

Computational Physics

Philipp O.J. Scherer

Computational Physics

Simulation of Classical and Quantum Systems

123

Prof. Dr. Philipp O.J. Scherer
TU München
Physikdepartment T38
85748 München
Germany
philipp.scherer@ph.tum.de

Additional materials to this book can be downloaded from http://extras.springer.com

ISBN 978-3-642-13989-5 e-ISBN 978-3-642-13990-1
DOI 10.1007/978-3-642-13990-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010937781

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L., Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

for Christine

Preface

Computers have become an integral part of modern physics. They help to acquire,
store, and process enormous amounts of experimental data. Algebra programs have
become very powerful and give the physician the knowledge of many mathemati-
cians at hand. Traditionally physics has been divided into experimental physics
which observes phenomena occurring in the real world and theoretical physics
which uses mathematical methods and simplified models to explain the experimen-
tal findings and to make predictions for future experiments. But there is also a new
part of physics which has an ever-growing importance. Computational physics com-
bines the methods of the experimentalist and the theoretician. Computer simulation
of physical systems helps to develop models and to investigate their properties.

Visualisation & presentation
Computer graphics, processing of text and images

Numerical maths
approximative methods

Communication, data transmission
data storage and data management

email,www,ftp

Symbolic Computing
algebra programs

Computers in Physics

Theoretical Physics
approximative solutions

Computational Physics
Computer models & experiments

Experimental Physics
data collection, storage and processing

This book is a compilation of the contents of a two-part course on computational
physics which I have given at the TUM (Technische Universität München) for sev-
eral years on a regular basis. It attempts to give the undergraduate physics students
a profound background in numerical methods and in computer simulation methods

vii

viii Preface

but is also very welcome by students of mathematics and computational science
who want to learn about applications of numerical methods in physics. It may also
support lecturers of computational physics and bio-computing. It tries to bridge
between simple examples which can be solved analytically and more complicated
but nevertheless instructive applications which provide insight into the underlying
physics by doing computer experiments.

The first part gives an introduction into the essential methods of numerical math-
ematics which are needed for applications in physics. The basic algorithms are
explained in detail together with limitations due to numerical inaccuracies. The
mathematical explanation is supplemented by a large number of numerical experi-
ments.

The second part of the book shows the application of computer simulation meth-
ods for a variety of physical systems with a certain focus on molecular biophysics.
The main object is the time evolution of a physical system. Starting from a sim-
ple rigid rotor or a mass point in a central field, important concepts of classical
molecular dynamics are discussed. Further chapters deal with partial differential
equations, especially the Poisson–Boltzmann equation, the diffusion equation, non-
linear dynamic systems, and the simulation of waves on a one-dimensional string.
In the last chapters simple quantum systems are studied to understand, e.g., expo-
nential decay processes or electronic transitions during an atomic collision. A two-
level quantum system is studied in large detail, including relaxation processes and
excitation by an external field. Elementary operations on a quantum bit (Qubit) are
simulated.

Basic equations are derived in detail and efficient implications are discussed
together with numerical accuracy and stability of the algorithms. Analytical results
are given for simple test cases which serve as a benchmark for the numerical meth-
ods. A large number of computer experiments are provided as Java applets which
can be easily run in the web browser. For a deeper insight the source code can be
studied and modified with the free “netbeans”1 environment.

Garching, April 2010 Philipp O.J. Scherer

1 www.netbeans.org

Contents

Part I Numerical Methods

1 Error Analysis . 3
1.1 Machine Numbers and Rounding Errors . 3
1.2 Numerical Errors of Elementary Floating Point Operations 6

1.2.1 Numerical Extinction . 6
1.2.2 Addition . 7
1.2.3 Multiplication . 8

1.3 Error Propagation . 8
1.4 Stability of Iterative Algorithms . 11
1.5 Example: Rotation . 12
1.6 Truncation Error . 13
Problems . 13

2 Interpolation . 15
2.1 Interpolating Functions . 15
2.2 Polynomial Interpolation . 16

2.2.1 Lagrange Polynomials . 16
2.2.2 Newton’s Divided Differences . 17
2.2.3 Interpolation Error . 18
2.2.4 Neville Method . 20

2.3 Spline Interpolation . 21
2.4 Multivariate Interpolation . 25
Problems . 26

3 Numerical Differentiation . 29
3.1 Simple Forward Difference . 29
3.2 Symmetrical Difference Quotient . 30
3.3 Extrapolation Methods . 31
3.4 Higher Derivatives . 33
3.5 More Dimensions . 34
Problems . 35

ix

x Contents

4 Numerical Integration . 37
4.1 Equidistant Sample Points . 37

4.1.1 Newton–Cotes Rules . 38
4.1.2 Newton–Cotes Expressions for an Open Interval 39
4.1.3 Composite Newton–Cotes Formulas 40
4.1.4 Extrapolation Method (Romberg Integration) 40

4.2 Optimized Sample Points . 42
4.2.1 Clenshaw–Curtis Expressions . 42
4.2.2 Gaussian Integration . 43

Problems . 45

5 Systems of Inhomogeneous Linear Equations . 47
5.1 Gaussian Elimination Method . 47

5.1.1 Pivoting . 50
5.1.2 Direct LU Decomposition . 51

5.2 QR Decomposition . 51
5.3 Linear Equations with Tridiagonal Matrix . 53
5.4 Cyclic Tridiagonal Systems . 55
5.5 Iterative Solution of Inhomogeneous Linear Equations 56

5.5.1 General Treatment . 56
5.5.2 Jacobi Method . 57
5.5.3 Gauss–Seidel Method . 57
5.5.4 Damping and Successive Over-Relaxation 58

5.6 Conjugate Gradients . 59
Problems . 60

6 Roots and Extremal Points . 63
6.1 Root Finding . 63

6.1.1 Bisection . 63
6.1.2 Regula Falsi Method . 64
6.1.3 Newton–Raphson Method . 65
6.1.4 Secant Method . 66
6.1.5 Roots of Vector Functions . 66

6.2 Optimization Without Constraints . 67
6.2.1 Steepest Descent Method . 68
6.2.2 Conjugate Gradient Method . 68
6.2.3 Newton–Raphson Method . 69
6.2.4 Quasi-Newton Methods . 69

Problems . 70

7 Fourier Transformation . 73
7.1 Discrete Fourier Transformation . 74

7.1.1 Trigonometric Interpolation . 75
7.1.2 Real-Valued Functions . 77

Contents xi

7.1.3 Approximate Continuous Fourier Transformation 77
7.2 Algorithms . 78

7.2.1 Goertzel’s Algorithm . 79
7.2.2 Fast Fourier Transformation . 80

Problems . 84

8 Random Numbers and Monte Carlo Methods . 87
8.1 Some Basic Statistics . 87

8.1.1 Probability Density and Cumulative Probability
Distribution . 87

8.1.2 Expectation Values and Moments 88
8.1.3 Multivariate Distributions . 92
8.1.4 Central Limit Theorem . 93
8.1.5 Example: Binomial Distribution . 93
8.1.6 Average of Repeated Measurements 94

8.2 Random Numbers . 95
8.2.1 The Method by Marsaglia and Zamann 96
8.2.2 Random Numbers with Given Distribution 96
8.2.3 Examples . 97

8.3 Monte Carlo Integration . 99
8.3.1 Numerical Calculation of π . 99
8.3.2 Calculation of an Integral . 100
8.3.3 More General Random Numbers 101

8.4 Monte Carlo Method for Thermodynamic Averages 102
8.4.1 Simple (Minded) Sampling . 102
8.4.2 Importance Sampling . 103
8.4.3 Metropolis Algorithm . 104

Problems . 106

9 Eigenvalue Problems . 109
9.1 Direct Solution . 109
9.2 Jacobi Method . 109
9.3 Tridiagonal Matrices . 111
9.4 Reduction to a Tridiagonal Matrix . 111
9.5 Large Matrices . 114
Problems . 115

10 Data Fitting . 117
10.1 Least Square Fit . 117

10.1.1 Linear Least Square Fit . 119
10.1.2 Least Square Fit Using Orthogonalization 120

10.2 Singular Value Decomposition . 123
Problems . 127

xii Contents

11 Equations of Motion . 129
11.1 State Vector of a Physical System . 129
11.2 Time Evolution of the State Vector . 130
11.3 Explicit Forward Euler Method . 132
11.4 Implicit Backward Euler Method . 134
11.5 Improved Euler Methods . 135
11.6 Taylor Series Methods . 137
11.7 Runge–Kutta Methods . 138

11.7.1 Second-Order Runge–Kutta Method 138
11.7.2 Third-Order Runge–Kutta Method 138
11.7.3 Fourth-Order Runge–Kutta Method 139

11.8 Quality Control and Adaptive Step-Size Control 140
11.9 Extrapolation Methods . 141
11.10 Multistep Methods . 142

11.10.1 Explicit Multistep Methods . 142
11.10.2 Implicit Multistep Methods . 143
11.10.3 Predictor–Corrector Methods . 144

11.11 Verlet Methods . 144
11.11.1 Liouville Equation . 144
11.11.2 Split Operator Approximation . 145
11.11.3 Position Verlet Method . 146
11.11.4 Velocity Verlet Method . 146
11.11.5 Standard Verlet Method . 147
11.11.6 Error Accumulation for the Standard Verlet Method . . . 149
11.11.7 Leap Frog Method . 149

Problems . 150

Part II Simulation of Classical and Quantum Systems

12 Rotational Motion . 157
12.1 Transformation to a Body Fixed Coordinate System 157
12.2 Properties of the Rotation Matrix . 158
12.3 Properties of W, Connection with the Vector of Angular Velocity . 160
12.4 Transformation Properties of the Angular Velocity 161
12.5 Momentum and Angular Momentum . 163
12.6 Equations of Motion of a Rigid Body . 163
12.7 Moments of Inertia . 164
12.8 Equations of Motion for a Rotor . 165
12.9 Explicit Solutions . 165
12.10 Loss of Orthogonality . 167
12.11 Implicit Method . 168
12.12 Example: Free Symmetric Rotor . 170
12.13 Kinetic Energy of a Rotor . 171
12.14 Parametrization by Euler Angles . 172

Contents xiii

12.15 Cayley–Klein parameters, Quaternions, Euler Parameters 172
12.16 Solving the Equations of Motion with Quaternions 176
Problems . 176

13 Simulation of Thermodynamic Systems . 179
13.1 Force Fields for Molecular Dynamics Simulations 179

13.1.1 Intramolecular Forces . 179
13.1.2 Intermolecular Forces . 180
13.1.3 Approximate Separation of Rotation and Vibrations . . . 180

13.2 Simulation of a van der Waals System . 181
13.2.1 Integration of the Equations of Motion 181
13.2.2 Boundary Conditions and Average Pressure 182
13.2.3 Initial Conditions and Average Temperature 183
13.2.4 Analysis of the Results . 183

13.3 Monte Carlo Simulation . 186
13.3.1 One-Dimensional Ising Model . 186
13.3.2 Two-Dimensional Ising Model . 188

Problems . 189

14 Random Walk and Brownian Motion . 193
14.1 Random Walk in One Dimension . 194

14.1.1 Random Walk with Constant Step Size 195
14.2 The Freely Jointed Chain . 196

14.2.1 Basic Statistic Properties . 197
14.2.2 Gyration Tensor . 199
14.2.3 Hookean Spring Model . 200

14.3 Langevin Dynamics . 202
Problems . 204

15 Electrostatics . 207
15.1 Poisson Equation . 207

15.1.1 Homogeneous Dielectric Medium 207
15.1.2 Charged Sphere . 209
15.1.3 Variable ε . 210
15.1.4 Discontinuous ε . 211
15.1.5 Solvation Energy of a Charged Sphere 211
15.1.6 The Shifted Grid Method . 213

15.2 Poisson Boltzmann Equation for an Electrolyte 215
15.2.1 Discretization of the Linearized Poisson–Boltzmann

Equation . 216
15.3 Boundary Element Method for the Poisson Equation 216

15.3.1 Integral Equations for the Potential 217
15.3.2 Calculation of the Boundary Potential 219

xiv Contents

15.4 Boundary Element Method for the Linearized Poisson–
Boltzmann Equation . 222

15.5 Electrostatic Interaction Energy (Onsager Model) 223
15.5.1 Example: Point Charge in a Spherical Cavity 225

Problems . 225

16 Waves . 229
16.1 One-Dimensional Waves . 229
16.2 Discretization of the Wave Equation . 231
16.3 Boundary Values . 232
16.4 The Wave Equation as an Eigenvalue Problem 233

16.4.1 Eigenfunction Expansion . 233
16.4.2 Application to the Discrete One-Dimensional

Wave Equation . 234
16.5 Numerical Integration of the Wave Equation 237

16.5.1 Simple Algorithm . 237
16.5.2 Stability Analysis . 238
16.5.3 Alternative Algorithm with Explicit Velocities 240
16.5.4 Stability Analysis . 240

Problems . 242

17 Diffusion . 243
17.1 Basic Physics of Diffusion . 243
17.2 Boundary Conditions . 244
17.3 Numerical Integration of the Diffusion Equation 245

17.3.1 Forward Euler or Explicit Richardson Method 245
17.3.2 Stability Analysis . 245
17.3.3 Implicit Backward Euler Algorithm 247
17.3.4 Crank–Nicolson Method . 248
17.3.5 Error Order Analysis . 249
17.3.6 Practical Considerations . 250
17.3.7 Split Operator Method for d > 1 Dimensions 250

Problems . 252

18 Nonlinear Systems . 253
18.1 Iterated Functions . 253

18.1.1 Fixed Points and Stability . 254
18.1.2 The Ljapunow Exponent . 256
18.1.3 The Logistic Map . 257
18.1.4 Fixed Points of the Logistic Map 258
18.1.5 Bifurcation Diagram . 259

18.2 Population Dynamics . 260
18.2.1 Equilibria and Stability . 260
18.2.2 The Continuous Logistic Model . 262

Contents xv

18.3 Lotka–Volterra model . 262
18.3.1 Stability Analysis . 263

18.4 Functional Response . 265
18.4.1 Holling–Tanner Model . 266

18.5 Reaction–Diffusion Systems . 269
18.5.1 General Properties of Reaction–Diffusion Systems 269
18.5.2 Chemical Reactions . 270
18.5.3 Diffusive Population Dynamics . 270
18.5.4 Stability Analysis . 270
18.5.5 Lotka–Volterra Model with Diffusion 272

Problems . 273

19 Simple Quantum Systems . 277
19.1 Quantum Particle in a Potential Well . 278
19.2 Expansion in a Finite Basis . 282
19.3 Time-Independent Problems . 284

19.3.1 Simple Two-Level System . 285
19.3.2 Three-State Model (Superexchange) 286
19.3.3 Ladder Model for Exponential Decay 290

19.4 Time-Dependent Models . 292
19.4.1 Landau–Zener Model . 293
19.4.2 Two-State System with Time-Dependent Perturbation . 293

19.5 Description of a Two-State System with the Density Matrix
Formalism . 297
19.5.1 Density Matrix Formalism . 297
19.5.2 Analogy to Nuclear MagneticResonance 300
19.5.3 Relaxation Processes—Bloch Equations 302

Problems . 307

Appendix . 309

References . 311

Index . 315

Part I
Numerical Methods

Chapter 1
Error Analysis

Several sources of errors are important for numerical data processing:

• Input data from an experiment have a limited precision. Instead of the vector of
exact values x the calculation uses x +�x, with an uncertainty �x.

• The arithmetic unit of a computer uses only a subset of the real numbers, the so-
called machine numbers A ⊂ �. The input data as well as the results of elemen-
tary operations have to be represented by machine numbers whereby rounding
errors can be generated. This kind of numerical error can be avoided in principle
by using arbitrary precision arithmetics1 or symbolic algebra programs. But this
is unpractical in many cases due to the increase in computing time and memory
requirements.

• Results from more complex operations like square roots or trigonometric func-
tions can have even larger errors since iterations and series expansions have to
be truncated after a finite number of steps.

1.1 Machine Numbers and Rounding Errors

Floating point numbers are internally stored as the product of sign, mantissa, and a
power of 2. According to IEEE [1] single, double, and quadruple precision numbers
are stored as 32, 64, and 128 bits (Table 1.1):

Table 1.1 Binary floating point formats

Format Sign Exponent Hidden bit Fraction

Float s b0 . . . b7 1 a0 . . . a22
Double s b0 . . . b10 1 a0 . . . a51
Quadruple s b0 . . . b14 1 a0 . . . a111

1 For instance the open source GNU MP bignum library.

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_1,
C© Springer-Verlag Berlin Heidelberg 2010

3

4 1 Error Analysis

Table 1.2 Exponent bias E

Decimal value Binary value Hexadecimal value Data type

12710 11111112 $3F Single
102310 11111111112 $3FF Double
16, 38310 111111111111112 $3FFF Quadruple

The sign bit s is 0 for positive and 1 for negative numbers. The exponent b is
biased by adding E which is half of its maximum possible value (Table 1.2).2 The
value of a number is given by

x = (−)s × a × 2b−E . (1.1)

The mantissa a is normalized such that its first bit is 1 and its value is between 1
and 2

1.0002 · · · 0 ≤ a ≤ 1.111 · · · 12 < 10.02 = 210. (1.2)

Since the first bit of a normalized floating point number always is 1, it is not
necessary to store it explicitly (hidden bit or J-bit). However, since not all numbers
can be normalized, only the range of exponents from $001 to $7FE is used for
normalized numbers. An exponent of $000 signals that the number is not normalized
(zero is an important example, there exist even two zero numbers with different sign)
whereas the exponent $7FF is reserved for infinite or undefined results (Table 1.3).
The range of normalized double precision numbers is between

Min_Normal = 2.2250738585072014 × 10−308

and

Max_Normal = 1.7976931348623157E × 10308.

Table 1.3 Special double precision numbers

Hexadecimal value Symbolic value

$000 0000000000000 +0
$080 00000000000000 −0
$7FF 0000000000000 +inf
$FFF 0000000000000 −inf
$7FF 0000000000001 · · · $7FF FFFFFFFFFFFFF NAN
$001 0000000000000 Min_Normal
$7FE FFFFFFFFFFFFF Max_Normal
$000 0000000000001 Min_Subnormal
$000 FFFFFFFFFFFFF Max_Subnormal

2 In the following the usual hexadecimal notation is used which represents a group of 4 bits by one
of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

1.1 Machine Numbers and Rounding Errors 5

Example Consider the following bit pattern which represents a double precision
number:

$4059000000000000.

The exponent is 100000001012−011111111112 = 1102 and the mantissa including
the J-bit is 1 1001 0000 0000 · · ·2 Hence the decimal value is

1.5625 × 26 = 10010.

Input numbers which are not machine numbers have to be rounded to the nearest
machine number. This is formally described by a mapping � → A

x → rd(x),

with the property

|x − rd(x)| ≤ |x − g| for all g ∈ A. (1.3)

The cases of exponent overflow and exponent underflow need special attention:

Whenever the exponent b has the maximum possible value b = bmax and a =
1.11 · · · 11 has to be rounded to a′ = 10.00 · · · 0, the rounded number is not a
machine number and the result is ±inf.

The mantissa cannot be normalized since it is a < 1 and the exponent has the
smallest possible value b = bmin. Numbers in the range 2bmin > |x | ≥ 2bmin−t can be
represented with loss of accuracy by denormalized machine numbers. Even smaller
numbers with |x | < 2−t+bmin have to be rounded to ±0.
The maximum rounding error for normalized numbers with t binary digits

a′ = s × 2b−E × 1.a1a2 . . . at−1 (1.4)

is given by

|a − a′| ≤ 2b−E × 2−t , (1.5)

and the relative error is bounded by

∣
∣
∣
∣

rd(x)− x

x

∣
∣
∣
∣
≤ 2−t × 2b

|a| × 2b
≤ 2−t . (1.6)

The relative machine precision is defined by

εM = 2−t , (1.7)

and we have

6 1 Error Analysis

rd(x) = x(1 + ε) with |ε| ≤ εM . (1.8)

1.2 Numerical Errors of Elementary Floating Point Operations

Even for two machine numbers x, y ∈ A the results of addition, subtraction, multi-
plication, or division are not necessarily machine numbers. We have to expect some
additional rounding errors from all these elementary operations [2]. We assume that
the results of elementary operations are approximated by machine numbers as pre-
cisely as possible. The exact operations x + y, x − y, x × y, x ÷ y are approximated
by floating point operations A → A with the property

f l+(x, y) = rd(x + y),

f l−(x, y) = rd(x − y),

f l∗(x, y) = rd(x × y),

f l÷(x, y) = rd(x ÷ y).

(1.9)

1.2.1 Numerical Extinction

For an addition or subtraction one summand has to be denormalized to line up the
exponents. (For simplicity we consider only the case x > 0, y > 0.)

x + y = ax 2bx −E + ay2by−E = (ax + ay2by−bx)2bx −E . (1.10)

If the two numbers differ much in their magnitude, numerical extinction can happen.
Consider the following case:

y < 2bx −E × 2−t , (1.11)

ay2by−bx < 2−t .

The mantissa of the exact sum is

ax + ay2by−bx = 1.α2 . . . αt−101β2 . . . βt−1. (1.12)

Rounding to the nearest machine number gives

rd(x + y) = 2bx × (1.α2 . . . αt−1) = x, (1.13)

since

|0.01β2 . . . βt−1 − 0| ≤ |0.011 · · · 1| = 0.1 − 0.00 · · · 01,

|0.01β2 . . . βt−1 − 1| ≥ |0.01 − 1| = 0.11. (1.14)

1.2 Numerical Errors of Elementary Floating Point Operations 7

Consider now the case

y < x × 2−t−1 = ax × 2bx −E−t−1 < 2bx −E−t . (1.15)

For normalized numbers the mantissa is in the interval

1 ≤ |ax | < 2, (1.16)

hence we have

rd(x + y) = x if
y

x
< 2−t−1 = εM

2
. (1.17)

Especially for x = 1 we have

rd(1 + y) = 1 if y < 2−t = 0.00 · · · 0t−11t 000 · · · . (1.18)

2−t could be rounded to 0 or to 21−t since the distance is the same: |2−t − 0| =
|2−t − 21−t | = 2−t .

The smallest machine number with f l+(1, ε) > 1 is either ε = 0.00 · · · 1t 0 · · · =
2−t or ε = 0.00 · · · 1t 0 · · · 012t−1 = 2−t (1 + 21−t). Hence the machine precision
εM can be determined by looking for the smallest (positive) machine number ε for
which f l+(1, ε) > 1.

1.2.2 Addition

Consider the sum of two floating point numbers:

y = x1 + x2. (1.19)

First the input data have to be approximated by machine numbers:

x1 → rd(x1) = x1(1 + ε1),

x2 → rd(x2) = x2(1 + ε2). (1.20)

The addition of the two summands may produce another error α since the result has
to be rounded. The numerical result is

ỹ = f l+(rd(x1), rd(x2)) = (x1(1 + ε1)+ x2(1 + ε2))(1 + α). (1.21)

Neglecting higher orders of the error terms we have in first order

ỹ = x1 + x2 + x1ε1 + x2ε2 + (x1 + x2)α, (1.22)

and the relative error of the numerical sum is

8 1 Error Analysis

ỹ − y

y
= x1

x1 + x2
ε1 + x2

x1 + x2
ε2 + α. (1.23)

If x1 ≈ −x2 then numerical extinction can produce large relative errors and errors
of the input data can be strongly enhanced.

1.2.3 Multiplication

Consider the multiplication of two floating point numbers:

y = x1 × x2. (1.24)

The numerical result is

ỹ = f l∗(rd(x1), rd(x2)) = x1(1 + ε1)x2(1 + ε2)(1 +μ) ≈ x1x2(1 + ε1 + ε2 +μ),

(1.25)
with the relative error

ỹ − y

y
= 1 + ε1 + ε2 + μ. (1.26)

The relative errors of the input data and of the multiplication just add up to the total
relative error. There is no enhancement. Similarly for a division

y = x1

x2
, (1.27)

the relative error is

ỹ − y

y
= 1 + ε1 − ε2 + μ. (1.28)

1.3 Error Propagation

Consider an algorithm consisting of a sequence of elementary operations. From the
set of input data which is denoted by the vector

x = (x1 . . . xn), (1.29)

a set of output data are calculated

y = (y1 . . . ym). (1.30)

Formally this can be denoted by a vector function

1.3 Error Propagation 9

y = ϕ(x), (1.31)

which can be written as a product of r simpler functions representing the elementary
operations

ϕ = ϕ(r) × ϕ(r−1) × · · · × ϕ(1). (1.32)

Starting with x intermediate results xi = (xi1, . . . , xini) are calculated until the
output data y result from the last step:

x1 = ϕ(1)(x),

x2 = ϕ(2)(x1),

... (1.33)

xr−1 = ϕ(r−1)(xr−2),

y = ϕ(r)(xr−1).

In the following we analyze the influence of numerical errors onto the final
results. We treat all errors as small quantities and neglect higher orders. Due
to rounding errors and possible experimental uncertainties the input data are not
exactly given by x but by

x +�x. (1.34)

The first step of the algorithm produces the result

x̃1 = rd(ϕ(1)(x +�x)). (1.35)

Taylor series expansion gives in first order

x̃1 =
(

ϕ(1)(x)+ Dϕ(1)�x
)

(1 + E1)+ · · · , (1.36)

with the partial derivatives

Dϕ(1) =
(
∂x1i

∂x j

)

=

⎛

⎜
⎜
⎝

∂x11
∂x1

· · · ∂x11
∂xn

...
. . .

...
∂x1n1
∂x1

· · · ∂x1n1
∂xn

⎞

⎟
⎟
⎠

(1.37)

and the rounding errors of the first step

10 1 Error Analysis

E1 =
⎛

⎜
⎝

ε
(1)
1

. . .

ε
(1)
n1

⎞

⎟
⎠ . (1.38)

The error of the first intermediate result is

�x1 = x̃1 − x1 = Dϕ(1)�x + ϕ(1)(x)E1. (1.39)

The second intermediate result is

x̃2 =
(

ϕ(2)(x̃1)
)

(1 + E2) = ϕ(2)(x1 +�x1) (1 + E2)

= x2(1 + E2)+ Dϕ(2)Dϕ(1)�x + Dϕ(2)x1 E1, (1.40)

with the error

�x2 = x2 E2 + Dϕ(2)Dϕ(1)�x + Dϕ(2)x1 E1 (1.41)

Finally the error of the result is

�y = yEr + Dϕ(r) · · · Dϕ(1)�x + Dϕ(r) · · · Dϕ(2)x1 E1 + · · · + Dϕ(r)xr−1 Er−1.

(1.42)
The product of the matrices Dϕ(r) · · · Dϕ(1) is the matrix which contains the deriva-
tives of the output data with respect to the input data (chain rule):

Dϕ = Dϕ(r) · · · Dϕ(1) =

⎛

⎜
⎜
⎝

∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn

⎞

⎟
⎟
⎠
. (1.43)

The first two contributions to the total error do not depend on the way in which the
algorithm is divided into elementary steps in contrary to the remaining summands.
Hence the inevitable error which is inherent to the problem can be estimated as [2]

�(in)yi = εM|yi | +
n
∑

j=1

∣
∣
∣
∣

∂yi

∂x j

∣
∣
∣
∣
|�x j |, (1.44)

or in case the error of the input data is dominated by the rounding errors |�x j | ≤
εM|x j |

�(in)yi = εM|yi | + εM

n
∑

j=1

∣
∣
∣
∣

∂yi

∂x j

∣
∣
∣
∣
|x j |. (1.45)

1.4 Stability of Iterative Algorithms 11

Additional errors which are smaller than this inevitable error can be regarded as
harmless. If all errors are harmless, the algorithm can be considered well behaved.

1.4 Stability of Iterative Algorithms

Often iterative algorithms are used which generate successive values starting from
some initial value x0 according to an iteration prescription of the type

x j+1 = f (x j) (1.46)

for instance to solve a large system of equations or to approximate a time evolution
x j ≈ x(j�t). Consider first a linear iteration equation which can be written in
matrix form as

x j+1 = Ax j . (1.47)

If the matrix A is the same for all steps we have simply

x j = A j x0. (1.48)

Consider the unavoidable error originating from errors of the start values:

x0 +�x, (1.49)

x j = A j x0 + A j�x. (1.50)

The initial errors can be enhanced exponentially if A has at least one eigenvalue3

λ with |λ| > 1. On the other hand the algorithm is conditionally stable if for all
eigenvalues |λ| ≤ 1 holds. For a more general nonlinear iteration

x j+1 = ϕ(x j), (1.51)

the error propagates according to

x1 = ϕ(x0)+ Dϕ�x,

x2 = ϕ(x1) = ϕ(ϕ(x0))+ (Dϕ)2�x,

...

x j = ϕ(ϕ · · ·ϕ(x0))+ (Dϕ) j�x .

(1.52)

3 The eigenvalues of A are solutions of the eigenvalue equation Ax = λx (9).

12 1 Error Analysis

The algorithm is conditionally stable if all eigenvalues of the derivative matrix Dϕ
have absolute values |λ| ≤ 1.

1.5 Example: Rotation

Consider a simple rotation in the complex plane

ż = iωz, (1.53)

which obviously has the exact solution

z(t) = z0eiωt . (1.54)

As a simple algorithm for numerical integration we use the iteration

z((j + 1)�t) = z j+1 = z j + iω�t z j = (1 + iω�t)z j . (1.55)

Since

|1 + iω�t | =
√

1 + ω2�t2 > 1, (1.56)

uncertainties in the initial condition will grow exponentially and the algorithm is
not stable. A stable method is obtained by taking the derivative in the middle of the
time interval (page 135)

ż

(

t + �t

2

)

= iωz

(

t + �t

2

)

(1.57)

and making the approximation (page 136)

z

(

t + �t

2

)

≈ z(t)+ z(t +�t)

2
. (1.58)

This gives the implicit equation

z j+1 = z j + iω�t
z j+1 + z j

2
, (1.59)

which can be solved by

z j+1 = 1 + iω�t
2

1 − iω�t
2

z j . (1.60)

Now we have

1.6 Truncation Error 13

∣
∣
∣
∣
∣

1 + iω�t
2

1 − iω�t
2

∣
∣
∣
∣
∣
=
√

1 + ω2�t2

4
√

1 + ω2�t2

4

= 1, (1.61)

and the calculated orbit is stable.

1.6 Truncation Error

The algorithm in the last example is stable but of course not perfect. Each step
produces an error due to the finite time step. The exact solution

z(t +�t) = z(t)eiω�t = z(t)

(

1 + iω�t − ω2�t2

2
+ −iω3�t3

6
− · · ·

)

(1.62)

is approximated by

z(t +�t) ≈ z(t)
1 + iω�t

2

1 − iω�t
2

= z(t)

(

1 + iω�t

2

)(

1 + iω�t

2
− ω2�t2

4
− iω�t3

8
+ · · ·

)

(1.63)

= z(t)

(

1 + iω�t − ω2�t2

2
+ −iω3�t3

4
− · · ·

)

, (1.64)

which deviates from the exact solution by a term of the order O(�t3), hence the
error order of this algorithm is O(�t3). Integration up to a total time T = N�t
produces a final error of the order N�t3 = T�t2.

Problems

Problem 1.1 Machine Precision

In this computer experiment we determine the machine precision εM. Starting with a
value of 1.0 x is divided repeatedly by 2 until numerical addition of 1 and x = 2−M

gives 1. Compare single and double precision calculations.

Problem 1.2 Maximum and Minimum Integers

Integers are used as counters or to encode elements of a finite set like characters or
colors. There are different integer formats available which store signed or unsigned

14 1 Error Analysis

Table 1.4 Maximum and minimum integers

Java format Bit length Minimum Maximum

Byte 8 −128 127
Short 16 −32768 32767
Integer 32 −2147483647 2147483648
Long 64 −9223372036854775808 9223372036854775807
Char 16 0 65535

integers of different length (Table 1.4). There is no infinite integer and addition of 1
to the maximum integer gives the minimum integer.
In this computer experiment we determine the smallest and largest integer numbers.
Beginning with I = 1 we add repeatedly 1 until the condition I + 1 > I becomes
invalid or subtract repeatedly 1 until I − 1 < I becomes invalid. For the 64-bit
long integer format this takes too long. Here we multiply alternatively I by 2 until
I − 1 < I becomes invalid. For the character format the corresponding ordinal
number is shown which is obtained by casting the character to an integer.

Problem 1.3 Truncation Error

This computer experiment approximates the cosine function by a truncated Taylor
series

cos(x) ≈ mycos(x, nmax) =
nmax∑

n=0

(−)n x2n

(2n)! = 1 − x2

2
+ x4

24
− x6

720
+ · · ·

in the interval −π/2 < x < π/2. The function mycos(x, nmax) is numerically
compared to the intrinsic cosine function.

Chapter 2
Interpolation

Experiments usually produce a discrete set of data points. If additional data points
are needed, for instance to draw a continuous curve or to change the sampling
frequency of audio or video signals, interpolation methods are necessary. But inter-
polation is also helpful to develop more sophisticated numerical methods for the
calculation of numerical derivatives and integrals.

2.1 Interpolating Functions

Consider the following problem: Given are n + 1 sample points (xi , fi), i = 0 · · · n
and a function of x which depends on n + 1 parameters ai :

�(x; a0 . . . an). (2.1)

The parameters are to be determined such that the interpolating function has the
proper values at all sample points (Fig. 2.1):

�(xi ; a0 . . . an) = fi i = 0 . . . n. (2.2)

An interpolation problem is called linear if the interpolating function is a linear
combination of functions

�(x; a0 . . . an) = a0�0(x)+ a1�1(x)+ · · · + an�n(x). (2.3)

Important examples are

• polynomials

a0 + a1x + · · · + an xn (2.4)

• trigonometric functions

a0 + a1eix + a2e2ix + · · · + anenix (2.5)

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_2,
C© Springer-Verlag Berlin Heidelberg 2010

15

16 2 Interpolation

x1 x2 x3 x4 x5x0 x

f0

f1

f2

f3
f4

f5

Fig. 2.1 Interpolating function

• spline functions which are piecewise polynomials, for instance the cubic spline

s(x) = αi + βi (x − xi)+ γi (x − xi)
2 + δi (x − xi)

3 xi ≤ x ≤ xi+1 (2.6)

Important examples for nonlinear interpolating functions are

• rational functions

a0 + a1x + · · · + an xn

b0 + b1x + · · · + bm xm
(2.7)

• exponential functions

a0eλ0x + a1eλ1x + · · · (2.8)

2.2 Polynomial Interpolation

For n + 1 sample points (xi , fi), i = 0 . . . n, xi �= x j , there exists exactly one
interpolating polynomial of degree n with

p(xi) = fi , i = 0 . . . n. (2.9)

2.2.1 Lagrange Polynomials

Lagrange polynomials [3] are defined as

Li (x) = (x − x0) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
. (2.10)

They are of degree n and have the property

2.2 Polynomial Interpolation 17

Li (xk) = δi,k . (2.11)

The interpolating polynomial is given in terms of Lagrange polynomials by

p(x) =
n
∑

i=0

fi Li (x) =
n
∑

i=0

fi

n
∏

k=0,k �=i

x − xk

xi − xk
. (2.12)

2.2.2 Newton’s Divided Differences

For numerical purposes the method of divided differences [4] has advantages. We
rewrite

f (x) = f (x0)+ f (x)− f (x0)

x − x0
(x − x0). (2.13)

With the first-order divided difference

[x, x0] = f (x)− f (x0)

x − x0
, (2.14)

this becomes

[x, x0] = [x1, x0] + [x, x0] − [x1, x0]
x − x1

(x − x1), (2.15)

and with the second-order divided difference

[x, x0, x1] = [x, x0] − [x1, x0]
x − x1

= f (x)− f (x0)

(x − x0)(x − x1)
− f (x1)− f (x0)

(x1 − x0)(x − x1)

= f (x)

(x − x0)(x − x1)
+ f (x1)

(x1 − x0)(x1 − x)
+ f (x0)

(x0 − x1)(x0 − x)
,

(2.16)

we have

f (x) = f (x0)+ (x − x0)[x1, x0] + (x − x0)(x − x1)[x, x0, x1]. (2.17)

Higher order divided differences are defined recursively by

[x1x2 . . . xr−1xr] = [x1x2 . . . xr−1] − [x2 . . . xr−1xr]
x1 − xr

. (2.18)

They are invariant against permutation of the arguments which can be seen from the
explicit formula

18 2 Interpolation

[x1x2 . . . xr] =
r
∑

k=1

f (xk)
∏

i �=k(xk − xi)
. (2.19)

Finally we have

f (x) = p(x)+ q(x) (2.20)

with a polynomial of degree n

p(x) = f (x0)+ [x1, x0](x − x0)+ [x2x1x0](x − x0)(x − x1)+ · · ·
· · · + [xn xn−1 . . . x0](x − x0)(x − x1) · · · (x − xn−1), (2.21)

and the function

q(x) = [xxn · · · x0](x − x0) · · · (x − xn). (2.22)

Obviously q(xi) = 0, i = 0 · · · n, hence p(x) is the interpolating polynomial.

2.2.3 Interpolation Error

The error of the interpolation can be estimated with the following theorem: If f (x)
is n+1 times differentiable then for each x there exists ξ within the smallest interval
containing x as well as all of the xi with

q(x) =
n
∏

i=0

(x − xi)
f (n+1)(ξ)

(n + 1)! . (2.23)

From a discussion of the function

ω(x) =
n
∏

i=0

(x − xi), (2.24)

it can be seen that the error increases rapidly outside the region of the sample points
(extrapolation is dangerous!). As an example consider the sample points (Fig. 2.2)

f (x) = sin(x) xi = 0,
π

2
, π,

3π

2
, 2π. (2.25)

The maximum interpolation error is estimated by (| f (n+1)| ≤ 1)

2.2 Polynomial Interpolation 19

0 2 4 6
x

–3

–2

–1

0

1

2

3

Fig. 2.2 Interpolating polynomial. The interpolated function (solid curve) and the interpolating
polynomial (broken curve) for the example (2.25) are compared

0 2 4 6
x

–100

0

100

ω
 (x

)

Fig. 2.3 Interpolation error. The polynomial ω(x) is shown for the example (2.25). Its roots xi are
given by the x values of the sample points (circles). Inside the interval x0 . . . x4 the absolute value
of ω is bounded by |ω(x)| ≤ 35 whereas outside the interval it increases very rapidly

| f (x)− p(x)| ≤ |ω(x)| 1

120
≤ 35

120
≈ 0.3, (2.26)

whereas the error increases rapidly outside the interval 0 < x < 2π (Fig. 2.3).

Algorithm

The divided differences are arranged in the following way:

20 2 Interpolation

f0
f1 [x0x1]
...

...
. . .

fn−1 [xn−2xn−1] [xn−3xn−2xn−1]
fn [xn−1xn] [xn−2xn−1xn] · · · [x0x1 · · · xn−1xn]

. (2.27)

Since only the diagonal elements are needed, a one-dimensional data array
t[0] · · · t[n] is sufficient for the calculation of the polynomial coefficients:

for i:=0 to n do begin
t[i]:=f[i];
for k:=i-1 downto 0 do

t[k]:=(t[k+1]-t[k])/(x[i]-x[k]);
a[i]:=t[0];

end;

The value of the polynomial is then evaluated by

p:=a[n];
for i:=n-1 downto 0 do

p:=p*(x-x[i])+a[i];

2.2.4 Neville Method

The Neville method [5] is advantageous if the polynomial is not needed explicitly
and has to be evaluated only at one point. Consider the interpolating polynomial for
the points x0 . . . xk , which will be denoted as P0,1,...,k(x). Obviously

P0,1,...,k(x) = (x − x0)P1···k(x)− (x − xk)P0···k−1(x)

xk − x0
, (2.28)

since for x = x1 . . . xk−1 the right-hand side is

(x − x0) f (x)− (x − xk) f (x)

xk − x0
= f (x). (2.29)

For x = x0 we have

−(x0 − xk) f (x)

xk − x0
= f (x), (2.30)

and finally for x = xk

2.3 Spline Interpolation 21

(xk − x0) f (x)

xk − x0
= f (x). (2.31)

Algorithm

We use the following scheme to calculate P0,1,...,n(x) recursively:

P0
P1 P01
P2 P12 P012
...

...
...

. . .

Pn Pn−1,n Pn−2,n−1,n · · · P01···n

. (2.32)

The first column contains the function values Pi (x) = fi . The value P0,1...,n can be
calculated using a one-dimensional data array p[0] · · · p[n]:

for i:=0 to n do begin
p[i]:=f[i];
for k:=i-1 downto 0 do
p[k]:=(p[k+1]*(x-x[k])-p[k]*(x-x[i]))

/

(x[k]-x[i]);
end;
f:=p[0];

2.3 Spline Interpolation

Polynomials are not well suited for interpolation over a larger range. Often spline
functions are superior which are piecewise defined polynomials [6, 7]. The simplest
case is a linear spline which just connects the sampling points by straight lines:

pi (x) = yi + yi+1 − yi

xi+1 − xi
(x − xi), (2.33)

s(x) = pi (x) where xi ≤ x < xi+1. (2.34)

The most important case is the cubic spline which is given in the interval xi ≤ x <
xi+1 by

pi (x) = αi + βi (x − xi)+ γi (x − xi)
2 + δi (x − xi)

3. (2.35)

We want to have a smooth interpolation and assume that the interpolating function
and their first two derivatives are continuous. Hence we have for the inner bound-
aries

22 2 Interpolation

i = 0, . . . , n − 1,

pi (xi+1) = pi+1(xi+1), (2.36)

p′
i (xi+1) = p′

i+1(xi+1), (2.37)

p′′
i (xi+1) = p′′

i+1(xi+1). (2.38)

We have to specify boundary conditions at x0 and xn . The most common choice
are natural boundary conditions s′′(x0) = s′′(xn) = 0, but also periodic boundary
conditions s′′(x0) = s′′(xn), s′(x0) = s′(xn), or given derivative values s′(x0) and
s′(xn) are often used. The second derivative is a linear function [2]

p′′
i (x) = 2γi + 6δi (x − xi), (2.39)

which can be written using hi+1 = xi+1 − xi and Mi = s′′(xi) as

p′′
i (x) = Mi+1

(x − xi)

hi+1
+ Mi

(xi+1 − x)

hi+1
i = 0 . . . n − 1, (2.40)

since

p′′
i (xi) = Mi

xi+1 − xi

hi+1
= s′′(xi), (2.41)

p′′
i (xi+1) = Mi+1

(xi+1 − xi)

hi+1
= s′′(xi+1). (2.42)

Integration gives with the two constants Ai and Bi

p′
i (x) = Mi+1

(x − xi)
2

2hi+1
− Mi

(xi+1 − x)2

2hi+1
+ Ai (2.43)

pi (x) = Mi+1
(x − xi)

3

6hi+1
+ Mi

(xi+1 − x)3

6hi+1
+ Ai (x − xi)+ Bi . (2.44)

From s(xi) = yi and s(xi+1) = yi+1 we have

Mi
h2

i+1

6
+ Bi = yi , (2.45)

Mi+1
h2

i+1

6
+ Ai hi+1 + Bi = yi+1, (2.46)

and hence

Bi = yi − Mi
h2

i+1

6
, (2.47)

Ai = yi+1 − yi

hi+1
− hi+1

6
(Mi+1 − Mi) . (2.48)

2.3 Spline Interpolation 23

Now the polynomial is

pi (x) = Mi+1

6hi+1
(x − xi)

3 − Mi

6hi+1
(x − xi − hi+1)

3 + Ai (x − xi)+ Bi

= (x − xi)
3
(

Mi+1

6hi+1
− Mi

6hi+1

)

+ Mi

6hi+1
3hi+1(x − xi)

2

+(x − xi)

(

Ai − Mi

6hi+1
3h2

i+1

)

+ Bi + Mi

6hi+1
h3

i+1. (2.49)

Comparison with

pi (x) = αi + βi (x − xi)+ γi (x − xi)
2 + δi (x − xi)

3 (2.50)

gives

αi = Bi + Mi

6
h2

i+1 = yi , (2.51)

βi = Ai − hi+1 Mi

2
= yi+1 − yi

hi+1
− hi+1

Mi+1 + 2Mi

6
, (2.52)

γi = Mi

2
, (2.53)

δi = Mi+1 − Mi

6hi+1
. (2.54)

Finally we calculate Mi from the continuity of s′(x). Substituting for Ai in p′
i (x)

we have

p′
i (x) = Mi+1

(x − xi)
2

2hi+1
− Mi

(xi+1 − x)2

2hi+1
+ yi+1 − yi

hi+1
− hi+1

6
(Mi+1 − Mi),

(2.55)
and from p′

i−1(xi) = p′
i (xi) it follows

Mi
hi

2
+ yi − yi−1

hi
− hi

6
(Mi − Mi−1)

= −Mi
hi+1

2
+ yi+1 − yi

hi+1
− hi+1

6
(Mi+1 − Mi), (2.56)

Mi
hi

3
+ Mi−1

hi

6
+ Mi

hi+1

3
+ Mi+1

hi+1

6
= yi+1 − yi

hi+1
− yi − yi−1

hi
, (2.57)

which is a system of linear equations for the Mi . Using the abbreviations

24 2 Interpolation

λi = hi+1

hi + hi+1
, (2.58)

μi = 1 − λi = hi

hi + hi+1
, (2.59)

di = 6

hi + hi+1

(
yi+1 − yi

hi+1
− yi − yi−1

hi

)

, (2.60)

we have

μi Mi−1 + 2Mi + λi Mi+1 = di i = 1 . . . n − 1. (2.61)

We define for natural boundary conditions

λ0 = 0 μn = 0 d0 = 0 dn = 0, (2.62)

and in case of given derivative values

λ0 = 1 μn = 1 d0 = 6

h1

(
y1 − y0

h1
− y′

0

)

dn = 6

hn

(

y′
n − yn − yn−1

hn

)

.

(2.63)
The system of equation has the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 λ0
μ1 2 λ1

μ2 2 λ2
. . .

. . .
. . .

μn−1 2 λn−1
μn 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M0
M1
M2
...

Mn−1
Mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0
d1
d2
...

dn−1
dn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.64)

For periodic boundary conditions we define

λn = h1

h1 + hn
μn = 1 − λn dn = 6

h1 + hn

(
y1 − yn

h1
− yn − yn−1

hn

)

, (2.65)

and the system of equations is (with Mn = M0)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 λ1 μ1
μ2 2 λ2

μ3 2 λ3
. . .

. . .
. . .

μn−1 2 λn−1
λn μn 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1
M2
M3
...

Mn−1
Mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1
d2
d3
...

dn−1
dn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.66)

2.4 Multivariate Interpolation 25

All these tridiagonal systems can be easily solved with a special Gaussian elimina-
tion method (Sects. 5.3 and 5.4).

2.4 Multivariate Interpolation

The simplest two-dimensional interpolation method is bilinear interpolation.1 It uses
linear interpolation for both coordinates within the rectangle xi ≤ x ≤ xi+1, yi ≤
yi ≤ yi+1:

p(xi + hx , yi + hy) = p(xi + hx , yi)+ hy
p(xi + hx , yi+1)− p(xi + hx , yi)

yi+1 − yi

= f (xi , yi)+ hx
f (xi+1, yi)− f (xi , yi)

xi+1 − xi

+ hy

f (xi , yi+1)+ hx
f (xi+1, yi+1)− f (xi , yi+1)

xi+1 − xi
− f (xi , yi)− hx

f (xi+1, yi)− f (xi , yi)

xi+1 − xi

yi+1 − yi
,

(2.67)

which can be written as a two-dimensional polynomial

p(xi + hx , yi + hy) = a00 + a10hx + a10hy + a11hx hy, (2.68)

with

a00 = f (xi , yi),

a10 = f (xi+1, yi)− f (xi , yi)

xi+1 − xi
,

a01 = f (xi , yi+1)− f (xi , yi)

yi+1 − yi
,

a11 = f (xi+1, yi+1)− f (xi , yi+1)− f (xi+1, yi)+ f (xi , yi)

(xi+1 − xi)(yi+1 − yi)
. (2.69)

Application of higher order polynomials is straightforward. For image processing
purposes bicubic interpolation is often used.

If high quality is needed more sophisticated interpolation methods can be
applied. Consider for instance two-dimensional spline interpolation on a rectangular
mesh of data to create a new data set with finer resolution:2

fi, j = f (ihx , jhy) with 0 ≤ i < Nx 0 ≤ j < Ny . (2.70)

1 Bilinear means linear interpolation in two dimensions. Accordingly linear interpolation in three
dimensions is called trilinear.
2 A typical task of image processing.

26 2 Interpolation

x

y

Fig. 2.4 Bispline interpolation

First perform spline interpolation in x-direction for each data row j to calculate new
data sets (Fig. 2.4)

fi ′, j = s(xi ′ , fi j , 0 ≤ i < Nx) 0 ≤ j ≤ Ny 0 ≤ i ′ < N ′
x (2.71)

and then interpolate in y-direction to obtain the final high resolution data:

fi ′, j ′ = s(y j ′ , fi ′ j , 0 ≤ j < Ny) 0 ≤ i ′ < N ′
x 0 ≤ j ′ < N ′

y . (2.72)

Problems

Problem 2.1 Polynomial Interpolation

This computer experiment interpolates a given set of n data points by a polynomial

p(x) =
n
∑

i=0

fi

n
∏

k=0,k �=i

x − xk

xi − xk
,

a linear spline which connects successive points by straight lines

si (x) = ai + bi (x − xi) for xi ≤ x ≤ xi+1

or a cubic spline

s(x) = pi (x) = αi + βi (x − xi)+ γi (x − xi)
2 + δi (x − xi)

3 xi ≤ x ≤ xi+1

with natural boundary conditions

s′′(xn) = s′′(x0) = 0

(a) Interpolate the following data in the range (Table 2.1)
−1.5 < x < 0.
(b) Now add some more sample points (Table 2.2)
for −1.5 < x < 4.5
(c) Interpolate the function f (x) = sin(x) at the points x = 0, π2 , π,

3π
2 , 2π . Take

more sample points and check if the quality of the fit is improved.

Problems 27

Table 2.1 Zener diode voltage/current data

Voltage −1.5 −1.0 −0.5 0.0

Current −3.375 −1.0 −0.125 0.0

Table 2.2 Additional voltage/current data

Voltage 1.0 2.0 3.0 4.0 4.1 4.2 4.5

Current 0.0 0.0 0.0 0.0 1.0 3.0 10.0

(d) Investigate the oscillatory behavior for a discontinuous pulse or step function as
given by the following data table (Table 2.3):

Table 2.3 Pulse and step function data

x −3 −2 −1 0 1 2 3

ypulse 0 0 0 1 0 0 0
ystep 0 0 0 1 1 1 1

Problem 2.3 Two-Dimensional Interpolation

This computer experiment uses bilinear interpolation or bicubic spline interpolation
to interpolate the data table (Table 2.4)
on a finer grid �x = �y = 0.1.

Table 2.4 Data set for two-dimensional interpolation

x 0 1 2 0 1 2 0 1 2
y 0 0 0 1 1 1 2 2 2
f 1 0 −1 0 0 0 −1 0 1

Chapter 3
Numerical Differentiation

For more complex problems analytical derivatives are not always available and
have to be approximated by numerical methods. If numerical precision plays a role a
simple difference quotient is not sufficient and more accurate methods are necessary
which will be discussed in this chapter.

3.1 Simple Forward Difference

The simplest method approximates the derivative by the quotient of finite
differences

d f

dx
≈ � f

�x
= f (x + h)− f (x)

h
. (3.1)

The truncation error can be estimated from the Taylor series expansion

f (x + h)− f (x)

h
= f (x)+ h f ′(x)+ h2

2 f ′′(x)+ · · · − f (x)

h

= f ′(x)+ h

2
f ′′(x)+ · · · . (3.2)

The error order is O(h). The step width should not be too small to avoid rounding
errors. Error analysis gives

�̃ f = f l−(f (x + h)(1 + ε1), f (x)(1 + ε2))

= (� f + f (x + h)ε1 − f (x)ε2)(1 + ε3)

= � f +� f ε3 + f (x + h)ε1 − f (x)ε2 + · · · , (3.3)

f l÷(�̃ f , h(1 + ε4)) = � f +� f ε3 + f (x + h)ε1 − f (x)ε2

h(1 + ε4)
(1 + ε5)

= � f

h
(1 + ε5 − ε4 + ε3)+ f (x + h)

h
ε1− f (x)

h
ε2. (3.4)

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_3,
C© Springer-Verlag Berlin Heidelberg 2010

29

30 3 Numerical Differentiation

The errors are uncorrelated and the relative error of the result can be estimated by

∣
∣
∣
�̃ f
�x − � f

�x

∣
∣
∣

� f
�x

≤ 3εM +
∣
∣
∣
∣
∣

f (x)
� f
�x

∣
∣
∣
∣
∣
2
εM

h
. (3.5)

Numerical extinction produces large relative errors for small step width h. The opti-
mal value of h gives comparable errors from rounding and truncation. It can be
found from

h

2
| f ′′(x)| = | f (x)|2εM

h
. (3.6)

Assuming that the magnitude of the function and the derivative are comparable, we
have the rule of thumb

h0 = √
εM ≈ 10−8

(double precision). The corresponding relative error is of the same order.

3.2 Symmetrical Difference Quotient

Accuracy is much higher if a symmetrical difference quotient is used (Fig. 3.1):

� f

�x
= f (x + h

2)− f (x − h
2)

h

= f (x)+ h
2 f ′(x)+ h2

8 f ′′(x)+ · · · − (f (x)− h
2 f ′(x)+ h2

8 f ′′(x)+ · · ·)
h

= f ′(x)+ h2

24
f ′′′(x)+ · · · . (3.7)

The error order is O(h2). The optimal step width is estimated from

h
2

h
2

x x + h

f’(x)
f(x)

f’(x)
f(x)

x x + x −

Fig. 3.1 Difference quotient. The symmetric difference quotient (right side) approximates the
derivative (dotted) much more accurately than the single-sided difference quotient (left side)

3.3 Extrapolation Methods 31

h2

24
| f ′′′(x)| = | f (x)|2εM

h
, (3.8)

again with the assumption that function and derivatives are of similar magnitude as

h0 =3
√

48εM ≈ 10−5. (3.9)

The relative error has to be expected in the order of
h2

0
24 ≈ 10−11.

3.3 Extrapolation Methods

The Taylor series of the symmetric difference quotient contains only even powers
of h:

D(h) = f (x + h)− f (x − h)

2h
= f ′(x)+ h2

3! f ′′′(x)+ h4

5! f (5)(x)+ · · · . (3.10)

The extrapolation method [8] uses a series of step widths, e.g.,

hi+1 = hi

2
, (3.11)

and calculates an estimate of D(0) by polynomial interpolation. Consider
D0 = D(h0) and D1 = D(h0

2). The polynomial of degree 1 (with respect to h2)
p(h) = a + bh2 can be found by the Lagrange method:

p(h) = D0
h2 − h2

0
4

h2
0 − h2

0
4

+ D1
h2 − h2

0
h2

0
4 − h2

0

. (3.12)

Extrapolation for h = 0 gives

p(0) = −1

3
D0 + 4

3
D1. (3.13)

Taylor series expansion shows

p(0) = −1

3

(

f ′(x)+ h2
0

3! f ′′′(x)+ h4
0

5! f (5)(x)+ · · ·
)

+

+ 4

3

(

f ′(x)+ h2
0

4 · 3! f ′′′(x)+ h4
0

16 · 5! f (5)(x)+ · · ·
)

(3.14)

= f ′(x)− 1

4

h4
0

5! f (5)(x)+ · · · (3.15)

32 3 Numerical Differentiation

10–16 10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

step size h

10–16

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

ab
so

lu
te

 e
rr

or (a)

(b)

(c)

(d)

h

h2

h4
h6

h–1

Fig. 3.2 Numerical differentiation. The derivative d
dx sin(x) is calculated numerically using algo-

rithms with increasing error order (3.1(a), 3.7(b), 3.13(c), 3.17(d)). For very small step sizes the
error increases as h−1 due to rounding errors

that the error order is O(h4
0). For three step widths h0 = 2h1 = 4h2 we obtain the

polynomial of second order (in h2) (Fig. 3.2)

p(h) = D0
(h2 − h2

0
4)(h

2 − h2
0

16)

(h2
0 − h2

0
4)(h

2
0 − h2

0
16)

+ D1
(h2 − h2

0)(h
2 − h2

0
16)

(
h2

0
4 −h2

0)(
h2

0
4 − h2

0
16)

+ D2
(h2 − h2

0)(h
2 − h2

0
4)

(
h2

0
16 − h2

0)(
h2

0
16 − h2

0
4)

(3.16)

and the improved expression

p(0) = D0

1
64

3
4 · 15

16

+ D1

1
16

−3
4 · 3

16

+ D2

1
4

−15
16 · −3

16

=

= 1

45
D0 − 4

9
D1 + 64

45
D2 = f ′(x)+ O(h6

0). (3.17)

Often used is the following series of step widths:

h2
i = h2

0

2i
. (3.18)

The Neville method

Pi ...k(h
2) = (h2 − h2

0
2i)Pi+1...k(h2)− (h2 − h2

0
2k)Pi ...k−1(h2)

h2
0

2k − h2
0

2i

(3.19)

gives for h = 0

3.4 Higher Derivatives 33

Pi ...k = Pi ...k−1 − 2k−i Pi+1...k

1 − 2k−i
(3.20)

which can be written as

Pi ...k = Pi+1...k + Pi ...k−1 − Pi+1...k

1 − 2k−i
(3.21)

and can be calculated according to the following scheme:

P0 = D(h2) P01 P012 P0123

P1 = D(h2

2) P12 P123

P2 = D(h2

4) P23
...

