
Chapter 2

Uncertain Programming

Uncertain programming was founded by Liu [122] in 2009 as a type of math-
ematical programming involving uncertain variables. This chapter provides
a general framework of uncertain programming, including expected value
model, chance-constrained programming, dependent-chance programming,
uncertain dynamic programming and uncertain multilevel programming. Fi-
nally, we present some uncertain programming models for project scheduling
problem, vehicle routing problem, and machine scheduling problem.

2.1 Ranking Criteria

Assume that x is a decision vector, ξ is an uncertain vector, f(x, ξ) is a
return function, and gj(x, ξ) are constraint functions, j = 1, 2, · · · , p. Let us
examine ⎧⎪⎨

⎪⎩
max f(x, ξ)
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p.
(2.1)

Mention that the model (2.1) is only a conceptual model rather than a mathe-
matical model because there does not exist a natural ordership in an uncertain
world.

Thus an important problem appearing in this area is how to rank uncertain
variables. Let ξ and η be two uncertain variables. Liu [122] gave four ranking
criteria.

Expected Value Criterion: We say ξ > η if and only if E[ξ] > E[η].

Optimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξsup(α) > ηsup(α), where ξsup(α)
and ηsup(α) are the α-optimistic values of ξ and η, respectively.

Pessimistic Value Criterion: We say ξ > η if and only if, for some prede-
termined confidence level α ∈ (0, 1], we have ξinf(α) > ηinf(α), where ξinf(α)
and ηinf(α) are the α-pessimistic values of ξ and η, respectively.

Chance Criterion: We say ξ > η if and only if, for some predetermined
levels r, we have � {ξ ≥ r} >� {η ≥ r}.
B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 81–113.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

82 Chapter 2 - Uncertain Programming

2.2 Expected Value Model

Assume that we believe the expected value criterion. In order to obtain a
decision with maximum expected return subject to expected constraints, we
have the following expected value model,⎧⎪⎨

⎪⎩
maxE[f(x, ξ)]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p
(2.2)

where x is a decision vector, ξ is an uncertain vector, f is a return function,
and gj are constraint functions for j = 1, 2, · · · , p.

Definition 2.1. A solution x is feasible if and only if E[gj(x, ξ)] ≤ 0 for
j = 1, 2, · · · , p. A feasible solution x∗ is an optimal solution to the expected
value model (2.2) if E[f(x∗, ξ)] ≥ E[f(x, ξ)] for any feasible solution x.

In practice, a decision maker may want to optimize multiple objectives. Thus
we have the following expected value multiobjective programming,⎧⎪⎨

⎪⎩
max [E[f1(x, ξ)], E[f2(x, ξ)], · · · , E[fm(x, ξ)]]
subject to:

E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p
(2.3)

where fi(x, ξ) are return functions for i = 1, 2, · · · ,m, and gj(x, ξ) are con-
straint functions for j = 1, 2, · · · , p.

Definition 2.2. A feasible solution x∗ is said to be a Pareto solution to the
expected value multiobjective programming (2.3) if there is no feasible solution
x such that

E[fi(x, ξ)] ≥ E[fi(x∗, ξ)], i = 1, 2, · · · ,m (2.4)

and E[fj(x, ξ)] > E[fj(x∗, ξ)] for at least one index j.

In order to balance multiple conflicting objectives, a decision-maker may
establish a hierarchy of importance among these incompatible goals so as to
satisfy as many goals as possible in the order specified. Thus we have an
expected value goal programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1

Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
E[fi(x, ξ)]− bi = d+

i , i = 1, 2, · · · ,m
bi − E[fi(x, ξ)] = d−i , i = 1, 2, · · · ,m
E[gj(x, ξ)] ≤ 0, j = 1, 2, · · · , p

(2.5)

Section 2.3 - Chance-Constrained Programming 83

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal
i, d−i ∨ 0 is the negative deviation from the target of goal i, fi is a function
in goal constraints, gj is a function in real constraints, bi is the target value
according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

Theorem 2.1. Assume f(x, ξ) = h1(x)ξ1 +h2(x)ξ2 + · · ·+hn(x)ξn +h0(x)
where h1(x), h2(x), · · ·, hn(x), h0(x) are real-valued functions and ξ1, ξ2, · · ·, ξn
are independent uncertain variables. Then

E[f(x, ξ)] = h1(x)E[ξ1] + h2(x)E[ξ2] + · · ·+ hn(x)E[ξn] + h0(x). (2.6)

Proof: It follows from the linearity of expected value operator immediately.

Theorem 2.2. Assume that ξ1, ξ2, · · · , ξn are independent uncertain vari-
ables and h1(x), h2(x), · · · , hn(x), h0(x) are real-valued functions. Then

E[h1(x)ξ1 + h2(x)ξ2 + · · ·+ hn(x)ξn + h0(x)] ≤ 0 (2.7)

holds if and only if

h1(x)E[ξ1] + h2(x)E[ξ2] + · · ·+ hn(x)E[ξn] + h0(x) ≤ 0. (2.8)

Proof: It follows from Theorem 2.1 immediately.

2.3 Chance-Constrained Programming

Since the uncertain constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p do not define a
deterministic feasible set, it is naturally desired that the uncertain constraints
hold with a confidence level α. Then we have a chance constraint as follows,

� {gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α. (2.9)

Maximax Chance-Constrained Programming

Assume that we believe the optimistic value criterion. If we want to max-
imize the optimistic value to the uncertain return subject to some chance
constraints, then we have the following maximax chance-constrained pro-
gramming, ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

max
f

f

subject to:

�
{
f(x, ξ) ≥ f} ≥ β

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(2.10)

84 Chapter 2 - Uncertain Programming

where αj and β are specified confidence levels for j = 1, 2, · · · , p, and max f
is the β-optimistic return.

In practice, it is possible that there exist multiple objectives. We thus have
the following maximax chance-constrained multiobjective programming,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
max

f1

f1,max
f2

f2, · · · ,max
fm

fm

]

subject to:

�
{
fi(x, ξ) ≥ f i

} ≥ βi, i = 1, 2, · · · ,m
� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(2.11)

where βi are predetermined confidence levels for i = 1, 2, · · · ,m, and max f i

are the β-optimistic values to the return functions fi(x, ξ), i = 1, 2, · · · ,m,
respectively.

If the priority structure and target levels are set by the decision-maker,
then we have a minimin chance-constrained goal programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

(
uij

(
min
d+

i

d+
i ∨ 0

)
+ vij

(
min
d−

i

d−i ∨ 0

))

subject to:
�
{
fi(x, ξ)− bi ≤ d+

i

} ≥ β+
i , i = 1, 2, · · · ,m

�
{
bi − fi(x, ξ) ≤ d−i

} ≥ β−
i , i = 1, 2, · · · ,m

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(2.12)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, min d+

i ∨ 0 is the β+
i -optimistic positive deviation from

the target of goal i, min d−i ∨ 0 is the β−
i -optimistic negative deviation from

the target of goal i, bi is the target value according to goal i, and l is the
number of priorities.

Minimax Chance-Constrained Programming

Assume that we believe the pessimistic value criterion. If we want to maxi-
mize the pessimistic value subject to some chance constraints, then we have
the following minimax chance-constrained programming,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
x

min
f
f

subject to:

�
{
f(x, ξ) ≤ f} ≥ β

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(2.13)

Section 2.3 - Chance-Constrained Programming 85

where αj and β are specified confidence levels for j = 1, 2, · · · , p, and min f
is the β-pessimistic return.

If there are multiple objectives, then we have the following minimax chance-
constrained multiobjective programming,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

[
min
f1

f1, min
f2

f2, · · · , min
fm

fm

]

subject to:

�
{
fi(x, ξ) ≤ f i

} ≥ βi, i = 1, 2, · · · ,m
� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(2.14)

where min f i are the βi-pessimistic values to the return functions fi(x, ξ),
i = 1, 2, · · · ,m, respectively.

We can also formulate an uncertain decision system as a minimax chance-
constrained goal programming according to the priority structure and target
levels set by the decision-maker:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

l∑
j=1

Pj

m∑
i=1

[
uij

(
max
d+

i

d+
i ∨ 0

)
+ vij

(
max
d−

i

d−i ∨ 0

)]

subject to:
�
{
fi(x, ξ)− bi ≥ d+

i

} ≥ β+
i , i = 1, 2, · · · ,m

�
{
bi − fi(x, ξ) ≥ d−i

} ≥ β−
i , i = 1, 2, · · · ,m

� {gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p

(2.15)

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor
corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, max d+

i ∨ 0 is the β+
i -pessimistic positive deviation from

the target of goal i, max d−i ∨ 0 is the β−
i -pessimistic negative deviation from

the target of goal i, bi is the target value according to goal i, and l is the
number of priorities.

