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Preface

Some information and knowledge are usually represented by human language
like “about 100km”, “approximately 39°C”, “roughly 80kg”, “low speed”,
“middle age”, and “big size”. Perhaps some people think that they are sub-
jective probability or they are fuzziness. However, a lot of surveys showed
that those imprecise quantities behave neither like randomness nor like fuzzi-
ness. How do we understand them? How do we model them? These questions
provide a motivation to invent another mathematical tool to model those im-
precise quantities. In order to do so, an uncertainty theory was founded and
became a branch of axiomatic mathematics. Since then, uncertainty theory
has been developed steadily and applied widely.

Chapter 1 is devoted to the uncertainty theory. The first fundamental
concept in uncertainty theory is uncertain measure that is used to measure
the truth degree of an uncertain event. The second one is uncertain variable
that is used to represent imprecise quantities. The third one is uncertainty
distribution that is used to describe uncertain variables in an incomplete
but easy-to-use way. Uncertainty theory is thus deduced from those three
foundation stones, and plays the role of mathematical model to deal with
uncertain phenomena.

Uncertain programming is a type of mathematical programming involving
uncertain variables. A key problem in uncertain programming is how to rank
uncertain variables, and different ranking criteria produce different classes
of uncertain programming. Chapter 2 will introduce four ranking criteria
and then provide a spectrum of uncertain programming with applications to
project scheduling problem, vehicle routing problem and machine scheduling
problem.

The term risk has been used in different ways in literature. In this book
the risk is defined as the accidental loss plus the uncertain measure of such
loss, and a risk index is defined as the uncertain measure that some specified
loss occurs. Chapter 3 will introduce uncertain risk analysis that is a tool to
quantify risk via uncertainty theory.

Reliability index is defined as the uncertain measure that some system is
working. Thus reliability and risk have the same root in mathematics. They
are separately treated for application convenience in practice rather than
theoretical demand. Chapter 4 will introduce uncertain reliability analysis
that is a tool to deal with system reliability via uncertainty theory.

An uncertain process is essentially a sequence of uncertain variables in-
dexed by time or space. Thus an uncertain process is usually used to model
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uncertain phenomena that vary with time or space. Some basic concepts of
uncertain process will be presented in Chapter 5.

Uncertain calculus is a branch of mathematics that deals with differentia-
tion and integration of function of uncertain processes. As the very core of
uncertain calculus, canonical process is a Lipschitz continuous uncertain pro-
cess that has stationary and independent increments and every increment is
a normal uncertain variable. Chapter 6 will introduce the uncertain calculus
including canonical process, uncertain integral and chain rule.

Uncertain differential equation is a type of differential equation driven
by canonical process. Chapter 7 will discuss the existence, uniqueness and
stability of solutions of uncertain differential equations, and will design a
numerical method for solving monotone uncertain differential equations. This
chapter will also present an application of uncertain differential equation in
finance.

Uncertain logic is a generalization of mathematical logic for dealing with
uncertain knowledge via uncertainty theory. A key point in uncertain logic
is that the truth value of an uncertain proposition is defined as the uncertain
measure that the proposition is true. One advantage of uncertain logic is the
well consistency with classical logic. In other words, uncertain logic obeys the
law of truth conservation, and is consistent with the law of excluded middle
and the law of contradiction. Chapter 8 will discuss uncertain propositional
logic and uncertain predicate logic.

Uncertain entailment is a methodology for calculating the truth value of
an uncertain formula via the maximum uncertainty principle when the truth
values of other uncertain formulas are given. That is, we will assign an
uncertain formula a truth value as close to 0.5 as possible. Chapter 9 will
introduce an entailment model from which modus ponens, modus tollens and
hypothetical syllogism are deduced.

Uncertain set is a measurable function from an uncertainty space to a col-
lection of sets. In other words, uncertain set is a set-valued function on an
uncertainty space. Thus the main difference between uncertain set and uncer-
tain variable is that the former takes values of set and the latter takes values
of point. The concepts of membership function and uncertainty distribution
are two basic tools to describe uncertain sets, where membership function is
intuitionistic for us but frangible for arithmetic operations, and uncertainty
distribution is hard-to-understand for us but easy-to-use for arithmetic oper-
ations. Fortunately, an uncertainty distribution may be uniquely determined
by a membership function. In practice, we first determine membership func-
tions for uncertain sets, and convert membership functions to uncertainty
distributions. Then we perform arithmetic operations on uncertain sets via
uncertainty distributions rather than membership functions. Chapter 10 will
provide an uncertain set theory that is a generalization of uncertainty theory
to the domain of uncertain sets.

Some knowledge and evidence in human brain are actually uncertain sets
rather than fuzzy sets or random sets. This fact encourages us to propose
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a theory of uncertain inference that is a process of deriving consequences
from uncertain knowledge or evidence via the tool of conditional uncertain
set. Chapter 11 will present an inference rule with applications to uncertain
system and inference control.

The book is suitable for mathematicians, researchers, engineers, design-
ers, and students in the field of mathematics, information science, operations
research, system science, industrial engineering, computer science, artificial
intelligence, finance, control, and management science. The readers will learn
the axiomatic approach of uncertainty theory, and find this work a stimulat-
ing and useful reference.

Lecture Slides
If you need lecture slides for uncertainty theory, please download them from
the website at http://orsc.edu.cn/liu/resources.htm.

A Guide for the Reader

The readers are not required to read the book from cover to cover. The logic
dependence of chapters is illustrated by the figure below.
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Chapter 1

Uncertainty Theory

Some information and knowledge are usually represented by human language
like “about 100km”, “approximately 39°C”, “roughly 80kg”, “low speed”,
“middle age”, and “big size”. How do we understand them? Perhaps some
people think that they are subjective probability or they are fuzzy concepts.
However, a lot of surveys showed that those imprecise quantities behave nei-
ther like randomness nor like fuzziness. This fact provides a motivation to
invent another mathematical tool, namely uncertainty theory.

Uncertainty theory was founded by Liu [120] in 2007. Nowadays uncer-
tainty theory has become a branch of mathematics based on normality, mono-
tonicity, self-duality, countable subadditivity, and product measure axioms.
The first fundamental concept in uncertainty theory is uncertain measure
that is used to measure the belief degree of an uncertain event. The sec-
ond one is uncertain variable that is used to represent imprecise quantities.
The third one is uncertainty distribution that is used to describe uncertain
variables in an incomplete but easy-to-use way. Uncertainty theory is thus
deduced from those three foundation stones, and provides a mathematical
model to deal with uncertain phenomena.

The emphasis in this chapter is mainly on uncertain measure, uncertain
variable, uncertainty distribution, independence, operational law, expected
value, variance, moments, critical values, entropy, distance, convergence al-
most surely, convergence in measure, convergence in mean, convergence in
distribution, and conditional uncertainty.

1.1 Uncertain Measure

Let T' be a nonempty set. A collection L of subsets of T' is called a o-
algebra if (a) I' € L; (b) if A € L, then A® € L; and (c) if A1, Ag,--- € L,
then A UAs U --- € L. Each element A in the o-algebra L is called an
event. Uncertain measure is a function from £ to [0,1]. In order to present
an axiomatic definition of uncertain measure, it is necessary to assign to
each event A a number M{A} which indicates the belief degree that A will
occur. In order to ensure that the number M{A} has certain mathematical
properties, Liu [120] proposed the following four axioms:

Axiom 1. (Normality Aziom) M{T'} =1 for the universal set T'.
Axiom 2. (Monotonicity Aziom) M{A1} < M{Az} whenever A1 C As.

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 1
springerlink.com © Springer-Verlag Berlin Heidelberg 2010



2 CHAPTER 1 - UNCERTAINTY THEORY

Axiom 3. (Self-Duality Aziom) M{A} + M{A°} =1 for any event A.

Axiom 4. (Countable Subadditivity Aziom) For every countable sequence of
events {A;}, we have

M{DA} < iM{Ai}. (1.1)

Remark 1.1: The law of contradiction tells us that a proposition cannot be
both true and false at the same time, and the law of excluded middle tells us
that a proposition is either true or false. The law of truth conservation is a
generalization of the law of contradiction and the law of excluded middle, and
says that the sum of truth values of a proposition and its negative proposition
is identical to 1. Self-duality is in fact an application of the law of truth
conservation in uncertainty theory. This is the main reason why self-duality
axiom is assumed.

Remark 1.2: Pathology occurs if subadditivity is not assumed. For ex-
ample, suppose that a universal set contains 3 elements. We define a set
function that takes value 0 for each singleton, and 1 for each set with at least
2 elements. Then such a set function satisfies all axioms but subadditivity.
Is it not strange if such a set function serves as a measure?

Remark 1.3: Pathology occurs if countable subadditivity axiom is replaced
with finite subadditivity axiom. For example, assume the universal set con-
sists of all real numbers. We define a set function that takes value 0 if the
set is bounded, 0.5 if both the set and complement are unbounded, and 1 if
the complement of the set is bounded. Then such a set function is finitely
subadditive but not countably subadditive. Is it not strange if such a set
function serves as a measure? This is the main reason why we accept the
countable subadditivity axiom.

Remark 1.4: Although probability measure satisfies the above four axioms,
probability theory is not a special case of uncertainty theory because the
product probability measure does not satisfy the fifth axiom, namely product
measure axiom on Page[7l

Definition 1.1 (Liu [I20]). The set function M is called an uncertain mea-
sure if it satisfies the mormality, monotonicity, self-duality, and countable
subadditivity axioms.

Example 1.1: Let I' = {v1,72,7v3}. For this case, there are only 8 events.
Define
M{v1} =06, M{y}=03, M{y} =02,

M{yi, 72} =08, M{y1,v3} =0.7, M{y2,73} =04,
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M{0} =0, M{T}=1.
Then M is an uncertain measure because it satisfies the four axioms.

Example 1.2: Suppose that A(z) is a nonnegative function on # satisfying

sup (\(z) +A(y) = 1. (1.2)

Then for any set A of real numbers, the set function

sup A(z), if sup A(z) < 0.5

zEA zeA
M{A} = (1.3)
1 — sup A(x), if supA(z) > 0.5
TrEA° €A

is an uncertain measure on R.

Example 1.3: Suppose p(z) is a nonnegative and integrable function on R
such that

/ p(x)dz > 1. (1.4)
Rid

Then for any Borel set A of real numbers, the set function

/A p(z)de, if /A p(z)dz < 0.5

M{A} = 1- /C p(x)de, if N p(z)dz < 0.5 (15)

0.5, otherwise
is an uncertain measure on .

Example 1.4: Suppose A(x) is a nonnegative function and p(z) is a non-
negative and integrable function on R such that

sup A(x) +/ p(x)der > 0.5 and/or sup A(z) —|—/ p(x)dx > 0.5 (1.6)
TEA A xzeAC c

for any Borel set A of real numbers. Then the set function

sup A(z) +/ p(x)dz, if sup A(z) —|—/ p(x)dx < 0.5
zEA A €A A

M{A} = 1— sup A(x) _/ p(x)dz, if sup A(x) +/ p(z)dz < 0.5
zEAC ¢ zEAC ¢

0.5, otherwise

is an uncertain measure on R.
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Theorem 1.1. Suppose that M is an uncertain measure. Then the empty
set O has an uncertain measure zero, i.e.,

M{0} = 0. (1.7)

Proof: It follows from the normality that M{T'} = 1. Since § = T¢, the
self-duality axioms yields M{0} =1 -M{T'} =1—-1=0.

Theorem 1.2. Suppose that M is an uncertain measure. Then we have
0<M{A} <1 (1.8)
for any event A.

Proof: It follows from the monotonicity axiom that 0 < M{A} < 1 because
pcAcCT and M{0} =0, M{T} =1.

Theorem 1.3. Suppose that M is an uncertain measure. Then for any events
A1 and Ay, we have

Proof: The left-hand inequality follows from the monotonicity axiom and
the right-hand inequality follows from the countable subadditivity axiom im-
mediately.

Theorem 1.4. Suppose that M is an uncertain measure. Then for any events
A1 and A, we have

M{AL} + M{As} — 1 < M{A; N As} < M{AL} AM{A}. (1.10)

Proof: The right-hand inequality follows from the monotonicity axiom and
the left-hand inequality follows from the self-duality and countable subaddi-
tivity axioms, i.e.,

M{A; N Ask=1— M{(A1 N A2)°} = 1 — M{AS UAS}
> 1 (M{AS} + M{AS})
=1 (1-M{A}) — (1 - M{As})
= M{A} + M{As} — 1.

The inequalities are verified.

Null-Additivity Theorem

Null-additivity is a direct deduction from subadditivity. We first prove a
more general theorem.
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Theorem 1.5. Let {A;} be a sequence of events with M{A;} — 0 as i — oo.
Then for any event A, we have

lim M{AUA;} = lim M{A\A;} = M{A}. (1.11)
Proof: It follows from the monotonicity and countable subadditivity axioms
that
M{A} < M{AU A} < M{A} + M{A:}

for each i. Thus we get M{A U A;} — M{A} by using M{A;} — 0. Since
(A\A;) C A C ((A\A;) UA,), we have

MAVA} < M{A} < M{AVA} + M{A}
Hence M{A\A;} — M{A} by using M{A;} — 0.

Remark 1.5: It follows from the above theorem that the uncertain measure
is null-additive, i.e., M{A; U Ao} = M{A1} + M{Az} if either M{A;} =0
or M{A2} = 0. In other words, the uncertain measure remains unchanged if
the event is enlarged or reduced by an event with uncertain measure zero.

Asymptotic Theorem
Theorem 1.6 (Asymptotic Theorem). For any events A1, Ag,- -, we have

lim M{A;} >0, 4f A; 1T, (1.12)
lim M{A;} <1, o A; | 0. (1.13)

Proof: Assume A; T I'. Since I' = U;A;, it follows from the countable
subadditivity axiom that

1=M{T} <Y M{A;}.
i=1
Since M{A;} is increasing with respect to 4, we have lim;_,o.o M{A;} > 0. If
A; | 0, then A¢ 1 T'. It follows from the first inequality and self-duality axiom
that
lim M{A;} =1— lim M{A{} < 1.

1—00
The theorem is proved.

Example 1.5: Assume I' is the set of real numbers. Let « be a number with
0 < a < 0.5. Define a set function as follows,

0, ifA=0
«, if A is upper bounded
M{A}=¢ 0.5, if both A and A° are upper unbounded (1.14)

1 — «, if A°is upper bounded
1, ifA=T.
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It is easy to verify that M is an uncertain measure. Write A; = (—o0, ] for
i =1,2,--- Then A; T T and lim; .o M{A;} = «. Furthermore, we have
AS | 0 and lim; oo M{AS} =1 — o

Independence of Events

Definition 1.2. The events A1, As, -+, Ay, are said to be independent if

{ﬂA } = E%LM{A } (1.15)
where Af are arbitrarily chosen from {A;, AS}, i =1,2,--- ,n, respectively.

Note that (LI5) represents 2™ equations. For example, when n = 2, the four

equations are
M{AL N Az} = M{A1} AM{A2},

M{AS N Ax}t = M{ASH A M{A},
M{A; NAS}H = M{AL} A M{AS),
M{AS N AS}H = M{ASH A M{AS}.

(1.16)

Theorem 1.7. The events A1, Ao, --- |, A, are independent if and only if

M{O A;‘} = max M{A}} (1.17)
i=1

1<i<n
where Af are arbitrarily chosen from {A;, AS}, i =1,2,--- ,n, respectively.
Proof: Assume Aj,As, .-, A, are independent events. It follows from the

self-duality of uncertain measure that

M{OAZ‘} =1 —M{ﬁ(Af)“} =1- 12121<nnj\/f{(A*) }— max M{A*}

The equation (LI7) is proved. Conversely, assume (LI7). Then

M{ﬁ A;} =1 —M{O(A;)C} =1 max M{(A])} = min M{A]).
i=1

i=1

The equation (LIH)) is true. The theorem is proved.

Uncertainty Space

Definition 1.3 (Liu [120]). Let T’ be a nonempty set,
T, and M an uncertain measure. Then the triplet (T,
uncertainty space.

a o-algebra over
,M) s called an

L
L
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Product Measure Axiom and Product Uncertain Measure

Product uncertain measure was defined by Liu [123] in 2009, thus producing
the fifth axiom of uncertainty theory called product measure axiom. Let
Tk, L, M) be uncertainty spaces for k =1,2,--- n. Write

=Ty xTogx---xTy,, L=0;xLyx-xL,. (1.18)
Then there is an uncertain measure M on the product o-algebra L such that
M{A1 x Ao x - X A} = My{A1} AMo{A2} A+ AM{AL} (1.19)

for any measurable rectangle A; X As X - -+ x A,,. Such an uncertain measure
is called the product uncertain measure denoted by

M=Mi AMaA---AM,. (1.20)

In fact, the extension from the class of rectangles to the product o-algebra
L may be represented as follows.

Axiom 5. (Liu [123], Product Measure Aziom) Let T, be nonempty sets
on which My, are uncertain measures, k = 1,2,--- 'n, respectively. Then
the product uncertain measure M is an uncertain measure on the product
o-algebra Ly x Lo x -+ X L, satisfying

M{HAk} = min Mi{Ax}. (1.21)

k=1
That is, for each event A € L, we have

sup min Mp{Az},
ApXAg X x N, CALSk<n

if sup min Mg{Ar} > 0.5
A1 xAzx--x A, CA 1Sk<n

M{A}=41- sup min My {Ax}, (1.22)
Ay XAgx--xA,, CAc 1<k<n

if sup min Mi{Ax} > 0.5
A1 XAz XX A, CAc 1SkSn

0.5, otherwise.

Theorem 1.8 (Peng [176]). The product uncertain measure (L23) is an
uncertain measure.

Proof: In order to prove that the product uncertain measure (L.22]) is indeed
an uncertain measure, we should verify that the product uncertain measure
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Iy

Figure 1.1: Graphical Illustration of Extension from the Class of Rectangles
to the Product o-Algebra. The uncertain measure of A (the disk) is essen-
tially the acreage of its inscribed rectangle A; x As if it is greater than 0.5.
Otherwise, we have to examine its complement A°. If the inscribed rectan-
gle of A° is greater than 0.5, then M{A°} is just its inscribed rectangle and
M{A} =1 — M{A°}. If there does not exist an inscribed rectangle of A or
A° greater than 0.5, then we set M{A} = 0.5.

satisfies the normality, monotonicity, self-duality and countable subadditivity
axioms.

STEP 1: At first, for any event A € L, it is easy to verify that

sup min Mp{Ar} + sup min Mp{A;} < 1.
A1 xAax--xA, CALSkSn A1 xAg X XA, CAc 1SkSn

This means that at most one of

sup min M;{A;} and sup min M {Ax}
A1 xAg X XA, CALISkSn AL XAa XX A, CAc 1SESn

is greater than 0.5. Thus the expression (L22)) is reasonable.
STEP 2: The product uncertain measure is clearly normal, i.e., M{I'} = 1.
STEP 3: We prove the self-duality, i.e., M{A}+M{A°} = 1. The argument

breaks down into three cases. Case 1: Assume

sup min Mp{Ax} > 0.5.
A1 xAax-x A, CALISESn

Then we immediately have

sup min Mz{Ar} <0.5.
A1 XAz X xAp CAc 1Sk<n
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It follows from ([22)) that

MIAY = sup min Mg{Ax},
{ } A1 XAax XA CA 1<k<n { }

M{A°} =1— sup min Mg{Ar} =1—-M{A}.
Ay XAz X xAp C(Ac)e 1Sk<n
The self-duality is proved. Case 2: Assume

sup min Mp{Ax} > 0.5.
Ay XAy XX A, CAc 1SkE<n

This case may be proved by a similar process. Case 3: Assume

sup min Mp{A;} <0.5
ApXAg X x N, CALSk<n

and
sup min M{Ax} <0.5.
A1 XAg XX Ap CAc 1SKkSn
It follows from ([22)) that M{A} = M{A°} = 0.5 which proves the self-
duality.

STEP 4: Let us prove that M is increasing. Suppose A and A are two
events in £ with A C A. The argument breaks down into three cases. Case 1:
Assume

sup min Mg{Ax} > 0.5.
Ay XAax - XA, CA1SE<n
Then
sup min Mp{Ag} > sup min Mi{Ag} > 0.5.
A1 xAgx - xApCA 1<k<n Ay xAgX--xA,CA1<k<n

It follows from (L22) that M{A} < M{A}. Case 2: Assume

sup min Mp{Ax} > 0.5.
A1 XAgx- XA CAc 1Sk<n
Then
sup min Mp{Ap} > sup min M{AL} > 0.5.
A1 xAg XX A, CAc 1<k<n { } ArxAgxex A, CAc 1<k<n { }
Thus
MAET- sup min Mg{Ar}
A1 XAa XX Ay CAc 1SE<n
sl-= sup min M{A,} = M{A}.

A1XAgX X ApCAc 1Sk<n

Case 3: Assume

sup min Mp{A;} <0.5
A1 XAax XAy CA L1<k<n
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and

sup min Mp{A;} <0.5.
A1XAgx-XA,CAc 1<k<n

Then
M{A} <05 <1 —-M{A°} = M{A}.

STEP 5: Finally, we prove the countable subadditivity of M. For simplicity,
we only prove the case of two events A and A. The argument breaks down
into three cases. Case 1: Assume M{A} < 0.5 and M{A} < 0.5. For any
given € > 0, there are two rectangles

A x Ay x - x A, CA A XAy x---x A, CA°

SuCh ‘ha,‘

1- 1?;3§an{A’“} <M{A} +¢/2.
Note that
(A1 NA) X (AaNAg) x -+ x (A, NA,) C(AUA).
It follows from Theorem [[4] that
Mp{ Ak N AR} > Mi{Ar} + Mp{Ar} -1
for any k. Thus
M{AUAK 1 - 1g1kign3\/[k{Ak NAg}
<1-— 1glg£nmk{Ak} +1-— 12%1” Mi{Ax}
<M{A} + M{A} +e.
Letting ¢ — 0, we obtain
M{AUA} < M{A} + M{A}.

Case 2: Assume M{A} > 0.5 and M{A} < 0.5. When M{AU A} = 0.5, the
subadditivity is obvious. Now we consider the case M{A U A} > 0.5, i.e.,
M{A°N A°} < 0.5. By using A°UA = (A°NA°) UA and Case 1, we get

M{A°UA} <M{A°NA°} + M{A}.
Thus
M{AUAET—M{A°N A} <1-M{A°UA}+M{A}
< 1—M{A} + M{A} = M{A} + M{A}.

Case 3: If both M{A} > 0.5 and M{A} > 0.5, then the subadditivity is
obvious because M{A} + M{A} > 1. The theorem is proved.
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Definition 1.4. Let (I'y, Lg, Mi), k = 1,2, ,n be uncertainty spaces, I' =
Iy xTox - xIy, L =L x Lo x--- x Ly, and M =My AMa A--- AM,.
Then (T, L, M) is called the product uncertainty space of (T, Lk, M),k =
1,2, ,m.

1.2 Uncertain Variable

This section introduces a concept of uncertain variable (neither random vari-
able nor fuzzy variable) in order to describe imprecise quantities in human
systems.

Definition 1.5 (Liu [120)]). An uncertain variable is a measurable function
& from an uncertainty space (I', L, M) to the set of real numbers, i.e., for any
Borel set B of real numbers, the set

{¢e B} ={yeTl|&(y) € B} (1.23)

1S an event.

Figure 1.2: An Uncertain Variable

Example 1.6: Take (', L, M) to be {y1,72} with M{y} = M{y2} = 0.5.
Then the function

07 if T="
is an uncertain variable.

Example 1.7: A crisp number ¢ may be regarded as a special uncertain
variable. In fact, it is the constant function {(y) = ¢ on the uncertainty
space (I, L, M).

Definition 1.6. Let £ andn be uncertain variables defined on the uncertainty
space (D, L,M). We say € = n if £(v) = n(y) for almost all v € T.
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Definition 1.7. The uncertain variables & and n are identically distributed if
M{¢ € B} =M{n € B} (1.24)
for any Borel set B of real numbers.

It is clear that uncertain variables & and 7 are identically distributed if £ =
7. However, identical distribution does not imply & = . For example, let
(T, L, M) be {7,72} with M{y1} = M{~2} = 0.5. Define

L, ify=m —1Lify=m

The two uncertain variables £ and 7 are identically distributed but & # 7.

Uncertain Vector

Definition 1.8. An n-dimensional uncertain vector is a measurable function
from an uncertainty space (I, L, M) to the set of n-dimensional real vectors,
i.e., for any Borel set B of R", the set

(6B} ={yeT|€m) eB) (1.25)
15 an event.
Theorem 1.9. The vector (&1,&2, -+ ,&n) s an uncertain vector if and only
if &1,&,- -+, &, are uncertain variables.

Proof: Write & = (£1,&2,- -+ ,&,). Suppose that € is an uncertain vector on
the uncertainty space (I', £, M). For any Borel set B of R, the set B x R"~!
is a Borel set of ™. Thus the set

{6,€B}={6€B,&ER, - &R ={€ecBxR" 1}

is an event. Hence & is an uncertain variable. A similar process may

prove that &,&s, -+, &, are uncertain variables. Conversely, suppose that
all £,&,- -+ &, are uncertain variables on the uncertainty space (T, L, M).
We define

$:{BC%”’{£€B}isanevent}.

The vector € = (&1,&2,- -+ , &) is proved to be an uncertain vector if we can
prove that B contains all Borel sets of R™. First, the class B contains all
open intervals of " because

{£ € H(ai,bi)} = {& € (ai,b)}
i=1

i=1
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is an event. Next, the class B is a o-algebra of R” because (i) we have R” € B
since {€ € R"} =T (ii) if B € B, then {& € B} is an event, and

{€ e B} ={¢ e B}°

is an event. This means that B¢ € B; (iii) if B; € B for ¢ = 1,2,---, then
{€ € B;} are events and

{56 UBz} = U{EEBz‘}

is an event. This means that U;B; € B. Since the smallest o-algebra con-
taining all open intervals of R™ is just the Borel algebra of R", the class B
contains all Borel sets of ™. The theorem is proved.

Uncertain Arithmetic

Definition 1.9. Suppose that f : R — R is a measurable function, and

&1,&2, -+, &, uncertain variables on the uncertainty space (I'yL,M). Then
&= f(&,&, -, &) is an uncertain variable defined as
§07) = f(&(7),&(7), -+ &a(7)), VY eT. (1.26)

Example 1.8: Let & and & be two uncertain variables. Then the sum
& =& + & is an uncertain variable defined by

Ey) =&(y) + &(y), VyeTl.

The product £ = £1&5 is also an uncertain variable defined by

() =&(y) - &(y), Vyel.

The reader may wonder whether £(y1,72,- -+ ,V,) defined by (L26) is an
uncertain variable. The following theorem answers this question.

Theorem 1.10. Let &€ be an n-dimensional uncertain vector, and f : R — R
a measurable function. Then f(€) is an uncertain variable such that

M{f(€) € B} =M{¢ € f~(B)} (1.27)
for any Borel set B of real numbers.

Proof: Assume that £ is an uncertain vector on the uncertainty space
(T, L,M). For any Borel set B of R, since f is a measurable function, the
f~Y(B) is a Borel set of R". Thus the set {f(¢) € B} = {¢ € f~1(B)} is an
event for any Borel set B. Hence f(€) is an uncertain variable.
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1.3 Uncertainty Distribution

This section introduces a concept of uncertainty distribution in order to de-
scribe uncertain variables. In many cases, it is sufficient to know the uncer-
tainty distribution rather than the uncertain variable itself.

Definition 1.10 (Liu [120]). The uncertainty distribution ®: R — [0,1] of
an uncertain variable £ is defined by

O(x) = M {€ < 2} (1.28)

for any real number x.

Figure 1.3: An Uncertainty Distribution

Theorem 1.11 (Peng and Iwamura [I77], Sufficient and Necessary Condi-
tion for Uncertainty Distribution). A function ® : R — [0,1] is an uncer-
tainty distribution if and only if it is an increasing function except ®(z) =0
and ®(z) = 1.

Proof: It is obvious that an uncertainty distribution @ is an increasing func-
tion. In addition, both ®(z) #Z 0 and ®(x) # 1 follow from the asymptotic
theorem immediately. Conversely, suppose that ® is an increasing function
but ®(z) #Z 0 and ®(x) £ 1. We will prove that there is an uncertain variable
whose uncertainty distribution is just ®. Let € be a collection of all inter-
vals of the form (—o0,a], (b,00), § and R. We define a set function on R as
follows,

M{(~o0,a]} = ®(a),
M{(b, +00)} = 1 - @ (),
M0} =0, M{R}=1.

For an arbitrary Borel set B of real numbers, there exists a sequence {4;} in
C such that

B C D A;.
i=1



SECTION 1.3 - UNCERTAINTY DISTRIBUTION 15

Note that such a sequence is not unique. Thus the set function M{B} is
defined by

inf ;M{Ai}, if ngfAi;M{Ai} <05

BCUA;

M B — oo oo
A FR: D M{A}if inf Y M{Ai} <05
i=1 ti=1

BcCUA;

0.5, otherwise.

We may prove that the set function M is indeed an uncertain measure on R,
and the uncertain variable defined by the identity function () = «y from the
uncertainty space (R, L, M) to R has the uncertainty distribution ®.

Example 1.9: Let ¢ be a number with 0 < ¢ < 1. Then ®(z) = c is an
uncertainty distribution. When ¢ < 0.5, we define a set function over R as
follows,

0, ifA=0
¢, if A is upper bounded
M{A} = 0.5, if both A and A¢ are upper unbounded
1 — ¢, if A¢ is upper bounded
1, fA=T.

)

Then (R, L, M) is an uncertainty space. It is easy to verify that the identity
function () = « is an uncertain variable whose uncertainty distribution is
just ®(z) = c¢. When ¢ > 0.5, we define

0, ifA=0
1 —¢, if A is upper bounded
M{A} = ¢ 0.5, if both A and A° are upper unbounded
¢, if A°is upper bounded
1, ifA=T.
Then the function £(y) = —+v is an uncertain variable whose uncertainty

distribution is just ®(z) = c.

Example 1.10: Assume that two uncertain variables £ and 7 have the same
uncertainty distribution. One question is whether £ = 71 or not. Generally
speaking, it is not true. Take (T', L, M) to be {v1,72} with

M{%} = M{Vz} =0.5.

We now define two uncertain variables as follows,

_ ) Lify=m _ L ify=m
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0 a b
Figure 1.4: Linear Uncertainty Distribution

Then ¢ and n have the same uncertainty distribution,

0, ife < -1
O(x)=405,if —1<z<1
1, if x > 1.