...
...

. . .

. (3.22)

Here the values of the polynomials are arranged in matrix form

Pi ···k = Ti,k−i = Ti, j (3.23)

with the recursion formula

Ti, j = Ti+1, j−1 + Ti, j−1 − Ti+1, j

1 − 2 j
. (3.24)

3.4 Higher Derivatives

Difference quotients for higher derivatives can be obtained systematically using
polynomial interpolation. Consider equidistant points

xn = x0 + nh = . . . , x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, (3.25)

From the second-order polynomial

p(x) = y−1
(x − x0)(x − x1)

(x−1 − x0)(x−1 − x1)
+ y0

(x − x−1)(x − x1)

(x0 − x−1)(x0 − x1)

+ y1
(x − x−1)(x − x0)

(x1 − x−1)(x1 − x0)
=

= y−1
(x − x0)(x − x1)

2h2
+ y0

(x − x−1)(x − x1)

−h2

+ y1
(x − x−1)(x − x0)

2h2
(3.26)

we calculate the derivatives

34 3 Numerical Differentiation

p′(x) = y−1
2x − x0 − x1

2h2
+ y0

2x − x−1 − x1

−h2
+ y1

2x − x−1 − x0

2h2
, (3.27)

p′′(x) = y−1

h2
− 2

y0

h2
+ y1

h2
, (3.28)

which are evaluated at x0:

f ′(x0) ≈ p′(x0) = − 1

2h
y−1 + 1

2h
y1 = f (x0 + h)− f (x0 − h)

2h
, (3.29)

f ′′(x0) ≈ p′′(x0) = f (x0 − h)− 2 f (x0)+ f (x0 + h)

h2
. (3.30)

Higher order polynomials can be evaluated with an algebra program. For five sample
points

x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h,

we find

f ′(x0) ≈ f (x0 − 2h)− 8 f (x0 − h)+ 8 f (x0 + h)− f (x0 + 2h)

12h
, (3.31)

f ′′(x0) ≈ − f (x0 − 2h)+ 16 f (x0 − h)− 30 f (x0)+ 16 f (x0 + h)− f (x0 + 2h)

12h2
,

(3.32)

f ′′′(x0) ≈ − f (x0 − 2h)+ 2 f (x0 − h)− 2 f (x0 + h)+ f (x0 + 2h)

2h3
, (3.33)

f (4)(x0) ≈ f (x0 − 2h)− 4 f (x0 − h)+ 6 f (x0 + h)− 4 f (x0 + h)+ f (x0 + 2h)

h4
.

(3.34)

3.5 More Dimensions

Consider polynomials of more than one variable. In two dimensions we use the
Lagrange polynomials

Li, j (x, y) =
∏

k �=i

(x − xk)

(xi − xk)

∏

j �=l

(y − yl)

(y j − yl)
. (3.35)

The interpolating polynomial is

p(x, y) =
∑

i, j

fi, j Li, j (x, y). (3.36)

For the nine samples points

Problems 35

(x−1, y1) (x0, y1) (x1, y1)

(x−1, y0) (x0, y0) (x1, y0)

(x−1, y−1) (x0, y−1) (x1, y−1)

(3.37)

we obtain the polynomial

p(x, y) = f−1,−1
(x − x0)(x − x1)(y − y0)(y − y1)

(x−1 − x0)(x−1 − x1)(y−1 − y0)(y−1)− y1)
+ · · · , (3.38)

which gives an approximation to the gradient

∇ f (x0 y0) ≈ ∇ p(x0 y0) =
(

f (x0+h,y0)− f (x0−h,y0)
2h

f (x0,y0+h)− f (x0,y0−h)
2h

)

(3.39)

and the Laplace operator

∇2 f (x0, y0) ≈ ∇2 p(x0, y0)

= 1

h2
(f (x0, y0 + h)+ f (x0, y0 − h)+ f (x0, y0 + h)+ f (x0, y0 − h)− 4 f (x0, y0)) .

(3.40)

Problems

Problem 3.1 Numerical Differentiation

In this computer experiment we calculate the derivative of f (x) = sin(x) numeri-
cally with

(a) the single-sided difference quotient

d f

dx
≈ f (x + h)− f (x)

h

(b) the symmetrical difference quotient

d f

dx
≈ Dh f (x) = f (x + h)− f (x − h)

2h

(c) higher order approximations which can be derived using the extrapolation
method

− 1

3
Dh f (x)+ 4

3
Dh/2 f (x)

1

45
Dh f (x)− 4

9
Dh/2 f (x)+ 64

45
Dh/4 f (x)

The error of the numerical approximation is shown on a log–log plot as a function
of the step width h.

Chapter 4
Numerical Integration

Physical simulations often involve the calculation of definite integrals over
complicated functions, for instance the Coulombic interaction between two elec-
trons. Integration is also the elementary step in solving equations of motion. In
general a definite integral can be approximated numerically as the weighted average
over a finite number of function values:

∫ b

a
f (x)dx ≈

∑

xi

wi f (xi). (4.1)

Specific sets of sample points xi and weight factorswi are known as “integral rules.”

4.1 Equidistant Sample Points

For equidistant points

xi = a + ih i = 0 . . . n h = b − a

n
, (4.2)

the interpolating polynomial of order n with p(xi) = f (xi) is given by the Lagrange
method:

p(x) =
n
∑

i=0

fi

n
∏

k=0,k �=i

x − xk

xi − xk
. (4.3)

Integration of the polynomial gives

∫ b

a
p(x)dx =

n
∑

i=0

fi

∫ b

a

n
∏

k=0,k �=i

x − xk

xi − xk
dx . (4.4)

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_4,
C© Springer-Verlag Berlin Heidelberg 2010

37

38 4 Numerical Integration

After substituting

x = a + hs,

x − xk = h(s − k),

xi − xk = (i − k)h, (4.5)

we have

∫ b

a

n
∏

k=0,k �=i

x − xk

xi − xk
dx =

∫ n

0

n
∏

k=0,k �=i

s − k

i − k
hds = hαi , (4.6)

and hence

∫ b

a
p(x)dx = (b − a)

n
∑

i=0

fiαi . (4.7)

The αi are weight factors for the function values fi .

4.1.1 Newton–Cotes Rules

For n = 1 the polynomial is

p(x) = f0
x − x1

x0 − x1
+ f1

x − x0

x1 − x0
, (4.8)

and the integral is

∫ b

a
p(x)dx = f0

∫ 1

0

s − 1

0 − 1
hds + f1

∫ 1

0

s − 0

1 − 0
hds

= − f0h

(
(1 − 1)2

2
− (0 − 1)2

2

)

+ f1h

(
12

2
− 02

2

)

= h
f0 + f1

2
, (4.9)

which is known as the trapezoidal rule. N = 2 gives Simpson’s rule

2h
f0 + 4 f1 + f2

6
. (4.10)

4.1 Equidistant Sample Points 39

Larger n gives further integration rules:

3h f0+3 f1+3 f2+ f3
8 3/8 rule

4h 7 f0+32 f1+12 f2+32 f3+7 f4
90 Milne rule

5h 19 f0+75 f1+50 f2+50 f3+75 f4+19 f5
288

6h 41 f0+216 f1+27 f2+272 f3+27 f4+216 f5+41 f6
840 Weddle rule

(4.11)

For even larger n negative weight factors appear and the formulas are not numeri-
cally stable.

4.1.2 Newton–Cotes Expressions for an Open Interval

If the function has a singularity at the end of the interval, it is more convenient to
compute the integral from only interior points

xi = a + ih i = 1, 2, . . . , N h = b − a

N + 1
. (4.12)

The simplest case is the midpoint rule (Fig. 4.1)

∫ b

a
f (x)dx ≈ 2h f1 = (b − a) f

(
a + b

2

)

. (4.13)

The next two are

3h

2
(f1 + f2), (4.14)

4h

3
(2 f1 − f2 + 2 f3). (4.15)

f(a) f(b)

x
a b a b

x

f()a+b
2

Fig. 4.1 Trapezoidal rule and midpoint rule. The trapezoidal rule (left) approximates the integral
by the average of the function values at the boundaries. The midpoint rule (right) evaluates the
function in the center of the interval and has the same error order

40 4 Numerical Integration

4.1.3 Composite Newton–Cotes Formulas

Let us divide the integration range into intervals

[xi , xi+1] xi = a + ih i = 0 . . . n (4.16)

and use the trapezoidal rule for each interval:

Ii = h

2
(f (xi)+ f (xi+1)). (4.17)

This gives the composite trapezoidal rule

Ts = h

(
f (a)

2
+ f (a + h)+ · · · + f (b − h)+ f (b)

2

)

, (4.18)

with error order O(h2). Repeated application of Simpson’s rule for [a, a + 2h],
[a + 2h, a + 4h], . . . gives the composite Simpson’s rule:

S = h

3
(f (a)+ 4 f (a + h)+ 2 f (a + 2h)+ 4 f (a + 3h)+ · · ·

· · · + 2 f (b − 2h)+ 4 f (b − h)+ f (b)), (4.19)

with error order O(h4). (The number of sample points must be even!)
Repeated application of the midpoint rule gives the composite midpoint rule

S = 2h(f (a + h)+ f (a + 3h)+ · · · + f (b − h)), (4.20)

with error order O(h2).

4.1.4 Extrapolation Method (Romberg Integration)

For the trapezoidal rule the Euler–MacLaurin expansion exists which for a 2m times
differentiable function has the form

∫ xn

x0

f (x)dx − Ts = α2h2 + α4h4 + · · · + α2m−2h2m−2 + O(h2m). (4.21)

Therefore extrapolation methods are applicable. From the composite trapezoidal
rule for h and h/2 an approximation of error order O(h4) results:

4.1 Equidistant Sample Points 41

∫

f (x)dx − Ts(h) = α2h2 + α4h4 + · · · , (4.22)

∫

f (x)dx − Ts(h/2) = α2
h2

4
+ α4

h4

16
+ · · · , (4.23)

∫

f (x)dx − 4Ts(h/2)− Ts(h)

3
= −α4

h4

4
+ · · · . (4.24)

More generally, for the series of step widths

hk = h0

2k
, (4.25)

the Neville method gives the recursion for the interpolating polynomial

Pi ...k(h
2) =

(

h2 − h2
0

22i

)

Pi+1...k(h2)−
(

h2 − h2
0

22k

)

Pi ...k−1(h2)

h2
0

22k − h2
0

22i

, (4.26)

which for h = 0 becomes the higher order approximation to the integral
(Fig. 4.2)

10–6 10–4 10–2 100

step width h

10–16

10–12

10–8

10–4

100

ab
so

lu
te

 e
rr

or

h–1

h2

h12

h10

h8

h6

Fig. 4.2 Romberg integration The integral
∫ π2

0 sin(x2)dx is calculated numerically. Circles show
the absolute error of the composite trapezoidal rule (4.18) for the step size sequence hi+1 = hi/2.
Diamonds show the absolute error of the extrapolated value (4.27). The error order of the trape-
zoidal rule is O(h2) whereas the error order of the Romberg method increases by factors of h2.
For very small step sizes the rounding errors dominate which increase as h−1

42 4 Numerical Integration

Pi ...k = 2−2k Pi ...k−1 − 2−2i Pi+1···k
2−2k − 2−2i

= Pi ...k−1 − 22k−2i Pi+1...k

1 − 22k−2i

= Pi+1...k + Pi ...k−1 − Pi+1...k

1 − 22k−2i
. (4.27)

The polynomial values can again be arranged in matrix form

P0 P01 P012 · · ·
P1 P12
P2
...

, (4.28)

with

Ti, j = Pi ···i+ j (4.29)

and the recursion formula

Ti,0 = Pi = Ts

(
h0

2i

)

, (4.30)

Ti, j = Ti+1, j−1 + Ti, j−1 − Ti+1, j−1

1 − 22 j
. (4.31)

4.2 Optimized Sample Points

The accuracy of the integration can be improved by optimizing the sample point
positions.

4.2.1 Clenshaw–Curtis Expressions

Here the sample points are chosen as the roots

xi = cos
(2 − i)π

2N
(4.32)

or as the extrema

xi = cos
(i − 1)π

N − 1
(4.33)

of the Tschebyscheff polynomials:

T0 = 1 Tn(x) = cos(n arccos(x))

2n−1
. (4.34)

4.2 Optimized Sample Points 43

This leads to integration rules of arbitrary order which have only positive weights
and are therefore numerically stable.

4.2.2 Gaussian Integration

Now we will try to fully optimize the positions of the n points xi to obtain the
maximum possible accuracy. We approximate the integral by a sum

∫ b

a
f (x)dx ≈ I =

N
∑

I=1

f (xi)wi (4.35)

and determine the 2n parameters xi and wi such that a polynomial of order 2n − 1
is integrated exactly. We restrict the integration interval to [−1, 1]. The general case
[a, b] is then given by a simple change of variables. A scalar product for functions
on the interval [−1, 1] is defined by

〈 f g〉 =
∫ 1

−1
f (x)g(x)dx, (4.36)

and an orthogonal system of polynomials can be found using the Gram–Schmid
method:

P0 = 1, (4.37)

P1 = x − P0

〈P0 P0〉
∫ 1

−1
x P0(x)dx = x, (4.38)

P2 = x2 − P1

〈P1 P1〉
∫ 1

−1
x2 P1(x)dx − P0

〈P0 P0〉
∫ 1

−1
x2 P0(x)dx

= x2 − 1

3
, (4.39)

Pn = xn − Pn−1

〈Pn−1 Pn−1〉
∫ 1

−1
xn Pn−1(x)dx

− Pn−2

〈Pn−2 Pn−2〉
∫ 1

−1
xn Pn−2(x)dx − · · · . (4.40)

These are known as Legendre polynomials. Consider now a polynomial p(x) of
order 2n − 1. It can be interpolated at the n sample points xi using the Lagrange
method by a polynomial p̃(x) of order n − 1:

p̃(x) =
n
∑

j=1

L j (x)p(x j). (4.41)

44 4 Numerical Integration

Then p(x) can be written as

p(x) = p̃(x)+ (x − x1)(x − x2) · · · (x − xn)q(x). (4.42)

Obviously q(x) is a polynomial of order (2n − 1) − n = n − 1. Now choose the
positions xi as the roots of the nth order Legendre polynomial:

(x − x1)(x − x2) · · · (x − xn) = Pn(x). (4.43)

Then we have

∫ 1

−1
(x − x1)(x − x2) · · · (x − xn)q(x)dx = 0, (4.44)

since Pn is orthogonal to the polynomial of lower order. But now

∫ 1

−1
p(x)dx =

∫ 1

−1
p̃(x)dx =

∫ 1

−1

n
∑

j=1

p(x j)L j (x)dx =
n
∑

j=1

w j p(x j), (4.45)

with the weight factors

w j =
∫ 1

−1
L j (x)dx . (4.46)

Example The second-order Legendre polynomial

P2(x) = x2 − 1

3
(4.47)

has two roots

x1,2 = ±
√

1

3
. (4.48)

The Lagrange polynomials are

L1 =
x −

√

1
3

−
√

1
3 −

√

1
3

, L2 =
x +

√

1
3

√

1
3 +

√

1
3

, (4.49)

and the weights

Problems 45

w1 =
∫ 1

−1
L1dx = −

√
3

2

(

x2

2
−
√

1

3
x

)1

−1

= 1, (4.50)

w2 =
∫ 1

−1
L2dx =

√
3

2

(

x2

2
+
√

1

3
x

)1

−1

= 1. (4.51)

This gives the integral rule

∫ 1

−1
f (x)dx ≈ f

(

−
√

1

3

)

+ f

(√

1

3

)

. (4.52)

For a general integration interval we substitute

x = a + b

2
+ b − a

2
u (4.53)

and find the approximation

∫ b

a
f (x)dx =

∫ 1

−1
f

(
a + b

2
+ b − a

2
u

)
b − a

2
du

≈ b − a

2

(

f

(

a + b

2
− b − a

2

√

1

3

)

+ f

(

a + b

2
+ b − a

2

√

1

3

))

. (4.54)

The next higher order Gaussian rule is given by

n = 3 : w1 = w3 = 5/9, w2 = 8/9, x3 = −x1 = 0.77459 . . . , x2 = 0. (4.55)

Besides these Gaussian (Legendre) expressions further integral rules can be
obtained by using other sets of orthogonal polynomials, for instance Laguerre, Her-
mite, or Jacobi polynomials.

Problems

Problem 4.1 Romberg integration

Use the trapezoidal rule

T (h) = h

(
1

2
f (a)+ f (a + h)+ · · · + f (b − h)+ 1

2
f (b)

)

=
∫ b

a
f (x)dx + · · ·

with the step sequence

46 4 Numerical Integration

hi = h0

2i

and calculate the elements of the triangular matrix

T (i, 0) = T (hi)

T (i, k) = T (i + 1, k − 1)+ T (i, k − 1)− T (i + 1, k − 1)

1 − h2
i

h2
i+k

to obtain the approximations

T01 = P01, T02 = P012, T03 = P0123, . . .

(a) calculate

∫ π2

0
sin(x2)dx = 0.6773089370468890331 . . .

and compare the absolute error of the trapezoidal sums T (hi) = Ti,0 and the extrap-
olated values T0,i .
(b) calculate

∫ 1

ε

dx√
x

for ε = 10−3. Compare with the composite midpoint rule

T (h) = h

(

f

(

a + h

2

)

+ f

(

a + 3h

2

)

+ · · · + f

(

b − 3h

2

)

+ f

(

b − h

2

))

Chapter 5
Systems of Inhomogeneous Linear Equations

Many problems in physics involve systems of linear equations

a11x1 + · · · + a1n xn = b1
...

...
...

an1x1 + · · · + ann xn = bn

(5.1)

or shortly

Ax = b. (5.2)

If the dimension of the system is not too large standard methods like Gaussian elimi-
nation are sufficient. However, many applications involve very large dimensions and
require special iterative methods.

5.1 Gaussian Elimination Method

A series of linear combinations of the equations transforms the matrix A into an
upper triangular matrix. Start with subtracting ai1/a11 times the first row from rows
2 . . . n

⎛

⎜
⎜
⎜
⎝

at
1

at
2
...

at
n

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

at
1

a2 − l21at
1

...

at
n − ln1at

1

⎞

⎟
⎟
⎟
⎠
, (5.3)

which can be written as a multiplication

A(1) = L1 A, (5.4)

with the Frobenius matrix

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_5,
C© Springer-Verlag Berlin Heidelberg 2010

47

48 5 Systems of Inhomogeneous Linear Equations

L1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
−l21 1
−l31 1
...

. . .

−ln1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

li1 = ai1

a11
. (5.5)

The result has the form

A(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 . . . a1n−1 a1n

0 a(1)22 . . . a(1)2n−1 a(1)2n

0 a(1)32 a(1)3n

0
...

...

0 a(1)n2 a(1)nn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.6)

Now subtract ai2
a22

times the second row from rows 3 . . . n. This can be formulated as

A(2) = L2 A(1) = L2L1 A, (5.7)

with

L2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0 1
0 −l32 1
...

...
. . .

0 −ln2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

li2 = a(1)i2

a(1)22

. (5.8)

The result is

A(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(2)11 a(2)12 a(2)13 . . . a(2)1n

0 a(2)22 a(2)23 . . . a(2)2n

0 0 a(2)33 . . . a(2)3n
...

...
...

...

0 0 a(2)n3 . . . a(2)nn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.9)

Continue until an upper triangular matrix results after n − 1 steps:

A(n−1) = Ln−1 A(n−2), (5.10)

Ln−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
. . .

1
−ln,n−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ln,n−1 = a(n−2)
n,n−1

a(n−2)
n−1,n−1

, (5.11)

A(n−1) = Ln−1Ln−2 . . . L2L1 A = U, (5.12)

5.1 Gaussian Elimination Method 49

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u11 u12 u13 . . . u1n

u22 u23 . . . u2n

u33 . . . u3n
. . .

...

unn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.13)

The transformed system of equations

Ux = y y = Ln−1Ln−1 . . . L2L1b (5.14)

can be solved easily by backward substitution:

xn = 1

unn
yn, (5.15)

xn−1 = yn−1 − xnun−1,n

un−1,n−1
, (5.16)

... (5.17)

Alternatively the matrices Li can be inverted:

L−1
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
l21 1
l31 1
...

. . .

ln1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

· · · L−1
n−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
. . .

1
ln,n−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.18)

This gives

A = L−1
1 L−1

2 . . . L−1
n−1U. (5.19)

The product of the inverted matrices is a lower triangular matrix:

L−1
1 L−1

2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
l21 1
l31 l32 1
...

...
. . .

ln1 ln2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

...

L = L−1
1 L−1

2 . . . L−1
n−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
l21 1
...

...
. . .

ln−1,1 ln−1,2 . . . 1
ln1 ln2 . . . ln,n−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.20)

50 5 Systems of Inhomogeneous Linear Equations

Hence the matrix A becomes decomposed into a product of a lower and an upper
triangular matrix:

A = LU, (5.21)

which can be used to solve the system of equations (5.2)

Ax = LUx = b (5.22)

in two steps

Ly = b, (5.23)

which can be solved from the top

y1 = b1, (5.24)

y2 = b2 − l21 y1, (5.25)
... (5.26)

and

Ux = y, (5.27)

which can be solved from the bottom

xn = 1

unn
yn, (5.28)

xn−1 = yn−1 − xnun−1,n

un−1,n−1
, (5.29)

... (5.30)

5.1.1 Pivoting

To improve numerical stability and to avoid division by zero pivoting is used. Most
common is partial pivoting. In every step the order of the equations is changed in
order to maximize the pivoting element ak,k in the denominator. This gives LU
decomposition of the matrix P A where P is a permutation matrix. P is not needed
explicitly. Instead an index vector is used which stores the new order of the equations

P

⎛

⎜
⎝

1
...

N

⎞

⎟
⎠ =

⎛

⎜
⎝

i1
...

iN

⎞

⎟
⎠ . (5.31)

Total pivoting exchanges rows and columns of A. This can be time consuming for
larger matrices.

5.2 QR Decomposition 51

If the elements of the matrix are of different orders of magnitude it can be nec-
essary to balance the matrix, for instance by normalizing all rows of A. This can be
also achieved by selecting the maximum of

aik
∑

j |ai j | (5.32)

as the pivoting element.

5.1.2 Direct LU Decomposition

LU decomposition can be also performed in a different order [9]. For symmetric pos-
itive definite matrices there exists the simpler and more efficient Cholesky method
which decomposes the matrix into the product L Lt of a lower triangular matrix and
its transpose [10].

5.2 QR Decomposition

The Gaussian elimination method can become numerically unstable. An alternative
method to solve a system of linear equations uses the decomposition [11]

A = Q R, (5.33)

with a unitary matrix Q H Q = 1 (an orthogonal matrix Qt Q = 1 if A is real) and
an upper right triangular matrix R. The system of linear equations (5.2) is simplified
by multiplication with Q H = Q−1:

Q Rx = Ax = b, (5.34)

Rx = Q H b. (5.35)

Such a system with upper triangular matrix is easily solved (see (5.27)).
QR decomposition can be achieved by a series of unitary transformations

(Householder reflections [2] or Givens rotations [11]) or simpler by Gram–Schmidt
orthogonalization [2, 11]:

From the decomposition A = Q R we have

aik =
k
∑

j=1

qi j r jk, (5.36)

ak =
k
∑

j=1

r jkq j , (5.37)

52 5 Systems of Inhomogeneous Linear Equations

which gives the kth column vector ak of A as a linear combination of the orthonor-
mal vectors q1 . . . qk . Similarly qk is a linear combination of the first k columns of
A. With the help of the Gram–Schmidt method r jk and q j are calculated as follows:

r11 := |a1|, (5.38)

q1 := a1

r11
. (5.39)

For k = 2, . . . , n

rik := qi ak i = 1 . . . k − 1 (5.40)

bk := ak − r1kq1 − · · · − rk−1,kqk−1, (5.41)

rkk := |bk |, (5.42)

qk := bk

rkk
. (5.43)

Obviously now

ak = rkkqk + rk−1,kqk−1 + · · · + r1kq1, (5.44)

since as per definition

qi ak = rik i = 1 . . . k (5.45)

and

r2
kk = |bk |2 = |ak |2 + r2

1k + · · · + r2
k−1,k − 2r2

1k − · · · − 2r2
k−1,k . (5.46)

Hence,

qkak = 1

rkk
(ak − r1kq1 . . . rk−1,kqk−1)ak = 1

rkk
(|ak |2 − r2

1k − · · · − r2
k−1,k) = rkk .

(5.47)
Orthogonality gives

qi ak = 0 i = k + 1 . . . n. (5.48)

In matrix notation we have finally

A = (a1 . . . an) = (q1 . . . qn)

⎛

⎜
⎜
⎜
⎝

r11 r12 . . . r1n

r22 . . . r2n
. . .

...

rnn

⎞

⎟
⎟
⎟
⎠
. (5.49)

5.3 Linear Equations with Tridiagonal Matrix 53

If the columns of A are almost linearly dependent, numerical stability can be
improved by an additional orthogonalization step:

bk → bk − (q1bk)q1 − · · · − (qk−1bk)qk−1. (5.50)

5.3 Linear Equations with Tridiagonal Matrix

Linear equations with the form

b1x1 + c1x2 = r1, (5.51)

ai xi−1 + bi xi + ci xi+1 = ri i = 2 . . . (n − 1),

an xn−1 + bn xn = rn (5.52)

can be solved very easily with a specialized Gaussian elimination method.1 They are
important for cubic spline interpolation or second derivatives. We begin by elimi-
nating a2. To that end we multiply the first line with a2/b1 and subtract it from the
first line. The result is the equation

β2x2 + c2x3 = ρ2, (5.53)

with the abbreviations

β2 = b2 − c1a2

b1
, ρ2 = r2 − r1a2

b1
. (5.54)

We iterate this procedure

βi xi + ci xi+1 = ρi , (5.55)

βi = bi − ci−1ai

βi−1
, ρi = ri − ρi−1ai

βi−1
, (5.56)

until we reach the nth equation, which becomes simply

βn xn = ρn, (5.57)

βn = bn − cn−1an

βn−1
, ρn = rn − ρn−1an

βn−1
. (5.58)

Now we immediately have

xn = ρn

βn
, (5.59)

and backward substitution gives

1 This algorithm is only well behaved if the matrix is diagonal dominant |bi | > |ai | + |ci |.

54 5 Systems of Inhomogeneous Linear Equations

xi−1 = ρi−1 − ci−1xi

βi−1
(5.60)

and finally

x1 = r1 − c1x2

β2
. (5.61)

This algorithm can be formulated as LU decomposition. Multiplication of the
matrices

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
l2 1

l3 1
. . .

. . .

ln 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β1 c1
β2 c2

β3 c3
. . .

βn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5.62)

gives

LU =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 c1
. . .

. . .

. . .
. . .

liβi−1 (li ci−1 + βi) ci
. . .

. . .
. . .

lnβn−1 (lncn−1 + βn)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.63)

which coincides with the matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1 c1

a2
. . .

. . .

. . .
. . .

. . .

ai bi ci
. . .

. . .
. . .

an−1 bn−1 cn−1
an bn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.64)

if we choose

li = ai

βi−1
(5.65)

since then from (5.56)

bi = βi + li ci−1 (5.66)

5.4 Cyclic Tridiagonal Systems 55

and

liβi−1 = ai . (5.67)

5.4 Cyclic Tridiagonal Systems

Periodic boundary conditions lead to a small perturbation of the tridiagonal matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1 c1 a1

a2
. . .

. . .

. . .
. . .

. . .

ai bi ci
. . .

. . .
. . .

an−1 bn−1 cn−1
cn an bn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.68)

The system of equations

Ax = r (5.69)

can be reduced to a tridiagonal system [12] with the help of the Sherman–Morrison
formula [13], which states that if A0 is an invertible matrix and u, v are vectors and

1 + vT A−1
0 u �= 0, (5.70)

then the inverse of the matrix2

A = A0 + uvT (5.71)

is given by

A−1 = A−1
0 − A−1

0 uvT A−1
0

1 + vT A−1
0 u

. (5.72)

We choose

uvT =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α

0
...

0
cn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(

1 0 · · · 0 a1
α

) =

⎛

⎜
⎜
⎜
⎜
⎝

α a1

cn
a1cn
α

⎞

⎟
⎟
⎟
⎟
⎠

. (5.73)

2 Here uvT is the outer or matrix product of the two vectors.

56 5 Systems of Inhomogeneous Linear Equations

Then

A0 = A − uvT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(b1 − α) c1 0

a2
. . .

. . .

. . .
. . .

. . .

ai bi ci
. . .

. . .
. . .

an−1 bn−1 cn−1
0 an (bn − a1cn

α
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.74)

is tridiagonal. The free parameter α has to be chosen such that the diagonal elements
do not become too small. We solve the system (5.69) by solving the two tridiagonal
systems

A0x0 = r

A0q = u (5.75)

and compute x from

x = A−1r = A−1
0 r − (A−1

0 u)vT(A−1
0 r)

1 + vT(A−1
0 u)

= x0 − q
vTx0

1 + vTq
. (5.76)

5.5 Iterative Solution of Inhomogeneous Linear Equations

5.5.1 General Treatment

We want to solve

Ax = b (5.77)

iteratively. To that end we divide the matrix A into two (non-singular) parts [2]

A = A1 + A2 (5.78)

and rewrite (5.77) as

A1x = b − A2x, (5.79)

which we use to define the iteration

5.5 Iterative Solution of Inhomogeneous Linear Equations 57

x(n+1) = �(x(n)), (5.80)

�(x) = −A−1
1 A2x + A−1

1 b. (5.81)

A fixed point x of this equation fulfills

xfp = �(xfp) = −A−1
1 A2xfp + A−1

1 b (5.82)

and is obviously a solution of (5.77). The iteration can be written as

x(n+1) = −A−1
1 (A − A1)x(n) + A−1

1 b

= (E − A−1
1 A)x(n) + A−1

1 b = x(n) − A−1
1 (Ax(n) − b) (5.83)

or

A1(x(n+1) − x(n)) = −(Ax(n) − b). (5.84)

5.5.2 Jacobi Method

Jacobi divides the matrix A into its diagonal and two triangular matrices [14]:

A = L + U + D. (5.85)

For A1 the diagonal part is chosen

A1 = D (5.86)

giving

x(n+1) = −D−1(A − D)x(n) + D−1b, (5.87)

which reads explicitly

x (n+1)
i = − 1

aii

∑

j �=i

ai j x (n)j + 1

aii
bi . (5.88)

This method is stable but converges rather slowly. Reduction of the error by a factor
of 10−p needs about pN

2 iterations. N grid points have to be evaluated in each
iteration and the method scales with O(N 2).

5.5.3 Gauss–Seidel Method

With

A1 = D + L , (5.89)

58 5 Systems of Inhomogeneous Linear Equations

the iteration becomes

(D + L)x(n+1) = −Ux(n) + b, (5.90)

which has the form of a system of equations with triangular matrix [15]. It reads
explicitly

∑

j≤i

ai j x (n+1)
j = −

∑

j>i

ai j x (n)j + bi . (5.91)

Forward substitution starting from x1 gives

i = 1: x (n+1)
1 = 1

a11

⎛

⎝−
∑

j≥2

ai j x (n)j + b1

⎞

⎠ ,

i = 2: x (n+1)
2 = 1

a22

⎛

⎝−a21x (n+1)
1 −

∑

j≥3

ai j x (n)j + b2

⎞

⎠ ,

i = 3: x (n+1)
3 = 1

a33

⎛

⎝−a31x (n+1)
1 − a32x (n+1)

2 −
∑

j≥4

ai j x (n)j + b3

⎞

⎠ ,

...

x (n+1)
i = 1

aii

⎛

⎝−
∑

j<i

ai j x (n+1)
j −

∑

j>i

ai j x (n)j + bi

⎞

⎠ . (5.92)

This looks very similar to the Jacobi method. But here all changes are made immedi-
ately. Convergence is slightly better (roughly a factor of 2) and the numerical effort
is reduced.

5.5.4 Damping and Successive Over-Relaxation

Convergence can be improved [16] by combining old and new values. Starting from
the iteration

A1x(n+1) = (A1 − A)x(n) + b, (5.93)

we form a linear combination with

Dx(n+1) = Dx(n) (5.94)

giving the new iteration equation

5.6 Conjugate Gradients 59

((1 − ω)D + ωA1)x(n+1) = ((1 − ω)D + ωA1 − ωA)x(n) + ωb. (5.95)

In case of the Jacobi method with D = A1 we have

Dx(n+1) = (D − ωA)x(n) + ωb, (5.96)

or explicitly

x (n+1)
i = (1 − ω)x (n)i + ω

aii

⎛

⎝−
∑

j �=i

ai j x (n)j + bi

⎞

⎠ . (5.97)

The changes are damped (0 < ω < 1) or exaggerated3 (1 < ω < 2).
In case of the Gauss–Seidel method with A1 = D + L the new iteration (5.95) is

(D+ωL)x(n+1) = (D+ωL −ωA)x(n)+ωb = (1−ω)Dx(n)−ωUx(n)+ωb (5.98)

or explicitly

x (n+1)
i = (1 − ω)x (n)i + ω

aii

⎛

⎝−
∑

j<i

ai j x (n+1)
j −

∑

j>i

ai j x (n)j + b

⎞

⎠ . (5.99)

It can be shown that the successive over-relaxation method converges only for
0 < ω < 2.

A very important application is the Poisson equation

∇2 f = −ρ, (5.100)

which will be studied in detail in Chap. 15. Here for optimal choice of ω about
1
3 p

√
N iterations are needed to reduce the error by a factor of 10−p. The order of

the method is O(N
3
2) which is comparable to the most efficient matrix inversion

methods.

5.6 Conjugate Gradients

At the minimum of the quadratic function

h(x) = h0 + bTx + 1

2
xT Ax, (5.101)

3 This is also known as the method of successive over-relaxation (SOR).

60 5 Systems of Inhomogeneous Linear Equations

the gradient

gr = ∇h(x) = Ax + b (5.102)

is zero and therefore the minimum of h is also a solution of the linear system of
equations

Ax = −b. (5.103)

The stationary point can be found especially efficient with the method of conjugate
gradients (page 68). The function h is minimized along the search direction

sr+1 = −gr+1 + βr+1sr

by solving

0 = ∂

∂λ

(

bT(xr + λsr)+ 1

2
(xT

r + λsT
r)A(xr + λsr)

)

= bTsr + xT
r Asr + λsT

r Asr , (5.104)

λr = −bTsr + xT Asr

sT
r Asr

= − gr sr

sT
r Asr

. (5.105)

The parameter β is chosen as

βr+1 = g2
r+1

g2
r
. (5.106)

The gradient of h is the residual vector and is iterated according to

gr+1 = A(xr + λr sr)+ b = gr + λr Asr . (5.107)

This method [17] solves a linear system without storing the matrix A itself. Only the
product As is needed. In principle the solution is reached after N = dim(A) steps,
but due to rounding errors more steps can be necessary.

Problems

Problem 5.1 Gaussian Elimination

In this computer experiment we solve the system of equations

Ax = b.

Problems 61

Compare the results of Gaussian elimination without pivoting, Gaussian elimination
with partial pivoting, and QR decomposition for the following systems of equa-
tions:

(a) a well-behaved matrix

Aii = 1, Ai �= j = n

(b) an ill-conditioned Hilbert matrix

Ai j = 1

i + j − 1
i, j = 1 . . . n

(c) a random matrix

Aii = 0.1 Ai �= j = ξ ∈ [0, 1]

The right-hand side is b = A

⎛

⎜
⎜
⎜
⎝

1
2
...

n

⎞

⎟
⎟
⎟
⎠

, hence the exact solution is x =

⎛

⎜
⎜
⎜
⎝

1
2
...

n

⎞

⎟
⎟
⎟
⎠

(d) the system of linear equations for the currents of a Wheatstone bridge circuit

U = 1V
+

1k Ω 10k Ω

10 Ω

A

2k Ω 0...50k Ω

I1

I2
I3

I4

I5

10 Ω
I6

−

I1 + I2 − I6 = 0

I4 + I5 − I6 = 0

I2 − I3 − I4 = 0

10I6 + 1000I2 + 10000I4 = −1

2000I1 − 10I3 − 1000I2 = 0

10I3 + Rx I5 − 10000I4 = 0

Determine the current through the instrument as a function of the variable resis-
tance Rx .

Chapter 6
Roots and Extremal Points

In physics very often roots, i.e., solutions of an equation like

f (x1 . . . xN) = 0,

and extrema

max f (x1 . . . xN) min f (x1 . . . xN)

have to be determined. Whereas global extrema are difficult to locate, stationary
points can be found as the roots of the derivative:

∂ f (x1 . . . xN)

∂xi
= 0.

6.1 Root Finding

If there is exactly one root in the interval a0 < x < b0 then one of the following
methods can be used to locate the position with sufficient accuracy. If there are
multiple roots, these methods will find one of them and special care has to be taken
to locate the other roots.

6.1.1 Bisection

The simplest method to solve

f (x) = 0 (6.1)

uses the following algorithm (Fig. 6.1):

(1) Determine an interval [a0, b0], which contains a sign change of f (x). If no such
interval can be found then f (x) does not have any zero crossings.

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_6,
C© Springer-Verlag Berlin Heidelberg 2010

63

64 6 Roots and Extremal Points

(2) Divide the interval into [a0, a0+ b0−a0
2] [a0+ b0−a0

2 , b0] and choose that interval
[a1, b1], where f (x) changes its sign.

(3) Repeat until the width bn − an < ε is small enough.

a0

f(x)

x

b0

Fig. 6.1 Root finding by bisection

6.1.2 Regula Falsi Method

The regula falsi method (Fig. 6.2) is similar to the bisection method. However, poly-
nomial interpolation is used to divide the interval [xr , ar] with f (xr) f (ar) < 0. The
root of the linear polynomial

p(x) = f (xr)+ (x − xr)
f (ar)− f (xr)

ar − xr
(6.2)

is given by

ξr = xr − f (xr)
ar − xr

f (ar)− f (xr)
= ar f (xr)− xr f (ar)

f (xr)− f (ar)
, (6.3)

x

f(x)

ξ

a0

x0 1

Fig. 6.2 Regula falsi method

6.1 Root Finding 65

which is inside the interval [xr , ar]. Choose the sub-interval which contains the sign
change:

f (xr) f (ξr) < 0 → [xr+1, ar+1] = [xr , ξr],
f (xr) f (ξr) > 0 → [xr+1, ar+1] = [ξr , ar]. (6.4)

Then ξr provides a series of approximations with increasing precision to the root of
f (x) = 0.

6.1.3 Newton–Raphson Method

Consider a function which is differentiable at least two times around the root ξ .
Taylor series expansion around a point x0 in the vicinity

f (x) = f (x0)+ (x − x0) f ′(x0)+ 1

2
(x − x0)

2 f ′′(x0)+ · · · (6.5)

gives for x = ξ

0 = f (x0)+ (ξ − x0) f ′(x0)+ 1

2
(ξ − x0)

2 f ′′(x0)+ · · · . (6.6)

Truncation of the series and solving for ξ gives the first-order Newton–Raphson
method

x (r+1) = x (r) − f (x (r))

f ′(x (r))
(6.7)

and the second-order Newton–Raphson method (Fig. 6.3)

x

2nd order NR

1st order NR

x0

f(x)

Fig. 6.3 Newton–Raphson method

66 6 Roots and Extremal Points

x (r+1) = x (r) − f ′(x (r))±√ f ′(x (r))2 − 2 f (x (r)) f ′′(x (r))
f ′′(x (r))

. (6.8)

The Newton–Raphson method converges fast if the starting point is close enough
to the root. Analytic derivatives are needed. It may fail if two or more roots are
close by.

6.1.4 Secant Method

Replacing the derivative in the first-order Newton–Raphson method by a finite dif-
ference quotient gives the secant method (Fig. 6.4)

xr+1 = xr − f (xr)
xr − xr−1

f (xr)− f (xr−1)
. (6.9)

Round-off errors can become important as | f (xr) − f (xr−1)| gets small. At the
beginning choose a starting point x0 and determine

x1 = x0 − f (x0)
2h

f (x0 + h)− f (x0 − h)
(6.10)

using a symmetrical difference quotient.

f(x)

xx +hx2 x1
x

0 0

Fig. 6.4 Secant method

6.1.5 Roots of Vector Functions

The Newton–Raphson method can be easily generalized for functions of more than
one variable. We search for the solution of

f (x) =
⎛

⎜
⎝

f1(x1 . . . xn)
...

fn(x1 . . . xn)

⎞

⎟
⎠ = 0. (6.11)

6.2 Optimization Without Constraints 67

The first-order Newton–Raphson method results from linearization of

0 = f (ξ) = f (x0)+ D f (x0)(ξ − x0)+ · · · (6.12)

with the Jacobian matrix

D f =

⎛

⎜
⎜
⎝

∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn

⎞

⎟
⎟
⎠
. (6.13)

If the Jacobian matrix is not singular the equation

0 = f (x1)+ D f (x0)(x1 − x0) (6.14)

can be solved and gives the iteration

x (r+1) = x (r) − (D f (x (r)))−1 f (x (r)). (6.15)

6.2 Optimization Without Constraints

We search for local minima (or maxima) of a function

h(x)

which is at least two times differentiable. In the following we denote the gradient
vector by

gt (x) =
(
∂h

∂x1
, . . . ,

∂h

∂xn

)

(6.16)

and the matrix of second derivatives (Hessian) by

H =
(

∂2

∂xi∂x j
h

)

. (6.17)

Starting from an initial guess x(0) a direction s is determined, in which the function
h decreases as well as a step length λ:

xr+1 = xr + λr sr . (6.18)

This is repeated until the norm of the gradient is small enough or no smaller values
of h can be found (Fig. 6.5).

68 6 Roots and Extremal Points

gr
ad

ie
nt

 n
or

m

1 10 100 1000
steps

10–15
10–12
10–9
10–6
10–3
100

10–30
10–24
10–18
10–12
10–6
100

fu
nc

tio
n

va
lu

e

NR
CG

SD

NR
CG

SD

Fig. 6.5 Stationary points. The minimum of the Rosenbrock function h(x, y) = 100(y − x2)2 +
(1 − x)2 is determined with different methods. Conjugate gradients converge much faster than
steepest descent. Newton–Raphson reaches the minimum at x = y = 1 within only four iterations
to machine precision

6.2.1 Steepest Descent Method

The simplest choice is to go in the direction of the negative gradient

sr = −gr (6.19)

and determine the step length by minimizing h along this direction:

0 = ∂

∂λ
h(xr − λgr). (6.20)

Obviously two consecutive steps are orthogonal to each other since

0 = ∂

∂λ
h(xr+1 − λgr)|λ=0 = −gt

r+1gr . (6.21)

6.2.2 Conjugate Gradient Method

This method is similar to the steepest descent method but the search direction is
iterated according to

s0 = −g0, (6.22)

xr+1 = xr + λr sr , (6.23)

sr+1 = −gr+1 + βr+1sr , (6.24)

where λr is chosen to minimize h(xr+1) and the simplest choice for β is made by
Fletcher and Rieves [18]

6.2 Optimization Without Constraints 69

βr+1 = g2
r+1

g2
r
. (6.25)

6.2.3 Newton–Raphson Method

The first-order Newton–Raphson method uses the iteration

xr+1 = xr − H(xr)
−1g(xr). (6.26)

The search direction is

s = H−1g, (6.27)

and the step length is λ = 1. This method converges fast if the starting point is close
to the minimum. Calculation of the Hessian, however, can be very time consuming.

6.2.4 Quasi-Newton Methods

Calculation of the full Hessian matrix as needed for the Newton–Raphson method
can be very time consuming. Quasi-Newton methods use instead an approximation
to the Hessian which is updated during each iteration. From the Taylor series

h(x) = h0 + bTx + 1

2
xT Hx + · · · , (6.28)

we obtain the gradient

g(xr) = b + Hxr + · · · = g(xr−1)+ H(xr − xr−1)+ · · · . (6.29)

Defining the differences

dr = xr+1 − xr , (6.30)

yr = gr+1 − gr , (6.31)

and neglecting higher order terms we obtain the so-called quasi-Newton condition

Hdr = yr . (6.32)

We attempt to construct a family of successive approximation matrices Br so that, if
H were a constant, the procedure would become consistent with the quasi-Newton
condition. Then for the new update Br+1 we have

Br+1dr = yr . (6.33)

70 6 Roots and Extremal Points

To specify Br+1 uniquely, additional conditions are required. For instance, it is rea-
sonable to assume that Br+1 differs from Br by a low-rank updating matrix that
depends on dr , yr and possibly Br :

Br+1 = Br + Ur (dk, yk, Bk). (6.34)

For an update of rank one, written as

Br+1 = Br + uvT, (6.35)

we obtain the condition

Br dr + u(vTdr) = yr ; (6.36)

hence

u = 1

vTdr
(yr − Br dr). (6.37)

This gives the general rank one update formula as

Br+1 = Br + 1

vTdr
(yr − Br dr)vT. (6.38)

Broyden’s quasi-Newton method, for example, uses v = dr .
One of the most successful and widely used update formulas is known as the

BFGS (Broyden, Fletcher, Goldfarb, Shanno) method [19–22]. It is a rank two
update with inherent positive definiteness:

Br+1 = Br + Ur , (6.39)

Ur = yryT
r

yT
r dr

− BT
r dT

r dr Br

dT
r Br dr

. (6.40)

Problems

Problem 6.1 Bisection, Regula Falsi, and Newton–Raphson
Methods

This computer experiment searches roots of several functions. You can vary the
initial interval or starting value and compare the behavior of different methods.

Problem 6.2 Stationary Points

This computer experiment searches a local minimum of the Rosenbrock function1

h(x, y) = 100(y − x2)2 + (1 − x)2

1 A well-known test function for minimization algorithms.

Problems 71

(a) The method of steepest descent minimizes h(x, y) along the search direction

s(n)x = −g(n)x = −400x(x2
n − yn)− 2(xn − 1)

s(n)y = −g(n)y = −200(yn − x2
n)

(b) Conjugate gradients make use of the search direction

s(n)x = −g(n)x + βns(n−1)
x

s(n)y = −g(n)y + βns(n−1)
y

(c) The Newton-Raphson method needs the inverse Hessian

H−1 = 1

det(H)

(

hyy −hxy

−hxy hxx

)

det(H) = hxx hyy − h2
xy

hxx = 1200x2 − 400y + 2 hyy = 200 hxy = −400x

and iterates according to

(

xn+1
yn+1

)

=
(

xn

yn

)

− H−1
(

gn
x

qn
y

)

You can choose an initial point (x0, y0). The iteration stops if the gradient norm
falls below 10−14 or if a maximum of 10,000 iterations is reached.

Chapter 7
Fourier Transformation

Fourier transformation is a very important tool for signal analysis but also helpful
to simplify the solution of differential equations or the calculation of convolution
integrals. We use the symmetric definition of the Fourier transformation:

f̃ (ω) = F[f](ω) = 1√
2π

∫ ∞

−∞
f (t)e−iωt dt. (7.1)

The inverse Fourier transformation

f (t) = F−1[f̃](t) = 1√
2π

∫ ∞

−∞
f̃ (ω)eiωt dω (7.2)

decomposes f (t) into a superposition of oscillations. The Fourier transform of a
convolution integral

g(t) = f (t)⊗ h(t) =
∫ ∞

−∞
f (t ′)h(t − t ′)dt ′ (7.3)

becomes a product of Fourier transforms:

g̃(ω) = 1√
2π

∫ ∞

−∞
dt ′ f (t ′)e−iωt ′

∫ ∞

−∞
h(t − t ′)e−iω(t−t ′)d(t − t ′)

= √
2π f̃ (ω)̃h(ω). (7.4)

A periodic function with f (t + T) = f (t)1 is transformed into a Fourier series

f (t) =
∞
∑

n=−∞
eiωn t f̂ (ωn) with ωn = n

2π

T
, f̂ (ωn) = 1

T

∫ T

0
f (t)e−iωn t dt

(7.5)

1 This could also be the periodic continuation of a function which is only defined for 0 < t < T .

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_7,
C© Springer-Verlag Berlin Heidelberg 2010

73

74 7 Fourier Transformation

7.1 Discrete Fourier Transformation

We divide the time interval 0 ≤ t < T by introducing a grid of N equidistant points

tn = n�t = n
T

N
with n = 0, 1, . . . , N − 1. (7.6)

The function values (samples)

fn = f (tn) (7.7)

are arranged as components of a vector

f =
⎛

⎜
⎝

f0
...

fN−1

⎞

⎟
⎠ . (7.8)

With respect to the orthonormal basis

en =
⎛

⎜
⎝

δ0,n
...

δN−1,n

⎞

⎟
⎠ , n = 0, 1, . . . , N − 1. (7.9)

f is expressed as a linear combination

f =
N−1
∑

n=0

fnen . (7.10)

The discrete Fourier transformation is the transformation to an orthogonal base in
frequency space

eω j =
N−1
∑

n=0

eiω j tn en =

⎛

⎜
⎜
⎜
⎜
⎝

1

ei 2π
N j

...

ei 2π
N j (N−1)

⎞

⎟
⎟
⎟
⎟
⎠

, (7.11)

with

ω j = 2π

T
j. (7.12)

These vectors are orthogonal:

eω j e
∗
ω j ′ =

N−1
∑

n=0

ei(j− j ′) 2π
N n =

{
1−ei(j− j ′)2π

1−ei(j− j ′)2π/N = 0 for j − j ′ �= 0,

N for j − j ′ = 0
(7.13)

eω j e
∗
ω j ′ = Nδ j, j ′ . (7.14)

7.1 Discrete Fourier Transformation 75

Alternatively a real-valued basis can be defined:

cos

(
2π

N
jn

)

j = 0, 1, . . . , jmax

sin

(
2π

N
jn

)

j = 1, 2, . . . , jmax

jmax = N

2
(even N) jmax = N − 1

2
(odd N). (7.15)

The components of f in frequency space are given by the scalar product

f̃ω j = feω j =
N−1
∑

n=0

fne−iω j tn =
N−1
∑

n=0

fne−i j 2π
T n T

N =
N−1
∑

n=0

fne−i 2π
N jn . (7.16)

From

N−1
∑

j=0

f̃ω j e
iω j tn =

∑

n′

∑

ω j

fn′e−iω j tn′ eiω j tn = N fn, (7.17)

we find the inverse transformation

fn = 1

N

N−1
∑

j=0

f̃ω j e
iω j tn = 1

N

N−1
∑

j=0

f̃ω j e
i 2π

N nj . (7.18)

7.1.1 Trigonometric Interpolation

The last equation can be interpreted as an interpolation of the function f (t) at the
sampling points tn by a linear combination of trigonometric functions:

f (t) = 1

N

N−1
∑

j=0

f̃ω j

(

ei 2π
T t
) j
, (7.19)

which is a polynomial of

q = ei 2π
T t . (7.20)

Since

e−iω j tn = e−i 2π
N jn = ei 2π

N (N− j)n = eiωN− j tn , (7.21)

76 7 Fourier Transformation

0
t/T

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Fig. 7.1 Equivalence of ω1 and ωN−1. The two functions cosωt and cos(N − 1)ωt have the same
values at the sample points tn but are very different in between

the frequencies ω j and ωN− j are equivalent (Fig. 7.1):

f̃ωN− j =
N−1
∑

n=0

fne−i 2π
N (N− j)n =

N−1
∑

n=0

fnei 2π
N jn = f̃ω− j . (7.22)

If we use trigonometric interpolation to approximate f (t) between the grid
points, the two frequencies are no longer equivalent and we have to restrict the
frequency range to avoid unphysical high-frequency components (Fig. 7.2):

0 0.2 0.4 0.6 0.8 1

time t/T

–1

–0.5

0

0.5

1

0 2 4 6 8 10
frequency index j

–6
–4
–2
0
2
4
6

Fig. 7.2 Trigonometric interpolation. For trigonometric interpolation the high frequencies have to
be replaced by the corresponding negative frequencies to provide meaningful results between the
sampling points. The circles show sampling points which are fitted using only positive frequencies
(full curve) or replacing the unphysical high frequency by its negative counterpart (broken curve).
The squares show the calculated Fourier spectrum

7.1 Discrete Fourier Transformation 77

− 2π

T

N − 1

2
≤ ω j ≤ 2π

T

N − 1

2
N odd,

− 2π

T

N

2
≤ ω j ≤ 2π

T

(
N

2
− 1

)

N even. (7.23)

The interpolating function (N even) is

f (t) = 1

N

N
2 −1
∑

j=− N
2

f̃ω j e
iω j t . (7.24)

The maximum frequency is

ωmax = 2π

T

N

2
, (7.25)

and hence

fmax = 1

2π
ωmax = N

2T
= fs

2
. (7.26)

This is known as the sampling theorem which states that the sampling frequency fs

must be larger than twice the maximum frequency present in the signal.

7.1.2 Real-Valued Functions

For a real-valued function

fn = f ∗
n , (7.27)

and hence

f̃ ∗
ω j

=
(

N−1
∑

n=0

fne−iω j tn

)∗
=

N−1
∑

n=0

fneiω j tn = f̃ω− j . (7.28)

Here it is sufficient to calculate the sums for j = 0, . . . , N/2.

7.1.3 Approximate Continuous Fourier Transformation

We continue the function f (t) periodically by setting

fN = f0 (7.29)

78 7 Fourier Transformation

and write

f̃ω j =
N−1
∑

n=0

fne−iω j n = 1

2
f0 + e−iω j f1 + · · · + e−iω j (N−1) fN−1 + 1

2
fN . (7.30)

Comparing with the trapezoidal rule (4.9) for the integral

∫ T

0
e−iω j t f (t)dt ≈ T

N

(
1

2
e−iω j 0 f (0)+ e−iω j

T
N f

(
T

N

)

+ · · · + e−iω j
T
N (N−1) f

(
T

N
(N − 1)

)

+ 1

2
f (T)

)

, (7.31)

we find

f̂ (ω j) = 1

T

∫ T

0
e−iω j t f (t)dt ≈ 1

N
f̃ω j , (7.32)

which shows that the discrete Fourier transformation is an approximation to the
Fourier series of a periodic function with period T which coincides with f (t) in the
interval 0 < t < T . The range of the integral can be formally extended to ±∞ by
introducing a windowing function

W (t) =
{

1 for 0 < t < T
0 else

. (7.33)

The discrete Fourier transformation approximates the continuous Fourier transfor-
mation but windowing leads to a broadening of the spectrum. For practical purposes
smoother windowing functions are used like a triangular window or one of the fol-
lowing [23]:

W (tn) = e
− 1

2

(
n−(N−1)/2
σ(N−1)/2

)2

σ ≤ 0.5 Gaussian window

W (tn) = 0.53836 − 0.46164 cos

(
2πn

N − 1

)

Hamming window

W (tn) = 0.5

(

1 − cos

(
2πn

N − 1

))

Hann(ing) window

7.2 Algorithms

Straightforward evaluation of the sum

f̃ω j =
N−1
∑

n=0

cos

(
2π

N
jn

)

fn + i sin

(
2π

N
jn

)

fn (7.34)

needs O(N 2) additions, multiplications, and trigonometric functions.

7.2 Algorithms 79

7.2.1 Goertzel’s Algorithm

Goertzel’s method [24] is very useful if not the whole Fourier spectrum is needed but
only a small number of Fourier components, for instance to demodulate a frequency
shift key signal or the dial tones which are used in telephony.

The Fourier transform can be written as
N−1
∑

n=0

fne−i 2π
N jn = f0+e− 2π i

N j (f1+e− 2π i
N j f2 · · · (fN−2+e− 2π i

N j fN−1) · · ·), (7.35)

which can be evaluated recursively

yN−1 = fN−1,

yn = fn + e− 2π i
N j yn+1 n = N − 2, . . . , 0, (7.36)

to give the result

f̂ω j = y0. (7.37)

Equation (7.36) is a simple discrete filter function. Its transmission function is
obtained by application of the z-transform [25]

u(z) =
∞
∑

n=0

unz−n (7.38)

(the discrete version of the Laplace transform), which yields

y(z) = f (z)

1 − ze− 2π i
N j

. (7.39)

One disadvantage of this method is that it uses complex numbers. This can be
avoided by the following more complicated recursion:

uN+1 = uN = 0,

un = fn + 2un+1 cos
2π

N
k − un+2 for n = N − 1, . . . , 0, (7.40)

with the transmission function

u(z)

f (z)
= 1

1 − z
(

e
2π i
N j + e− 2π i

N j
)

+ z2

= 1
(

1 − ze− 2π i
N j
) (

1 − ze
2π i
N j
) . (7.41)

80 7 Fourier Transformation

A second filter removes one factor in the denominator

y(z)

u(z)
=
(

1 − ze
2π i
N j
)

, (7.42)

which in the time domain corresponds to the simple expression

yn = un − e
2π i
N j un+1.