Theorem 2.3. Assume that ξ1, ξ2, · · · , ξn are independent uncertain vari-
ables with uncertainty distributions Φ1,Φ2, · · · ,Φn, respectively, and h1(x),
h2(x), · · · , hn(x), h0(x) are real-valued functions. Then

�

{
n∑

i=1

hi(x)ξi ≤ h0(x)

}
≥ α (2.16)

holds if and only if

n∑
i=1

h+
i (x)Φ−1

i (α)−
n∑

i=1

h−i (x)Φ−1
i (1− α) ≤ h0(x) (2.17)

86 Chapter 2 - Uncertain Programming

where

h+
i (x) =

{
hi(x), if hi(x) > 0

0, if hi(x) ≤ 0,
(2.18)

h−i (x) =

{
0, if hi(x) ≥ 0

−hi(x), if hi(x) < 0
(2.19)

for i = 1, 2, · · · , n. Especially, if h1(x), h2(x), · · · , hn(x) are all nonnegative,
then (2.17) becomes

n∑
i=1

hi(x)Φ−1
i (α) ≤ h0(x); (2.20)

if h1(x), h2(x), · · · , hn(x) are all nonpositive, then (2.17) becomes

n∑
i=1

hi(x)Φ−1
i (1− α) ≤ h0(x). (2.21)

Proof: For each i, if hi(x) > 0, then hi(x)ξi is an uncertain variable whose
uncertainty distribution is described by

Ψ−1
i (α) = h+

i (x)Φ−1
i (α), 0 < α < 1.

If hi(x) < 0, then hi(x)ξi is an uncertain variable whose uncertainty distri-
bution is described by

Ψ−1
i (α) = −h−i (x)Φ−1

i (1− α), 0 < α < 1.

It follows from the operational law that the uncertainty distribution of the
sum h1(x)ξ1 + h2(x)ξ2 + · · ·+ hn(x)ξn is described by

Ψ−1(α) = Ψ−1
1 (α) + Ψ−1

2 (α) + · · ·+ Ψ−1
n (α), 0 < α < 1.

From which we may derive the result immediately.

Theorem 2.4 . Assume that x1, x2, · · · , xn are nonnegative decision vari-
ables, and ξ1, ξ2, · · · , ξn, ξ are independently linear uncertain variables L(a1, b1),
L(a2, b2), · · · ,L(an, bn),L(a, b), respectively. Then for any confidence level
α ∈ (0, 1), the chance constraint

�

{
n∑

i=1

ξixi ≤ ξ
}
≥ α (2.22)

holds if and only if

n∑
i=1

((1 − α)ai + αbi)xi ≤ αa+ (1− α)b. (2.23)

Section 2.3 - Chance-Constrained Programming 87

Proof: Assume that the uncertain variables ξ1, ξ2, · · · , ξn, ξ have uncertainty
distributions Φ1,Φ2, · · · ,Φn,Φ, respectively. Then

Φ−1
i (α) = (1− α)ai + αbi, i = 1, 2, · · · , n,

Φ−1(1 − α) = αa+ (1− α)b.

Thus the result follows from Theorem 2.3 immediately.

Theorem 2.5 . Assume that x1, x2, · · · , xn are nonnegative decision vari-
ables, and ξ1, ξ2, · · · , ξn, ξ are independently zigzag uncertain variables Z(a1, b1, c1),
Z(a2, b2, c2), · · · ,Z(an, bn, cn),Z(a, b, c), respectively. Then for any confi-
dence level α ≥ 0.5, the chance constraint

�

{
n∑

i=1

ξixi ≤ ξ
}
≥ α (2.24)

holds if and only if
n∑

i=1

((2− 2α)bi + (2α− 1)ci)xi ≤ α(2α− 1)a+ (2− 2α)b. (2.25)

Proof: Assume that the uncertain variables ξ1, ξ2, · · · , ξn, ξ have uncertainty
distributions Φ1,Φ2, · · · ,Φn,Φ, respectively. Then

Φ−1
i (α) = (2− 2α)bi + (2α− 1)ci, i = 1, 2, · · · , n,

Φ−1(1− α) = (2α− 1)a+ (2− 2α)b.

Thus the result follows from Theorem 2.3 immediately.

Theorem 2.6 . Assume that x1, x2, · · · , xn are nonnegative decision vari-
ables, and ξ1, ξ2, · · · , ξn, ξ are independently normal uncertain variables N (e1, σ1),
N (e2, σ2), · · · ,N (en, σn),N (e, σ), respectively. Then for any confidence level
α ∈ (0, 1), the chance constraint

�

{
n∑

i=1

ξixi ≤ ξ
}
≥ α (2.26)

holds if and only if
n∑

i=1

(
ei +

σi

√
3

π
ln

α

1− α

)
xi ≤ e− σ

√
3

π
ln

α

1− α. (2.27)

Proof: Assume that the uncertain variables ξ1, ξ2, · · · , ξn, ξ have uncertainty
distributions Φ1,Φ2, · · · ,Φn,Φ, respectively. Then

Φ−1
i (α) = ei +

σi

√
3

π
ln

α

1− α, i = 1, 2, · · · , n,

Φ−1(1− α) = e− σ
√

3
π

ln
α

1− α.
Thus the result follows from Theorem 2.3 immediately.

88 Chapter 2 - Uncertain Programming

Theorem 2.7. Assume x1, x2, · · · , xn are nonnegative decision variables, and
ξ1, ξ2, · · ·, ξn, ξ are independently lognormal uncertain variablesLOGN (e1, σ1),
LOGN (e2, σ2), · · · ,LOGN (en, σn),LOGN (e, σ), respectively. Then for any
confidence level α ∈ (0, 1), the chance constraint

�

{
n∑

i=1

ξixi ≤ ξ
}
≥ α (2.28)

holds if and only if

n∑
i=1

exp(ei)
(

α

1− α
)√

3σi/π

xi ≤ exp(e)
(

1− α
α

)√
3σ/π

. (2.29)

Proof: Assume that the uncertain variables ξ1, ξ2, · · · , ξn, ξ have uncertainty
distributions Φ1,Φ2, · · · ,Φn,Φ, respectively. Then

Φ−1
i (α) = exp(ei)

(
α

1− α
)√

3σi/π

, i = 1, 2, · · · , n,

Φ−1(1 − α) = exp(e)
(

1− α
α

)√
3σ/π

.

Thus the result follows from Theorem 2.3 immediately.

2.4 Dependent-Chance Programming

In practice, there usually exist multiple tasks in a complex uncertain decision
system. Sometimes, the decision-maker believes the chance criterion and
wishes to maximize the chance of meeting these tasks. In order to model
this type of uncertain decision system, Liu [122] provided the third type
of uncertain programming, called dependent-chance programming, in which
the underlying philosophy is based on selecting the decision with maximal
chance to meet the task. Dependent-chance programming breaks the concept
of feasible set and replaces it with uncertain environment.

Definition 2.3. By an uncertain environment we mean the uncertain con-
straints represented by

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p (2.30)

where x is a decision vector, and ξ is an uncertain vector.

Definition 2.4. By a task we mean an uncertain inequality (or a system of
uncertain inequalities) represented by

h(x, ξ) ≤ 0 (2.31)

where x is a decision vector, and ξ is an uncertain vector.

Section 2.4 - Dependent-Chance Programming 89

Definition 2.5 . The chance function of task E characterized by (2.31) is
defined as the uncertain measure that the task E is met, i.e.,

f(x) = �{h(x, ξ) ≤ 0} (2.32)

subject to the uncertain environment (2.30).

How do we compute the chance function in an uncertain environment? In
order to answer this question, we first give some basic definitions. Let
r(x1, x2, · · · , xn) be an n-dimensional function. The ith decision variable
xi is said to be degenerate if

r(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn) = r(x1, · · · , xi−1, x

′′
i , xi+1, · · · , xn)

for any x′i and x′′i ; otherwise it is nondegenerate. For example,

r(x1, x2, x3, x4, x5) = (x1 + x3)/x4

is a 5-dimensional function. The variables x1, x3, x4 are nondegenerate, but
x2 and x5 are degenerate.

Definition 2.6 . Let E be a task h(x, ξ) ≤ 0. The support of the task E,
denoted by E∗, is defined as the set consisting of all nondegenerate decision
variables of h(x, ξ).

