Chapter 1

Uncertainty Theory

Some information and knowledge are usually represented by human language
like “about 100km”, “approximately 39°C”, “roughly 80kg”, “low speed”,
“middle age”, and “big size”. How do we understand them? Perhaps some
people think that they are subjective probability or they are fuzzy concepts.
However, a lot of surveys showed that those imprecise quantities behave nei-
ther like randomness nor like fuzziness. This fact provides a motivation to
invent another mathematical tool, namely uncertainty theory.

Uncertainty theory was founded by Liu [120] in 2007. Nowadays uncer-
tainty theory has become a branch of mathematics based on normality, mono-
tonicity, self-duality, countable subadditivity, and product measure axioms.
The first fundamental concept in uncertainty theory is uncertain measure
that is used to measure the belief degree of an uncertain event. The sec-
ond one is uncertain variable that is used to represent imprecise quantities.
The third one is uncertainty distribution that is used to describe uncertain
variables in an incomplete but easy-to-use way. Uncertainty theory is thus
deduced from those three foundation stones, and provides a mathematical
model to deal with uncertain phenomena.

The emphasis in this chapter is mainly on uncertain measure, uncertain
variable, uncertainty distribution, independence, operational law, expected
value, variance, moments, critical values, entropy, distance, convergence al-
most surely, convergence in measure, convergence in mean, convergence in
distribution, and conditional uncertainty.

1.1 Uncertain Measure

Let T' be a nonempty set. A collection L of subsets of T' is called a o-
algebra if (a) I' € L; (b) if A € L, then A® € L; and (c) if A1, Ag,--- € L,
then A UAs U --- € L. Each element A in the o-algebra L is called an
event. Uncertain measure is a function from £ to [0,1]. In order to present
an axiomatic definition of uncertain measure, it is necessary to assign to
each event A a number M{A} which indicates the belief degree that A will
occur. In order to ensure that the number M{A} has certain mathematical
properties, Liu [120] proposed the following four axioms:

Axiom 1. (Normality Aziom) M{T'} =1 for the universal set T'.
Axiom 2. (Monotonicity Aziom) M{A1} < M{Az} whenever A1 C As.
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Axiom 3. (Self-Duality Aziom) M{A} + M{A°} =1 for any event A.

Axiom 4. (Countable Subadditivity Aziom) For every countable sequence of
events {A;}, we have

M{DA} < iM{Ai}. (1.1)

Remark 1.1: The law of contradiction tells us that a proposition cannot be
both true and false at the same time, and the law of excluded middle tells us
that a proposition is either true or false. The law of truth conservation is a
generalization of the law of contradiction and the law of excluded middle, and
says that the sum of truth values of a proposition and its negative proposition
is identical to 1. Self-duality is in fact an application of the law of truth
conservation in uncertainty theory. This is the main reason why self-duality
axiom is assumed.

Remark 1.2: Pathology occurs if subadditivity is not assumed. For ex-
ample, suppose that a universal set contains 3 elements. We define a set
function that takes value 0 for each singleton, and 1 for each set with at least
2 elements. Then such a set function satisfies all axioms but subadditivity.
Is it not strange if such a set function serves as a measure?

Remark 1.3: Pathology occurs if countable subadditivity axiom is replaced
with finite subadditivity axiom. For example, assume the universal set con-
sists of all real numbers. We define a set function that takes value 0 if the
set is bounded, 0.5 if both the set and complement are unbounded, and 1 if
the complement of the set is bounded. Then such a set function is finitely
subadditive but not countably subadditive. Is it not strange if such a set
function serves as a measure? This is the main reason why we accept the
countable subadditivity axiom.

Remark 1.4: Although probability measure satisfies the above four axioms,
probability theory is not a special case of uncertainty theory because the
product probability measure does not satisfy the fifth axiom, namely product
measure axiom on Page[7l

Definition 1.1 (Liu [I20]). The set function M is called an uncertain mea-
sure if it satisfies the mormality, monotonicity, self-duality, and countable
subadditivity axioms.

Example 1.1: Let I' = {v1,72,7v3}. For this case, there are only 8 events.
Define
M{v1} =06, M{y}=03, M{y} =02,

M{yi, 72} =08, M{y1,v3} =0.7, M{y2,73} =04,
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M{0} =0, M{T}=1.
Then M is an uncertain measure because it satisfies the four axioms.

Example 1.2: Suppose that A(z) is a nonnegative function on # satisfying

sup (\(z) +A(y) = 1. (1.2)

Then for any set A of real numbers, the set function

sup A(z), if sup A(z) < 0.5

zEA zeA
M{A} = (1.3)
1 — sup A(x), if supA(z) > 0.5
TrEA° €A

is an uncertain measure on R.

Example 1.3: Suppose p(z) is a nonnegative and integrable function on R
such that

/ p(x)dz > 1. (1.4)
Rid

Then for any Borel set A of real numbers, the set function

/A p(z)de, if /A p(z)dz < 0.5

M{A} = 1- /C p(x)de, if N p(z)dz < 0.5 (15)

0.5, otherwise
is an uncertain measure on .

Example 1.4: Suppose A(x) is a nonnegative function and p(z) is a non-
negative and integrable function on R such that

sup A(x) +/ p(x)der > 0.5 and/or sup A(z) —|—/ p(x)dx > 0.5 (1.6)
TEA A xzeAC c

for any Borel set A of real numbers. Then the set function

sup A(z) +/ p(x)dz, if sup A(z) —|—/ p(x)dx < 0.5
zEA A €A A

M{A} = 1— sup A(x) _/ p(x)dz, if sup A(x) +/ p(z)dz < 0.5
zEAC ¢ zEAC ¢

0.5, otherwise

is an uncertain measure on R.
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Theorem 1.1. Suppose that M is an uncertain measure. Then the empty
set O has an uncertain measure zero, i.e.,

M{0} = 0. (1.7)

Proof: It follows from the normality that M{T'} = 1. Since § = T¢, the
self-duality axioms yields M{0} =1 -M{T'} =1—-1=0.

Theorem 1.2. Suppose that M is an uncertain measure. Then we have
0<M{A} <1 (1.8)
for any event A.

Proof: It follows from the monotonicity axiom that 0 < M{A} < 1 because
pcAcCT and M{0} =0, M{T} =1.

Theorem 1.3. Suppose that M is an uncertain measure. Then for any events
A1 and Ay, we have

Proof: The left-hand inequality follows from the monotonicity axiom and
the right-hand inequality follows from the countable subadditivity axiom im-
mediately.

Theorem 1.4. Suppose that M is an uncertain measure. Then for any events
A1 and A, we have

M{AL} + M{As} — 1 < M{A; N As} < M{AL} AM{A}. (1.10)

Proof: The right-hand inequality follows from the monotonicity axiom and
the left-hand inequality follows from the self-duality and countable subaddi-
tivity axioms, i.e.,

M{A; N Ask=1— M{(A1 N A2)°} = 1 — M{AS UAS}
> 1 (M{AS} + M{AS})
=1 (1-M{A}) — (1 - M{As})
= M{A} + M{As} — 1.

The inequalities are verified.

Null-Additivity Theorem

Null-additivity is a direct deduction from subadditivity. We first prove a
more general theorem.
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Theorem 1.5. Let {A;} be a sequence of events with M{A;} — 0 as i — oo.
Then for any event A, we have

lim M{AUA;} = lim M{A\A;} = M{A}. (1.11)
Proof: It follows from the monotonicity and countable subadditivity axioms
that
M{A} < M{AU A} < M{A} + M{A:}

for each i. Thus we get M{A U A;} — M{A} by using M{A;} — 0. Since
(A\A;) C A C ((A\A;) UA,), we have

MAVA} < M{A} < M{AVA} + M{A}
Hence M{A\A;} — M{A} by using M{A;} — 0.

Remark 1.5: It follows from the above theorem that the uncertain measure
is null-additive, i.e., M{A; U Ao} = M{A1} + M{Az} if either M{A;} =0
or M{A2} = 0. In other words, the uncertain measure remains unchanged if
the event is enlarged or reduced by an event with uncertain measure zero.

Asymptotic Theorem
Theorem 1.6 (Asymptotic Theorem). For any events A1, Ag,- -, we have

lim M{A;} >0, 4f A; 1T, (1.12)
lim M{A;} <1, o A; | 0. (1.13)

Proof: Assume A; T I'. Since I' = U;A;, it follows from the countable
subadditivity axiom that

1=M{T} <Y M{A;}.
i=1
Since M{A;} is increasing with respect to 4, we have lim;_,o.o M{A;} > 0. If
A; | 0, then A¢ 1 T'. It follows from the first inequality and self-duality axiom
that
lim M{A;} =1— lim M{A{} < 1.

1—00
The theorem is proved.

Example 1.5: Assume I' is the set of real numbers. Let « be a number with
0 < a < 0.5. Define a set function as follows,

0, ifA=0
«, if A is upper bounded
M{A}=¢ 0.5, if both A and A° are upper unbounded (1.14)

1 — «, if A°is upper bounded
1, ifA=T.
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It is easy to verify that M is an uncertain measure. Write A; = (—o0, ] for
i =1,2,--- Then A; T T and lim; .o M{A;} = «. Furthermore, we have
AS | 0 and lim; oo M{AS} =1 — o

Independence of Events

Definition 1.2. The events A1, As, -+, Ay, are said to be independent if

{ﬂA } = E%LM{A } (1.15)
where Af are arbitrarily chosen from {A;, AS}, i =1,2,--- ,n, respectively.

Note that (LI5) represents 2™ equations. For example, when n = 2, the four

equations are
M{AL N Az} = M{A1} AM{A2},

M{AS N Ax}t = M{ASH A M{A},
M{A; NAS}H = M{AL} A M{AS),
M{AS N AS}H = M{ASH A M{AS}.

(1.16)

Theorem 1.7. The events A1, Ao, --- |, A, are independent if and only if

M{O A;‘} = max M{A}} (1.17)
i=1

1<i<n
where Af are arbitrarily chosen from {A;, AS}, i =1,2,--- ,n, respectively.
Proof: Assume Aj,As, .-, A, are independent events. It follows from the

self-duality of uncertain measure that

M{OAZ‘} =1 —M{ﬁ(Af)“} =1- 12121<nnj\/f{(A*) }— max M{A*}

The equation (LI7) is proved. Conversely, assume (LI7). Then

M{ﬁ A;} =1 —M{O(A;)C} =1 max M{(A])} = min M{A]).
i=1

i=1

The equation (LIH)) is true. The theorem is proved.

Uncertainty Space

Definition 1.3 (Liu [120]). Let T’ be a nonempty set,
T, and M an uncertain measure. Then the triplet (T,
uncertainty space.

a o-algebra over
,M) s called an

L
L
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Product Measure Axiom and Product Uncertain Measure

Product uncertain measure was defined by Liu [123] in 2009, thus producing
the fifth axiom of uncertainty theory called product measure axiom. Let
Tk, L, M) be uncertainty spaces for k =1,2,--- n. Write

=Ty xTogx---xTy,, L=0;xLyx-xL,. (1.18)
Then there is an uncertain measure M on the product o-algebra L such that
M{A1 x Ao x - X A} = My{A1} AMo{A2} A+ AM{AL} (1.19)

for any measurable rectangle A; X As X - -+ x A,,. Such an uncertain measure
is called the product uncertain measure denoted by

M=Mi AMaA---AM,. (1.20)

In fact, the extension from the class of rectangles to the product o-algebra
L may be represented as follows.

Axiom 5. (Liu [123], Product Measure Aziom) Let T, be nonempty sets
on which My, are uncertain measures, k = 1,2,--- 'n, respectively. Then
the product uncertain measure M is an uncertain measure on the product
o-algebra Ly x Lo x -+ X L, satisfying

M{HAk} = min Mi{Ax}. (1.21)

k=1
That is, for each event A € L, we have

sup min Mp{Az},
ApXAg X x N, CALSk<n

if sup min Mg{Ar} > 0.5
A1 xAzx--x A, CA 1Sk<n

M{A}=41- sup min My {Ax}, (1.22)
Ay XAgx--xA,, CAc 1<k<n

if sup min Mi{Ax} > 0.5
A1 XAz XX A, CAc 1SkSn

0.5, otherwise.

Theorem 1.8 (Peng [176]). The product uncertain measure (L23) is an
uncertain measure.

Proof: In order to prove that the product uncertain measure (L.22]) is indeed
an uncertain measure, we should verify that the product uncertain measure
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Iy

Figure 1.1: Graphical Illustration of Extension from the Class of Rectangles
to the Product o-Algebra. The uncertain measure of A (the disk) is essen-
tially the acreage of its inscribed rectangle A; x As if it is greater than 0.5.
Otherwise, we have to examine its complement A°. If the inscribed rectan-
gle of A° is greater than 0.5, then M{A°} is just its inscribed rectangle and
M{A} =1 — M{A°}. If there does not exist an inscribed rectangle of A or
A° greater than 0.5, then we set M{A} = 0.5.

satisfies the normality, monotonicity, self-duality and countable subadditivity
axioms.

STEP 1: At first, for any event A € L, it is easy to verify that

sup min Mp{Ar} + sup min Mp{A;} < 1.
A1 xAax--xA, CALSkSn A1 xAg X XA, CAc 1SkSn

This means that at most one of

sup min M;{A;} and sup min M {Ax}
A1 xAg X XA, CALISkSn AL XAa XX A, CAc 1SESn

is greater than 0.5. Thus the expression (L22)) is reasonable.
STEP 2: The product uncertain measure is clearly normal, i.e., M{I'} = 1.
STEP 3: We prove the self-duality, i.e., M{A}+M{A°} = 1. The argument

breaks down into three cases. Case 1: Assume

sup min Mp{Ax} > 0.5.
A1 xAax-x A, CALISESn

Then we immediately have

sup min Mz{Ar} <0.5.
A1 XAz X xAp CAc 1Sk<n
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It follows from ([22)) that

MIAY = sup min Mg{Ax},
{ } A1 XAax XA CA 1<k<n { }

M{A°} =1— sup min Mg{Ar} =1—-M{A}.
Ay XAz X xAp C(Ac)e 1Sk<n
The self-duality is proved. Case 2: Assume

sup min Mp{Ax} > 0.5.
Ay XAy XX A, CAc 1SkE<n

This case may be proved by a similar process. Case 3: Assume

sup min Mp{A;} <0.5
ApXAg X x N, CALSk<n

and
sup min M{Ax} <0.5.
A1 XAg XX Ap CAc 1SKkSn
It follows from ([22)) that M{A} = M{A°} = 0.5 which proves the self-
duality.

STEP 4: Let us prove that M is increasing. Suppose A and A are two
events in £ with A C A. The argument breaks down into three cases. Case 1:
Assume

sup min Mg{Ax} > 0.5.
Ay XAax - XA, CA1SE<n
Then
sup min Mp{Ag} > sup min Mi{Ag} > 0.5.
A1 xAgx - xApCA 1<k<n Ay xAgX--xA,CA1<k<n

It follows from (L22) that M{A} < M{A}. Case 2: Assume

sup min Mp{Ax} > 0.5.
A1 XAgx- XA CAc 1Sk<n
Then
sup min Mp{Ap} > sup min M{AL} > 0.5.
A1 xAg XX A, CAc 1<k<n { } ArxAgxex A, CAc 1<k<n { }
Thus
MAET- sup min Mg{Ar}
A1 XAa XX Ay CAc 1SE<n
sl-= sup min M{A,} = M{A}.

A1XAgX X ApCAc 1Sk<n

Case 3: Assume

sup min Mp{A;} <0.5
A1 XAax XAy CA L1<k<n
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and

sup min Mp{A;} <0.5.
A1XAgx-XA,CAc 1<k<n

Then
M{A} <05 <1 —-M{A°} = M{A}.

STEP 5: Finally, we prove the countable subadditivity of M. For simplicity,
we only prove the case of two events A and A. The argument breaks down
into three cases. Case 1: Assume M{A} < 0.5 and M{A} < 0.5. For any
given € > 0, there are two rectangles

A x Ay x - x A, CA A XAy x---x A, CA°

SuCh ‘ha,‘

1- 1?;3§an{A’“} <M{A} +¢/2.
Note that
(A1 NA) X (AaNAg) x -+ x (A, NA,) C(AUA).
It follows from Theorem [[4] that
Mp{ Ak N AR} > Mi{Ar} + Mp{Ar} -1
for any k. Thus
M{AUAK 1 - 1g1kign3\/[k{Ak NAg}
<1-— 1glg£nmk{Ak} +1-— 12%1” Mi{Ax}
<M{A} + M{A} +e.
Letting ¢ — 0, we obtain
M{AUA} < M{A} + M{A}.