The overall filter function finally again is Eq. (7.39).

y(z)

f (z)
= 1

1 − ze− 2π i
N j

. (7.43)

Hence the Fourier component of f is given by

f̂ω j = y0 = u0 − e
2π i
N j u1. (7.44)

The order of the iteration (7.35) can be reversed by writing

f̂ω j = f0 · · · e
2π i
N (N−1) fN−1 = e− 2π i

N j (N−1)(f0e
2π i
N j (N−1) · · · fN−1), (7.45)

which is very useful for real-time filter applications.

7.2.2 Fast Fourier Transformation

If the number of samples is N = 2p, the Fourier transformation can be performed
very efficiently by this method.2 The phase factor

e−i 2π
N jm = W jm

N (7.46)

can take only N different values. The number of trigonometric functions can be
reduced by reordering the sum. Starting from a sum with N samples

FN (f0 . . . fN−1) =
N−1
∑

n=0

fnW jn
N , (7.47)

we separate even and odd powers of the unit root

2 There exist several fast Fourier transformation algorithms [26, 27]. We consider only the simplest
one here [28].

7.2 Algorithms 81

FN (f0 . . . fN−1) =
N
2 −1
∑

m=0

f2m W j2m
N +

N
2 −1
∑

m=0

f2m+1W j (2m+1)
N

=
N
2 −1
∑

m=0

f2me−i 2π
N/2 jm + W j

N

N
2 −1
∑

m=0

f2m+1e−i 2π
N/2 jm

= FN/2(f0, f2, . . . , fN−2)+ W j
N FN/2(f1, f3, . . . , fN−1).

(7.48)

This division is repeated until only sums with one summand remain:

F1(fn) = fn . (7.49)

For example, consider the case N = 8:

F8(f0 . . . f7) = F4(f0 f2 f4 f6)+ W j
8 F4(f1 f3 f5 f7)

− − −
F4(f0 f2 f4 f6) = F2(f0 f4)+ W j

4 F2(f2 f6)

F4(f1 f3 f5 f7) = F2(f1 f5)+ W j
4 F2(f3 f7)

− − −
F2(f0 f4) = f0 + W j

2 f4

F2(f2 f6) = f2 + W j
2 f6

F2(f1 f5) = f1 + W j
2 f5

F2(f3 f7) = f3 + W j
2 f7

(7.50)

Expansion gives

F8 = f0 +W j
2 f4 +W j

4 f2 +W j
4 W j

2 f6

+W j
8 f1 +W j

8 W j
2 f5 +W j

8 W j
4 f3 +W j

8 W j
4 W j

2 f7 . (7.51)

Generally a summand of the Fourier sum can be written using the binary represen-
tation of n

n =
∑

li li = 1, 2, 4, 8, . . . (7.52)

in the following way:

fne−i 2π
N jn = fne−i 2π

N (l1+l2+···) j = fnW j
N/ l1

W j
N/ l2

· · · . (7.53)

The function values are reordered according to the following algorithm:

(i) count from 0 to N − 1 using binary numbers m = 000, 001, 010, . . .

82 7 Fourier Transformation

(ii) bit reversal gives the binary numbers n = 000, 100, 010, . . .
(iii) store fn at the position m. This will be denoted as sm = fn

As an example for N = 8 the function values are in the order

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0
s1
s2
s3
s4
s5
s6
s7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f0
f4
f2
f6
f1
f5
f3
f7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.54)

Now calculate sums with two summands. Since W j
2 can take only two different

values

W j
2 =

{

1 for j = 0, 2, 4, 6
−1 for j = 1, 3, 5, 7

, (7.55)

a total of eight sums have to be calculated which can be stored again in the same
workspace:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f0 + f4

f0 − f4

f2 + f6

f2 − f6

f1 + f5

f1 − f5

f3 + f7

f3 − f7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0 + W 0
2 s1

s0 + W 1
2 s1

s2 + W 2
2 s3

s2 + W 3
2 s3

s4 + W 4
2 s5

s4 + W 5
2 s5

s6 + W 6
2 s7

s6 + W 7
2 s7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.56)

Next calculate sums with four summands. W j
4 can take one of four values

W j
4 =

⎧

⎪⎪⎨

⎪⎪⎩

1 for j = 0, 4
−1 for j = 2, 6
W4 for j = 1, 5

−W4 for j = 3, 7

. (7.57)

The following combinations are needed:

7.2 Algorithms 83

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f0 + f4 + (f2 + f6)

f0 + f4 − (f2 + f6)

(f0 − f4)+ W4(f2 − f6)

(f0 − f4)− W4(f2 − f6)

f1 + f5 + (f3 + f7)

f1 + f5 − (f3 + f7)

(f1 − f5)± W4(f3 − f7)

(f1 − f5)± W4(f3 − f7)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0 + W 0
4 s2

s1 + W 1
4 s3

s0 + W 2
4 s2

s1 + W 3
4 s3

s4 + W 4
4 s6

s5 + W 5
4 s7

s4 + W 6
4 s6

s5 + W 7
4 s7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.58)

The next step gives the sums with eight summands. With

W j
8 =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 j = 0

W8 j = 1

W 2
8 j = 2

W 3
8 j = 3

−1 j = 4

−W8 j = 5

−W 2
8 j = 6

−W 3
8 j = 7

, (7.59)

we calculate
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f0 + f4 + (f2 + f6)+ (f1 + f5 + (f3 + f7))

f0 + f4 − (f2 + f6)+ W8(f1 + f5 − (f3 + f7))

(f0 − f4)+ W4(f2 − f6)+ W 2
8 (f1 − f5)± W4(f3 − f7)

(f0 − f4)− W4(f2 − f6)+ W 3
8 ((f1 − f5)± W4(f3 − f7))

f0 + f4 + (f2 + f6)− (f1 + f5 + (f3 + f7))

f0 + f4 − (f2 + f6)− W8(f1 + f5 − (f3 + f7))

(f0 − f4)+ W4(f2 − f6)− W 2
8 ((f1 − f5)± W4(f3 − f7))

(f0 − f4)− W4(f2 − f6)− W 3
8 ((f1 − f5)± W4(f3 − f7))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0 + W 0
8 s4

s1 + W 1
8 s5

s2 + W 2
8 s6

s3 + W 3
8 s7

s0 + W 4
8 s4

s1 + W 5
8 s5

s2 + W 6
8 s6

s3 + W 7
8 s7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(7.60)
which is the final result.

The following shows a simple fast Fourier transformation algorithm. The number
of trigonometric function evaluations can be reduced but this reduces the readability.
At the beginning Data[k] are the input data in bit-reversed order.

size:=2
first:=0
While first < Number_of_Samples do begin

for n:=0 to size/2-1 do begin
j:=first+n
k:=j+size/2-1
T:=exp(-2*Pi*i*n/Number_of_Samples)*Data[k]
Data[j]:=Data[j]+T

84 7 Fourier Transformation

Data[k]:=Data[k]-T
end;
first:=first*2
size:=size*2

end;

Problems

Problem 7.1 Discrete Fourier Transformation

In this computer experiment for a given set of input samples

fn = f

(

n
T

N

)

n = 0 . . . N − 1

the Fourier coefficients

f̃ω j =
N−1
∑

n=0

fne−iω j tn ω j = 2π

T
j, j = 0 . . . N − 1

are calculated with Goertzel’s method (Sect. 7.2.1).
The results from the inverse transformation

fn = 1

N

N−1
∑

j=0

f̃ω j e
i 2π

N nj

are compared with the original function values f (tn).
The Fourier sum is used for trigonometric interpolation with only positive
frequencies

f (t) = 1

N

N−1
∑

j=0

f̃ω j

(

ei 2π
T t
) j

Finally the unphysical high frequencies are replaced by negative frequencies (7.23).
The results can be studied for several kinds of input data.

Problem 7.2 Noise Filter

This computer experiment demonstrates a nonlinear filter.
First a noisy input signal is generated.
The signal can be chosen as

Problems 85

• monochromatic sin(ωt)
• the sum of two monochromatic signals a1 sinω1t + a2 sinω2t
• a rectangular signal with many harmonic frequencies sign(sinωt)

Different kinds of white noise can be added

• dichotomous ±1
• constant probability density in the range [−1, 1]
• Gaussian probability density

The amplitudes of signal and noise can be varied. All Fourier components are
removed which are below a threshold value and the filtered signal is calculated by
inverse Fourier transformation.

Chapter 8
Random Numbers and Monte Carlo Methods

Many-body problems often involve the calculation of integrals of very high
dimension which cannot be treated by standard methods. For the calculation of
thermodynamical averages Monte Carlo methods [29–32] are very useful which
sample the integration volume at randomly chosen points.

8.1 Some Basic Statistics

For more mathematical details see [33].

8.1.1 Probability Density and Cumulative Probability Distribution

Consider an observable ξ , which is measured in a real or a computer experiment.
Repeated measurements give a statistical distribution of values (Fig. 8.1).

The cumulative probability distribution is given by the function

F(x) = P{ξ ≤ x} (8.1)

x

1

F(x)

0
x

Fig. 8.1 Cumulative probability distribution of transition energies. The figure shows schematically
the distribution of transition energies for an atom which has a discrete and a continuous part

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_8,
C© Springer-Verlag Berlin Heidelberg 2010

87

88 8 Random Numbers and Monte Carlo Methods

and has the following properties:

• F(x) is monotonously increasing
• F(−∞) = 0, F(∞) = 1
• F(x) can be discontinuous (if there are discrete values of ξ)

The probability to measure a value in the interval x1 < ξ ≤ x2 is

P(x1 < ξ ≤ x2) = F(x2)− F(x1). (8.2)

The height of a jump gives the probability of a discrete value

P(ξ = x0) = F(x0 + 0)− F(x0 − 0). (8.3)

In regions where F is continuous, the probability density can be defined as

f (x0) = F ′(x0) = lim
Δx→0

1

Δx
P(x0 < ξ ≤ x0 +�x). (8.4)

8.1.2 Expectation Values and Moments

The expectation value of the random variable ξ is defined by

E(ξ) =
∫ ∞

−∞
xdF(x) = lim

a→−∞,b→∞

∫ b

a
xdF(x) (8.5)

with the Stieltjes integral

∫ b

a
xdF(x) = lim

N→∞

N
∑

i=1

xi (F(xi)− F(xi−1))|xi =a+ b−a
N i . (8.6)

Higher moments are defined as

E(ξ k) =
∫ ∞

−∞
xkdF(x) (8.7)

if these integrals exist. Most important are the expectation value

x = E(ξ) (8.8)

and the standard deviation σ , which results from the first two moments

8.1 Some Basic Statistics 89

σ 2 =
∫ ∞

−∞
(x − x)2dF =

∫

x2dF +
∫

x2dF − 2x
∫

xdF

= E(ξ2)− (E(ξ))2. (8.9)

The expectation value of a function ϕ(x) is defined by

E(ϕ(x)) =
∫ ∞

−∞
ϕ(x)dF(x) (8.10)

For continuous F(x) we have with dF(x) = f (x)dx , the ordinary integral,

E(ξ k) =
∫ ∞

−∞
xk f (x)dx (8.11)

E(ϕ(x)) =
∫ ∞

−∞
ϕ(x) f (x)dx (8.12)

whereas for a pure step function F(x) (only discrete values xi are observed with
probabilities p(xi) = F(xi + 0)− F(xi − 0)),

E(ξ k) =
∑

xk
i p(xi) (8.13)

E(ϕ(x)) =
∑

ϕ(xi)p(xi). (8.14)

8.1.2.1 Ideal Dice

We consider an ideal dice. Each of its six faces appears with the same probability
of 1/6. The cumulative probability distribution F(x) is a pure step function
(Fig. 8.2) and

x6543210
0

F(x)

1

Fig. 8.2 Cumulative probability distribution of an ideal dice

90 8 Random Numbers and Monte Carlo Methods

x =
∫ ∞

−∞
xdF =

6
∑

i=1

xi (F(xi + 0)− F(xi − 0)) = 1

6

6
∑

i=1

xi = 21

6
= 3.5 (8.15)

x2 =
6
∑

i=1

x2
i (F(xi + 0)− F(xi − 0)) = 1

6

6
∑

i=1

x2
i = 91

6
= 15.1666 · · · (8.16)

σ =
√

x2 − x2 = 2.9. (8.17)

8.1.2.2 Normal Distribution

The Gaussian normal distribution is defined by the cumulative probability
distribution

�(x) = 1√
2π

∫ x

−∞
e−t2/2dt (8.18)

and the probability density

ϕ(x) = 1√
2π

e−x2/2 (8.19)

with the properties

∫ ∞

−∞
ϕ(x)dx = �(∞) = 1 (8.20)

x =
∫ ∞

−∞
xϕ(x)dx = 0 (8.21)

σ 2 = x2 =
∫ ∞

−∞
x2ϕ(x)dx = 1. (8.22)

Since �(0) = 1
2 and with the definition

�0(x) = 1√
2π

∫ x

0
e−t2/2dt (8.23)

we have

�(x) = 1

2
+�0(x) (8.24)

which can be expressed in terms of the error function1

1 erf(x) is an intrinsic function in FORTRAN or C.

8.1 Some Basic Statistics 91

erf(z) = 2√
π

∫ z

0
e−t2

dt = 2�0(
√

2z). (8.25)

A general Gaussian distribution with mean value x and standard deviation σ has the
cumulative distribution

Fx,σ (x) = �

(
x − x

σ

)

=
∫ x

−∞
dx ′ 1

σ
√

2π
exp

(

− (x ′ − x)2

2σ 2

)

. (8.26)

8.1.2.3 Histogram

From an experiment F(x) cannot be determined directly. Instead a finite number N
of values xi are measured. By

Z N (x)

we denote the number of measurements with xi ≤ x . The cumulative probability
distribution is the limit

F(x) = lim
N→∞

1

N
Z N (x). (8.27)

A histogram counts the number of measured values which are in the interval xi <

x ≤ xi+1:

1

N
(Z N (xi+1)− Z N (xi)) ≈ F(xi+1)− F(xi) = P(xi < ξ ≤ xi+1). (8.28)

Contrary to Z N (x) itself, the histogram depends on the choice of the intervals
(Fig. 8.3).

0

20

40

60

80

100

Z
(x

)

–3
x

0

0.1

0.2

P(
x)

–2 –1 0 1 2 3

Fig. 8.3 Histogram. The cumulative distribution of 100 Gaussian random numbers is shown
together with a histogram with bin width �x = 0.6

92 8 Random Numbers and Monte Carlo Methods

8.1.3 Multivariate Distributions

Consider now two quantities which are measured simultaneously. ξ and η are the
corresponding random variables. The cumulative distribution function is

F(x, y) = P{ξ ≤ x and η ≤ y). (8.29)

Expectation values are defined as

E(ϕ(x, y)) =
∫ ∞

−∞

∫ ∞

−∞
ϕ(x, y)d2 F(x, y). (8.30)

For continuous F(x, y) the probability density is

f (x, y) = ∂2 F

∂x∂y
(8.31)

and the expectation value is simply

E(ϕ(x, y)) =
∫ ∞

−∞
dx
∫ ∞

−∞
dyϕ(x, y) f (x, y). (8.32)

The moments of the distribution are the expectation values

Mk,l = E(ξ kηl). (8.33)

Most important are the averages

x = E(ξ), y = E(η), (8.34)

and the covariance matrix

(
E((ξ − x)2) E((ξ − x)(η − y))

E((ξ − x)(η − y)) E((η − y)2)

)

=
(

x2 − x2 xy − x y

xy − x y y2 − y2

)

. (8.35)

The correlation coefficient is defined as

ρ = xy − x y
√
(

x2 − x2
) (

y2 − y2
)
. (8.36)

If there is no correlation then ρ = 0 and F(x, y) = F1(x)F2(y).

8.1 Some Basic Statistics 93

8.1.4 Central Limit Theorem

Consider N independent random variables ξi with the same cumulative distribution
function F(x), for which E(ξ) = 0 and E(ξ2) = 1. Define a new random variable

ηN = ξ1 + ξ2 + · · · + ξN√
N

(8.37)

with the cumulative distribution function FN (x). In the limit N → ∞ this distribu-
tion approaches a cumulative normal distribution [34]

lim
N→∞ FN (x) = �(x) = 1√

2π

∫ x

−∞
e−t2/2dt. (8.38)

8.1.5 Example: Binomial Distribution

Toss a coin N times giving ξi = 1 (heads) or ξi = −1 (tails) with equal probability
P = 1

2 . Then E(ξi) = 0 and E(ξ2
i) = 1. The distribution of (Fig. 8.4)

η = 1√
N

N
∑

i=1

ξi (8.39)

can be derived from the binomial distribution

–2 0 2
η

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

Fig. 8.4 Central limit theorem. The cumulative distribution function of η (8.39) is shown for
N = 4 and compared to the normal distribution (8.18)

94 8 Random Numbers and Monte Carlo Methods

1 =
[

1

2
+
(

−1

2

)]N

= 2−N
N
∑

p=0

(−1)N−p
(

N
N − p

)

, (8.40)

where p counts the number of tosses with ξ = +1. Since

n = p · 1 + (N − p) · (−1) = 2p − N = −N . . . N (8.41)

the probability of finding η = n√
N

is given by the binomial coefficient

P

(

η = 2p − N√
N

)

= 2−N
(

N
N − p

)

(8.42)

or

P

(

η = n√
N

)

= 2−N
(

N
N−n

2

)

n (8.43)

8.1.6 Average of Repeated Measurements

A quantity X is measured N times. The results X1 · · · X N are independent random
numbers with the same distribution function f (Xi). The expectation value is the
exact value E(Xi) = ∫ dXi Xi f (Xi) = X and the standard deviation due to mea-

surement uncertainties is σX =
√

E(X2
i)− X2. The new random variables

ξi = Xi − X

σX
(8.44)

have zero mean

E(ξi) = E(Xi)− X

σX
= 0 (8.45)

and unit standard deviation

σ 2
ξ = E(ξ2

i)− E(ξi)
2 = E

(

X2
i + X2 − 2X Xi

σ 2
X

)

= E(X2
i)− X2

σ 2
X

= 1. (8.46)

Hence the quantity

η =
∑N

1 ξi√
N

=
∑N

1 Xi − N X√
NσX

=
√

N

σX
(X − X) (8.47)

obeys a normal distribution

8.2 Random Numbers 95

f (η) = 1√
2π

e−η2/2. (8.48)

From

f (X)dX = f (η)dη = f (η(X))

√
N

σX
dX (8.49)

we obtain

f (X) =
√

N√
2πσX

exp

{

− N

2σ 2
X

(X − X)2
}

. (8.50)

The average of N measurements obeys a Gaussian distribution around the exact
value X with a reduced standard deviation of

σX = σX√
N
. (8.51)

8.2 Random Numbers

True random numbers of high quality can be generated using physical effects like
thermal noise in a diode or from a light source. Special algorithms are available
to generate pseudo-random numbers which have comparable statistical properties
but are not unpredictable since they depend on some initial seed values. Often an
iteration

ri+1 = f (ri) (8.52)

is used to calculate a series of pseudo-random numbers. Using 32-bit integers there
are 232 different numbers, hence the period cannot exceed 232. A simple algorithm
is the linear congruent mapping

ri+1 = (ari + c) mod m (8.53)

with maximum period m. A larger period is achieved if the random number depends
on more than one predecessors. A function of the type

ri = f (ri−1, ri−2, . . . , ri−t) (8.54)

using 32-bit integers has a maximum period of 232t .

Example For t = 2 and generating 106 numbers per second the period is 584 942
years.

96 8 Random Numbers and Monte Carlo Methods

8.2.1 The Method by Marsaglia and Zamann

A high-quality random number generator can be obtained from the combination of
two generators [35]. The first one

ri = (ri−2 − ri−3 − c) mod (232 − 18) (8.55)

with

c =
{

1 for rn−2 − rn−3 < 0
0 else

(8.56)

has a period of 295. The second one

ri = (69069ri−1 + 1013904243) mod 232 (8.57)

has a period of 232. The period of the combination is 2127. Here is a short subroutine
in C:

#define N 100000
typedef unsigned long int unlong /* 32 Bit */
unlong x=521288629, y=362436069, z=16163801 , c=1, n=1131199209;
unlong mzran()
{ unlong s;

if (y>x+c) {s=y-(x+c)-18; c=0;}
else {s=y-(x+c)-18;c=1;}
x=y; y=z; z=s; n=69069*n+1013904243;
return(z+n);

}

8.2.2 Random Numbers with Given Distribution

Assume we have a program that generates random numbers in the interval [0, 1] like
in C:

rand()/(double)RAND_MAX.

The corresponding cumulative distribution function is

F0(x) =
⎧

⎨

⎩

0 for x < 0
x for 0 ≤ x ≤ 1

1 for x > 1
. (8.58)

Random numbers with cumulative distribution F(x) can be obtained as follows:

8.2 Random Numbers 97

choose a RN r ∈ [0, 1] with P(r ≤ x) = F0(x)
let ξ = F−1(r).

F(x) increases monotonously and therefore

P(ξ ≤ x) = P(F(ξ) ≤ F(x)) = P(r ≤ F(x)) = F0(F(x)) (8.59)

but since 0 ≤ F(x) ≤ 1 we have

P(ξ ≤ x) = F(x). (8.60)

This method of course is applicable only if F−1 can be expressed analytically.

8.2.3 Examples

8.2.3.1 Dice

Tossing a dice can be simulated as follows:

Choose a random number r ∈ [0, 1] and

let ξ = F−1(r) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ r < 1
6

2 for 1
6 ≤ r < 2

6
3 for 2

6 ≤ r < 3
6

4 for 3
6 ≤ r < 4

6
5 for 4

6 ≤ r < 5
6

6 for 5
6 ≤ r < 1

.

8.2.3.2 Exponential Distribution

The cumulative distribution function

F(x) = 1 − e−x/λ (8.61)

which corresponds to the exponential probability density

f (x) = 1

λ
e−x/λ (8.62)

can be inverted by solving

r = 1 − e−x/λ (8.63)

for x :

98 8 Random Numbers and Monte Carlo Methods

Choose a random number r ∈ [0, 1]
Let x = F−1(r) = −λ ln(1 − r)

8.2.3.3 Random Points on the Unit Sphere

We consider the surface element

1

4π
R2dϕ sin θdθ. (8.64)

Our aim is to generate points on the unit sphere (θ, ϕ) with the probability density

f (θ, ϕ)dϕdθ = 1

4π
dϕ sin θdθ = − 1

4π
dϕd cos θ. (8.65)

The corresponding cumulative distribution is

F(θ, ϕ) = − 1

4π

∫ cos θ

1
d cos θ

∫ ϕ

0
dϕ = ϕ

2π

1 − cos θ

2
= FϕFθ . (8.66)

Since this factorizes, the two angles can be determined independently:

Choose a first random number r1 ∈ [0, 1]
Let ϕ = F−1

ϕ (r1) = 2πr1
Choose a second random number r2 ∈ [0, 1]
Let θ = F−1

θ (r2) = arccos(1 − 2r2)

8.2.3.4 Gaussian Distribution (Box Muller)

For a Gaussian distribution the inverse F−1 has no simple analytical form. The
famous Box Muller method [36] is based on a two-dimensional normal distribution
with probability density

f (x, y) = 1

2π
exp

{

− x2 + y2

2

}

(8.67)

which reads in polar coordinates

f (x, y)dxdy = f p(ρ, ϕ)dρdϕ
1

2π
e−ρ2/2ρdρdϕ. (8.68)

8.3 Monte Carlo Integration 99

Hence

f p(ρ, ϕ) = 1

2π
ρe−ρ2/2 (8.69)

and the cumulative distribution factorizes

Fp(ρ, ϕ) = 1

2π
ϕ

∫ ρ

0
ρ′e−ρ′2/2dρ′ = ϕ

2π
(1 − e−ρ2

) = Fϕ(ϕ)Fρ(ρ). (8.70)

The inverse of Fρ is

ρ = √− ln(1 − r) (8.71)

and the following algorithm generates Gaussian random numbers:

r1 = RN ∈ [0, 1]
r2 = RN ∈ [0, 1]
ρ = √− ln(1 − r1)

ϕ = 2πr2
x = ρ cosϕ

8.3 Monte Carlo Integration

Physical problems often involve high-dimensional integrals (for instance, path inte-
grals, thermodynamic averages) which cannot be evaluated by standard methods.
Here Monte Carlo methods can be very useful. Let us start with a very basic
example.

8.3.1 Numerical Calculation of π

The area of a unit circle (r = 1) is given by r2π = π . Hence π can be calculated
by numerical integration. We use the following algorithm (Figs. 8.5 and 8.6):

Choose N points randomly in the first quadrant, for instance, N indepen-
dent pairs x, y ∈ [0, 1].

Calculate r2 = x2 + y2.
Count the number of points within the circle, i.e., the number of points

Z(r2 ≤ 1).
π
4 is approximately given by Z(r2≤1)

N .

100 8 Random Numbers and Monte Carlo Methods

0 200 400 600 800 1000
N

2

2.5

3

3.5

4

es
tim

at
e

of
 π

Fig. 8.5 Convergence of the numerical integration

103 104 105 106

N

10–6

10–4

10–2

100

ab
so

lu
te

 e
rr

or

Fig. 8.6 Error of the numerical integration

8.3.2 Calculation of an Integral

Let ξ be a random variable in the interval [a, b] with the distribution

P(x < ξ ≤ x + dx) = f (x)dx =
{ 1

b−a for x ∈ [a, b]
0 else

. (8.72)

The expectation value of a function g(x) is

E(g(x)) =
∫ ∞

−∞
g(x) f (x)dx =

∫ b

a
g(x)dx (8.73)

hence the average of N randomly taken function values approximates the integral

8.3 Monte Carlo Integration 101

∫ b

a
g(x)dx ≈ 1

N

N
∑

i=1

g(ξi) = g(ξ). (8.74)

To estimate the error we consider the new random variable

σ = 1

N

N
∑

i=1

g(ξ). (8.75)

Its average is

σ = E(σ) = 1

N

N
∑

i=1

E(g(x)) = E(g(x)) =
∫ b

a
g(x)dx (8.76)

and the standard deviation follows from

�σ = E
(

(σ − σ)2
)

= E

((
1

N

∑

g(ξi)− σ

)2
)

= E

((
1

N

∑

[g(ξi)− σ]
)2
)

(8.77)

= 1

N 2
E
(∑

[g(ξi)− σ]2
)

= 1

N
(g(ξ)2 − g(ξ)

2
) = 1

N
�g(ξ). (8.78)

The width of the distribution and hence the uncertainty falls off as 1/
√

N .

8.3.3 More General Random Numbers

Consider now random numbers ξ ∈ [a, b] with arbitrary (but within [a,b] not van-
ishing) probability density f (x). The integral is approximated by

1

N

N
∑

i=1

g(ξi)

f (ξi)
= E

(
g(x)

f (x)

)

=
∫ b

a

g(x)

f (x)
f (x)dx =

∫ b

a
g(x)dx . (8.79)

The new random variable

τ = 1

N

N
∑

i=1

g(ξi)

f (ξi)
(8.80)

has a standard deviation given by

�τ = 1

N
�

(
g(ξ)

f (ξ)

)

(8.81)

102 8 Random Numbers and Monte Carlo Methods

which can be reduced by choosing f similar to g. Then preferentially ξ are
generated in regions where the integrand is large (importance sampling).

8.4 Monte Carlo Method for Thermodynamic Averages

Consider the partition function of a classical N particle system

Z N V T = 1

N !
1

h3N

∫

dp3N
∫

dq3N e−βH(p1···pN , q1···qN) (8.82)

with an energy function

H =
N
∑

i=1

p2
i

2mi
+ V (q1 · · · qN). (8.83)

If the potential energy does not depend on the momenta and for equal masses the
partition functions simplify to

Z N V T = 1

N !
1

h3N

∫

dp3N e−β p2
i

2m

∫

dq3N e−βV (q)

= 1

N !
(

2πmkT

h2

)3N/2 ∫

dq3N e−βV (q) (8.84)

and it remains the calculation of the configuration integral

Z conf
NVT =

∫

dq3N e−βV (q). (8.85)

In the following we do not need the partition function itself but only averages of
some quantity A(q) given by

A =
∫

dq3N A(q)e−βV (q)
∫

dq3N e−βV (q)
. (8.86)

8.4.1 Simple (Minded) Sampling

Let ξ be a random variable with probability distribution

P(ξ ∈ [q, q + dq]) = f (q)dq (8.87)
∫

f (q)dq = 1. (8.88)

8.4 Monte Carlo Method for Thermodynamic Averages 103

We chose M random numbers ξ and calculated the expectation value of A(ξ) from

E(A(ξ)) = lim
M→∞

1

M

M
∑

m=1

A(ξ (m)) =
∫

A(q) f (q)dq. (8.89)

Consider now the case of random numbers ξ equally distributed over the range
qmin · · · qmax:

f (q) =
{ 1

qmax−qmin
q ∈ [qmin, qmax]
0 else

. (8.90)

Define a sample by choosing one random value ξ for each of the 3N coordinates.
The average over a large number M of samples gives the expectation value

E
(

A(ξ1 · · · ξ3N)e
−βV (ξ1···ξ3N)

)

= lim
M→∞

1

M

M
∑

m=1

A(ξ (m)i)e−βV (ξ (m)i) (8.91)

as

∫

A(qi)e
−βV (qi) f (q1) · · · f (q3N)dq1 · · · dq3N

= 1

(qmax − qmin)3N

∫ qmax

qmin

· · ·
∫ qmax

qmin

A(qi)e
−βV (qi)dq3N . (8.92)

Hence

E
(

A(ξi)e−βV (ξi)
)

E
(

e−βV (ξi)
) =

∫ qmax
qmin

A(qi)e−βV (qi)dq3N

∫ qmax
qmin

e−βV (qi)dq3N
≈ A (8.93)

is an approximation to the average of A(q), if the range of the qi is sufficiently large.
However, many of the samples will have small weight and contribute only little.

8.4.2 Importance Sampling

Let us try to sample preferentially the most important configurations. Choose the
distribution function as

f (q1 · · · q3N) = e−βV (q1···q3N)

∫

e−βV (q1···q3N)
. (8.94)

Now the expectation value of A(q) approximates the thermal average

104 8 Random Numbers and Monte Carlo Methods

E (A(ξ1 · · · ξ3N)) = lim
M→∞

1

M

M
∑

m=1

A(ξ (m)i) =
∫

A(qi)e−βV (qi)dq3N
∫

e−βV (qi)dq3N
= A. (8.95)

The partition function is not needed explicitly.

8.4.3 Metropolis Algorithm

The algorithm by Metropolis [37] can be used to select the necessary configurations.
Starting from an initial configuration q0 = (q(0)1 · · · q(0)3N) a chain of configurations
is generated. Each configuration depends only on its predecessor, hence the config-
urations form a Markov chain.

The transition probabilities (Fig. 8.7)

Wi→ j = P(qi → q j) (8.96)

are chosen to fulfill the condition of detailed balance

Wi→ j

W j→i
= e−β(V (q j)−V (qi)). (8.97)

This is a sufficient condition that the configurations are generated with probabilities
given by their Boltzmann factors. This can be seen from consideration of an ensem-
ble of such Markov chains: Let Nn(qi) denote the number of chains which are in
the configuration qi after n steps. The changes during the following step are

�N (qi) = Nn+1(qi)− Nn(qi) =
∑

q j ∈conf.

Nn(q j)W j→i − Nn(qi)Wi→ j . (8.98)

In thermal equilibrium

W
j i

W
i j

i

j

Fig. 8.7 Principle of detailed balance

8.4 Monte Carlo Method for Thermodynamic Averages 105

Neq(qi) = N0e−βV (qi) (8.99)

and the changes (8.98) vanish:

�N (qi) = N0

∑

q j

e−βV (q j)W j→i − e−βV (qi)Wi→ j

= N0

∑

q j

e−βV (q j)W j→i − e−βV (qi)W j→i e
−β(V (q j)−V (qi))

= 0. (8.100)

A solution of

�N (qi) =
∑

q j ∈ conf.

Nn(q j)W j→i − Nn(qi)Wi→ j = 0 (8.101)

corresponds to a zero eigenvalue of the system of equations

∑

q j

N (q j)W j→i − N (qi)
∑

q j

Wi→ j = λN (qi). (8.102)

One solution of this eigenvalue equation is given by

Neq(q j)

Neq(qi)
= e−β(V (q j)−V (qi)). (8.103)

There may be, however, other solutions. For instance, if not all configurations are
connected by possible transitions and some isolated configurations are occupied
initially.

The Metropolis algorithm consists of the following steps:
(a) choose a new configuration randomly (trial step) with probability

T (qi → qtrial) = T (qtrial → qi)

(b) calculate R = e−βV (qtrial)

e−βV (qi)

(c) if R ≥ 1 the trial step is accepted qi+1 = qtrial
(d) if R < 1 the trial step is accepted only with probability R. Choose a random

number ξ ∈ [0, 1] and the next configuration according to

qi+1 =
{

qtrial if ξ < R
qi if ξ ≥ R

.

The transition probability is the product

Wi→ j = Ti→ j Ai→ j (8.104)

106 8 Random Numbers and Monte Carlo Methods

of the probability Ti→ j to select i → j as a trial step and the probability Ai→ j to
accept the trial step. Now we have

for R ≥ 1 → Ai→ j = 1, A j→i = R−1

for R < 1 → Ai→ j = R, A j→i = 1
. (8.105)

Since Ti→ j = Tj→i , in both cases

Neq(q j)

Neq(qi)
= Wi→ j

W j→i
= Ai→ j

A j→i
= R = e−β(V (q j)−V (qi)). (8.106)

Problems

Problem 8.1 Central Limit Theorem

This computer experiment draws a histogram for the random variable τ , which is
calculated from N random numbers ξ1 · · · ξN :

τ =
∑N

i=1 ξi√
N

The ξi are random numbers with zero mean and unit variance and can be chosen as

(a) ξi = ±1 (coin tossing)
(b) Gaussian random numbers

Investigate how a Gaussian distribution is approached for large N .

Problem 8.2 Nonlinear Optimization

MC methods can be used for nonlinear optimization (traveling salesman problem,
structure optimization, etc.). Consider an energy function depending on a large num-
ber of coordinates

E(q1, q2, · · · , qN) (8.107)

Introduce a fictitious temperature T and generate configurations with probabilities

P(q1 · · · qN) = 1

Z
e−E(q1···qN)/T (8.108)

Slow cooling drives the system into a local minimum. By repeated heating and cool-
ing other local minima can be reached (simulated annealing).

Problems 107

In this computer experiment we try to find the shortest path which visits each of
N = 15 given points. The fictitious Boltzmann factor for a path with total length
L is

e−L/T

Starting from an initial path S = (i1, i2, . . . , iN), n < 5 and p are chosen randomly
and a new path S′ = (i1, . . . , i p−1, i p+n, . . . , i p, i p+n+1, . . . , iN) is generated by
reverting the sub-path

i p · · · i p+n → i p+n · · · i p

Start at high temperature T > L and cool down slowly.

Chapter 9
Eigenvalue Problems

Eigenvalue problems are very common in physics. In many cases1 they involve solu-
tion of a homogeneous system of linear equations

N
∑

j=1

Ai j x j = λxi (9.1)

with a Hermitian (or symmetric, if real) matrix

A ji = A∗
i j . (9.2)

9.1 Direct Solution

For matrices of very small dimension (2, 3) the determinant

det
∣
∣Ai j − λδi j

∣
∣ = 0 (9.3)

can be written explicitly as a polynomial of λ. The roots of this polynomial are the
eigenvalues. The eigenvectors are given by the system of equations

∑

j

(Ai j − λδi j)u j = 0. (9.4)

9.2 Jacobi Method

Any symmetric 2 × 2 matrix can be diagonalized by a rotation of the coordinate
system. Rotation by the angle ϕ corresponds to an orthogonal transformation with
the rotation matrix

1 We do not consider more general eigenvalue problems here.

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_9,
C© Springer-Verlag Berlin Heidelberg 2010

109

110 9 Eigenvalue Problems

R(12) =
(

cosϕ sinϕ
− sinϕ cosϕ

)

(9.5)

giving

(

cosϕ sinϕ
− sinϕ cosϕ

)(

E1 V
V E2

)(

cosϕ − sinϕ
sinϕ cosϕ

)

=

=
(

c2 E1 + s2 E2 − 2csV cs(E1 − E2)+ (c2 − s2)V
cs(E1 − E2)+ (c2 − s2)V s2 E1 + c2 E2 + 2csV

)

(9.6)

which is diagonal if

0 = cs(E1 − E2)+ (c2 − s2)V = E1 − E2

2
sin(2ϕ)+ V cos(2ϕ). (9.7)

Solving for ϕ we find

tan(2ϕ) = 2V

E2 − E1
(9.8)

or

sin(2ϕ) =
2V

E2−E1
√

1 + 4V 2

(E2−E1)
2

. (9.9)

For larger dimension N > 2 the Jacobi method uses the following algorithm:

(1) Look for the dominant non-diagonal element max
i �= j

|Ai j |
(2) Perform a rotation in the (i j)-plane to cancel the element Ãi j of the transformed

matrix Ã = R(i j) · A · R(i j)−1. The corresponding rotation matrix has the form

R(i j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
. . .

c s
. . .

−s c
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9.10)

(3) Repeat (1)–(2) until convergence (if possible).

The sequence of Jacobi rotations gives the overall transformation

9.4 Reduction to a Tridiagonal Matrix 111

RAR−1 = · · · R2 R1 AR−1
1 R−1

2 · · · =
⎛

⎜
⎝

λ1
. . .

λN

⎞

⎟
⎠ . (9.11)

Hence

AR−1 = R−1

⎛

⎜
⎝

λ1
. . .

λN

⎞

⎟
⎠ (9.12)

and the column vectors of R−1 = (v1, v2, . . . , vN) are the eigenvectors of A:

A (v1, v2, . . . , vN) = (λ1v1, λ2v2, . . . , λN vN) (9.13)

9.3 Tridiagonal Matrices

The characteristic polynomial of a tridiagonal matrix

PA(λ) = det

∣
∣
∣
∣
∣
∣
∣
∣
∣

A11 − λ A12
A21 A22 − λ

. . . AN−1N

AN N−1 AN N − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

(9.14)

can be calculated recursively:

P1(λ) = A11 − λ

P2(λ) = (A22 − λ)P1(λ)− A2
12

...

PN (λ) = (AN N − λ)PN−1(λ)− A2
N N−1 PN−2(λ). (9.15)

Eigenvalues and eigenvectors can be obtained, for instance, with the Newton–
Raphson method.

9.4 Reduction to a Tridiagonal Matrix

Any symmetric matrix can be transformed to a tridiagonal matrix by a series of
Householder transformations (Fig. 9.1) which have the form2

2 uut is the outer product or matrix product of two vectors.

112 9 Eigenvalue Problems

u

u r

r

r−
2u(ur)

|u|2

lu|

Fig. 9.1 Householder transformation. Geometrically the Householder transformation (9.16) is a
mirror operation with respect to a plane with normal vector u/|u|

A′ = PAP with P = PT = 1 − 2
uuT

|u|2 . (9.16)

The following orthogonal transformation P1 brings the first row and column to
tridiagonal form. We divide the matrix A according to

A =
(

A11 αT

α Arest

)

(9.17)

with the N − 1 dimensional vector

α =
⎛

⎜
⎝

A12
...

A1n

⎞

⎟
⎠ . (9.18)

Now let

u =

⎛

⎜
⎜
⎜
⎝

0
A12 + λ

...

A1N

⎞

⎟
⎟
⎟
⎠

=
(

0
α

)

+ λe(2) with e(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (9.19)

Then

|u|2 = |α|2 + λ2 + 2λA12 (9.20)

and

uT
(

A11
α

)

= |α|2 + λA12. (9.21)

9.4 Reduction to a Tridiagonal Matrix 113

The first row of A is transformed by multiplication with P1 according to

P1

(

A11
α

)

=
(

A11
α

)

− 2
|α|2 + λA12

|α|2 + λ2 + 2λA12

[(

0
α

)

+ λe(2)
]

. (9.22)

The elements number 3 . . . N are eliminated if we chose3

λ = ±|α| (9.23)

because then

2
|α|2 + λA12

|α|2 + λ2 + 2λA12
= 2

|α|2 ± |α|A12

|α|2 + |α|2 ± 2|α|A12
= 1 (9.24)

and

P1

(

A11
α

)

=
(

A11
α

)

−
(

0
α

)

− λe(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A11
∓|α|

0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (9.25)

Finally we have

A(2) = P1 AP1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A(2)12 0 · · · 0

A(2)12 A(2)22 A(2)23 · · · A(2)2N

0 A(2)23
. . . A(2)3N

...
...

. . .
...

0 A(2)2N A(2)3N · · · A(2)N N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9.26)

as desired.
For the next step we chose

α =
⎛

⎜
⎝

A(2)22
...

A(2)2N

⎞

⎟
⎠ , u =

⎛

⎝

0
0
α

⎞

⎠± |α|e(3) (9.27)

to eliminate the elements A24 . . . A2N . Note that P2 does not change the first row
and column of A(2) and therefore

3 To avoid numerical extinction we chose the sign to be that of A12.

114 9 Eigenvalue Problems

A(3) = P2 A(2)P2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A(2)12 0 · · · · · · 0

A(2)12 A(2)22 A(3)23 0 · · · 0

0 A(3)23 A(3)33 · · · · · · A(3)3N
... 0

...
...

...
...

...
...

0 0 A(3)3N · · · · · · A(3)N N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9.28)

After N − 1 transformations finally a tridiagonal matrix is obtained.

9.5 Large Matrices

Special algorithms are available for matrices of very large dimension to calculate
a small number of eigenvalues and eigenvectors. The famous Lanczos method [38]
diagonalizes the matrix in a subspace which is constructed from the vectors

x0, Ax0, A2x0, . . . , AN x0 (9.29)

which, starting from an initial normalized guess vector x0, are orthonormalized to
obtain a tridiagonal matrix:

x1 = Ax0 − (x0 Ax0)x0

|Ax0 − (x0 Ax0)x0| = Ax0 − a0x0

b0

x2 = Ax1 − b0x0 − (x1 Ax1)x1

|Ax1 − b0x0 − (x1 Ax1)x1| = Ax1 − b0x0 − a1x1

b1

...

xN = AxN−1 − bN−2xN−2 − (xN−1 AxN−1)xN−1

|AxN−1 − bN−2xN−2 − (xN−1 AxN−1)xN−1|

= AxN−1 − bN−2xN−2 − aN−1xN−1

bN−1
= rN−1

bN−1
. (9.30)

This series is truncated by setting

aN = (xN AxN) (9.31)

and neglecting

rN = AxN − bN−1xN−1 − aN xN . (9.32)

Within the subspace of the x1 · · · xN the matrix A is represented by the tridiagonal
matrix

Problems 115

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 b0
b0 a1 b1

. . .
. . .

. . . aN−1 bN−1
bN−1 aN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9.33)

which can be diagonalized with standard methods. The whole method can be iter-
ated using an eigenvector of T as the new starting vector and increasing N until the
desired accuracy is achieved. The main advantage of the Lanczos method is that the
matrix A will not be stored in memory. It is sufficient to calculate scalar products
with A.

Problems

Problem 9.1 Computer Experiment: Disorder in a Tight-Binding
Model

We consider a two-dimensional lattice of interacting particles. Pairs of nearest
neighbors have an interaction V and the diagonal energies are chosen from a
Gaussian distribution

P(E) = 1

�
√

2π
e−E2/2�2

The wave function of the system is given by a linear combination

ψ =
∑

i j

Ci jψi j

where on each particle (i, j) one basis functionψi j is located. The nonzero elements
of the interaction matrix are given by

H(i j |i j) = Ei j

H(i j |i ± 1, j) = H(i j |i, j ± 1) = V

The matrix is numerically diagonalized and the amplitudes Ci j of the lowest state
are shown as circles located at the grid points. As a measure of the degree of local-
ization the quantity

∑

i j

|Ci j |4

is evaluated. Explore the influence of coupling V and disorder �.

Chapter 10
Data Fitting

Often a set of data points have to be fitted by a continuous function, either to obtain
approximate function values in between the data points or to describe a functional
relationship between two or more variables by a smooth curve, i.e., to fit a certain
model to the data. If uncertainties of the data are negligibly small, an exact fit is
possible, for instance, with polynomials, spline functions or trigonometric functions
(Chap. 2). If the uncertainties are considerable, a curve has to be constructed that
fits the data points approximately. Consider a two-dimensional data set

(xi , yi) i = 1 . . . N (10.1)

and a model function

f (x, a1 . . . am) m ≤ N (10.2)

which depends on the variable x and m ≤ N additional parameters a j . The errors
of the fitting procedure are given by the residuals

ri = yi − f (xi , a1 . . . am). (10.3)

The parameters a j have to be determined such that the overall error is minimized,
which in most practical cases is measured by the mean square difference1

S(a1 . . . am) = 1

N

N
∑

i=1

r2
i . (10.4)

10.1 Least Square Fit

A (local) minimum of (10.4) corresponds to a stationary point with zero gradient.
For m model parameters there are m, generally nonlinear, equations which have to
be solved. From the general condition

1 Minimization of the sum of absolute errors
∑ |ri |is much more complicated.

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_10,
C© Springer-Verlag Berlin Heidelberg 2010

117

118 10 Data Fitting

∂S

∂a j
= 0 j = 1 . . .m (10.5)

we find

N
∑

i=1

ri
∂ f (xi , a1 . . . am)

∂a j
= 0. (10.6)

In principle, the methods discussed in (6.2) are applicable. For instance, the
Newton–Raphson method starts from a suitable initial guess of parameters

(a0
1 . . . a

0
m) (10.7)

and tries to improve the fit iteratively by making small changes to the parameters

an+1
j = an

j +�an
j . (10.8)

The changes �an
j are determined approximately by expanding the model function

f (xi , an+1
1 . . . an+1

m) = f (xi , an
1 . . . a

n
m)+

m
∑

j=1

∂ f (xi , an
1 . . . a

n
m)

∂a j
�an

j + . . . (10.9)

to approximate the new residuals by

rn+1
i = rn

i −
m
∑

j=1

∂ f (xi , an
1 . . . a

n
m)

∂a j
�an

j (10.10)

and the derivatives by

∂rn
i

∂a j
= −∂ f (xi , an

1 . . . a
n
m)

∂a j
. (10.11)

Equation (10.6) now becomes

N
∑

i=1

⎛

⎝rn
i −

m
∑

j=1

∂ f (xi)

∂a j
�an

j

⎞

⎠
∂ f (xi)

∂ak
(10.12)

which is a system of m linear equations for the�a j , the so-called normal equations:

∑

i j

∂ f (xi)

∂a j

∂ f (xi)

∂ak
�an

j =
N
∑

i=1

rn
i
∂ f (xi)

∂ak
. (10.13)

10.1 Least Square Fit 119

With

Akj = 1

n

N
∑

i=1

∂ f (xi)

∂ak

∂ f (xi)

∂a j
(10.14)

bk = 1

n

N
∑

i=1

yi
∂ f (xi)

∂ak
(10.15)

the normal equations can be written as
p
∑

j=1

AkjΔa j = bk . (10.16)

10.1.1 Linear Least Square Fit

Especially important are model functions which depend linearly on the parameters

f (x, a1 . . . am) =
m
∑

j=1

a j f j (x). (10.17)

The derivatives are simply
∂ f (xi)

∂a j
= f j (xi). (10.18)

The minimum of (10.4) is now determined by the normal equations

1

n

p
∑

j=1

n
∑

i=1

fk(xi) f j (xi)a j = 1

n

∑

yi fk(xi) (10.19)

which become
p
∑

j=1

Akj a j = bk (10.20)

with

Akj = 1

n

n
∑

i=1

fk(xi) f j (xi) (10.21)

bk = 1

n

n
∑

i=1

yi fk(xi). (10.22)

Example: Linear Regression

For a linear fit function

120 10 Data Fitting

f (x) = a0 + a1x (10.23)

we have

S = 1

n

n
∑

i=1

(yi − a0 − a1xi)
2 (10.24)

and we have to solve the equations

0 = ∂S

∂a0
= 1

n

n
∑

i=1

(yi − a0 − a1xi) = ȳ − a0 − a1 x̄

0 = ∂S

∂a1
= 1

n

n
∑

i=1

(yi − a0 − a1xi)xi = yx − a0 x̄ − a1x2 (10.25)

which can be done in this simple case using determinants:

a0 =

∣
∣
∣
∣

ȳ x̄

xy x2

∣
∣
∣
∣

∣
∣
∣
∣

1 x̄

x̄ x2

∣
∣
∣
∣

= ȳx2 − x̄ xy

x2 − x̄2
(10.26)

a1 =

∣
∣
∣
∣

1 ȳ
x̄ xy

∣
∣
∣
∣

∣
∣
∣
∣

1 x̄

x̄ x2

∣
∣
∣
∣

= xy − x̄ ȳ

x2 − x̄2
. (10.27)

10.1.2 Least Square Fit Using Orthogonalization

The problem to solve the linearized problem (10.12) can be formulated with the
definitions

x =
⎛

⎜
⎝

a1
...

am

⎞

⎟
⎠ b =

⎛

⎜
⎝

y1
...

yN

⎞

⎟
⎠ (10.28)

and the N × m matrix

A =
⎛

⎜
⎝

a11 · · · a1m
...

. . .
...

aN1 · · · aNm

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

∂ f (x1)
∂a1

· · · ∂ f (x1)
∂am

...
. . .

...
∂ f (xN)
∂a1

· · · ∂ f (xN)
∂am

⎞

⎟
⎟
⎠

(10.29)

as the search for the minimum of

S = |Ax − b| =
√

(Ax − b)T(Ax − b). (10.30)

10.1 Least Square Fit 121

In the last section we calculated

∂S2

∂x
= AT(Ax − b)+ (Ax − b)T A = 2AT Ax − 2ATb (10.31)

and solved the system of linear equations2

AT Ax = ATb. (10.32)

This method can become numerically unstable. Alternatively we can use orthogo-
nalization of the m column vectors ak of A to have

A = (a1 · · · am) = (q1 · · · qm)

⎛

⎜
⎜
⎜
⎝

r11 r12 · · · r1m

r22 · · · r2m
. . .

...

rmm

⎞

⎟
⎟
⎟
⎠
, (10.33)

where ak and qk are now vectors of dimension N . Since the qk are orthonormal
qt

i qk = δik we have

⎛

⎜
⎝

qT
1
...

qT
m

⎞

⎟
⎠ A =

⎛

⎜
⎜
⎜
⎝

r11 r12 · · · r1m

r22 · · · r2m
. . .

...

rmm

⎞

⎟
⎟
⎟
⎠
. (10.34)

The qk can be augmented by another (N − m) vectors to provide an orthonormal
basis of Rn . These will not be needed explicitly. They are orthogonal to the first m
vectors and hence to the column vectors of A. All vectors qk together form a unitary
matrix

Q = (q1 · · · qm qm+1 · · · qN
)

(10.35)

and we can define the transformation of the matrix A:

Ã =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

qT
1
...

qT
m

qT
m+1
...

qT
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(a1 · · · am) = Q H A =
(

R
0

)

R =
⎛

⎜
⎝

r11 · · · r1N
. . .

...

rN N

⎞

⎟
⎠ . (10.36)

2 Also known as normal equations.

122 10 Data Fitting

The vector b transforms as

b̃ = Q H b =
(

bu

bl

)

bu =
⎛

⎜
⎝

qT
1
...

qT
m

⎞

⎟
⎠b bl =

⎛

⎜
⎝

qT
m+1
...

qT
n

⎞

⎟
⎠b. (10.37)

Since the norm of a vector is not changed by unitary transformations

|b − Ax| =
√

(bu − Rx)2 + b2
l (10.38)

which is minimized if

Rx = bu . (10.39)

The error of the fit is given by

|b − Ax| = |bl |. (10.40)

Example: Linear Regression

Consider again the fit function

f (x) = a0 + a1x (10.41)

for the measured data (xi , yi). The fit problem is to determine

∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎝

1 x1
...
...

1 xN

⎞

⎟
⎠

(

a0
a1

)

−
⎛

⎜
⎝

y1
...

yN

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

= min. (10.42)

Orthogonalization of the column vectors

a1 =
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ a2 =

⎛

⎜
⎝

x1
...

xN

⎞

⎟
⎠ (10.43)

with the Schmidt method gives

r11 = √
N (10.44)

q1 =

⎛

⎜
⎜
⎝

1√
N
...
1√
N

⎞

⎟
⎟
⎠

(10.45)

10.2 Singular Value Decomposition 123

r12 = 1√
N

N
∑

i=1

xi = √
N x̄ (10.46)

b2 = (xi − x̄) (10.47)

r22 =
√
∑

(xi − x̄)2 = √
Nσx (10.48)

q2 =
(

xi − x̄√
Nσx

)

. (10.49)

Transformation of the right-hand side gives

(

qt
1

qt
2

)

⎛

⎜
⎝

y1
...

yN

⎞

⎟
⎠ =

⎛

⎝

√
N ȳ

√
N

yx − x̄ ȳ

σx

⎞

⎠ (10.50)

and we have to solve the system of linear equations

Rx =
(√

N
√

N x̄
0

√
Nσ

)(

a0
a1

)

=
⎛

⎝

√
N ȳ

√
N

yx − x̄ ȳ

σx

⎞

⎠ . (10.51)

The solution

a1 = yx/x̄ ȳ

(x − x̄)2
(10.52)

a0 = ȳ − x̄a1 = ȳx2 − x̄ xy

(x − x̄)2
(10.53)

coincides with the earlier results since

(x − x̄)2 = x2 − x̄2. (10.54)

10.2 Singular Value Decomposition

Computational physics often has to deal with large amounts of data. The method of
singular value decomposition is very useful to reduce redundancies and to extract
the most important information from data. It has been used, for instance, for image
compression [39], it is very useful to extract the essential dynamics from molecular
dynamics simulations [40, 41], and it is an essential tool of bio-informatics [42]. The
general idea is to approximate an m × n matrix of data of rank r (m ≥ n ≥ r) by a
matrix with smaller rank l < r . This can be formally achieved by the decomposition

124 10 Data Fitting

X = U S V T

⎛

⎜
⎝

x11 . . . x1n
...

. . .
...

xm1 . . . xmn

⎞

⎟
⎠

=
⎛

⎜
⎝

u11 . . . u1n
...

. . .
...

um1 . . . umn

⎞

⎟
⎠

⎛

⎜
⎝

s1
. . .

sn

⎞

⎟
⎠

⎛

⎜
⎝

v11 . . . vn1
...
. . .

...

v1n . . . vnn

⎞

⎟
⎠ , (10.55)

where U is an m × n matrix, S is an n × n diagonal matrix, and V is another
n × n matrix. The column vectors of U are called the left singular vectors and are
orthonormal

m
∑

i=1

ui,r ui,s = δr,s (10.56)

as well as the column vectors of V which are called the right singular vectors

n
∑

i=1

vi,rvi,s = δr,s . (10.57)

The diagonal elements of S are called the singular values. For a square n × n matrix
Eq. (10.55) is equivalent to diagonalization:

X = U SU T. (10.58)

Component wise (10.55) reads3

xr,s =
r
∑

i=1

ur,i sivs,i . (10.59)

Approximations to X of lower rank are obtained by reducing the sum to only the
largest singular values. It can be shown that the matrix of rank l ≤ r

x (l)r,s =
l
∑

i=1

ur,i sivs,i (10.60)

is the rank-l matrix which minimizes

3 The singular values are ordered in descending order and the last (n − r) singular values are zero.

10.2 Singular Value Decomposition 125

∑

r,s

|xr,s − x (l)r,s |2. (10.61)

One way to perform the singular value decomposition is to consider

XT X = (V SU T)(U SV T) = V S2V T. (10.62)

Hence V and the singular values can be obtained from diagonalization of the square
n × n matrix:

XT X = V D V T, (10.63)

where the (non-negative) eigenvalues di are ordered in descending order. The sin-
gular values are

S = D1/2 =
⎛

⎜
⎝

√
d1

. . . √
dn

⎞

⎟
⎠ . (10.64)

Now we have to determine a matrix U such that

X = U SV T (10.65)

X V = U S. (10.66)

We have to be careful since some of the si might be zero. Therefore we consider
only the nonzero singular values and retain from the equation

⎛

⎜
⎝

x11 . . . x1n
...

. . .
...

xm1 . . . xmn

⎞

⎟
⎠

⎛

⎜
⎝

v11 . . . v1n
...
. . .