)

However, it is clear that £ # 7 in the sense of Definition

Definition 1.11. An uncertain variable £ is called linear if it has a linear
uncertainty distribution

0, ife<a
O(z)=< (x—a)/(b—a),ifa<z<Db (1.29)
1, ife>b

denoted by L(a,b) where a and b are real numbers with a < b.

Definition 1.12. An uncertain variable & is called zigzag if it has a zigzag
uncertainty distribution

0, ife<a
B (x—a)/2(b—a), fa<z<b
(@) = (x+c—2b)/2(c—b),ifb<z<c (1.30)
1, ifex>c

denoted by Z(a,b,c) where a,b, c are real numbers with a < b < c.

Definition 1.13. An uncertain variable £ is called normal if it has a normal
uncertainty distribution

B(z) = (1 + exp <”<€ ;Ux)))l, zeR (1.31)

denoted by N (e, o) where e and o are real numbers with o > 0.



SECTION 1.3 - UNCERTAINTY DISTRIBUTION 17

Figure 1.6: Normal Uncertainty Distribution

Definition 1.14. An uncertain variable £ is called lognormal if In€ is a
normal uncertain variable N(e,o). In other words, a lognormal uncertain
variable has an uncertainty distribution

B(z) = (1 +exp (”(e\;3?x)))_l . >0 (1.32)

denoted by LOGN (e, a), where e and o are real numbers with o > 0.

Definition 1.15. An uncertain variable € is called discrete if it takes values
in {x1, 2z, ,Tm} and

O(z) =i, 1=1,2,---,m (1.33)

where 11 < x93 < -+ < Ty and 0 < a1 < ag < -+ < ayy, = 1. For simplicity,
the discrete uncertain variable will be denoted by

Qa1 2+ Qi

e (1.34)

&=
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05 .............. /

exp(e)

Figure 1.7: Lognormal Uncertainty Distribution

The uncertainty distribution ® of the discrete uncertain variable (I34]) is
a step function jumping only at x1,x2, - , Ty, i.e.,

ag, if £ < xy
D(z) = i, ifa; <z <wipr,i=1,2,---,m (1.35)

am, if £ > xp,

where ag = 0 and o, = 1.

UG fmmmmmmmmm oo o

]

QUY fmmmmmmmmmmm oo -—

Y — —

[0 e T

L e

Figure 1.8: Discrete Uncertainty Distribution

Measure Inversion Theorem

Theorem 1.12 (Measure Inversion Theorem). Let & be an uncertain vari-
able with continuous uncertainty distribution ®. Then for any real number
x, we have

M{E <z} =(x), M{£>zx}=1—d(x). (1.36)



SECTION 1.3 - UNCERTAINTY DISTRIBUTION 19

Proof: The equation M{{ < z} = ®(z) follows from the definition of un-
certainty distribution immediately. By using the self-duality of uncertain
measure and continuity of uncertainty distribution, we get M{¢ > z} =
1-M{ <z} =1—3(z).

Theorem 1.13. Let & be an uncertain variable with continuous uncertainty
distribution ®. Then for any interval [a,b], we have

D(b) — B(a) <M{a <€ b} < OW)A(1—B(a)).  (137)

Proof: It follows from the subadditivity of uncertain measure and the mea-
sure inversion theorem that

Mia <& <bp +M{§ <a} > M{E < b}

That is,
M{a < &< b} + P(a) > P(b).

Thus the inequality on the left hand side is verified. It follows from the
monotonicity of uncertain measure and the measure inversion theorem that

Ma <€ <bp <M{E € (=00, 0]} = (b).
On the other hand,
M{a<z<b} <M{£€a,+0)} =1—P(a).
Hence the inequality on the right hand side is proved.

Perhaps some readers would like to get an exactly scalar value of the uncertain
measure M{a < z < b}. Generally speaking, it is an impossible job (except
a = —oo or b = 400) if only an uncertainty distribution is available. I would
like to ask if there is a need to know it. In fact, it is not a must for practical
purpose. Would you believe?

Regular Uncertainty Distribution

Definition 1.16. An uncertainty distribution ® is said to be regular if its
inverse function ®1(a) exists and is unique for each a € (0,1).

It is easy to verify that a regular uncertainty distribution ® is a continuous
function. In addition, ® is strictly increasing at each point z with 0 < ®(x) <
1. Furthermore,
lim ®(z)=0, lim ®(z)=1. (1.38)
r——0Q r——+00

For example, linear uncertainty distribution, zigzag uncertainty distribution,
normal uncertainty distribution, and lognormal uncertainty distribution are
all regular.

In this book we will assume all uncertainty distributions are regular. Oth-
erwise, we may give the uncertainty distribution a small perturbation such
that it becomes regular.
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Inverse Uncertainty Distribution

Definition 1.17. Let £ be an uncertain variable with uncertainty distribution
®. Then the inverse function ® 1 is called the inverse uncertainty distribu-
tion of .

Note that the inverse uncertainty distribution ®~!(a) is well defined on the
open interval (0,1). If needed, we may extend the domain via

o 0) = lim o Ha), (1) = lim o Ha). (1.39)
oa— a—
It is easy to verify that inverse uncertainty distribution is a monotone in-

creasing function on [0, 1].

Example 1.11: The inverse uncertainty distribution of linear uncertain
variable L(a,b) is

dHa)= (1 —a)a+ ab. (1.40)
>~ (o)
b ........................................................
0 e

Figure 1.9: Inverse Linear Uncertainty Distribution

Example 1.12: The inverse uncertainty distribution of zigzag uncertain
variable Z(a, b, ¢) is
1-2 2ab, if a <05
(o) = (1~ 2a)at2ad, ifa (1.41)
(2—2a)b+ (2a—1)c, if @ > 0.5.

Example 1.13: The inverse uncertainty distribution of normal uncertain
variable N (e, o) is

> Ha)=e+ o (1.42)

Example 1.14: The inverse uncertainty distribution of lognormal uncertain
variable LOGN (e, o) is

\/30’/7‘{'
“ ) . (1.43)

l—«a

v (@) = exp() (
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Figure 1.10: Inverse Zigzag Uncertainty Distribution

0 / 0.5 1
Figure 1.11: Inverse Normal Uncertainty Distribution

Joint Uncertainty Distribution

Definition 1.18 Let (&1,&2,-+,&n) be an uncertain vector. Then the joint
uncertainty distribution ® : R — [0,1] is defined by

@(1’1,1’2,"‘ ,.’En) = M{gl S 1'1752 S X, - 7571 S x’ﬂ} (144)

for any real numbers 1,2, , Ty.

1.4 Independence

Independence has been explained in many ways. However, the essential fea-
ture is that those uncertain variables may be separately defined on different
uncertainty spaces. In order to ensure that we are able to do so, we may
define independence in the following mathematical form.

Definition 1.19 (Liu [123]). The uncertain variables &1,&2, -+ ,&m are said
to be independent if
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Figure 1.12: Inverse Lognormal Uncertainty Distribution

! 1<i
i=1

for any Borel sets By, Ba, -+, By, of real numbers.

Example 1.15: Let & be an uncertain variable and let £; be a constant c.
For any Borel sets By and Ba, if ¢ € By, then M{& € Bs} =1 and

M{(& € Bi)N (& € Ba)} =M{& € Bi} =M{& € Bi} AM{& € Ba}.
If ¢ € By, then M{& € B2} =0 and
M{(gl S Bl) N (52 S Bg)} = M{@} =0= M{fl S Bl} /\M{fg S Bg}.

It follows from the definition of independence that an uncertain variable is
always independent of a constant.

Theorem 1.14. The uncertain variables &1,&2, -+ ,&n are independent if
and only if
m
M { Ul(gi € Bi)} = 11;355”3\4{@ € B;} (1.46)
1=
for any Borel sets By, Ba, -+ , By, of real numbers.

Proof: It follows from the self-duality of uncertain measure that &£1,&a,-- -,
& are independent if and only if

M{U(fz EBi)} 21—M{ﬂ(§i EBE)}

i=1 i=1
—1— m . A . ,
=1 1£I§nm M{¢; € B} 1rgnia§>§n3\/[ {& € B;}.

Thus the proof is complete.
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Theorem 1.15. Let ®; be uncertainty distributions of uncertain variables
&, 1=1,2,--- 'm, respectively, and ® the joint uncertainty distribution of
uncertain vector (§1,8, -+ ,&m). If &1,&, -+, &n are independent, then we

have
D(x1,29, + ,Tpy) = min P;(x;) (1.47)

1<i<m

for any real numbers 1,2, , Tp,.

Proof: Since £1,&s, -, &, are independent uncertain variables, we have

B(x1, @2, Ty) = M{m(fi < l‘z‘)} = min M{§ <z} = 1gglm¢i($i)

! 1<i<m
i=1 -

for any real numbers x1,xs,- -, x,,. The theorem is proved.

Example 1.16: However, the equation (L47) does not imply that the uncer-
tain variables are independent. For example, let £ be an uncertain variable
with uncertainty distribution ®. Then the joint uncertainty distribution ¥
of uncertain vector (&, ) is

(a1, 2) = M{E < 21, S @2} = M{E < 21} AM{E < 22} = (1) A D(a2)

for any real numbers z; and x2. But, generally speaking, an uncertain vari-
able is not independent with itself.

Theorem 1.16. Let £1,&,- -+ , & be independent uncertain variables, and

f1, fa, -+ s fn measurable functions. Then f1(£1), fo(&2), -, fm(&m) are in-
dependent uncertain variables.

Proof: For any Borel sets By, Bs, - , By, of R, it follows from the definition
of independence that

M {m(fz'(fz‘) € Bi)} = M{ﬂ(fz‘ € fil(Bi))}

= min M{& € f;7'(B)} = min M{f;(&;) € Bi}.

1<i<m 1<i

Thus f1(&1), f2(&2), -+, fm(&n) are independent uncertain variables.

1.5 Operational Law

This section will introduce an operational law of independent uncertain vari-
ables and present a 99-method for calculating the uncertainty distribution of
monotone function of uncertain variables.
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Theorem 1.17 (Liu [123], Operational Law). Let &,&s,- -+ , &, be indepen-
dent uncertain variables, and f : R — R a measurable function. Then

&= f(&,&, -, &) s an uncertain variable such that
s min M6 € B},
f(B1,By,,B,)CB1Sk<n
if Supb min My {& € B} > 0.5
f(B1,Ba,,B,)CB1Sk<n { 1
MeeBy =41~ Sup min My{& € B},
f(B1,B2, - ,Bp)CBe 1sk=n
i Sup min My{& € B} > 0.5
f(B1,Ba, ,By)CBe 1<k<n { }
0.5, otherwise

where B, By, Ba, -+ , B, are Borel sets, and f(B1,Ba, -+ ,B,) C B means
flz1, 22, ,25) € B for any x1 € By,29 € Ba, -+, € By,.

Proof: Write A = {{ € B} and Ay = {& € By} for k =1,2,--- ,n. Itis
easy to verify that

Ay x Ay x -+ x A, C Aif and only if f(By, Ba, -+, B,) C B,

Ay X Ay x -+ x A, C A°if and only if f(By, Ba, -+ ,By) C B°.
Thus the operational law follows from the product measure axiom immedi-
ately.
Increasing Function of Single Uncertain Variable

Theorem 1.18. Let & be an uncertain variable with uncertainty distribution
O, and let f be a strictly increasing function. Then f(£) is an uncertain
variable with inverse uncertainty distribution

U (a) = f(@(a)). (1.48)
Proof: Since f is a strictly increasing function, we have, for each « € (0, 1),
M{f(©) < f(@ N @)} =M{E <27 ()} = a

Thus we have U~1(a) = f(®~!(a)). In fact, the uncertainty distribution of
f(&)is

The theorem is proved.

99-Method 1.1. [t is suggested that an uncertain variable & with uncertainty
distribution ® is represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.49)
X1 €2 x3 st T99
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where 0.01,0.02,0.03,---,0.99 in the first row are the values of uncertainty
distribution ®, and x1,x2,T3, - ,Tog in the second row are the correspond-
ing values of ®~1(0.01),®71(0.02),®1(0.03),---,®71(0.99). Essentially,
the 99-table is a discrete representation of uncertainty distribution ®. Then
for any strictly increasing function f(x), the uncertain variable f(£) has a
99-table,

0.01 0.02 0.03 --- 099

flz1) f(z2) f(xs) -+ f(xo0)

The 99-method may be extended to the 999-method if a more precise result is
needed.

(1.50)

Example 1.17: Let £ be an uncertain variable with uncertainty distribution
®. Then for any number k > 0, the inverse uncertainty distribution of k¢ is

U la) =kd a). (1.51)

If £ is represented by a 99-table,

0.01 0.02 0.03 --- 0.99 (1.52)
T T2 r3 -0 T99
then the 99-method yields that k¢ has a 99-table,
0.01 0.02 0.03 --- 0.99
kxl kxg /CZL’3 e kl’gg (153)

Example 1.18: If € is an uncertain variable with uncertainty distribution ®
and k is a constant, then £+k is an uncertain variable with inverse uncertainty
distribution

U a) =0 (a)+E. (1.54)

If € is represented by a 99-table,

0.01 0.02 0.03 --- 0.99 (1.55)
T To Z3 - Tg99
then the 99-method yields that £ + & has a 99-table,
0.01 002 003 --- 099 (1.56)
ri+k w2tk a3tk - mogtk

Example 1.19: Let £ be a nonnegative uncertain variable with uncertainty
distribution ®. Since z? is a strictly increasing function on [0, +oc0), the
square £2 is an uncertain variable with inverse uncertainty distribution

2

T a)= (27 (). (1.57)
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If £ is represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.58)
X1 €2 x3 st T99

then the 99-method yields that the uncertain variable £2 has a 99-table,

0.01 0.02 0.03 --- 0.99

2 2 2

1.59
Ty T2 U 1‘39 ( )

Example 1.20: Let £ be an uncertain variable with uncertainty distribu-
tion ®. Since exp(z) is a strictly increasing function, exp(§) is an uncertain
variable with inverse uncertainty distribution

U (a) =exp (2 (). (1.60)
If £ is represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.61)
X1 €2 x3 st T99

then the 99-method yields that the uncertain variable exp(£) has a 99-table,

0.01 0.02 0.03 e 0.99

exp(z1) exp(ze) exp(zs) - - exp(zgg) (1.62)

Decreasing Function of Single Uncertain Variable

Theorem 1.19. Let £ be an uncertain variable with uncertainty distribution
O, and let f be a strictly decreasing function. Then f(§) is an uncertainty
distribution with inverse uncertainty distribution

U la)=f(@71(1 — ). (1.63)
Proof: Since f is a strictly decreasing function, we have, for each a € (0, 1),
MFEO<f@I1L-a)) =M= (1-a)} =a.

Thus we have U1 (a) = f(®~!(1 — )). In fact, the uncertainty distribution
of £(€) is
V() =1-@(f ' (2)).

The theorem is proved.

99-Method 1.2. Let & be an uncertain variable represented by a 99-table,

0.01 0.02 0.03 --- 0.99

(1.64)
X1 €2 x3 st T99



SECTION 1.5 - OPERATIONAL LAw 27

Then for any strictly decreasing function f(x), the uncertain variable f(§)
has a 99-table,

0.01 0.02 0.03 --- 0.99

flxeg)  flwog) flxor) --- flx1) (1.65)

Example 1.21: Let £ be an uncertain variable with uncertainty distribution
®. Then —¢ has an inverse uncertainty distribution

U a)=—-271(1 - a). (1.66)
If £ is represented by a 99-table,
0.01 0.02 0.03 --- 0.99 (1.67)
T T2 xr3 o0 T99

then the 99-method yields that the uncertain variable —¢ has a 99-table,

0.01 0.02 0.03 --- 0.99
(1.68)

—Tgg —Tgg —Tgr - —T1
Example 1.22: Let £ be a positive uncertain variable with uncertainty
distribution ®. Since 1/z is a strictly decreasing function on (0,+400), the
reciprocal 1/£ is an uncertain variable with inverse uncertainty distribution

1
U Ha) = . 1.
@)= 411 o) (1.69)
If £ is represented by a 99-table,
0.01 0.02 0.03 --- 0.99 (1.70)
T T2 r3 -0 T99

then the 99-method yields that the uncertain variable 1/£ has a 99-table,

0.01 0.02 003 --- 0.99 (1.71)

1/$99 1/$98 1/$97 1/$1 ’
Example 1.23: Let £ be an uncertain variable with uncertainty distribution
®. Since exp(—x) is a strictly decreasing function, exp(—¢) is an uncertain
variable with inverse uncertainty distribution

U a)=exp (-2 (1 —q)). (1.72)
If £ is represented by a 99-table,
0.01 0.02 0.03 --- 0.99 (1.73)
T T2 xr3 o0 To99 '

then the 99-method yields that the uncertain variable exp(—¢) has a 99-table,

0.01 0.02 0.03 e 0.99

exp(—wog) exp(—wos) exp(—wo7) -+ exp(—x1) (1.74)
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Increasing Function of Multiple Uncertain Variables

A real-valued function f(x1, 22, - ,%,) is said to be strictly increasing if
flar, e, xn) < fyr,y2,- - yn) (1.75)

whenever xz; <y; fori =1,2,--- ,n and z; < y; for at least one index j.

Theorem 1.20. Let &1,&, -+, &, be independent uncertain variables with
uncertainty distributions ®,, Py, -+, @, respectively. If f : R" — RN is a
strictly increasing function, then

§=f(&, &, &) (1.76)
s an uncertain variable with inverse uncertainty distribution
Ul a) = f(@r (@), @3 (@), -, @, (@) (1.77)

Proof: Since &,&, - ,&, are independent uncertain variables and f is a
strictly increasing function, we have

M{E < (a)}
= M{f(&1,82,- -, &) < F(@7H(@), @5 (a), -, @, ()}
> M{(& <@ (@) N (& < (@) NN (6 <D, ()}
M{& < @)} AM{& < Dy (@)} A AM{E, < @, (@)}

V

=aNa/N---Na=qa.
On the other hand, there exists some index 4 such that
{f(&1,&, &) < f(@7H(a), D31 (@), -+, @, (@)} € {& < @7 ()}

Thus
M{E< T a)} <M{& < @7 ()} =

It follows that M{¢ < ¥~1(a)} = a. In other words, ¥ is just the uncertainty
distribution of £. In fact, we also have

U(zx) = sup min ®;(z;). (1.78)

f(@1, @2, wn)=0 LSIST

The theorem is proved.

99-Method 1.3. Assume &1,&2, -+ , &, are uncertain variables, and each &;
is represented by a 99-table,
O.(Z)l 0.(32 0.93 O.ZQQ (1.79)
£ ) Ty ot Tog
Then for any strictly increasing function f(x1,xae,---,xy), the uncertain
variable f(&1,&2,- - ,&,) has a 99-table,
0.01 0.02 e 0.99

1.80
f($%7$%aax?) f(l‘%7$§,,1‘3) f(xég,x?)gy"',xgg) ( )
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Example 1.24: Let &1,&s, -+ ,&, be independent uncertain variables with
uncertainty distributions ®q, @5, - - , ®,, respectively. Then the sum
=& +&+ - +& (1.81)

is an uncertain variable with inverse uncertainty distribution
T ) =@ a) + 05 (@) + - + D, ). (1.82)
If each & (1 < i < n) is represented by a 99-table,

.01 0.02 o0. - 0.
0(3 0(3 0(33 0?9 (1.83)
rp Ty T3 o Tgg
then the 99-method yields that the sum &; 4 & + - - - + &, has a 99-table,

0.01 0.02 0.03 --- 0.99

n n n n
Sab Yy Soah o Y (1.84)
i=1 i=1 i=1 i=1

Example 1.25: Let £1,&2, - -+ , &, be independent and nonnegative uncertain
variables with uncertainty distributions ®,®s,--- , ®,, respectively. Then
the product

§=8 X & X X (1.85)

is an uncertain variable with inverse uncertainty distribution
T Ha) =07 () x By (@) x --- x D, (a). (1.86)
If each &; (1 <1 <mn) is represented by a 99-table,

0.01 0.02 0.03 --- 0.99
then the 99-method yields that the product & x & X - -+ x &, has a 99-table,

0.01 0.02 003 --- 099

ICRICHICI .89
i=1 i=1 i=1 i=1

Example 1.26: Assume 1, &2, &3 are independent and nonnegative uncer-
tain variables with uncertainty distributions ®1, ®5, @3, respectively. Then
the inverse uncertainty distribution of (&1 + £2)&s3 is

T a) = (87 () + @5 () B3 (). (1.89)
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If &1, &9, &5 are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
e T R
0.01 0.02 0.03 --- 0.99

1.90
(90
0.01 0.02 0.03 --- 0.99

then the 99-method yields that the uncertain variable (& + &)€s has a
99-table,

0.01 0.02 e 0.99

1.91
(@} +ad)a? (@ +ad)ed o (o + 2d0)ado (1.91)

Theorem 1.21. Assume that & and & are independent linear uncertain
variables L(a1,b1) and L(az,bs), respectively. Then the sum & + &2 is also a
linear uncertain variable L(a1 + a2, by + ba), i.e.,

L(a1,b1) + L(az,b2) = L(a1 + az,b1 + ba). (1.92)

The product of a linear uncertain variable L(a,b) and a scalar number k > 0
is also a linear uncertain variable L(ka, kb), i.e.,

k- L(a,b) = L(ka, kb). (1.93)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

®7 (@) = (1 — a)ay + aby,

Oyl (@) = (1 — a)ag + abs.

It follows from the operational law that the inverse uncertainty distribution
of {1 + & is

U (a) = 07} () + 03 (a) = (1 — a)(a1 + az) + a(bi + bo).
Hence the sum is also a linear uncertain variable £(a1 + az2,b1 + b2). The
first part is verified. Next, suppose that the uncertainty distribution of the
uncertain variable £ ~ L(a,b) is ®. It follows from the operational law that
when k > 0, the inverse uncertainty distribution of k¢ is

U la)=kd Ha) = (1 - a)(ka) + a(kb).

Hence k€ is just a linear uncertain variable £(ka, kb).
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Theorem 1.22. Assume that & and & are independent zigzag uncertain
variables Z(a1,b1,c1) and Z(az,ba, c3), respectively. Then the sum & + &2 is
also a zigzag uncertain variable Z(ay + az,b1 + ba, c1 + ¢2), i.e.,

Z(al,bl,cl) + Z(az,bQ,Cz) = Z(a1 + ag, b1 + ba,c1 + 02). (194)

The product of a zigzag uncertain variable Z(a,b,c) and a scalar number
k > 0 is also a zigzag uncertain variable Z(ka, kb, kc), i.e.,

k- Z(a,b,c) = Z(ka, kb, kc). (1.95)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

51 (a) = (1 —2a)a; + 2aby, if o <0.5
! (2 —2a)by 4+ (2a — )¢y, if a > 0.5,

@51(04) _ (1 —2a)az + 2abs, if < 0.5
(2 — 2a)by + (2a — )¢y, if a > 0.5.

It follows from the operational law that the inverse uncertainty distribution
of & + & is

\Ilil(a) _ { (1 —2a)(a1 + a2) + 2a(by + be), ifa<0.5
(2 — 20&)(()1 + b2) + (20& — 1)(01 + CQ), if « > 0.5.

Hence the sum is also a zigzag uncertain variable Z(a; + ag, by + ba, ¢1 + ¢2).
The first part is verified. Next, suppose that the uncertainty distribution of
the uncertain variable £ ~ Z(a, b, c) is ®. It follows from the operational law
that when k > 0, the inverse uncertainty distribution of k¢ is

1 R B (1 —2a)(ka) + 2a(kb), ifaa<0.5
V@) = ke (@) = { (2 — 20)(kb) + (2 — 1)(ke), ifa > 0.5.

Hence k€ is just a zigzag uncertain variable Z(ka, kb, kc).

Theorem 1.23. Let & and & be independent normal uncertain variables
N(e1,o01) and N (e, 03), respectively. Then the sum & + &2 is also a normal
uncertain variable N'(ey + es, 01 + 02), t.e.,

Nei,01) + N(ea,00) = N(ey + ez, 01 + 02). (1.96)

The product of a normal uncertain variable N(e,c) and a scalar number
k > 0 is also a normal uncertain variable N'(ke, ko), i.e.,

k-N(e,o) = N(ke, ko). (1.97)
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Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

CI)l_l(Oé) =e; +

)

o1vV'3 o
In

T l1—«
_ o9vV/3 o

Dyl () =eq + 2 lnl—a'

It follows from the operational law that the inverse uncertainty distribution
of &1 + & is

(o1 + 02)V/3 @

Uha) = Byl a) + 05N (0) = (e +ea)+ 7 TP

Hence the sum is also a normal uncertain variable A(e; + es, 01 + 02). The
first part is verified. Next, suppose that the uncertainty distribution of the
uncertain variable £ ~ N (e, o) is ®. It follows from the operational law that,
when k > 0, the inverse uncertainty distribution of k¢ is

(ko)v/3 mw ¢
m l-«a

U (a) = kd~(a) = (ke) +

Hence k€ is just a normal uncertain variable N (ke, ko).

Theorem 1.24. Assume that & and & are independent lognormal uncertain
variables LOGN (e1,01) and LOGN (ea, 02), respectively. Then the product
&1 - &9 is also a lognormal uncertain variable LOGN (e1 + ez, 01 + 02), i.e.,

LOGN (e1,01) - LOGN (e3,02) = LOGN (e1 + €3, 01 + 02). (1.98)

The product of a lognormal uncertain variable LOGN (e, o) and a scalar num-
ber k > 0 is also a lognormal uncertain variable LOGN (e + Ink, o), i.e.,

k- LOGN (e,0) = LOGN (e + Ink, o). (1.99)

Proof: Assume that the uncertain variables & and & have uncertainty
distributions ®; and P9, respectively. Then

a \/30’1/7r
11—« ’

o7 (@) = expen) (

o >\/3«72/7r

@, (a) = exp(ez) (1 -

It follows from the operational law that the inverse uncertainty distribution
of 51 . fg is
)\/3((71+0'2)/7r

l1—«
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Hence the product is a lognormal uncertain variable LOGN (e1 + e, 01+ 03).
The first part is verified. Next, suppose that the uncertainty distribution of
the uncertain variable £ ~ LOGN (e, o) is ®. It follows from the operational
law that, when k& > 0, the inverse uncertainty distribution of k£ is

a \/30/71'
U a) = kd (a) = exple + Ink) (1 - a> .

Hence k¢ is just a lognormal uncertain variable LOGN (e + Ink, o).

Example 1.27: Let &,&, -+, &, be independent uncertain variables with
uncertainty distributions ®q, @5, - , ®,, respectively. Then the maximum
=& V&V VE, (1.100)

is an uncertain variable with uncertainty distribution
U(x) = P1(z) A Pa(z) A A Dy (x) (1.101)
whose inverse function is
U Ha) =07 a) VO () V- VO (a). (1.102)
If each & (1 < i < n) is represented by a 99-table,

0.01 0.02 0.03 --- 0.99
B (1.103)
then the 99-method yields that the maximum & V& V- -V E, has a 99-table,

0.01 0.02 003 --- 099

Vi Vab Vab o Vb (1104
i=1 =1 =1

i=1

Example 1.28: Let &1,&s, -+, &, be independent uncertain variables with
uncertainty distributions ®1, ®o,--- , ®,,, respectively. Then the minimum

E=6NEN N (1.105)
is an uncertain variable with uncertainty distribution
U(z) = Dy(z) VO(x) V- VD, (x) (1.106)
whose inverse function is

T a) =3 a) ADS () A - A D, ). (1.107)
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If each &; (1 <14 <mn) is represented by a 99-table,

0.01 0.02 0.03 --- 0.99
xd b R (1.108)
then the 99-method yields that the minimum & A&y A - - - A&, has a 99-table,

0.01 0.02 003 --- 099

n n n n
Avi Avs At A (1109
i=1 i=1 i=1 i=1

Example 1.29: If £ is an uncertain variable with uncertainty distribution ®
and k is a constant, then £V k is an uncertain variable with inverse uncertainty
distribution

\I/_l(a) = (I)_l(a) Vk (1110)
and has a 99-table,
0.01 0.02 003 --- 0.99
z1Vk xa3Vk x3VEk -+ wz99VEk (1.111)

In addition, £ Ak is an uncertain variable with inverse uncertainty distribution

U la) =2 (a) Ak (1.112)
and has a 99-table,
0.01 002 003 --- 099
21 ANk xo Ak z3 Ak -+ g9 Ak (1.113)

Decreasing Function of Multiple Uncertain Variables

A real-valued function f(z1, 22, - ,x,) is said to be strictly decreasing if
f(l’hl'g,-“ 7x’ﬂ) >f(y17y2v'” 7y’ﬂ) (1114)
whenever x; <y; for i =1,2,--- ,n and z; < y; for at least one index j.
Theorem 1.25. Let &,&2, -+ ,&, be independent uncertain variables with
uncertainty distributions ®,, Py, -+, @, respectively. If f : R — RN is a
strictly decreasing function, then
é-:f(glvéév“' 7§n) (1115)

18 an uncertain variable with inverse uncertainty distribution

U a) = f@ 1 - a), @ (L —a), - 8 (L —a)).  (L116)
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Proof: Since &,&, - ,&, are independent uncertain variables and f is a
strictly decreasing function, we have

M{g < ¥ Ha)}

M{f(€r, 62, &) S F(@T1(1—a), @3 (1~ a), -, @, (1 - a))}
M{(& =07 (1—a)N (&> (1—a)N---N (& > 0 (1—a)}
M{& > 711 = )} AM{& > 5 (1 — )} A~ AM{E, > @1 (1 - a)}
aANaA---ANa=a. (By the continuity of ®;’s)

v

On the other hand, there exists some index 4 such that

{f&, &) < feT'(1-a) 2 (1 -a)} C {& > 27 (1 - a)}.

Thus
M{E ST M)} < MG > &7 (1—a)} = o

It follows that M{¢ < ¥~!(a)} = . In other words, W is just the uncertainty
distribution of £. In fact, we also have

U(z) = sup min (1 — ®;(x;)). (1.117)

Fxy,ma, e wy)=a 15150
The theorem is proved.

99-Method 1.4. Assume &1,&9, -+, &, are uncertain variables, and each &;
1s represented by a 99-table,

0.01 0.02 0.03 --- 0.99
B om oo m (1.118)
Then for any strictly decreasing function f(x1,x2, - ,xy,), the uncertain
variable f(&1,&2,- -+, &) has a 99-table,
0.01 0.02 e 0.99
f(xég’x?)g?”' "ng) f($é8’x£2987"' ,.ng) f($%vx%a 7$?)

Alternating Monotone Function of Multiple Uncertain Variables

A real-valued function f(x1,x2,---,x,) is said to be alternating monotone
if it is increasing with respect to some variables and decreasing with respect
to other variables.

