Syntactic Abstraction of B Models
to Generate Tests

Jacques Julliand!, Nicolas Stouls?,

Pierre-christophe Bué!, and Pierre-Alain Masson'

! LIFC, Université de Franche-Comté
16, route de Gray F-25030 Besancon Cedex
{bue, julliand,masson}@lifc.univ-fcomte.fr
2 Université de Lyon, INRIA
INSA-Lyon, CITI, F-69621, France
nicolas.stouls@insa-lyon.fr

Abstract. In a model-based testing approach as well as for the verifi-
cation of properties, B models provide an interesting solution. However,
for industrial applications, the size of their state space often makes them
hard to handle. To reduce the amount of states, an abstraction function
can be used, often combining state variable elimination and domain ab-
stractions of the remaining variables. This paper complements previous
results, based on domain abstraction for test generation, by adding a pre-
liminary syntactic abstraction phase, based on variable elimination. We
define a syntactic transformation that suppresses some variables from a
B event model, in addition to a method that chooses relevant variables
according to a test purpose. We propose two methods to compute an
abstraction A of an initial model M. The first one computes A as a sim-
ulation of M, and the second one computes A as a bisimulation of M.
The abstraction process produces a finite state system. We apply this
abstraction computation to a Model Based Testing process.

Keywords: Abstraction, Test Generation, (Bi-)Simulation, Slicing.

1 Introduction

B models are well suited for producing tests of an implementation by means of
a model-based testing approach [II2] and to verify dynamic properties by model-
checking [3]. But model-checking as well as test generation require the models
to be finite, and of tractable size. This is not usually the case with industrial
applications, for which the exploration of the executions modelled frequently
comes up against combinatorial explosion problems. Abstraction techniques al-
low for projecting the (possibly infinite or very large) state space of a system
onto a small finite set of symbolic states. Abstract models make test generation
or model-checking possible in practice [4]. In [5], we have proposed and experi-
mented with an approach of test generation from abstract models. It appeared
that the computation time of the abstraction could be very expensive, as evi-
denced by the Demoney [6] case study. We had replaced a problem of time for

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 151 2010.
© Springer-Verlag Berlin Heidelberg 2010

152 J. Julliand et al.

searching in a state graph with a problem of time for solving proofs, as the ab-
straction was computed by proving enabledness and reachability conditions on
symbolic states [7].

In this paper, we contribute to solving this proving time problem by defining a
syntactic abstraction function that requires no proof. Inspired from slicing tech-
niques [], the function works by suppressing some state variables from a model.
In order to produce a state system that is both finite and sufficiently small, we
still have to perform a semantic abstraction. This requires that some proof obli-
gations are solved, but there are less of them than with the initial model, since
it has been syntactically simplified. This approach results in semantic pruning
of generated proof obligations as proposed in [9].

In Sec. @ we introduce the notion of B event system and some of the main
properties of substitution computation. Section [3] presents an Electrical System
case study that illustrates our approach. In Sec.] we first define the set of
variables to be preserved by the abstraction function and then we define the
abstraction function itself. We prove that this function is correct in the sense
that the generated abstract model A simulates or bisimulates the initial model
M. In this way, the abstraction can be used to verify safety properties and to
generate tests. In Sec. Bl we present an end to end process to compute test cases
from a set of observed variables by using both the semantic and the syntactic
abstractions. In Sec. [l we compare this process to a completely semantic one
on several examples, and we evaluate the practical interest for test cases gener-
ation. Section [1 concludes the paper, gives some future research directions and
compares our approach to other abstraction methods.

2 B Event Systems and Refinement

We use the B notation [I0] to describe our models: this section gives the back-
ground required for reading the paper. Let us first define the following B notions:
primitive forms of substitution, substitution properties and refinement. Then we
will summarize the principles of before-after predicates, and conjunctive form
(CF) of B predicates.

First introduced by J.-R. ABRIAL [11], a B event system defines a closed
specification of a system by a set of events. In the sequel, we use the following
notations: z, x;, y, z are variables and X, Y, Z are sets of variables. Pred is
the set of B predicates. I (€ Pred) is an invariant, and P, P, and P, (€ Pred)
denote other predicates. The modifications of the variables are called substitu-
tions in B, following [12] where the semantics of an assignment is defined as a
substitution. In B, substitutions are generalized: they are the semantics of every
kind of action, as expressed by formulas[Ito dl below. We use S, S; and S> to de-
note B generalized substitutions, and F, F; and F' to denote B expressions. The
B events are defined as generalized substitutions. All the substitutions allowed
in B event systems can be rewritten by means of the five B primitive forms of
substitutions of Def. [Il Notice that the multiple assignment can be generalized
to n variables. It is commutative, i.e. z, vy := E, F=y, x = F, E.

Syntactic Abstraction of B Models to Generate Tests 153

Definition 1 (Substitution). The following five substitutions are primitive:

single and multiple assignments, denoted as x = E andx, y = E, F
substitution with no effect, denoted as skip

— guarded substitution, denoted as P = S

— bounded nondeterministic choice, denoted as S1[]S2

— substitution with local variable z, denoted as @z.S.