...

vn1 . . . vnn

⎞

⎟
⎠

=
⎛

⎜
⎝

u11 . . . u1n
...

. . .
...

um1 . . . umn

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1
. . .

sr

0r+1
. . .

0n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10.67)

only the first r columns of the matrix U

⎛

⎜
⎝

xv11 . . . xv1r
...

. . .
...

xvm1 . . . xvmr

⎞

⎟
⎠ =

⎛

⎜
⎝

u11 . . . u1r
...

. . .
...

um1 . . . umr

⎞

⎟
⎠

⎛

⎜
⎝

s1
. . .

sr

⎞

⎟
⎠ (10.68)

126 10 Data Fitting

which can be solved by

⎛

⎜
⎝

u11 . . . u1r
...

. . .
...

um1 . . . umr

⎞

⎟
⎠ =

⎛

⎜
⎝

xv11 . . . xv1n
...

. . .
...

xvm1 . . . xvmn

⎞

⎟
⎠

⎛

⎜
⎝

s−1
1

. . .

s−1
r

⎞

⎟
⎠ . (10.69)

The remaining column vectors of U have to be orthogonal to the first r columns but
are otherwise arbitrary. They can be obtained, for instance, by the Gram–Schmidt
method.

Example:

Consider the data matrix

XT =
(

1 2 3 4 5

1 2.1 3.05 3.9 4.8

)

. (10.70)

Diagonalization of

XT X =
(

55 53.95
53.95 52.9625

)

gives the eigenvalues

d1 = 107.94 d2 = 0.0216 (10.71)

and the eigenvectors

V =
(−0.714 0.7004

−0.7004 −0.714

)

. (10.72)

Since there are no zero singular values we find

U = X V S−1

=

⎛

⎜
⎜
⎜
⎜
⎝

−1.414 −0.013
−2.898 −0.098
−4.277 −0.076
−5.587 0.018
−6.931 0.076

⎞

⎟
⎟
⎟
⎟
⎠

(

10.39
0.147

)−1

=

⎛

⎜
⎜
⎜
⎜
⎝

−0.136 −0.091
−0.279 −0.667
−0.412 −0.515
−0.538 0.122
−0.667 0.517

⎞

⎟
⎟
⎟
⎟
⎠

. (10.73)

This gives the decomposition4

4 ui vT
i is the outer or matrix product of two vectors.

Problems 127

X = (u1 u2
)
(

s1
s2

)(

vT
1

vT
2

)

= s1u1vT
1 + s2u2vT

2

=

⎛

⎜
⎜
⎜
⎜
⎝

1.009 0.990
2.069 2.030
3.053 2.996
3.987 3.913
4.947 4.854

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

−0.009 0.0095
−0.069 0.0700
−0.053 0.0541
0.013 −0.0128
0.053 −0.0542

⎞

⎟
⎟
⎟
⎟
⎠

. (10.74)

If we neglect the second contribution corresponding to the small singular value s2
we have an approximation of the data matrix by a rank-1 matrix. If the column
vectors of the data matrix are denoted as x and y they are approximated by

x = s1v11u1 y = s1v21u1 (10.75)

which is a linear relationship between x and y (Fig. 10.1)

1 2 3 4 5
x

0

1

2

3

4

5

y

Fig. 10.1 Linear approximation by singular value decomposition. The data set (10.70) is shown as
circles. The linear approximation which is obtained by retaining only the dominant singular value
is shown by the squares and the solid line

Problems

Problem 10.1 Least Square Fit

At temperatures far below Debye and Fermi temperatures the specific heat of a metal
contains contributions from electrons and lattice vibrations and can be described by

C(T) = aT + bT 3

128 10 Data Fitting

The computer experiment generates data with a random relative error

Tj = T0 + j�t

C j = (a0Tj + b0T 3
j)(1 + εj)

and minimizes the sum of squares

S = 1

n

n
∑

j=1

(C j − aTi − bT 3
i)

2

Compare the “true values” a0, b0 with the fitted values a, b.

Chapter 11
Equations of Motion

Simulation of a physical system means to calculate the time evolution of a model
system in many cases. We consider a large class of models which can be described
by a first-order differential equation

dY

dt
= f (Y (t), t), (11.1)

where Y is a state vector which contains all information about the system.

11.1 State Vector of a Physical System

In the following we consider models for physical systems which all have in common
that the state of the system can be described by specifying the position within a
vector space (possibly of very high dimension). This state vector will be denoted
by Y . For a classical N -particle system, for instance, the state is given by the position
in phase space or equivalently by specifying position and velocity for all of the N
particles

Y = (r1, v1, . . . , rN , vN) . (11.2)

The state of a quantum system has to be expanded with respect to some finite
basis to become numerically tractable. The elements of the state vector then are the
expansion coefficients of the wave function

|�〉 =
N
∑

s=1

Cs |�s〉 (11.3)

Y = (C1, . . . ,CN) . (11.4)

If the density matrix formalism is used to take the average over a thermodynamic
ensemble or to trace out the degrees of freedom of a heat bath, the state vector
instead is composed of the elements of the density matrix

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_11,
C© Springer-Verlag Berlin Heidelberg 2010

129

130 11 Equations of Motion

ρ =
N
∑

s=1

N
∑

s′=1

ρss′ |�s〉〈�s′ | =
N
∑

s=1

N
∑

s′=1

C∗
s′Cs |�s〉〈�s′ | (11.5)

Y = (ρ11 · · · ρ1N , ρ21 · · · ρ2N , . . . , ρN1 · · · ρN N) . (11.6)

The concept of a state vector is not restricted to a finite number of degrees of free-
dom. For instance, a diffusive system can be described by the particle concentrations
as a function of the coordinate, i.e., the elements of the state vector are now indexed
by the continuous variable x

Y = (c1(x), . . . cM (x)) . (11.7)

A quantum particle moving in an external potential can be described by the ampli-
tude of the wave function

Y = (�(x)). (11.8)

Numerical treatment of continuous systems is not feasible since even the ultimate
high-end computer can only handle a finite number of data in finite time. Therefore
some discretization is necessary in the simplest case by introducing a grid of evenly
spaced points

xi jk = (i�x, j�x, k�x) (11.9)

or in more sophisticated cases by expanding the continuous function with respect to
a finite set of basic functions (so-called finite elements).

11.2 Time Evolution of the State Vector

We assume that all information about the system is included in the state vector. Then
the simplest equation to describe the time evolution of the system gives the change
of the state vector

dY

dt
= f (Y, t) (11.10)

as a function of the state vector (or more generally a functional in the case of a
continuous system). Explicit time dependence has to be considered, for instance, to
describe the influence of an external time-dependent field.

Some examples will show the universality of this equation of motion:

• N -particle system

The motion of N interacting particles is described by

11.2 Time Evolution of the State Vector 131

dY

dt
= (ṙ1, v̇1 · · ·) = (v1, a1 · · ·) , (11.11)

where the acceleration of a particle is given by the total force acting upon this parti-
cle and thus depends on all the coordinates and eventually time (velocity dependent
forces could also be considered but are outside the scope of this book):

ai = Fi (r1 · · · rN , t)

mi
. (11.12)

• Diffusion

Heat transport and other diffusive processes are described by the diffusion equation

∂ f

∂t
= D� f + S(x, t) (11.13)

which in its simplest spatially discretized version for one-dimensional diffusion
reads

∂ f (xi)

∂t
= D

�x2 (f (xi+1)+ f (xi−1)− 2 f (xi))+ S(xi , t). (11.14)

• Waves

Consider the simple one-dimensional wave equation

∂2 f

∂t2
= c2 ∂

2 f

∂x2
(11.15)

which by introducing the velocity g(x) = ∂

∂t
f (x) as an independent variable can

be rewritten as

∂

∂t
(f (x), g(x)) =

(

g(x), c2 ∂2

∂x2
f (x)

)

. (11.16)

Discretization of space gives

∂

∂t
(f (xi), g(xi)) =

(

g(xi),
c2

�x2 (f (xi+1)+ f (xi−1)− 2 f (xi))

)

. (11.17)

• Two-level quantum system (TLS)

The Schrödinger equation for a two-level system (for instance, a spin-1/2 particle in
a magnetic field) reads

d

dt

(

C1
C2

)

=
(

H11(t) H12(t)
H21(t) H22(t)

)(

C1
C2

)

. (11.18)

132 11 Equations of Motion

Our goal is to calculate the time evolution of the state vector Y (t) numerically.
For obvious reasons this can be done only for a finite number of values of t and we
have to introduce a grid of discrete times tn which for simplicity are assumed to be
equally spaced1:

tn+1 = tn +�t. (11.19)

Advancing time by one step involves the calculation of the integral

Y (tn+1)− Y (tn) =
∫ tn+1

tn
f (Y (t ′), t ′)dt ′ (11.20)

which can be a formidable task since f (Y (t), t) depends on time via the time depen-
dence of all the elements of Y (t).

11.3 Explicit Forward Euler Method

The simplest method which is often discussed in elementary physics textbooks
approximates the integrand by its value at the lower bound (Fig. 11.1):

Y (tn+1)− Y (tn) ≈ f (Y (tn), tn)�t. (11.21)

The truncation error can be estimated from a Taylor series expansion

Y (tn+1)− Y (tn) = �t
dY

dt
(tn)+ �t2

2

d2Y

dt2
(tn)+ · · ·

= �t f (Y (tn), tn)+ O(�t2). (11.22)

Fig. 11.1 Explicit Euler
method

f(t)

tn tn+1

t

f(tn)

1 Control of the step width will be discussed later.

11.3 Explicit Forward Euler Method 133

The explicit Euler method has several serious drawbacks

• Low error order

Suppose you want to integrate from the initial time t0 to the final time t0 + T . For a
time step of �t you have to perform N = T/�t steps. Assuming comparable error
contributions from all steps the overall error scales as N�t2 = O(�t). The error
gets smaller as the time step is reduced but it may be necessary to use very small �t
to obtain meaningful results.

• Loss of orthogonality and normalization

The simple Euler method can produce systematic errors which are very inconvenient
if you want, for instance, to calculate the orbits of a planetary system. This can be
most easily seen from a very simple example. Try to integrate the following equation
of motion (see example 1.5):

dz

dt
= iωz. (11.23)

The exact solution is obviously given by a circular orbit in the complex plane:

z = z0eiωt (11.24)

|z| = |z0| = const. (11.25)

Application of the Euler method gives

z(tn+1) = z(tn)+ iω�t z(tn) = (1 + iω�t)z(tn) (11.26)

and you find immediately

|z(tn)| =
√

1 + ω2�t2 |z(tn−1)| =
(

1 + ω2�t2
)n/2 |z(t0)| (11.27)

which shows that the radius increases continually even for the smallest time step
possible (Fig. 11.2).

The same kind of error appears if you solve the Schrödinger equation for a parti-
cle in an external potential or if you calculate the rotational motion of a rigid body.
For the N -body system it leads to a violation of the conservation of phase space

Fig. 11.2 Systematic errors
of the Euler method

vndttn+1

tn

134 11 Equations of Motion

volume. This can introduce an additional sensitivity of the calculated results to the
initial conditions. Consider a harmonic oscillator with the equation of motion

d

dt

(

x(t)
v(t)

)

=
(

v(t)
−ω2x(t)

)

. (11.28)

Application of the explicit Euler method gives
(

x(t +�t)
v(t +�t)

)

=
(

x(t)
v(t)

)

+
(

v(t)
−ω2x(t)

)

�t. (11.29)

The change of the phase space volume is given by the Jacobi determinant

J =
∣
∣
∣
∣

∂(x(t +�t), v(t +�t))

∂(x(t), v(t))

∣
∣
∣
∣
=
∣
∣
∣
∣

1 �t
−ω2�t 1

∣
∣
∣
∣
= 1 + (ω�t)2. (11.30)

In this case the phase space volume increases continuously (Fig. 11.3).

Fig. 11.3 Time evolution of
the phase space volume

p

p
0

x0 x

Δp + p
0

x0 + Δx

11.4 Implicit Backward Euler Method

Alternatively let us make a step backward in time (Fig. 11.4)

Y (tn)− Y (tn+1) ≈ − f (Y (tn+1), tn+1)�t (11.31)

which can be written as

Y (tn+1) ≈ Y (tn)+ f (Y (tn+1), tn+1)�t. (11.32)

Taylor series expansion gives

Y (tn) = Y (tn+1)− d

dt
Y (tn+1)�t + d2

dt2
Y (tn+1)

�t2

2
+ · · · (11.33)

11.5 Improved Euler Methods 135

Fig. 11.4 Implicit backward
Euler method

f(t)

t
tn+1

f(tn+1)

tn

which shows that the error order again is O(�t2). The implicit method is sometimes
used to avoid the inherent instability of the explicit method. For the examples in
Sect. 11.3 it shows the opposite behavior. The radius of the circular orbit and the
phase space volume decrease in time. The gradient at future time has to be estimated
before an implicit step can be performed.

11.5 Improved Euler Methods

The quality of the approximation can be improved significantly by employing the
midpoint rule (Fig. 11.5)

Y (tn+1)− Y (tn) ≈ f

(

Y

(

t + �t

2

)

, tn + �t

2

)

�t. (11.34)

The error is smaller by one order of �t :

Y (tn)+ f

(

Y

(

t + �t

2

)

, tn + �t

2

)

�t

= Y (tn)+
(

dY

dt
(tn)+ �t

2

d2Y

dt2
(tn)+ · · ·

)

�t

= Y (tn +�t)+ O(�t3). (11.35)

Fig. 11.5 Improved Euler
method

f(t)

t

Δf(tn+)2
t

tn+1tn

136 11 Equations of Motion

The future value Y

(

t + �t

2

)

can be obtained by two different approaches:

• Predictor–corrector method

Since f

(

Y

(

t + �t

2

)

, tn + �t

2

)

is multiplied with �t , it is sufficient to use an

approximation with lower error order. Even the explicit Euler step is sufficient.
Together the following algorithm results:

Predictor step: Y (p) = Y (tn)+ �t

2
f (Y (tn), tn)

Corrector step: Y (tn +�t) = Y (tn)+�t f

(

Y (p), tn + �t

2

) (11.36)

• Averaging (Heun method)

The average of f (Y (tn), tn) and f (Y (tn +�t), t +�t) (Fig. 11.6) is another approx-
imation to the midpoint value of comparable quality.

Expansion around tn +�t/2 gives

1

2
(f (Y (tn), tn)+ f (Y (tn +�t), t +�t))

= f

(

Y

(

tn + �t

2

)

, tn + �t

2

)

+ O(�t2). (11.37)

Inserting the average in Eq. (11.34) gives the following algorithm, which is also
known as improved polygon method and corresponds to the trapezoidal rule for the
integral (4.9) or to a combination of explicit and implicit Euler step:

Y (tn +�t) = Y (tn)+ �t

2
(f (Y (tn), tn)+ f (Y (tn +�t), t +�t)) . (11.38)

In the special case of a linear function f (Y (t), t) = F Y (t) (for instance, rotational
motion or diffusion) this can be solved formally by

Fig. 11.6 Improved polygon
(or Heun) method

t

f(t)

tn+1tn

f(tn)

f(tn + Δt)

11.6 Taylor Series Methods 137

Y (tn +�t) =
(

1 − �t

2
F

)−1 (

1 + �t

2
F

)

Y (tn). (11.39)

Numerically it is not necessary to perform the matrix inversion. Instead a linear
system of equations is solved:

(

1 − �t

2
F

)

Y (tn +�t) =
(

1 + �t

2
F

)

Y (tn). (11.40)

In certain cases the Heun method conserves the norm of the state vector, for instance,
if F has only imaginary Eigenvalues (as for the one-dimensional Schrödinger equa-
tion, see page 280).

In the general case a predictor step has to be made to estimate the state vector at
tn +�t before the Heun expression (11.38) can be evaluated:

Y (p) = Y (tn)+�t f (Y (tn), tn). (11.41)

11.6 Taylor Series Methods

If higher derivatives of f are easily available, then higher order methods can be
obtained from the Taylor series expansion

Y (tn +�t) = Y (tn)+�t f (Y (tn), tn)+ �t2

2

d f (Y (tn), tn)

dt
+ · · · . (11.42)

The total time derivative can be expressed as

d f

dt
= ∂ f

∂Y

dY

dt
+ ∂ f

∂t
= f ′ f + ḟ , (11.43)

where the partial derivatives have been abbreviated in the usual way by
∂ f

∂t
= ḟ

and
∂ f

∂Y
= f ′. Higher derivatives are given by

d2 f

dt2
= f ′′ f 2 + f ′2 f + 2 ḟ ′ f + f̈ (11.44)

d3 f

dt3
= ∂3 f

∂t3
+ f ′′′ f 3 + 3 ḟ ′′ f 2 + f̈ f ′ + 3 f ′′ ḟ f

+ 3 ḟ ′ + 4 f ′′ f ′ f 2 + 5 ḟ ′ f ′ f + f ′3 f + f ′2 ḟ . (11.45)

138 11 Equations of Motion

11.7 Runge–Kutta Methods

If higher derivatives are not so easily available, they can be approximated by numer-
ical differences. f is evaluated at several trial points and the results are combined to
reproduce the Taylor series as close as possible [43].

11.7.1 Second-Order Runge–Kutta Method

Let us begin with two function values. As common in the literature we will denote
the function values as K1, K2, From the gradient at time tn

K1 = fn = f (Y (tn), tn) (11.46)

we estimate the state vector at time tn +�t as

Y (tn +�t) ≈ �t K1. (11.47)

The gradient at time tn +�t is approximately

K2 = f (Y (tn)+�t K1, tn +�t) (11.48)

which has the Taylor series expansion

K2 = fn + (ḟn + f ′
n fn)�t + · · · (11.49)

and application of the trapezoidal rule (4.9) gives the second-order Runge–Kutta
method

Yn+1 = Yn + �t

2
(K1 + K2) (11.50)

which in fact coincides with the improved Euler or Heun method. Taylor series
expansion shows how the combination of K1 and K2 leads to an expression of higher
error order:

Yn+1 = Yn + �t

2
(fn + fn + (ḟn + f ′

n fn)�t + · · ·)

= Yn + fn�t + d fn

dt

�t2

2
+ · · · . (11.51)

11.7.2 Third-Order Runge–Kutta Method

The accuracy can be further improved by calculating one additional function value
at midtime. From Eq. (11.46) we estimate the gradient at midtime by

11.7 Runge–Kutta Methods 139

K2 = f

(

Y (t)+ �t

2
K1, t + �t

2

)

= fn + (ḟn + f ′
n fn)

�t

2
+ (f̈n + f ′′

n f 2
n + 2 ḟ ′

n fn)
�t2

8
+ · · · . (11.52)

The gradient at time tn +�t is then estimated as

K3 = f (Y (tn)+�t (2K2 − K1), tn +�t)

= fn + ḟn�t + f ′
n(2K2 − K1)�t + f̈n

�t2

2

+ f ′′
n
(2K2 − K1)

2�t2

2
+ 2 ḟ ′

n
(2K2 − K1)�t2

2
+ · · · . (11.53)

Inserting the expansion (11.52) gives the leading terms

K3 = fn + (ḟn + f ′
n fn)�t + (2 f ′

n
2 fn + f ′′

n f 2
n + f̈n + 2 f ′

n ḟn + 2 ḟ 2
n)
�t2

2
+ · · · .
(11.54)

Applying Simpson’s rule (4.10) we combine the three gradients to get the third-order
Runge–Kutta method

Yn+1 = Y (tn)+ �t

6
(K1 + 4K2 + K3), (11.55)

where the Taylor series

Yn+1 = Y (tn)+ �t

6

(

6 fn + 3(ḟn + fn f ′
n)�t

+ (f ′
n

2 fn + f ′′
n f 2

n + 2 ḟ ′
n fn + fn + ḟn f ′

n)̈�t2 + · · ·)
= Y (tn +�t)+ O(�t4) (11.56)

recovers the exact Taylor series (11.42) including terms of order O(�t3).

11.7.3 Fourth-Order Runge–Kutta Method

The fourth-order Runge–Kutta method (RK4) is often used because of its robustness
and accuracy. It uses two different approximations for the midpoint

140 11 Equations of Motion

K1 = f (Y (tn), tn)

K2 = f

(

Y (tn)+ K1

2
�t, tn + �t

2

)

K3 = f

(

Y (tn)+ K2

2
�t, tn + �t

2

)

K4 = f (Y (tn)+ K3�t, tn +�t) (11.57)

and Simpson’s rule (4.10) to obtain

Yn+1 = Y (tn)+ �t

6
(K1 + 2K2 + 2K3 + K4) = Y (tn +�t)+ O(�t5). (11.58)

Expansion of the Taylor series is cumbersome but with the help of an algebra pro-
gram one can easily check that the error is of order �t5.

11.8 Quality Control and Adaptive Step-Size Control

For practical applications it is necessary to have an estimate for the local error and
to adjust the step size properly. With the Runge–Kutta method this can be achieved
by a step doubling procedure. We calculate yn+2 first by two steps �t and then by
one step 2�t . This needs 11 function evaluations as compared to 8 for the smaller
step size only (Fig. 11.7). For the fourth order method we estimate the following
errors:

Fig. 11.7 Step doubling with
the fourth-order Runge–Kutta
method

tn+2tn

tn+2tn+1tn

11.9 Extrapolation Methods 141

�
(

Y (�t)
n+2

)

= 2a�t5 (11.59)

�
(

Y (2�t)
n+2

)

= a(2�t)5. (11.60)

The local error can be estimated from

|Y (�t)
n+2 − Y (2�t)

n+2 | = 30|a|�t5 (11.61)

�
(

Y (�t)
n+1

)

= a�t5 = |Y (�t)
n+2 − Y (2�t)

n+2 |
30

. (11.62)

The step size �t can now be adjusted to keep the local error within the desired
limits.

11.9 Extrapolation Methods

Application of the extrapolation method to calculate the integral
∫ tn+1

tn
f (t)dt

produces very accurate results but can also be time consuming. The famous Gragg–
Bulirsch–Stoer method [2] starts from an explicit midpoint rule with a special start-
ing procedure. The interval �t is divided into a sequence of N sub-steps:

h = �t

N
. (11.63)

First a simple Euler step is performed:

u0 = Y (tn)

u1 = u0 + h f (u0, tn) (11.64)

and then the midpoint rule is applied repeatedly to obtain

u j+1 = u j−1 + 2h f (u j , tn + jh) j = 1, 2, . . . , N − 1. (11.65)

Gragg [44] introduced a smoothing procedure to remove oscillations of the leading
error term by defining

v j = 1

4
u j−1 + 1

2
u j + 1

4
u j+1. (11.66)

He showed that both approximations (11.65) and (11.66) have an asymptotic expan-
sion in powers of h2 and are therefore well suited for an extrapolation method. The
modified midpoint method can be summarized as follows:

142 11 Equations of Motion

u0 = Y (tn)

u1 = u0 + h f (u0, tn)

u j+1 = u j−1 + 2h f (u j , tn + jh) j = 1, 2, . . . , N − 1

Y (tn +�t) ≈ 1

2
(uN + uN−1 + h f (uN , tn +�t)) . (11.67)

The number of sub-steps N is increased according to a sequence like

N = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64 · · · N j = 2N j−2 Bulirsch–Stoer sequence
(11.68)

or

N = 2, 4, 6, 8, 10, 12 · · · N j = 2 j Deuflhard sequence. (11.69)

After each successive N is tried, a polynomial extrapolation is attempted. This
extrapolation returns both the extrapolated values and an error estimate. If the error
is still too large then N has to be increased further. A more detailed discussion can
be found in [45, 46].

11.10 Multistep Methods

All methods discussed so far evaluated one or more values of the gradient f (Y (t), t)
only within the interval tn · · · tn +�t . If the state vector changes sufficiently smooth
then multistep methods can be applied. These make use of the gradients from several
steps and improve the accuracy by polynomial interpolation.

11.10.1 Explicit Multistep Methods

The explicit Adams–Bashforth method of order r uses the gradients from the last
r − 1 steps to obtain the polynomial (Fig. 11.8)

Fig. 11.8 Adams–Bashforth
method

f(t)

t
tn+1tn–1 tn

f(tn + Δt)

f(tn – Δt)

f(tn)

11.10 Multistep Methods 143

p(tn) = f (Yn, tn), · · · p(tn−r+1) = f (Yn−r+1, tn−r+1) (11.70)

and to calculate the approximation

Yn+1 − Yn ≈
∫ tn+1

tn
p(t)dt (11.71)

which is generally a linear combination of fn · · · fn−r+1. For example, the Adams–
Bashforth formulas of order 2, 3, 4 are

Yn+1 − Yn = �t

2
(3 fn − fn−1)+ O(�t3)

Yn+1 − Yn = �t

12
(23 fn − 16 fn−1 + 5 fm−2)+ O(�t4)

Yn+1 − Yn = �t

24
(55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3)+ O(�t5). (11.72)

11.10.2 Implicit Multistep Methods

The implicit Adams–Moulton method also uses the yet not known value yn+1 to
obtain the polynomial (Fig. 11.9)

p(tn+1) = fn+1, . . . , p(tn−r+2) = fn−r+2. (11.73)

The corresponding Adams–Moulton formulas of order 2–4 are

Yn+1 − Yn = �t

2
(fn+1 + fn)+ O(�t3)

Yn+1 − Yn = �t

12
(5 fn+1 + 8 fn − fn−1)+ O(�t4)

Yn+1 − Yn = �t

24
(9 fn+1 + 19 fn − 5 fn−1 + fn−2)+ O(�t5). (11.74)

Fig. 11.9 Adams–Moulton
method

f(t)

t
tn+1tn–1 tn

f(tn + Δt)

f(tn – Δt)

f(tn)

144 11 Equations of Motion

11.10.3 Predictor–Corrector Methods

The Adams–Bashforth–Moulton method combines the explicit method as a predic-
tor step to calculate an estimate y p

n+1 with a corrector step using the implicit method
of same order.

Multistep methods need fewer function evaluations. They have to be combined
with other methods (like Runge–Kutta) to start and end properly. A change of the
step size is rather complicated.

11.11 Verlet Methods

For classical molecular dynamics simulations it is necessary to calculate very long
trajectories. Here a family of symplectic methods often is used which conserve the
phase space volume [47–50]. The equations of motion of a classical interacting
N -body system are

mi ẍi = Fi , (11.75)

where the force acting on atom i can be calculated once a specific force field is
chosen. Let us write these equations as a system of first-order differential equations

(

ẋi

v̇i

)

=
(

vi

ai

)

, (11.76)

where x(t)and v(t) are functions of time and the forces ma(x(t)) are functions of
the time-dependent coordinates.

11.11.1 Liouville Equation

We rewrite (11.76) as
(

ẋ
v̇

)

= L
(

x
v

)

, (11.77)

where the Liouville operator L acts on the vector containing all coordinates and
velocities:

L
(

x
v

)

=
(

v
∂

∂x
+ a

∂

∂v

)(

x
v

)

(11.78)

The Liouville equation (11.77) can be formally solved by

(

x(t)
v(t)

)

= eLt
(

x(0)
v(0)

)

. (11.79)

11.11 Verlet Methods 145

For a better understanding let us evaluate the first members of the Taylor series of
the exponential:

L
(

x
v

)

=
(

v
∂

∂x
+ a

∂

∂v

)(

x
v

)

=
(

v
a

)

(11.80)

L2
(

x
v

)

=
(

v
∂

∂x
+ a

∂

∂v

)(

v
a(x)

)

=
(

a

v
∂

∂x
a

)

(11.81)

L3
(

x
v

)

=
(

v
∂

∂x
+ a

∂

∂v

)(
a

v ∂
∂x a

)

=
⎛

⎜
⎝

v
∂

∂x
a

a
∂

∂x
a + vv

∂

∂x
∂

∂x
a

⎞

⎟
⎠ . (11.82)

But since

d

dt
a(x(t)) = v

∂

∂x
a (11.83)

d2

dt2
a(x(t)) = d

dt

(

v
∂

∂x
a
)

= a
∂

∂x
a + vv

∂

∂x
∂

∂x
a (11.84)

we recover

(

1 + tL + 1

2
t2L2 + 1

6
t3L3 + · · ·

)(

x
v

)

=
⎛

⎜
⎝

x + vt + 1

2
t2a + 1

6
t3ȧ + · · ·

v + at + 1

2
t2ȧ + 1

6
t3ä + · · ·

⎞

⎟
⎠ .

(11.85)

11.11.2 Split Operator Approximation

We introduce a small time step �t = t/N and write

eLt =
(

eL�t
)N

. (11.86)

For the small time step �t the split operator approximation can be used which
approximately factorizes the exponential operator. For example, write the Liouville
operator as the sum of two terms

LA = v
∂

∂x
LB = a

∂

∂v
(11.87)

and make the approximation

eL�t = eLA�t eLB�t + · · · . (11.88)

146 11 Equations of Motion

Each of the two factors simply shifts positions or velocities

eLA�t
(

x
v

)

=
(

x + v�t
v

)

eLB�t
(

x
v

)

=
(

x
v + a�t

)

(11.89)

since these two steps correspond to motion with either constant velocities or con-
stant coordinates and forces.

11.11.3 Position Verlet Method

Often the following approximation is used which is symmetrical in time (Fig. 11.10)

eL�t = eLA�t/2eLB�t eLA�t/2 + · · · (11.90)

The corresponding algorithm is the so-called position Verlet method:

xn+1/2 = xn + vn
�t

2
(11.91)

vn+1 = vn + an+1/2�t = v(tn +�t)+ O(�t3) (11.92)

xn+1 = xn+1/2 + vn+1
�t

2
= xn + vn + vn+1

2
�t = x(tn +�t)+ O(�t3).

(11.93)

Fig. 11.10 Position Verlet
method. The exact integration
path is approximated by two
half-steps with constant
velocities and one step with
constant coordinates

v

vn+1

vn

xn xn+1

x

11.11.4 Velocity Verlet Method

If we exchange operators A and B we have (Fig. 11.11)

eL�t = eLB�t/2eLA�t eLB�t/2 + · · · (11.94)

which produces the velocity Verlet algorithm:

vn+1/2 = vn + an
�t

2
(11.95)

11.11 Verlet Methods 147

Fig. 11.11 Velocity Verlet
method. The exact integration
path is approximated by two
half-steps with constant
coordinates and one step with
constant velocities

v

vn+1

vn

x
xn xn+1

xn+1 = xn + vn+1/2�t = xn + vn�t + an
�t2

2
= x(tn +�t)+ O(�t3)

(11.96)

vn+1 = vn+1/2 + an+1
�t

2
= vn + an + an+1

2
�t = v(tn +�t)+ O(�t3).

(11.97)

11.11.5 Standard Verlet Method

The velocity Verlet method is equivalent to the standard Verlet method which is a
two-step method given by

xn+1 = 2xn − xn−1 + an�t2 (11.98)

vn = xn+1 − xn−1

2�t
. (11.99)

To show the equivalence we add two consecutive position vectors

xn+2 + xn+1 = 2xn+1 + 2xn − xn − xn−1 + (an+1 + an)�t2 (11.100)

which simplifies to

xn+2 − xn − (xn+1 − xn) = (an+1 + an)�t2. (11.101)

This can be expressed as the difference of two consecutive velocities:

2(vn+1 − vn) = (an+1 + an)�t. (11.102)

Now we substitute

xn−1 = xn+1 − 2vn�t (11.103)

148 11 Equations of Motion

to get

xn+1 = 2xn − xn+1 + 2vn�t + an�t2 (11.104)

which simplifies to

xn+1 = xn + vn�t + an

2
�t2. (11.105)

Thus the equations of the velocity Verlet algorithm have been recovered. However,
since the Verlet method is a two-step method, the results depend on the initial values.
The standard Verlet method starts from two coordinate sets x0, x1. The first step is

x2 = 2x1 − x0 + a1�t2 (11.106)

v1 = x2 − x0

2�t
= x1 − x0

�t
+ a1

2
�t2. (11.107)

The velocity Verlet method, on the other hand, starts from one set of coordinates
and velocities x1, v1. Here the first step is

x2 = x1 + v1�t + a1
�t2

2
(11.108)

v2 = v1 + a1 + a2

2
�t. (11.109)

The two methods give the same resulting trajectory if we choose

x0 = x1 − v1�t + a1

2
�t2. (11.110)

If, on the other hand, x0 is known with higher precision, the local error order of the
standard Verlet changes as can be seen from addition of the two Taylor series

x(tn +�t) = xn + vn�t + an

2
�t2 + ȧn

6
�t3 + · · · (11.111)

x(tn −�t) = xn − vn�t + an

2
�t2 − ȧn

6
�t3 + · · · (11.112)

which gives

x(tn +�t) = 2x(tn)− x(tn −�t)+ an�t2 + O(�t4) (11.113)

x(tn +�t)− x(tn −�t)

2�t
= vn + O(�t2). (11.114)

11.11 Verlet Methods 149

11.11.6 Error Accumulation for the Standard Verlet Method

Equation (11.113) gives only the local error of one single step. Assume the start
values x0 and x1 are exact. The next value x2 has an error with the leading term
�x2 = α�t4. If the trajectory is sufficiently smooth and the time step not too large
the coefficient α will vary only slowly and the error of the next few iterations is
given by

�x3 = 2�x2 −�x1 = 2α�t4

�x4 = 2�x3 −�x2 = 3α�t4

...

�xn+1 = nα�t4. (11.115)

This shows that the effective error order of the Verlet method is only O(�t3) similar
to the velocity Verlet method.

11.11.7 Leap Frog Method

Closely related to the Verlet methods is the so-called leap frog method. It uses the
simple decomposition

eL�t ≈ eLA�t eLB�t (11.116)

but introduces two different time grids for coordinates and velocities which are
shifted by �t/2 (Fig. 11.12).

The leap frog algorithm is given by

vn+1/2 = vn−1/2 + an�t (11.117)

xn+1 = xn + vn+1/2�t. (11.118)

Fig. 11.12 Leap frog
method. The exact integration
path is approximated by one
step with constant
coordinates and one step with
constant velocities. Two
different grids are used for
coordinates and velocities
which are shifted by �t/2

vn+1/2

v

vn+1

vn

vn–1/2
x

xn xn+1

150 11 Equations of Motion

Due to the shifted arguments the order of the method is increased as can be seen
from the Taylor series:

x(tn)+
(

v(tn)+ �t

2
a(tn)+ · · ·

)

�t = x(tn +�t)+ O(�t3) (11.119)

v
(

tn + �t

2

)

− v
(

tn − �t

2

)

= a(tn)�t + O(�t3). (11.120)

One disadvantage of the leap frog method is that some additional effort is necessary
if the velocities are needed. The simple expression

v(tn) = 1

2

(

v
(

tn − �t

2

)

+ v
(

tn + �t

2

))

+ O(�t2) (11.121)

is of lower error order than (11.120).

Problems

Problem 11.1 Circular Orbits

In this computer experiment we consider a mass point moving in a central field. The
equation of motion can be written as the following system of first-order equations:

⎛

⎜
⎜
⎝

ẋ
ẏ
v̇x

v̇y

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0

0 0 0 1

− 1

(x2 + y2)3/2
0 0 0

0 − 1

(x2 + y2)3/2
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

x
y
vx

vy

⎞

⎟
⎟
⎠

For initial values
⎛

⎜
⎜
⎝

x
y
vx

vy

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1
0
0
1

⎞

⎟
⎟
⎠

the exact solution is given by

x = cos t y = sin t.

The following methods are used to calculate the position x(t), y(t) and the energy

Etot = Ekin + Epot = 1

2
(v2

x + v2
y)− 1

√

x2 + y2

Problems 151

• The explicit Euler method (11.4):

x(tn+1) = x(tn)+ vx (tn)�t
y(tn+1) = y(tn)+ vy(tn)�t

vx (tn+1) = vx (tn)− x(tn)

R(tn)3
�t

vy(tn+1) = vy(tn)− y(tn)

R(tn)3
�t

• The second-order Runge–Kutta method (11.7.1)

which consists of the predictor step

x(tn +�t/2) = x(tn)+ �t

2
vx (tn)

y(tn +�t/2) = y(tn)+ �t

2
vy(tn)

vx (tn +�t/2) = vx (tn)− �t

2

x(tn)

R(tn)3

vy(tn +�t/2) = vy(tn)− �t

2

y(tn)

R(tn)3

and the corrector step

x(tn+1) = x(tn)+�t vx (tn +�t/2)

y(tn+1) = y(tn)+�t vy(tn +�t/2)

vx (tn+1) = vx (tn)−�t
x(tn +�t/2)

R3(tn +�t/2)

vy(tn+1) = vy(tn)−�t
y(tn +�t/2)

R3(tn +�t/2)

• The fourth-order Runge–Kutta method (11.7.3)
• The Verlet method (11.11.5)

x(tn+1) = x(tn)+ (x(tn)− x(tn−1))−�t
x(tn)

R3(tn)

y(tn+1) = y(tn)+ (y(tn)− y(tn−1))−�t
y(tn)

R3(tn)

vx (tn) = x(tn+1)− x(tn−1)

2�t
= x(tn)− x(tn−1)

�t
− �t

2

x(tn)

R3(tn)

vy(tn) = y(tn+1)− y(tn−1)

2�t
= y(tn)− y(tn−1)

�t
− �t

2

y(tn)

R3(tn)

152 11 Equations of Motion

To start the Verlet method we need additional coordinates at time −�t which can
be chosen from the exact solution or from the approximation

x(t−1) = x(t0)−�t vx (t0)− �t2

2

x(t0)

R3(t0)

y(t−1) = y(t0)−�t vy(t0)− �t2

2

y(t0)

R3(t0)

• The leap frog method (11.11.7)

x(tn+1) = x(tn)+ vx (tn+1/2)�t

y(tn+1) = y(tn)+ vy(tn+1/2)�t

vx (tn+1/2) = vx (tn−1/2)− x(tn)

R(tn)3
�t

vy(tn+1/2) = vy(tn−1/2)− y(tn)

R(tn)3
�t

where the velocity at time tn is calculated from

vx (tn) = vx (tn+1/2)− �t

2

x(tn+1)

R3(tn+1)

vy(tn) = vy(tn+1/2)− �t

2

y(tn+1)

R3(tn+1)

To start the leap frog method we need the velocity at time t−1/2 which can be taken
from the exact solution or from

vx (t−1/2) = vx (t0)− �t

2

x(t0)

R3(t0)

vy(t−1/2) = vy(t0)− �t

2

y(t0)

R3(t0)

Compare the conservation of energy for the different methods as a function of
the time step �t . Study the influence of the initial values for leap frog and Verlet
methods.

Problem 11.2 N-Body System

In this computer experiment we simulate the motion of three mass points under
the influence of gravity. Initial coordinates and velocities as well as the masses can
be varied. The equations of motion are solved with the fourth-order Runge–Kutta
method with quality control. The influence of the step size can be studied. The local
integration error is estimated using the step doubling method.

Try to simulate a planet with a moon moving round a sun!

Problems 153

Problem 11.3 Adams–Bashforth Method

In this computer experiment we simulate a circular orbit with the Adams–Bashforth
method of order 2 · · · 7. The absolute error at time T

�(T) = |x(T)− cos(T)| + |y(t)− sin(T)| + |vx (T)+ sin(T)| + |vy(T)− cos(T)|

is shown as a function of the time step �t in a log–log plot. From the slope

s = d(log10(�))

d(log10(�t))

the leading error order s can be determined. For very small step sizes rounding errors
become dominating which leads to an increase � ∼ (�t)−1.

Determine maximum precision and optimal step size for different orders of the
method. Compare with the explicit Euler method.

Part II
Simulation of Classical and Quantum

Systems

Chapter 12
Rotational Motion

An asymmetric top under the influence of time-dependent external forces is a rather
complicated subject in mechanics. Efficient methods to describe the rotational
motion are important as well in astrophysics as in molecular physics. The orienta-
tion of a rigid body relative to the laboratory system can be described by a rotation
matrix. In this chapter we discuss different parametrizations of the rotation matrix
and methods to calculate the time evolution.

12.1 Transformation to a Body Fixed Coordinate System

Let us define a rigid body as a set of mass points mi with fixed relative orientation
(described by distances and angles) (Fig. 12.1).

The position of mi in the laboratory coordinate system CS will be denoted by ri.
The position of the center of mass (COM) of the rigid body is

R = 1
∑

mi

∑

mi ri (12.1)

and the position of mi within the COM coordinate system CSc is ρi :

ri = R + ρi (12.2)

Let us define a body fixed coordinate system CScb, where the position ρib of mi is
time independent d

dt ρib = 0. ρi and ρib are connected by a linear vector function

ρi = Aρib, (12.3)

where A is a 3 × 3 matrix

A =
⎛

⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ . (12.4)

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_12,
C© Springer-Verlag Berlin Heidelberg 2010

157

158 12 Rotational Motion

Fig. 12.1 Coordinate
systems. Three coordinate
systems will be used: The
laboratory system CS, the
center of mass system CSc,
and the body fixed system
CScb ρi

CS

R

ri

mi

CSc

CScb

12.2 Properties of the Rotation Matrix

Rotation conserves the length of ρ1:

ρT ρ = (Aρ)T (Aρ) = ρT AT Aρ. (12.5)

Consider the matrix

M = AT A − 1 (12.6)

for which

ρT Mρ = 0 (12.7)

holds for all vectors ρ. Let us choose the unit vector in x-direction: ρ =
⎛

⎝

1
0
0

⎞

⎠.

Then we have

0 = (1 0 0
)

⎛

⎝

M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠

⎛

⎝

1
0
0

⎞

⎠ = M11. (12.8)

Similarly by choosing a unit vector in y- or z-direction we find M22 = M33 = 0.

Now choose ρ =
⎛

⎝

1
1
0

⎞

⎠:

1 ρT ρ denotes the scalar product of two vectors whereas ρρT is the outer or matrix product.

12.2 Properties of the Rotation Matrix 159

0 = (1 1 0
)

⎛

⎝

M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠

⎛

⎝

1
1
0

⎞

⎠

= (1 1 0
)

⎛

⎝

M11 + M12
M21 + M22
M31 + M32

⎞

⎠ = M11 + M22 + M12 + M21. (12.9)

Since the diagonal elements vanish we have M12 = −M21. With ρ =
⎛

⎝

1
0
1

⎞

⎠ ,

ρ =
⎛

⎝

0
1
1

⎞

⎠ we find M13 = −M31 and M23 = −M32, hence M is antisymmetric and

has three independent components:

M = −MT =
⎛

⎝

0 M12 M13
−M12 0 M23
−M13 −M23 0

⎞

⎠ . (12.10)

Inserting (12.6) we have

(AT A − 1) = −(AT A − 1)T = −(AT A − 1) (12.11)

which shows that AT A = 1 or equivalently AT = A−1. Hence (det(A))2 = 1 and
A is an orthogonal matrix. For a pure rotation without reflection only det(A) = +1
is possible.
From

ri = R + Aρib (12.12)

we calculate the velocity

dri

dt
= dR

dt
+ dA

dt
ρib + A

dρib

dt
(12.13)

but since ρib is constant by definition, the last summand vanishes

ṙi = Ṙ + Ȧρib = Ṙ + ȦA−1ρi (12.14)

and in the center of mass system we have

d

dt
ρi = ȦA−1ρi = Wρi (12.15)

with the matrix

W = ȦA−1. (12.16)

160 12 Rotational Motion

12.3 Properties of W, Connection with the Vector of Angular
Velocity

Since rotation does not change the length of ρi , we have

0 = d

dt
|ρi |2 → 0 = ρi

d

dt
ρi = ρi (Wρi) (12.17)

or in matrix notation

0 = ρT
i Wρi . (12.18)

This holds for arbitrary ρi . Hence W is antisymmetric and has three independent
components

W =
⎛

⎝

0 W12 W13
−W12 0 W23
−W13 −W23 0

⎞

⎠ . (12.19)

Now consider infinitesimal rotation by the angle dϕ (Fig. 12.2).
Then we have (the index i is suppressed)

dρ = dρ

dt
dt =

⎛

⎝

0 W12 W13
−W12 0 W23
−W13 −W23 0

⎞

⎠

⎛

⎝

ρ1
ρ2
ρ3

⎞

⎠ dt =
⎛

⎝

W12ρ2 + W13ρ3
−W12ρ1 + W23ρ3
−W13ρ1 − W23ρ2

⎞

⎠ dt

(12.20)
which can be written as a cross product:

dρ = dϕ × ρ (12.21)

with

dϕ =
⎛

⎝

−W23dt
W13dt

−W12dt

⎞

⎠ . (12.22)

Fig. 12.2 Infinitesimal
rotation

ρ

dϕ = ω dt

ρ + dρ

dρ = dϕ x ρ

12.4 Transformation Properties of the Angular Velocity 161

But this can be expressed in terms of the angular velocity ω as

dϕ = ωdt (12.23)

and finally we have

dϕ = ωdt =
⎛

⎝

ω1
ω2
ω3

⎞

⎠ dt W =
⎛

⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ (12.24)

and the more common form of the equation of motion

d

dt
ρ = Wρ = ω × ρ. (12.25)

12.4 Transformation Properties of the Angular Velocity

Now imagine we are sitting on the rigid body and observe a mass point moving
outside. Its position in the laboratory system is r1. In the body fixed system we
observe it at

ρ1b = A−1(r1 − R) (12.26)

and its velocity in the body fixed system is

ρ̇1b = A−1(ṙ1 − Ṙ)+ dA−1

dt
(r1 − R). (12.27)

The time derivative of the inverse matrix follows from

0 = d

dt

(

A−1 A
)

= A−1 Ȧ + dA−1

dt
A (12.28)

dA−1

dt
= −A−1 ȦA−1 = −A−1W (12.29)

and hence

dA−1

dt

(

r1 − R
)

= −A−1W
(

r1 − R
)

. (12.30)

Now we rewrite this using the angular velocity as observed in the body fixed system

−A−1W
(

r1 − R
)

= −Wb A−1
(

r1 − R
)

= −Wbρ1b = −ωb × ρ1b, (12.31)

162 12 Rotational Motion

where W transforms as

Wb = A−1W A. (12.32)

W transforms like a second rank tensor. From that the transformation properties
of ω can be derived. We consider only rotation around one axis explicitly, since a
general rotation matrix can always be written as a product of three rotations around
different axes. For instance, rotation around the z-axis gives

Wb =
⎛

⎝

0 −ωb3 ωb2
ωb3 0 −ωb1

−ωb2 ωb1 0

⎞

⎠ =

=
⎛

⎝

cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞

⎠

⎛

⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞

⎠

⎛

⎝

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞

⎠ =

=
⎛

⎝

0 −ω3 cosϕω2 − sinϕω1
ω3 0 −(cosϕω1 + sinϕω2)

−(ω2 cosϕ − sinϕω1) cosϕω1 + sinϕω2 0

⎞

⎠

(12.33)

which shows that
⎛

⎝

ω1b

ω2b

ω3b

⎞

⎠ =
⎛

⎝

cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞

⎠

⎛

⎝

ω1
ω2
ω3

⎞

⎠ , (12.34)

i.e., ω transforms like a vector under rotations. There is a subtle difference, however,
considering general coordinate transformations involving reflections. For example,
consider reflection at the xy-plane. Then transformation of W gives

Wb =
⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠

⎛

⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞

⎠

⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠

=
⎛

⎝

0 −ω3 −ω2
ω3 0 ω1
ω2 −ω1 0

⎞

⎠ (12.35)

⎛

⎝

ω1b

ω2b

ω3b

⎞

⎠ = −
⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠

⎛

⎝

ω1
ω2
ω3

⎞

⎠ . (12.36)

This shows that ω is a so-called axial or pseudo-vector. Under a general coordinate
transformation, it transforms as

ωb = det(A)Aω. (12.37)

12.6 Equations of Motion of a Rigid Body 163

12.5 Momentum and Angular Momentum

The total momentum is

P =
∑

mi ṙi =
∑

mi Ṙ = MṘ, (12.38)

since by definition we have
∑

miρi = 0.
The total angular momentum can be decomposed into the contribution of the center
of mass motion and the contribution relative to the center of mass:

L =
∑

mi ri × ṙi = MR × Ṙ +
∑

miρi × ρ̇i = LCOM + Lint. (12.39)

The second contribution is

Lint =
∑

miρi × (ω × ρi) =
∑

mi

(

ωρ2
i − ρi (ρiω)

)

. (12.40)

This is a linear vector function of ω, which can be expressed simpler by introducing
the tensor of inertia

I =
∑

miρ
2
i 1 − miρiρ

T
i (12.41)

or using components

Im,n =
∑

miρ
2
i δm,n − miρi,mρi,n (12.42)

as

Lint = Iω. (12.43)

12.6 Equations of Motion of a Rigid Body

Let Fi be an external force acting on mi . Then the equation of motion for the center
of mass is

d2

dt2

∑

mi ri = MR̈ =
∑

Fi = Fext. (12.44)

If there is no total external force Fext, the center of mass moves with constant
velocity

R = R0 + V(t − t0). (12.45)

164 12 Rotational Motion

The time derivative of the angular momentum equals the total external torque

d

dt
L = d

dt

∑

mi ri × ṙi =
∑

mi ri × r̈i =
∑

ri × Fi =
∑

Ni = Next (12.46)

which can be decomposed into

Next = R × Fext +
∑

ρi × Fi . (12.47)

With the decomposition of the angular momentum

d

dt
L = d

dt
LCOM + d

dt
Lint (12.48)

we have two separate equations for the two contributions:

d

dt
LCOM = d

dt
MR × Ṙ = MR × R̈ = R × Fext (12.49)

d

dt
Lint =

∑

ρi × Fi = Next − R × Fext = Nint. (12.50)

12.7 Moments of Inertia

The angular momentum (12.43) is

LRot = Iω = AA−1 I AA−1ω = AIbωb, (12.51)

where the tensor of inertia in the body fixed system is

Ib = A−1 I A = A−1
(∑

miρ
T
i ρi − miρiρ

T
i

)

A

=
∑

mi ATρT
i ρi A − mi ATρiρ

T
i A

=
∑

miρ
2
ib − miρibρ

T
ib. (12.52)

Since Ib does not depend on time (by definition of the body fixed system) we will
use the principal axes of Ib as the axes of the body fixed system. Then Ib takes the
simple form

Ib =
⎛

⎝

I1 0 0
0 I2 0
0 0 I3

⎞

⎠ (12.53)

with the principle moments of inertia I1,2,3.

12.9 Explicit Solutions 165

12.8 Equations of Motion for a Rotor

The following equations describe pure rotation of a rigid body:

d

dt
A = W A = AWb (12.54)

d

dt
Lint = Nint (12.55)

W =
⎛

⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ Wi j = −εi jkωk (12.56)

Lint = ALint,b = Iω = AIbωb (12.57)

ωb = I −1
b Lint,b =

⎛

⎝

I −1
1 0 0
0 I −1

2 0
0 0 I −1

3

⎞

⎠Lint,b ω = Aωb (12.58)

Ib = const. (12.59)

12.9 Explicit Solutions

Equation (12.54) for the rotation matrix and (12.55) for the angular momentum have
to be solved by a suitable algorithm. The simplest integrator is the explicit Euler
method [51] (Fig. 12.3):

A(t + dt) = A(t)+ A(t)Wb(t)dt + O(dt2) (12.60)

Lint(t + dt) = Lint(t)+ Nint(t)dt + O(dt2). (12.61)

Fig. 12.3 Explicit methods
for a free rotor. The equations
of a free rotor (12.8) are
solved using the explicit first-
or second-order method. The
deviations | det(A)− 1|
(dashed lines) and
|Ekin − Ekin(0)| (full lines) at
t = 10 are shown as a
function of the time step �t .
The principal moments of
inertia are 1, 2, 3 and the
initial angular momentum is
L = (1, 1, 1)

10–6 10–4 10–2 100

time step

10–8

10–4

100

first order

second order

166 12 Rotational Motion

Expanding the Taylor series of A(t) to second order we have the second-order
approximation

A(t + dt) = A(t)+ A(t)Wb(t)dt + 1

2

(

A(t)W 2
b (t)+ A(t)Ẇb(t)

)

dt2 + O(dt3).

(12.62)
A corresponding second-order expression for the angular momentum involves

the time derivative of the forces and is usually not practicable.
The time derivative of W can be expressed via the time derivative of the angular
velocity which can be calculated as follows:

d

dt
ωb = d

dt

(

I −1
b A−1Lint

)

= I −1
b

(
d

dt
A−1
)

Lint + I −1
b A−1Nint =

= I −1
b

(

−A−1W
)

Lint + I −1
b A−1Nint = −I −1

b WbLint,b + I −1
b Nint,b. (12.63)

Alternatively, in the laboratory system

d

dt
ω = d

dt
(Aωb) = W Aωb − AI −1

b A−1W Lint + AI −1
b A−1Nint

= AI −1
b A(Nint − W Lint), (12.64)

where the first summand vanishes due to

W Aωb = AWbωb = Aωb × ωb = 0. (12.65)

Substituting the angular momentum we have

d

dt
ωb = I −1

b Nint,b − I −1
b Wb Ibωb (12.66)

which reads in components:

⎛

⎝

ω̇b1
ω̇b2
ω̇b3

⎞

⎠ =
⎛

⎝

I −1
b1 Nb1

I −1
b2 Nb2

I −1
b3 Nb3

⎞

⎠

−
⎛

⎝

I −1
b1

I −1
b2

I −1
b3

⎞

⎠

⎛

⎝

0 −ωb3 ωb2
ωb3 0 −ωb1

−ωb2 ωb1 0

⎞

⎠

⎛

⎝

Ib1ωb1
Ib2ωb2
Ib3ωb3

⎞

⎠ . (12.67)

Evaluation of the product gives a set of equations which are well known as Euler’s
equations:

12.10 Loss of Orthogonality 167

ω̇b1 = Ib2−Ib3
Ib1

ωb2ωb3 + Nb1
Ib1

ω̇b2 = Ib3−Ib1
Ib2

ωb3ωb1 + Nb2
Ib2

ω̇b3 = Ib1−Ib2
Ib3

ωb1ωb2 + Nb3
Ib3
. (12.68)

12.10 Loss of Orthogonality

The simple methods above do not conserve the orthogonality of A. This is an effect
of higher order but the error can accumulate quickly. Consider the determinant of
A. For the simple explicit Euler scheme we have

det(A+dA) = det(A+W Adt) = detA det(1+W dt) = detA(1+ω2dt2). (12.69)

The error is of order dt2, but the determinant will continuously increase, i.e., the
rigid body will explode. For the second-order integrator we find

det(A + dA) = det

(

A + W Adt + dt2

2
(W 2 A + Ẇ A)

)

= detA det

(

1 + W dt + dt2

2
(W 2 + Ẇ)

)

. (12.70)

This can be simplified to give

det(A + dA) = detA (1 + ω̇ωdt3 + · · ·). (12.71)

The second-order method behaves somewhat better since the product of angular
velocity and acceleration can change in time. To assure that A remains a rotation
matrix we must introduce constraints or reorthogonalize A at least after some steps
(for instance, every time when |det(A) − 1| gets larger than a certain threshold).
Alternatively, the following method is very useful:

Consider correction of the rotation matrix by multiplication with a symmetric
matrix S:

Ã = AS, (12.72)

where the resulting matrix is orthogonal

1 = ÃT Ã = S AT AS. (12.73)

This equation can be formally solved:

S−2 = AT A (12.74)

S = (AT A)−1/2. (12.75)

168 12 Rotational Motion

Since the deviation of A from orthogonality is small, we make the approximations

S = 1 + s (12.76)

S−2 = 1 − 2s + · · · = AT A (12.77)

S = 1 + 1 − AT A

2
+ · · · (12.78)

which can be easily evaluated.

12.11 Implicit Method

The quality of the method can be significantly improved by taking the time deriva-
tive at midstep (11.5):

A(t + dt) = A(t)+ A

(

t + dt

2

)

W

(

t + dt

2

)

dt + · · · (12.79)

Lint(t + dt) = Lint(t)+ Nint

(

t + dt

2

)

dt + · · · . (12.80)

Taylor series expansion gives

A

(

t + dt

2

)

W

(

t + dt

2

)

dt = A(t)W (t)dt + Ȧ(t)W (t)
dt2

2
+ A(t)Ẇ (t)

dt2

2
+ O(dt3)

(12.81)

= A(t)W (t)dt + (A(t)W 2(t)+ A(t)Ẇ (t))
dt2

2
+ O(dt3) (12.82)

which has the same error order as the explicit second-order method. The matrix

A

(

t + dt

2

)

at midtime can be approximated by

1

2
(A(t)+A(t+dt)) = A

(

t + dt

2

)

+dt2

4
Ä

(

t + dt

2

)

+· · · = A

(

t + dt

2

)

+O(dt2)

(12.83)
which does not change the error order of the implicit integrator which now becomes

A(t + dt) = A(t)+ 1

2
(A(t)+ A(t + dt))W

(

t + dt

2

)

dt + O(dt3). (12.84)

This equation can be formally solved by

A(t + dt) = A(t)

(

1+ dt

2
W

(

t+ dt

2

))(

1 − dt

2
W

(

t + dt

2

))−1

= A(t)Tb

(
dt

2

)

.