Case 2: Assume M{A} > 0.5 and M{A} < 0.5. When M{AU A} = 0.5, the
subadditivity is obvious. Now we consider the case M{A U A} > 0.5, i.e.,
M{A°N A°} < 0.5. By using A°UA = (A°NA°) UA and Case 1, we get

M{A°UA} <M{A°NA°} + M{A}.
Thus
M{AUAET—M{A°N A} <1-M{A°UA}+M{A}
< 1—M{A} + M{A} = M{A} + M{A}.

Case 3: If both M{A} > 0.5 and M{A} > 0.5, then the subadditivity is
obvious because M{A} + M{A} > 1. The theorem is proved.
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Definition 1.4. Let (I'y, Lg, Mi), k = 1,2, ,n be uncertainty spaces, I' =
Iy xTox - xIy, L =L x Lo x--- x Ly, and M =My AMa A--- AM,.
Then (T, L, M) is called the product uncertainty space of (T, Lk, M),k =
1,2, ,m.

1.2 Uncertain Variable

This section introduces a concept of uncertain variable (neither random vari-
able nor fuzzy variable) in order to describe imprecise quantities in human
systems.

Definition 1.5 (Liu [120)]). An uncertain variable is a measurable function
& from an uncertainty space (I', L, M) to the set of real numbers, i.e., for any
Borel set B of real numbers, the set

{¢e B} ={yeTl|&(y) € B} (1.23)

1S an event.

Figure 1.2: An Uncertain Variable

Example 1.6: Take (', L, M) to be {y1,72} with M{y} = M{y2} = 0.5.
Then the function

07 if T="
is an uncertain variable.

Example 1.7: A crisp number ¢ may be regarded as a special uncertain
variable. In fact, it is the constant function {(y) = ¢ on the uncertainty
space (I, L, M).

Definition 1.6. Let £ andn be uncertain variables defined on the uncertainty
space (D, L,M). We say € = n if £(v) = n(y) for almost all v € T.
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Definition 1.7. The uncertain variables & and n are identically distributed if
M{¢ € B} =M{n € B} (1.24)
for any Borel set B of real numbers.

It is clear that uncertain variables & and 7 are identically distributed if £ =
7. However, identical distribution does not imply & = . For example, let
(T, L, M) be {7,72} with M{y1} = M{~2} = 0.5. Define

L, ify=m —1Lify=m

The two uncertain variables £ and 7 are identically distributed but & # 7.

Uncertain Vector

Definition 1.8. An n-dimensional uncertain vector is a measurable function
from an uncertainty space (I, L, M) to the set of n-dimensional real vectors,
i.e., for any Borel set B of R", the set

(6B} ={yeT|€m) eB) (1.25)
15 an event.
Theorem 1.9. The vector (&1,&2, -+ ,&n) s an uncertain vector if and only
if &1,&,- -+, &, are uncertain variables.

Proof: Write & = (£1,&2,- -+ ,&,). Suppose that € is an uncertain vector on
the uncertainty space (I', £, M). For any Borel set B of R, the set B x R"~!
is a Borel set of ™. Thus the set

{6,€B}={6€B,&ER, - &R ={€ecBxR" 1}

is an event. Hence & is an uncertain variable. A similar process may

prove that &,&s, -+, &, are uncertain variables. Conversely, suppose that
all £,&,- -+ &, are uncertain variables on the uncertainty space (T, L, M).
We define

$:{BC%”’{£€B}isanevent}.

The vector € = (&1,&2,- -+ , &) is proved to be an uncertain vector if we can
prove that B contains all Borel sets of R™. First, the class B contains all
open intervals of " because

{£ € H(ai,bi)} = {& € (ai,b)}
i=1

i=1



SECTION 1.3 - UNCERTAINTY DISTRIBUTION 13

is an event. Next, the class B is a o-algebra of R” because (i) we have R” € B
since {€ € R"} =T (ii) if B € B, then {& € B} is an event, and

{€ e B} ={¢ e B}°

is an event. This means that B¢ € B; (iii) if B; € B for ¢ = 1,2,---, then
{€ € B;} are events and

{56 UBz} = U{EEBz‘}

is an event. This means that U;B; € B. Since the smallest o-algebra con-
taining all open intervals of R™ is just the Borel algebra of R", the class B
contains all Borel sets of ™. The theorem is proved.

Uncertain Arithmetic

Definition 1.9. Suppose that f : R — R is a measurable function, and

&1,&2, -+, &, uncertain variables on the uncertainty space (I'yL,M). Then
&= f(&,&, -, &) is an uncertain variable defined as
§07) = f(&(7),&(7), -+ &a(7)), VY eT. (1.26)

Example 1.8: Let & and & be two uncertain variables. Then the sum
& =& + & is an uncertain variable defined by

Ey) =&(y) + &(y), VyeTl.

The product £ = £1&5 is also an uncertain variable defined by

() =&(y) - &(y), Vyel.

The reader may wonder whether £(y1,72,- -+ ,V,) defined by (L26) is an
uncertain variable. The following theorem answers this question.

Theorem 1.10. Let &€ be an n-dimensional uncertain vector, and f : R — R
a measurable function. Then f(€) is an uncertain variable such that

M{f(€) € B} =M{¢ € f~(B)} (1.27)
for any Borel set B of real numbers.

Proof: Assume that £ is an uncertain vector on the uncertainty space
(T, L,M). For any Borel set B of R, since f is a measurable function, the
f~Y(B) is a Borel set of R". Thus the set {f(¢) € B} = {¢ € f~1(B)} is an
event for any Borel set B. Hence f(€) is an uncertain variable.
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1.3 Uncertainty Distribution

This section introduces a concept of uncertainty distribution in order to de-
scribe uncertain variables. In many cases, it is sufficient to know the uncer-
tainty distribution rather than the uncertain variable itself.

Definition 1.10 (Liu [120]). The uncertainty distribution ®: R — [0,1] of
an uncertain variable £ is defined by

O(x) = M {€ < 2} (1.28)

for any real number x.

Figure 1.3: An Uncertainty Distribution

Theorem 1.11 (Peng and Iwamura [I77], Sufficient and Necessary Condi-
tion for Uncertainty Distribution). A function ® : R — [0,1] is an uncer-
tainty distribution if and only if it is an increasing function except ®(z) =0
and ®(z) = 1.

Proof: It is obvious that an uncertainty distribution @ is an increasing func-
tion. In addition, both ®(z) #Z 0 and ®(x) # 1 follow from the asymptotic
theorem immediately. Conversely, suppose that ® is an increasing function
but ®(z) #Z 0 and ®(x) £ 1. We will prove that there is an uncertain variable
whose uncertainty distribution is just ®. Let € be a collection of all inter-
vals of the form (—o0,a], (b,00), § and R. We define a set function on R as
follows,

M{(~o0,a]} = ®(a),
M{(b, +00)} = 1 - @ (),
M0} =0, M{R}=1.

For an arbitrary Borel set B of real numbers, there exists a sequence {4;} in
C such that

B C D A;.
i=1
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Note that such a sequence is not unique. Thus the set function M{B} is
defined by

inf ;M{Ai}, if ngfAi;M{Ai} <05

BCUA;

M B — oo oo
A FR: D M{A}if inf Y M{Ai} <05
i=1 ti=1

BcCUA;

0.5, otherwise.

We may prove that the set function M is indeed an uncertain measure on R,
and the uncertain variable defined by the identity function () = «y from the
uncertainty space (R, L, M) to R has the uncertainty distribution ®.

Example 1.9: Let ¢ be a number with 0 < ¢ < 1. Then ®(z) = c is an
uncertainty distribution. When ¢ < 0.5, we define a set function over R as
follows,

0, ifA=0
¢, if A is upper bounded
M{A} = 0.5, if both A and A¢ are upper unbounded
1 — ¢, if A¢ is upper bounded
1, fA=T.

)

Then (R, L, M) is an uncertainty space. It is easy to verify that the identity
function () = « is an uncertain variable whose uncertainty distribution is
just ®(z) = c¢. When ¢ > 0.5, we define

0, ifA=0
1 —¢, if A is upper bounded
M{A} = ¢ 0.5, if both A and A° are upper unbounded
¢, if A°is upper bounded
1, ifA=T.
Then the function £(y) = —+v is an uncertain variable whose uncertainty

distribution is just ®(z) = c.

Example 1.10: Assume that two uncertain variables £ and 7 have the same
uncertainty distribution. One question is whether £ = 71 or not. Generally
speaking, it is not true. Take (T', L, M) to be {v1,72} with

M{%} = M{Vz} =0.5.

We now define two uncertain variables as follows,

_ ) Lify=m _ L ify=m
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0 a b
Figure 1.4: Linear Uncertainty Distribution

Then ¢ and n have the same uncertainty distribution,

0, ife < -1
O(x)=405,if —1<z<1
1, if x > 1.

)

However, it is clear that £ # 7 in the sense of Definition

Definition 1.11. An uncertain variable £ is called linear if it has a linear
uncertainty distribution

0, ife<a
O(z)=< (x—a)/(b—a),ifa<z<Db (1.29)
1, ife>b

denoted by L(a,b) where a and b are real numbers with a < b.

Definition 1.12. An uncertain variable & is called zigzag if it has a zigzag
uncertainty distribution

0, ife<a
B (x—a)/2(b—a), fa<z<b
(@) = (x+c—2b)/2(c—b),ifb<z<c (1.30)
1, ifex>c

denoted by Z(a,b,c) where a,b, c are real numbers with a < b < c.

Definition 1.13. An uncertain variable £ is called normal if it has a normal
uncertainty distribution

B(z) = (1 + exp <”<€ ;Ux)))l, zeR (1.31)

denoted by N (e, o) where e and o are real numbers with o > 0.
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Figure 1.6: Normal Uncertainty Distribution

Definition 1.14. An uncertain variable £ is called lognormal if In€ is a
normal uncertain variable N(e,o). In other words, a lognormal uncertain
variable has an uncertainty distribution

B(z) = (1 +exp (”(e\;3?x)))_l . >0 (1.32)

denoted by LOGN (e, a), where e and o are real numbers with o > 0.

Definition 1.15. An uncertain variable € is called discrete if it takes values
in {x1, 2z, ,Tm} and

O(z) =i, 1=1,2,---,m (1.33)

where 11 < x93 < -+ < Ty and 0 < a1 < ag < -+ < ayy, = 1. For simplicity,
the discrete uncertain variable will be denoted by

Qa1 2+ Qi

e (1.34)

&=
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05 .............. /

exp(e)

Figure 1.7: Lognormal Uncertainty Distribution

The uncertainty distribution ® of the discrete uncertain variable (I34]) is
a step function jumping only at x1,x2, - , Ty, i.e.,

ag, if £ < xy
D(z) = i, ifa; <z <wipr,i=1,2,---,m (1.35)

am, if £ > xp,

where ag = 0 and o, = 1.

UG fmmmmmmmmm oo o

]

QUY fmmmmmmmmmmm oo -—

Y — —

[0 e T

L e

Figure 1.8: Discrete Uncertainty Distribution

Measure Inversion Theorem

Theorem 1.12 (Measure Inversion Theorem). Let & be an uncertain vari-
able with continuous uncertainty distribution ®. Then for any real number
x, we have

M{E <z} =(x), M{£>zx}=1—d(x). (1.36)
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Proof: The equation M{{ < z} = ®(z) follows from the definition of un-
certainty distribution immediately. By using the self-duality of uncertain
measure and continuity of uncertainty distribution, we get M{¢ > z} =
1-M{ <z} =1—3(z).

Theorem 1.13. Let & be an uncertain variable with continuous uncertainty
distribution ®. Then for any interval [a,b], we have

D(b) — B(a) <M{a <€ b} < OW)A(1—B(a)).  (137)

Proof: It follows from the subadditivity of uncertain measure and the mea-
sure inversion theorem that

Mia <& <bp +M{§ <a} > M{E < b}

That is,
M{a < &< b} + P(a) > P(b).

Thus the inequality on the left hand side is verified. It follows from the
monotonicity of uncertain measure and the measure inversion theorem that

Ma <€ <bp <M{E € (=00, 0]} = (b).
On the other hand,
M{a<z<b} <M{£€a,+0)} =1—P(a).
Hence the inequality on the right hand side is proved.

Perhaps some readers would like to get an exactly scalar value of the uncertain
measure M{a < z < b}. Generally speaking, it is an impossible job (except
a = —oo or b = 400) if only an uncertainty distribution is available. I would
like to ask if there is a need to know it. In fact, it is not a must for practical
purpose. Would you believe?

Regular Uncertainty Distribution

Definition 1.16. An uncertainty distribution ® is said to be regular if its
inverse function ®1(a) exists and is unique for each a € (0,1).

It is easy to verify that a regular uncertainty distribution ® is a continuous
function. In addition, ® is strictly increasing at each point z with 0 < ®(x) <
1. Furthermore,
lim ®(z)=0, lim ®(z)=1. (1.38)
r——0Q r——+00

For example, linear uncertainty distribution, zigzag uncertainty distribution,
normal uncertainty distribution, and lognormal uncertainty distribution are
all regular.

In this book we will assume all uncertainty distributions are regular. Oth-
erwise, we may give the uncertainty distribution a small perturbation such
that it becomes regular.
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Inverse Uncertainty Distribution

Definition 1.17. Let £ be an uncertain variable with uncertainty distribution
®. Then the inverse function ® 1 is called the inverse uncertainty distribu-
tion of .

Note that the inverse uncertainty distribution ®~!(a) is well defined on the
open interval (0,1). If needed, we may extend the domain via

o 0) = lim o Ha), (1) = lim o Ha). (1.39)
oa— a—
It is easy to verify that inverse uncertainty distribution is a monotone in-

creasing function on [0, 1].

Example 1.11: The inverse uncertainty distribution of linear uncertain
variable L(a,b) is

dHa)= (1 —a)a+ ab. (1.40)
>~ (o)
b ........................................................
0 e

Figure 1.9: Inverse Linear Uncertainty Distribution

Example 1.12: The inverse uncertainty distribution of zigzag uncertain
variable Z(a, b, ¢) is
1-2 2ab, if a <05
(o) = (1~ 2a)at2ad, ifa (1.41)
(2—2a)b+ (2a—1)c, if @ > 0.5.

Example 1.13: The inverse uncertainty distribution of normal uncertain
variable N (e, o) is

> Ha)=e+ o (1.42)

Example 1.14: The inverse uncertainty distribution of lognormal uncertain
variable LOGN (e, o) is

\/30’/7‘{'
“ ) . (1.43)

l—«a

v (@) = exp() (
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Figure 1.10: Inverse Zigzag Uncertainty Distribution

0 / 0.5 1
Figure 1.11: Inverse Normal Uncertainty Distribution

Joint Uncertainty Distribution

Definition 1.18 Let (&1,&2,-+,&n) be an uncertain vector. Then the joint
uncertainty distribution ® : R — [0,1] is defined by

@(1’1,1’2,"‘ ,.’En) = M{gl S 1'1752 S X, - 7571 S x’ﬂ} (144)

for any real numbers 1,2, , Ty.

1.4 Independence

Independence has been explained in many ways. However, the essential fea-
ture is that those uncertain variables may be separately defined on different
uncertainty spaces. In order to ensure that we are able to do so, we may
define independence in the following mathematical form.

Definition 1.19 (Liu [123]). The uncertain variables &1,&2, -+ ,&m are said
to be independent if
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Figure 1.12: Inverse Lognormal Uncertainty Distribution

! 1<i
i=1

for any Borel sets By, Ba, -+, By, of real numbers.

Example 1.15: Let & be an uncertain variable and let £; be a constant c.
For any Borel sets By and Ba, if ¢ € By, then M{& € Bs} =1 and

M{(& € Bi)N (& € Ba)} =M{& € Bi} =M{& € Bi} AM{& € Ba}.
If ¢ € By, then M{& € B2} =0 and
M{(gl S Bl) N (52 S Bg)} = M{@} =0= M{fl S Bl} /\M{fg S Bg}.