Definition 2.7. The jth constraint gj(x, ξ) ≤ 0 is called an active constraint
of task E if the set of nondegenerate decision variables of gj(x, ξ) and the
support E∗ have nonempty intersection; otherwise it is inactive.

Definition 2.8. Let E be a task h(x, ξ) ≤ 0 in the uncertain environment
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. The dependent support of task E, denoted by
E∗∗, is defined as the set consisting of all nondegenerate decision variables of
h(x, ξ) and gj(x, ξ) in the active constraints of task E.

Remark 2.1: It is obvious that E∗ ⊂ E∗∗ holds.

Definition 2.9. The jth constraint gj(x, ξ) ≤ 0 is called a dependent con-
straint of task E if the set of nondegenerate decision variables of gj(x, ξ)
and the dependent support E∗∗ have nonempty intersection; otherwise it is
independent.

Remark 2.2: An active constraint must be a dependent constraint.

Definition 2.10. Let E be a task h(x, ξ) ≤ 0 in the uncertain environment
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. For each decision x and realization ξ, the task
E is said to be consistent in the uncertain environment if the following two
conditions hold: (i) h(x, ξ) ≤ 0; and (ii) gj(x, ξ) ≤ 0, j ∈ J , where J is the
index set of all dependent constraints.

90 Chapter 2 - Uncertain Programming

In order to maximize the chance of some task in an uncertain environment,
a dependent-chance programming may be formulated as follows,⎧⎪⎨

⎪⎩
max � {h(x, ξ) ≤ 0}
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p
(2.33)

where x is an n-dimensional decision vector, ξ is an uncertain vector, the task
E is characterized by h(x, ξ) ≤ 0, and the uncertain environment is described
by the uncertain constraints gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. The model (2.33)
is equivalent to

max � {h(x, ξ) ≤ 0, gj(x, ξ) ≤ 0, j ∈ J} (2.34)

where J is the index set of all dependent constraints.
If there are multiple tasks in an uncertain environment, then we have the

following dependent-chance multiobjective programming,⎧⎪⎨
⎪⎩

max [�{h1(x, ξ) ≤ 0}, · · · ,�{hm(x, ξ) ≤ 0}]
subject to:

gj(x, ξ) ≤ 0, j = 1, 2, · · · , p
(2.35)

where tasks Ei are characterized by hi(x, ξ) ≤ 0, i = 1, 2, · · · ,m, respectively.
The model (2.35) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
max � {h1(x, ξ) ≤ 0, gj(x, ξ) ≤ 0, j ∈ J1}
max � {h2(x, ξ) ≤ 0, gj(x, ξ) ≤ 0, j ∈ J2}
· · ·

max � {hm(x, ξ) ≤ 0, gj(x, ξ) ≤ 0, j ∈ Jm}
(2.36)

where Ji are the index sets of all dependent constraints of tasks Ei, i =
1, 2, · · · ,m, respectively.

Dependent-chance goal programming is employed to formulate uncertain
decision systems according to the priority structure and target levels set by
the decision-maker,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1

Pj

m∑
i=1

(uijd
+
i ∨ 0 + vijd

−
i ∨ 0)

subject to:
� {hi(x, ξ) ≤ 0} − bi = d+

i , i = 1, 2, · · · ,m
bi −� {hi(x, ξ) ≤ 0} = d−i , i = 1, 2, · · · ,m
gj(x, ξ) ≤ 0, j = 1, 2, · · · , p

where Pj is the preemptive priority factor which expresses the relative im-
portance of various goals, Pj � Pj+1, for all j, uij is the weighting factor

Section 2.4 - Dependent-Chance Programming 91

corresponding to positive deviation for goal i with priority j assigned, vij

is the weighting factor corresponding to negative deviation for goal i with
priority j assigned, d+

i ∨ 0 is the positive deviation from the target of goal i,
d−i ∨ 0 is the negative deviation from the target of goal i, gj is a function in
system constraints, bi is the target value according to goal i, l is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.

Theorem 2.8 . Assume x1, x2, · · · , xn are nonnegative decision variables,
and ξ1, ξ2, · · · , ξn are independently linear uncertain variables L(a1, b1), L(a2, b2),
· · · ,L(an, bn), respectively. When

t ∈
[

n∑
i=1

aixi,

n∑
i=1

bixi

]
, (2.37)

we have

�

{
n∑

i=1

ξixi ≤ t
}

=

t−
n∑

i=1

aixi

n∑
i=1

(bi − ai)xi

. (2.38)

Otherwise, the measure will be 0 if t is on the left-hand side of interval (2.37)
or 1 if t is on the right-hand side.

Proof: Since ξ1, ξ2, · · · , ξn are independently linear uncertain variables, their
weighted sum ξ1x1 + ξ2x2 + · · ·+ ξnxn is also a linear uncertain variable

L
(

n∑
i=1

aixi,
n∑

i=1

bixi

)
.

From this fact we may derive the result immediately.

Theorem 2.9 . Assume that x1, x2, · · · , xn are nonnegative decision vari-
ables, and ξ1, ξ2, · · · , ξn are independently zigzag uncertain variables
Z(a1, b1, c1), Z(a2, b2, c2), · · · ,Z(an, bn, cn), respectively. When

t ∈
[

n∑
i=1

aixi,
n∑

i=1

bixi

]
, (2.39)

we have

�

{
n∑

i=1

ξixi ≤ t
}

=

t−
n∑

i=1

aixi

2
n∑

i=1

(bi − ai)xi

. (2.40)

92 Chapter 2 - Uncertain Programming

When

t ∈
[

n∑
i=1

bixi,
n∑

i=1

cixi

]
, (2.41)

we have

�

{
n∑

i=1

ξixi ≤ t
}

=

t+
n∑

i=1

(ci − 2bi)xi

2
n∑

i=1

(ci − bi)xi

. (2.42)

Otherwise, the measure will be 0 if t is on the left-hand side of interval (2.39)
or 1 if t is on the right-hand side of interval (2.41).

Proof: Since ξ1, ξ2, · · · , ξn are independently zigzag uncertain variables,
their weighted sum ξ1x1 +ξ2x2 + · · ·+ξnxn is also a zigzag uncertain variable

Z
(

n∑
i=1

aixi,

n∑
i=1

bixi,

n∑
i=1

cixi

)
.

From this fact we may derive the result immediately.

Theorem 2.10. Assume x1, x2, · · · , xn are nonnegative decision variables,
and ξ1, ξ2, · · · , ξn are independently normal uncertain variables N (e1, σ1),
N (e2, σ2), · · · ,N (en, σn), respectively. Then

�

{
n∑

i=1

ξixi ≤ t
}

=

⎛
⎜⎜⎜⎜⎝1 + exp

⎛
⎜⎜⎜⎜⎝
π

(
n∑

i=1

eixi − t
)

√
3

n∑
i=1

σixi

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

−1

. (2.43)

Proof: Since ξ1, ξ2, · · · , ξn are independently normal uncertain variables,
their weighted sum ξ1x1+ξ2x2+· · ·+ξnxn is also a normal uncertain variable

N
(

n∑
i=1

eixi,
n∑

i=1

σixi

)
.

From this fact we may derive the result immediately.

Theorem 2.11. Assume x1, x2, · · · , xn are nonnegative decision variables,
ξ1, ξ2, · · · , ξn are independently lognormal uncertain variables LOGN (e1, σ1),
LOGN (e2, σ2), · · · ,LOGN (en, σn), respectively. Then

�

{
n∑

i=1

ξixi ≤ t
}

= Ψ(t) (2.44)

Section 2.5 - Uncertain Dynamic Programming 93

where Ψ is determined by

Ψ−1(α) =
n∑

i=1

exp(ei)
(

α

1− α
)√

3σi/π

xi. (2.45)

Proof: Since ξ1, ξ2, · · · , ξn are independently lognormal uncertain variables,
the uncertainty distribution Ψ of ξ1x1 + ξ2x2 + · · ·+ ξnxn is just determined
by (2.45). From this fact we may derive the result immediately.

2.5 Uncertain Dynamic Programming

In order to model uncertain decision processes, Liu [122] proposed a gen-
eral framework of uncertain dynamic programming, including expected value
dynamic programming, chance-constrained dynamic programming as well as
dependent-chance dynamic programming.