(12.85)

12.11 Implicit Method 169

Alternatively, using angular velocities in the laboratory system we have the similar
expression

A(t +�t) =
[

1 − �t

2
W

(

t + �t

2

)]−1 [

1 + �t

2
W

(

t + �t

2

)]

A(t) = T

(
�t

2

)

A(t).

(12.86)
The angular velocities at midtime can be calculated with sufficient accuracy from

W

(

t + dt

2

)

= W (t)+ dt

2
Ẇ (t)+ O(dt2). (12.87)

With the help of an algebra program we easily prove that

det

(

1 + �t

2
W

)

= det

(

1 − �t

2
W

)

= 1 + ω2�t2

4
(12.88)

and therefore the determinant of the rotation matrix is conserved. The necessary
matrix inversion can be easily done:

[

1 − �t

2
W

]−1

=

⎛

⎜
⎜
⎝

1 + ω2
1�t2

4 −ω3
�t
2 + ω1ω2

�t2

4 ω2
�t
2 + ω1ω3

�t2

4

ω3
�t
2 + ω1ω2

�t2

4 1 + ω2
2�t2

4 −ω1
�t
2 + ω2ω3

�t2

4

−ω2
�t
2 + ω1ω3

�t2

4 ω1
�t
2 + ω2ω3

�t2

4 1 + ω2
3�t2

4

⎞

⎟
⎟
⎠

1

1 + ω2 �t2

4

.

(12.89)

The matrix product is explicitly

Tb =
[

1 + �t

2
Wb

] [

1 − �t

2
Wb

]−1

=

⎛

⎜
⎜
⎝

1 + ω2
b1−ω2

b2−ω2
b3

4 �t2 −ωb3�t + ωb1ωb2
�t2

2 ωb2�t + ωb1ωb3
�t2

2

ωb3�t + ωb1ωb2
�t2

2 1 + −ω2
b1+ω2

b2−ω2
b3

4 �t2 −ωb1�t + ωb2ωb3
�t2

2

−ωb2�t + ωb1ωb3
�t2

2 ωb1�t + ωb2ωb3
�t2

2 1 + −ω2
b1−ω2

b2+ω2
b3

4 �t2

⎞

⎟
⎟
⎠

× 1

1 + ω2
b
�t2

4

. (12.90)

With the help of an algebra program it can be proved that this matrix is even
orthogonal

T T
b Tb = 1 (12.91)

170 12 Rotational Motion

and hence the orthonormality of A is conserved. The approximation for the angular
momentum

Lint(t)+ Nint

(

t + dt

2

)

dt

= Lint(t)+ Nint(t)dt + Ṅint(t)
dt2

2
+ · · · = Lint(t + dt)+ O(dt3) (12.92)

can be used in an implicit way

Lint(t + dt) = Lint(t)+ Nint(t + dt)+ Nint(t)

2
dt + O(dt3). (12.93)

Alternatively Euler’s equations can be used in the form [52, 53]

ωb1

(

t + �t

2

)

= ωb1

(

t − �t

2

)

+ Ib2 − Ib3

Ib1
ωb2(t)ωb3(t)�t + Nb1

Ib1
�t, etc.,

(12.94)

where the product ωb2(t)ωb3(t) is approximated by

ωb2(t)ωb3(t) = 1

2

[

ωb2

(

t− �t

2

)

ωb3

(

t−�t

2

)

+ ωb2

(

t+�t

2

)

ωb3

(

t+�t

2

)]

.

(12.95)

ωb1
(

t + �t
2

)

is determined by iterative solution of the last two equations. Starting
with ωb1

(

t − �t
2

)

convergence is achieved after few iterations.

12.12 Example: Free Symmetric Rotor

For the special case of a free symmetric rotor (Ib2 = Ib3,Nint = 0) Euler’s equations
simplify to (Fig. 12.4)

ω̇b1 = 0 (12.96)

ω̇b2 = Ib2(3) − Ib1

Ib2(3)
ωb1ωb3 = λωb3 (12.97)

ω̇b3 = Ib1 − Ib2(3)

Ib2(3)
ωb1ωb2 = −λωb2 (12.98)

λ = Ib2(3) − Ib1

Ib2(3)
ωb1. (12.99)

Coupled equations of this type appear often in physics. The solution can be found
using a complex quantity

12.13 Kinetic Energy of a Rotor 171

Fig. 12.4 Free rotation with
the implicit method. The
equations of a free rotor
(12.8) are solved using the
implicit method. The
deviations |det(A)− 1|
(dashed line) and
|Ekin − Ekin(0)| (full line) at
t = 10 are shown as a
function of the time step �t .
Initial conditions as in
Fig. 12.3

10–6 10–4 10–2 100

time step

10–20

10–16

10–12

10–8

10–4

100

� = ωb2 + iωb3 (12.100)

which obeys the simple differential equation

�̇ = ω̇b2 + iω̇b3 = −i(iλωb3 + λωb2) = −iλ� (12.101)

with the solution

� = �0e−iλt . (12.102)

Finally

ωb =
⎛

⎝

ωb1(0)
�(�0e−iλt)

�(�0e−iλt)

⎞

⎠ =
⎛

⎝

ωb1(0)
ωb2(0) cos(λt)+ ωb3(0) sin(λt)
ωb3(0) cos(λt)− ωb2(0) sin(λt)

⎞

⎠ , (12.103)

i.e., ωb rotates around the 1-axis with frequency λ.

12.13 Kinetic Energy of a Rotor

The kinetic energy of the rotor is

Ekin =
∑ mi

2
ṙ2

i =
∑ mi

2
(Ṙ + Ȧρib)

2

=
∑ mi

2
(ṘT + ρT

ib ȦT)(Ṙ + Ȧρib) = M

2
Ṙ2 +

∑ mi

2
ρT

ib ȦT Ȧρib.

(12.104)

The second part is the contribution of the rotational motion. It can be written as

172 12 Rotational Motion

Erot =
∑ mi

2
ρT

ibW T
b AT AWbρib = −

∑ mi

2
ρT

ibW 2
b ρib = 1

2
ωT

b Ibωb (12.105)

since2

−W 2
b =

⎛

⎝

ω2
b3 + ω2

b2 −ωb1ωb2 −ωb1ωb3

−ωb1ωb2 ω2
b1 + ω2

b3 −ωb2ωb3

−ωb1ωb3 −ωb2ωb3 ω2
b1 + ω2

b2

⎞

⎠ = ω2
b − ωbω

T
b . (12.106)

12.14 Parametrization by Euler Angles

So far we had to solve equations for all nine components of the rotation matrix. But
there are six constraints since the column vectors of the matrix have to be orthonor-
malized. Therefore the matrix can be parametrized with less than nine variables.
In fact it is sufficient to use only three variables. This can be achieved by splitting
the full rotation into three rotations around different axis. Most common are Euler
angles defined by the orthogonal matrix [54]

⎛

⎝

cosψ cosφ − cos θ sinφ sinψ − sinψ cosφ − cos θ sinφ cosψ sin θ sinφ
cosψ sinφ + cos θ cosφ sinψ sinψ sinφ + cos θ cosφ cosψ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ

⎞

⎠

(12.107)
obeying the equations

φ̇ = ωx
sinφ cos θ

sin θ
+ ωy

cosφ cos θ

sin θ
+ ωz (12.108)

θ̇ = ωx cosφ + ωy sinφ (12.109)

ψ̇ = ωx
sinφ

sin θ
− ωy

cosφ

sin θ
. (12.110)

Different versions of Euler angles can be found in the literature, together with
the closely related cardanic angles. For all of them a sin θ appears somewhere in a
denominator which causes numerical instabilities at the poles. One possible solution
to this problem is to switch between two different coordinate systems.

12.15 Cayley–Klein parameters, Quaternions, Euler Parameters

There exists another parametrization of the rotation matrix which is very suitable for
numerical calculations. It is connected with the algebra of the so-called quaternions.
The vector space of the complex 2×2 matrices can be spanned using Pauli matrices
by

2 ωbω
T
b denotes the outer or matrix product.

12.15 Cayley–Klein parameters, Quaternions, Euler Parameters 173

1 =
(

1 0
0 1

)

σx =
(

0 1
1 0

)

σy =
(

0 −i
i 0

)

σz =
(

1 0
0 −1

)

. (12.111)

Any complex 2 × 2 matrix can be written as a linear combination

c01 + cσ . (12.112)

Accordingly any vector x ∈ R3 can be mapped onto a complex 2 × 2 matrix:

x → P =
(

z x − iy
x + iy −z

)

. (12.113)

Rotation of the coordinate system leads to the transformation

P ′ = QPQ+, (12.114)

where

Q =
(

α β

γ δ

)

(12.115)

is a complex 2×2 rotation matrix. Invariance of the length (|x| = √−det(P)) under
rotation implies that Q must be unitary, i.e., Q+ = Q−1 and its determinant must
be 1. Inversion of this matrix is easily done:

Q+ =
(

α∗ γ ∗
β∗ δ∗

)

Q−1 = 1

αδ − βγ

(

δ −β
−γ α

)

. (12.116)

Hence Q takes the form

Q =
(

α β

−β∗ α∗
)

with |α|2 + |β|2 = 1. (12.117)

Setting x± = x ± iy, the transformed matrix has the same form as P:

QPQ+

=
(

α∗βx+ + β∗αx− + (|α|2 − |β|2)z −β2x+ + α2x− − 2αβz
α∗2x+ − β∗2x− − 2α∗β∗z −α∗βx+ − αβ∗x− − (|α|2 − |β|2)z

)

=
(

z′ x ′−
x ′+ −z′

)

. (12.118)

From comparison we find the transformed vector components:

174 12 Rotational Motion

x ′ = 1

2
(x ′+ + x ′−) = 1

2
(α∗2 − β2)x+ + 1

2
(α2 − β∗2)x− − (αβ + α∗β∗)z

= α∗2 + α2 − β∗2 − β2

2
x + i(α∗2 − α2 + β∗2 − β2)

2
y − (αβ + α∗β∗)z

(12.119)

y′ = 1

2i
(x ′+ − x ′−) = 1

2i
(α∗2 + β2)x+ + 1

2i
(−β∗2 − α2)x− + 1

i
(−α∗β∗ + αβ)z

= α∗2 − α2 − β∗2 + β2

2i
x + α∗2 + α2 + β∗2 + β2

2
y + i(α∗β∗ − αβ)z (12.120)

z′ = (α∗β + αβ∗)x + i(α∗β − αβ∗)y + (|α|2 − |β|2)z.

This gives us the rotation matrix in terms of the Cayley–Klein parameters α and β:

A =
⎛

⎜
⎝

α∗2+α2−β∗2−β2

2
i(α∗2−α2+β∗2−β2)

2 −(αβ + α∗β∗)
α∗2−α2−β∗2+β2

2i
α∗2+α2+β∗2+β2

2
1
i (−α∗β∗ + αβ)

(α∗β + αβ∗) i(α∗β − αβ∗) (|α|2 − |β|2)

⎞

⎟
⎠ . (12.121)

For practical calculations one often prefers to have four real parameters instead of
two complex ones. The so-called Euler parameters q0, q1, q2, q3 are defined by

α = q0 + iq3 β = q2 + iq1. (12.122)

Now the matrix Q

Q =
(

q0 + iq3 q2 + iq1
−q2 + iq1 q0 − iq3

)

= q01 + iq1σx + iq2σy + iq3σz (12.123)

becomes a so-called quaternion which is a linear combination of the four matrices

U = 1 I = iσz J = iσy K = iσx (12.124)

which obey the following multiplication rules:

I 2 = J 2 = K 2 = −U

I J = −J I = K

J K = −K J = I

K I = −I K = J. (12.125)

In terms of Euler parameters the rotation matrix reads

A =
⎛

⎝

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞

⎠ (12.126)

12.15 Cayley–Klein parameters, Quaternions, Euler Parameters 175

and from the equation Ȧ = W A we derive the equation of motion for the quaternion

⎛

⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3

⎞

⎟
⎟
⎠

= 1

2

⎛

⎜
⎜
⎝

0 ω1 −ω2 ω3
−ω1 0 −ω3 −ω2
ω2 ω3 0 −ω1

−ω3 ω2 ω1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

q0
q1
q2
q3

⎞

⎟
⎟
⎠

(12.127)

or from Ȧ = AWb the alternative equation

⎛

⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3

⎞

⎟
⎟
⎠

= 1

2

⎛

⎜
⎜
⎝

0 ω1b ω2b ω3b

−ω1b 0 ω3b −ω2b

−ω2b −ω3b 0 ω1b

−ω3b ω2b −ω1b 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

q0
q1
q2
q3

⎞

⎟
⎟
⎠
. (12.128)

Both of these equations can be written briefly in the form

q̇ = W̃ q. (12.129)

Example: Rotation Around the z-Axis

Rotation around the z-axis corresponds to the quaternion with Euler parameters

q =

⎛

⎜
⎜
⎝

cos ωt
2

0
0

− sin ωt
2

⎞

⎟
⎟
⎠

(12.130)

as can be seen from the rotation matrix

A =
⎛

⎜
⎝

(

cos ωt
2

)2 − (sin ωt
2

)2 −2 cos ωt
2 sin ωt

2 0

2 cos ωt
2 sin ωt

2

(

cos ωt
2

)2 − (sin ωt
2

)2 0

0 0
(

cos ωt
2

)2 + (sin ωt
2

)2

⎞

⎟
⎠

=
⎛

⎝

cosωt − sinωt 0
sinωt cosωt 0

0 0 1

⎞

⎠ . (12.131)

The time derivative of q obeys the equation

q̇ = 1

2

⎛

⎜
⎜
⎝

0 0 0 ω

0 0 −ω 0
0 ω 0 0

−ω 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

cos ωt
2

0
0

− sin ωt
2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

−ω
2 sinωt

0
0

−ω
2 cosωt

⎞

⎟
⎟
⎠
. (12.132)

After a rotation by 2π the quaternion changes its sign, i.e., q and −q parametrize
the same rotation matrix!

176 12 Rotational Motion

12.16 Solving the Equations of Motion with Quaternions

As with the matrix method we can obtain a simple first- or second-order algorithm
from the Taylor series expansion

q(t +�t) = q(t)+ W̃ (t)q(t)�t + (˙̃W (t)+ W̃ 2(t))q(t)
�t2

2
+ · · · . (12.133)

Now only one constraint remains, which is the conservation of the norm of the
quaternion. This can be taken into account by rescaling the quaternion whenever its
norm deviates to much from unity.
It is also possible to use Omelyans [55] method:

q(t +�t) = q(t)+ W̃

(

t + �t

2

)
1

2
(q(t)+ q(t +�t)) (12.134)

gives

q(t +�t) =
(

1 − �t

2
W̃

)−1 (

1 + �t

2
W̃

)

q(t), (12.135)

where the inverse matrix is

(

1 − �t

2
W̃

)−1

= 1

1 + ω2 �t2

16

(

1 + �t

2
W̃

)

(12.136)

and the matrix product

(

1 − �t

2
W̃

)−1 (

1 + �t

2
W̃

)

= 1 − ω2 �t2

16

1 + ω2 �t2

16

+ �t

1 + ω2 �t2

16

W̃ . (12.137)

This method conserves the norm of the quaternion and works quite well.

Problems

Problem 12.1 Rotor in a Field

In this computer experiment we simulate a molecule with a permanent dipole
moment in a homogeneous electric field E (Fig. 12.5). We neglect vibrations and
describe the molecule as a rigid body consisting of nuclei with masses mi and partial
charges Qi .The total charge is

∑
Qi = 0. The dipole moment is

p =
∑

Qi ri (12.138)

Problems 177

Fig. 12.5 Rotor in an electric
field

p

E

The external force and torque are

Fext =
∑

Qi E = 0 (12.139)

Next =
∑

Qi ri × E = p × E (12.140)

The angular momentum changes according to

d

dt
Lint = p × E (12.141)

where the dipole moment is constant in the body fixed system. We use the implicit
integrator for the rotation matrix (12.85) and the equation

ω̇b(t) = −I −1
b Wb(t)Lint,b(t)+ I −1

b A−1(t)(p(t)× E) (12.142)

to solve the equations of motion numerically.
Obviously the component of the angular momentum parallel to the field is constant.
The potential energy is

Epot =
∑

Qi Eri = pE (12.143)

Problem 12.2 Molecular Collision

This computer experiment simulates the collision of two rigid methane molecules.
The equations of motion are solved with the implicit quaternion method (12.134)
and the velocity Verlet method (Sect. 11.11.4). The two molecules interact by a
standard 6–12 Lennard Jones potential (13.3) [50]. For comparison the attractive
r−6 part can be switched off. The initial angular momenta as well as the initial
velocity v and collision parameter b can be varied. Total energy and momentum are

178 12 Rotational Motion

Fig. 12.6 Molecular collision
L1

v b

L2

monitored and the decomposition of the total energy into translational, rotational,
and potential energy is plotted as a function of time (Fig. 12.6).

Study the exchange of momentum and angular momentum and the transfer of
energy between translational and rotational degrees of freedom.

Chapter 13
Simulation of Thermodynamic Systems

An important application for computer simulations is the calculation of thermo-
dynamic averages in an equilibrium system. We discuss two different examples. In
the first case the classical equations of motion are solved and the thermodynamic
average is taken along one or more trajectories. In the second case we apply a
Monte Carlo method to calculate the average over a set of random configurations.

13.1 Force Fields for Molecular Dynamics Simulations

Classical molecular dynamics calculations have become a very valuable tool for
the investigation of molecular systems [56–60]. They consider a model system of
mass points mi i = 1 · · · N with an interaction described by a suitable potential
function (force field)

U (r1 · · · rN) (13.1)

and solve the classical equations of motion

d2xi

dt2
= mi Fi = −mi

∂U

∂xi
(13.2)

numerically.
There exist a large number of different force fields in the literature. We discuss

only the basic ingredients which are common to most of them.

13.1.1 Intramolecular Forces

Intramolecular degrees of freedom are often described by a simplified force field
using internal coordinates which are composed of several terms including

• bond lengths U bond = k
2 (ri j − r0

i j)
2

• bond angles U angle = k
2 (φ − φ0)2

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_13,
C© Springer-Verlag Berlin Heidelberg 2010

179

180 13 Simulation of Thermodynamic Systems

• torsion angles U tors = − k
2 cos(m(φ − φ0))

13.1.2 Intermolecular Forces

Repulsion at short distances due to the Pauli principle and the weak attractive van
der Waals forces are often modeled by a sum of pairwise Lennard-Jones potentials
[50] (Fig. 13.1)

U vdw =
∑

A �=B

∑

i∈A, j∈B

U vdw
i, j = 4ε

∑
(

σ 12

r12
i j

− σ 6

r6
i j

)

. (13.3)

The charge distribution of a molecular system can be described by a set of multi-
poles at the position of the nuclei, the bond centers, and further positions (lone pairs,
for example). Such distributed multipoles can be calculated quantum chemically for
not too large molecules. In the simplest models only partial charges are taken into
account giving the Coulombic energy

U Coul =
∑

A �=B

∑

i∈A, j∈B

qi q j

4πε0ri j
. (13.4)

Fig. 13.1 Lennard-Jones
potential. The 6–12 potential
(13.3) has its minimum at
rmin = 6

√
2σ ≈ 1.12σ with

Umin = −ε
1 1.2 1.4 1.6 1.8 2

r/σ

–1

0

1

2

U
/ε

13.1.3 Approximate Separation of Rotation and Vibrations

If the amplitudes of internal vibrations are small the coordinates in the body fixed
system can be divided into the equilibrium value and a small deviation

ρib = ρ
(0)
ib + ξi . (13.5)

The equation of motion is

13.2 Simulation of a van der Waals System 181

mi r̈i = mi (R̈ + ρ̈i) = Fi = Fi
bond + Fi

inter. (13.6)

For the center of mass of molecule A we have

MAR̈A =
∑

i∈A

Fi
inter (13.7)

and for the relative coordinates

mi (Äρ
(0)
ib + 2 Ȧξ̇i + Aξ̈i) = Fi

bond + Fi
inter − mi

M

∑

Fi
inter. (13.8)

If we neglect the effects of centrifugal and Coriolis forces and assume that the bond-
ing interactions are much stronger than the intermolecular forces we have approxi-
mately

mi ξ̈i = A−1Fi
bond, (13.9)

where the bonding forces are derived from a force field for the intramolecular vibra-
tions. For the rotational motion we have

mi ri × r̈i = MR × R̈ + miρi × ρ̈i . (13.10)

If we neglect the oscillations around the equilibrium positions (which are zero on
the average) the rotational motion is approximated by a rigid rotor.

13.2 Simulation of a van der Waals System

In the following we describe a simple computer model of interacting particles with-
out internal degrees of freedom (see Problems). The force on atom i is given by the
gradient of the pairwise Lennard-Jones potential (13.3)

Fi =
∑

j �=i

Fi j = −4ε
∑

j �=i

�i

(

σ 12

r12
i j

− σ 6

r6
i j

)

= 4ε
∑

j �=i

(

12σ 12

r14
i j

− 6σ 6

r8
i j

)

(ri − r j).

(13.11)

13.2.1 Integration of the Equations of Motion

The equations of motion are integrated using the leapfrog algorithm (Sect. 11.11.7):

vi

(

t + dt

2

)

= vi

(

t − dt

2

)

+ Fi (t)

m
dt + O(dt3) (13.12)

ri (t + dt) = ri (t)+ vi

(

t + dt

2

)

dt + O(dt3) (13.13)

vi (t) = vi (t + dt
2)+ vi (t − dt

2)

2
+ O(dt2) (13.14)

182 13 Simulation of Thermodynamic Systems

or with the Verlet algorithm (Sect. 11.11.5):

ri (t + dt) = 2ri (t)− ri (t − dt)+ Fi (t)

m
dt2 + O(dt4) (13.15)

vi (t + dt) = ri (t + dt)− ri (t)

dt
+ O(dt2) (13.16)

= ri (t)− ri (t − dt)

dt
+ Fi (t)

2m
dt + O(dt2). (13.17)

13.2.2 Boundary Conditions and Average Pressure

Molecular dynamics simulations often involve periodic boundary conditions to
reduce finite size effects. Here we employ an alternative method which simulates
a box with elastic walls. This allows us to calculate explicitly the pressure on the
walls of the box (Fig. 13.2).

The atoms are kept in the cube by reflecting walls, i.e., whenever an atom passes
a face of the cube, the normal component of the velocity vector is changed in sign.
Thus the kinetic energy is conserved but a momentum of m�v = 2mv⊥ is trans-
ferred to the wall. The average momentum change per time can be interpreted as a
force acting upon the wall

F⊥ =
〈∑

refl. 2mv⊥
dt

〉

. (13.18)

The pressure p is given by

p = 1

6L2

〈∑

walls
∑

refl. 2mv⊥
dt

〉

. (13.19)

With the Verlet algorithm the reflection can be realized by exchanging the values of
the corresponding coordinate at times tn and tn−1.

Fig. 13.2 Reflecting walls tn tn+1

13.2 Simulation of a van der Waals System 183

13.2.3 Initial Conditions and Average Temperature

At the very beginning the N atoms are distributed over equally spaced lattice points
within the cube. The velocities are randomly distributed following the Gaussian
distribution

√

m

2πkT
exp

(

−mv2

2kT

)

. (13.20)

The effective temperature is calculated from the kinetic energy (assuming thermal
equilibrium)

kT = 2

3N
Ekin. (13.21)

The desired temperature is established by the rescaling procedure

vi → vi

√

kTo

kTactual
(13.22)

which is applied several times during an equilibration run. A smoother method is
the thermostat algorithm

vi → vi

(

1 + 1

τtherm

kTo − kTactual

kTactual

)

, (13.23)

where τtherm is a suitable relaxation time (for instance, 20 time steps)

13.2.4 Analysis of the Results

13.2.4.1 Deviation from the Ideal Gas Behavior

A dilute gas is approximately ideal with

pV = NkT. (13.24)

For a real gas the interaction between the particles has to be taken into account.
From the equipartition theorem it can be found that1

pV = NkT + W (13.25)

with the inner virial

1 MD simulations with periodic boundary conditions use this equation to calculate the pressure.

184 13 Simulation of Thermodynamic Systems

W =
〈

1

3

∑

i

ri Fi

〉

(13.26)

which can be expanded as a power series of the density [61] to give

pV = NkT(1 + b(T)n + c(T)n2 + · · ·). (13.27)

The virial coefficient b(T) can be calculated exactly for the Lennard-Jones gas [61]:

b(T) = 2π

3
σ 3

∞
∑

j=0

2 j−3/2

j ! �

(
2 j − 1

4

)(ε

kT

)(j/2+1/4)
(13.28)

13.2.4.2 Degree of Order

The degree of order of the system can be analyzed in terms of the pair distance
distribution function (Fig. 13.3)

g(R)dR = P(R < ri j < R + dR). (13.29)

In the condensed phase g(R) shows maxima corresponding to the nearest neighbor
distance, etc. In the gas phase this structure vanishes.

Fig. 13.3 Pair distance
distribution. The pair
distribution function is
evaluated for
kT = 5 K , 20 K , 100 K and a
density of ρ = 740 amu A−3

0 2 4 6 8 10

distance (A)

13.2.4.3 Ballistic and Diffusive Motion

The velocity auto-correlation function (Fig. 13.4)

〈v(t − t0)v(t0)〉 (13.30)

13.2 Simulation of a van der Waals System 185

Fig. 13.4 Velocity
auto-correlation and mean
distance square. The van der
Waals system is
simulated for kT = 100 K
and ρ = 740 amu A−3. On a
time scale of 0.1 ps the
velocity correlation decays
and the transition from
ballistic motion to diffusive
motion occurs

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

time (ps)

0

10

20

30

<(x(t)-x(0))2>

<v(t)v(0)>

decays as a function of the delay time t − t0 due to collisions of the particles. In
a stationary state it does not depend on the initial time t0. Integration leads to the
mean square displacement

〈(x(t)− x(t0))
2〉. (13.31)

Without collisions the mean square displacement grows with (t − t0)2 representing a
ballistic type of motion. Collisions lead to a diffusive kind of motion where the least
square displacement grows linearly with time. The transition between this two types
of motion can be analyzed within the model of Brownian motion [62] where the
collisions are replaced by a fluctuating random force �(t) and a damping constant γ .
The equation of motion in one dimension is

v̇ + γ v = �(t) (13.32)

with

〈�(t)〉 = 0 (13.33)

〈�(t)�(t ′)〉 = 2γ kT

m
δ(t − t ′). (13.34)

The velocity correlation decays exponentially

〈v(t)v(t0)〉 = kT

m
e−γ |t−t0| (13.35)

and the average velocity square is

〈v2〉 = kT

m
= 〈Ekin〉

m
2

. (13.36)

186 13 Simulation of Thermodynamic Systems

The average of x2 is

〈(x(t)− x(t0))
2〉 = 2kT

mγ
(t − t0)− 2kT

mγ 2

(

1 − e−γ (t−t0)
)

. (13.37)

For small time differences t − t0 the motion is ballistic with the thermal velocity

〈(x(t)− x(t0))
2〉 ≈ kT

m
t2 = 〈v2〉t2. (13.38)

For large time differences a diffusive motion emerges with

〈(x(t)− x(t0)
2〉 ≈ 2kT

mγ
t = 2Dt (13.39)

and the diffusion constant is given by the Einstein relation

D = kT

mγ
. (13.40)

In three dimensions the contributions of the three independent squares have to be
summed up.

13.3 Monte Carlo Simulation

The basic principles of Monte Carlo simulations are discussed in Chap. 8. Here
we will apply the Metropolis algorithm to simulate the Ising model in one or two
dimensions. The Ising model [63, 64] is primarily a model for the phase transi-
tion of a ferromagnetic system. It has, however, further applications, for instance,
for a polymer under the influence of an external force or protonation equilibria in
proteins.

13.3.1 One-Dimensional Ising Model

We consider a chain consisting of N spins which can be either up (Si = 1) or down
(Si = −1) (Fig. 13.5). The total energy in a magnetic field is

H = −M B = −B
N
∑

i=1

μSi (13.41)

and the average magnetic moment of one spin is

<M>= μ
eμB/kT − e−μB/kT

eμB/kT + e−μB/kT
= μ tanh

(
μB

kT

)

. (13.42)

13.3 Monte Carlo Simulation 187

Fig. 13.5 Ising model. N
spins can be up or down. The
interaction with the magnetic
field is − μBSi , the
interaction between nearest
neighbors is −J Si S j

μB

B

−μB

J −J

Si = ±1

If interaction between neighboring spins is included the energy of a configuration
(S1 · · · SN) becomes

H = −μB
N
∑

i=1

Si − J
N−1
∑

i=1

Si Si+1. (13.43)

The one-dimensional model can be solved analytically [61]. In the limit N → ∞
the magnetization is

<M>= μ
sinh(μB

kT)
√

sinh2(
μB
kT)+ e4J/kT

. (13.44)

The numerical simulation (Fig. 13.6) starts either with the ordered state Si = 1 or
with a random configuration. New configurations are generated with the Metropolis
method as follows:

0 20 40 60 80 100
temperature

0

0.2

0.4

0.6

0.8

1

av
er

ag
e

m
ag

ne
tiz

at
io

n

Fig. 13.6 Numerical simulation of the one-dimensional Ising model. The average magnetization
per spin is calculated from a MC simulation (circles) and compared to the exact solution (13.44).
Parameters are μB = −5 and J = −2

188 13 Simulation of Thermodynamic Systems

• flip one randomly chosen spin Si
2 and calculate the energy change due to the

change �Si = (−Si)− Si = −2Si

�E = −μB�Si − J�Si (Si+1+Si−1) = 2μBSi +2J Si (Si+1 + Si−1) (13.45)

• if �E < 0 then accept the flip, otherwise accept it with a probability of
P = e−�E/kT

As a simple example consider N = 3 spins which have eight possible configura-
tions. The probabilities of the trial step Ti→ j are shown in Table 13.1.

The Table 13.1 is symmetric and all configurations are connected

Table 13.1 Transition probabilities for a three-spin system (p = 1/3)

+ + + + + − + − + + − − − + + − + − − − + − − −
+ + + 0 p p 0 p 0 0 0
+ + − p 0 0 p 0 p 0 0
+ − + p 0 0 p 0 0 p 0
+ − − 0 p p 0 0 0 0 p
− + + p 0 0 0 0 p p 0
− + − 0 p 0 0 p 0 0 p
− − + 0 0 p 0 p 0 0 p
− − − 0 0 0 p 0 p p 0

13.3.2 Two-Dimensional Ising Model

For dimension d > 1 the Ising model behaves qualitatively different as a phase
transition appears. For B = 0 the two-dimensional Ising model (Fig. 13.7) with four

Fig. 13.7 Numerical
simulation of the
two-dimensional Ising model.
The average magnetization
per spin is calculated for
B = 0 from a MC simulation
(circles) and compared to
Eq. (13.47)

1 1.5 2 2.5 3
kT/J

–1

–0.5

0

0.5

1

m
ag

ne
tiz

at
io

n

2 Or try one spin after the other.

Problems 189

nearest neighbors can be solved analytically [65, 66]. The magnetization disappears
above the critical temperature Tc, which is given by

J

kTc
= −1

2
ln
(√

2 − 1
)

≈ 1

2.27
. (13.46)

Below Tc the average magnetization is given by

<M>=
⎛

⎝1 − 1

sinh4
(

2J
kT

)

⎞

⎠

1
8

. (13.47)

Problems

Problem 13.1 van der Waals System

In this computer experiment a van der Waals System is simulated. The pressure
is calculated from the average transfer of momentum (13.19) and compared with
expression (13.25). In our example we use the van der Waals parameters for oxygen
[50]. In fact there exists only one universal Lennard-Jones system which can be
mapped onto arbitrary potential parameters by a rescaling procedure.

• Equilibrate the system and observe how the distribution of squared velocities
approaches a Maxwell distribution.

• Equilibrate the system for different values of temperature and volume and inves-
tigate the relation between pVmol and kT .

• Observe the radial distribution function for different values of temperature and
densities. Try to locate phase transitions.

• Determine the decay time of the velocity correlation function and compare with
the behavior of the mean square displacement which shows a transition from
ballistic to diffusive motion.

Problem 13.2 One-Dimensional Ising Model

In this computer experiment we simulate a linear chain of N = 500 spins with
periodic boundaries and interaction between nearest neighbors only. We go along
the chain and try to flip one spin after the other according to the Metropolis method.

After trying to flip the last spin SN the total magnetization

M =
N
∑

i=1

Si

is calculated. It is averaged over 500 such cycles and then compared graphically
with the analytical solution for the infinite chain (13.44). Temperature and magnetic
field can be varied.

190 13 Simulation of Thermodynamic Systems

Problem 13.3 Two-State Model for a Polymer

Consider a polymer consisting of N units which can be in two states Si = +1 or
Si = −1 with corresponding lengths l+ and l− (Fig. 13.8). The interaction between
neighboring units takes one of the values w++, w+−, w−−. Under the influence of
an external force κ the energy of the polymer is

E = −κ
∑

i

l(Si)+
∑

i

w(Si , Si+1)

Fig. 13.8 Two-state model
for a polymer

l+ l–

L

This model is isomorphic to the one-dimensional Ising model:

E = −κN
l− + l+

2
− κ

l+ − l−
2

∑

Si

+
∑
(

w+− + w++ − w+−
2

Si + w+− − w−−
2

Si+1

+w++ + w−− − 2w+−
2

Si Si+1

)

= κN
l− + l+

2
+ Nw+−

− κ
l+ − l−

2
M + w++ − w−−

2
M

+ w++ + w−− − 2w+−
2

∑

Si Si+1

Comparison with (13.43) shows the correspondence

−J = w++ + w−− − 2w+−
2

−μB = −κ l+ − l−
2

+ w++ − w−−
2

L =
∑

l(Si) = N
l+ + l−

2
+ l+ − l−

2
M

In this computer experiment we simulate a linear chain of N = 20 units with
periodic boundaries and nearest neighbor interaction as in the previous problem.

The fluctuations of the chain conformation are shown graphically and the mag-
netization of the isomorphic Ising model is compared with the analytical expression

Problems 191

for the infinite system (13.44). Temperature and magnetic field can be varied as
well as the coupling J . For negative J the antiferromagnetic state becomes stable at
low-magnetic field strengths.

Problem 13.4 Two-Dimensional Ising Model

In this computer experiment a 200 × 200 square lattice with periodic boundaries
and interaction with the four nearest neighbors is simulated. The fluctuations of
the spins can be observed. At low temperatures ordered domains with parallel spin
appear. The average magnetization is compared with the analytical expression for
the infinite system (13.47).

Chapter 14
Random Walk and Brownian Motion

Random walk processes are an important class of stochastic processes. They have
many applications in physics, computer science, ecology, economics, and other
fields. A random walk [67] is a sequence of successive random steps. In this chapter
we study Markovian [68, 69]1 discrete time2 models. The time evolution of a system
is described in terms of a N-dimensional vector r(t), which can be, for instance, the
position of a molecule in a liquid or the price of a fluctuating stock. At discrete times
tn = n�t the position changes suddenly (Fig. 14.1):

r(tn+1) = r(tn)+�rn, (14.1)

where the steps are distributed according to the probability distribution3

t0 t1 t2 t3

Δr3

r0

r(t)

r

t

Δr2

Δr1

Fig. 14.1 Discrete time random walk

1 Different steps are independent.
2 A special case of the more general continuous time random walk with a waiting time distribution
of P(τ) = δ(τ −�t).
3 General random walk processes are characterized by a distribution function P(R,R′). Here we
consider only correlated processes for which P(R,R′) = P(R′ − R).

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_14,
C© Springer-Verlag Berlin Heidelberg 2010

193

194 14 Random Walk and Brownian Motion

P(�rn = b) = f (b). (14.2)

The probability of reaching the position R after n + 1 steps obeys the equation

Pn+1(R) = P (r(tn+1) = R)

=
∫

dN b Pn(R − b) f (b). (14.3)

14.1 Random Walk in One Dimension

Consider a random walk in one dimension. We apply the central limit theorem to
calculate the probability distribution of the position rn after n steps. The first two
moments and the standard deviation of the step distribution are

b =
∫

db b f (b) b2 =
∫

db b2 f (b) σb =
√

b2 − b
2
. (14.4)

Hence the normalized quantity

ξi = �xi − b

σb
(14.5)

is a random variable with zero average and unit standard deviation. The distribution
function of the new random variable

ηn = ξ1 + ξ2 + · · · + ξn√
n

= rn − nb

σb
√

n
(14.6)

approaches a normal distribution for large n

f (ηn) → 1√
2π

e−η2
n/2 (14.7)

and finally from

f (rn)drn = f (ηn)dηn = f (ηn)
drn

σb
√

n

we have

f (rn) = 1√
2πnσb

exp

{

− (rn − nb)2

2nσ 2
b

}

. (14.8)

The position of the walker after n steps obeys approximately a Gaussian distribution
centered at rn = nb with a standard deviation of (Fig. 14.2)

σrn = √
nσb. (14.9)

14.1 Random Walk in One Dimension 195

0 20000 40000 60000 80000 100000

steps

–400

–200

0

200

400

Fig. 14.2 Random walk with constant step size. The figure shows the position rn for three different
one-dimensional random walks with step size �x = ±1. The dashed curves show the width
±σ = ±√

n of the Gaussian approximation (14.8)

14.1.1 Random Walk with Constant Step Size

In the following we consider the classical example of a one-dimensional random
walk process with constant step size. At time tn the walker takes a step of length �x
to the left with probability p or to the right with probability q = 1 − p (Fig. 14.3).
The corresponding step size distribution function is

f (b) = pδ(b +�x)+ qδ(b −�x) (14.10)

with the first two moments

b = (q − p)�x b2 = Δx2. (14.11)

Let the walker start at r(t0) = 0. The probability Pn(m) of reaching position m�x
after n steps obeys the recursion

Pn+1(m) = pPn(m + 1)+ q Pn(m − 1) (14.12)

which obviously leads to a binomial distribution. From the expansion of

p

r(t) − Δx r(t) r(t) + Δx
r

q

Fig. 14.3 Random walk with constant step size

196 14 Random Walk and Brownian Motion

(p + q)n =
∑
(

n
m

)

pmqn−m (14.13)

we see that

Pn(n − 2m) =
(

n
m

)

pmqn−m (14.14)

or after substitution m′ = n − 2m = −n,−n + 2, . . . n − 2, n:

Pn(m
′) =

(

n
(n − m′)/2

)

p(n−m′)/2q(n+m′)/2. (14.15)

Since the steps are uncorrelated we easily find the first two moments

rn =
n
∑

i=1

�xi = nb = n�x(q − p) (14.16)

and

r2
n =

(
n
∑

i=1

�xi

)2

=
n
∑

i, j=1

�xi�x j =
n
∑

i=1

(�xi)2 = nb2 = n�x2. (14.17)

14.2 The Freely Jointed Chain

We consider a simple statistical model for the conformation of a biopolymer like
DNA or a protein (Figs. 14.4, 14.5).

The polymer is modeled by a three-dimensional chain consisting of M units with
constant bond length. The relative orientation of the segments is arbitrary. The con-
figuration can be described by a point in a 3(M + 1)-dimensional space which is
reached after M steps �ri = bi of a three-dimensional random walk with constant
step size

b

Fig. 14.4 Freely jointed chain with constant bond length b

14.2 The Freely Jointed Chain 197

RM

Fig. 14.5 Freely jointed chain. The figure shows a random three-dimensional structure with 1000
segments visualized as balls (Molekel graphics [70])

(r0, r1 · · · rM) rM = r0 +
M
∑

i=1

bi . (14.18)

14.2.1 Basic Statistic Properties

The M bond vectors

bi = ri − ri−1 (14.19)

have a fixed length |bi | = b and are oriented randomly. The first two moments are

bi = 0 b2
i = b2. (14.20)

Since different units are independent

bi b j = δi, j b
2. (14.21)

Obviously the relative position of segment j

R j = r j − r0 =
j
∑

i=1

bi (14.22)

has zero mean

R j =
j
∑

i=1

bi = 0 (14.23)

198 14 Random Walk and Brownian Motion

and its second moment is

R2
j =

⎛

⎝

j
∑

i=1

bi

j
∑

k=1

bk

⎞

⎠ =
j
∑

i,k=1

bi bk = jb2. (14.24)

For the end to end distance

RM = rM − r0 =
M
∑

i=1

bi (14.25)

this gives

RM = 0, R2
M = Mb2. (14.26)

Let us apply the central limit theorem for large M . For the x-coordinate of the end
to end vector we have

X =
M
∑

i=1

bi ex = b
∑

i

cos θi . (14.27)

With the help of the averages4

cos θi = 1

4π

∫ 2π

0
dφ
∫ π

0
cos θ sin θdθ = 0 (14.28)

(cos θi)2 = 1

4π

∫ 2π

0
dφ
∫ π

0
cos2 θ sin θdθ = 1

3
(14.29)

we find that the scaled difference

ξi = √
3 cos θi (14.30)

has zero mean and unit variance and therefore the sum

X̃ =
√

3

b
√

M
X =

√

3

M

M
∑

i=1

cos θi (14.31)

converges to a normal distribution:

4 For a one-dimensional polymer cos θi = 0 and (cos θi)2 = 1. In two dimensions cos θi =
1
π

∫ π

0 cos θ dθ = 0 and (cos θi)2 = 1
π

∫ π

0 cos2 θ dθ = 1
2 . To include these cases the factor 3 in the

exponent of (14.34) should be replaced by the dimension d.

14.2 The Freely Jointed Chain 199

P(X̃) = 1√
2π

exp

{

− X̃2

2

}

. (14.32)

Hence

P(X) = 1√
2π

√
3

b
√

M
exp

{

− 3

2Mb2
X2
}

(14.33)

and finally in three dimensions

P(RM) = P(X) P(Y) P(Z)

=
√

27

b3
√

(2πM)3
exp

{

− 3

2Mb2
R2

M

}

. (14.34)

14.2.2 Gyration Tensor

For the center of mass

Rc = 1

M

M
∑

i=1

Ri (14.35)

we find

Rc = 0 R2
c = 1

M2

∑

i, j

Ri R j (14.36)

and since

Ri R j = min(i, j) b2 (14.37)

we have

R2
c = b2

M2

(

2
M
∑

i=1

i(M − i + 1)−
M
∑

i=1

i

)

= b2

M2

(
M3

3
+ M2

2
+ M

6

)

≈ Mb2

3
.

(14.38)
The gyration radius [71] is generally defined by

R2
g = 1

M

M
∑

i=1

(Ri − Rc)2

= 1

M

M
∑

i=1

⎛

⎝R2
i + R2

c − 2
1

M

M
∑

j=1

Ri R j

⎞

⎠ = 1

M

∑

i

(R2
i)− R2

c

= b2 M + 1

2
− b2

M2

(
M3

3
+ M2

2
+ M

6

)

= b2
(

M

6
− 1

6M

)

≈ Mb2

6
.

(14.39)

200 14 Random Walk and Brownian Motion

Rg can be also written as

R2
g =

⎛

⎝
1

M

∑

i

R2
i − 1

M2

∑

i j

Ri R j

⎞

⎠ = 1

2M2

M
∑

i=1

M
∑

j=1

(Ri − R j)2 (14.40)

and can be experimentally measured with the help of scattering phenomena. It is
related to the gyration tensor which is defined as

�g = 1

M

∑

i

(Ri − Rc)(Ri − Rc)t . (14.41)

Its trace is
tr(�g) = R2

g (14.42)

and its eigenvalues give us information about the shape of the polymer (Fig. 14.6).

z

y

x

spherical prolate

z

y

x

oblate

z

y

x

Ωz = Ωx,yΩz >> Ωx,y
2 2 Ωz << Ωx,y

2 22 2

Fig. 14.6 Gyration tensor. The eigenvalues of the gyration tensor give information on the shape
of the polymer. If the extension is larger (smaller) along one direction than in the perpendicular
plane, one eigenvalue is larger (smaller) than the two other

14.2.3 Hookean Spring Model

Simulation of the dynamics of the freely jointed chain is complicated by the con-
straints which are implied by the constant chain length. Much simpler is the simula-
tion of a model which treats the segments as Hookean springs. In the limit of a large
force constant the two models give equivalent results (Fig. 14.7).

We assume that the segments are independent (self-crossing is not avoided). Then
for one segment the energy contribution is

Ei = f

2
(|bi | − b)2 . (14.43)

14.2 The Freely Jointed Chain 201

i−1

i

Fig. 14.7 Polymer model with Hookean springs

If the fluctuations are small (Fig. 14.8)

||bi | − b| � b (14.44)

then

|bi | ≈ b b2
i ≈ b2 (14.45)

and the freely jointed chain model (14.34) gives the entropy as a function of the end
to end vector

S = −kB ln (P(RM)) = −kB ln

(√
27

b3
√

(2πM)3

)

+ 3kB

2Mb2
RM

2. (14.46)

If one end of the polymer is fixed at r0 = 0 and a force κ is applied to the other end,
the free energy is given by

F = T S − κRM = 3kBT

2Mb2
R2

M − κRM + const. (14.47)

In thermodynamic equilibrium the free energy is minimal, hence the average exten-
sion is

b−b b

P(b)

Fig. 14.8 Distribution of bond vectors. The bond vector distribution for a one-dimensional chain
of springs has maxima at ±b. For large force constants the width of the two peaks becomes small
and the chain of springs resembles a freely jointed chain with constant bond length

202 14 Random Walk and Brownian Motion

RM = Mb2

3kBT
κ . (14.48)

This linear behavior is similar to a Hookean spring with an effective force constant

feff = Mb2

3kBT
(14.49)

and is only valid for small forces. For large forces the freely jointed chain asymp-
totically reaches its maximum length of RM,max = Mb, whereas for the chain of
springs RM → M(b + κ/ f).

14.3 Langevin Dynamics

A heavy particle moving in a bath of much smaller and lighter particles (for instance,
atoms and molecules of the air) shows what is known as Brownian motion [72–74].
Due to collisions with the thermally moving bath particles it experiences a fluc-
tuating force which drives the particle into a random motion. The French physicist
Paul Langevin developed a model to describe this motion without including the light
particles explicitly. The fluctuating force is divided into a macroscopic friction force
proportional to the velocity

Ffr = −γ v (14.50)

and a randomly fluctuating force with zero mean and infinitely short correlation time

Frand(t) = 0 Frand(t)Frand(t ′) = F2
randδ(t − t ′). (14.51)

The equations of motion for the heavy particle are

d

dt
x = v

d

dt
v = −γ v + 1

m
F f r (t)− 1

m
∇U (x) (14.52)

with the macroscopic friction coefficient γ and the potential U (x).
The behavior of the random force can be better understood if we introduce a time

grid tn+1 − tn = �t and take the limit �t → 0. We assume that the random force
has a constant value during each interval

Frand(t) = Fn tn ≤ t < tn+1 (14.53)

and that the values at different intervals are uncorrelated

FnFm = δm,nF2
n . (14.54)

14.3 Langevin Dynamics 203

The auto-correlation function then is given by

Frand(t)Frand(t ′) =
{

0 different intervals
F2

n same interval
. (14.55)

Division by �t gives a sequence of functions which converges to a delta function in
the limit �t → 0:

1

�t
Frand(t)Frand(t ′) → F2

n δ(t − t ′). (14.56)

Hence we find

F2
n = 1

�t
F2

rand. (14.57)

Within a short time interval �t → 0 the velocity changes by

v(tn +�t) = v − γ v�t − 1

m
∇U (x)�t + 1

m
Fn�t + · · · (14.58)

and taking the square gives

v2(tn +�t) = v2−2γ v2�t− 2

m
v∇U (x)�t+ 2

m
vFn�t+ F2

n

m2
(�t)2+· · · . (14.59)

Hence for the total energy

E(tn +�t) = m

2
v2(tn +�t)+ U (x(tn +�t))

= m

2
v2(tn +�t)+ U (x)+ v∇U (x)�t + · · · (14.60)

we have

E(tn +�t) = E(tn)− mγ v2�t + vFn�t + F2
n

2m
(�t)2 + · · · . (14.61)

On the average the total energy E should be constant and furthermore in d dimen-
sions

m

2
v2 = d

2
kBT . (14.62)

Therefore we conclude

mγ v2 = �t

2m
F2

n = 1

2m
F2

rand (14.63)

204 14 Random Walk and Brownian Motion

from which we obtain finally

F2
n = 2mγ d

�t
kBT . (14.64)

Problems

Problem 14.1 Random Walk in One Dimension

This program generates random walks with (a) fixed step length �x = ±1 or (b)
step length equally distributed over the interval −√

3 < �x <
√

3. It also shows the
variance, which for large number of walks approaches σ = √

n. See also Fig. 14.2.

Problem 14.2 Gyration Tensor

The program calculates random walks with M steps of length b. The bond vectors
are generated from M random points ei on the unit sphere as bi = bei . End to
end distance, center of gravity, and gyration radius are calculated and can be aver-
aged over a large number of random structures. The gyration tensor (Sect. 14.2.2) is
diagonalized and the ordered eigenvalues are averaged.

Problem 14.3 Brownian Motion in a Harmonic Potential

The program simulates a particle in a one-dimensional harmonic potential

U (x) = f

2
x2 − κx

where κ is an external force. We use the improved Euler method (11.34). First the
coordinate and the velocity at midtime are estimated

x
(

tn + dt

2

)

= x(tn)+ v(tn)
dt

2
(14.65)

v
(

tn + dt

2

)

= v(tn)− γ v(tn)
dt

2
+ Fn

m

dt

2
− f

m
x(tn)

dt

2
(14.66)

where Fn is a random number obeying (14.64)
Now the values at tn+1 are calculated as

x(tn + dt) = x(tn)+ v
(

tn + dt

2

)

dt

v(tn + dt) = v(tn)− γ v
(

tn + dt

2

)

dt + Fn

m
dt − f

m
x
(

tn + dt

2

)

dt

(14.67)

Problems 205

Problem 14.4 Force Extension Relation

The program simulates a chain of springs (Sect. 14.2.3) with potential energy

U = f

2

∑

(|bi | − b)2 − κRM (14.68)

The force can be varied and the extension along the force direction is averaged
over a large number of time steps.

Chapter 15
Electrostatics

Electrostatic interactions are very important in molecular physics. Bio-molecules
are usually embedded in an environment which is polarizable and contains mobile
charges (Na+, K +, Mg2+,Cl− · · ·). From a combination of the basic equations of
electrostatics

div D(r) = ρ(r) (15.1)

D(r) = ε(r)E(r) (15.2)

E(r) = −grad Φ(r) (15.3)

the generalized Poisson equation is obtained

div(ε(r) grad Φ(r)) = −ρ(r) = −ρfix(r)− ρmobile(r), (15.4)

where the charge density is formally divided into a fixed and a mobile part

ρ(r) = ρfix(r)+ ρmobile(r). (15.5)

Our goal is to calculate the potential �(r) together with the density of mobile
charges in a self-consistent way.

15.1 Poisson Equation

We start with the simple case of a dielectric medium without mobile charges and
solve (15.5) numerically.

15.1.1 Homogeneous Dielectric Medium

If ε is constant (15.5) simplifies to the Poisson equation

�� = −ρ

ε
. (15.6)

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_15,
C© Springer-Verlag Berlin Heidelberg 2010

207

208 15 Electrostatics

We make use of the discretized Laplace operator

� f = 1

h2
{ f (x + h, y, z)+ f (x − h, y, z)+ f (x, y + h, z)+ f (x, y − h, z)+

+ f (x, y, z + h)+ f (x, y, z − h)− 6 f (x, y, z)} + O(h2). (15.7)

The integration volume is divided into small cubes which are centered at the grid
points

rijk = (hi, hj, hk). (15.8)

The discretized Poisson equation averages over the six neighboring cells (dr1 =
(h, 0, 0), etc.):

1

h2

6
∑

s=1

(�(rijk + drs)−�(rijk)) = − Qijk

εh3
, (15.9)

where Qijk = ρ(rijk)h3 is the total charge in a cell. Equation (15.9) is a system of
linear equations with very large dimension (for a grid with 100 × 100 × 100 points
the dimension of the matrix is 106 × 106 !). We use the iterative method (Sect. 5.5)

�new(rijk) = 1

6

(
∑

�old(rijk + drs)+ Qijk

εh

)

. (15.10)

The Jacobi method ((5.88) on page 57) makes all the changes in one step whereas
the Gauss–Seidel method ((5.91) on page 58) makes one change after the other. The
chessboard (or black red method) divides the grid into two subgrids (with i + j + k
even or odd) which are treated subsequently. The vector drs connects points of
different subgrids. Therefore it is not necessary to store intermediate values like
for the Gauss–Seidel method. Convergence can be improved with the method of
successive over-relaxation (SOR, (5.95) on page 59) using a mixture of old and new
values

�new(rijk) = (1 − ω)�old(rijk)+ ω
1

6

(
∑

�old(rijk + drs)+ Qijk

εh

)

(15.11)

with the relaxation parameter ω. For 1 < ω < 2 convergence is faster than for
ω = 1. For a square grid with N = M2 points the optimum value of the relaxation
parameter is

ωopt ≈ 2

1 + π√
M

. (15.12)

Convergence can be further improved by multigrid methods [75, 76]. Error compo-
nents with short wavelengths are strongly damped during few iterations whereas it

15.1 Poisson Equation 209

takes a very large number of iterations to remove the long-wavelength components.
But here a coarser grid is sufficient and reduces computing time. A small number of
iterations give a first approximation f1 with the finite residual

r1 = ∇2 f1 + ρ. (15.13)

Then more iterations on a coarser grid are made to solve the equation

∇2 f = −r1 = −ρ − ∇2 f1 (15.14)

approximately. The residual of the approximation f2 is

r2 = ∇2 f2 + r1 (15.15)

and the sum f1 + f2 gives an improved approximation to the solution since

∇2(f1 + f2) = −ρ + r1 + (r2 − r1) = −ρ + r2. (15.16)

This method can be extended to a hierarchy of many grids.

15.1.2 Charged Sphere

As a simple example we consider a sphere with a homogeneous charge density
(Fig. 15.1)

ρ = e
3

4πR3
. (15.17)

The potential is given by

Fig. 15.1 Electrostatic
potential of a charged sphere.
A charged sphere is simulated
with radius R = 0.25 A and a
homogeneous charge density
ρ = e 3/4πR3 embedded in
a dielectric medium. The grid
consists of 1003 points with a
spacing of h = 0.05 A . The
calculated potential (circles)
is compared to the exact
solution ((15.18), curves)

0 1 2 3 4 5
x

0

20

40

60

80

po
te

nt
ia

lΦ
 (V

)

210 15 Electrostatics

�(r) = e

4πε0 R
+ e

8πε0 R

(

1 − r2

R2

)

for r < R

�(r) = e

4πε0r
for r > R. (15.18)

Initial values as well as boundary values are taken from the potential of a point
charge which is modified to take into account the finite size of the grid cells

�0(r) = e

4πε0(r + h)
. (15.19)

The interaction energy is (Sect. 15.5) (Fig. 15.2)

Eint = 1

2

∫

�(r)�(r)d3r = 3

20

e2

πε0 R
(15.20)

1 10 100 1000
iterations

32

33

34

35

36

en
er

gy
 (

eV
)

Ω = 1.0

Ω = 1.5

Ω = 1.7

Ω = 1.9

Ω = 1.95

Ω = 1.98

Fig. 15.2 Influence of the relaxation parameter. The convergence of the interaction energy
((15.20), which has a value of 34.56 eV for this example) is studied as a function of the relaxation
parameter ω. The optimum value is around ω ≈ 1.9. For ω > 2 there is no convergence. The
dash-dotted line shows the exact value. The dashed line shows the exact value for a corrected
radius which is derived from the occupied volume (15.35)

15.1.3 Variable ε

For variable ε we use the theorem of Gauss for a vector field F
∫

dV divF =
∮

dA F. (15.21)

We choose F = ε grad� and integrate over one cell

∫

dV div(ε grad�) =
∫

dV (−ρ) = −Qijk (15.22)

15.1 Poisson Equation 211

∮

dA ε grad � =
∑

faces

h2ε grad �. (15.23)

We approximate grad � and ε on the cell face in direction drs by

grad � = 1

h
(�(rijk + drs)−�(rijk)) (15.24)

ε = 1

2
(ε(rijk + drs)+ ε(rijk)) (15.25)

and obtain the discrete equation

−Qijk = h
6
∑

s=1

ε(rijk + drs)+ ε(rijk)

2
(�(rijk + drs)−�(rijk)) (15.26)

and finally the iteration

�new(rijk) =
∑ ε(rijk + drs)+ ε(rijk)

2
�old(rijk + drs)+ Qijk

h
∑ ε(rijk + drs)+ ε(rijk)

2

. (15.27)

15.1.4 Discontinuous ε

For practical applications, models are often used with piecewise constant ε. A sim-
ple example is the solvation of a charged molecule in a dielectric medium. Here
ε = ε0 within the molecule and ε = ε0ε1 within the medium. At the boundary ε is
discontinuous.

