which case the contract must also describe how
to encode such parameters using the metadata part of the Service Definition.

Let us consider an extensible stack-based calculator application—a perhaps
contrived example, but suitable for illustrative purposes. The calculator can be
extended with new operators. The contract for a particular operator may use, for
the contract name, the string Operator, which implies the requirement that meta-
data contain the key Symbol and an associate string-typed value, such as “+”.

A Service is an association between a mechanism (GetServiceObject) for ob-
taining an object satisfying a Service Definition, and the Service Definition. This
is the basic building block for the rest of the model and it represents functional-
ity ready-to-use by a consumer. Consumers may expect that the object obtained
via GetServiceObject respect whatever prescriptions the contract requires—
typically, that it implements some interface.

A Component represents a unit of reusable code. The code may be used if
its dependencies are satisfied. Since dependencies may be satisfied with differ-
ent values, an Instance (discussed further below) represents a particular such
satisfaction which can be used independent from others.

A component advertises the set of Dependencies that all its Instances will
need to have satisfied (the Dependencies property), and the set of statically–
known Service Definitions all these Instances will offer (the ServiceDefinitions
property).
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Components produce Instances via the Instantiate method. Separate calls
to this method must always result in different Instances being produced. Such
Instances may end up offering more Services than statically advertized by a
Component.

To enable composition, a given component’s dependencies need to be analysed
and candidate components must be determined that could satisfy these depen-
dencies. Candidates whose own dependencies cannot be satisfied in the given
composition context need to rejected. Component analysis and selection/rejec-
tion may occur without loading any code—based solely on the information pro-
vided by its ServiceDefinitions and Dependencies properties. Code loading
can be deferred to the point a first request for utilizing a Service offered by an
Instance is made. Compared to systems that load component code early, com-
position analyses and resulting selection/rejection decisions that are performed
without loading component-specific code can have significant performance ad-
vantages, as validated by our use of MEF in Visual Studio 2010.

An Instance represents a set of Services and a set of Dependencies. Over time,
more or less Services may be available, depending, for example, on the satisfac-
tion of some optional Dependencies, or other runtime conditions. Mandatory
Dependencies (“prerequisites”) need to be satisfied before an Instance can be
asked for Services.

To satisfy a Dependency, an external agent calls BindDependency and pro-
vides a set of Services. The agent may use GetService to retrieve a particular
Service that is offered by the Instance.

Once all dependencies are satisfied, the Instance is ready to be used, meaning
any of its offered Services may be utilized. In particular, this is the time an
implementation may decide to load the actual component code and perform the
actual satisfaction of dependencies.

Dynamic composition or recomposition is supported by allowing Instance de-
pendencies be rebound on a live Instance.

Finally, a Dependency is defined through a Constraint. This is an Expres-
sion object applicable on a Service Definition and producing a boolean (a filter,
essentially). Expressions are typed, delay–compiled functions. In our context,
they are assumed to be pure. For more information, refer to Appendix A.

The key feature of using .NET expressions for the Constraint is that we can de-
scribe arbitrarily complex boolean expressions, with terms that may be arbitrary,
type–safe navigations in the structure of the metadata of a Service Definition. We
will discuss how this is the basis for supporting complex composition scenarios
(section 2.5), as well as how this simplifies the composition process (section 2.2),
when compared to known alternatives used in related work (section 3).

Other concepts exposed on a Dependency, but not explored in this paper,
are: cardinality of the Dependency (ZeroOrOne, ExactlyOne, or ZeroOrMore);
whether it is prerequisite (a generalization of the notion of constructor parame-
ter); and whether if it can be rebound (support for dynamic scenarios).
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An example of a Constraintwould be the expression, using C#lambda notation:
( sd)=>sd . ContractName==”Operator ” &&

sd . Metadata . ContainsKey ( ”Symbol” ) &&
sd . Metadata [ ”Symbol”]==”+”

This Constraint expresses a dependency on services respecting the “Operator”
contract, and, in particular, on those that have a metadata key called Symbol.

