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Preface

This volume contains the proceedings of TAP 2010, the 4th International Con-
ference on Tests and Proofs held during July 1–2 in Málaga, Spain as part of
TOOLS Federated Conferences.

TAP 2010 was the fourth event of an ongoing series of conferences devoted to
the convergence of proofs and tests. In the past, proving and testing were seen
as very different and even competing techniques. Proving people would say: If
correctness is proved, what do we need tests for? Testers, on the other hand,
would claim that proving is too limited in applicability and testing is the only
true path to correctness. Of course, both have a point, but to quote Ed Brinksma
from his 2009 keynote at the Dutch Testing Day and Testcom/FATES:

“Who would want to fly in an airplane with software proved correct,
but not tested?”

Indeed, the true power lies in the combination of both approaches. Today, mod-
ern test systems rely on techniques deeply rooted in formal proof techniques,
and testing techniques make it possible to apply proof techniques where there
was no possibility previously.

At a time when even mainstream software engineering conferences start fea-
turing papers with both “testing” and “proving” in their titles, we are clearly on
the verge of a new age where testing and proving are not competing but finally
accepted as complementary techniques. Albeit, we are not quite there yet, and
so the TAP conferences aim to provide a forum for researchers working on the
converging topics and to raise general awareness of this convergence.

In 2007 the first TAP conference was held at ETH Zürich with Bertrand
Meyer as Conference Chair and Yuri Gurevich as Program Chair. The idea of
this new conference was to provide a forum for the cross-fertilization of ideas
and approaches from the testing and proving communities. Following its success,
TAP 2008 was held at the Monash University Prato Centre near Florence, Italy,
and TAP 2009 was held in Zürich again. As in 2009, the 2010 edition was again
part of TOOLS Federated Conferences, a set of related conferences offering a
combined venue.

Our sincere thanks go to the authors who submitted their work for consider-
ation at this conference. We would like to thank the Conference Chairs Bertrand
Meyer and Yuri Gurevich for their work on this and previous TAP conferences. A
big thank you also to the Program Committee members and external reviewers,
whose work is essential in establishing a high-quality conference. Thanks also go
to the TOOLS Federated Conferences organizers and particularly Antonio Valle-
cillo, who took care of all the local arrangements and negotiations with Springer.
Finally, thanks also to Easychair, which makes the life of program chairs so much
easier.



VI Preface

For TAP 2010, we selected 10 full papers and 2 short papers, which are
included in this volume. In total 20 submissions were made, and each paper
was reviewed by at least three reviewers, followed by a lively discussion phase,
assuring that only papers of high quality were accepted. We are also very proud
that the conference featured keynotes by Mike Ernst (University of Washington)
and Nachi Naggappan (Microsoft Research); the abstracts of these talks are
included in this volume. In sum, this made up a terrific program, and we hope
that everyone will enjoy reading the proceedings.

April 2010 Gordon Fraser
Angelo Gargantini
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How Tests and Proofs Impede One Another:
The Need for Always-On

Static and Dynamic Feedback

Michael D. Ernst

Computer Science & Engineering
University of Washington

Seattle, WA 98195-2350, USA
mernst@cs.washington.edu

Abstract. When creating software, developers rely on feedback in the
form of both tests and proofs. The tests provide dynamic feedback from
executing the software. The proofs provide static, conservative feedback
from analyzing the source code. Testing is widely adopted in practice,
but type systems are the only variety of proof to achieve widespread
adoption.

Dynamic and static feedback provide complementary benefits, and
neither one dominates the other. Sometimes, sound global static check-
ing is most useful. At other times, running tests is most useful. Unfor-
tunately, current languages and IDEs impose too rigid a model of the
development process. As a result, the developer is not in control of the
development process. In situations where a small amount of appropriate
feedback could have yielded insight, the developer must choose between
either static or dynamic feedback, and warp his or her development style
to the limitations of the language. This situation is wrong: the developer
should always have access to immediate execution feedback, and should
always have access to sound static feedback.

For example, in a typical statically-typed language, a developer is pre-
vented from running the program if any type errors exist, even if they are
not germane to the particular test. In a dynamically-typed (or weakly-
typed) language, a developer is free to build insight by experimenting,
but never gets the assurance of a proof of type correctness.

We need a better approach. A programmer should be able to view and
execute a program through the lens of sound static typing. If the compiler
issues no type errors, that is a guarantee (a proof) of static type sound-
ness. A programmer should also be able to view and execute the same
program through the lens of dynamic typing with no statically-imposed
restrictions. The run-time system should suppress static type errors, un-
less they lead to user-visible failures, or the developer wishes to examine
them. Furthermore, the programmer should be able to switch between
these two views as often as desired, or to use them both simultaneously.

A typical use case is: a developer starts from an existing statically-
typed codebase (or start writing new code), uses both dynamic and static
feedback, and finally restores static type-correctness. Because the devel-
oper has types in mind and even uses the type system, large variations
from statically-typeable idioms are unlikely.

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M.D. Ernst

The ability to execute and run code at any moment is useful in
many circumstances, including software creation (e.g., prototyping) and
software evolution (e.g., representation or interface changes, library re-
placement, exploratory changes). Approaches such as prototyping in a
dynamic language then rewriting with types, or viewing one part of the
program as typed and another part as untyped, address only a subset of
these scenarios and impose a significant burden on the developer.

I will describe additional background, theory, and practical details. I
will also share experience with an implementation, Ductile, that supports
the goal of always-on static and dynamic feedback.



G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 3–5, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Myths in Software Engineering: From the Other Side 

Nachiappan Nagappan 

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA 
nachin@microsoft.com 

Abstract. An important component of Empirical Software Engineering (ESE) 
research involves the measurement, observation, analysis and understanding of 
software engineering in practice. Results analyzed without understanding the 
contexts in which they were obtained can lead to wrong and potentially harmful 
interpretation. There exist several myths in software engineering, most of which 
have been accepted for years as being conventional wisdom without having 
been questioned. In this talk we will deal briefly with a few popular myths  
in software engineering ranging from testing and static analysis to distributed 
development and highlight the importance of context and generalization. 

Keywords: Empirical Software Engineering, Code coverage, Failures, People, 
development teams, Software Inspection, Distributed development, Software 
assertions.  

1   Introduction 

The ISERN1 community (a group made up of different research labs, universities and 
industrial partners) states its purpose as, “software engineering is a relatively new and 
immature discipline. In order to mature, we need to adopt an experimental view of 
research allowing us to observe and experiment with technologies, understand their 
weaknesses and strengths, tailor technologies to the goals and characteristics of par-
ticular projects, and package them together with empirically gained experience to 
enhance their reuse potential in future projects”. 

In empirical software engineering it is important to contextualize the environment 
in which the results are obtained to generalize results across studies. In general practi-
tioners become more confident in a theory when similar findings emerge in different 
contexts [1]. Towards this end, empirical software engineering presents special em-
phasis on replication of experiments to learn and generalize results across different 
contexts, environments and domains. 

Empirical Software engineering also focuses on evaluating oft held opinions in 
software engineering as some of these opinions are purely opinions and are not 
backed up by scientific data. In this keynote, I would like to shed some light on inter-
esting case studies from industry that show some myths to be false, explain the impor-
tance of context and show the utility of building empirical bodies of knowledge. 

                                                           
1 http://isern.iese.de/network/ISERN/pub/isern.manifesto.html  



4 N. Nagappan 

2   Case Studies 

Some of the myths I plan to address in this talk with appropriate citations for further 
reading are:  
 
Code coverage: Does higher code coverage mean better quality. Can we stop testing 
when we reach 100% code coverage? Are there better measures to quantify test effi-
cacy? Should the goal be to maximize coverage? [2] 

 
Static analysis: Static analysis tools are easy to use and low cost to deploy in soft-
ware development teams. The downside being static analysis bug finding tools  
produce a lot of false positives. Are there better techniques for fault fix prioritization? 
When should we stop fixing static analysis bugs? What is the cost-benefit of utilizing 
static analysis defects? [3] 

 
Unit testing: Is it really beneficial to do unit testing? Is there empirical evidence to 
show that teams adopting unit testing product better quality products? [6] 

 
Test Driven Development: Test Driven Development (TDD) is a technique proposed 
as part of the Agile software development practices like Extreme Programming (XP). 
Does TDD produce better quality code? What is the cost-benefit trade-off of doing 
TDD? [7] 
 
Inspections: Inspections have been widely practiced in industry. An important fact 
associated with inspections is that they are only as good as the inspector involved in 
the process. How does the human element influence the result of inspections? [8] 

 
Assertions: Software assertions have often been discussed as an important best prac-
tice in software development. Has there been any empirical evidence of using asser-
tions in software development that improved the efficacy of the project? [9] 
 
Distributed development: We are increasingly observing large commercial projects 
being built by teams distributed across the world. We see professionals on either side 
of the spectrum who strongly argue for or against distributed software development. 
Does distributed software development affect quality? Do distributed teams work on 
simpler tasks and involve more communication overhead? [4] 

 
Minor contributors: Software development is a task that involves a variety of indi-
viduals working together. Do certain individuals have a higher likelihood of causing 
failures/problems in the system than others?  

 
Socio-technical networks: On a related note, software development is an activity that 
involves teams of developers coordinating with each other. In this regard there are 
multiple dependency structures which exist (due to the code dependencies/people 
dependencies etc). Does the intersection of these dependencies predict failures? [5] 

 
Organizational metrics: Conway’s law (organizations which design systems are 
constrained to produce designs which are copies of the communication structures of 
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these organizations [10] ) has been used often in software organizations to organize 
teams. How important is Conway’s law and what are its implications on software 
quality? [11] 
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QuickSpec:
Guessing Formal Specifications Using Testing

Koen Claessen1, Nicholas Smallbone1, and John Hughes2

1 Chalmers University of Technology
{koen,nicsma}@chalmers.se
2 Chalmers and Quviq AB

rjmh@chalmers.se

Abstract. We present QuickSpec, a tool that automatically generates
algebraic specifications for sets of pure functions. The tool is based on
testing, rather than static analysis or theorem proving. The main chal-
lenge QuickSpec faces is to keep the number of generated equations
to a minimum while maintaining completeness. We demonstrate how
QuickSpec can improve one’s understanding of a program module by
exploring the laws that are generated using two case studies: a heap
library for Haskell and a fixed-point arithmetic library for Erlang.

1 Introduction

Understanding code is hard. But it is vital to understand what code does in
order to determine its correctness.

One way to understand code better is to write down one’s expectations of
the code as formal specifications, which can be tested for compliance, by us-
ing a property-based testing tool. Our earlier work on the random testing tool
QuickCheck [2] follows this direction. However, coming up with formal specifi-
cations is difficult, especially for untrained programmers. Moreover, it is easy to
forget to specify certain properties.

In this paper, we aim to aid programmers with this problem. We propose an
automatic method that, given a list of function names and their object code,
uses testing to come up with a set of algebraic equations that seem to hold for
those functions. Such a list can be useful in several ways. Firstly, it can serve as a
basis for documentation of the code. Secondly, the programmer might gain new
insights by discovering new laws about the code. Thirdly, some laws that one
expects might be missing (or some laws might be more specific than expected),
which points to to a possible miss in the design or implementation of the code.

Since we use testing, our method is potentially unsound, meaning some equa-
tions in the list might not hold; the quality of the generated equations is only as
good as the quality of the used test data, and care has to be taken. Nonetheless,
we still think our method is useful. However, our method is still complete in a
precise sense; although there is a limit on the complexity of the expressions that
occur in the equations, any syntactically valid equation that actually holds for
the code can be derived from the set of equations that QuickSpec generates.

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 6–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Our method has been implemented for the functional languages Haskell and
Erlang in a tool called QuickSpec. At the moment, QuickSpec only works for
purely functional code, i.e. no side effects. (Adapting it to imperative and other
side-effecting code is ongoing work.)

Examples. Let us now show some examples of what QuickSpec can do, by
running it on different subsets of the Haskell standard list functions. When we
use QuickSpec, we have to specify the functions and variable names which
may appear in equations, together with their types. For example, if we generate
equations over the list operators

(++) :: [Elem] -> [Elem] -> [Elem] -- list append

(:) :: Elem -> [Elem] -> [Elem] -- list cons

[] :: [Elem] -- empty list

using variables x, y, z :: Elem and xs, ys, zs :: [Elem], then Quick-

Spec outputs the following list of equations:

xs++[] == xs

[]++xs == xs

(xs++ys)++zs == xs++(ys++zs)

(x:xs)++ys == x:(xs++ys)

We automatically discover the associativity and unit laws for append (which
require induction to prove). These equations happen to comprise a complete
characterization of the ++ operator. If we add the list reverse function to the
mix, we discover the additional familiar equations

reverse [] == []

reverse (reverse xs) == xs

reverse xs++reverse ys == reverse (ys++xs)

reverse (x:[]) == x:[]

Again, these laws completely characterize the reverse operator. Adding the
sort function from the standard List library, we compute the equations

sort [] == []

sort (reverse xs) == sort xs

sort (sort xs) == sort xs

sort (ys++xs) == sort (xs++ys)

sort (x:[]) == x:[]

The third equation tells us that sort is idempotent, while the second and fourth
strongly suggest (but do not imply) that the result of sort is independent of the
order of its input.

Higher-order functions can be dealt with as well. Adding the function map
together with a variable f :: Elem -> Elem, we obtain:

map f [] == []

map f (reverse xs) == reverse (map f xs)

map f xs++map f ys == map f (xs++ys)

f x:map f xs == map f (x:xs)

All of the above uses of QuickSpec only took a fraction of a second to run, and
the equations shown here is the verbatim output of the tool.
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Main related work. The existing work that is most similar to ours is [4]. They
describe a tool for discovering algebraic specifications from Java classes using
testing, using a similar overall approach as ours (there are however important
technical differences discussed in the related work section later in the paper).
However, the main difference between our work and theirs is that we gener-
ate equations between nested expressions consisting of functions and variables
whereas they generate equations between Java program fragments that are se-
quences of method calls. The main problem we faced when designing the al-
gorithms behind QuickSpec was taming the explosion of equations generated
by operators with structural properties, such as associativity and commutativ-
ity, equations that are not even expressible as equations between sequences of
method calls (results of previous calls cannot be used as arguments to later ones).

Contributions. We present a efficient method, based on testing, that automati-
cally computes algebraic equations that seem to hold for a list of specified pure
functions. Moreover, using two larger case studies, we show the usefulness of the
method, and present concrete techniques of how to use the method effective in
order to understand programs better.

2 How QuickSpec Works

The input taken by QuickSpec consists of three parts: (a) the compiled pro-
gram, (b) a list of functions and variables, together with their types, and (c) test
data generators for each of the types of which there exists at least one variable.
As indicated in the introduction, the quality of the test data determines the
quality of the generated equations. As such, it is important to provide good test
data generators, that fit the program at hand. In our property-based random
testing tool QuickCheck [2], we have a range of test data generators for standard
types, and a library of functions for building custom generators.

The method. The method used by QuickSpec follows four distinct steps: (1) We
first generate a (finite) set of terms, called the universe, that includes any term
that might occur on either side of an equation. (2) We use testing to partition
the universe into equivalence classes; any two terms in the same equivalence class
are considered equal after the testing phase. (3) We generate a list of equations
from the equivalence classes. (4) We use pruning to filter out equations that
follow from other equations by equational reasoning.

In the following, we discuss each of these steps in more detail, plus an opti-
mization that greatly increases the efficiency of the method.

The universe. First, we need to pin down what kind of equations QuickSpec

should generate. To keep things simple and predictable, we only generate one
finite set of terms, the universe, and any pair of terms from the universe can
form an equation.

How the universe is generated is really up to the user, all we require is that
the universe is subterm-closed. The most useful way of generating the universe
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is letting the user specify a term depth (usually 3 or 4), and then simply produce
all terms that are not too deep. The terms here consists of the function symbols
and variables from the specified API.

The size of the universe is typically 1000 to 50.000 terms, depending on the
application.

Equivalence classes. The next step is to gather information about the terms in
the universe. This is the only step in the algorithm that uses testing, and in
fact makes use of the program. Here, we need to determine which terms seem to
behave the same, and which terms seem to behave differently. In other words,
we are computing an equivalence relation over the terms.

Concretely, in order to compute this equivalence relation, we use a refinement
process. We represent the equivalence relation as a set of equivalence classes,
partitions of the universe. We start by assuming that all terms are equal, and
put all terms in the universe into one giant equivalence class. Then, we repeat the
following process: We use the test data generators to generate test data for each
of the variables occurring in the terms. We then refine each equivalence class
into possibly smaller ones, by evaluating all the terms in a class and grouping
together the ones that are still equal, splitting the terms that are different. The
process is repeated until the equivalence relation seems “stable”; if no split has
happened for the last 200 tests. Note that equivalence classes of size 1 are trivial,
and can be discarded; these contain a term that is only equal to itself.

The typical number of non-trivial equivalence classes we get after this process
lies between 500 and 5.000, again depending on the size of the original universe
and the application.

Once these equivalence classes are generated, the testing phase is over, and
the equivalence relation is trusted to be correct for the remainder of the method.

Equations. From the equivalence classes, we can generate a list of equations
between terms. We do this by picking one representative term r from the class,
and producing the equation t = r for all other terms from the class. So, an
equivalence class of size k produces k − 1 equations. The equations seem to
look nicest if r is the simplest element of the equivalence class (according to
some simplicity measure based on for example depth and/or size), but what r is
chosen has no effect on the completeness of the algorithm.

The typical number of equations that are generated in this step lies between
5000 and 50.000. A list of even 5.000 equations is however not something that
we want to present to the user; the number of equations should be in the tens,
not hundreds or thousands.

There is a great potential for improvement here. Among the equations gener-
ated for the boolean operator &&, the constant false, and the variables x and y
we might find for example:

1. x&&false == false 3. y&&false == false 5. false&&false == false

2. false&&x == false 4. false&&y == false 6. x&&y==y&&x

It is obvious that law 5 is an instance of laws 1-4, and that laws 3 and 4 are
just renamings of laws 1 and 2. Moreover, law 6 and 1 together imply all the
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other laws. So, the above laws could be replaced by just x&&false == false
and x&&y==y&&x. This is the objective of the pruning step.

Pruning. Pruning filters out unnecessary laws. Which laws are kept and which
are discarded by our current implementation of QuickSpec is basically an arbi-
trary choice. What we would like to argue is that it must be an arbitrary choice,
but that it should be governed by the following four principles.

(1) Completeness: we can only remove a law if it can be derived from the
remaining laws. We cannot force the method to remove all such laws, firstly
because there is no unique minimal set, and secondly because derivability is not
decidable. (2) Conciseness: we should however remove all obvious redundancy,
for a suitably chosen definition of redundant. (3) Implementability: the method
should be implementable and reasonably efficient. (4) Predictability: the user
should be able to draw conclusions from the absence or presence of a particular
law, which means that no ad-hoc decisions should be made in the algorithm.

That the choice of what is redundant or not is not obvious became clear to us
after long discussions between the authors of the paper on particular example
sets of equations. Also, what “derivable” means is not clear either: Do we allow
simple equational reasoning, something weaker (because of decidability issues),
or something stronger (by adding induction principles)?

Eventually, we settled on the following. First, all equations are ordered accord-
ing to a simplicity measure. The simplicity measure can again be specified by
the user; the default one we provide is based on term size. Then, we go through
the list of equations in order, removing any equation that is “derivable” from
the previous ones.

For “derivable”, we decided to define a decidable and predictable approxi-
mation of logical implication for equations. The approximation uses a congru-
ence closure data-structure, a generalization of a union/find data-structure that
maintains a congruence relation1 over a finite subterm-closed set of terms. Con-
gruence closure is one of the key ingredients in modern SMT-solvers, and we
simply reimplemented an efficient modern congruence closure algorithm [8].

Congruence closure enjoys the following property: suppose we have a set of
equations E, and for each equation s = t we record in the congruence closure
data-structure ≡ the fact s ≡ t. Then for any terms a and b, a ≡ b will be
true exactly if a = b can be proved from E using only the rules of reflexivity,
symmetry, transitivity and congruence of =.

This almost gives us a way of checking whether a = b follows from E. However,
we want to know whether a = b can be proved at all from E, not whether it
can be proved using some restricted set of rules. There’s one more rule we could
use in a proof, that’s not covered by congruence closure: any instance of a valid
equation is valid. To approximate this rule, for each equation s = t in E, we
should record not just s ≡ t but many instances σ(s) ≡ σ(t) (where σ is a
substitution).

1 A congruence relation is an equivalence relation that is also a congruence: if x ≡ y
then C[x] ≡ C[y] for all contexts C.
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In more detail, our algorithm is as follows:

1. We maintain a congruence relation ≡ over terms, which initially is the iden-
tity relation. The relation ≡ is going to represent all knowledge implied by
accepted equations so far, so that if s ≡ t then s = t is derivable from the
accepted equations.

2. We order all equations according to the equation ordering <, simplest equa-
tions first.

3. We loop through all equations, starting at the simplest. For each equation
s = t, we check if s ≡ t according to the maintained congruence relation ≡.
If so, the equation s = t is implied by previous equations, and we discard it.

4. If s �≡ t, we produce s = t as an equation. We then update the congruence
relation≡ to represent the fact that we have produced the equation s = t. We
do this by picking a finite set of instances of s = t. That is, we choose a finite
set Σ of substitutions; then, for each σ ∈ Σ, we add the fact σ(s) ≡ σ(t) to
the congruence closure data-structure ≡.

5. Once all equations have been taken care of, we are done.

We didn’t specify above which instances of each equation s = t to generate.
Our original choice was to generate all substitutions σ such that σ(s) and σ(t)
were in the universe. This allowed the algorithm to find any proof that only uses
terms from the universe.

Now, instead, we generate substitutions separately for s and t. In the case
of s, we generate all substitutions σ such that σ(s) is in the universe (where σ
ranges over the variables of s) and record σ(s) = σ(t), and similarly in the case
of t. This is a relaxation of our earlier choice.

By doing this, we allow the algorithm to reason also about terms t that lie
outside the universe, but only if that term t is equated by an equation to a term
s that lies inside the universe. This modification does not noticeably influence
performance, but allowing this was vital to prune away equations involving op-
erators with structural properties, such as commutativity and associativity. For
example, generating properties about the arithmetic operator +, only allowing
reasoning within the universe, we end up with:

1. x+y = y+x

2. y+(x+z) = (z+y)+x

3. (x+y)+(x+z) = (z+y)+(x+x)

The third equation can be derived from the first two, but we need to use a term
x+(y+(x+z)) that lies outside of the universe. Adding the modification we just
described to the algorithm, this last equation is also pruned away.

The depth optimisation. QuickSpec includes one optimisation to reduce the
number of terms generated. We will first motivate the optimisation and then
explain it in more detail.

Suppose we have run QuickSpec on an API of boolean operators with a
depth limit of 2, giving (among others) the law x&&x==x. But now, suppose
we want to increase the depth limit on terms from 2 to 3. Using the algorithm
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described above, we would first generate all terms of depth 3, including such ones
as x&&y and (x&&x)&&y. But these two terms are obviously equivalent (since we
know that x&&x==x), we won’t get any more laws by generating both of them,
and we ought to generate only x&&y and not (x&&x)&&y.

The observation we make is that, if two terms are equal (like x&&x and x
above), we ought to pick one of them as the “canonical form” of that expression;
we avoid generating any term that has a non-canonical form as a subterm. In this
example, we don’t generate (x&&x)&&y, because it has x&&x as a subterm. (We
do still generate x&&x on its own, otherwise we wouldn’t get the law x&&x==x.)

The depth optimisation applies this observation, and works quite straightfor-
wardly. If we want to generate all terms up to depth 3, say, we first generate all
terms up to depth 2 (recursively applying the same optimisation) and sort them
into equivalence classes by testing. Then we only generate those terms for which
all the direct subterms are the representative of their equivalence class.

We can justify why this optimisation is sound. If we choose not to generate
a term t with canonical form t’, and there would have been an equation t==u,
there will also be an equation t’==u.2 Furthermore, we will record in the con-
gruence closure data structure all of the equations necessary to prove t==t’ (all
of these terms in these equations have smaller depth than t) so our pruning
algorithm would have been able to prove t==u anyway.)

This optimisation makes a very noticeable difference to the number of terms
generated. For a large list signature, the number of terms goes down from 21266
to 7079. For booleans there is a much bigger difference, since so many terms are
equal: without the depth optimisation we generate 7395 terms, and with it 449
terms. Time-wise, the method becomes an order of a magnitude faster.

3 Case Studies

In this section, we present two case studies using QuickSpec. Our goal is pri-
marily to derive understanding of the code we test. In many cases, the specifica-
tions generated by QuickSpec are initially disappointing—but by extending the
signature with new operations we are able to arrive at concise and perspicuous
specifications. Arguably, selecting the right operations to specify is a key step in
formulating a good specification, and one way to see QuickSpec is as a tool to
support exploration of this design space.

3.1 Case Study #1: Leftist Heaps in Haskell

A leftist heap [9] is a data structure that implements a priority queue. A leftist
heap provides the usual heap operations:

empty :: Heap findMin :: Heap -> Elem

isEmpty :: Heap -> Bool deleteMin :: Heap -> Heap

insert :: Elem -> Heap -> Heap

2 This relies on t’ not having greater depth than t, which requires the term ordering
to always pick the representative of an equivalence class as a term with the smallest
depth.
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When we tested this signature with the variables h, h1, h2 :: Heap and
x, y, z :: Elem. then QuickSpec generated a rather incomplete specifica-
tion. The specification describes the behaviour of findMin and deleteMin on
empty and singleton heaps:3

findMin empty == undefined deleteMin empty == undefined

findMin (insert x empty) == x deleteMin (insert x empty) == empty,

It shows that the order of insertion into a heap is irrelevant:

insert y (insert x h) == insert x (insert y h),

Apart from that, it only contains the following equation:

isEmpty (insert x h1) == isEmpty (insert x h)

This last equation is quite revealing—obviously, we would expect both sides to be
False, which explains why they are equal. But why doesn’t QuickSpec simply
print the equation isEmpty (insert x h) == False? The reason is that False
is not in our signature! When we add it to the signature, then we do indeed obtain
the simpler form instead of the original equation above.4

In general, when a term is found to be equal to a renaming of itself with
different variables, then this is an indication that a constant should be added to
the signature, and in fact QuickSpec prints a suggestion to do so.

Generalising a bit, since isEmpty returns a Bool, it’s certainly sensible to
give QuickSpec operations that manipulate booleans. We added the remain-
ing boolean connectives True, &&, || and not, and one newly-expressible law
appeared, isEmpty empty == True.

Merge. Leftist heaps actually provide one more operation than those we en-
countered so far: merging two heaps.

merge :: Heap -> Heap -> Heap

If we run QuickSpec on the new signature, we get the fact that merge is com-
mutative and associative and has empty as a unit element:

merge h1 h == merge h h1

merge h1 (merge h h2) == merge h (merge h1 h2)

merge h empty == h

We get nice laws about merge’s relationship with the other operators:

merge h (insert x h1) == insert x (merge h h1)

isEmpty h && isEmpty h1 == isEmpty (merge h h1)

We also get some curious laws about merging a heap with itself:

findMin (merge h h) == findMin h

merge h (deleteMin h) == deleteMin (merge h h)

3
QuickSpec generates an exceptional value undefined at each type.

4 For completeness, we will list all of the new laws that QuickSpec produces every
time we change the signature.
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These are all the equations that are printed. Note that there are no redundant
laws here. As mentioned earlier, our testing method guarantees that this set of
laws is complete, in the sense that any valid equation over our signature, which
is not excluded by the depth limit, follows from these laws.

With Lists. We can get useful laws about heaps by relating them to a more
common data structure, lists. First, we need to extend the signature with oper-
ations that convert between heaps and lists:

fromList :: [Elem] -> Heap

toList :: Heap -> [Elem]

fromList turns a list into a heap by folding over it with the insert function;
toList does the reverse, deconstructing a heap using findMin and deleteMin.
We should also add a few list operations mentioned earlier: ++, tail, :, [], and
sort; and variables xs, ys, zs :: [Elem]. Now, QuickSpec discovers many
new laws. The most striking one is

toList (fromList xs) == sort xs.

This is the definition of heapsort! The other laws indicate that our definitions of
toList and fromList are sensible:

sort (toList h) == toList h

fromList (toList h) == h

fromList (sort xs) == fromList xs

fromList (ys++xs) == fromList (xs++ys)

The first law says that toList produces a sorted list, and the second that
fromList . toList is the identity (up to == on heaps, which actually applies
toList to each operand and compares them!). The other two laws suggest that
the order of fromList’s input doesn’t matter.

We get a definition by pattern-matching of fromList:

fromList [] == empty

insert x (fromList xs) == fromList (x:xs)

merge (fromList xs) (fromList ys) == fromList (xs++ys)

We also get a family of laws relating heap operations to list operations:

toList empty == []

head (toList h) == findMin h

toList (deleteMin h) == tail (toList h)

We can think of toList h as an abstract model of h—all we need to know about
a heap is the sorted list of elements, in order to predict the result of any operation
on that heap. The heap itself is just a clever representation of that sorted list of
elements.

The three laws above define empty, findMin and deleteMin by how they act
on the sorted list of elements—the model of the heap. For example, the third
law says that applying deleteMin to a heap corresponds to taking the tail in
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the abstract model (a sorted list). Since tail is obviously the correct way to
remove the minimum element from a sorted list, this equation says exactly that
deleteMin is correct!5

So these three equations are a complete specification of empty, findMin and
deleteMin!

This section highlights the importance of choosing a rich set of operators when
using QuickSpec. There are often useful laws about a library that mention
functions from unrelated libraries; the more such functions we include, the more
laws QuickSpec can find. In the end, we got a complete specification of heaps
(and heapsort, as a bonus!) by including list functions in our testing.

It’s not always obvious which functions to add to get better laws. In this case,
there are several reasons for choosing lists: they’re well-understood, there are
operators that convert heaps to and from lists, and sorted lists form a model of
priority queues.

Buggy Code. What happens when the code under test has a bug? To find out,
we introduced a fault into toList. The buggy version of toList doesn’t produce
a sorted list, but rather the elements of the heap in an arbitrary order.

We were hoping that some laws would fail, and that QuickSpec would pro-
duce specific instances of some of those laws instead. This happened: whereas
before, we had many useful laws about toList, afterwards, we had only two:

toList empty == []

toList (insert x empty) == x:[]

Two things stand out about this set of laws: first, the law
sort (toList h) == toList h does not appear, so we know that the
buggy toList doesn’t produce a sorted result. Second, we only get equations
about empty and singleton heaps, not about heaps of arbitrary size. QuickSpec

is unable to find any specification of toList on nontrivial heaps, which suggests
that the buggy toList has no simple specification.

3.2 Case Study #2: Understanding a Fixed Point Arithmetic
Library in Erlang

We used QuickSpec to try to understand a library for fixed point arithmetic,
developed by a South African company, which we were previously unfamiliar
with. The library exports 16 functions, which is rather overwhelming to analyze
in one go, so we decided to generate equations for a number of different subsets
of the API instead. In this section, we give a detailed account of our experiments
and developing understanding.

Before we could begin to use QuickSpec, we needed a QuickCheck generator
for fixed point data. We chose to use one of the library functions to ensure a valid
result, choosing one which seemed able to return arbitrary fixed point values:

fp() -> ?LET({N,D},{largeint(),nat()},from_minor_int(N,D)).
5 This style of specification is not new and goes back to Hoare [5].
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That is, we call from_minor_int with random arguments. We suspected that D
is the precision of the result—a suspicion that proved to be correct.

Addition and Subtraction. We began by testing the add operation, deriving
commutativity and associativity laws as expected. Expecting laws involving zero,
we defined

zero() -> from_int(0)

and added it to the signature, obtaining as our reward a unit law,
add(A,zero()) == A.

The next step was to add subtraction to the signature. However, this led to
several very similar laws being generated—for example,

add(B,add(A,C)) == add(A,add(B,C))

add(B,sub(A,C)) == add(A,sub(B,C))

sub(A,sub(B,C)) == add(A,sub(C,B))

sub(sub(A,B),C) == sub(A,add(B,C))

To relieve the problem, we added another derived operator to the signature
instead:

negate(A) -> sub(zero(),A).

and observed that the earlier family of similar laws was no longer generated,
replaced by a single one, add(A,negate(B)) == sub(A,B). Thus by adding a
new auxiliary function to the signature, negate, we were able to reduce the
complexity of the specification considerably.

After this new equation was generated by QuickSpec, we tested it extensively
using QuickCheck. Once confident that it held, we could safely replace sub in
our signature by add and negate, without losing any other equations. Once we
did this, we obtained a more useful set of new equations:

add(negate(A),add(A,A)) == A

add(negate(A),negate(B)) == negate(add(A,B))

negate(negate(A)) == A

negate(zero()) == zero()

These are all very plausible—what is striking is the absence of the following
equation:

add(A,negate(A)) == zero()

When an expected equation like this is missing, it is easy to formulate it as a
QuickCheck property and find a counterexample, in this case {fp,1,0,0}. We
discovered by experiment that negate({fp,1,0,0}) is actually the same value!
This strongly suggests that this is an alternative representation of zero (zero()
evaluates to {fp,0,0,0} instead).

0 �= 0. It is reasonable that a fixed point arithmetic library should have different
representations for zero of different precisions, but we had not anticipated this.
Moreover, since we want to derive equations involving zero, the question arises
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of which zero we would like our equations to contain! Taking our cue from the
missing equation, we introduced a new operator zero_like(A) -> sub(A,A)
and then derived not only add(A,negate(A)) == zero_like(A) but a variety of
other interesting laws. These two equations suggest that the result of zero_like
depends only on the number of decimals in its argument,

zero_like(from_int(I)) == zero()

zero_like(from_minor_int(J,M)) == zero_like(from_minor_int(I,M))

this equation suggests that the result has the same number of decimals as the
argument,

zero_like(zero_like(A)) == zero_like(A)

while these two suggest that the number of decimals is preserved by arithmetic.

zero_like(add(A,A)) == zero_like(A)

zero_like(negate(A)) == zero_like(A)

It is not in general true that add(A,zero_like(B)) == A which is not so
surprising—the precision of B affects the precision of the result. QuickSpec

does find the more restricted property, add(A,zero_like(A)) == A.

Multiplication and Division. When we added multiplication and division
operators to the signature, then we followed a similar path, and were led to
introduce reciprocal and one_like functions, for similar reasons to negate
and zero_like above. One interesting equation we discovered was this one:

divide(one_like(A),reciprocal(A)) == reciprocal(reciprocal(A))

The equation is clearly true, but why is the right hand side
reciprocal(reciprocal(A)), instead of just A? The reason is that the
left hand side raises an exception if A is zero, and so the right hand side must
do so also—which reciprocal(reciprocal(A)) does.

We obtain many equations that express things about the precision of results,
such as

multiply(B,zero_like(A)) == zero_like(multiply(A,B))

multiply(from_minor_int(I,N),from_minor_int(J,M)) ==

multiply(from_minor_int(I,M),from_minor_int(J,N))

where the former expresses the fact that the precision of the zero produced
depends both on A and B, and the latter expresses

i× 10−m × j × 10−n = i× 10−n × j × 10−m

That is, it is in a sense the commutativity of multiplication in disguise.
One equation we expected, but did not see, was the distributivity of multi-

plication over addition. Alerted by its absence, we formulated a corresponding
QuickCheck property,

prop_multiply_distributes_over_add() ->

?FORALL({A,B,C},{fp(),fp(),fp()},
multiply(A,add(B,C)) == add(multiply(A,B),multiply(A,C))).
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and used it to find a counterexample:

A = {fp,1,0,4}, B = {fp,1,0,2}, C = {fp,1,1,4}
We used the library’s format function to convert these to strings, and found
thus that A = 0.4, B = 0.2, C = 1.4. Working through the example, we found
that multiplying A and B returns a representation of 0.1, and so we were alerted
to the fact that multiply rounds its result to the precision of its arguments.

Understanding Precision. At this point, we decided that we needed to un-
derstand how the precision of results was determined, so we defined a func-
tion precision to extract the first component of an {fp,...} structure,
where we suspected the precision was stored. We introduced a max function
on naturals, guessing that it might be relevant, and (after observing the term
precision(zero()) in generated equations) the constant natural zero. Quick-

Spec then generated equations that tell us rather precisely how the precision is
determined, including the following:

max(precision(A),precision(B)) == precision(add(A,B))

precision(divide(zero(),A)) == precision(one_like(A))

precision(from_int(I)) == 0

precision(from_minor_int(I,M)) == M

precision(multiply(A,B)) == precision(add(A,B))

precision(reciprocal(A)) == precision(one_like(A))

The first equation tells us the addition uses the precision of whichever argument
has the most precision, and the fifth equation tells us that multiplication does
the same. The second and third equations confirm that we have understood the
representation of precision correctly. The second and sixth equations reveal that
our definition of one_like(A) raises an exception when A is zero—this is why
we do not see precision(one_like(A)) == precision(A).

The second equation is more specific than we might expect, and in fact it is
true that

precision(divide(A,B)) == max(precision(A),precision(one_like(B)))

but the right hand side exceeds our depth limit, so QuickSpec cannot dis-
cover it.

Adjusting Precision. The library contained an operation whose meaning we
could not really guess from its name, adjust. Adding adjust to the signature
generated a set of equations including the following:

adjust(A,precision(A)) == A

precision(adjust(A,M)) == M

zero_like(adjust(A,M)) == adjust(zero(),M)

adjust(zero_like(A),M) == adjust(zero(),M)

These equations make it fairly clear that adjust sets the precision of its argu-
ment. We also generated an equation relating double to single adjustment:

adjust(adjust(A,M),0) == adjust(A,0)
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Summing Up. Overall, we found QuickSpec to be a very useful aid in de-
veloping an understanding of the fixed point library. Of course, we could simply
have formulated the expected equations as QuickCheck properties, and tested
them without the aid of QuickSpec. However, this would have taken very much
longer, and because the work is fairly tedious, there is a risk that we might have
forgotten to include some important properties. QuickSpec automates the te-
dious part, and allowed us to spot missing equations quickly.

Of course, QuickSpec also generates unexpected equations, and these would
be much harder to find using QuickCheck. In particular, when investigating
functions such as adjust, where we initially had little idea of what they were
intended to do, then it would have been very difficult to formulate candidate
QuickCheck properties in advance.

We occasionally encountered false equations resulting from the unsoundness
of the method. In some cases these showed us that we needed to improve the
distribution of our test data, in others (such as the difference between rounding
in two stages and one stage) then the counterexamples are simply hard to find.
QuickSpec runs relatively few tests of each equation (a few hundred), and so,
once the most interesting equations have been selected, then it is valuable to
QuickCheck them many more times.

4 Related Work

As mentioned earlier, the existing work that is most similar to ours is [4]; a tool
for discovering algebraic specifications from Java classes. They generate terms
and evaluate them, dynamically identify terms which are equal, then generate
equations and filter away redundant ones. There are differences in the kind of
equations that can be generated, which have been discussed earlier. The most
important difference with our method is the fact that they initially generate
only ground terms when searching for equations, then later generalise the ground
equations by introducing variables, and test the equations using the ground terms
as test data. To get good test data, then, they need to generate a large set of terms
to work with, which heavily effects the efficiency of the subsequent generalization
and pruning phases. In contrast, in our system, the number of terms does not
affect the quality of the test data. So we get away with generating fewer terms—
the cost of generating varying test data is only paid during testing, i.e. during
the generation of the equivalence relation, and not in the term generation or
pruning phase. Furthermore, we don’t need a generalisation phase because our
terms contain variables from the start.

There are other differences as well. They use a heuristic term-rewriting method
for pruning equations; we use a predictable congruence closure algorithm. They
observe—as we do—that conditional equations would be useful, but neither tool
generates them. Our tool appears to be faster (our examples take seconds to
run, while comparable examples in their setting take hours). It is unfortunately
rather difficult to make a fair comparison between the efficacy and performance
of the two approaches, because their tool and examples are not available for
download.
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Daikon is a tool for inferring likely invariants in C, C++, Java or Perl pro-
grams [3]. Daikon observes program variables at selected program points during
testing, and applies machine learning techniques to discover relationships be-
tween them. For example, Daikon can discover linear relationships between in-
teger variables, such as array indices. Agitar’s commercial tool based on Daikon
generates test cases for the code under analysis automatically [1]. However,
Daikon will not discover, for example, that reverse(reverse(Xs)) == Xs, un-
less such a double application of reverse appears in the program under analy-
sis. Whereas Daikon discovers invariants that hold at existing program points,
QuickSpec discovers equations between arbitrary terms constructed using an
API. This is analogous to the difference between assertions placed in program
code, and the kind of properties which QuickCheck tests, that also invoke the
API under test in interesting ways. While Daikon’s approach is ideal for impera-
tive code, especially code which loops over arrays, QuickSpec is perhaps more
appropriate for analysing pure functions.

Inductive logic programming (ILP) [7] aims to infer logic programs from
examples—specific instances—of their behaviour. The user provides both a col-
lection of true statements and a collection of false statements, and the ILP tool
finds a program consistent with those statements. Our approach only uses false
statements as input (inequality is established by testing), and is optimized for
deriving equalities.

In the area of Automated Theorem Discovery (ATD), the aim is to emulate
the human theorem discovery process. The idea can be applied to many different
fields, such as mathematics, physics, but also formal verification. An example of
an ATD system for mathematicians is MathSaid [6]. The system starts by gener-
ating a finite set of hypotheses, according to some syntactical rules that capture
typical mathematical thinking, for example: if we know A ⇒ B, we should also
check if B ⇒ A, and if not, under what conditions this holds. Theorem prov-
ing techniques are used to select theorems and patch non-theorems. Since this
leads to many theorems, a filtering phase decides if theorems are interesting or
not, according to a number of different predefined “tests”. One such test is the
simplicity test, which compares theorems for simplicity based on their proofs,
and only keeps the simplest theorems. The aim of their filtering is quite different
from ours (they want to filter out theorems that mathematicians would have
considered trivial), but the motivation is the same; there are too many theorems
to consider.

5 Conclusions and Future Work

We have presented a new tool, QuickSpec, which can automatically generate
algebraic specifications for functional programs. Although simple, it is remark-
ably powerful. It can be used to aid program understanding, or to generate a
QuickCheck test suite to detect changes in specification as the code under test
evolves. We are hopeful that it will enable more users to overcome the barrier
that formulating properties can present, and discover the benefits of QuickCheck-
style specification and testing.
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For future work, we plan to generate conditional equations. In some sense,
these can be encoded in what we already have by specifying new custom types
with appropriate operators. For example, if we want x<=y to occur as a precon-
dition, we might introduce a type AscPair of “pairs with ascending elements”,
and add the functions smaller,larger :: AscPair -> Int and the variable
p :: AscPair to the API. A conditional equation we could then generate is:

isSorted (smaller p : larger p : xs) == isSorted (larger p : xs)

(Instead of the perhaps more readable x<=y ==> isSorted (x:y:xs) ==
isSorted (y:xs).) But we are still investigating the limitations and applica-
bility of this approach.

Another class of equations we are looking at are equations between program
fragments that can have side effects.
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Abstract. Program verification systems based on automated theorem
provers rely on user-provided axioms in order to verify domain-specific
properties of code. However, formulating axioms correctly (that is,
formalizing properties of an intended mathematical interpretation) is
non-trivial in practice, and avoiding or even detecting unsoundness can
sometimes be difficult to achieve. Moreover, speculating soundness of ax-
ioms based on the output of the provers themselves is not easy since they
do not typically give counterexamples. We adopt the idea of model-based
testing to aid axiom authors in discovering errors in axiomatizations. To
test the validity of axioms, users define a computational model of the
axiomatized logic by giving interpretations to the function symbols and
constants in a simple declarative programming language. We have de-
veloped an axiom testing framework that helps automate model defini-
tion and test generation using off-the-shelf tools for meta-programming,
property-based random testing, and constraint solving. We have experi-
mented with our tool to test the axioms used in AutoCert, a program
verification system that has been applied to verify aerospace flight code
using a first-order axiomatization of navigational concepts, and were able
to find counterexamples for a number of axioms.

Keywords: model-based testing, program verification, automated the-
orem proving, property-based testing, constraint solving.

1 Introduction

1.1 Background

Program verification systems based on automated theorem provers rely on user-
provided axioms in order to verify domain-specific properties of code. AutoCert

[1] is a source code verification tool for autogenerated code in safety critical do-
mains, such as flight code generated from Simulink models in the guidance, nav-
igation, and control (GN&C) domain using MathWorks’ Real-Time Workshop
� MCT/NASA Ames internship program.
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Fig. 1. AutoCert narrows down the trusted base by verifying the generated code

code generator. AutoCert supports certification by formally verifying that the
generated code complies with a range of mathematically specified requirements
and is free of certain safety violations. AutoCert uses Automated Theorem
Provers (ATPs) [2] based on First-Order Logic (FOL) to formally verify safety
and functional correctness properties of autogenerated code, as illustrated in
Figure 1.

AutoCert works by inferring logical annotations on the source code, and
then using a verification condition generator (VCG) to check these annotations.
This results in a set of first-order verification conditions (VCs) that are then sent
to a suite of ATPs. These ATPs try to build proofs based on the user-provided
axioms, which can themselves be arbitrary First-Order Formulas (FOFs).

If all the VCs are successfully proven, then it is guaranteed that the code
complies with the properties1 – with one important proviso: we need to trust
the verification system, itself. The trusted base is the collection of components
which must be correct for us to conclude that the code itself really is correct.
Indeed, one of the main motivations for applying a verification tool like Auto-

Cert to autocode is to remove the code generator—a large, complex, black
box—from the trusted base.

The annotation inference system is not part of the trusted base, since anno-
tations merely serve as hints (albeit necessary ones) in the verification process—
they are ultimately checked via their translation into VCs by the VCG. The
logic that is encoded in the VCG does need to be trusted but this is a relatively
small and stable part of the system. The ATPs do not need to be trusted since
the proofs they generate can (at least, in principle) be sent to a proof checker
[3]. In fact, it is the domain theory, defined as a set of logical axioms, that is
the most crucial part of the trusted base. Moreover, in our experience, it is the
most common source of bugs.

However, formulating axioms correctly (i.e., precisely as the domain expert
really intends) is non-trivial in practice. By correct we mean that the axioms

1 The converse is not always true, however: provers can time out or the domain theory
might be incomplete.
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formulate properties of an intended mathematical interpretation. The challenges
of axiomatization arise from several dimensions. First, the domain knowledge
has its own complexity. AutoCert has been used to verify mathematical re-
quirements on navigation software that carries out various geometric coordinate
transformations involving matrices and quaternions. Axiomatic theories for such
constructs are complex enough that mistakes are not uncommon. Second, the
axioms frequently need to be modified in order to formulate them in a form
suitable for use with ATPs. Such modifications tend to obscure the axioms fur-
ther. Third, it is easy to accidentally introduce unsound axioms due to implicit,
but often incompatible interpretations of the axioms. Fourth, speculating on the
validity of axioms from the output of existing ATPs is difficult since theorem
provers typically do not give any examples or counterexamples (and some, for
that matter, do not even give proofs).

1.2 Overview

We adopt the idea of model-based testing to aid axiom authors and domain ex-
perts in discovering errors in axiomatization. To test the validity of axioms, users
define a computational model of the axiomatized logic by giving interpretations
to each of the function symbols and constants as computable functions and data
constants in a simple declarative programming language. Then, users can test
axioms against the computational model with widely used software testing tools.
The advantage of this approach is that the users have a concrete intuitive model
with which to test validity of the axioms, and can observe counterexamples when
the model does not satisfy the axioms.