Expected Value Dynamic Programming

Consider an N -stage decision system in which (a1,a2, · · · ,aN) represents
the state vector, (x1,x2, · · · ,xN) the decision vector, (ξ1, ξ2, · · · , ξN) the
uncertain vector. We also assume that the state transition function is

an+1 = T (an,xn, ξn), n = 1, 2, · · · , N − 1. (2.46)

.. N

a1
........
........
........
........
........
........
........
.

x1

Stage 1
ξ1

a2
........
........
........
........
........
........
........
.

x2

Stage 2
ξ2

a3
........
........
........
........
........
........
........
.

x3

Stage 3
ξ3

a4
........
........
........
........
........
........
........
.

x4

Figure 2.1: A Multistage Decision System

In order to maximize the expected return over the horizon, we may use
the following expected value dynamic programming,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fN(a) = max
E[gN (a,x,ξN)]≤0

E[rN (a,x, ξN)]

fn(a) = max
E[gn(a,x,ξn)]≤0

E[rn(a,x, ξn) + fn+1(T (a,x, ξn))]

n ≤ N − 1

(2.47)

where rn are the return functions at the nth stages, n = 1, 2, · · · , N , respec-
tively.

Chance-Constrained Dynamic Programming

In order to maximize the optimistic return over the horizon, we may use the
following chance-constrained dynamic programming,

94 Chapter 2 - Uncertain Programming

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fN (a) = max

�{gN (a,x,ξN)≤0}≥α
rN (a,x, ξN)

fn(a) = max
�{gn(a,x,ξn)≤0}≥α

rn(a,x, ξn) + fn+1(T (a,x, ξn))

n ≤ N − 1

(2.48)

where the functions rn are defined by

rn(a,x, ξn) = sup
{
r
∣∣�{rn(a,x, ξn) ≥ r} ≥ β} (2.49)

for n = 1, 2, · · · , N . If we want to maximize the pessimistic return over the
horizon, then we must define the functions rn as

rn(a,x, ξn) = inf
{
r
∣∣�{rn(a,x, ξn) ≤ r} ≥ β} (2.50)

for n = 1, 2, · · · , N .

Dependent-Chance Dynamic Programming

In order to maximize the chance over the horizon, we may employ the fol-
lowing dependent-chance dynamic programming,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fN (a) = max
gN (a,x,ξN)≤0

�{hN (a,x, ξN) ≤ 0}
fn(a) = max

gn(a,x,ξn)≤0
�{hn(a,x, ξn) ≤ 0}+ fn+1(T (a,x, ξn))

n ≤ N − 1

where hn(a,x, ξn) ≤ 0 are the events, and gn(a,x, ξn) ≤ 0 are the uncertain
environments at the nth stages, n = 1, 2, · · · , N , respectively.

2.6 Uncertain Multilevel Programming

In order to model uncertain decentralized decision systems, Liu [122] pre-
sented three types of uncertain multilevel programming, including expected
value multilevel programming, chance-constrained multilevel programming
and dependent-chance multilevel programming, and provided the concept of
Stackelberg-Nash equilibrium to uncertain multilevel programming.

Expected Value Multilevel Programming

Assume that in a decentralized two-level decision system there is one leader
and m followers. Let x and yi be the control vectors of the leader and
the ith followers, i = 1, 2, · · · ,m, respectively. We also assume that the
objective functions of the leader and ith followers are F (x,y1, · · · ,ym, ξ)
and fi(x,y1, · · · ,ym, ξ), i = 1, 2, · · · ,m, respectively, where ξ is an uncertain
vector.

Section 2.6 - Uncertain Multilevel Programming 95

Leader x

Follower y2

...
........
........
........
........
...

........

........

........

........

........

........

........

........

........

...
........
........
........
........
........
...

Follower y1

...
........
........
........
........
...

Follower y3

...
........
........
........
........
...

Figure 2.2: A Decentralized Decision System

Let the feasible set of control vector x of the leader be defined by the
expected constraint

E[G(x, ξ)] ≤ 0 (2.51)

where G is a vector-valued function and 0 is a zero vector. Then for each de-
cision x chosen by the leader, the feasibility of control vectors yi of the ith fol-
lowers should be dependent on not only x but also y1, · · · ,yi−1,yi+1, · · · ,ym,
and generally represented by the expected constraints,

E[gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0 (2.52)

where gi are vector-valued functions, i = 1, 2, · · · ,m, respectively.
Assume that the leader first chooses his control vector x, and the followers

determine their control array (y1,y2, · · · ,ym) after that. In order to max-
imize the expected objective of the leader, we have the following expected
value bilevel programming,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

E[F (x,y∗
1,y

∗
2, · · · ,y∗

m, ξ)]

subject to:
E[G(x, ξ)] ≤ 0
(y∗

1,y
∗
2, · · · ,y∗

m) solves problems (i = 1, 2, · · · ,m)⎧⎪⎨
⎪⎩

max
yi

E[fi(x,y1,y2, · · · ,ym, ξ)]

subject to:
E[gi(x,y1,y2, · · · ,ym, ξ)] ≤ 0.

(2.53)

Definition 2.11. Let x be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array (y∗

1,y
∗
2, · · · ,y∗

m) with respect to
x if

E[fi(x,y∗
1, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m, ξ)]
≤ E[fi(x,y∗

1, · · · ,y∗
i−1,y

∗
i ,y

∗
i+1, · · · ,y∗

m, ξ)]
(2.54)

for any feasible array (y∗
1, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m) and i = 1, 2, · · · ,m.

Definition 2.12. Suppose that x∗ is a feasible control vector of the leader
and (y∗

1,y
∗
2, · · · ,y∗

m) is a Nash equilibrium of followers with respect to x∗.

96 Chapter 2 - Uncertain Programming

We call the array (x∗,y∗
1,y

∗
2, · · · ,y∗

m) a Stackelberg-Nash equilibrium to the
expected value bilevel programming (2.53) if

E[F (x,y1,y2, · · · ,ym, ξ)] ≤ E[F (x∗,y∗
1,y

∗
2, · · · ,y∗

m, ξ)] (2.55)

for any feasible control vector x and the Nash equilibrium (y1,y2, · · · ,ym)
with respect to x.

Chance-Constrained Multilevel Programming

In order to maximize the optimistic return subject to the chance constraint,
we may use the following chance-constrained bilevel programming,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

max
F

F

subject to:

�{F (x,y∗
1,y

∗
2, · · · ,y∗

m, ξ) ≥ F} ≥ β
�{G(x, ξ) ≤ 0} ≥ α
(y∗

1,y
∗
2, · · · ,y∗

m) solves problems (i = 1, 2, · · · ,m)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
yi

max
fi

f i

subject to:

�{fi(x,y1,y2, · · · ,ym, ξ) ≥ f i} ≥ βi

�{gi(x,y1,y2, · · · ,ym, ξ) ≤ 0} ≥ αi

(2.56)

where α, β, αi, βi, i = 1, 2, · · · ,m are predetermined confidence levels.

Definition 2.13. Let x be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array (y∗

1,y
∗
2, · · · ,y∗

m) with respect to
x if

f i(x,y
∗
1, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m)

≤ f i(x,y
∗
1, · · · ,y∗

i−1,y
∗
i ,y

∗
i+1, · · · ,y∗

m)
(2.57)

for any feasible array (y∗
1, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m) and i = 1, 2, · · · ,m.

Definition 2.14. Suppose that x∗ is a feasible control vector of the leader
and (y∗

1,y
∗
2, · · · ,y∗

m) is a Nash equilibrium of followers with respect to x∗.
The array (x∗,y∗

1,y
∗
2, · · · ,y∗

m) is called a Stackelberg-Nash equilibrium to the
chance-constrained bilevel programming (2.56) if

F (x,y1,y2, · · · ,ym) ≤ F (x∗,y∗
1,y

∗
2, · · · ,y∗

m) (2.58)

for any feasible control vector x and the Nash equilibrium (y1,y2, · · · ,ym)
with respect to x.

Section 2.6 - Uncertain Multilevel Programming 97

In order to maximize the pessimistic return, we have the following minimax
chance-constrained bilevel programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

min
F
F

subject to:

�{F (x,y∗
1,y

∗
2, · · · ,y∗

m, ξ) ≤ F} ≥ β
�{G(x, ξ) ≤ 0} ≥ α
(y∗

1,y
∗
2, · · · ,y∗

m) solves problems (i = 1, 2, · · · ,m)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
yi

min
fi

f i

subject to:

�{fi(x,y1,y2, · · · ,ym, ξ) ≤ f i} ≥ βi

�{gi(x,y1,y2, · · · ,ym, ξ) ≤ 0} ≥ αi

(2.59)

where α, β, αi, βi, i = 1, 2, · · · ,m are predetermined confidence levels.