It follows from the definition of independence that an uncertain variable is
always independent of a constant.

Theorem 1.14. The uncertain variables &1,&2, -+ ,&n are independent if
and only if
m
M { Ul(gi € Bi)} = 11;355”3\4{@ € B;} (1.46)
1=
for any Borel sets By, Ba, -+ , By, of real numbers.

Proof: It follows from the self-duality of uncertain measure that &£1,&a,-- -,
& are independent if and only if

M{U(fz EBi)} 21—M{ﬂ(§i EBE)}

i=1 i=1
—1— m . A . ,
=1 1£I§nm M{¢; € B} 1rgnia§>§n3\/[ {& € B;}.

Thus the proof is complete.
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Theorem 1.15. Let ®; be uncertainty distributions of uncertain variables
&, 1=1,2,--- 'm, respectively, and ® the joint uncertainty distribution of
uncertain vector (§1,8, -+ ,&m). If &1,&, -+, &n are independent, then we

have
D(x1,29, + ,Tpy) = min P;(x;) (1.47)

1<i<m

for any real numbers 1,2, , Tp,.

Proof: Since £1,&s, -, &, are independent uncertain variables, we have

B(x1, @2, Ty) = M{m(fi < l‘z‘)} = min M{§ <z} = 1gglm¢i($i)

! 1<i<m
i=1 -

for any real numbers x1,xs,- -, x,,. The theorem is proved.

Example 1.16: However, the equation (L47) does not imply that the uncer-
tain variables are independent. For example, let £ be an uncertain variable
with uncertainty distribution ®. Then the joint uncertainty distribution ¥
of uncertain vector (&, ) is

(a1, 2) = M{E < 21, S @2} = M{E < 21} AM{E < 22} = (1) A D(a2)

for any real numbers z; and x2. But, generally speaking, an uncertain vari-
able is not independent with itself.

Theorem 1.16. Let £1,&,- -+ , & be independent uncertain variables, and

f1, fa, -+ s fn measurable functions. Then f1(£1), fo(&2), -, fm(&m) are in-
dependent uncertain variables.

Proof: For any Borel sets By, Bs, - , By, of R, it follows from the definition
of independence that

M {m(fz'(fz‘) € Bi)} = M{ﬂ(fz‘ € fil(Bi))}

= min M{& € f;7'(B)} = min M{f;(&;) € Bi}.

1<i<m 1<i

Thus f1(&1), f2(&2), -+, fm(&n) are independent uncertain variables.

1.5 Operational Law

This section will introduce an operational law of independent uncertain vari-
ables and present a 99-method for calculating the uncertainty distribution of
monotone function of uncertain variables.
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Theorem 1.17 (Liu [123], Operational Law). Let &,&s,- -+ , &, be indepen-
dent uncertain variables, and f : R — R a measurable function. Then

&= f(&,&, -, &) s an uncertain variable such that
s min M6 € B},
f(B1,By,,B,)CB1Sk<n
if Supb min My {& € B} > 0.5
f(B1,Ba,,B,)CB1Sk<n { 1
MeeBy =41~ Sup min My{& € B},
f(B1,B2, - ,Bp)CBe 1sk=n
i Sup min My{& € B} > 0.5
f(B1,Ba, ,By)CBe 1<k<n { }
0.5, otherwise

where B, By, Ba, -+ , B, are Borel sets, and f(B1,Ba, -+ ,B,) C B means
flz1, 22, ,25) € B for any x1 € By,29 € Ba, -+, € By,.

Proof: Write A = {{ € B} and Ay = {& € By} for k =1,2,--- ,n. Itis
easy to verify that

Ay x Ay x -+ x A, C Aif and only if f(By, Ba, -+, B,) C B,

Ay X Ay x -+ x A, C A°if and only if f(By, Ba, -+ ,By) C B°.
Thus the operational law follows from the product measure axiom immedi-
ately.
Increasing Function of Single Uncertain Variable

Theorem 1.18. Let & be an uncertain variable with uncertainty distribution
O, and let f be a strictly increasing function. Then f(£) is an uncertain
variable with inverse uncertainty distribution

U (a) = f(@(a)). (1.48)
Proof: Since f is a strictly increasing function, we have, for each « € (0, 1),
M{f(©) < f(@ N @)} =M{E <27 ()} = a

Thus we have U~1(a) = f(®~!(a)). In fact, the uncertainty distribution of
f(&)is

The theorem is proved.

99-Method 1.1. [t is suggested that an uncertain variable & with uncertainty
distribution ® is represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.49)
X1 €2 x3 st T99
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where 0.01,0.02,0.03,---,0.99 in the first row are the values of uncertainty
distribution ®, and x1,x2,T3, - ,Tog in the second row are the correspond-
ing values of ®~1(0.01),®71(0.02),®1(0.03),---,®71(0.99). Essentially,
the 99-table is a discrete representation of uncertainty distribution ®. Then
for any strictly increasing function f(x), the uncertain variable f(£) has a
99-table,

0.01 0.02 0.03 --- 099

flz1) f(z2) f(xs) -+ f(xo0)

The 99-method may be extended to the 999-method if a more precise result is
needed.

(1.50)

Example 1.17: Let £ be an uncertain variable with uncertainty distribution
®. Then for any number k > 0, the inverse uncertainty distribution of k¢ is

U la) =kd a). (1.51)

If £ is represented by a 99-table,

0.01 0.02 0.03 --- 0.99 (1.52)
T T2 r3 -0 T99
then the 99-method yields that k¢ has a 99-table,
0.01 0.02 0.03 --- 0.99
kxl kxg /CZL’3 e kl’gg (153)

Example 1.18: If € is an uncertain variable with uncertainty distribution ®
and k is a constant, then £+k is an uncertain variable with inverse uncertainty
distribution

U a) =0 (a)+E. (1.54)

If € is represented by a 99-table,

0.01 0.02 0.03 --- 0.99 (1.55)
T To Z3 - Tg99
then the 99-method yields that £ + & has a 99-table,
0.01 002 003 --- 099 (1.56)
ri+k w2tk a3tk - mogtk

Example 1.19: Let £ be a nonnegative uncertain variable with uncertainty
distribution ®. Since z? is a strictly increasing function on [0, +oc0), the
square £2 is an uncertain variable with inverse uncertainty distribution

2

T a)= (27 (). (1.57)
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If £ is represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.58)
X1 €2 x3 st T99

then the 99-method yields that the uncertain variable £2 has a 99-table,

0.01 0.02 0.03 --- 0.99

2 2 2

1.59
Ty T2 U 1‘39 ( )

Example 1.20: Let £ be an uncertain variable with uncertainty distribu-
tion ®. Since exp(z) is a strictly increasing function, exp(§) is an uncertain
variable with inverse uncertainty distribution

U (a) =exp (2 (). (1.60)
If £ is represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.61)
X1 €2 x3 st T99

then the 99-method yields that the uncertain variable exp(£) has a 99-table,

0.01 0.02 0.03 e 0.99

exp(z1) exp(ze) exp(zs) - - exp(zgg) (1.62)

Decreasing Function of Single Uncertain Variable

Theorem 1.19. Let £ be an uncertain variable with uncertainty distribution
O, and let f be a strictly decreasing function. Then f(§) is an uncertainty
distribution with inverse uncertainty distribution

U la)=f(@71(1 — ). (1.63)
Proof: Since f is a strictly decreasing function, we have, for each a € (0, 1),
MFEO<f@I1L-a)) =M= (1-a)} =a.

Thus we have U1 (a) = f(®~!(1 — )). In fact, the uncertainty distribution
of £(€) is
V() =1-@(f ' (2)).

The theorem is proved.

99-Method 1.2. Let & be an uncertain variable represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.64)
X1 €2 x3 st T99
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Then for any strictly decreasing function f(x), the uncertain variable f(§)
has a 99-table,

0.01 0.02 0.03 --- 0.99

flxeg)  flwog) flxor) --- flx1) (1.65)

Example 1.21: Let £ be an uncertain variable with uncertainty distribution
®. Then —¢ has an inverse uncertainty distribution

U a)=—-271(1 - a). (1.66)
If £ is represented by a 99-table,
0.01 0.02 0.03 --- 0.99 (1.67)
T T2 xr3 o0 T99

then the 99-method yields that the uncertain variable —¢ has a 99-table,

0.01 0.02 0.03 --- 0.99
(1.68)

—Tgg —Tgg —Tgr - —T1
Example 1.22: Let £ be a positive uncertain variable with uncertainty
distribution ®. Since 1/z is a strictly decreasing function on (0,+400), the
reciprocal 1/£ is an uncertain variable with inverse uncertainty distribution

1
U Ha) = . 1.
@)= 411 o) (1.69)
If £ is represented by a 99-table,
0.01 0.02 0.03 --- 0.99 (1.70)
T T2 r3 -0 T99

then the 99-method yields that the uncertain variable 1/£ has a 99-table,

0.01 0.02 003 --- 0.99 (1.71)

1/$99 1/$98 1/$97 1/$1 ’
Example 1.23: Let £ be an uncertain variable with uncertainty distribution
®. Since exp(—x) is a strictly decreasing function, exp(—¢) is an uncertain
variable with inverse uncertainty distribution

U a)=exp (-2 (1 —q)). (1.72)
If £ is represented by a 99-table,
0.01 0.02 0.03 --- 0.99 (1.73)
T T2 xr3 o0 To99 '

then the 99-method yields that the uncertain variable exp(—¢) has a 99-table,

0.01 0.02 0.03 e 0.99

exp(—wog) exp(—wos) exp(—wo7) -+ exp(—x1) (1.74)
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Increasing Function of Multiple Uncertain Variables

A real-valued function f(x1, 22, - ,%,) is said to be strictly increasing if
flar, e, xn) < fyr,y2,- - yn) (1.75)

whenever xz; <y; fori =1,2,--- ,n and z; < y; for at least one index j.

Theorem 1.20. Let &1,&, -+, &, be independent uncertain variables with
uncertainty distributions ®,, Py, -+, @, respectively. If f : R" — RN is a
strictly increasing function, then

§=f(&, &, &) (1.76)
s an uncertain variable with inverse uncertainty distribution
Ul a) = f(@r (@), @3 (@), -, @, (@) (1.77)

Proof: Since &,&, - ,&, are independent uncertain variables and f is a
strictly increasing function, we have

M{E < (a)}
= M{f(&1,82,- -, &) < F(@7H(@), @5 (a), -, @, ()}
> M{(& <@ (@) N (& < (@) NN (6 <D, ()}
M{& < @)} AM{& < Dy (@)} A AM{E, < @, (@)}

V

=aNa/N---Na=qa.
On the other hand, there exists some index 4 such that
{f(&1,&, &) < f(@7H(a), D31 (@), -+, @, (@)} € {& < @7 ()}

Thus
M{E< T a)} <M{& < @7 ()} =

It follows that M{¢ < ¥~1(a)} = a. In other words, ¥ is just the uncertainty
distribution of £. In fact, we also have

U(zx) = sup min ®;(z;). (1.78)

f(@1, @2, wn)=0 LSIST

The theorem is proved.

99-Method 1.3. Assume &1,&2, -+ , &, are uncertain variables, and each &;
is represented by a 99-table,
O.(Z)l 0.(32 0.93 O.ZQQ (1.79)
£ ) Ty ot Tog
Then for any strictly increasing function f(x1,xae,---,xy), the uncertain
variable f(&1,&2,- - ,&,) has a 99-table,
0.01 0.02 e 0.99

1.80
f($%7$%aax?) f(l‘%7$§,,1‘3) f(xég,x?)gy"',xgg) ( )



SECTION 1.5 - OPERATIONAL LAw 29

Example 1.24: Let &1,&s, -+ ,&, be independent uncertain variables with
uncertainty distributions ®q, @5, - - , ®,, respectively. Then the sum
=& +&+ - +& (1.81)

is an uncertain variable with inverse uncertainty distribution
T ) =@ a) + 05 (@) + - + D, ). (1.82)
If each & (1 < i < n) is represented by a 99-table,

.01 0.02 o0. - 0.
0(3 0(3 0(33 0?9 (1.83)
rp Ty T3 o Tgg
then the 99-method yields that the sum &; 4 & + - - - + &, has a 99-table,

0.01 0.02 0.03 --- 0.99

n n n n
Sab Yy Soah o Y (1.84)
i=1 i=1 i=1 i=1

Example 1.25: Let £1,&2, - -+ , &, be independent and nonnegative uncertain
variables with uncertainty distributions ®,®s,--- , ®,, respectively. Then
the product

§=8 X & X X (1.85)

is an uncertain variable with inverse uncertainty distribution
T Ha) =07 () x By (@) x --- x D, (a). (1.86)
If each &; (1 <1 <mn) is represented by a 99-table,

0.01 0.02 0.03 --- 0.99
then the 99-method yields that the product & x & X - -+ x &, has a 99-table,

0.01 0.02 003 --- 099

ICRICHICI .89
i=1 i=1 i=1 i=1

Example 1.26: Assume 1, &2, &3 are independent and nonnegative uncer-
tain variables with uncertainty distributions ®1, ®5, @3, respectively. Then
the inverse uncertainty distribution of (&1 + £2)&s3 is

T a) = (87 () + @5 () B3 (). (1.89)
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If &1, &9, &5 are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
e T R
0.01 0.02 0.03 --- 0.99

1.90
(90
0.01 0.02 0.03 --- 0.99

then the 99-method yields that the uncertain variable (& + &)€s has a
99-table,

0.01 0.02 e 0.99

1.91
(@} +ad)a? (@ +ad)ed o (o + 2d0)ado (1.91)

Theorem 1.21. Assume that & and & are independent linear uncertain
variables L(a1,b1) and L(az,bs), respectively. Then the sum & + &2 is also a
linear uncertain variable L(a1 + a2, by + ba), i.e.,

L(a1,b1) + L(az,b2) = L(a1 + az,b1 + ba). (1.92)

The product of a linear uncertain variable L(a,b) and a scalar number k > 0
is also a linear uncertain variable L(ka, kb), i.e.,

k- L(a,b) = L(ka, kb). (1.93)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

®7 (@) = (1 — a)ay + aby,

Oyl (@) = (1 — a)ag + abs.

It follows from the operational law that the inverse uncertainty distribution
of {1 + & is

U (a) = 07} () + 03 (a) = (1 — a)(a1 + az) + a(bi + bo).
Hence the sum is also a linear uncertain variable £(a1 + az2,b1 + b2). The
first part is verified. Next, suppose that the uncertainty distribution of the
uncertain variable £ ~ L(a,b) is ®. It follows from the operational law that
when k > 0, the inverse uncertainty distribution of k¢ is

U la)=kd Ha) = (1 - a)(ka) + a(kb).

Hence k€ is just a linear uncertain variable £(ka, kb).
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Theorem 1.22. Assume that & and & are independent zigzag uncertain
variables Z(a1,b1,c1) and Z(az,ba, c3), respectively. Then the sum & + &2 is
also a zigzag uncertain variable Z(ay + az,b1 + ba, c1 + ¢2), i.e.,

Z(al,bl,cl) + Z(az,bQ,Cz) = Z(a1 + ag, b1 + ba,c1 + 02). (194)

The product of a zigzag uncertain variable Z(a,b,c) and a scalar number
k > 0 is also a zigzag uncertain variable Z(ka, kb, kc), i.e.,

k- Z(a,b,c) = Z(ka, kb, kc). (1.95)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

51 (a) = (1 —2a)a; + 2aby, if o <0.5
! (2 —2a)by 4+ (2a — )¢y, if a > 0.5,

@51(04) _ (1 —2a)az + 2abs, if < 0.5
(2 — 2a)by + (2a — )¢y, if a > 0.5.

It follows from the operational law that the inverse uncertainty distribution
of & + & is

\Ilil(a) _ { (1 —2a)(a1 + a2) + 2a(by + be), ifa<0.5
(2 — 20&)(()1 + b2) + (20& — 1)(01 + CQ), if « > 0.5.