The calculator in our example could expose itself as a component with two de-
pendencies: one on a stack, with cardinality ExactlyOne, and one on a collection
of Operators, with cardinality ZeroOrMore. The constraints of these dependen-
cies would be as follows:

// s t a c k
( sd)=>sd . ContractName==”Stack ” ;

// any o p e r a t o r
( sd)=>sd . ContractName==”Operator ” &&

sd . Metadata . ContainsKey ( ”Symbol” )

In the case of a dependency on operators, the only statically known data is that the
contract name needs to have a particular value, and that the metadata must con-
tain the “Symbol” key—our calculator will use this for user interaction purposes,
to identify each operator. In the case of a dynamic dependency (one that is satis-
fied based on dynamic system behavior), the Constraint should still be expressed
in terms of statically–known properties of Service Definitions, and the Cardinality
should always be ZeroOrMore. With that, it is possible to reason about composi-
tion of even dynamic dependencies—and still before loading component code.

As a final note about the Primitives, it is not necessary that Services be pro-
duced by Instances, nor that Instances be produced by Components. For exam-
ple, a Service representing external functionality (e.g. a web service) may simply
be instantiated by the application and subsequently considered for composition
just like Services produced by Components. An implementation provided by a
host that must be shared as a singleton by all hosted components may be repre-
sented as an Instance. This is also the reason that both Services and Instances
carry their descriptions (i.e. Service Definitions and Dependencies)—in order to
allow for analysis in the absence of a Component object.

2.1 Simple Example

We use the calculator example to illustrate the Primitives model. To avoid noise,
in this example, the programming model used is the Primitives, however, in
practice this is atypical - the Primitives are meant to be implemented by adapters
to programming models, while the components would be implemented in such
programming models.

Figure 2 shows the implementation of Component, and Figure 3 for the corre-
sponding Instance for a generic operator. The example assumed a few construc-
tors for some of the Primitives, which we have previously excluded from the
model for brevity. In Figure 2, line 10, a new Service Definition is constructed
with the contract name “Operator” and the metadata being a dictionary with
only one key value pair, the key being “Symbol” and the value the variable
symbol. Line 12 assumes a constructor for Dependency that constructs a con-
straint on a contract name (“Stack” in this case), and assumes an ExactlyOne
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1 class OperatorComponent : Component{
2 internal Func<double , double , double> Op{get ; s e t ;}
3 private Se r v i c eDe f i n i t i o n o f f e r e dSv c ;
4 private Dependency dep ;
5
6 OperatorComponent ( string symbol , Func<double , double , double> f ){
7 Op = f ;
8 o f f e r e dSv c = new S e r v i c eDe f i n i t i o n (
9 ”Operator ” , {”Symbol” , symbol } ) ) ;

10 dep = new Dependency ( ” Stack ” ) ;
11 }
12 override IEnumerable <Se rv i c eDe f i n i t i on > S e r v i c eDe f i n i t i on s {
13 get { y i e l d o f f e r ed Sv c ; }
14 }
15 override IEnumerable <Dependency> Dependencies{
16 get { y i e l d dep ; }
17 }
18 public override In s tance I n s t a n t i a t e (){
19 return new OperatorIns tance ( th is ) ;
20 }
21 }

Fig. 2. Example Operator Component

1 class OperatorIns tance : In s tance
2 {
3 private OperatorComponennt theComp ;
4 private Stack<double> s ta c k ;
5 private Se r v i c e th eSe r v i c e ;
6
7 OperatorIns tance (OperatorComponent comp){
8 theComp = comp ;
9 }