Notice that the substitution with local variable is mainly used to express the
unbounded nondeterministic choice denoted by @Qz.(P = S). Let us specify that
among the usual structures of specification languages, the conditional substitu-
tion IF P THEN S; ELSE Sy END is denoted by (P = S1)[](=P = S3) with
the primitive forms.

Given a substitution S and a post-condition P, it is possible to compute the
weakest precondition such that if it is satisfied, then P is satisfied after the
execution of S. The weakest precondition is denoted by [S]P. [x := E]P is the
usual substitution of all the free occurrences of x in P by E. For the four other
primitive forms, the weakest precondition is computed as indicated by formulas[I]
to @ below, proved in [I0].

[skip]P < P (1)

[P = S|P, & (P1 = [S]P2) (2)

[S1[]S2]P < [S1]P A [S2]P (3)

[@z.S]P < Vz.[S]P if z is not free in P (4)

Distributivity: [S](P1 A P2) < [S]P1 A [S|P2 (5)

Definition [2] defines correct B event systems. To explicitly refer to a given model,
we add the name of that model as a subscript to the symbols X, I, Init and Ewv.
Iy is for example the invariant of a model M.

Definition 2 (Correct B Event System). A correct B event system is a
tuple (X, I, Init, Ev) where:

— X is a set of state variables,

— I (€ Pred) is an invariant predicate over X,

— Init is a substitution called initialization, such that the invariant holds in
any ingtial state: [Init]I,

— FEwv is a set of event definitions in the shape of ev; = S; such that every event
preserve the invariant: I = [S;]1.

In Sec. @, we will prove that an abstraction A that we compute is refined by
its source event system M, and so we give in Def. Bl the definition of a B event
system refinement.

Definition 3 (B Event System Refinement). Let A and R be two correct
B event systems. Let Ir be their gluing invariant, i.e. a predicate that indicates
how the values of the variables in R and A relate to each other. R refines A if:

154 J. Julliand et al.

— any initialization of R is associated to an initialization of A according to Ig:
[InitR]—'[InitA]—'IR

— any event ev = Sg of R is an event of A defined by ev = Sa in Eva that
satisfy Ir: Ta N Igr = [Sgr|=[Sa]~1Rg.

This paper also relies on two more definitions: the before-after predicate and the
CF form. We denote by Prdx (S) the before-after predicate of a substitution S.
It defines the relation between the values of the variables of the set X before and
after the substitution S. A primed variable denotes its after value. From [I0],
the before-after predicate is defined by:

Prdx(S) = =[S]=(\ (& =2")). (6)
zeX
Definition 4 (Conjunctive Form). A B predicate P € Pred is in CF when it
is a conjunction py Apa ... App where every p; s a disjunction p} \/pl2 V...Vpi®
such that any p] is an elementary predicate in one of the following two forms:

— E(Y)r F(Z), where E(Y) and F(Z) are B expressions on the sets of vari-
ables Y and Z and r is a relational operator,
— Vz.P or 3z.P, where P is a B predicate in CF.

Section @l will define predicate transformation rules. We put the predicates in CF
according to Def. [before their transformation. This allows the transformation
to be correct although the negation is not monotonic w.r.t a transformation T’
of the predicates: T'(—P) # —T(P).

3 Electrical System Example

We describe in this section a B event system that we will use in this paper as a
running example to illustrate our proposal.

Fig. 1. Electrical System

A device D is powered by one of three batteries By, By, B3 as shown in Fig. [
A switch connects (or not) a battery B; to the device D. A clock H periodically
sends a signal that causes a commutation of the switches, i.e. a change of the
battery in charge of powering the device D. The working of the system must
satisfy the three following requirements:

Syntactic Abstraction of B Models to Generate Tests 155

— Reqi: no short-circuit, i.e. there is only one switch closed at a time,
— Regs: continuous power supply, i.e. there is always one switch closed,
— Regs: a signal from the clock always changes the switch that is closed.

The batteries are subject to electrical failures. If it occurs to the battery that
is powering D, the system triggers an exceptional commutation to satisfy the
requirement Regs. The broken batteries are replaced by a maintenance service.
We assume that it works fast enough for not having more than two batteries
down at the same time. When two batteries are down, the requirement Reqs is
relaxed and the clock signal leaves unchanged the switch that is closed.

This system is modeled in Fig. [2] by means of three variables. H models the
clock and takes two values: tic when it asks for a commutation and tac when
this commutation has occurred. Sw models the state of the three switches by
an integer between 1 and 3: Sw = ¢ indicates that the switch 7 is closed while
the others are opened. This modelling makes that requirements Req; and Regs
necessarily hold. Bat models the electrical failures by a total function. The ko
value for a battery indicates that it is down. In addition to the typing of the
variables, the invariant I expresses the assumption that at least one battery is
not down by stating that Bat(Sw) = ok. Notice that the requirement Regqs is
a dynamic property, not formalized in I. The initial state is defined by Init in
Fig.[2l The behavior of the system is described by four events:

— Tic sends a commutation command,

Conll performs a commutation (i.e. changes the closed switch),
Fail simulates an electrical failure on one of the batteries,

Rep simulates a maintenance intervention replacing a down battery.