Theorem 1.26. Let &1,&, -+, &, be independent uncertain variables with
uncertainty distributions @1, @q, - -+ | @, respectively. If f(xy,x9, - ,xy) is
strictly increasing with respect to x1,xs, - , Ty and strictly decreasing with

respect t0 Tip41, Tma2,** , Ty, then
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ng(glvé-?v"' 7§n)

18 an uncertain variable with inverse uncertainty distribution
U a) = F(@ @), By (0), Bk, (L - ), -, @, (L —a)). (L119)

Proof: We only prove the case of m = 1 and n = 2. Since & and &
are independent uncertain variables and the function f(zq,xz2) is strictly
increasing with respect to x1 and strictly decreasing with x5, we have

M{E< T Ha)t = M{f(&,&) < F(@1 (), @51 (1 — )}
> M{(& < &7 ) N (& > 05 (1 —a))}
=M{& <)} AM{& > 071 (1 —a)}

=alNa=qa.

On the other hand, the event {¢ < W~!(a)} is a subset of either {¢; <
& ()} or {& > @51 (1 — a)}. Thus M{¢ < U~ (a)} < a. It follows that

M{E < T (@)} = a

In other words, V¥ is just the uncertainty distribution of £&. In fact, we also
have

U(x) = 3 in ®;(x;) A i 1—®;(x; . 1.120
0=, (s, een, mn 0-ee)). @
The theorem is proved.

99-Method 1.5. Assume &1,&2, -+, &, are independent uncertain variables,

and each &; is represented by a 99-table,

.01 0.02 0. - 0.
0(3 0(3 0(33 0?9 (1.121)
1 Ty T3t Tgg

If the function f(x1,22, - ,x,) is strictly increasing with respect to x1,xa,
-, Ty and strictly decreasing with Ty 41, Tm42,: - , Ty, then the uncertain

variable f(&1,&,- -+, &) has a 99-table,

0.01 e 0.99
f(w%,...,x"fl’wg(g‘rlj...,:L-gfg) f(l'ég,"‘,1’%,1’?+1,"‘,x?)

Example 1.30: Let & and & be independent uncertain variables with un-
certainty distributions ®; and ®5, respectively. Then the inverse uncertainty
distribution of the difference & — & is

T o) =d a) - 51 (1 — ). (1.122)
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If & and x5 are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
Tpowy w3 e Ty
0.01 0.02 0.03 --- 0.99
ST SR B
then the 99-method yields that & — & has a 99-table,
0.01 0.02 0.03 e 0.99
T R M e O 1

37

(1.123)

(1.124)

(1.125)

Example 1.31: Let & and & be independent and positive uncertain vari-
ables with uncertainty distributions ®; and ®5, respectively. Then the inverse

uncertainty distribution of the quotient & /& is
U a) = 07 () /By (1 - a).

If & and & are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
o omh @b e ady
0.01 0.02 0.03 --- 0.99
TS B
then the 99-method yields that &; /& has a 99-table,
0.01 0.02 0.03 .-+ 0.99
wyfxgy wh/eds xh/ad, oo whe/ad

(1.126)

(1.127)

(1.128)

(1.129)

Example 1.32: Assume &1, &,&3 are independent and positive uncertain
variables with uncertainty distributions ®q, ®o, ®3, respectively. Then the

inverse uncertainty distribution of &1 /(&2 + &3) is
Ul a) = 27 (a)/ (@51 (1 — @) + @5 (1 — a)).

If &1, &9, &5 are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
Tpoowy @y Tg
0.01 0.02 0.03 --- 0.99
ot a3 @i o ad
0.01 0.02 0.03 --- 0.99
O R R
then the 99-method yields that & /(&2 + &3) has a 99-table,
0.01 0.02 - 0.99

w1/(x39 + xd9) w3/(xdg +xdg) -0 wgo/ (2} + )

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)
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Operational Law for Boolean Uncertain Variables

A function is said to be Boolean if it is a mapping from {0,1}" to {0,1}. For
example, the following are Boolean functions,

flxi, e, - ,xn) =21 Va2 V- Vg, (1.135)
f(@1, 20, xn) =21 ANT2 A ATy, (1.136)

An uncertain variable is said to be Boolean if it takes values either 0 or 1.
For example, the following is a Boolean uncertain variable,

1 with uncertain measure a
_ (1.137)

0 with uncertain measure 1 — a

where a is a number between 0 and 1. This subsection introduces an opera-
tional law for this type of uncertain variables.

Theorem 1.27. Assume that &1,&2, -+ , &, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
& = (1.138)

0 with uncertain measure 1 — a;

fori=1,2--- n. If f is a Boolean function (not necessarily monotone),
then &€ = f(&1,&2,- -+, &) s a Boolean uncertain variable such that

sup min v;(z;),
fler,aa, - on)=1 1SS0

if sup min v;(x;) < 0.5
M{¢ =1} = Sz m) L ISEET (1.139)
1- sup min v;(x;),

f(z1,m0, 2n)=0 15150

if sup min v;(x;) > 0.5
f(@1,ma, mn)=1 15150

and

sup min v;(z;),
flar,@a, - wn)=0 1SS0

i Sup min v;(z;) < 0.5
M{ =0} = f@r@z, s wn)=0 ISIST (1.140)
.

f(z1,z2, ,zn)=1 1<i<n

if sup min v;(x;) > 0.5
f(z1,m0, 2n)=0 1SS0

where x; take values either 0 or 1, and v; are defined by

—ai, ifxri=0

vili) = { ) @ fai=1 (1.141)

fori=1,2,--- n, respectively.
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Proof: It follows from the operational law and independence of uncertain
variables that

sup min M{¢; € B;},
f(B1,Bg,,By)=115i<n { }

if sup min M{¢; € B;} > 0.5
f(B1,Ba,,By)=115i<n

M{=1}=¢ 1-— sup min M{¢; € B}, (1.142)
f(B1,Ba,-,By)=015i<n

if sup min M{& € B;} > 0.5
F(B1,Ba, o By)=0 15150

0.5, otherwise

where By, Bs, -+ , By, are subsets of {0,1}, and f(B1, Ba,- -+, B,) = 1 means

flz1, 22, ,2) = 1 for any x1 € By,29 € Ba, - ,x, € By,. Please also
note that
vi(1) = M{& =1}, vi(0) = M{§; = 0}
for ¢ = 1,2,--- ,n. The argument breaks down into four cases. Case 1:
Assume
sup min v;(x;) < 0.5.
F@r,,0 wn) =1 15950 oo
Then we have
sup min M{& € B;}=1— sup min v;(x;) > 0.5.
F(B1,Ba,- ,By)=0 1Sisn f@r,ma, w,)=1 15050
It follows from (LI42)) that
M{g=1} = sup min v;(x;).
f(z1,m2, on)=1 15050
Case 2: Assume
sup min v;(x;) > 0.5.
F@r,@z, o ap)=115E50
Then we have
sup min M{& € B;}=1— sup min v;(x;) > 0.5.
f(B1,Ba,+,By)=115isn f(@1,@2, wn)=0151SN
It follows from (L142)) that
ME=1}=1—- sup min v;(x;).

f(@1,@2, 2n)=0 15150

Case 3: Assume

sup min v;(z;) = 0.5,
f@y,wa, e x,)=1150S0

sup min v;(x;) = 0.5.
f@1,wa, o x,)=0 1SS0
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Then we have

Sup min M{&; € B;} = 0.5,
f(B1,Bg,,By)=11%i<n

sup min M{¢; € B;} = 0.5.
f(B1,Bz, -, Byp)=015isn

Tt follows from (LI42) that

ME=1}=05=1- sup min v;(x;).
Fx1,@0, 0n)=0 1SN

Case 4: Assume

o2, vi(ws) = 0.5,

sup min v;(x;) < 0.5.

fz1,m2, oy )=0 1SN

Then we have
f(Bl,BS?P,Bn)ﬁ 1I§nzl£n M{& eB=1- f(zl,mskpv%)zo 1rgnzléln vi(z;) > 0.5.
It follows from ([L142)) that
quz1}:]f_ﬂmxiP@m:m§ﬂ#”““)

Hence the equation (ILI39) is proved for the four cases. Similarly, we may
verify the equation ((LT40).

Theorem 1.28. Assume that £1,&2,- -+ ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
& = . . (1.143)
0 with uncertain measure 1 — a;
fori=1,2,--- ,n. Then the minimum
=G NGEAN N (1.144)
18 a Boolean uncertain variable such that
M{E=1}=a1 ANag A+ Aay, (1.145)

M{E=0t=(1—a1)V(I—ax)V-V(l—ap). (1.146)
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Proof: Since £ is the minimum of Boolean uncertain variables, the corre-
sponding Boolean function is

flzr,@a, - jxp) =21 A2 Ao Ay, (1.147)
Without loss of generality, we assume a; > as > --+ > a,. Then we have

sup min v;(z;) = min v;(1) = apn,
F@ran wn)=1 1Si<n 1<i<n

in vi(z;) = (1—ay) A min (a; V(1 —a
B i) = (=) A i (00 (1 =)

where v;(z;) are defined by (LIZ]) for ¢ = 1,2, -, n, respectively. When
an < 0.5, we have

sup min v;(z;) = a, < 0.5.
f@y,wa, e x,)=1150S0

It follows from Theorem that

MiE=1}= PR 22, vil@:) = an.
When a,, > 0.5, we have
Forane son)=1 2R, vilmi) = an 2 05
It follows from Theorem that
M{g=1}=1— sup min v;(z;) =1— (1 —ap) = ay.
Fo1sa ) =0 1Si<n
Thus M{¢ = 1} is always a,, i.e., the minimum value of a;,as, - - ,a,. Thus

the equation (ILI43)) is proved. The equation ([LI46]) may be verified by the
self-duality of uncertain measure.

Theorem 1.29. Assume that &1,&2,- -+ ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
&= : . (1.148)
0 with uncertain measure 1 — a;
fori=1,2,--- ,n. Then the maximum
E=6VEV - VE, (1.149)
18 a Boolean uncertain variable such that
M{E¢=1}=a1Vaza V- Vapy, (1.150)

M{E=0t=(1—-a)) A1 —ax)A---A(1—ay). (1.151)
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Proof: Since ¢ is the maximum of Boolean uncertain variables, the corre-
sponding Boolean function is

flzr, e, - jzp) =21 Vaa V- - Va,. (1.152)

Without loss of generality, we assume a1 > ay > --+ > a,. Then we have

; () = a; A mi (1= a;
o ST ) = i (a0 (1)
f(wl,wzs,l'l'l.),wn)zo 1212,1;1” Vi (1'2) B 1I§Hiléln Vi (0) =l-m

where v;(z;) are defined by ([LIZ) for ¢ = 1,2, ,n, respectively. When
a1 > 0.5, we have

sup min v;(x;) > 0.5.
f@y,wa, e x,)=1150S0

It follows from Theorem that

M{g=1}=1- sup min v;(x;) =1— (1 —a1) = ay.
F(z1,m2, ) =0 1SISN
When a; < 0.5, we have
sup min v;(x;) = a1 < 0.5.
ol i i(x)
It follows from Theorem that
M{E=1} = sup min v;(z;) = ay.
f¢=1} P Y i(x)

Thus M{¢ = 1} is always a1, i.e., the maximum value of aj,as, - ,a,. Thus
the equation (LI50) is proved. The equation ([LI5]]) may be verified by the
self-duality of uncertain measure.

Theorem 1.30. Assume that £&1,&2,- -+ ,&, are independent Boolean uncer-
tain variables, i.e.,

1 with uncertain measure a;
&= : . (1.153)
0 with uncertain measure 1 — a;
fori=1,2,--- n. Then (k-out-of-n)
1, 4 >k
gz ngl +§2+ +£n_ (1.154)
0, if&r+&+--+& <k
18 a Boolean uncertain variable such that
M{& = 1} = the kth largest value of a1,az, - ,an, (1.155)

M{E = 0} = the kth smallest value of 1 —ay,1 —ag,---,1 —a,. (1.156)
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Proof: This is the so-called k-out-of-n system. The corresponding Boolean
function is

1, ifey+ze+-+a, >k

. (1.157)
0, fei+zo+-4a, <k.

f($1,.1‘2,"' 7$7l) :{

Without loss of generality, we assume a1 > as > --+ > a,. Then we have

i () = ar A mi V(1 —a)),
f(xl,xzs,l'l'l.),xn):1 1I§ni1£" vilw:) = ai ’€r<ni1£n(aZ ( a:))
~ 1 . ) = (1 — A 3 -V (1 —a;
o i ) = () i 0 1)

where v;(z;) are defined by (LIZ]) for ¢ = 1,2, -, n, respectively. When
ar > 0.5, we have

sup min v;(x;) > 0.5.
fl@1,@2, on)=115150 i(m
It follows from Theorem [[L.27] that
M{g=1}=1— sup min v;(z;) =1— (1 —ax) = ak.
f(z1,20, 2n)=0 1SS
When aj, < 0.5, we have
sup min v;(x;) = ar < 0.5.
f(z1,22, xn)=1 1<i<n o
It follows from Theorem [[L.27] that
M{E{=1}= sup min v;(z;) = ak.
flar,z, wn)=1 1SS0
Thus M{¢ = 1} is always ag, i.e., the kth largest value of a1,as, - ,ay,.

Thus the equation ([ZI5H) is proved. The equation (I56) may be verified
by the self-duality of uncertain measure.

Operational Law with Joint Uncertainty Distribution

Let &1,&,- -+, &, be uncertain variables with joint uncertainty distribution
®. It is clear that ®~'(«) is a set of R™ rather than a single point. Assume
f :R™ — R is an increasing function. It follows from the operational law and
maximum uncertainty principle that f(&, &z, ,&,) is an uncertain variable
with inverse uncertainty distribution

min flzr, 20, ,2n), ifa<0.5
\Ilfl(a) B (z1,@2, ,xn)EDP~ () (1 ]_58)
max flzr, 20, ,2p), if a>0.5. .
(1,22, ,2n)EDP~ ()
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If f:R™ — R is a decreasing function, then f(&1,&2, - ,&,) is an uncertain
variable with inverse uncertainty distribution

min flxr, 29, -+ ), ifa<0.5
\I/_l( ) (1,22, ,2n)EP 1 (1-0) (1 159)
) = .
max flxr, 29, -+ ), if @ >0.5.

(1,22, ,2n)EP"(1-0)

1.6 Expected Value

Expected value is the average value of uncertain variable in the sense of
uncertain measure, and represents the size of uncertain variable.

Definition 1.20 (Liu [120]). Let & be an uncertain variable. Then the ex-
pected value of € is defined by

+oo

0
E[¢] = i M{& > ridr —/_ M{E < ridr (1.160)

provided that at least one of the two integrals is finite.

Theorem 1.31. Let £ be an uncertain variable with uncertainty distribution
®. If the expected value exists, then

+o0 0
E[¢] = /0 (1—®(x))dx — / O (z)dz. (1.161)

— 00

Proof: It follows from the definitions of expected value operator and uncer-
tainty distribution that

“+o0 0
Bl = [ otz rjar— [ e <rjar
“+o0 0
- /0 (1— &(2))de — /_OO B(z)da.

See Figure The theorem is proved.

Theorem 1.32. Let & be an uncertain variable with uncertainty distribution
®. If the expected value exists, then

E[¢] = /0 d(a)doa (1.162)

Proof: It follows from the definitions of expected value operator and uncer-
tainty distribution that
+o0o

0
Bl = M&ZAM—[_M&SHM

0

1 3(0) 1
:/ <I>*1(a)da—|—/ éfl(a)da:/ & (a)do.
®(0) 0 0
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5 x
“+o0 0
Figure 1.13: E[¢] = /0 (1—®(x))dx — [ O (x)dx
d(x)
1
O- T

1
Figure 1.14: E[¢] :/ & Ha)da
0

See Figure [[T4l The theorem is proved.

Theorem 1.33. Let £ be an uncertain variable with uncertainty distribution
®. If the expected value exists, then

+o00
Ele] = / 2dd(z). (1.163)

— 00

Proof: It follows from Theorem that
1
E[¢] = / & !a)da.
0

Now write ®~!(a) = x. Then we immediately have a = ®(z). The change
of variable of integral produces (LI63]). The theorem is verified.

Example 1.33: Suppose that £ is a discrete uncertain variable represented by

g= 01 %2 7 Om (1.164)

1 o e Tm
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where 1 < 29 < -+ < xppand 0 < a1 < as < -+ < a,, = 1. The
uncertainty distribution ® of £ is a step function shown in ([35]). Write
ag = 0. If 1 > 0, then the expected value is

x1 Tig1 +oo
E[g}:/ 1dx+Z/ 1—azdx—|—/ 0dz
0 x

m

m—1

=2 + Z(l — ai)(xi+1 — ZL’Z) +0
i=1

m
= Z(ai — 1)y
=1

If x,, <0, then the expected value is

T m—1 Ti41 0
El¢] = —/ 0dz — Z/ a;dx —/ 1dz
—00 i1 YT Tom

m—1

0— Z Oti(l‘zq_l — ﬂ?z) + T

=1
m
= § i T Qg 1

If there exists an index k such that xx < 0 < xp41, then the expected
value is

E[g]:/:kﬂ(l—ak )z + Z /+ 1— an)d

= apn(l—ap)+ Y (1—a)(@ipr — ;)
i=k+1

— g «; J;Z+1 —|—J;kak
=1

m
=2 (ai- i)
Thus we always have the expected value

El¢] = Z(Oéi —-1)T; (1.165)

where ag =0 and «,, = 1.
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Example 1.34: Let £ ~ L(a,b) be a linear uncertain variable. If a > 0,
then the expected value is

Elg] = (/Oaldm+/ab (l—z:Z)dx—&—/:OOOdm) —/OOOdez a;b.

If b < 0, then the expected value is

400 a b, 0
E[g]:/ 0dx—</ de+/ v adm+/ 1dac> _ath
0 —00 a b—a b 2

If a < 0 < b, then the expected value is

b 0
r—a r—a a+b
El€] = 1— — = .
g /o< b—a)dx /ab—adgc 2

Thus we always have the expected value

a+b

Blg) = (1.166)

Example 1.35: The zigzag uncertain variable & ~ Z(a, b, ¢) has an expected

value
a+2b+c

Bl ="

(1.167)

Example 1.36: The normal uncertain variable £ ~ N (e, o) has an expected
value e, i.e.,

El¢] = e. (1.168)

Example 1.37: If 0 < 7/4/3, then the lognormal uncertain variable & ~
LOGN (e, o) has an expected value

E[€] = V30 exp(e) cse(V30). (1.169)
Otherwise, E[¢] = +o0.

Linearity of Expected Value Operator

Theorem 1.34. Let & and i be independent uncertain variables with finite
expected values. Then for any real numbers a and b, we have

Ela& + bn] = aE[€] + bE[n). (1.170)

Proof: Suppose that £ and n have uncertainty distributions ® and ¥,
respectively.
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STEP 1: We first prove E[af] = aF[{]. If a = 0, then the equation holds
trivially. If a > 0, then the inverse uncertainty distribution of af is

T a) =a® ().

It follows from Theorem that

1 1
Elag] :/ a® (a)da = a/ & Ha)da = aE[¢].
0 0
If a < 0, then the inverse uncertainty distribution of af is
T a)=a® (1 - a).

It follows from Theorem that
1 1
Elag] = / a® (1 —a)da = a/ & Ha)da = aE[E].
0 0

Thus we always have E[af] = aE[¢].

STEP 2: We prove E[§ +n] = E[¢] + E[n]. The inverse uncertainty distri-
bution of the sum £ + 7 is

T a)=d " a)+ T a).

It follows from Theorem that

Elt 1) = / T} (a)da = / 3 (a)da + / ¥} (a)da = B[] + Eln.

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1 and
2 that
Efag + bn] = Ela] + E[bn] = aE[¢] + bE[n].

The theorem is proved.

Example 1.38: Generally speaking, the expected value operator is not
necessarily linear if £ and 5 are not independent. For example, take (I, £, M)

tobe {v1,72,v3} with M{v1} = 0.7, M{72} = 0.3, M{y3} = 0.2, M{y1,72} =
0.8, M{~y1,73} = 0.7, M{~2,v3} = 0.3. The uncertain variables are defined by

L ify=m 0, ify=m
§i(y) = 0, ify=m &(y) = 2, ify=1s
2a lf’}/:"}/g, 37 lf’y:’}@

Note that & and & are not independent, and their sum is

]-7 lf’y =N
(G1+&)Y) =9 2, ify="
5, if v =1s.
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Thus E[¢1] = 0.9, E[¢] = 0.8, and E[&; + &] = 1.9. This fact implies that
E[&1 + &] > ElG] + Elé).

If the uncertain variables are defined by

O, lf’}/:’yl O’ lf’Y:’Yl
my) = 1, ify=m n2(7y) = 3, ify=mv
2, if y =13, 1, if v =ns.
Then we have
0, ify=m
(m+m)(y) =9 4 ify=m7
3, ify=1s.

Thus E[n] = 0.5, E[nz] = 0.9, and E[n; + n2] = 1.2. This fact implies that
Elm + n2] < Elm] + En].

Expected Value of Function of Single Uncertain Variable
Let £ be an uncertain variable, and f : ® — R a function. Then the expected
value of f(&) is

+oo

0
Elfe)= [ M{F©) > rjdr— / M{F(©) < r}dr.

0

For random case, it has been proved that the expected value E[f ()] is the
Lebesgue-Stieltjes integral of f(x) with respect to the uncertainty distribution
® of ¢ if the integral exists. However, generally speaking, it is not true for
uncertain case.

Example 1.39: We consider an uncertain variable £ whose first identification
function is given by
0.3, if —1<z<0
AMz) =
0.5, ifo<z<1.
Then the expected value E[¢?] = 0.5. However, the uncertainty distribution
of £ is
0, ifz<-1
03, if —1<z<0
0.5, ifo<z<1
1 ifz>1
and the Lebesgue-Stieltjes integral

O(z) =

)

+oo
/ 22d®(z) = (=1)? x 0.3+ 0% x 0.2 +1% x 0.5 = 0.8 # E[¢?].
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Theorem 1.35 (Liu and Ha [132]). Let & be an uncertain variable whose
uncertainty distribution ®. If f(x) is a strictly monotone function such that
the expected value E[f(§)] exists, then

+oo

Blf(€)] = / F(2)dd(z). (1.171)

— 00

Proof: We first suppose that f(z) is a strictly increasing function. Then
f(€) has an uncertainty distribution ®(f~!(x)). It follows from the change
of variable of integral that

+oo +oo
E[f(€)] = / 2dB(f 7 (x)) = / f(2)dB(z).

If f(z) is a strictly decreasing function, then — f(x) is a strictly increasing
function. Hence

+oo 400
Blf(€)] = —E[-£(6)] = - / —f(a)dd(x) = / F(y)dB(y).
The theorem is verified.

Example 1.40: Let £ be a positive linear uncertain variable £(a,b). Then
its uncertainty distribution is ®(z) = (z — a)/(b — a). Thus

b 2 2
a® +b°+ab
B¢ = [ ato@) =" LT

Example 1.41: Let £ be a positive linear uncertain variable £(a,b). Then
its uncertainty distribution is ®(z) = (z — a)/(b — a). Thus

b — expla
Elexp(€)] :/ exp(z)d®(z) = exp(bl)) e p( )

Theorem 1.36 (Liu and Ha [132]). Assume & is an uncertain variable with
uncertainty distribution ®. If f(x) is a strictly monotone function such that
the expected value E[f(£)] exists, then

1
E[f(6)] = / (& (@))da (1172)

Proof: Suppose that f is a strictly increasing function. It follows from
Theorem [[.20 that the inverse uncertainty distribution of f(€) is
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v a) = F(@(a)).

By using Theorem [[32 the equation (ILI72)) is proved. When f is a strictly
decreasing function, it follows from Theorem [[.25]that the inverse uncertainty
distribution of f(&) is

T a) = f(@ (1 - a)).

By using Theorem and the change of variable of integral, we get the
equation (LI72). The theorem is verified.

Example 1.42: Let £ be a nonnegative uncertain variable with uncertainty
distribution ®. Then

E[VE = /O Ve Ha)da. (1.173)

Example 1.43: Let & be a positive uncertain variable with uncertainty
distribution ®. Then

B E] :/01 q)l(i_a)da:/ol q)ill(a)da. (1.174)

Expected Value of Function of Multiple Uncertain Variables

Theorem 1.37 (Liu and Ha [132]). Assume &,&2, -+ ,&, are indepen-
dent uncertain variables with uncertainty distributions ®1, o, -, P, re-
spectively. If f: R™ — R is a strictly monotone function, then the uncertain
variable £ = f(&1,&2, -+ ,&n) has an expected value

1
E[¢] = /O f(@7 ), @5 (a), -, @, (a))da (1.175)

provided that the expected value E[€] exists.

Proof: Suppose that f is a strictly increasing function. It follows from
Theorem [I.20] that the inverse uncertainty distribution of £ is

U a) = f(@1 (o), D3 (a), -, @5 ().

n

By using Theorem [[L32] we obtain (LI75). When f is a strictly decreasing
function, it follows from Theorem [[.27] that the inverse uncertainty distribu-
tion of £ is

\Ilfl(a) = f(<I>1_1(1 —a),<I>2_1(1 —a),- - ,@;1(1 —a)).

By using Theorem [[L32] and the change of variable of integral, we obtain
(CI7H). The theorem is proved.

Example 1.44: Let £ and 7 be independent and nonnegative uncertain
variables with uncertainty distributions ® and W, respectively. Then



52 CHAPTER 1 - UNCERTAINTY THEORY

1
Eén) = /O &)U (a)da. (1.176)

Exercise 1.1: What is the expected value of an alternating monotone func-
tion of uncertain variables?

Exercise 1.2: Let ¢ and n be independent and positive uncertain variables
with uncertainty distributions ® and ¥, respectively. Prove

E m :/01 \I/(I)l(l(f)a)da. (1.177)

1.7 Variance

The variance of uncertain variable provides a degree of the spread of the
distribution around its expected value. A small value of variance indicates
that the uncertain variable is tightly concentrated around its expected value;
and a large value of variance indicates that the uncertain variable has a wide
spread around its expected value.

Definition 1.21 (Liu [120]). Let £ be an uncertain variable with finite ex-
pected value e. Then the variance of & is defined by V[£] = E[(€ — €)?].

Let & be an uncertain variable with expected value e. If we only know its
uncertainty distribution ®, then the variance

+oo
Vid = M- e)? = r}dr

+oo

= M{(E=e+Vr)U(§<e—r)tdr
0
+oo
< / (M{E > e+ v/r} + M€ < e — v/r})dr
0
+o00
:/ (1 —®(e++/r) +®(e—+/r))dr
0
_ /ﬂo 2(r — e)(1 — B(r) + (2 — r))dr-
For this case, we will stipulate that the variance is

+oo
V¢ = 2/ (r—e)(1—2(r) + ®(2e — r))dr. (1.178)

Mention that this is a stipulation rather than a precise formula!

Example 1.45: It has been verified that the linear uncertain variable £ ~
L(a,b) has an expected value (a+b)/2. Note that the uncertainty distribution
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is ®(z) = (x —a)/(b—a) when a < z < b. It follows from the stipulation
(CI7Y) that the variance is

b 2

a+b r—a b-—r (b—a)

=2 — 1-— = .
viel /(a+b)/2 (T 2 ) ( b—a * b—a) & 12

In fact, a precise conclusion is (b —a)?/24 < V[¢] < (b —a)?/12.

Example 1.46: It has been verified that the normal uncertain variable
& ~ N (e, o) has expected value e. It follows from the stipulation (LIT78) that
the variance is

V(] = o (1.179)

In fact, a precise conclusion is 02/2 < V[¢] < o2

Theorem 1.38. If £ is an uncertain variable with finite expected value, a
and b are real numbers, then V[a& + b] = a?V[¢].

Proof: It follows from the definition of variance that
Via& +b] = E [(a& + b — aE[¢] — b)*] = a®E[(§ — E[¢])?] = a®V[¢].

Theorem 1.39. Let £ be an uncertain variable with expected value e. Then
VI[E] = 0 if and only if M{¢ =e} = 1.
Proof: If V[¢] = 0, then E[(¢ —€)?] = 0. Note that
+oo
B¢ —¢)’] = M{(& —e)? > rydr
0

which implies M{(¢ — e)? > r} = 0 for any 7 > 0. Hence we have
M{(€ — e =0} = 1.
That is, M{{ = e} = 1. Conversely, if M{¢ = e} = 1, then we have M{({ —
e)?=0} =1 and M{(£ —e)? > r} =0 for any r > 0. Thus
+oo
VIE] = M{(§—e)* 2 r}dr =0.
0

The theorem is proved.

Maximum Variance Theorem

Let ¢ be an uncertain variable that takes values in [a, b], but whose uncer-
tainty distribution is otherwise arbitrary. If its expected value is given, what
is the possible maximum variance? The maximum variance theorem will an-
swer this question, thus playing an important role in treating games against
nature.
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Theorem 1.40. Let f be a convex function on [a,b], and & an uncertain
variable that takes values in [a,b] and has expected value e. Then

b—e e—a
G R O RS 0} (1.180)
Proof: For each v € T', we have a < £() < b and
_b=&(v) () —a
¢0) = b—a at b—a b.

It follows from the convexity of f that

rem < s+ 0 g,

Taking expected values on both sides, we obtain the inequality.

Theorem 1.41 (Maximum Variance Theorem). Let & be an uncertain vari-
able that takes values in [a,b] and has expected value e. Then

V[l < (e—a)(b—e) (1.181)
and equality holds if the uncertain variable £ is determined by

b—e

b o’ ifr=a

M=z} = (1.182)
e—a .
b’ ifx=0.

Proof: It follows from Theorem[[40immediately by defining f(z) = (z—e)?.
It is also easy to verify that the uncertain variable determined by ([LI82) has
variance (e — a)(b — e). The theorem is proved.

1.8 Moments

Definition 1.22 (Liu [I20]). Let & be an uncertain variable. Then for any
positive integer k,

(a) the expected value E[¢¥] is called the kth moment;

(b) the expected value E[|€|F] is called the kth absolute moment;

(c) the expected value E[(€ — E[€])*] is called the kth central moment;

(d) the expected value E[|¢ — E[€]|*] is called the kth absolute central moment.

Note that the first central moment is always 0, the first moment is just the
expected value, and the second central moment is just the variance.

Theorem 1.42. Let £ be a nonnegative uncertain variable, and k a positive
number. Then the k-th moment

Ele") = k /0 e > ) (1.183)
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Proof: It follows from the nonnegativity of £ that

El¢* = / M{¢" > z}da = / M{¢ > r}drt = k/ rFIM{E > r}dr.
0 0 0
The theorem is proved.