Hence the sum is also a zigzag uncertain variable Z(a; + ag, by + ba, ¢1 + ¢2).
The first part is verified. Next, suppose that the uncertainty distribution of
the uncertain variable £ ~ Z(a, b, c) is ®. It follows from the operational law
that when k > 0, the inverse uncertainty distribution of k¢ is

1 R B (1 —2a)(ka) + 2a(kb), ifaa<0.5
V@) = ke (@) = { (2 — 20)(kb) + (2 — 1)(ke), ifa > 0.5.

Hence k€ is just a zigzag uncertain variable Z(ka, kb, kc).

Theorem 1.23. Let & and & be independent normal uncertain variables
N(e1,o01) and N (e, 03), respectively. Then the sum & + &2 is also a normal
uncertain variable N'(ey + es, 01 + 02), t.e.,

Nei,01) + N(ea,00) = N(ey + ez, 01 + 02). (1.96)

The product of a normal uncertain variable N(e,c) and a scalar number
k > 0 is also a normal uncertain variable N'(ke, ko), i.e.,

k-N(e,o) = N(ke, ko). (1.97)
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Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

CI)l_l(Oé) =e; +

)

o1vV'3 o
In

T l1—«
_ o9vV/3 o

Dyl () =eq + 2 lnl—a'

It follows from the operational law that the inverse uncertainty distribution
of &1 + & is

(o1 + 02)V/3 @

Uha) = Byl a) + 05N (0) = (e +ea)+ 7 TP

Hence the sum is also a normal uncertain variable A(e; + es, 01 + 02). The
first part is verified. Next, suppose that the uncertainty distribution of the
uncertain variable £ ~ N (e, o) is ®. It follows from the operational law that,
when k > 0, the inverse uncertainty distribution of k¢ is

(ko)v/3 mw ¢
m l-«a

U (a) = kd~(a) = (ke) +

Hence k€ is just a normal uncertain variable N (ke, ko).

Theorem 1.24. Assume that & and & are independent lognormal uncertain
variables LOGN (e1,01) and LOGN (ea, 02), respectively. Then the product
&1 - &9 is also a lognormal uncertain variable LOGN (e1 + ez, 01 + 02), i.e.,

LOGN (e1,01) - LOGN (e3,02) = LOGN (e1 + €3, 01 + 02). (1.98)

The product of a lognormal uncertain variable LOGN (e, o) and a scalar num-
ber k > 0 is also a lognormal uncertain variable LOGN (e + Ink, o), i.e.,

k- LOGN (e,0) = LOGN (e + Ink, o). (1.99)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

a \/30’1/7r
11—« ’

o7 (@) = expen) (

o >\/3«72/7r

@, (a) = exp(ez) (1 -

It follows from the operational law that the inverse uncertainty distribution
of 51 . fg is
)\/3((71+0'2)/7r

l1—«
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Hence the product is a lognormal uncertain variable LOGN (e1 + e, 01+ 03).
The first part is verified. Next, suppose that the uncertainty distribution of
the uncertain variable £ ~ LOGN (e, o) is ®. It follows from the operational
law that, when k& > 0, the inverse uncertainty distribution of k£ is

a \/30/71'
U a) = kd (a) = exple + Ink) (1 - a> .

Hence k¢ is just a lognormal uncertain variable LOGN (e + Ink, o).

Example 1.27: Let &,&, -+, &, be independent uncertain variables with
uncertainty distributions ®q, @5, - , ®,, respectively. Then the maximum
=& V&V VE, (1.100)

is an uncertain variable with uncertainty distribution
U(x) = P1(z) A Pa(z) A A Dy (x) (1.101)
whose inverse function is
U Ha) =07 a) VO () V- VO (a). (1.102)
If each & (1 < i < n) is represented by a 99-table,

0.01 0.02 0.03 --- 0.99
B (1.103)
then the 99-method yields that the maximum & V& V- -V E, has a 99-table,

0.01 0.02 003 --- 099

Vi Vab Vab o Vb (1104
i=1 =1 =1

i=1

Example 1.28: Let &1,&s, -+, &, be independent uncertain variables with
uncertainty distributions ®1, ®o,--- , ®,,, respectively. Then the minimum

E=6NEN N (1.105)
is an uncertain variable with uncertainty distribution
U(z) = Dy(z) VO(x) V- VD, (x) (1.106)
whose inverse function is

T a) =3 a) ADS () A - A D, ). (1.107)
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If each &; (1 <14 <mn) is represented by a 99-table,

0.01 0.02 0.03 --- 0.99
xd b R (1.108)
then the 99-method yields that the minimum & A&y A - - - A&, has a 99-table,

0.01 0.02 003 --- 099

n n n n
Avi Avs At A (1109
i=1 i=1 i=1 i=1

Example 1.29: If £ is an uncertain variable with uncertainty distribution ®
and k is a constant, then £V k is an uncertain variable with inverse uncertainty
distribution

\I/_l(a) = (I)_l(a) Vk (1110)
and has a 99-table,
0.01 0.02 003 --- 0.99
z1Vk xa3Vk x3VEk -+ wz99VEk (1.111)

In addition, £ Ak is an uncertain variable with inverse uncertainty distribution

U la) =2 (a) Ak (1.112)
and has a 99-table,
0.01 002 003 --- 099
21 ANk xo Ak z3 Ak -+ g9 Ak (1.113)

Decreasing Function of Multiple Uncertain Variables

A real-valued function f(z1, 22, - ,x,) is said to be strictly decreasing if
f(l’hl'g,-“ 7x’ﬂ) >f(y17y2v'” 7y’ﬂ) (1114)
whenever x; <y; for i =1,2,--- ,n and z; < y; for at least one index j.
Theorem 1.25. Let &,&2, -+ ,&, be independent uncertain variables with
uncertainty distributions ®,, Py, -+, @, respectively. If f : R — RN is a
strictly decreasing function, then
é-:f(glvéév“' 7§n) (1115)

18 an uncertain variable with inverse uncertainty distribution

U a) = f@ 1 - a), @ (L —a), - 8 (L —a)).  (L116)
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Proof: Since &,&, - ,&, are independent uncertain variables and f is a
strictly decreasing function, we have

M{g < ¥ Ha)}

M{f(€r, 62, &) S F(@T1(1—a), @3 (1~ a), -, @, (1 - a))}
M{(& =07 (1—a)N (&> (1—a)N---N (& > 0 (1—a)}
M{& > 711 = )} AM{& > 5 (1 — )} A~ AM{E, > @1 (1 - a)}
aANaA---ANa=a. (By the continuity of ®;’s)

v

On the other hand, there exists some index 4 such that

{f&, &) < feT'(1-a) 2 (1 -a)} C {& > 27 (1 - a)}.

Thus
M{E ST M)} < MG > &7 (1—a)} = o

It follows that M{¢ < ¥~!(a)} = . In other words, W is just the uncertainty
distribution of £. In fact, we also have

U(z) = sup min (1 — ®;(x;)). (1.117)

Fxy,ma, e wy)=a 15150
The theorem is proved.

99-Method 1.4. Assume &1,&9, -+, &, are uncertain variables, and each &;
1s represented by a 99-table,

0.01 0.02 0.03 --- 0.99
B om oo m (1.118)
Then for any strictly decreasing function f(x1,x2, - ,xy,), the uncertain
variable f(&1,&2,- -+, &) has a 99-table,
0.01 0.02 e 0.99
f(xég’x?)g?”' "ng) f($é8’x£2987"' ,.ng) f($%vx%a 7$?)

Alternating Monotone Function of Multiple Uncertain Variables

A real-valued function f(x1,x2,---,x,) is said to be alternating monotone
if it is increasing with respect to some variables and decreasing with respect
to other variables.

Theorem 1.26. Let &1,&, -+, &, be independent uncertain variables with
uncertainty distributions @1, @q, - -+ | @, respectively. If f(xy,x9, - ,xy) is
strictly increasing with respect to x1,xs, - , Ty and strictly decreasing with

respect t0 Tip41, Tma2,** , Ty, then
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ng(glvé-?v"' 7§n)

18 an uncertain variable with inverse uncertainty distribution
U a) = F(@ @), By (0), Bk, (L - ), -, @, (L —a)). (L119)

Proof: We only prove the case of m = 1 and n = 2. Since & and &
are independent uncertain variables and the function f(zq,xz2) is strictly
increasing with respect to x1 and strictly decreasing with x5, we have

M{E< T Ha)t = M{f(&,&) < F(@1 (), @51 (1 — )}
> M{(& < &7 ) N (& > 05 (1 —a))}
=M{& <)} AM{& > 071 (1 —a)}

=alNa=qa.

On the other hand, the event {¢ < W~!(a)} is a subset of either {¢; <
& ()} or {& > @51 (1 — a)}. Thus M{¢ < U~ (a)} < a. It follows that

M{E < T (@)} = a

In other words, V¥ is just the uncertainty distribution of £&. In fact, we also
have

U(x) = 3 in ®;(x;) A i 1—®;(x; . 1.120
0=, (s, een, mn 0-ee)). @
The theorem is proved.

99-Method 1.5. Assume &1,&2, -+, &, are independent uncertain variables,

and each &; is represented by a 99-table,

.01 0.02 0. - 0.
0(3 0(3 0(33 0?9 (1.121)
1 Ty T3t Tgg

If the function f(x1,22, - ,x,) is strictly increasing with respect to x1,xa,
-, Ty and strictly decreasing with Ty 41, Tm42,: - , Ty, then the uncertain

variable f(&1,&,- -+, &) has a 99-table,

0.01 e 0.99
f(w%,...,x"fl’wg(g‘rlj...,:L-gfg) f(l'ég,"‘,1’%,1’?+1,"‘,x?)

Example 1.30: Let & and & be independent uncertain variables with un-
certainty distributions ®; and ®5, respectively. Then the inverse uncertainty
distribution of the difference & — & is

T o) =d a) - 51 (1 — ). (1.122)
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If & and x5 are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
Tpowy w3 e Ty
0.01 0.02 0.03 --- 0.99
ST SR B
then the 99-method yields that & — & has a 99-table,
0.01 0.02 0.03 e 0.99
T R M e O 1

37

(1.123)

(1.124)

(1.125)

Example 1.31: Let & and & be independent and positive uncertain vari-
ables with uncertainty distributions ®; and ®5, respectively. Then the inverse

uncertainty distribution of the quotient & /& is
U a) = 07 () /By (1 - a).

If & and & are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
o omh @b e ady
0.01 0.02 0.03 --- 0.99
TS B
then the 99-method yields that &; /& has a 99-table,
0.01 0.02 0.03 .-+ 0.99
wyfxgy wh/eds xh/ad, oo whe/ad

(1.126)

(1.127)

(1.128)

(1.129)

Example 1.32: Assume &1, &,&3 are independent and positive uncertain
variables with uncertainty distributions ®q, ®o, ®3, respectively. Then the

inverse uncertainty distribution of &1 /(&2 + &3) is
Ul a) = 27 (a)/ (@51 (1 — @) + @5 (1 — a)).

If &1, &9, &5 are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
Tpoowy @y Tg
0.01 0.02 0.03 --- 0.99
ot a3 @i o ad
0.01 0.02 0.03 --- 0.99
O R R
then the 99-method yields that & /(&2 + &3) has a 99-table,
0.01 0.02 - 0.99

w1/(x39 + xd9) w3/(xdg +xdg) -0 wgo/ (2} + )

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)
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Operational Law for Boolean Uncertain Variables

A function is said to be Boolean if it is a mapping from {0,1}" to {0,1}. For
example, the following are Boolean functions,

flxi, e, - ,xn) =21 Va2 V- Vg, (1.135)
f(@1, 20, xn) =21 ANT2 A ATy, (1.136)

An uncertain variable is said to be Boolean if it takes values either 0 or 1.
For example, the following is a Boolean uncertain variable,

1 with uncertain measure a
_ (1.137)

0 with uncertain measure 1 — a

where a is a number between 0 and 1. This subsection introduces an opera-
tional law for this type of uncertain variables.

Theorem 1.27. Assume that &1,&2, -+ , &, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
& = (1.138)

0 with uncertain measure 1 — a;

fori=1,2--- n. If f is a Boolean function (not necessarily monotone),
then &€ = f(&1,&2,- -+, &) s a Boolean uncertain variable such that

sup min v;(z;),
fler,aa, - on)=1 1SS0

if sup min v;(x;) < 0.5
M{¢ =1} = Sz m) L ISEET (1.139)
1- sup min v;(x;),

f(z1,m0, 2n)=0 15150

if sup min v;(x;) > 0.5
f(@1,ma, mn)=1 15150

and

sup min v;(z;),
flar,@a, - wn)=0 1SS0

i Sup min v;(z;) < 0.5
M{ =0} = f@r@z, s wn)=0 ISIST (1.140)
.

f(z1,z2, ,zn)=1 1<i<n

if sup min v;(x;) > 0.5
f(z1,m0, 2n)=0 1SS0

where x; take values either 0 or 1, and v; are defined by

—ai, ifxri=0

vili) = { ) @ fai=1 (1.141)

fori=1,2,--- n, respectively.
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Proof: It follows from the operational law and independence of uncertain
variables that

sup min M{¢; € B;},
f(B1,Bg,,By)=115i<n { }

if sup min M{¢; € B;} > 0.5
f(B1,Ba,,By)=115i<n

M{=1}=¢ 1-— sup min M{¢; € B}, (1.142)
f(B1,Ba,-,By)=015i<n

if sup min M{& € B;} > 0.5
F(B1,Ba, o By)=0 15150

0.5, otherwise

where By, Bs, -+ , By, are subsets of {0,1}, and f(B1, Ba,- -+, B,) = 1 means

flz1, 22, ,2) = 1 for any x1 € By,29 € Ba, - ,x, € By,. Please also
note that
vi(1) = M{& =1}, vi(0) = M{§; = 0}
for ¢ = 1,2,--- ,n. The argument breaks down into four cases. Case 1:
Assume
sup min v;(x;) < 0.5.
F@r,,0 wn) =1 15950 oo
Then we have
sup min M{& € B;}=1— sup min v;(x;) > 0.5.
F(B1,Ba,- ,By)=0 1Sisn f@r,ma, w,)=1 15050
It follows from (LI42)) that
M{g=1} = sup min v;(x;).
f(z1,m2, on)=1 15050
Case 2: Assume
sup min v;(x;) > 0.5.
F@r,@z, o ap)=115E50
Then we have
sup min M{& € B;}=1— sup min v;(x;) > 0.5.
f(B1,Ba,+,By)=115isn f(@1,@2, wn)=0151SN
It follows from (L142)) that
ME=1}=1—- sup min v;(x;).

f(@1,@2, 2n)=0 15150

Case 3: Assume

sup min v;(z;) = 0.5,
f@y,wa, e x,)=1150S0

sup min v;(x;) = 0.5.
f@1,wa, o x,)=0 1SS0
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Then we have

Sup min M{&; € B;} = 0.5,
f(B1,Bg,,By)=11%i<n

sup min M{¢; € B;} = 0.5.
f(B1,Bz, -, Byp)=015isn

Tt follows from (LI42) that

ME=1}=05=1- sup min v;(x;).
Fx1,@0, 0n)=0 1SN

Case 4: Assume

o2, vi(ws) = 0.5,

sup min v;(x;) < 0.5.

fz1,m2, oy )=0 1SN

Then we have
f(Bl,BS?P,Bn)ﬁ 1I§nzl£n M{& eB=1- f(zl,mskpv%)zo 1rgnzléln vi(z;) > 0.5.
It follows from ([L142)) that
quz1}:]f_ﬂmxiP@m:m§ﬂ#”““)

Hence the equation (ILI39) is proved for the four cases. Similarly, we may
verify the equation ((LT40).

Theorem 1.28. Assume that £1,&2,- -+ ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
& = . . (1.143)
0 with uncertain measure 1 — a;
fori=1,2,--- ,n. Then the minimum
=G NGEAN N (1.144)
18 a Boolean uncertain variable such that
M{E=1}=a1 ANag A+ Aay, (1.145)

M{E=0t=(1—a1)V(I—ax)V-V(l—ap). (1.146)
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Proof: Since £ is the minimum of Boolean uncertain variables, the corre-
sponding Boolean function is

flzr,@a, - jxp) =21 A2 Ao Ay, (1.147)
Without loss of generality, we assume a; > as > --+ > a,. Then we have

sup min v;(z;) = min v;(1) = apn,
F@ran wn)=1 1Si<n 1<i<n

in vi(z;) = (1—ay) A min (a; V(1 —a
B i) = (=) A i (00 (1 =)

where v;(z;) are defined by (LIZ]) for ¢ = 1,2, -, n, respectively. When
an < 0.5, we have

sup min v;(z;) = a, < 0.5.
f@y,wa, e x,)=1150S0

It follows from Theorem that

MiE=1}= PR 22, vil@:) = an.
When a,, > 0.5, we have
Forane son)=1 2R, vilmi) = an 2 05
It follows from Theorem that
M{g=1}=1— sup min v;(z;) =1— (1 —ap) = ay.
Fo1sa ) =0 1Si<n
Thus M{¢ = 1} is always a,, i.e., the minimum value of a;,as, - - ,a,. Thus

the equation (ILI43)) is proved. The equation ([LI46]) may be verified by the
self-duality of uncertain measure.