X = {H, Sw, Bat}
1 = H € {tic,tac} AN Sw € 1..3 A (Bat € 1..3 — {0k, ko}) A Bat(Sw) = ok
Init = H, Sw, Bat := tac,1, {1 — ok, 2 — ok, 3 +— ok}
Tic = H = tac = H := tic
Com = card(Bat> {ok}) > 1A H = tic =

@ns.(ns € 1..3 A Bat(ns) = ok A ns # Sw = H, Sw := tac,ns)
Fail = card(Bat > {ok}) > 1=

@Qnb.(nb € 1..3 Anb € dom(Bat > {ok}) =

(nb = Sw = @ns.(ns € 1..3 Ans # Sw A Bat(ns) = ok = Sw, Bat(nb) := ns, ko))
[J(nb # Sw = Bat(nb) := ko))

Rep = @nb.(nb € 1..3 A nb € dom(Bat > {ko}) = Bat(nb) := ok)

Fig. 2. B Specification of the Electrical System

4 Syntactic Abstraction

We define in this paper a syntactical abstraction method that applies to B mod-
els. Similar rules could be adapted for more generic formalisms such as pre-post
models or transition systems.

1 An expression r > E denotes a relation where the range is restricted by the set E.
For example, {1 — ok, 2+ ko, 3+ ok} > {ok} = {1+ ok, 3 — ok}.

156 J. Julliand et al.

Our intention is to obtain an abstract model A of a model M by observing only
a subset X of the state variables Xy of M. For instance, to test the electrical
system in the particular cases where two batteries are down, we observe only
the variable Bat. But to preserve the behaviors of M related to the variables of
Xa, we also keep in A the variables used to assign the observed variables or to
define the conditions under which they are assigned.

We first present two methods to compute a set of abstract variables accord-
ing to a set of observed variables. Using these variables we define a predicate
and substitution transformation function. Then we describe how to compute an
abstraction of a B event model M. The abstraction is a bisimulation of M when
the abstract variables were computed according to the second method. We also
prove that if they were computed according to the first method, the abstraction
is a simulation of M.

4.1 Choosing the Abstract Variables

As proposed in [I3], we distinguish between the observed variables and the ab-
stract ones. A set Xa of abstract variables is the union of a set of observed
variables with a set of relevant variables. The Observed variables are the ones
used by the tester in a test purpose, while the relevant variables are the ones
used to describe the evolutions of the observed variables. More precisely, the
relevant variables are the ones used to assign an observed variable (data-flow
dependency), augmented with the variables used to express when such an as-
signment occurs (control-flow dependency).

A naive method to define Xp is to syntactically collect the variables that are
either on the right side or in the guard of the assignment of an observed variable.
But this method will in most cases select a very large amount of variables, mainly
because of the guard. For instance, if x is the observed variable, then y is not
relevant in (y = 2,z := E, F)[|(-y = 2 := E). A similar weakness goes for the
unbounded non-deterministic choice @z.(P = 5).

Hence our contribution consists of two methods for identifying the relevant
variables. The first one only considers the data-flow dependency. It is efficient,
but may select a set too small of relevant variables, resulting in a set with too
many behaviors in the abstracted model. The second one uses both data and
control flow dependencies, but requires a predicate simplification to restrict the
size of Xa. It produces abstract models that have the same set of behaviors as
the original model, w.r.t. the abstract variables. This second method may select
a set with too many relevant variables because predicate simplification is an
undecidable problem.

Proposition 1: Data-Flow Dependency Only. This first method considers
as relevant only the variables that appear on the right side of an assignment
symbol to an abstract variable. Starting from the set of observed variables, the
set of all abstract variables is computed as the least fix-point when adding the
relevant variables. For instance, the set of relevant variables of the electrical
system is empty if the set of observed variables is { Bat}. Hence if a test purpose

Syntactic Abstraction of B Models to Generate Tests 157

is only based on Bat, then Xap = {Bat}. A drawback of this method is that it
can introduce in A new execution traces w.r.t. M. Indeed, it may weaken the
guards of some of the events, that would thus become enabled more often.

Proposition 2: Data-Flow and Control-Flow Dependencies. This second
method first computes a predicate characterizing a condition under which an
abstract variable is modified, then simplifies it, and finally considers all its free
variables as relevant. We express by means of formula [l the modifications really
performed by a substitution S on a set Xa:

Modx,(S) = Prdx,(S) A (\/ z#2). (7)
ZEXp
Our intention is that the predicate, that defines the condition under which an
abstract variable is modified, only involves the variables really required to modify
it. Hence primed variables are not quantified, but are allowed to be free. For
instance, consider Xa = {z} and the substitution z:=y[](#>0 = x:=w)[Jv:=3.
The predicate has to be in the shape of: 2’ =y V (z > 0 A2’ = w), where the
variables y, w and z are relevant whereas v is not.