Theorem 1.43. Let £ be an uncertain variable, and t a positive number. If
E|¢]'] < oo, then

lim x"M{|¢| >z} = 0. (1.184)

Conversely, if (I.187) holds for some positive numbert, then E[|{|*] < co for
any 0 < s < t.

Proof: It follows from the definition of expected value operator that

+oo
Bl = ; M{J¢]" > r}dr < oco.

Thus we have
—+oo

lim M{|¢[" > r}dr = 0.

r—00 It/z
The equation ([LI84) is proved by the following relation,

+o00 xt 1
MUl 2 rhr = [ M€l 2 rhdr = atM{le] 2 )
2 xt/2

xzt/
Conversely, if (II84) holds, then there exists a number a > 0 such that
rM{|¢| > 2} <1, Vx> a.

Thus we have

a —+o00
Ble] = / Mgl = rhar+ [ el = rhr

a —+o00

= [ aflel = riars [ s taglg) =
0 a
a +o00
M s d sftfld

g/o {\€|Zr}r+s/a Pty

+oo
< +o0. (by/ rPdr < oo for anyp<—1>
a

The theorem is proved.



56 CHAPTER 1 - UNCERTAINTY THEORY

Theorem 1.44. Let & be an uncertain variable that takes values in [a,b]
and has expected value e. Then for any positive integer k, the kth absolute
moment and kth absolute central moment satisfy the following inequalities,

b—e e—a
k < k k
Ellef*l <, _ lal*+ b, (1.185)
b—e e—a
—elF < _ gk _ \k
Ell§=el]<,  (e—a)f+,  (b—e) (1.186)

Proof: It follows from Theorem [[40 immediately by defining f(x) = |z|"
and f(z) = |z — e|*.

1.9 Critical Values

In order to rank uncertain variables, we may use two critical values: opti-
mistic value and pessimistic value.

Definition 1.23 (Liu [I20]). Let & be an uncertain variable, and o € (0,1].
Then

&oup(@) = sup {r | M{¢ > 7} > o} (1.187)

1s called the a-optimistic value to &, and
Gint() = inf {r | M{¢ <r} > a} (1.188)
1s called the a-pessimistic value to &.

This means that the uncertain variable £ will reach upwards of the
a-optimistic value &gup(a) with uncertain measure o, and will be below the
a-pessimistic value &ue(@) with uncertain measure a.

Theorem 1.45. Let & be an uncertain variable with uncertainty distribution
®. Then its a-optimistic value and a-pessimistic value are

gsup(a) = (I)il(]' - a)? (1189)
Gint(a) = @ 1(a). (1.190)

Proof: It follows from the definition of a-optimistic value and a-pessimistic
value immediately.

Example 1.47: Let £ be a linear uncertain variable £(a,b). Then its a-
optimistic and a-pessimistic values are

Esup(a) = aa + (1 — a)b,

éint(@) = (1 — a)a + ab.
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0 eu(@) Emle)

Figure 1.15: Optimistic Value and Pessimistic Value

Example 1.48: Let & be a zigzag uncertain variable Z(a,b,c). Then its
a-optimistic and a-pessimistic values are

2ab + (1 — 2a)c, if a <0.5
gsup(a) = .
(2a—1)a+ (2 —2a)b, if a>0.5,

() = (1 —2a)a+ 2ab, ifaa<0.5
PR (2 - 2a)b+ (20— 1)e, if a > 0.5.

Example 1.49: Let ¢ be a normal uncertain variable N'(e,o). Then its
a-optimistic and a-pessimistic values are

gsup(a) =€ — In s

finf(a) =e+ In

Example 1.50: Let ¢ be a lognormal uncertain variable LOGA (e, o). Then
its a-optimistic and a-pessimistic values are

11—« \/3«7/71'
a )

Eunle) = oxp(e)

a \/30’/7‘{'
1« '

6l = exple)

Theorem 1.46. Let £ be an uncertain variable, and o € (0,1]. Then for
any positive number €, we have

M{E < &nr(a) +e} >, M{E > &upla) — e} > a. (1.191)
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Proof: It follows from the definition of a-pessimistic value that there exists
a decreasing sequence {z;} such that M{{ < z;} > o« and x; | &ne(a) as
it — 00. Thus for any positive number ¢, there exists an index 7 such that
2; < &ng(a) + €. Hence

M{E < &ine(a) + e} > M{E <z} >

Similarly, there exists an increasing sequence {z;} such that M{{ > z;} > «
and z; 1 &up(@) as i — co. Thus for any positive number ¢, there exists an
index 4 such that z; > &up(a) — €. Hence

M{g > fsup(a) - 5} > M{f > $z} > Q.
The theorem is proved.

Theorem 1.47. Let & be an uncertain variable, and o € (0,1]. Then we have
(a) &nt(@) is an increasing and left-continuous function of «;
(b) &sup(@) is a decreasing and left-continuous function of o.

Proof: (a) Let a3 and as be two numbers with 0 < oy < ag < 1. Then for
any number r < &up(az2), we have

MA{E>r} > az > ag.

Thus, by the definition of optimistic value, we obtain &up(a1) > Eeuplag).
That is, the value &up(e) is a decreasing function of «. Next, we prove the
left-continuity of &n¢(a) with respect to a. Let {«;} be an arbitrary sequence
of positive numbers such that a; T a. Then {&n(a;)} is an increasing se-
quence. If the limitation is equal to &n¢(a), then the left-continuity is proved.
Otherwise, there exists a number z* such that

.lim finf(oti) <z < ginf(a)-
i—00

Thus M{¢ < 2*} > «; for each i. Letting i — oo, we get M{& < z*} > au
Hence z* > &ne(a). A contradiction proves the left-continuity of &,¢(ar) with
respect to . The part (b) may be proved similarly.

Theorem 1.48. Let & be an uncertain variable, and o € (0,1]. Then we have
(a) if & > 0.5, then &inr(a) > Laup(Q);
(b) if a < 0.5, then &ne(er) < &sup(@).

Proof: Part (a): Write £(a) = (&ne(a) + Eoup (@) /2. If &ing(a) < Eupl(a),
then we have

1>M{€ < &)} +M{€>E(a)} >ata> 1

A contradiction proves &int(a) > Eup(a). Part (b): Assume that ine(a) >
Eup(a). It follows from the definition of &ne(a) that M{{ < &(a)} < a.
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Similarly, it follows from the definition of & () that M{¢ > £(a)} < a.
Thus
L<M{E < g} +M{E > ¢(a)} <ata<l

A contradiction proves &ing() < &sup(@). The theorem is verified.

Theorem 1.49 (Zuo [2]7]). Let&1,&a,- - , &y be independent uncertain vari-
ables with uncertainty distributions. If f : R — R is a continuous and

strictly increasing function, then & = f(&1,&, -+ ,&n) is an uncertain vari-
able, and
gsup(a) = f(gl sup(a)v 52 sup(a)a e vgnsup(a))v (1192)
inf(@) = f(§1inf(@), E2inf (), -+ Enine(@)). (1.193)

Proof: Since f is a strictly increasing function, it follows from Theorem [L.20
that the inverse uncertainty distribution of & is

Vo) = f(@1 (), @3 ' (a), -, @, (o))

where @1, o, - , P, are uncertainty distributions of &£1,&s, - ,&,, respec-

tively. By using Theorem [[L40] we get (LI92)) and (LI93)). The theorem is
proved.

Example 1.51: Let & be an uncertain variable, and o € (0,1]. If ¢ > 0,
then

(c€)sup (@) = chsup(@),  (c€)int(@) = cint ().

Example 1.52: Suppose that £ and 7 are independent uncertain variables,
and « € (0,1]. Then we have

(€ + Msup (@) = &sup (@) + Msup(@), (€ + N)ine(@) = &int (@) + Mint (@),

(EV M)sup (@) = &sup (@) V Msup(@);  (§V N)int (@) = &int () V Nint (@),
(€ AM)sup (@) = &oup (@) A Msup(@), (EAN)int (@) = &int (@) A Dint ().

Example 1.53: Let ¢ and 7 be independent and positive uncertain variables.
Since f(x,y) = xy is a strictly increasing function when « > 0 and y > 0, we
immediately have

(€Msup (@) = &sup(@)sup(@);  (€N)int (@) = &int (@) hint (@) (1.194)

Theorem 1.50 (Zuo [2]7]). Let&1,&a,- - , &y be independent uncertain vari-
ables with uncertainty distributions. If f is a continuous and strictly decreas-
ing function, then

Eaup(@) = f(&rint(@), &2ine(a), -+, &nint (@), (1.195)
finf(a) = f(flsup(a)7£2 sup(a)7 T 7£nsup(a))- (1.196)
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Proof: Since f is a strictly decreasing function, it follows from Theorem [[.2]]
that the inverse uncertainty distribution of ¢ is

Ul a) = f(971 (1 - ), @ (1 —a), -, @, (1 - a)).
By using Theorem we get (LI98) and ([LI96). The theorem is proved.

Example 1.54: Let & be an uncertain variable, and o € (0,1]. If ¢ < 0,
then

(€€)sup(a) = cCin(@),  (c€)int(a) = cEsup(@)-

Exercise 1.3: What are the critical values to an alternating monotone func-
tion of uncertain variables?

Exercise 1.4: Let £ and n be independent and positive uncertain variables.

Prove
(5 > ) (o) = Sl (5 > ()= int () (1.197)

n Uinf(a) ’ n nsup(a) .

1.10 Entropy

This section provides a definition of entropy to characterize the uncertainty
of uncertain variables resulting from information deficiency.

Definition 1.24 (Liu [123]). Suppose that & is an uncertain variable with
uncertainty distribution ®. Then its entropy is defined by

+oo
HE) = / S(®(x))da (1.198)

— 00

where S(t) = —tlnt — (1 —¢) In(1 — ).

Example 1.55: Let £ be an uncertain variable with uncertainty distribution

0, fz<a
O(z) = 1.199
(z) { 1, ifx>a. ( )
Essentially, £ is a constant a. It follows from the definition of entropy that
a —+oo
H[f]:—/ (Oln0+11n1)dx—/ (I1ln1+0In0)dz =0.

This means a constant has no uncertainty.

Example 1.56: Let ¢ be a linear uncertain variable £(a,b). Then its en-
tropy is

b J— J— J— J— J—
H[g]:-/ (x Gy roe bowy b x)dx:bQG. (1.200)

b—a b—a b—anb—a
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0 0.5 1

Figure 1.16: Function S(t) = —tlnt — (1 — ¢)In(1 — ¢). It is easy to verify
that S(t) is a symmetric function about ¢ = 0.5, strictly increases on the in-
terval [0,0.5], strictly decreases on the interval [0.5, 1], and reaches its unique
maximum In2 at ¢ = 0.5.

Example 1.57: Let £ be a zigzag uncertain variable Z(a,b,c). Then its
entropy is

He) = . (1.201)

Example 1.58: Let ¢ be a normal uncertain variable A'(e,o). Then its
entropy is

H[¢] = (1.202)

V3

Theorem 1.51. Let & be an uncertain variable. Then H[¢] > 0 and equality
holds if € is essentially a constant.

Proof: The positivity is clear. In addition, when an uncertain variable tends
to a constant, its entropy tends to the minimum 0.

Theorem 1.52. Let & be an uncertain variable taking values on the interval
[a,b]. Then
H(|<(b—a)ln2 (1.203)

and equality holds if & has an uncertainty distribution ®(z) = 0.5 on [a,b].

Proof: The theorem follows from the fact that the function S(t) reaches its
maximum In2 at ¢t = 0.5.

Theorem 1.53. Let & be an uncertain variable, and let ¢ be a real number.
Then
H[¢+ ] = H[¢). (1.204)

That is, the entropy is invariant under arbitrary translations.



62 CHAPTER 1 - UNCERTAINTY THEORY

Proof: Write the uncertainty distribution of £ by ®. Then the uncertain
variable € 4+ ¢ has an uncertainty distribution ®(z — ¢). It follows from the
definition of entropy that

+o0 +oo
HIE+ (] :/_ S(@(w—c))dx:/_ S(®(x))dx = H[E].
The theorem is proved.

Theorem 1.54 (Dai and Chen [2])]). Let & be an uncertain variable with
uncertainty distribution ®. Then

«

H[g]:/o q>—1(a)1n1 da. (1.205)

—

Proof: It is clear that S(«) is a derivable function with S’(a)) = —Ina/(1 —

a). Since
P(x) 1
S(®(z)) :/ S'(a)da = —/ S (a)da
0 P(x)
we have

H[¢) = /J:O ))dx = / / a)dadz — /O+OO (;(z) S'(a)dadz.

It follows from Fubini theorem that

(0)
/ / a)dzda — / / a)dzda
1(a) ©(0)

@(o)
=—/0 <>S<>da—[b(0) 1(0)8' ()da

1 1
= —/ & (a)S (a)da = / d '(a)ln * da.
0 0 11—«
The theorem is verified.

Theorem 1.55 (Dai and Chen [2{)]). Let & and n be independent uncertain
variables. Then for any real numbers a and b, we have

Hla& + bn] = |a|H[¢] + [b|H[n]. (1.206)
Proof: Suppose that £ and 1 have uncertainty distributions ® and W, re-
spectively.

STEP 1: We prove H[af] = |a|H[¢]. If a > 0, then the inverse uncertainty
distribution of a is



SECTION 1.10 - ENTROPY 63

It follows from Theorem [[.54] that

1 1
Hlag] :/0 a® (a)ln 1 aada = a/o & Ha)ln 1 fada = |a|H[E].

If a = 0, we immediately have H[a&] = 0 = |a|H[]. If a < 0, then the inverse
uncertainty distribution of a§ is

T a)=a® (1 -a).

It follows from Theorem [[.54] that

1 1
Hlag] :/0 a@ (1 -a)hn © da:(—a)/o o) | da=a]He]

-«
Thus we always have H[a&] = |a|H[¢].
STEP 2: We prove H[¢ + 1] = H[{] + H[n]. Note that the inverse uncer-
tainty distribution of £ 4 7 is
T a)=d " a)+ T a).
It follows from Theorem [[54] that

(67

HI¢ + 1] = / (@) + T ) da= HIE + H.

1l—«

STEP 3: Finally, for any real numbers a and b, it follows from Steps 1 and
2 that
H{ag + bn] = H[ag] + H[bn] = |a|H[¢] + [b|H [n].

The theorem is proved.

Entropy of Function of Uncertain Variables

Theorem 1.56 (Dai and Chen [2]]]). Let &1,&,- -+, &, be independent un-
certain variables with uncertainty distributions @1, ®o, -, D, respectively.
If f: R™ — R is a strictly increasing function, then the uncertain variable

§=f(&,&2, -+, &n) has an entropy

H[¢] =/0 f(@7a), 25 (a), -+, @, (@) = do (1.207)

Proof: Since f is a strictly increasing function, it follows from Theorem [[.20
that the inverse uncertainty distribution of £ is

U a) = f(@7 (), 23 (), @ ().

n

By using Theorem [[54] we get (L207). The theorem is thus verified.
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Exercise 1.5: Let ¢ and 1 be independent and nonnegative uncertain vari-
ables with uncertainty distributions ® and W, respectively. Then

1
H[gn]:/o 3 (a) 0 (a)In, ¢ da. (1.208)

11—«
Theorem 1.57 (Dai and Chen [Z]|]). Let 1,82, -+, &, be independent un-
certain variables with uncertainty distributions ®1, ®o, - , @, respectively.
If f is a strictly decreasing function, then

l1—«

H[¢] = /0 f( @7 (@), 25 (), -, @, (@) In da. (1.209)

Proof: Since f is a strictly decreasing function, it follows from Theorem [[.2]]
that the inverse uncertainty distribution of ¢ is

U Ha) = f(@7 (1 - ), @5 (1 —a),--, @, (1 - a)).
By using Theorem [[54] we get (IL209). The theorem is thus verified.

Exercise 1.6: What is the entropy of an alternating monotone function of
uncertain variables?

Exercise 1.7: Let £ and 1 be independent and positive uncertain variables
with uncertainty distributions ® and ¥, respectively. Prove

H m - /01 W(Dl_(l(i”)a) m, “ da (1.210)

Maximum Entropy Principle

Given some constraints, for example, expected value and variance, there are
usually multiple compatible uncertainty distributions. Which uncertainty
distribution shall we take? The mazimum entropy principle attempts to
select the uncertainty distribution that maximizes the value of entropy and
satisfies the prescribed constraints.

Theorem 1.58 (Chen and Dai [T9]). Let £ be an uncertain variable whose
uncertainty distribution is arbitrary but the expected value e and variance o2.
Then

H[¢] < (1.211)

V3

and the equality holds if € is a normal uncertain variable N (e, o).

Proof: Let ®(z) be the uncertainty distribution of ¢ and write ¥(z) =
®(2e—x) for x > e. It follows from the stipulation (II78) that the variance is

+oo +oco
V(¢ = 2/ (x—e)(1 —@(z))dz + 2/ (z — e)¥(z)dz = o2.
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Thus there exists a real number s such that

+o00
2/ (x —e)(1 — ®(x))dz = ko?,

+o00
2/ (x —e)¥(2z)dr = (1 — K)o>.

The maximum entropy distribution ® should maximize the entropy

+oo +oo +oo
Hl¢) :/ S(@(x))dw:/ 5(@(x))dx+/ S(W())de

— 00

subject to the above two constraints. The Lagrangian is
+oo 400
L= / S(@(x))dw—F/ S(U(z))dz
e e
+oo
—« <2/ (x—e)(1 — ®(x))dx — /<c02>

-8 (2 /+Oo(a: —e)U(z)dr — (1 — m)az) .
The maximum entropy distribution meets Euler-Lagrange equations
In®(x) —In(l — ®(x)) = 2a(x — e),
In¥(z) —In(1l —¥(x)) =206(e — ).
Thus ® and ¥ have the forms
B(x) = (1 + exp(2a(e — 2)) "L,

U(x) = (1 +exp(26(z — €))7

Substituting them into the variance constraints, we get

oo~ (1re (),

-1
U(z) = (1 + exp (\/7;((331 : ?)0)) .

Then the entropy is
ok w1 —k

H[¢] = /6 /6
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which achieves the maximum when x = 1/2. Thus the maximum entropy
distribution is just the normal uncertainty distribution A (e, o).

1.11 Distance

Definition 1.25 (Liu [120]). The distance between uncertain variables &
and 1 is defined as

d(&;n) = E[l§ —nll. (1.212)

Theorem 1.59. Let £, 71,7 be uncertain variables, and let d(-,-) be the dis-
tance. Then we have

(a) (Nonnegativity) d(&,n) > 0;

(b) (Identification) d(&,m) = 0 if and only if £ = n;

(¢) (Symmetry) d(&,m) = d(n,§);

(d) (Triangle Inequality) d(&,m) < 2d(&,7) + 2d(n, 7).

Proof: The parts (a), (b) and (c) follow immediately from the definition.
Now we prove the part (d). It follows from the countable subadditivity axiom
that

+oo
d(&n) = ; MAJE =nl = rpdr
+o00
< MAE =7+ |7 —nl = rpdr
0
+oo
< MAE =7l = r/2) V(| —n| = r/2)}dr

o+C>o
<[ ofie =1z 20— 0l = /2 ar
= 2E[|§ = 7[] + 2E[|7 — n[] = 2d(¢, 7) + 2d(7,n).
Example 1.59: Let I' = {y1,72,73}. Define M{0} = 0, M{T'} = 1 and

M{A} = 1/2 for any subset A (excluding ) and I"). We set uncertain variables
&, n and 7 as follows,

1, ify=m 0, ify=m
Ev)=4q 1, ify=7 ny)=¢ -1, ify=7%n  7(y)=0.
Oa ler:’Y?n _17 lf’y:’}@v

It is easy to verify that d(&,7) = d(7,n) = 1/2 and d(&,n) = 3/2. Thus

(e m) = 5 (d(€, ) + dr,).

A conjecture is d(&,n) < 1.5(d(&, 7)+d(,n)) for arbitrary uncertain variables
&, n and 7. This is an open problem.
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1.12 Inequalities

Theorem 1.60 (Liu [T20]). Let & be an uncertain variable, and f a non-
negative function. If f is even and increasing on [0,00), then for any given
number t > 0, we have

E[f ()]
f@

Proof: It is clear that M{|¢| > f~!(r)} is a monotone decreasing function
of r on [0,00). It follows from the nonnegativity of f(&) that

M{lE] >t} < (1.213)

+oo +oo

E[f(§)] = ; M{f(§) = ridr = ; M{[E] = f7H (r)bdr

f() f(t)

> / M) > 1 (r)}dr > / dr-M{lEl = F )
0 0

— (1) M{j¢] > 1)

which proves the inequality.

Theorem 1.61 (Liu [120], Markov Inequality). Let & be an uncertain vari-
able. Then for any given numberst > 0 and p > 0, we have

M{¢| >t} < E!ﬁ‘p}. (1.214)

Proof: It is a special case of Theorem when f(z) = |z|P.

Example 1.60: For any given positive number ¢, we define an uncertain
variable as follows,

0 with uncertain measure 1/2
| t with uncertain measure 1 /2.

Then E[(P] =tP/2 and M{¢ >t} = 1/2 = E[£P]/tP.

Theorem 1.62 (Liu [120], Chebyshev Inequality). Let & be an uncertain
variable whose variance V€] exists. Then for any given number t > 0, we

have
Vgl
2

M{E-E[E]| >t} < (1.215)

Proof: It is a special case of Theorem when the uncertain variable £ is
replaced with € — E[¢], and f(x) = 22.

Example 1.61: For any given positive number ¢, we define an uncertain
variable as follows,

&=

{ —t with uncertain measure 1/2

t with uncertain measure 1/2.
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Then V[¢] = t? and M{|¢ — E[¢]| > t} =1 = V[§]/t2

Theorem 1.63 (Liu [120], Holder’s Inequality). Let p and q be positive
numbers with 1/p+ 1/q =1, and let & and n be independent uncertain vari-
ables with E[|£|P] < oo and E[|n|?] < co. Then we have

Ellénl] < Y/EN€IP1/Ellnl4). (1.216)

Proof: The inequality holds trivially if at least one of £ and 7 is zero a.s.
Now we assume E[[£|P] > 0 and E[|n|?] > 0. It is easy to prove that the
function f(z,y) = ¥/xyy is a concave function on {(z,y) : x > 0,y > 0}.
Thus for any point (xg,yo) with g > 0 and yo > 0, there exist two real
numbers a and b such that

f(z,y) = f(@0,y0) < a(x —x0) +b(y — vo), Vz >0,y >0.
Letting zo = E[|¢[*], yo = E[In|?], z = [¢|" and y = [n|?, we have
FUEP, In|?) — F(E[EP1, Ellnl]) < a(|€]P — E[IE[P]) + b(In|? — E[In]]).

Taking the expected values on both sides, we obtain

E[f(E17, Inl")] < f(EEF], Ellnl*]).
Hence the inequality (CZI6) holds.

Theorem 1.64 (Liu [120], Minkowski Inequality). Let p be a real number
with p > 1, and let & and n be independent uncertain variables with E[|£[P] <
oo and E[|nP] < co. Then we have

Bl +nl?] < /ENEP) + /Elnl). (1.217)

Proof: The inequality holds trivially if at least one of £ and 7 is zero a.s. Now
we assume E[|€|P] > 0 and E|[|n[?] > 0. It is easy to prove that the function
f(x,y) = (Y + ¢y)P is a concave function on {(z,y) : x > 0,y > 0}. Thus
for any point (xg,yo) with g > 0 and yo > 0, there exist two real numbers
a and b such that

[z, y) = f(@o,m0) < alz —x0) +b(y —yo), Vo >0,y >0.
Letting zo = E[|¢[F], yo = E[[n[F], # = [{|P and y = [n|?, we have
FAEP ") = FEIEPL ElnlP]) < a€)” = E[IE[°]) + b(Inl” — Ellnl]).
Taking the expected values on both sides, we obtain
Ef(EP, InlP)) < F(ETEP], ElInl*]).-
Hence the inequality (C2I7) holds.
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Theorem 1.65 (Liu [I20], Jensen’s Inequality). Let & be an uncertain vari-
able, and f : R — R a convex function. If E[¢] and E[f(£)] are finite, then

f(E[E]) < E[f(9)]- (1.218)
FEspecially, when f(z) = |z|P and p > 1, we have |E[€]|P < E[|¢]P].

Proof: Since f is a convex function, for each y, there exists a number k& such
that f(z)— f(y) > k- (x —y). Replacing = with £ and y with F[], we obtain

f(&) = f(B[]) > k- (€ — E[E]).
Taking the expected values on both sides, we have
E[f()] - f(E[E]) > k- (E[¢] - E[§]) =0

which proves the inequality.

1.13 Convergence Concepts
We have the following four convergence concepts of uncertain sequence: con-

vergence almost surely (a.s.), convergence in measure, convergence in mean,
and convergence in distribution.

Table 1.1: Relationship among Convergence Concepts

Convergence Convergence Convergence
=

in Mean in Measure in Distribution

Definition 1.26 (Liu [120]). Suppose that £,&1,&s,- -+ are uncertain vari-
ables defined on the uncertainty space (I',L,M). The sequence {&} is said
to be convergent a.s. to £ if there exists an event A with M{A} =1 such that

lim [£;(7) = £(7)] =0 (1.219)
11— 00
for every v € A. In that case we write & — &, a.s.

Definition 1.27 (Liu [120]). Suppose that £,&1,&2,- - are uncertain vari-
ables. We say that the sequence {§;} converges in measure to & if

lim M{J& — € > ¢} =0 (1.220)

for every e > 0.
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Definition 1.28 (Liu [120]). Suppose that £,&1,&s,- -+ are uncertain vari-
ables with finite expected values. We say that the sequence {&;} converges in
mean to £ if

lim E[|¢; — €[] =0. (1.221)

71— 00
In addition, the sequence {&;} is said to converge in mean square to & if

lim E[|¢& —¢)*] = 0. (1.222)
Definition 1.29 (Liu [120]). Suppose that ®, 1, o, - are the uncertainty
distributions of uncertain variables &,&1,&a,- -+, respectively. We say that
{&} converges in distribution to £ if

lim ®;(z) = ®(z) (1.223)

at any continuity point x of ®.

Convergence in Mean vs. Convergence in Measure

Theorem 1.30 (Liu [120]). Suppose that &,&1,8&2, -+ are uncertain vari-
ables. If {&} converges in mean to &, then {&} converges in measure to &.

Proof: It follows from the Markov inequality that for any given number

€ > 0, we have
Mﬂ&—ﬂZe}gﬁmi—ﬂ}ﬁo

as ¢ — oo. Thus {} converges in measure to {. The theorem is proved.

Example 1.62: Convergence in measure does not imply convergence in
mean. Take an uncertainty space (I', £, M) to be {y1,72,- -} with

sup 1/1, if sup 1/ < 0.5

Yi€EA Yi€EA
M{A}=<¢ 1—supl/i, if sup 1/i<0.5
YigA Vi €A
0.5, otherwise.

The uncertain variables are defined by
i, ifj=1
&) = { 0, otherwise

fori=1,2,--- and £ = 0. For some small number £ > 0, we have
1
Ml — € > <} =M{l& — € 2} = | —0.

That is, the sequence {;} converges in measure to {&. However, for each i,
we have

E[lg — ¢l = 1.

That is, the sequence {&;} does not converge in mean to &.
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Convergence in Measure vs. Convergence in Distribution

Theorem 1.31 (Liu [120]). Suppose £,&1,&a,- -+ are uncertain variables. If
{&} converges in measure to &, then {&;} converges in distribution to §.

Proof: Let = be a given continuity point of the uncertainty distribution .
On the one hand, for any y > =, we have

{G<a}={& <z e<ytu{&<z.{>ytc{E<ytu{l&—¢&l >y —=}

It follows from the countable subadditivity axiom that

Di(x) < @(y) + M{l& — & =y —a}-

Since {;} converges in measure to &, we have M{|¢; —&| > y — 2} — 0 as
i — o0o. Thus we obtain limsup,_, . ®;(x) < ®(y) for any y > x. Letting
Yy — x, we get

lim sup ®;(z) < ®(x). (1.224)

1—00

On the other hand, for any z < z, we have
{{<zt={G <z {<zu{G > i< c{G <z U{lG ¢ 22— =}
which implies that
D(z) < By(x) + M{JG — € = — 2},

Since M{|¢; —&| > © — 2z} — 0, we obtain ®(2) < liminf; . ®;(x) for any
z < x. Letting z — z, we get

®(z) < liminf ®;(x). (1.225)

71— 00

It follows from ([C224) and (L22H) that ®;(x) — ®(z). The theorem is
proved.

Example 1.63: Convergence in distribution does not imply convergence in
measure. Take an uncertainty space (I', L, M) to be {v1,7v2} with M{n} =
M{~2} = 1/2. We define an uncertain variables as

-1, 1f’7:’71
5(7)—{ L iy =

We also define §; = —¢€ for i = 1,2,--- Then §; and £ have the same chance
distribution. Thus {¢;} converges in distribution to £. However, for some
small number £ > 0, we have

M& - &l et =M{|& - &l =e} =1

That is, the sequence {&;} does not converge in measure to &.
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Convergence Almost Surely vs. Convergence in Measure

Example 1.64: Convergence a.s. does not imply convergence in measure.
Take an uncertainty space (I', L, M) to be {v1,72,- -} with

sup ¢/(26 +1), if supi/(2i+1)<0.5
A

Yi€EA Vi€
M{A}=<¢ 1—supi/(2¢+1), if supi/(2i+1)<0.5
Vi A vi €A
0.5, otherwise.

Then we define uncertain variables as

o
sim):{” S

0, otherwise

fori=1,2,--- and £ = 0. The sequence {} converges a.s. to . However,
for some small number ¢ > 0, we have
1 1
s — > = ; — > = .

That is, the sequence {¢;} does not converge in measure to .

Example 1.65: Convergence in measure does not imply convergence a.s.
Take an uncertainty space (I',L,M) to be [0,1] with Borel algebra and
Lebesgue measure. For any positive integer i, there is an integer j such
that i = 27 + k, where k is an integer between 0 and 2/ — 1. Then we define
uncertain variables as

1, ifk/29<~y<(k+1)/2
&i(y) = .
0, otherwise

fori=1,2,--- and £ = 0. For some small number £ > 0, we have

M{& — €l = et =M{[& — €| > e} = 213' —Y

as i — 0o. That is, the sequence {{;} converges in measure to £. However, for
any 7 € [0, 1], there is an infinite number of intervals of the form [k/27, (k +
1)/27] containing . Thus &;(+) does not converge to 0. In other words, the
sequence {&;} does not converge a.s. to &.