Theorem 1.29. Assume that &1,&2,- -+ ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
&= : . (1.148)
0 with uncertain measure 1 — a;
fori=1,2,--- ,n. Then the maximum
E=6VEV - VE, (1.149)
18 a Boolean uncertain variable such that
M{E¢=1}=a1Vaza V- Vapy, (1.150)

M{E=0t=(1—-a)) A1 —ax)A---A(1—ay). (1.151)
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Proof: Since ¢ is the maximum of Boolean uncertain variables, the corre-
sponding Boolean function is

flzr, e, - jzp) =21 Vaa V- - Va,. (1.152)

Without loss of generality, we assume a1 > ay > --+ > a,. Then we have

; () = a; A mi (1= a;
o ST ) = i (a0 (1)
f(wl,wzs,l'l'l.),wn)zo 1212,1;1” Vi (1'2) B 1I§Hiléln Vi (0) =l-m

where v;(z;) are defined by ([LIZ) for ¢ = 1,2, ,n, respectively. When
a1 > 0.5, we have

sup min v;(x;) > 0.5.
f@y,wa, e x,)=1150S0

It follows from Theorem that

M{g=1}=1- sup min v;(x;) =1— (1 —a1) = ay.
F(z1,m2, ) =0 1SISN
When a; < 0.5, we have
sup min v;(x;) = a1 < 0.5.
ol i i(x)
It follows from Theorem that
M{E=1} = sup min v;(z;) = ay.
f¢=1} P Y i(x)

Thus M{¢ = 1} is always a1, i.e., the maximum value of aj,as, - ,a,. Thus
the equation (LI50) is proved. The equation ([LI5]]) may be verified by the
self-duality of uncertain measure.

Theorem 1.30. Assume that £&1,&2,- -+ ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
&= : . (1.153)
0 with uncertain measure 1 — a;
fori=1,2,--- n. Then (k-out-of-n)
1, 4 >k
gz ngl +§2+ +£n_ (1.154)
0, if&r+&+--+& <k
18 a Boolean uncertain variable such that
M{& = 1} = the kth largest value of a1,az, - ,an, (1.155)

M{E = 0} = the kth smallest value of 1 —ay,1 —ag,---,1 —a,. (1.156)
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Proof: This is the so-called k-out-of-n system. The corresponding Boolean
function is

1, ifey+ze+-+a, >k

. (1.157)
0, fei+zo+-4a, <k.

f($1,.1‘2,"' 7$7l) :{

Without loss of generality, we assume a1 > as > --+ > a,. Then we have

i () = ar A mi V(1 —a)),
f(xl,xzs,l'l'l.),xn):1 1I§ni1£" vilw:) = ai ’€r<ni1£n(aZ ( a:))
~ 1 . ) = (1 — A 3 -V (1 —a;
o i ) = () i 0 1)

where v;(z;) are defined by (LIZ]) for ¢ = 1,2, -, n, respectively. When
ar > 0.5, we have

sup min v;(x;) > 0.5.
fl@1,@2, on)=115150 i(m
It follows from Theorem [[L.27] that
M{g=1}=1— sup min v;(z;) =1— (1 —ax) = ak.
f(z1,20, 2n)=0 1SS
When aj, < 0.5, we have
sup min v;(x;) = ar < 0.5.
f(z1,22, xn)=1 1<i<n o
It follows from Theorem [[L.27] that
M{E{=1}= sup min v;(z;) = ak.
flar,z, wn)=1 1SS0
Thus M{¢ = 1} is always ag, i.e., the kth largest value of a1,as, - ,ay,.

Thus the equation ([ZI5H) is proved. The equation (I56) may be verified
by the self-duality of uncertain measure.

Operational Law with Joint Uncertainty Distribution

Let &1,&,- -+, &, be uncertain variables with joint uncertainty distribution
®. It is clear that ®~'(«) is a set of R™ rather than a single point. Assume
f :R™ — R is an increasing function. It follows from the operational law and
maximum uncertainty principle that f(&, &z, ,&,) is an uncertain variable
with inverse uncertainty distribution

min flzr, 20, ,2n), ifa<0.5
\Ilfl(a) B (z1,@2, ,xn)EDP~ () (1 ]_58)
max flzr, 20, ,2p), if a>0.5. .
(1,22, ,2n)EDP~ ()
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If f:R™ — R is a decreasing function, then f(&1,&2, - ,&,) is an uncertain
variable with inverse uncertainty distribution

min flxr, 29, -+ ), ifa<0.5
\I/_l( ) (1,22, ,2n)EP 1 (1-0) (1 159)
) = .
max flxr, 29, -+ ), if @ >0.5.

(1,22, ,2n)EP"(1-0)

1.6 Expected Value

Expected value is the average value of uncertain variable in the sense of
uncertain measure, and represents the size of uncertain variable.

Definition 1.20 (Liu [120]). Let & be an uncertain variable. Then the ex-
pected value of € is defined by

+oo

0
E[¢] = i M{& > ridr —/_ M{E < ridr (1.160)

provided that at least one of the two integrals is finite.

Theorem 1.31. Let £ be an uncertain variable with uncertainty distribution
®. If the expected value exists, then

+o0 0
E[¢] = /0 (1—®(x))dx — / O (z)dz. (1.161)

— 00

Proof: It follows from the definitions of expected value operator and uncer-
tainty distribution that

“+o0 0
Bl = [ otz rjar— [ e <rjar
“+o0 0
- /0 (1— &(2))de — /_OO B(z)da.

See Figure The theorem is proved.

Theorem 1.32. Let & be an uncertain variable with uncertainty distribution
®. If the expected value exists, then

E[¢] = /0 d(a)doa (1.162)

Proof: It follows from the definitions of expected value operator and uncer-
tainty distribution that
+o0o

0
Bl = M&ZAM—[_M&SHM

0

1 3(0) 1
:/ <I>*1(a)da—|—/ éfl(a)da:/ & (a)do.
®(0) 0 0
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5 x
“+o0 0
Figure 1.13: E[¢] = /0 (1—®(x))dx — [ O (x)dx
d(x)
1
O- T

1
Figure 1.14: E[¢] :/ & Ha)da
0

See Figure [[T4l The theorem is proved.

Theorem 1.33. Let £ be an uncertain variable with uncertainty distribution
®. If the expected value exists, then

+o00
Ele] = / 2dd(z). (1.163)

— 00

Proof: It follows from Theorem that
1
E[¢] = / & !a)da.
0

Now write ®~!(a) = x. Then we immediately have a = ®(z). The change
of variable of integral produces (LI63]). The theorem is verified.

Example 1.33: Suppose that £ is a discrete uncertain variable represented by

g= 01 %2 7 Om (1.164)

1 o e Tm



46 CHAPTER 1 - UNCERTAINTY THEORY

where 1 < 29 < -+ < xppand 0 < a1 < as < -+ < a,, = 1. The
uncertainty distribution ® of £ is a step function shown in ([35]). Write
ag = 0. If 1 > 0, then the expected value is

x1 Tig1 +oo
E[g}:/ 1dx+Z/ 1—azdx—|—/ 0dz
0 x

m

m—1

=2 + Z(l — ai)(xi+1 — ZL’Z) +0
i=1

m
= Z(ai — 1)y
=1

If x,, <0, then the expected value is

T m—1 Ti41 0
El¢] = —/ 0dz — Z/ a;dx —/ 1dz
—00 i1 YT Tom

m—1

0— Z Oti(l‘zq_l — ﬂ?z) + T

=1
m
= § i T Qg 1

If there exists an index k such that xx < 0 < xp41, then the expected
value is

E[g]:/:kﬂ(l—ak )z + Z /+ 1— an)d

= apn(l—ap)+ Y (1—a)(@ipr — ;)
i=k+1

— g «; J;Z+1 —|—J;kak
=1

m
=2 (ai- i)
Thus we always have the expected value

El¢] = Z(Oéi —-1)T; (1.165)

where ag =0 and «,, = 1.
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Example 1.34: Let £ ~ L(a,b) be a linear uncertain variable. If a > 0,
then the expected value is

Elg] = (/Oaldm+/ab (l—z:Z)dx—&—/:OOOdm) —/OOOdez a;b.

If b < 0, then the expected value is

400 a b, 0
E[g]:/ 0dx—</ de+/ v adm+/ 1dac> _ath
0 —00 a b—a b 2

If a < 0 < b, then the expected value is

b 0
r—a r—a a+b
El€] = 1— — = .
g /o< b—a)dx /ab—adgc 2

Thus we always have the expected value

a+b

Blg) = (1.166)

Example 1.35: The zigzag uncertain variable & ~ Z(a, b, ¢) has an expected

value
a+2b+c

Bl ="

(1.167)

Example 1.36: The normal uncertain variable £ ~ N (e, o) has an expected
value e, i.e.,

El¢] = e. (1.168)

Example 1.37: If 0 < 7/4/3, then the lognormal uncertain variable & ~
LOGN (e, o) has an expected value

E[€] = V30 exp(e) cse(V30). (1.169)
Otherwise, E[¢] = +o0.

Linearity of Expected Value Operator

Theorem 1.34. Let & and i be independent uncertain variables with finite
expected values. Then for any real numbers a and b, we have

Ela& + bn] = aE[€] + bE[n). (1.170)

Proof: Suppose that £ and n have uncertainty distributions ® and ¥,
respectively.
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STEP 1: We first prove E[af] = aF[{]. If a = 0, then the equation holds
trivially. If a > 0, then the inverse uncertainty distribution of af is

T a) =a® ().

It follows from Theorem that

1 1
Elag] :/ a® (a)da = a/ & Ha)da = aE[¢].
0 0
If a < 0, then the inverse uncertainty distribution of af is
T a)=a® (1 - a).

It follows from Theorem that
1 1
Elag] = / a® (1 —a)da = a/ & Ha)da = aE[E].
0 0

Thus we always have E[af] = aE[¢].

STEP 2: We prove E[§ +n] = E[¢] + E[n]. The inverse uncertainty distri-
bution of the sum £ + 7 is

T a)=d " a)+ T a).

It follows from Theorem that

Elt 1) = / T} (a)da = / 3 (a)da + / ¥} (a)da = B[] + Eln.

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1 and
2 that
Efag + bn] = Ela] + E[bn] = aE[¢] + bE[n].

The theorem is proved.

Example 1.38: Generally speaking, the expected value operator is not
necessarily linear if £ and 5 are not independent. For example, take (I, £, M)

tobe {v1,72,v3} with M{v1} = 0.7, M{72} = 0.3, M{y3} = 0.2, M{y1,72} =
0.8, M{~y1,73} = 0.7, M{~2,v3} = 0.3. The uncertain variables are defined by

L ify=m 0, ify=m
§i(y) = 0, ify=m &(y) = 2, ify=1s
2a lf’}/:"}/g, 37 lf’y:’}@

Note that & and & are not independent, and their sum is

]-7 lf’y =N
(G1+&)Y) =9 2, ify="
5, if v =1s.
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Thus E[¢1] = 0.9, E[¢] = 0.8, and E[&; + &] = 1.9. This fact implies that
E[&1 + &] > ElG] + Elé).

If the uncertain variables are defined by

O, lf’}/:’yl O’ lf’Y:’Yl
my) = 1, ify=m n2(7y) = 3, ify=mv
2, if y =13, 1, if v =ns.
Then we have
0, ify=m
(m+m)(y) =9 4 ify=m7
3, ify=1s.

Thus E[n] = 0.5, E[nz] = 0.9, and E[n; + n2] = 1.2. This fact implies that
Elm + n2] < Elm] + En].

Expected Value of Function of Single Uncertain Variable
Let £ be an uncertain variable, and f : ® — R a function. Then the expected
value of f(&) is

+oo

0
Elfe)= [ M{F©) > rjdr— / M{F(©) < r}dr.

0

For random case, it has been proved that the expected value E[f ()] is the
Lebesgue-Stieltjes integral of f(x) with respect to the uncertainty distribution
® of ¢ if the integral exists. However, generally speaking, it is not true for
uncertain case.

Example 1.39: We consider an uncertain variable £ whose first identification
function is given by
0.3, if —1<z<0
AMz) =
0.5, ifo<z<1.
Then the expected value E[¢?] = 0.5. However, the uncertainty distribution
of £ is
0, ifz<-1
03, if —1<z<0
0.5, ifo<z<1
1 ifz>1
and the Lebesgue-Stieltjes integral

O(z) =

)

+oo
/ 22d®(z) = (=1)? x 0.3+ 0% x 0.2 +1% x 0.5 = 0.8 # E[¢?].
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Theorem 1.35 (Liu and Ha [132]). Let & be an uncertain variable whose
uncertainty distribution ®. If f(x) is a strictly monotone function such that
the expected value E[f(§)] exists, then

+oo

Blf(€)] = / F(2)dd(z). (1.171)

— 00

Proof: We first suppose that f(z) is a strictly increasing function. Then
f(€) has an uncertainty distribution ®(f~!(x)). It follows from the change
of variable of integral that

+oo +oo
E[f(€)] = / 2dB(f 7 (x)) = / f(2)dB(z).

If f(z) is a strictly decreasing function, then — f(x) is a strictly increasing
function. Hence

+oo 400
Blf(€)] = —E[-£(6)] = - / —f(a)dd(x) = / F(y)dB(y).
The theorem is verified.

Example 1.40: Let £ be a positive linear uncertain variable £(a,b). Then
its uncertainty distribution is ®(z) = (z — a)/(b — a). Thus

b 2 2
a® +b°+ab
B¢ = [ ato@) =" LT

Example 1.41: Let £ be a positive linear uncertain variable £(a,b). Then
its uncertainty distribution is ®(z) = (z — a)/(b — a). Thus

b — expla
Elexp(€)] :/ exp(z)d®(z) = exp(bl)) e p( )

Theorem 1.36 (Liu and Ha [132]). Assume & is an uncertain variable with
uncertainty distribution ®. If f(x) is a strictly monotone function such that
the expected value E[f(£)] exists, then

1
E[f(6)] = / (& (@))da (1172)

Proof: Suppose that f is a strictly increasing function. It follows from
Theorem [[.20 that the inverse uncertainty distribution of f(€) is
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v a) = F(@(a)).

By using Theorem [[32 the equation (ILI72)) is proved. When f is a strictly
decreasing function, it follows from Theorem [[.25]that the inverse uncertainty
distribution of f(&) is

T a) = f(@ (1 - a)).

By using Theorem and the change of variable of integral, we get the
equation (LI72). The theorem is verified.

Example 1.42: Let £ be a nonnegative uncertain variable with uncertainty
distribution ®. Then

E[VE = /O Ve Ha)da. (1.173)

Example 1.43: Let & be a positive uncertain variable with uncertainty
distribution ®. Then

B E] :/01 q)l(i_a)da:/ol q)ill(a)da. (1.174)

Expected Value of Function of Multiple Uncertain Variables

Theorem 1.37 (Liu and Ha [132]). Assume &,&2, -+ ,&, are indepen-
dent uncertain variables with uncertainty distributions ®1, o, -, P, re-
spectively. If f: R™ — R is a strictly monotone function, then the uncertain
variable £ = f(&1,&2, -+ ,&n) has an expected value

1
E[¢] = /O f(@7 ), @5 (a), -, @, (a))da (1.175)

provided that the expected value E[€] exists.

Proof: Suppose that f is a strictly increasing function. It follows from
Theorem [I.20] that the inverse uncertainty distribution of £ is

U a) = f(@1 (o), D3 (a), -, @5 ().

n

By using Theorem [[L32] we obtain (LI75). When f is a strictly decreasing
function, it follows from Theorem [[.27] that the inverse uncertainty distribu-
tion of £ is

\Ilfl(a) = f(<I>1_1(1 —a),<I>2_1(1 —a),- - ,@;1(1 —a)).