10 override IEnumerable<Se r v i c eDe f i n i t i on > S e r v i c eDe f i n i t i o n s {
11 get { return theComp . S e r v i c eDe f i n i t i o n s ; }
12 }
13 override IEnumerable<Dependencies> Dependencies{
14 get { return theComp . Dependencies ; }
15 }
16 override void BindDependency (Dependency dep , IEnumerable<Serv i ce> value s ){
17 var stackExp = value s . F i r s t ( ) ;
18 s ta ck = ( Stack<double>)( stackExp . GetServiceObject ( ) ) ;
19 }
20 override Se r v i c e GetServ i ce ( Se r v i c eDe f i n i t i o n svcDef ){
21 i f ( svcDef .Name == ”Operator ” ){
22 i f ( th e Se rv i c e == null ){
23 Func<double> operator = ( ) => theComp .Op( Stack . Pop ( ) , Stack . Pop ( ) ) ;
24 th eSe r v i c e = new Se rv i c e ( svcDef , ( ) => operator ) ;
25 }
26 return t h e Se r v i c e ;
27 }
28 return null ;
29 }
30 }

Fig. 3. Example Operator Instance

cardinality. In Figure 3, line 24, we construct a Service object based on a given
service definition, and where GetServiceObject delegates to the provided func-
tion (in this case, a function returning the operator function).

In this example, one would obtain the component for the “+” operator as
follows:
Component p lus=new OperatorComponent ( ”+” , ( x , y)=>x + y)

As it can be seen, the “Operator” contract stipulates that the service object
have the type Func<double,double,double>, and the “Stack” contract requires
a Stack<double> object. This illustrates the fact that the Primitives do not im-
pose any limitations over the kinds of types that may constitute valid operational
interfaces to services. Concretely, Func<> is a sealed type, while Stack<> may
be inherited from (both are part of the core .NET Framework).
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Because the Service Definitions used are pure data, one can reason over a
space of such Service Definitions using the Constraint of a Dependency and,
without loading any component code, make determinations over feasibility of
composition.

2.2 Composition in the Primitives Model

Composition in the context of the primitives consists of creating Instances out
of Components and resolving their Dependencies with Services obtained out
of other Instances. The composition may be controlled by an agent, generally
referred to as “composition engine”, external to the components involved. The
composition engine is expected to satisfy a dependency d with a Service s for
which the following expression evaluates to true (where Compile is a standard
method on .NET expression objects—see Appendix A):

d.Constraint.Compile()(s.Definition)

Our goal for domain independent composition is supported by the fact that
the engine need not understand the constraint in order to determine whether a
service may be used to satisfy dependencies. Parsing the Constraint is possible
(since it is an Expression) and may be useful for optimizations, such as indexing.
It is also useful if the engine is capable of recognizing and treating specially
particular kinds of contracts.

A characteristic of the Primitives design is that it has no built–in notion of
identity. In particular, this allows for defining new Components from existing
Components through an equivalent of the notion of partial application found
in functional languages. A custom implementation of Component can be con-
structed that, based on an existing Component and a set of pairs (Dependency,
IEnumerable<Service>),presents itself as exposing the same Service Definitions
as the original component, and the same Dependencies, except for those provided
in the set of pairs. Calls to Instantiate lead to the creation of instances of the
original component, where the Dependencies provided in the set are hidden and
pre–satisfied by the values they were associated with.

2.3 Supporting Other Component Frameworks and Domain–Specific
Programming Models

We implemented an extensible chatting application3. Components for this appli-
cation can be developed using the attributed programming model that is provided
as reference implementation with .NET Framework 4.0, or as “plain old CLR”
(POCO) types typically composed by Autofac[3]. In turn, these components may
be composed using either the composition engine that is part of .NET Framework
4.0, or with the Autofac container. The former was designed upfront to be based
on our model, while the latter was adapted to support our model.

The ChatClient.ManagedExtensibilityComponents project comprises MEF
components, while the ChatClient.AutofacComponents project comprises POCO
types for Autofac.
3 http://nblumhardt.com/archives/composition-primitives/

http://nblumhardt.com/archives/composition-primitives/
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TheChatClient.ManagedExtensibilityHostprojectuses theMEFComposition-
Container and PocoAdapter types to host both MEF and POCO components.