Dependent-Chance Multilevel Programming

Let H(x,y1,y2, · · · ,ym, ξ) ≤ 0 and hi(x,y1,y2, · · · ,ym, ξ) ≤ 0 be the tasks
of the leader and ith followers, i = 1, 2, · · · ,m, respectively. In order to max-
imize the chance functions of the leader and followers, we have the following
dependent-chance bilevel programming,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x
�{H(x,y∗

1,y
∗
2, · · · ,y∗

m, ξ) ≤ 0}
subject to:

G(x, ξ) ≤ 0
(y∗

1,y
∗
2, · · · ,y∗

m) solves problems (i = 1, 2, · · · ,m)⎧⎪⎨
⎪⎩

max
yi

�{hi(x,y1,y2, · · · ,ym, ξ) ≤ 0}
subject to:

gi(x,y1,y2, · · · ,ym, ξ) ≤ 0.

(2.60)

Definition 2.15. Let x be a control vector of the leader. We call the array
(y∗

1,y
∗
2, · · · ,y∗

m) a Nash equilibrium of followers with respect to x if

�{hi(x,y∗
1, · · · ,y∗

i−1,yi,y
∗
i+1, · · · ,y∗

m, ξ) ≤ 0}
≤�{hi(x,y∗

1, · · · ,y∗
i−1,y

∗
i ,y

∗
i+1, · · · ,y∗

m, ξ) ≤ 0} (2.61)

subject to the uncertain environment gi(x,y1,y2, · · · ,ym, ξ) ≤ 0, i = 1, 2, · · · ,
m for any array (y∗

1, · · · ,y∗
i−1,yi,y

∗
i+1, · · · ,y∗

m) and i = 1, 2, · · · ,m.

Definition 2.16. Let x∗ be a control vector of the leader, and (y∗
1,y

∗
2, · · · ,

y∗
m) a Nash equilibrium of followers with respect to x∗. Then (x∗,y∗

1,y
∗
2, · · · ,

y∗
m) is called a Stackelberg-Nash equilibrium to the dependent-chance bilevel

programming (2.60) if

98 Chapter 2 - Uncertain Programming

�{H(x,y1,y2, · · · ,ym, ξ) ≤ 0} ≤�{H(x∗,y∗
1,y

∗
2, · · · ,y∗

m, ξ) ≤ 0}

subject to the uncertain environment G(x, ξ) ≤ 0 for any control vector x
and the Nash equilibrium (y1,y2, · · · ,ym) with respect to x.

2.7 Hybrid Intelligent Algorithm

From the mathematical viewpoint, there is no difference between determin-
istic mathematical programming and uncertain programming except for the
fact that there exist uncertain functions in the latter. Essentially, there are
three types of uncertain functions in uncertain programming,

U1 : x→ E[f(x, ξ)],

U2 : x→� {f(x, ξ) ≤ 0} ,
U3 : x→ max

{
f
∣∣�{f(x, ξ) ≥ f} ≥ α} .

(2.62)

Note that those uncertain functions may be calculated by the 99-method if
the function f is monotone. Otherwise, I give up! It is fortunate for us that
almost all functions in practical problems are indeed monotone.

In order to solve uncertain programming models, we must find a numerical
method for solving deterministic mathematical programming, for example,
genetic algorithm, particle swarm optimization, neural networks, tabu search,
or any classical algorithms.

Then, for example, we may integrate the 99-method and the genetic al-
gorithm to produce a hybrid intelligent algorithm for solving uncertain pro-
gramming models:
Step 1. Initialize chromosomes whose feasibility may be checked by the 99-

method.
Step 2. Update the chromosomes by the crossover operation in which the

99-method may be employed to check the feasibility of offsprings.

Step 3. Update the chromosomes by the mutation operation in which the
99-method may be employed to check the feasibility of offsprings.

Step 4. Calculate the objective values for all chromosomes by the 99-
method.

Step 5. Compute the fitness of each chromosome based on the objective
values.

Step 6. Select the chromosomes by spinning the roulette wheel.
Step 7. Repeat the second to sixth steps a given number of cycles.
Step 8. Report the best chromosome as the optimal solution.

Please visit the website at http://orsc.edu.cn/liu/resources.htm for com-
puter source files of hybrid intelligent algorithm and numerical examples.

http://orsc.edu.cn/liu/resources.htm#reliability

Section 2.9 - Project Scheduling Problem 99

2.8 Ψ Graph

Any types of uncertain programming (including stochastic programming,
fuzzy programming and hybrid programming) may be represented by a Ψ
graph

(Philosophy, Structure, Information)

which is essentially a coordinate system in which, for example, the plane

“P = CCP”

represents the class of chance-constrained programming; the plane

“S = MOP”

represents the class of multiobjective programming; the plane

“I = Uncertain”

represents the class of uncertain programming; and the point

“(P,S,I) = (DCP, GP, Uncertain)”

represents the uncertain dependent-chance goal programming.

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................

...............

...
.....
...............

Philosophy

Information

Structure

........

....

EVM
........
....

CCP
........
....

DCP

.............Stochastic

.............Fuzzy

.............Hybrid

.............

Uncertain

SOP
.............MOP

.............GP
.............DP

.............MLP

Figure 2.3: Ψ Graph for Uncertain Programming Classifications (Liu [112])

100 Chapter 2 - Uncertain Programming

2.9 Project Scheduling Problem

Project scheduling problem is to determine the schedule of allocating re-
sources so as to balance the total cost and the completion time. The study
of project scheduling problem with uncertain factors was started by Liu [122]
in 2009. This section presents an uncertain programming model for project
scheduling problem in which the duration times are assumed to be uncertain
variables with known uncertainty distributions.

Project scheduling is usually represented by a directed acyclic graph where
nodes correspond to milestones, and arcs to activities which are basically
characterized by the times and costs consumed.

...
.........
........
.........
............

.. 1
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
........................
...............

..
..

....

...
.........
........
........
............

... 2

...
.........
........
.........
............

.. 3
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
........................
...............

..
..

....

...
.........
........
.........
............

.. 4

...
.........
........
........
............

... 5
....

...
.........
........
.........
............

.. 6

...
.........
........
.........
............

.. 7
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
........................
...............
...

.........
........
.........
............

.. 8

Figure 2.4: A Project with 8 Milestones and 11 Activities

Let (�,�) be a directed acyclic graph, where � = {1, 2, · · · , n, n + 1} is
the set of nodes, � is the set of arcs, (i, j) ∈ � is the arc of the graph (�,�)
from nodes i to j. It is well-known that we can rearrange the indexes of the
nodes in � such that i < j for all (i, j) ∈ �.

Before we begin to study project scheduling problem with uncertain ac-
tivity duration times, we first make some assumptions: (a) all of the costs
needed are obtained via loans with some given interest rate; and (b) each
activity can be processed only if the loan needed is allocated and all the
foregoing activities are finished.

In order to model the project scheduling problem, we introduce the fol-
lowing indices and parameters:
ξij : uncertain duration time of activity (i, j) in �;
Φij : uncertainty distribution of ξij ;
cij : cost of activity (i, j) in �;
r: interest rate;
xi: integer decision variable representing the allocating time of all loans

needed for all activities (i, j) in �.

Starting Times

For simplicity, we write ξ = {ξij : (i, j) ∈ �} and x = (x1, x2, · · · , xn).
Assume each uncertain duration time ξij is represented by a 99-table,

Section 2.9 - Project Scheduling Problem 101

0.01 0.02 0.03 · · · 0.99
t1ij t2ij t3ij · · · t99ij

(2.63)

Let Ti(x, ξ) denote the starting time of all activities (i, j) in �. According
to the assumptions, the starting time of the total project (i.e., the starting
time of of all activities (1, j) in �) should be

T1(x, ξ) = x1 (2.64)

whose inverse uncertainty distribution may be written as

Ψ−1
1 (α) = x1 (2.65)

and has a 99-table,

0.01 0.02 0.03 · · · 0.99
x1 x1 x1 · · · x1

(2.66)

Generally, suppose that the starting time Tk(x, ξ) of all activities (k, i) in �
has an inverse uncertainty distribution Ψ−1

k (α) and has a 99-table,

0.01 0.02 0.03 · · · 0.99
y1

k y2
k y3

k · · · y99
k

(2.67)

Then the starting time Ti(x, ξ) of all activities (i, j) in � should be

Ti(x, ξ) = xi ∨ max
(k,i)∈�

(Tk(x, ξ) + ξki) (2.68)

whose inverse uncertainty distribution is

Ψ−1
i (α) = xi ∨ max

(k,i)∈�
(
Ψ−1

k (α) + Φ−1
ki (α)

)
(2.69)

and has a 99-table,

0.01 · · · 0.99
xi ∨ max

(k,i)∈�
(y1

k + t1ki) · · · xi ∨ max
(k,i)∈�

(y99
k + t99ki) (2.70)

where y1
k, y

2
k, · · · , y99

k are determined by (2.67). This recursive process may
produce all starting times of activities.