In §2 we develop a sequence of simple axioms for rotation matrices, and use
these to motivate this work by showing some of the pitfalls in developing axioms.
Then §3 shows some examples of axioms used by AutoCert and the issues
that arise in testing them. §4 describes the implementation and evaluation of
our testing framework. We conclude with a discussion of related work (§5) and
thoughts for future work (§6).

2 Axioms for Program Verification

In vehicle navigation software, frames of reference are used to represent differ-
ent coordinate systems within which the position and orientation of objects are
measured. Navigation software frequently needs to translate between different
frames of reference, such as between vehicle-based and earth-based frames when
communicating between mission control and a spacecraft. A transformation be-
tween two different frames can be represented by a so-called direction cosine
matrix (DCM) [4,5]. Verifying navigation software therefore requires us to check
that the code is correctly carrying out these transformations, that is, correctly
represents these matrices, quaternions, and the associated transformations. As
we will show, however, axiomatizing these definitions and their properties is
error-prone.

In the following subsections we will use a simplified running example of a
two-dimensional rotation matrix (rather than a 3D transformation matrix).
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2.1 Axiomatizing a Two-Dimensional Rotation Matrix

The two dimensional rotation matrix for an angle T is given by
(

cos(T ) sin(T )
− sin(T ) cos(T )

)
.

Matrices in control code are usually implemented using arrays, and the most
obvious way to axiomatize these arrays in FOL is extensionally, i.e.,

select(A, 0) = cos(T ) ∧ select(A, 1) = sin(T ) ∧ · · ·
but this is unlikely to prove useful in practice. Consider the C implementa-
tion init in Table 1, which is intended to initialize a two dimensional rotation
matrix. A VCG will apply the usual array update rules to derive that the out-
put X should be replaced by update(update(update(update(a, 0, cos(t) ),
1, sin(t)) , 2, uminus(sin(t))), 3, cos(t)). Unfortunately, provers are
generally unable to relate this update term to the extensional definition so, in-
stead, we use the following axiom, written in TPTP first-order formula (FOF)
syntax, which defines an array representation of the two-dimensional rotation
matrix as a binary relation rot2D between an array A and angle T.

fof(rotation2D_def, axiom, ![A,T]:( (lo(A)=0 & hi(A)=3)

=> rot2D(update(update(update(update(A

, 0, cos(T) ), 1,sin(T))

, 2,uminus(sin(T))), 3,cos(T)), T) ) ).

The function init can be specified with precondition (lo(a)=0&hi(a)=3)and
postcondition rot2D(X,t), where X is the function output. In practice, we also
have conditions on the physical types of variables (e.g., that T is an angle), but
omit this here. Using this specification for init gives the verification condition
vc in Table 1. We can prove vc from the axiom rotation2D_def alone using two
provers from SystemOnTPTP [2], as shown in the first row of Table 2. We chose
EP 1.1 and Equinox 4.1 here because these two provers use different strategies.
In general, it is necessary to use a combination of provers in order to prove all
the VCs arising in practice.

2.2 Adding More Axioms

Initialization routines often perform additional operations that do not affect the
initialization task. For example, init1 and init2 in Table 1 assign some other
values to the array elements before initializing them to the values of the rotation
matrix elements. Although there are some extra operations, both init1 and
init2 are, in fact, valid definitions of rotation matrices since they both finally
overwrite the array elements to the same values as in init. However, we cannot
prove the verification conditions generated from these functions from the axiom
rotation2D_def alone (Table 2), because the theorem provers do not know that
two consecutive updates on the same index are the same as one latter update.

We can formalize this as the following axiom:

fof(update_last, axiom,

![A,I,X,Y] : update(update(A,I,X),I,Y) = update(A,I,Y) ).
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Table 1. 2D rotation matrix code and corresponding verification conditions

C code Verification Condition

void init(float a[], float t)

{

a[0]= cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vc, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(update(

update(update(a

,0, cos(t) ),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

void init1(float a[], float t)

{

a[0]= sin(t);

a[0]= cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vc1, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(

update(update(

update(update(a

,0, sin(t) )

,0, cos(t) ),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

void init2(float a[], float t)

{

a[0]= sin(t); a[1]= sin(t);

a[2]= sin(t); a[3]= sin(t);

a[0]= cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vc2, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(update(

update(update(

update(update(

update(update(a

,0, sin(t) ),1,sin(t))

,2, sin(t) ),3,sin(t))

,0, cos(t) ),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

void initX(float a[], float t)

{

a[0]=-cos(t); a[1]= sin(t);

a[2]=-sin(t); a[3]= cos(t);

}

fof(vcX, conjecture, ((lo(a)=0 & hi(a)=3)

=> rot2D(update(update(

update(update(a

,0,uminus(cos(t))),1,sin(t))

,2,uminus(sin(t))),3,cos(t))

,t))).

Table 2. Results of running EP and Equinox through the SystemOnTPTP website
with default settings and a timeout of 60 seconds

VC axioms EP (eprover) 1.1 Equinox 4.1
vc rotation2D_def Theorem Theorem

vc1
rotation2D_def CounterSatisfiable Timeout
rotation2D_def, update_last Theorem Theorem

vc2
rotation2D_def, update_last CounterSatisfiable Timeout
rotation2D_def, update_last, update_commute Theorem Timeout

vcX

rotation2D_def CounterSatisfiable Timeout
rotation2D_def, update_last CounterSatisfiable Timeout
rotation2D_def, update_last, update_commute Theorem Theorem
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Then, both EP and Equinox can prove vc1 as a theorem from the two axioms
rotation2D_def and update_last, as shown in Table 2.

The verification condition vc2 generated from init2 is not provable even with
the update_last axiom added. This is because init2 has more auxiliary array
updates before matrix initialization, and update_last axiom is not applicable
since none of the consecutive updates are on the same index. To prove that
init2 is indeed a valid initialization routine we need the property that two
consecutive independent updates can switch their order. The following axiom
tries to formalize this property.

fof(update_commute, axiom,

![A,I,J,X,Y] : update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X) ).

With this axiom added, EP can prove vc2 from the three axioms rotation2D_def,
update_last, and update_commute, but strangely, Equinox times out. It is true
that some theorem provers can quickly find proofs while others are lost, depending
on the conjecture. Nevertheless, considering the simplicity of the formulae, the
timeout of Equinox seems quite strange and might indicate a problem.

2.3 Detecting Unsoundness and Debugging Axioms

It is important to bear in mind when adding new axioms that we are always
at risk of introducing unsoundness. One way to detect unsoundness is to try
proving obviously invalid conjectures.2 For example, the verification condition
vcX for the incorrect initialization routine initX is invalid. The function initX
is an incorrect implementation of the rotation matrix (§2.1) because -cos(t) is
assigned to the element at index 0 instead of cos(t), and hence does not satisfy
rot2D. However, both EP and Equinox can prove vcX. The problem is that we
have not thoroughly formalized the property that independent updates commute
in the axiom update_commute (see §3.2).

Note that the theorem provers have not guided us to the suspicious axiom as
the source of unsoundness. We decided to examine the axioms based on our own
experience and insights, not just because Equinox timed out. Theorem provers
may also time out while trying to prove valid conjectures from sound axioms.
We should not expect that the most recently added axiom is always the cause
of unsoundness. Coming up with an invalid conjecture that can be proven, and
thus shows that the axioms are unsound, is usually an iterative process. We used
our own intuition to find the cause of the problem, again with no help from the
provers. Finally, note that the axiom rotation2D_def is already quite different
from the natural definition of the matrix given above.

In this section, we have shown that it can be difficult to debug unsoundness
of the axioms used in program verification systems even for three simple axioms.
In practice, we need to deal with far larger sets of axioms combining multiple
theories. In the following section, we will show how our method of testing axioms

2 It is not enough to just try and prove false since different provers exploit inconsistency
in different ways. Moreover, a logic can be consistent yet still be unsound with respect
to a model.
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against a computational model helps us to detect problems in axioms more easily
and systematically.

3 Testing Axioms

When we have a computational model, we can run tests on logical formulae
against that model. Since axioms are nothing more than basic sets of formulae
that ought to be true, we can also test axioms against such a model in principle.
Before going into the examples, let us briefly describe the principles of testing
axioms. More technical details will be given in §4.

Given an interpretation for function symbols and constants (i.e., model) of the
logic, we can evaluate truth values of the formulae without quantifiers. For ex-
ample, plus(zero,zero)=zero is true and plus(one,zero)=zero is false based
on the interpretation of one as integer 1, zero as integer 0, and plus as the
integer addition function.

We can interpret formulae with quantified variables as functions from the
values of the quantified variables to truth values. For example, we can interpret
![X,Y]: plus(X,Y)=plus(Y,X) as a function λ(x, y). x+ y = y +x which takes
two integer pairs as input and tests whether x+y is equal to y+x. This function
will evaluate to true for any given test input (x, y). When there exist test inputs
under which the interpretation evaluates to false, then the original formula is
invalid. For example, ![X,Y]: plus(X,Y)=X is invalid since its interpretation
λ(x, y). x + y = x evaluates to false when applied to the test input (1, 1).

Formulae with implication need additional care when choosing input values
for testing. To avoid vacuous satisfactions of the formula we must chose inputs
that satisfy the premise. In general, finding inputs satisfying the premise of a
given formula requires solving equations, and for this we use a combination of the
SMT solver Yices [6] and custom data generators (so-called “smart generators”).

In the following subsections, we will give a high-level view of how we test the
axioms with the example axioms from §2 and also some from AutoCert.

3.1 Testing Axioms for Numerical Arithmetic

Numeric values are one of the basic types in programming languages like C.
Although the axioms on numerical arithmetic tend to be simple and small com-
pared to other axioms (e.g., axioms on array operations) used in AutoCert, we
were still able to identify some unexpected problems by testing. Those problems
were commonly due to the untyped first-order logic terms being unintentionally
interpreted as overloaded types. Even though the author of the axiom intended
to write an axiom on one specific numeric type, say integers, that axiom could
possibly apply to another numeric type, say reals.

For example, the following axiom formalizes the idea that the index of an array
representing an 3-by-3 matrix uniquely determines the row and the column:
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fof(uniq_rep_3by3, axiom,
! [X1, Y1, X2, Y2]: (

( plus(X1,times(3,Y1)) = plus(times(3,Y2),X2)
& leq(0,X1) & leq(X1,2) & leq(0,Y1) & leq(Y1,2)
& leq(0,X2) & leq(X2,2) & leq(0,Y2) & leq(Y2,2) )

=> (X1=X2 & Y1=Y2) ) ).

To test the axiom it is first translated into the following function (where we limit
ourselves to primitives in the Haskell prelude library):

λ(x1, y1, x2, y2) . ¬(x1 + 3y1 = 3y2 + x2 ∧ 0 ≤ x1 ≤ 2 ∧ 0 ≤ y1 ≤ 2
∧ 0 ≤ x2 ≤ 2 ∧ 0 ≤ y2 ≤ 2)

∨ (x1 = x2 ∧ y1 = y2)

Assuming that this function is defined over integers (i.e., x1, y1, x2, y2 have
integer type), we can generate test inputs of integer quadruples that satisfy the
constraint of the premise (x1 +3y1 = 3y2 +x2 ∧ 0 ≤ x1 ≤ 2 ∧ 0 ≤ y1 ≤ 2 ∧ 0 ≤
x2 ≤ 2 ∧ 0 ≤ y2 ≤ 2). Since the constraint is linear, Yices can generate such
test inputs automatically, and all tests succeed.

However, nothing in the axiom says that the indices must be interpreted as
integers, and the axiom can just as well be interpreted using floating points, and
with plus and times interpreted as the overloaded operators + and ∗ in C. If we
test with this interpretation we find counterexamples such as (x1, y1, x2, y2) =
(1
2 , 1

2 , 2, 0). The existence of such an unintended interpretation can lead to un-
soundness.

3.2 Testing Axioms for Arrays

Array bounds errors can cause problems in axioms as well as in programming.
For example, recall the axiom update_last introduced in §2.
fof(update_last, axiom,

![A,I,X,Y] : update(update(A,I,X),I,Y) = update(A,I,Y) ).

When we give the natural interpretation to update, the test routine will abort
after a few rounds of test inputs because the index variable I will go out of
range.

Rather than complicate the model by interpreting the result of update to
include a special value for out-of-bounds errors, we modify the axiom to constrain
the range of the array index variable:

fof(update_last_in_range, axiom,

![A,I,X,Y]:( (leq(lo(A),I) & leq(I,hi(A)))

=> update(update(A,I,X),I,Y) = update(A,I,Y) ) ).

Now, all tests on update_last_in_range succeed since we only generate test
inputs satisfying the premise (leq(lo(A),I) & leq(I,hi(A))).

Similarly, we can also modify the axiom update_commute as follows.
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fof(symm_joseph, axiom,

! [I0, J0, I, J, A, B, C, D, E, F, N, M] : (

( leq(0,I0) & leq(I0,N) & leq(0,J0) & leq(J0,N)

& leq(0, I) & leq(I, M) & leq(0, J) & leq(J, M)

& select2D(D, I, J) = select2D(D, J, I)

& select2D(A,I0,J0) = select2D(A,J0,I0)

& select2D(F,I0,J0) = select2D(F,J0,I0) )

=>

select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),

trans(B)))), I0, J0)

= select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),

trans(B)))), J0, I0) ) ).

fof(symm_joseph_fix, axiom,

! [A, B, C, D, E, F, N, M] : (

( ( ! [I, J] : ( (leq(0,I) & leq(I,M) & leq(0,J) & leq(J,M))

=> select2D(D,I,J) = select2D(D,J,I) ) )

& ( ! [I, J] : ( (leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(A,I,J) = select2D(A,J,I) ) )

& ( ! [I, J] : ( (leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(F,I,J) = select2D(F,J,I) ) ) )

=>

( ! [I, J] : ( (leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E))) ),

trans(B)))), I, J)

= select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E))) ),

trans(B)))), J, I)

) ) ) ).

Fig. 2. An erroneous axiom on symmetric matrices and the fixed version

fof(update_commute_in_range, axiom,

![A,I,J,X,Y]:( (leq(lo(A),I) & leq(I,hi(A)) & leq(lo(A),J) & leq(J,hi(A)))

=> update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X) ) ).

Then, we can run the tests on the above axiom without array bounds error,
and in fact discover counterexamples where I and J are the same but X and Y
are different. We can correct this axiom to be valid as follows by adding the
additional constraint that I and J are different (i.e., either I is less than J or
vice versa).

fof(update_commute_in_range_fixed, axiom,

![A,I,J,X,Y]:( (leq(lo(A),I) & leq(I,hi(A)) & leq(lo(A),J) & leq(J,hi(A))

& (lt(I,J) | lt(J,I)) )

=> update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X) ) ).
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The test for this new axiom succeeds for all test inputs.
As for the axiom rotation2D_def, itself, we observed above that it is quite

different from the “natural” definition of the matrix. Thus, we test the axiom
against the interpretation rot2D in Figure 4 with 100 randomly generated arrays
of size 4 and find that it does indeed pass all tests.

Finally, the axiom symm_joseph in Figure 2 is intended to state that
A + B(CDCT + EFET)BT is a symmetric matrix when A and F are N×N sym-
metric matrices and D is an M×M symmetric matrix. This matrix expression,
which is required to be symmetric, arises in the implementation of the Joseph
update in Kalman filters. However, when we test this axiom for N = M = 3 and
assuming B, C, and E are all 3×3 matrices, we get counterexamples such as

(I0, J0, I, J, A, B, C, D, E, F, N, M) =

⎛
⎝1, 0, 0, 0,

⎛
⎝ 9.39 4.0 −3.53

4.0 0.640 −0.988
−2.29 −23.8 −1.467

⎞
⎠ , ...

⎞
⎠ .

We can immediately see that something is wrong since A is not symmetric.
The problem is that the scope of the quantifiers is incorrect and therefore
does not correctly specify that the matrices are symmetric. This is fixed in
symm_joseph_fix using another level of variable bindings for I and J, and the
test succeeds for all test inputs under the same assumption that N = M = 3
and B, C, and E are all 3×3 matrices. However, symm_joseph_fix still shares
the same index range problem as update_last and update_commute. Moreover,
nothing in the axiom prevents N and M being negative, and the dimensions for
matrices B, C, and E are not explicitly constrained to make the matrix operations
mmul and madd well defined.

4 Implementation

We have implemented a tool using Template Haskell [7], QuickCheck [8], and
Yices [6], as illustrated in Figure 3. An axiom in TPTP syntax is parsed and
automatically translated into a lambda term using Template Haskell. Using a
metaprogramming language like Template Haskell has the advantage that we in-
herit the underlying type system for the interpreted terms. We generate a Haskell
function rather than implement an evaluator for the logic. During the translation
we transform the logical formula into a “PNF (prenex normal form) like” form
moving universally quantified variables to the top level as much as possible.3

For example, ![X]:(X=0 => (![Y]:(Y=X => Y=0))) is translated into the logi-
cally equivalent ![X,Y]:(X=0 => (Y=X=>Y=0)). We need to lift all the variables
to the top level universal quantification to interpret the axioms as executable
functions.

Given a user-provided interpretation for the constants, the lambda term be-
comes an executable function which can then be used as a property in QuickCheck,

3 The difference from PNF is that we avoid introducing existential quantification where
possible.
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Fig. 3. Testing Framework

pred2hsInterpTable = [ ("rot2D",[|rot2D|]), ("lt",[|lt|]), ("leq",[|leq|]) ]

term2hsInterpTable =

[ ("lo",[|lo|]), ("hi",[|hi|]), ("update",[|update|])

, ("uminus",[|uminus|]), ("cos",[|cos|]), ("sin",[|sin|])

, ("0",[|0|]), ("1",[|1|]), ("2",[|2|]), ("3",[|3|]) ]

rot2D :: (Array Integer Double, Double) -> Bool

rot2D(a,t) = (a!0) === cos t && (a!1) === sin t

&& (a!2) === (- sin t) && (a!3) === cos t

lo a = fst( bounds a )

hi a = snd( bounds a )

uminus :: Double -> Double

uminus x = -x

update :: (Array Integer Double, Integer, Double) -> Array Integer Double

update(arr,i,c) = arr // [(i,c)]

leq(x,y) = x <= y

let(x,y) = x < y

Fig. 4. Interpretation for the 2D rotation matrix axiomatization
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a property-based testing framework for Haskell. The user-provided interpreta-
tion should be concise and easy to inspect so that it can serve as a reference
model, suitable for inspection by domain experts. We believe that a declarative
language like Haskell is suitable because of its conciseness. For example, part of
the interpretation for testing the two-dimensional rotation matrix axioms dis-
cussed in §2 and §3 is shown in Figure 4. The tables pred2hsInterpTable and
term2hsInterpTable interpret each predicate and term symbol as Haskell val-
ues. Here, ("cos",[|cos|]) relates the parsed TPTP symbol "cos" with the
Haskell library function cos wrapped with a Template Haskell bracket. This al-
lows a piece of syntax to be passed around as a meta-programming object and
executed later (i.e., when we invoke QuickCheck) without conflicting with the
Haskell type system.

The next step is to use a combination of QuickCheck library random genera-
tors and Yices to automatically synthesize test generators that generate inputs
satisfying the premises of the axiom formula, thus avoiding vacuous tests. In the
case where Yices cannot solve the constraints, we use our own smart generators
with the help of combinator libraries in QuickCheck.

We sometimes need to patch or fill in unconstrained values that are missing
from the results of Yices. For example, among the four variables in the axiom
update_last_in_range, X and Y are unconstrained since they do not appear
in the premise, so we randomly generate X and Y independently from Yices.
Sometimes, there can be unconstrained variables even if they do appear in the
premise because the constraints on those variables are trivial (e.g., solutions for
x satisfying x + 0 = x).

Then, we can invoke QuickCheck over the property combined with the test
generator. The basic idea is to call quickCheck (forAll generator property),
where generator generates the test data and property is the property to test.
However, we make a few changes to this basic scheme, which we now discuss
while showing how we invoke QuickCheck on some of the axioms in the Haskell
interactive environment.

For the axioms on integers with linear constraints such as uniq_rep_3by3
in §3.1, it is possible to fully automate the test. Recall that we only collect
constraints from the premise (i.e., left-hand side of the implication). For example,
we can run the test on uniq_req_3by3 as follows.

> mQuickCheck( $(interpQints uniqr3by3) (genCtrs uniqr3by3) )

(0 tests)

non-trivial case

...

(99 tests)

non-trivial case

+++ OK, passed 100 tests.

The first change to the basic scheme is that mQuickCheck has a wrapper over the
library function quickCheck which allows its argument to be of an IO monad
type. This allows test generators to perform the side effect of communicating
with the Yices process in order to solve the constraints. interpQints generates
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an interpretation for the axiom from its argument uniqr3by3, and uniqr3by3 is
the syntax tree for the axiom uniq_req_3by3. The genCtrs function generates
constraints from the premises of the axiom.

Second, for the axioms on arrays and on types other than integers, we may
need type annotations and other constraints to narrow the search space. For
example, to test update_commute_in_range we call:

> mQuickCheck(

$(interpQ updatecommr

[| (listArray(0,3)[1.0..]::Array Integer Double,

0::Integer, 0::Integer, 0.0::Double, 0.0::Double) |] )

(ASSERT(Y.VarE "_I":>=LitI 0):ASSERT(Y.VarE "_J":<=LitI 3):

ASSERT(Y.VarE "_J":>=LitI 0):ASSERT(Y.VarE "_I":<=LitI 3):

(genCtrs updatecommr))

...

*** Failed! Falsifiable (after 4 tests):

(array (0,3) [...], 0, 0, 2.8288383471313097, 1.9408590255175935)

After a few tests it finds a counterexample such that both the index variables I
and J are 0. The additional annotation is because of the dependencies between
variables. The variables I and J in the axiom update_commute_in_range are
constrained by the index range of A. This means that we can only generate useful
test values of I and J after generating a test value for A. The type information
including the array index range is specified in [|...|] and the ASSERT’s specify
the constraints for the variables I and J. Currently we do not automatically infer
these dependencies, but this could be done.

Lastly, when we test axioms involving floating point numbers, such as
symm_joseph, we need to give some tolerance for errors. Otherwise, tests will fail
for most of the mathematical properties (e.g., associativity of addition) we expect
to hold on real number arithmetic. We define an overloaded comparison operator
(===) in Haskell which compares integers with the usual equality operator (==)
but compares floating point numbers with a predefined error tolerance.

4.1 Evaluation

In addition to testing the axioms from AutoCert’s domain theory, we have
also carried out some simple mutation testing on several of the axioms in order
to simulate the most common errors. For example, we replace logical operators
(e.g., conjunction with disjunction), change the polarity of premises (adding
and removing negation), replace numeric indices (to give off-by-one errors), and
switch variables and function symbols (e.g., I with J, sin with cos).

There are three possibilities: the premises are satisfiable and the mutated
axiom is still valid, the premises become unsatisfiable and the axiom is vacuously
true, or the mutant is invalid. We created a range of mutants for the axioms
considered in this paper and, after filtering out the provable mutants we were,
in each case, able to either derive a counterexample within 10 steps, or conclude
that the mutated premises were vacuously true.
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5 Related Work

The idea of evaluating propositions with respect to a computational interpreta-
tion goes back to early work of Green [9] and Weyhrauch [10]. More recently,
there has been some work on the use of testing to validate and debug logical
conjectures. Claessen and Svensson [11] use QuickCheck to test FOL conjectures
arising in inductive proofs of protocol correctness. Propositions are interpreted
as invariants on a particular state transition system. Generating test cases for
invariants amounts to generating paths from a random initial state. To test in-
ductive invariants they “adapt” an arbitrarily chosen (possibly non-reachable)
state to the proposition-under-test, effectively giving a test data generator gen-
erator. Berghofer and Nipkow [12] also use QuickCheck, to test theorems in
Isabelle/HOL, particularly those involving inductive data types and inductive
predicates. They create generators to generate data of arbitrary size for any
inductive data type. In both these cases, the authors’ goals are to test conjec-
tures in a logic, rather than the axioms of the underlying logic itself, given a
computational model.

Carlier and Dubois [13] have similar motivation and approach to ours, but
in the setting of a typed functional language and a higher-order proof assistant.
Since they mostly rely on random testing they generate and discard many test
cases before they collect meaningful test cases. In contrast, we try to generate
tests data efficiently by automatically synthesizing smart generators. Dybjer et
al. [14] explore testing and proving in a dependent type setting, but do not
automate the synthesis of test generators.

Planware [15] is a system for the deductive synthesis of planning and schedul-
ing software. In deductive synthesis, implementations are synthesized from speci-
fications through a sequence of correctness-preserving refinements. Correctness of
these steps ultimately rests on a logical axiomatization of the domain theory. In
Planware, the axioms are validated [16] via a theory morphism, that is, by trans-
lation into conjectures in another logic, in this case, set theory, where they are
proven as theorems. The target theory thus serves as the intended interpretation.

Theory development in Isabelle [17] also typically proceeds in such a “defini-
tional” style, where more complex properties are built from a small set-theoretic
core. However, we have not adopted this approach since we consider the domain-
specific axioms (in contrast to the underlying laws of arithmetic and relational
algebra) to be our starting point. These definitions and laws, typically com-
ing from mission documents, are thus tantamount to requirements. Moreover, it
would be a lot of work to derive them from first principles, and would provide
little benefit to engineers.

6 Conclusion

We have described our approach to model-based testing of first-order logic ax-
ioms used by the verification tool AutoCert. We believe that our approach can
help to systematically debug axioms, and also help maintain soundness of the
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logic while actively developing axioms. We have shown that it is quite feasible to
derive counterexamples, even when the axioms are difficult to inspect. The com-
putational model serves both as an interpretation against which the axioms can
be tested, and as a reference which can be inspected by domain experts, since
they remain significantly clearer than the axiomatization, particularly when we
optimize the axioms to make the theorem provers search for proofs more effi-
ciently. One clear conclusion we draw is the need for a typed logic to reduce
unsoundness. Although types can be encoded in an untyped setting, we plan to
investigate the recently proposed Typed First-Order Form [18].

Previously, we had frequently run into inconsistency, and sometimes this was
not noticed until quite some time after the erroneous axioms had been added.
Using the testing framework we have been able to find counterexamples for
some axioms that had been previously known to be suspicious, as well as some
previously unsuspected axioms. It also helped us avoid unsoundness arising from
implicit but different models of the logic. Testing and proving are therefore
complementary aspects to developing a formal verification.

An important aspect of testing is discovering corner cases of idealized models
(e.g., overflow in fixed point arithmetic and round-off errors in floating point
arithmetic). In our work, we used an arbitrary tolerance for round-off errors,
but a more sophisticated notion, depending on input variables, is appropriate.

In terms of developing an infrastructure for the certification of safety-critical
software, minimizing the trusted base is important. An important part of testing,
and thus qualifying, the axioms will be to develop an appropriate notion of
coverage (as in [13]), to give some measure of confidence that enough testing has
been done. In the case of testing programs, coverage criteria are usually expressed
in terms of branches and decisions taken by the software. For axioms, we also aim
to cover all branches (that is, all independent ways of satisfying the hypotheses)
as well as covering the domain (e.g., by considering all representatives of each
frame of a DCM).

We are currently extending the framework in two directions: testing verifica-
tion conditions, and testing functions. As observed by Claessen and Svensson
[11], we would like to know when a VC really is invalid, and when it is simply
unprovable due to a missing axiom, say. We are extending the framework to be
able to also test VCs, and thus provide insight into when the problem lies in a
missing axiom, rather than an invalid VC. A related goal is to black-box test
library functions which implement the concepts in the axioms, using the same
mathematical specifications.

Lastly, we have also tested a number of axioms that involve physical units and
equations. These axioms need to be modified in order to make them testable,
but we believe that this can be done in a principled and systematic manner.
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Abstract. Within model-driven development, class invariants play a
central role. An essential property of a collection of invariants is the in-
dependence of each single invariant, i.e., the invariant at hand cannot
be deduced from the other invariants. The paper explains with three ex-
ample models the details of an approach for automatically proving and
representing invariant independence on the basis of a script constructing
large test cases for the underlying model. Analysis of invariant indepen-
dence is visualized by means of several diagrams like a ‘test configuration
and result’ diagram, an ‘invariant dependence detail’ diagram, and an
‘invariant dependence overview’ diagram. The paper also discusses how
to build the test case construction script in a systematic way. The test
case construction script is written by the model developer, but a general
construction frame for the script is outlined.

1 Introduction

Software development with model-driven techniques and languages like the Uni-
fied Modeling Language (UML) and the Object Constraint Language (OCL) has
attracted many practitioners and researchers in recent years. In object-oriented
approaches, class invariants play a central role. A crucial property of a collection
of invariants is the independence of each single invariant, i.e., a considered in-
variant cannot be deduced from the other stated invariants. This property may
be viewed as guaranteeing the absence of redundancy in an invariant set.

This paper explains an approach for automatically proving and representing
invariant independence on the basis of a script constructing large test cases for
the underlying model. When we use the notion script here, we always refer to
such a test case construction script which belongs to the modeling level and not
to a detail of the implementation. The test case construction script is written
by the model developer, but a general construction frame for the script is out-
lined here in order to formulate a primary version of the script. Development
is supported and visualized by means of several diagrams allowing to represent
test configurations and results. The proposed diagrams can be generated in an
automatic way from the executed test cases. This paper also explains how to
write a test case construction script in general. Our work is done within the

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 38–54, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Proving and Visualizing OCL Invariant Independence 39

UML-based Specification Environment (USE), a modeling and validation sys-
tem [GBR05, GHK07]. The USE details of all test cases in this paper may be
found in [GHK10]. One motivation for introducing the various diagram forms
here was to abstract away from test case details.

Invariant independence in models is an important property in object-oriented
approaches, because if it holds, then all invariants have to be respected directly
in an implementation; if it does not hold, then it is desirable to know, why it does
not hold and which invariants contribute to redundancy. Our proposal helps in
answering such questions and can be used to detect which subsets of the given
invariants are independent. Invariant redundancy often occurs when important
system properties are consequences of other technical requirements. Therefore
techniques to detect dependencies are valuable.

The rest of the paper is structured as follows. Section 2 introduces the neces-
sity for invariant negation, affirmation, and deactivation in test case construction
scripts and shows the different diagram forms. Section 3 explains with a more
complex example test case construction and shows more involved invariant de-
pendencies. Section 4 discusses an example from the literature and puts forward
the general template for a test case construction script. The paper ends with a
discussion of related work and a conclusion. The generated test cases in [GHK10]
may be seen as appendix-like add-on for the paper.

2 Basics of Invariant Independence

As an extension to the research presented in [GHK09] we here propose a more
sophisticated way of producing test cases which prove the independence of in-
variants. This paper employs invariant deactivation, a technique which we did
not apply before for showing invariant independence. By doing so, we are able
to obtain more independence relationships. Furthermore we represent the dif-
ferent test case configurations and test results in diagrammatic form by means
of so-called ‘test configuration and result’, ‘invariant dependence detail’, and
‘invariant dependence overview’ diagrams.

The artificial example model shown in Fig. 1 possessing a single class C and
two integer attributes a and b demonstrates the new features. The three invari-
ants restrict the attribute values and partly overlap.

Fig. 1. Example Model CAB
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The following test case construction script enumerates possibilities for at-
tribute values until a system state satisfying the current invariant configuration
is found. A system state is also called snapshot because it represents the state
of the system at a particular point during the dynamic development of the
system. With the UML, object diagrams are employed for representing snap-
shots. An invariant can be negated, affirmed, or deactivated. The script lan-
guage ASSL (A Snapshot Sequence Language [GBR05]) is a hybrid language
which uses elements of imperative programming and OCL. OCL and ASSL are
decidable because quantification is applied only on finite domains. In this ex-
ample, the bounds for the attribute values can even be derived systematically
from the constraints which use the constant 2 as the minimum integer and the
constant 9 as the maximum integer. The bounds in the script extend the used
bounds in the constraints by 1 on both interval ends in order to cover positive
and negative test cases.

procedure genWorld()

var c: C;

begin

c:=[C.allInstances()->any(true)];

[c].a:=Try([Sequence{1..10}]);

[c].b:=Try([Sequence{1..10}]);

end;

The first step for the analysis of invariant independence is to call the test case
generation script as often as determined by the number of invariants: If there
exist n invariants, then the script is called n times; each call sets exactly one
invariant as negated and all other invariants as affirmed:1

gen flags [a25 +n] [b78 -n] [a34_b69 -n]; gen start genWorld()

gen flags [a25 -n] [b78 +n] [a34_b69 -n]; gen start genWorld()

gen flags [a25 -n] [b78 -n] [a34_b69 +n]; gen start genWorld()

The different calls are represented in the Test Configuration and Test Result
diagram in Fig. 2. Each call is shown as a line of invariants together with an in-
dication expressing whether a snapshot has been found or not. Affirmed, negated
and deactivated invariants are displayed differently (in the calls in Fig. 2 there are
no deactivations, but such deactivations will show up below). Furthermore, if a
snapshot has been found, an arrow indicating independence resp. non-implication
may be drawn from each affirmed invariant to a negated invariant. For example,
the upper-left non-implication arrow in Fig. 2 expresses that we have formally
shown the fact (theorem): not(a25 implies b78).

The currently known relationships between invariants are displayed in the
Invariant Dependence Detail diagram in Fig. 3. All known non-implications are
shown with non-implication arrows, and unknown relationships are shown as
grey arrows.
1 In our current implementation, the syntax for invariant affirmation, negation and

deactivation is slightly different; the flags for invariant affirmation, negation and
deactivation must be stated for each each single invariant (see [GHK10]).
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Fig. 2. Test Configuration and Test Result Diagram (CAB-A)

In the second step for the analysis of invariant independence we study those
test cases in more detail where the first step did not find snapshots. If a call with
a negated invariant and with all other invariants affirmed was not successful,
the configuration is extended so that all those test case generation calls are
performed where at least one of the other invariants is deactivated and at least
one is negated:

gen flags [a25 +n] [b78 +d] [a34_b69 -n]; gen start genWorld()

gen flags [a25 +n] [b78 -n] [a34_b69 +d]; gen start genWorld()

In the example this leads to the Test Configuration and Test Result diagram
and the Invariant Dependence Detail diagram show in Fig. 4. The grey arrow in

Fig. 3. Invariant Dependence Detail Diagram (CAB-B)
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Fig. 3 from b78 to a25 has been updated to a non-implication arrow. This could
only be achieved by invariant deactivation which was not considered in [GHK09].

It is worth to discuss why deactivation finds more counter examples: We
assume one fixed ASSL script is employed; this script enumerates a particular
finite set of system states, called the search space; first, the script is called
as many times as invariants exist with exactly one invariant being negated;
each single call may produce as result either a counter example or the answer
that no system state exists in the search space under the current configuration
for affirmed and negated invariants; in the last case the complete finite search
space has been considered; only in this situation deactivation is used as a second
step; within the search space, there may be counter examples which satisfy the
current configuration of affirmed and negated invariants except the deactivated
invariant which is violated; in order to find these counter examples, deactivation
is beneficial.

The current knowledge about the invariant dependence is now aggregated into
a single Invariant Dependence Overview diagram as shown in Fig. 5. All invari-
ants are displayed with solid or dashed rectangles within a rounded rectangle. If
an invariant is independent from all other invariants, it is also displayed outside
the rounded rectangle with a non-implication arrow from the rounded rectangle

Fig. 4. Test Configuration and Test Result Diagram (CAB-C) as well as Updated
Invariant Dependence Detail Diagram (CAB-D)
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Fig. 5. Invariant Dependence Overview Diagram (CAB-E)

to it (for example, b78). This arrow means that this invariant is independent
from the complete set of invariants except the invariant itself: The independent
invariant is shown with a dashed rectangle within the rounded rectangle (again,
for example, b78) in order to distinguish it from an invariant which is not in-
dependent from the other invariants (for example, a25); naturally, we have, for
example, b78 implies b78 and we do not have not(b78 implies b78). Fur-
ther non-implications may be shown within the rounded rectangle (for example,
the non-implication arrow from b78 to a25). This kind of abstracting details of
edges is similar to the abstraction made in statecharts [Har87] for displaying
different transitions as a single transition.

3 Invariant Independence in More Complex Models

Up to now we did not handle associations in test case generation scripts. The
example in this section treats associations, and it shows that the fact that non-
implications cannot be established is a good indicator that mutual dependencies
between invariants do exist.

The example model in Fig. 6 handles the civil status of persons and constrains
the attributes and links. The first two constraints are requirements which could
also be expressed as multiplicity restrictions in the class diagram. However, we
have formulated them explicitly in OCL because we want to check these con-
straints with respect to independence to the other constraints. The following
test case generation script restricts the number of persons to three.
The first Test Configuration and Test Result diagram in Fig. 7 shows indepen-
dence of three invariants. In each of the six calls to the test case generation script
exactly one invariant is negated and the other invariants are affirmed. The test
case generation script does not find examples for the three other invariants. The
achieved Invariant Dependency Overview diagram is shown in Fig. 8.

The second Test Configuration and Test Result diagram in Fig. 9 with deac-
tivations adds six non-implications. These are pictured in the Invariant Depen-
dence Detail diagram in Fig. 10. In contrast to the example from the previous



44 M. Gogolla, L. Hamann, and M. Kuhlmann

Fig. 6. Example Model CIVSTAT

section, the non-implications have a single invariant as source and two invariants
as target2. Furthermore, the three invariants husbandForFemale, wifeForMale and
spouseDifferentGender, whose independence cannot be proved, show symmetrical
properties in Fig. 10. This could be seen as an indication for dependencies between
these invariants. Indeed, we have (hFF and wFM) implies sDG. This could formally
be proved with approaches like [BW09] or [BHS07].

This example also shows our general strategy for tackling invariant indepen-
dence. One should first show as many as possible independencies resp. non-
2 Now we have not(A implies B) as well as not(A implies C), but previously we had
not(B implies A) as well as not(C implies A).
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Fig. 7. Test Configuration and Test Result Diagram (CIVSTAT-A)

Fig. 8. Invariant Dependence Overview Diagram (CIVSTAT-B)

implications. Invariant dependencies must be in the complement of the shown
independencies. Afterwards, the hopefully small complement can be tackled with
explicit proof techniques like [BHS07, BW09].

4 Sanity-Check and Test Case Generation Template

The last model is an example which has not been developed by us, but which
can be found in the literature [CGQ+08]. The example is a sanity-check thatour
proposal works for models which are developed not in our group. The specific
test case generation script also shows the general structure for such a script. The
script has to be written by the model developer for each individual model, but
the general structure can be employed for many models and helps to formulate
a primary version of the script. If this version is not efficient, it may be taken
as the starting point for further improvements, for example, by using restricting
OCL expressions in ‘Any’ or ‘Try’ statements which reduce the search space.
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Fig. 9. Test Configuration and Test Result Diagram (CIVSTAT-C)

Fig. 10. Invariant Dependence Detail Diagram (CIVSTAT-D)
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Fig. 11. Example Model CST (Course-Section-Teacher)
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procedure genWorld()

var num: Integer, numC: Integer, numT: Integer, numS: Integer,

courses: Sequence(Course),

teachers: Sequence(Teacher),

sections: Sequence(Section);

begin num:=[2]; numC:=Try([Sequence{1..num}]);

numT:=Try([Sequence{1..num}]); numS:=Try([Sequence{1..num}]);

courses:=CreateN(Course,[numC]);

teachers:=CreateN(Teacher,[numT]);

sections:=CreateN(Section,[numS]);

Try(IsPrerequisiteOf,[courses],[courses]);

Try(GivenBy,[courses],[teachers]);

Try(BelongsTo,[courses],[sections]);

Try(AssignedTo,[teachers],[sections]); for i:Integer in

[Sequence{1..numC}] begin

[courses->at(i)].name:=Try([Sequence{’DBS Course’,’SWE Course’}]);

[courses->at(i)].code:=Try([Sequence{’dbs’,’swe’}]);

[courses->at(i)].maxStudents:=Try([Sequence{40}]);

[courses->at(i)].creditsNumber:=Try([Sequence{10,12}]);

end;

for i:Integer in [Sequence{1..numT}] begin

[teachers->at(i)].name:=Try([Sequence{’Ada’,’Bob’}]);

[teachers->at(i)].lastName:=Try([Sequence{’Smith’}]);

[teachers->at(i)].category:=Try([Sequence{#lecturer,#researcher}]);

end;

for i:Integer in [Sequence{1..numS}] begin

[sections->at(i)].number:=Try([Sequence{100,110}]);

[sections->at(i)].numberOfStudents:=Try([Sequence{30,50}]);

end;

end;

The model in Fig. 11 is a bit more complex with three classes, four associations
and nine invariants. In the original paper, independence of invariants is discussed
under the notion ‘absence of redundancy’ and sufficient criteria for it are stated.

According to the increased complexity of the underlying model, the test case
construction script also becomes more involved. Objects, links, and attribute
values are generated in that order as follows.
According to our approach, we first call the above test case generation script nine
times. In each call, exactly one invariant is negated and all other are affirmed. In
this case, all invariants are independent and this can be proved already with these
first nine calls. The result is represented as an Invariant Dependence Overview
diagram in Fig. 12. The found counter examples are shown in Fig. 13 and 14.
In our view, these counter examples show the invariant independence, but they
also demonstrate nicely how the models work and what the effects of the model
look like in term of system states resp. object diagrams.

From the above script we can distill a general format for a test case generation
script (Fig. 15). The general format defines a script which works as follows: For
each class determine the maximal number of objects in that class and create
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Fig. 12. Invariant Dependence Overview Diagram (CST-A)

new objects accordingly; thus the test case generation process will first try to
populate the class with one object, then with two objects and so forth; for each
association try all possible link sets in that association; for each attribute in each
class try all possibilities from an explicitly given sequence of attribute values.
In general, one should be conservative with regard to the maximal number of
objects. One should start with lowest values and try to increase these numbers
with experiments.

Finally, we want again point to the fact that the diagrams which we have pre-
sented in this paper are abstractions of the numerous test cases resp. snapshots
which were generated in an automatic way. As is detailed in [GHK10], for the
CAB model 250 snapshots, for the CIVSTAT model 101.001 snapshots, and for
the CST model 2.393.734 snapshots were considered.3

In our examples, the test generation script produces the results within ac-
ceptable answer times on a standard laptop. However, for larger examples with
more classes SAT-based techniques can produce the counter examples with faster
answer times [SWK+10]. As future work, we will combine the proposed visual-
ization techniques of this paper with the more efficient SAT-like counter example
production.

5 Related Work

Proving constraint independence has connections to other relevant approaches.
Basic concepts for formal testing can be found in the pioneering paper [Gau95].

3 This can be traced by considering the messages ‘Checked ... snapshots’ in [GHK10].
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Fig. 13. Counter Examples for Model CST Proving Full Independence (Part 1)



Proving and Visualizing OCL Invariant Independence 51

Fig. 14. Counter Examples for Model CST Proving Full Independence (Part 2)

Independence has been studied also in connection with relational database
schemata [Orm97, OS98]. The presented tool in [SCH01] allows static and dy-
namic model checking with focus on UML statecharts. UMLAnT [TGF+05] al-
lows designers and testers to validate UML models in a way similar to xUnit
tests. UMLAnT delegates the validation of invariants, pre- and postconditions
to USE [GHK07]. Automatic test generation based on subsets of UML and OCL
are examined in [BGL+07] and [AS05], whereas runtime checking of JML as-
sertions transformed from OCL constraints is treated in [AFC08]. Approaches
for static UML and OCL model verification without generating a system state
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procedure genWorld()

var <declaration-of-variables-for-object-sequences>,

<declaration-of-auxiliary-variables>;

begin

---------------------------------------------------------------- objects

numClass_1:=Try([Sequence{1..numClass_1Max}]); ...

numClass_k:=Try([Sequence{1..numClass_kMax}]);

objectsClass_1:=CreateN(Class_1,[numClass_1]); ...

objectsClass_k:=CreateN(Class_k,[numClass_k]);

------------------------------------------------------------------ links

Try(Assoc_1,[objectsClass_i],[objectsClass_j]); ...

Try(Assoc_m,[ .... ],[ .... ]);

------------------------------------------------------- attribute values

for i:Integer in [Sequence{1..numClass_1}] begin

[objectsClass_1->at(i)].att_1:=Try([Sequence{value_1, ..., value_p}]);

...

[objectsClass_1->at(i)].att_q:=Try([ .... ]);

end;

<attribute-handling-for-further-classes> end;

Fig. 15. General Format for Test Case Generation Script

can be found in [MKL02], [BC06] and [BHS07]. In [MKL02], UML models and
corresponding OCL expressions are translated into B specifications. The trans-
formation result is analyzed by an external tool. The work in [BC06] focuses on
static verification of dynamic model parts (sequence diagrams) with respect to
the static specification. The KeY approach [BHS07] targets Java Card applica-
tions which can be verified against UML and OCL models. Our approach for
checking model properties and in particular for finding models has many simi-
larities with the Alloy [Jac06] approach. As our approach, the ALLOY approach
detects model properties by setting up a search space for model snapshots and
exhaustively stepping through this search space [SYC+04]. The achieved results
are always relative to this search space. Thus exhaustive testing techniques on
the code level [JLDM09] with methods like sparse test generation, structural
test merging or oracle-based test clustering may contribute to the improvement
of our approach.

6 Conclusion

We have proposed an approach for detecting independencies among class invari-
ants. We were able to trace more independence facts by using invariant deacti-
vation. The paper discussed the representation and documentation of test case
generation with diagrams offering different degrees of detail. A general template
for a test case generation script has been put forward.

Future work will extend our approach for handling OCL invariants to handling
OCL pre- and postconditions. Special interest must be paid to the interplay
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between invariants and pre- and postconditions. One can improve the efficiency
of our proposal with SAT-based techniques. An implementation of the proposed
diagrams and case studies giving user-feedback have to be carried out. In general,
we are interested to study further relationships between proving and testing in
connection with UML and OCL models.
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Abstract. In the context of deductive proof, formal specification (and
thus proofs) may only cover a small part of the program behaviours.
We discuss the relevance of applying a mutation analysis, proposed to
evaluate the quality of a test set, to evaluate if a specification is able to
detect predefined types of faults.

1 Introduction

A primary purpose of testing is to detect software failures. It implies running
the software item in predetermined conditions (input selection), analyzing the
obtained results, and identifying errors [16]. Testing can never completely estab-
lish the correctness of a program. For this reason, several methods (among which
mutation analysis) have been put forward to increase confidence with respect to
the test set provided.

Mutation analysis was introduced by DeMillo in 1978 [6]. Its main purpose is
to evaluate the quality/adequacy of a test set. The basic idea is to insert changes
into the program being tested, and to check if the tests are able to detect the
difference between the original program and its variations. It is mainly used
for unit testing evaluation. Since 1978, mutation analysis has been widespread,
improved and evaluated. Is has been adapted for several programming languages
[12]. Andrews et al. have demonstrated that this technique can provide a good
indication of the fault detection ability of a test suite [3].

Testing is often opposed to verification techniques. In the following, we focus
on theorem proving, which aims at assessing that an artefact (code or model)
conforms to a (set of) property thanks to a sequence of deductions [19,17]. It is
considered to be a reliable validation technique since it is based on well-founded
mathematical deductions. However, when verifying an artefact with respect to
a description (specifications), it is not necessary to describe all the facets of the
artefact’s behaviours. For instance, let us consider a program to sort a list. It
can be specified that the resulting list should be sorted and should contain all
the initial elements. But, one can forget to state that the size of the list should
be unchanged. A code that adds new elements or removes some repeated values
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can be proved to be correct with respect to the description although it is not
the expected behaviour.