Equation (15.27) replaces the discontinuity by the average value ε = ε0(1+ε1)/2
which can be understood as the discretization of a linear transition between the two
values.

15.1.5 Solvation Energy of a Charged Sphere

We consider again a charged sphere, which is now embedded in a dielectric medium
with relative dielectric constant ε1 (Fig. 15.3).

For a spherically symmetrical problem (15.4) can be solved by application of
Gauss’s theorem

212 15 Electrostatics

ε = 1

ρ = 0

ε = ε1

ρ = ρo

Fig. 15.3 Solvation of a charged sphere in a dielectric medium

4πr2ε(r)
d�

dr
= −4π

∫

ρ(r)r2dr = −q(r) (15.28)

�(r) = −
∫ r

0

q(r)

4πr2ε(r)
+�(0). (15.29)

For the charged sphere we find

q(r) =
{

Qr3/R3 for r < R
Q for r > R

(15.30)

�(r) = − Q

4πε0 R3

r2

2
+�(0) for r < R (15.31)

�(r) = − Q

8πε0 R
+�(0)+ Q

4πε0ε1

(
1

r
− 1

R

)

for r > R. (15.32)

The constant �(0) is chosen to give vanishing potential at infinity

�(0) = Q

4πε0ε1 R
+ Q

8πε0 R
. (15.33)

15.1.5.1 Numerical Results

The numerical results show systematic errors in the center of the sphere. These
are mainly due to the discretization of the sphere (Fig. 15.4). The charge is dis-
tributed over a finite number NC of grid cells and therefore the volume deviates
from 4πR3/3. Defining an effective radius by

4π

3
R3

eff = NCh3 (15.34)

the deviation of the potential is

��(0) = Q

4πε0

(
1

ε1
+ 1

2

)(
1

Reff
− 1

R

)

≈ Q

4πε0 R

(
1

ε1
+ 1

2

)
R − Reff

R
(15.35)

which for our numerical experiment amounts to 0.26 V.

15.1 Poisson Equation 213

Fig. 15.4 Charged sphere in
a dielectric medium.
Numerical results for ε1 = 4
outside the sphere (circles)
are compared to the exact
solution (15.31) and (15.32),
solid curves). The dashed line
shows the analytical result
corrected for the error which
is induced by the continuous
transition of ε1 (15.1.4)

0 1 2 3 4 5x
0

10

20

30

40

50

po
te

nt
ia

lΦ
 (V

)

15.1.6 The Shifted Grid Method

The error (Sect. 15.1.4) can be reduced by the following method. Consider a thin
box with the normal vector A parallel to the gradient of ε. Application of Gauss’s
theorem gives (Fig. 15.5)

ε+A grad�+ = ε−A grad �− (15.36)

The normal component of grad� changes by a factor of ε+/ε−. The disconti-
nuity is located at the surface of a grid cell. Therefore it is of advantage to use a
different grid for ε which is shifted by h/2 in all directions [77] (Figs. 15.6, 15.7,
15.8):

εijk = ε

((

i + 1

2

)

h,

(

j + 1

2

)

h,

(

k + 1

2

)

h

)

. (15.37)

Fig. 15.5 Discontinuity in
three dimensions

+

−

A

A

214 15 Electrostatics

Fig. 15.6 Shifted grid
method. A different grid is
used for the discretization of
ε which is shifted by h/2 in
all directions

Φijk + 1

Φijk

ε εijk

ε ε
i−1jk

i−1j−1k ij−1k

εijk

Fig. 15.7 Charged sphere
with the shifted grid method.
The numerically calculated
potential for ε1 = 4 outside
the sphere (circles) is
compared to the exact
solution ((15.31) and (15.32),
solid curves)

0 1 2 3 4 5
x

0

10

20

30

40

50

po
te

nt
ia

lΦ
 (V

)

Fig. 15.8 Comparison of
numerical errors. The
Coulombic interaction of a
charged sphere is calculated
according to ((15.27), circles)
and ((15.38), squares) and
compared to the analytical
solution (solid curve)

1 10 100
ε1

0

10

20

30

40

C
ou

lo
m

bi
c

in
te

ra
ct

io
n

(e
V

)

15.2 Poisson Boltzmann Equation for an Electrolyte 215

ε has to be averaged over four neighboring cells to give

(εAgrad φ)ijk = φi, j,k+1 − φi, j,k

h

εijk + εi, j−1,k + εi−1, j,k + εi−1, j−1,k

4
+ · · · .

(15.38)

15.2 Poisson Boltzmann Equation for an Electrolyte

Let us consider additional mobile charges (for instance, ions in an electrolyte). Ni

denotes the average number of ions of type i with charge Qi . The system is neutral if
∑

i

Ni Qi = 0. (15.39)

The interaction energy of a charge Qi in the electrostatic potential � is

�Qi . (15.40)

This interaction changes the ion numbers according to the Boltzmann factor:

N ′
i = Ni e

−Qi�/kBT . (15.41)

The charge density of the free ions is

ρIon =
∑

i

N ′
i Qi =

∑

Ni Qi e
−Qi�/kBT (15.42)

which has to be taken into account in the Poisson equation. Combination gives the
Poisson–Boltzmann equation [78–80]

div(ε grad �) = −
∑

i

Ni Qi e
−Qi�/kT − ρfix. (15.43)

For small ion concentrations the exponential can be expanded

e−Qi�/kT ≈ 1 − Qi�

kT
+ 1

2

(
Qi�

kT

)2

+ · · · (15.44)

and the linearized Poisson–Boltzmann equation is obtained:

div(ε grad �) = −ρfix +
∑

i

Ni Q2
i

kT
�. (15.45)

With

ε = ε0εr (15.46)

216 15 Electrostatics

and the definition

κ2 = 1

ε0εr kT

∑

Ni Q2
i = e2

ε0εr kT

∑

Ni Z2
i (15.47)

we have finally

div(εr grad �)− εrκ
2� = − 1

ε0
ρ. (15.48)

For a charged sphere with radius a embedded in a homogeneous medium the solu-
tion of (15.48) is given by

� = A

r
e−κr A = e

4πε0εr

eκa

1 + κa
. (15.49)

The potential is shielded by the ions. Its range is of the order λDebye = 1/κ (the
so-called Debye length).

15.2.1 Discretization of the Linearized Poisson–Boltzmann
Equation

To solve (15.48) the discrete equation (15.26) is generalized to [81]

∑ εr (rijk + drs)+ εr (rijk)

2

(

�(rijk + drs)−�(rijk)
)

− εr (rijk)κ
2(rijk)h

2�(rijk) = − Qijk

hε0
. (15.50)

If ε is constant then we have to iterate

�new(rijk) =
Qijk

hε0εr
+∑�old(rijk + drs)

6 + h2κ2(rijk)
. (15.51)

15.3 Boundary Element Method for the Poisson Equation

Often continuum models are used to describe the solvation of a subsystem which is
treated with a high-accuracy method. The polarization of the surrounding solvent or
protein is described by its dielectric constant ε and the subsystem is placed inside
a cavity with ε = ε0. Instead of solving the Poisson equation for a large solvent
volume another kind of method is often used which replaces the polarization of the
medium by a distribution of charges over the boundary surface.

15.3 Boundary Element Method for the Poisson Equation 217

Fig. 15.9 Cavity in a
dielectric medium

ε = ε0

dA

ρ (r)

ε = ε1

In the following we consider model systems which are composed of two spatial
regions (Fig. 15.9):

• the outer region is filled with a dielectric medium (ε1) and contains no free
charges

• the inner region (“Cavity”) contains a charge distribution ρ(r) and its dielectric
constant is ε = ε0.

15.3.1 Integral Equations for the Potential

Starting from the Poisson equation

div(ε(r)grad �(r)) = −ρ(r) (15.52)

we will derive some useful integral equations in the following. First we apply
Gauss’s theorem to the expression [82]

div
[

G(r − r′)ε(r)grad(�(r))−�(r)ε(r)grad(G(r − r′))
]

=−ρ(r)G(r − r′)−�(r)ε(r)div grad(G(r − r′))−�(r)grad(ε(r))grad(G(r − r′))
(15.53)

with the yet undetermined function G(r − r′). Integration over a volume V gives

−
∫

V
dV

(

ρ(r)G(r − r′)+�(r)ε(r)div grad(G(r − r′))

+�(r)grad(ε(r))grad(G(r − r′))
)

=
∮

(V)
dA

(

G(r − r′)ε(r) ∂
∂n
(�(r))−�(r)ε(r)

∂

∂n
(G(r − r′))

)

. (15.54)

Now chose G as the fundamental solution of the Poisson equation

G0(r − r′) = − 1

4π |r − r′| (15.55)

218 15 Electrostatics

which obeys

div grad G0 = δ(r − r′) (15.56)

to obtain the following integral equation for the potential:

�(r′)ε(r) =
∫

dV
ρ(r)

4π |r − r′| + 1

4π

∫

dV�(r)grad(ε(r))grad

(
1

|r − r′|
)

− 1

4π

∮

(V)
dA

(
1

|r − r′|ε(r)
∂

∂n
(�(r))+�(r)ε(r)

∂

∂n

(
1

|r − r′|
))

(15.57)

First consider as the integration volume a sphere with increasing radius. Then
the surface integral vanishes for infinite radius (� → 0 at large distances) [82]
(Fig. 15.10).

The gradient of ε(r) is nonzero only on the boundary surface of the cavity and
with the limiting procedure (d → 0)

grad(ε(r))dV = n
ε1 − 1

d
ε0dV = dA n(ε1 − 1)ε0 (15.58)

we obtain

�(r′) = 1

ε(r′)

∫

cav
dV

ρ(r)
4π |r − r′| + (ε1 − 1)ε0

4πε(r′)

∮

S
dA�(r)

∂

∂n

1

|r − r′| . (15.59)

This equation allows to calculate the potential inside and outside the cavity from the
given charge density and the potential at the boundary.

Next we apply (15.57) to the cavity volume (where ε = ε0) and obtain

�in(r′) =
∫

V
dV

ρ(r)
4π |r − r′|ε0

− 1

4π

∮

(V)
dA

(

�in(r)
∂

∂n

1

|r − r′| − 1

|r − r′|
∂

∂n
�in(r)

)

. (15.60)

From comparison with (15.59) we have

∮

dA
1

|r − r′|
∂

∂n
�in(r) = ε1

∮

dA�in(r)
∂

∂n

1

|r − r′| (15.61)

Fig. 15.10 Discontinuity at
the cavity boundary

ε0S

n d

ε1ε0

15.3 Boundary Element Method for the Poisson Equation 219

and the potential can be alternatively calculated from the values of its normal gradi-
ent at the boundary

�(r′) = 1

ε(r′)

∫

cav
dV

ρ(r)
4π |r − r′| + (1 − 1

ε1
)ε0

4πε(r′)

∮

S
dA

1

|r − r′|
∂

∂n
�in(r). (15.62)

This equation can be interpreted as the potential generated by the charge density ρ
plus an additional surface charge density

σ(r) =
(

1 − 1

ε1

)

ε0
∂

∂n
�in(r). (15.63)

Integration over the volume outside the cavity (where ε = ε1ε0) gives the following
expression for the potential:

�out(r′) = 1

4π

∮

(V)
dA

(

�out(r)
∂

∂n

1

|r − r′| − 1

|r − r′|
∂

∂n
�out(r)

)

. (15.64)

At the boundary the potential is continuous

�out(r) = �in(r) r ∈ A, (15.65)

whereas the normal derivative (hence the normal component of the electric field)
has a discontinuity

ε1
∂�out

∂n
= ∂�in

∂n
. (15.66)

15.3.2 Calculation of the Boundary Potential

For a numerical treatment the boundary surface is approximated by a finite set of
small surface elements Si , i = 1 · · · N centered at ri with an area Ai and normal
vector ni . (We assume planar elements in the following, the curvature leads to higher
order corrections) (Fig. 15.11).

Fig. 15.11 Representation of
the boundary by surface
elements

Sj

rj

nj

rj

rj

+

−

220 15 Electrostatics

The corresponding values of the potential and its normal derivative are denoted
as �i = �(ri) and ∂�i

∂n = ni grad �(ri). At a point r±
j close to the element S j we

obtain the following approximate equations:

�in(r
−
j) =

∫

V
dV

ρ(r)

4π |r − r−
j |ε0

− 1

4π

∑

i

�i

∮

Si

dA
∂

∂n

1

|r − r−
j | + 1

4π

∑

i

∂�i,in

∂n

∮

Si

dA
1

|r − r−
j | (15.67)

�out(r
+
j) = 1

4π

∑

i

�i

∮

Si

dA
∂

∂n

1

|r − r+
j | − 1

4π

∑

i

∂�i,out

∂n

∮

Si

dA
1

|r − r+
j | .

(15.68)

These two equations can be combined to obtain a system of equations for the
potential values only. To that end we approach the boundary symmetrically with
r±

i = ri ± dni . Under this circumstance

∮

Si

dA
1

|r − r+
j | =

∮

Si

dA
1

|r − r−
j |

∮

Si

dA
∂

∂n

1

|r − r+
i | = −

∮

Si

dA
∂

∂n

1

|r − r−
i |

∮

Si

dA
∂

∂n

1

|r − r+
j | =

∮

Si

dA
∂

∂n

1

|r − r−
j | j �= i (15.69)

and we find

(1 + ε1)� j =
∫

V
dV

ρ(r)
4πε0|r − r j |

− 1

4π

∑

i �= j

(1 − ε1)�i

∮

Si

dA
∂

∂n

1

|r − r−
j | − 1

4π
(1 + ε1)� j

∮

S j

dA
∂

∂n

1

|r − r−
j | .

(15.70)

The integrals for i �= j can be approximated by

∮

Si

dA
∂

∂n

1

|r − r−
j | = Ai ni gradi

1

|ri − r j | . (15.71)

The second integral has a simple geometrical interpretation (Fig. 15.12).
Since grad 1

|r−r ′| = − 1
|r−r ′|2

r−r ′
|r−r ′| the area element dA is projected onto a sphere

with unit radius. The integral
∮

S j
dA gradr− 1

|rj−r−
j | is given by the solid angle of S j

with respect to r ′. For r ′ → r j from inside this is just minus half of the full space
angle of 4π . Thus we have

15.3 Boundary Element Method for the Poisson Equation 221

Fig. 15.12 Projection of the
surface element

dA

(1 + ε1)� j =
∫

V
dV

ρ(r)
4π |r − r j |ε0

− 1

4π

∑

i �= j

(1 − ε1)�i Ai
∂

∂ni

1

|ri − r j | + 1

2
(1 + ε1)� j (15.72)

or

� j = 2

1 + ε1

∫

V
dV

ρ(r)
4πε0|r − r j | + 1

2π

∑

i �= j

ε1 − 1

ε1 + 1
�i Ai

∂

∂ni

1

|ri − r j | . (15.73)

This system of equations can be used to calculate the potential on the boundary. The
potential inside the cavity is then given by (15.59). Numerical stability is improved
by a related method which considers the potential gradient along the boundary. Tak-
ing the normal derivative

∂

∂n j
= n j gradr j ± (15.74)

of (15.67, 15.68) gives

∂

∂n j
�in(r

−
j) = ∂

∂n j

∫

V
dV

ρ(r)

4π |r − r−
j |ε0

− 1

4π

∑

i

�i

∮

Si

dA
∂2

∂n∂n j

1

|r − r−
j | + 1

4π

∑

i

∂�i,in

∂n

∮

Si

dA
∂

∂n j

1

|r − r−
j |

(15.75)

∂

∂n j
�out(r

+
j) = 1

4π

∑

i

�i

∮

Si

dA
∂2

∂n∂n j

1

|r − r+
j |

− 1

4π

∑

i

∂�i,out

∂n

∮

Si

dA
∂

∂n j

1

|r − r+
j | . (15.76)

In addition to (15.69) we have now
∮

Si

dA
∂2

∂n∂n j

1

|r − r−
j | =

∮

Si

dA
∂2

∂n∂n j

1

|r − r+
j | (15.77)

222 15 Electrostatics

and the sum of the two equations gives
(

1 + 1

ε1

)
∂

∂n j
�in, j

= ∂

∂n j

⎛

⎝

∫

V
dV

ρ(r)
4πε0|r − r j | + 1 − 1

ε1

4π

∑

i �= j

Ai
∂�i,in

∂n

1

|ri − r j |

⎞

⎠

+ 1 + 1
ε1

2π

∂� j,in

∂n
(15.78)

or finally

∂

∂n j
�in, j = 2ε1

ε1 + 1

∂

∂n j

∫

V
dV

ρ(r)
4πε0|r − r j |

+ 2
ε1 − 1

ε1 + 1

∑

i �= j

Ai
∂�i,in

∂n

∂

∂n j

1

|ri − r j | . (15.79)

In terms of the surface charge density this reads:

σ ′
j = 2ε0

(1 − ε1)

(1 + ε1)

⎛

⎝−n j grad
∫

dV
ρ(r)

4πε0|r − r′| + 1

4πε0

∑

i �= j

σ ′
i Ai

n j (r j − ri)

|ri − r j |3

⎞

⎠ .

(15.80)
This system of linear equations can be solved directly or iteratively (a simple damp-
ing scheme σ ′

m → ωσ ′
m +(1−ω)σ ′

m,old with ω ≈ 0.6 helps to get rid of oscillations).
From the surface charges σi Ai the potential is obtained with the help of (15.62).

15.4 Boundary Element Method for the Linearized
Poisson–Boltzmann Equation

We consider now a cavity within an electrolyte. The fundamental solution of the
linear Poisson–Boltzmann equation (15.48)

Gκ(r − r′) = − e−κ|r−r′|

4π |r − r′| (15.81)

obeys

div grad Gκ(r − r′)− κ2Gκ(r − r′) = δ(r − r′). (15.82)

Inserting into Green’s theorem (15.54) we obtain the potential outside the cavity

15.5 Electrostatic Interaction Energy (Onsager Model) 223

�out(r′) = −
∮

(V)
dA

(

�out(r)
∂

∂n
Gκ(r − r′)− Gκ(r − r′) ∂

∂n
�out(r)

)

(15.83)

which can be combined with (15.60, 15.66) to give the following equations [83]

(1 + ε1)�(r′) =
∮

dA

[

�(r)
∂

∂n
(G0 − ε1Gκ)− (G0 − Gκ)

∂

∂n
�in(r)

]

+
∫

ρ(r)
4πε0|r − r′|dV (15.84)

(1 + ε1)
∂

∂n′�in(r′) =
∮

dA�(r)
∂2

∂n∂n′ (G0 − Gκ)

−
∮

dA
∂

∂n
�in(r)

∂

∂n′

(

G0 − 1

ε1
Gk

)

+ ∂

∂n′

∫
ρ(r)

4πε|r − r′|dV . (15.85)

For a set of discrete boundary elements the following equations determine the values
of the potential and its normal derivative at the boundary:

1 + ε1

2
� j =

∑

i �= j

�i

∮

dA
∂

∂n
(G0 − ε1Gκ)−

∑

i �= j

∂

∂n
�i,in

∮

dA(G0 − Gκ)

+
∫

ρ(r)
4πε0|r − ri |dV (15.86)

1 + ε1

2

∂

∂n′�i,in =
∑

i �= j

�i

∮

dA
∂2

∂n∂n′ (G0 − Gκ)

−
∑

i �= j

∂

∂n
�i,in

∮

dA
∂

∂n′

(

G0 − 1

ε1
Gk

)

+ ∂

∂n′

∫
ρ(r)

4πε|r − ri |dV . (15.87)

The situation is much more involved than for the simpler Poisson equation (with
κ = 0) since the calculation of a large number of integrals including such with
singularities is necessary [83, 84].

15.5 Electrostatic Interaction Energy (Onsager Model)

A very important quantity in molecular physics is the electrostatic interaction of a
molecule and the surrounding solvent [85, 86]. We calculate it by taking a small
part of the charge distribution from infinite distance (�(r → ∞) = 0) into the
cavity. The charge distribution thereby changes from λρ(r) to (λ + dλ)ρ(r) with
0 ≤ λ ≤ 1. The corresponding energy change is

224 15 Electrostatics

dE =
∫

dλ ρ(r) �λ(r)dV

=
∫

dλ ρ(r)

(
∑

n

σn(λ)An

4πε0|r − rn| +
∫

λρ(r ′)
4πε0|r − r ′|dV ′

)

dV . (15.88)

Multiplication of (15.80) by a factor of λ shows that the surface charges λσn are
the solution corresponding to the charge density λρ(r). It follows that σn(λ) = λσn

and hence

dE = λdλ
∫

ρ(r)

(
∑

n

σn An

4πε0|r − rn| + ρ(r ′)
4πε0|r − r ′|dV ′

)

. (15.89)

The second summand is the self-energy of the charge distribution which does not
depend on the medium. The first summand vanishes without a polarizable medium
and gives the interaction energy. Hence we have the final expression

Eint =
∫

dE =
∫ 1

0
λdλ

∫

ρ(r)
∑

n

σn An

4πε0|r − rn|dV

=
∑

n

σn An

∫
ρ(r)

8πε0|r − rn|dV . (15.90)

For the special case of a spherical cavity with radius a an analytical solution by
multipole expansion is available [87]

Eint = − 1

8πε0

∑

l

l
∑

m=−l

(l + 1)(ε1 − 1)

[l + ε1(l + 1)] a2l+1
Mm

l Mm
l (15.91)

with the multipole moments

Mm
l =

∫

ρ(r, θ, ϕ)

√

4π

2l + 1
rlY m

l (θ, ϕ)dV . (15.92)

The first two terms of this series are

E (0)
int = − 1

8πε0

ε1 − 1

ε1a
M0

0 M0
0 = − 1

8πε0

(

1 − 1

ε1

)
Q2

a
(15.93)

E (1)
int = − 1

8πε0

2(ε1 − 1)

(1 + 2ε1)a3
(M−1

1 M−1
1 + M0

1 M0
1 + M1

1 M1
1)

= − 1

8πε0

2(ε1 − 1)

1 + 2ε1

μ2

a3
. (15.94)

15.5 Electrostatic Interaction Energy (Onsager Model) 225

Fig. 15.13 Surface charges

−
−
−

−−
−

−
−

− −
−−

−−−

− −

−
−

−
−

−
σ

ε1 ε1 = 1

Q Q

15.5.1 Example: Point Charge in a Spherical Cavity

Consider a point charge Q in the center of a spherical cavity of radius R. The dielec-
tric constant is given by

ε =
{

ε0 r < R
ε1ε0 r > R

. (15.95)

Electric field and potential are inside the cavity

E = Q

4πε0r2
� = Q

4πε0r
+ Q

4πε0 R

(
1

ε1
− 1

)

(15.96)

and outside

E = Q

4πε1ε0r2
� = Q

4πε1ε0r
r > R (15.97)

which in terms of the surface charge density σ is

E = Q + 4πR2σ

4πε0r2
r > R (15.98)

with the total surface charge

4πR2σ = Q

(
1

ε1
− 1

)

. (15.99)

The solvation energy (15.90) is given by

Eint = Q2

8πε0

(
1

ε1
− 1

)

(15.100)

which is the first term (15.93) of the multipole expansion.

226 15 Electrostatics

Fig. 15.14 Solvation energy
with the boundary element
method. A spherical cavity is
simulated with a radius
a = 1 Å which contains a
point charge in its center. The
solvation energy is calculated
with 25 × 25 (circles) and
50 × 50 (squares) surface
elements of equal size. The
exact expression (15.93) is
shown by the solid curve

1 10 100
ε1

–5

0

so
lv

at
io

n
en

er
gy

 (
eV

)

Problems

Problem 15.1 Linearized Poisson–Boltzmann Equation

This computer experiment simulates a homogeneously charged sphere in a dielec-
tric medium. The electrostatic potential is calculated from the linearized Poisson–
Boltzmann equation (15.50) on a cubic grid of up to 1003 points. The potential
�(x) is shown along a line through the center together with a log–log plot of the
maximum change per iteration

|�(n+1)(r)−�(n)(r)|

as a measure of convergence (Fig. 15.15).
Explore the dependence of convergence on

• the initial values which can be chosen either �(r) = 0 or from the analytical
solution

Fig. 15.15 Charged sphere in
a dielectric medium

ε,κ

x

Problems 227

�(r) =
{ Q

8πεε0a
2+ε(1+κa)

1+κa − Q
8πε0a3 r2 for r < a

Qe−κ(r−a)

4πε0ε(κa+1)r for r > a

• the relaxation parameter ω for different combinations of ε and κ
• the resolution of the grid

Problem 15.2 Boundary Element Method

In this computer element the solvation energy of a point charge within a spherical
cavity is calculated with the boundary element method (15.80) (Fig. 15.16).

The calculated solvation energy is compared to the analytical value from (15.91)

Esolv = Q2

8πε0 R

∞
∑

n=1

s2n

R2n

(ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2
(15.101)

where R is the cavity radius and s is the distance of the charge from the center of
the cavity.

Explore the dependence of accuracy and convergence on

• the damping parameter ω
• the number of surface elements (6 × 6 · · · 42 × 42) which can be chosen either as

dφdθ or dφd cos θ (equal areas)
• the position of the charge.

Fig. 15.16 Point charge
inside a spherical cavity

x

y

z

Chapter 16
Waves

In this chapter we simulate waves and analyze the numerical stability of simple
integration algorithms. We perform computer experiments to study reflection at a
boundary or at the border between two media with different refractive indices and
we observe the effect of dispersion.

16.1 One-Dimensional Waves

We consider a simple model for one-dimensional longitudinal waves from solid state
physics [88] (Fig. 16.1).

The equilibrium position of mass point j is x j = j�x ; its elongation from
the equilibrium is ξ j . The potential energy of a spring between mass points j and
j + 1 is

K

2

[(

�x + ξ j+1 − ξ j
)−�x

]2 = K

2
(ξ j+1 − ξ j)

2 (16.1)

and the total potential energy is

U =
∑ K

2
(ξ j+1 − ξ j)

2. (16.2)

The equation of motion is

mξ̈ j = −K (ξ j − ξ j−1)− K (ξ j − ξ j+1) (16.3)

Fig. 16.1 One-dimensional
longitudinal waves

x
(j+1) Δx(j−1) Δx j Δx

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_16,
C© Springer-Verlag Berlin Heidelberg 2010

229

230 16 Waves

or

ξ̈ j = K

m
(ξ j+1 + ξ j−1 − 2ξ j). (16.4)

The elongations are described by a continuous function f (t, x) with

ξ j (t) = f (t, j�x). (16.5)

The function f (t, x) obeys the equation

f̈ (t, j�x) = K

m
(f (t, j�x −�x)+ f (t, j�x +�x)− 2 f (t, j�x)) . (16.6)

With the help of the shift operator

e�x ∂
∂x =

∞
∑

n=0

(�x)n

n!
∂n

∂xn
(16.7)

we have

f̈ (t, x) = K

m

(

e�x ∂
∂x + e−�x ∂

∂x − 2
)

f (t, x) = 2
K

m

(

cosh

(

�x
∂

∂x

)

− 1

)

(16.8)
which is now valid on the whole interval [0, N�x].

For small enough �x the Taylor series expansion

f̈ (t, x) = K

m

(

(�x)2 f ′′(t, x)+ 1

2
(�x)4 f I V (t, x)+ . . .

)

(16.9)

gives in lowest order the one-dimensional wave equation

∂2

∂t2
f = c2 ∂2

∂x2
f, (16.10)

where

c = �x

√

K

m
(16.11)

is the velocity. The general solution of (16.10) according to d’Alembert has the form
of waves traveling to the right or to the left with constant envelope and velocity c:

f (x, t) = f+(x − ct)+ f−(x + ct). (16.12)

16.2 Discretization of the Wave Equation 231

A special solution of this kind is the plane wave solution

f (x, t) = eiωt±ikx (16.13)

with the dispersion relation

ω = ck. (16.14)

If higher derivatives are taken into account, the dispersion relation becomes more
complicated and (16.12) no longer gives a solution.

16.2 Discretization of the Wave Equation

Using the simplest discretization of the second derivatives we have from (16.10)

f (t +�t, x)+ f (t −�t, x)− 2 f (t, x)

�t2

= c2 f (t, x +�x)+ f (t, x −�x)− 2 f (t, x)

�x2
. (16.15)

For a plane wave solution

f = ei(ωt−kx) (16.16)

we find

eiω�t + e−iω�t − 2 = c2 �t2

�x2

(

eik�x + e−ik�x − 2
)

(16.17)

which can be written as

sin
ω�t

2
= α sin

k�x

2
(16.18)

with the so-called Courant number [89]

α = c
�t

�x
. (16.19)

From (16.18) we see that the dispersion relation is linear only for α = 1. For
α �= 1 not all values of ω and k allowed (Fig. 16.2).

232 16 Waves

0 0.5 1 1.5
k Δx/2

0

0.5

1

1.5

ω
 Δ

t/2

α < 1

α >1

Fig. 16.2 Dispersion of the discrete wave equation. Only for small values of k�x and ω�t is the
dispersion approximately linear. For α < 1 only frequencies ω < ωmax = 2 arcsin(α)/�t are
allowed whereas for α > 1 the range of k-values is bounded by kmax = 2 arcsin(1/α)/�x

16.3 Boundary Values

The following boundary values can be used for the simulation of waves on a finite
grid x1 = �x, . . . , xN = N�x :

• fixed boundaries f (x0) = 0 and f (xN+1) = 0 (two extra points added)

� f (x1) = c2

�x2
(f (x2)− 2 f (x1))

� f (xN) = c2

�x2
(f (xN−1)− 2 f (xN)) (16.20)

• periodic boundary conditions x0 ≡ xN , xN+1 ≡ x1,

� f (x1) = c2

�x2
(f (x2)+ f (xN)− 2 f (x1))

� f (xN) = c2

�x2
(f (xN−1)+ f (x1)− 2 f (xN)) (16.21)

• open boundaries

� f (x1) = c2

�x2
(f (x2)− f (x1))

� f (xN) = c2

�x2
(f (xN−1)− f (xN)) (16.22)

16.4 The Wave Equation as an Eigenvalue Problem 233

• moving boundaries with given f (x0, t) = ξ0(t) or f (xN+1, t) = ξN+1(t)

� f (x1) = c2

�x2 (f (x2)− 2 f (x1)+ ξ0(t))

� f (xN) = c2

�x2 (f (xN−1)− 2 f (xN)+ ξN+1(t)) (16.23)

16.4 The Wave Equation as an Eigenvalue Problem

16.4.1 Eigenfunction Expansion

We write the general linear wave equation in operator form

∂2

∂t2
f = D f (16.24)

where for the continuous equation (16.10) the operator D is given by

D f = c2∇2 f. (16.25)

From the eigenvalue problem

D f = λ f (16.26)

we obtain the eigenvalues λ and eigenfunctions fλ which provide the particular
solutions:

f = e±t
√
λ fλ (16.27)

∂2

∂t2
(e±t

√
λ fλ) = λ(e±t

√
λ fλ) = D(e±t

√
λ fλ). (16.28)

These can be used to expand the general solution

f (t, x) =
∑

λ

(

Cλ+et
√
λ + Cλ−e−t

√
λ
)

fλ(x). (16.29)

The coefficients Cλ± follow from the initial values by solving the linear equations

f (t = 0) =
∑

λ

(Cλ+ + Cλ−) fλ(x)

∂ f

∂t
(t = 0) =

∑

λ

√
λ(Cλ+ − Cλ−) fλ(x). (16.30)

234 16 Waves

16.4.2 Application to the Discrete One-Dimensional
Wave Equation1

We consider the discretized second derivative

D f = c2

�x2 (f (x +�x)+ f (x −�x)− 2 f (x)) . (16.31)

x is one of the grid points xn = n�x with n = 1, 2, . . . , N . The function values are
arranged as a column vector:

f =
⎛

⎜
⎝

f (�x)
...

f (N�x)

⎞

⎟
⎠ . (16.32)

The operator D is represented by the matrix

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

c2

�x2
(16.33)

which can be easily diagonalized since it is tridiagonal. The solutions of the eigen-
value problem

D f = λ f (16.34)

have the form

f (n�x) = sin(nk�x). (16.35)

This can be seen by inserting (16.35) into the nth line of (16.34)

(D f)n = (sin ((n − 1)k�x)+ sin ((n + 1)k�x)− 2 sin(nk�x))
c2

�x2
=

= (sin(nk�x) cos(k�x)− cos(nk�x) sin(k�x)+ sin(nk�x) cos(k�x)

+ cos(nk�x) sin(k�x)− 2 sin(nk�x))
c2

�x2
=

= 2 sin(nk�x) (cos(k�x)− 1)
c2

�x2
= λ (f)n (16.36)

1 We consider only fixed boundaries here.

16.4 The Wave Equation as an Eigenvalue Problem 235

with the eigenvalue

λ = 2
c2

�x2 (cos(k�x)− 1) . (16.37)

The first line of the eigenvalue equation (16.34) gives

(D f)1 = (−2 sin(k�x)+ sin(2k�x))
c2

�x2

= 2 sin(k�x)(cos(k�x)− 1)
c2

�x2
= λ(f)1 (16.38)

and from the last line we have

(D f)N = (−2 sin(Nk�x)+ sin((N − 1)k�x))
c2

�x2

= λ(f)N = 2
c2

�x2
(cos(k�x)− 1) sin(Nk�x) (16.39)

which holds if

sin((N − 1)k�x) = 2 sin(Nk�x) cos(k�x). (16.40)

This simplifies to

sin(Nk�x) cos(k�x)− cos(Nk�x) sin(k�x) = 2 sin(Nk�x) cos(k�x)

sin(Nk�x) cos(k�x)+ cos(Nk�x) sin(k�x) = 0

sin((N + 1)k�x) = 0. (16.41)

Hence the possible values of k are

k = π

(N + 1)�x
l with l = 1, 2, . . . , N . (16.42)

The two boundary points f (0) = 0 and f ((N + 1)�x) = 0 can be added with-
out any changes. For other kinds of boundary conditions the following derivations
become more complicated.

The eigenvalue can be written as

λ = 2
c2

�x2
(cos(k�x)− 1) = − 4c2

�x2
sin2

(
k�x

2

)

= (iωk)
2 (16.43)

236 16 Waves

0 0.5 1 1.5
k/k

max

0

0.5

1

1.5

ω
/ω

m
ax

Fig. 16.3 Dispersion of the discrete wave equation

with the frequencies2 (Fig. 16.3)

ωk = 2c

�x
sin

(
k�x

2

)

. (16.44)

The general solution has the form

f (t, n�x) =
N
∑

l=1

(

Cl+eiωl t + Cl−e−iωl t
)

sin

(

n
πl

(N + 1)

)

. (16.45)

The initial amplitudes and velocities are

f (t = 0, n�x) =
N
∑

l=1

(Cl+ + Cl−) sin

(

n
πl

(N + 1)

)

= Fn

ḟ (t = 0, n�x) =
N
∑

l=1

iωl (Cl+ − Cl−) sin

(

n
πl

(N + 1)

)

= Gn (16.46)

with Fn and Gn given. Different eigenfunctions of a tridiagonal matrix are mutual
orthogonal

N
∑

n=1

sin

(

n
πl

N + 1

)

sin

(

n
πl ′

N + 1

)

= N

2
δl,l ′ (16.47)

2 Only for small enough k�x � 1 the dispersion relation of the continuous wave equationωk = ck
follows.

16.5 Numerical Integration of the Wave Equation 237

and the coefficients Cl± follow from a discrete Fourier transformation:

F̃l = 1

N

N
∑

n=1

sin

(

n
πl

N + 1

)

Fn

= 1

N

N
∑

n=1

N
∑

l ′=1

(Cl ′+ + Cl ′−) sin

(

n
πl ′

N + 1

)

sin

(

n
πl

N + 1

)

= 1

2
(Cl+ + Cl−)

(16.48)

G̃l = 1

N

N
∑

n=1

sin

(

n
πl

N + 1

)

Gn

= 1

N

N
∑

n=1

N
∑

l ′=1

iωl (Cl+ − Cl−) sin

(

n
πl ′

N + 1

)

sin

(

n
πl

N + 1

)

= 1

2
iωl (Cl+ − Cl−)

(16.49)

Cl+ = F̃l + 1

iωl
G̃l

Cl− = F̃l − 1

iωl
G̃l . (16.50)

Finally the explicit solution of the wave equation is

f (t, n�x) =
N
∑

l=1

2

(

F̃l cos(ωl t)+ G̃l

ωl
sin(ωl t)

)

sin

(

n
πl

N + 1

)

. (16.51)

16.5 Numerical Integration of the Wave Equation

16.5.1 Simple Algorithm

We solve the discrete wave equation (16.15) with fixed boundaries for f (t +�t, x):

f (t +�t, x) = 2 f (t, x)(1−α2)+α2(f (t, x +�x)+ f (t, x −�x))− f (t −�t, x).
(16.52)

Using the discrete values xm = m�x and tn = n�t we have the iteration

f (tn+1, xm) = 2(1−α2) f (tn, xm)+α2 f (tn, xm+1)+α2 f (tn, xm−1)− f (tn−1, xm).

(16.53)
This is a two-step method which can be rewritten as a one-step method of double
dimension

238 16 Waves

(

fn+1
fn

)

= T

(

fn

fn−1

)

=
(

2 + α2 M −1
1 0

)(

fn

fn−1

)

(16.54)

with the column vector

fn =
⎛

⎜
⎝

f (�x)
...

f (M�x)

⎞

⎟
⎠ (16.55)

and the tridiagonal matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (16.56)

The latter has the eigenvalues

λ = 2 cos(k�x)− 2 = −4 sin2
(

k�x

2

)

. (16.57)

To simulate excitation of waves by a moving boundary we add one grid point with
given elongation ξ0(t) and change the first equation into

f (tn+1, x1) = 2(1−α2) f (tn, x1)+α2 f (tn, x2)+α2ξ0(tn)− f (tn−1, x1). (16.58)

16.5.2 Stability Analysis

Repeated iteration gives the series of function values

(

f1
f0

)

,

(

f2
f1

)

= T

(

f1
f0

)

,

(

f3
f2

)

= T 2
(

f1
f0

)

, · · · (16.59)

A necessary condition for stability is that all eigenvalues of T have absolute values
smaller than one. Otherwise small perturbations would be amplified. The eigenvalue
equation for T is

(

2 + α2 M − σ −1
1 −σ

)(

u
v

)

=
(

0
0

)

. (16.60)

We substitute the solution of the second equation

16.5 Numerical Integration of the Wave Equation 239

u = σv (16.61)

into the first equation and use the known eigenfunctions of M to have

(2 + α2λ− σ)σv − v = 0. (16.62)

Hence we have to solve

σ 2 − σ(α2λ+ 2)+ 1 = 0 (16.63)

which gives

σ = 1 + α2λ

2
±
√
(
α2λ

2
+ 1

)2

− 1. (16.64)

From

−4 < λ < 0 (16.65)

we have

1 − 2α2 <
α2λ

2
+ 1 < 1 (16.66)

and the square root in (16.64) is imaginary if

−1 <
α2λ

2
+ 1 < 1 (16.67)

which is the case for

sin2
(

k�x

2

)

α2 < 1. (16.68)

This holds for all k only if

|α| < 1. (16.69)

But then

|μ|2 =
(

1 + α2λ

2

)2

+
(

1 −
(
α2λ

2
+ 1

)2)

= 1 (16.70)

240 16 Waves

and the algorithm is (conditionally) stable. If on the other hand |α| > 1 then for
some k-values the square root is real. Here we have

1 + α2λ

2
< −1 (16.71)

and finally

1 + α2λ

2
−
√
(

1 + α2λ

2

)2

− 1 < −1 (16.72)

which shows that instabilities are possible in this case.

16.5.3 Alternative Algorithm with Explicit Velocities

Now let us use a leap frog-like algorithm (page 149):

f (tn+1, xm) = f (tn, xm)+ v(tn, xm)�t + D f (tn, xm)
�t2

2

= f (tn, xm)+ v

(

tn + �t

2
, xm

)

�t

v

(

tn + �t

2
, xm

)

= v

(

tn − �t

2
, xm

)

+ D f (tn, xm)�t. (16.73)

Since the velocity appears explicitly we can easily add a velocity-dependent damp-
ing like

−γ v(tn, xm) (16.74)

which we approximate by

−γ v
(

tn − �t

2
, xm

)

. (16.75)

We assume weak damping with

γ�t � 1. (16.76)

16.5.4 Stability Analysis

The algorithm can be written in matrix form as

(

fn+1
vn+1

)

=
⎛

⎝

1 + α2 M �t (1 − γ�t)
α2

�t
M 1 − γ�t

⎞

⎠

(

fn

vn

)

. (16.77)

16.5 Numerical Integration of the Wave Equation 241

Using the eigenvalues of M

λ = −4 sin2
(

k�x

2

)

(16.78)

we find the following equation for the eigenvalues σ :

(1 + α2λ− σ)u +�t (1 − γ�t)v = 0

α2λu +�t (1 − γ�t − σ)v = 0. (16.79)

Solving the second equation for u and substituting into the first equation we have

[

(1 + α2λ− σ)
�t

−α2λ
(1 − γ�t − σ)+�t (1 − γ�t)

]

= 0 (16.80)

hence

(1 + α2λ− σ)(1 − γ�t − σ)− α2λ(1 − γ�t) = 0

σ 2 − σ(2 − γ�t + α2λ)+ (1 − γ�t) = 0

σ = 1 − γ�t

2
+ α2λ

2
±
√
(

1 − γ�t

2
+ α2λ

2

)2

− (1 − γ�t) . (16.81)

Instabilities are possible if the square root is real and σ < −1. (σ > 1 is not
possible) (Fig. 16.4). This is the case for

0 1 2 3 4
kΔx

0

1

2

3

4

|σ
|

α2
 =1.5

α2
 =1.1

α2
 <1.0

Fig. 16.4 Region of instability. Instabilities appear for |α| > 1. One of the two eigenvalues σ
becomes unstable (|σ | > 1) for waves with large k-values

242 16 Waves

− 1 + γ�t

2
≈ −√1 − γ�t < 1 − γ�t

2
+ α2λ

2
<
√

1 − γ�t ≈ 1 − γ�t

2
(16.82)

− 2 + γ�t <
α2λ

2
< 0. (16.83)

The right inequality is satisfied, hence it remains

α2 sin2
(

k�x

2

)

< 1 − γ�t

2
. (16.84)

This holds for all k-values if it holds for the maximum of the sine function

α2 < 1 − γ�t

2
. (16.85)

This shows that inclusion of the damping term even favors instabilities.

Problems

Problem 16.1 Waves on a Damped String

In this computer experiment we simulate waves on a string with a moving boundary
with the method from Sect. 16.5.3.

• Excite the left boundary with a continuous sine function and try to generate stand-
ing waves.

• Increase the velocity until instabilities appear
• Compare reflection at open and fixed right boundary
• Observe the dispersion of pulses with different shape and duration
• The velocity for x > 0 can be changed by a factor n (refractive index). Observe

reflection at x = 0

Problem 16.2 Waves with the Fourier Transform Method

In this computer experiment we use the method from Sect. 16.4.2 to simulate waves
on a string with fixed boundaries.

• Different initial excitations of the string can be selected.
• The dispersion can be switched off by using ωk = ck instead of the proper eigen-

values (16.44).

Chapter 17
Diffusion

Diffusion is one of the simplest non-equilibrium processes. It describes the transport
of heat [90, 91] and the time evolution of differences in substance concentrations
[92].

In this chapter we consider the diffusion equation

∂ f

∂t
= div(D grad f)+ S, (17.1)

where D is the diffusion constant (which may depend on position) and S is a source
term.

17.1 Basic Physics of Diffusion

Let f denote the concentration of a particle species or the temperature. J is the
corresponding flux of particles. Consider a small cube dx dy dz (Fig. 17.1).

The change of the number of particles within this volume is given by the sum of
all incoming and outgoing fluxes

dx

dy

dz

Jx(x+dx)

Jy(y+dy)

Jz(z+dz)

Jz(z)

Jy(y)

Jx(x)

Fig. 17.1 Flux through a volume element dx dy dz

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_17,
C© Springer-Verlag Berlin Heidelberg 2010

243

244 17 Diffusion

∂ f

∂t
dxdydz

= (Jx (x, y, z)− Jx (x + dx, y, z))dydz (17.2)

+ (Jy(x, y, z)− Jy(x, y + dy, z))dxdz

+ (Jz(x, y, z)− Jz(x, y, z + dz))dxdy

from which the continuity equation follows:

∂ f

∂t
= −∂ Jx

∂x
− ∂ Jy

∂y
− ∂ Jz

∂z
= −div J. (17.3)

Within the framework of linear response theory the flux is proportional to the gradi-
ent of f ,

J = −D grad f. (17.4)

Together we have

div(D grad f) = −div J = ∂ f

∂t
. (17.5)

Addition of a source (or sink) term completes the diffusion equation. In the special
case of constant D it simplifies to

∂ f

∂t
= D� f + S. (17.6)

17.2 Boundary Conditions

The following choices of boundary conditions are important:

• Dirichlet b.c.: f (t, xbound) given. Can be realized by adding additional points x−1
and xN with given f (t, x−1) and f (t, xN).

• Neumann b.c.: The flux through the boundary is given. Can be realized by adding
additional points x−1 and xN with given f (t, x−1) = f (t, x0) + D−1�x j1(t)
and f (t, xN) = f (t, xN−1)− D−1�x jN−1(t).

• No-flow b.c.: no flux through the boundary. Can be realized by a reflection at the
boundary. Additional points x−1 and xN are added with f (t, x−1) = f (t, x1)

and f (t, xN) = f (t, xN−2) which compensates the flux through the boundary
(Fig. 17.2).

17.3 Numerical Integration of the Diffusion Equation 245

J’ J

Fig. 17.2 No-flow boundary conditions

17.3 Numerical Integration of the Diffusion Equation

We use discrete values of time and space (one dimensional for now) tn = n�t ,
xm = m�x , m = 0, 1, . . . N − 1 and the discretized derivatives

∂ f

∂t
= f (tn+1, xm)− f (tn, xm)

�t
(17.7)

� f = f (tn, xm+1)+ f (tn, xm−1)− 2 f (tn, xm)

�x2
. (17.8)

17.3.1 Forward Euler or Explicit Richardson Method

A simple Euler step (11.3) is given by

f (tn+1, xm) = f (tn, xm)

+ D
�t

�x2 (f (tn, xm+1)+ f (tn, xm−1)− 2 f (tn, xm))+ S(tn, xm)�t. (17.9)

17.3.2 Stability Analysis

In matrix notation the one-dimensional algorithm with boundary condition f = 0
is given by

⎛

⎜
⎝

f (tn+1, x1)
...

f (tn+1, xM)

⎞

⎟
⎠ = A

⎛

⎜
⎝

f (tn, x1)
...

f (tn, xM)

⎞

⎟
⎠+

⎛

⎜
⎝

S(tn, x1)�t
...

S(tn, xM)�t

⎞

⎟
⎠ (17.10)

with the tridiagonal matrix

246 17 Diffusion

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2D �t
�x2 D �t

�x2

D �t
�x2 1 − 2D �t

�x2

. . .
. . .

. . .

D �t
�x2 1 − 2D �t

�x2 D �t
�x2

D �t
�x2 1 − 2D �t

�x2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17.11)

We use the abbreviation

r = D
�t

�x2
(17.12)

and write A as

A = 1 + r M (17.13)

with the tridiagonal matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (17.14)

The eigenvalues of M are (compare (16.43))

λ = −4 sin2
(

k

2

)

with k = π

N + 1
,

2π

N + 1
, . . .

Nπ

N + 1
(17.15)

and hence the eigenvalues of A are given by

1 + rλ = 1 − 4r sin2 k

2
. (17.16)

For stability we need

|1 + rλ| < 1 for all λ (17.17)

which holds if

−1 < 1 − 4r sin2 k

2
< 1. (17.18)

The maximum of the sine function is sin

(
Nπ

2(N + 1)

)

≈ 1. Hence the right-hand

inequation is fulfilled and from the left one we have

17.3 Numerical Integration of the Diffusion Equation 247

−1 < 1 − 4r (17.19)

and finally stability for1

r = D
�t

�x2
<

1

2
. (17.20)

17.3.3 Implicit Backward Euler Algorithm

Consider now the implicit method

f (tn, xm) = f (tn+1, xm)

− D
�t

�x2
(f (tn+1, xm+1)+ f (tn+1, xm−1)− 2 f (tn+1, xm))− S(tn+1, xm)�t

(17.21)

or in matrix notation

f (tn) = A f (tn+1)− S(tn+1)�t with A = 1 − r M (17.22)

which can be solved formally by

f (tn+1) = A−1 f (tn)+ A−1S(tn+1)�t. (17.23)

The eigenvalues of A are

λ = 1 + 4r sin2 k

2
> 1 (17.24)

and the eigenvalues of A−1 are

λ−1 = 1

1 + r sin2 k
2

. (17.25)

The implicit method is stable since

|λ−1| < 1. (17.26)

1 m = �t
�x2 is the Courant number [89] for the diffusion equation.

248 17 Diffusion

17.3.4 Crank–Nicolson Method

Combination of implicit and explicit method gives the Crank–Nicolson method [93]
which is often used for diffusion problems:

f (tn+1, xn)− f (tn, xn)

�t

= D
f (tn, xm+1)+ f (tn, xm−1)− 2 f (tn, xm)

2�x2

+ D
f (tn+1, xm+1)+ f (tn+1, xm−1)− 2 f (tn+1, xm)

2�x2

+ S(tn, xm)+ S(tn+1, xm)

2
�t (17.27)

or in matrix notation

(

1 − r

2
M
)

f (tn+1) =
(

1 + r

2
M
)

f (t)+ S(tn)+ S(tn+1)

2
�t. (17.28)

This can be solved for f (tn+1):

f (tn+1) =
(

1 − r

2
M
)−1 (

1 + r

2
M
)

f (tn)+
(

1 − r

2
M
)−1 S(tn)+ S(tn+1)

2
�t.

(17.29)
The eigenvalues are now

λ = 1 + r
2μ

1 − r
2μ

with μ = −4 sin2 k

2
= −4 · · · 0. (17.30)

Since rμ < 0 it follows

1 + r

2
μ < 1 − r

2
μ (17.31)

and hence

λ < 1. (17.32)

On the other hand we have

1 > −1 (17.33)

1 + r

2
μ > −1 + r

2
μ (17.34)

λ > −1. (17.35)

which shows that the Crank–Nicolson method is stable [94].

17.3 Numerical Integration of the Diffusion Equation 249

17.3.5 Error Order Analysis

Taylor series expansion of f (t +�t, x)− f (t, x) gives for the explicit method

f (t +�t, x)− f (t, x) = r M f (t, x)+ S(t, x)�t

= D
�t

�x2 (f (t, x +�x)+ f (t, x −�x)− 2 f (t, x))+ S(t, x)�t. (17.36)

Making use of the diffusion equation we have

D
�t

�x2

(

�x2 f ′′(t, x)+ �x4

12

∂4

∂x4
f (t, x)+ · · ·

)

+ S(t, x)�t

= �t ḟ (t, x)+ D�t
�x2

12

∂4

∂x4
f (t, x)+ · · · . (17.37)

For the implicit method we find

f (t +�t, x)− f (t, x) = r M f (t +�t, x)+ S(t +�t, x)�t

= D
�t

�x2 (f (t +�t, x +�x)+ f (t +�t, x −�x)− 2 f (t +�t, x))

+ S(t +�t, x)�t

= D
�t

�x2

(

�x2 f ′′(t, x)+ �x4

12
f (4)(t, x)+ · · ·

)

+ S(t, x)�t + D
�t2

�x2

(

�x2 ḟ ′′(t, x)+ �x4

12
ḟ (4)(t, x)+ · · ·

)

+ Ṡ(t, x)�t2

= �t ḟ (t, x)+�t2 f̈ (t, x)+ D�t
�x2

12
(f (4)(t, x)+�t ḟ (4)(t, x))+ · · · .

(17.38)

We compare with the exact Taylor series

fexact(t+�t, x)− f (t, x) = �t ḟ (t, x)+�t2

2
f̈ (t, x)+�t3

6

∂3

∂t3
f (t, x) · · · (17.39)

and have for the explicit method

fexpl(t +�t, x)− f (t, x) = �t ḟ (t, x)+ D�x2�t

12
f (4)(t, x)+ · · ·

= fexact(t +�t, x)− f (t, x)+ O(�t2,�x2�t) (17.40)

and for the implicit method

250 17 Diffusion

fimpl(t +�t, x)− f (t, x) = �t ḟ (t, x)+ D�t2 f̈ (t, x)+ · · ·
= fexact(t +�t, x)− f (t, x)+ O(�t2,�x2�t). (17.41)

The error order of the Crank–Nicolson method is higher in �t :

fCN(t +�t, x)− f (t, x) = fexpl(t +�t, x)− f (t, x)

2
+ fimpl(t +�t, x)− f (t, x)

2

= �t ḟ (t, x)+ �t2

2
f̈ (t, x)+ · · · = fexact(t +�t, x)− f (t, x)+ O(�t3,�x2�t).

(17.42)

17.3.6 Practical Considerations

For the implicit (17.22) and the Crank–Nicolson (17.29) method formally a tridi-
agonal matrix has to be inverted. However, it is numerically much more efficient to
solve the tridiagonal systems of equations:

(1 − r M) f (tn+1) = f (tn)+ S(tn+1)�t (17.43)
(

1 − r

2
M
)

f (tn+1) =
(

1 + r

2
M
)

f (tn)+ S(tn)+ S(tn+1)

2
�t

which can be done with the methods discussed in Part I on page 53.

17.3.7 Split Operator Method for d > 1 Dimensions

The simplest discretization of the Laplace operator in three dimensions is given by

� f =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)

= 1

�x2
(d2

x + d2
y + d2

z) f, (17.44)

where

1

�x2
d2

x f = f (x +�x, y, z)+ f (x −�x, y, z)− 2 f (x, y, z)

�x2
, (17.45)

etc., denote the discretized second derivatives. Generalization of the Crank–
Nicolson method for the three-dimensional problem gives

f (tn+1) =
(

1 − r

2
d2

x − r

2
d2

y − r

2
d2

z

)−1 (

1 + r

2
d2

x + r

2
d2

y + r

2
d2

z

)

f (t). (17.46)

17.3 Numerical Integration of the Diffusion Equation 251

But now the matrices Mx,y,z representing the operators d2
x,y,z are not tridiagonal. To

keep the advantages of tridiagonal matrices we use the approximations

(

1 + r

2
d2

x + r

2
d2

y + r

2
d2

z

)

≈
(

1 + r

2
d2

x

) (

1 + r

2
d2

y

) (

1 + r

2
d2

z

)

(17.47)
(

1 − r

2
d2

x − r

2
d2

y − r

2
d2

z

)

≈
(

1 − r

2
d2

x

) (

1 − r

2
d2

y

) (

1 − r

2
d2

z

)

(17.48)

and rearrange the factors to obtain

f (tn+1) =
(

1 − r

2
d2

x

)−1 (

1 + r

2
d2

x

) (

1 − r

2
d2

y

)−1 (

1 + r

2
d2

y

) (

1 − r

2
d2

z

)−1

(

1 + r

2
d2

z

)

f (tn) (17.49)

which represents successive application of the one-dimensional method for the three
directions separately. The last step was possible since operators d2

i and d2
j for differ-

ent directions i �= j commute. For instance,

d2
x d2

y f = d2
x (f (x, y +�x)+ f (x, y −�x)− 2 f (x, y))

= f (x +�x, y +�y)+ f (x −�x, y +�x)

− 2 f (x, y +�x)+ f (x +�x, y −�x)

+ f (x −�x, y −�x)− 2 f (x, y −�x)

− 2 f (x +�x, y)− 2 f (x −�x, y)+ 4 f (x, y)

= d2
yd2

x f. (17.50)

The Taylor series of (17.46) and (17.49) coincides up to second order with respect
to rd2

x,y,z :

(

1 − r

2
d2

x − r

2
d2

y − r

2
d2

z

)−1 (

1 + r

2
d2

x + r

2
d2

y + r

2
d2

z

)

= 1 + r(d2
x + d2

y + d2
z)+ r2

2
(d2

x + d2
y + d2

z)
2 + O(r3) (17.51)

(

1 − r

2
d2

x

)−1 (

1 + r

2
d2

x

) (

1 − r

2
d2

y

)−1 (

1 + r

2
d2

y

) (

1 − r

2
d2

z

)−1 (

1 + r

2
d2

z

)

=
(

1 + rd2
x + r2d4

x

2

)(

1 + rd2
y + r2d4

y

2

)(

1 + rd2
z + r2d4

z

2

)

+ O(r3)

= 1 + r(d2
x + d2

y + d2
z)+ r2

2
(d2

x + d2
y + d2

z)
2 + O(r3). (17.52)

Hence we have

252 17 Diffusion

fn+1 =
(

1 + D�t

(

�+ �x2

12
�2 + · · ·

)

+ D2�t2

2
(�2 + · · ·)

)

fn

+
(

1 + D�t

2
�+ · · ·

)
Sn+1 + Sn

2
�t

= fn +�t (D� fn + Sn)+ �t2

2
(D2�2 + D�Sn + Ṡn)+ O(�t�x2,�t3).