The ChatClient.AutofacHost project hosts the same components, but uses the
Autofac.Integration.CompositionPrimitives adapters to host both MEF and
POCO components in the same (Autofac) container.

2.4 Cost of Constructing Adapters

The adapter that allows Autofac components to be composed by the .NET com-
position engine operating on our model can be seen in the PocoAdapter project
of the chatting application. The adapter consists of an implementation of the
Component and Instance concepts. This adapter totals 125 lines of code, sup-
porting our claim of low-cost adapter construction.

2.5 Modeling Higher–Order Dependencies

In our model, a dependency is taken on a Service, via a condition over the de-
scription of that Service. Typically, that Service represents a value with meaning
in the application domain, and no meaning in the Primitives model. It is possi-
ble, however, that we represent a Component, for example, as a Service: after all,
it provides the service of generating Instances. In this case, the value represented
by the Service has a meaning in the Primitives model, which is understood and
utilized by its consumer. We call this a higher–order dependency.

Scenarios where higher–order dependencies are required are apparent in com-
plex composite applications, where some components act as generic containers for
other components, managing their life–cycle and controlling access to them. An
example would be an Integrated Development Environment (IDE) that can be ex-
tended with custom designers for Graphical User Interfaces (GUIs). Such design-
ers may be usable as independent applications (i.e. they can be used as a compo-
nent), however, internally, such designers may be themselves extended, and may
use other components (like an editor, a canvas, etc). Hence, designers are higher-
order components that also compose (and expose services of) other components.

To support such kinds of dependencies, one option would be to manufacture
contracts that make the high–order dependency implicit, for example, a depen-
dency on a component that produces an “Operator” would be encoded as a
dependency on a Service respecting the contract “Operator Component”. The
problem with this approach is that it does not scale—the set of such contracts
is a power set of the set of “simple” service contracts.

The options we discuss in what follows express higher–order dependencies
through a description of structure, and require composers to understand a few
contracts, one for each kind of higher–order dependency. Our goal for program-
ming model–independent composition is still supported, however, components
exposing such higher-order dependencies end up being less reusable than “sim-
ple” components. Still, any composition engine would be able to assess at least
that it is unable to compose them.

In this paper, we will only illustrate support for dependencies on components.
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Dependencies on Components. Consider a scenario where we want to pack-
age the wiring of a given stack with a private instance of a calculator user
interface component and a private instance of each of the operator components
available in some set of components. Then, we want to treat this package as a
component.

Next, suppose we want to create a new Component, where each Instance
would internally instantiate two Calculator aggregates and connect them to a
shared instance of a Stack. The dependency of this new Component would be
solely on other components: a Stack Component, a set of Operator Components,
and an Aggregate Component (as defined above). It can be observed that this
mechanism allows for recursive definitions of “Components”.

To model such dependencies, we introduce a contract named “Component”
which requires that the describing ServiceDefinition have a metadata property
called “ServiceDefinitions”, which should be a collection of ServiceDefinitions.
Said metadata property maps to the corresponding property of a Component.
A Service exposing the “Component” contract produces a Component when
GetServiceObject is called. All that is required is that a composition engine
understand the contract name “Component” and map its set of available Com-
ponents into a set of Services correspondingly.

A dependency on the addition operator component we used in our examples
so far would be expressed through a constraint as follows (where Any is the .NET
LINQ operator for existential quantification over an enumerable; also, some type
casts removed for brevity):

( sd)=>sd . ContractName==”Component” &&
sd . Metadata . ContainsKey ( ” S e r v i c eD e f i n i t i o n s ” ) &&
sd . Metadata [ ” S e r v i c eDe f i n i t i o n s ” ] i s

IEnumerable <Se rv i c eDe f i n i t i on > &&
sd . Metadata [ ” S e r v i c eDe f i n i t i o n s ” ] . Any(

s=>s . ContractName==”Operator ” &&
s . Metadata . ContainsKey( ”Symbol” ) &&
s . Metadata [ ”Language ”]==”+” )

This illustrates the rationale for using expressions for describing constraints in
dependencies: they are sufficiently powerful to describe the conditions the Service
Definition needs to exhibit, yet, since they represent delay–compiled code, a com-
poser need not interpret their contents. The composer simply needs to search the
expression tree for the equality test between the Service Definition contract name
and the string Component, then compile the whole expression (via the Compile
method expression objects expose in .NET) and evaluate the resulting function
over the Service Description representation of currently available components.