Convergence Almost Surely vs. Convergence in Mean

Example 1.66: Convergence a.s. does not imply convergence in mean. Take
an uncertainty space (I', £, M) to be {y1,72,- -} with

MA}= 3 21

Yi €A
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The uncertain variables are defined by

22" .f.:.

0, otherwise

fori=1,2,--- and £ = 0. Then & converges a.s. to £. However, the sequence
{&} does not converge in mean to £ because F[|¢; — &[] = 1.

Example 1.67: Convergence in mean does not imply convergence a.s. Take
an uncertainty space (I', £, M) to be [0,1] with Borel algebra and Lebesgue
measure. For any positive integer i, there is an integer j such that i = 27 +k,
where k is an integer between 0 and 27 — 1. The uncertain variables are
defined by

1, ifk/29<~y<(k+1)/2
&i(y) = .
0, otherwise

fori=1,2,--- and £ = 0. Then

1
Ellg— €l = ,, 0.

That is, the sequence {&;} converges in mean to £. However, for any v € [0, 1],
there is an infinite number of intervals of the form [k/27, (k+1)/27] containing
. Thus &;(y) does not converge to 0. In other words, the sequence {&;} does
not converge a.s. to &.

Convergence Almost Surely vs. Convergence in Distribution

Example 1.68: Convergence in distribution does not imply convergence a.s.
Take an uncertainty space (I', L, M) to be {y1,72} with M{y1} = M{r.} =
1/2. We define an uncertain variable £ as

-1, ify=m
aw—{ L iy =

We also define & = —¢€ for i = 1,2,--+ Then & and & have the same uncer-
tainty distribution. Thus {{;} converges in distribution to £. However, the
sequence {&;} does not converge a.s. to &.

Example 1.69: Convergence a.s. does not imply convergence in distribution.
Take an uncertainty space (I', L, M) to be {v1,72, -} with

sup ¢/(2i +1), if supi/(2i+1)<0.5

YiEA Yi€A
M{A}=<¢ 1—supi/(2i+1), if supi/(2i+1)<0.5
Yi €A Yi EA

0.5, otherwise.
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The uncertain variables are defined by

i\V3) =

0, otherwise

for i = 1,2,--+- and £ = 0. Then the sequence {§;} converges a.s. to &.
However, the uncertainty distributions of &; are

0, ifx <0
D;(x)=¢ (i+1)/(2t+1), if0<z<i
1, ifx>1
for i = 1,2, -+, respectively. The uncertainty distribution of £ is
0, ifz<0
() = { 1, ifz>0.

It is clear that ®;(x) does not converge to ®(x) at = > 0. That is, the
sequence {&;} does not converge in distribution to &.

1.14 Conditional Uncertainty

We consider the uncertain measure of an event A after it has been learned
that some other event B has occurred. This new uncertain measure of A is
called the conditional uncertain measure of A given B.

In order to define a conditional uncertain measure M{A|B}, at first we
have to enlarge M{A N B} because M{A N B} < 1 for all events whenever
M{B} < 1. It seems that we have no alternative but to divide M{A N B} by
M{B}. Unfortunately, M{ANB}/M{B} is not always an uncertain measure.
However, the value M{A|B} should not be greater than M{A N B}/M{B}
(otherwise the normality will be lost), i.e.,

M{AnN B}

A|B} < 1.22
Ay < (1.226)
On the other hand, in order to preserve the self-duality, we should have
A°NB
M{AB} = 1 - M{ac|B} > 1 - YUATN B} (1.227)

M{B}

Furthermore, since (AN B) U (A°N B) = B, we have M{B} < M{AN B} +
M{A° N B} by using the countable subadditivity axiom. Thus

M{A°n B} M{ANB}
0<1— < <1. 1.228
- M{B} — M{B} ( )
Hence any numbers between 1 —M{A°NB}/M{B} and M{ANB}/M{B} are
reasonable values that the conditional uncertain measure may take. Based
on the maximum uncertainty principle, we have the following conditional
uncertain measure.
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Definition 1.32 (Liu [120]). Let (T, L,M) be an uncertainty space, and A,
B € L. Then the conditional uncertain measure of A given B is defined by

M{AN B} , M{AN B}
M{B} 7 M{B} < 0.5
M{AIB} = ¢ | _ M%EE}B}’ if M{j\z{‘l{cg}B} 05 (1.229)
0.5, otherwise

provided that M{B} > 0.

It follows immediately from the definition of conditional uncertain measure
that
M{A°N B} M{AN B}
M{B} M{B}
Furthermore, the conditional uncertain measure obeys the maximum uncer-
tainty principle, and takes values as close to 0.5 as possible.

1 < M{A|B} < (1.230)

Remark 1.6: Assume that we know the prior uncertain measures M{B},
M{ANB} and M{A°NB}. Then the conditional uncertain measure M{A|B}
yields the posterior uncertain measure of A after the occurrence of event B.

Theorem 1.66. Let (I', L, M) be an uncertainty space, and B an event with
M{B} > 0. Then M{:|B} defined by (1.229) is an uncertain measure, and
(T, L, M{-|B}) is an uncertainty space.

Proof: It is sufficient to prove that M{:|B} satisfies the normality, mono-
tonicity, self-duality and countable subadditivity axioms. At first, it satisfies
the normality axiom, i.e.,
M{rnB} 1 M{0}
m{B} — M{B}
For any events A; and Ay with Ay C Ao, if
M{A; N B} < M{A; N B}
M{B} =  M{B}

M{T|B} =1 — 1.

< 0.9,

then
M{A; N B} < M{A; N B}

MABE Taimy S wm

1 2 N
<0.5<
then M{A4,|B} < 0.5 < M{Ay|B}. If

M{A N B} _ M{4:n B}

OO S wBy
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then we have

M{A,|B) = (1 - M{J\ﬁg}B}) V0.5 < (1 - M{Jﬁg}B}) V0.5 = M{As|B).

This means that M{:|B} satisfies the monotonicity axiom. For any event
A, if
M{AN B} > 05 M{A°nN B}
mBy — 7 M{B}
then we have M{A|B} + M{A¢|B} = 0.5+ 0.5 = 1 immediately. Otherwise,
without loss of generality, suppose

M{AN B} M{A° N B}
M(B} <05< M(B)

> 0.5,

then we have

M{A|B} + M{A°|B} = Mi?{;f} + <1 - M:m;f}> .Y

That is, M{-|B} satisfies the self-duality axiom. Finally, for any countable
sequence {4;} of events, if M{A4;|B} < 0.5 for all 4, it follows from the
countable subadditivity axiom that

- M{DAM\B} iM{AiﬂB}
M{UAiﬂB}< i=1 i=1
i=1

M{B} S sy ;M{A”‘B}‘

Suppose there is one term greater than 0.5, say
M{A;1|B} > 0.5, M{A;|B} <05, i=2,3,---
If M{U;A;|B} = 0.5, then we immediately have

M { G A;N B} < iM{Ai\B}.
i=1 =1

If M{U;A;|B} > 0.5, we may prove the above inequality by the following

facts:
AsnBc|JAinB)u (ﬂA;mB) :

=2 i=1
M{A;mB}gZM{AmB}JrM{ﬂAgmB},

i=2 i=1

M{QAZ«B} :1_M{ﬁA§ﬂB}

M{B}
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M{A;, "B
M{AS N B} ; t4:n B}

2 MAIBY = 1=y M{B)

i=1
If there are at least two terms greater than 0.5, then the countable subad-
ditivity is clearly true. Thus M{-|B} satisfies the countable subadditivity
axiom. Hence M{:|B} is an uncertain measure. Furthermore, (I, L, M{:|B})
is an uncertainty space.

Definition 1.33 (Liu [120]). The conditional uncertainty distribution ®:
R — [0,1] of an uncertain variable & given B is defined by

®(z|B) = M {¢ < z|B} (1.231)
provided that M{B} > 0.

Theorem 1.67. Let £ be an uncertain variable with uncertainty distribution
O(z), and t a real number with ®(t) < 1. Then the conditional uncertainty
distribution of £ given & >t is

0, if ®(x) < B(t)
d(x) )
D(al(t, +00) = { 1- () O TR <@ < L+ 2(0)/2
P(x) — (1) )
1 b if (14 ®(t))/2 < ®(x).

Proof: It follows from ®(x|(t, +00)) = M{{ < x| > t} and the definition of
conditional uncertainty that

M{E<z)n(E>1)} M{(E <z)n(E>1)}

M{E > 1) , if Mie > 1) <0.5
Bal(t, +o0) = | MAE>0)NE>0) ME>D)NE>D) _
M{E > t} ’ M{¢ > t} '
0.5, otherwise.
When &(x) < &(t), we have x < t, and
ME<z)n(E>)} M0}
M{¢ > t} _1—<1>(t)_0<0’5'
e M{(€ <) (€ > 1)
<z >
b (z|(t, +00)) = Mie > 1} =0.

When ®(t) < &(x) < (1 + D(t))/2, we have x > ¢, and

M{E>z)Nn(E>t)}) 1-3(x) _1-(1+(t))/2

MESt  1-dF) = 1-a()

=0.5
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and
ME<z)nE>0) _ (2)
M{¢ >t} T 1-9(t)
It follows from the maximum uncertainty principle that
®(z)
O (z|(t, +00)) = |- a(t) A0.5.

When (14 ®(t))/2 < ®&(x), we have x > ¢, and
M{E>z)n(E>t)} 1-(x) 1= (14 ®(¢))/2

M{¢ > t} 10t 1—®(t) = 0.5.
Thus

_ o ME>a)nE>t)r L 1=-9(x) _ B(x) - 2(2)
(e|(t,+o0)) =1~ M{€ > t} T T 100 T 1-0@)

The theorem is proved.

Example 1.70: Let £ be a linear uncertain variable £(a,b), and ¢ a real

number with a < ¢ < b. Then the conditional uncertainty distribution of £
given £ >t is

0, ifx<t

T—a

(z|(t,+o0)) = bt

T —t

b—t

Theorem 1.68. Let £ be an uncertain variable with uncertainty distribution

O(z), and t a real number with ®(t) > 0. Then the conditional uncertainty
distribution of & given & <t is

ANO.B, ift<az<(b+t)/2

AL i (b+1)/2 < .

d(x) )
e if B(a) < 0(0)/2
O(z|(—00,t]) = ¢ P(z) +P(t) — 1 ,
o(t) V0.5, if &(t)/2 < P(x) < D(t)
1, if @(t) < (x).

Proof: It follows from ®(z|(—o0,t]) = M{£ < z|¢ <t} and the definition of
conditional uncertainty that

ME=a)n(E=t)}  ME=a)n(E <)}

Me<ty 0] M{¢ < 1} <05
®(z(—o0,t])=¢ ,  M{(E>2)n(E =<t} ME>)nE<} _ .
Me<ty ) M{¢ <t} '

0.5, otherwise.
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When ®(x) < ®(t)/2, we have z < t, and
M{E<a)n(E<t)} _ e(x)

(t)/2 _
N 0.5.

(t)

_ M =sz)nE<t)y _ D(z)
O(z[(—o00,t]) = M{¢ < ) = o)

When ®(t)/2 < &(x) < ®(t), we have z < t, and
M <N E<n) _ o) _ a2 _
q) .

IA

M{¢ <t} ®(1)
Thus

M{¢ <t} o) — @(t)
and
ME>z)Nn(E <)} _1- ()
M{¢ <t} - o)

L ME>a)nE <) | ez) + (1) -1
M{¢ <t} - o(1)
It follows from the maximum uncertainty principle that
D(x)+@(t) — 1

0 V 0.5.

B (x](—o0, ]) =

When &(t) < ®(z), we have x > t, and

M{E>z)n(E<t)} M{0}
M{e < 1) = o(1) =0<0.5.
Thus

P(z|(—o00,t]) =1 -
The theorem is proved.

Example 1.71: Let { be a linear uncertain variable £(a,b), and t a real
number with a < ¢ < b. Then the conditional uncertainty distribution of £
given £ <t is

r—a
if 2 < 2
t_avo, ifx<(a+t)/
P(z|(—o00,t]) = <1_i_$>vo.5, if (a+t)/2<z<t
—a
1, if x <t

Definition 1.34 (Liu [120]). Let & be an uncertain variable. Then the con-
ditional expected value of & given B is defined by

“+o0 0
E[¢|B] = | ez By - [ M{¢ < r|B}dr (1.232)

provided that at least one of the two integrals is finite.



Chapter 2

Uncertain Programming

Uncertain programming was founded by Liu [122] in 2009 as a type of math-
ematical programming involving uncertain variables. This chapter provides
a general framework of uncertain programming, including expected value
model, chance-constrained programming, dependent-chance programming,
uncertain dynamic programming and uncertain multilevel programming. Fi-
nally, we present some uncertain programming models for project scheduling
problem, vehicle routing problem, and machine scheduling problem.

2.1 Ranking Criteria

Assume that @ is a decision vector, £ is an uncertain vector, f(x,&) is a

return function, and g;(x, §) are constraint functions, j = 1,2,---,p. Let us
examine

max f(z, §)

subject to: (2.1)

g](maé)gov .7:1’2771)

Mention that the model (ZI)) is only a conceptual model rather than a mathe-
matical model because there does not exist a natural ordership in an uncertain
world.

Thus an important problem appearing in this area is how to rank uncertain
variables. Let £ and 7 be two uncertain variables. Liu [122] gave four ranking
criteria.

Expected Value Criterion: We say £ > 7 if and only if E[¢] > E[n].

Optimistic Value Criterion: We say £ > 7 if and only if, for some prede-
termined confidence level « € (0, 1], we have Egup (@) > Ngup (@), where Equp ()
and 7syp(a) are the a-optimistic values of £ and 7, respectively.

Pessimistic Value Criterion: We say £ > 7 if and only if, for some prede-
termined confidence level a € (0, 1], we have &ne(@) > Ning(a), where Ene()
and 7iy¢(a) are the a-pessimistic values of £ and 7, respectively.

Chance Criterion: We say £ > 7 if and only if, for some predetermined
levels r, we have M {& > r} > M{n > r}.

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. SIH
springerlink.com © Springer-Verlag Berlin Heidelberg 2616
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2.2 Expected Value Model

Assume that we believe the expected value criterion. In order to obtain a
decision with maximum expected return subject to expected constraints, we
have the following expected value model,

max E[f(z, £)]
subject to: (2.2)
E[gj(xag)}goa j:172v"‘vp

where « is a decision vector, £ is an uncertain vector, f is a return function,
and g; are constraint functions for j =1,2,--- ,p.

Definition 2.1. A solution x is feasible if and only if Eg;(x,€)] < 0 for
j=1,2,---,p. A feasible solution x* is an optimal solution to the expected
value model (Z2) if E[f(x*,€)] > E[f(x,£&)] for any feasible solution x.

In practice, a decision maker may want to optimize multiple objectives. Thus
we have the following expected value multiobjective programming,

max [E[f1(w,£)], E[f2(w7£)}’ T 7E[fm(xa€)ﬂ
subject to: (2.3)
E[gj(xag)}goaj:172vvp

where f;(x,£) are return functions for ¢ = 1,2,---,m, and g;(x, §) are con-
straint functions for j =1,2,--- ,p.

Definition 2.2. A feasible solution x* is said to be a Pareto solution to the
expected value multiobjective programming (2.3) if there is no feasible solution
x such that

and E|[fj(x,€)] > E[f;(x*,&)] for at least one index j.

In order to balance multiple conflicting objectives, a decision-maker may
establish a hierarchy of importance among these incompatible goals so as to
satisfy as many goals as possible in the order specified. Thus we have an
expected value goal programming,

l m
minZPj Z(uwdj VO0-+ ’Uijd; V O)
=1 =1
subject to: (2.5)
Elfi(x,&)] —bi=df, i=1,2---,m '
bi—E[ Z(ﬂ),f)}:d:, Z—1,2, ,m
E[gj(xa )]SO, j:1727 , P
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where P; is the preemptive priority factor which expresses the relative im-
portance of various goals, P; > Pj;1, for all j, u;; is the weighting factor
corresponding to positive deviation for goal ¢ with priority j assigned, v;;
is the weighting factor corresponding to negative deviation for goal ¢ with
priority j assigned, dj' V 0 is the positive deviation from the target of goal
i, d; V0 is the negative deviation from the target of goal 4, f; is a function
in goal constraints, g; is a function in real constraints, b; is the target value
according to goal 4, [ is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.

Theorem 2.1. Assume f(x,€) = hi(x)&1 + he ()2 + - -+ hpn(®)En + ho(x)
where hy(x), ha(x), -, hn(x), ho(x) are real-valued functions and &1, &2, -+, &n
are independent uncertain variables. Then

E[f(x,€)] = hi(x)E[61] + ha(x)E[&] + - + hn(2) E[€n] + ho(x).  (2.6)

Proof: It follows from the linearity of expected value operator immediately.

Theorem 2.2. Assume that &1,&2,- -+ , &, are independent uncertain vari-
ables and hi(x), ho(x), - , hy(x), ho(x) are real-valued functions. Then
E[h1(x)& + ha(x)a + -+ - + hp(x)En + ho(x)] <0 (2.7)

holds if and only if
hi(x)E[&1] + ha(2)E[§2] + - + hn(x) E[€n] + ho(z) < 0. (2.8)

Proof: It follows from Theorem 2.I] immediately.

2.3 Chance-Constrained Programming

Since the uncertain constraints g;(x,€) < 0,7 = 1,2,---,p do not define a
deterministic feasible set, it is naturally desired that the uncertain constraints
hold with a confidence level a. Then we have a chance constraint as follows,

M{gj(x, &) <0,j=1,2,--- ,p} > . (2.9)

Maximax Chance-Constrained Programming

Assume that we believe the optimistic value criterion. If we want to max-
imize the optimistic value to the uncertain return subject to some chance
constraints, then we have the following maximax chance-constrained pro-
gramming,

max max

subject to: (2.10)
M{f(=,€) > f} =5
M{gj(xag)go}zaja j:1727‘”7p
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where a; and 3 are specified confidence levels for j =1,2,---,p, and max f
is the (-optimistic return.

In practice, it is possible that there exist multiple objectives. We thus have
the following maximax chance-constrained multiobjective programming,

max max f,max fo, -+ ,max f,,
fl 2 m
subject to: (2.11)

M{gj(maS)So}Zajv j:1a27"'7p

where (; are predetermined confidence levels for ¢ = 1,2,--- ;m, and max f,
are the (-optimistic values to the return functions f;(x,€), i =1,2,---,m,
respectively.

If the priority structure and target levels are set by the decision-maker,
then we have a minimin chance-constrained goal programming,

l m
ngn;Pj ; (uij (rgfirndi+ \/O> + 45 (rfilii_ndi \/O))
subject to:
M{fi(x,&)—b; <df} >5F, i=12-,m
MA{b; — fi(x,€) <dj} 257, i=1,2,,m

M{gj(w7£)§0}2aj’ j:1727'”7p

i

(2.12)

where P; is the preemptive priority factor which expresses the relative im-
portance of various goals, P; > Pji1, for all j, u;; is the weighting factor
corresponding to positive deviation for goal ¢ with priority j assigned, v;;
is the weighting factor corresponding to negative deviation for goal ¢ with
priority j assigned, mind;" \V 0 is the §; -optimistic positive deviation from
the target of goal 7, mind; V 0 is the §; -optimistic negative deviation from
the target of goal i, b; is the target value according to goal ¢, and [ is the
number of priorities.

Minimax Chance-Constrained Programming

Assume that we believe the pessimistic value criterion. If we want to maxi-
mize the pessimistic value subject to some chance constraints, then we have
the following minimax chance-constrained programming,

max mfln f

subject to: (2.13)

M{f(z.&) < f} =8
M{gj(xag)go}zaja j:1727‘”7p
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where o; and 3 are specified confidence levels for j = 1,2,---,p, and min f
is the (-pessimistic return.

If there are multiple objectives, then we have the following minimax chance-
constrained multiobjective programming,

max |min f;, min f,, ---, min f,,
x . fa m
subject to: (2.14)

M{gj(xag)go}zajv j:1727‘”7p

where min f; are the §;-pessimistic values to the return functions f;(x, &),
1=1,2,---,m, respectively.

We can also formulate an uncertain decision system as a minimax chance-
constrained goal programming according to the priority structure and target
levels set by the decision-maker:

l m
min Y P, 3°
T =1 =1

ug; | maxd; VO | +v; [ maxd; VO
di d;
subject to:

M{gj(w7£)§0}2aj’ j:172v"‘vp

(2.15)

where P; is the preemptive priority factor which expresses the relative im-
portance of various goals, P; > Pji1, for all j, u;; is the weighting factor
corresponding to positive deviation for goal ¢ with priority j assigned, v;;
is the weighting factor corresponding to negative deviation for goal ¢ with
priority j assigned, maxd;” V 0 is the B; -pessimistic positive deviation from
the target of goal 7, maxd; V0 is the §3; -pessimistic negative deviation from
the target of goal i, b; is the target value according to goal ¢, and [ is the
number of priorities.

Theorem 2.3. Assume that 1,82, , &, are independent uncertain vari-
ables with uncertainty distributions ®1, ®a,--- , @, respectively, and hq(x),
ho(x), -, hn(x), ho(x) are real-valued functions. Then

holds if and only if
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where
W () = { 0, ifhilw) <0, (24%)
hi (@) = { —hi(x), if hi(x) <0 (2.19)

fori=1,2,--- ,n. Especially, if hi(x), ha(x), - , hn(x) are all nonnegative,

then (217) becomes
D hi(@)®; () < ho(w); (2.20)

if hi(x), ha(x), -, hn(x) are all nonpositive, then (2.17) becomes

n

> hi()@; (1 - a) < ho(a). (2.21)
i=1

Proof: For each i, if h;(x) > 0, then h;(x)&; is an uncertain variable whose
uncertainty distribution is described by

U ) = hf ()@ (a), 0<a<l.

7 (3

If hi(x) < 0, then h;(x)&; is an uncertain variable whose uncertainty distri-
bution is described by

U a)=—h; ()@ (1 -a), 0<a<l.

? K2

It follows from the operational law that the uncertainty distribution of the
sum hq ()& + ha(x)a + - - - + hy (@), is described by

T o) =07 o)+ U5 )+ + T (o), O0<a<l.
From which we may derive the result immediately.

Theorem 2.4. Assume that x1,22,- - ,2, are nonnegative decision vari-
ables, and &1,&a, -+ ,&n, & are independently linear uncertain variables L(aq,b1),
L(az,b2),- -, L(an,byn), L(a,b), respectively. Then for any confidence level
a € (0,1), the chance constraint

i=1
holds if and only if

En:((l —a)a; + ab))z; < aa+ (1 — a)b. (2.23)
i=1
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Proof: Assume that the uncertain variables &1, &o, - - - , &, € have uncertainty
distributions @1, ®o, -+, P,,, P, respectively. Then
® o) =(1—a)a; +ab;, i=1,2,---,n,
1 -a)=oaa+(1-a)b.
Thus the result follows from Theorem 23] immediately.

Theorem 2.5. Assume that x1,x2,- -,y are nonnegative decision vari-
ables, and &1,&2,- -+ ,&n, € are independently zigzag uncertain variables Z(ay, b1, c1),
Z(ag,ba, ), , Z(an,bn,cn), Z(a, b, c), respectively. Then for any confi-
dence level a > 0.5, the chance constraint

i=1
holds if and only if

n

Z((Q —2a)b; + (2a — 1)¢;)x; < a(2a— 1)a + (2 — 2a)b. (2.25)
i=1
Proof: Assume that the uncertain variables £1,&a, - - - , &5, € have uncertainty

distributions @1, ®o, -+, P,,, P, respectively. Then

o (a) = (2—2a)b; + (20— )¢y, i=1,2,--+,n,
M1 —a) = (2a—1)a+ (2 —2a)b.

Thus the result follows from Theorem 23] immediately.

Theorem 2.6. Assume that x1,x2,--- ,x, are nonnegative decision vari-
ables, and &1, &, -+, &n, € are independently normal uncertain variables N (e1, 01),
N(ez,09), - ,N(en,on),N(e, o), respectively. Then for any confidence level

a € (0,1), the chance constraint

i=1
holds if and only if

n
Z (ei + 013 In aa> T, <e— o3 In @ . (2.27)

‘ T 1-— T l-«a
i=1
Proof: Assume that the uncertain variables £1,&a, - - - , &, € have uncertainty
distributions ®1, ®s,--- , ®,,, P, respectively. Then
_ o3 o
(I)i l(a): 7 Zﬂ_ lnl_aa :1727' y 1y

a\/3 «
In

P l1l-a)=e— .
( @) =e T l1—«

Thus the result follows from Theorem [Z3] immediately.
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Theorem 2.7. Assumexy,x2,- - , Xy, are nonnegative decision variables, and
&1,8&, -+, &, € are independently lognormal uncertain variables LCOGN (e1, 01),
LOGN (e2,03),- -, LOGN (en,04), LOGN (e,0), respectively. Then for any
confidence level o € (0,1), the chance constraint

M {zn:&wz < f} >a (2.28)

i=1
holds if and only if
n V3o /7 V30 /7
1
Zexp(ei) ( “ ) x; < exp(e) ( a) . (2.29)
i=1

l1—« «

Proof: Assume that the uncertain variables £1,&a, - - - , &, € have uncertainty
distributions ®1, ®s,--- , ®,,, P, respectively. Then

\/3(771/7r
d o) = exp(e;) “ i=1,2,---,n
i 11—« ) ) 4y PRAZ]

11—« \/3«7/71'
o .

o741 - o) = exple)

Thus the result follows from Theorem [Z3] immediately.

2.4 Dependent-Chance Programming

In practice, there usually exist multiple tasks in a complex uncertain decision
system. Sometimes, the decision-maker believes the chance criterion and
wishes to maximize the chance of meeting these tasks. In order to model
this type of uncertain decision system, Liu [122] provided the third type
of uncertain programming, called dependent-chance programming, in which
the underlying philosophy is based on selecting the decision with maximal
chance to meet the task. Dependent-chance programming breaks the concept
of feasible set and replaces it with uncertain environment.

Definition 2.3. By an uncertain environment we mean the uncertain con-
straints represented by

where x s a decision vector, and & is an uncertain vector.

Definition 2.4. By a task we mean an uncertain inequality (or a system of
uncertain inequalities) represented by

h(x,&) <0 (2.31)

where x s a decision vector, and & is an uncertain vector.
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Definition 2.5. The chance function of task £ characterized by (2.31) is
defined as the uncertain measure that the task € is met, i.e.,

f(®) = M{h(z,€) < 0} (2.32)
subject to the uncertain environment (2.30).

How do we compute the chance function in an uncertain environment? In
order to answer this question, we first give some basic definitions. Let
r(x1,x2, - ,T,) be an n-dimensional function. The ith decision variable
x; is said to be degenerate if

/ "
’I"(.Tl, e axi—17$i7$i+17 e ,.Tn) = T($1a e 7$i—1axi s Li41y° ,-Tn)
for any z/ and z/; otherwise it is nondegenerate. For example,
(@1, 2, 23,24, 75) = (T1 + x3) /74

is a 5-dimensional function. The variables x1,z3, x4 are nondegenerate, but
z9 and x5 are degenerate.

Definition 2.6. Let £ be a task h(x,&) < 0. The support of the task &,
denoted by E*, is defined as the set consisting of all nondegenerate decision
variables of h(x,&).

Definition 2.7. The jth constraint g;(x, &) < 0 is called an active constraint
of task & if the set of nondegenerate decision variables of g;(x,&) and the
support £* have nonempty intersection; otherwise it is inactive.

Definition 2.8. Let £ be a task h(xz, &) < 0 in the uncertain environment
gj(x,€) <0, 5 =1,2,---,p. The dependent support of task £, denoted by
E™*, is defined as the set consisting of all nondegenerate decision variables of
h(z, &) and g;(x, &) in the active constraints of task E.

Remark 2.1: It is obvious that £* C £** holds.

Definition 2.9. The jth constraint g;j(x,&) < 0 is called a dependent con-
straint of task & if the set of nondegenerate decision variables of g;(x,§)
and the dependent support E** have monempty intersection; otherwise it is
independent.

Remark 2.2: An active constraint must be a dependent constraint.

Definition 2.10. Let € be a task h(z,&) < 0 in the uncertain environment
gj(x,6) <0, j=1,2,---,p. For each decision x and realization §, the task
& is said to be consistent in the uncertain environment if the following two
conditions hold: (i) h(x,€) < 0; and (i) g;(x,&) <0, j € J, where J is the
index set of all dependent constraints.
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In order to maximize the chance of some task in an uncertain environment,
a dependent-chance programming may be formulated as follows,

max M {h(x, &) <0}
subject to: (2.33)
g](fB,E)SO, j:172a"'7p
where x is an n-dimensional decision vector, £ is an uncertain vector, the task
£ is characterized by h(x, &) < 0, and the uncertain environment is described

by the uncertain constraints g;(z,&) <0, j = 1,2,---,p. The model (233
is equivalent to

max M {h(x,€) <0, gj(x,§) <0,j € J} (2.34)

where J is the index set of all dependent constraints.
If there are multiple tasks in an uncertain environment, then we have the
following dependent-chance multiobjective programming,

max [M{h1(z, &) < 0}, -+, M{hm(, ) < 0}]
subject to: (2.35)
g](m,E)SO’ j:172a"'ap

where tasks &; are characterized by h;(x,€) <0,i=1,2,--- ,m, respectively.
The model ([Z38) is equivalent to

max M{hl(:p?g) < 07 gj(wvé) < 07.7 € Jl}
max M{]’Lz(ﬂ),é) < 07 gj(.’.U,E) < 0,] S JQ} (236)

max M {h (2,€) <0, g;(x,€) <0,j € Jn}

where J; are the index sets of all dependent constraints of tasks &;, i =
1,2,--- ,m, respectively.

Dependent-chance goal programming is employed to formulate uncertain
decision systems according to the priority structure and target levels set by
the decision-maker,

l m
min 3> P; Y- (uijdf Vv 0+ viyd; v 0)
Jj=1 i=1
subject to:
by — MA{hi(z, &) <0} =d;, i=1,2,---,m

g](mvg)gov j:172a"'ap

where P; is the preemptive priority factor which expresses the relative im-
portance of various goals, P; > Pj;1, for all j, u;; is the weighting factor
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corresponding to positive deviation for goal ¢ with priority j assigned, v;;
is the weighting factor corresponding to negative deviation for goal ¢ with
priority j assigned, d; V0 is the positive deviation from the target of goal 4,
d; V0 is the negative deviation from the target of goal ¢, g; is a function in
system constraints, b; is the target value according to goal ¢, [ is the number
of priorities, m is the number of goal constraints, and p is the number of
system constraints.