Completion Time

The completion time T (x, ξ) of the total project (i.e, the finish time of all
activities (k, n+ 1) in �) is

T (x, ξ) = max
(k,n+1)∈�

(Tk(x, ξ) + ξk,n+1) (2.71)

whose inverse uncertainty distribution is

Ψ−1(α) = max
(k,n+1)∈�

(
Ψ−1

k (α) + Φ−1
k,n+1(α)

)
(2.72)

102 Chapter 2 - Uncertain Programming

and has a 99-table,

0.01 · · · 0.99
max

(k,n+1)∈�
(y1

k + t1k,n+1) · · · max
(k,n+1)∈�

(y99
k + t99k,n+1) (2.73)

where y1
k, y

2
k, · · · , y99

k are determined by (2.67).

Total Cost

Based on the completion time T (x, ξ), the total cost of the project can be
written as

C(x, ξ) =
∑

(i,j)∈�
cij (1 + r)�T (x,ξ)−xi� (2.74)

where �a� represents the minimal integer greater than or equal to a. Note
that C(x, ξ) is a discrete uncertain variable whose inverse uncertainty distri-
bution is

Υ−1(x;α) =
∑

(i,j)∈�
cij (1 + r)�Ψ

−1(x;α)−xi� (2.75)

for 0 < α < 1. Since T (x, ξ) is obtained by the recursive process and repre-
sented by a 99-table,

0.01 0.02 0.03 · · · 0.99
s1 s2 s3 · · · s99

(2.76)

the total cost C(x, ξ) has a 99-table,

0.01 · · · 0.99∑
(i,j)∈�

cij (1 + r)�s1−xi� · · ·
∑

(i,j)∈�
cij (1 + r)�s99−xi� (2.77)

Project Scheduling Model

If we want to minimize the expected cost of the project under the completion
time constraint, we may construct the following project scheduling model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minE[C(x, ξ)]
subject to:

�{T (x, ξ) ≤ T 0} ≥ α
x ≥ 0, integer vector

(2.78)

where T 0 is a due date of the project, α is a predetermined confidence level,
T (x, ξ) is the completion time defined by (2.71), and C(x, ξ) is the total cost
defined by (2.74). This model is equivalent to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
∫ +∞

0

(1 −Υ(x; z))dz

subject to:
Ψ(x;T 0) ≥ α
x ≥ 0, integer vector

(2.79)

Section 2.10 - Vehicle Routing Problem 103

where Ψ is determined by (2.72) and Υ is determined by (2.75). Note that the
completion time T (x, ξ) and total cost C(x, ξ) are obtained by the recursive
process and are respectively represented by 99-tables,

0.01 0.02 0.03 · · · 0.99
s1 s2 s3 · · · s99

0.01 0.02 0.03 · · · 0.99
c1 c2 c3 · · · c99

(2.80)

Thus the project scheduling model is simplified as follows,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min (c1 + c2 + · · ·+ c99)/99
subject to:

k/100 ≥ α if sk ≥ T 0

x ≥ 0, integer vector.

(2.81)

Numerical Experiment

Consider a project scheduling problem shown by Figure 2.4 in which there are
8 milestones and 11 activities. Assume that all duration times of activities
are linear uncertain variables,

ξij ∼ L(3i, 3j), ∀(i, j) ∈ �
and assume that the costs of activities are

cij = i+ j, ∀(i, j) ∈ �.
In addition, we also suppose that the interest rate is r = 0.02, the due
date is T 0 = 60, and the confidence level is α = 0.85. In order to find
an optimal project schedule, we integrate the 99-method and a genetic al-
gorithm to produce a hybrid intelligent algorithm. A run of the computer
program (http://orsc.edu.cn/liu/resources.htm) shows that the optimal allo-
cating times of all loans needed for all activities are

Date 7 11 13 23 26 29
Node 1 4 3 2, 7 6 5
Loan 12 11 27 22 14 13

whose expected total cost is 166.8, and �{T (x∗, ξ) ≤ 60} = 0.89.

2.10 Vehicle Routing Problem

Vehicle routing problem (VRP) is concerned with finding efficient routes,
beginning and ending at a central depot, for a fleet of vehicles to serve a
number of customers.

http://orsc.edu.cn/liu/resources.htm#reliability

104 Chapter 2 - Uncertain Programming

........

.........
.............

...
..........
.........
........

..........
..
.........
.....0

...........
...........

............
...........

...........
...........

...........
...........

.........
...

..........
........
........
.........
...........

... 1
..

...
..........
........
........
.........
...........

... 2
...............................

..............................
......................

...

...
..........
........
........
.........
...........

... 3
.........
.............

...
..........
.........
..4

..

...
.........
.............

...
..........
.........
..5

........
........
........
........
........
........
........
........
........

...
..........
........
........
.........
...........

... 6..
........
.........
.............

...
..........
.........
..7

........
........
........
........
........
........
........
........
........
........
...

Figure 2.5: A Vehicle Routing Plan with Single Depot and 7 Customers

Due to its wide applicability and economic importance, vehicle routing
problem has been extensively studied. Liu [122] first introduced uncertainty
theory into the research area of vehicle routing problem in 2009. In this
section, vehicle routing problem will be modelled by uncertain programming
in which the travel times are assumed to be uncertain variables with known
uncertainty distributions.

We assume that (a) a vehicle will be assigned for only one route on which
there may be more than one customer; (b) a customer will be visited by one
and only one vehicle; (c) each route begins and ends at the depot; and (d) each
customer specifies its time window within which the delivery is permitted or
preferred to start.

Let us first introduce the following indices and model parameters:
i = 0: depot;
i = 1, 2, · · · , n: customers;
k = 1, 2, · · · ,m: vehicles;
Dij : travel distance from customers i to j, i, j = 0, 1, 2, · · · , n;
Tij : uncertain travel time from customers i to j, i, j = 0, 1, 2, · · · , n;
Φij : uncertainty distribution of Tij , i, j = 0, 1, 2, · · · , n;
[ai, bi]: time window of customer i, i = 1, 2, · · · , n.

Operational Plan

In this book, the operational plan is represented by the formulation (Liu
[112]) via three decision vectors x, y and t, where

x = (x1, x2, · · · , xn): integer decision vector representing n customers with
1 ≤ xi ≤ n and xi �= xj for all i �= j, i, j = 1, 2, · · · , n. That is, the sequence
{x1, x2, · · · , xn} is a rearrangement of {1, 2, · · · , n};

y = (y1, y2, · · · , ym−1): integer decision vector with y0 ≡ 0 ≤ y1 ≤ y2 ≤
· · · ≤ ym−1 ≤ n ≡ ym;

t = (t1, t2, · · · , tm): each tk represents the starting time of vehicle k at the
depot, k = 1, 2, · · · ,m.

Section 2.10 - Vehicle Routing Problem 105

...
.........
........
.........
............

.. x1 ...
.........
........
.........
............

.. x2 ...
.........
........
.........
............

.. x3 ...
.........
........
.........
............

.. x4 ...
.........
........
.........
............

.. x5 ...
.........
........
.........
............

.. x6 ...
.........
........
.........
............

.. x7

..

..V-1... V-2...

..

..V-3...

y0 y1 y2 y3

Figure 2.6: Formulation of Operational Plan in which Vehicle 1 Visits Cus-
tomers x1, x2, Vehicle 2 Visits Customers x3, x4 and Vehicle 3 Visits Cus-
tomers x5, x6, x7.

We note that the operational plan is fully determined by the decision
vectors x, y and t in the following way. For each k (1 ≤ k ≤ m), if yk = yk−1,
then vehicle k is not used; if yk > yk−1, then vehicle k is used and starts from
the depot at time tk, and the tour of vehicle k is 0→ xyk−1+1 → xyk−1+2 →
· · · → xyk

→ 0. Thus the tours of all vehicles are as follows:

Vehicle 1: 0→ xy0+1 → xy0+2 → · · · → xy1 → 0;
Vehicle 2: 0→ xy1+1 → xy1+2 → · · · → xy2 → 0;
· · ·

Vehicle m: 0→ xym−1+1 → xym−1+2 → · · · → xym → 0.