By using Theorem [[L32] and the change of variable of integral, we obtain
(CI7H). The theorem is proved.

Example 1.44: Let £ and 7 be independent and nonnegative uncertain
variables with uncertainty distributions ® and W, respectively. Then
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1
Eén) = /O &)U (a)da. (1.176)

Exercise 1.1: What is the expected value of an alternating monotone func-
tion of uncertain variables?

Exercise 1.2: Let ¢ and n be independent and positive uncertain variables
with uncertainty distributions ® and ¥, respectively. Prove

E m :/01 \I/(I)l(l(f)a)da. (1.177)

1.7 Variance

The variance of uncertain variable provides a degree of the spread of the
distribution around its expected value. A small value of variance indicates
that the uncertain variable is tightly concentrated around its expected value;
and a large value of variance indicates that the uncertain variable has a wide
spread around its expected value.

Definition 1.21 (Liu [120]). Let £ be an uncertain variable with finite ex-
pected value e. Then the variance of & is defined by V[£] = E[(€ — €)?].

Let & be an uncertain variable with expected value e. If we only know its
uncertainty distribution ®, then the variance

+oo
Vid = M- e)? = r}dr

+oo

= M{(E=e+Vr)U(§<e—r)tdr
0
+oo
< / (M{E > e+ v/r} + M€ < e — v/r})dr
0
+o00
:/ (1 —®(e++/r) +®(e—+/r))dr
0
_ /ﬂo 2(r — e)(1 — B(r) + (2 — r))dr-
For this case, we will stipulate that the variance is

+oo
V¢ = 2/ (r—e)(1—2(r) + ®(2e — r))dr. (1.178)

Mention that this is a stipulation rather than a precise formula!

Example 1.45: It has been verified that the linear uncertain variable £ ~
L(a,b) has an expected value (a+b)/2. Note that the uncertainty distribution
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is ®(z) = (x —a)/(b—a) when a < z < b. It follows from the stipulation
(CI7Y) that the variance is

b 2

a+b r—a b-—r (b—a)

=2 — 1-— = .
viel /(a+b)/2 (T 2 ) ( b—a * b—a) & 12

In fact, a precise conclusion is (b —a)?/24 < V[¢] < (b —a)?/12.

Example 1.46: It has been verified that the normal uncertain variable
& ~ N (e, o) has expected value e. It follows from the stipulation (LIT78) that
the variance is

V(] = o (1.179)

In fact, a precise conclusion is 02/2 < V[¢] < o2

Theorem 1.38. If £ is an uncertain variable with finite expected value, a
and b are real numbers, then V[a& + b] = a?V[¢].

Proof: It follows from the definition of variance that
Via& +b] = E [(a& + b — aE[¢] — b)*] = a®E[(§ — E[¢])?] = a®V[¢].

Theorem 1.39. Let £ be an uncertain variable with expected value e. Then
VI[E] = 0 if and only if M{¢ =e} = 1.
Proof: If V[¢] = 0, then E[(¢ —€)?] = 0. Note that
+oo
B¢ —¢)’] = M{(& —e)? > rydr
0

which implies M{(¢ — e)? > r} = 0 for any 7 > 0. Hence we have
M{(€ — e =0} = 1.
That is, M{{ = e} = 1. Conversely, if M{¢ = e} = 1, then we have M{({ —
e)?=0} =1 and M{(£ —e)? > r} =0 for any r > 0. Thus
+oo
VIE] = M{(§—e)* 2 r}dr =0.
0

The theorem is proved.

Maximum Variance Theorem

Let ¢ be an uncertain variable that takes values in [a, b], but whose uncer-
tainty distribution is otherwise arbitrary. If its expected value is given, what
is the possible maximum variance? The maximum variance theorem will an-
swer this question, thus playing an important role in treating games against
nature.
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Theorem 1.40. Let f be a convex function on [a,b], and & an uncertain
variable that takes values in [a,b] and has expected value e. Then

b—e e—a
G R O RS 0} (1.180)
Proof: For each v € T', we have a < £() < b and
_b=&(v) () —a
¢0) = b—a at b—a b.

It follows from the convexity of f that

rem < s+ 0 g,

Taking expected values on both sides, we obtain the inequality.

Theorem 1.41 (Maximum Variance Theorem). Let & be an uncertain vari-
able that takes values in [a,b] and has expected value e. Then

V[l < (e—a)(b—e) (1.181)
and equality holds if the uncertain variable £ is determined by

b—e

b o’ ifr=a

M=z} = (1.182)
e—a .
b’ ifx=0.

Proof: It follows from Theorem[[40immediately by defining f(z) = (z—e)?.
It is also easy to verify that the uncertain variable determined by ([LI82) has
variance (e — a)(b — e). The theorem is proved.

1.8 Moments

Definition 1.22 (Liu [I20]). Let & be an uncertain variable. Then for any
positive integer k,

(a) the expected value E[¢¥] is called the kth moment;

(b) the expected value E[|€|F] is called the kth absolute moment;

(c) the expected value E[(€ — E[€])*] is called the kth central moment;

(d) the expected value E[|¢ — E[€]|*] is called the kth absolute central moment.

Note that the first central moment is always 0, the first moment is just the
expected value, and the second central moment is just the variance.

Theorem 1.42. Let £ be a nonnegative uncertain variable, and k a positive
number. Then the k-th moment

Ele") = k /0 e > ) (1.183)
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Proof: It follows from the nonnegativity of £ that

El¢* = / M{¢" > z}da = / M{¢ > r}drt = k/ rFIM{E > r}dr.
0 0 0
The theorem is proved.

Theorem 1.43. Let £ be an uncertain variable, and t a positive number. If
E|¢]'] < oo, then

lim x"M{|¢| >z} = 0. (1.184)

Conversely, if (I.187) holds for some positive numbert, then E[|{|*] < co for
any 0 < s < t.

Proof: It follows from the definition of expected value operator that

+oo
Bl = ; M{J¢]" > r}dr < oco.

Thus we have
—+oo

lim M{|¢[" > r}dr = 0.

r—00 It/z
The equation ([LI84) is proved by the following relation,

+o00 xt 1
MUl 2 rhr = [ M€l 2 rhdr = atM{le] 2 )
2 xt/2

xzt/
Conversely, if (II84) holds, then there exists a number a > 0 such that
rM{|¢| > 2} <1, Vx> a.

Thus we have

a —+o00
Ble] = / Mgl = rhar+ [ el = rhr

a —+o00

= [ aflel = riars [ s taglg) =
0 a
a +o00
M s d sftfld

g/o {\€|Zr}r+s/a Pty

+oo
< +o0. (by/ rPdr < oo for anyp<—1>
a

The theorem is proved.



56 CHAPTER 1 - UNCERTAINTY THEORY

Theorem 1.44. Let & be an uncertain variable that takes values in [a,b]
and has expected value e. Then for any positive integer k, the kth absolute
moment and kth absolute central moment satisfy the following inequalities,

b—e e—a
k < k k
Ellef*l <, _ lal*+ b, (1.185)
b—e e—a
—elF < _ gk _ \k
Ell§=el]<,  (e—a)f+,  (b—e) (1.186)

Proof: It follows from Theorem [[40 immediately by defining f(x) = |z|"
and f(z) = |z — e|*.

1.9 Critical Values

In order to rank uncertain variables, we may use two critical values: opti-
mistic value and pessimistic value.

Definition 1.23 (Liu [I20]). Let & be an uncertain variable, and o € (0,1].
Then

&oup(@) = sup {r | M{¢ > 7} > o} (1.187)

1s called the a-optimistic value to &, and
Gint() = inf {r | M{¢ <r} > a} (1.188)
1s called the a-pessimistic value to &.

This means that the uncertain variable £ will reach upwards of the
a-optimistic value &gup(a) with uncertain measure o, and will be below the
a-pessimistic value &ue(@) with uncertain measure a.

Theorem 1.45. Let & be an uncertain variable with uncertainty distribution
®. Then its a-optimistic value and a-pessimistic value are

gsup(a) = (I)il(]' - a)? (1189)
Gint(a) = @ 1(a). (1.190)

Proof: It follows from the definition of a-optimistic value and a-pessimistic
value immediately.

Example 1.47: Let £ be a linear uncertain variable £(a,b). Then its a-
optimistic and a-pessimistic values are

Esup(a) = aa + (1 — a)b,

éint(@) = (1 — a)a + ab.
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0 eu(@) Emle)

Figure 1.15: Optimistic Value and Pessimistic Value

Example 1.48: Let & be a zigzag uncertain variable Z(a,b,c). Then its
a-optimistic and a-pessimistic values are

2ab + (1 — 2a)c, if a <0.5
gsup(a) = .
(2a—1)a+ (2 —2a)b, if a>0.5,

() = (1 —2a)a+ 2ab, ifaa<0.5
PR (2 - 2a)b+ (20— 1)e, if a > 0.5.

Example 1.49: Let ¢ be a normal uncertain variable N'(e,o). Then its
a-optimistic and a-pessimistic values are

gsup(a) =€ — In s

finf(a) =e+ In

Example 1.50: Let ¢ be a lognormal uncertain variable LOGA (e, o). Then
its a-optimistic and a-pessimistic values are

11—« \/3«7/71'
a )

Eunle) = oxp(e)

a \/30’/7‘{'
1« '

6l = exple)

Theorem 1.46. Let £ be an uncertain variable, and o € (0,1]. Then for
any positive number €, we have

M{E < &nr(a) +e} >, M{E > &upla) — e} > a. (1.191)
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Proof: It follows from the definition of a-pessimistic value that there exists
a decreasing sequence {z;} such that M{{ < z;} > o« and x; | &ne(a) as
it — 00. Thus for any positive number ¢, there exists an index 7 such that
2; < &ng(a) + €. Hence

M{E < &ine(a) + e} > M{E <z} >

Similarly, there exists an increasing sequence {z;} such that M{{ > z;} > «
and z; 1 &up(@) as i — co. Thus for any positive number ¢, there exists an
index 4 such that z; > &up(a) — €. Hence

M{g > fsup(a) - 5} > M{f > $z} > Q.
The theorem is proved.

Theorem 1.47. Let & be an uncertain variable, and o € (0,1]. Then we have
(a) &nt(@) is an increasing and left-continuous function of «;
(b) &sup(@) is a decreasing and left-continuous function of o.

Proof: (a) Let a3 and as be two numbers with 0 < oy < ag < 1. Then for
any number r < &up(az2), we have

MA{E>r} > az > ag.

Thus, by the definition of optimistic value, we obtain &up(a1) > Eeuplag).
That is, the value &up(e) is a decreasing function of «. Next, we prove the
left-continuity of &n¢(a) with respect to a. Let {«;} be an arbitrary sequence
of positive numbers such that a; T a. Then {&n(a;)} is an increasing se-
quence. If the limitation is equal to &n¢(a), then the left-continuity is proved.
Otherwise, there exists a number z* such that

.lim finf(oti) <z < ginf(a)-
i—00

Thus M{¢ < 2*} > «; for each i. Letting i — oo, we get M{& < z*} > au
Hence z* > &ne(a). A contradiction proves the left-continuity of &,¢(ar) with
respect to . The part (b) may be proved similarly.

Theorem 1.48. Let & be an uncertain variable, and o € (0,1]. Then we have
(a) if & > 0.5, then &inr(a) > Laup(Q);
(b) if a < 0.5, then &ne(er) < &sup(@).

Proof: Part (a): Write £(a) = (&ne(a) + Eoup (@) /2. If &ing(a) < Eupl(a),
then we have

1>M{€ < &)} +M{€>E(a)} >ata> 1

A contradiction proves &int(a) > Eup(a). Part (b): Assume that ine(a) >
Eup(a). It follows from the definition of &ne(a) that M{{ < &(a)} < a.
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Similarly, it follows from the definition of & () that M{¢ > £(a)} < a.
Thus
L<M{E < g} +M{E > ¢(a)} <ata<l

A contradiction proves &ing() < &sup(@). The theorem is verified.

Theorem 1.49 (Zuo [2]7]). Let&1,&a,- - , &y be independent uncertain vari-
ables with uncertainty distributions. If f : R — R is a continuous and

strictly increasing function, then & = f(&1,&, -+ ,&n) is an uncertain vari-
able, and
gsup(a) = f(gl sup(a)v 52 sup(a)a e vgnsup(a))v (1192)
inf(@) = f(§1inf(@), E2inf (), -+ Enine(@)). (1.193)

Proof: Since f is a strictly increasing function, it follows from Theorem [L.20
that the inverse uncertainty distribution of & is

Vo) = f(@1 (), @3 ' (a), -, @, (o))

where @1, o, - , P, are uncertainty distributions of &£1,&s, - ,&,, respec-

tively. By using Theorem [[L40] we get (LI92)) and (LI93)). The theorem is
proved.

Example 1.51: Let & be an uncertain variable, and o € (0,1]. If ¢ > 0,
then

(c€)sup (@) = chsup(@),  (c€)int(@) = cint ().

Example 1.52: Suppose that £ and 7 are independent uncertain variables,
and « € (0,1]. Then we have

(€ + Msup (@) = &sup (@) + Msup(@), (€ + N)ine(@) = &int (@) + Mint (@),

(EV M)sup (@) = &sup (@) V Msup(@);  (§V N)int (@) = &int () V Nint (@),
(€ AM)sup (@) = &oup (@) A Msup(@), (EAN)int (@) = &int (@) A Dint ().

Example 1.53: Let ¢ and 7 be independent and positive uncertain variables.
Since f(x,y) = xy is a strictly increasing function when « > 0 and y > 0, we
immediately have

(€Msup (@) = &sup(@)sup(@);  (€N)int (@) = &int (@) hint (@) (1.194)

Theorem 1.50 (Zuo [2]7]). Let&1,&a,- - , &y be independent uncertain vari-
ables with uncertainty distributions. If f is a continuous and strictly decreas-
ing function, then

Eaup(@) = f(&rint(@), &2ine(a), -+, &nint (@), (1.195)
finf(a) = f(flsup(a)7£2 sup(a)7 T 7£nsup(a))- (1.196)
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Proof: Since f is a strictly decreasing function, it follows from Theorem [[.2]]
that the inverse uncertainty distribution of ¢ is

Ul a) = f(971 (1 - ), @ (1 —a), -, @, (1 - a)).
By using Theorem we get (LI98) and ([LI96). The theorem is proved.

Example 1.54: Let & be an uncertain variable, and o € (0,1]. If ¢ < 0,
then

(€€)sup(a) = cCin(@),  (c€)int(a) = cEsup(@)-

Exercise 1.3: What are the critical values to an alternating monotone func-
tion of uncertain variables?

Exercise 1.4: Let £ and n be independent and positive uncertain variables.

Prove
(5 > ) (o) = Sl (5 > ()= int () (1.197)

n Uinf(a) ’ n nsup(a) .

1.10 Entropy

This section provides a definition of entropy to characterize the uncertainty
of uncertain variables resulting from information deficiency.

Definition 1.24 (Liu [123]). Suppose that & is an uncertain variable with
uncertainty distribution ®. Then its entropy is defined by

+oo
HE) = / S(®(x))da (1.198)

— 00

where S(t) = —tlnt — (1 —¢) In(1 — ).

Example 1.55: Let £ be an uncertain variable with uncertainty distribution

0, fz<a
O(z) = 1.199
(z) { 1, ifx>a. ( )
Essentially, £ is a constant a. It follows from the definition of entropy that
a —+oo
H[f]:—/ (Oln0+11n1)dx—/ (I1ln1+0In0)dz =0.

This means a constant has no uncertainty.

Example 1.56: Let ¢ be a linear uncertain variable £(a,b). Then its en-
tropy is

b J— J— J— J— J—
H[g]:-/ (x Gy roe bowy b x)dx:bQG. (1.200)

b—a b—a b—anb—a
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0 0.5 1

Figure 1.16: Function S(t) = —tlnt — (1 — ¢)In(1 — ¢). It is easy to verify
that S(t) is a symmetric function about ¢ = 0.5, strictly increases on the in-
terval [0,0.5], strictly decreases on the interval [0.5, 1], and reaches its unique
maximum In2 at ¢ = 0.5.