Theorem 2.8. Assume x1,x2, -+, T, are nonnegative decision variables,
and &1,&, -+ , &, are independently linear uncertain variables L(a1,by1), L(az, b2),
< L(an, by), respectively. When

te [Xn: a;x;, zn:bz$z] s (237)
i=1 =1

we have

n

n t— Z Q; T;
M {ng < t} = = . (2.38)
=l > (i — i)

i=1

Otherwise, the measure will be 0 if t is on the left-hand side of interval (2.57)
or 1 if t is on the right-hand side.

Proof: Since £1,&5, - -+, €, are independently linear uncertain variables, their
weighted sum &1 + &oxo + -+ - + €, 1S also a linear uncertain variable

i=1 i=1

From this fact we may derive the result immediately.

Theorem 2.9. Assume that x1,x2,--- ,x, are nonnegative decision vari-
ables, and &1,&,---,&, are independently zigzag uncertain wvariables
Z(a1,b1,c1), Z(az,ba,c2), -+, Z(an, by, cy), respectively. When

i=1 i=1

t e

we have

n t— zn: Q;T;
M {ng < t} = = . (2.40)
i=1 2 Z(bz — ai)xi
i=1
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When
n n
te [Z biZL'i, Z Cﬂl’;| s (241)
i=1 i=1
we have .
t+ Z(Cl — Qbi)xi

M {Zg:c < t} = = . (2.42)
i=1 2 Z(CZ — bZ)ZL'Z
i=1

Otherwise, the measure will be 0 if t is on the left-hand side of interval (2Z.39)
or 1 if t is on the right-hand side of interval (2.41).

Proof: Since &1,&, -+ ,&, are independently zigzag uncertain variables,
their weighted sum &1 + &0 + - - -+ &,y is also a zigzag uncertain variable

n n n
Z (Z a;T;, Z biZL'i, Z cixi> .
i=1 i=1 i=1
From this fact we may derive the result immediately.

Theorem 2.10. Assume x1,T2,: - , T, are nonnegative decision variables,
and &1,&,- -+ ,&, are independently normal uncertain variables N(e1,01),
Nlea,02), - ,N(en,on), respectively. Then

n -1
m (Z €, r; — t)
i=1 . )
\/3 Z o;%;
i=1

Proof: Since &,&, -+ ,&, are independently normal uncertain variables,
their weighted sum &1x1 +&222+- - -+ &, 2, is also a normal uncertain variable

n n
N E €; 25, E o;%x; | .
i=1 i=1

From this fact we may derive the result immediately.

(2.43)

M{Zfzxz < t} = | 1+exp
i=1

Theorem 2.11. Assume x1,T2,: - , T, are nonnegative decision variables,
&1,8&, -+, &, are independently lognormal uncertain variables LOGN (e1,01),

LOGN (e2,03),++ ,LOGN (e, 0y), Tespectively. Then

i=1



SECTION 2.5 - UNCERTAIN DYNAMIC PROGRAMMING 93

where U is determined by

U (a) = iexp(ei) ( “ >¢3m/ﬂ . (2.45)

l—«a

Proof: Since &1,&,, - , &, are independently lognormal uncertain variables,
the uncertainty distribution ¥ of 11 + Eowe + - - - + €,y is just determined
by @245). From this fact we may derive the result immediately.

2.5 Uncertain Dynamic Programming

In order to model uncertain decision processes, Liu [I122] proposed a gen-
eral framework of uncertain dynamic programming, including expected value
dynamic programming, chance-constrained dynamic programming as well as
dependent-chance dynamic programming.

Expected Value Dynamic Programming

Consider an N-stage decision system in which (ai,as,:--,ay) represents
the state vector, (x1, a2, - ,xy) the decision vector, (&;,&,, -, &) the
uncertain vector. We also assume that the state transition function is

any1 =T(an, x,,€,), n=12,--- N—1. (2.46)
T To T3 Iy
| Stage 1 | Stage 2 | Stage 3 |
e 1 & & | N
a; as as ay

Figure 2.1: A Multistage Decision System

In order to maximize the expected return over the horizon, we may use
the following expected value dynamic programming,

a) = max Elry(a,x,
V@) = e 2% <0 rv(a,z, &x)]
n = Elr, sy Sy n T(a,z, n 2.47
fula) =, maxBra(a,@.6,) + fon(T(@,@6,)]  (247)
n <N-1
where r, are the return functions at the nth stages, n =1,2,--- , N, respec-

tively.

Chance-Constrained Dynamic Programming

In order to maximize the optimistic return over the horizon, we may use the
following chance-constrained dynamic programming,
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@) = @B <oy za N (B T EN)
fﬂ(a') = M{gn(a,I:Icl%},:)SO}Za Tn(a'v Z, En) + fn—i—l(T(a" T, €n)) (248)
n <N-1

where the functions r,, are defined by

ro(a,@,€,) =sup {r | M{r,(a,=,£,) > r} > B} (2.49)

forn=1,2,---,N. If we want to maximize the pessimistic return over the
horizon, then we must define the functions r,, as

rn(a,x,&,) = inf {r ’ M{rn(a,z,€,) <r}> ﬂ} (2.50)
forn=1,2,---,N.

Dependent-Chance Dynamic Programming

In order to maximize the chance over the horizon, we may employ the fol-
lowing dependent-chance dynamic programming,

fnla) =  max  M{hy(a,z,&y) < 0}
gn(a,x,€N)<0
fﬂ(a') = max M{hn(avmvgn) < 0} + fn—i-l(T(a'a maén))
gn(a7m7£n)§0
n <N-1

where h,(a,z,€,) <0 are the events, and g,(a,x,§,) < 0 are the uncertain
environments at the nth stages, n =1,2,--- , N, respectively.

2.6 Uncertain Multilevel Programming

In order to model uncertain decentralized decision systems, Liu [122] pre-
sented three types of uncertain multilevel programming, including expected
value multilevel programming, chance-constrained multilevel programming
and dependent-chance multilevel programming, and provided the concept of
Stackelberg-Nash equilibrium to uncertain multilevel programming.

Expected Value Multilevel Programming

Assume that in a decentralized two-level decision system there is one leader
and m followers. Let x and y, be the control vectors of the leader and

the ith followers, i = 1,2,---,m, respectively. We also assume that the
objective functions of the leader and ith followers are F(x,yy, " ,Y,,, &)
and fi(z, Yy, Y, &), = 1,2, -+, m, respectively, where £ is an uncertain

vector.



SECTION 2.6 - UNCERTAIN MULTILEVEL PROGRAMMING 95

Leader x

Follower yl‘ ‘Follower y2' 'Follower Ys

Figure 2.2: A Decentralized Decision System

Let the feasible set of control vector & of the leader be defined by the
expected constraint

ElG(z,€)] <0 (2.51)

where G is a vector-valued function and 0 is a zero vector. Then for each de-
cision  chosen by the leader, the feasibility of control vectors y, of the ith fol-
lowers should be dependent on not only @ but alsoy, - ,Y; 1, Y; 11, Ymm>
and generally represented by the expected constraints,

E[gi(way17y27'” 7ym7£)] SO (252)

where g; are vector-valued functions, i = 1,2, - - ,m, respectively.
Assume that the leader first chooses his control vector @, and the followers
determine their control array (y,,¥ys, - ,¥,,) after that. In order to max-

imize the expected objective of the leader, we have the following expected
value bilevel programming,

max E[F (2, 41,45, Y, €]
subject to:
ElG(x,£)] <0
(y%,y5, - ,yk,) solves problems (i =1,2,--- ,m) (2.53)
I%%XE[fi(xa Y1, Y2 Y €]
subject to:
Elgi(x,y1,Ya,  Ypm: €] < 0.

Definition 2.11. Let & be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array (yi,vy5, - ,yr,) with respect to
x if

Elfi(m,yt, ¥ 1Yo Ui Yo )]

S E[fz(xaylv 7yi717yivyi+17"' vymvé)]

for any feasible array (yi, - Y7 1, Y, Yi11, - Yn) and i =1,2,--- ,m.

Definition 2.12. Suppose that x* is a feasible control vector of the leader
and (Y3,Y5, -+ ,ys) is a Nash equilibrium of followers with respect to x*.
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We call the array (x*,y75,vy5, -+ ,y5,) a Stackelberg-Nash equilibrium to the
expected value bilevel programming (2.53) if

E[F(w7y17y27 aymﬂé)} S E[F(m*vyikay;a 7yjn7£)] (255)

for any feasible control vector x and the Nash equilibrium (Y1,Ys, s Yym)
with respect to x.

Chance-Constrained Multilevel Programming

In order to maximize the optimistic return subject to the chance constraint,
we may use the following chance-constrained bilevel programming,

max max F'
T F
subject to:

M{G(z,8) <0} > a
(y%,y5, -+ ,yk,) solves problems (i =1,2,--- ,m) (2.56)

max max f;
Yi o f,

subject’to:
M{fi(mvylay% e 7ym7£) Z fz} Z ﬁz
M{gi(xay17y2v e 7ym7€) < 0} > Q;

where o, 3, a4, 6;, i = 1,2,--- ,m are predetermined confidence levels.

Definition 2.13. Let x be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array (y3,y5, -+ ,yk,) with respect to

x if
fz(xayxfa 7yz<_1vyivy;k+17"' ,y:@)

< fi(m’yh' T ’yi—layivyi+1a e 7ym)

for any feasible array (yi, - Y7 1, Y, Yi11, - Yn) and i =1,2,--- ,m.

Definition 2.14. Suppose that x* is a feasible control vector of the leader
and (Y3,Y5, -+ ,ys) is a Nash equilibrium of followers with respect to x*.
The array (x*,y5,y5, - ,yk,) is called a Stackelberg-Nash equilibrium to the
chance-constrained bilevel programming (2.56)) if

F(wvy17y27"' vym) < F(x*ay*livy;v 7y:n) (258)

for any feasible control vector x and the Nash equilibrium (Y1,Ys, " s Y,,)
with respect to x.
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In order to maximize the pessimistic return, we have the following minimax
chance-constrained bilevel programming,

max min F’
T F
subject to:

M{F (2,955 yh,€) < F} > 3
MG(x, &) <0} > a
(y%,vy5, - ,yk,) solves problems (i =1,2,--- ,m) (2.59)

max min f,
Yi g,

subject to:

M{fi(wvylay27”' vymvé) < fz} > ﬁz
M{gi(mﬁylay%' o aymag) S 0} Z Qg

where «, 3, i, 8, i = 1,2,--- ,m are predetermined confidence levels.

Dependent-Chance Multilevel Programming

Let H(x, Y1, Y, s Ym, &) < 0and hi(x, Y1, Ys, s Yy &) < 0 be the tasks
of the leader and ¢th followers, ¢ = 1,2,--- ,m, respectively. In order to max-
imize the chance functions of the leader and followers, we have the following
dependent-chance bilevel programming,

max M{H (@, y7,¥5,- -, ¥;,,€) < 0}
subject to:
G(xz,€) <0
(Y1, v5, - ,yr,) solves problems (i =1,2,--- ,m) (2.60)
I%%XM{hi(wvylay%'” Y, &) < 0}
subject to:
9i(T, Y1, Y2, Yy §) < 0.

Definition 2.15. Let x be a control vector of the leader. We call the array
(y5,95, - ,y%) a Nash equilibrium of followers with respect to x if

M{hz(.’ﬂ,yik, ayzllayiay;!:rlv"' ay:(nag) S 0}

S M{hz(wvyla vyi—layiayi-t,-lv'” 7ym7€) S 0}

subject to the uncertain environment g; (€, Y1, Yas - »Ym, &) < 0,0 =1,2,--+,
m fO’f’ any array (yT’ U ayf—layiayf+17 e ay:n) and i = 172a e, M.

Definition 2.16. Let =* be a control vector of the leader, and (y7,vy5, -,
y*.) a Nash equilibrium of followers with respect to x*. Then (x*,y7,y5, -,
yr) is called a Stackelberg-Nash equilibrium to the dependent-chance bilevel

programming (2.60) if
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M{H(way17y27"' 7ym7€) S 0} S M{H(w*ay*livy; 7y:m€) S 0}

subject to the uncertain environment G(x,€) < 0 for any control vector x
and the Nash equilibrium (y,,Ys, -+ ,Y,,) with respect to x.

2.7 Hybrid Intelligent Algorithm

From the mathematical viewpoint, there is no difference between determin-
istic mathematical programming and uncertain programming except for the
fact that there exist uncertain functions in the latter. Essentially, there are
three types of uncertain functions in uncertain programming,

Up:ax — E[f(z,8)],
Us:x— M{f(x, &) <0}, (2.62)
Ug:w—>max{f | M{f(w,&) zf} za}.

Note that those uncertain functions may be calculated by the 99-method if
the function f is monotone. Otherwise, I give up! It is fortunate for us that
almost all functions in practical problems are indeed monotone.

In order to solve uncertain programming models, we must find a numerical
method for solving deterministic mathematical programming, for example,
genetic algorithm, particle swarm optimization, neural networks, tabu search,
or any classical algorithms.

Then, for example, we may integrate the 99-method and the genetic al-
gorithm to produce a hybrid intelligent algorithm for solving uncertain pro-
gramming models:

Step 1. Initialize chromosomes whose feasibility may be checked by the 99-
method.

Step 2. Update the chromosomes by the crossover operation in which the
99-method may be employed to check the feasibility of offsprings.

Step 3. Update the chromosomes by the mutation operation in which the
99-method may be employed to check the feasibility of offsprings.

Step 4. Calculate the objective values for all chromosomes by the 99-
method.

Step 5. Compute the fitness of each chromosome based on the objective
values.

Step 6. Select the chromosomes by spinning the roulette wheel.
Step 7. Repeat the second to sixth steps a given number of cycles.
Step 8. Report the best chromosome as the optimal solution.

Please visit the website at http://orsc.edu.cn/liu/resources.html for com-
puter source files of hybrid intelligent algorithm and numerical examples.
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2.8 ¥ Graph

Any types of uncertain programming (including stochastic programming,
fuzzy programming and hybrid programming) may be represented by a ¥
graph

(Philosophy, Structure, Information)

which is essentially a coordinate system in which, for example, the plane

“P = CCP”
represents the class of chance-constrained programming; the plane

“S = MOP”
represents the class of multiobjective programming; the plane

“I = Uncertain”
represents the class of uncertain programming; and the point
“P,S,I) = (DCP, GP, Uncertain)”

represents the uncertain dependent-chance goal programming.

Information

Uncertain [~
Hybrid
Fuzzy
Stochastic

L ' ' Philosophy
SOP EVM CCP DCP
MOP,
GP
DP

MLP
Structure

Figure 2.3: ¥ Graph for Uncertain Programming Classifications (Liu [112])
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2.9 Project Scheduling Problem

Project scheduling problem is to determine the schedule of allocating re-
sources so as to balance the total cost and the completion time. The study
of project scheduling problem with uncertain factors was started by Liu [122]
in 2009. This section presents an uncertain programming model for project
scheduling problem in which the duration times are assumed to be uncertain
variables with known uncertainty distributions.

Project scheduling is usually represented by a directed acyclic graph where
nodes correspond to milestones, and arcs to activities which are basically
characterized by the times and costs consumed.

Figure 2.4: A Project with 8 Milestones and 11 Activities

Let (V,A) be a directed acyclic graph, where V = {1,2,--- ;n,n+ 1} is
the set of nodes, A is the set of arcs, (i,j) € A is the arc of the graph (V, A)
from nodes 7 to j. It is well-known that we can rearrange the indexes of the
nodes in V such that i < j for all (¢,5) € A.

Before we begin to study project scheduling problem with uncertain ac-
tivity duration times, we first make some assumptions: (a) all of the costs
needed are obtained via loans with some given interest rate; and (b) each
activity can be processed only if the loan needed is allocated and all the
foregoing activities are finished.

In order to model the project scheduling problem, we introduce the fol-
lowing indices and parameters:

&i;: uncertain duration time of activity (¢,7) in A;

®,;: uncertainty distribution of &;;;

cij: cost of activity (4, ) in A;

r: interest rate;

x;: integer decision variable representing the allocating time of all loans
needed for all activities (7, 7) in A.

Starting Times

For simplicity, we write & = {&; : (i,7) € A} and & = (21,22, - ,Tp).
Assume each uncertain duration time §;; is represented by a 99-table,
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0.01 0.02 003 --- 099
1 2 3 99 (2.63)
tiy byt o 4

Let T;(x, &) denote the starting time of all activities (4,7) in A. According

to the assumptions, the starting time of the total project (i.e., the starting

time of of all activities (1,7) in A) should be

Ty(2,8) = a1 (2.64)
whose inverse uncertainty distribution may be written as
U Ha) = (2.65)
and has a 99-table,
0.01 0.02 0.03 --- 0.99 (2.66)
x1 X X - X1

Generally, suppose that the starting time Ty (x, &) of all activities (k,4) in A
has an inverse uncertainty distribution \I/,;l(a) and has a 99-table,

poww e e
Then the starting time T;(x, £) of all activities (¢, j) in A should be
Ty (2, &) = a; V (zﬂ?&(T’“(“}’ &) + &i) (2.68)
whose inverse uncertainty distribution is
U o) =2 v (g)aé(j{ (\Illzl(a) + @,;il(a)) (2.69)
and has a 99-table,
0.01 e 0.99
iV max (g ) o w6+ 1) (2.70)
where y,i, y,z, e ,y,%g are determined by (Z.67). This recursive process may

produce all starting times of activities.

Completion Time

The completion time T'(x, €) of the total project (i.e, the finish time of all
activities (k,n + 1) in A) is

T(Il?,g) = (kJILI}-al})(EA (Tk(wvé) +€k,n+1) (271)

whose inverse uncertainty distribution is

1 o -1 -1
U o) = | max (\Ilk (a)—ﬁ—(I)k’n_H(a)) (2.72)
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and has a 99-table,

0.01 0.99

1 1 99 99
max +1 S max +1t
(k,n+1)€f{(yk k,n+1) (k,n+1)€f{(yk k,n+1)

(2.73)

where y},y2,- -+ ,yp? are determined by (2.67).

Total Cost
Based on the completion time T'(x, £), the total cost of the project can be
written as
Ola, &)= > cij(1+r)T@87wl (2.74)
(i,5)eA

where [a] represents the minimal integer greater than or equal to a. Note
that C'(x, £) is a discrete uncertain variable whose inverse uncertainty distri-

bution is _
T @)= Y ey (14 )Y @ (2.75)
(i.5)eA

for 0 < a < 1. Since T'(x, &) is obtained by the recursive process and repre-
sented by a 99-table,

.01 0.02 0. .
0.01 0.02 0.03 0.99 (2.76)
51 52 §3 o+ S99
the total cost C'(x, &) has a 99-table,
0.01 e 0.99
Z cij (147) [s1—zs] . Z cij (147) [s99—4] (2.77)
(i,5)€A (i,5)€A

Project Scheduling Model

If we want to minimize the expected cost of the project under the completion
time constraint, we may construct the following project scheduling model,
min E[C(x, £)]
subject to:
M{T(z,&) <T°} > «

x > 0, integer vector

(2.78)

where T is a due date of the project, o is a predetermined confidence level,
T(x, &) is the completion time defined by 271)), and C(x, £) is the total cost
defined by (Z74)). This model is equivalent to

+oo
min/ (1 —="(xz;2))dz
0
subject to: (2.79)
U(x; T%) > «

x > 0, integer vector



SECTION 2.10 - VEHICLE ROUTING PROBLEM 103

where W is determined by ([2.72) and T is determined by (2.75). Note that the
completion time T'(x, &) and total cost C(x, &) are obtained by the recursive
process and are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99
S1 52 83+t S99
(2.80)
0.01 0.02 0.03 --- 0.99
1 C2 €3 -+ Co
Thus the project scheduling model is simplified as follows,
min (61 +co+ -+ 699)/99
subject to:
) (2.81)

k/100 > o if s, > T°

x > 0, integer vector.

Numerical Experiment

Consider a project scheduling problem shown by Figure 2.4in which there are
8 milestones and 11 activities. Assume that all duration times of activities
are linear uncertain variables,

and assume that the costs of activities are
cij =1t+7, VY(i,j) €A

In addition, we also suppose that the interest rate is » = 0.02, the due
date is T° = 60, and the confidence level is & = 0.85. In order to find
an optimal project schedule, we integrate the 99-method and a genetic al-
gorithm to produce a hybrid intelligent algorithm. A run of the computer
program (http://orsc.edu.cn/liu/resources.htm) shows that the optimal allo-
cating times of all loans needed for all activities are

Date 7 11 13 23 26 29
Node 1 4 3 2,7 6 5
Loan 12 11 27 22 14 13

whose expected total cost is 166.8, and M{T'(z*, &) < 60} = 0.89.

2.10 Vehicle Routing Problem

Vehicle routing problem (VRP) is concerned with finding efficient routes,
beginning and ending at a central depot, for a fleet of vehicles to serve a
number of customers.


http://orsc.edu.cn/liu/resources.htm#reliability
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Figure 2.5: A Vehicle Routing Plan with Single Depot and 7 Customers

Due to its wide applicability and economic importance, vehicle routing
problem has been extensively studied. Liu [122] first introduced uncertainty
theory into the research area of vehicle routing problem in 2009. In this
section, vehicle routing problem will be modelled by uncertain programming
in which the travel times are assumed to be uncertain variables with known
uncertainty distributions.

We assume that (a) a vehicle will be assigned for only one route on which
there may be more than one customer; (b) a customer will be visited by one
and only one vehicle; (c) each route begins and ends at the depot; and (d) each
customer specifies its time window within which the delivery is permitted or
preferred to start.

Let us first introduce the following indices and model parameters:

i = 0: depot;

¢ =1,2,--- ,n: customers;

k=1,2,---,m: vehicles;

D;;: travel distance from customers i to j, ¢,5 =0,1,2,--- ,n;

T;;: uncertain travel time from customers ¢ to j, 4,5 =0,1,2,--- ,n;
®;;: uncertainty distribution of Tj;, 4,5 = 0,1,2,--- ,n;

[a;, b;]: time window of customer 4, i =1,2,--- ,n.

Operational Plan

In this book, the operational plan is represented by the formulation (Liu
[112]) via three decision vectors x, y and ¢, where

x = (x1,%2, - ,x,): integer decision vector representing n customers with
1<z <nandx; #x; foralli#j,¢75=12,---,n That is, the sequence
{z1,x2, - ,x,} is a rearrangement of {1,2,--- ,n};

Yy = (y1,%2,  ,Ym—1): integer decision vector with yo =0 < y3 < yo <
S Ym—1 S N= Y

t = (t1,t2, -+ ,tm): each ty represents the starting time of vehicle k at the
depot, k=1,2,--- ,m.
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Y Y ) Y3

© 6060 e e

Figure 2.6: Formulation of Operational Plan in which Vehicle 1 Visits Cus-
tomers x1, 2, Vehicle 2 Visits Customers x3, x4 and Vehicle 3 Visits Cus-
tomers x5, g, T7.

We note that the operational plan is fully determined by the decision
vectors @, y and t in the following way. For each k (1 < k <m), if yp = yx_1,
then vehicle £ is not used; if yx > yx—1, then vehicle k is used and starts from
the depot at time ¢, and the tour of vehicle kis 0 — z,, ,11 — Ty, 42 —

- — x,, — 0. Thus the tours of all vehicles are as follows:

Vehicle 1: 0 — zyo41 — Tyo42 — -+ — Ty, — 0;

Vehicle 2: 0 — 2y, 41 — Ty, 42 — -+ — Ty, — 0;

Vehicle m: 0 — @y, _ 41— Ty, 142 — -+ — Ty, — 0.

It is clear that this type of representation is intuitive, and the total number
of decision variables is n + 2m — 1. We also note that the above decision
variables ¢, y and t ensure that: (a) each vehicle will be used at most one
time; (b) all tours begin and end at the depot; (c¢) each customer will be
visited by one and only one vehicle; and (d) there is no subtour.

Arrival Times

Let f;(x,y,t) be the arrival time function of some vehicles at customers 4
fori=1,2,--- ,n. We remind readers that f;(x,y,t) are determined by the
decision variables , y and ¢, i = 1,2, - - ,n. Since unloading can start either
immediately, or later, when a vehicle arrives at a customer, the calculation of
fi(z,y,t) is heavily dependent on the operational strategy. Here we assume
that the customer does not permit a delivery earlier than the time window.
That is, the vehicle will wait to unload until the beginning of the time window
if it arrives before the time window. If a vehicle arrives at a customer after
the beginning of the time window, unloading will start immediately. For each
k with 1 < k < m, if vehicle k is used (i.e., yx > yr—1), then we have

fzyk_1+1(a37yvt) = tk? +T0zyk,—1+1 (282)
and
fﬂfyk,1+_7‘ (mv Y, t) == fw:(/k71+_7‘—1 (-’.U, Y, t) vV ax?/k—1+-7_1 + Tx?/k—1+-7‘_1w?/k71+j (283)

for 2 < j < yr — yr—1. It follows from the uncertainty of travel times T;;’s
that the arrival times f;(x,y,t), i = 1,2,--- ,n are uncertain variables fully

determined by ([2:82)) and ([283]).
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Assume that each travel time Tj; from customers ¢ to j is represented by
a 99-table,
0.01 0.02 0.03 --- 0.99

If the vehicle k is used, i.e., yx > yg—1, then the arrival time f,, ., (z,y,1)
at the customer x,, 41 is an uncertain variable whose inverse uncertainty
distribution is

- —1
\I/zylk_1+1 (a) =t + CI)Ozyk_1+1 (CV) (285)
and has a 99-table,
0.01 0.02 e 0.99 (2.86)
1 2 99 .
tk? + tOwyk_1+1 tk + tOzyk_1+1 tk? + tOwyk_1+1
Generally, suppose that the arrival time f%k_1 +j—1(x,y,t) has an inverse
uncertainty distribution \I/;/lk,lw—l (cr), and has a 99-table,
0.01 0.02 e 0.99
; 2 T (2.87)
Typ_1+i—-1 Typ_1+i—1 Typ_1+i—1

Since the arrival time f,, (@, y,t) at the customer x,, ,; has an inverse
uncertainty distribution

y-ot (@) =0, ! (@)Vas, ., +0! () (2.88)

Lyp_1+37 Lyp_1+i—1 Lyp_14+i—1%yp_1+7

for 2 < j <y — yk—1, the arrival time f,, (z,y,t) has a 99-table,

0.01 e 0.99
1 99
Typ_q+i—1 v Gy, 4151 Sﬂﬁyk,lﬂ‘—l v Gy 4451 (2.89)
1 o 99
+t33yk,1+j—133yk,1+j +t33yk,1+j—133yk,1+j
1 2 L ¢99 : :
where s, sy oSy, o, are determined by 28T). This

recursive process may produce all arrival times at customers.

Travel Distance

Let g(x,y) be the total travel distance of all vehicles. Then we have

k=1
where
D o D f
0z, + T5T; + Dy 05 i Yk > Yk—1
gr(x,y) = SRR S o vk
0, if yr = yr—1

fork=1,2,--- ,m.
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Vehicle Routing Model

If we hope that each customer ¢ (1 < ¢ < n) is visited within its time window
[a;, b;] with confidence level a; (i.e., the vehicle arrives at customer ¢ before
time b;), then we have the following chance constraint,

M{fi(z,y,t) < b} > . (2.91)

If we want to minimize the total travel distance of all vehicles subject to the
time window constraint, then we have the following vehicle routing model,

min g(x,y)
subject to:
MAfi(z,y,t) < b} >a;, i=1,2,---,n
1<z, <n, i=12,---,n (2.92)

xz#xja l#]v ’Lv.]:172aan
0<y1<y2<--<ym-1<m

Yy, +=1,2,---,n, j=12,---,m—1, integers

which is equivalent to

min g(x, y)
subject to:
U(x,y,t;0;) >y, i=1,2,---,n
1<z;<n, 1=1,2,---,n (2.93)

xz#xja l#]v ’Lv.]:172aan
0<y1 <y < <Ym-1<n

Y5, t=1,2,---,n, j=12,---,m—1, integers

where W; are uncertainty distributions determined by (Z85) and (288 for
1 =1,2,--- ,n. Note that all arrival times f;(x,y,t), ¢ = 1,2,--- ,n are
obtained by the 99-method and are respectively represented by 99-tables,

0.01 0.02 0.03 --- 0.99

sioostoos e s
0.01 0.02 0.03 --- 0.99

si 52 s3 o 8PP (2.94)
0.01 0.02 0.03 --- 0.99
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Thus the vehicle routing model is simplified as follows,

min g(z,y)
subject to:
k/100 > o if s¥ > b;, i=1,2,---,n
1<z, <n, 1=12,---,n (2.95)

$z7é$]a l#]v 'L,]Zl,Q,,TL
0<y1 <y < <Ym-1<n

iy, 1=12,---,mn, j7=12,--- ,m—1, integers.

Numerical Experiment

Assume that there are 3 vehicles and 7 customers with the following time
windows,

Node Window Node Window

1 [7:00,9 : 00] 5  [15:00,17: 00]
2 [7:00,9:00] 6  [19:00,21:00]
3 [15:00,17:00] 7  [19:00,21: 00]
4 [15:00,17 : 00]

and each customer is visited within time windows with confidence level 0.90.
We also assume that the distances are

Dyj=l|i—jl, i,j=0012---,7
and travel times are normal uncertain variables
Tijw./\f(?‘i—j‘,l), i,7=0,1,2,---,7.

In order to find an optimal operational plan, we integrate the 99-method
and a genetic algorithm to produce a hybrid intelligent algorithm. A run
of the computer program (http://orsc.edu.cn/liu/resources.htm) shows that
the optimal operational plan is

Vehicle 1: depot— 1 — 3 —depot, starting time: 6:18
Vehicle 2: deport— 2 — 5 — 7 —depot, starting time: 4:18
Vehicle 3: depot— 4 — 6 —depot, starting time: 8:18

whose total travel distance is 32.

2.11 Machine Scheduling Problem

Machine scheduling problem is concerned with finding an efficient schedule
during an uninterrupted period of time for a set of machines to process a set
of jobs. A lot of research work has been done on this type of problem. The
study of machine scheduling problem with uncertain processing times was
started by Liu [122] in 2009.
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Machine
M3 Js J7
M, Ja Js

M| S Jo J3

Time

l«——— Makespan _—

Figure 2.7: A Machine Schedule with 3 Machines and 7 Jobs

In a machine scheduling problem, we assume that (a) each job can be
processed on any machine without interruption; (b) each machine can process
only one job at a time; and (c) the processing times are uncertain variables
with known uncertainty distributions. We also use the following indices and

parameters:
1=1,2,--- ,n: jobs;
k=1,2,---,m: machines;

&k uncertain processing time of job ¢ on machine k;
®,.: uncertainty distribution of &;.