Finally, Xa is computed as a least fix-point, by iteratively incrementing for
each event the initial set of observed variables with the relevant variables. This
process terminates since the set of variables is finite. For instance, Mod{pa:
gives an empty set of relevant variables when applied to the example, as shown
in Fig. Bl while Modpy gives Xa = {Bat, H}.

Modpaty(Init) < Bat = {1+ ok, 2+ ok, 3 ok}
Modpaty(Tic) < false (no assignment of Bat)
Mod{paty(Com) < false (no assignment of Bat)
Modpaty(Fail) < card(Bat > {ok}) > 1

A3nb.(nb € 1..3 A nb € dom(Bat > {ok}) A Bat' (nb) = ko)
Mod ety (Rep) < 3nb.(nb € 1..3 Anb € dom(Bat > {ko}) A Bat’(nb) = ok)

Fig. 3. Mod{p.+; Computation Applied to the Example

4.2 Predicate Transformation

Once the set of abstract variables Xa(C Xwm) is defined, we have to describe
how to abstract a model according to Xa. We first define the transformation
function T'x, (P) that abstracts a predicate P according to Xa. We define Tx on
predicates in the conjunctive form (see Def.) by induction with the rules given
in Fig. @

An elementary predicate is left unchanged when all the variables used in the
predicate are considered in the abstraction (see the rule [Ry]). Otherwise, when
an expression depends on some variables not kept in the abstraction, an ele-
mentary predicate is undetermined (see the rule [R3). As we want to weaken
the predicate, we replace an undetermined elementary predicate by true. Con-
sequently, a predicate P; A Py is transformed into P; when Ps is undetermined,
and a predicate P; V P, is transformed into true when P; or P, is undetermined
(see the rules [R3] and [Ry]). Finally, the transformation of a quantified predicate

158 J. Julliand et al.

Tx(E(Y)r E(Z))= E(Y)r E(Z) fYCXand ZCX (R1)
Tx(E(Y)r E(Z)) = true fYZ XorZ{ZX (R2)
Tx(Pl \% P2) = Tx(Pl) \% Tx(PQ) (R3)
Tx(PLAP2) = Tx(P1) ANTx(P2) (Ra)

Tx (az.P) = az.Txy(}(P) (Rs)

Fig. 4. CF Predicate Transformation Rules

T{Bat} (H(e {tig7 tac} /\}Sgw €1..3 A Bate 1..3) — {ok, ko} A Bat(Sw)=ok)
T, H e {tic,tac}) AT (Swe1l..3 .
{Bat}) {Bat}
A Trgary (Bat€1..3 — {0k, ko}) A T{paty(Bat(Sw) = ok) applying [Ry]
= Bat € 1..3 — {ok, ko} applying [R1] and [R3]

Fig. 5. Example of Predicate Transformation

is the transformation of its body w.r.t. the observed variables, augmented with
the quantified variable (see the rule [R)).

For example the invariant I of the electrical system is transformed, according
to the single variable Bat, into Typ.y(I) = Bat € 1..3 — {ok, ko} as in Fig.

Property 1. Let P be a CF predicate in Pred and let X be a set of variables.
P = Tx(P) is valid.

Proof. As we said before, T'x (P) is weaker than P. Indeed, for any predicate P in
CF there exist p; and ps such that P = p; A po and such that it is transformed
either into p; A ps2, or into p;, or into ps, or into true, by application of the
transformation rules R;. For any disjunctive predicate P there exist p; and po
such that P = p; V ps and p1 V ps is transformed either into p; V po or into true.

4.3 Substitution Transformation

The abstraction of substitutions is defined through cases in Fig. [0l on the primi-
tive forms of substitutions. Intuitively, any assignment = := F is preserved into
the transformed model if and only if x is an abstract variable. According to both
of the two methods described in sec. [£.]] if = is an abstract variable, then so are
all the variables in E. Therefore, in rules [Rg] to [R11} we do not transform the
expressions F and F.

A substitution is abstracted by skip when it does not modify any variable
from X (see rules [Rgl [Rgl [Rg] and [Rg] in which y := F is abstracted by skip).
The assignment of a variable z is left unchanged if x is an abstract variable (see
rules [R7] [Rigl [R17)). The transformation of a guarded substitution S is such that
Tx(S) is enabled at least as often as S, since Tx(P) is weaker than P from
Prop. [(see rule[R13)). The bounded non deterministic choice S; [] S2 becomes a
bounded non deterministic choice between the abstraction of S; and Sy (see rule
[Z13). The quantified substitution is transformed by inserting the bound variable
into the set of abstract variables (see rule [R14]).

Syntactic Abstraction of B Models to Generate Tests 159

Tx(x := E)= skip ifex ¢ X (R¢)
Tx(x := E)= z = E ifee X (R7)

Tx (skip) = skip (Rs)

Tx(z, y:= E, F)= skip ifx¢g Xandy ¢ X (Rg)
Tx(z, y:= E, F)= o = E ifzreX andy ¢ X (R10)
Tx(z, y:= E, F)= z, y:= E, F ifr e X andy € X (R11)
Tx(P = S)= Tx(P) = Tx(S) (R12)

Tx (S1[]S2) = Tx (S1)[1Tx(S2) (R13)

Tx (Q@z.5) = @z.Txyg:}(S) (R14)

Fig. 6. Primitive Substitution Transformation Rules

4.4 B Event System Transformation

According to the predicate and substitution transformation functions (see fig-
ure[and figure[d]), we define the transformation of a B event model according to
a set of abstract variables (section 1)) in Def. Bl This transformation translates
a correct model M into a model A that simulates M (Sec. [LH). The electrical
system is transformed as shown in Fig. [l for the set of abstract variables { Bat}.