In the following, we provide an example of how mutation analysis can help in-
crease confidence with respect to the specification. Section 2 gives details about
mutation analysis in the context of testing. Section 3 shows how mutation anal-
ysis can be used for proof. Section 4 considers some perspectives.

2 Mutation Analysis for Testing

Mutation analysis consists in introducing a small syntactic change in the source
code of a program in order to produce a mutant [6] (for instance, replacing
one operator by another or altering the value of a constant, etc.). Then the
mutant behaviour is compared to the original program. If a difference can be
observed, then the mutant is marked as killed. If the mutant has exactly the same
observable behaviour as the original program, it is equivalent.

The original aim of the mutation analysis is the evaluation of a test set. To
do that, one has to produce all mutants corresponding to a predefined fault
model. If the test set can kill all non-equivalent mutants, the test set is declared
mutation-adequate. This means that the tests are able to discriminate the
behaviours of all the mutants from the original program. Mutation analysis
does not confirm of the correctness of the program under test. It only focuses on
the adequacy of the test data: the original program may be faulty and a mutant
correct. If the tests are able to differentiate their behaviours, the tester may be
able to detect the fault in the original program and correct it.

The adequacy of the test set is evaluated thanks to the mutation score (also
called adequacy score). The mutation score is the percentage of non-equivalent
mutants killed. For a program P , let MT be the total number of mutants pro-
duced with respect to a particular fault model F . Let ME and MK be the
number of equivalent and killed mutants. The mutation score of the test set T
with respect to the fault model F is defined as: MS(P, T, F ) = MK

MT −ME
. A test

set is mutation-adequate if the mutation score is equal to 11.

Example: The max Program

Let us consider the following simple example of a program that computes the
maximum of two values x and y (max).

int max(int x, int y) {if (x > y) return x; else return y;}
If one applies a fault model such as the one defined in [1] on the max program,
one would obtain mutants in which > is replaced by < or >=; each instance of x
is replaced by y, x-1 or x+1; similarly each instance of y is replaced by x, y-1
or y+1. For the sake of brevity, only three mutants are shown below.

1 Mutation testing aims at producing tests until the maximal mutation score is
obtained.
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M1) int max(int x, int y) {if (x > y) return x; else return y+1;}
M2) int max(int x, int y) {if (x > y) return x; else return x;}
M3) int max(int x, int y) {if (x >= y) return x; else return y;}

M1 was obtained by replacing y by (y+1) in the part else of the if. M2 results
from the replacement of variable y by x also in the else part of the if. M3 is
equivalent to the original program (> was replaced by >=).

For evaluating the mutation-adequacy of a test set, detecting the equivalent
mutants is an important issue. Since, an equivalent mutant is impossible to kill,
it is not possible to reach a mutation score equals to 1, if one is remaining. The
program equivalence problem is undecidable, but several heuristics have been
proposed to detect the equivalent mutants as much as possible [18].

3 Mutation Analysis for Proof

Let P be a program and S its specification. Once it has been established that
P satisfies S (P |= S), one may want to know if the specification S describes as
many behaviours as expected. We propose to use mutation analysis in order to
check if this specification is able to detect all faults defined by a fault model F .

Let us consider a mutant M created from P with respect to F . We say that
a mutant M is killed if M does not satisfy S (M |=/ S).
The mutation score of a specification S with respect to the fault model F is
defined as previously: MS(P, S, F ) = MK

MT −ME
.

A specification S is mutation-adequate if P |= S and MS(P, S, F ) = 1.

Example: The max Program

Let us specify the max program: (S1) “the result should be greater or equal to x
and be greater or equals to y”.

Let us prove the max program against this specification. We used the Why/
Caduceus environment [10,11] to do that. “Why2” is a generic platform for de-
ductive program verification [11]. Several provers can be used: proof assistants
such as Coq, PVS, Simplify, etc. Programs to be proved have to be annotated
in a language similar to JML (Java Modelling Language). For S1, we wrote:

/*@ ensures \result >= x && \result >= y @*/

Why/Caduceus produces 4 proof obligations for the program max. Those have
been proved automatically in a few seconds by the different tools, so Max |= S1.

We apply mutation analysis, to evaluate how precise our specification is, i.e.
to evaluate how well the specification is able to discriminate the faulty programs.
We obtain that

– M1 |= S1
– M2 |=/ S1
– M3 |= S1

2 “Why” can be downloaded at http://why.lri.fr/
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The Why/Caduceus environment manages to carry out all the proof-obligation
for M3 since it is equivalent to the original program. The tools did not manage
to carry out one proof-obligation for M2, which is unprovable3. This reveals that
the specification is able to detect the fault introduced in M2. For M1, tools did not
detect any contradiction with the specification. However, it is neither equivalent
nor an acceptable version of the max. Here, the mutation-score of max specifica-
tion is equal to 0.5 and has to be completed. To do that, we add one assertion,
which specifies that the results of the program should be either equal to x or
to y.

// S2

//@ ensures \result >= x && \result >= y && (\result == x || \result == y)

The original program is proved against the new specification. We obtain now

– M1 |=/ S24,
– M2 |=/ S2, and
– M3 |= S2.

The new mutation-score is equal to 1. This allows us to strengthen our confi-
dence with respect to the fact that the specification describes all the expected
behaviours.

4 Perspectives

The example proposed here is a trial example. However, being able to evaluate if
a specification describes as many behaviours as expected is an important issue.
For several projects developed in our lab, we have noticed that the specifications
proposed were correct but not detailed enough to detect as many faults as nec-
essary. This occurred for several kinds of languages (JML, B , Lustre) or types
of approaches (proof or model-checking) [7,13,8].

Mutation analysis has also been explored for evaluating specifications in the
context of model-checking. For instance, in [20], the authors mutate a CSP spec-
ification for security analysis. Their main conclusion is that the equivalent spec-
ification provides an interesting source of information and helps to chose an
appropriate alternative. In [15], the authors define several structural mutation

3 The proof obligation max impl po 4 arises from the else part of the function. In this
part, we know that x <= y (hypothesis H2) and we must ensure that the result has
to verify result >=y. As the result is x, we must have x >= y.

4 Six proof obligations are exhibited (instead of 4 previously). One of them is not
proven by the tools. The proof obligation max impl po 6 comes from the else part of
the function. In this part, we know that x <= y (hypothesis H2) and we must ensure
that the result has to verify (result=x or result=y). As the result is y+1, we
must have y+1=x or y+1=y. This is unprovable, because y+1=y is false independently
of hypothesis and under the hypothesis H2, y+1=x is false. This reveals the fault
introduced.
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models and coverage metrics to cover different design aspects in a state graph
and to estimate the completeness of model checking.

The fact that there are more and more available environments to carry out
verification5 will increase the opportunities to prove our programs. Program ver-
ification may be carried out by persons who are less expert in proof than those
who are currently proving programs. The need to evaluate the relevance of the
specifications will then be more present, as we will need to evaluate the relevance
of our tests. The use of mutation analysis can bring some new elements to eval-
uate a specification. Experimental work is required to evaluate this approach on
real applications.

In the future, we would like to work on two points. The first one is related to
the fault-model used for mutant production. Mutation analysis is an expensive
approach. In [4], Budd estimates that the number of mutants can be approxi-
mated as the square of the number of statements (when applying a classic fault
model). Since, most of the time, verification is a long and hard process, it is
necessary to adjust the fault model in order to limit the production of mutants
(especially equivalent mutants or mutants that will be trivially removed). This
work requires an empirical evaluation of mutation operators in the context of
proof, in order to select the most relevant ones. The hierarchy of fault class as
defined in [14] can also be explored.

Second, specifications are often expressed as high-level properties. For in-
stance, when specifying properties for a lift program [9], one may want to state
that (1) all the requests to be served and that (2) never the doors open when
the lift is moving. One should care to provide a specification that is not too
restrictive, in order to accept several kinds of implementations. Producing a
specification able to kill all mutants may result in an over-specification incom-
patible with implementation freedom. That is why it is important to be able to
identify how and why a specification is modified. Modifying specification just to
kill more mutants is probably not a good choice. That is why one should think
about a process for the validation of specification in the context of proof.
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10. Filliâtre, J.-C., Marché, C.: Multi-prover verification of c programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)
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Abstract. The combination of software verification and testing techniques is in-
creasingly encouraged due to their complementary strengths. Some verification
tools have extensions for test case generation. These tests are strong at detecting
software faults during the implementation and verification phase, and to further
increase the confidence in the final software product. However, tests generated
using verification technology alone may lack some of the benefits obtained by
using more traditional testing techniques. One such technique is Capture and Re-
play, whose strengths are the generation of isolated unit tests and regression test
oracles.

Hence, the two groups of techniques have complementary strengths, and there-
fore are ideal candidates for a tool-chain approach proposed in this paper. The first
phase produces, for a given system, unit tests with high coverage. However, when
using them to test a unit, its environment is tested as well – resulting in a high
cost of testing. To solve this problem, the second phase captures the various exe-
cutions of the program, which are monitored by the output of the first phase. The
output of the second phase is a set of unit tests with high code coverage, which
uses mock objects to test the units. Another advantage of this approach is the fact
that the generated tests can also be used for regression testing.

1 Introduction

Formal verification is a powerful technique for ensuring functional correctness of soft-
ware. Verification techniques that use symbolic execution and theorem proving, e.g.
[2,5,4], can prove complex properties of a program when it is sufficiently annotated.
However, failing verification attempts do not necessarily imply a fault in the program.
In order to help the user in finding the reason for the failure, some verification tools
have extensions for test case generation, e.g., [9,6,22]. Such verification-based testing
(VBT) techniques use rich information about the program gained from the verification
process. Furthermore, verification techniques based on model checking, e.g. [27,5], can
also be regarded as VBT techniques. These techniques exhaustively enumerate the state
space of a program and can detect faults in a program. These tools are highly automated
but are typically bound to proving simpler program properties than techniques that use
theorem provers.
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Testing techniques, in contrast, are powerful for detecting software faults and for
gaining some degree of confidence that the program under test (PUT) behaves correctly
in its runtime environment. VBT techniques use information gained from a verification
attempt and can generate very targeted tests to reveal program faults or tests that exhibit
a high code coverage. Thus, both verification and testing techniques can profit when
being combined. Yet, we can even go a step further in combining both approaches. We
found that more traditional testing techniques have complementary strengths to VBT
techniques. One such technique is capture and replay (CaR), whose strengths are the
generation of isolated unit tests [20,21] and regression test oracles [20,28,8].

Unit testing plays a major role in the software development process. A unit test ex-
plores a particular behavior of the unit that is tested. The unit that we deal with is a
class. It explores a particular aspect of the behavior of the class under test, hereafter
CUT. Testing a unit in isolation is an important principle of unit testing [15]. However,
the behavior of the CUT usually depends on other classes, some of them not even ex-
isting yet. Mock objects [19] are used to solve this problem by replacing actual calls
to methods of other classes by calls that simply return the required value, thus testing
the unit in isolation. Furthermore, in order to gain confidence in the test result the test
should have a high code coverage.

The maintenance phase is the most expensive part of the software life cycle, and is
estimated to comprise at least 50% of the total software development expenses [26].
Unit testing enables programmers to refactor code safely and make sure it works. Ex-
treme Programming [31] adopts an approach that requires that all the software classes
have unit tests; code without unit tests may not be released. Whenever code changes
introduce a regression bug into a unit, it can quickly be identified and fixed. Hence,
unit tests provide a safety net of regression tests and validation tests. This encourages
developers to refactor working code, i.e., change its internal structure without altering
the external behavior [12]. Research related to regression testing often focuses on test
selection and test prioritization techniques, e.g. [14,16]. The focus of this paper is dif-
ferent. We exploit the synergies of combining VBT and CaR tools for unit regression
testing.

We propose an approach for the automatic generation of unit and regression tests
in the context of verification. Our goal is to improve test suites that are generated by
VBT tools and CaR tools separately. The proposed approach maintains the high test
coverage provided by VBT tools while at the same time reduces the complexity of the
tests through automatic generation of mock objects. Using mock objects facilitates the
isolation of the unit under test. Some existing CaR tools enable to create mock objects.
On the other hand, CaR tools do not provide means to achieve high code coverage, and
can therefore benefit from being combined with coverage guaranteeing tools such as
VBT tools. The advantage of using VBT tools is that the verification process can be
used to ensure that only correct behavior is captured by the CaR tool.

We identified that high code coverage and isolation are separate issues. They can be
achieved independently using the two groups of techniques which have complementary
strengths. Therefore we concluded that those groups of techniques are ideal candidates
for the following tool-chain. The first phase produces, for a given system, unit tests with
high code coverage. The second phase captures the various executions of the program,
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monitored by the output of the first phase. The output of the second phase is a set of
unit tests with high coverage, which uses mock objects to test the units, in isolation.

The main contributions of the paper are described in Sections 2-4. We identify what
the complementary strengths of VBT and CaR techniques are (Section 2). In Section 3
we present a novel tool-chain approach for unit regression testing in the context of
verification and for unit regression testing in general. To the best of our knowledge, this
tool-chain has not been considered with VBT tools so far. We have implemented the
proposed approach using a concrete VBT and a concrete CaR tool resulting in the tool-
chain KeYGenU. By applying KeYGenU to a small banking application we provide
a proof of concept of our approach, as described in Section 4. The advantages and
possible limitations of the approach are then discussed in Sections 3.2, 4.4, and 6. The
other sections are related work (Section 5) and conclusions (Section 6).

2 Complementary Strengths of the Regarded Techniques

In the introduction we have described the complementary strengths of verification and
testing in general. Both approachs should be combined in order to achieve reliable soft-
ware and in order to optimize the verification and testing process. In this section we
describe, by means of simple examples, advantages and disadvantages of CaR tools
and coverage guaranteing tools like VBT tools that are more specific to our tool-chain
approach.

Regression Test Oracles. Code that checks whether the result of a test-run is as expected
is called test oracle. A regression-test oracle checks if the result is the same as in a
previous version of the tested software.

Suppose there exists a well functioning application P. Let evalExam(int points, int
id) be one of the methods of P returning a boolean value.

JAVA (2.1)

1 public class Exam{
2 boolean[] passed;
3 public boolean evalExam(int points, int id){
4 boolean res=false;
5 if(points > 50){
6 res=true;
7 }
8 passed[id] = res;
9 return res;

10 }}

JAVA

Suppose that P has no regression test oracles and that P has been changed. Regression
testing should be performed to avoid regression bugs. A CaR tool (e.g., [20,8]) can be
used to create regression tests for the system. When executing evalExam(40,2),
for example, the CaR tool captures the return value of this method which is false. It
then creates a unit test that executes evalExam(40,2) and compares the result with
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the previously observed value false. If, at the course of changes, the user mistakenly
changes Line 4 to res=true;, the generated test will detect the bug as the return
value is true and it differs from the previously captured return value false.

Assume now that the user enters a mistake in Line 6 rather than in Line 4, by chang-
ing Line 6 to res=false;. Then the generated unit tests do not detect the bug, be-
cause the execution of this branch was not captured.

Code Coverage. Using a VBT tool on the very same program produces a unit test suite
with a high code coverage, i.e., a test is generated for both execution paths through
evalExam. In order to create meaningful tests using the VBT tool, the user has to pro-
vide a requirement specification for evalExam. In our example we use the following
JML requirement specification:

JAVA + JML (2.2)

/*@ public normal_behavior
ensures \result==(points>50?true:false);@*/

public boolean evalExam(int points, int id){..}

JAVA + JML

Let us assume now that Line 4 has been changed to res=true; or that Line 6 has
been changed to res=false;. In both cases the unit test suite generated by the VBT
tool detects the bug.

By contrast, some CaR regression testing tools do not require writing a requirement
specification, or even writing unit tests in advance, but there is a coverage problem with
using CaR tools – unit tests are created only for the specific program run executed by
the user or by a system test.

Testing in Isolation. Suppose the user changes the implementation of the method
evalExam() by replacing the array boolean[] passed by a database manage-
ment system. Line 8 is replaced by passedDB.write(id,res); that updates the
database.

JAVA (2.3)

3 public boolean evalExam(int points, int id){
4 boolean res=false;
5 if(points > 50){
6 res=true;
7 }
8 passedDB.write(id,res);
9 return res;

10 }

JAVA

The strength of VBT tools is the generation of test inputs that ensure a high test
coverage. The tests, however, are not isolated unit tests because the execution of
evalExam leads to the execution of passedDB.write.

Some existing CaR tools (e.g., [21,20]) can automatically create unit tests, us-
ing mock objects (see Section 3.1). This enables to perform unit testing in isola-
tion, which in this case means that the generated unit test results in the execution of
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evalExam but not of passedDB.write(id,res). Instead of calling the method
passedDB.write(id,res) the generated mock object is activated which mimics
a subset of input and output behavior of the database.

3 The Proposed Approach

We have analyzed the advantages and the problems of verification-based testing (VBT)
tools and of capture and replay (CaR) tools separately. VBT tools support the verifica-
tion process by helping to find software faults. They can generate test cases with high
code coverage. These tools, however, usually generate neither mock objects nor regres-
sion test oracles that are based on previous program executions. CaR tools are strong at
abstracting complicated program behavior and at automatically generating regression-
test oracles. The CaR tools, however, can do this only for specific program runs, that
have to be provided somehow. In contrast, VBT tools can generate program inputs for
distinct program runs.

P JT JT’

P’

VBT tool CaR tool 

next Version
test

coverage,
correctness

improve/debug

isolation,
regression oracle

Fig. 1. The creation of a tool chain and its application to unit regression testing

From this analysis it becomes clear that these kinds of tools should be combined into
a tool chain. Thus, the output of the VBT tool serves as input to the CaR tool, as shown
in Figure 1. Our approach consists of two steps. In the first one the user tries to verify
the program P using a verification tool that supports VBT. When a verification attempt
fails, VBT is activated to generate a unit test suite JT for P. The so generated tests help
in debugging P and the process is repeated until P is verifiable. When the verification
succeeds the VBT tool is activated to generate a test suite JT that ensures coverage of
the code of P. The generated test suite consists of one or more executable programs that
are provided as input to the CaR tool. Thus when JT is executed the execution of the
code under test is captured. The CaR tool in turn creates another unit test suite – JT’.
If the CaR tool replays the observed execution of each test, consequently the high code
coverage of JT is preserved by JT’. Furthermore,JT’ benefits from the improvements
that are gained by using the CaR tool. Depending on the capabilities of the CaR tool
this can be the isolation of units and the extension of tests with regression-test oracles.
Hence the tool chain employs the strengths of both kinds of tools involved. The test
suite JT’ can then be used to regression test P’ that is the next development version
of P.
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3.1 Building a Tool-Chain

Step I. The goal of this step is to ensure the correctness of the code and to generate
the test suite JT that ensure a high execution coverage. This can be achieved by using
verification tools with their VBT extensions. In the following we describe such tools.

Bogor/Kiasan combines symbolic execution, model checking, theorem proving,
and constraint solving to support design-by-contract reasoning of object-oriented soft-
ware [5]. Its extension that we categorize as VBT is KUnit [6]. The tool focuses on
heap-intensive JAVA programs and uses a lazy initialization algorithm with backtrack-
ing. The algorithm is capable of exploring all execution paths up to a bound on the
configurations of the heap. KUnit then generates test data for each path and creates
JUnit test suites. Similar features are provided by the KeY tool [2] that we describe
in more detail in Section 4.1. ESC/Java2 [4] is a static checker that can automatically
prove properties that go beyond simple assertions. A VBT extension of ESC/Java2 is
Check’n’Crash [22]. It generates JUnit tests for assertions that could not be proved us-
ing ESC/Java2. In this way false warnings featured by ESC/Java2 are filtered out. This
approach could be extended by providing unsatisfiable assertions that would stimulate
Check’n’Crash to explore all execution paths of the PUT. Java PathFinder [27] is an
explicit-state model checker. It is build on top of a custom-made Java Virtual Machine
with nondeterministic choice and features the generation of test inputs. Thus it can be
combined with a unit testing frame work like JUnit [17] to create JT.

Step II. The goal of the second step is to further improve the test suite JT using a CaR
tool. When JT is executed, the CaR tool executes and captures each path through the
method, generating JT’, a test suite for the PUT with the same coverage provided by
JT. Depending on the used CaR tool, JT’ may be a unit test suite supporting isolation
or it may be extended with regression-test oracles.

In [21], test factoring is described that turns system tests into isolated unit tests by
creating mock objects. For the capturing phase a wrapper class is created that records
the program behavior to a transcript, and the replay step uses a mock class that reads
from the transcript. The approach addresses complications that arise from field access,
callbacks, object passing across boundaries, arrays, native method calls, and class load-
ers. The generation of mock objects is also supported by KUnit. The approaches, how-
ever, have different properties because in the latter approach mock objects are created
from specifications instead of from runtime executions.

Some VBT tools can generate test oracles from the specifications that are used in the
verification process. Such oracles are suitable for regression testing. Yet, not all parts of
the system that are executed by JT may be specified. Our approach can be even applied
if no test oracles are generated for JT. In this case a CaR tool like Orstra [28] can be
used. During the capturing phase, Orstra collects object states to create assertions for
asserting behavior of the object states. It also creates assertion that check return values
of public methods with non-void returns. The assertions are then checked when the
system is modified. In [8], a CaR approach is presented that creates regression tests
from system tests. Components of the exercised system that may influence the behavior
of the targeted unit are captured. A test harness is created that establishes the prestate
of the unit that was encountered during system test execution. From that state, the unit
is replayed and differences with the recorded unit poststate are detected.
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GenUTest [20] is a CaR tool featuring both capabilities, i.e., the creation of isolated
unit tests and the creation of regression-test oracles. It is described in Section 4.2.

3.2 Advantages and Limitations

We regard our approach from two perspectives. On the one hand, CaR tools can be
used to further increase the quality of VBT. On the other hand, CaR tools can benefit
from being combined with VBT tools. The VBT generated tests can be used to drive
program’s execution to ensure the coverage of the whole code. From this perspective
our approach can be generalized by allowing general coverage ensuring tools for the
first phase. However, for CaR tools, such as [8,28,20], it is important that during the
capture phase only correct program behavior is observed – and this can be best ensured
when a verification tool is used in the first phase.

The approach combines also the limitations of the involved tools. CaR-based regres-
sion testing tools can discover changes in the behavior when a program is modified, but
they can not distinguish between intensional and not intensional changes. Another prob-
lem ocurrs with CaR tools that generate mock entities. It is often unclear under what
preconditions the behavior of a mock entity is valid when the mock entity is executed
in a state not previously observed by the CaR tool. Some advantages and limitations are
specific to the particular tools and techniques. So are also the choice of the test target
and mock objects. We advise the reader to refer to the referenced publications.

Verification tools are typically applicable to much smaller programs than testing
tools. Our approach targets therefore at quality ensurance of small systems that are
safety or security critical. Building a tool-chain adds complexity to the verification pro-
cess. We expect, however, a payoff on the workload when the target system is modified
and the quality of the software has to be maintained. Most VBT techniques are based on
symbolic execution which is a challenging issue. Considering Listing 2.3 of Section 2,
when symbolic execution reaches Line 8 the source code of write()may not be avail-
able or it may be too complicated for symbolic execution. Typically, in such situation
method contracts that abstract the method call can be provided. Alternatively techniques
such as [25] can be used that combine symbolic execution and runtime-execution.

Regression testing techniques such as [16], for example, are often concerned with
test selection and test prioritization. The goal is to reduce the execution time of the
regression test suite and thus to save costs. Graves et al. [14] describe test selection
techniques for given regression test suites. They reduce the scope of the PUT that is
executed by selecting a subset of the test suite. Our approach provides an alternative
partitioning of the PUT (Figure 2) that can reduce its tested scope and should be con-
sidered in combination with test selection techniques. Instead of reducing the number
of tests, parts of the program are substituted by mock entities.

When using selection techniques, a typical regression testing is usually described as
follows (cf., for example, [14]). Let P be the original version of the program, P ′ the
modified version that we would like to test, and T is the test suite for P , then:

1. Select T ′ ⊆ T .
2. Test P ′ with T ′, establishing the correctness of P ′ with respect to T ′.
3. If necessary, create T ′′, a set of new functional or structural test cases for P ′.
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Fig. 2. The traditional test selection (left) versus our approach (right)

4. Test P ′ with T ′′, establishing the correctness of P ′ with respect to T ′′.
5. Create T ′′′, a new test suite and test execution profile for P ′, from T , T ′, and T ′′.

The authors of [14] point out the following problems associated with each of the steps:

1. It is not clear how to select a ‘good’ subset T ′ of T with which to test P ′.
2. The problem of efficiently executing test suites and checking test results for cor-

rectness.
3. The coverage identification problem: the problem of identifying portions of P ′ or

its specification that require additional testing.
4. The problem of efficiently executing test suites and checking test results for cor-

rectness.
5. The test suite maintenance problem: the problem of updating and storing test infor-

mation.

We use a slightly different model, which seems to solve the above issues. This model
can be summarized as follows. Let P be the original version of the program, P ′ the
modified version that we would like to test, and T is the test suite which was generated
for P after running the proposed tool-chain.

1. Introducing mock objects produces P ′′ ⊆ P ′.
2. Test P ′′ with T .
3. Rerun the tool-chain for the modified parts of P ′ to produce T ′, covering new

branches.

The problems are solved as follows:

1. There is no need to select a subset T ′ of T . Instead we have to consider how to
create P ′′, i.e., which parts of the system P ′ should be replaced by mock objects.

2. The problem of efficiently executing test suites and checking test results for cor-
rectness is solved by using mock objects, thus not executing the whole system.

3. The coverage identification problem is solved since the whole program may be
tested.

4. Same as step 2.
5. The problem of updating and storing test information is solved by rerunning the

tool-chain on the modified system parts.

Safe regression test selection techniques guarantee that the selected subset contains all
test cases in the original test suite that can reveal regression bugs [14]. By execut-
ing only the unit tests of classes that have been modified a safe and simple selection
technique should be obtained.
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4 KeYGenU

We have implemented a concrete tool-chain according to Figure 1, called KeYGenU,
and have applied it to several test cases. In this section we describe the two tools used
by KeYGenU, namely KeY and GenUTest, and provide an example to demonstrate our
ideas.

4.1 KeY

The KeY system [2] is a verification and test generation system for a subset of JAVA and
a superset of JAVA CARD; the latter is a standardized subset of JAVA for programming of
SmartCards. At its core, KeY is an automated and interactive theorem prover for first-
order dynamic logic, a logic that combines first-order logic formulas with programs
allowing to express, e.g., correctness properties of the programs.

KeY implements a VBT technique [10] with several extensions [9,13]. The test gen-
eration capabilities are based on the creation of a proof tree (see Figure 3) for a formula
expressing program correctness. The proof tree is created by interleaving first-order
logic and symbolic execution rules where the latter execute the PUT with symbolic val-
ues in a manner that is similar to lazy evaluation. Case distinctions in the program are
therefore reflected as branches of the proof tree; these may also be implicit distinctions
like, e.g., the raising of exceptions. Proof tree branches corresponding to infeasible
program paths, i.e., paths that can never be executed due to contradicting branch con-
ditions in the program, are detected and not analyzed any further. Soundness of the
system ensures that all paths through the PUT are analyzed, except for parts where the
user chooses to use abstraction. Thus, creating tests for those proof branches often en-
sures full feasible path coverage of the regarded program part of the PUT. Based on the
information contained in the proof tree, KeY creates test data using a built-in constraint
solver. The PUT is initialized with the respective test data of each branch at a time. In
this way execution of each program path in the proof tree is ensured.

Fig. 3. Overview of verification-based testing implemented in KeY (left) and capture and replay
implemented in GenUTest (right)
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4.2 GenUTest

GenUTest is a prototype tool that generates unit tests [20]. The tool captures and logs
inter-object interactions occurring during the execution of JAVA programs. The recorded
interactions are then used to generate JUnit tests and mock-object like entities called
mock aspects. These can be used independently by developers to test units in isolation.
The comprehensiveness of the generated unit tests depends on the software execution.
Software runs covering a high percentage generate in turn unit test with similar code
coverage. Hence, GenUTest cannot guarantee a high coverage.

Figure 3 presents a high level view of GenUTest’s architecture and highlights the
steps in each of the three phases of GenUTest: the capture phase, the generation phase,
and the test phase. In the capture phase the program is modified to include functionality
to capture its execution. When the modified program executes, inter-object interactions
are captured and logged. The interactions are captured by utilizing AspectJ, the most
popular Aspect-Oriented Programming extension for the JAVA language [30,18]. The
generation phase utilizes the log to generate unit tests and mock aspects, mock-object
like entities. In the test phase, the unit tests are used by the developer to test the code of
the program.

4.3 A Detailed Example

This section describes a simplified banking application, that was adopted from case
studies on verification [3] and JML-based validation [7], and that was adapted to our
needs. The bank customer can check his or her accounts as well as make money trans-
fers between accounts. The customer can also set some rules for periodical money trans-
fer. Figure 4 presents part of the case-study source-code.

The first step is to load the banking application into KeY and to select a method for
symbolic execution; following the code excerpt in Figure 4, this is either transfer()
or registerSpendingRule(). KeY generates a JUnit test suite from the obtained
proof tree. It consists of a test method for every execution path of the method under
test. Thus the test suite provides a high test coverage. Figure 5 shows one of the gen-
erated test methods for testing the method transfer(). In Lines 2–4 variables are
declared and assigned initial values; Lines 5–9 assign test data to variables and fields; in
Line 12 the method under test is executed; and in Line 16 the test oracle, implemented
as subformula5(), is evaluated.

This test suite is the data that is exchanged from KeY to GenUTest. It is, however,
a fully functioning test suite and should be executed before the continuation of the
tool-chain, in order to automatically detect program bugs with respect to the JML-
specification. In particular, this step turned out to be important because KeY is very good
at detecting implicit program branches caused by, e.g., NullPointerExceptions,
but on the other hand GenUTest expects the executed code not to throw any exception
during capturing phase. Thus we have either extended the specifications, stating that
certain fields are non-null, or we simply have removed from the test suite generated by
KeY those test methods that have detected exceptions.

Capturing code of GenUTest is weaved-in into the KeY-generated test methods,
such as in Figure 5, by running the test suite as an AspectJ application in the Eclipse
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JAVA + JML

1 /* Copyright (c) 2002 GEMPLUS group. */
2 package banking; import ...;
3 public class Transfers_src {
4 protected MyRuleVector rules=new MyRuleVector();
5 private AccountMan_src accman;
6 ... //field and method declarations
7

8 /*@ requires true;
9 modifies rules.size(), Rule.nbrules ;

10 ensures ((account <0 || spending_account <0)
11 && (threshold > 0 && period >= 0))==> \result==3;
12 ensures (threshold<=0 && period>=0 && account>=0
13 && spending_account >=0)==> \result==5;
14 ensures (threshold>0 && period<0 && account>=0
15 && spending_account>=0) ==> \result==6;
16 ...
17 signals (Exception e) false; @*/
18 public int registerSpendingRule(String date, int account, int threshold,
19 int spending_account, int period) {
20 if (account<0||spending_account<0) return 3;
21 Account account1 = accman.getRef(account);
22 Account account2 = accman.getRef(spending_account);
23 if ((account1==null)||(account2==null)) return 3;
24 if (threshold <= 0) return 5;
25 if (period < 0) return 6;
26 Rule rule=new SpendingRule (date,account,
27 threshold,spending_account,period,accman);
28 ...
29 }
30

31 /*@ requires true;
32 ensures (amount<=0 ==> \result==1); @*/
33 public int transfer(int from_account, int to_account, int amount){
34 Account fromAccount = accman.getRef(from_account);
35 Account toAccount = accman.getRef(to_account);
36 if(fromAccount!=null && toAccount!=null && amount > 0) {
37 if(amount < fromAccount.getBalanceamount()){
38 fromAccount.debit(amount);
39 toAccount.credit(amount);
40 return 0;
41 }else
42 return 1;
43 }
44 return 1;
45 } }//class declaration

JAVA + JML

Fig. 4. Excerpt from the banking case study
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JAVA

1 public void testcode0 () { /**declare vars**/
2 int from_account=0; int to_account=0; int res=0; int _to_account=0;
3 int _from_account=0; int _amount=0; int amount=0; Throwable exc=null;
4 Transfers_src o=null;
5 /**data**/ int testData0=2; int testData1=2; o=new Transfers_src();
6 o._setrulesMyRuleVector(new MyRuleVector());
7 o._setaccmanAccountMan_src(new AccountMan_src());
8 from_account=testData0; to_account=testData1; _amnt=amount;
9 _from_account=from_account; _to_account=to_account;exc=null;

10

11 try { /** method under test **/
12 res=o.transfer(_from_account,_to_account,_amnt);
13 } catch (java.lang.Throwable e) { exc=e; }
14

15 StringBuffer buffer=new StringBuffer();
16 boolean _oracleResult=subformula5(amount,exc,res,buffer);
17 assertTrue(buffer.toString(),_oracleResult);
18 }

JAVA

Fig. 5. JUnit test method generated by KeY

IDE. After the capturing phase, GenUTest produces another JUnit test suite con-
sisting of test methods like, e.g., in Figure 6, and mock aspects such as in Fig-
ure 7. As expected, the coverage of the KeY-generated tests is preserved by the
GenUTest-generated tests; for instance, changes to any of the return values of the
method registerSpendingRule() or the method transfer() have been
detected.

Figure 6 presents the test method generated by GenUTest. The method invocations
that were observed during the capture phase are replayed in Lines 4-14. GenUTest tries
to minimize this code using some static analysis. The calls to setSection() are
important for choosing the correct mock aspect as explained below. In Line 14 the
actual method under test is called and its return value is compared in Line 15 with the
value that was observed during capturing phase. Thus a regression test is performed.

In our experiments the calls to the methods getRef(), getBalanceamount(),
debit(), and credit() (see Figure 4) were replaced, as expected, by mock aspect
invocations, because these methods belong to classes different from the current class
Transfers src. For instance, Lines 2-4 in Figure 7 match the call to getRef()
and Lines 7-11 check which occurrence of getRef in the call tree is currently pro-
cessed, as different invocations may yield different return values. Line 11 checks if the
given parameter value of getRef() has been actually observed during the capturing
phase by using the reflection API. If this is not the case, then the original code is in-
voked with the current parameter value via the AspectJ keyword proceed, as shown
in Line 11. Otherwise, the previously recorded return value is returned in Line 12, and
thus unit testing in isolation is performed.
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4.4 A Short Evaluation

We have tested KeYGenU on several use cases. It has automatically generated iso-
lated unit-regression tests for classes of a banking application. Using the KeY-generated
tests we have found several bugs in the application with respect to the provided JML-
specification. This result confirms the observations made in [3,7] that the available
specification was incomplete; e.g., many errors were caused by throwing
NullPointerExceptions that should have been excluded by appropriate method
preconditions. We have therefore either extended the specification or ignored these

JAVA

1 @Test public void testtransfer1(){
2 AccountMan_src AccountMan_src_11; MyRuleVector MyRuleVector_8;
3 TestGeneric0 TestGeneric0_1; Transfers_src Transfers_src_4; int intRet;
4 setSection("TestGeneric0",1,2); TestGeneric0_1 = new TestGeneric0();
5 setSection("Transfers_src",4,37); Transfers_src_4= new Transfers_src();
6 setSection("MyRuleVector",40,67); MyRuleVector_8 = new MyRuleVector();
7 setSection("Transfers_src",68,73);
8 Transfers_src_4._setrulesMyRuleVector(MyRuleVector_8);
9 setSection("AccountMan_src",76,129);

10 AccountMan_src_11 = new AccountMan_src();
11 setSection("Transfers_src",132,137);
12 Transfers_src_4._setaccmanAccountMan_src(AccountMan_src_11);
13 setSection("Transfers_src",140,149);
14 intRetVal5 = Transfers_src_4.transfer(2,2,0);
15 assertEquals(intRet,1);
16 }

JAVA

Fig. 6. JUnit test method generated by GenUTest

AspectJ

1 pointcut restriction(): !adviceexecution() &&
2 this(Transfers_src) && !target(Transfers_src);
3 Account around(int param1): call(banking.AccountMan_src.getRef(int))
4 && args(param1) && restriction() {
5 MockAspectHandler.Section currentSection =
6 MockAspectHandler.getInstance().getClassSection("Transfers_src");
7 if (currentSection.start == 884 && currentSection.end == 905){
8 if (currentSection.statementCounter==1){
9 currentSection.statementCounter++;

10 Account Account_157 = new Account();
11 if(reflectionCompare(param1,1)!=0){ return proceed(param1); }
12 return Account_157;
13 }}.../* commented out case distinctions */...}

AspectJ

Fig. 7. Mock aspect generated by GenUTest for the method getRef()
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error-detecting test cases, as our focus was on regression testing. KeYGenU generated
also unit tests for an old version of some software. Then, the unit tests have been ex-
ecuted with newer versions of the software. The discrepancies have been examined to
determine if they uncover regression bugs. GenUTest generated a test suite that was able
to detect changes to any branch of the tested methods, confirming the high test coverage.

Regarding scalability, KeYGenU generates in some cases a huge amount of unit tests.
One of the reasons is that GenUTest generates tests not only for the method under test
but also for the test code generated by KeY. For instance, the KeY-generated test oracle
uses the class StringBuffer in order to collect debugging information about the
evaluation of the post condition. This in turn resulted in over a hundred tests for the class
StringBuffer. Also the selection of program paths is not optimized yet. Symbolic
execution may lead to too many unwindings of loops producing many tests – some of
which may be redundant, i.e., there may be more than one test that exercises the CUT
in the same manner. These can be removed using the techniques described in [29].

5 Related Work

In Section 3.1 we described tools representing VBT techniques [9,6,22,27] as well as
tools that represent CaR techniques [20,21,28,8]. In Section 3.2 we related our work to
test selection and prioritization techniques [14,16]. Furthermore, a recent work that also
automatically generates regression unit-tests is DiffGen [24]. In this approach the PUT
is instrumented with additional branches and then a coverage-based test generation tool
is used to detect regression bugs. In contrast, the approach presented in [23] suggests
to use a verification tool for proving an equivalence relation between two version of a
program. These approaches differ from ours as they do not use CaR techniques. In [28]
the usage of a coverage guaranteeing tool is considered in combination with the CaR
tool Orstra. However, the approaches used in [23,28] do not consider the generation of
isolated unit tests and they do not provide means to guarantee that during capure phase
the observed program behavior is correct.

Besides creating an approach for regression unit testing, our goal was also to investi-
gate the combination of dynamic (runtime execution based) and static (symbolic execu-
tion based) analysis tools. Ernst [11] and Smaragdakis et al. [22] discuss the synergies
and differences between static and dynamic analysis. The strength of static analysis is
data generality and precision of code coverage, whereas the strength of dynamic analy-
sis is speed of program execution and handling of black-box behavior without providing
abstractions. While in [25], for example, static and dynamic analysis are combined in a
rather coherent way, we suggest a tool-chain approach whose strength is the simplicity
of the interface between the tools and their independence. Another tool-chain approach
where KeY is used to obtain high code coverage has been realized in [1]. However,
while in [1] a JML-specification is exchanged between the tools, in the here presented
approach a unit test suite is exchanged from the VBT tool to the CaR tool.

6 Conclusion and Future Work

We have described an approach for automatic generation of unit tests that can also
be used for regression testing. We aim at achieving high coverage of the tested code
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while testing each unit in isolation. This is accomplished by creating a tool-chain that
combines two tools, a verification-based testing (VBT) and a capture and replay (CaR)
test generation tool. We first run a VBT tool to generate tests for each path in a given
system. This achieves a high coverage of the code, as desired. These tests are then used
as input to a CaR tool that turns the tests into truly isolated unit tests by creating mock-
object like entities. The advantage of using VBT tools is that the verification process
can be used to ensure that only correct behavior is captured by the CaR tool.

To examine our ideas we have implemented KeYGenU, a concrete tool chain consist-
ing of the VBT tool KeY and the CaR tool GenUTest. The tests that we have executed
provide a proof of concept. The integration of different tools may, however, cause some
additional work. For example, in the case of KeYGenU, the fact that both tools have
been developed independently caused some difficulties. Running the tools in combina-
tion has revealed some bugs in each of the tools that have been fixed and that helped
to improve both tools. GenUTest creates tests only for methods that return a value and
only the returned value is analyzed by the generated regression tests. A considerable
improvement would be to handle also void methods, e.g., by analyzing the state of the
object on which the method was invoked.

Verification tools, such as KeY, are typically applicable to much smaller programs
than testing tools. The scalability of the approach is bound by the scalability of the par-
ticular VBT and CaR tools. Our approach targets therefore at quality ensurance of small
systems that are safety or security critical. Building the proposed tool-chain adds com-
plexity to the verification process. The expected payoff on the workload is, however,
when the target system is modified and the quality of the software has to be maintained.

Acknowledgements. We are grateful to Benny Pasternak for modifying GenUTest as
needed to combine it with KeY. We also thank Jean-Louis Lanet for providing the bank-
ing application that served as our case study.
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Abstract. Unit tests of object-oriented code exercise particular sequences of
method calls. A key problem when automatically generating unit tests that achieve
high structural code coverage is the selection of relevant method-call sequences,
since the number of potentially relevant sequences explodes with the number of
methods. To address this issue, we propose a novel approach, called DyGen, that
generates tests via mining dynamic traces recorded during program executions.
Typical program executions tend to exercise only happy paths that do not include
error-handling code, and thus recorded traces often do not achieve high structural
coverage. To increase coverage, DyGen transforms traces into parameterized unit
tests (PUTs) and uses dynamic symbolic execution to generate new unit tests for
the PUTs that can achieve high structural code coverage. In this paper, we show
an application of DyGen by automatically generating regression tests on a given
version of software.1

Keywords: object-oriented unit testing, regression testing, dynamic symbolic
execution.

1 Introduction

Software testing is a common methodology used to detect defects in the code under
test. A major objective of unit testing is to achieve high structural coverage of the code
under test, since unit tests can only uncover defects in those portions of the code, which
are executed by those tests. Automatic generation of unit tests that achieve high struc-
tural coverage of object-oriented code requires method-call sequences (in short as se-
quences). These sequences help cover true or false branches in a method under test
by creating desired object states for its receiver or arguments. We next present an exam-
ple for desired object state and explain how method-call sequences help achieve desired
object states using an illustrative example shown in Figure 1a.

Figure 1a shows an AdjacencyGraph class from the QuickGraph2 library. The graph
includes vertices and edges that can be added using the methods AddVertex and

1 The majority of the work was done during an internship at Microsoft Research.
2 http://www.codeplex.com/quickgraph

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 77–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Sample code examples

AddEdge, respectively. To reach Statement 20 in the Compute method, a desired ob-
ject state is that the graph object should include at least one edge. Figure 1b shows a
sequence that generates the desired object state. It is quite challenging to generate these
sequences automatically from the implementation of AdjacencyGraph due to a large
number of possible sequences and only a few sequences are valid. In practice, sequences
required for generating desired object states often include multiple classes leading to
a large space of possible sequences that cannot be effectively handled by existing ap-
proaches [1][2][3][4][5] that are either random or based on class implementations.

To address preceding issues, we propose a novel approach, called DyGen, that gener-
ates sequences from dynamic traces recorded during (typical) program executions. We
use dynamic traces as opposed to static traces, since dynamic traces are more precise
than static traces. These recorded dynamic traces include two aspects: realistic scenar-
ios expressed as sequences and concrete values passed as arguments to those method
calls. Since dynamic traces include both sequences and concrete argument values, these
traces can directly be transformed into unit tests. However, such a naive transformation
results in a large number of redundant unit tests that often do not achieve high struc-
tural coverage due to two major issues. We next explain these two major issues of naive
transformation and describe how DyGen addresses those issues.

First, since dynamic traces are recorded during program executions, we identify that
many of the recorded traces are duplicates. The reason for duplicates is that the same
sequence can get invoked multiple times. Therefore, a naive transformation results in a
large number of redundant unit tests. To address this issue, DyGen uses a combination
of static and dynamic analyses and filters out duplicate traces.

Second, unit tests generated with the naive transformation tend to exercise only
happy paths (such as paths that do not include error-handling code in the code un-
der test) and often do not achieve high structural coverage of the code under test. To
address this issue, DyGen transforms recorded dynamic traces into Parameterized Unit
Tests (PUT) [6] rather than Conventional Unit Tests (CUT). PUTs are a recent advance
in software testing and generalize CUTs by accepting parameters. Figure 1d shows a
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PUT for the CUT shown in Figure 1c, where concrete values in Statements 2 and 3
are replaced by the parameters x and y. DyGen uses Dynamic Symbolic Execution
(DSE) [7][8][9][10] to automatically generate a small set of CUTs that achieve high
coverage of the code under test defined by the PUT. Section 2 provides more details on
how DSE generates CUTs from PUTs. DyGen uses Pex [11], a DSE-based approach
for generating CUTs from PUTs. However, DyGen is not specific to Pex and can be
used with any other test-input generation engine.

DyGen addresses two major challenges faced by existing DSE-based approaches in
effectively generating CUTs from PUTs. First, DSE-based approaches face a challenge
in generating concrete values for parameters that require complex values such as float-
ing point values or URLs. To address this challenge, DyGen uses naive transformation
on each trace to generate a CUT, which is effectively an instantiation of the correspond-
ing PUT. DyGen uses this CUT to seed the exploration of the corresponding PUT, which
DyGen generates as well. Using seed tests helps not only to address the preceding chal-
lenge in generating complex concrete values, but also helps in increasing the efficiency
of DSE while exploring PUTs. Second, in our evaluations (and also in practice), we
identify that even after minimization of duplicate traces, the number of generated PUTs
and seed tests can still be large, and it would take a long time (days or months) to ex-
plore those PUTs with DSE on a single machine. To address this challenge, DyGen uses
a distributed setup that allows parallel exploration of PUTs.

In this paper, we show an application of DyGen by automatically generating regres-
sion tests on a given version of software. Regression testing, an important aspect of
software maintenance, helps ensure that changes made in new versions of software do
not introduce any new defects, referred to as regression defects, relative to the base-
line functionality. Rosenblum and Weyuker [12] describe that the majority of software
maintenance costs is spent on regression testing. To transform generated CUTs into
regression tests, DyGen infers test assertions based on the given version of software.
More specifically, DyGen executes generated CUTs on the given version of software,
captures the return values of method calls, and generates test assertions from these cap-
tured return values. These test assertions help detect regression defects by checking
whether the new version of software also returns the same values.

In summary, this paper makes the following major contributions:
– A scalable approach for automatically generating regression tests (that achieve high

structural coverage of the code under test) via mining dynamic traces from program
executions and without requiring any manual efforts.

– A technique to filter out duplicate dynamic traces by using static and dynamic anal-
yses, respectively.

– A distributed setup to address scalability issues via parallel exploration of PUTs to
generate CUTs.

– Three large-scale evaluations to show the effectiveness of our DyGen approach. In
our evaluations, we show that DyGen recorded≈1.5 GB C# source code (including
433,809 traces) of dynamic traces from applications using two core libraries of the
.NET framework. From these PUTs, DyGen eventually generated 501,799 regres-
sion tests, where each test exercises a unique path, that together covered 27,485
basic blocks, which represents an increase of 24.3% over the number of blocks
covered by the originally recorded dynamic traces.
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2 Background

We next provide details of two major concepts used in the rest of the paper: dynamic
symbolic execution and dynamic code coverage.