It is clear that this type of representation is intuitive, and the total number
of decision variables is n + 2m − 1. We also note that the above decision
variables x, y and t ensure that: (a) each vehicle will be used at most one
time; (b) all tours begin and end at the depot; (c) each customer will be
visited by one and only one vehicle; and (d) there is no subtour.

Arrival Times

Let fi(x,y, t) be the arrival time function of some vehicles at customers i
for i = 1, 2, · · · , n. We remind readers that fi(x,y, t) are determined by the
decision variables x, y and t, i = 1, 2, · · · , n. Since unloading can start either
immediately, or later, when a vehicle arrives at a customer, the calculation of
fi(x,y, t) is heavily dependent on the operational strategy. Here we assume
that the customer does not permit a delivery earlier than the time window.
That is, the vehicle will wait to unload until the beginning of the time window
if it arrives before the time window. If a vehicle arrives at a customer after
the beginning of the time window, unloading will start immediately. For each
k with 1 ≤ k ≤ m, if vehicle k is used (i.e., yk > yk−1), then we have

fxyk−1+1(x,y, t) = tk + T0xyk−1+1 (2.82)

and

fxyk−1+j(x,y, t)=fxyk−1+j−1(x,y, t)∨ axyk−1+j−1+Txyk−1+j−1xyk−1+j (2.83)

for 2 ≤ j ≤ yk − yk−1. It follows from the uncertainty of travel times Tij ’s
that the arrival times fi(x,y, t), i = 1, 2, · · · , n are uncertain variables fully
determined by (2.82) and (2.83).

106 Chapter 2 - Uncertain Programming

Assume that each travel time Tij from customers i to j is represented by
a 99-table,

0.01 0.02 0.03 · · · 0.99
t1ij t2ij t3ij · · · t99ij

(2.84)

If the vehicle k is used, i.e., yk > yk−1, then the arrival time fxyk−1+1(x,y, t)
at the customer xyk−1+1 is an uncertain variable whose inverse uncertainty
distribution is

Ψ−1
xyk−1+1

(α) = tk + Φ−1
0xyk−1+1

(α) (2.85)

and has a 99-table,

0.01 0.02 · · · 0.99
tk + t10xyk−1+1

tk + t20xyk−1+1
· · · tk + t990xyk−1+1

(2.86)

Generally, suppose that the arrival time fxyk−1+j−1(x,y, t) has an inverse
uncertainty distribution Ψ−1

xyk−1+j−1
(α), and has a 99-table,

0.01 0.02 · · · 0.99
s1xyk−1+j−1

s2xyk−1+j−1
· · · s99xyk−1+j−1

(2.87)

Since the arrival time fxyk−1+j (x,y, t) at the customer xyk−1+j has an inverse
uncertainty distribution

Ψ−1
xyk−1+j

(α) = Ψ−1
xyk−1+j−1

(α) ∨ axyk−1+j−1 + Φ−1
xyk−1+j−1xyk−1+j

(α) (2.88)

for 2 ≤ j ≤ yk − yk−1, the arrival time fxyk−1+j (x,y, t) has a 99-table,

0.01 · · · 0.99
s1xyk−1+j−1

∨ axyk−1+j−1

+t1xyk−1+j−1xyk−1+j

· · ·
s99xyk−1+j−1

∨ axyk−1+j−1

+t99xyk−1+j−1xyk−1+j

(2.89)

where s1xyk−1+j−1
, s2xyk−1+j−1

, · · · , s99xyk−1+j−1
are determined by (2.87). This

recursive process may produce all arrival times at customers.

Travel Distance

Let g(x,y) be the total travel distance of all vehicles. Then we have

g(x,y) =
m∑

k=1

gk(x,y) (2.90)

where

gk(x,y) =

⎧⎨
⎩ D0xyk−1+1 +

yk−1∑
j=yk−1+1

Dxjxj+1 +Dxyk
0, if yk > yk−1

0, if yk = yk−1

for k = 1, 2, · · · ,m.

Section 2.10 - Vehicle Routing Problem 107

Vehicle Routing Model

If we hope that each customer i (1 ≤ i ≤ n) is visited within its time window
[ai, bi] with confidence level αi (i.e., the vehicle arrives at customer i before
time bi), then we have the following chance constraint,

� {fi(x,y, t) ≤ bi} ≥ αi. (2.91)

If we want to minimize the total travel distance of all vehicles subject to the
time window constraint, then we have the following vehicle routing model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(x,y)
subject to:

� {fi(x,y, t) ≤ bi} ≥ αi, i = 1, 2, · · · , n
1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n
xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1, integers

(2.92)

which is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(x,y)
subject to:

Ψi(x,y, t; bi) ≥ αi, i = 1, 2, · · · , n
1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n
xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1, integers

(2.93)

where Ψi are uncertainty distributions determined by (2.85) and (2.88) for
i = 1, 2, · · · , n. Note that all arrival times fi(x,y, t), i = 1, 2, · · · , n are
obtained by the 99-method and are respectively represented by 99-tables,

0.01 0.02 0.03 · · · 0.99
s11 s21 s31 · · · s991

0.01 0.02 0.03 · · · 0.99
s12 s22 s32 · · · s992

...
0.01 0.02 0.03 · · · 0.99
s1n s2n s3n · · · s99n

(2.94)

108 Chapter 2 - Uncertain Programming

Thus the vehicle routing model is simplified as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min g(x,y)
subject to:

k/100 ≥ αi if sk
i ≥ bi, i = 1, 2, · · · , n

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n
xi, yj , i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1, integers.

(2.95)

Numerical Experiment

Assume that there are 3 vehicles and 7 customers with the following time
windows,

Node Window Node Window
1 [7 : 00, 9 : 00] 5 [15 : 00, 17 : 00]
2 [7 : 00, 9 : 00] 6 [19 : 00, 21 : 00]
3 [15 : 00, 17 : 00] 7 [19 : 00, 21 : 00]
4 [15 : 00, 17 : 00]

and each customer is visited within time windows with confidence level 0.90.
We also assume that the distances are

Dij = |i− j|, i, j = 0, 1, 2, · · · , 7
and travel times are normal uncertain variables

Tij ∼ N (2|i− j|, 1), i, j = 0, 1, 2, · · · , 7.
In order to find an optimal operational plan, we integrate the 99-method
and a genetic algorithm to produce a hybrid intelligent algorithm. A run
of the computer program (http://orsc.edu.cn/liu/resources.htm) shows that
the optimal operational plan is

Vehicle 1: depot→ 1→ 3→depot, starting time: 6:18
Vehicle 2: deport→ 2→ 5→ 7→depot, starting time: 4:18
Vehicle 3: depot→ 4→ 6→depot, starting time: 8:18

whose total travel distance is 32.

2.11 Machine Scheduling Problem

Machine scheduling problem is concerned with finding an efficient schedule
during an uninterrupted period of time for a set of machines to process a set
of jobs. A lot of research work has been done on this type of problem. The
study of machine scheduling problem with uncertain processing times was
started by Liu [122] in 2009.

http://orsc.edu.cn/liu/resources.htm#reliability

Section 2.11 - Machine Scheduling Problem 109

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

...............

Machine

...

..

..

M1

M2

M3

J1

........

........

........

........

........

........

........

........

........

J2

........

........

........

........

........

........

........

........

........

J3

........

........

........

........

........

........

........

........

........

J4

........

........

........

........

........

........

........

........

........

J5

........

........

........

........

........

........

........

........

........

J6

........

........

........

........

........

........

........

........

........

J7

........

........

........

........

........

........

........

........

........

Time
Makespan

....................................

Figure 2.7: A Machine Schedule with 3 Machines and 7 Jobs

In a machine scheduling problem, we assume that (a) each job can be
processed on any machine without interruption; (b) each machine can process
only one job at a time; and (c) the processing times are uncertain variables
with known uncertainty distributions. We also use the following indices and
parameters:
i = 1, 2, · · · , n: jobs;
k = 1, 2, · · · ,m: machines;
ξik: uncertain processing time of job i on machine k;
Φik: uncertainty distribution of ξik.

How to Represent a Schedule?

The schedule is represented by the formulation (Liu [112]) via two decision
vectors x and y, where

x = (x1, x2, · · · , xn): integer decision vector representing n jobs with 1 ≤
xi ≤ n and xi �= xj for all i �= j, i, j = 1, 2, · · · , n. That is, the sequence
{x1, x2, · · · , xn} is a rearrangement of {1, 2, · · · , n};

y = (y1, y2, · · · , ym−1): integer decision vector with y0 ≡ 0 ≤ y1 ≤ y2 ≤
· · · ≤ ym−1 ≤ n ≡ ym.