Definition 5 (B Event System Transformation). Let X be a set of ab-
stract variables, defined as in Sec. [{-1] from a set of observed variables X with
X C Xum. A correct B event system M =(Xpm, Im, Inity, Evy) is abstracted as
the B event system A = (Xa, Ia, Inita, Eva) as follows:

— Xa C X, the set of abstract variables is a subset of the state variables,
— Ix =Tx,(Im), the invariant is transformed,

— Inita = Tx,(Inity), the initialization is transformed,

— to each event ev = Sy in Euy is associated ev = T'x,(Sm) in Eva.

4.5 Correctness

When the set of abstract variables Xa preserve both the data and control flows
as defined in Sec. 1] (Proposition 2), the transition relation, restricted to Xa,
is preserved, as proved by theorem [l A and M have an equivalent before-after
relation Prdx,, therefore they are bisimilar. Hence when a CTL* property is
verified on A it holds on M and test cases generated from A can always be
instantiated on M.

Theorem 1. Let S be a substitution. Let X be a set of abstract variables com-
posed of any free variable of Modx (S), we have Prdx(S) < Prdx(Tx(S)).

With the method defined in Sec. [£]] by Proposition 1, A is a simulation of M.
The B refinement relation (see Def. [is proven in [I4] to be a simulation: A
simulates M by a 7-simulation. 7 is a silent action corresponding in our case to
an event reduced to skip or to P = skip. Theorems 2] and [B] establish that M
refines A, and thus that A simulates M. The safety properties are preserved, but
some tests generated from A might be impossible to instantiate on M.

160 J. Julliand et al.

Theorem 2. Let I be a CF invariant of a correct B event system, let S be a
substitution and let X be a set of abstract variables. The transformation rules
[Rg] to [Ri4] are such that S refines Tx (S) according to the invariant I.

Theorem 3. Let X be a set of abstract variables defined as in Proposition 1.
Let Tx be the transformation defined in Fig. [0, and let A be an abstraction of
an event system M defined according to Def.[A. A is refined by M in the sense of
Def. [3

Theorem [2] establishes that any substitution S refines its transformation T'x (.S)
for a given set of abstract variables X. Theorem [3 establishes that a B event
system M refines the B abstract system obtained according to Def. Bl by applying
to M the transformation rules of Fig. @ and Fig. [6l

Proof (of theorem[d). This is a direct consequence of theorem Pl and Def. [since
the substitution Inita = Tx (Inity) is refined by Inity, and that for any event
ev = Sw, the substitution Sa = T'x(Swm) is refined by Sum.

X = {Bat}

1 = Bat € 1..3 — {ok, ko}

Init = Bat := {1+ ok, 2+ ok, 3+ ok}

Tic = skip

Com = card(Bat > {ok}) > 1 = @Qns.(ns € 1..3 A Bat(ns) = ok = skip)
Fail = card(Bat > {ok}) > 1 =

@nb.(nb € 1..3 A nb € dom(Bat > {ok}) = Bat(nb) := ko)
Rep = @nb.(nb € 1..3 A nb € dom(Bat > {ko}) = Bat(nb) := ok)

Fig. 7. B Syntactically Abstracted Specification of the Electrical System

5 Application of the Method to a Testing Process

We show in this section how to use the syntactic abstraction in a model-based
testing approach.

5.1 Test Generation from an Abstraction

We have described in [5] a model-based testing process using an abstraction as
input. It can be summarized as follows. A validation engineer describes by means
of a handwritten test purpose TP how he intends to test the system, according to
his know-how. We have proposed in [I5] a language based on regular expressions,
to describe a TP as a sequence of actions to fire and states to reach (targeted
by these actions). The actions can be explicitly called in the shape of event
names, or left unspecified by the use of a generic name. The unspecified calls
then have to be replaced with explicit event names. However, a combinatorial
explosion problem occurs, when searching in a concrete model for the possible
replacements that lead to the target states. This leads us to use abstractions
instead of concrete models. Figure [§] shows our approach.

Syntactic Abstraction of B Models to Generate Tests 161

-
1

Semantic abstraction . Abstract 1
Genesyst v Model 1, 1

1 Process 1 1

Observed
Variables

Set of
Abstract
variables

Syntactically
Abstracted
Model A

Abstract
Model 4,

Fig. 9. Abstraction Process

We perform a synchronized product between an abstraction A and the au-
tomaton of a TP. This results in a model SP whose executions are the execu-
tions of A that match the TP. An implementation [I6] of the Chinese Postman
algorithm is applied to SP to cover its transitions. The result is a set of ab-
stract symbolic tests AST. These tests are instantiated from M as a set IT of
instantiated tests.