How to Represent a Schedule?

The schedule is represented by the formulation (Liu [112]) via two decision
vectors  and y, where

x = (r1,22, - ,%,): integer decision vector representing n jobs with 1 <
x; < nand x; # x; forall ¢ # j, 4,5 = 1,2,--- ,n. That is, the sequence
{z1,x2, -+ ,x,} is a rearrangement of {1,2, -+ n};

Yy = (Y1,%2, ,Ym—1): integer decision vector with yo =0 < y3 < yo <
S Ym—1 S N= Y,

We note that the schedule is fully determined by the decision vectors
and y in the following way. For each k (1 < k < m), if yx = yx—1, then the
machine k is not used; if yx > yx—1, then the machine & is used and processes
jobs @y, ,41,%y,_ 42, -+, %y, in turn. Thus the schedule of all machines is
as follows,

Machine 1: zyo41 — Tyoq2 — -+ = Ty;;
Machine 2: @y, 11 — Ty, 42 — -+ — Ty,;

(2.96)

Machine m: @y, 41 — Zy,._,42 — - — Ty,
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Y Y ) Y3

© 6o 0o o e

Figure 2.8: Formulation of Schedule in which Machine 1 Processes Jobs
r1,x3, Machine 2 Processes Jobs x3,x4 and Machine 3 Processes Jobs
T5, L6, L7-

Completion Times

Let C;(x, y, €) be the completion times of jobs i, i = 1,2,--- , n, respectively.
For each k with 1 < k < m, if the machine k is used (i.e., yx > yr—1), then
we have

C$yk_1+1 (wvyag) = gzyk_1+1k (297)

and
Cwyk,ﬁj (z,y,€) = Cwyk,ﬁj—l (z,y,€) + fwyk,ﬁjk (2.98)

for 2 <j <wyr —yg-1.
Assume that each uncertain processing time &;; of job ¢ on machine k is
represented by a 99-table,

0.01 0.02 0.03 --- 0.99

2.
he B £ oo 1 (299
If the machine k is used, then the completion time Cx?/k71+1(:c,y,£) of job
Ty, ,+1 1S an uncertain variable whose inverse uncertainty distribution is

1 1
\Ijxyk,l-%—l (Oé) = szk_1+1k(a) (2100)
and has a 99-table,
0.01 0.02 e 0.99
1 2 e 99 (2.101)
Typ_1+1 Typ_1+1 Ty 41

Generally, suppose the completion time Cwyk_lﬂfl(a:,y,é) has an inverse

1

uncertainty distribution \I/;/ (o) and is represented by a 99-table,

k—1ti—1
0.01 0.02 0.99
1 52 L g9 (2.102)
Typ 1+i—1 Ty _1+5—1 Ty _1+5—1

Then the completion time Cy, (z,y, &) has an inverse uncertainty dis-
tribution
vl () =0 (@)+@, ' (@) (2.103)

Tyg_1+3 Typ—1+i—1 Tyg_1+J
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and has a 99-table,

0.01 x 0.99
1 1 &9 99
Typ_ybio1 T tﬂfyk,ﬁjk Typ_1+i—1 t%k,ﬁjk
1 2 L. Q99 :
where s; .Syt .Sy, ., are determined by @I02), and
1 2 99 : : :
r rming . This recursi

vy sk tay koo ta, L op are dete ed by (2.99) s recursive

process may produce all completion times of jobs.

Makespan

Note that, for each k (1 < k < m), the value Cy, (x,y,§) is just the time

that the machine k finishes all jobs assigned to it, and has a 99-table,

0.01 0.02 --- 0.99
sl 2 c 99 (2.104)
ka ka ka

Thus the makespan of the schedule (z,vy) is determined by

flx,y,§) = max C;, (x,y,8) (2.105)

1<k<m
whose inverse uncertainty distribution is

T (a) = max ¥,! (a) (2.106)

1<k<m = “¥k

and has a 99-table,

0.01 002 -~ 0.99
" ¥ " (2.107)
Voo, Vi, - Vsi,

k=1 k=1 k=1

Machine Scheduling Model

In order to minimize the expected makespan E[f(x,y, &)], we have the fol-
lowing machine scheduling model,

min E[f(z, y,£)]
subject to:

1<z, <n, 1=1,2,---,n
zl#xjﬂ 7’#]7 7’7;7:17277/'7'
0<y1<y2--<ym-1<n

(2.108)

iy, 1=12,---,n, 7=12,--- ,m—1, integers.
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By using ([2I07), the machine scheduling model is simplified as follows,

m m m
min(\/siyk+\/siyk+~”+\/sggk>/99
k=1 k=1 k=1
subject to:
1<zi<n, i=1,2,-.,n (2.109)
T Fxy, 1#£7, 4,7=12,--,n
0<yi<y2 " <Ym-1<n

iy, 1=12,---,mn, 7=12,--- ,m—1, integers.

Numerical Experiment

Assume that there are 3 machines and 7 jobs with the following linear un-
certain processing times

G~ LG i+k), i=1,2-,7, k=123

where ¢ is the index of jobs and k is the index of machines. In order to
find an optimal machine schedule, we integrate the 99-method and a genetic
algorithm to produce a hybrid intelligent algorithm. A run of the computer
program (http://orsc.edu.cn/liu/resources.htm) shows that the optimal ma-
chine schedule is

Machine 1: 1 -4 — 5
Machine 2: 3 — 7
Machine 3: 2 — 6

whose expected makespan is 12.

2.12 Exercises

In order to enhance your ability in modeling, this section provides some
exercises.

Exercise 2.1: One approach to improve system reliability is to provide
redundancy for components in a system. There are two ways to provide
component redundancy: parallel redundancy and standby redundancy. In
parallel redundancy, all redundant elements are required to operate simul-
taneously. This method is usually used when element replacements are not
permitted during the system operation. In standby redundancy, one of the
redundant elements begins to work only when the active element fails. This
method is usually employed when the replacement is allowable and can be
finished immediately. The system reliability design is to determine the op-
timal number of redundant elements for balancing system performance and
total cost. Assume the element lifetimes are uncertain variables with known


http://orsc.edu.cn/liu/resources.htm#reliability
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uncertainty distributions. Please construct an uncertain programming model
for the system reliability design.

Exercise 2.2: The facility location problem is to find locations for new
facilities such that the conveying cost from facilities to customers is mini-
mized. In practice, some factors such as demands, allocations, even locations
of customers and facilities are changing and then are assumed to be uncertain
variables with known uncertainty distributions. Please construct an uncer-
tain programming model for the facility location problem.

Exercise 2.3: The inventory problem (or supply chain) is concerned with
the issues of when to order and how much to order of some goods. The
purpose is to obtain the right goods in the right place, at the right time, and
at low cost. Assume the demands and prices are uncertain variables with
known uncertainty distributions. Please construct an uncertain programming
model to determine the optimal order quantity.

Exercise 2.4: The capital budgeting problem (or portfolio selection) is
concerned with maximizing the total profit subject to budget constraint by
selecting appropriate combination of projects. Assume the future returns are
uncertain variables with known uncertainty distributions. Please construct
an uncertain programming model to determine the optimal investment plan.

Exercise 2.5: One of the basic network optimization problems is the shortest
path problem which is to find the shortest path between two given nodes in a
network, where the arc lengths are assumed to be uncertain variables. Please
construct an uncertain programming model to find the shortest path.

Exercise 2.6: The maximal flow problem is related to maximizing the flow
of some commodity through the arcs of a network from a given origin to a
given destination, where each arc has an uncertain capacity of flow. Please
construct an uncertain programming model to discover the maximum flow.

Exercise 2.7: The transportation problem is to determine the optimal trans-
portation plan of some goods from suppliers to customers such that the total
transportation cost is minimum. Assume the unit transportation cost of each
route is an uncertain variable. Please construct an uncertain programming
model to solve the transportation problem.



Chapter 3

Uncertain Risk Analysis

The term 7isk has been used in different ways in literature. Here the risk
is defined as the “accidental loss” plus “uncertain measure of such loss”.
Uncertain risk analysis was proposed by Liu [126] in 2010 as a tool to quantify
risk via uncertainty theory. One main feature of this topic is to model events
that almost never occur. This chapter will introduce a definition of risk index
and provide some useful formulas for calculating risk index.

3.1 Risk Index

A system usually contains uncertain factors, for example, lifetime, demand,
production rate, cost, profit, and resource. Risk index is defined as the
uncertain measure that some specified loss occurs. Note that the loss is
problem-dependent.

Definition 3.1 (Liu [126]). Assume a system contains uncertain variables

£1,8,---, &y, and there is a loss function L such that some specified loss
occurs if and only if L(&1,&2, -+ ,&n) < 0. Then the risk index is
Risk = M{L(&1,&2,- -+ ,&n) <0}, (3.1)

Example 3.1: Consider a series system in which there are n elements whose

lifetimes are independent uncertain variables &1, &, - -+ , &, with uncertainty
distributions ®1, P, --- , P, respectively. Such a system fails if any one
element does not work. Thus the system lifetime

=G NN N (3.2)

is an uncertain variable with uncertainty distribution

U(z) = ®1(z) V Pa(z) V-V Py (x). (3.3)
If the loss is understood as the case that the system fails before time T, then
the risk index is

Risk=M{E<T}=D1(T)VP(T)V -+ VO, (T). (3.4)

Example 3.2: Consider a parallel system in which there are n elements
whose lifetimes are independent uncertain variables &1,&9,---,§, with

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 115
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010
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Input 1 2 3 Output

Figure 3.1: A Series System

uncertainty distributions ®1, @, .-+, ®,,, respectively. Such a system fails
if all elements do not work. Thus the system lifetime

E=6VE&EV - VE, (3.5)
is an uncertain variable with uncertainty distribution
U(z) = P1(z) A DPo(z) Ao A Dy (). (3.6)

If the loss is understood as the case that the system fails before time 7', then
the risk index is

Risk =M{E<T} =D1(T)ANDP(T)N--- N D, (T). (3.7)
1
L= |
Input 2 Output
3
L2 |

Figure 3.2: A Parallel System

Theorem 3.1 (Liu [1206], Risk Index Theorem). Assume that 1,82, , &,
are independent uncertain variables with uncertainty distributions ®1, Po, - - -,
D, , respectively, and L is a strictly increasing function. If some specified loss
occurs if and only if L(&1,&2,- -+ , &) < 0, then the risk index is

Risk = « (3.8)
where « is the root of
L(@7 (a), 23 (a), -, @, (a)) = 0. (3.9)

Proof: It follows from Theorem [[20 that L(&1,&z, -+ ,&,) is an uncertain
variable whose inverse uncertainty distribution is

\I/_l(a) = L((I)Il(a)v @gl(a)v e 7@_1(05))'

n

Since Risk = M{L(&,&2,---,&,) <0} = ¥(0), we get (B).
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L

Figure 3.3: The Equation L(®; (), ®;"(a),--- ,®;(a)) = 0 whose root a
may be estimated by the bisection method since L is a monotone function
with respect to a.

Example 3.3: Assume that an investor has n projects whose returns are
uncertain variables &1,&2, - ,&,. If the loss is understood as case that the
total return & + & + - - - + &, is negative, then the risk index is

Risk =M{& + &+ -+ &, <0} (3.10)

If &,&, - -+, &, are uncertain variables with uncertainty distributions ®1, @5,
-, ®,, respectively, then the risk index is just the root a of

O ) + 5 (o) + -+ @, (a) = 0. (3.11)

Theorem 3.2 (Liu [126], Risk Index Theorem). Assume that &1,&2,- ,&n
are independent uncertain variables with uncertainty distributions ®1, Po, - - -,
D, , respectively, and L is a strictly decreasing function. If some specified loss
occurs if and only if L(&1,&2,- -+ , &) < 0, then the risk index is

Risk =« (3.12)
where « is the root of
L@ (1—a), @ (1 —a),-- &, (1 —a)) =0. (3.13)

Proof: It follows from Theorem [[2H that L(&1,&a, -+ ,&,) is an uncertain
variable whose inverse uncertainty distribution is

U (a) = L@ (1— ), 85 (1= a), -, @51 (1 - ).
Since Risk = M{L(&1,&2,- - ,&n) <0} = ¥(0), we get (B12).

Theorem 3.3 (Liu [126], Risk Index Theorem). Assume that &,&,-+ ,&n
are independent uncertain variables with uncertainty distributions ®1, Po, - - -,
®,,, respectively, and the function L(x1, o, ,xy) is strictly increasing with
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respect to x1,xa, -+ , &y and strictly decreasing with respect to Ty4+1, Tm+2,
- Tn. If some specified loss occurs if and only if L(&1,&a,--+ ,&,) <0, then

the risk index is
Risk =« (3.14)

where « is the root of
L@ (a), -, @, (a), @5 (1 —a) -, @ (1 —a)) = 0. (3.15)

Proof: It follows from Theorem [[26] that L(&1,&a,- -+ ,&,) is an uncertain
variable whose inverse uncertainty distribution is

\Il_l(a) = L(@;l(a), to 7@7711(a)’q);1£rl(1 - O‘)»' e 7©’I’_Ll(]' - O‘))
Since Risk = M{L(&1,&2, -+ ,&n) <0} = ¥(0), we get (BI4).

Example 3.4: Consider a structural system in which ¢ is the strength vari-
able and 7 is the load variable. The system failure occurs whenever the load
variable 17 exceeds the strength variable . If the loss is understood as the
system failure, then the risk index is

Risk = M{& < n}. (3.16)

If £ and n are uncertain variables with uncertainty distributions ® and ¥,
respectively, then the risk index is just the root « of

O(a) =TU(1 — ). (3.17)

3.2 Hazard Distribution

Suppose that £ is the lifetime of some system/element. Here it is assumed
to be an uncertain variable with a prior uncertainty distribution. At some
time ¢, it is observed that the system/element is working. What is the resid-
ual lifetime of the system/element? The following definition answers this
question.

Definition 3.2 (Liu [126]). Let & be a nonnegative uncertain variable rep-
resenting lifetime of some system/element. If & has a prior uncertainty
distribution ®, then the hazard distribution (or failure distribution) at time
t is

0, if ®(z) < B(t)
Bl - ) 1 f(;zt) A0S, if B(t) < B(z) < (1+ B(t))/2 (3.18)
o(z)— (1)
e o HTe®)2<0@)

that is just the conditional uncertainty distribution of £ given € > t.
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The hazard distribution is essentially the posterior uncertainty distribution
just after time ¢ given that it is working at time t.

Example 3.5: Let £ be a linear uncertain variable £(a,b), and ¢ a real
number with a < t < b. Then the hazard distribution at time ¢ is

0, ife<t
T—a )
B (xlt) = b_t/\0.5, ift<a<(b+t)/2
-1
TTUNL i (bt)/2 < an
b—t
Theorem 3.4 (Liu [126], Conditional Risk Index Theorem). Consider a
system that contains n elements whose uncertain lifetimes £1,&2,--- ,&, are
independent and have uncertainty distributions ®1, ®o,--- , @, respectively.

Assume L is a strictly increasing function, and some specified loss occurs
if and only if L(&1,&2,-++,&,) < 0. If it is observed that all elements are
working at some time t, then the risk indez is

Risk = « (3.19)
where « is the root of
L(®7H(aft), @5 (aft), -+, @, (aft) =0 (3.20)

where ®;(x|t) are hazard distributions determined by

0, if ®i(x) < @i(t)
i) = 1 fiéfzt) A0S, i Bi(D) < Bil2) < 1+ 0)/2 (54,
s e/ < e

fori=1,2,--- n.

Proof: It follows from Definition that each hazard distribution of ele-
ment is determined by (B.2I). Thus the conditional risk index is obtained by
Theorem B.J] immediately.

Theorem 3.5 (Liu [126], Conditional Risk Index Theorem). Consider a
system that contains n elements whose uncertain lifetimes £1,&2,--- ,&, are
independent and have uncertainty distributions ®1,Po,--- , @, respectively.
Assume L is a strictly decreasing function, and some specified loss occurs
if and only if L(&1,&2,-++,&,) < 0. If it is observed that all elements are
working at some time t, then the risk indez is

Risk =« (3.22)
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where « is the root of
L@ (1 - alt), &5 (1 —alt), - B (1 —al)) =0 (3.23)
where ®;(x|t) are hazard distributions determined by (3.21) fori=1,2,--- ,n.

Proof: It follows from Definition that each hazard distribution of ele-
ment is determined by (BZI)). Thus the conditional risk index is obtained by
Theorem immediately.

Theorem 3.6 (Liu [I26], Conditional Risk Index Theorem). Consider a
system that contains n elements whose uncertain lifetimes £1,&2,--- ,&, are
independent and have uncertainty distributions ®1, ®o,--- , @, respectively.
Assume L(x1,xa, -+ ,xy,) is strictly increasing with respect to x1,xa, -+ , T,
and strictly decreasing with respect t0 Ti11, T2, 5 Tn, and some specified
loss occurs if and only if L(&1,8&2,-+-,&) < 0. If it is observed that all
elements are working at some time t, then the risk index is

Risk =« (3.24)

where « is the root of
L@ (alt), -, @5 (alt), B3, (1= alt), -+, &5 (1 —alt) =0 (3.25)
where ®;(x|t) are hazard distributions determined by (Z21) fori=1,2,--- ,n.

Proof: It follows from Definition that each hazard distribution of ele-
ment is determined by ([3:2I). Thus the conditional risk index is obtained by
Theorem immediately.

3.3 Boolean System

Many real systems may be simplified to a Boolean system in which each
element (including the system itself) has two states: working and failure.
This section provides a risk index theorem for such a system.

We use £ to express an element and use a to express its reliability in
uncertain measure. Then the element £ is essentially an uncertain variable

. . (3.26)
0 with uncertain measure 1 — a

{ 1 with uncertain measure a
where £ = 1 means the element is in working state and £ = 0 means ¢ is in
failure state.

Assume that X is a Boolean system containing elements &1,&s, -+ ,&n.
Usually there is a function f: {0,1}™ — {0, 1} such that

X =0if and only if f(&1,&,--,&,) =0, (3.27)
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X =1if and only if f(&,&, - ,&,) = 1. (3.28)
Such a Boolean function f is called the truth function of X.

Example 3.6: For a series system, the truth function is a mapping from
{0,1}™ to {0, 1}, i.e.,

fl@r,zo, - xn) =21 AT A AN 2. (3.29)

Example 3.7: For a parallel system, the truth function is a mapping from
{0,1}™ to {0,1}, i.e.,

flzr, e, - jzp) =21 Vaa V- Va,. (3.30)

Example 3.8: For a k-out-of-n system, the truth function is a mapping
from {0,1}™ to {0,1}, i.e.,

1, fei+ae+---+x, >k

fxvl'a"‘axn = N 3.31
(1 2 ) 0, ifwxy+zo+4+---+z, <k. ( )

For any system with truth function f, if the loss is understood as the
system failure, i.e., X = 0, then the risk index is

Theorem 3.7 (Liu [126], Risk Index Theorem for Boolean System). Assume
that &1,&2,- -+ , &, are independent elements with reliabilities a1, asg,-- - , an,
respectively. If a system contains &1,&2, -+ , &, and has truth function f, then
the risk index is
sup min v;(x;),
F(z1,m2, ) =0 1SISN
if sup min v;(x;) < 0.5
. Fa1,ma, an)=0 ISIST
Risk = ] (3.33)
1- sup min v;(z;),
Flz1,ma,0 mn)=1 1SS
if sup min v;(z;) > 0.5
flar,@a, - wn)=0 1SS
where x; take values either 0 or 1, and v; are defined by
Qs , Zf €Ty = 1
vi(x;) = 3.34
Z( Z) { 1—(11‘, ZfZL'Z:() ( )

fori=1,2,--- n, respectively.
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Proof: Since &1,&,, -+, &, are Boolean uncertain variables and f is a Boolean
function, the equation (B33)) follows from Risk = M{f(&1,&2, -+ ,&,) = 0}
and Theorem immediately.

Example 3.9: Consider a series system having uncertain elements &1, o, + - -,
&, with reliabilities aq, a9, - ,a,, respectively. Note that the truth func-
tion is

flzr, e, - jxp) =21 A2 Ao Ay (3.35)

It follows from the risk index theorem or Theorem [I.2§8 that the risk index is

Risk=(1—a1)) V(1 —a2)V---V(1—ay). (3.36)

Example 3.10: Consider a parallel system having uncertain elements &1, &2,
-, &, with reliabilities a1, as, - - - , an, respectively. Note that the truth func-

tion is
flzr, e, - jxp) =21 Vaa V- Va,. (3.37)

It follows from the risk index theorem or Theorem [1.29] that the risk index is

Risk=(1—a)) A1 —a2)A--- A1 —ay). (3.38)

Example 3.11: Consider a k-out-of-n system having uncertain elements
&,&, -+, &, with reliabilities a1, as, -+ ,a,, respectively. Note that the
truth function is

1, fei+ae+---+x, >k

) y ' ydn) = . o 3.39
Flay, @ Tn) {0, ifei+x04+---+z, <Ek. ( )

It follows from the risk index theorem or Theorem [[L30 that the risk index is

Risk = “the kth smallest value of 1 —a1,1 —as, -+ ,1—a,”. (3.40)

3.4 Risk Index Calculator

Risk Index Calculator is a software for calculating the risk index of Boolean
system, and is available at http://orsc.edu.cn/liu/resources.htm.

Example 3.12: Consider a bridge system shown in Figure [3.4] that consists
of 5 elements whose states are denoted by 1, z2, T3, x4, x5. It is obvious that
there are 4 paths from the input of the system to the output:

Path 1: input—1 — 4—output,
Path 2: input—2 — 5—output,
Path 3: input—1 — 3 — 5—output,
Path 4: input—2 — 3 — 4—output.
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SECTION 3.4 - RisSK INDEX CALCULATOR 123

Input —— 3 ——s Output

Figure 3.4: A Bridge System
Assume each path works if and only if all elements on which are working.
Then the states of the 4 paths are
r1 Nxy, X2/NT5, T1NT3NT5, T2 N\T3AT4.

Assume the system works if and only if there is a path of working elements.
Then the truth function of the bridge system is

flx1, 22, 3,24, 25) = (k1 Aza) V (z2 Axs) V (1 Axz Axs) V (2 Az3 A xa).

Assume the 5 elements have reliabilities 0.91, 0.92, 0.93, 0.94, 0.95 in uncer-
tain measure. When the loss is understood as the bridge system failure, a
run of Risk Index Calculator shows that the risk index is 0.08 in uncertain
measure.



Chapter 4

Uncertain Reliability
Analysis

Uncertain reliability analysis was proposed by Liu [126] in 2010 as a tool
to deal with system reliability via uncertainty theory. Note that uncertain
reliability analysis and uncertain risk analysis have the same root in mathe-
matics. They are separately treated for application convenience in practice
rather than theoretical demand.

This chapter will introduce a definition of reliability index and provide
some useful formulas for calculating reliability index.

4.1 Reliability Index

Reliability index is defined as the uncertain measure that some system is
working.

Definition 4.1 (Liu [126]). Assume a system contains uncertain variables
&1,8,-+- &, and there is a function R such that the system is working if
and only if R(&1,&2,- -+ ,&n) > 0. Then the reliability index is

Example 4.1: Consider a series system in which there are n elements whose
lifetimes are independent uncertain variables &1, &, - - - , &, with uncertainty
distributions @1, ®o, - - - , P,,, respectively. Such a system works if all elements
are working, and the system lifetime £ has an uncertainty distribution ¥(z) =
Oy (x) VOy(x) V.- VP, (x). If we hope the system is working until time T,
then the reliability index is

Reliability = M{¢ > T} =1 — S (T)V Bo(T) V-~V Sp(T).  (4.2)

Example 4.2: Consider a parallel system in which there are n elements
whose lifetimes are independent uncertain variables &1,&s, -+, &, with un-
certainty distributions ®1,®,,-- -, ®,,, respectively. Such a system works if
there is at least one working element. Thus the system lifetime £ has an
uncertainty distribution W(x) = ®1(x) A ®o(x) A--- A D, (z). If we hope the
system is working until time 7', then the reliability index is

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 125
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Reliability = M{€ > T} =1 — S (T) A Bo(T) A+~ ADp(T).  (4.3)

Theorem 4.1 (Liu [126], Reliability Index Theorem). Assume&1,&a,-+ ,&n
are independent uncertain variables with uncertainty distributions ®1, ®o, - - -,
b, respectively, and R is a strictly increasing function. If some system is
working if and only if R(&1,&2,--+ ,&n) > 0, then the reliability index is

Reliability = o (4.4)
where « is the root of
R(q’;l(l—a)’¢51(1—a)7~-~ 7@7_11(1_0[)) =0. (45)

Proof: It follows from Theorem [[L20 that R(&1,&2, -+ ,&,) is an uncertain
variable whose inverse uncertainty distribution is

Ul () = R(®; (), 5 (), -, @, (a)).
Since Reliability = M{R(&1,&2, - ,&n) > 0} =1 — ¥(0), we get ([@A).

Theorem 4.2 (Liu [126], Reliability Index Theorem). Assume &1,&2,- -+ ,&n
are independent uncertain variables with uncertainty distributions ®1, Po, - - -,
D, , respectively, and R is a strictly decreasing function. If some system is
working if and only if R(&1,&2, -+ ,&n) > 0, then the reliability index is

Reliability = a (4.6)
where « is the root of
R(®7!(a), @5 (a), -+, @, () = 0. (4.7)

Proof: It follows from Theorem [[.25 that R(&1,&2, -+ ,&,) is an uncertain
variable whose inverse uncertainty distribution is

\I/_l(a) = R(q)l_l(l - Ot), @2_1(1 - Oé), U v¢;1(1 - Oé))
Since Reliability = M{R({1,&2, -+, &) >0} =1 —U(0), we get (0.

Theorem 4.3 (Liu [126], Reliability Index Theorem). Assume &1,8a,-+ ,&n
are independent uncertain variables with uncertainty distributions ®1, ®o, - - -,
D,,, respectively, and the function R(x1,x2, -+ ,Zn) is strictly increasing with
respect to x1,xa, - , Ty and strictly decreasing with respect t0 Tym41, Tm+2,
, . If some system is working if and only if R(&1,&2, -+ ,&n) > 0, then

the reliability index is
Reliability = « (4.8)

where « is the root of

m

R@T'(1-a)- 0, (1-a), . (a) -+, @, (o) = 0. (4.9)
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Proof: It follows from Theorem [[.20] that R(&1,&2,- -+ ,&,) is an uncertain
variable whose inverse uncertainty distribution is

\I/_l(a) = R((I);l(a)a e a(I);zl(a)v q):n{i-l(l - Oé), e v(D;l(l - Ot))
Since Reliability = M{R({1,&2, -+, &) >0} =1 —U(0), we get ([LI).

Example 4.3: Consider a structural system in which £ is the strength vari-
able and 7 is the load variable. The system works whenever the load variable
1 does not exceed the strength variable £&. Then the reliability index is

Reliability = M{& > n}. (4.10)

If £ and 7 are uncertain variables with uncertainty distributions ® and ¥,
respectively, then the reliability index is just the root « of

B(1—a) = U(a). (4.11)

4.2 Conditional Reliability

This section provides some conditional reliability index theorems given that
all elements are working at time ¢.

Theorem 4.4 (Liu [126], Conditional Reliability Index Theorem). Consider
a system that contains n elements whose uncertain lifetimes &,,&,- -+ , &, are
independent and have uncertainty distributions ®1,®o,--- , @, respectively.
Assume R is a strictly increasing function, and some system is working if and
only if R(&1,&2,--+,&,) > 0. If it is observed that all elements are working
at some time t, then the reliability indez is

Reliability = « (4.12)
where « is the root of
R(®TH (1 —alt),®3 (1 —alt),-- @, (1 —alt)) =0 (4.13)

where ®;(x|t) are hazard distributions determined by

0, if ®i(x) < @i(t)
) o2 < o)

fori=1,2,--- n.

Proof: Since each hazard distribution of element is determined by (#I4),
the conditional reliability index is obtained by Theorem 1] immediately.
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Theorem 4.5 (Conditional Reliability Index Theorem). Consider a system
that contains n elements whose uncertain lifetimes 1,8, -+ , &, are indepen-
dent and have uncertainty distributions ®1, ®a, - -- , D, respectively. Assume
R is a strictly decreasing function, and some system is working if and only if
R(&1,&2,-+, &) > 0. If it is observed that all elements are working at some
time t, then the reliability index is

Reliability = « (4.15)

where « is the root of
R(®7 ' (aft), 23" (alt), -, @ (a]t) =0 (4.16)
where ®;(x|t) are hazard distributions determined by ({-13) fori=1,2,--- ,n.

Proof: Since each hazard distribution of element is determined by (#I4),
the conditional reliability index is obtained by Theorem immediately.

Theorem 4.6 (Conditional Reliability Index Theorem). Consider a system
that contains n elements whose uncertain lifetimes 1,8, -+ , &, are indepen-
dent and have uncertainty distributions ®1, P, --- , ®,,, respectively. Assume
R(xq1, o, -+ ,xp) is strictly increasing with respect to x1,z2, - ,Zm and
strictly decreasing with respect 10 Tmmi1,Tm42, c, Tn, and some
system is working if and only if R(&1,82,-++ ,&,) > 0. If it is observed that
all elements are working at some time t, then the reliability index is

Reliability = « (4.17)
where « is the root of

R(®T' (1 —aft),, @, (1 - alt), 2 (alt), -+, @ (alt) =0 (4.18)

m

where ®;(x|t) are hazard distributions determined by ({.14) fori=1,2,--- ,n.

Proof: Since each hazard distribution of element is determined by (£I14),
the conditional reliability index is obtained by Theorem 3] immediately.

4.3 Boolean System

Consider a Boolean system with n elements &1, &2, - - - , €, and a truth function
f. Since the system is working if and only if f(&1,&, -+ ,&,) = 1, the
reliability index is

Theorem 4.7 (Liu [126], Reliability Index Theorem for Boolean System,).
Assume &1, &9, -+ -, €, are independent elements with reliabilities a1, asg, - - -, an,
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respectively. If a system contains &1,&2, -+ , &, and has truth function f, then
the reliability index is

sup min v;(z;),
Fl@1,@2, e mn)=115ISn

if sup min v;(x;) < 0.5

A F(z1,m2, ) =1 1SS0

Reliability = 1 sup min v (z;) (4.20)
f(z1,m2,,2,)=0 1<i<n s

if sup min v;(x;) > 0.5
f(@1,0, zn)=1 151500 o

where x; take values either 0 or 1, and v; are defined by

Qs , Zf €Ty = 1
vi(xi) = 4.21
Z( Z) { 1—(11‘, ZfZL'Z:() ( )
fori=1,2,--- n, respectively.
Proof: Since &1,&,, -+, &, are Boolean uncertain variables and f is a Boolean

function, the equation [£20) follows from Reliability = M{f(&1,&2,- - ,&n) =
1} and Theorem immediately.