(17.53)

and the error order is conserved by the split operator method.

Problems

Problem 17.1 Diffusion in Two Dimensions

In this computer experiment we solve the diffusion equation on a two-dimensional
grid for

• an initial distribution f (t = 0, x, y) = δx,0δy,0
• a constant source f (t = 0) = 0, S(t, x, y) = δx,0δy,0

Compare implicit, explicit, and Crank–Nicolson methods.

Chapter 18
Nonlinear Systems

Nonlinear problems [95, 96] are of interest to physicists, mathematicians, and also
engineers. Nonlinear equations are difficult to solve and give rise to interesting
phenomena like indeterministic behavior, multistability, or formation of patterns in
time and space. In the following we discuss recurrence relations like an iterated
function [97]

xn+1 = f (xn) (18.1)

systems of ordinary differential equations like population dynamics models [98–
100]

ẋ(t) = f (x, y)

ẏ(t) = g(x, y) (18.2)

or partial differential equations like the reaction diffusion equation [99–102]

∂

∂t
c(x, t) = D

∂2

∂x2
c(x, t)+ f (c), (18.3)

where f and g are nonlinear in the mathematical sense that means they satisfy both
the following properties

additivity f (x + y) = f (x)+ f (y)
homogeneity f (αx) = α f (x).

(18.4)

18.1 Iterated Functions

Starting from an initial value x0 a function f is iterated repeatedly

x1 = f (x0)

x2 = f (x1)

...

xi+1 = f (xi). (18.5)

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_18,
C© Springer-Verlag Berlin Heidelberg 2010

253

254 18 Nonlinear Systems

Fig. 18.1 Orbit of an iterated
function. The sequence of
points (xi , xi+1), (xi+1, xi+1)

is plotted together with the
curves y = f (x) (dashed)
and y = x (dotted)

(x0,x0)

(x0,x1)

(x1,x1)

(x1,x2)

(x2,x2)

x

y
y = xy = f(x)

The sequence of function values x0, x1 · · · is called the orbit of x0. It can be visual-
ized in a two-dimensional plot by connecting the points

(x0, x1) → (x1, x1) → (x1, x2) → (x2, x2) · · · → (xi , xi+1) → (xi+1, xi+1)

by straight lines (Fig. 18.1).

18.1.1 Fixed Points and Stability

If the equation

x∗ = f (x∗) (18.6)

has solutions x∗, then these are called fixed points. Consider a point in the vicinity
of a fixed point

x = x∗ + ε0 (18.7)

and make a Taylor series expansion

f (x) = f (x∗ + ε0) = f (x∗)+ ε0 f ′(x∗)+ · · · = x∗ + ε1 + · · · (18.8)

with the notation

ε1 = ε0 f ′(x∗). (18.9)

Repeated iteration gives1

1 Here and in the following f (n) denotes an iterated function, not a derivative.

18.1 Iterated Functions 255

f (2)(x) = f (f (x)) = f (x∗ + ε1)+ · · · = x∗ + ε1 f ′(x∗) = x∗ + ε2

...

f (n)(x∗) = x∗ + εn (18.10)

with the sequence of deviations

εn = f ′(x∗)εn−1 = · · · = (f ′(x∗)
)n
ε0.

The orbit moves away from the fixed point for arbitrarily small ε0 if | f ′(x∗)| > 1
whereas the fixed point is attractive for | f ′(x∗)| < 1 (Fig. 18.2).

Fig. 18.2 Attractive fixed
point. The orbit of an
attractive fixed point
converges to the intersection
of the curves y = x and
y = f (x)

x

y y = x

y = f(x)

(x1,x2)
(x2,x2)

(x0,x1)
(x1,x1)

(x0,0)

Higher order fixed points are defined by iterating f (x) several times. A nth order
fixed point solves

f (x∗) �= x∗

f (2)(x∗) �= x∗

f (n−1)(x∗) �= x∗

f (n)(x∗) = x∗. (18.11)

The iterated function values cycle periodically through (Fig. 18.3)

x∗ → f (x∗) → f (2)(x∗) · · · f (n−1)(x∗).

This period is attractive if

| f ′(x∗) f ′(f (x∗)) f ′(f (2)(x∗)) · · · f ′(f (n−1)(x∗))| < 1. (18.12)

256 18 Nonlinear Systems

Fig. 18.3 Periodic orbit. The
orbit of an attractive
fourth-order fixed point
cycles through the values
x1 = f (x4), x2 =
f (x1), x3 = f (x2), x4 =
f (x3)

x1 x2x3 x4 x

y
y = x

y = f(x)

18.1.2 The Ljapunow Exponent

Consider two neighboring orbits with initial values x0 and x0 +ε0. After n iterations
the distance is

| f (f (· · · f (x0)))− f (f (· · · f (x0 + ε0)))| = |ε0|eλn (18.13)

with the so-called Ljapunow exponent [103] λ which is useful to characterize the
orbit. The Ljapunow exponent can be determined from

λ = lim
n→∞

1

n
ln

(

| f (n)(x0 + ε0)− f (n)(x0)|
|ε0|

)

(18.14)

or numerically easier with the approximation

| f (x0 + ε0)− f (x0)| = |ε0|| f ′(x0)|
| f (f (x0 + ε0))− f (f (x0))| = |(f (x0 + ε0)− f (x0))|| f ′(x0 + ε0)|

= |ε0|| f ′(x0)|| f ′(x0 + ε0)|| (18.15)

| f (n)(x0 + ε0)− f (n)(x0)| = |ε0|| f ′(x0)|| f ′(x1)| · · · | f ′(xn−1)| (18.16)

from

λ = lim
n→∞

1

n

n−1
∑

i=0

ln | f ′(xi)|. (18.17)

For a stable fixed point

λ → ln | f ′(x∗)| < 0 (18.18)

18.1 Iterated Functions 257

and for an attractive period

λ → ln | f ′(x∗) f ′(f (x∗) · · · f ′(f (n−1)(x∗))| < 0. (18.19)

Orbits with λ < 0 are attractive fixed points or periods. If, on the other hand, λ > 0,
the orbit is irregular and very sensitive to the initial conditions, hence is chaotic.

18.1.3 The Logistic Map

A population of animals is observed yearly. The evolution of the population density
N is described in terms of the reproduction rate r by the recurrence relation

Nn+1 = r Nn, (18.20)

where Nn is the population density in year number n. If r is constant, an exponential
increase or decrease of N results.

The simplest model for the growth of a population which takes into account that
the resources are limited is the logistic model by Verhulst [104]. He assumed that the
reproduction rate r depends on the population density N in a simple way (Fig. 18.4)

r = r0

(

1 − N

K

)

. (18.21)

The Verhulst model (18.21) leads to the iterated nonlinear function

Nn+1 = r0 Nn − r0

K
N 2

n (18.22)

with r0 > 0, K > 0. We denote the quotient of population density and carrying
capacity by the new variable

xn = 1

K
Nn (18.23)

Fig. 18.4 Reproduction rate
of the logistic model. At low
densities the growth rate has
its maximum value r0. At
larger densities the growth
rate declines and reaches
r = 0 for N = K . The
parameter K is called
carrying capacity

ro

K0
N

r(N)

258 18 Nonlinear Systems

and obtain an equation with only one parameter, the so-called logistic mapping

xn+1 = 1

K
Nn+1 = 1

K
r0 Nn

(

1 − Nn

K

)

= r0 xn (1 − xn). (18.24)

18.1.4 Fixed Points of the Logistic Map

Consider an initial point in the interval

0 < x0 < 1. (18.25)

We want to find conditions on r to keep the orbit in this interval. The maximum
value of xn+1 is found from

dxn+1

dxn
= r(1 − 2xn) = 0 (18.26)

which gives xn = 1/2 and max (xn+1) = r/4. If r > 4 then negative xn appear after
some iterations and the orbit is not bound by a finite interval since

|xn+1|
|xn| = |r |(1 + |xn|) > 1. (18.27)

The fixed point equation

x∗ = r x∗ − r x∗2 (18.28)

always has the trivial solution

x∗ = 0 (18.29)

and a further solution

x∗ = 1 − 1

r
(18.30)

which is only physically reasonable for r > 1, since x should be a positive quantity.
For the logistic mapping the derivative is

f ′(x) = r − 2r x (18.31)

which for the first fixed point x∗ = 0 gives | f ′(0)| = r . This fixed point is attractive
for 0 < r < 1 and becomes unstable for r > 1. For the second fixed point we have
| f ′(1− 1

r)| = |2−r |, which is smaller than one in the interval 1 < r < 3. For r < 1

18.1 Iterated Functions 259

0 0.05 0.1 0.15 0.2 0.25 0.3
x

0

0.05

0.1

0.15

0.2

0.2 0.3 0.4 0.5 0.6 0.7
x

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

0.4

0.5

0.6

0.7

0.8

r = 0.8

c = 2.8
c = 3.1

Fig. 18.5 Orbits of the logistic map. left: For 0 < r < 1 the logistic map has the attractive fixed
point x∗ = 0. middle: In the region 1 < r < 3 this fixed point becomes unstable and another stable
fixed point is at x∗ = 1 − 1/r . right: For 3 < r < 1 + √

6 the second-order fixed point (18.33) is
stable. For larger values of r more and more bifurcations appear

no such fixed point exists. For r1 = 3 the first bifurcation appears and higher order
fixed points become stable (Fig. 18.5).

Consider the fixed point of the double iteration

x∗ = r(r(x∗ − x∗2
)− r2(x∗ − x∗2)2). (18.32)

All roots of this fourth-order equation can be found since we already know two of
them. The remaining roots are

x∗
1,2 =

r+1
2 ± √

r2 − 2r − 3

r
(18.33)

They are real valued if

(r − 1)2 − 4 > 0 → r > 3 (or r < −1). (18.34)

For r > 3 the orbit oscillates between x∗
1 and x∗

2 until the next period doubling
appears for r2 = 1 +√

6 . With increasing r more and more bifurcations appear and
finally the orbits become chaotic.

18.1.5 Bifurcation Diagram

The bifurcation diagram visualizes the appearance of period doubling and chaotic
behavior as a function of the control parameter r (Fig. 18.6).

260 18 Nonlinear Systems

0 1 2 3 4
r

0.0

0.2

0.4

0.6

0.8

x
–4

–2

0

L
ja

pu
no

v
ex

po
ne

nt
 λ

Fig. 18.6 Bifurcation diagram of the logistic map. For different values of r the function is iterated
1100 times. The first 1000 iterations are dropped to allow the trajectory to approach stable fixed
points or periods. The iterated function values x1000 · · · x1100 are plotted in a r–x diagram together
with the estimate (18.17) of the Ljapunow exponent. The first period doublings appear at r = 3 and
r = 1 + √

6. For larger values chaotic behavior is observed and the estimated Ljapunow exponent
becomes positive. In some regions motion is regular again with negative Ljapunow exponent

18.2 Population Dynamics

If time is treated as a continuous variable, the iterated function has to be replaced
by a differential equation

dN

dt
= f (N) (18.35)

or more generally by a system of equations

d

dt

⎛

⎜
⎜
⎜
⎝

N 1
N2
...

Nn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

f1(N 1 · · · Nn)

f2(N1 · · · Nn)

fn(N1 · · · Nn)

⎞

⎟
⎟
⎠
. (18.36)

18.2.1 Equilibria and Stability

The role of the fixed points is now taken over by equilibria, which are solutions of

0 = dN

dt
= f (Neq) (18.37)

18.2 Population Dynamics 261

which means roots of f (N). Let us investigate small deviations from equilibrium
with the help of a Taylor series expansion. Inserting

N = Neq + ξ (18.38)

we obtain

dξ

dt
= f (N eq)+ f ′(N eq)ξ + · · · (18.39)

but since f (Neq) = 0, we have approximately

dξ

dt
= f ′(Neq)ξ (18.40)

with the solution

ξ(t) = ξ0 exp
{

f ′(Neq)t
}

. (18.41)

The equilibrium is only stable if Re f ′(Neq) < 0, since then small deviations
disappear exponentially. For Re f ′(Neq) > 0 deviations will increase, but the expo-
nential behavior holds only for not too large deviations and saturation may appear. If
the derivative f ′(Neq) has a nonzero imaginary part then oscillations will be super-
imposed. For a system of equations the equilibrium is defined by

⎛

⎜
⎜
⎝

f1(N
eq
1 · · · N eq

n)

f2(N
eq
1 · · · N eq

n)

fN (N
eq
1 · · · N eq

n)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0
0
...

0

⎞

⎟
⎟
⎟
⎠

(18.42)

and if such an equilibrium exists, linearization gives

⎛

⎜
⎜
⎜
⎝

N 1
N2
...

Nn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

N eq
1

N eq
2
...

N eq
n

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠

(18.43)

d

dt

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ f1

∂N 1

∂ f1

∂N2
· · · ∂ f1

∂Nn
∂ f2

∂N1

∂ f2

∂N2
· · · ∂ f2

∂Nn
...

...
. . .

...
∂ fn

∂N1

∂ fn

∂N2
· · · ∂ fn

∂Nn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠
. (18.44)

262 18 Nonlinear Systems

The equilibrium is stable if all eigenvalues λi of the derivative matrix have a negative
real part.

18.2.2 The Continuous Logistic Model

The continuous logistic model describes the evolution by the differential equation

dx

dt
= r0x(1 − x). (18.45)

To find possible equilibria we have to solve (Fig. 18.7)

xeq(1 − xeq) = 0 (18.46)

which has the two roots xeq = 0 and xeq = 1.
The derivative f ′ is

f ′(x) = d

dx
(r0x(1 − x)) = r0(1 − 2x). (18.47)

Since f ′(0) = r0 > 0 and f ′(1) = −r0 < 0 only the second equilibrium is stable.

Fig. 18.7 Equilibria of the
logistic model. The
equilibrium xeq = 0 is
unstable since an
infinitesimal deviation grows
exponentially in time. The
equilibrium xeq = 1 is stable
since initial deviations
disappear exponentially unstable

stable

x10

dt

dx

18.3 Lotka–Volterra model

The model by Lotka [105] and Volterra [106] is the simplest model of predator–prey
interactions. It has two variables, the density of prey (H) and the density of predators
(P). The overall reproduction rate of each species is given by the difference of the
birth rate r and the mortality rate m

dN

dt
= (r − m)N (18.48)

18.3 Lotka–Volterra model 263

both of which may depend on the population densities. The Lotka–Volterra model
assumes that the prey mortality depends linearly on the predator density and the
predator birth rate is proportional to the prey density

mH = a P rP = bH, (18.49)

where a is the predation rate coefficient and b is the reproduction rate of predators
per one prey eaten. Together we end up with a system of two coupled nonlinear
differential equations

dH

dt
= f (H, P) = rH H − aHP

dP

dt
= g(H, P) = bH P − mP P, (18.50)

where rH is the intrinsic rate of prey population increase and mP the predator mor-
tality rate.

18.3.1 Stability Analysis

To find equilibria we have to solve the system of equations

f (H, P) = rH H − aHP = 0

g(H, P) = bHP − m P P = 0. (18.51)

The first equation is solved by Heq = 0 or by Peq = rH/a. The second equation is
solved by Peq = 0 or by Heq = mP/b. Hence there are two equilibria, the trivial one

Peq = Heq = 0 (18.52)

and a nontrivial one

Peq = rH

a
Heq = mP

b
. (18.53)

Linearization around the zero equilibrium gives

dH

dt
= rH H + · · · dP

dt
= −mP P + · · · (18.54)

This equilibrium is unstable since a small prey population will increase exponen-
tially. Now expand around the nontrivial equilibrium:

264 18 Nonlinear Systems

P = Peq + ξ, H = Heq + η (18.55)

dη

dt
= ∂ f

∂H
η + ∂ f

∂P
ξ = (rH − a Peq)η − aHeqξ = −amP

b
ξ (18.56)

dξ

dt
= ∂g

∂H
η + ∂g

∂P
ξ = bPeqη + (bHeq − mP)ξ = brH

a
η (18.57)

or in matrix notation

d

dt

(

η

ξ

)

=
(

0 − amP
b

brH
a 0

)(

η

ξ

)

. (18.58)

The eigenvalues are purely imaginary

λ = ±i
√

mHrP = ±iω (18.59)

and the corresponding eigenvectors are

(

i
√

mHrp

brH/a

)

,

(

amP/b
i
√

mHrP

)

. (18.60)

The solution of the linearized equations is then given by

ξ(t) = ξ0 cosωt + b

a

√
rP

mH
η0 sinωt

η(t) = η0 cosωt − a

b

√
mH

rP
ξ0 sinωt (18.61)

0.5 1 1.5 2

predator density P

0.5

1

1.5

2

pr
ey

 d
en

si
ty

 H

0 10 20 30 40 50

time

0.5

1

1.5

2

po
pu

la
tio

n
de

ns
ity

P(t)

H(t)

Fig. 18.8 Lotka–Volterra model. The predator and prey population densities show periodic oscil-
lations (right). In the H–P plane the system moves on a closed curve, which becomes an ellipse
for small deviations from equilibrium (left)

18.4 Functional Response 265

which describes an ellipse in the ξ − η plane (Fig. 18.8). The nonlinear equations
(18.51) have a first integral

rH ln P(t)− a P(t)− b H(t)+ mP ln H(t) = C (18.62)

and therefore the motion in the H − P plane is on a closed curve around the equi-
librium which approaches an ellipse for small amplitudes ξ, η.

18.4 Functional Response

Holling [107, 108] studied predation of small mammals on pine sawflies. He sug-
gested a very popular model of functional response. Holling assumed that the preda-
tor spends its time on two kinds of activities, searching for prey and prey handling
(chasing, killing, eating, digesting). The total time equals the sum of time spent on
searching and time spent on handling

T = Tsearch + Thandling. (18.63)

Capturing prey is assumed to be a random process. A predator examines an area
α per time and captures all prey found there. After spending the time Tsearch the
predator examined an area of αTsearch and captured HT = HαTsearch prey. Hence
the predation rate is

a = HT

H T
= α

Tsearch

T
= α

1

1 + Thandling/Tsearch
. (18.64)

The handling time is assumed to be proportional to the number of prey captured

Thandling = Th HαTsearch, (18.65)

where Th is the handling time spent per one prey. The predation rate then is given
by (Fig. 18.9)

a = α

1 + αH Th
. (18.66)

At small densities handling time is unimportant and the predation rate is a0 = α

whereas at high prey density handling limits the number of prey captured and the
predation rate approaches a∞ = 1

H Th
.

266 18 Nonlinear Systems

Fig. 18.9 Functional
response of Holling’s model

H

aHT

T/Th

αHT

18.4.1 Holling–Tanner Model

We combine the logistic model with Holling’s model for the predation rate
[107, 108, 110]

dH

dt
= rH H

(

1 − H

KH

)

− aHP

= rH H

(

1 − H

KH

)

− α

1 + αH Th
H P = f (H, P) (18.67)

and assume that the carrying capacity of the predator is proportional to the density
of prey (Fig. 18.11)

dP

dt
= rP P

(

1 − P

KP

)

= rP P

(

1 − P

k H

)

= g(H, P). (18.68)

Obviously there is a trivial equilibrium with Peq = Heq = 0. Linearization gives

dH

dt
= rH H + · · · dP

dt
= rP P + · · · (18.69)

which shows that this equilibrium is unstable. There is another trivial equilibrium
with Peq = 0, Heq = KH. Here we find

dH

dt
= rH(KH + h)(1 − KH + h

KH
)− α

1 + αH Th
KH p = rHh − α

1 + αH Th
KH p

dP

dt
= rP P

(

ḣ
ṗ

)

=
(

rH − α
1+αH Th

KH

0 rP

)(

h
p

)

λ = rH + rP

2
± 1

2

√

(rH − rP)2 = rH, rP. (18.70)

18.4 Functional Response 267

Fig. 18.10 Nullclines of the
predator–prey model

H=0

P=0

rH/α

H

P

KH
−1/αTh

m

eq

Let us now look for nontrivial equilibria. The nullclines are the curves defined by
dH
dt = 0 and dP

dt = 0, hence by (Fig. 18.10)

P = rH

α

(

1 − H

KH

)

(1 + αH Th) (18.71)

P = k H. (18.72)

The H -nullcline is a parabola at

Hm = αTh − K −1
H

2αTh K −1
H

Pm = (αTh + K −1
H)2

4αTh K −1
H

> 0. (18.73)

It intersects the H -axis at H = KH and H = −1/αTh and the P-axis at P = rH/α.
There is one intersection of the two nullclines at positive values of H and P which
corresponds to a nontrivial equilibrium. The equilibrium density Heq is the positive
root of

rHaTh H2
eq + (rH + aKp KH − rH KHaTh

)

Heq − rH KH = 0. (18.74)

It is explicitly given by

Heq = −rH + aKp KH − rH KHaTh

2rHaTh

+
√
(

rH + aKp KH − rH KHaTh
)2 + 4rHaThrH KH

2rHaTh
. (18.75)

268 18 Nonlinear Systems

0 100 200 300 400 500
time

10

15

20

25

30

po
pu

la
tio

n
de

ns
ity

10 12 14 16 18 20
predator density P

10

15

20

25

30

pr
ey

 d
en

si
ty

 H

H(t)

P(t)

0 100 200 300 400 500
time

0

50

100

150

200

250

300

po
pu

la
tio

n
de

ns
ity

0 10 20 30 40
predator density P

0

50

100

150

200

250

300

pr
ey

 d
en

si
ty

 H

H(t)

P(t)

0 100 200 300 400 500
time

0

100

200

300

400

po
pu

la
tio

n
de

ns
ity

0 10 20 30 40 50 60
predator density P

0

100

200

300

400

pr
ey

 d
en

si
ty

 H

H(t)

P(t)

Fig. 18.11 Holling–Tanner model. top: evolution from an unstable equilibrium to a limit cycle,
middle: a stable equilibrium is approached with oscillations, bottom: stable equilibrium without
oscillations

18.5 Reaction–Diffusion Systems 269

The prey density then follows from

Peq = Heq KP. (18.76)

The matrix of derivatives has the elements

mhp = ∂ f

∂P
= − aHeq

1 + aTh Heq

mhh = ∂ f

∂H
= rH

(

1 − 2
Heq

Kh

)

− aKp Heq

1 + aTh H
+ a2 H2

eq KpTh

(1 + aTh Heq)2

mpp = ∂g

∂P
= = −rP

mph = ∂g

∂H
= rP KP (18.77)

from which the eigenvalues are calculated as

λ = mhh + mpp

2
±
√

(mhh + mpp)2

4
− (mhhmpp − mhpmph

)

. (18.78)

18.5 Reaction–Diffusion Systems

So far we considered spatially homogeneous systems where the density of a popula-
tion or the concentration of a chemical agent depend only on time. If we add spatial
inhomogeneity and diffusive motion, new and interesting phenomena like pattern
formation or traveling excitations can be observed.

18.5.1 General Properties of Reaction–Diffusion Systems

Reaction–diffusion systems are described by a diffusion equation2 where the source
term depends nonlinearly on the concentrations

∂

∂t

⎛

⎜
⎝

c1
...

cN

⎞

⎟
⎠ =

⎛

⎜
⎝

D1
. . .

DN

⎞

⎟
⎠�

⎛

⎜
⎝

c1
...

cN

⎞

⎟
⎠+

⎛

⎜
⎝

F1({c})
...

FN ({c})

⎞

⎟
⎠ . (18.79)

2 We consider only the case, that different species diffuse independently and that the diffusion
constants do not depend on direction.

270 18 Nonlinear Systems

18.5.2 Chemical Reactions

Consider a number of chemical reactions which are described by stoichiometric
equations

∑

i

νi Ai = 0. (18.80)

The concentration of agent Ai is

ci = ci,0 + νi x (18.81)

with the reaction variable

x = ci − ci,0

νi
(18.82)

and the reaction rate

r = dx

dt
= 1

νi

dci

dt
(18.83)

which, in general is a nonlinear function of all concentrations. The total concentra-
tion change due to diffusion and reactions is given by

∂

∂t
ck = Dk � ck +

∑

j

νk j r j = Dk � ck + Fk({ci }). (18.84)

18.5.3 Diffusive Population Dynamics

Combination of population dynamics (18.2) and diffusive motion gives a similar set
of coupled equations for the population densities

∂

∂t
Nk = Dk � Nk + fk(N1, N2, . . . , Nn). (18.85)

18.5.4 Stability Analysis

Since a solution of the nonlinear equations is not generally possible we discuss small
deviations from an equilibrium solution N eq

k
3 with

3 We assume tacitly that such a solution exists.

18.5 Reaction–Diffusion Systems 271

∂

∂t
Nk = �Nk = 0. (18.86)

Obviously the equilibrium obeys

fk(N1 · · · Nn) = 0 k = 1, 2, . . . n. (18.87)

We linearize the equations by setting

Nk = N eq
k + ξk (18.88)

and expand around the equilibrium

∂

∂t

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠

=
⎛

⎜
⎝

D1
. . .

DN

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

�ξ1
�ξ2
...

�ξn

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

∂ f1
∂N1

∂ f1
∂N2

· · · ∂ f1
∂Nn

∂ f2
∂N1

∂ f2
∂N2

· · · ∂ f2
∂Nn

...
...

. . .
...

∂ fn
∂N1

∂ fn
∂N2

· · · ∂ fn
∂Nn

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠

+ · · · .

(18.89)

Plane waves are solutions of the linearized problem.4 Using the ansatz

ξ j = ξ j,0ei(ωt−kx) (18.90)

we obtain

iω

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠

= −k2 D

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠

+ M0

⎛

⎜
⎜
⎜
⎝

ξ1
ξ2
...

ξn

⎞

⎟
⎟
⎟
⎠
, (18.91)

where M0 denotes the matrix of derivatives and D the matrix of diffusion constants.
For a stable plane wave solution λ = iω is an Eigenvalue of

Mk = M0 − k2 D (18.92)

with

�(λ) ≤ 0. (18.93)

4 Strictly this is true only for an infinite or periodic system.

272 18 Nonlinear Systems

If there are purely imaginary Eigenvalues for some k they correspond to stable solu-
tions which are spatially inhomogeneous and lead to formation of certain patterns.
Interestingly, diffusion can lead to instabilities even for a system which is stable in
the absence of diffusion [110].

18.5.5 Lotka–Volterra Model with Diffusion

As a simple example we consider again the Lotka–Volterra model. Adding diffusive
terms we obtain the equations

∂

∂t

(

H
P

)

=
(

rH H − aH P
bH P − mP P

)

+
(

DH
DP

)

�

(

H
P

)

. (18.94)

There are two equilibria

Heq = Peq = 0 (18.95)

and

Peq = rH

a
Heq = mP

b
. (18.96)

The Jacobian matrix is

M0 = ∂

∂C
F(C0) =

(

rH − a Peq −aHeq
bPeq bHeq − mP

)

(18.97)

which gives for the trivial equilibrium

Mk =
(

rH − DHk2 0
0 −mP − DPk2

)

. (18.98)

One of the eigenvalue λ1 = −mP − DP k2 is negative whereas the second
λ2 = rH − DHk2 is positive for k2 < rH/DH. Hence this equilibrium is unstable
against fluctuations with long wavelengths. For the second equilibrium we find

Mk =
(−DHk2 − amP

b
brH
a −DPk2

)

(18.99)

tr (Mk) = −(DH + DP)k
2

det(MK) = mPrH + DH DPk4

λ = − DH + DP

2
k2 ± 1

2

√

(DH − DP)2k4 − 4mPrH. (18.100)

Problems 273

x

y
t = 814t = 6.4 t = 30t = 1.3

Fig. 18.12 Lotka–Volterra model with diffusion. The time evolution is calculated for initial random
fluctuations. Colors indicate the deviation of the predator concentration P(x, y, t) from its average
value (blue: �P < −0.1, green: −0.1 < �P < −0.01, black: −0.01 < �P < 0.01, yellow:
0.01 < �P < 0.1, red: �P > 0.1. Parameters as in Fig. 18.13

Fig. 18.13 Dispersion of the
diffusive Lotka–Volterra
model. Real (full curve) and
imaginary part (broken line)
of the eigenvalue λ (18.100)
are shown as a function of k.
Parameters are
DH = DP = 1,
mP = rH = a = b = 0.5

0 0.5 1 1.5 2
k

–4

–3

–2

–1

0

1

λ

For small k with k2 < 2
√

mPrH/|DH − DP| damped oscillations are expected
whereas the system is stable against fluctuations with larger k (Figs. 18.12–18.14).

Problems

Problem 18.1: Orbits of the Iterated Logistic Map

This computer example draws orbits (Fig. 18.5) of the logistic map

xn+1 = r0 xn (1 − xn).

You can select the initial value x0 and the variable r .

274 18 Nonlinear Systems

Fig. 18.14 Traveling waves
in the diffusive
Lotka–Volterra model.
Initially P(x, y) = Peq and
H(x, y) is peaked in the
center. This leads to
oscillations and a sharp
wavefront moving away from
the excitation. Color code and
parameters as in Fig. 18.12 x x

y y

P(x,y,t) H(x,y,t)

t = 20

t = 40

t = 8

Problem 18.2: Bifurcation Diagram of the Logistic Map

This computer example generates a bifurcation diagram of the logistic map
(Fig. 18.6). You can select the range of r .

Problem 18.3: Lotka–Volterra Model

Equations (18.50) are solved with the improved Euler method (Fig. 18.8). The pre-
dictor step uses an explicit Euler step to calculate the values at t +�t/2

Hpr

(

t + �t

2

)

= H(t)+ (rH H(t)− aH(t)P(t))
�t

2

Ppr

(

t + �t

2

)

= P(t)+ (bH(t)P(t)− mp P(t)
) �t

2

and the corrector step advances time by �t

H(t +�t) = H(t)+
(

rH Hpr

(

t + �t

2

)

− aHpr

(

t + �t

2

)

Ppr

(

t + �t

2

))

�t

Problems 275

P(t +�t) = P(t)+
(

bHpr

(

t + �t

2

)

Ppr

(

t + �t

2

)

− mp Ppr

(

t + �t

2

))

�t

Problem 18.4: Holling–Tanner Model

The equations of the Holling–Tanner model (18.67, 18.68) are solved with the
improved Euler method (see Fig. 18.11). The pedictor step uses an explicit Euler
step to calculate the values at t +�t/2:

Hpr

(

t + �t

2

)

= H(t)+ f (H(t), P(t))
�t

2

Ppr

(

t + �t

2

)

= P(t)+ g(H(t), P(t))
�t

2

and the corrector step advances time by �t :

H(t +�t) = H(t)+ f

(

Hpr

(

t + �t

2

)

, Ppr

(

t + �t

2

))

�t

P(t +�t) = P(t)+ g

(

Hpr

(

t + �t

2

)

, Ppr

(

t + �t

2

))

�t

Problem 18.5: Diffusive Lotka–Volterra Model

The Lotka–Volterra model with diffusion (18.94) is solved in two dimensions with
an implicit method (17.3.3) for the diffusive motion (Figs. 18.12 and 18.14). The
split operator approximation (17.3.7) is used to treat diffusion in x- and y-direction
independently. The equations

(

H(t +�t)
P(t +�t)

)

=
(

A−1 H(t)
A−1 P(t)

)

+
(

A−1 f (H(t), P(t))�t
A−1g(H(t), P(t))�t

)

≈
(

A−1
x A−1

y

[

H(t)+ f (H(t), P(t))�t
]

A−1
x A−1

y

[

P(t)+ g(H(t), P(t))�t
]

)

are equivalent to the following systems of linear equations with tridiagonal matrix
(5.3):

AyU = H(t)+ f (H(t), P(t))�t

U = Ax H(t +�t)

Ay V = P(t)+ g(H(t), P(t))�t

V = Ax P(t +�t)

Periodic boundary conditions are implemented with the method described in
Sect. 5.4.

Chapter 19
Simple Quantum Systems

The time evolution of a quantum system is governed by the time-dependent
Schrödinger equation [111]

ih̄
∂

∂t
|ψ〉 = H |ψ〉 (19.1)

for the wavefunctionψ . The brackets indicate that |ψ〉 is a vector in abstract Hilbert
space [112]. Vectors can be added

|ψ〉 = |ψ1〉 + |ψ2〉 = |ψ1 + ψ2〉 (19.2)

and can be multiplied with a complex number

|ψ〉 = λ|ψ1〉 = |λψ1〉. (19.3)

Finally a complex valued scalar product of two vectors is defined1

C = 〈ψ1|ψ2〉 (19.4)

which has the properties

〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗
〈ψ1|λψ2〉 = λ〈ψ1|ψ2〉 = 〈λ∗ψ1|ψ2〉
〈ψ |ψ1 + ψ2〉 = 〈ψ |ψ1〉 + 〈ψ |ψ2〉
〈ψ1 + ψ2|ψ〉 = 〈ψ1|ψ〉 + 〈ψ2|ψ〉. (19.5)

1 If, for instance, the wavefunction depends on the coordinates of N particles, the scalar product is
defined by 〈ψn |ψn′ 〉 = ∫ d3r1 · · · d3rNψ

∗
n (r1 · · · rN)ψn′ (r1 · · · rN).

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1_19,
C© Springer-Verlag Berlin Heidelberg 2010

277

278 19 Simple Quantum Systems

In this chapter we study simple quantum systems like a particle in a one-
dimensional potential well V (x) which is described by the partial differential equa-
tion [113]

ih̄
∂

∂t
ψ(x) = Hψ(x) = − h̄2

2m

∂2

∂x2
ψ(x)+ V (x)ψ(x), (19.6)

or systems which can be approximately described with a finite set of basis states
ψn, n = 1 · · · nmax. Especially the quantum mechanical two-level system is often
used as a simple model for the transition between an initial and a final state due to
an external perturbation.2 It is described by a two-component vector

|ψ〉 =
(

C1
C2

)

(19.7)

and two coupled ordinary differential equations for the amplitudes C1,2 of the two
states

ih̄
d

dt

(

C1
C2

)

=
(

H11 H12
H21 H22

)(

C1
C2

)

. (19.8)

The two-state model also represents a Qubit, a basic element of a future quantum
computer [114]. Whereas a classical bit is in either one of its two states (0 or 1),
the wavefunction of a Qubit is generally a superposition of the two states

|ψ〉 = C0|ψ0〉 + C1|ψ1〉 (19.9)

and the coefficients C0,1 obey an equation similar to (19.8).

19.1 Quantum Particle in a Potential Well

A quantum mechanical particle in a finite3 potential well, i.e., a potential V (r)which
has no upper bound outside a finite interval a < r < b (Fig. 19.1)

V (r) = ∞ for r < a or r > b (19.10)

is described by a complex valued wavefunction

ψ(r) with ψ(r) = 0 for r < a or r > b. (19.11)

2 For instance, collisions or the electromagnetic radiation field.
3 Numerically we can treat only finite systems.

19.1 Quantum Particle in a Potential Well 279

V(r)

ψ

ba
r

(r)

Fig. 19.1 Finite potential well

All observables (quantities which can be measured) of the particle are expecta-
tion values with respect to the wavefunction, for instance, its average position is

〈r〉 = 〈ψ(r) rψ(r)〉
∫

d3r ψ∗(r)rψ(r). (19.12)

The probability of finding the particle at the position r0 is given by

P(r = r0) = |ψ(r)|2 . (19.13)

In the following we consider a particle in a one-dimensional potential V (x). The
Schrödinger equation

ih̄ψ̇ = Hψ =
(

− h̄2

2m

∂2

∂x2
+ V (x)

)

ψ (19.14)

is very similar to a diffusion equation with imaginary diffusion constant. Consider
a simple explicit Euler step

ψn+1 = (1 − i�t

h̄
H)ψn . (19.15)

From the real eigenvalues E of the Hamiltonian we find the eigenvalues of the
explicit method

λ = 1 − i�t

h̄
E (19.16)

which all have absolute values

|λ| =
√

1 + �t2 E2

h̄2
> 1. (19.17)

280 19 Simple Quantum Systems

Hence the explicit method is not stable. The implicit method

ψn+1 = ψn − i�t

h̄
Hψn+1 (19.18)

can be rearranged as

ψn+1 =
(

1 + i�t

h̄
H

)−1

ψn . (19.19)

Here all eigenvalues have absolute values < 1. This method is stable but the norm
of the wave function is not conserved. Again combination of implicit and explicit
method gives a superior method

ψn+1 − ψn = − i�t

h̄
H

(
ψn+1

2
+ ψn

2

)

. (19.20)

This equation can be solved for the new value of the wavefunction

ψn+1 =
(

1 + i
�t

2h̄
H

)−1 (

1 − i
�t

2h̄
H

)

ψn . (19.21)

The eigenvalues of (19.21) all have an absolute value of

|λ| =
∣
∣
∣
∣
∣

(

1 + i
E�t

2h̄

)−1 (

1 − i
E�t

2h̄

)
∣
∣
∣
∣
∣
=
√

1 + E2�t2

4h̄2
√

1 + E2�t2

4h̄2

= 1. (19.22)

Hence the operator

(

1 + i
�t

2h̄
H

)−1 (

1 − i
�t

2h̄
H

)

(19.23)

is unitary and conserves the norm of the wavefunction. From the Taylor series we
find the error order

(

1 + i
�t

2h̄
H

)−1 (

1 − i
�t

2h̄
H

)

=
(

1 − i
�t

2h̄
H − �t2

4h̄2
H2 + · · ·

)(

1 − i
�t

2h̄
H

)

= 1 − i�t

h̄
H − �t2

2h̄2
H2 + · · · = exp

(

− i�t

h̄
H

)

+ O(�t3). (19.24)

19.1 Quantum Particle in a Potential Well 281

For practical application we rewrite [115]

(

1 + i
�t

2h̄
H

)−1 (

1 − i
�t

2h̄
H

)

=
(

1 + i
�t

2h̄
H

)−1 (

−1 − i
�t

2h̄
H + 2

)

= −1 + 2

(

1 + i
�t

2h̄
H

)−1

(19.25)

hence

ψn+1 = 2

(

1 + i
�t

2h̄
H

)−1

ψn − ψn = 2χ − ψn . (19.26)

ψn+1 is obtained in two steps. First we have to solve

(

1 + i
�t

2h̄
H

)

χ = ψn . (19.27)

Then ψn+1 is given by

ψn+1 = 2χ − ψn . (19.28)

We introduce a coordinate grid

x j = j�x j = 0 · · · jmax (19.29)

and approximate the second derivative by

∂2

∂x2
ψ(x j) = ψ(x j+1)+ ψ(x j−1)− 2ψ(x j)

�x2
. (19.30)

Equation (19.27) becomes a system of linear equations

A

⎡

⎢
⎢
⎢
⎣

χ(x0)

χ(x1)

χ(x2)
...

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ψn(x0)

ψn(x1)

ψn(x2)
...

⎤

⎥
⎥
⎥
⎦

(19.31)

with a tridiagonal matrix

282 19 Simple Quantum Systems

A = 1 + i
�t

2h̄�x2

⎛

⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

−1 2
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎠

(19.32)

+i
�t

2h̄

⎛

⎜
⎜
⎜
⎝

V (0)
V (�x)

V (2�x)
. . .

⎞

⎟
⎟
⎟
⎠
. (19.33)

The second step (19.28) becomes

⎡

⎢
⎢
⎢
⎣

ψn+1(x0)

ψn+1(x1)

ψn+1(x2)
...

⎤

⎥
⎥
⎥
⎦

= 2

⎡

⎢
⎢
⎢
⎣

χ(x0)

χ(x1)

χ(x2)
...

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

ψn(x0)

ψn(x1)

ψn(x2)
...

⎤

⎥
⎥
⎥
⎦
. (19.34)

19.2 Expansion in a Finite Basis

We consider a quantum system which is described by the wavefunction4

|ψ(t)〉. (19.35)

The time-dependent Schrödinger equation is

ih̄|ψ̇(t)〉 = H |ψ(t)〉. (19.36)

The eigenvalues of

H |ψn〉 = En|ψn〉 (19.37)

are the energy values En of the stationary states |ψn〉 which are assumed to form an
orthonormal basis5

4 In general the wavefunction depends on a large number of variables, for instance, the coordinates
and spin variables of N particles.
5 We assume that the system has a discrete and finite spectrum of eigenvalues, for instance, if the
system is bounded by a finite box.

19.2 Expansion in a Finite Basis 283

〈ψn|ψn′ 〉 = δn,n′ . (19.38)

The general solution of the time-dependent Schrödinger equation can be constructed
as a linear combination of the stationary states [113]

|ψ(t)〉 =
∑

n

Cn exp

{
En

ih̄
t

}

|ψn〉. (19.39)

The coefficients Cn are determined by the initial values of the wavefunction

|ψ(t = 0)〉 =
∑

n

Cn|ψn > (19.40)

and can be obtained from the scalar product

〈ψm |ψ(t = 0)〉 =
∑

n

Cn〈ψm |ψn〉 = Cm . (19.41)

In the following we discuss simple models which approximate the sum over a very
large number of eigenstates by the sum over a small number of important states, for
instance, an initial and a final state which are coupled by some resonant interaction.
Formally we introduce an (incomplete) set of orthonormal states6

|φ1〉 · · · |φM 〉
〈φi |φ j 〉 = δi j (19.42)

and approximate the wave function by a linear combination

|ψ(t)〉 ≈
M
∑

j=1

C j (t)|φ j 〉. (19.43)

Inserting into the time-dependent Schrödinger (19.36) equation gives

ih̄
∑

j

Ċ j (t)|φ j 〉 =
∑

j

C j (t)H |φ j 〉 (19.44)

and after taking the scalar product with |φi 〉 we arrive at the system of ordinary
differential equations

ih̄Ċi =
M
∑

j=1

Hi, j C j (t) (19.45)

6 In general these are linear combinations of the eigenstates.

284 19 Simple Quantum Systems

with the matrix elements of the Hamiltonian

Hi, j = 〈φi | H |φ j 〉. (19.46)

In matrix form (19.45) reads

ih̄

⎛

⎜
⎝

Ċ1(t)
...

ĊM (t)

⎞

⎟
⎠ =

⎛

⎜
⎝

H1,1 · · · H1,M
...

. . .
...

HM,1 · · · HM,M

⎞

⎟
⎠

⎛

⎜
⎝

C1(t)
...

CM (t)

⎞

⎟
⎠ (19.47)

or more symbolically

ih̄Ċ(t) = HC(t). (19.48)

19.3 Time-Independent Problems

If the Hamilton operator does not depend explicitly on time (H = const.) the formal
solution of (19.48) is given by

C = exp

{
t

ih̄
H

}

C(0). (19.49)

From the solution of the eigenvalue problem

HCλ = λCλ (19.50)

(eigenvalues λ and corresponding eigenvectors Cλ) we build the linear combination

C =
∑

λ

aλCλe
λ
ih̄ t
. (19.51)

The amplitudes aλ can be calculated from the set of linear equations

C(0) =
∑

λ

aλCλ. (19.52)

In the following we calculate the time evolution numerically using the fourth-order
Runge–Kutta method. This allows also the treatment of a time-dependent Hamilto-
nian later on.

19.3 Time-Independent Problems 285

19.3.1 Simple Two-Level System

The two-level system is the simplest model of interacting states and is very often
used in physics (Fig. 19.2).

The interaction matrix of a two-level system is

H =
(

E1 V
V E2

)

(19.53)

and the equations of motion are

ih̄Ċ1 = E1C1 + V C2

ih̄Ċ2 = E2C2 + V C1
. (19.54)

Equations (19.54) can be solved analytically but this involves some lengthy expres-
sions. Let us therefore concentrate on two limiting cases:
(a) For E1 = E2 we have

C̈1 = − V 2

h̄2
C1 (19.55)

which is solved by an oscillating coefficient

C1 = cos

(
V

h̄
t

)

(19.56)

with period

T = 2π h̄

V
. (19.57)

(b) For V � |�E | = |E1 − E2| perturbation theory for the small quantity V/�E
gives the following approximations:

|2>

V

|1>

Fig. 19.2 Two level system model

286 19 Simple Quantum Systems

λ1 ≈ E1 − V 2

�E

λ2 ≈ E2 + V 2

�E

(19.58)

C1 ≈
(

1
V
�E

)

C2 ≈
(−V
�E
1

)
. (19.59)

For initial values C(0) =
(

1
0

)

the amplitudes a1,2 are calculated from

(

1
0

)

=
(

a1 − a2
V
�E

a1
V
�E + a2

)

(19.60)

which gives in lowest order

a1 ≈ 1 − V 2

�E2

a2 ≈ V 2

�E2

. (19.61)

The approximate solution is

C =
⎛

⎝
(1 − V 2

�E2)e
1
ih̄ (E1− V 2

�E2)t + V 2

�E2 e
1
ih̄ (E2+ V 2

�E2)t

V
�E e

1
ih̄ (E1− V 2

�E2)t − V
�E e

1
ih̄ (E2+ V 2

�E2)t

⎞

⎠ (19.62)

and the occupation probability of the initial state is (Fig. 19.3)

|C1|2 ≈ 1 − 2
V 2

�E2
+ 2

V 2

�E2
cos

((

�E + 2
V 2

�E

)

t

)

. (19.63)

19.3.2 Three-State Model (Superexchange)

Consider two isoenergetic states i and f which do not interact directly but via cou-
pling to an intermediate state v (Fig. 19.4).
The interaction matrix is

H =
⎛

⎝

0 V1 0
V1 E2 V2
0 V2 0

⎞

⎠ . (19.64)

For simplification we choose V1 = V2.

19.3 Time-Independent Problems 287

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ΔE=0 V=2(a) (c)

(b) (d)ΔE=0 V=1 ΔE=3 V=1

ΔE=1 V=1

time

Fig. 19.3 Numerical simulation of a two-level system. The equations of motion of the two-level
system (19.54) are integrated with the fourth-order Runge–Kutta method. For two resonant states
the occupation probability of the initial state shows oscillations with the period (19.57) proportional
to V −1. With increasing energy gap E2 − E1 the amplitude of the oscillations decreases

V

|i>

|v>

V

|f>

E2

Fig. 19.4 Superexchange model

Let us first consider the special case of a resonant intermediate state E2 = 0:

H =
⎛

⎝

0 V 0
V 0 V
0 V 0

⎞

⎠ . (19.65)

Obviously one eigenvalue is λ1 = 0 and the corresponding eigenvector is

C1 =
⎛

⎝

1
0

−1

⎞

⎠ . (19.66)

288 19 Simple Quantum Systems

The two remaining eigenvalues are solutions of

0 = det

∣
∣
∣
∣
∣
∣

−λ V 0
V −λ V
0 V −λ

∣
∣
∣
∣
∣
∣

= λ(−λ2 + 2V 2) (19.67)

which gives

λ2,3 = ±√
2V . (19.68)

The eigenvectors are

C2,3 =
⎛

⎝

1
±√

2
1

⎞

⎠ . (19.69)

From the initial values

C(0) =
⎛

⎝

a1 + a2 + a3√
2a2 − √

2a3
−a1 + a2 + a3

⎞

⎠ =
⎛

⎝

1
0
0

⎞

⎠ (19.70)

the amplitudes are calculated as

a1 = 1

2
a2 = a3 = 1

4
(19.71)

and finally the solution is

C = 1

2

⎛

⎝

1
0

−1

⎞

⎠+ 1

4

⎛

⎝

1√
2

1

⎞

⎠ e
1
ih̄

√
2V t + 1

4

⎛

⎝

1
−√

2
1

⎞

⎠ e− 1
ih̄

√
2V t

=

⎛

⎜
⎜
⎝

1
2 + 1

2 cos
√

2V
h̄ t√

2
2 i sin

√
2V
h̄ t

− 1
2 + 1

2 cos
√

2V
h̄ t

⎞

⎟
⎟
⎠
. (19.72)

Let us now consider the case of a distant intermediate state V � |E2|. λ1 = 0 and
the corresponding eigenvector still provide one solution. The two other eigenvalues
are approximately given by

19.3 Time-Independent Problems 289

λ2,3 = ±
√

E2
2

4
+ V 2 + E2

2
≈ E2

2
± E2

2

(

1 + 4V 2

E2
2

)

(19.73)

λ2 ≈ E2 + 2V 2

E2
λ3 ≈ −2V 2

E2
(19.74)

and the eigenvectors by

C2 ≈
⎛

⎝

1
E2
V + 2V

E2

1

⎞

⎠ C3 ≈
⎛

⎝

1
− 2V

E2

1

⎞

⎠ . (19.75)

From the initial values

C(0) =
⎛

⎝

1
0
0

⎞

⎠ =
⎛

⎝

a1 + a2 + a3
a2λ2 + a3λ3

−a1 + a2 + a3

⎞

⎠ (19.76)

we calculate the amplitudes

a1 = 1

2
a2 ≈ V 2

E2
2

a3 ≈ 1

2

(

1 − 2V 2

E2
2

)

(19.77)

and finally the solution

C ≈

⎛

⎜
⎜
⎜
⎝

1
2 (1 + e

− 1
ih̄

2V 2
E2

t
)

V
E2

e
1
ih̄ E2t − 2V

E2
e
− 1

ih̄
2V 2
E2

t

1
2 (−1 + e

− 1
ih̄

2V 2
E2

t
)

⎞

⎟
⎟
⎟
⎠
. (19.78)

The occupation probability of the initial state is

|C1|2 = 1

4
|1 + e

− 1
ih̄

2V 2
E2

t |2 = cos2
(

V 2

h̄E2
t

)

(19.79)

which shows that the system behaves like a two-state system with an effective inter-
action of (Fig. 19.5)

Veff = V 2

E2
. (19.80)

290 19 Simple Quantum Systems

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time

Fig. 19.5 Numerical simulation of the superexchange model. The equations of motion for the
model equation (19.64) are solved numerically with the fourth-order Runge–Kutta method. The
energy gap is varied to study the transition from the simple oscillation with ω = √

2V/h̄ (19.72) to
the effective two-level system with ω = Veff/h̄ (19.79). Parameters are V1 = V2 = 1, E1 = E3 =
0, E2 = 0, 1, 5, 20. The occupation probability of the initial (solid curves), virtual intermediate
(dashed curves), and final (dash-dotted curves) state are shown

19.3.3 Ladder Model for Exponential Decay

We consider now a simple model for exponential decay [116, 117]. State 0 interacts
with a manifold of states (1 · · · n), which do not interact with each other and are
equally spaced (Fig. 19.6):

H =

⎛

⎜
⎜
⎜
⎝

0 V · · · V
V E1
...

. . .

V En

⎞

⎟
⎟
⎟
⎠

E j = E1 + (j − 1)�E (19.81)

|i>

V

|f,n>

Fig. 19.6 Ladder model

19.3 Time-Independent Problems 291

The equations of motion are

ih̄Ċ0 = V
n
∑

j=1

C j

ih̄Ċ j = E j C j + V C0. (19.82)

For the special case �E = 0 we simply have

C̈0 = − V 2

h̄2
nC0 (19.83)

with an oscillating solution

C0 ∼ cos

(
V

√
n

h̄
t

)

. (19.84)

Here the n states act like one state with an effective coupling of V
√

n.
For the general case �E �= 0 we substitute

C j = u j e
E j
ih̄ t (19.85)

and have

ih̄u̇ j e
E j
ih̄ t = V C0. (19.86)

Integration gives

u j = V

ih̄

∫ t

t0
e− E j

ih̄ t ′C0(t
′)dt ′ (19.87)

and therefore

C j = V

ih̄

∫ t

t0
ei

E j
h̄ (t ′−t)C0(t

′)dt ′. (19.88)

With the definition

E j = j ∗ h̄�ω (19.89)

we have

Ċ0 = V

ih̄

n
∑

j=1

C j = − V 2

h̄2

∑
∫ t

t0
ei j�ω(t ′−t)C0(t

′)dt ′. (19.90)

292 19 Simple Quantum Systems

Replaced the sum by an integral

ω = j�ω (19.91)

and extend the integration range to −∞· · · ∞. Then the sum becomes approxi-
mately a delta function

∞
∑

j=−∞
ei j�ω(t ′−t)� j →

∫ ∞

−∞
eiω(t ′−t) dω

�ω
= 2π

�ω
δ(t ′ − t) (19.92)

and hence the result is an exponential decay law (Fig. 19.7)

Ċ0 = −2πV 2

�ω
C0 = −2πV 2

h̄
ρ(E)C0 (19.93)

with the density of final states

ρ(E) = 1

h̄�ω
= 1

�E
. (19.94)

0 5 10
time

10–5

10–4

10–3

10–2

10–1

100

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

 C
0

V = 1.25

V = 1

V = 0.75
V = 0.5

N = 50

t1/e ~ V–2

Fig. 19.7 Numerical solution of the ladder model. The time evolution of the ladder model equa-
tion (19.82) is calculated with the fourth-order Runge–Kutta method for N = 50 states and differ-
ent values of the coupling V .

19.4 Time-Dependent Models

Now we study models with time-dependent Hamiltonian H(t). Models of this type
arise if nuclear motion or external fields are described as classical quantities.

19.4 Time-Dependent Models 293

19.4.1 Landau–Zener Model

This model describes crossing of two states, for instance, for colliding atoms or
molecules [118, 119]. It is assumed that the interaction V is constant near the cross-
ing point and that the nuclei move classically with constant velocity (Fig. 19.8)

H =
(

0 V
V �E(t)

)

�E(t) = �E0 + vt. (19.95)

For small interaction V or large velocity ∂
∂t�E = Q̇ ∂

∂Q�E the transition probabil-
ity can be calculated with perturbation theory to give

P = 2πV 2

h̄ ∂
∂t�E

. (19.96)

This expression becomes invalid for small velocities. Here the system stays on the
adiabatic potential surface, i.e., P → 1. Landau and Zener found the following
expression which is valid in both limits (Fig. 19.9):

PLZ = 1 − exp

(

− 2πV 2

h̄ ∂
∂t�E

)

. (19.97)

In case of collisions multiple crossing of the interaction region has to be taken into
account (Fig. 19.10)

ΔE(t) = Δo +vtE(R)

Rc R

|i>|f>

Fig. 19.8 Slow atomic collision

19.4.2 Two-State System with Time-Dependent Perturbation

Consider a two-state system with an oscillating perturbation (for instance, an atom
or molecule in a laser field) (Fig. 19.11)

294 19 Simple Quantum Systems

0.05

0.1

0.15

0.2

0.25

−20 −10

−2 0 −10

0 10

10

20
0

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

0 20
0

0.01

0.02

0.03

0.04

0.05

 −100 0 100
0

0.2

0.4

0.6

0.8

1

V = 0.1, 0.14, 0.2

V = 0.03, 0.05, 0.07

(a)

(b)

V = 0.5, 1.0

V = 10

(c)

(d)

time

Fig. 19.9 Numerical solution of the Landau–Zener model. Numerical calculations (solid curves)
are compared with the Landau–Zener probability ((19.97), dashed lines) and the approximation
((19.96), dotted lines) The velocity is d�E/dt = 1

v

P1

P2

Rc

Rc

P
1

P2

P
Tr

 = P1(1−P2) +(1−P1)P2 = 2P(1−P)

Rc

Fig. 19.10 Multiple passage of the interaction region

ω

|1>

|2>

Fig. 19.11 Two-level system in an oscillating field

19.4 Time-Dependent Models 295

H =
(

E1 V (t)
V (t) E2

)

V (t) = V0 cosωt. (19.98)

The equations of motion are

ih̄Ċ1 = E1C1 + V (t)C2

ih̄Ċ2 = V (t)C1 + E2C2
. (19.99)

After the substitution

C1 = e
E1
ih̄ t u1

C2 = e
E2
ih̄ t u2

(19.100)

they become

ih̄u̇1 = V (t)e
E2−E1

ih̄ t u2

ih̄u̇2 = V (t)e
E1−E2

ih̄ t u1

. (19.101)

For small times we have approximately

u1 ≈ 1 u2 ≈ 0 (19.102)

and with the definition

ω21 = E2 − E1

h̄
(19.103)

we find

u̇2 ≈ V0

2ih̄

(

eiωt + e−iωt
)

eiω21t . (19.104)

We neglect the fast oscillating term (this is the so-called rotating wave approxima-
tion)

u2 ≈ V0

2ih̄

ei(ω21−ω)t − 1

ω21 − ω
(19.105)

and the transition probability

|u2|2 ≈ V 2
0

4h̄2

sin2 (ω21−ω
2 t

)

(ω21 − ω)2
(19.106)

shows resonance behavior at ω = ω21. The transition probability per time is approx-
imately given by the Golden rule expression

296 19 Simple Quantum Systems

|u2(t)|2
t

≈ 2π

h̄

(
V0

2

)2

δ(h̄ω − h̄ω21). (19.107)

At larger times the system oscillates between the two states.7 Applying the random-
phase approximation we neglect the perturbation component with positive fre-
quency

ih̄u̇1 = V0ei(ω21−ω)t u2 (19.108)

ih̄u̇2 = V0e−i(ω21−ω)t u1 (19.109)

and substitute

u1 = a1ei(ω21−ω)t (19.110)

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

V = 1 ∆ω = 0

V = 3

V = 0.5, 1.0 ∆ω = 5.0

Δω = 0

time

V = 1 Δω = 3, 6

Fig. 19.12 Simulation of a two-state system in an oscillating field. The equations of motion
(19.99) are integrated with the fourth-order Runge-Kutta method. At resonance the system oscil-
lates between the two states with the frequency V/h̄. The dashed curves show the corresponding
solution of a two-level system with constant coupling (Sect. 19.4.2).