5.2 Abstraction Computation

We show in this section two ways of producing an abstraction A that can be
used as an input of the process of Fig. Bl The syntactic abstraction of Sec. 4l is
used in one of these two ways.

In order to compute the synchronized product of an abstraction A with the
automaton of a TP, we compute the semantics of A as a labelled transition
system. We use GeneSyst [7] for that purpose. This tool computes a semantic
abstraction of a B model in the shape of a symbolic labelled transition system.
The semantic abstraction relies on feasibility proofs of the transitions between
two symbolic states. GeneSyst generates proof obligations (POs) for each of
the potential transitions between two symbolic states, and tries to solve them
automatically.

The two main drawbacks of this process are its time cost and the proportion of
POs not automatically solved. Indeed, each unsolved PO results in a transition
that is kept in the symbolic labelled transition system, although it is possibly
unfeasible. An abstract symbolic test going through such a transition may be
impossible to instantiate from the concrete model M. By applying a preliminary
phase of syntactic abstraction, we reduce the impact of that problem by reducing
the number and the size of the POs, since GeneSyst operates on an already

162 J. Julliand et al.

abstracted model. For example, no proof obligation is generated for an event
reduced to skip (it becomes a reflexive transition on any symbolic state).

The experimental results presented in Sec. [fl compare two approaches. The
first one (see Fig. [@/Process 1) is only semantic, while the second one (see
Fig. [@/Process 2) combines a syntactic and a semantic abstraction.

6 Experimental Results

We have applied our method to four case studies. They are various cases of
reactive systems: an automatic conveying system (Robot [I7]), a reverse phone
book service (Qui-Donc [2]), the electrical systemd (Electr.) and an electronic
purse (DeMoney [6]). Each one is abstracted w.r.t. two sets of abstract variables.
These sets have been computed according to Proposition 1 of Sec. [l We also
have tried to compute the abstract variables according to Proposition 2, but all
the variables have been computed as abstract in three case studies. Only for the
electrical system the set of abstract variables was the same as with Proposition 1.
These case studies reveal a limit in the application of Proposition 2.

In Sec.[6.Il we present an experimental evaluation of the syntactic abstraction.
Then, in Sec.[6.2 we compare Ay with Aa respectively computed by the semantic
abstraction process or by its combination with the syntactic one.

6.1 Impact of the Syntactic Abstraction on Models

Table [I] indicates the size of the case studies and the syntactically abstracted
models. The Symbols “4”, “Ev.”, “Var.” and “Pot.” respectively stand for num-
ber of, Fvents, Variables and Potential. For example the Robot, defined by 9
events and 6 variables is abstracted w.r.t. two sets of respectively 3 and 4 ab-
stract variables.

Table 1. Size of the Case Studies and of their Syntactical Abstractions

Case Study #Ev. Model M Syntac'tically abstracted model A
fVar. §B lines f#Pot. states #Var. §B lines §Pot. states f{Symb. states
Robot 9 6 100 384 i 38 144%1 g
QuiDonc 4 3 170 13 3 128 }g 653
Electr. 4 3 100 36 i 28 g g
DeMoney 11 9 330 103° % 138 6557)36 Z

A direct observable result of the syntactic abstraction is a reduction of the
number of potential states of the model. Also notice that the simplification
reduces from 10% up to 50% the number of lines of the model.

2 The 100 lines length of the model, in Table [I refer to a “verbose” version of the
model, much more readable than our version of Fig.

Syntactic Abstraction of B Models to Generate Tests 163

6.2 Comparison of the Abstraction Processes 1 and 2

Table 2l compares the abstractions computed either directly from the behavioral
models (see process 1 in Fig.[d), or from their syntactic abstractions (see process 2
in Fig. @). The abbreviations “Trans.”, “Unau.”, “Inst.” and “Cover.” stand
respectively for transitions, unauthorized, instantiated and coverage.

Table 2. Comparison of the semantic and syntactic/semantic abstraction processes

Case U P“’CETS_S 1: “;‘Mt o p U Pmce,lf_s 2 ’I“At - c Traces
nau. ime #Inst./ Trans. Cover. nau. ime f#Inst./ Trans. Cover. . °
study #Trans. 11rrans. PO) gTests/. of Ay §Trans. IErraus. PO Ty gTests/. of Ap inclusion
Robot 42 5 263 64 4/11 29/37 (78%) 36 0 143 35 7/11 31/36 (86%) Ap C Ay
51 0 402 76 4/23 35/51 (68%) 50 0 242 49 8/23 38/50 (76%) Ap C Ay
Qui- 20 2 71 19 9/11 12/18 (66%) 25 7 89 21 6/11 11/18 (61%) Ap € Ay
Donc 25 2 89 21 4/10 6/23 (26%) 29 6 103 23 4/10 6/23 (26%) Ap € Ay
Blectr. 13 5 26 7 2/2 8/8 (100%) 13 5 16 5 2/2 8/8 (100%) Ap = Ay
7 0 21 5 3/3 7/7 (100%) 7 0 9 2 3/3 7/7 (100%) Ap = Ay
De- 38 5 116 189 17/18 25/33 (76%) 38 5 68 38 17/18 25/33 (76%) Ap C Ay
0