2.1 Dynamic Symbolic Execution

In our approach, we use Pex as an example state-of-the-art dynamic symbolic execu-
tion tool. Pex [11] is an automatic unit-test-generation tool developed by Microsoft
Research. Pex accepts PUTs as input and generates CUTs that achieve high coverage
of the code under test. Initially, Pex executes the code under test with arbitrary inputs.
While executing the code under test, Pex collects constraints on inputs from predicates
in branching statements along the exercised execution path. Pex next solves collected
constraints to generate new inputs that guide future executions along new paths. Pex
uses a constraint solver and theorem prover, called Z3 [13], to reason about collected
constraints by faithfully encoding all constraints that arise in safe .NET programs. Z3
uses decision procedures for propositional logic, fixed sized bit-vectors, tuples, arrays,
and quantifiers to reason about encoded constraints. Z3 approximates arithmetic con-
straints over floating point numbers by translating them to rational numbers. Pex also
implements various optimization techniques to reduce the size of the formula that is
given to Z3.

2.2 Dynamic Code Coverage

In this paper, we present dynamic code coverage information collected by Pex. As Pex
performs code instrumentation dynamically at runtime, Pex only knows about the code
that was already executed. In addition to code loaded from binaries on the disk, the
.NET environment in which we perform our experiments allows the generation of addi-
tional code at runtime via Reflection-Emit.

3 Approach

Figure 2 shows the high-level overview of our DyGen approach. DyGen includes three
major phases: capture, minimize, and explore. In the capture phase, DyGen records dy-
namic traces from (typical) program executions. DyGen next transforms these dynamic
traces into PUTs and seed tests. Among recorded traces, we identify that there are many
duplicate traces, since the same sequence of method calls can get invoked multiple times
during program executions. Consequently, the generated PUTs and seed tests also in-
clude duplicates. For example, in our evaluations, we found that 84% of PUTs and 70%
of seed tests are classified as duplicates by our minimize phase. To address this issue,
in the minimize phase, DyGen uses a combination of static and dynamic analyses to
filter out duplicate PUTs and seed tests, respectively. In the explore phase, DyGen uses
Pex to explore PUTs to generate regression tests that achieve high coverage of the code
under test.
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(a) (b)

Fig. 2. (a) A high-level overview of DyGen. (b) A dynamic trace and generated PUT and CUT
from the trace.

3.1 Capture Phase

In the capture phase, DyGen records dynamic traces from program executions. The
capture phase uses a profiler that records method calls invoked by the program during
execution. The capture phase records both the method calls invoked and the concrete
values passed as arguments to those method calls. Figure 2b1 shows an example dy-
namic trace recorded by the capture phase. Statement 2 shows the concrete value “<%
Page..\u000a” passed as an argument for the Match method.

DyGen uses a technique similar to Saff et al. [14] for transforming recorded traces
into PUTs and seed tests. To generate PUTs, DyGen identifies all constant values and
promotes those constant values as parameters. Furthermore, DyGen identifies return
values of method calls in the PUT and promotes those return values as out parameters
for the PUT. In C#, these out parameters represent the return values of a method. Dy-
Gen next generates seed tests that include all concrete values from the dynamic traces.
Figures 2b2 and 2b3 show the PUT and the seed test, respectively, generated from the
dynamic trace shown in Figure 2b1.

The generated PUT includes two parameters and one out parameter. The out pa-
rameter is the return value of the method Capture.Index. These out parameters are
later used to generate test assertions in regression tests (Section 3.3). The figure also
shows a seed test generated from the dynamic trace. The seed test includes concrete
values of the dynamic trace and invokes the generated PUT with those concrete values.

3.2 Minimize Phase

In the minimize phase, DyGen filters out duplicate PUTs and seed tests. The primary
reason for filtering out duplicates is that exploration of duplicate PUTs or execution of
duplicate seed tests is redundant and can also lead to scalability issues while generating
regression tests. We use PUTs and seed tests shown in Figure 3 as illustrative examples
to explain the minimize phase. The figure shows a method under test foo, two PUTs,
and three seed tests. We use these examples primarily for explaining our minimize
phase. Our actual PUTs are much more complex than these illustrative examples with
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Fig. 3. Two PUTs and associated seed tests generated by the capture phase

an average PUT size of 21 method calls (Section 4.4). We first present our criteria for a
duplicate PUT and a seed test and next explain how we filter out such duplicate PUTs
and seed tests.

Duplicate PUT: We consider a PUT, say P1, as a duplicate of another PUT, say P2, if
both P1 and P2 have the same sequence of Microsoft Intermediate Language (MSIL)3

instructions.

Duplicate Seed Test: We consider a seed test, say S1, as a duplicate of another seed
test, say S2, if both S1 and S2 exercise the same execution path. This execution path
refers to the path that starts from beginning of the PUT that is called by the seed test,
and goes through all (transitive) method calls performed by the PUT.

DyGen uses static analysis to identify duplicate PUTs. Consider the method bodies
of PUT1 and PUT2. DyGen considers PUT2 as a duplicate of PUT1, since both the PUTs
include the same sequence of MSIL instructions. Since PUT2 is a duplicate of PUT1,
DyGen automatically replaces the PUT2 method call in SeedTest2 with PUT1.

After eliminating duplicate PUTs, DyGen uses dynamic analysis for filtering out
duplicate seed tests. To identify duplicate seed tests, DyGen executes each seed test and
monitors its execution path in the code under test. For example, SeedTest1 follows
the path “3→ 7→ 11” in the foo method. DyGen considers SeedTest2 as a duplicate
of SeedTest1, since SeedTest2 also follows the same path “3→ 7→ 11” in the foo
method. Consider another unit test SeedTest3 shown in Figure 3. DyGen does not
consider SeedTest3 as a duplicate of SeedTest1, since SeedTest3 follows the path
“3→ 7→ 11→ 11” (since SeedTest3 iterates the loop in Statement 10 two times).

3.3 Explore Phase

In the explore phase, DyGen uses Pex to generate regression tests from PUTs. Al-
though seed tests generated in the capture phase can be considered as regression tests,
most seed tests tend to exercise common happy paths such as paths that do not include
error-handling code in the code under test. In only a few rare scenarios, seed tests may
exercise the paths related to error-handling code, if such scenarios happen during the
recorded program executions. Therefore, these seed tests do not achieve high coverage
of the corner cases and error handling of the code under test.

3 http://msdn.microsoft.com/en-us/library/c5tkafs1(VS.71).aspx

http://msdn.microsoft.com/en-us/library/c5tkafs1(VS.71).aspx
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Fig. 4. Regression tests generated by Pex by exploring the PUT shown in Figure 2b2

To address this issue, DyGen uses Pex to explore generated PUTs. Inspired by Patrice
et al. [15], Pex can leverage seed inputs in the form of conventional unit tests. Using
seed tests increases the effectiveness of Pex, and potentially any other DSE-based ap-
proaches, in two major ways. First, with seed tests, Pex executes those seed tests and
internally builds an execution tree with nodes for all conditional control-flow statements
executed along the paths exercised by the seed tests. Pex starts exploration from this pre-
populated tree. In each subsequent iteration of the exploration, Pex tries to extend this
tree as follows: a formula is constructed that represents the conjunction of the branch
conditions of an already known path prefix, conjoined with the negation of a branch
condition of a known suffix; the definitions of all derived values are expanded so that
conditions only refer to the test inputs as variables. If the formula is satisfiable, and test
inputs can be computed by the constraint solver, then by executing the PUT with those
test inputs, Pex learns a new feasible path and extends the execution trees with nodes for
the suffix of the new path. Without any seed tests, Pex starts exploration with an empty
execution tree, and all nodes are discovered incrementally. Therefore, using seed tests
significantly reduces the amount of time required in generating a variety of tests with
potentially deep execution paths from PUTs. Second, seed tests can help cover reach
certain paths that are hard to be covered without using those tests. For example, it is
quite challenging for Pex or any other DSE-based approach to generate concrete values
for variables that require complex values such as IP addresses, URLs, or floating point
values. In such scenarios, seed tests can help provide desired concrete values to reach
those paths.

Pex generated 86 regression tests for the PUT shown in Figure 2b2. Figure 4 shows
three sample regression tests generated by Pex. In Regression tests 1 and 2, Pex auto-
matically annotated the unit tests with expected exceptions ArgumentNullException
and ArgumentOutOfRangeException, respectively. Since the PUT (Figure 2b2) in-
cludes an out parameter, Pex generated assertions in regression tests (such as Statement
3 in Regression test 3) based on actual values captured while generating the test. These
expected exceptions or assertions serve as test oracles in regression tests.

When a PUT invokes code containing loops, an exhaustive exploration of all execu-
tion paths via DSE may not terminate. While Pex employs search strategies to achieve
high code coverage quickly even in the presence of loops, Pex or any other DSE-based
approaches may still take a long time (days or months) to explore PUTs with DSE
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on a single machine. To address this issue, DyGen uses an enhanced distributed setup
originally proposed in our previous work [11]. Our distributed setup allows to launch
multiple Pex processes on several machines. Once started, our distributed setup is de-
signed to run forever in iterations. Each subsequent iterations increase bounds imposed
on the exploration to guarantee termination. For example, consider the timeout param-
eter that describes when to stop exploring a PUT. In the first iteration, DyGen sets three
minutes for the timeout parameter. This value indicates that DyGen terminates explo-
ration of a PUT after three minutes. In the first iteration, DyGen explores all PUTs
with these bounded parameters. In the second iteration, DyGen doubles the values of
these parameters. For example, DyGen sets six minutes for the timeout parameter in
the second iteration. Doubling the parameters gives more time for Pex in exploring new
paths in the code under test. To avoid Pex exploring the same paths that were explored
in previous iterations, DyGen maintains a pool of all generated tests. DyGen uses the
tests in the pool generated by previous iterations as seed tests for further iterations. For
example, tests generated in Iteration 1 are used as seed tests in Iteration 2. Based on the
amount of time available for generating tests, tests can be generated in further iterations.

4 Evaluations

We conducted three evaluations to show the effectiveness of DyGen in generating re-
gression tests that achieve high coverage of the code under test. Our empirical results
show that DyGen is scalable and can automatically generate regression tests for large
real-world code bases without any manual efforts. In our evaluations, we use two core
.NET 2.0 framework libraries4 as main subjects. We next describe the research ques-
tions addressed in our evaluation and present our evaluation results.

4.1 Research Questions

We address the following three research questions in our evaluations.

– RQ1: Can DyGen handle large real-world code bases in automatically generating
regression tests that achieve high coverage of the code under test?

– RQ2: Do seed tests help achieve higher coverage of the code under test than without
using seed tests?

– RQ3: Can more machine power help generate new regression tests that can achieve
more coverage of the code under test?

4.2 Subject Code Bases

We used two core .NET 2.0 framework base class libraries as the main subjects in our
evaluations. Since these libraries sit at the core of the .NET framework, it is paramount
for the .NET product group to maintain and continually enrich a comprehensive re-
gression test suite, in order to ensure that future product versions preserve the existing
behavior, and to detect breaking changes. Table 1 shows the two libraries (mscorlib

4 http://msdn.microsoft.com/en-us/library/ms229335.aspx

http://msdn.microsoft.com/en-us/library/ms229335.aspx
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Table 1. Ten .NET framework base class libraries used in our evaluations

.NET libraries Short name KLOC # public # public
classes methods

mscorlib mscorlib 178 1316 13199
System System 149 947 8458
System.Windows.Forms Forms 226 1403 17785
System.Drawing Drawing 24 223 2823
System.Xml Xml 122 270 5426
System.Web.RegularExpressions RegEx 10 16 162
System.Configuration Config 17 105 773
System.Data Data 126 298 5464
System.Web Web 202 1140 11487
System.Transactions Trans 9.5 39 405
TOTAL 1063 5757 65982

and System) used in our evaluations and their characteristics such as the number of
classes and methods. Column “Short name” shows short names (for each library) that
are used to refer to those libraries. The table also shows statistics of eight other libraries
of .NET 2.0 framework. Although these other eight libraries are not our primary targets
for generating regression tests, they were exercised as well by the recorded program
executions. In our evaluations, we use these additional eight libraries also while pre-
senting our coverage results. The table shows that these libraries include 1,063 KLOC
with 5,757 classes and 65,982 methods.

4.3 Evaluation Setup

In our evaluations, we used nine machines that can be classified into three configura-
tion categories. On each machine, we launched multiple Pex processes. The number
of processes launched on a machine is based on the configuration of the machine. For
example, on an eight core machine, we launched seven Pex processes. Each Pex pro-
cess was exploring one class (including multiple PUTs) at a time. Table 5(a) shows
all three configuration categories. Columns “# of mc” and “# of pr” show the number
of machines of each configuration and the number of Pex processes launched on each
machine, respectively.

Since we used .NET framework base class libraries in our evaluations, the gener-
ated tests may invoke method calls that can cause external side effects and change
the machine configuration. Therefore, while executing the code during exploration of
PUTs or while running generated tests, we created a sand-box with the “Internet”
security permission. This permission represents the default policy permission set for
the content from an unknown origin. This permission blocks all operations that in-
volve environment interactions such as file creations or registry accesses by throwing
SecurityException. We adopted sand-boxing after some of the Pex generated tests
had corrupted our test machines. Since we use a sand-box in our evaluations, the re-
ported coverage is lower than the actual coverage that can be achieved by our generated
regression tests.

To address our research questions, we first created a base line in terms of the code
coverage achieved by the seed tests, referred to as base coverage. In our evaluations, we
use block coverage (Section 2.2) as a coverage criteria. We report our coverage in terms
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Machine Configuration # of # of
mc pr

Xeon 2 CPU @ 2.50 GHz, 1 7
8 cores, 16 GB RAM
Quad core 2 CPU @ 1.90 GHz, 2 7
8 cores, 8 GB RAM
Intel Xeon CPU @2.40 GHz, 6 1
2 cores, 1 GB RAM

(a)

Mode # of # of % of incr
Tests blocks from base

WithoutSeeds 248,306 21,920 0%
Iteration 1
WithoutSeeds 412,928 23,176 4.8%
Iteration 2
WithSeeds 376,367 26,939 21.8%
Iteration 1
WithSeeds 501,799 27,485 24.3%
Iteration 2

(b)

Fig. 5. (a) Three categories of machine configurations used in our evaluations. (b) Generated
regression tests.

of the number of blocks covered in the code under test. We give only an approximate
upper bound on the number of reachable basic blocks, since we do not know which
blocks are actually reachable from the given PUTs for several reasons: we are executing
the code in a sand-box, existing code is loaded from the disk only when it is used and
new code may be generated at runtime.

We next generated regression tests in four different modes. In Mode “WithoutSeeds
Iteration 1”, we generated regression tests without using seed tests for one iteration.
In Mode “WithoutSeeds Iteration 2”, we generated regression tests without using seed
tests for two iterations. The regression tests generated in Mode “WithoutSeeds Iteration
2” are a super set of the regression tests generated in Mode “WithoutSeeds Iteration 1”.
In Mode “WithSeeds Iteration 1”, we generated regression tests with using seed tests
for one iteration. Finally, in Mode “WithSeeds Iteration 2”, we generated regression
tests with using seed tests for two iterations. Modes “WithoutSeeds Iteration 1” and
“WithSeeds Iteration 1” took one and half day for generating tests, whereas Modes
“WithoutSeeds Iteration 2” and “WithSeeds Iteration 2” took nearly three days, since
these modes correspond to Iteration 2.

4.4 RQ1: Generated Regression Tests

We next address the first research question of whether DyGen can handle large real-
world code bases in automatically generating regression tests. This research question
helps show that DyGen can be used in practice and can address scalability issues in
generating regression tests for large code bases. We first present the statistics after each
phase in DyGen and next present the number of regression tests generated in each mode.

In the capture phase, DyGen recorded 433,809 dynamic traces and persisted them
as C# source code, resulting in ≈1.5 GB of C# source code. The average trace length
includes 21 method calls and the maximum trace length includes 52 method calls. Since
our capture phase transforms each dynamic trace into a PUT and a seed test, the capture
phase resulted in 433,809 PUTs and 433,809 seed tests.

In the minimize phase, DyGen uses static analysis to filter out duplicate PUTs. Our
static analysis took 45 minutes and resulted in 68,575 unique PUTs. DyGen uses dy-
namic analysis to filter out duplicate seed tests. Our dynamic analysis took 5 hours and
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Table 2. Comparison of coverage achieved for ten .NET libraries used in our evaluation

.NET libraries Maximum Base WithOutSeeds WithOutSeeds WithSeeds WithSeeds
Coverage Coverage Iteration 1 Iteration 2 Iteration 1 Iteration 2
# blocks # blocks # blocks % increase # blocks % increase # blocks % increase # blocks % increase

mscorlib 20437 12827 13063 1.84 13620 6.18 14808 15.44 15018 17.08
System 7786 4651 4062 -12.67 4243 -8.77 5907 27.00 6039 29.84
Forms 2815 1730 1572 -9.13 1774 2.54 1782 3.01 1865 7.80
Drawing 850 570 580 1.75 591 3.68 618 8.42 625 9.65
Xml 2770 1229 1390 13.10 1462 18.96 1959 59.40 2045 66.40
RegEx 854 351 330 -5.98 520 48.15 754 114.81 771 119.66
Config 392 263 297 12.93 297 12.93 302 14.83 306 16.35
Data 865 301 380 26.25 422 40.20 562 86.71 569 89.04
Web 253 154 211 37.01 212 37.66 212 37.66 212 37.66
Trans 59 35 35 0.00 35 0.00 35 0.00 35 0.00
TOTAL/AVG 37081 22111 21920 <0 23176 4.80 26939 21.80 27485 24.30

resulted in 128,185 unique seed tests. These results show that there are a large number
of duplicate PUTs and seed tests, and show the significance of our minimize phase. We
next measured the block coverage achieved by these 128,185 unique seed tests in the
code under test and used this coverage as base coverage. These tests covered 22,111
blocks in the code under test.

Table 5(b) shows the number of regression tests generated in each mode along with
the number of covered blocks. The table also shows the percentage of increase in the
number of blocks compared to the base coverage. As shown in results, in Mode “With-
Seeds Iteration 2”, DyGen achieved 24.3% higher coverage than the base coverage.
Table 2 shows more detailed results of coverage achieved for all ten .NET libraries.
Column “.NET libraries” shows libraries under test. Column “Maximum Coverage”
shows an approximation of the upper bound (in terms of number of blocks) of achiev-
able coverage in each library under test. In particular, this column shows the sum of all
blocks in all methods that are (partly) covered by any generated test. However, we do
not present the coverage results of our four modes as percentages relative to these up-
per bounds, since these upper bounds are only approximate values, whereas the relative
increase of achieved coverage can be measured precisely. Column “Base Coverage”
shows the number of blocks covered by seed tests for each library. Column “WithOut-
Seeds Iteration 1” shows the number of blocks covered (“# blocks”) and the percentage
of increase in the coverage (“% increase”) with respect to the base coverage in this
mode. Similarly, Columns “WithOutSeeds Iteration 2”, “WithSeeds Iteration 1”, and
“WithSeeds Iteration 2” show the results for the other three modes.

Since we use seed tests during our exploration in Modes “WithSeeds Iteration 1” or
“WithSeeds Iteration 2”, the coverage achieved is either the same or higher than the base
coverage. However, DyGen has achieved significant higher coverage than base coverage
for libraries mscorlib and System (in terms of the number of additional blocks covered).
The primary reason is that most of the classes in these libraries are stateless and do not
require environment interactions. The results show that DyGen can handle large real-
world code bases and can generate large number of regression tests that achieve high
coverage of the code under test.
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Fig. 6. Comparison of coverage achieved by Mode “WithSeeds Iteration 2” and Mode “Without-
Seeds Iteration 2”

Fig. 7. Comparison of code coverage achieved by Modes “WithoutSeeds Iteration 1” and “With-
outSeeds Iteration 2”

4.5 RQ2: Using Seed Tests

We next address the second research question of whether seed tests help achieve higher
code coverage compared to without using seed tests. To address this question, we com-
pare the coverage achieved by generated tests in Modes “WithoutSeeds Iteration 2” and
“WithSeeds Iteration 2”. Figure 6 shows comparison of the coverage achieved in these
two modes. The x-axis shows the library under test and y-axis shows the percentage
of increase in the coverage with respect to the base coverage. As shown, Mode “With-
Seeds Iteration 2” always achieved higher coverage than Mode “WithoutSeeds Iteration
2”. On average “WithSeeds Iteration 2” achieved 18.6% higher coverage than “With-
outSeeds Iteration 2”. The table also shows that there is a significant increase in the
coverage achieved for the System.Web.RegularExpressions (RegEx) library. In
Section 3.3, we described one of the major advantages of seed tests is that seed tests
can help cover certain paths that are hard to be covered without using those tests. The
System.Web.RegularExpressions library is an example for such paths since this
library requires complex regular expressions to cover certain paths in the library. It is
quite challenging for Pex or any other DSE-based approach to generate concrete values
that represent regular expressions. The increase in the coverage for this library shows
that concrete values in the seed tests help achieve higher coverage. In summary, the re-
sults show that seed tests help achieve higher coverage compared to without using seed
tests.
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Fig. 8. Comparison of code coverage achieved by Modes “WithSeeds Iteration 1” and “Withseeds
Iteration 2”

4.6 RQ3: Using More Machine Power

We next address the third research question of whether more machine power helps
achieve more coverage. This research question helps show that additional coverage can
be achieved in further iterations of DyGen. To address this question, we compare cover-
age achieved in Mode “WithoutSeeds Iteration 1” with Mode “WithoutSeeds Iteration
2”, and Mode “WithSeeds Iteration 1” with Mode “WithSeeds Iteration 2” (shown in
Table 2).

Figure 7 shows the comparison of coverage achieved in Modes “WithoutSeeds It-
eration 1” and “WithoutSeeds Iteration 2”. On average, Mode “WithoutSeeds Iteration
2” achieved 5.73% higher coverage than Mode “WithoutSeeds Iteration 1”. This result
shows that DyGen can achieve additional coverage in further iterations. However, the
coverage from Mode “WithoutSeeds Iteration 1” to Mode “WithoutSeeds Iteration 1”
is not doubled. The primary reason is that it gets harder to cover new blocks in further
iterations.

Figure 8 shows the comparison of coverage achieved in Modes “WithSeeds Iteration
1” and “WithSeeds Iteration 2”. On average, Mode “WithSeeds Iteration 2” achieved
2.0% higher coverage than Mode “WithSeeds Iteration 1”. The increase in coverage
from Mode “WithSeeds Iteration 1” to Mode “WithSeeds Iteration 2” is less than the
increase in the coverage from Mode “WithoutSeeds Iteration 1” to Mode “WithoutSeeds
Iteration 2”. This difference is due to seed tests that help achieve higher coverage dur-
ing Mode “WithSeeds Iteration 1”, leaving more harder blocks to be covered in Mode
“WithSeeds Iteration 2”. In summary, the results show that further iterations can help
generate new regression tests that can achieve more coverage.

5 Discussion and Future Work

Although our generated tests achieved higher coverage (24.3%) than the seed tests, we
did not achieve full overall coverage of our subject code bases (i.e. 100% coverage of
all methods stored in the code bases on disk). There are three major reasons for not
achieving full coverage. First, using a sand-box reduces the amount of executable code.
Second, our recorded dynamic traces do not invoke all public methods of the libraries
under analyses. In future work, we plan to address this issue by generating PUTs for
all public methods that are not covered. Third, the code under test includes branches
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that cannot be covered with the test scenarios recorded during program executions. To
address this issue, we plan to generate new test scenarios from existing scenarios by
using evolutionary techniques [2].

We did not find any previously unknown defects while generating regression tests.
We did not expect to find defects, since our subject code bases are well tested both
manually and by automated tools, including research tools such as Randoop [5] and
Pex [11]. Although regression testing is our ultimate goal, in our current approach, we
primarily focused on generating regression tests that achieve high code coverage of the
given version of software. In future work, we plan to apply these regression tests on
further versions of software in order to detect regression defects. Furthermore, in our
evaluation, we used two libraries as subject applications. However, our approach is not
specific for libraries and can be applied to any application in practice.

6 Related Work

Our approach is closely related to two major research areas: regression testing and
method-call sequence generation.

Regression testing. There exist approaches [16][17][14] that use a capture-and-replay
strategy for generating regression tests. In the capture phase, these approaches monitor
the methods called during program execution and use these method calls in the replay
phase to generate unit tests. Our approach also uses a strategy similar to the capture-
and-replay strategy, where we capture dynamic traces during program execution and use
those traces for generating regression tests. However, unlike existing approaches that
replay exactly the same captured behavior, our approach replays beyond the captured
behavior by using DSE in generating new regression tests.

Another existing approach, called Orstra [18], augments an existing test suite with
additional assertions to detect regression faults. To add these additional assertions,
Orstra executes a given test suite and collects the return values and receiver object states
after the execution of methods under test. Orstra generates additional assertions based
on the collected return values or receiver object states. Our approach also uses a similar
strategy for generating assertions in the regression tests. Another category of existing
approaches [19][20][21] in regression testing primarily target at using regression tests
for effectively exposing the behavioral differences between two versions of a software.
For example, these approaches target at selecting those regression tests that are relevant
to portions of the code changed between the two versions of software. However, all
these approaches require an existing regression test suite, which is the primary focus of
our current approach.

Method-call sequence generation. To test object-oriented programs, existing test-
generation approaches [3][4][22][23] accept a class under test and generate sequences
of method calls randomly. These approaches generate random values for arguments of
those method calls. Another set of approaches [1] replaces concrete values for method
arguments with symbolic values and exploits DSE techniques [7][8][9][10] to regener-
ate concrete values based on branching conditions in the method under test. However,
all these approaches cannot handle multiple classes and their methods due to a large
search space of possible sequences.
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Randoop [5] is a random testing approach that uses an incremental approach for con-
structing method-call sequences. Randoop randomly selects a method call and finds
arguments required for these method calls. Randoop uses previously constructed method-
call sequences to generate arguments for the newly selected method call. Randoop may
also pick values for certain primitive randomly, or from a fixed manually supplied pool of
values. Randoop incorporates feedback obtained from previously constructed method-
call sequences while generating new sequences. As soon as a method-call sequence is
constructed, Randoop executes the sequence and verifies whether the sequence violates
any contracts and filters. Since Randoop does not symbolically analyze how the code
under test uses arguments, Randoop is often unable to cover data-dependent code paths.
On the other hand, DyGen is dependent on method-call sequences obtained via dynamic
traces, and so DyGen is often unable to cover code paths that cannot be covered from
the scenarios described by those sequences. Therefore, Randoop and DyGen are tech-
niques with orthogonal goals and effects. In our previous approach [11], we applied Pex
on a core .NET component for detecting defects. Unlike our new approach that uses re-
alistic scenarios recorded during program executions, our previous approach generates
individual PUTs for each public method of all public classes. There, we could not cover
portions of the code that require long scenarios. Our new approach complements our
previous approach by using realistic scenarios for covering such code portions.

Our approach is also related to another category of approaches based on mining
source code [24][25] [26]. These approaches statically analyze code bases and use min-
ing algorithms for extracting frequent patterns. These frequent patterns are treated as
programming rules in either assisting programmers while writing code or for detecting
violations as deviations from these patterns. Unlike these existing approaches, our ap-
proach mines dynamic traces recorded during program executions and uses those traces
for generating regression tests. Our previous work [26] also mines method-call se-
quences from existing code bases. Our previous work uses these method-call sequences
to assist random or DSE-based approaches. Our new approach is significantly different
from our previous work in three major aspects. First, our new approach is a complete ap-
proach for automatically generating regression tests from dynamic traces, whereas, our
previous work mines method-call sequences to assist random or DSE-based approaches.
Second, our new approach uses dynamic traces, which are more precise compared to
the static traces used in our previous work. Third, our new approach includes additional
techniques such as seed tests and distributed setup for assisting DSE-based approaches
in effectively generating CUTs from PUTs.

7 Conclusion

Automatic generation of method-call sequences that help achieve high structural cover-
age of object-oriented code is an important and yet a challenging problem in software
testing. Unlike existing approaches that generate sequences randomly or based on anal-
ysis of the methods, we proposed a novel scalable approach that generates sequences
via mining dynamic traces recorded during (typical) program executions. In this paper,
we showed an application of our approach by automatically generating regression tests
for two core .NET 2.0 framework libraries. In our evaluations, we showed that our ap-
proach recorded ≈1.5 GB (size of corresponding C# source code) of dynamic traces
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and eventually generated≈500,000 regression tests, where each test exercised a unique
path. The generated regression tests covered 27,485 basic blocks, which represents an
improvements of 24.3% over the number of blocks covered by the original recorded dy-
namic traces. These numbers show that our approach is highly scalable and can be used
in practice to deal with large real-world code bases. In future work, we plan to eval-
uate the effectiveness of generated regression tests in detecting behavioral differences
between two versions of software.
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Abstract. This paper presents our ongoing work on a tool prototype called
SANTE (Static ANalysis and TEsting), implementing a combination of static anal-
ysis and structural program testing for detection of run-time errors in C programs.
First, a static analysis tool (Frama-C) is called to generate alarms when it cannot
ensure the absence of run-time errors. Second, these alarms guide a structural
test generation tool (PathCrawler) trying to confirm alarms by activating bugs on
some test cases. Our experiments on real-life software show that this combination
can outperform the use of each technique independently.

Keywords: all-paths test generation, static analysis, run-time errors, C program
debugging, alarm-guided test generation.

1 Introduction

Software validation remains a crucial part in software development process. Software
testing accounts for about 50% of the total cost of software development. Automated
software validation is aimed at reducing this cost. The increasing demand has motivated
much research on automated software validation. Two major techniques have improved
in recent years, dynamic and static analysis. They arose from different communities and
evolved along parallel but separate tracks. Traditionally, they were viewed as separate
domains.

Static analysis examines program code and reasons over all possible behaviors that
might arise at run time. Since program verification is in general undecidable, it is often
necessary to use approximations. Static analysis is conservative and sound: the results
may be weaker than desirable, but they are guaranteed to generalize to all executions.
Dynamic analysis operates by executing a program and observing this execution. It
is in general incomplete due to a big (or even infinite) number of possible test cases.
Dynamic analysis is efficient and precise because no approximation or abstraction needs
to be done: the analysis can examine the actual, exact run-time behavior of the program
for the corresponding test case.

The pros and cons of the two techniques are apparent. If dynamic analysis detects an
error then the error is real. However, it cannot in general prove the absence of errors.
On the other hand, if static analysis reports a potential error, it may be a false alarm.
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However, if it does not find any error (of a particular kind) in the overapproximation of
program behaviors then the analyzed program clearly cannot contain such errors. Static
and dynamic analysis have complementary strengths and weaknesses and can be both
applied to program verification. Static analysis is typically used for proofs of correct-
ness. Dynamic analysis demonstrates the presence of errors and increases confidence in
a system.

Recently, there has been much interest in combining dynamic and static methods
for program verification [1,2,3,4,5,6]. Static and dynamic analyses can enhance each
other by providing valuable information that would otherwise be unavailable. This pa-
per reports on an ongoing project that aims to provide a new combination of static
analysis and structural testing of C programs. We implement our method using two ex-
isting tools: Frama-C, a framework for static analysis of C programs, and PathCrawler,
a structural test generation tool.

Frama-C [7] is being developed in collaboration between CEA LIST and the ProVal
project of INRIA Saclay. Its software architecture is plug-in-oriented and allows fine-
grained collaboration of analysis techniques. Static analyzers are implemented as plug-
ins and can collaborate with one another to examine a C program. Frama-C is distributed
as open source with various plug-ins. Developed at CEA LIST, PathCrawler [8] is a test
generation tool for C functions respecting the all-paths criterion, which requires to
cover all feasible program paths, or the k-path criterion, which restricts the generation
to the paths with at most k consecutive iterations of each loop.

Contributions. This paper presents our ongoing work combining static analysis and
structural test generation for validation of C programs, in particular, for detection of
run-time errors. We call this technique alarm-guided test generation. Our ongoing im-
plementation of this method, called SANTE, assembles two heterogeneous tools using
quite different technologies (such as abstract interpretation and constraint logic pro-
gramming). We evaluate our method by several experiments on real-life C programs,
and compare the results with static analysis alone, test generation alone, and test gener-
ation guided by the exhaustive list of alarms for all potentially threatening statements.
In all cases, our method outperforms the use of each technique independently.

The paper is organized as follows. Section 2 gives an overview of our method and
its implementation in progress. Section 3 presents initial experiments illustrating the
benefits of our approach. Section 4 briefly presents related work and concludes.

2 Overview of the Method

This section presents our method combining static analysis and test generation, and
its ongoing implementation in a tool prototype SANTE1 (Static ANalysis and TEsting)
which uses Frama-C and PathCrawler tools. Our implementation choice was to connect
PathCrawler and Frama-C via a new plug-in, and adapt PathCrawler to accept informa-
tion provided by other plug-ins.

Algorithm 1 shows an overview of the method. SANTE takes as input the C program
P to be analyzed and the test context (denoted by Context) defining the function to

1 The French word “santé” means “health”, and sometimes also “cheers!”.
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Algorithm 1. Algorithm of the method

SANTE(P, Context)
1: Ψ := VALUEANALYSIS(P, Context)
2: if ∀i ∈ I, Ψi ≡ false then
3: return proved /* no alarms */
4: else
5: P ′ := ADDERRORBRANCHES(P, Ψ)

6: B := PATHCRAWLER(P ′, Context)
7: return B
8: end if

ADDERRORBRANCHES(P, Ψ)
1: for all i ∈ I do
2: if Ψi ≡ false then
3: α′

i := αi /* no alarm for αi */
4: else
5: α′

i := if(Ψi) storeBugAndExit();else αi

6: end if
7: end for
8: return P ′ = {α′

i | i ∈ I}

be analyzed, domains of its input variables and preconditions. We denote by αi, i ∈ I
the statements of the program P . SANTE starts by analyzing the program with the value
analysis plug-in of Frama-C. Based on abstract interpretation, this plug-in computes and
stores supersets of possible value ranges of variables at each statement of the program.
Among other applications, these over-approximated sets can be used to exclude the
possibility of a run-time error. The value analysis is sound: it emits an alarm for an
operation whenever it cannot guarantee the absence of run-time errors for this operation.
It starts from an entry point in the analyzed program specified by the user, and unrolls
function calls and loops. It memorizes abstract states at each statement and provides an
interface for other plug-ins to extract these states.

The abstract states make it possible to extract Ψ = {Ψi | i ∈ I}, where Ψi is the
condition restricting the state before the statement αi to an error state, in other words,
describing the states leading to a possible run-time error at αi. For instance, for the
statement x=y/z; the plug-in emits “Alarm: z may be 0!” and returns Ψi ≡ (z = 0)
if 0 is contained in the superset of values computed for z before this statement. For the
last statement in int t[10]; . . . t[n]=15; the plug-in emits “Alarm: t+n may
be invalid!” and returns Ψi ≡ (n < 0 ∨ n > 9) when it cannot exclude the risk of
out-of-range index n. For int* p; . . . *(p+j)=10; the plug-in emits “Alarm: p+j
may be invalid!” if it cannot guarantee that p+j refers to a valid memory location. In
the current version, the extraction of Ψi is supported for division by 0 and out-of-range
array index, and not yet fully supported for invalid pointers or non-initialized variables.
If value analysis sees no risk of a run-time error at αi, then Ψi ≡ false.

If all Ψi ≡ false, i.e. no alarms were reported, then all possible program executions
are error-free and the program is proved to contain no run-time errors. If some Ψi is
not trivial, we use the following technique called alarm-guided test generation (lines
5–6 in SANTE). We realize a specific instrumentation of P represented here by the
function ADDERRORBRANCHES. It takes as inputs the original program P and the
alarms Ψi, i ∈ I for its statements, and returns a new program P ′ = {α′

i | i ∈ I}.
ADDERRORBRANCHES iterates over the statements αi of P and, if there is no alarm
for αi, keeps α′

i = αi. Otherwise it replaces the statement αi by the statement

if( Ψi ) storeBugAndExit(); else αi
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In other words, if the alarm condition is verified, a run-time error can occur, so the
function storeBugAndExit() reports a potential bug and stops the execution of the
current test case. If there is no risk of run-time error, the execution continues normally
and P ′ behaves exactly as P .

Next, PathCrawler is called for P ′. The PathCrawler test generation method [8] is
similar to the so-called concolic, or dynamic symbolic execution. The user provides
the C source code of the function under test. The generator explores program paths
in a depth-first search using symbolic and concrete execution. The transformation of
P into P ′ adds new branches for error and error-free states so that the PathCrawler
test generation algorithm will automatically try to cover error states. It returns the list
of detected bugs B with error paths and inputs which confirms some alarms. Other
alarms may remain unconfirmed due to various reasons: (1) this is a false alarm, (2)
test generation timed/spaced out or (3) incomplete test selection strategy was used e.g.
k-path.

3 Experiments

In this section, we compare our combined method with static analysis and with two
test generation techniques used independently. The first testing technique is running
PathCrawler with various strategies but without any information on threatening state-
ments. The second one, denoted all-threats, runs PathCrawler in alarm-guided mode
like SANTE, but for the exhaustive list of alarms for all potentially threatening state-
ments (i.e. with potential risk of a run-time error).

We use five examples shown in Fig. 1 extracted from real-life software where bugs
were previously detected. All bugs are out-of-range indices or invalid pointers. Ex-
amples 1–4 come from Verisec C analysis benchmark [9], example 5 from [10]. The
columns of Fig. 1 respectively present the example number, its origin, the name of the
analyzed function, the size of each example in lines of code, the total number of poten-
tial threats, the number of known bugs among them, and the results of value analysis.
Fig. 2 compares SANTE to other test generation techniques. Its columns respectively
show the example number, the PathCrawler strategy (test selection criterion) and the
results for each method. The column ’safe’ provides the number of threats proven un-
reachable by value analysis or by exhaustive all-paths testing when it terminates. The
column ’unknown’ provides the number of remaining unconfirmed alarms (relevant for
value analysis, PathCrawler all-threats and SANTE). We also present, when relevant, the
number of bugs detected, the number of treated paths, and full process duration. The
strategy k-path is given for the minimal k allowing to detect all bugs in SANTE. Exper-
iments were conducted on an Intel Duo 1.66 GHz notebook with 1 GB of RAM with a
30 min timeout.

SANTE vs. static analysis. Fig. 1 shows that in most cases static analysis alone reduces
the number of potential threats and proves that some of them are safe, but still generates
many alarms. We see in Fig. 2 that SANTE confirms some alarms as real bugs, provides
a test case activating each bug and leaves less unknown alarms.
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origin function name
size all known value analysis
(loc) threats bugs safe unknown time

1 Apache escape absolute uri (simplified) 33 8 1 4 4 1s
2 Apache escape absolute uri (full) 97 16 1 11 5 1s
3 Spam Assassin message write 55 17 2 2 15 1s
4 Apache get tag 165 12 3 0 12 2s
5 QuickSort partition 50 8 1 4 4 1s

Fig. 1. Examples and static analysis results

strategy
PathCrawler alone PathCrawler all-threats SANTE

bugs paths time safe unknown bugs paths time safe unknown bugs paths time

1
all-paths 0 2164 14s 7 0 1 3602 22s 7 0 1 2454 14s
3-path 0 30 ¡1s 0 7 1 71 ¡1s 4 3 1 45 ¡1s

2
all-paths 0 2023 10s 15 0 1 3876 20s 15 0 1 2694 13s
10-path 0 232 1s 0 15 1 417 1s 11 4 1 325 1s

3
all-paths 0 31917 311s time / space out 15 0 2 37967 523s
3-path 0 12446 120s 0 15 2 30977 558s 2 13 2 18874 215s

4
all-paths time / space out time / space out time / space out
2-path 1 26595 663s 0 9 3 36690 870s 0 9 3 36690 872s

5
all-paths 1 5986 33s 7 0 1 15216 116s 7 0 1 11893 72s
2-path 1 569 5s 0 7 1 4509 25s 4 3 1 3319 18s

Fig. 2. Experimental results for two test generation techniques and our combined method

SANTE vs. PathCrawler alone. SANTE detects more bugs than PathCrawler alone,
and treats additional paths arising from error branches with reasonable extra time (Fig. 2,
see for instance Ex. 3).

SANTE vs. PathCrawler all-threats. Alarm-guided test generation in SANTE only
treats the alarms raised by value analysis while all-threats dully considers all potential
threats. Thus test generation in SANTE considers less paths, detects the same number
of bugs in less time and leaves less unknown alarms. It terminates in some cases where
all-threats spaces/times out (Ex. 3). In the worst case, when static analysis can’t filter
any threat, SANTE can take as much time as all-threats (cf Ex. 4, 2-path).

Additional application of program slicing before alarm-guided test generation didn’t
show obvious gain here, because these examples were already simplified.

4 Related Work and Conclusion

Closely related work. Many static and dynamic analysis tools are well known and
widely used in practice. Recently, several papers presented combinations of dynamic
and static methods for program verification, e.g. [1,2,3,4,5,6]. Daikon [4] uses dynamic
analysis to detect likely invariants. [5] compares two combined tools for Java: Check ’n’
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Crash and DSD-Crasher. Our all-threats method is similar to [11], called active prop-
erty checking in [6]. Synergy/Dash [3] and BLAST [2] combine testing and partition
refinement for property checking. The idea of combining static analysis and testing for
debugging was mentioned in [6] but was not implemented and evaluated.

Conclusion. We have presented our ongoing research on a new method combining
static analysis and structural testing, as well as experimental results showing that this
method is more precise than a static analyzer and more efficient in terms of time and
number of detected bugs than a concolic structural testing tool alone or guided by the
exhaustive list of alarms for all potentially threatening statements. Static analysis alone
will in general just generate alarms (some of which may be false alarms), whereas our
method allows to confirm some alarms as real bugs and provides a test case activating
each bug. This is done automatically, avoiding, at least for confirmed alarms, time-
consuming alarm analysis by the validation engineer, requiring significant expertise,
experience and deep knowledge of source code. Stand-alone test generation, when it is
not guided by generated alarms for some statements, does not detect as many bugs as
our combined method. When guided by the exhaustive list of alarms for all potentially
threatening statements (not filtered by static analysis), test generation usually has to ex-
amine more infeasible paths and takes more time than our combined method (or even
times/spaces out). In all cases, our method outperforms each technique used indepen-
dently. Since complete all-paths testing is unrealistic for industrial software, it is also
encouraging to see that realistic partial criteria (e.g. k-path) are very efficient in SANTE

method. We expect that other testing techniques will also gain from the use of static
analysis as concolic testing evaluated here.

Future work includes continuing research to eliminate unconfirmed alarms, to better
support other alarm types (e.g. invalid pointers) and to integrate program slicing; exper-
imenting with other coverage criteria (e.g. all-branches) and with breadth-first search;
extending the SANTE implementation and comparing it with other tools and on more
benchmarks.
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Botella and Bruno Marre for their helpful advice and fruitful suggestions.
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Abstract. We consider the problem of test generation for Boolean com-
binational circuits. We use a novel approach based on the idea of treating
tests as a proof encoding rather than as a sample of the search space. In
our approach, a set of tests is complete for a circuit N , and a property
p, if it “encodes” a formal proof that N satisfies p. For a combinational
circuit of k inputs, the cardinality of such a complete set of tests may be
exponentially smaller than 2k. In particular, if there is a short resolution
proof, then a small complete set of tests also exists. We show how to
use the idea of treating tests as a proof encoding to directly generate
high-quality tests. We do this by generating tests that encode manda-
tory fragments of any resolution proof. Preliminary experimental results
show the promise of our approach.

1 Introduction

Although formal verification has made significant progress, simulation, due its
scalability, is still the main workhorse of functional verification. An obvious draw-
back of simulation is that it only samples the search space and so may miss some
bugs. Making simulation complete (i.e guaranteeing the lack of bugs) at the same
time keeping the number of tests reasonably small is a very exciting goal.

Recent results [6] show that finding small complete test sets is actually pos-
sible. These results are based on the idea of treating a test set as an encoding
of a formal proof (that the required property holds) rather than a sample of the
search space. We will refer to this concept as Treating Tests as a Proof Encod-
ing (TTPE). In particular, it was shown that to encode a resolution proof of k
resolutions one needs at most 2k tests. Importantly, a test set encoding a formal
proof is complete (in the sense that no bug can be missed) and may be very
small. Such a test set may be exponentially smaller than a trivial complete test
set of 2n tests (where n is the number of inputs of N).

In this paper, we use TTPE for verification of combinational circuits. The
generic problem here is to show that a single-output circuit N always evaluates
to 0 or to find a bug, an input assignment x such that N(x)=1. In principle,
TTPE can be used for both proving that N ≡ 0 and for showing that N is buggy
by generating a sequence of tests until we either encode a proof or find a bug. In
� This research was funded in part by NASA Cooperative Agreement NNX08AE37A.
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more detail, suppose we generated tests x1, . . ., xk−1, but they do not encode a
proof and they have not found a bug. We generate a new test, xk, and check if
N(xk) = 1. If so, N is buggy. Otherwise, we check if the set {x1, . . . ,xk} encodes
a resolution proof. If it does, then N ≡ 0. Otherwise, we continue generating
tests. This is a simplified overview of the procedure ProofByTesting described
in Section 5.

An obvious question is: when does a set of tests encode a resolution proof?
The key idea is to use tests to enable certain resolution steps. Thus, a set of
tests encodes a resolution proof if the set of resolution steps allowed by the tests
includes all the steps of the proof. A full account can be found in Section 4.

Unfortunately, no efficient procedure for checking if a set of tests encodes a
resolution proof is currently known. However, we develop an efficient variation
of ProofByTesting meant only for showing that N is buggy. Generation of high-
quality tests for checking if N has a bug (i.e., evaluates to 1 for some test) is the
problem we address in this paper. Our approach is based on the idea of generating
tests that encode “mandatory” fragments of a resolution proof. Given a CNF for-
mula F , a particular class of complete assignments called boundary points of F
specify mandatory resolutions of a proof that F is unsatisfiable [5]. In this paper,
we show that boundary points can be used for generation of high quality tests.

The idea of extracting tests from boundary points is the first contribution
of our paper. The second contribution is showing that TTPE can be used for
building good tests indirectly, i.e., without generating an explicit proof. Our
third contribution is in giving experimental evidence that tests extracted from
boundary points have high quality.

Given a CNF formula F (v1, . . . , vn), a lit(vi)-boundary point p is an unsatis-
fying assignment such that all clauses of F falsified by p share the same literal
lit(vi) (where lit(vi) is vi or vi). Importantly, a lit(vi)-boundary point p man-
dates a resolution on variable vi [5] (any proof that F is unsatisfiable has to
have a resolution on vi eliminating p as a lit(vi)-boundary point). So one can
use boundary points to encode mandatory fragments of a resolution proof that
the design property specified by F holds.

It is an open question whether a resolution proof can be encoded by boundary
points alone (i.e., whether resolutions mandated by boundary points always
constitute a resolution proof). It was shown experimentally in [5] that for well
structured proofs, the share of resolutions mandated by boundary points is high
(90-100%). This implies that by generating boundary points one has a good
chance to encode a proof or a large part of it.

Studying the relation of tests and proofs in propositional logic is important
for at least three reasons. First, propositional logic plays an outstanding role in
hardware verification. Second, it is also used in software verification. The state-
of-the art SMT-solvers are based on propositional SAT-solvers. The latter are
also extensively used in software verification systems like Alloy [10], CBMC [11],
Java pathfinder [12]. Third, in many cases testing works well in verification of
sequential circuits and programs. This implies that the TTPE approach may be
applicable to logics more complex than propositional.
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Since the method we introduce in this paper is heavily based on the TTPE
approach, we describe the latter in Sections 2-5. We use a simple example to
explain our definitions. Then in Section 6 we describe how tests are extracted
from boundary points. In Section 7, we relate our approach with hardware testing
based on the stuck-at fault model and with mutation-based testing. Finally, we
give some experimental results and make conclusions.