3 Related Work

The area of component–based programming [6] features a large number of com-
ponent models. This Section will only focus and contrast a relevant sample of
those that can be used to build ODR applications. For instance, models that
focus on static ahead-of-time composition, such as Koala [10], are not discussed.

The two traditional areas supported by ODR component models are extensible
enterprise and rich-client applications. Representative for the enterprise area
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are the Enterprise JavaBeans (EJB) framework [11], the CORBA Component
Model (CCM) [1], and more recently, Dependency Injection containers. Rich-
client applications use frameworks such as COM [12]. Besides these, there are
several frameworks that developed out of research, such as Fractal [4]. In the
following, we contrast these frameworks and our model.

A component in EJB is a bundle consisting of a lifecycle manager (“home”,
optional as of EJB 3.x), component code, and a deployment descriptor (addi-
tional EJB–specific information). Offered services are modeled as Java interfaces,
and composition is driven by component code, by using the Java Naming and
Directory Interface (JNDI) [13]—a Service Locator mechanism. Only component
homes can be found and bound via JNDI, component instances are subsequently
obtained via the component home.

EJB features a hybrid between Service Locator–based mechanisms and ex-
plicit dependency declaration. The home of a component “A” is registered at
deployment time with a server–wide name (e.g. “Server–A”). Another compo-
nent, “B”, wishing to use “A”, uses a relative name (e.g. “B–A”) when using
JNDI programatically to lookup “A”. Then, the relative name and the expected
home interface are listed, by the component developer of B, in the deployment
descriptor. Finally, at deployment time, the application composer associates the
relative name to the server–wide name.

This mechanism may be considered a way to expose component dependen-
cies, however, nothing stops a component from attempting (and succeeding
at) a lookup using a “guessed” server–wide name. As such, knowledge of an
EJB component’s dependencies is generally incomplete, when such knowledge
is based solely on information supported by the component model. Given the
introspectable nature of Java bytecode, it is possible to construct tools to ex-
tract complete inter–component dependency information (e.g. [14]), however,
this is something the component model supports accidentally, and the mecha-
nisms required may not be suitable for all applications, since they require time–
consuming bytecode parsing, and since some EJB containers generate merged
container/component code at deployment time.

CCM is an extension of CORBA, and aims at allowing the creation and com-
position of components developed on a variety of operating system platforms
and using different languages. In CCM, a component features “ports”, describ-
ing: (i) implemented IDL interfaces (“facets”), (ii) required implementations of
IDL interfaces (“receptacles”), (iii) produced and consumed events (“sources”
and “sinks”), and (iv) “attributes”, which are configurable properties. Except
for attributes, which are intended to be primitive types (e.g. integers, strings),
the ports are expressed in terms of IDL interfaces. For example, a receptacle is
expressed in terms of the interface the component wishes to consume, as well as
an optional indication on whether this is rather a collection of such interfaces.
Just like in our model, and in contrast to EJB, a CCM component does not rely
on a Service Locator to be composed—composition is externally managed.

Components themselves are described using IDL. In contrast to our approach,
IDL describes the operational interface of the consumed service, not the service



The .NET Primitives for Open, Dynamic and Reflective Component 149

itself. For example, all calculator operations in our example would implement
the same IDL interface. However, the operation that they implement would not
be part of that interface, while it would be an interesting criterion for expressing
dependencies. Our model provides the notions of Contract, as separate from
operational interface, and Metadata for this purpose.