Money 53

200 172 22/38 30/53 (56%) 50 130 65 20/35 26/50 (52%) Ap C Ay

We see on our examples that there is between 1.8 and 2.3 fewer POs to com-
pute with process 2 than with process 1, except for the Qui-Donc. The semantic
abstraction computation in process 2 takes from twice up to five times less time
than in process 1, where no previous syntactic abstraction have been performed.
For the Qui-Donc, the syntactical abstraction has too much over-approximated
the initial model, which explains the augmentation of the POs w.r.t. the pro-
cess 1. Finally, there are four cases out of eight where the abstraction Aa is more
precise than Ay in the sense that it has less transitions, due to the reduction
of the number of unproved POs. In these four cases, the set of traces of Aa
is included in the set of traces of Apm. In the case of the electrical system, the
set of traces are equal. In the Qui-Donc case, the traces cannot be compared.
The simplification by the syntactic abstraction of the events and of the invariant
makes that Aa may contain more transitions (thus more traces) than Ay. But
the number and the difficulty of the POs is greater to get Apm than to get Aa,
so that proof failures may occur more often with Ap. As a result, Apm can also
contain transitions that are not in Aa.

As for the ratios of tests instantiated and of transitions covered of the abstrac-
tion, we observe their stability with or without syntactic abstraction. Although
the ratios are a bit better (or equal) for the Robot and the Electrical System,
and a bit worse for Qui-Donc and Demoney, they are mainly very close to each
other. But, due to the reduction of the number of POs, the time to obtain these
comparable results is improved with process 2, i.e. when there is a preliminary
syntactic abstraction phase. Again, this is not true for the Qui-Donc since on
the contrary, its number of POs has increased.

Finally, the method had no interest with the Qui-Donc, which was the small-
est example. But, as shown by DeMoney, its efficiency in terms of gain of the
abstraction computation time, of reduction of the number of unproved POs and
of precision of the abstraction, grows with the size of the examples.

164 J. Julliand et al.

7 Conclusion, Related Works and Further Works

We have presented in the B framework a method for abstracting an event system
by elimination of some state variables. In this context, we have proposed two
methods to compute the set of variables kept in the abstraction according to
the set of observed variables. We have proved that when using the first method,
the generated abstraction simulates the concrete model, while when using the
second method, the generated abstraction bi-simulates the concrete model. This
is useful for verifying safety properties and generating tests.

In the context of test generation, our method consists in initializing the test
generation process from event B model described in [5], by a syntactic abstrac-
tion. Since the syntactic abstraction reduces the size of the model, the main
advantage of this method is that it reduces the set of uninstantiable tests, by
reducing the level of abstraction (reduces the number of PO generated and fa-
cilitates the proof of the remaining PO). Moreover, this results in a gain of
computation time. We believe that the bigger the ratio of the number of state
variables to the number of observed variables is, the bigger the gain is. This
conjecture needs to be confirmed by experiments on industrial size applications.

Many other works define model abstraction methods to verify properties or
to generate tests. The method of [I8] uses an extension of the model-checker
Mur¢ to compute tests from projected state coverage criteria that eliminate some
state variables and project others on abstract domains. In [19], an abstraction
is computed by partition analysis of a state-based specification, based on the
pre and post conditions of the operations. Constraint solving techniques are
used. The methods of [2002T22] use theorem proving to compute the abstract
model, which is defined over boolean variables that correspond to a set of a
priori fixed predicates. In contrast, our method first introduces a syntactical
abstraction computation from a set of observed variables, and further abstracts
it by theorem proving. [23] also performs a syntactic transformation, but requires
the use of a constraint solver during a model checking process.

Other automatic abstraction methods [24] are limited to finite state systems.
The deductive model checking algorithm of [25] produces an abstraction w.r.t.
a LTL property by an iterative refinement process that requires human exper-
tise. Our method can handle infinite state space specifications. The paper [26]
presents a syntactic abstraction method for guarded command programs based
on assignment substitution. The method is sound and complete for programs
without unbounded non determinism. However, the method is iterative and does
not terminate in the general case. It requires the user to give an upper-bound of
the number of iterations. The paper also presents an extension for unbounded
non deterministic programs that is sound but not complete, due to an expo-
nential number of predicates generated at each iteration step. In contrast, our
syntactic method is iterative on the syntactic structure of the specifications. It
is sound but not complete. It handles unbounded non deterministic specifica-
tions with no need for other iterative process and always terminates. Above all,
our method does not compute any weakest precondition whereas the approach
in [26] does, which possibly introduces infinitely many new predicates.