2 Example

In this section, we introduce an example we will use extensively throughout the
paper. Figure 1 shows a circuit called miter that is meant for equivalence checking
of combinational circuits M ′ and M ′′. In a miter, circuits M ′ and M ′′ share the
same set of inputs. Besides, the outputs of M ′ and M ′′ feed an XOR gate (in our
example, it is gate G6). The circuits M ′ and M ′′ are functionally inequivalent
iff their miter evaluates to 1 (in this case there is an input assignment for which
M ′ and M ′′ produce different values and so the XOR gate evaluates to 1).

Fig. 1. Miter N of functionally
equivalent circuits M ′ and M ′′

The miter N shown in Figure 1, checks
for equivalence circuits M ′ and M ′′ imple-
menting the expressions (x1 ∨ x2) ∧ x3 and
(x1 ∧ x3) ∨ (x2 ∧ x3) respectively. Since M ′

and M ′′ are functionally equivalent, N al-
ways evaluates to 0. The conventional wis-
dom is that to prove that N implements
constant 0 by simulation one has to generate
23 = 8 tests. As we show later, for the cir-
cuit N of Figure 1 there is a complete test set
of only 5 tests. This test set is complete in
the sense it encodes a resolution proof that a
CNF formula F specifying the query “Does
N(x) evaluate to 1 for some x?” is unsatisfi-
able. These 5 tests are extracted from bound-
ary points of F .

3 Some Basic Definitions

In this paper, we specify combinational cir-
cuits by CNF formulas. This section gives
some relevant definitions.

Definition 1. A literal lit(vi) of a Boolean variable vi is either vi itself (the
positive literal of vi) or the negation of vi denoted as vi (the negative literal
of vi).

Definition 2. A clause is the disjunction of literals where no two (or more)
literals of the same variable can appear. A clause consisting of only one literal is
called unit. A CNF formula is the conjunction of clauses. We will also view
a CNF formula as a set of clauses.
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Definition 3. Given a CNF formula F (v1, . . . , vn), a complete assignment
(also called a point) is a mapping {v1, . . . , vn} → {0, 1}. Given a complete as-
signment p and a clause C, denote by C(p) the value of C when its variables are
assigned as in p. A clause C is satisfied (respectively falsified) by a complete
assignment p, if C(p) = 1 (respectively C(p) = 0).

Definition 4. Given a CNF formula F , a satisfying assignment p is a
complete assignment satisfying every clause of F . The satisfiability problem
(SAT) is to find a satisfying assignment for F or to prove that it does not exist.

4 Encoding Resolution Proofs

In this section, we describe how a circuit is represented by a CNF formula and
recall the basics of the resolution proof system. Then we describe how one can
encode a resolution proof by complete assignments. (This is done as in [6] but
without using the machinery of stable sets of points.) Finally, we define the
notion of proof encoding in terms of tests.

4.1 CNF Representation of a Circuit

Typically, finding out if a property of a combinational circuit M holds reduces
to checking if a single-output circuit (derived from M) implements constant 0.
(For instance, proving that combinational circuits M and M ′ are functionally
equivalent comes down to checking if the miter N of M ′ and M ′′ always evaluates
to 0, see Section 2).

Let N be a single-output circuit of gates G1, . . . , Gm where the output of Gm

is also the output of N . Let the inputs of N , the outputs of gates of G1, . . . , Gm−1
and the output of Gm be denoted by X = {x1, . . . , xr}, Y = {y1, . . . , ym−1} and
z respectively. Let FN be a CNF formula specifying N that is obtained from
F using regular Tseitsin’s transformations [9]. Namely, FN = FG1 ∧ . . . ∧ FGm

where FGi is a CNF formula satisfied (respectively falsified) by the consistent
(respectively the inconsistent) assignments to the pins of Gi.

Example 1. For the circuit N of Figure 1, X = {x1, x2, x3}, Y = {y1, . . . , y5}
(where yi specifies the output of gate Gi, i = 1, . . . , 5) and variable z specifies the
output of G6. The formula FN specifying N can be represented as FG1∧. . .∧FG6 .
Formula FG1 , for instance, specifies the OR gate G1 and is equal to (x1∨x2∨y1)
∧ (x1 ∨ y1) ∧ (x2 ∨ y1). For example, clause (x1 ∨ x2 ∨ y1) is falsified by the
inconsistent assignment x1 = 0, x2 = 0, y1 = 1 and so is FG1 .

The problem of finding an input assignment that sets the output of N to 1
comes down to checking the satisfiability of the formula F (X, Y, z) = FN ∧ z. A
complete assignment p to the variables of F can be represented as (x,y,z∗) where
x,y,z∗ are assignments to X, Y and z respectively. The part of p consisting of
the assignments to the input variables (i.e., the part x) is called a test. We will
denote it by inp(p). If an assignment p satisfies all the clauses of FN (but may
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falsify the unit clause z of F ), the part (y,z∗) of p is called the correct execution
trace for the test x=inp(p).

In general, a complete assignment p falsifies clauses of FN . In such a case,
(y,z∗) can be interpreted as a faulty execution trace. This means that at least
one gate Gi of N produces the value that is different from the one implied by
the input values of Gi.

Example 2. Let p=(x1 =0, x2 =1, x3=1, y1=1, y2=1, y3=0, y4=1, y5 =1, z=0)
a complete assignment to the variables of FN specifying circuit N of Figure 1.
The test x corresponding to p is inp(p)=(x1 =0, x2 =1, x3 =1). Since p assigns
consistent values to all 6 gates of N it satisfies all the clauses of FN (the entire
formula FN is given below in Example 3). So, in this case, (y1 = 1, y2 = 1, y3 =
0, y4=1, y5 =1, z=0) is the correct execution trace for the test x.

Now, let p′=(x1 = 0, x2 = 1, x3 = 1, y1 = 0, y2 = 0, y3 = 0, y4 = 1, y5 = 1, z = 1).
Point p′ assigns consistent values to all the gates of N but gate G1 (p′ falsifies
the clause (x2 ∨ y1) of FG1 given in Example 1). Point p′ specifies the same test
x as above and a faulty execution trace (y1 =0, y2=0, y3 =0, y4=1, y5=1, z=1).

4.2 Resolution Proofs

In this subsection, we recall the basics of the resolution proof system for propo-
sitional logic [2].

Resolution is a sound and complete proof system that has only one derivation
rule called resolution.

Definition 5. Let clauses C′,C′′ have the opposite literals of variable vi (and no
opposite literals of other variables). The resolvent C of C′ and C′′ on variable
vi is the clause with all the literals of C′ and C′′ but those of vi. The clause C
is said to be obtained by a resolution operation on vi. C′ and C′′ are called
the parent clauses.

Definition 6. ([2]) Let F be an unsatisfiable formula. Let {R1, . . . , Rk} be a set
of clauses such that

– each clause Ri is obtained by a resolution operation where a parent clause is
either a clause of F or Rj, j < i;

– clauses Ri are numbered in the derivation order;
– Rk is an empty clause.

Then the set of k resolutions that produced the resolvents R1, . . . , Rk is called a
resolution proof that F is unsatisfiable.

Example 3. Here we describe a resolution proof for the unsatisfiable CNF for-
mula F = FN ∨z where FN = FG1 ∧ . . .∧FG6 specifies the circuit N of Figure 1.
To describe subformulas FGi one needs clauses Ci, i = 1, . . . , 19 given below. Let
C20 denote the unit clause z. Then F = C1 ∧ . . . ∧ C20.
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FG1 = C1 ∧ C2 ∧ C3, C1 = x1 ∨ x2 ∨ y1, C2 = x1 ∨ y1,C3 = x2 ∨ y1.
FG2 = C4 ∧ C5 ∧ C6, C4 = y1 ∨ x3 ∨ y2, C5 = y1 ∨ y2, C6 = x3 ∨ y2.
FG3 = C7 ∧ C8 ∧ C9, C7 = x1 ∨ x3 ∨ y3, C8 = x1 ∨ y3, C9 = x3 ∨ y3.
FG4 = C10 ∧ C11 ∧ C12, C10 = x2 ∨ x3 ∨ y4, C11 = x2 ∨ y4, C12 = x3 ∨ y4.
FG5 = C13 ∧ C14 ∧ C15, C13 = y3 ∨ y4 ∨ y5, C14 = y3 ∨ y5,C15 = y4 ∨ y5.
FG6 = C16 ∧ C17 ∧ C18 ∧ C19, C16 = y2 ∨ y5 ∨ z, C17 = y2 ∨ y5 ∨ z,

C18 = y2 ∨ y5 ∨ z, C19 = y2 ∨ y5 ∨ z.

A resolution proof R that F is unsatisfiable is given in Figure 2 as a DAG
whose nodes are shown as ovals. Each non-leaf node corresponds to a resolution
operation over the parent clauses specified by the preceding nodes. The proof R is
obtained by a version of a SAT-solver with conflict driven clause learning [7]. R is
partitioned into three chains of resolutions corresponding to the three conflicts
(backtracks) that occurred when solving the formula F . Each chain describes
derivation of a conflict clause shown in a dotted oval.

Empty ovals correspond to resolvents that are used only once right after they
are generated. All the resolvents of the proof R can be easily reproduced by
performing the sequence operations specified by the graph of Figure 2. For in-
stance, the first empty oval of the leftmost chain corresponds to resolving clause
C8 = x1∨y3 with C13 = y3∨y4∨y5 (on variable y3) and producing the resolvent
x1∨y4∨y5. The latter is then resolved with the clause C11 = x2∨y4 (on variable
y4) producing the resolvent x1 ∨ x2 ∨ y5 corresponding to the next empty oval
and so on. Eventually, the conflict clause C21 = y1 ∨ z is derived. In the middle
resolution chain, the conflict clause C22 = x3∨z is generated. Finally, the empty
conflict clause C23 is derived in the rightmost resolution chain.

4.3 Proof Encodings in Terms of Points

In this subsection, we explain what it means for a set of points to encode a
resolution proof.

Definition 7. Let C′, C′′ be two clauses and p′ and p′′ be two complete assign-
ments such that

– p′ and p′′ are only different in the value of a variable vi

– C′(p′) = C′′(p′′)=0 and C′(p′′) = C′′(p′)=1

Then p′ and p′′ are said to legalize the resolution of C′,C′′ on vi.

The two conditions of Definition 7 imply that C′,C′′ have opposite literals of
exactly one variable (which is vi). This means that clauses C′,C′′ indeed can
be resolved on vi. Intuitively, the existence of points p′ and p′′ satisfying the
conditions of Definition 7 means that a clause (the resolvent of C′,C′′) is implied
by C′ ∧ C′′. In the approach based on the notion of a stable set of points [6],
this implication is a theorem (that can be easily proved).

Example 4. Let us consider the first resolution operation of the proof R described
in Example 3 (i.e., resolution over C8 = x1∨y3 and C13 = y3∨y4∨y5). Let point
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p′ be (x1 = 0, .., y3 = 1, y4 = 0, y5 = 1, ..) (the values of the missing variables
can be chosen arbitrarily). Let p′′ be obtained from p′ by flipping the value of
y3. Then C8(p′)=C13(p′′)=0 and C8(p′′)=C13(p′)=1. So p′ and p′′ legalize the
resolution over C8 and C13.

Definition 8. Let F be an unsatisfiable CNF formula and P be a set of points.
Let R = {R1, . . . , Rk} be a resolution proof. We will say that P encodes proof
R if each of k resolutions of R is legalized by some points p′ and p′′ of P .

Informally, the fact that P encodes a resolution proof means that the former is
large enough to legalize resolutions comprising a proof that F is unsatisfiable.
Definitions 7 and 8 imply that to encode a resolution proof R = {R1, . . . , Rk} one
needs a set P of at most 2k points (two points for each resolution). In reality,
this number may be smaller because the same point of P may participate in
legalization of more than one resolution operation.

Definition 9. Let N be a single-output circuit and T be a set of tests {x1,. . .,xs}.
We will say that T encodes a resolution proof R that FN ∧ z is unsatisfiable if
there is a set of points P = {p1,. . .,pm} such that P encodes R and each test
xi of T is the input part of a point pj of P .

Fig. 2. A resolution proof that F = FN ∧ z is unsatis-
fiable

Definitions 8 and 9 im-
ply that there is always a
test set encoding a resolu-
tion proof R that is at most
two times the size of R.

Example 5. The proof R of
Figure 2 consists of 19 res-
olutions. So there is a set
of at most 38 points encod-
ing it. (In this small exam-
ple, the size of the proof
is larger than 8, which is
the total number of assign-
ments to 3 inputs. However,
it is not unusual to have a
proof, say, of 106 resolutions
for a circuit with 1000 in-
puts.) Since different points
p′ p′′ may have the same in-
put part one may need less
than 8 tests to encode R.

For instance, it can be shown that the following set of 5 tests x1=(x1 =
0, x2 = 1, x3 = 0), x2=(x1 = 0, x2 = 0, x3 = 1), x3=(x1 = 1, x2 = 1, x3 = 0),
x4=(x1 =1, x2 =0, x3 =1), x5=(x1 =0, x2 =1, x3 =1) encodes the proof R. That
there is a set of points P legalizing the 19 resolutions of R such that the number
of different input parts of points from P is 5.
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5 Test Generation by Proof Encoding

In this section, we describe a procedure (called ProofByTesting) that, given
a single-output combinational circuit N checks if N ≡ 0. Our objective here
is threefold. First, we want to illustrate the point that the idea of TTPE is
applicable to both buggy and correct circuits. (N is buggy when N(x)=1 for
some input assignment x.) Second, even though ProofByTesting is not practical,
it illustrates the point that one can have a complete test set that is smaller
than 2n (where n is the number of inputs of N). Third, the TCBP procedure
described in Subsection 6.3 is a variation of ProofByTesting made efficient by
removing checks that a set of points encodes a proof. (So this variation is limited
to finding bugs in N).

c the procedure checks if N ≡ 0
ProofByTesting(N)
{ P = ∅, F = FN ∧ z;
while(true)
{p = gen pnt(F );
x = inp(p);
if (N(x) == 1) return(no);
P = P ∪ {p};
while (true)
{(C,Exst)= new legal res(P ,F );
if (Exst==false) break;
if (C == empty) return(yes);
F = F ∪ {C}; }}}

Fig. 3. A procedure for generating tests
in the process of encoding a proof

Pseudocode of the ProofByTesting
procedure is shown in Figure 3. First, it
builds CNF formula F as described in
Subsection 4.1. In the outer loop, Proof-
ByTesting generates a point p and ex-
tracts its input part x. (We assume here
that the same point is not generated
more than once). If x is a counterex-
ample, the procedure returns no. Oth-
erwise, p is added to the set of points P
and the inner loop begins. In this loop
ProofByTesting checks if P encodes a
resolution proof.

First, ProofByTesting arbitrarily
picks a new resolvent C obtained by a
resolution legalized by points of P . (We
assume here that no resolvent is gener-
ated if it is implied by an existing clause

of F .) If all legal resolvents have been generated, ProofByTesting leaves the inner
loop to generate a new point p. Otherwise, it checks if C is an empty clause. If
it is, the answer yes is returned. (The set of resolvents added to F contains a
resolution proof and so N ≡ 0. This proof is encoded by points of P . The input
parts of points from P form a test set encoding a resolution proof.) If C is not
empty, it is added to F and a new iteration of the inner loop begins.

6 Extracting Tests from Boundary Points

In this section, we recall the definition and some properties of boundary points
and describe the idea of using such points for proof encoding. Then we give a
simple algorithm (called TCBP) for generation of tests extracted from boundary
points. TCBP is a variation of ProofByTesting described in the previous section.
Instead of running inefficient checks if a set of points encodes a resolution proof,
TCBP generates points that encode mandatory parts of a resolution proof. (Since
TCBP does not encode a complete proof, it can be used only for finding bugs.)
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6.1 Definition of Boundary Points and Some Useful Properties

Definition 10. Denote by Unsat(p,F ) the set of clauses of a CNF formula F
falsified by a complete assignment p.

Definition 11. Given a CNF formula F , a complete assignment p is called a
lit(vi)-boundary point, if Unsat(p,F) �= ∅ and every clause of Unsat(p,F) con-
tains literal lit(vi).

Example 6. The point p=(x1 =0, x2 =1, x3 =0, y1 =1, y2 =0, y3 =1, y4 =0, y5 =
1, z=1) falsifies only the clauses C8 = x1 ∨ y3 and C9 = x3 ∨ y3 of the formula
F of Example 3. These two clauses share literal y3. So p is a y3-boundary point.

Definition 12. Denote by Bnd pnts(F) the set of all boundary points of F.

Definition 13. Let p be a complete assignment. Denote by flip(p,vi) the point
obtained from p by flipping the value of vi.

The proposition below explains why studying boundary points is important.

Proposition 1. ([5]) If Bnd pnts(F) = ∅ , then F is unsatisfiable.

Proposition 1 implies that for a satisfiable formula F , Bnd pnts(F ) �= ∅. In par-
ticular, it is not hard to show [5] that if F (p′)=0, F (p′′)=1 and p′′= flip(p′,vi),
then p′ is a lit(vi)-boundary point. (This explains the name “boundary point”.)
Another interesting fact is that if p′ is a vi-boundary point, the point p′′=
flip(p′,vi) is either a satisfying assignment or a vi-boundary point [5]. So for an
unsatisfiable formula all boundary points come in pairs. We will refer to p′ and
p′′ as symmetric vi-boundary and vi-boundary points.

Let x be the test corresponding to a lit(vi)-boundary point p (i.e., x = inp(p))
where vi is not variable z. Then the part (y,z) of p specifies a faulty execution
trace for test x. Namely, at least one gate of N whose output/input variable is
specified by vi produces the wrong output value (which is the negation of the
value implied by the input values of this gate).

Example 7. Consider the y3-boundary point p=(x1 =0, x2 =1, x3 =0, y1 =1, y2=
0, y3=1, y4 =0, y5=1, z=1) of Example 6. It specifies test x=(x1 =0, x2 =1, x3 =
0) and the execution trace (y1 = 1, y2 = 0, y3 = 1, y4 = 0, y5 = 1, z = 1). In this
trace, the AND gate G3 (whose output is described by y3) produces the wrong
output value 1 for the input values x1 = 0, x3 = 0 . (All the other gates produce
output values implied by the input values of these gates.)

6.2 Encoding Resolutions Proofs by Boundary Points

Let p′ and p′′ be symmetric vi-boundary and vi-boundary points of F . It is not
hard to show [5] that any clause C′ falsified by p′ can be resolved on variable
vi with any clause C′′ falsified by p′′. This resolution produces a clause that is
falsified by both p′ and p′′ and does not have variable vi. Then p′ and p′′ are
not lit(vi)- boundary points of F ∧ C. Adding a clause to F can only eliminate
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some boundary points (but cannot produce new ones). So Bnd pnts(F ∧ C) ⊂
Bnd pnts(F ). We will refer to this process of removing boundary points by
adding clauses implied by F as boundary point elimination. (Note that adding
C to F may also eliminate lit(vi)-boundary points different from p′ and p′′.)

Let R1, . . . , Rk be a resolution proof where Rk is an empty clause. Note that
Bnd pnts(F ∧ Rk) = ∅. (By definition, if p is a lit(vi)-boundary point, every
clause falsified by p has to have at least one literal, i.e., lit(vi).) This means that
every lit(vi)-boundary point p of the initial formula F is eventually eliminated.
Then there is a resolvent Rm+1 such that p is a lit(vi)-boundary point for F ∧
R1 ∧ . . .∧Rm but not for F ∧R1 ∧ . . .∧Rm+1. It was shown in [5] that a lit(vi)-
boundary point p is eliminated in the proof only by a resolution on variable vi.
In other words, a lit(vi)-boundary point mandates a resolution on vi. This fact
is the foundation for using boundary points to encode resolution proofs.

If p′ and p′′ are symmetric vi-boundary and vi-boundary points and they are
eliminated by adding to F the resolvent of C′ and C′′ on vi, then p′ and p′′

legalize this resolution (because p′ , p′′ and C′ and C′′ satisfy both conditions of
Definition 7). If p′ and p′′ are symmetric boundary points legalizing a resolution
on vi, every proof has to contain a resolution on vi (but not necessarily the
resolution of C′ and C′′) In the general case, i.e., when p′ and p′′ are not
symmetric boundary points, they may legalize a resolution on variable vi even if
there are proofs that have no resolutions on vi. So proof encodings by boundary
points are much closer related to proofs than encodings by arbitrary points.

It is not clear yet if one can encode an entire resolution proof using only
boundary points. (It may be the case that some resolution operations of a proof
can be legalized only by non-boundary points). However, the experimental study
of [5] showed that for well structured proofs the ratio of resolutions that could
be legalized by boundary points was close to 100%. This implies that (at least
for the formulas of [5]) using boundary points one can encode an entire proof or
a large part thereof.

Example 8. Every resolution operation of the proof R described in Example 3
eliminates a boundary point (that has not been eliminated by previous resolu-
tions). The set of 5 tests given in Example 5 was actually built by a program
that extracted tests from boundary points eliminated by resolutions of R. For
example, the y3-boundary point p′=(x1 = 0, x2 = 1, x3 = 0, y1 = 1, y2 = 0, y3 =
1, y4 =0, y5 =1, z=1) introduced in Example 6 and the symmetric y3-boundary
point p′′=flip(p′,y3) are eliminated by the first resolution of R. (The latter re-
solves clauses C8 = x1 ∨ y3 and C13 = y3 ∨ y4 ∨ y5 on variable y3.) Points p′ and
p′′ legalize this resolution.

6.3 Extraction of Tests from Boundary Points

The procedure for extraction of tests from boundary points called TCBP (Test-
ing based on Computation of Boundary Points) is shown in Figure 4. Given a
single-output circuit N , specified by a CNF formula FN , the TCBP procedure
generates a set of tests to check if N evaluates to 1. (This comes down to check-
ing the satisfiability of CNF formula F = FN ∧ z.) TCBP terminates if a test is



Generating High-Quality Tests for Boolean Circuits 111

found for which N evaluates to 1 or if the number of generated tests exceeded a
threshold. TCBP records the set of all generated tests. (The reason is as follows.
Our experiments showed that due the high quality of tests generated by TCBP,
even if a test is unsuccessful for N it may detect a bug in a modified version N .
This modification may correspond, for example, to a wrong design change.)

c F = FN ∧ z
TCBP(F ,T )
{ count=0; T = ∅;
while (count < thresh)
{vi= pick var(F );
(ans,p) = BndPnt(F ,vi,lim);
if (ans < success) continue;
else count++;
x=inp(p); T = T∪ {x};
if (simulate(x,F ) == yes)
return (found);

eliminate(p,F );}
return(not found);}

Fig. 4. TCBP procedure

The main work is done in the ’while’ loop.
First a variable vi of F is picked randomly.
Then the procedure BndPnt is called to find
a lit(vi)-boundary point. lim. If no bound-
ary point is found by BndPnts within time
limit lim, a new iteration of the ’while’ loop
is started. (In our experiments, lim was set
to 10 sec.) Otherwise, a test x is constructed
as the input part of the boundary point p
found by BndPnt. This test is used for sim-
ulation. In terms of SAT, simulation comes
down to adding the set U of unit clauses en-
coding test x (i.e., satisfied by the assign-
ments of x) to the formula F and running
Boolean Constraint Propagation (BCP).

If the circuit N is deterministic, then BCP
over the formula F = FN ∧ U ∧ z results in

assigning a value to the output variable z. If z=1 (respectively z= 0), the test
x is a counterexample (respectively not a counterexample). In experiments, we
used faults that may make the behavior of a gate of N non-deterministic. Then,
variable z may not get assigned after BCP is over. If this is the case, a SAT-solver
was used to finish the instance (i.e., to prove that F was unsatisfiable if its input
variables were assigned according to x or to find a satisfying assignment). If such
an assignment was found, this meant that x detected the fault that the gate with
non-deterministic behavior produced the wrong output value (i.e., produced the
negation of the value implied by the input assignments for the gate without
the fault).

BndPnt(F ,vi,lim)
{G = F \ (Fvi ∪ Fvi

).
(ans,p)=sat(G,lim);
return((ans,p));}

Fig. 5. BndPnt procedure

If x fails to detect a fault, the lit(vi)-boundary
point p from which x was extracted is eliminated
by adding a resolvent on variable vi. (No partic-
ular heuristic was used to pick the pair of clauses
to be resolved). The test x is added to the set
of tests T and a new iteration of the ’while’ loop
starts.

The procedure for generation of a lit(vi)-
boundary point (called BndPnt) is given in Figure 5. First, the CNF formula G
is obtained from F by removing the clauses having literal vi (denoted by Fvi)
and vi (denoted by Fvi

). Then a SAT-solver sat is called to check if G is satis-
fiable. If a satisfying assignment p is found, it means that one of the following
three possibilities occurred: a) Fvi (p) = 0 and hence p is a vi-boundary point
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(because it falsifies only clauses of F that have literal vi); b) Fvi
(p)=0 and p is a

vi-boundary point; c) F (p)=1 and p is a satisfying assignment (never happened
in our experiments).

If the SAT-solver sat fails to find a boundary point it may mean that the
run time exceeded lim or that formula G (and hence F ) is unsatisfiable. (The
latter never happened in our experiments because we considered only satisfiable
formulas F there).

7 Some Background

Methods of combining test generation and formal methods have been studied
in many papers (e.g. [4,8] to name a few). In this section, for the lack of space,
we only mention the work directly related to generation of tests extracted from
boundary points (namely, generation of tests detecting hardware faults [1] and
software mutations [3]).

Identification of defective chips is usually done by running tests that detect
faults of a particular fault model [1]. In many cases, such a fault model may
have little to do with what really happens on a defective chip. It is just used
because tests detecting faults of this model are good at finding real faults. The
most popular fault model of that kind is the stuck-at model. It describes the
situation when a line of a gate is stuck at a constant value 0 or 1.

There is a tight relation between tests detecting stuck-at faults in a circuit
M ′ and boundary points of a CNF formula F = FN ∧ z. Here N is the miter
of circuits M ′ and M ′′ (like the one shown in Figure 1) where M ′′ is a copy of
circuit M ′. Variable z specifies the output of N .

Consider, for example, a stuck-at-0 fault φ on the output line of AND gate
G′ of M ′. Let yi,yj be the input variables of G′ and yk be its output variable.
Denote by M ′

φ the circuit M ′ with fault φ. A test xφ detecting φ (i.e., detecting
that yk ≡ 0) has to assign yi and yj to 1. Then the gate G′ of M ′

φ and its
counterpart G′′ in M ′′ produce different output values (0 and 1 respectively).

Let p=(xφ,y,1) be the point where (y,1) is the correct execution trace for
test xφ for the miter of M ′

φ and M ′′. Then p is an yk-boundary point for the
formula F . Indeed, since yi = 1,yj = 1,yk = 0 in p, the latter falsifies clause
C = yi ∨ yj ∨ yk of the formula FG′ specifying gate G′. Since (y,1) is the correct
execution trace for the miter of M ′

φ and M ′′, all the other gates of the miter N
of M ′ and M ′′ are assigned correctly. It means that p satisfies all the clauses of
the formula F but C.

Summarizing, one can view introduction of stuck-at faults as a way to generate
boundary points of formula F (describing the miter of two correct copies of the
same circuit). Importantly, the stuck-at fault model has been successfully used
in industry for three decades, which serves as an indirect evidence of the quality
of tests extracted from boundary points (at least for hardware testing).

The method of introducing mutations into a program has a lot of similarity
with identification of defective chips based on fault models. In particular, the
mutation operator replacing a logical subexpression with constant ’true’ or ’false’
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introduces a “stuck-at fault” into a program. Another interesting similarity is
that fault injection into a circuit (respectively introduction of a mutation into a
program) can be used to identify redundancy in the circuit (respectively in the
program). It is not hard to show that the absence of lit(vi)- boundary points in
a CNF formula F means that the clauses of F with variable vi can be removed
from F without changing its satisfiability. One can conjecture that similarly to
hardware manufacturing testing, using mutations is just a way to produce tests
that could have been extracted from some sort of boundary points of a formula
describing the “correct” program (i.e., the one without a mutation).

8 Experimental Results

In this section, we give some preliminary experimental results. Our intention
here is just to check the idea of using tests extracted from boundary points by
considering a simple example that mimics a hard real-life problem. This problem
is verification of arithmetic devices embedded into control logic. (The famous
Pentium bug was caused by failing to solve an instance of this problem.) In the
experiments, we tested the miter N of a faulty and correct circuits denoted by
Mf and M respectively (an example of a miter is shown in Figure 1). The circuit
M contained a large arithmetic component. The circuit Mf was a copy of M
with a fault introduced into the arithmetic component.

In the experiments we wanted to demonstrate the following two properties of
tests built by TCBP (i.e., extracted from boundary points). First, even though
generation of such tests takes time their quality is much higher than that of
random tests. Second, even unsuccessful TCBP tests meant for verification of
N (i.e., tests for which N evaluates to 0) have a high chance to find a bug in a
modified version of N if this modification is small. (In particular, we extracted
tests from boundary points of an unsatisfiable formula F describing the miter
N of two identical copies of circuit M . These tests were very effective in finding
bugs when one copy of M was replaced in N with a faulty circuit Mf . We do
not report this part of experiment for the lack of space.) From a practical point
of view this means that the cost of tests generated by TCBP can be amortized
over many design steps (due to reusing tests generated at previous design steps).

As a fault, we considered adding a literal to a clause of the CNF formula FM

specifying circuit M. (We found the bugs of this kind to be very easy to introduce
and very hard to detect.) The resulting formula FMf

specified the faulty circuit
Mf . Adding a literal to a clause describing a gate, makes the latter behave non-
deterministically. (Consider the clause C = yi ∨ yj ∨ yk of FM requiring that
when inputs yi and yj of an AND gate Gk are set to 1, the output of Gk specified
by yk is 1 too. After adding literal ym to C, where ym specifies the output of
gate Gm, the output of Gk can take an arbitrary value, when yi = yj = 1 and
ym = 0.) A test x is considered to have detected a fault in gate Gk of Mf , if the
miter of Mf and M evaluates to 1 when Gk produces the wrong value, i.e., the
negation of the value implied by the values of its inputs.

We compared TCBP with two extremes of functional verification: random
testing (an instance of pure simulation) and checking the satisfiability of the
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miter N by a SAT-solver (an instance of pure formal verification). For testing the
satisfiability of F in one SAT check we used SAT-solvers Satzilla, Precosat and
Mxc that won the first, second and third places in the SAT-2009 competition [13]
in the industrial category for satisfiable formulas. We also used Precosat in TCBP
for finding boundary points.

We ran two experiments that were meant to probe the regions that are good
and bad for random testing. In the first experiment, the circuit M consisted only
of an arithmetic component (good for random testing). In the second experiment,
M consisted of an arithmetic component feeding an input of a multi-input AND
gate (bad for random testing).

The results of the first experiment are described in Table 1. In this experiment,
circuit M implemented the functionality of a medium bit of a 128-bit multiplier.
(The size of the CNF formula F specifying the miter of M and Mf was about
114,000 variables and 437,000 clauses. The formulas of Table 2 had about the
same size.) We cherry picked 5 faults that were easy for random testing and
hard for SAT-solving. The runtimes of SAT-solvers are shown in columns 2,3,4.
(The timeout was set to 1 hour.) When using random testing, for every fault we
generated 10 sets of random tests, the two columns of “random testing” showing
the average run time and average test set size.

The last three columns of Table 1 show the results of TCBP. To mitigate the
influence of chance in picking boundary points, TCBP was given 10 tries to find
tests for the set of 5 faults. Before generating tests for fault number i (i=2,..,5),
the tests generated for faults 1,..i-1 (in the same try) were applied. If an old
test detected the fault no new tests were generated. In such a case, the number
of tests generated for this fault in this try was set to 0 and only the time taken
by simulation of old tests was charged. The “old tst.” column shows the number
of times a fault was detected by an old test x generated to detect a previous
fault. (To be tried for a fault number i, test x did not have to be successful for
a fault number j, j < i.). For example, value 10 for fault 3 means that in every
try (out of 10), fault 3 was detected by a test generated before to detect fault 1
or 2. In the last two columns, for each fault, the average run time and average
number of tests are given. The latter is computed over the tries where no old
test was successful and new tests had to be generated to detect this fault. (For
that reason no number of tests is given for faults 3 and 5 that were detected by
old tests in all 10 tries.)

The results of Table 1 show that TCBP performed much better than SAT-
solvers (but worse than random testing). It was able to reuse tests generated for
previous faults and it was faster even without reusing tests (e.g. for fault 1).

Table 2 shows the results of testing the miter N of M and Mf when M was
made up of the circuit implementing a medium bit of a 128-bit multiplier which
fed an input of a 24-input AND gate. The output of this AND gate was the
output of M. (The other 23 inputs of this AND gate were primary inputs of M.)
The idea was to make it much harder for random tests to propagate faults to
the output. The experiments indeed showed that random testing failed on every
fault we introduced (with the threshold of 106 tests per fault). Table 2 contains
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Table 1. Testing a circuit derived from a 128 bit multiplier

Flt. Satzilla Precosat Mxc random testing TCBP
num. s. s. times. #tsts old tst. time (s.) #tsts
1 >1h >1h >1h 4.8 334 0 346 87
2 >1h >1h >1h 7.8 656 1 328 83
3 >1h 2,450 >1h 0.2 15 10 0.4 n/a
4 >1h 931 >1h 2.8 212 7 50 43
5 >1h 1,596 52 4.6 205 10 0.4 n/a

the performance of Precosat and TCBP on a subset of 17 faults (we discarded
the faults that were easy for both Precosat and TCBP). The time limit was
set to 5 hours. (We did not use Satzilla and Mxc because they performed much
worse than Precosat not being able to detect the majority of faults within the
time limit while Precosat found all faults.)

Table 2. Testing a 17-fault set for a circuit
with arithmetic and logic components

Precosat TCBP
time (s) time (s) #tests

total 54,115 2,919 562
average 3,183 172 33
median 935 8 3

As before, we used 10 tries to gen-
erate tests for the 17-fault set. So
the total, median and average val-
ues of Table 2 were computed for the
averages over 10 tries. When test-
ing fault number i, i=2,..17 we also
(as in Experiment 1) checked if this
fault can be detected by a test gen-
erated for a fault 1,.., i-1 in the same
try. (Typically, one had to generate

tests only for 3-5 faults out of 17. The other faults were detected by old tests.)
The results of Table 2 show that on the set of hard faults we used, TCBP was

almost 20 times faster (even though it employed the same version of Precosat to
generate boundary points). Again, this can be attributed to a) reusing old tests;
b) finding a counterexample faster even when TCBP had to generate new tests.
Reusing of old tests explains the small median values of TCBP for the run time
and for the number of tests. For many faults, TCBP generated new tests in a
small number of tries (if any).

9 Conclusions

We introduced a test generation procedure based on the TTPE framework
(Treating Tests as a Proof Encoding). Given a circuit and a property, this pro-
cedure finds tests that encode mandatory fragments of any resolution proof that
the circuit satisfies the property. These tests are extracted from boundary points,
and this process does not require a proof. The successful demonstration of these
ideas implies that the study of proof systems more complex than resolution and
for logics more expressive than propositional logic, may lead to new methods for
generating high-quality tests for both hardware and software verification.



116 E. Goldberg and P. Manolios

References

1. Abramovici, M., Breuer, M., Friedman, D.: Digital Systems Testing and Testable
Design. John Wiley & Sons, Chichester (1994)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch.2, pp. 19–99.
North-Holland, Amsterdam (2001)

3. Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Theoretical and empirical
studies on using program mutation to test the functional correctness of programs.
In: 7th ACM SIGPLAN- SIGACT Symposium on Principles of Programming Lan-
guages, Las Vegas, Nevada, pp. 220–233 (1980)
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Abstract. This paper presents techniques for applying a finite relational model
finder to logical specifications that involve (co)inductive predicates, (co)algebraic
datatypes, and (co)recursive functions. In contrast to previous work, which fo-
cused on algebraic datatypes and restricted occurrences of unbounded quantifiers
in formulas, we can handle arbitrary formulas by means of a three-valued Kleene
logic. The techniques form the basis of the counterexample generator Nitpick for
Isabelle/HOL. As a case study, we consider a coalgebraic lazy list type.

1 Introduction

SAT and SMT solvers, model checkers, model finders, and other lightweight formal
methods are today available to test or verify specifications written in various languages.
These tools are often integrated in more powerful systems, such as interactive theorem
provers, to discharge proof obligations or generate (counter)models.

For testing logical specifications, a particularly attractive approach is to express these
in first-order relational logic (FORL) and use a model finder such as Kodkod [30] to
find counterexamples. FORL extends traditional first-order logic (FOL) with relational
calculus operators and the transitive closure, and offers a good compromise between
automation and expressiveness. Kodkod relies on a SAT solver and forms the basis of
Alloy [15]. In a case study, the Alloy Analyzer checked a mechanized version of the
paper proof of the Mondex protocol and revealed several bugs in the proof [27].

However, FORL lacks the high-level definitional principles usually provided in inter-
active theorem provers, namely (co)inductive predicates, (co)algebraic datatypes, and
(co)recursive functions (Sect. 3). Solutions have been proposed by Kuncak and Jack-
son [21], who modeled lists and trees in Alloy, and Dunets et al. [10], who showed how
to translate algebraic datatypes and recursive functions in the context of the first-order
theorem prover KIV. In both cases, the translation is restricted to formulas whose prenex
normal forms contain no unbounded universal quantifiers ranging over datatypes.

This paper generalizes previous work in several directions: First, we lift the un-
bounded quantifier restriction by using a three-valued logic coded in terms of the binary
logic FORL (Sect. 4.2). Second, we show how to translate (co)inductive predicates,
coalgebraic datatypes, and corecursive functions (Sect. 5). Third, in our treatment of
algebraic datatypes, we show how to handle mutually recursive datatypes (Sect. 5.2).

The use of a three-valued Kleene logic makes it possible to analyze formulas such as
True ∨ ∀nnat. P(n), which are rejected by Kuncak and Jackson’s syntactic criterion.
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Unbounded universal quantification is still problematic in general, but suitable defini-
tional principles and their proper handling mitigate this problem.

The ideas presented here form the basis of the higher-order counterexample genera-
tor Nitpick [5], which is included with recent versions of Isabelle/HOL [25]. As a case
study, we employ Nitpick on a small theory of coalgebraic (lazy) lists (Sect. 6). To sim-
plify the presentation, we use FOL as our specification language in the paper; issues
specific to higher-order logic (HOL) are mostly orthogonal and covered elsewhere [5].

2 Logics

2.1 First-Order Logic (FOL)

The first-order logic that will serve as our specification language is essentially the first-
order fragment of HOL [7, 12]. The types and terms are given below.

Types: Terms:
σ ::= κ (atomic type) t ::= xσ (variable)

| α (type variable) | cτ(t, . . . , t) (function term)
τ ::= (σ, . . . ,σ)→σ (function type) | ∀xσ. t (universal quantification)

The standard semantics interprets the Boolean type o and the constants Falseo, Trueo,
−→(o,o)�o (implication),�(σ,σ)�o (equality on basic type σ), and if then else (o,σ,σ)�σ.
Formulas are terms of type o. We assume throughout this paper that terms are well-typed
using the standard typing rules and usually omit the type superscripts. In conformity
with first-order practice, application of x and y on f is written f (x,y), the function type
()→ σ is identified with σ, and the parentheses in the function term c() are optional.
We also assume that the connectives¬, ∧, ∨ and existential quantification are available.

In contrast to HOL, our logic requires variables to range over basic types, and it
forbids partial function application and λ-abstractions. On the other hand, it supports
the limited form of polymorphism provided by proof assistants for HOL [14, 25, 29],
with the restriction that type variables may only be instantiated by atomic types (or left
uninstantiated in a polymorphic formula).

Types and terms are interpreted in the standard set-theoretic way, relative to a scope
that fixes the interpretation of basic types. A scope S is a function from basic types to
nonempty sets (domains), which need not be finite.1 We require S(o) = {ff, tt}.

The standard interpretation �τ�S of a type τ is given by

�σ�S = S(σ) �(σ1, . . . ,σn)→ σ�S = �σ1�S ×·· ·× �σn�S → �σ�S ,

where A→ B denotes the set of (total) functions from A to B. In contexts where S is
clear, the cardinality of �τ�S is written |τ|.

2.2 First-Order Relational Logic (FORL)

Our analysis logic, first-order relational logic, combines elements from FOL and rela-
tional calculus extended with the transitive closure [15,30]. Formulas involve variables
and terms ranging over relations (sets of tuples drawn from a universe of atoms) of
arbitrary arities. The logic is unsorted, but each term denotes a relation of a fixed arity.

1 The use of the word “scope” for a domain specification is consistent with Jackson [15].
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Formulas: Terms:
ϕ ::= false (falsity) r ::= none (empty set)

| true (truth) | iden (identity relation)
| m r (multiplicity constraint) | ai (atom)
| r � r (equality) | x (variable)
| r ⊆ r (inclusion) | r+ (transitive closure)
| ¬ϕ (negation) | r.r (dot-join)
| ϕ ∧ ϕ (conjunction) | r× r (Cartesian product)
| ∀x∈r: ϕ (universal quantification) | r ∪ r (union)

| r− r (difference)
m ::= no | lone | one | some | if ϕ then r else r (conditional)

The universe of discourse is A = {a1, . . . ,ak}, where each ai is an uninterpreted atom.
Atoms and n-tuples are identified with singleton sets and singleton n-ary relations, re-
spectively. Bound variables in quantifications range over the tuples in a relation; thus,
∀x∈ (a1∪a2)×a3: ϕ(x) is equivalent to ϕ(a1×a3) ∧ ϕ(a2×a3).

Although they are not listed above, we will sometimes make use of ∨, −→, ∗, and ∩
as well. The constraint no r expresses that r is the empty relation, one r expresses that
r is a singleton, lone r⇐⇒ no r ∨ one r, and some r⇐⇒¬no r. The dot-join operator
is unconventional; its semantics is given by the equation

�r.s� = {(r1, . . . ,rm−1, s2, . . . , sn) | ∃t. (r1, . . . ,rm−1, t)∈ �r� ∧ (t, s2, . . . , sn)∈ �s�}.
The operator admits three important special cases. Let s be unary and r, r′ be binary
relations. The expression s.r gives the direct image of the set s under r; if s is a singleton
and r a function, it coincides with the function application r(s). Analogously, r.s gives
the inverse image of s under r. Finally, r.r′ expresses relational composition.

The following FORL specification attempts to fit 30 pigeons in 29 holes:

vars pigeons = {a1, . . . ,a30}, holes = {a31, . . . ,a59}
var /0⊆ nest⊆ {a1, . . . ,a30}×{a31, . . . ,a59}
solve (∀p∈pigeons: one p.nest) ∧ (∀h∈holes: lone nest.h)

The variables pigeons and holes are given fixed values, whereas nest is specified with a
lower and an upper bound. The constraint one p.nest states that pigeon p is in relation
with exactly one hole, and lone nest.h that hole h is in relation with at most one pigeon.
Taken as a whole, the formula states that nest is a one-to-one function. It is, of course,
not satisfiable, a fact that Kodkod can establish in less than a second.

3 Definitional Principles

3.1 Simple Definitions

We extend our specification logic FOL with several definitional principles to introduce
new constants and types. The first principle defines a constant as equal to another term:

definition cτ where c(x̄)� t

Logically, the above definition is equivalent to the axiom ∀x̄. c(x̄)� t.
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Provisos: The constant c is fresh, the variables x̄ are distinct, and the right-hand side
t does not refer to any other free variables than x̄, to any undefined constants or c, or to
any type variables not occurring in τ. These restrictions ensure consistency [32].

3.2 (Co)inductive Predicates

The inductive and coinductive commands define inductive and coinductive predicates
specified by their introduction rules:

[co]inductive pτ where
p(t̄11) ∧ ·· · ∧ p(t̄1	1) ∧ Q1 −→ p(ū1)...
p(t̄n1) ∧ ·· · ∧ p(t̄n	n) ∧ Qn −→ p(ūn)

Provisos: The constant p is fresh, and the arguments to p and the side conditions Qi do
not refer to p, undeclared constants, or any type variables not occurring in τ.

The introduction rules may involve any number of free variables ȳ. The syntactic
restrictions on the rules ensure monotonicity; by the Knaster–Tarski theorem, the fixed
point equation

p(x̄) � ∃ȳ.
∨n

j=1
x̄� ūj ∧ p(t̄j1) ∧ ·· · ∧ p(t̄j	j) ∧ Qj

admits a least and a greatest solution [13, 26]. Inductive definitions provide the least
fixed point, and coinductive definitions provide the greatest fixed point.

As an example, assuming a type nat of natural numbers generated freely by 0nat and
Sucnat�nat, the following definition introduces the predicate even of even numbers:

inductive evennat�o where
even(0)
even(n)−→ even(Suc(Suc(n)))

The associated fixed point equation is

even(x) � ∃n. x� 0 ∨ x� Suc(Suc(n)) ∧ even(n).

The syntax can be generalized to support mutual definitions, as in the next example:

inductive evennat�o and oddnat�o where
even(0)
even(n)−→ odd(Suc(n))
odd(n)−→ even(Suc(n))

Mutual definitions for p1, . . . , pm can be reduced to a single predicate q whose domain
is the disjoint sum of the domains of each pi [26]. Assuming Inl and Inr are the disjoint
sum constructors, the definition of even and odd is replaced by

inductive even_or_odd (nat,nat)sum�o where
even_or_odd(Inl(0))
even_or_odd(Inl(n))−→ even_or_odd(Inr(Suc(n)))
even_or_odd(Inr(n))−→ even_or_odd(Inl(Suc(n)))

definition evennat�o where even(n)� even_or_odd(Inl(n))
definition oddnat�o where odd(n)� even_or_odd(Inr(n))
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3.3 (Co)algebraic Datatypes

The datatype and codatatype commands define mutually recursive (co)algebraic
datatypes specified by their constructors:

[co]datatype (ᾱ)κ1 = C11
[
of σ̄11

] | · · · | C1	1

[
of σ̄1	1

]
and . . .
and (ᾱ)κn = Cn1

[
of σ̄n1

] | · · · | Cn	n

[
of σ̄n	n

]
The defined types (ᾱ)κi are parameterized by a list of distinct type variables ᾱ, provid-
ing type polymorphism. Each constructor Cij has type σ̄ij → (ᾱ)κi.

Provisos: The type names κi and the constructor constants Cij are fresh and distinct,
the type parameters ᾱ are distinct, and the argument types σ̄ij do not refer to any other
type variables than ᾱ (but may refer to the types (ᾱ)κi being defined).

The commands can be used to define natural numbers, pairs, finite lists, and possibly
infinite lazy lists as follows:

datatype nat = 0 | Suc of nat datatype α list=Nil | Cons of (α, α list)
datatype (α, β)pair=Pair of (α, β) codatatype α llist=LNil |LCons of (α, α llist)

Defining a (co)datatype introduces the appropriate axioms for the constructors [26]. It
also introduces the syntax case t of Ci1(x̄1)⇒ u1 | . . . |Ci	i(x̄	i)⇒ u	i , characterized by
∀x̄j. (case Cij(x̄j) of Ci1(x̄1)⇒ u1 | . . . | Ci	i(x̄	i)⇒ u	i)� uj for j ∈ {1, . . . , 	i}.