We note that the schedule is fully determined by the decision vectors x
and y in the following way. For each k (1 ≤ k ≤ m), if yk = yk−1, then the
machine k is not used; if yk > yk−1, then the machine k is used and processes
jobs xyk−1+1, xyk−1+2, · · · , xyk

in turn. Thus the schedule of all machines is
as follows,

Machine 1: xy0+1 → xy0+2 → · · · → xy1 ;
Machine 2: xy1+1 → xy1+2 → · · · → xy2 ;
· · ·

Machine m: xym−1+1 → xym−1+2 → · · · → xym .

(2.96)

110 Chapter 2 - Uncertain Programming

...
.........
........
.........
............

.. x1 ...
.........
........
.........
............

.. x2 ...
.........
........
.........
............

.. x3 ...
.........
........
.........
............

.. x4 ...
.........
........
.........
............

.. x5 ...
.........
........
.........
............

.. x6 ...
.........
........
.........
............

.. x7

..

..M-1... M-2...

..

..M-3...

y0 y1 y2 y3

Figure 2.8: Formulation of Schedule in which Machine 1 Processes Jobs
x1, x2, Machine 2 Processes Jobs x3, x4 and Machine 3 Processes Jobs
x5, x6, x7.

Completion Times

Let Ci(x,y, ξ) be the completion times of jobs i, i = 1, 2, · · · , n, respectively.
For each k with 1 ≤ k ≤ m, if the machine k is used (i.e., yk > yk−1), then
we have

Cxyk−1+1(x,y, ξ) = ξxyk−1+1k (2.97)

and
Cxyk−1+j (x,y, ξ) = Cxyk−1+j−1(x,y, ξ) + ξxyk−1+jk (2.98)

for 2 ≤ j ≤ yk − yk−1.
Assume that each uncertain processing time ξik of job i on machine k is

represented by a 99-table,

0.01 0.02 0.03 · · · 0.99
t1ik t2ik t3ik · · · t99ik

(2.99)

If the machine k is used, then the completion time Cxyk−1+1(x,y, ξ) of job
xyk−1+1 is an uncertain variable whose inverse uncertainty distribution is

Ψ−1
xyk−1+1

(α) = Φ−1
xyk−1+1k(α) (2.100)

and has a 99-table,

0.01 0.02 · · · 0.99
t1xyk−1+1

t2xyk−1+1
· · · t99xyk−1+1

(2.101)

Generally, suppose the completion time Cxyk−1+j−1(x,y, ξ) has an inverse
uncertainty distribution Ψ−1

xyk−1+j−1
(α) and is represented by a 99-table,

0.01 0.02 · · · 0.99
s1xyk−1+j−1

s2xyk−1+j−1
· · · s99xyk−1+j−1

(2.102)

Then the completion time Cxyk−1+j (x,y, ξ) has an inverse uncertainty dis-
tribution

Ψ−1
xyk−1+j

(α) = Ψ−1
xyk−1+j−1

(α) + Φ−1
xyk−1+jk(α) (2.103)

Section 2.11 - Machine Scheduling Problem 111

and has a 99-table,

0.01 · · · 0.99
s1xyk−1+j−1

+ t1xyk−1+jk · · · s99xyk−1+j−1
+ t99xyk−1+jk

where s1xyk−1+j−1
, s2xyk−1+j−1

, · · · , s99xyk−1+j−1
are determined by (2.102), and

t1xyk−1+jk, t
2
xyk−1+jk, · · · , t99xyk−1+jk are determined by (2.99). This recursive

process may produce all completion times of jobs.

Makespan

Note that, for each k (1 ≤ k ≤ m), the value Cxyk
(x,y, ξ) is just the time

that the machine k finishes all jobs assigned to it, and has a 99-table,

0.01 0.02 · · · 0.99
s1xyk

s2xyk
· · · s99xyk

(2.104)

Thus the makespan of the schedule (x,y) is determined by

f(x,y, ξ) = max
1≤k≤m

Cxyk
(x,y, ξ) (2.105)

whose inverse uncertainty distribution is

Υ−1(α) = max
1≤k≤m

Ψ−1
xyk

(α) (2.106)

and has a 99-table,

0.01 0.02 · · · 0.99
m∨

k=1

s1xyk

m∨
k=1

s2xyk
· · ·

m∨
k=1

s99xyk

(2.107)

Machine Scheduling Model

In order to minimize the expected makespan E[f(x,y, ξ)], we have the fol-
lowing machine scheduling model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minE[f(x,y, ξ)]
subject to:

1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n
xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1, integers.

(2.108)

112 Chapter 2 - Uncertain Programming

By using (2.107), the machine scheduling model is simplified as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
m∨

k=1

s1xyk
+

m∨
k=1

s2xyk
+ · · ·+

m∨
k=1

s99xyk

)
/99

subject to:
1 ≤ xi ≤ n, i = 1, 2, · · · , n
xi �= xj , i �= j, i, j = 1, 2, · · · , n
0 ≤ y1 ≤ y2 · · · ≤ ym−1 ≤ n
xi, yj, i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1, integers.

(2.109)

Numerical Experiment

Assume that there are 3 machines and 7 jobs with the following linear un-
certain processing times

ξik ∼ L(i, i+ k), i = 1, 2, · · · , 7, k = 1, 2, 3

where i is the index of jobs and k is the index of machines. In order to
find an optimal machine schedule, we integrate the 99-method and a genetic
algorithm to produce a hybrid intelligent algorithm. A run of the computer
program (http://orsc.edu.cn/liu/resources.htm) shows that the optimal ma-
chine schedule is

Machine 1: 1→ 4→ 5
Machine 2: 3→ 7
Machine 3: 2→ 6

whose expected makespan is 12.

2.12 Exercises

In order to enhance your ability in modeling, this section provides some
exercises.

Exercise 2.1: One approach to improve system reliability is to provide
redundancy for components in a system. There are two ways to provide
component redundancy: parallel redundancy and standby redundancy. In
parallel redundancy, all redundant elements are required to operate simul-
taneously. This method is usually used when element replacements are not
permitted during the system operation. In standby redundancy, one of the
redundant elements begins to work only when the active element fails. This
method is usually employed when the replacement is allowable and can be
finished immediately. The system reliability design is to determine the op-
timal number of redundant elements for balancing system performance and
total cost. Assume the element lifetimes are uncertain variables with known

http://orsc.edu.cn/liu/resources.htm#reliability

Section 2.12 - Exercises 113

uncertainty distributions. Please construct an uncertain programming model
for the system reliability design.

Exercise 2.2: The facility location problem is to find locations for new
facilities such that the conveying cost from facilities to customers is mini-
mized. In practice, some factors such as demands, allocations, even locations
of customers and facilities are changing and then are assumed to be uncertain
variables with known uncertainty distributions. Please construct an uncer-
tain programming model for the facility location problem.

Exercise 2.3: The inventory problem (or supply chain) is concerned with
the issues of when to order and how much to order of some goods. The
purpose is to obtain the right goods in the right place, at the right time, and
at low cost. Assume the demands and prices are uncertain variables with
known uncertainty distributions. Please construct an uncertain programming
model to determine the optimal order quantity.

Exercise 2.4: The capital budgeting problem (or portfolio selection) is
concerned with maximizing the total profit subject to budget constraint by
selecting appropriate combination of projects. Assume the future returns are
uncertain variables with known uncertainty distributions. Please construct
an uncertain programming model to determine the optimal investment plan.

Exercise 2.5: One of the basic network optimization problems is the shortest
path problem which is to find the shortest path between two given nodes in a
network, where the arc lengths are assumed to be uncertain variables. Please
construct an uncertain programming model to find the shortest path.

Exercise 2.6: The maximal flow problem is related to maximizing the flow
of some commodity through the arcs of a network from a given origin to a
given destination, where each arc has an uncertain capacity of flow. Please
construct an uncertain programming model to discover the maximum flow.

Exercise 2.7: The transportation problem is to determine the optimal trans-
portation plan of some goods from suppliers to customers such that the total
transportation cost is minimum. Assume the unit transportation cost of each
route is an uncertain variable. Please construct an uncertain programming
model to solve the transportation problem.

	Uncertain Programming
	Ranking Criteria
	Expected Value Model
	Chance-Constrained Programming
	Dependent-Chance Programming
	Uncertain Dynamic Programming
	Uncertain Multilevel Programming
	Hybrid Intelligent Algorithm
	Ψ Graph
	Project Scheduling Problem
	Vehicle Routing Problem
	Machine Scheduling Problem
	Exercises