Syntactic Abstraction of B Models to Generate Tests 165

The syntactic method that we have presented is correct, but, in the case of
Proposition 1, may sometimes produce inaccurate over-approximations due to
a too strong abstraction (see for example the experiments on the Qui-Donc).
Proposition 2 produces a bisimulation, but may leave the initial model un-
changed, i.e. not abstracted, if all the variables are computed as abstract. We
have to find a compromise between the two propositions, that would reduce the
number of abstract variables, but that would keep at least partially the control
structure of the operations. Also, we think that rules could be improved to get
a finer approximation. For instance, improving the rules is possible when the
invariant contains an equivalence such as x = ¢ & y = ¢. If y is an eliminated
variable and x an observed one, we could substitute all the occurrences of the
elementary predicate y = ¢’ with x = ¢. This would preserve the property in
the syntactic abstraction Aa, so that the following semantic abstraction would
be more accurate. Such rules should prevent the addition of transitions in the
Qui-Donc abstraction Aa w.r.t. Ay.

We think that extending the test generation method introduced in [5] by using
a combination of syntactic and semantic abstractions will improve the method,
since the abstraction is more accurate if there are less unproved POs.

References

1. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

2. Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Elsevier
Science, Amsterdam (2006)

3. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method.
Software Tools for Technology Transfer 10(2), 185-203 (2008)

4. Bouquet, F., Couchot, J.F., Dadeau, F., Giorgetti, A.: Instantiation of parameter-
ized data structures for model-based testing. In: Julliand, J., Kouchnarenko, O.
(eds.) B 2007. LNCS, vol. 4355, pp. 96-110. Springer, Heidelberg (2006)

5. Bouquet, F., Bué, P.C., Julliand, J., Masson, P.A.: Test generation based on ab-
straction and test purposes to complement structural tests. In: A-MOST 2010, 6th
int. Workshop on Advances in Model Based Testing, Paris, France (April 2010)

6. Marlet, R., Mesnil, C.: Demoney: A demonstrative electronic purse. Technical Re-
port SECSAFE-TL-007, Trusted Logic (2002)

7. Bert, D., Potet, M.L., Stouls, N.: GeneSyst: a Tool to Reason about Behavioral
Aspects of B Event Specifications. In: Treharne, H., King, S., Henson, M. C.,
Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 299-318. Springer, Heidelberg
(2005)

8. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering SE-10(4),
352-357 (1984)

9. Couchot, J.F., Giorgetti, A., Stouls, N.: Graph-based Reduction of Program Veri-
fication Conditions. In: AFM 2009 (2009)

10. Abrial, J.R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

11. Abrial, J.R.: Extending B without changing it (for developing distributed systems).
In: 1st B Conference, pp. 169-190 (1996)

166

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Julliand et al.

Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 10(12), 576-580 (1969)

Briickner, I., Wehrheim, H.: Slicing an Integrated Formal Method for Verification.
In: Lau, K. K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 360-374.
Springer, Heidelberg (2005)

Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-simulation is not ready to
express a modular refinement relation. In: Maibaum, T. (ed.) FASE 2000. LNCS,
vol. 1783, pp. 266-283. Springer, Heidelberg (2000)

Julliand, J., Masson, P.A., Tissot, R.: Generating security tests in addition to
functional tests. In: AST 2008, pp. 41-44. ACM Press, New York (2008)
Thimbleby, H.: The directed chinese postman problem. Software: Practice and
Experience 33(11), 1081-1096 (2003)

Bouquet, F., Bué, P.C., Julliand, J., Masson, P.A.: Génération de tests a partir de
criteres dynamiques de sélection et par abstraction. In: AFADL 2009, Toulouse,
France, January 2009, pp. 161-176 (2009)

Friedman, G., Hartman, A., Nagin, K., Shiran, T.: Projected state machine cover-
age for software testing. In: ISSTA, pp. 134-143 (2002)

Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993.
LNCS, vol. 670, pp. 268-284. Springer, Heidelberg (1993)

Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
0. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

Bensalem, S., Lakhnech, Y., Owre, S.: Computing abstractions of infinite state sys-
tems compositionally and automatically. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427. Springer, Heidelberg (1998)

Colon, M., Uribe, T.: Generating finite-state abstractions of reactive systems using
decision procedures. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer,
Heidelberg (1998)

Chan, W., Anderson, R., Beame, P., Notkin, D.: Combining Constraint Solving and
Symbolic Model Checking for a Class of Systems with Non-Linear Constraints. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)
Clarke, E., Grumberg, O., Long, D.: Model Checking and Abstraction. TOPLAS
1994, ACM Transactions on Programming Languages and Systems 16(5), 1512—
1542 (1994)

Sipma, H., Uribe, T., Manna, Z.: Deductive model checking. Formal Methods in
System Design 15(1), 49-74 (1999)

Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic
abstraction. In: Emerson, E.A.; Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
435-449. Springer, Heidelberg (2000)

	Syntactic Abstraction of B Models to Generate Tests
	Introduction
	B Event Systems and Refinement
	Electrical System Example
	Syntactic Abstraction
	Choosing the Abstract Variables
	Predicate Transformation
	Substitution Transformation
	B Event System Transformation
	Correctness

	Application of the Method to a Testing Process
	Test Generation from an Abstraction
	Abstraction Computation

	Experimental Results
	Impact of the Syntactic Abstraction on Models
	Comparison of the Abstraction Processes 1 and 2

	Conclusion, Related Works and Further Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