3.4 (Co)recursive Functions

The primrec command defines primitive recursive functions on algebraic datatypes:

primrec f τ11 and . . . and f τnn where
f1(C11(x̄11), z̄11)� t11 . . . f1(C1	1(x̄1	1), z̄1	1)� t1	1...
fn(Cn1(x̄n1), z̄n1)� tn1 . . . fn(Cn	n(x̄n	n), z̄n	n)� tn	n

Provisos: The constants fi are fresh and distinct, the variables x̄ij and z̄ij are distinct
for any given i and j, the right-hand sides tij involve no other variables than x̄ij and z̄ij

and no type variables that do not occur in τi, and the first argument of any recursive
call must be one of the x̄ij’s. The recursion is well-founded because each recursive call
peels off one constructor from the first argument.

Corecursive function definitions follow a rather different syntactic schema, with a
single equation per function fi that must return type (ᾱ)κi:

coprimrec f τ11 and . . . and f τnn where
f1(ȳ1) � if Q11 then t11 else if Q12 then . . . else t1	1...
fn(ȳn) � if Qn1 then tn1 else if Qn2 then . . . else tn	n

Provisos: The constants fi are fresh and distinct, the variables ȳi are distinct, the right-
hand sides involve no other variables than ȳi, no corecursive calls occur in the conditions
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Q̄ij, and either t̄ij does not involve any corecursive calls or it has the form C̄ij(ūij).2 The
syntax can be relaxed to allow a case expression instead of a sequence of conditionals.

The following examples define concatenation for α list and α llist:

primrec cat (α list,α list)�α list where
cat(Nil, zs)� zs cat(Cons(y, ys), zs)� Cons(y, cat(ys, zs))

coprimrec lcat (α list,α list)�α list where
lcat(ys, zs) � case ys of LNil⇒ zs | LCons(y, ys′)⇒ LCons(y, lcat(ys′, zs))

4 Basic Translations

4.1 A Sound and Complete Translation

This section presents the translation of FOL to FORL, excluding the definitional prin-
ciples from Sect. 3. We consider only finite domains; for these the translation is sound
and complete. We start by mapping FOL types τ to sets of FORL atom tuples 〈〈τ〉〉:

〈〈σ〉〉= {a1, . . . ,a|σ|} 〈〈(σ1, . . . ,σn)→ σ〉〉= 〈〈σ1〉〉× · · ·×〈〈σn〉〉×〈〈σ〉〉.
For simplicity, we reuse the same atoms for distinct basic types. A real implementation
can benefit from using distinct atoms because it facilitates symmetry breaking [30].

For each free variable or nonstandard constant uτ, we generate the bounds declaration
var /0⊆ u⊆〈〈τ〉〉 as well as a constraint Φ(u) to ensure that single values are singletons
and functions are functions:

Φ(uσ) = one u Φ(u (ς1,...,ςn)�ς) = ∀x1∈〈〈ς1〉〉, . . . , xn∈〈〈ςn〉〉: one xn.(. . . .(x1.u) . . .).

Since FORL distinguishes between formulas and terms, the translation to FORL is per-
formed by two mutually recursive functions, F〈〈t〉〉 and T〈〈t〉〉:3

F〈〈False〉〉= false T〈〈x〉〉= x

F〈〈True〉〉= true T〈〈False〉〉= a1

F〈〈t � u〉〉= T〈〈t〉〉 � T〈〈u〉〉 T〈〈True〉〉= a2

F〈〈t −→ u〉〉= F〈〈t〉〉 −→ F〈〈u〉〉 T〈〈if t then u1 else u2〉〉= if F〈〈t〉〉 then T〈〈u1〉〉 else T〈〈u2〉〉
F〈〈∀xσ. t〉〉= ∀x∈〈〈σ〉〉: F〈〈t〉〉 T〈〈c(t1, . . . , tn)〉〉= T〈〈tn〉〉.(. . . .(T〈〈t1〉〉.c) . . .)

F〈〈t〉〉= T〈〈t〉〉 � T〈〈True〉〉 T〈〈to〉〉= T〈〈if t then True else False〉〉.
The metavariable c ranges over nonstandard constants, so that the T〈〈to〉〉 equation is
used for � and −→ (as well as for ∀). The Boolean values false and true are arbitrarily
coded as a1 and a2 when they appear as FORL terms.

Theorem 4.1. The FOL formula P with free variables and nonstandard constants uτ11 ,
. . . , uτnn is satisfiable for a given finite scope iff the FORL formula F〈〈P〉〉 ∧ ∧n

j=1 Φ(uj)
with bounds /0⊆ uj ⊆〈〈τj〉〉 is satisfiable for the same scope.

2 Other authors formulate corecursion in terms of selectors instead of constructors [16].
3 Metatheoretic functions here and elsewhere are defined using sequential pattern matching.
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Proof. Let �t�M denote the set-theoretic semantics of the FOL term t w.r.t. a model M
and the given scope S , let �ϕ�V denote the truth value of the FORL formula ϕ w.r.t.
a variable valuation V and the scope S , and let �r�V denote the set-theoretic seman-
tics of the FORL term r w.r.t. V and S . Furthermore, for v ∈ �σ�S , let �v� denote the
corresponding value in 〈〈σ〉〉, with �ff� = a1 and �tt� = a2. Using recursion induction,
it is straightforward to prove that �F〈〈to〉〉�V ⇐⇒ �t�M = tt and �T〈〈t〉〉�V = ��t�M� if
V(uj) = �M(uj)� for all uj’s. Moreover, from a satisfying valuation V of the uj’s, we
can construct a FOL model M such that �M(uj)� = V(uj); the Φ constraints and the
bounds ensure that such a model exists. Hence, �F〈〈P〉〉�V ⇐⇒ �P�M = tt. ��
The translation is parameterized by a scope, which specifies the exact cardinalities of the
basic types occurring in the formula. To exhaust all models up to a cardinality bound k
for n basic types, a model finder must a priori iterate through kn combinations of cardi-
nalities and must consider all models for each of these combinations. This can be made
more efficient by taking the cardinalities as upper bounds rather than exact bounds (Al-
loy’s default mode of operation [15, p. 129]) or by inferring scope monotonicity [4,21].

4.2 Approximation of Infinite Types and Partiality

Besides its lack of support for the definitional principles, the above translation suffers
from a serious limitation: It disregards infinite types such as natural numbers, lists, and
trees, which are ubiquitous in real-world specifications. Fortunately, it is not hard to
adapt the translation to take these into account in a sound (but incomplete) way.

Given an infinite atomic type κ, we consider a finite subset of �κ�S and map every
element not in this subset to a special undefined value ⊥. For the type nat of natural
numbers, an obvious choice is to consider prefixes {0, . . . ,K} of N and map numbers
> K to ⊥. Observe that the successor function Suc becomes partial, with Suc K = ⊥.
The technique can also be used to speed up the analysis of finite types with a high
cardinality: We can approximate a 256-value byte type by a subset of, say, 5 values.

Leaving out some elements of atomic types means that we must cope with partiality.
Not only may functions be partial, but any term or formula can evaluate to ⊥. The logic
becomes a three-valued Kleene logic [17]. Universal quantifiers whose bound variable
ranges over an approximated type, such as ∀nnat. P(n), will evaluate to either False (if
P(n) gives False for some n≤ K) or⊥, but never to True, since we do not know whether
P(K + 1), P(K + 2), . . . , are true.

Partiality can be encoded in FORL as follows. Inside terms, we let none (the empty
set) stand for⊥. This choice is convenient because none is an absorbing element for the
dot-join operator, which models function application; thus, f (⊥) =⊥. Inside a formula,
we keep track of the polarity of the subformulas: In positive contexts (i.e., under an even
number of negations), true codes True and false codes False or⊥; in negative contexts,
false codes False and true codes True or⊥.

The translation of FOL terms is performed by two functions, Fs〈〈t〉〉 and T〈〈t〉〉, where
s indicates the polarity (+ or −):

Fs〈〈False〉〉= false T〈〈x〉〉= x

Fs〈〈True〉〉= true T〈〈False〉〉= a1
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F+〈〈t � u〉〉= some (T〈〈t〉〉 ∩ T〈〈u〉〉) T〈〈True〉〉= a2

F–〈〈t � u〉〉= lone (T〈〈t〉〉 ∪ T〈〈u〉〉) T〈〈if t then u1 else u2〉〉= if F+〈〈t〉〉 then T〈〈u1〉〉
Fs〈〈t−→u〉〉= F–s〈〈t〉〉 −→ Fs〈〈u〉〉 else if ¬F–〈〈t〉〉 then T〈〈u2〉〉
F+〈〈∀xσ. t〉〉= false if |〈〈σ〉〉|< |σ| else none

Fs〈〈∀xσ. t〉〉= ∀x∈〈〈σ〉〉: Fs〈〈t〉〉 T〈〈c(t1, . . . , tn)〉〉= T〈〈tn〉〉.(. . . .(T〈〈t1〉〉.c) . . .)
F+〈〈t〉〉= T〈〈t〉〉 � T〈〈True〉〉 T〈〈to〉〉= T〈〈if t then True
F–〈〈t〉〉= T〈〈t〉〉 �� T〈〈False〉〉 else False〉〉.

In the equation for implication,−s denotes − if s is + and + if s is −. Taken together,
(F+〈〈t〉〉, F–〈〈t〉〉) encode a three-valued logic, with (true, true) corresponding to True,
(false, true) corresponding to ⊥, and (false, false) corresponding to False. The case
(true, false) is impossible by construction.

When mapping FOL types to sets of FORL atom tuples, basic types σ are now al-
lowed to take any finite cardinality |〈〈σ〉〉| ≤ |σ|. We also need to relax the definition of
Φ(u) to allow empty sets, by substituting lone for one.

Theorem 4.2. Given a FOL formula P with free variables and nonstandard constants
uτ11 , . . . , uτnn and a scope S, the FORL formula F+〈〈P〉〉 ∧ ∧n

j=1 Φ(uj) with bounds /0 ⊆
uj ⊆ 〈〈τj〉〉 is satisfiable for S only if P is satisfiable for S.

Proof. The proof is similar to that of Theorem 4.1, but partiality requires us to compare
the actual value of a FORL expression with its expected value using ⊆ rather than =.
Using recursion induction, we can prove that �F+〈〈to〉〉�V =⇒ �t�M = tt, ¬�F–〈〈to〉〉�V =⇒
�t�M = ff , and �T〈〈t〉〉�V ⊆ ��t�M� if V(u) ⊆ �M(u)� for all free variables and nonstan-
dard constants u occurring in t. Some of the cases deserve more justification:

– The F+〈〈t � u〉〉 equation is sound because if the intersection of T〈〈t〉〉 and T〈〈u〉〉 is
nonempty, then t and u must be equal (since they are singletons).

– The F–〈〈t � u〉〉 equation is dual: If the union of T〈〈t〉〉 and T〈〈u〉〉 has more than one
element, then t and u must be unequal.

– Universal quantification occurring positively can never yield true if the bound vari-
able ranges over an approximated type. (In negative contexts, approximation com-
promises the encoding’s completeness but not its soundness.)

– The if then else equation carefully distinguishes between the cases where the con-
dition is True, False, and ⊥. In the True case, it returns the then value; in the False
case, it returns the else value; and in the ⊥ case, it returns⊥ (none).

– The T〈〈c(t1, . . . , tn)〉〉 equation is as before. If any of the arguments tj evaluates to
none, the entire dot-join expression yields none.

Moreover, from a satisfying valuation V of the uj’s, we can construct a FOL model
M such that V(uj) ⊆ �M(uj)� for all uj’s, by defining M(uj) arbitrarily if V(uj) = /0
or at points where the partial function V(uj) is undefined. Hence, �F+〈〈P〉〉�V implies
�P�M = tt. ��

Although our translation is sound, a lot of precision is lost for � and ∀. Fortunately, by
handling high-level definitional principles specially (as opposed to directly translating
their FOL axiomatization), we can bypass the imprecise translation and increase the
precision. This is covered in the next section.



Relational Analysis of Predicates, Datatypes, and Functions 125

5 Translation of Definitional Principles

5.1 Axiomatization of Simple Definitions

Once we extend the specification logic with simple definitions, we must also encode
these in the FORL formula. More precisely, if cτ is defined and an instance cτ

′
occurs

in a formula, we must conjoin c’s definition with the formula, instantiating τ with τ′.
This process must be repeated for any defined constants occurring in c’s definition.

Given the command
definition cτ where c(x̄)� t

the naive approach would be to conjoin F+〈〈∀x̄. c(x̄)� t〉〉 with the FORL formula to
satisfy and recursively do the same for any defined constants in t. However, there are
two problems with this approach:

– If any of the variables x̄ is of an approximated type, the equation F+〈〈∀x̄. t〉〉= false
applies, and the axiom becomes unsatisfiable. This is sound but extremely impre-
cise, as it prevents the discovery of any model.

– Otherwise, the body of ∀x̄. c(x̄)� t is translated to some (T〈〈c(x̄)〉〉 ∩ T〈〈t〉〉), which
evaluates to false whenever T〈〈t〉〉 is none for some values of x̄.

Fortunately, we can take a shortcut and translate the definition directly to the following
FORL axiom, bypassing F+ altogether (cf. Weber [31, p. 66]):

∀x1∈〈〈σ1〉〉, . . . , xn∈〈〈σn〉〉: T〈〈c(x1, . . . , xn)〉〉 � T〈〈t〉〉.

Theorem 5.1. The encoding of Sect. 4.2 extended with simple definitions is sound.

Proof. Any FORL valuation V that satisfies the FORL axiom for a constant c can be
extended into a FOL model M that satisfies the corresponding FOL axiom, by setting
M(c)(v̄) = �t�M(v̄) for any values v̄ at which V(c) is not defined (either because v̄ is not
representable in FORL or because the partial function V(c) is not defined at that point).
The apparent circularity in M(c)(v̄) = �t�M(v̄) is harmless, because simple definitions
are required to be acyclic and so we can construct M one constant at a time. ��

5.2 Axiomatization of Algebraic Datatypes and Recursive Functions

The FORL axiomatization of algebraic datatypes follows the lines of Kuncak and Jack-
son [21]. Let κ = C1 of (σ11, . . . ,σ1n1) | · · · | C	 of (σ	1, . . . ,σ	n	) be a datatype in-
stance. With each constructor Ci, we associate a discriminator Dκ�o

i and n selectors
S κ�σk

ik obeying Dj(Ci(x̄)) � (i � j) and Sik(Ci(x1, ..., xn)) � xk. For example, the type
α list is assigned the discriminators nilp and consp and the selectors head and tail:4

nilp(Nil)� True nilp(Cons(x, xs))� False head(Cons(x, xs))� x

consp(Nil)� False consp(Cons(x, xs))� True tail(Cons(x, xs))� xs.

4 These names were chosen for readability; any fresh names would do.
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The discriminator and selector view almost always results in a more efficient SAT en-
coding than the constructor view because it breaks high-arity constructors into several
low-arity discriminators and selectors, declared as follows (for all possible i, k):

var /0⊆ Di ⊆〈〈κ〉〉 var /0⊆ Sik ⊆〈〈κ→ σik〉〉
The predicate Di is directly coded as a set of atoms, rather than as a function to {a1,a2}.

Let Ci〈r1, . . . ,rn〉 stand for Si1.r1 ∩ ·· · ∩ Sin.rn if n≥ 1, and Ci〈〉= Di for parameter-
less constructors. Intuitively, Ci〈r1, . . . ,rn〉 represents the constructor Ci with arguments
r1, . . . ,rn at the FORL level [10]. A faithful axiomatization of datatypes in terms of Di

and Sik involves the following axioms (for all possible i, j, k):

DISJOINTij: no Di ∩ Dj for i < j

EXHAUSTIVE: D1 ∪ ·· · ∪ D	 � 〈〈κ〉〉
SELECTORik: ∀y∈〈〈κ〉〉: if y⊆ Di then one y.Sik else no y.Sik

UNIQUEi: ∀x1∈〈〈σ1〉〉, . . . , xni ∈〈〈σni〉〉: lone Ci〈x1, . . . , xni〉
GENERATORi: ∀x1∈〈〈σ1〉〉, . . . , xni ∈〈〈σni〉〉: some Ci〈x1, . . . , xni〉

ACYCLIC: no supκ ∩ iden.

In the last axiom, supκ denotes the proper superterm relation for κ. We will see shortly
how to derive it from the selectors.

DISJOINT and EXHAUSTIVE ensure that the discriminators partition 〈〈κ〉〉. The four
remaining axioms, sometimes called the SUGA axioms (after the first letter of each
axiom name), ensure that selectors are functions whose domain is given by the cor-
responding discriminator (SELECTOR), that constructors are total functions (UNIQUE

and GENERATOR), and that datatype values cannot be proper superterms of themselves
(ACYCLIC). The injectivity of constructors follows from the functionality of selectors.

With this axiomatization, occurrences of Ci(u1, . . . ,un) in FOL are simply mapped to
Ci〈T〈〈u1〉〉, . . . ,T〈〈un〉〉〉, whereas case t of C1(x̄1)⇒ u1 | . . . | C	(x̄	)⇒ u	 is coded as

if T〈〈t〉〉⊆D1 then T〈〈u�1 〉〉 else if . . . else if T〈〈t〉〉⊆D	 then T〈〈u�	 〉〉 else none,

where u�i denotes the term ui in which all occurrences of the variables x̄i = xi1, . . . , xini

are replaced with the corresponding selector expressions Si1(t), . . . ,Sini(t).
Unfortunately, the SUGA axioms admit no finite models if the type κ is recursive

(and hence infinite), because they force the existence of infinitely many values. The
solution is to leave GENERATOR out, yielding SUA. The SUA axioms characterize pre-
cisely the subterm-closed finite substructures of an algebraic datatype. In a two-valued
logic, this is generally unsound, but Kuncak and Jackson [21] showed that omitting
GENERATOR is sound for existential–bounded-universal (EBU) sentences—namely,
the formulas whose prenex normal forms contain no unbounded universal quantifiers
ranging over datatypes.

In contrast, in our three-valued setting, omitting GENERATOR is always sound. The
construct Ci〈r1, . . . ,rni〉 sometimes returns none for non-none arguments, but this is not
a problem since our translation of Sect. 4.2 is designed to cope with partiality. Non-EBU
formulas such as True ∨ ∀nnat. P(n) become analyzable when moving to a three-valued
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logic. This is especially important for complex specifications, because they are likely to
contain non-EBU parts that are not needed for finding a model.

Example 5.1. The nat list instance of α list would be axiomatized as follows:

DISJOINT: no nilp ∩ consp

EXHAUSTIVE: nilp ∪ consp�〈〈nat list〉〉
SELECTORhead: ∀ys∈〈〈nat list〉〉: if ys⊆ consp then one ys.head else no ys.head

SELECTORtail: ∀ys∈〈〈nat list〉〉: if ys⊆ consp then one ys.tail else no ys.tail

UNIQUENil: lone Nil〈〉
UNIQUECons: ∀x∈〈〈nat〉〉, xs∈〈〈nat list〉〉: lone Cons〈x, xs〉

ACYCLIC: no supnat list ∩ iden with supnat list = tail+.

Examples of subterm-closed list substructures using traditional notation are {[], [0], [1]}
and {[], [1], [2,1], [0,2,1]}. In contrast, L = {[], [1,1]} is not subterm-closed, because
tail([1,1]) = [1] /∈ L. Given a cardinality, Kodkod systematically enumerates all corre-
sponding subterm-closed list substructures. �

To generate the proper superterm relation needed for ACYCLIC, we must consider the
general case of mutually recursive datatypes. We start by computing the datatype de-
pendency graph, in which vertices are labeled with datatypes and arcs with selectors.
For each selector S κ�κ

′
, we add an arc from κ to κ ′ labeled S. Next, we compute for

each datatype a regular expression capturing the nontrivial paths in the graph from the
datatype to itself. This can be done using Kleene’s construction [18; 19, pp. 51–53].
The proper superterm relation is obtained from the regular expression by replacing con-
catenation with relational composition, alternative with set union, and repetition with
transitive closure.

Example 5.2. Let sym be an atomic type. The definitions on the left-hand side give rise
to the dependency graph on the right-hand side:

datatype α list = Nil | Cons of (α, α list)
datatype tree = Leaf of sym | Node of tree list

The selector associated with Node is called children. The superterm relations are

suptree = (children.tail∗.head)+ suptree list = (tail ∪ head.children)+.

Notice that in the presence of polymorphism, instances of sequentially declared data-
types can be mutually recursive. �

With a suitable axiomatization of datatypes as subterm-closed substructures, it is easy to
encode primrec definitions. A recursive equation f (Ci(xσ1

1 , . . . , x
σm
m ), zσ

′
11 , . . . , z

σ′n
n )� t

is translated to

∀y∈Di, z1∈〈〈σ′1〉〉, . . . ,zn∈〈〈σ′n〉〉: T〈〈 f (y, z1, . . . ,zn)〉〉 � T〈〈t�〉〉,
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where t� is obtained from t by replacing the variables xi with the selector expressions
Si(y). By quantifying over the constructed values y rather than on the arguments to
the constructors, we reduce the number of copies of the quantified body by a factor
of |〈〈σ1〉〉| · . . . · |〈〈σn〉〉|/ |〈〈κ〉〉| in the SAT problem. Although we focus here on primitive
recursion, general well-founded recursion with non-overlapping pattern matching (as
defined using, say, Isabelle’s function package [20]) can be handled in essentially the
same way.

Example 5.3. The recursive function cat from Sect. 3.4 is translated to

∀ys∈nilp, zs∈〈〈α list〉〉: zs.(ys.cat)� zs

∀ys∈ consp, zs∈〈〈α list〉〉: zs.(ys.cat)� Cons〈ys.head, zs.((ys.tail).cat)〉. �

Theorem 5.2. The encoding of Sect. 5.1 extended with algebraic datatypes and primi-
tive recursion is sound.

Proof. Kuncak and Jackson [21] proved that SUA axioms precisely describe subterm-
closed finite substructures of an algebraic datatype, and showed how to generalize
this result to mutually recursive datatypes. This means that we can extend the valu-
ation of the descriptors and selectors to obtain a model. For recursion, we can prove
�T〈〈 f (C(x1 , . . . , xm),z1, . . . ,zn)〉〉�V ⊆ �� f (C(x1 , . . . , xm),z1, . . . ,zn)�M� by structural in-
duction on the value of the first argument to f and extend f ’s model as in the proof
of Theorem 5.1, exploiting the injectivity of constructors. ��

5.3 Axiomatization of (Co)inductive Predicates

With datatypes and recursion in place, we are ready to consider (co)inductive predicates.
Recall from Sect. 3.2 that an inductive predicate is the least fixed point p of the equation
p(x̄)� t[p] (where t[p] is some formula involving p) and a coinductive predicate is the
greatest fixed point. A first intuition would be to take p(x̄) � t[p] as p’s definition. In
general, this is unsound since it underspecifies p, but there are two important cases for
which this method is sound.

First, if the recursion in p(x̄)� t[p] is well-founded, the equation admits exactly one
solution [13]; we can safely use it as p’s specification, and encode it the same way as a
recursive function (Sect. 5.2). To ascertain wellfoundedness, we can perform a simple
syntactic check to ensure that each recursive call peels off at least one constructor.
Alternatively, we can invoke an off-the-shelf termination prover such as AProVE [11] or
Isabelle’s lexicographic_order tactic [6]. Given introduction rules of the form p(t̄i1) ∧
·· · ∧ p(t̄i	i) ∧ Qi −→ p(ūi) for i ∈ {1, . . . ,n}, the prover attempts to exhibit a well-
founded relation R such that

∧n
i=1

∧	i
j=1 Qi −→

〈
tij, ui

〉 ∈ R holds. This is the approach
implemented in Nitpick.

Second, if p is inductive and occurs negatively in the formula, we can replace these
occurrences by a fresh constant q satisfying q(x̄)� t[q]. The resulting formula is equi-
satisfiable to the original formula: Since p is a least fixed point, q overapproximates p
and thus ¬q(x̄) =⇒ ¬ p(x̄). Dually, this method can also handle positive occurrences
of coinductive predicates.
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To deal with positive occurrences of inductive predicates, we adapt a technique from
bounded model checking [3]: We replace these occurrences of p by a fresh predicate rk

defined by the FOL equations

r0(x̄) � False rSuc n(x̄) � t[rn],

which corresponds to p unrolled k times. In essence, we have made the predicate well-
founded by introducing a counter that decreases by one with each recursive call. The
above equations are primitive recursive over the datatype nat and can be translated using
the approach shown in Sect. 5.2. The unrolling comes at a price: The search space for
rk is k times that of p directly encoded as p(x̄)� t[p].

The situation is mirrored for coinductive predicates: Negative occurrences are re-
placed by the overapproximation rk defined by

r0(x̄) � True rSuc n(x̄) � t[rn].

Theorem 5.3. The encoding of Sect.5.2 extended with (co)inductive predicates is sound.

Proof. We consider only inductive predicates; coinduction is dual. If p is well-founded,
the fixed point equation fully characterizes p [13], and the proof is identical to that
of primitive recursion in Theorem 5.2 but with recursion induction instead of struc-
tural induction. If p is not well-founded, q � t[q] is satisfied by several q’s, and by
Knaster–Tarski p� q. Substituting q for p’s negative occurrences in the FORL formula
strengthens it, which is sound. For the positive occurrences, we have r0 � ·· · � rk � p
by monotonicity of the inductive definition; substituting rk for p’s positive occurrences
strengthens the formula. ��
Incidentally, we can mobilize FORL’s transitive closure to avoid the explicit unrolling
for an important class of inductive predicates, linear inductive predicates, whose intro-
duction rules are of the form Q−→ p(ū) (the base rules) or p(t̄)∧ Q−→ p(ū) (the step
rules). Informally, the idea is to replace positive occurrences of p(x̄) with

∃x̄0. pbase(x̄0) ∧ p∗step(x̄0, x̄),

where pbase(x̄0) iff p(x̄0) can be deduced from a base rule, pstep(x̄0, x̄) iff p(x̄) can be
deduced by applying one step rule assuming p(x̄0), and p∗step is the reflexive transitive
closure of pstep. For example, an inductive reachability predicate reach(s) defined in-
ductively would be coded as a set of initial states reachbase and the small-step transition
relation reachstep. The approach is not so different from explicit unrolling, since Kodkod
internally unrolls the transitive closure to saturation. Nonetheless, on some problems the
transitive closure approach is several times faster, presumably because Kodkod unfolds
the relation inline instead of introducing an explicit counter.

5.4 Axiomatization of Coalgebraic Datatypes and Corecursive Functions

Coalgebraic datatypes are similar to algebraic datatypes, but they allow infinite values.
For example, the infinite lists [0,0, . . .] and [0,1,2,3, . . .] are possible values of the type
nat llist of coalgebraic (lazy) lists over natural numbers.
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In principle, we could use the same SUA axiomatization for codatatypes as for data-
types (Sect. 5.2). This would exclude all infinite values but nonetheless be sound (al-
though incomplete). However, in practice, infinite values often behave in surprising
ways; excluding them would also exclude many interesting models.

It turns out we can modify the SUA axiomatization to support an important class of
infinite values, namely those that are ω-regular. For lazy lists, this means lasso-shaped
objects such as [0,0, . . .] and [8,1,2,1,2, . . .] (where the cycle 1,2 is repeated infinitely).

The first step is to leave out the ACYCLIC axiom. However, doing only this is un-
sound, because we might obtain several atoms encoding the same value; for example,
a1 = LCons(0, a1), a2 = LCons(0, a3), and a3 = LCons(0, a2) all encode the infinite
list [0,0, . . .]. This violates the bisimilarity principle, according to which two values are
equal unless they lead to different observations (the observations being 0,0, . . .).

For lazy lists, we add the definition

coinductive ∼ (α llist,α llist)�o where
LNil∼ LNil
x� x′ ∧ xs∼ xs′ −→ LCons(x, xs)∼ LCons(x′, xs′)

and we require that � coincides with ∼ on α llist values. More generally, we gener-
ate mutual coinductive definitions of ∼ for all the codatatypes. For each constructor
C (σ1,...,σn)�σ, we add an introduction rule

x1 ≈1 x′1 ∧ ·· · ∧ xn ≈n x′n −→ C(x1, . . . , xn)∼C(x′1, . . . , x
′
n),

where ≈i is ∼ (σi,σi)�o if σi is a codatatype and � otherwise. Finally, for each codata-
type κ, we add the axiom

BISIMILAR: ∀y,y′ ∈〈〈κ〉〉: y∼ y′ −→ y� y′.

With the SUB (SU plus BISIMILAR) axiomatization in place, it is easy to encode co-
primrec definitions. A corecursive equation f (yσ1

1 , . . . ,y
σ1
n ) � t is translated to

∀y1 ∈ 〈〈σ1〉〉, . . . ,yn ∈ 〈〈σn〉〉: T〈〈 f (y1, . . . ,yn)〉〉 � T〈〈t〉〉.

Theorem 5.4. The encoding of Sect. 5.3 extended with coalgebraic datatypes and prim-
itive corecursion is sound.

Proof. Codatatypes correspond to final coalgebras. They are characterized by selec-
tors, which are axiomatized by the SU axioms, and by finality, which is equivalent to
the bisimilarity principle [16,26]. Our finite axiomatization gives a subterm-closed sub-
structure of the coalgebraic datatype, which can be extended to yield a FOL model of
the complete codatatype, as we did for algebraic datatypes in the proof of Theorem 5.2.

The soundness of the encoding of primitive corecursion is proved by coinduction.
Given the equation f (ȳ) � t, assuming that for each corecursive call f (x̄) we have
�T〈〈 f (x̄)〉〉�V ⊆ �� f (x̄)�M�, we must show that �T〈〈 f (ȳ)〉〉�V ⊆ �� f (ȳ)�M�. This follows
from the soundness of the encoding of the constructs occurring in the right-hand side t
and from the hypotheses. ��
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6 Case Study: Lazy Lists

The codatatype α llist of lazy lists [26] is generated by the constructors LNilα llist and
LConsα�α llist�α llist. It is of particular interest to (counter)model finding because many
basic properties of finite lists do not carry over to infinite lists, often in baffling ways.
To illustrate this, we conjecture that appending ys to xs yields xs iff ys is LNil:

(lcat(xs, ys)� xs) � (ys� LNil).

The function lcat is defined corecursively in Sect. 3.4. For the conjecture, our tool
Nitpick immediately finds the countermodel xs = ys = [0,0, . . .], in which a cardinality
of 1 is sufficient for α and α llist, and the bisimilarity predicate∼ is unrolled only once.
Indeed, appending [0,0, . . .] �= [] to [0,0, . . .] leaves [0,0, . . .] unchanged.

The next example requires the following lexicographic order predicate:

coinductive  (nat llist,nat llist)�o where
LNil xs
x≤ y−→ LCons(x, xs) LCons(y, ys)
xs ys−→ LCons(x, xs) LCons(x, ys)

The intention of this definition is to define a linear order on lazy lists of natural numbers,
and hence the following properties should hold:

REFL: xs xs ANTISYM: xs ys ∧ ys xs−→ xs� ys

LINEAR: xs ys ∨ ys xs TRANS: xs ys ∧ ys zs−→ xs zs.

However, Nitpick finds a counterexample for ANTISYM: xs = [1,1] and ys = [1]. On
closer inspection, the assumption x ≤ y of the second introduction rule for  should
have been x < y; otherwise, any two lists xs, ys with the same head satisfy xs ys. Once
we repair the specification, no more counterexamples are found for the four properties
up to cardinality 6 for nat and nat llist, within Nitpick’s default time limit of 30 seconds.
This is a strong indication that the properties hold. Andreas Lochbihler used Isabelle to
prove all four properties [23].

7 Related Work

The encoding of algebraic datatypes in FORL has been studied by Kuncak and Jackson
[21] and Dunets et al. [10]. Kuncak and Jackson focused on lists and trees. Dunets et al.
showed how to handle primitive recursion; their approach to recursion is similar to ours,
but the use of a two-valued logic compelled them to generate additional definedness
guards. The unrolling of inductive predicates was inspired by bounded model checking
[3] and by the Alloy idiom for state transition systems [15, pp. 172–175].

Another inspiration has been Weber’s higher-order model finder Refute [31]. It uses
a three-valued logic, but sacrifices soundness for precision. Datatypes are approximated
by subterm-closed substructures [31, pp. 58–64] that contain all datatype values built
using up to k nested constructors. This scheme proved disadvantageous in practice,
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because it generally requires higher cardinalities to obtain the same models as with
Kuncak and Jackson’s approach. Weber handled (co)inductive predicates by expanding
their HOL definition, which in practice does not scale beyond a cardinality of 3 for the
predicate’s domain because of the higher-order quantifier.

The Nitpick tool, which implements the techniques presented here, is described in a
separate paper [5] that covers the handling of higher-order quantification and functions.
The paper also presents an evaluation of the tool on various Isabelle/HOL theories,
where it competes against Quickcheck [2] and Refute [31], as well as two case studies.

8 Conclusion

Despite recent advances in lightweight formal methods, there remains a wide gap be-
tween specification languages that lend themselves to automatic analysis and those that
are used in actual formalizations. As an example, infinite types are ubiquitous, yet most
model finders either spin forever [9, 24], give up immediately [8], or are unsound [1;
28, p. 164; 31] on finitely unsatisfiable formulas.

We identified several commonly used definitional principles and showed how to en-
code them in first-order relational logic (FORL), the logic supported by the Kodkod
model finder and the Alloy Analyzer. Our main contribution has been to develop three
ways to translate (co)inductive predicates to FORL, based on wellfoundedness, polarity,
and linearity. Other contributions have been to formulate an axiomatization of coalge-
braic datatypes that caters for infinite (ω-regular) values and to devise a procedure that
computes the acyclicity axiom for mutually recursive datatypes.

Our experience with the counterexample generator Nitpick has shown that the tech-
niques scale to handle real-world specifications, including a security type system and a
hotel key card system [5]. Although the tool is fairly new, one user has already reported
saving several hours of failed proof attempts thanks to its support for codatatypes and
coinductive predicates while developing a formal theory of infinite process traces [22].

Acknowledgment. I want to thank Sascha Böhme, Lukas Bulwahn, Andreas Loch-
bihler, Tobias Nipkow, Mark Summerfield, and the anonymous reviewers for suggesting
many improvements to this paper, and Alexander Krauss for helping to structure it.
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Abstract. We present an approach for verifying dynamic systems spec-
ified in rewriting logic, a formal specification language implemented in
the Maude system. Our approach is tailored for invariants, i.e., prop-
erties that hold on all states reachable from a given class of initial
states. The approach consists in encoding invariance properties into in-
ductive properties written in membership equational logic, a sublogic of
rewriting logic also implemented in Maude. The invariants can then be
verified using an inductive theorem prover available for membership
equational logic, possibly in interaction with narrowing-based symbolic
analysis tools for rewriting-logic specifications also available in the Maude
environment. We show that it is possible, and useful, to automatically
test invariants by symbolic analysis before interactively proving them.

1 Introduction

Rewriting logic [1], abbreviated as rl in this paper, is a formal specification lan-
guage, in which a system’s dynamics can be expressed by means of rewrite rules
over a system’s state defined in some version of equational logic. The adequacy of
rewriting logic for specifying dynamic systems has been demonstrated by many
practical applications, including programming language semantics [2], security
protocols [3], and bioinformatics [4]. There are several systems which implement
different variants of this logic, including Maude [5], Elan [6], and cafeObj [7].
Membership equational logic [8], hereafter called mel in this paper, is the logic
implemented in Maude as rl’s underlying equational logic.

The Maude system [5] consists of a language for expressing rl and mel spec-
ifications, and a set of tools for analysing such specifications and verifying them
against user-defined properties. The automatic tools provided by the Maude
system include an enumerative, finite state-space searching tool and an enumer-
ative, finite-state model checker for linear temporal logic properties [9] and also
for an extension of it called linear temporal logic of rewriting [10]. A symbolic
state exploration tool based on narrowing techniques has also recently been made
available in Maude [11], and narrowing-based symbolic model checking for linear
temporal logic has also been studied [12]. Infinite-state rewriting logic specifica-
tions can be verified in Maude with respect to temporal-logic properties, using
equations to reduce infinite-state spaces to finite-state ones [13].

G. Fraser and A. Gargantini (Eds.): TAP 2010, LNCS 6143, pp. 135–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Our contribution is an approach for verifying invariants of infinite-state rl

specifications. Intuitively, an invariant is a predicate that holds in all states
that are reachable from a given class of initial states. Our approach consists
in encoding the verification of invariance properties on the reachable model of
rl theories, into the verification of mel properties on the initial model of mel

theories. As a consequence, invariance properties can be proved using inductive
theorem provers for mel, such as the itp tool [14]. Since our formalisation is con-
sistent with that underlying Maude’s narrowing-based symbolic analysis tools,
our theorem-proving approach can be used in interaction with them.

Specifically, we demonstrate in this paper the usefulness of symbolic simula-
tion in helping the interactive proofs of invariants. Such proofs are performed by
induction in the theorem prover, and when the induction step fails, the user must
provide the theorem prover with state predicates that (1) are invariants and (2)
imply the induction step. While proving (2) is typically automatic - it amounts
to proving an implication, the proof of (1) typically has to be performed, again,
by induction. Then, assume the user poses a “wrong” state predicate, for which
(1) is not provable. Unaware of her error, she will try to prove the invariance of
her predicate, also by induction in the theorem prover. The failing induction will
lead her to attempt to pose yet other additional auxiliary invariants. . . in a proof
effort that cannot succeed. By contrast, symbolic simulation can automatically
falsify invariants by symbolically exploring the system’s reachable states up to a
given depth, thereby preventing the user from entering dead ends in her proofs.

The rest of the paper is organised as follows. In Section 2 we provide back-
ground on mel and on rl. In Section 3 we recall results about narrowing in the
context of rl: the soundness and (under some conditions) the completeness of
narrowing for solving reachability problems for rewriting-logic specifications [3].
A class of rl systems satisfying those conditions is identified, and we argue that
the class is expressive enough to express many communication protocols. Hence,
for systems in that class, narrowing can find all their reachable states starting
from a possibly infinite set of initial states, up to a bounded depth; this property
is important for our goals - testing invariants before trying to prove them.

In Section 4 we define the notion of a mel invariant ϕ of a rl specification
R starting from an initial (possibly, infinite) set of states denoted by a (possi-
bly, non-ground) term t0, as follows: ϕ is provable in the initial model of the
underlying mel theory E of R, for all states reachable in R from initial states.

The core of the approach is presented in Section 5. First, we define an auto-
matic translation that takes a rl theory R and a (possibly, non-ground) term t0,
and generates a mel theory M(R, t0), which enriches the mel subtheory of R
with a new sort, called Reachable , and with the membership axioms that in-
ductively define this sort. We then show (†) if R is topmost, then, for ground
terms t, and up to equality modulo the equations E of R, the statements “being
of sort Reachable inM(R, t0)” and “being reachable in the reachability model of
R from ground instances of t0” are equivalent. Next, we use the M(R, t0) theory
to give an alternative definition of an invariant ϕ of a rl theory R starting from
a possibly non-ground term t0, as follows: ϕ(t) is provable in the initial model
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of the mel subtheory of R, for all ground terms t that have sort Reachable in
M(R, t0) (again, up to equality modulo E). That the two given definitions of
invariance are equivalent follows from (†). The advantage of the second defini-
tion is that it allows us to prove invariants of rl specifications by induction on
the sort Reachable, using existing inductive theorem provers for mel such as
Maude’s itp. Section 6 illustrates the theorem-proving of invariants integrated
with narrowing-based symbolic falsification of invariants on a Bakery mutual-
exclusion algorithm. Section 7 discusses related and future work, and concludes.

2 Membership Equational Logic and Rewriting Logic

We briefly present membership equational logic and rewriting logic [1,8,11].
A membership equational logic (mel) signature is a tuple (K, Σ, S) where

K is a set of kinds, Σ is a K∗ × K indexed family of function symbols Σ =
{Σw,k}(w,k)∈K∗×K , and S = {Sk}k∈K is a pairwise disjoint K-indexed family
of sets of sorts - where Sk is the set of sorts of kind k. A signature (K, Σ, S)
is often denoted simply by Σ; then, TΣ denotes the set of ground terms over
signature Σ. Given a set X = {x1 : k1, . . . , xn : kn} of kinded variables, TΣ(X)
denotes the set of terms with free variables in the set X . Similarly, TΣ,k and
TΣ,k(X) denote, respectively, the set of ground terms of kind k and the set of
terms of kind k with free variables in the set X . A mel atomic formula over
(K, Σ, S) is either an equality t = t′, where t and t′ are terms in TΣ,k(X), for
some kind k ∈ K, or a membership assertion t : s, where t is a term in TΣ,k(X)
and s is a sort in Sk, for some kind k ∈ K. A mel sentence is a Horn clause

(∀X)t = t′ if C, or (1)
(∀X)t : s if C (2)

where the condition C has the form
∧

i∈I(ui = vi)∧
∧

j∈J (wj : sj), for some finite
sets of indices I, J . Sentences of the form (1) are called conditional equations,
and sentences of the form (2) are called conditional memberships. A sentence is
unconditional when it does not have a condition.

A mel theory is a tuple M = (Σ, E) that consists of a mel signature Σ and
a set of mel sentences over Σ. mel has a complete deduction system [8], in the
sense that a formula ϕ is provable from the sentences of a theory (Σ, E), denoted
as (Σ, E) ! ϕ (or simply E ! ϕ), if and only ϕ is semantically valid, i.e., it holds
in all the models of that theory. The standard model of a specification is called
its initial model [8]. In the initial model, sorts are sets of equivalence classes
of ground terms modulo the equations E, where two ground terms t, t′ are in
the same equivalence class, denoted by t =E t′, iff E ! (∀∅)t = t′. We write
E !ind (∀X)ϕ to say that the sentence ϕ holds in the initial model of (Σ, E).

Example 1. The specification NAT in Figure 1 defines natural numbers with
addition. In the initial model of NAT , the natural number n ≥ 1 is represented
by the “sum” 1 + · · ·+ 1 of length n, and the term 0 represents the number 0.
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KNAT = {Nat?} with SNat? = {Nat}.
ΣNAT (λ,Nat?) = {0, 1}.
ΣNAT (Nat?Nat?,Nat?) = {+}.
ΣNAT w,Nat? = ∅, otherwise

ENAT =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 : Nat ,
1 : Nat ,
(∀N) 0 + N = N
(∀N,M) N + M = M + N
(∀N,M, P ) (N + M) + P = N + (M + P )

Fig. 1. A specification of natural numbers

Note the three equations for associativity, communitativity, and unity (ACU).
These axioms can either be declared explicitly, or they can be attached to the
”+” operator as so-called equational attributes. For our purposes we use the for-
mer solution with theorem proving, and the latter one with narrowing. The main
reason is that Maude’s itp theorem prover that we use does not handle ACU
operators. In contrast, unification (an essential part of the narrowing-based sym-
bolic analysis, which we also use) is finitary and complete for ACU operators,
provided they are not defined by other equations (or provided the remaining
equations have certain technical properties) [15]. The finiteness and complete-
ness of ACU-unification are important for the completeness of narrowing as a
symbolic simulation technique for a class of rewriting-logic specifications expres-
sive enough to encode typical communication protocols. We shall come back to
this issue at the end of Section 3 after we present rewriting logic and narrowing.

A rewriting logic (rl) theory is a tuple R = (K, Σ, S, E, R), - often abbrevi-
ated as (Σ, E, R) - where (K, Σ, S, E) is a mel theory and R is a set of rewrite
rules (ρ) (∀X) l → r if C where l, r ∈ TΣ,k(X) for some kind k that de-
pends on the rule, and the condition C has the form

∧
i∈I(ui = vi)∧

∧
j∈J (wj : sj)

for some finite sets of indices I and J ; that is, like for mel sentences, we consider
that only equations and memberships are allowed in the conditions of the rules.
Note that in its most general form [16] rewriting logic also allows for rewrites
in conditions and frozen arguments, which we do not consider here. Moreover,
we shall only consider topmost theories [3]: a theory is topmost if there exists
a certain kind k ∈ K such that (i) for all rewrite rules of the above form,
l, r ∈ TΣ,k(X), and (ii) no operation in Σ takes arguments of the kind k. Many
authors have shown the adequacy of rl for specifying dynamic systems (includ-
ing the restricted topmost theories [3] - ”almost” all distributed systems can be
so described). The idea is to specify the system’s state kind by equations and
membership axioms, and the system’s dynamics by (topmost) rewrite rules over
the kind of states.

Example 2. Mutual exclusion of two processes to a resource can be ensured
by the so-called Bakery algorithm. The processes can be in modes Sleep (not
interested in obtaining the resource), Try (when they are trying to obtain the
resource) and Critical (when they have the resource). To control transitions
between these modes, each process has a ticket, which is a natural number. The
main idea is that a process gets the resource when it has the smallest ticket
(because that process has been trying to get the resource for the longest time),
or, alternatively, when the other process is not interested in getting the resource.
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To specify the system as a rl theory BAK we use the specification NAT of
natural numbers with addition in Figure 1, as well as a (trivial) specification of
the kind Mode? with the only sort Mode, and the three constants S, T, and C of
the sort Mode. The states of the system are built using a constructor 〈. . .〉 that
takes two modes and two natural numbers and returns a term in the sort State.
The evolution of the system is described by the rewrite rules in Figure 2.

Here, l1 and l2 are variables of the sort Mode and t1, t2, x are variables of
the sort Nat. We describe the evolution of the first process (the left-hand side
column); the evolution of the second process, in the right-hand side column, is
similar.

〈S , l2, t1, t2〉→〈T , l2, t2 +1, t2〉
〈T , l2, t1, 0〉→〈C , l2, t1, 0〉
〈T , l2, t1, t1+x+1〉→〈C , l2, t1, t1+x+1〉
〈C , l2, t1, t2〉→〈S , l2, 0, t2〉

〈l1,S , t1, t2〉→〈l1, T , t1, t1 +1〉
〈l1,T , 0, t2〉→〈l1,C , 0, t2〉
〈l1,T , t2+x+1, t2〉→〈l1,C , t2+x+1, t2〉
〈l1,C , t1, t2〉→〈l1,S , t1, 0〉

Fig. 2. BAK: Bakery algorithm. We only use unconditional rewrite rules, since condi-
tional narrowing is outside the scope of Maude’s current implementation of narrowing.

The first rule moves the process from the Sleep to the Try mode, and changes
the value of its ticket t1, by ”assigning” to it the term t2 + 1. Then, the first
process may move to the Critical mode if (a) the other process has its ticket
equal to 0, or (b) the first process has the smallest ticket. The latter condition is
obtained by having the ticket of the second process denoted by the term t1+x+1,
for some x of the sort Nat, where t1 is the ticket of the first process. Finally, the
first process goes back to the Sleep mode and sets its ticket back to zero.

Assume that we want to simulate the behaviours of the BAK starting from a
possibly infinite class of initial states. Let the initial states be denoted by the
term 〈S, S, t, t〉, in which both processes are in the Sleep modes and have the
same initial value t for their tickets, where t is a variable of the sort Nat - the
actual initial value of the tickets is left unspecified. The desired simulation cannot
be performed using Maude’s enumerative state-exploration tools, because those
tools require a unique initial state, i.e., a ground term. By contrast, narrowing
can simulate the executions of our system, starting from a non-ground term.