Example 1.57: Let £ be a zigzag uncertain variable Z(a,b,c). Then its
entropy is

He) = . (1.201)

Example 1.58: Let ¢ be a normal uncertain variable A'(e,o). Then its
entropy is

H[¢] = (1.202)

V3

Theorem 1.51. Let & be an uncertain variable. Then H[¢] > 0 and equality
holds if € is essentially a constant.

Proof: The positivity is clear. In addition, when an uncertain variable tends
to a constant, its entropy tends to the minimum 0.

Theorem 1.52. Let & be an uncertain variable taking values on the interval
[a,b]. Then
H(|<(b—a)ln2 (1.203)

and equality holds if & has an uncertainty distribution ®(z) = 0.5 on [a,b].

Proof: The theorem follows from the fact that the function S(t) reaches its
maximum In2 at ¢t = 0.5.

Theorem 1.53. Let & be an uncertain variable, and let ¢ be a real number.
Then
H[¢+ ] = H[¢). (1.204)

That is, the entropy is invariant under arbitrary translations.
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Proof: Write the uncertainty distribution of £ by ®. Then the uncertain
variable € 4+ ¢ has an uncertainty distribution ®(z — ¢). It follows from the
definition of entropy that

+o0 +oo
HIE+ (] :/_ S(@(w—c))dx:/_ S(®(x))dx = H[E].
The theorem is proved.

Theorem 1.54 (Dai and Chen [2])]). Let & be an uncertain variable with
uncertainty distribution ®. Then

«

H[g]:/o q>—1(a)1n1 da. (1.205)

—

Proof: It is clear that S(«) is a derivable function with S’(a)) = —Ina/(1 —

a). Since
P(x) 1
S(®(z)) :/ S'(a)da = —/ S (a)da
0 P(x)
we have

H[¢) = /J:O ))dx = / / a)dadz — /O+OO (;(z) S'(a)dadz.

It follows from Fubini theorem that

(0)
/ / a)dzda — / / a)dzda
1(a) ©(0)

@(o)
=—/0 <>S<>da—[b(0) 1(0)8' ()da

1 1
= —/ & (a)S (a)da = / d '(a)ln * da.
0 0 11—«
The theorem is verified.

Theorem 1.55 (Dai and Chen [2{)]). Let & and n be independent uncertain
variables. Then for any real numbers a and b, we have

Hla& + bn] = |a|H[¢] + [b|H[n]. (1.206)
Proof: Suppose that £ and 1 have uncertainty distributions ® and W, re-
spectively.

STEP 1: We prove H[af] = |a|H[¢]. If a > 0, then the inverse uncertainty
distribution of a is
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It follows from Theorem [[.54] that

1 1
Hlag] :/0 a® (a)ln 1 aada = a/o & Ha)ln 1 fada = |a|H[E].

If a = 0, we immediately have H[a&] = 0 = |a|H[]. If a < 0, then the inverse
uncertainty distribution of a§ is

T a)=a® (1 -a).

It follows from Theorem [[.54] that

1 1
Hlag] :/0 a@ (1 -a)hn © da:(—a)/o o) | da=a]He]

-«
Thus we always have H[a&] = |a|H[¢].
STEP 2: We prove H[¢ + 1] = H[{] + H[n]. Note that the inverse uncer-
tainty distribution of £ 4 7 is
T a)=d " a)+ T a).
It follows from Theorem [[54] that

(67

HI¢ + 1] = / (@) + T ) da= HIE + H.

1l—«

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1 and
2 that
H{ag + bn] = H[ag] + H[bn] = |a|H[¢] + [b|H [n].

The theorem is proved.

Entropy of Function of Uncertain Variables

Theorem 1.56 (Dai and Chen [2]]]). Let &1,&,- -+, &, be independent un-
certain variables with uncertainty distributions @1, ®o, -, D, respectively.
If f: R™ — R is a strictly increasing function, then the uncertain variable

§=f(&,&2, -+, &n) has an entropy

H[¢] =/0 f(@7a), 25 (a), -+, @, (@) = do (1.207)

Proof: Since f is a strictly increasing function, it follows from Theorem [[.20
that the inverse uncertainty distribution of £ is

U a) = f(@7 (), 23 (), @ ().

n

By using Theorem [[54] we get (L207). The theorem is thus verified.
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Exercise 1.5: Let ¢ and 1 be independent and nonnegative uncertain vari-
ables with uncertainty distributions ® and W, respectively. Then

1
H[gn]:/o 3 (a) 0 (a)In, ¢ da. (1.208)

11—«
Theorem 1.57 (Dai and Chen [Z]|]). Let 1,82, -+, &, be independent un-
certain variables with uncertainty distributions ®1, ®o, - , @, respectively.
If f is a strictly decreasing function, then

l1—«

H[¢] = /0 f( @7 (@), 25 (), -, @, (@) In da. (1.209)

Proof: Since f is a strictly decreasing function, it follows from Theorem [[.2]]
that the inverse uncertainty distribution of ¢ is

U Ha) = f(@7 (1 - ), @5 (1 —a),--, @, (1 - a)).
By using Theorem [[54] we get (IL209). The theorem is thus verified.

Exercise 1.6: What is the entropy of an alternating monotone function of
uncertain variables?

Exercise 1.7: Let £ and 1 be independent and positive uncertain variables
with uncertainty distributions ® and ¥, respectively. Prove

H m - /01 W(Dl_(l(i”)a) m, “ da (1.210)

Maximum Entropy Principle

Given some constraints, for example, expected value and variance, there are
usually multiple compatible uncertainty distributions. Which uncertainty
distribution shall we take? The mazimum entropy principle attempts to
select the uncertainty distribution that maximizes the value of entropy and
satisfies the prescribed constraints.

Theorem 1.58 (Chen and Dai [T9]). Let £ be an uncertain variable whose
uncertainty distribution is arbitrary but the expected value e and variance o2.
Then

H[¢] < (1.211)

V3

and the equality holds if € is a normal uncertain variable N (e, o).

Proof: Let ®(z) be the uncertainty distribution of ¢ and write ¥(z) =
®(2e—x) for x > e. It follows from the stipulation (II78) that the variance is

+oo +oco
V(¢ = 2/ (x—e)(1 —@(z))dz + 2/ (z — e)¥(z)dz = o2.
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Thus there exists a real number s such that

+o00
2/ (x —e)(1 — ®(x))dz = ko?,

+o00
2/ (x —e)¥(2z)dr = (1 — K)o>.

The maximum entropy distribution ® should maximize the entropy

+oo +oo +oo
Hl¢) :/ S(@(x))dw:/ 5(@(x))dx+/ S(W())de

— 00

subject to the above two constraints. The Lagrangian is
+oo 400
L= / S(@(x))dw—F/ S(U(z))dz
e e
+oo
—« <2/ (x—e)(1 — ®(x))dx — /<c02>

-8 (2 /+Oo(a: —e)U(z)dr — (1 — m)az) .
The maximum entropy distribution meets Euler-Lagrange equations
In®(x) —In(l — ®(x)) = 2a(x — e),
In¥(z) —In(1l —¥(x)) =206(e — ).
Thus ® and ¥ have the forms
B(x) = (1 + exp(2a(e — 2)) "L,

U(x) = (1 +exp(26(z — €))7

Substituting them into the variance constraints, we get

oo~ (1re (),

-1
U(z) = (1 + exp (\/7;((331 : ?)0)) .

Then the entropy is
ok w1 —k

H[¢] = /6 /6
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which achieves the maximum when x = 1/2. Thus the maximum entropy
distribution is just the normal uncertainty distribution A (e, o).

1.11 Distance

Definition 1.25 (Liu [120]). The distance between uncertain variables &
and 1 is defined as

d(&;n) = E[l§ —nll. (1.212)

Theorem 1.59. Let £, 71,7 be uncertain variables, and let d(-,-) be the dis-
tance. Then we have

(a) (Nonnegativity) d(&,n) > 0;

(b) (Identification) d(&,m) = 0 if and only if £ = n;

(¢) (Symmetry) d(&,m) = d(n,§);

(d) (Triangle Inequality) d(&,m) < 2d(&,7) + 2d(n, 7).

Proof: The parts (a), (b) and (c) follow immediately from the definition.
Now we prove the part (d). It follows from the countable subadditivity axiom
that

+oo
d(&n) = ; MAJE =nl = rpdr
+o00
< MAE =7+ |7 —nl = rpdr
0
+oo
< MAE =7l = r/2) V(| —n| = r/2)}dr

o+C>o
<[ ofie =1z 20— 0l = /2 ar
= 2E[|§ = 7[] + 2E[|7 — n[] = 2d(¢, 7) + 2d(7,n).
Example 1.59: Let I' = {y1,72,73}. Define M{0} = 0, M{T'} = 1 and

M{A} = 1/2 for any subset A (excluding ) and I"). We set uncertain variables
&, n and 7 as follows,

1, ify=m 0, ify=m
Ev)=4q 1, ify=7 ny)=¢ -1, ify=7%n  7(y)=0.
Oa ler:’Y?n _17 lf’y:’}@v

It is easy to verify that d(&,7) = d(7,n) = 1/2 and d(&,n) = 3/2. Thus

(e m) = 5 (d(€, ) + dr,).

A conjecture is d(&,n) < 1.5(d(&, 7)+d(,n)) for arbitrary uncertain variables
&, n and 7. This is an open problem.
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1.12 Inequalities

Theorem 1.60 (Liu [T20]). Let & be an uncertain variable, and f a non-
negative function. If f is even and increasing on [0,00), then for any given
number t > 0, we have

E[f ()]
f@

Proof: It is clear that M{|¢| > f~!(r)} is a monotone decreasing function
of r on [0,00). It follows from the nonnegativity of f(&) that

M{lE] >t} < (1.213)

+oo +oo

E[f(§)] = ; M{f(§) = ridr = ; M{[E] = f7H (r)bdr

f() f(t)

> / M) > 1 (r)}dr > / dr-M{lEl = F )
0 0

— (1) M{j¢] > 1)

which proves the inequality.

Theorem 1.61 (Liu [120], Markov Inequality). Let & be an uncertain vari-
able. Then for any given numberst > 0 and p > 0, we have

M{¢| >t} < E!ﬁ‘p}. (1.214)

Proof: It is a special case of Theorem when f(z) = |z|P.

Example 1.60: For any given positive number ¢, we define an uncertain
variable as follows,

0 with uncertain measure 1/2
| t with uncertain measure 1 /2.

Then E[(P] =tP/2 and M{¢ >t} = 1/2 = E[£P]/tP.

Theorem 1.62 (Liu [120], Chebyshev Inequality). Let & be an uncertain
variable whose variance V€] exists. Then for any given number t > 0, we

have
Vgl
2

M{E-E[E]| >t} < (1.215)

Proof: It is a special case of Theorem when the uncertain variable £ is
replaced with € — E[¢], and f(x) = 22.

Example 1.61: For any given positive number ¢, we define an uncertain
variable as follows,

&=

{ —t with uncertain measure 1/2

t with uncertain measure 1/2.
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Then V[¢] = t? and M{|¢ — E[¢]| > t} =1 = V[§]/t2

Theorem 1.63 (Liu [120], Holder’s Inequality). Let p and q be positive
numbers with 1/p+ 1/q =1, and let & and n be independent uncertain vari-
ables with E[|£|P] < oo and E[|n|?] < co. Then we have

Ellénl] < Y/EN€IP1/Ellnl4). (1.216)

Proof: The inequality holds trivially if at least one of £ and 7 is zero a.s.
Now we assume E[[£|P] > 0 and E[|n|?] > 0. It is easy to prove that the
function f(z,y) = ¥/xyy is a concave function on {(z,y) : x > 0,y > 0}.
Thus for any point (xg,yo) with g > 0 and yo > 0, there exist two real
numbers a and b such that

f(z,y) = f(@0,y0) < a(x —x0) +b(y — vo), Vz >0,y >0.
Letting zo = E[|¢[*], yo = E[In|?], z = [¢|" and y = [n|?, we have
FUEP, In|?) — F(E[EP1, Ellnl]) < a(|€]P — E[IE[P]) + b(In|? — E[In]]).

Taking the expected values on both sides, we obtain

E[f(E17, Inl")] < f(EEF], Ellnl*]).
Hence the inequality (CZI6) holds.

Theorem 1.64 (Liu [120], Minkowski Inequality). Let p be a real number
with p > 1, and let & and n be independent uncertain variables with E[|£[P] <
oo and E[|nP] < co. Then we have

Bl +nl?] < /ENEP) + /Elnl). (1.217)

Proof: The inequality holds trivially if at least one of £ and 7 is zero a.s. Now
we assume E[|€|P] > 0 and E|[|n[?] > 0. It is easy to prove that the function
f(x,y) = (Y + ¢y)P is a concave function on {(z,y) : x > 0,y > 0}. Thus
for any point (xg,yo) with g > 0 and yo > 0, there exist two real numbers
a and b such that

[z, y) = f(@o,m0) < alz —x0) +b(y —yo), Vo >0,y >0.
Letting zo = E[|¢[F], yo = E[[n[F], # = [{|P and y = [n|?, we have
FAEP ") = FEIEPL ElnlP]) < a€)” = E[IE[°]) + b(Inl” — Ellnl]).
Taking the expected values on both sides, we obtain
Ef(EP, InlP)) < F(ETEP], ElInl*]).-
Hence the inequality (C2I7) holds.
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Theorem 1.65 (Liu [I20], Jensen’s Inequality). Let & be an uncertain vari-
able, and f : R — R a convex function. If E[¢] and E[f(£)] are finite, then

f(E[E]) < E[f(9)]- (1.218)
FEspecially, when f(z) = |z|P and p > 1, we have |E[€]|P < E[|¢]P].

Proof: Since f is a convex function, for each y, there exists a number k& such
that f(z)— f(y) > k- (x —y). Replacing = with £ and y with F[], we obtain

f(&) = f(B[]) > k- (€ — E[E]).
Taking the expected values on both sides, we have
E[f()] - f(E[E]) > k- (E[¢] - E[§]) =0

which proves the inequality.

1.13 Convergence Concepts
We have the following four convergence concepts of uncertain sequence: con-

vergence almost surely (a.s.), convergence in measure, convergence in mean,
and convergence in distribution.

Table 1.1: Relationship among Convergence Concepts

Convergence Convergence Convergence
=

in Mean in Measure in Distribution

Definition 1.26 (Liu [120]). Suppose that £,&1,&s,- -+ are uncertain vari-
ables defined on the uncertainty space (I',L,M). The sequence {&} is said
to be convergent a.s. to £ if there exists an event A with M{A} =1 such that

lim [£;(7) = £(7)] =0 (1.219)
11— 00
for every v € A. In that case we write & — &, a.s.

Definition 1.27 (Liu [120]). Suppose that £,&1,&2,- - are uncertain vari-
ables. We say that the sequence {§;} converges in measure to & if

lim M{J& — € > ¢} =0 (1.220)

for every e > 0.



70 CHAPTER 1 - UNCERTAINTY THEORY

Definition 1.28 (Liu [120]). Suppose that £,&1,&s,- -+ are uncertain vari-
ables with finite expected values. We say that the sequence {&;} converges in
mean to £ if

lim E[|¢; — €[] =0. (1.221)

71— 00
In addition, the sequence {&;} is said to converge in mean square to & if

lim E[|¢& —¢)*] = 0. (1.222)
Definition 1.29 (Liu [120]). Suppose that ®, 1, o, - are the uncertainty
distributions of uncertain variables &,&1,&a,- -+, respectively. We say that
{&} converges in distribution to £ if

lim ®;(z) = ®(z) (1.223)

at any continuity point x of ®.

Convergence in Mean vs. Convergence in Measure

Theorem 1.30 (Liu [120]). Suppose that &,&1,8&2, -+ are uncertain vari-
ables. If {&} converges in mean to &, then {&} converges in measure to &.

Proof: It follows from the Markov inequality that for any given number

€ > 0, we have
Mﬂ&—ﬂZe}gﬁmi—ﬂ}ﬁo

as ¢ — oo. Thus {} converges in measure to {. The theorem is proved.

Example 1.62: Convergence in measure does not imply convergence in
mean. Take an uncertainty space (I', £, M) to be {y1,72,- -} with

sup 1/1, if sup 1/ < 0.5

Yi€EA Yi€EA
M{A}=<¢ 1—supl/i, if sup 1/i<0.5
YigA Vi €A
0.5, otherwise.