7 These are so-called Rabi oscillations.

19.5 Description of a Two-State System with the Density Matrix Formalism 297

to have

ih̄(ȧ1 + a1i(ω21 − ω))ei(ω21−ω)t = V0ei(ω21−ω)t u2 (19.111)

ih̄u̇2 = V0e−i(ω21−ω)t ei(ω21−ω)t a1 (19.112)

or

ih̄ȧ1 = h̄(ω21 − ω)a1 + V0u2 (19.113)

ih̄u̇2 = V0a1 (19.114)

which shows that the system behaves approximately like a two-level system with a
constant interaction V0 and an energy gap h̄(ω12 −ω) = E2 − E1 − h̄ω (Fig. 19.12).

19.5 Description of a Two-State System with the Density Matrix
Formalism

We consider now a two-state system which is coupled to a thermal bath. This model
is relevant not only for coherent optical excitation but also for NMR phenomena
[120].

19.5.1 Density Matrix Formalism

The density matrix formalism is very suitable for the description of an ensemble of
quantum systems or the average evolution of a quantum system in contact with a
thermal bath [113].

19.5.1.1 Density Matrix for an Ensemble of Systems

Consider a thermal ensemble of systems. Their wave functions are expanded with
respect to basis functions |ψs〉 as

|ψ〉 =
∑

Cs |ψs〉. (19.115)

The ensemble average of an operator A is given by

〈A〉 = 〈ψ Aψ〉 = 〈
∑

C∗
s ψs ACs′ψs′ 〉 (19.116)

=
∑

C∗
s Cs′ Ass′ = tr(ρA) (19.117)

with the statistical operator

ρs′s =
∑

C∗
s Cs′ . (19.118)

298 19 Simple Quantum Systems

19.5.1.2 Characterization of the Elements of the Density Matrix

The wave function of a N -state system is a linear combination

|ψ〉 = C1|ψ1〉 + C2|ψ2〉 + · · · CN |ψN 〉. (19.119)

The diagonal elements of the density matrix are the occupation probabilities

ρ11 = |C1|2 ρ22 = |C2|2 · · · ρN N = |CN |2. (19.120)

The non-diagonal elements measure the correlation of two states8

ρ12 = ρ∗
21 = C∗

2 C1, · · · (19.121)

19.5.1.3 Equations of Motion for the Density Matrix

The expansion coefficients of

|ψ〉 =
∑

Cs |ψs〉 (19.122)

can be obtained from the scalar product

Cs = 〈ψs |ψ〉. (19.123)

Hence we have

C∗
s Cs′ = 〈ψ |ψs〉〈ψs′ |ψ〉 = 〈ψs′ |ψ〉〈ψ |ψs〉 (19.124)

which can be considered to be the s′, s matrix element of the operator |ψ〉〈ψ |

C∗
s Cs′ = (|ψ〉〈ψ |)s′s . (19.125)

The thermal average is the statistical operator

ρs′s = C∗
s Cs′ = |ψ〉〈ψ |s′s → ρ = |ψ〉〈ψ |. (19.126)

From the Schrödinger equation

ih̄|ψ̇〉 = H |ψ〉 (19.127)

we find

−ih̄〈ψ̇ | = 〈Hψ | = 〈ψ |H (19.128)

8 They are often called the “coherence” of the two states.

19.5 Description of a Two-State System with the Density Matrix Formalism 299

and hence

ih̄ρ̇ = ih̄
(

|ψ̇〉〈ψ | + |ψ〉〈ψ̇ |
)

= |Hψ〉〈ψ | − |ψ〉〈Hψ |. (19.129)

Since the Hamiltonian H is identical for all members of the ensemble we end up
with the Liouville–von Neumann equation:

ih̄ρ̇ = Hρ − ρH = [H, ρ]. (19.130)

With respect to a finite basis this becomes explicitly:

ih̄ρ̇i i =
∑

j

Hi jρ j i − ρi j H ji =
∑

j �=i

Hi jρ j i − ρi j H ji (19.131)

ih̄ρ̇ik =
∑

j

Hi jρ jk − ρi j H jk

= (Hii − Hkk)ρik + Hik(ρkk − ρi i)+
∑

j �=i,k

(Hi jρ jk − ρi j H jk). (19.132)

19.5.1.4 Two-State System

Consider a two-state system in a pulsed laser field with Gaussian envelope:

H12 = μE0e−t2/t2
p cos(ωL t) (19.133)

The equations of motion for the two-state system are

ih̄ρ̇11 = H12ρ21 − ρ12 H21

ih̄ρ̇22 = H21ρ12 − ρ21 H12

ih̄ρ̇12 = (H11 − H22)ρ12 + H12(ρ22 − ρ11)

− ih̄ρ̇21 = (H11 − H22)ρ21 + H21(ρ22 − ρ11). (19.134)

Obviously we have

ρ11 + ρ22 = const (19.135)

and

ih̄
∂

∂t
(ρ11 − ρ22) = 2H12ρ21 − 2H21ρ12 (19.136)

ih̄ρ̇12 = (H11 − H22)ρ12 + H12(ρ22 − ρ11) (19.137)

− ih̄ρ̇21 = (H11 − H22)ρ21 + H21(ρ22 − ρ11). (19.138)

300 19 Simple Quantum Systems

The equations of motion can be written as a system of linear equations

ih̄

⎛

⎜
⎜
⎝

ρ̇11
ρ̇22
ρ̇12
ρ̇21

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0 0 −H21 H12
0 0 H21 −H12

−H12 H12 H11 − H22 0
H21 −H21 0 H22 − H11

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ρ11
ρ22
ρ12
ρ21

⎞

⎟
⎟
⎠

(19.139)

or in symbolic form

ih̄ρ̇ = L̂ρ. (19.140)

Hence the same numerical treatment as for the Schrödinger equation can be used
(but with larger dimension).

The radiation which is emitted by the two-state system depends on the expecta-
tion value of the dipole moment μ and is given by

Tr(ρμ) = Tr

((

ρ11 ρ12
ρ21 ρ22

)(

0 μ

μ 0

))

= Tr

(

μρ12 μρ11
μρ22 μρ21

)

= μ(ρ12 + ρ21) = μx . (19.141)

19.5.2 Analogy to Nuclear MagneticResonance

The time evolution of the two-state system can be alternatively described with three
real variables

x = 2�(ρ12) = ρ12 + ρ∗
12

y = −2�(ρ12) = 1
i (ρ

∗
12 − ρ12)

z = ρ11 − ρ22

(19.142)

which parametrize the density matrix according to9

(

ρ11 ρ12
ρ21 ρ22

)

=
(

1+z
2

x−iy
2

x+iy
2

1−z
2

)

= 1 + xσx + yσy + zσz

2

= 1 + xσ

2
. (19.143)

The equations of motion for x , y, z are

ih̄ ż = 2(H12ρ21 − H21ρ12)

ih̄ ẋ = (H11 − H22)(ρ12 − ρ21)+ (H12 − H21)(ρ22 − ρ11)

ih̄ ẏ = i(H11 − H22)(ρ12 + ρ21)+ i(H12 + H21)(ρ22 − ρ11)

(19.144)

9 The Pauli matrices σx,y,z are explained in (12.111).

19.5 Description of a Two-State System with the Density Matrix Formalism 301

and with the definitions

V ′ = �(H12) = H12 + H∗
12

2
V ′′ = �(H12) = H12 − H∗

12

2i
� = H11 − H22 (19.145)

we have finally

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ =
⎛

⎜
⎝

0 −�
h̄ −2 V ′′

h̄
�
h̄ 0 −2 V ′

h̄

2 V ′′
h̄ 2 V ′

h̄ 0

⎞

⎟
⎠

⎛

⎝

x
y
z

⎞

⎠ (19.146)

which can be written as a vector product

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ =
⎛

⎜
⎝

2V ′
h̄

− 2V ′′
h̄

�
h̄

⎞

⎟
⎠×

⎛

⎝

x
y
z

⎞

⎠ = ω ×
⎛

⎝

x
y
z

⎞

⎠ . (19.147)

For a spin- 1
2 system we can interpret this equation in the following way: The expec-

tation value of the spin vector is

h̄

2
〈ψ |σ |ψ〉 = h̄

2

(

C∗
1 C∗

2

)

⎛

⎝

σx

σy

σz

⎞

⎠

(

C1
C2

)

= h̄

⎛

⎜
⎝

C∗
1 C2+C∗

2 C1
2

C∗
1 C2−C∗

2 C1
2i|C1|2−|C2|2
2

⎞

⎟
⎠ (19.148)

and for an ensemble of spin- 1
2 particles the ensemble average is

h̄

2
〈σ 〉 = h̄

⎛

⎝

�(ρ12)

−�(ρ12)
1
2 (ρ11 − ρ22)

⎞

⎠ = h̄

2

⎛

⎝

x
y
z

⎞

⎠ . (19.149)

Thus m = γ h̄
2

⎛

⎝

x
y
z

⎞

⎠ is the average magnetization vector. The Hamiltonian of a

spin- 1
2 particle in a magnetic field is

H = −γ h̄

2
σB. (19.150)

302 19 Simple Quantum Systems

Assume a typical NMR experiment with a constant field along the z-axis and a
rotating field in the xy-plane

B =
⎛

⎝

B1 cos(ωft)
B1 sin(ωft)

B0

⎞

⎠ . (19.151)

Here the Hamiltonian becomes

H = −γ h̄

2

(

B0 B1e−iωft

B1eiωft −B0

)

(19.152)

and from comparison we find

ωz = �

h̄
= −γ B0 = −�0 (19.153)

H12 = V ′ + iV ′′ = −γ h̄

2
B1e−iωft . (19.154)

The equation of motion for the magnetization is

ṁ = γ
h̄

2

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ =
⎛

⎝

−γ B1 cos(ωft)
−γ B1 sin(ωft)

−γ B0

⎞

⎠× γ
h̄

2

⎛

⎝

x
y
z

⎞

⎠ (19.155)

or in the more conventional form

dm
dt

= γm × B. (19.156)

19.5.3 Relaxation Processes—Bloch Equations

19.5.3.1 Phenomenological Description

Interaction with the environment will be described with phenomenological relax-
ation terms. Two different contributions have to be considered:

• Dephasing (loss of coherence) ∝ e−t/T2 with a time constant of T2 (for NMR this
is the spin–spin relaxation time)

d

dt |Rel
ρ12 = − 1

T2
ρ12 (19.157)

• Thermalization ρ22 − ρ11 → ρ
eq
22 − ρ

eq
11 with time constant T1 (for NMR this is

the spin–lattice relaxation time)

19.5 Description of a Two-State System with the Density Matrix Formalism 303

d

dt |Rel
(ρ22 − ρ11) = − 1

T1
((ρ22 − ρ11)− (ρ

eq
22 − ρ

eq
11)). (19.158)

Within the vector model this gives the Bloch equations [121] which are used to
describe NMR phenomena

d

dt

⎛

⎝

x
y
z

⎞

⎠ = ω ×
⎛

⎝

x
y
z

⎞

⎠−
⎛

⎜
⎝

x
T2y
T2

z−zeq

T1

⎞

⎟
⎠ (19.159)

or

dm
dt

= γm × B − R̂(m − meq) R̂ =
⎛

⎜
⎝

1
T2

0 0

0 1
T2

0

0 0 1
T1

⎞

⎟
⎠ . (19.160)

More general relaxation processes for systems with many states can be described
with a more general relaxation operator

ih̄ρ̇ = [H, ρ] − ih̄Γ̂ (ρ − ρeq). (19.161)

19.5.3.2 Free Precession

Consider the special case Bz = const Bx = By = 0. With m± = mx ± imy and the
Larmor frequency �0 = γ B0 the equations of motion are

ṁ+ = −i�0m+ − m+
T2

ṁz = −mz−m0
T1

(19.162)

with the solution

m+ = m+(0)e−i�0t−t/T2

mz = m0 + (mz(0)− m0)e−t/T1
. (19.163)

The corresponding density matrix is diagonal

H =
(

H11 0
0 H22

)

(19.164)

and the equations of motion are

ih̄ ∂
∂t (ρ11 − ρ22) = − (ρ11−ρ22)−(ρeq

11 −ρeq
22)

T1

ih̄ ∂
∂t ρ12 = �ρ12 − ih̄ 1

T2
ρ12

(19.165)

304 19 Simple Quantum Systems

with the solution

(ρ11 − ρ22) = (ρ
eq
11 − ρ

eq
22)+ [(ρ11(0)− ρ22(0))− (ρ

eq
11 − ρ

eq
22)]e−t/T1

ρ12 = ρ12(0)e
−i�h̄ t−t/T2

. (19.166)

19.5.3.3 Stationary Solution with Monochromatic Excitation

For the monochromatic rotating field

B =
⎛

⎝

B1 cos(ωft)
B1 sin(ωft)

B0

⎞

⎠ H12 = V0e−iωft (19.167)

the solution of the Bloch equations

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ = ω ×
⎛

⎝

x
y
z

⎞

⎠−
⎛

⎜
⎝

x
T2y
T2

z−zeq

T1

⎞

⎟
⎠ (19.168)

can be found explicitly. After transforming to a coordinate system which rotates
along the z-axis with frequency ω0

⎛

⎝

x ′
y′
z′

⎞

⎠ =
⎛

⎝

cos(ωft) sin(ωft) 0
− sin(ωft) cos(ωft) 0

0 0 1

⎞

⎠

⎛

⎝

x
y
z

⎞

⎠ (19.169)

the equation of motion simplifies to

⎛

⎝

ẋ ′
ẏ′
ż′

⎞

⎠ =
⎛

⎜
⎝

− 1
T2

�0 − ωf 0

−�0 + ωf − 1
T2

− 2V0
h̄

0 2V0
h̄ − 1

T1

⎞

⎟
⎠

⎛

⎝

x ′
y′
z′

⎞

⎠+
⎛

⎝

0
0

zeq

T1

⎞

⎠ (19.170)

with the stationary solution (Fig. 19.13)

zeq

1 + 4
V 2

0
h̄2 T1T2 + T 2

2 (ωf −�0)2

⎛

⎜
⎝

2T 2
2

V0
h̄ (ωf −�0)

−2T2
V0
h̄

1 + T 2
2 (ωf −�0)

2

⎞

⎟
⎠ . (19.171)

Saturation appears for

4
V 2

0

h̄2
T1T2 � 1 + (ωf −�0)

2T 2
2 . (19.172)

19.5 Description of a Two-State System with the Density Matrix Formalism 305

3 4 5 6 7
frequencyω

–0.8000

–0.7995

–0.7990

–0.7985

–0.7980

–0.7975

–0.7970

z
=

 ρ
1,

1
−

ρ 2
,2

Fig. 19.13 Resonance line. The equations of motion of the two-level system including relaxation
terms are integrated with the fourth-order Runge–Kutta until a steady state is reached. Parameters
are ω0 = 5, zeq = −0.8, V = 0.01, and T1 = T2 = 3.0, 6.9. The change of the occupation
difference is shown as a function of frequency (circles) and compared with the steady-state solution
(19.171)

The width of the Lorenz line depends on the intensity (saturation broadening)
(Fig. 19.14)

�ω = 1

T2
→ 1

T2

√

1 + 4
V 2

0

h̄2
T1T2. (19.173)

3 4 5 6 7
frequencyω

–1

–0.8

–0.6

–0.4

–0.2

0

z
=

ρ 1
,1

 −
 ρ

2,
2

Fig. 19.14 Power saturation and broadening. The resonance line is investigated as a function of the
coupling strength V and compared with the stationary solution (19.171) to observe the broadening
of the line width (19.173). Parameters are ω0 = 5, zeq = −1.0, T1 = T2 = 100, and V =
0.5, 0.25, 0.125, 0.0625, 0.03125

306 19 Simple Quantum Systems

19.5.3.4 Excitation by a Resonant Pulse

For a resonant pulse ωf = �0 with envelope V0(t) the equation of motion in the
rotating system is

⎛

⎝

ẋ ′
ẏ′
ż′

⎞

⎠ =
⎛

⎜
⎝

− 1
T2

0 0

0 − 1
T2

− 2V0(t)
h̄

0 2V0(t)
h̄ − 1

T1

⎞

⎟
⎠

⎛

⎝

x ′
y′
z′

⎞

⎠+
⎛

⎝

0
0

zeq

T1

⎞

⎠ . (19.174)

If the relaxation times are large compared to the pulse duration we have the approx-
imate solution

x ′ = x ′
0 (19.175)

y′ = y′
0 + i z′

0

2
ei� + y′

0 − i z′
0

2
e−i� (19.176)

z′ = z′
0 − i x ′

0

2
ei� + z′

0 + i x ′
0

2
e−i� (19.177)

with the phase angle

� =
∫ t

−∞
2V0(t ′)

h̄
dt ′. (19.178)

For a total phase of�(∞) = π (π -pulse) the y- and z-component change their sign.
The transition between z = 1 and z = −1 corresponds to a spin flip. On the other

40 60 80 100 120 140
time

0

0.2

0.4

0.6

0.8

1

ρ
1,1

ρ
2,2|ρ1,2|

Fig. 19.15 Spin flip by a π -pulse. The equation of motion of the Bloch vector (19.174) is solved
with the fourth-order Runge–Kutta for an interaction pulse with a Gaussian shape. The pulse is
adjusted to obtain a spin flip, which is a simple model for the invert operation on a Qubit. The
influence of dephasing processes is studied. Parameters are T1 = 2000, tp = 3.75, V0 = 0.5,
and T2 = 5, 10, 20, 40, 80. The occupation probabilities of the two states (solid curves) and the
coherence (broken curves) are shown for several values of the dephasing time

Problems 307

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

spin flip

creation of the mixed state

double flip

two delayed pulses

time

Fig. 19.16 Simulation of N
2 π pulses. The pulse duration is varied to obtain multiple spin flips or

to create the coherently mixed state. Finally a simple measurement of the coherence decay with
two delayed π -pulses is simulated, where the first pulse creates the coherently mixed state and the
second pulse measures the remaining coherence after a variable delay time

hand a π
2 -pulse converts a pure state into a completely mixed state and vice versa

(Figs. 19.15, 19.16).

Problems

Problem 19.1 Schrödinger Equation

In this computer experiment we solve the Schrödinger equation for a particle in
the potential V (x) for an initially localized Gaussian wave packet ψ(t = 0, x) ∼
exp(−a(x − x0)

2). The potential is either a harmonic parabola or a fourth-order
double well. The initial width and position of the wave packet can be varied under
the constraint V (x0) = 0.
Try to generate the time-independent ground state wave function for the harmonic
oscillator
Observe the dispersion of the wave packet for different conditions and try to gener-
ate a moving wave packet with little dispersion.
Try to observe tunneling in the double well potential.

308 19 Simple Quantum Systems

Problem 19.2 Two-Level System

In this computer experiment a two-level system is simulated. Amplitude and fre-
quency of an external field can be varied as well as the energy gap between the two
levels (see Fig. 19.3).
Compare the time evolution at resonance and away from it.

Problem 19.3 Three-Level System

In this computer experiment a three-level system is simulated.
Verify that the system behaves like an effective two-state system if the intermediate
state is higher in energy than initial and final states (see Fig. 19.5).

Problem 19.4 Ladder Model

In this computer experiment the ladder model is simulated. The coupling strength
and the spacing of the final states can be varied.
Check the validity of the exponential decay approximation (see Fig. 19.7).

Problem 19.5 Landau–Zener Model

This computer experiment simulates the Landau–Zener model. The coupling
strength and the nuclear velocity can be varied (see Fig. 19.9).
Try to find parameters for an efficient crossing of the states.

Problem 19.6 Resonance Line

In this computer experiment a two-level system with damping is simulated. The
resonance curve is calculated from the steady-state occupation probabilities (see
Figs. 19.13 and 19.14).
Study the dependence of the line width on the intensity (power broadening).

Problem 19.7 Spin Flip

The damped two-level system is now subject to an external pulsed field (see
Figs. 19.15 and 19.16).
Try to produce a coherent superposition state (π/2 pulse) or a spin flip (π pulse).
Investigate the influence of decoherence.

Appendix: Performing the Computer
Experiments

The computer experiments are realized as Java-applets which can be run in any
browser that has the Java plugin installed without installing anything else. They are
written in a C-like fashion which improves the readability for readers who are not
so familiar with object-oriented programming. The source code can be studied most
conveniently with the netbeans environment which is an open source and allows
quick generation of graphical user interfaces.

After downloading and unzipping the zipped file from extras.springer.com you
have two options:

P.O.J. Scherer, Computational Physics, DOI 10.1007/978-3-642-13990-1,
C© Springer-Verlag Berlin Heidelberg 2010

309

310 Appendix: Performing the Computer Experiments

Run a Program in your Browser

Open the file CP-examples.html in your browser. If the Java-plugin is installed prop-
erly you can start any one of the programs by simply clicking its number in the
left-hand frame.

Open a Program with the Netbeans Environment

If you have the netbeans environment installed, you can import any of the pro-
grams as a separate project by opening the corresponding folder in the directory
HTML/code/. You may have a look at the source code and compile and run it.

References

1. Institute for Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic. (ANSI/IEEE Std 754–1985)

2. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd revised edn. (Springer, New
York, 2010). ISBN 978-1441930064

3. H. Jeffreys, B.S. Jeffreys, Lagrange’s Interpolation Formula, §9.011 in Methods of Mathe-
matical Physics, 3rd edn. (Cambridge University Press, Cambridge, 1988), p. 260

4. H. Jeffreys, B.S. Jeffreys, Divided Differences §9.012 in Methods of Mathematical Physics,
3rd edn. (Cambridge University Press, Cambridge, England, 1988), pp. 260–264

5. E.H. Neville, Indian Math. Soc. 20, 87 (1933)
6. I.J. Schoenberg, Quart. Appl. Math. 4, 45–99, 112–141 (1946)
7. G. Nürnberger, Approximation by Spline Functions (Springer, Berlin, 1989) ISBN 3-540-

51618-2
8. L.F. Richardson, Phil. Trans. R. Soc. Lond. A 210, 307–357 (1911)
9. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, LU Decomposition and Its Appli-

cations, in Numerical Recipes, The Art of Scientific Computing, 3rd edn. (Cambridge Uni-
versity Press, Cambridge, 2007), pp. 48–55

10. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Cholesky Decomposition, in
Numerical Recipes, The Art of Scientific Computing, 3rd edn. (Cambridge University Press,
Cambridge, 2007), pp. 100–101

11. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins, Baltimore, MD,
1976) ISBN 978-0-8018-5414-9

12. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Cyclic Tridiagonal Systems, in
Numerical Recipes, The Art of Scientific Computing, 3rd edn. (Cambridge University Press,
Cambridge, 2007) p. 79

13. J. Sherman, Winifred J. Morrison, Ann. Math. Stat. 20, 621 (1949).
14. I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics, 3rd edn. (Springer, New

York, NY 1997), p. 892
15. H. Jeffreys, B.S. Jeffreys, Methods of Mathematical Physics, 3rd edn. (Cambridge University

Press, Cambridge, 1988) pp. 305–306
16. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Successive Overrelaxation (SOR)

in: Numerical Recipes, The Art of Scientific Computing, 3rd edn. (Cambridge University
Press, Cambridge, 2007) pp. 1061–1065

17. M.R. Hestenes, E. Stiefel, J. Res. Natl. Bur. Stand. 49 ,435 (1952)
18. R. Fletcher, C. Reeves, Comput. J. 7, 149 (1964)
19. C.G. Broyden, J. Inst. Math. Appl. 6, 76 (1970)
20. R. Fletcher, Comput. J. 13, 317 (1970)
21. D. Goldfarb, Math. Comput. 24, 23 (1970)
22. D.F. Shanno, Math. Comput. 24, 647 (1970)
23. Fredric j. Harris, Proc. IEEE 66 , 51 (1978)

311

312 References

24. G. Goertzel, Am. Math. Mon. 65, 34 (1958)
25. E. I. Jury, Theory and Application of the Z-Transform Method (Krieger, 1973) ISBN

0-88275-122-0.
26. P. Duhamel, M. Vetterli, Signal Process 19, 259 (1990)
27. H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms (Springer, Berlin,

1990).
28. J.W. Cooley, J.W. Tukey, Math. Comput. 19, 297 (1965)
29. N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949)
30. G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. (Springer, New York,

1996) ISBN 038794527X
31. C.P. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd edn. (Springer, New York,

2004) ISBN 0387212396
32. R.E. Caflisch, Monte Carlo and Quasi-Monte Carlo Methods, Acta Numerica, vol. 7

(Cambridge University Press, Cambridge, 1998) pp. 1–49
33. Richtmyer, Principles of Modern Mathematical Physics I (Springer, Berlin Heidelberg, New

York, 1978)
34. J. Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, Belmont, 1995)

ISBN 0-534-20934-3
35. G. Marsaglia, A. Zaman, Ann. Appl. Probab. 1, 462 (1991)
36. G.E.P. Box, M.E. Muller, Ann. Math. Stat. 29, 610 (1958)
37. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087

(1953)
38. C. Lanczos, J. Res. Natl. Bureau Stand. 45, 255 (1951)
39. J.A. Richards, Remote Sensing Digital Image Analysis (Springer, Berlin Heidelberg, 1993)
40. A.E. Garcia, Phys. Rev. Lett. 86, 2696 (1992)
41. T.D. Romo et al., Proteins 22, 311 (1995)
42. D.P. Derrarr et al., in A Practical Approach to Microarray Data Analysis, (Kluwer, 2003)

pp. 91
43. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and

General Linear Methods (Wiley, Chichester and New York, 1987)
44. W.B. Gragg, SIAM J. Num. Anal. 2, 384 (1965)
45. L.F. Shampine, IMA J. Num. Anal. 3, 383 (1983)
46. L.F. Shampine, L.S. Baca, Numer. Math. 41, 165 (1983)
47. I.P. Omelyan, I.M. Mryglod, R. Folk, Comput. Phys. Comm. 151, 272 (2003)
48. Shan-Ho Tsai et al., Braz. J. Phys. 34, 384 (2004)
49. M. Tuckerman, B.J. Berne, J. Chem. Phys. 97, 1990 (1992)
50. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)

ISBN 0-19-855645-4
51. R. Sonnenschein, A. Laaksonen, E. Clementi, J. Comput. Chem. 7, 645 (1986)
52. I.P. Omelyan, Phys. Rev. 58, 1169 (1998)
53. I.P. Omelyan, Comput. Phys. Comm. 109, 171 (1998)
54. H. Goldstein, Klassische Mechanik (Akademische Verlagsgesellschaft, Frankfurt a.Main,

1974)
55. I.P. Omelyan, Comput. Phys. 12, 97 (1998)
56. D.C. Rapaport, The Art of Molecular Dynamics Simulation. (Cambridge University Press,

Cambridge, 2004) ISBN 0-521-44561-2.
57. D. Frenkel, B. Smit, Understanding Molecular Simulation: from algorithms to applications

(Academic, San Diego, CA, 2002), ISBN 0-12-267351-4
58. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods, (John Wiley & sons, New

York, 2001) ISBN 0-471-18439-X
59. A. Leach, Molecular Modelling: Principles and Applications, 2nd edn. (Harlow: Prentice

Hall, 2001) ISBN 978-0582382107

References 313

60. T. Schlick, Molecular Modeling and Simulation (Springer, New York, NY, 2002) ISBN
0-387-95404-X

61. F. Schwabl, Statistical Mechanics (Springer, Berlin, 2003)
62. H. Risken, The Fokker-Planck Equation (Springer, Berlin Heidelberg, 1989)
63. E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31, 253–258 (1925).

doi:10.1007/BF02980577
64. K. Binder, in “Ising model” Encyclopedia of Mathematics, Suppl. vol. 2, ed. by R. Hoksber-

gen (Kluwer, Dordrecht, 2000), pp. 279–281
65. L. Onsager, Phys. Rev. 65, 117 (1944)
66. B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press,

Cambridge, MA, 1973) ISBN 0674914406
67. K. Pearson, The problem of the Random Walk. Nature 72, 294 (1905)
68. A.A. Markov, in Theory of Algorithms [Translated by Jacques J. Schorr-Kon and PST staff]

Imprint (Academy of Sciences of the USSR, Moscow, 1954) [Jerusalem, Israel Program
for Scientific Translations, 1961; available from Office of Technical Services, United States
Department of Commerce] Added t.p. in Russian Translation of Works of the Mathematical
Institute, Academy of Sciences of the USSR, vol. 42. Original title: Teoriya algorifmov.
[QA248.M2943 Dartmouth College library. U.S. Dept. of Commerce, Office of Technical
Services, number OTS 60–51085.]

69. A.A. Markov, in Extension of the limit theorems of probability theory to a sum of variables
connected in a chain reprinted in Appendix B ed. by R. Howard. Dynamic Probabilistic
Systems, vol. 1 (Wiley, Markov Chains, 1971)

70. P. Fluekiger, H.P. Luethi, S. Portmann, J. Weber, MOLEKEL 4.0 (Swiss National Supercom-
puting Centre CSCS, Manno, Switzerland, 2000)

71. W.L. Mattice, U.W. Suter, Conformational Theory of Large Molecules (Wiley Interscience,
New York, NY, 1994). ISBN 0-471-84338-5

72. R. Brown, Phil. Mag. 4, 161 (1828)
73. A. Einstein, Ann. Phys. 17, 549 (1905)
74. A. Einstein, Investigations on the Theory of Brownian Movement (Dover, New York, NY,

1956)
75. C. Yu Zhu, Andreas Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field

Modeling (John Wiley & sons, New York, 2006), p. 132 ff. ISBN 0471741108
76. M.T. Heath, § 11.5.7 Multigrid Methods. Scientific Computing: An Introductory Survey

(McGraw-Hill Higher Education, New York 2002) p. 478 ff. ISBN 007112229X
77. R.E. Bruccoleri, J. Novotny, M.E. Davis, K.A. Sharp, J. Comp. Chem. 18, 268 (1997)
78. F. Fogolari, A. Brigo, H. Molinari, J. Mol. Recognit 15, 377 (2002)
79. G.L. Gouy, J. Phys. 9, 457 (1910)
80. D.L. Chapman, Philos. Mag. 25, 475 (1913)
81. A. Nicholls, B. Honig, J. Comp. Chem. 12, 435 (1990)
82. G. Wunsch, Feldtheorie, (VEB Technik, Berlin, 1973)
83. A.H. Boschitsch, M.O. Fenley, H.X. Zhou, J. Phys. Chem. B 106, 2741 (2002)
84. A.H. Juffer et al., J. Phys. Chem. B 101, 7664 (1997)
85. J.S. Bader et al., J. Chem. Phys.106, 2372 (1997)
86. T. Simonson, Rep. Prog. Phys. 66, 737 (2003)
87. J.G. Kirkwood, J. Chem. Phys. 2, 351 (1934)
88. Solid-State Physics: An Introduction to Principles of Materials Science (Advanced Texts in

Physics) Harald Ibach, Hans Lüth (Springer, Berlin, 2003)
89. R. Courant, K. Friedrichs, H. Lewy, Math. Annalen 100, 32 (1928)
90. Y.A Cengel, Heat transfer-A Practical Approach, 2nd edn. (McGraw Hill Professional, 2003)

p. 26 ISBN 0072458933, 9780072458930, New York
91. Fourier, Joseph. (1878). The Analytical Theory of Heat. (Cambridge University Press,

Cambridge, reissued by Cambridge University Press, 2009) ISBN 978-1-108-00178-6)
92. A. Fick, Phil. Mag. 10, 30 (1855)

314 References

93. J. Crank, P. Nicolson, Proc. Camb. Phil. Soc. 43, 50 (1947)
94. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Texts in

Applied Mathematics, vol. 22 (Springer, Berlin, 1995)
95. Diederich Hinrichsen, Anthony J. Pritchard, Mathematical Systems Theory I—Modelling,

State Space Analysis, Stability and Robustness (Springer, Berlin, 2005) ISBN 0-978-3-540-
441250

96. Khalil, H. K, Nonlinear Systems (Prentice Hall, Englewood Cliffs, NJ, 2001) ISBN 0-13-
067389-7

97. Vasile I. Istratescu, in Fixed Point Theory, An Introduction, D. Reidel Publ. Comp. Dordrecht,
Boston, London, 1981

98. S.H. Strogatz, Nonlinear dynamics and Chaos: Applications to Physics, Biology, Chemistry,
and Engineering (Perseus, New York, NY, 2001) ISBN 0-7382-0453-6

99. J.D. Murray, Mathematical Biology: I. An Introduction, 3rd edn. 2 vols (Springer, Berlin,
2002) ISBN 0-387-95223-3

100. E. Renshaw, Modelling Biological Populations in Space and Time (C.U.P., Utah, 1991) ISBN
0-521-44855-7

101. P. Grindrod, Patterns and Waves, The Theory and Applications of Reaction-Diffusion
Equations (Clarendon Press, Oxford, 1991)

102. P.C. Fife, in Mathematical Aspects of Reacting and Diffusing Systems (Springer, Berlin,
1979)

103. A.M. Lyapunov, Stability of Motion (Academic, New-York, London, 1966)
104. P.F. Verhulst, Mémoires de l’Académie Royale des Sciences et Belles Lettres de Bruxelles

vol. 18 (Bruxelles, 1845) p. 1–42
105. A.J. Lotka, in Elements of Physical Biology (Williams and Wilkins, Baltimore, 1925)
106. V. Volterra, Mem. R. Accad. Naz. dei Lincei 2, 31 (1926)
107. C.S. Holling, Canad. Entomol. 91, 293 (1959)
108. C.S. Holling, Canad. Entomol. 91, 385 (1959)
109. J.T. Tanner, Ecology 56, 855 (1975)
110. A.M. Turing, Phil. Trans. R. Soc. B 237, 37 (1952)
111. E. Schrödinger, Phys. Rev. 28, 1049 (1926)
112. D. Hilbert, L. Nordheim, J. von Neumann, John Mathe. Annalen 98, 1 (1927)
113. F. Schwabl, Quantum Mechanics, 4th edn. (Springer, Berlin, 2007)
114. L. Diosi, A Short Course in Quantum Information Theory (Springer, Berlin, 2007)
115. S.E. Koonin, C.M. Dawn, Computational Physics (Perseus Books, 1990) ISBN:

978-0201127799
116. M. Bixon, J. Jortner, J. Chem. Phys. 48, 715 (1986)
117. B.I. Stepanov, V.P. Gribkovskii, in Theory of Luminescence [by] B.I. Stepanov, V.P.

Gribkovskii, [Translated [from the Russian] by Scripta Technica Ltd., ed. by S. Chomet
(lliffe, London, 1968] (Butterworth, London)

118. L. Landau, Zur Theorie der Energieübertragung bei Stössen II, Phys. Z. Sowjetunion 2,
46–51 (1932)

119. C. Zener, Proc. Royal Soc. Lond. A 137(6), 696–702 (1932)
120. A. Yariv, Quantum Electronics (Wiley, New York, NY, 1975)
121. F. Bloch, Nuclear Induction, Phys. Rev. 70, 460 (1946)

Index

A
Adams-Bashforth, 142, 153
Adams-Moulton, 143
Angular momentum, 163–165, 170
Angular velocity, 160–161
Auto-correlation, 203
Average extension, 201
Average of measurements, 94

B
Backward substitution, 49
Ballistic motion, 185
Basis states, 278
BFGS, 70
Bicubic spline interpolation, 27
Bilinear interpolation, 25, 27
Binomial, 93
Bio-molecules, 207
Biopolymer, 196
Bisection, 63
Bloch equations, 302–304
Boltzmann, 215
Boundary, 229
Boundary conditions, 244
Boundary element, 216, 222, 226
Boundary potential, 219
Boundary values, 232
Box Muller, 98
Brownian motion, 185, 202, 204
Broyden, 70

C
Calculation of π , 99
Cavity, 216, 221, 224, 225
Cayley-Klein, 172–174
Central limit theorem, 93, 106, 194, 198
Chain, 196
Characteristic polynomial, 111
Charged sphere, 209, 211, 214, 216

Chessboard method, 208
Circular orbit, 133, 150
Clenshaw-Curtis, 42
Coin, 93
Collisions, 185, 202, 293
Composite midpoint rule, 40
Composite Newton-Cotes formulas, 40
Composite Simpson’s rule, 40
Composite trapezoidal rule, 40
Concentration, 243
Configuration integral, 102
Conjugate gradients, 59, 68
Coordinate system, 157
Correlation coefficient, 92
Courant number, 231, 247
Covariance matrix, 92
Crank-Nicolson, 248
Critical temperature, 189
Crossing point, 293
Cubic spline, 21, 26
Cumulative probability distribution, 87
Cyclic tridiagonal, 55

D
D’Alembert, 230
Damped string, 242
Damping, 185, 240, 308
Data fitting, 117–118, 120, 122, 124, 126, 128
Debye length, 216
Degree of order, 184
Density matrix, 129, 297
Density of states, 292
Dephasing, 302
Detailed balance, 104
Determinant, 167
Dice, 97
Dielectric medium, 207, 211
Differentiation, 29
Diffusion, 243, 252

315

316 Index

Diffusive motion, 185
Dirichlet, 244
Discontinuity, 213, 219
Discontinuous ε, 211
Discrete Fourier transformation, 74, 84
Disorder, 115
Dispersion, 231, 236
Divided differences, 17

E
Effective coupling, 291
Effective force constant, 202
Eigenfunction expansion, 233
Eigenvalue, 109, 233
Electric field, 176
Electrolyte, 215
Electrostatics, 207
Elongation, 230, 238
End to end distance, 198
Energy function, 102, 106
Ensemble, 297
Ensemble average, 297
Equations of motion, 129
Error accumulation, 149
Error analysis, 3
Error function, 90
Error of addition, 7
Error of multiplication, 8
Error propagation, 8
Euler angles, 172
Euler parameters, 174
Euler’s equations, 166, 170
Euler-McLaurin expansion, 40
Expectation value, 88
Explicit Euler method, 132, 134, 165, 167–245,

279
Exponent overflow, 5
Exponent underflow, 5
Exponential decay, 290, 292, 308
Exponential distribution, 97
Extrapolation, 31, 40, 141

F
Fast Fourier transformation, 80
Filter function, 79
Finite differences, 29
Fletcher-Rieves, 68
Floating point numbers, 3
Floating point operations, 6
Fluctuating force, 202
Flux, 243
Force, 201, 204
Force extension relation, 205
Force fields, 179

Forward difference, 29
Fourier transformation, 73, 237
Free energy, 201
Free precession, 303
Free rotor, 170
Freely jointed chain, 196, 200
Friction coefficient, 202
Friction force, 202
Frobenius matrix, 47

G
Gauss’s theorem, 210, 211, 213, 217
Gauss-Seidel, 57, 208
Gaussian distribution, 91, 98, 194
Gaussian elimination, 47, 60
Gaussian integral rules, 45
Gaussian integration, 43
Givens, 51
Goertzel, 79
Golden rule, 295
Gradient vector, 67
Gram-Schmidt, 51
Green’s theorem, 222
Grid, 130
Gyration radius, 199
Gyration tensor, 199, 204

H
Hamilton operator, 284
Harmonic potential, 204
Hessian, 67, 69
Heun, 136, 138
Higher derivatives, 33
Hilbert matrix, 61
Hilbert space, 277
Histogram, 91
Hookean spring, 200, 202, 205
Householder, 51, 111

I
Ideal dice, 89
Implicit Euler method, 134
Implicit method, 247
Importance sampling, 103
Improved Euler method, 135, 204
Inertia, 164
Inevitable error, 10
Integers, 13
Integral equations, 217
Integral rules, 37
Integration, 37
Interacting states, 285
Interaction energy, 210, 215, 223, 224
Intermediate state, 287

Index 317

Intermolecular forces, 180
Internal coordinates, 179
Interpolating function, 15, 77
Interpolating polynomial, 17, 18, 20, 34
Interpolation, 15
Interpolation error, 18
Intramolecular forces, 179
Ions, 215
Ising model, 186, 188, 189
Iterative algorithms, 11
Iterative method, 208
Iterative solution, 56

J
Jacobi, 57, 109, 208
Jacobi determinant, 134
Jacobian, 67

K
Kinetic energy, 171

L
Ladder model, 292, 308
Lagrange, 16, 34, 37
Lanczos, 114
Landau Zener model, 293, 308
Langevin dynamics, 202
Laplace operator, 35, 208, 250
Larmor-frequency, 303
Laser field, 293, 299
Leap-Frog, 149, 181, 240
Least square fit, 117, 127
Legendre polynomials, 43
Lennard-Jones, 180, 181
Linear combination, 283
Linear equations, 47
Linear fit function, 119
Linear least square fit, 119
Linear regression, 119, 122
Liouville, 144, 299
Lower triangular matrix, 49
LU decomposition, 51, 54

M
Machine numbers, 3, 6
Machine precision, 13
Magnetization, 189, 301
Markov chain, 104
Markovian, 193
Marsaglia, 96
Matrix elements, 284
Mean square displacement, 185
Metropolis, 104, 186
Midpoint rule, 39, 135

Milne rule, 39
Mobile charges, 207
Modified midpoint method, 141
Molecular collision, 177
Moments, 88
Moments of inertia, 164
Monochromatic excitation, 304
Monte-Carlo, 87, 99, 186
Multigrid, 208
Multipole expansion, 224
Multistep, 142
Multivariate distribution, 92
Multivariate interpolation, 25

N
N-body system, 152
Neumann, 244, 299
Neville, 20, 32
Newton, 17
Newton Cotes rules, 38
Newton-Raphson, 65, 67, 69
NMR, 297, 300, 302
No-flow, 244
Noise filter, 84
Nonlinear optimization, 106
Normal distribution, 90, 93
Normal equations, 118, 119
Numerical errors, 6
Numerical extinction, 6, 30
Numerical integration, 100

O
Observables, 279
Occupation probability, 286, 289
Omelyan, 176
Onsager, 223
Open interval, 39
Optimization, 67
Optimized sample points, 42
Orthogonality, 167
Oscillating perturbation, 293

P
Pair distance distribution, 184
Partition function, 102
Pauli matrices, 172
Phase angle, 306
Phase space, 129, 133, 144
Phase transition, 188
Pivoting, 50
Plane wave, 231
Poisson equation, 217
Poisson-Boltzmann-equation, 215
Poisson-equation, 207

318 Index

Polarization, 216
Polymer, 190
Polynomial, 16, 18, 20, 34, 109
Polynomial extrapolation, 142
Polynomial interpolation, 16, 26
Predictor-corrector, 136, 144
Pressure, 182
Principal axes, 164
Probability density, 87
Pseudo random numbers, 95

Q
QR decomposition, 51
Quality control, 140
Quantum particle, 278
Quantum system, 277, 282
Quasi-Newton condition, 69
Quasi-Newton methods, 69
Quaternion, 172, 174, 176

R
Rabi oscillations, 296
Random motion, 202
Random numbers, 87, 95, 96
Random points, 98
Random walk, 193, 204
Reflecting walls, 182
Reflection, 229
Regula falsi method, 64
Relaxation, 302
Relaxation operator, 303
Relaxation parameter, 208
Relaxation terms, 302
Residual, 209
Resonance curve, 308
Resonant pulse, 306
Richardson, 245
Rigid body, 163, 165
Romberg, 40, 41
Romberg integration, 45
Root finding, 63
Roots, 63
Rosenbrock, 68, 70
Rotation in the complex plane, 12
Rotation matrix, 158, 165
Rotor, 165
Rotor in a field, 176
Rounding errors, 3
Runge Kutta, 138, 284

S
Sampling theorem, 77
Saturation, 304
Schrödinger equation, 277, 279, 298, 307

Secant, 66
Self energy, 224
Sherman-Morrison formula, 55
Shift operator, 230
Shifted grid, 213
Simple sampling, 102
Simpson’s rule, 38, 139
Simulated annealing, 106
Singular values, 123, 124
Solvation, 211, 216, 226
Solvation energy, 225
Solvent, 223
Specific heat, 127
Spin, 186
Spin flip, 306
Spin vector, 301
Spline interpolation, 21
Split operator, 145, 250
Spring, 229
Stability analysis, 11, 238, 240, 245
Standard deviation, 88
State vector, 129
Stationary solution, 304
Stationary states, 282
Statistical operator, 297, 298
Steepest descent, 68
Step size control, 140
Successive over-relaxation, 58
Superexchange, 286
Surface charge, 222, 224, 225
Surface element, 98, 221
Symmetrical difference quotient, 30

T
Taylor series method, 137
Thermal average, 298
Thermal equilibrium, 104
Thermalization, 302
Thermodynamic averages, 102
Thermodynamic systems, 179
Three level system, 308
Tight-binding model, 115
Time evolution, 130
Transmission function, 79
Trapezoidal rule, 38, 78
Trial step, 105
Tridiagonal, 53, 111, 234, 238, 245, 250, 281
Trigonometric interpolation, 75
Truncation error, 13
Two level system, 285, 287, 293, 299, 308
Two-level system, 131

U
Unitary transformation, 51

Index 319

Update matrix, 69
Upper triangular matrix, 48

V
Van der Waals system, 181, 189
Variable ε, 210
Velocity, 230
Verlet, 144, 146, 147, 182
Virial, 183
Virial coefficient, 184

W
W-matrix, 159
Wave equation, 230, 231
Wave packet, 307
Wavefunction, 277, 278, 282
Waves, 229
Weddle rule, 39
Wheatstone bridge, 61
Windowing function, 78

Z
Z-transform, 79
Zamann, 96

	Computational Physics
	Preface
	Contents
	Part I Numerical Methods
	Chapter 1 Error Analysis
	1.1 Machine Numbers and Rounding Errors
	1.2 Numerical Errors of Elementary Floating Point Operations
	1.2.1 Numerical Extinction
	1.2.2 Addition
	1.2.3 Multiplication

	1.3 Error Propagation
	1.4 Stability of Iterative Algorithms
	1.5 Example: Rotation
	1.6 Truncation Error
	Problems
	Problem 1.1 Machine Precision
	Problem 1.2 Maximum and Minimum Integers
	Problem 1.3 Truncation Error

	Chapter 2 Interpolation
	2.1 Interpolating Functions
	2.2 Polynomial Interpolation
	2.2.1 Lagrange Polynomials
	2.2.2 Newton’s Divided Differences
	Algorithm
	2.2.4 Neville Method

	2.3 Spline Interpolation
	2.4 Multivariate Interpolation
	Problems
	Problem 2.1 Polynomial Interpolation
	Problem 2.3 Two-Dimensional Interpolation

	Chapter 3 Numerical Differentiation
	3.1 Simple Forward Difference
	3.2 Symmetrical Difference Quotient
	3.3 Extrapolation Methods
	3.4 Higher Derivatives
	3.5 More Dimensions
	Problems
	Problem 3.1 Numerical Differentiation

	Chapter 4 Numerical Integration
	4.1 Equidistant Sample Points
	4.1.1 Newton–Cotes Rules
	4.1.2 Newton–Cotes Expressions for an Open Interval
	4.1.3 Composite Newton–Cotes Formulas
	4.1.4 Extrapolation Method (Romberg Integration)

	4.2 Optimized Sample Points
	4.2.1 Clenshaw–Curtis Expressions
	4.2.2 Gaussian Integration
	Problems

	Chapter 5 Systems of Inhomogeneous Linear Equations
	5.1 Gaussian Elimination Method
	5.1.1 Pivoting
	5.1.2 Direct LU Decomposition

	5.2 QR Decomposition
	5.3 Linear Equations with Tridiagonal Matrix
	5.4 Cyclic Tridiagonal Systems
	5.5 Iterative Solution of Inhomogeneous Linear Equations
	5.5.1 General Treatment
	5.5.2 Jacobi Method
	5.5.3 Gauss–Seidel Method
	5.5.4 Damping and Successive Over-Relaxation

	5.6 Conjugate Gradients
	Problems

	Chapter 6 Roots and Extremal Points
	6.1 Root Finding
	6.1.1 Bisection
	6.1.2 Regula Falsi Method
	6.1.3 Newton–Raphson Method
	6.1.4 Secant Method
	6.1.5 Roots of Vector Functions

	6.2 Optimization Without Constraints
	6.2.1 Steepest Descent Method
	6.2.2 Conjugate Gradient Method
	6.2.3 Newton–Raphson Method
	6.2.4 Quasi-Newton Methods
	Problems

	Chapter 7 Fourier Transformation
	7.1 Discrete Fourier Transformation
	7.1.1 Trigonometric Interpolation
	7.1.2 Real-Valued Functions
	7.1.3 Approximate Continuous Fourier Transformation

	7.2 Algorithms
	7.2.1 Goertzel’s Algorithm
	7.2.2 Fast Fourier Transformation
	Problems

	Chapter 8 Random Numbers and Monte Carlo Methods
	8.1 Some Basic Statistics
	8.1.1 Probability Density and Cumulative Probability Distribution
	8.1.2 Expectation Values and Moments
	8.1.2.1 Ideal Dice
	8.1.2.2 Normal Distribution
	8.1.2.3 Histogram

	8.1.3 Multivariate Distributions
	8.1.4 Central Limit Theorem
	8.1.5 Example: Binomial Distribution
	8.1.6 Average of Repeated Measurements

	8.2 Random Numbers
	8.2.1 The Method by Marsaglia and Zamann
	8.2.2 Random Numbers with Given Distribution
	8.2.3 Examples

	8.3 Monte Carlo Integration
	8.3.1 Numerical Calculation of π
	8.3.2 Calculation of an Integral
	8.3.3 More General Random Numbers

	8.4 Monte Carlo Method for Thermodynamic Averages
	8.4.1 Simple (Minded) Sampling
	8.4.2 Importance Sampling
	8.4.3 Metropolis Algorithm
	Problems

	Chapter 9 Eigenvalue Problems
	9.1 Direct Solution
	9.2 Jacobi Method
	9.3 Tridiagonal Matrices
	9.4 Reduction to a Tridiagonal Matrix
	9.5 Large Matrices
	Problems

	Chapter 10 Data Fitting
	10.1 Least Square Fit
	10.1.1 Linear Least Square Fit
	10.1.2 Least Square Fit Using Orthogonalization

	10.2 Singular Value Decomposition
	Problems

	Chapter 11 Equations of Motion
	11.1 State Vector of a Physical System
	11.2 Time Evolution of the State Vector
	11.3 Explicit Forward Euler Method
	11.4 Implicit Backward Euler Method
	11.5 Improved Euler Methods
	11.6 Taylor Series Methods
	11.7 Runge–Kutta Methods
	11.7.1 Second-Order Runge–Kutta Method
	11.7.2 Third-Order Runge–Kutta Method
	11.7.3 Fourth-Order Runge–Kutta Method

	11.8 Quality Control and Adaptive Step-Size Control
	11.9 Extrapolation Methods
	11.10 Multistep Methods
	11.10.1 Explicit Multistep Methods
	11.10.2 Implicit Multistep Methods

	11.11 Verlet Methods
	11.11.1 Liouville Equation
	11.11.2 Split Operator Approximation
	11.11.3 Position Verlet Method
	11.11.4 Velocity Verlet Method
	11.11.5 Standard Verlet Method
	11.11.6 Error Accumulation for the Standard Verlet Method
	11.11.7 Leap Frog Method
	Problems

	Part II Simulation of Classical and QuantumSystems
	Chapter 12 Rotational Motion
	12.1 Transformation to a Body Fixed Coordinate System
	12.2 Properties of the Rotation Matrix
	12.3 Properties of W, Connection with the Vector of AngularVelocity
	12.4 Transformation Properties of the Angular Velocity
	12.5 Momentum and Angular Momentum
	12.6 Equations of Motion of a Rigid Body
	12.7 Moments of Inertia
	12.8 Equations of Motion for a Rotor
	12.9 Explicit Solutions
	12.10 Loss of Orthogonality
	12.11 Implicit Method
	12.12 Example: Free Symmetric Rotor
	12.13 Kinetic Energy of a Rotor
	12.14 Parametrization by Euler Angles
	12.15 Cayley–Klein parameters, Quaternions, Euler Parameters
	12.16 Solving the Equations of Motion with Quaternions
	Problems

	Chapter 13 Simulation of Thermodynamic Systems
	13.1 Force Fields for Molecular Dynamics Simulations
	13.1.1 Intramolecular Forces
	13.1.2 Intermolecular Forces
	13.1.3 Approximate Separation of Rotation and Vibrations

	13.2 Simulation of a van derWaals System
	13.2.1 Integration of the Equations of Motion
	13.2.2 Boundary Conditions and Average Pressure
	13.2.3 Initial Conditions and Average Temperature
	13.2.4 Analysis of the Results

	13.3 Monte Carlo Simulation
	13.3.1 One-Dimensional Ising Model
	13.3.2 Two-Dimensional Ising Model

	Problems

	Chapter 14 RandomWalk and Brownian Motion
	14.1 RandomWalk in One Dimension
	14.1.1 Random Walk with Constant Step Size

	14.2 The Freely Jointed Chain
	14.2.1 Basic Statistic Properties
	14.2.2 Gyration Tensor
	14.2.3 Hookean Spring Model

	14.3 Langevin Dynamics
	Problems

	Chapter 15 Electrostatics
	15.1 Poisson Equation
	15.1.1 Homogeneous Dielectric Medium
	15.1.2 Charged Sphere
	15.1.3 Variable ε
	15.1.4 Discontinuous ε
	15.1.5 Solvation Energy of a Charged Sphere
	15.1.6 The Shifted Grid Method

	15.2 Poisson Boltzmann Equation for an Electrolyte
	15.2.1 Discretization of the Linearized Poisson–BoltzmannEquation

	15.3 Boundary Element Method for the Poisson Equation
	15.3.1 Integral Equations for the Potential
	15.3.2 Calculation of the Boundary Potential

	15.4 Boundary Element Method for the LinearizedPoisson–Boltzmann Equation
	15.5 Electrostatic Interaction Energy (Onsager Model)
	15.5.1 Example: Point Charge in a Spherical Cavity
	Problems

	Chapter 16 Waves
	16.1 One-DimensionalWaves
	16.2 Discretization of the Wave Equation
	16.3 Boundary Values
	16.4 The Wave Equation as an Eigenvalue Problem
	16.4.1 Eigenfunction Expansion
	16.4.2 Application to the Discrete One-DimensionalWave Equation1

	16.5 Numerical Integration of the Wave Equation
	16.5.1 Simple Algorithm
	16.5.2 Stability Analysis
	16.5.3 Alternative Algorithm with Explicit Velocities
	Problems

	Chapter 17 Diffusion
	17.1 Basic Physics of Diffusion
	17.2 Boundary Conditions
	17.3 Numerical Integration of the Diffusion Equation
	17.3.1 Forward Euler or Explicit Richardson Method
	17.3.2 Stability Analysis
	17.3.3 Implicit Backward Euler Algorithm
	17.3.4 Crank–Nicolson Method
	17.3.5 Error Order Analysis
	17.3.6 Practical Considerations
	17.3.7 Split Operator Method for d > 1 Dimensions
	Problems

	Chapter 18 Nonlinear Systems
	18.1 Iterated Functions
	18.1.1 Fixed Points and Stability
	18.1.2 The Ljapunow Exponent
	18.1.3 The Logistic Map
	18.1.4 Fixed Points of the Logistic Map
	18.1.5 Bifurcation Diagram

	18.2 Population Dynamics
	18.2.1 Equilibria and Stability
	18.2.2 The Continuous Logistic Model

	18.3 Lotka–Volterra model
	18.3.1 Stability Analysis

	18.4 Functional Response
	18.4.1 Holling–Tanner Model

	18.5 Reaction–Diffusion Systems
	18.5.1 General Properties of Reaction–Diffusion Systems
	18.5.2 Chemical Reactions
	18.5.3 Diffusive Population Dynamics
	18.5.4 Stability Analysis
	18.5.5 Lotka–Volterra Model with Diffusion
	Problems

	Chapter 19 Simple Quantum Systems
	19.1 Quantum Particle in a Potential Well
	19.2 Expansion in a Finite Basis
	19.3 Time-Independent Problems
	19.3.1 Simple Two-Level System
	19.3.2 Three-State Model (Superexchange)
	19.3.3 Ladder Model for Exponential Decay

	19.4 Time-Dependent Models
	19.4.1 Landau–Zener Model
	19.4.2 Two-State System with Time-Dependent Perturbation

	19.5 Description of a Two-State System with the Density MatrixFormalism
	19.5.1 Density Matrix Formalism
	19.5.2 Analogy to Nuclear MagneticResonance
	19.5.3 Relaxation Processes—Bloch Equations
	Problems

	Appendix: Performing the Computer Experiments
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