The closest to our Service Definition concept is the concept of WSDL [15] doc-
uments in the area of Web Services. WSDL, however, is heavily Web–oriented.
Conceptually, both utilize semi–structured data to describe a service. In the
same area, the Component Object Model framework (COM) [12] uses the Win-
dows registry as basis for component discovery. The information that may be
stored in the registry is similar conceptually to the notion of Service Definitions.
Similarly, the enterprise-oriented COM+ uses a registration database to store
component metadata.

The Vienna Framework [16] has similar inter-component framework compos-
ability goals to our effort. It takes the approach of ”wrapping” components, thus
imposing a constant runtime penalty. A second effect of this approach is a larger
solution space, with a model trying to address the different operational inter-
face features that are currently popular - e.g. methods, properties, events. More
importantly, it does not have a model for dependencies. The metadata concept
in Vienna revolves around operational contracts, while our concept of metadata
models a broader kind of contracts - similar, as noted, to the Web Services notion
of contracts.

A number of Dependency Injection frameworks describe components in terms
of offered and required interfaces. Examples include the Castle Microkernel [2]
and Autofac [3]. Both target the enterprise space, and both use a conventions–
based approach to comprehending a plain .NET class as a component. For exam-
ple, constructor parameters are treated as dependencies, and their type is used
for matching with the types offered by other components. In turn, the interfaces
implemented by a type are considered as offered services. There are policies for
matching requirements expressed on collections, or inheritance–based matching.
While both these frameworks use plain .NET types to model components, since
the translation between a type and the internal notion of a component differs,
interoperability is hard to achieve.

Outside of the enterprise space, the Fractal component model [4] was de-
signed explicitly to permit language–specific implementations, albeit without
the interoperation goal that CCM has. It relies on Service Locators to drive
binding to other components, through a binding controller, which a component
may expose. Binding controllers expose offered interfaces, but do not expose
requirements, which is one contrasting difference to our model. Fractal models
explicitly components that aggregate other components, through the concept of
a content controller, which, if implemented by a component, it allows for other
components to be added or removed from it.

The capability offered via content controllers is simlar to the capability, in the
Primitives model, to model dependencies on components (see Section 2.5). The
main difference is that the Primitives do not need a separate concept to achieve
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the same result, in fact, the concept used (the Dependency model) is reusable
for a variety of other kinds of dependencies, as was illustrated in section 2.

OSGi [17], the component model foundation of systems like Eclipse, addresses
features similar to our model. Despite its layered architecture, and unlike our
Primitives model, OSGi has a large surface area with complex protocols around
aspects like deactivation and reactivation. Primitives relegate such protocols to
the space of normal contracts and expects that, in the context of specific systems
like MEF, such contracts are published and well-known. There is no expectation
that such protocols are necessarily used across all systems build on top of Prim-
itives. As a result, it is much easier to build implementations or adapters to and
from our model. As a further point of distinction: OSGi uses LDAP query expres-
sions to describe constraints. While LDAP is a broadly accepted directory access
standard, it was not designed for the specific needs of a higher-order component
model. Our model draws on a general-purpose delay-compiled and type-safe ex-
pression model (a standard part of the .NET framework) that we apply over a
general metadata design, to support higher-order composition directly.

The mechanism used to express dependencies is somewhat reminiscent of the
way design–by–contract languages Eiffel [18], ESC/Java [19], or SpecSharp [20]
specify pre– or post–conditions by using a rich expression language describing
Boolean constraints.

The concept of decoupling the concern of modeling components from the con-
cern of composing them is found in the area of Architecture Description Lan-
guages (ADL). An ADL is a formal language that describes how components
are instantiated and connected. Typically, ADLs are used for architectural vali-
dation. Interesting examples, in the context of this paper, are the Darwin ADL
and ArchJava, a Java extension that can express architectural constraints.

Darwin[21,22] introduced the notion of hierarchical composition—which is sim-
ilar to the kind of second order composition the Primitives support (Section 2.5).