The uncertain variables are defined by
i, ifj=1
&) = { 0, otherwise

fori=1,2,--- and £ = 0. For some small number £ > 0, we have
1
Ml — € > <} =M{l& — € 2} = | —0.

That is, the sequence {;} converges in measure to {&. However, for each i,
we have

E[lg — ¢l = 1.

That is, the sequence {&;} does not converge in mean to &.
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Convergence in Measure vs. Convergence in Distribution

Theorem 1.31 (Liu [120]). Suppose £,&1,&a,- -+ are uncertain variables. If
{&} converges in measure to &, then {&;} converges in distribution to §.

Proof: Let = be a given continuity point of the uncertainty distribution .
On the one hand, for any y > =, we have

{G<a}={& <z e<ytu{&<z.{>ytc{E<ytu{l&—¢&l >y —=}

It follows from the countable subadditivity axiom that

Di(x) < @(y) + M{l& — & =y —a}-

Since {;} converges in measure to &, we have M{|¢; —&| > y — 2} — 0 as
i — o0o. Thus we obtain limsup,_, . ®;(x) < ®(y) for any y > x. Letting
Yy — x, we get

lim sup ®;(z) < ®(x). (1.224)

1—00

On the other hand, for any z < z, we have
{{<zt={G <z {<zu{G > i< c{G <z U{lG ¢ 22— =}
which implies that
D(z) < By(x) + M{JG — € = — 2},

Since M{|¢; —&| > © — 2z} — 0, we obtain ®(2) < liminf; . ®;(x) for any
z < x. Letting z — z, we get

®(z) < liminf ®;(x). (1.225)

71— 00

It follows from ([C224) and (L22H) that ®;(x) — ®(z). The theorem is
proved.

Example 1.63: Convergence in distribution does not imply convergence in
measure. Take an uncertainty space (I', L, M) to be {v1,7v2} with M{n} =
M{~2} = 1/2. We define an uncertain variables as

-1, 1f’7:’71
5(7)—{ L iy =

We also define §; = —¢€ for i = 1,2,--- Then §; and £ have the same chance
distribution. Thus {¢;} converges in distribution to £. However, for some
small number £ > 0, we have

M& - &l et =M{|& - &l =e} =1

That is, the sequence {&;} does not converge in measure to &.
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Convergence Almost Surely vs. Convergence in Measure

Example 1.64: Convergence a.s. does not imply convergence in measure.
Take an uncertainty space (I', L, M) to be {v1,72,- -} with

sup ¢/(26 +1), if supi/(2i+1)<0.5
A

Yi€EA Vi€
M{A}=<¢ 1—supi/(2¢+1), if supi/(2i+1)<0.5
Vi A vi €A
0.5, otherwise.

Then we define uncertain variables as

o
sim):{” S

0, otherwise

fori=1,2,--- and £ = 0. The sequence {} converges a.s. to . However,
for some small number ¢ > 0, we have
1 1
s — > = ; — > = .

That is, the sequence {¢;} does not converge in measure to .

Example 1.65: Convergence in measure does not imply convergence a.s.
Take an uncertainty space (I',L,M) to be [0,1] with Borel algebra and
Lebesgue measure. For any positive integer i, there is an integer j such
that i = 27 + k, where k is an integer between 0 and 2/ — 1. Then we define
uncertain variables as

1, ifk/29<~y<(k+1)/2
&i(y) = .
0, otherwise

fori=1,2,--- and £ = 0. For some small number £ > 0, we have

M{& — €l = et =M{[& — €| > e} = 213' —Y

as i — 0o. That is, the sequence {{;} converges in measure to £. However, for
any 7 € [0, 1], there is an infinite number of intervals of the form [k/27, (k +
1)/27] containing . Thus &;(+) does not converge to 0. In other words, the
sequence {&;} does not converge a.s. to &.

Convergence Almost Surely vs. Convergence in Mean

Example 1.66: Convergence a.s. does not imply convergence in mean. Take
an uncertainty space (I', £, M) to be {y1,72,- -} with

MA}= 3 21

Yi €A
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The uncertain variables are defined by

22" .f.:.

0, otherwise

fori=1,2,--- and £ = 0. Then & converges a.s. to £. However, the sequence
{&} does not converge in mean to £ because F[|¢; — &[] = 1.

Example 1.67: Convergence in mean does not imply convergence a.s. Take
an uncertainty space (I', £, M) to be [0,1] with Borel algebra and Lebesgue
measure. For any positive integer i, there is an integer j such that i = 27 +k,
where k is an integer between 0 and 27 — 1. The uncertain variables are
defined by

1, ifk/29<~y<(k+1)/2
&i(y) = .
0, otherwise

fori=1,2,--- and £ = 0. Then

1
Ellg— €l = ,, 0.

That is, the sequence {&;} converges in mean to £. However, for any v € [0, 1],
there is an infinite number of intervals of the form [k/27, (k+1)/27] containing
. Thus &;(y) does not converge to 0. In other words, the sequence {&;} does
not converge a.s. to &.

Convergence Almost Surely vs. Convergence in Distribution

Example 1.68: Convergence in distribution does not imply convergence a.s.
Take an uncertainty space (I', L, M) to be {y1,72} with M{y1} = M{r.} =
1/2. We define an uncertain variable £ as

-1, ify=m
aw—{ L iy =

We also define & = —¢€ for i = 1,2,--+ Then & and & have the same uncer-
tainty distribution. Thus {{;} converges in distribution to £. However, the
sequence {&;} does not converge a.s. to &.

Example 1.69: Convergence a.s. does not imply convergence in distribution.
Take an uncertainty space (I', L, M) to be {v1,72, -} with

sup ¢/(2i +1), if supi/(2i+1)<0.5

YiEA Yi€A
M{A}=<¢ 1—supi/(2i+1), if supi/(2i+1)<0.5
Yi €A Yi EA

0.5, otherwise.
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The uncertain variables are defined by

i\V3) =

0, otherwise

for i = 1,2,--+- and £ = 0. Then the sequence {§;} converges a.s. to &.
However, the uncertainty distributions of &; are

0, ifx <0
D;(x)=¢ (i+1)/(2t+1), if0<z<i
1, ifx>1
for i = 1,2, -+, respectively. The uncertainty distribution of £ is
0, ifz<0
() = { 1, ifz>0.

It is clear that ®;(x) does not converge to ®(x) at = > 0. That is, the
sequence {&;} does not converge in distribution to &.

1.14 Conditional Uncertainty

We consider the uncertain measure of an event A after it has been learned
that some other event B has occurred. This new uncertain measure of A is
called the conditional uncertain measure of A given B.

In order to define a conditional uncertain measure M{A|B}, at first we
have to enlarge M{A N B} because M{A N B} < 1 for all events whenever
M{B} < 1. It seems that we have no alternative but to divide M{A N B} by
M{B}. Unfortunately, M{ANB}/M{B} is not always an uncertain measure.
However, the value M{A|B} should not be greater than M{A N B}/M{B}
(otherwise the normality will be lost), i.e.,

M{AnN B}

A|B} < 1.22
Ay < (1.226)
On the other hand, in order to preserve the self-duality, we should have
A°NB
M{AB} = 1 - M{ac|B} > 1 - YUATN B} (1.227)

M{B}

Furthermore, since (AN B) U (A°N B) = B, we have M{B} < M{AN B} +
M{A° N B} by using the countable subadditivity axiom. Thus

M{A°n B} M{ANB}
0<1— < <1. 1.228
- M{B} — M{B} ( )
Hence any numbers between 1 —M{A°NB}/M{B} and M{ANB}/M{B} are
reasonable values that the conditional uncertain measure may take. Based
on the maximum uncertainty principle, we have the following conditional
uncertain measure.
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Definition 1.32 (Liu [120]). Let (T, L,M) be an uncertainty space, and A,
B € L. Then the conditional uncertain measure of A given B is defined by

M{AN B} , M{AN B}
M{B} 7 M{B} < 0.5
M{AIB} = ¢ | _ M%EE}B}’ if M{j\z{‘l{cg}B} 05 (1.229)
0.5, otherwise

provided that M{B} > 0.

It follows immediately from the definition of conditional uncertain measure
that
M{A°N B} M{AN B}
M{B} M{B}
Furthermore, the conditional uncertain measure obeys the maximum uncer-
tainty principle, and takes values as close to 0.5 as possible.

1 < M{A|B} < (1.230)

Remark 1.6: Assume that we know the prior uncertain measures M{B},
M{ANB} and M{A°NB}. Then the conditional uncertain measure M{A|B}
yields the posterior uncertain measure of A after the occurrence of event B.

Theorem 1.66. Let (I', L, M) be an uncertainty space, and B an event with
M{B} > 0. Then M{:|B} defined by (1.229) is an uncertain measure, and
(T, L, M{-|B}) is an uncertainty space.

Proof: It is sufficient to prove that M{:|B} satisfies the normality, mono-
tonicity, self-duality and countable subadditivity axioms. At first, it satisfies
the normality axiom, i.e.,
M{rnB} 1 M{0}
m{B} — M{B}
For any events A; and Ay with Ay C Ao, if
M{A; N B} < M{A; N B}
M{B} =  M{B}

M{T|B} =1 — 1.

< 0.9,

then
M{A; N B} < M{A; N B}

MABE Taimy S wm

1 2 N
<0.5<
then M{A4,|B} < 0.5 < M{Ay|B}. If

M{A N B} _ M{4:n B}

OO S wBy



76 CHAPTER 1 - UNCERTAINTY THEORY

then we have

M{A,|B) = (1 - M{J\ﬁg}B}) V0.5 < (1 - M{Jﬁg}B}) V0.5 = M{As|B).

This means that M{:|B} satisfies the monotonicity axiom. For any event
A, if
M{AN B} > 05 M{A°nN B}
mBy — 7 M{B}
then we have M{A|B} + M{A¢|B} = 0.5+ 0.5 = 1 immediately. Otherwise,
without loss of generality, suppose

M{AN B} M{A° N B}
M(B} <05< M(B)

> 0.5,

then we have

M{A|B} + M{A°|B} = Mi?{;f} + <1 - M:m;f}> .Y

That is, M{-|B} satisfies the self-duality axiom. Finally, for any countable
sequence {4;} of events, if M{A4;|B} < 0.5 for all 4, it follows from the
countable subadditivity axiom that

- M{DAM\B} iM{AiﬂB}
M{UAiﬂB}< i=1 i=1
i=1

M{B} S sy ;M{A”‘B}‘

Suppose there is one term greater than 0.5, say
M{A;1|B} > 0.5, M{A;|B} <05, i=2,3,---
If M{U;A;|B} = 0.5, then we immediately have

M { G A;N B} < iM{Ai\B}.
i=1 =1

If M{U;A;|B} > 0.5, we may prove the above inequality by the following

facts:
AsnBc|JAinB)u (ﬂA;mB) :

=2 i=1
M{A;mB}gZM{AmB}JrM{ﬂAgmB},

i=2 i=1

M{QAZ«B} :1_M{ﬁA§ﬂB}

M{B}
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M{A;, "B
M{AS N B} ; t4:n B}

2 MAIBY = 1=y M{B)

i=1
If there are at least two terms greater than 0.5, then the countable subad-
ditivity is clearly true. Thus M{-|B} satisfies the countable subadditivity
axiom. Hence M{:|B} is an uncertain measure. Furthermore, (I, L, M{:|B})
is an uncertainty space.

Definition 1.33 (Liu [120]). The conditional uncertainty distribution ®:
R — [0,1] of an uncertain variable & given B is defined by

®(z|B) = M {¢ < z|B} (1.231)
provided that M{B} > 0.

Theorem 1.67. Let £ be an uncertain variable with uncertainty distribution
O(z), and t a real number with ®(t) < 1. Then the conditional uncertainty
distribution of £ given & >t is

0, if ®(x) < B(t)
d(x) )
D(al(t, +00) = { 1- () O TR <@ < L+ 2(0)/2
P(x) — (1) )
1 b if (14 ®(t))/2 < ®(x).

Proof: It follows from ®(x|(t, +00)) = M{{ < x| > t} and the definition of
conditional uncertainty that

M{E<z)n(E>1)} M{(E <z)n(E>1)}

M{E > 1) , if Mie > 1) <0.5
Bal(t, +o0) = | MAE>0)NE>0) ME>D)NE>D) _
M{E > t} ’ M{¢ > t} '
0.5, otherwise.
When &(x) < &(t), we have x < t, and
ME<z)n(E>)} M0}
M{¢ > t} _1—<1>(t)_0<0’5'
e M{(€ <) (€ > 1)
<z >
b (z|(t, +00)) = Mie > 1} =0.

When ®(t) < &(x) < (1 + D(t))/2, we have x > ¢, and

M{E>z)Nn(E>t)}) 1-3(x) _1-(1+(t))/2

MESt  1-dF) = 1-a()

=0.5
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and
ME<z)nE>0) _ (2)
M{¢ >t} T 1-9(t)
It follows from the maximum uncertainty principle that
®(z)
O (z|(t, +00)) = |- a(t) A0.5.

When (14 ®(t))/2 < ®&(x), we have x > ¢, and
M{E>z)n(E>t)} 1-(x) 1= (14 ®(¢))/2

M{¢ > t} 10t 1—®(t) = 0.5.
Thus

_ o ME>a)nE>t)r L 1=-9(x) _ B(x) - 2(2)
(e|(t,+o0)) =1~ M{€ > t} T T 100 T 1-0@)

The theorem is proved.

Example 1.70: Let £ be a linear uncertain variable £(a,b), and ¢ a real

number with a < ¢ < b. Then the conditional uncertainty distribution of £
given £ >t is

0, ifx<t

T—a

(z|(t,+o0)) = bt

T —t

b—t

Theorem 1.68. Let £ be an uncertain variable with uncertainty distribution

O(z), and t a real number with ®(t) > 0. Then the conditional uncertainty
distribution of & given & <t is

ANO.B, ift<az<(b+t)/2

AL i (b+1)/2 < .

d(x) )
e if B(a) < 0(0)/2
O(z|(—00,t]) = ¢ P(z) +P(t) — 1 ,
o(t) V0.5, if &(t)/2 < P(x) < D(t)
1, if @(t) < (x).

Proof: It follows from ®(z|(—o0,t]) = M{£ < z|¢ <t} and the definition of
conditional uncertainty that

ME=a)n(E=t)}  ME=a)n(E <)}

Me<ty 0] M{¢ < 1} <05
®(z(—o0,t])=¢ ,  M{(E>2)n(E =<t} ME>)nE<} _ .
Me<ty ) M{¢ <t} '

0.5, otherwise.
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When ®(x) < ®(t)/2, we have z < t, and
M{E<a)n(E<t)} _ e(x)

(t)/2 _
N 0.5.

(t)

_ M =sz)nE<t)y _ D(z)
O(z[(—o00,t]) = M{¢ < ) = o)

When ®(t)/2 < &(x) < ®(t), we have z < t, and
M <N E<n) _ o) _ a2 _
q) .

IA

M{¢ <t} ®(1)
Thus

M{¢ <t} o) — @(t)
and
ME>z)Nn(E <)} _1- ()
M{¢ <t} - o)

L ME>a)nE <) | ez) + (1) -1
M{¢ <t} - o(1)
It follows from the maximum uncertainty principle that
D(x)+@(t) — 1

0 V 0.5.

B (x](—o0, ]) =

When &(t) < ®(z), we have x > t, and

M{E>z)n(E<t)} M{0}
M{e < 1) = o(1) =0<0.5.
Thus

P(z|(—o00,t]) =1 -
The theorem is proved.

Example 1.71: Let { be a linear uncertain variable £(a,b), and t a real
number with a < ¢ < b. Then the conditional uncertainty distribution of £
given £ <t is

r—a
if 2 < 2
t_avo, ifx<(a+t)/
P(z|(—o00,t]) = <1_i_$>vo.5, if (a+t)/2<z<t
—a
1, if x <t

Definition 1.34 (Liu [120]). Let & be an uncertain variable. Then the con-
ditional expected value of & given B is defined by

“+o0 0
E[¢|B] = | ez By - [ M{¢ < r|B}dr (1.232)

provided that at least one of the two integrals is finite.
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