Reachability. The notation R ! (∀X)t0 → t expresses the fact that the term
t ∈ TΣ(X) is provable from the term t0 ∈ TΣ(X) in the deduction system of R
(which amounts to applying the rewrite rules of R modulo the equations E
of R). The reachability model [16] of R is a transition system whose states are
equivalence classes of ground terms modulo E. For all states [t]E , [t′]E , there is
a transition [t]E →R [t′]E in this model iff there exists a proof R ! (∀∅)t → t′

using exactly one rewrite rule of R. We denote by [t]E →∗
R [t′]E the fact that

the state [t′]E is reachable from the state [t]E in the reachability model of R.
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3 Narrowing, and a Class of Systems It Can Analyse

In the context of rewriting logic, narrowing is used for symbolically solving reach-
ability problems [3,11] (and more generally, for symbolically model checking lin-
ear temporal-logic properties [12]). We consider reachability problems of the form
”given terms t0 ∈ TΣ(X) and t ∈ TΣ does there exist a (ground) substitution
σ : X → TΣ such that [t0σ]E →∗

R [t]E holds” for topmost theories R, whose
rewrite rules are unconditional and do not have supplementary variables in their
right-hand sides wth respect to their left-hand sides - to simplify matters and to
be consistent with the current implementation of narrowing in Maude.

Given a substitution σ : X "→ TΣ(X), we write t1
σ
�R t2 if there exists in R

a rule (ρ) (∀X) l → r such that the variables occuring in t1 and l are disjoint
and such that E ! t1σ = lσ and E ! rσ = t2. That is, it is provable in the mel

subtheory (Σ, E) of R that σ is a unifier for t1 and the left-hand side l of the
rule (ρ) and that σ matches the right-hand side r of the rule with the term t2.

For t1, t
′
1, t2, t

′
2 ∈ TΣ(X) we write t′1

σ
�R,E t′2 if t′1 =E t1

σ
�R t2 =E t′2. The

narrowing relation �R,E⊆ TΣ(X)×TΣ(X) is defined by t1 �R,E t2 iff t1
σ
�R,E

t2 for some substitution σ. Let �∗
R,E be the reflexive transitive closure of �R,E .

The soundness of narrowing for solving reachability problems in Maude [11] says
essentially that for all terms t0 ∈ TΣ(X) and t ∈ TΣ, if t0�

∗
R,Et then there

exists a ground substitution σ : X "→ TΣ such that [t0σ]E→∗
R[t]E .

On the other hand, completeness of narrowing, meaning that narrowing
t0�

∗
R,Et ”finds” in some sense all solutions σ such that [t0σ]E→∗

R[t]E , does
not hold in general, but only under some technical conditions [3]. The most
important condition is that unification modulo E be finitary and complete; that
is, for any equation of the form t1=Et2, for t1, t2 ∈ TΣ(X), the algorithm returns
a finite set of substitutions, which are all the solutions of the equation1.

And this is precisely the case when E consists of ACU axioms for some oper-
ations in Σ, such as those defined for the ”+” operation in our specification of
natural numbers (Figure 1), or the encoding of sets in mel based on an ACU
”union” operation. These observations are important because they suggest a
class of systems that can be effectively symbolically simulated by narrowing, in
the sense that narrowing eventually ”reaches” all reachable states. The Bakery
algorithm in Figure 2 is one such system, thanks to the ACU-based definition
of natural numbers given in Figure 1. More generally, finite control and possibly
unbounded counters, typically encountered in such protocols, can be encoded
using our ACU-based encoding of natural numbers. Even more generally, com-
munication protocols with unordered channels also fall in this class - by encoding
unordered channels using sets constructed with an ACU definition of union.

One limitation remaining is that such communication protocols often require
conditions on the counters: such as, e.g., the conditions on the tickets in the

1 The other conditions are (in addition to those posed at the beginning of this section)
that the theory (Σ, E) is in the order-sorted fragment of mel and that that the
equations be regular and sort-preserving : left-hand and right-hand sides have the
same variables, and left-hand side does not have a greater sort than right-hand side.
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Bakery algorithm. However, we can encode such affine conditions - comparisons
of linear-arithmetic terms with constants - by unconditional rules, as follows.
Assume a system endoded in rl having one conditional topmost rule of the
form 〈l〉 → 〈r〉 if Σn

i=1aixi > b (and possibly other rules). We enrich the sort
State with two integer components. The initial states will now have the form
〈I, Σn

i=1aixi, b〉, where I is the expression denoting initial the states of the origi-
nal system. Each rule except the one we are encoding, of the form 〈l′〉 ⇒ 〈r′〉 if C′,
becomes 〈l′, x, y〉 ⇒ 〈r′, x, y〉 if C′ - that is, all the rules except the one we are
encoding leaves the ”new” components of the State unchanged. Our rule of in-
terest becomes 〈l, x, x+n+1〉 ⇒ 〈r, x, x+n+1〉, where the effect of checking the
condition to ”see” if the rule can be applied on a term is achieved by unifying
the left-hand side of our rule: 〈l, x, x+n+1〉 with that term. By generalising this
encoding to several linear-arithmetic conditions and to several rules, we obtain
an unconditional system equivalent to a conditional one.

Thus, narrowing can effectively simulate a class of systems expressive enough
to encode communication protocols with finite control, counters, and channels.

4 Invariants of Rewrite Theories

We continue by discussing in this section the notion of invariant for a rewrite
theory. In general, a predicate over the states of a dynamic system is an invariant
if the predicate holds in all the states of the system that are reachable from a
given class of initial states. To formalize this notion in the case of a system
specified in a (topmost) rl theory R, we have to answer the following questions:

1. how are the states and the dynamics to be specified?
2. how are the state predicates to be formalized?
3. when are the predicates to be considered as holding in a state?

For item (1) we adopt the usual rl representations: states are equivalence classes
(modulo the equations E of R) of ground terms of a certain kind [State]. There
is a possibly infinite set of initial states denoted by a term t0, possibly with
variables, of the kind [State]; then, initial states are equivalence classes of ground
instances of t0. Regarding the dynamics of the system, it shall naturally be
defined by reachability in the reachability model of R.

With regards to item (2): state predicates shall be formalised by Horn sen-
tences of the form (∀x : [State])(∀Y )ϕ having a free variable x of the kind [State]
(and possibly other free variables in the set Y , with x /∈ Y ). Finally, for item (3),
a state predicate ϕ shall be considered to hold in a state t when the predicate
ϕ(t/x), obtained from ϕ by substituting the variable x with the term t, holds in
the initial model of the mel subtheory of the rl theory: E !ind (∀Y )ϕ(t/x).

In summary, when a system is specified as a topmost rl theoryR, we formalize
the intuitive notion of an invariant as a state predicate ϕ holding in all states
are reachable from an initial state - denoted by 〈R, t0〉 !ind �ϕ - as follows.

Definition 1. 〈R, t0〉 !ind �ϕ if for all ground terms t ∈ TΣ, and all ground
substitutions σ : X "→ TΣ, [t0σ]E →∗

R [t]E implies E !ind (∀Y )ϕ(t/x).



142 V. Rusu

Example 3. Consider the rl specification BAK from Example 2. We have seen
that the states of the system are quadruples consisting of two modes and two
natural numbers built using the constructor 〈. . . 〉 of the sort State. The mutual
exclusion between readers and writers is encoded as the state predicate mutex :

(∀x : [State])(∀ t1, t2 : Nat). mutex(〈C, C, t1, t2〉) = false
(∀x : [State])(∀ t1, t2 : Nat, l1, l2 : Mode). l1 �= C ⇒ mutex(〈l1, l2, t1, t2〉) = true
(∀x : [State])(∀ t1, t2 : Nat, l1, l2 : Mode). l2 �= C ⇒ mutex(〈l1, l2, t1, t2〉) = true

The invariance of mutex on the BAK system starting from all states denoted by
the term 〈S, S, t, t〉 with the variable t : Nat, is written 〈BAK, 〈S, S, t, t〉〉 !ind

�mutex and defined by: for all ground terms t of kind [State], and for each
ground term n : Nat, 〈S, S, n, n〉 →∗

BAK [t]EBAK implies NAT !ind mutex(t/x).

Before we proceed to verifying invariants by theorem proving, we show how
invariants can be disproved using Maude’s narrowing-based symbolic analysis.

Disproving invariants. Disproving an invariance statement 〈R, t0〉 !ind �ϕ
amounts to finding a ground substitution σ and a sequence [t0σ]E →∗

R [t]E
such that E �!ind ϕ(t/x). If we find a narrowing sequence t0 �∗

R,E t such
that E �!ind ϕ(t/x), then, by soundness of narrowing there exists a sequence
[t0σ]E →∗

R [t]E such that E �!ind ϕ(t/x), hence, 〈R, t0〉 !ind �ϕ is disproved.
The completeness of narrowing says that all such ”disproofs” will eventually

be found by narrowing. Concretely, such sequences t0 �∗
R,E t can be found by

Maude’s search command. Consider a variant BAK′ of our running example, in
which the term 1 is replaced everywhere by the term 0. The invariance statement
〈BAK′, 〈S, S, t, t〉〉 !ind �mutex can be disproved (falsified) by Maude’s following
command: search〈S, S, t, t〉 �∗ 〈C, C, t1, t2〉, which immediately finds the term
〈C, C, 0, 0〉 violating the mutex predicate. A more involved use of the search
command to check auxiliary invariants that are needed in an inductive proof of
the ”main” mutual-exclusion invariant of the BAK system is shown in Section 6.

5 Theorem Proving for Invariance Properties

The previous section discussed the falsification of invariants. In this section we
propose an approach for proving invariants. The structure of the section is as
follows. We first define an automatic translation that takes a topmost rl theory
R and a term t0, possibly with variables, and generates a mel theory M(R, t0),
which enriches R with a sort called Reachable and with memberships defining
this sort. We show that for all ground terms t, the state [t]E is reachable in the
initial model of R from an initial state [t0σ] if and only if the term t has the sort
Reachable in the initial model of M(R, t0σ). Then, we prove that, for any state
predicate (∀x : [State])(∀Y )ϕ, the statements 〈R, t0〉 !ind �ϕ andM(R, t0) !ind

(∀x : [State])(∀Y )(x : Reachable ⇒ ϕ) are equivalent. This equivalence is the
basis for proving invariants using inductive theorem provers, such as the itp tool.

In the following definition, we “encode” reachability in a rl theory R (start-
ing from a possibly non-ground term t0) in a mel theory M(R, t0) using a
membership axiom for t0 and a membership axiom μ(ρ) for each rule ρ in R.
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Definition 2. Consider a rl theory R = (K, Σ, S, E, R), a sort State ∈ S,
and a term t0 ∈ TΣ,[State](X). We denote by M(R, t0) the following mel theory
(KM(R,t0), ΣM(R,t0), SM(R,t0), EM(R,t0)) constructed as follows:

– KM(R,t0) = K
– ΣM(R,t0) = Σ
– SM(R,t0) =S∪S′

[State] with S′
[State] =S[State]∪{Reachable} and Reachable /∈ S

– EM(R,t0) = E ∪ {(∀X)t0 : Reachable} ∪ {μ(ρ)|ρ ∈ R}, with μ((∀X) l →
r if C)) being the membership (∀X) r : Reachable if l : Reachable ∧ C. �

Example 4. Consider the Bakery system given in Example 2. The mel theory
M(BAK, 〈S, S, t, t〉) consists of the following elements:

– KM(BAK,〈S,S,t,t〉) = KBAK.
– ΣM(BAK,〈S,S,t,t〉) = ΣBAK.
– SM(BAK,〈S,S,t,t〉) = SBAK ∪ S′

[State], with S′
[State] = SBAK[State] ∪ {Reachable}

– EM(BAK,〈S,S,t,t〉) = EBAK ∪ E′, where E′ is the set of memberships axioms
shown in Figure 3.

〈S,S, t, t〉 : Reachable

〈T , l2, t2 +1, t2〉 : Reachable if 〈S , l2, t1, t2〉 : Reachable
〈C , l2, t1, 0〉 : Reachable if 〈T , l2, t1, 0〉 : Reachable
〈C , l2, t1, t1+x+1〉 : Reachable if 〈T , l2, t1, t1+x+1〉 : Reachable
〈S , l2, 0, t2〉 : Reachable if 〈C , l2, t1, t2〉 : Reachable

〈l1,T , t1, t1 +1〉 : Reachable if 〈l1, S , t1, t2〉 : Reachable
〈l1,C , 0, t2〉 : Reachable if 〈l1,T , 0, t2〉 : Reachable
〈l1,C , t2+x+1, t2〉 : Reachable if 〈l1, T , t2+x+1, t2〉 : Reachable
〈l1,S , t1, 0〉 : Reachable if 〈l1,C , t1, t2〉 : Reachable

Fig. 3. Membership axioms for M(BAK, 〈S, S, t, t〉)

Lemma 1. Consider a rl theory R = (K, Σ, S, E, R), with State ∈ S and
t ∈ TΣ,[State]. For all t′ ∈ TΣ,[State], [t]E →∗

R [t′]E iff M(R, t) ! t′ : Reachable.

Proof. The idea of the proof is that each transition in the reachability model of
R, generated by using a rule (ρ) of R, can be emulated by an deduction in the
proof system of M(R, t), using the membership μ(ρ) given in Definition 2.

(⇒) By induction on the length of the sequence [t]E →∗
R [t′]E .

If the length is 0 then E ! (∀∅)t = t′. The membership t : Reachable in
M(R, t) implies M(R, t) ! t : Reachable, hence, M(R, t) ! t′ : Reachable.

Assume the statement holds for sequence of length n. Any sequence [t]E →n+1
R

[t′]E of length n + 1 can be decomposed into [t]E →n
R [t′′]E→R[t′]E , such that

the last step uses a rule (ρ) (∀X)l → r if C with a ground substitution σ.

1. then, t′′ ≡ t′′σ =E lσ because t′′ is ground (and ≡ denotes syntactical
equality), t′ =E rσ, and E ! Cσ. The latter implies a fortiori M(R, t) ! Cσ;
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2. by induction, M(R, t) ! t′′ : Reachable, hence, M(R, t) ! lσ : Reachable;
3. hence, using the membership (μ(ρ)) r : Reachable if l : Reachable ∧ C from

Definition 2 with σ, M(R, t) ! rσ : Reachable, i.e., M(R, t) ! t′ : Reachable.

(⇐) By induction on the length of the proof M(R, t) ! t′ : Reachable, where
by length we here mean the number of applications of memberships of the form
(μ(ρ)) r : Reachable if l : Reachable∧C generated from rules (ρ) (∀X)l → r if C.

If the length is 0 then t′ : Reachable has been proved using the membership
t : Reachable for the initial term, hence, t =E t′ and [t]E →∗

R [t′]E follows.
Assume the statement holds for sequence of length n. Any proof M(R, t) !

t′ : Reachable of length n + 1 can be decomposed into a proof M(R, t) ! t′′ :
Reachable of length n, for some t′′ ∈ TΣ , followed by an application of a mem-
bership (μ(ρ)) r : Reachable if l : Reachable ∧ C with a ground substitution σ
such that t′ =E rσ, t′′ =E lσ, and M(R, t) ! Cσ. Since the sort Reachable is
“new” in M(R, t), it does not occur in the condition C, hence, E ! Cσ. Since
t′′ is ground, t′′ ≡ t′′σ =E lσ. Hence, the rule (ρ) (∀X)l → r if C can be ap-
plied on t′′ and generates the transition [t′′]E→R[t′]E . By induction hypothesis,
[t]E →∗

R [t′′]E . The transitivity of the →∗
R relation concludes. �

We have proved the equivalence between [t]E →∗
R [t′]E and M(R, t) ! t′ :

Reachable for ground terms t, t′. In particular, in our setting where the terms t are
ground instances of the (possibly, non-ground) term t0, we obtain the equivalence
between for all ground substitutions σ, [t0σ] →∗

R [t]E and for all ground substitu-
tions σ, M(R, t0σ) ! t : Reachable. However, in order to reason by induction on
Reachable, we need a different hypothesis, namely, M(R, t0) !ind t : Reachable.
The following lemma bridges the gap between those statements.

Lemma 2. For t0 ∈ TΣ(X) and t ∈ TΣ, M(R, t0) !ind t : Reachable if and
only if M(R, t0σ) ! t : Reachable for all ground substitutions σ : X "→ TΣ.

Proof. Let us denote by M(R) the mel theory obtained by removing the mem-
bership (∀X)t0 : Reachable from the theory M(R, t0) in Definition 2. Then,
M(R, t0) !ind t : Reachable iffM(R) !ind ((∀X)t0 : Reachable ⇒ t : Reachable).
Since truth in the initial model for a statement is equivalent to deduction of all
ground instances of that statement, we obtain that the last entailment is equiva-
lent to M(R) ! (t0σ : Reachable ⇒ t : Reachable) for all ground substitutions σ,
itself equivalent to M(R, t0σ) ! t : Reachable for all ground substitutions σ. �

Theorem 1. Consider a rl theory R = (K, Σ, S, E, R), with State ∈ S, a term
t0 ∈ TΣ,[State](X), and a state predicate (∀x : [State], ∀Y )ϕ. Then 〈R, t0〉 !ind �ϕ
if and only if M(R, t0) !ind (∀x : [State])(∀Y )(x : Reachable ⇒ ϕ).

Proof. Since x /∈ Y , M(R, t0) !ind (∀x : [State])(∀Y )(x : Reachable ⇒ ϕ)
is equivalent to M(R, t0) !ind (∀x : [State])(x : Reachable ⇒ (∀Y )ϕ), and
using the fact that truth in the initial model for a statement is equivalent
to deduction of ground instances of that statement, we obtain equivalently
∀t ∈ TΣ,[State].M(R, t0) !ind (t : Reachable ⇒ (∀Y )ϕ(t/x)). Then, using the
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equivalence A ! (B ⇒ C) iff (A ! B implies A ! C) we obtain equivalently

∀t ∈ TΣ,[State]. ([M(R, t0)!ind t : Reachable] implies
[M(R, t0)!ind (∀Y )ϕ(t/x)]) (3)

By using Lemmas 1 and 2, the left-hand side of the above implication is equiv-
alent to for all ground substitutions σ, [t0σ]E →∗

R [t]E . Then, the implica-
tion (3) is equivalent to (‡) for all t ∈ TΣ,[State] and all ground substitutions
σ, [t0σ]E →∗

R [t]E implies M(R, t0) !ind (∀Y )ϕ(t/x). Finally, we note that
truth in the initial model of M(R, t0) and truth in the initial model of E are
equivalent, for all statements that do not refer to the “new” sort Reachable,
because, for, the truth of such statements, the memberships defining Reachable
in M(R, t0) are irrelevant. And ϕ does not refer to this sort, precisely because
it is “new”. Hence, the last statement (‡) in our chain of equivalences is itself
equivalent to for all t ∈ TΣ,[State] and all ground substitutions σ, [t0σ]E →∗

R
[t]E implies E !ind (∀Y )ϕ(t/x), which by Definition 1 is 〈R, t0〉 !ind �ϕ. �

6 Testing Invariants before Proving Them

The results in the previous section show that proving invariants is equiva-
lent to proving inductive theorems in the initial model of a mel theory, thus,
invariants can be proved by induction. Consider the specification BAK and
its mutex predicate. To prove the statement 〈BAK, 〈S, S, t, t〉〉 !ind �mutex ,
we prove (∀x)(x : Reachable =⇒ mutex(x) = true) in the initial model of
M(BAK, 〈S, S, t, t〉) using the itp tool. We describe that proof in some detail,
and show that narrowing-based symbolic simulation is really useful in preventing
the user from taking a wrong direction in the proof.

The proof goes by induction on the sort Reachable. This generates nine sub-
goals: one for the membership defining the initial state, and eight for the eight
other memberships defining the sort Reachable (all memberships shown in Fig. 3).

The subgoal for the initial states is automatically proved by the itp. Out
of the eight remaining subgoals, four are also automatically proved by the itp.
Those are the subgoals corresponding to the memberships whose left-hand sides
are states where at least one process is not in the Critical mode. These are,
for the first process: 〈T , l2, t2+1, t2〉 : Reachable if 〈S , l2, t1, t2〉 : Reachable and
〈S , l2, 0, t2〉 : Reachable if 〈C , l2, t1, t2〉 : Reachable, and the symmetrical ones
for the second process. In the left-hand sides of these memberships, the mutex
predicate obviously holds, and the itp tool “realises” this.

The remaining subgoals cannot be automatically proved by the itp, because
it needs additional information that only the user can provide.

Corresponding to the following membership of the first process:

〈C , l2, t1, t1 + x + 1〉 : Reachable if 〈T , l2, t1, t1 + x + 1〉 : Reachable

the itp presents us with essentially the following subgoal, written as a sequent :
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〈T , l2, t1, t1 + x + 1〉:Reachable
mutex(〈T , l2, t1, t1 + x + 1〉)
mutex(〈C , l2, t1, t1 + x + 1〉)

That is, using the hypotheses “above” the line, one has to prove the conclusion
“below” the line. In order to simplify her proof, the user performs a case splitting
on the variable l2, which generates three sub-subgoals for the given subgoal.
Two of them are automatically proved by the itp, because their conlusions are
mutex(C , T, t1, t1 + x + 1〉) and mutex(C , S, t1, t1 + x + 1〉), which obviously
hold. However, the third sub-subgoal is not proved by the itp: it has the form

〈T , C, t1, t1 + x + 1〉:Reachable
mutex(〈T , C, t1, t1 + x + 1〉)
mutex(〈C , C, t1, t1 + x + 1〉) (4)

By examining the hypotheses in the subgoal (4), the user realises that the second
one is trivially true, hence, it is useless; and that the conclusion is trivially false.
The only remaining possibility for proving the subgoal is therefore to prove that
the first hypothesis: 〈T , C, t1, t1 + x + 1〉 : Reachable does not hold. After some
thinking, the user realises that indeed, states of the form 〈T , C, t1, t1 + x + 1〉
should not be reachable, because the very basic principle of the Bakery algorithm
is that the process that is in the critical section should have the smallest ticket ;
but that is precisely not the case in the states of the above form.

Happy with her reasoning, the user poses the following lemma to the itp:

〈l1, l2, t1, t1 + x〉 : Reachable
l2 �= C

(5)

She postpones proving (5), and confidently uses it to sucessfully prove the sub-
goal (4). Eventually, she completes the proof of the main invariant mutex, and
returns to proving (5). However, no matter how hard she tries, she does not
succeed. . . of course, because the lemma is not true! Indeed, had the user tried
to falsify (5) using Maude’s narrowing-based search command, she would have
realised her error: search 〈S, S, t, t〉 �∗ 〈l1, C, x, x + y〉 immediately finds the
solution x = 0, l1 = S, y = 1+w for some w : Nat, which contradicts Lemma (5).

Fixing the error in the lemma amounts to adding the hypothesis t1 > 0.
The fixed lemma is indeed provable, but now, the new lemma does not solve
by itself the subgoal (4), for which it was posed in the first place! To deal with
this problem, the whole proof has to be re-thought, and a possible solution is
to prove that states of the form 〈T , C, t1, t1 + x + 1〉 such that t1 > 0 are not
reachable. The proof eventually succeeds, but with more effort than if the error
in the lemma had been found using Maude’s narrowing-based search command.

7 Conclusion, Related Work, and Future Work

State-space exploration and model checking, both enumerative and symbolic,
abstraction for reducing infinite-state systems to finite ones, and interactive the-
orem proving for infinite-state systems are well-known verification techniques.
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Fig. 4. Our approach in the context of Maude’s verification tools

For rewriting-logic specifications, all but the last one are currently supported in
the Maude environment. Our contribution adds a part currently missing. The
approach is based on an automatic translation of invariance properties of a signif-
icant fragment of rewriting logic (topmost, without rules in conditions or frozen
arguments) into inductive properties of membership equational logic. The pro-
posed approach can then be used in conjunction with those other tools (Figure 4)
thanks to the “semantical consistency” between the definition of invariance in
reachable models of rl theories and the definition of narrowing. We illustrate
on a simple Bakery algorithm the combination of theorem proving with narrow-
ing for “testing” lemmas before proving them. The results are encouraging. We
expect the benefits to be even more substantial for more complex systems and
proofs. This statement has to be assessed by experiments. We have identified a
class of systems that can be effectively symbolically simulated by narrowing, and
can encode communication protocols; these are our natural future case studies.

Related Work. Unification and narrowing are features introduced in the latest
version of Maude [11]. A tool built around Maude - the Maude NRL Analyser [17]
has been used for verifying security protocols, a topic also present in [3]. We are
users of (the Maude implementation of) narrowing in combination with our
theorem-proving approach, and plan to use them on communication protocols.

Regarding theorem proving, our work is inspired by Bruni and Meseguer, who
proposed in [16] a different encoding of rl into mel. Their translation handles
rl in its full generality, and their goal is to define the semantics and proof theory
of rl in terms of those of mel. By contrast, our encoding only captures a subset
of rl, which has been shown in [3] to be expressive enough for specifying many
classes of systems. But, in addition to [16] we also encode invariance proper-
ties for the given subset of rl as inductive properties in mel, which provides
us with an effective way of verifying invariants by theorem proving, possibly in
interaction with Maude’s other symbolic analysis tools. Moreover, our encod-
ing is much simpler than that proposed in [16]2. A simple encoding is essen-
tial in theorem-proving, for users to “recognise” the properties they are trying
to prove.

2 We encode reachability using only one additional sort, without any new operations.
By contrast, [16] requires to double the number of kinds in the rl specification, and
for each kind, there are 4 new sorts, and 4 operations defined using 7 equations each.
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Fig. 5. Observational Transition Systems: representation in CafeOBJ and other tools

The present paper improves our own earlier, French version of this work [18].
The notions of dynamics and invariance that we use in the present paper are
standard for systems specified in rl. Hence, our theorem-proving approach for
invariants, and narrowing-based symbolic simulation for invariant falsification
”talk about” the same notion of invariant, i.e., we have a semantical consistency.
By contrast, the notions of dynamics and invariance in [18] are ad-hoc: we de-
fined there a “ground top-level rewriting” and defined the dynamics of systems
specified in rl and the notion of invariance based on that notion. Hence, in [18]
we used enumerative state-space exploration for invariant falsification, without
certainty that the falsification procedure deals with the same notion of invari-
ant as the theorem-proving approach. Moreover, enumerative exploration can
only deal with systems with finitely many initial states (expressed using finitely
many ground terms). By contrast, symbolic analysis can deal with systems with
possibly infinitely many initial states (expressed using a non-ground term). This
is also the case of our theorem-proving approach. On the other hand, we ver-
ify in [18] a more involved, n-processes version of the Bakery Algorithm, where
nontrivial auxiliary invariants are required for proving the mutual-exclusion goal.

There is a huge body of work dedicated to proving and disproving invariants,
and it is impossible to cite all references. We limit ourselves to the approach prob-
ably closest to ours, proposed by the CafeOBJ group from Japan’s Advanced In-
stitute of Science and Technology. Their approach consists in encoding the system
under verification as an Observational Transition System (ots), and invariants as
state predicates over the states of otss. The ots can be represented into several
formalisms (Figure 5): CafeOBJ and Coq, for theorem proving [19,20]; Maude,
for invariant falsification using enumerative techniques [21]; and smv, for model
checking [22]. Closest to our work is the theorem-proving approach in CafeOBJ.
The fundamental difference between our approach and theirs lies in the fact that
we remain within one single, integrated environment and formalism (that of Maude
and of rewriting logic/membership equational logic), which allows us to rely on
a common semantics for the various verification activities (Figure 4). By con-
trast, the CafeOBJ group use several tools, with different formalisms and different
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underlying semantics (Figure 5). This naturally raises the question of semanti-
cal consistency. On the other hand, by not ”bothering” with semantical consis-
tency, the CafeOBJ approach can be more efficient than ours, because they can
use highly-specialised tools, which are typically more efficient than Maude’s (sym-
bolic) model checker and theorem prover that we are using.

In the future we are planning to explore the integration of our theorem prov-
ing approach with Maude’s symbolic model checker for temporal logic [12]. The
model checker builds and analyses a symbolic graph encoding the reachable
states of the system. An invariant established by theorem proving may help
the symbolic model checker, by showing that certain nodes of a symbolic graph
are unreachable and can be safely removed from it; thereby enabling the model
checker to prove certain temporal-logic properties that could not be proved be-
fore. For example, consider a version of the Bakery algorithm containing the
additional rule 〈C, C, t1, t2〉 ⇒ 〈C, C, t1, t2〉, which says that if the protocol en-
ters the critical section, it stays there forever in the same state. Assume that the
symbolic graph ”has” a symbolic state of the form 〈C, C, t1 +1, t2 +1〉. Then, on
this graph, the temporal-logic property �((t1 > 0∧t2 > 0)⇒ �(t1 = 0∨t2 = 0)),
which says that, from all reachable states state where both tickets are nonzero,
a state where at least one ticket is 0 will eventually be reached, is not provable.
The reason is the self-loop on 〈C, C, t1 + 1, t2 + 1〉. By proving mutual exclusion
we can safely remove that state (and the loop responsible for the model checker’s
failure) from the graph, thereby possibly enabling the model checker to succeed.
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1 LIFC, Université de Franche-Comté
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Abstract. In a model-based testing approach as well as for the verifi-
cation of properties, B models provide an interesting solution. However,
for industrial applications, the size of their state space often makes them
hard to handle. To reduce the amount of states, an abstraction function
can be used, often combining state variable elimination and domain ab-
stractions of the remaining variables. This paper complements previous
results, based on domain abstraction for test generation, by adding a pre-
liminary syntactic abstraction phase, based on variable elimination. We
define a syntactic transformation that suppresses some variables from a
B event model, in addition to a method that chooses relevant variables
according to a test purpose. We propose two methods to compute an
abstraction A of an initial model M. The first one computes A as a sim-
ulation of M, and the second one computes A as a bisimulation of M.
The abstraction process produces a finite state system. We apply this
abstraction computation to a Model Based Testing process.

Keywords: Abstraction, Test Generation, (Bi-)Simulation, Slicing.

1 Introduction

B models are well suited for producing tests of an implementation by means of
a model-based testing approach [1,2] and to verify dynamic properties by model-
checking [3]. But model-checking as well as test generation require the models
to be finite, and of tractable size. This is not usually the case with industrial
applications, for which the exploration of the executions modelled frequently
comes up against combinatorial explosion problems. Abstraction techniques al-
low for projecting the (possibly infinite or very large) state space of a system
onto a small finite set of symbolic states. Abstract models make test generation
or model-checking possible in practice [4]. In [5], we have proposed and experi-
mented with an approach of test generation from abstract models. It appeared
that the computation time of the abstraction could be very expensive, as evi-
denced by the Demoney [6] case study. We had replaced a problem of time for
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searching in a state graph with a problem of time for solving proofs, as the ab-
straction was computed by proving enabledness and reachability conditions on
symbolic states [7].

In this paper, we contribute to solving this proving time problem by defining a
syntactic abstraction function that requires no proof. Inspired from slicing tech-
niques [8], the function works by suppressing some state variables from a model.
In order to produce a state system that is both finite and sufficiently small, we
still have to perform a semantic abstraction. This requires that some proof obli-
gations are solved, but there are less of them than with the initial model, since
it has been syntactically simplified. This approach results in semantic pruning
of generated proof obligations as proposed in [9].

In Sec. 2, we introduce the notion of B event system and some of the main
properties of substitution computation. Section 3 presents an Electrical System
case study that illustrates our approach. In Sec. 4, we first define the set of
variables to be preserved by the abstraction function and then we define the
abstraction function itself. We prove that this function is correct in the sense
that the generated abstract model A simulates or bisimulates the initial model
M. In this way, the abstraction can be used to verify safety properties and to
generate tests. In Sec. 5, we present an end to end process to compute test cases
from a set of observed variables by using both the semantic and the syntactic
abstractions. In Sec. 6, we compare this process to a completely semantic one
on several examples, and we evaluate the practical interest for test cases gener-
ation. Section 7 concludes the paper, gives some future research directions and
compares our approach to other abstraction methods.

2 B Event Systems and Refinement

We use the B notation [10] to describe our models: this section gives the back-
ground required for reading the paper. Let us first define the following B notions:
primitive forms of substitution, substitution properties and refinement. Then we
will summarize the principles of before-after predicates, and conjunctive form
(CF) of B predicates.

First introduced by J.-R. Abrial [11], a B event system defines a closed
specification of a system by a set of events. In the sequel, we use the following
notations: x, xi, y, z are variables and X , Y , Z are sets of variables. Pred is
the set of B predicates. I (∈ Pred) is an invariant, and P , P1 and P2 (∈ Pred)
denote other predicates. The modifications of the variables are called substitu-
tions in B, following [12] where the semantics of an assignment is defined as a
substitution. In B, substitutions are generalized : they are the semantics of every
kind of action, as expressed by formulas 1 to 4 below. We use S, S1 and S2 to de-
note B generalized substitutions, and E, Ei and F to denote B expressions. The
B events are defined as generalized substitutions. All the substitutions allowed
in B event systems can be rewritten by means of the five B primitive forms of
substitutions of Def. 1. Notice that the multiple assignment can be generalized
to n variables. It is commutative, i.e. x, y := E, F =̂ y, x := F, E.
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Definition 1 (Substitution). The following five substitutions are primitive:

– single and multiple assignments, denoted as x := E and x, y := E, F
– substitution with no effect, denoted as skip
– guarded substitution, denoted as P ⇒ S
– bounded nondeterministic choice, denoted as S1[]S2

– substitution with local variable z, denoted as @z.S.

Notice that the substitution with local variable is mainly used to express the
unbounded nondeterministic choice denoted by @z.(P ⇒ S). Let us specify that
among the usual structures of specification languages, the conditional substitu-
tion IF P THEN S1 ELSE S2 END is denoted by (P ⇒ S1)[](¬P ⇒ S2) with
the primitive forms.

Given a substitution S and a post-condition P , it is possible to compute the
weakest precondition such that if it is satisfied, then P is satisfied after the
execution of S. The weakest precondition is denoted by [S]P . [x := E]P is the
usual substitution of all the free occurrences of x in P by E. For the four other
primitive forms, the weakest precondition is computed as indicated by formulas 1
to 4 below, proved in [10].

[skip]P ⇔ P (1)

[P1 ⇒ S]P2 ⇔ (P1 ⇒ [S]P2) (2)

[S1[]S2]P ⇔ [S1]P ∧ [S2]P (3)

[@z.S]P ⇔ ∀z.[S]P if z is not free in P (4)

Distributivity: [S](P1 ∧ P2) ⇔ [S]P1 ∧ [S]P2 (5)

Definition 2 defines correct B event systems. To explicitly refer to a given model,
we add the name of that model as a subscript to the symbols X , I, Init and Ev.
IM is for example the invariant of a model M.

Definition 2 (Correct B Event System). A correct B event system is a
tuple 〈X, I, Init, Ev〉 where:

– X is a set of state variables,
– I (∈ Pred) is an invariant predicate over X,
– Init is a substitution called initialization, such that the invariant holds in

any initial state: [Init]I,
– Ev is a set of event definitions in the shape of evi =̂ Si such that every event

preserve the invariant: I ⇒ [Si]I.

In Sec. 4, we will prove that an abstraction A that we compute is refined by
its source event system M, and so we give in Def. 3 the definition of a B event
system refinement.

Definition 3 (B Event System Refinement). Let A and R be two correct
B event systems. Let IR be their gluing invariant, i.e. a predicate that indicates
how the values of the variables in R and A relate to each other. R refines A if:
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– any initialization of R is associated to an initialization of A according to IR:
[InitR]¬[InitA]¬IR

– any event ev =̂ SR of R is an event of A defined by ev =̂ SA in EvA that
satisfy IR: IA ∧ IR ⇒ [SR]¬[SA]¬IR.

This paper also relies on two more definitions: the before-after predicate and the
CF form. We denote by PrdX(S) the before-after predicate of a substitution S.
It defines the relation between the values of the variables of the set X before and
after the substitution S. A primed variable denotes its after value. From [10],
the before-after predicate is defined by:

PrdX(S) =̂ ¬[S]¬(
∧

x∈X

(x = x′)). (6)

Definition 4 (Conjunctive Form). A B predicate P ∈ Pred is in CF when it
is a conjunction p1∧p2∧ . . .∧pn where every pi is a disjunction p1

i ∨p2
i ∨ . . .∨pm

i

such that any pj
i is an elementary predicate in one of the following two forms:

– E(Y ) r F (Z), where E(Y ) and F (Z) are B expressions on the sets of vari-
ables Y and Z and r is a relational operator,

– ∀z.P or ∃z.P , where P is a B predicate in CF.

Section 4 will define predicate transformation rules. We put the predicates in CF
according to Def. 4 before their transformation. This allows the transformation
to be correct although the negation is not monotonic w.r.t a transformation T
of the predicates: T (¬P ) �= ¬T (P ).

3 Electrical System Example

We describe in this section a B event system that we will use in this paper as a
running example to illustrate our proposal.

Fig. 1. Electrical System

A device D is powered by one of three batteries B1, B2, B3 as shown in Fig. 1.
A switch connects (or not) a battery Bi to the device D. A clock H periodically
sends a signal that causes a commutation of the switches, i.e. a change of the
battery in charge of powering the device D. The working of the system must
satisfy the three following requirements:
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– Req1: no short-circuit, i.e. there is only one switch closed at a time,
– Req2: continuous power supply, i.e. there is always one switch closed,
– Req3: a signal from the clock always changes the switch that is closed.

The batteries are subject to electrical failures. If it occurs to the battery that
is powering D, the system triggers an exceptional commutation to satisfy the
requirement Req2. The broken batteries are replaced by a maintenance service.
We assume that it works fast enough for not having more than two batteries
down at the same time. When two batteries are down, the requirement Req3 is
relaxed and the clock signal leaves unchanged the switch that is closed.

This system is modeled in Fig. 2 by means of three variables. H models the
clock and takes two values: tic when it asks for a commutation and tac when
this commutation has occurred. Sw models the state of the three switches by
an integer between 1 and 3: Sw = i indicates that the switch i is closed while
the others are opened. This modelling makes that requirements Req1 and Req2
necessarily hold. Bat models the electrical failures by a total function. The ko
value for a battery indicates that it is down. In addition to the typing of the
variables, the invariant I expresses the assumption that at least one battery is
not down by stating that Bat(Sw) = ok. Notice that the requirement Req3 is
a dynamic property, not formalized in I. The initial state is defined by Init in
Fig. 2. The behavior of the system is described by four events:

– Tic sends a commutation command,
– Com1 performs a commutation (i.e. changes the closed switch),
– Fail simulates an electrical failure on one of the batteries,
– Rep simulates a maintenance intervention replacing a down battery.

X =̂ {H, Sw, Bat}
I =̂ H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧ Bat(Sw) = ok
Init =̂ H, Sw, Bat := tac, 1, {1 
→ ok, 2 
→ ok, 3 
→ ok}
Tic =̂ H = tac ⇒ H := tic
Com =̂ card(Bat� {ok}) > 1 ∧ H = tic ⇒

@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns �= Sw ⇒ H, Sw := tac, ns)
Fail =̂ card(Bat � {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat � {ok}) ⇒
(nb = Sw ⇒ @ns.(ns ∈ 1..3 ∧ ns �= Sw ∧ Bat(ns) = ok ⇒ Sw, Bat(nb) := ns, ko))

[](nb �= Sw ⇒ Bat(nb) := ko))
Rep =̂ @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat � {ko}) ⇒ Bat(nb) := ok)

Fig. 2. B Specification of the Electrical System

4 Syntactic Abstraction

We define in this paper a syntactical abstraction method that applies to B mod-
els. Similar rules could be adapted for more generic formalisms such as pre-post
models or transition systems.

1 An expression r � E denotes a relation where the range is restricted by the set E.
For example, {1 �→ ok, 2 �→ ko, 3 �→ ok} � {ok} = {1 �→ ok, 3 �→ ok}.
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Our intention is to obtain an abstract model A of a model M by observing only
a subset XA of the state variables XM of M. For instance, to test the electrical
system in the particular cases where two batteries are down, we observe only
the variable Bat. But to preserve the behaviors of M related to the variables of
XA, we also keep in A the variables used to assign the observed variables or to
define the conditions under which they are assigned.

We first present two methods to compute a set of abstract variables accord-
ing to a set of observed variables. Using these variables we define a predicate
and substitution transformation function. Then we describe how to compute an
abstraction of a B event model M. The abstraction is a bisimulation of M when
the abstract variables were computed according to the second method. We also
prove that if they were computed according to the first method, the abstraction
is a simulation of M.

4.1 Choosing the Abstract Variables

As proposed in [13], we distinguish between the observed variables and the ab-
stract ones. A set XA of abstract variables is the union of a set of observed
variables with a set of relevant variables. The Observed variables are the ones
used by the tester in a test purpose, while the relevant variables are the ones
used to describe the evolutions of the observed variables. More precisely, the
relevant variables are the ones used to assign an observed variable (data-flow
dependency), augmented with the variables used to express when such an as-
signment occurs (control-flow dependency).

A naive method to define XA is to syntactically collect the variables that are
either on the right side or in the guard of the assignment of an observed variable.
But this method will in most cases select a very large amount of variables, mainly
because of the guard. For instance, if x is the observed variable, then y is not
relevant in (y ⇒ x, z := E, F )[](¬y ⇒ x := E). A similar weakness goes for the
unbounded non-deterministic choice @z.(P ⇒ S).

Hence our contribution consists of two methods for identifying the relevant
variables. The first one only considers the data-flow dependency. It is efficient,
but may select a set too small of relevant variables, resulting in a set with too
many behaviors in the abstracted model. The second one uses both data and
control flow dependencies, but requires a predicate simplification to restrict the
size of XA. It produces abstract models that have the same set of behaviors as
the original model, w.r.t. the abstract variables. This second method may select
a set with too many relevant variables because predicate simplification is an
undecidable problem.

Proposition 1: Data-Flow Dependency Only. This first method considers
as relevant only the variables that appear on the right side of an assignment
symbol to an abstract variable. Starting from the set of observed variables, the
set of all abstract variables is computed as the least fix-point when adding the
relevant variables. For instance, the set of relevant variables of the electrical
system is empty if the set of observed variables is {Bat}. Hence if a test purpose



Syntactic Abstraction of B Models to Generate Tests 157

is only based on Bat, then XA = {Bat}. A drawback of this method is that it
can introduce in A new execution traces w.r.t. M. Indeed, it may weaken the
guards of some of the events, that would thus become enabled more often.

Proposition 2: Data-Flow and Control-Flow Dependencies. This second
method first computes a predicate characterizing a condition under which an
abstract variable is modified, then simplifies it, and finally considers all its free
variables as relevant. We express by means of formula 7 the modifications really
performed by a substitution S on a set XA:

ModXA(S) =̂ PrdXA(S) ∧ (
∨

x∈XA

x 
= x′). (7)

Our intention is that the predicate, that defines the condition under which an
abstract variable is modified, only involves the variables really required to modify
it. Hence primed variables are not quantified, but are allowed to be free. For
instance, consider XA = {x} and the substitution x :=y[](z>0⇒ x :=w)[]v :=3.
The predicate has to be in the shape of: x′ = y ∨ (z > 0 ∧ x′ = w), where the
variables y, w and z are relevant whereas v is not.

Finally, XA is computed as a least fix-point, by iteratively incrementing for
each event the initial set of observed variables with the relevant variables. This
process terminates since the set of variables is finite. For instance, Mod{Bat}
gives an empty set of relevant variables when applied to the example, as shown
in Fig. 3, while Mod{H} gives XA = {Bat, H}.

Mod{Bat}(Init) ⇔ Bat = {1 
→ ok, 2 
→ ok, 3 
→ ok}
Mod{Bat}(Tic) ⇔ false (no assignment of Bat)
Mod{Bat}(Com) ⇔ false (no assignment of Bat)
Mod{Bat}(Fail) ⇔ card(Bat � {ok}) > 1

∧∃nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat � {ok}) ∧ Bat′(nb) = ko)
Mod{Bat}(Rep) ⇔ ∃nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat � {ko}) ∧ Bat′(nb) = ok)

Fig. 3. Mod{Bat} Computation Applied to the Example

4.2 Predicate Transformation

Once the set of abstract variables XA(⊆ XM) is defined, we have to describe
how to abstract a model according to XA. We first define the transformation
function TXA

(P ) that abstracts a predicate P according to XA. We define TX on
predicates in the conjunctive form (see Def. 4) by induction with the rules given
in Fig. 4.

An elementary predicate is left unchanged when all the variables used in the
predicate are considered in the abstraction (see the rule R1). Otherwise, when
an expression depends on some variables not kept in the abstraction, an ele-
mentary predicate is undetermined (see the rule R2). As we want to weaken
the predicate, we replace an undetermined elementary predicate by true. Con-
sequently, a predicate P1 ∧ P2 is transformed into P1 when P2 is undetermined,
and a predicate P1 ∨P2 is transformed into true when P1 or P2 is undetermined
(see the rules R3 and R4). Finally, the transformation of a quantified predicate
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TX(E(Y ) r E(Z)) =̂ E(Y ) r E(Z) if Y ⊆ X and Z ⊆ X (R1)
TX(E(Y ) r E(Z)) =̂ true if Y �⊆ X or Z �⊆ X (R2)

TX (P1 ∨ P2) =̂ TX (P1) ∨ TX (P2) (R3)
TX (P1 ∧ P2) =̂ TX (P1) ∧ TX (P2) (R4)

TX (αz.P ) =̂ αz.TX∪{z}(P ) (R5)

Fig. 4. CF Predicate Transformation Rules

T{Bat}(H ∈{tic, tac} ∧ Sw∈1..3 ∧ Bat∈1..3 → {ok, ko} ∧ Bat(Sw)=ok)

=
T{Bat}(H∈{tic, tac}) ∧ T{Bat}(Sw∈1..3)

∧ T{Bat}(Bat∈1..3 → {ok, ko}) ∧ T{Bat}(Bat(Sw) = ok) applying R4

= Bat ∈ 1..3 → {ok, ko} applying R1 and R2

Fig. 5. Example of Predicate Transformation

is the transformation of its body w.r.t. the observed variables, augmented with
the quantified variable (see the rule R5).

For example the invariant I of the electrical system is transformed, according
to the single variable Bat, into T{Bat}(I) = Bat ∈ 1..3→ {ok, ko} as in Fig. 5.

Property 1. Let P be a CF predicate in Pred and let X be a set of variables.
P ⇒ TX(P ) is valid.

Proof. As we said before, TX(P ) is weaker than P . Indeed, for any predicate P in
CF there exist p1 and p2 such that P = p1 ∧ p2 and such that it is transformed
either into p1 ∧ p2, or into p1, or into p2, or into true, by application of the
transformation rules Ri. For any disjunctive predicate P there exist p1 and p2
such that P = p1 ∨ p2 and p1 ∨ p2 is transformed either into p1 ∨ p2 or into true.

4.3 Substitution Transformation

The abstraction of substitutions is defined through cases in Fig. 6 on the primi-
tive forms of substitutions. Intuitively, any assignment x := E is preserved into
the transformed model if and only if x is an abstract variable. According to both
of the two methods described in sec. 4.1, if x is an abstract variable, then so are
all the variables in E. Therefore, in rules R6 to R11, we do not transform the
expressions E and F .