ArchJava [23] is an ADL extension to the Java language, mainly aimed at vali-
dating communication integrity. It offers keywords for defining components with
ports (component, port). A port specifies method signatures that it provides and
that it requires (the provides and requires keywords) . A connect keyword
can be used to compose components, by connecting provides and requires
port elements of various components. Like Darwin, ArchJava also supports hi-
erarchical composition through the concept of “composite components”. Unlike
our model, and similar to CCM, ArchJava does not specify a notion of contract
separate from operational interface contracts.

4 Conclusion

We have presented a component model for building reflective components for
open and dynamic applications in .NET. Using a publicly–available sample chat
application, we showed how the model supports arbitrary programming models
and domain-specific component frameworks. Using this example, we showed how
the development effort required to adapt such programming models or compo-
nent frameworks to our model is relatively small.
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A key feature of our model is the utilization of the .NET delay–compiled
code model, or expressions, for describing dependencies. This offers support for
higher–order dependencies, without significant complexity on the side of compo-
sition engines, and without requiring that component authors be aware of such
potential consumption scenarios.

The model has current practical applications. It forms the foundation for the
Managed Extensibility Framework (MEF), which is part of the .NET Frame-
work 4.04. In turn, MEF is used by Visual Studion 2010 as both an internal
component model and as an external third-party extensibility mechanism. Other
implementations of the primitive model have been contributed by third-parties5,
for example, an IronRuby6 programming model7.
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A .NET Framework Features

The model relies on two features in the .NET framework, which, for the purpose
of clarity, are briefly described in what follows. These features are: type–checked
delay–compiled code, also known as “Lambda Expressions” (in short, “expres-
sions” in this paper), and a monadic functional model for collections, commonly
referred to as “LINQ” (Language–INtegrated Query).

An expression is an object of type Expression<Func <...>>, and may be
constructed in two ways: either through explicit construction of an abstract syn-
tax tree, by using typed nodes, or through language facilities, in languages that
support that. For example, C#provides syntax and compile–time verification for
constructing such objects. The following line of code constructs the object that
represents the division computation of two integers, returning a double:
Express ion<Func<int , int , double>>

d i v i s i onExpre s s i on = (x , y)=>x/y ;

Expressions can be used two ways. One way is to compile them, which results in
a typed function (“delegate” in .NET nomenclature), which can then be applied:
Func<int , int , double> d i v i s i o n =

d i v i s i onExpr e s s i on . Compile ( ) ;

double r e s u l t = d i v i s i o n ( 1 , 2 ) ;

Alternatively, expressions can be passed to interpreters. LINQ–to–SQL, for ex-
ample, translates an expression to SQL statement, which is then evaluated by a
relational database server.

http://www.w3.org/TR/wsdl20


The .NET Primitives for Open, Dynamic and Reflective Component 153

The second feature we mentioned is LINQ, which allows for the definition of
lazily–enumerated collections in a functional style. For example, given a collec-
tion of integers integers, the following defines the subset of even numbers.
IEnumerable <int> evens =

in t e g e r s . Where ( i=>i %2==0);

Besides the Where operator, Linq defines a large number of further standard op-
erators over IEnumerables: functions from enumerable to enumerable. In com-
bination, these can be used to express a full range of queries. Some languages,
such as C#, provide syntactic sugar for a large subset of these operators. For
example, the following form yields the same even numbers:

IEnumerable <int> evens =
from i in i n t e g e r s where i%2 == 0 s e l e c t i ;

The rich support of expressions and enumerator operators, C#language sugar,
and dynamic compilation, in combination, create a potent foundation for the
constraint system of the Composition Primitives presented in this article.



Author Index

Acher, Mathieu 17
Appeltauer, Malte 50

Bergel, Alexandre 90
Binder, Walter 82
Blay–Fornarino, Mireille 90
Blumhardt, Nicholas 138
Brottier, Erwan 1

Chiba, Shigeru 122
Collet, Philippe 17
Costanza, Pascal 66

De Meuter, Wolfgang 66
D’Hondt, Theo 66

France, Robert 17
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