A substitution is abstracted by skip when it does not modify any variable
from X (see rules R6, R8, R9 and R10 in which y := F is abstracted by skip).
The assignment of a variable x is left unchanged if x is an abstract variable (see
rules R7, R10, R11). The transformation of a guarded substitution S is such that
TX(S) is enabled at least as often as S, since TX(P ) is weaker than P from
Prop. 1 (see rule R12). The bounded non deterministic choice S1 [] S2 becomes a
bounded non deterministic choice between the abstraction of S1 and S2 (see rule
R13). The quantified substitution is transformed by inserting the bound variable
into the set of abstract variables (see rule R14).
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TX (x := E) =̂ skip if x /∈ X (R6)
TX (x := E) =̂ x := E if x ∈ X (R7)

TX (skip) =̂ skip (R8)

TX (x, y := E, F ) =̂ skip if x /∈ X and y /∈ X (R9)
TX (x, y := E, F ) =̂ x := E if x ∈ X and y /∈ X (R10)
TX (x, y := E, F ) =̂ x, y := E, F if x ∈ X and y ∈ X (R11)

TX (P ⇒ S) =̂ TX (P ) ⇒ TX(S) (R12)

TX (S1[]S2) =̂ TX (S1)[]TX(S2) (R13)

TX (@z.S) =̂ @z.TX∪{z}(S) (R14)

Fig. 6. Primitive Substitution Transformation Rules

4.4 B Event System Transformation

According to the predicate and substitution transformation functions (see fig-
ure 4 and figure 6), we define the transformation of a B event model according to
a set of abstract variables (section 4.1) in Def. 5. This transformation translates
a correct model M into a model A that simulates M (Sec. 4.5). The electrical
system is transformed as shown in Fig. 7 for the set of abstract variables {Bat}.
Definition 5 (B Event System Transformation). Let XA be a set of ab-
stract variables, defined as in Sec. 4.1 from a set of observed variables X with
X ⊆ XM. A correct B event system M =〈XM, IM, InitM, EvM〉 is abstracted as
the B event system A = 〈XA, IA, InitA, EvA〉 as follows:

– XA ⊆ XM, the set of abstract variables is a subset of the state variables,
– IA = TXA

(IM), the invariant is transformed,
– InitA = TXA

(InitM), the initialization is transformed,
– to each event ev =̂ SM in EvM is associated ev =̂ TXA

(SM) in EvA.

4.5 Correctness

When the set of abstract variables XA preserve both the data and control flows
as defined in Sec. 4.1 (Proposition 2), the transition relation, restricted to XA,
is preserved, as proved by theorem 1. A and M have an equivalent before-after
relation PrdXA

, therefore they are bisimilar. Hence when a CTL* property is
verified on A it holds on M and test cases generated from A can always be
instantiated on M.

Theorem 1. Let S be a substitution. Let X be a set of abstract variables com-
posed of any free variable of ModX(S), we have PrdX(S) ⇔ PrdX(TX(S)).

With the method defined in Sec. 4.1 by Proposition 1, A is a simulation of M.
The B refinement relation (see Def. 3) is proven in [14] to be a simulation: A
simulates M by a τ -simulation. τ is a silent action corresponding in our case to
an event reduced to skip or to P ⇒ skip. Theorems 2 and 3 establish that M
refines A, and thus that A simulates M. The safety properties are preserved, but
some tests generated from A might be impossible to instantiate on M.
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Theorem 2. Let I be a CF invariant of a correct B event system, let S be a
substitution and let X be a set of abstract variables. The transformation rules
R6 to R14 are such that S refines TX(S) according to the invariant I.

Theorem 3. Let X be a set of abstract variables defined as in Proposition 1.
Let TX be the transformation defined in Fig. 6, and let A be an abstraction of
an event system M defined according to Def. 5. A is refined by M in the sense of
Def. 3.

Theorem 2 establishes that any substitution S refines its transformation TX(S)
for a given set of abstract variables X . Theorem 3 establishes that a B event
system M refines the B abstract system obtained according to Def. 5 by applying
to M the transformation rules of Fig. 4 and Fig. 6.

Proof (of theorem 3). This is a direct consequence of theorem 2 and Def. 5 since
the substitution InitA =̂ TX(InitM) is refined by InitM, and that for any event
ev =̂ SM, the substitution SA =̂ TX(SM) is refined by SM.

X =̂ {Bat}
I =̂ Bat ∈ 1..3 → {ok, ko}
Init =̂ Bat := {1 
→ ok, 2 
→ ok, 3 
→ ok}
Tic =̂ skip
Com =̂ card(Bat � {ok}) > 1 ⇒ @ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ⇒ skip)
Fail =̂ card(Bat � {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat � {ok}) ⇒ Bat(nb) := ko)
Rep =̂ @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat � {ko}) ⇒ Bat(nb) := ok)

Fig. 7. B Syntactically Abstracted Specification of the Electrical System

5 Application of the Method to a Testing Process

We show in this section how to use the syntactic abstraction in a model-based
testing approach.

5.1 Test Generation from an Abstraction

We have described in [5] a model-based testing process using an abstraction as
input. It can be summarized as follows. A validation engineer describes by means
of a handwritten test purpose TP how he intends to test the system, according to
his know-how. We have proposed in [15] a language based on regular expressions,
to describe a TP as a sequence of actions to fire and states to reach (targeted
by these actions). The actions can be explicitly called in the shape of event
names, or left unspecified by the use of a generic name. The unspecified calls
then have to be replaced with explicit event names. However, a combinatorial
explosion problem occurs, when searching in a concrete model for the possible
replacements that lead to the target states. This leads us to use abstractions
instead of concrete models. Figure 8 shows our approach.
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Fig. 8. Generating Tests from Test Purpose by Abstraction

Fig. 9. Abstraction Process

We perform a synchronized product between an abstraction A and the au-
tomaton of a TP. This results in a model SP whose executions are the execu-
tions of A that match the TP. An implementation [16] of the Chinese Postman
algorithm is applied to SP to cover its transitions. The result is a set of ab-
stract symbolic tests AST. These tests are instantiated from M as a set IT of
instantiated tests.

5.2 Abstraction Computation

We show in this section two ways of producing an abstraction A that can be
used as an input of the process of Fig. 8. The syntactic abstraction of Sec. 4 is
used in one of these two ways.

In order to compute the synchronized product of an abstraction A with the
automaton of a TP, we compute the semantics of A as a labelled transition
system. We use GeneSyst [7] for that purpose. This tool computes a semantic
abstraction of a B model in the shape of a symbolic labelled transition system.
The semantic abstraction relies on feasibility proofs of the transitions between
two symbolic states. GeneSyst generates proof obligations (POs) for each of
the potential transitions between two symbolic states, and tries to solve them
automatically.

The two main drawbacks of this process are its time cost and the proportion of
POs not automatically solved. Indeed, each unsolved PO results in a transition
that is kept in the symbolic labelled transition system, although it is possibly
unfeasible. An abstract symbolic test going through such a transition may be
impossible to instantiate from the concrete model M. By applying a preliminary
phase of syntactic abstraction, we reduce the impact of that problem by reducing
the number and the size of the POs, since GeneSyst operates on an already
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abstracted model. For example, no proof obligation is generated for an event
reduced to skip (it becomes a reflexive transition on any symbolic state).

The experimental results presented in Sec. 6 compare two approaches. The
first one (see Fig. 9/Process 1) is only semantic, while the second one (see
Fig. 9/Process 2) combines a syntactic and a semantic abstraction.

6 Experimental Results

We have applied our method to four case studies. They are various cases of
reactive systems: an automatic conveying system (Robot [17]), a reverse phone
book service (Qui-Donc [2]), the electrical system2 (Electr.) and an electronic
purse (DeMoney [6]). Each one is abstracted w.r.t. two sets of abstract variables.
These sets have been computed according to Proposition 1 of Sec. 4.1. We also
have tried to compute the abstract variables according to Proposition 2, but all
the variables have been computed as abstract in three case studies. Only for the
electrical system the set of abstract variables was the same as with Proposition 1.
These case studies reveal a limit in the application of Proposition 2.

In Sec. 6.1 we present an experimental evaluation of the syntactic abstraction.
Then, in Sec. 6.2 we compareAM withAA respectively computed by the semantic
abstraction process or by its combination with the syntactic one.

6.1 Impact of the Syntactic Abstraction on Models

Table 1 indicates the size of the case studies and the syntactically abstracted
models. The Symbols “�”, “Ev.”, “Var.” and “Pot.” respectively stand for num-
ber of, Events, Variables and Potential. For example the Robot, defined by 9
events and 6 variables is abstracted w.r.t. two sets of respectively 3 and 4 ab-
stract variables.

Table 1. Size of the Case Studies and of their Syntactical Abstractions

Case Study �Ev. Model M Syntactically abstracted model A
�Var. �B lines �Pot. states �Var. �B lines �Pot. states �Symb. states

Robot 9 6 100 384 3 90 48 6
4 90 144 8

QuiDonc 4 3 170 13 2 160 16 5
2 160 16 6

Electr. 4 3 100 36 1 50 5 2
1 40 2 2

DeMoney 11 9 330 1030 1 140 65536 3
2 180 7 4

A direct observable result of the syntactic abstraction is a reduction of the
number of potential states of the model. Also notice that the simplification
reduces from 10% up to 50% the number of lines of the model.

2 The 100 lines length of the model, in Table 1, refer to a “verbose” version of the
model, much more readable than our version of Fig. 2.
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6.2 Comparison of the Abstraction Processes 1 and 2

Table 2 compares the abstractions computed either directly from the behavioral
models (see process 1 in Fig. 9), or from their syntactic abstractions (see process 2
in Fig. 9). The abbreviations “Trans.”, “Unau.”, “Inst.” and “Cover.” stand
respectively for transitions, unauthorized, instantiated and coverage.

Table 2. Comparison of the semantic and syntactic/semantic abstraction processes

Case Process 1 : AM Process 2 : AA Traces
study �Trans. �Unau.

�PO Time �Inst./ Trans. Cover.
�Trans. �Unau.

�PO Time �Inst./ Trans. Cover. inclusionTrans. (s) �Tests. of AM Trans. (s) �Tests. of AA

Robot 42 5 263 64 4/11 29/37 (78%) 36 0 143 35 7/11 31/36 (86%) AA ⊂ AM
51 0 402 76 4/23 35/51 (68%) 50 0 242 49 8/23 38/50 (76%) AA ⊂ AM

Qui- 20 2 71 19 9/11 12/18 (66%) 25 7 89 21 6/11 11/18 (61%) AA � AM
Donc 25 2 89 21 4/10 6/23 (26%) 29 6 103 23 4/10 6/23 (26%) AA � AM

Electr. 13 5 26 7 2/2 8/8 (100%) 13 5 16 5 2/2 8/8 (100%) AA = AM
7 0 21 5 3/3 7/7 (100%) 7 0 9 2 3/3 7/7 (100%) AA = AM

De- 38 5 116 189 17/18 25/33 (76%) 38 5 68 38 17/18 25/33 (76%) AA ⊂ AM
Money 53 0 290 172 22/38 30/53 (56%) 50 0 130 65 20/35 26/50 (52%) AA ⊂ AM

We see on our examples that there is between 1.8 and 2.3 fewer POs to com-
pute with process 2 than with process 1, except for the Qui-Donc. The semantic
abstraction computation in process 2 takes from twice up to five times less time
than in process 1, where no previous syntactic abstraction have been performed.
For the Qui-Donc, the syntactical abstraction has too much over-approximated
the initial model, which explains the augmentation of the POs w.r.t. the pro-
cess 1. Finally, there are four cases out of eight where the abstraction AA is more
precise than AM in the sense that it has less transitions, due to the reduction
of the number of unproved POs. In these four cases, the set of traces of AA

is included in the set of traces of AM. In the case of the electrical system, the
set of traces are equal. In the Qui-Donc case, the traces cannot be compared.
The simplification by the syntactic abstraction of the events and of the invariant
makes that AA may contain more transitions (thus more traces) than AM. But
the number and the difficulty of the POs is greater to get AM than to get AA,
so that proof failures may occur more often with AM. As a result, AM can also
contain transitions that are not in AA.

As for the ratios of tests instantiated and of transitions covered of the abstrac-
tion, we observe their stability with or without syntactic abstraction. Although
the ratios are a bit better (or equal) for the Robot and the Electrical System,
and a bit worse for Qui-Donc and Demoney, they are mainly very close to each
other. But, due to the reduction of the number of POs, the time to obtain these
comparable results is improved with process 2, i.e. when there is a preliminary
syntactic abstraction phase. Again, this is not true for the Qui-Donc since on
the contrary, its number of POs has increased.

Finally, the method had no interest with the Qui-Donc, which was the small-
est example. But, as shown by DeMoney, its efficiency in terms of gain of the
abstraction computation time, of reduction of the number of unproved POs and
of precision of the abstraction, grows with the size of the examples.
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7 Conclusion, Related Works and Further Works

We have presented in the B framework a method for abstracting an event system
by elimination of some state variables. In this context, we have proposed two
methods to compute the set of variables kept in the abstraction according to
the set of observed variables. We have proved that when using the first method,
the generated abstraction simulates the concrete model, while when using the
second method, the generated abstraction bi-simulates the concrete model. This
is useful for verifying safety properties and generating tests.

In the context of test generation, our method consists in initializing the test
generation process from event B model described in [5], by a syntactic abstrac-
tion. Since the syntactic abstraction reduces the size of the model, the main
advantage of this method is that it reduces the set of uninstantiable tests, by
reducing the level of abstraction (reduces the number of PO generated and fa-
cilitates the proof of the remaining PO). Moreover, this results in a gain of
computation time. We believe that the bigger the ratio of the number of state
variables to the number of observed variables is, the bigger the gain is. This
conjecture needs to be confirmed by experiments on industrial size applications.

Many other works define model abstraction methods to verify properties or
to generate tests. The method of [18] uses an extension of the model-checker
Murφ to compute tests from projected state coverage criteria that eliminate some
state variables and project others on abstract domains. In [19], an abstraction
is computed by partition analysis of a state-based specification, based on the
pre and post conditions of the operations. Constraint solving techniques are
used. The methods of [20,21,22] use theorem proving to compute the abstract
model, which is defined over boolean variables that correspond to a set of a
priori fixed predicates. In contrast, our method first introduces a syntactical
abstraction computation from a set of observed variables, and further abstracts
it by theorem proving. [23] also performs a syntactic transformation, but requires
the use of a constraint solver during a model checking process.

Other automatic abstraction methods [24] are limited to finite state systems.
The deductive model checking algorithm of [25] produces an abstraction w.r.t.
a LTL property by an iterative refinement process that requires human exper-
tise. Our method can handle infinite state space specifications. The paper [26]
presents a syntactic abstraction method for guarded command programs based
on assignment substitution. The method is sound and complete for programs
without unbounded non determinism. However, the method is iterative and does
not terminate in the general case. It requires the user to give an upper-bound of
the number of iterations. The paper also presents an extension for unbounded
non deterministic programs that is sound but not complete, due to an expo-
nential number of predicates generated at each iteration step. In contrast, our
syntactic method is iterative on the syntactic structure of the specifications. It
is sound but not complete. It handles unbounded non deterministic specifica-
tions with no need for other iterative process and always terminates. Above all,
our method does not compute any weakest precondition whereas the approach
in [26] does, which possibly introduces infinitely many new predicates.
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The syntactic method that we have presented is correct, but, in the case of
Proposition 1, may sometimes produce inaccurate over-approximations due to
a too strong abstraction (see for example the experiments on the Qui-Donc).
Proposition 2 produces a bisimulation, but may leave the initial model un-
changed, i.e. not abstracted, if all the variables are computed as abstract. We
have to find a compromise between the two propositions, that would reduce the
number of abstract variables, but that would keep at least partially the control
structure of the operations. Also, we think that rules could be improved to get
a finer approximation. For instance, improving the rules is possible when the
invariant contains an equivalence such as x = c ⇔ y = c′. If y is an eliminated
variable and x an observed one, we could substitute all the occurrences of the
elementary predicate y = c′ with x = c. This would preserve the property in
the syntactic abstraction AA, so that the following semantic abstraction would
be more accurate. Such rules should prevent the addition of transitions in the
Qui-Donc abstraction AA w.r.t. AM.

We think that extending the test generation method introduced in [5] by using
a combination of syntactic and semantic abstractions will improve the method,
since the abstraction is more accurate if there are less unproved POs.
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Abstract. This paper proposes an approach for automatically generat-
ing model-based tests from a symbolic transition system built as an ab-
straction of a textual model description written using a pre/postcondition
formalism. The abstraction gathers into equivalence classes states from
which the same set of operation behaviors can be activated, computed us-
ing constraint solving techniques. This abstraction is then used to gener-
ate model-based tests using an online test generation technique in which
the model animation is guided by the exploration of the abstraction. We
apply this approach on the B abstract machines formalism, and compare
with a commercial tool, named Leirios Test Generator. We show that our
approach makes it possible to achieve a wider variety of test cases, by
exploiting the knowledge of the model topology, resulting in an improved
fault detection capability.

1 Introduction

In the context of Model-Based Testing [2], a formal model is used for both
computing the test cases and the oracle, i.e., the expected results obtained
when the tests are played on the System Under Test (SUT). Nowadays, two
main approaches are used for modelling the SUT. The first one is to use a
pre/postcondition notation, generally textual, that describes the system using
state variables and a transition relation that updates their values, as in B [1]
or VDM [14]. The second solution is to use a graph-based description of the
states and transitions of the SUT, providing a topology of the state space, as in
the FSM [15] or IOLTS [20] formalisms. While the first approach unburdens the
validation engineer from drawing the complete state/transition graph, it is more
difficult to use for automated test cases computation. To overcome this prob-
lem, many approaches bridge the gap between these two kinds of formalisms by
building a graph representation of the system, by simulating the execution of the
model. For example, ProTest [19] builds a labeled transition system represent-
ing a B model, using the ProB animator [16]. Unfortunately, such a technique
is limited in presence of large state space systems, that involve sets or ranges
of integers, which may cause a dramatic increase of the number of states. To
overcome this limitation, other approaches rely on the use of abstractions [6], or
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symbolic techniques and formalisms, such as IOSTS [7], that avoid the complete
enumeration of the system states, by gathering them into symbolic states.

The objective of our work is to propose a technique for automatically build-
ing an abstraction of a system, using symoblic techniques. We apply this tech-
nique on behavioral models, namely B abstract machines, in order to produce
a symbolic transition system (STS) that will make it possible to improve a test
generation process by providing a helpful state/transition reachability analysis,
while keeping the STS of a tractable size.

Our approach relies on the notion of behaviors which results from the decom-
position of the operations regarding their possible executions flows, originally
introduced by Dick and Faivre in [11]. We assume that our models are deter-
ministic, meaning that an invocation of an operation leads to the activation of
(at most) one behavior. The STS is then built in two steps. We first define each
symbolic state by the set of behaviors that can (and can not) be activated from
it. Then we compute, using constraint solving techniques, the transitions be-
tween symbolic states as the behaviors that can lead from a state to another.
Once this STS has been computed, we apply on it “classical” exploration al-
gorithms that aim at producing the model-based test cases. Since the STS is
an over-approximation of the original B model, in which certain cases of non-
determinism may remain, we propose to perform an online test generation by
coupling the exploration of the graph with the animation of the model, so as to
have a direct feedback on the exploration progress. The generated tests can then
be concretized to be played on the System/Implementation Under Test.

The paper is organized as follows. Section 2 presents the behavioral models
that we consider, namely the B abstract machines formalism, and introduces
useful definitions. Then, Section 3 describes the process used to produce the
STS representation of the B model. The test generation principles that we use
are presented in Sect. 4. We describe a tool-supported experimentation of this
method in Sect. 5. We discuss related works in Sect. 6. Finally, Section 7 con-
cludes and presents the future works.

2 Behavioral Models

This section defines the notion of behavioral models, declined on the B abstract
machines formalism. We present the concept of behaviors, computed from the
operations of the B model. Finally, we introduce some definitions that will be
used throughout the remainder of the paper.

2.1 The B Abstract Machines

The B method [1] is dedicated to formal development, from high-level speci-
fication to implementable code. Specifications are based on three formalisms:
data are specified using a set theory, properties are first-order predicates and
the behavioral part is specified by Generalized Substitutions.

The B method starts by the writing of a formal specification, named abstract
machine, that gives a functional view of the system. The machine is then spiced
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up with invariant properties that represent properties that have to hold at each
state of the system execution. It means that (i) the initialization has to establish
the invariant, (ii) the operations have to preserve the invariant (meaning that
if the invariant is satisfied before the operation, then it also has to be satisfied
after the execution of the operation). Operations are written in terms of Gen-
eralized Substitutions that are built on basic assignments, composed into more
generalized and expressive structures, that may for example, represent condi-
tional substitutions (IF...THEN...ELSE...END) or non-deterministic constructs
(CHOICE, ANY).

Running example of a B Abstract Machine. The B machine presented
in Fig. 1 models a simple process scheduler, initially introduced in [11] that
manages the access of processes (contained in the abstract set PID) to a critical
section. Three sets represent the different states of the processes, that can be
idle (waiting variable), in the waiting queue for the critical section (ready
variable), or accessing the critical section (active variable). As a structural
constraint, only one process at the time can access the critical section, and no
process can wait for a free critical section. The model presents five operations.
new creates a non-existing process and puts it in the idle state. delete removes
an existing idle process from the system. ready makes its parameter access the
critical section (if empty) or places the process in the waiting queue. The swap
operation removes the process currently using the critical section and places

MACHINE
scheduler

SETS
PID = {p1,p2,p3,p4,p5}

VARIABLES
active, ready, waiting

INVARIANT
active ⊆ PID ∧ ready ⊆ PID ∧
waiting ⊆ PID ∧ ready ∩ waiting = ∅ ∧
active ∩ waiting = ∅ ∧
active ∩ ready = ∅ ∧ card(active) ≤ 1 ∧
(active = ∅ ⇒ ready = ∅)

INITIALIZATION
active := ∅ ‖ ready := ∅ ‖ waiting := ∅

OPERATIONS
new(pp) =̂
PRE pp ∈ PID ∧

pp �∈ (waiting ∪ ready ∪ active)
THEN waiting := waiting ∪ {pp}
END;

del(pp) =̂
PRE pp ∈ waiting
THEN waiting := waiting - {pp}
END;

ready(pp) =̂
PRE pp ∈ waiting THEN

waiting := waiting - {pp} ‖
IF active = ∅ THEN active := {pp}
ELSE ready := ready ∪ {pp}
END

END;

swap =̂
PRE active �= ∅ THEN

waiting := waiting ∪ active ‖
IF ready = ∅ THEN active := ∅
ELSE ANY pp WHERE pp ∈ ready THEN

active := {pp} ‖
ready := ready - {pp}

END
END

END;

rr ← observe(pp) =̂
PRE pp ∈ 1..3 THEN
THEN IF pp = 1 THEN rr := waiting

ELSE IF pp = 2 THEN rr := ready
ELSE rr := active
END

END
END

END

Fig. 1. B abstract machine of a simple process Scheduler
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Table 1. Rules to compute the behaviors from an operation

Substitution Rewriting
Bounded choice Behavx(S [] T ) � Behavx(S) [.] Behavx(T )
Precondition Behavx(P | S) � P ∧ Behavx(S)
Guarded Behavx(P =⇒ S) � P ∧ Behavx(S)
Unbounded choice Behavx(@z.S) � Behavx(S) and z ∈ L

Others Behavx(S) � prdx(S) for S ∈ {skip, x := E, x :∈ E}

it in the idle state; it then chooses a process from the waiting queue to give it
access to the critical section. Finally, the observe operation is used for testability
purposes, and retrieves the values of the states variables.

2.2 Behavioral Models

The behaviors of a B operation (a generalized substitution) are described by
before-after predicates that represent the possible ways of executing the oper-
ation, in terms of activated effect. The computation of the behaviors from a
B operation op is the result of the rule Behav(S), given in Tab. 1, completed by
the rules of [1, p.309] (for handling parallel substitutions).

In this table, P is a predicate, S and T are generalized substitutions, [.] is the
bounded choice operator between behaviors, L is a vector of local variables of
the operation, V is the vector of machine state variables on which the predicates
apply, prdx is the transformation of an assignment into a before-after predicate
(e.g. prdx(x := E) ⇔ x′ = E). Bounded choice and guarded substitutions are
generally used together to express IF P THEN S ELSE T END substitutions,
written (P =⇒ S [] ¬P =⇒ T ) in this formalism.

Definition 1 (Elementary Behavior Normal Form). An operation is in
Elementary Behavior Normal Form (EBNF) when it is expressed as a bounded
choice between behaviors in which each elementary behavior predicate b is ex-
pressed as 〈StateP b(V ), InP b(V, Ib), LocP b(V, Ib, Lb), Eff b(V, Ib, Lb, Ob, V ′)〉
in which:

– V (resp. V ′) denotes the vector of state variables before (resp. after) the
execution of the behavior,

– Ib, Lb and Ob respectively denote the vectors of input variables, local variables
and output variables of the operation from which b originates,

– StateP b(V ) is the conjunction of clauses of b that do not depend from the
inputs (Ib), the local variables (Lb) or the outputs (Ob),

– Effb(V, Ib, Lb, Ob, V ′), LocP b(V, Ib, Lb) and InP b(V, Ib) respectively denote
the effect of the behavior (assigning the after values of the state variables
V ′ and outputs Ob), the predicates occurring over local variables, and the
predicates occurring over input variables.

We now formally define the notion of Behavioral Model. This definition is based
on a single B machine. Notice that other pre/postconditions formalisms may be
mapped into this definition.



Building a Test-Ready Abstraction of a Behavioral Model Using CLP 171

Definition 2 (Behavioral Model). A Behavioral Model (BM) is a quadruplet
BM = 〈Def, Init, Inv, Ops〉 where:

– Def is a predicate over the static data of the model, namely the definitions
of sets (types), constants and properties over the constants of the model,

– Init is an after-predicate over the values of the state variables that gives
their initial assignement,

– Inv is the invariant predicate over the state variables of the model, it con-
tains both typing information, and properties that have to be preserved by the
operation execution,

– Ops is set of operations in which each operation is in the EBNF form.

We now illustrate the notions introduced previously. We focus on the swap op-
eration of the example.

Example 1 (EBNF of the swap operation). We can give the extended definition
of the swap operation EBNF.
EBNF (swap) = swap1[.]swap2 with

StateP (V ) InP (V, I) LocP (V, I,L) Eff(V, I, ∅, O, V ′)
swap1 active 
= ∅ ∧ true true waiting′ = waiting ∪ active ∧

ready = ∅ active′ = ∅
swap2 active 
= ∅ ∧ true pp ∈ ready waiting′ = waiting ∪ active ∧

ready 
= ∅ active′ = {pp} ∧
ready′ = ready− {pp}

in which V = {active, ready, waiting}, V ′ = {active′, ready′, waiting′}, O
= I = ∅, and L = ∅ for swap1 and L = {pp} for swap2.

2.3 Additional Definitions

We now define the notions of behavior enableness and crossability. These notions
will be used in the next section for the computation of the transition systems.

Definition 3 (Behavior Enableness). A behavior can be enabled if there ex-
ists a concrete state in which its precondition and the constraints applying on
its parameters are satisfiable. Let b be a behavior expressed in EBNF, b can be
enabled if and only if:

∃V . Def∧Inv(V )∧StateP b(V )∧∃Ib.(InP b(V, Ib)∧∃Lb.LocP b(V, Ib, Lb)) (1)

is satisfiable.

In the rest of the paper, we will denote by enablesb(V ) the fact that behavior b
can be enabled from state V .

Definition 4 (Crossable behavior). A behavior is said to be crossable if its
execution leads to a coherent state. More precisely, if there exists a resulting state
reached by the activation of the behavior. A behavior b in EBNF is crossable if
and only if:

∃V, Ib, Lb, Ob, V ′.Def ∧ Inv(V ) ∧Behb(V, Ib, Lb, Ob, V ′) is satisfiable. (2)
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In the rest of the paper, we will denote by crossableb(V, V ′) the fact that behavior
b can be executed from state V to reach state V ′.

The satisfiability of the above formulas are checked using constraint solving
techniques. In practice, we rely on the CLPS-BZ solver [5], a set-theoretical
solver on finite domains written in SICStus Prolog. Notice that, to do so, all
data domains have to be finite, namely integers are defined over a finite range
of values, and sets have to be enumerated. Notice that this is not a restriction,
since the B model originally aims at being used for generating test cases and
thus, should not present abstract data.

We now define our technique to build symbolic transition systems, based on
the behaviors that we described here.

3 Using Behaviors to Build the Abstraction

This section details the symbolic transition system representation. We first give
the states definition and semantics, before presenting how the STS is built.

3.1 Symbolic Transition System

The states of our abstractions identify equivalence classes that gather the con-
crete states from which a given set of behaviors can be activated.

Definition 5 (Symbolic Transition System). A Symbolic Transition System
(STS) is defined as a quintuplet 〈Q, q0, Σ, δ, η〉 in which:

– Q is a finite set of symoblic states,
– q0 ∈ Q is the inital state,
– Σ is the set of the possible transitions between states, i.e. the set of behaviors

extracted from the operations of the model,
– δ ∈ Q×Σ ×Q is the transition relation, and
– η is the characterization of a state, that is decomposed into two functions:

η+ ∈ Q → P(Σ) which associates to a state the behaviors that can be acti-
vated at the same time, and

η− ∈ Q → P(Σ) which associates to a state the behaviors that can not be
activated at the same time.

Notice that the η+ (resp. η−) function charaterizes concrete states from which
the identified set of behaviors can (resp. cannot) be enabled, i.e. the conjunction
of their enabling conditions (see Def. 1) is satisfiable (resp. unsatisfiable)).

Definition 6 (State characterization predicate). Let q be a state of a STS
〈Q, q0, Σ, δ, η〉, the predicate characterizing the concrete states of the model,
named ζ(q) is defined by:

ζ(q)(V ) =
∧

b∈η+(q)

(enablesb(V )) ∧
∧

b∈η−(q)

(¬ enablesb(V )) (3)

in which V is the vector of state variables.
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Example 2 (State characterization predicates). Consider the symbolic state q1
for which η+(q1) = {new1, del1, ready1} and η−(q1) = {swap1, swap2}. The
concrete states associated to q1 satisfy the following set of constraints:

∃V. Def ∧ Inv(V )∧ enablesnew1(V ) ∧ enablesdel1(V ) ∧ enablesready1(V ) ∧
¬enablesswap1(V ) ∧ ¬enablesswap2(V )

which corresponds to:

∃(a, r, w). Def∧ Inv(a, r, w)∧ ∃ppnew1 .(ppnew1 ∈ PID ∧ ppnew1 �∈ a ∪ r ∪ w)∧
∃ppdel1 .(ppdel1 ∈ w) ∧
a = ∅ ∧ ∃ppready1 .(ppready1 ∈ w) ∧
¬(a �= ∅ ∧ r = ∅) ∧
¬(a �= ∅ ∧ r �= ∅ ∧ ∃ppswap2 .ppswap2 ∈ r)

in which a, r and w respectively denote state variables active, ready and
waiting. This constraint satisfaction problem reduces to the following:

active = ∅ ∧ ready = ∅ ∧ waiting �= ∅ ∧ waiting ⊂ PID

which has 42 solutions, one of them being active=ready=∅, waiting = {p1}.

The existence of concrete states is decided using constraint solving techniques,
which aim at finding an instanciation for the state variables and local behavior
parameters.

3.2 Building the Symbolic Transition System Using CLP

Our approach for computing the STS is based on the approach originally pro-
posed by Bert and Cave in [3] and implemented in the GeneSyst tool [9]. This
technique consists in two steps: first, the identification of the states, and, sec-
ond, the computation of the transitions between the states. Contrary to the
GeneSyst tool, which relies on theorem proving, our approach uses constraint
solving techniques to compute the feasibility of transitions.

Step 1. State partitioning. Let ΣV be the set of behaviors whose enableness
condition depends on the state variables of V . The complementary behaviors
represent behaviors whose enabling does not depend on any state variables, i.e.
behaviors that can be activated from any state of the system, and thus, that are
not discriminating.

Each symbolic state is defined by η defined so as to satisfy the following set
of properties:
(a) if an operation has no behavior in ΣV the operation is not considered
(b) at most one behavior for each operation is in η+

(c) if an operation has no behavior in η+, all its behaviors appear in η−.

Proposition 1 (Partitioning of the model state space). This symbolic
state definition represents a complete partition of the model state space.
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Proof (Sketch of proof of Proposition 1). This proof can be done by contradic-
tion. Assume that our definition does not represent a complete partition of the
model state space. Then, there are two cases: either (i) there exists at least a
state that is not in the partition, or (ii) there exists at least a state that may
belong to two symbolic states. Case (i) is caught by properties (b) and (c), which
aim at representing the possible combinations of behaviors that can be enabled
for an operation: either a single behavior, or no behavior at all. The exhaus-
tiveness of the combinations guarantees that all cases are considered. Case (ii)
is caught by property (a), which prevents two concrete states from enabling
different behaviors that do not depend on the state in which they are executed.

Thus, the theoretical number of states is the product Π(|Σop + 1|) in which Σop

designates the behaviors extracted from operation op. The additional +1 takes
into account the fact that no behavior from a given operation can be enabled. In
practice, this number may also be reduced in presence of contradictory predicates
between the combined behaviors.

Example 3 (Scheduler states partitioning). The scheduler example contains 4
operations, and a total of 6 (state-variable dependent) behaviors: 1 for new and
del, and 2 for ready and swap. The observe operation has 3 behaviors that
can be enabled from any state. Since none of its behaviors depend on the state
variables, this operation is thus not considered as characteristic for the definition
of the symbolic states, and is not taken into account.

The following table summarizes the possible combinations that can be pro-
duced, for each operation. In this table, op∅ represents the fact that no behavior
from operation op will be activated (i.e. all the behaviors of op will be in η−).

Operation new del ready swap
Behaviors new∅, del∅, ready∅, swap∅,

new1 del1 ready1, swap1,
ready2 swap2

In theory, the maximal number of symbolic states is 2 × 2 × 3 × 3 = 36.
In practice, only 10 combinations produce satisfiable conjunctions of behavior
enabling conditions (e.g. ready1 and swap1 respectively require active = ∅ and
active �= ∅, which is inconsistent, removing all combinations including these
two behaviors from the set of symbolic states).

Notice that the (concrete) initial state of the original model is mapped to one
of these identified states. On the example, η+(q0) = {new1} and η−(q0) =
{del1, ready1, ready2, swap1, swap2}.

Step 2. Transitions computation. After having identified the states of our
STS, we then compute the transitions between them. As explained previously,
the transitions are the behaviors that can be activated between the states. Thus,
for each pair of states, we compute the crossability of a behavior, from a first
state, in order to reach the second one. The worst case number of transitions is
thus |Q|2 × |Σ|.
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Definition 7 (Feasible transition between states). Let q and q′ be two
states from an STS, and let b be a behavior. The transition from q and reaching
q′ by b is feasible if and only if:

∃V, V ′ . ζ(q)(V ) ∧ crossableb(V, V ′) ∧ ζ(q′)(V ′) is satisfiable. (4)

Again, we consider constraint solving techniques to check the satisfiability of
the above predicate. Let us now illustrate the computation of a transition on an
example.

Example 4 (Transition computation). Suppose we want to check the feasibil-
ity of new1 between the initial state q0, defined by η+(q0) = {new1} and
η−(q0) = {del1, ready1, ready2, swap1, swap2}, and q1, defined by η+(q1) =
{new1, del1, ready1} and η−(q1) = {swap1, swap2}.

The existence of the transition (q0, new1, q1) is determined by the satisfiability
of the formula:

∃a, r, w, a′, r′, w′ . ¬(∃ppdel1 .ppdel1 ∈ w) ∧ . . .∧
∃ppnew1 .(ppnew1 ∈ PID ∧ ppnew1 ∈ a ∪ r ∪w ∧

w′ = w ∪ {ppnew1} ∧ a′ = a ∧ r′ = r) ∧
w′ �= ∅ ∧ w′ ⊂ PID ∧ a′ = ∅ ∧ r′ = ∅

in which a, r, and w respectively denote active, ready and waiting. This
reduces to the following set of constraints:

active = active′ = ready = ready′ = ∅ from ζ(q1)
waiting = ∅ from ζ(q0)
waiting′ �= ∅ ∧ waiting′ ⊂ PID from ζ(q1)

which admits 5 solutions, corresponding to the initial state of the model (active
= ready = waiting = ∅) and the “first” reachable state of the model (active
= ready = ∅ and waiting = {pp}, with pp ∈ {p1, p2, p3, p4, p5}.
Example 5 (Symbolic Transition System of the Scheduler). The symbolic tran-
sition system computed from the Scheduler example is depicted in Fig. 2. This
STS contains 10 states, that are characterized by the set of behaviors that can
be enabled from them. State q0 represents the initial state of the STS. These
10 states are related by 40 transitions. For readability, the observe operation
behaviors have not been represented.

Notice that the number of transitions is significantly lower that its worst case
value (102 × 6 = 600 transitions).

As explained before, the computation of the symbolic states and the transitions
between them is done using constraint solving techniques. Notice that proof tech-
niques may also be used. Nevertheless, theorem proving relies on the underlying
theories used to express the formula, that need to be decidable to avoid proof
defaults. Moreover, the expressiveness of the B notation (involving relations,
functions, etc.) may not be formalized into decidable theories. On the opposite,
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Fig. 2. Symbolic Transition System of the Scheduler example

constraint solving techniques guarantee the termination of the computation (i.e.
in the worst case, all possible solutions of the Constraint Satisfaction Problem
are enumerated before concluding to unsatisfiability of the formula). Thus, we
choose to use a customized set-theoretical solver, namely CLPS [5].

In practice, the resulting graph may be non-deterministic (as illustrated in
Fig 2). This specificity has to be taken into account in the test generation ap-
proach that we consider. It is now described.

4 Test Generation from the Abstraction

We present in this section how to generate test cases from the abstraction.
As explained in the previous section, the resulting abstraction is possibly non-

deterministic, meaning that a same transition may reach more than one state.
Thus, it would make no sense to generate the test cases offline (i.e. by considering
only the STS) since the larger majority of the sequence would not be executable.
To tackle this potential problem, we propose to perform the test generation in
an online way: while the STS is explored, the original B model is animated. At
each step, an identification of the current STS state is performed so as to provide
a feedback on the STS exploration.
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Algorithm 1: Test generation algorithm for a targeted transition
Data: model M, STS S = 〈Q, q0, Σ, δ, η〉
Result: testSuite
begin

testSuite ← ∅ ;
foreach (qf , b, qt) ∈ δ do

test ← [ ] ;
pathsToTarget ← findPath(q0,qf ) ;
foreach path ∈ pathsToTarget do

curStateM ← initialize(M) ;
foreach (qfp, bp, qtp) ∈ path do

curStateAfterM ← executeBehavior(M,curStateM ,bp) ;
if checkState(ζ(bt),curStateAfterM) then

curStateM ← curStateAfterM;
test ← test ˆ (qfp, bp, qtp);

else
break and backtrack to next path;

curStateM ← executeBehavior(M,curStateM ,b) ;
checkState(ζ(qt),curStateM) ;
test ← test ˆ (qf , b, qt) ;
testSuite ← testSuite ∪ {test} ;
break ;

Our test selection criterion aims at the coverage of all transitions q
b→ q′

for each b ∈ Σ. Our objective is to introduce the most possible variety in the
preambles that reach the targeted states. Knowing the topology of the model,
thanks to the abstraction, we can now use it to compute the paths to the target.
For each transition, the idea is to cover a path leading to it from the initial state.

Algorithm 1 summarizes the test generation algorithm, and especially the
replay of a path from a given path. The basic idea is to start from a given path
and monitor its symbolic execution of the original B model, at each step. Its aim
is to generate a test suite which consists of one test for each transition in the
graph of the abstraction. For each transition, a test is built as follows:

– The algorithm first finds the paths from the initial state q0 of the abstrac-
tion to the source state of the considered transition qf , computed by function
findPath. This function uses a Dijkstra-like implementation of the path com-
putation, done in polynomial time. It represents a choice-point in the sense
that it is able to iterate over the possible paths that lead to a specific state,
by first computing loop-free paths, in which loops are unfolded if this latter
can not be replayed on the model. The variable curState is initialized with
the values of variables of the model at initial state.

– For each path, the algorithm consider the successive transitions in it, and
executes the associated behavior on the model (function executeBehavior).
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It then checks that the predicate associated to the target state (using the ζ
function) is satisfied on the resulting model state.

– If the check succeeds, the current transition of the path is concatened (de-
noted by the ˆ operator) to the test, and the algorithm continues with the
rest of the path.

– If not, the execution backtracks to the next path (iterating the possible loops
over the current path).

– When the path has been played entirely, the test is concluded with the
targeted transition. Then, the algorithm continues with the next test.

The complexity of this algorithm is related to the worst case complexity of the
findPath function. In practice, this function is bounded in the number of steps
done for unrolling loops. Its worst case is thus exponential. Nevertheless, the
heuristics consisting in unrolling the loops of the path makes it possible, in
practice, to have acceptable computation times.

This algorithm has been implemented in SICStus Prolog, and communicates
with the CLPS solver and the engine for animating the B model. The imple-
mentation uses backtracking mechanisms to iterate over the possible paths that
lead to a given state. Backtracking also avoids the re-computation of the com-
plete sequences composing the different paths by factorizing the evaluation of
sequences prefixes.

5 Experimentation

We now report on the experimentation we have designed. The goal of the ex-
perimentation is to show the usefulness of the abstraction we propose for test
generation, by comparing its results with a commercial test generation tool,
named Leirios Test Generator [12]. This tool is also based on the coverage of
the behaviors, but its test generation strategy only considers one path for each
behavior, thus producing short test cases. We show here that the abstraction is
helpful to compute a wider variety of test cases which improve the test detection
capabilities of the tests.

5.1 LTG Test Genereation Strategy

The test generation strategy of LTG is based on the decomposition of the B op-
erations into behaviors. Contrary to our approach, the LTG test generation
algorithm does not take into account the topology of the model states.

For each behavior, a test target corresponds to its enableness condition, as
defined in Def. 1. The test targets represent a set of concrete states from which
it is possible to activate the considered behavior. The aim of LTG is to produce
tests that will cover the behaviors of the system.

The computation of the preamble (the sequence of operations that reaches the
target) is done automatically by LTG. To achieve that, the tool uses a customized
state exploration algorithm that explores on-the-fly the symbolic states of the
model until reaching the specified target. In most of the cases, the paths found by
the exploration algorithm turn out to be the shortest paths reaching the target.
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5.2 Comparison with LTG Using Mutational Analysis

The application of the abstraction-based test generation algorithm on the exam-
ple produced 40 tests, one per transition, of average length 6.25 steps (vs. 3 for
the 6 tests produced by LTG).

In order to check the improvement brought by our technique, we designed
a mutational analysis on the Scheduler example. We thus produced manually
23 mutants of the original specification and we ran the tests produced us-
ing our technique and compared with the executions of the tests produced by
LTG. The mutations were done on the model itself. They consisted in modi-
fications/deletions of conditions in the decisions of IF substitutions, and addi-
tion/modifications/deletions of assignments. We replayed the tests on the model,
and checked the feasibility of the sequences. A mutant is killed by a test if the
test can not be replayed on it (trace equivalence). In general, the test execution
time is negligible (less than one second using our dedicated animation engine).

LTG tests achieve a mutant detection score of 13/23, whereas our technique
scores 18/23. Interesting points are that (i) our approach detects the same mu-
tants as LTG (i.e. there is no mutant that is killed by LTG and not by our
approach), and (ii) the mutants that are still alive with our tests also remain
alive with LTG. As expected, our test generation technique improves the test
generation approach of LTG.

A word on scalability. We conducted another experiment, with a large size model
of an electronic purse. Although the model admitted more than 1012 concrete
states, and 20 behaviors (among 5 operations), the abstraction, containing 23
states and 303 transitions was computed in an acceptable time of 1min 42sec.
The test generation algorithm took less than one minute to generate more than
100 test cases (mainly due to the fact that no unrolling of loops was necessary).

6 Related Works

We compare here our approach with other abstraction computation techniques
and/or test generation approach from behavioral models.

The method implemented in the Agatha tool [18] also computes an abstraction
from a model, but by applying a symbolic execution technique. The technique
consists of an exploration of the model from the initial state by using an inclusion
criterion on explored symbolic states. The tool computes a tree, in which each leaf
is a symoblic state that is a subset of another state in the tree. Then, the tests are
computed by exploring this tree. Other approaches rely on a first computation
of an abstraction that is then refined using counter-examples [8] that are traces
that should not be accepted by the abstraction. In SpecExplorer [21], a model
program is used to describe the model that will be explored using symbolic
techniques and model-checking to produce test cases. The methods presented
in [6] and implemented in the STG tool [13] use an abstraction defined by the user
and modelled by an IOSTS. These approaches use test purposes synchronized
with the abstractions, both defined as IOSTS. Then the synchronized product is
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used to generate test cases after an optimization step, which consist of pruning
the unreachable states by abstract interpretation.

In the domain of test generation from B machines, the ProTest test genera-
tor [19] generates test cases from an exploration of a labeled transition system
built using the animation of a B machine, using the ProB animator. The major
difference with our work is that ProB enumerates all the accessible states of the
B model, which is untractable on large systems. Even if state reduction heuristics
have been implemented into ProB [17], it seems, to the best of our knowledge,
that the resulting transition system is not used for test generation, but rather
for property verification.

Contrary to these approaches, our technique does not perform an exploration
of the model execution in order to build the symbolic states. Assuming that
the invariant of the B model captures all the reachable states of the model, the
partitioning that we propose can possibly identify states that would not have
been reached when exploring the model if using an inappropriate symbolic state
mergin criterion. In return, our abstraction is not deterministic and the test
generation technique that we employ has to be able to deal with it. Moreover,
the above-mentionned approaches consider relatively simple data types, such as
integers and booleans, whereas we are able to reason on complex data structures
such as sets and functions/relations.

A similar state partitioning technique is presented in [10]. The authors propose
the operation in disjoint Z schemas for each operation (accordingly to the DNF
decomposition initially proposed by Dick and Faivre [11]), and also provide a
partition of state variables values. Our decomposition goes one step further by
considering combinations of behaviors to provide the state partitioning, resulting
in a more precise abstraction. This kind of partitioning represents the main
originality of our approach.

The closest work to ours is reported in [4]. In this work, the GeneSyst tool [9]
is used to compute a symbolic transition system based on a syntactic abstraction
of a B model. Unfortunately, this work suffers from several limitations. First, the
state partitioning is done by focusing on a given subset of the state variables
whose domains are partitioned in a systematic way, which may cause subsequent
transitions to be unactivable. Second, the GeneSyst tool is based on a prover
which may fail to deduce the validity of a formula, leaving proof obligations
unsolved. Our approach using constraint solving techniques avoids this problem.
Finally, the computation of the tests does not take into account that a large
majority of traces produced from the exploration of the abstraction can not be
replayed on the original model. Our approach tackles this problem by considering
the animation of the original model and the exploration of the graph altogether.

7 Conclusion and Future Works

We have presented in this paper a technique to build an abstraction from a
B model. The states of the abstraction are characterized by a set of behaviors
(extracted from the B model operations) that can be activated at a same time.
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The transitions between the states are the behaviors of the model. Their exis-
tence is computed using constraint solving techniques. This abstraction makes
it possible to provide an approximate reachability analysis that can be used to
help the design of model-based test cases. We have then proposed to exploit
the knowledge of the model topology to improve the variety of the test cases
that can be produced by considering the activation of all the transitions of the
abstraction, thus covering various enabling states for a given behavior.

Since the resulting abstraction may be non-deterministic, there is no guaran-
tee that the potential paths computed from it can be instantiated when animat-
ing the model. To address this problem, we couple the exploration of the STS
with the animation of the model. The experiments have shown that most of the
paths could be instantiated, modulo the unfolding of intermediate loops in the
abstraction.

We are now looking for a way to remove (totally or partially) the non-
determinism that is induced by our approach. Our current work considers an
extended definition of the symbolic states, by refining them with a set of dis-
criminating behavior sequences that can (or can not) be activated from them.
In addition, we plan to apply our technique on larger case studies, since the first
results on realistic models are promising. Finally, we plan to study the influence
of the test generation algorithm on the resulting tests.
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