Example 4.4: Consider a series system having uncertain elements &1, &2, - - -,
&, with reliabilities a1, aq, - - , a,, respectively. Note that the truth function
is a Boolean function,

flzr,@a, - jxp) =21 A2 Ao Ay (4.22)

It follows from the reliability index theorem or Theorem that the relia-
bility index is
Reliability = a3 Nag A\ -+ A ay,. (4.23)

Example 4.5: Consider a parallel system having uncertain elements &1, &2,
-+ &, with reliabilities a1, ag, - - - , an, respectively. Note that the truth func-
tion is a Boolean function,

flzr, e, - jzp) =21 Vaa V- Va,. (4.24)

It follows from the reliability index theorem or Theorem that the relia-
bility index is
Reliability = a1y V as V-V ay. (4.25)

Example 4.6: Consider a k-out-of-n system having uncertain elements
&1,&, -+, &, with reliabilities a1, a9, - ,a,, respectively. Note that the
truth function is a Boolean function,

1, fei+ae+---+x, >k

4.26
0, ifey+ao0+---4+x, <k. ( )

f($1,$2,“‘ 7xn) :{
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It follows from the reliability index theorem or Theorem [[.30] that the relia-
bility index is

Reliability = the kth largest value of aq, a9, - ,a,. (4.27)

4.4 Reliability Index Calculator

Reliability Index Calculator is a software for calculating the reliability index
of Boolean system, and is available at http://orsc.edu.cn/liu/resources.htm.

Input —— 3 — Output

Figure 4.1: A Bridge System

Example 4.7: Consider a bridge system shown in Figure LT] that consists of
5 elements whose states are denoted by x1, 2, X3, T4, 5. Assume each path
works if and only if all elements on which are working and the system works
if and only if there is a path of working elements. Then the truth function
of the bridge system is

flx1, 22, 3,24, 05) = (k1 Aza) V (z2 Axs) V (1 Azz Axs) V (T2 Az3 Axa).

When the 5 elements have reliabilities 0.91, 0.92, 0.93, 0.94, 0.95 in uncer-
tain measure, a run of Reliability Index Calculator shows that the system
reliability index is 0.92 in uncertain measure.


http://orsc.edu.cn/liu/resources.htm#RiskIndex

Chapter 5

Uncertain Process

An uncertain process is essentially a sequence of uncertain variables indexed
by time or space. The study of uncertain process was started by Liu [121]
in 2008. This chapter introduces the basic concepts of uncertain process, in-
cluding renewal process, martingale, Markov process and stationary process.

5.1 Uncertain Process

Definition 5.1 (Liu [I21]). Let T be an index set and let (I',L,M) be an
uncertainty space. An uncertain process is a measurable function from T x
(T, L, M) to the set of real numbers, i.e., for each t € T and any Borel set B
of real numbers, the set

{X; € By={yeT | Xu(») € B} (5.1)
1S an event.

That is, an uncertain process X;(7y) is a function of two variables such that
the function X« () is an uncertain variable for each t*.

Definition 5.2. For each fized v*, the function X(vy*) is called a sample
path of the uncertain process X;.

Definition 5.3. An uncertain process Xy is said to be sample-continuous if
almost all sample paths are continuous with respect to t.

Definition 5.4. An uncertain process X; is said to have independent incre-
ments if
th - Xt()) Xt2 - Xt17 Tty th, - th,—l (52)

are independent uncertain variables for any times tg < t; < --+ < tg.
Definition 5.5. An uncertain process X; is said to have stationary incre-

ments if, for any given t > 0, the increments Xs1¢ — Xs are identically
distributed uncertain variables for all s > 0.

Definition 5.6. For any partition of closed interval [0,t] with 0 = t1 < ta <
s < tpy1 = t, the mesh is written as

A= tivr1 — il
1§?§Xk| i+1 z|

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 131
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Let m > 0 be a real number. Then the m-variation of uncertain process Xy is

k

X[ =1 EX. .0

X113 Alglo‘ 1\ ti+1 ti
i=

m (5.3)

provided that the limit exists almost surely and is an uncertain process. Es-
pecially,

k
1 X1: = iif_{lo z; | X, 41 — Xu, (5.4)
1=
18 called total variation, and
k
2 (5.5)

X = 1i X1 — Xy,

X117 Alf_{l()z:\ ti+1 t;
=1

1s called the squared variation of uncertain process X;.

5.2 Renewal Process

Definition 5.7 (Liu [121]). Let &1,&s, -+ be iid positive uncertain variables.
Define So =0 and S, = & + &+ -+ &, forn > 1. Then the uncertain
process

Ny =maxn | S, <t 5.6
= mas {n] 5, 1) 56
1s called a renewal process.

If £1,&, -+ denote the interarrival times of successive events. Then S,, can

be regarded as the waiting time until the occurrence of the nth event, and
Ny is the number of renewals in (0, ¢]. The renewal process N; is not sample-
continuous. But each sample path of IV; is a right-continuous and increasing
step function taking only nonnegative integer values. Furthermore, the size

Ny

4
3
2
1
0

&1 &2 &3 €4
So Sl Sz S3 S4

Figure 5.1: A Sample Path of Renewal Process
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of each jump of NV; is always 1. In other words, NV; has at most one renewal
at each time. In particular, N; does not jump at time 0. Since N; > n is
equivalent to S, < t, we immediately have

M{N, > n} = M{S, < 1}. (5.7)

Since N; < n is equivalent to S,,+1 > t, by using the self-duality axiom, we
immediately have

M{Ny < n}=1—M{Sn1 < t}. (5.8)

Theorem 5.1. Let N; be a renewal process with uncertain interarrival times
&1,&, -+ If those interarrival times have a common uncertainty distribution
®, then Ny has an uncertainty distribution

t

Lﬂ44>’ Va >0 (5.9)

T&@:1-@(

where |x] represents the mazimal integer less than or equal to x.

Proof: Note that S,4; has an uncertainty distribution ®(z/(n + 1)). It
follows from (B.8) that

t
M{thn}zl—M{SnHgt}:1—¢><n+1).

Since Ny takes integer values, for any x > 0, we have

Ti(z) = M{N; <z} = M{N; < |z]} =1—& (mtJr 1> :

The theorem is verified.

Theorem 5.2. Let N; be a renewal process with uncertain interarrival times
&1,&, -+ If those interarrival times have a common uncertainty distribution

D, then .
t
E[N,] = ;:1 > (n> . (5.10)

Proof: Since N, takes only nonnegative integer values, it follows from the
definition of expected value and Theorem [B.] that

BN = [ (=Tt - 2(1 )
e (,0) =2 ()

Thus the theorem is verified.
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Tt ($)
T:(5)
Tt(4) i
T:(3) : i
T | |
T i
| v
0 1 2 3 4 5

Figure 5.2: Uncertainty Distribution Y; of Renewal Process N;

Theorem 5.3 (Renewal Theorem). Let Ny be a renewal process with uncer-

tain interarrival times £1,&2,- -+ Then
. E[Ny] 1
1 =F . 5.11
o & (>0

If those interarrival times have a common uncertainty distribution ®, then

lim E[ivt] = /O+OO<I> CC) dz. (5.12)

t—oo

If the uncertainty distribution ® is reqular, then

. E[Nt] ! 1
= . -1
tliglo t /0 1) da (5.13)

Proof: The uncertainty distribution T; of N; has been given by Theo-
rem 5.1l It follows from the operational law that the uncertainty distribution
of Nt /t is

Ue(z) = Tetz) =1- @ <thjt+ 1)

where |tz ] represents the maximal integer less than or equal to ¢z. Thus

B[N _ [T
; —/0 (1 = Uy(z))da.

On the other hand, 1/£; has an uncertainty distribution 1 — ®(1/x) whose
expected value is



SECTION 5.2 - RENEWAL PROCESS 135

elal =L ()e

(1-Ty(z) <@ (1> Vt,x

T

Note that

and

t—oo X

lim (1 — Uy(z)) = & <1> . Va.

It follows from Lebesgue dominated convergence theorem that

im PV g +OO(1—\I/t(x))dx:/0+oo<I>(1)dx:E{l].

t—oo t—oo 0 x 51

Furthermore, since the inverse uncertainty distribution of 1/¢is 1/®~1(1—a),

we get
1 ! 1 L |
b M = [ o0 -w®= ] o

The theorem is proved.

E[N]/t

Figure 5.3: Average Renewal Number E[N¢]/t

Example 5.1: A renewal process N; is called a linear renewal process if
&1,&, -+ are iid linear uncertain variables £(a,b) with a > 0. It follows from
the renewal theorem that

. E[NyJ Inb—Ina
lim = .

t—o0o t b—a,

(5.14)

Example 5.2: A renewal process N, is called a zigzag renewal process if
£1,&, -+ are iid zigzag uncertain variables Z(a, b, ¢) with a > 0. It follows
from the renewal theorem that
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E[N] 1 (lnb—lna lnc—lnb) . (5.15)

li =
tggo t 2 b—a + c—b

Example 5.3: A renewal process NV, is called a lognormal renewal process
if &, &, -+ are iid lognormal uncertain variables LOGN (e, o). If o < 7/+/3,
then

E|N,
tlim [N = V30 exp(—e) csc(V30). (5.16)
Otherwise, we have
E|N,
lim 1V = +00. (5.17)
t—o0 t
Renewal Reward Process
Let (&1,m1),(&2,7m2),- -+ be a sequence of pairs of uncertain variables. We

shall interpret 7; as the rewards (or costs) associated with the i-th interarrival
times & for i = 1,2, - -, respectively.

Definition 5.8. Let &1,&,--- be iid uncertain interarrival times, and let
n1,M2,- -+ be ttd uncertain rewards. It is also assumed that &1,m1,&2,72, -
are independent. Then

Ny
Ry=Y n (5.18)
i=1
1s called a renewal reward process, where Ny is the renewal process.

A renewal reward process R; denotes the total reward earned by time ¢. In
addition, if n; = 1, then R; degenerates to a renewal process.

Theorem 5.4. Let R; be a renewal reward process with uncertain interarrival
times £1,&2, -+ and uncertain rewards ny,m2,- - Assume those interarrival
times and rewards have uncertainty distributions ® and ¥, respectively. Then
R: has an uncertainty distribution

t x
Tt($)=r11€1§é( (1—¢<k+1>) /\\I/<k) (5.19)
Here we set x/k = 400 and ¥(z/k) =1 when k = 0.

Proof: It follows from the definition of renewal reward process that the
renewal process IV is independent of uncertain rewards 71,72, - - -, and
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Nt
Ti(z) =M{R: <z} =M {Zm < .T}

[e9) k
:M{U(Nt:k)ﬂZm<x}
k=0 i=1
:M{U(Nt:k)m<"71§ i)}

k=0

= maxM {(Nt <k)n (771 < i)}

k>0

x
=N SR AN < )

—pax(1-2 (4 10)) 2 ()

The theorem is proved.

Tt(l')

0,_,

Figure 5.4: Uncertainty Distribution T;(z) of Renewal Reward Process R; in
which the dashed horizontal lines are 1 — ®(¢/(k + 1)) and the dashed curves
are U(x/k).

Theorem 5.5 (Renewal Reward Theorem). Assume that Ry is a renewal

reward process with uncertain interarrival times &1,&a, -+ and uncertain re-
wards n1,n2,- -+ If E[m/&] exists, then
E
L {’71} . (5.20)
t—o0 t 51

If those interarrival times and rewards have regular uncertainty distributions
® and VU, respectively, then

. ER] [ T
tlirgo ; —/0 @71(1_a)da. (5.21)
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Proof: It follows from Theorem [£.4] that the uncertainty distribution of

Ry is
o) =y (10 (4, )) e ()

Then R/t has an uncertainty distribution

Tt(tx):ril%((l—é(kil>>/\\I/<t:>.

When t — oo, we have

Ti(tx) — sgg(l —®(y)) AV (xy)

which is just the uncertainty distribution of 11 /&;. Thus the equation (5.20)
follows from the existence of E[n;/£1]. In addition, since the inverse uncer-
tainty distribution of 7, /&; is just ¥=1(a)/®71(1 — ), the equation (5.Z1))
follows from Theorem [[.32] immediately.

5.3 Martingale

Definition 5.9. An uncertain process Xy is called martingale if it has inde-
pendent increments whose expected values are zero.

5.4 Markov Process

Definition 5.10. An uncertain process X; is called Markov if, given the
value of Xy, the uncertain variables Xs and X, are independent for any
s>1>u.

5.5 Stationary Process

Definition 5.11. An uncertain process X is called stationary if for any
positive integer k and any times t1,ts, - ,tx and s, the uncertain vectors

(Xity, Xtny o, X)) and (X165 Xigts, o0 5 Xeyrs) (5.22)

are identically distributed.



Chapter 6

Uncertain Calculus

Uncertain calculus, invented by Liu [123] in 2009, is a branch of mathemat-
ics that deals with differentiation and integration of function of uncertain
processes. This chapter will introduce canonical process, uncertain integral,
chain rule, and integration by parts.

6.1 Canonical Process

Definition 6.1 (Liu [123]). An uncertain process Ct is said to be a canonical
process if

(i) Co =0 and almost all sample paths are Lipschitz continuous,

(ii) Cy has stationary and independent increments,

(#ii) every increment Csyy — Cs is a normal uncertain variable with expected
value 0 and variance t2, whose uncertainty distribution is

o(z) = <1+exp (- \7;;))_1. (6.1)

Ct

t

Figure 6.1: A Sample Path of Canonical Process

Note that almost all sample paths of canonical process are Lipschitz continu-
ous functions, but almost all sample paths of Brownian motion are continuous
but non-Lipschitz functions. If we say Brownian motion describes the irreg-
ular movement of pollen with infinite speed, then we may say the canonical
process describes the irregular movement of pollen with finite speed.

Theorem 6.1 (Existence Theorem). There is a canonical process.

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 139
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Proof: Without loss of generality, we only prove that there is a canonical
process on the range of t € [0,1]. Let

{&(r) | r represents rational numbers in [0,1]}

be a countable sequence of independently normal uncertain variables with
expected value zero and variance one. For each integer n, we define an
uncertain process

1§k:g(i) =" k=01, .n)
Xn(t): nZ:1 n ) n b b

linear, otherwise.

Since the limit
lim X, (¢)

n—oo
exists almost surely, we may verify that the limit meets the conditions of
canonical process. Hence there is a canonical process.

Theorem 6.2. Let C; be a canonical process. Then for each time t > 0, the
ratio Ci/t is a normal uncertain variable with expected value 0 and variance
1. That is,

C;t ~N(0,1) (6.2)
for any t > 0.

Proof: It follows from the definition of canonical process that at each time
t, Cy is a normal uncertain variable with uncertainty distribution

B(z) = (1 +exp (— ;;t))_l .

Thus C¢/t has an uncertainty distribution

U(z) = B(tz) = (1 + exp (— 3”;))_1 .

Hence C;/t is a normal uncertain variable with expected value 0 and variance
1. The theorem is verified.

Theorem 6.3. Let C; be a canonical process. Then for any level x € R and
any time t > 0, we have
-1

M{C; < 2} = (1 + exp <— ;;)) , (6.3)

-1

M{C; > 2} = (1 + exp <;§t>> . (6.4)

Proof: Since C; is a normal uncertain variable with expected value 0 and
variance t2, we get (6.3) immediately. The equation (€.4]) may be derived
from M{C; > z} =1 - M{C; < z}.
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Arithmetic Canonical Process

Definition 6.2. Let C; be a canonical process. Then for any real numbers e
and o,
At =et + O'Ct (65)

18 called an arithmetic canonical process, where e is called the drift and o is
called the diffusion.

At each time ¢, the arithmetic canonical process A; is a normal uncertain
variable, i.e.,
A; ~ Net,at). (6.6)

That is, the expected value E[A;] = et and variance V[A;] = o?t? at any
time ¢.
Geometric Canonical Process

Definition 6.3. Let C; be a canonical process. Then for any real numbers e
and o,
Gy = exp(et + oC}) (6.7)

1s called a geometric canonical process, where e is called the log-drift and o
1s called the log-diffusion.

At each time ¢, the geometric canonical process G; is a lognormal uncertain
variable, i.e.,

Gt ~ LOGN (et,ot). (6.8)
If t < 7/(0v/3), then E[G;] = v/3otexp(et)csc(v/3ot). However, when t
arrives at 7/(0v/3), we have E[G;] = +oo.
6.2 Uncertain Integral

Definition 6.4 (Liu [123]). Let X, be an uncertain process and let Cy be a
canonical process. For any partition of closed interval [a,b] with a = t; <
ty < - < tge1 = b, the mesh is written as

A= 1§z‘a§Xk |ti+1 - ti|. (69)

Then the uncertain integral of X; with respect to Cy is

b k
/a X,dC, = iigO;Xti (Chyy — Cy) (6.10)

provided that the limit exists almost surely and is an uncertain variable.
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Example 6.1: Let C; be a canonical process. Then for any partition 0 =
th <ty <.+ <tgy1 =S, we have

s k
/ dCt = lim (Cti+1 - Ct,) = CS - CO = CS.
0 A—0

i=1

Example 6.2: Let C}; be a canonical process. Then for any partition 0 =
t) <te <--- <tpy1 = s, we have

k
cz =y (cz, -c2)
=1
k k
=3 (Crrr —C1)* +2)C, (Cpy — C)
=1 =1
— 042 /S CdCy
0

as A — 0. That is,
s 1
0

Theorem 6.4. Let C; be a canonical process and let f(t) be a determinstic
and integrable function with respect to t. Then the uncertain integral

/S F(£)dC, (6.11)
0

18 a normal uncertain variable at each time s, i.e.,

/OS FOAC, ~ N (o, /0 f(t)|dt> . (6.12)

Proof: Since the canonical process has stationary and independent incre-
ments and every increment is a normal uncertain variable, for any partition
of closed interval [0,s] with 0 = ¢; < t3 < -+ < tg41 = s, it follows from
Theorem [[L23 that

k

k
Z f(ti)(cti+1 - Cfl) ~N <07 Z |f(ti)‘(ti+1 - tl)) .

i=1

That is, the sum is also a normal uncertain variable. Since f is an integrable
function, we have

k s
SIBICIEE / )]t
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as the mesh A — 0. Hence we obtain

/OS F(#)dC: = A“Lnozk:f(ti)(%l ~Ci) ~ N (0/O f(t)|dt> .

i=1
The theorem is proved.

Example 6.3: Let C; be a canonical process. Then for any number «
(0 < a < 1), the uncertain process

F = /0 (s — £)~dC, (6.13)

is called a fractional canonical process with index a.. At each time s, it follows
from Theorem that Fy is a normal uncertain variable, i.e.,

sl—a
FSNN<O’1—Q)' (6.14)

6.3 Chain Rule

Theorem 6.5 (Liu [I23]). Let Cy be a canonical process, and let h(t,c) be
a continuously differentiable function. Define Xy = h(t,Cy). Then we have
the following chain rule

oh
ot (
Proof: Write AC; = Cyyat—Cr = Car. Then At and AC} are infinitesimals
with the same order. Since the function h is continuously differentiable, by
using Taylor series expansion, the infinitesimal increment of X; has a first-
order approximation

dx, = 2t Cydt + g}; (t,C})dC. (6.15)

ax, = M eyans 8}; (t,C)AC.

ot 0

Hence we obtain the chain rule because it makes
5 0h 5 Oh
X, = X t,Cy)dt t, Cy)dCy
=X+ [ et [

for any s > 0.

Remark 6.1: The infinitesimal increment dC; in (G.I5) may be replaced
with the derived canonical process

dY;g = ’LLtdt + ’UtdCt (616)

where u; and v; are absolutely integrable uncertain processes, thus producing
oh oh

dh(t,Y;) = ot (t,Y)de + e (t,Y;)dY;. (6.17)
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Example 6.4: Applying the chain rule, we obtain the following formula

A(tCy) = Cydt + tdC,.

0 0 0

/ tdCf = SCS —/ Ctdt
0 0

Example 6.5: Applying the chain rule, we obtain the following formula

Hence we have

That is,

Then we have . s
Cc? = / d(C?) = 2/ CdC;.
0 0
It follows that
S 1
/ CtdCt = C’f
0 2
Example 6.6: Applying the chain rule, we obtain the following formula
d(C3) = 3C2dC,.
Thus we get
o8 — / d(C?) = 3/ c2dc,.
0 0

That is
s 1 .
/ C?dc, = 3.
0 3

6.4 Integration by Parts

Theorem 6.6 (Integration by Parts). Suppose that C; is a canonical process
and F(t) is an absolutely continuous function. Then

/‘ F(1)AC, = F(s)Cs — / CLdF (1), (6.18)
0 0
Proof: By defining h(t,C;) = F(t)C; and using the chain rule, we get

A(F)C,) = CldF(t) + F(£)dC,.
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Thus
F(S)CS:/O d(F(t)Ct):/O C’tdF(t)—k/O F(t)dC

which is just (6IS).

Example 6.7: Assume F'(t) = 1. Then by using the integration by parts,
we immediately obtain
/ dCy = Cs.
0

Example 6.8: Assume F(t) = t. Then by using the integration by parts,
we immediately obtain
S S
/ tdCf = SCS —/ Ctdt
0 0

Example 6.9: Assume F(t) = t2. Then by using the integration by parts,
we obtain

/‘ 1240, = $2C, — / Cydt? = $2C, — 2/‘ tC,dt
0 0 0

= (s —28)Cs + 2/ C,dt.
0

Example 6.10: Assume F(¢t) = sint. Then by using the integration by
parts, we obtain

S S S
/ sintdC; = Cysins — / Cidsint = Cssins — / C; costdt.
0 0 0



Chapter 7

Uncertain Differential
Equation

Uncertain differential equation, proposed by Liu [121] in 2008, is a type of
differential equation driven by canonical process. Uncertain differential equa-
tion was then introduced into finance by Liu [123] in 2009. After that, an
existence and uniqueness theorem of solution of uncertain differential equa-
tion was proved by Chen and Liu [I7], and a stability theorem was showed
by Chen [20].

This chapter will discuss the existence, uniqueness and stability of solu-
tions of uncertain differential equations. This chapter will also provide a 99-
method to solve uncertain differential equations numerically. Finally, some
applications of uncertain differential equation in finance are documented.

7.1 Uncertain Differential Equation

Definition 7.1 (Liu [121)]). Suppose C; is a canonical process, and f and g
are some given functions. Then

18 called an uncertain differential equation. A solution is an uncertain process
X that satisfies (7-1) identically in t.

Remark 7.1: Note that there is no precise definition for the terms dXj,
dt and dC} in the uncertain differential equation (ZI). The mathematically
meaningful form is the uncertain integral equation

Xs = XO + /OS f(t,Xf)dt + /Osg(t,Xf)dCf (72)

However, the differential form is more convenient for us. This is the main
reason why we accept the differential form.

Example 7.1: Let C} be a canonical process. Then the uncertain differential
equation

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 147 .
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010
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has a solution
X = at + bC; (7.4)

which is just an arithmetic canonical process.

Example 7.2: Let C} be a canonical process. Then the uncertain differential
equation
dXt = CLXtdt + bXtdCt (75)

has a solution
X = exp (at + bC) (7.6)

which is just a geometric canonical process.

Example 7.3: Let C; be a canonical process. Then the uncertain differential
equation
dXt = (m — aXt)dt + O'dCt (77)

has a solution
¢
X = ZL + exp(—at) (XO — 7:) + Uexp(—at)/ exp(as)dCs (7.8)
0

provided that a # 0. It follows from Theorem that X; is a normal
uncertain variable, i.e.,

X~ N (ZL + exp(—at) (XO - 7:) , Z — exp(—at)Z) . (7.9)

Example 7.4: Let u; and v; be some continuous functions with respect to
t. Consider the homogeneous linear uncertain differential equation

dXt = utXtdt + ’UtXtdCt. (710)

It follows from the chain rule that

X
dlIlXt = dXt = utdt + ’Utdct.

t

Integration of both sides yields

t t
InX; —InXy = / ugds —|—/ vsdC.
0 0

Therefore the solution of ([ZI0) is

t t
X = Xpexp (/ ugds —|—/ Ust's) . (7.11)
0 0

Example 7.5: Suppose w1y, uot, U1¢, U2¢ are continuous functions with respect
to t. Consider the linear uncertain differential equation

dX; = (u1e Xe + uge)dt + (v1e Xy + var)dC. (7.12)
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At first, we define two uncertain processes U; and V; via

U2t V2t
dt dCy.
v, T, 4

dUt = ultUtdt + ’UltUtdCt, d‘/t =
Then we have X; = U;V; because
dXy = VidU; + U dV,
= (w1t U Vi + uge)dt + (v1: U Vi + v2:)dCy

= (w1t Xt + uge)dt + (v1: Xt + vt )dCr.

Note that . .
U; = Ugexp (/0 u1sds —|—/O v1SdCS> ,
V, = Vi + tu2$ds—|— tU2stS_
o Us o Us
Taking Uy = 1 and Vy = Xy, we get a solution of the linear uncertain
differential equation as follows,
X; = U, (XO + /t U2 4 + /t V2 dC’S> (7.13)
0 Us 0 Us
where

t t
U; = exp (/ u1sds —|—/ v15d05> . (7.14)
0 0

7.2 Existence and Uniqueness Theorem

Theorem 7.1 (Chen and Liu [T7], Existence and Uniqueness Theorem,).
The uncertain differential equation

has a unique solution if the coefficients f(x,t) and g(x,t) satisfy the Lipschitz
condition

[f(@,t) = fly, )] +1g(2,t) = g(y, )| < Llz —y|, Vo,yeR,t>0 (7.16)
and linear growth condition
|[f(z,t)] + |g(x,t)]| < L1+ |z|), YVzeRt>0 (7.17)
for some constant L. Moreover, the solution is sample-continuous.

Proof: We first prove the existence of solution by a successive approximation
method. Define Xt(o) = Xy, and

X™ = X, + /Ot f (Xs(”*l), s) ds + /Ot g (X§”*1>, s) e,
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forn=1,2,--- and write

for each v € T'. It follows from the Lipschitz condition and linear growth
condition that

/fXO7 dv+/ (XO,U)de(W)‘

0
D () = goa,

< / (X0, 0) dv + K, / 19(Xo,0)] dv
< (1 + [ Xo|)L(1 + Kt

where K., is the Lipschitz constant to the sample path Ci(y). In fact, by
using the induction method, we may verify

Ln+1 (1 + Kﬂ/)nJrl thrl

DM < LX) T

for each n. This means that, for each sample ~y, the paths Xt(k) (7) converges
uniformly on any given interval [0,T]. Write the limit by X;() that is just
a solution of the uncertain differential equation because

¢ t
Xt:XO—l—/ f(XS,s)ds—i—/ g(Xs, s)ds.
0 0

Next we prove that the solution is unique. Assume that both X; and X}
are solutions of the uncertain differential equation. Then for each v € T, it
follows from the Lipschitz condition and linear growth condition that

t
X0) = X; ()] < L0+ K5) [ 1%,0) = X )l
By using Gronwall inequality, we obtain
[ Xe(y) = X7 (7)] < 0-exp(L(1+ Ky)t) = 0.

Hence X; = X;. The uniqueness is proved. Finally, let us prove the sample-
continuity of X;. The Lipschitz condition and linear growth condition may
produce

dv+/ 9(Xo(7),v)dCy (7)

14+ K4)(1 4 |Xo|) exp(L(1 4+ K4)t)(t — s)

—0ass—t.

[Xi(7) = Xs(0)| =

Thus X; is sample-continuous and the theorem is proved.
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7.3 Stability Theorem

Definition 7.2 (Liu [123]). An uncertain differential equation is said to be
stable if for any given numbers k > 0 and € > 0, there exists a number § > 0
such that for any solutions Xy and Yy, we have

M{X—Y >k} <e, VE>0 (7.18)
whenever | Xo — Yp| < 4.

In other words, an uncertain differential equation is stable if for any given
number k > 0, we have

im  M{|X;—Y;| >k} =0, Vt>0. (7.19)
| X0—Yo|—0

Example 7.6: The uncertain differential equation dX; = adt+bdC; is stable

since for any given numbers £ > 0 and € > 0, we may take § = k and have
M{X: =Yy >} =M{|Xo— Y| >k} =M{0} =0<e

for any time ¢ > 0 whenever | Xy — Yp| < 4.

Example 7.7: The uncertain differential equation dX; = X;dt + bdC; is
unstable since for any given number x > 0 and any different initial solutions
Xo and Yy, we have

M{| X — Yy >k} = M{exp(t)|Xo — Yo| >k} =1
provided that ¢ is sufficiently large.

Theorem 7.2 (Chen [20], Stability Theorem). Suppose u; and vy are con-
tinuous functions such that

s +o0
sup/ uydt < +o0, / lvg|dt < +o0. (7.20)
s>0.Jo 0

Then the uncertain differential equation
dXt = utXtdt + UtXtdCt (721)
is stable.

Proof: It has been proved that the unique solution of the uncertain differ-
ential equation dX; = u; X;dt 4+ v, X;dCy is

t t
X; = Xpexp (/ ugds —|—/ Ust's) .
0 0
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Thus for any given number x > 0, we have

¢ t
J\/[{|Xt_Yt|>H}:Jv[{|X0—YO|eXp (/ usds—|—/ vst's) >I€}
0 0

t . t
=M / vsdCy > In —/ usds} —0
{ 0 |Xo— Yol Jo

as | Xo — Yp| — 0 because

¢ ¢
/ v,dCy NN(O,/ |’Usd8)
0 0

is a normal uncertain variable with expected value 0 and finite variance, and

¢

K

In —/ ugsds — +o0.
|Xo—Yol Jo

The theorem is proved.

7.4 Numerical Method

It is almost impossible to find analytic solutions for general uncertain differen-
tial equations. This fact provides a motivation to design numerical methods
to solve uncertain differential equations.

Definition 7.3. Let «a be a number with 0 < a < 1. An uncertain differential
equation

is said to have an a-path X;* if it solves the corresponding ordinary differen-

tial equation
AXE = F(t, XO)dE + g(t, X2)B ()dt (7.23)

where ®~1(a) is the inverse uncertainty distribution of standard normal un-
certain variable, i.e.,

dHa)=""In . (7.24)

Example 7.8: The uncertain differential equation dX; = adt 4+ bdC; with
Xo = 0 has an a-path
X =at +bd ()t (7.25)

Example 7.9: The uncertain differential equation dX; = aX;dt + bX;dC;
with X¢ = 1 has an a-path

X7 =exp (at +b® ' (a)t). (7.26)
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Figure 7.1: A Spectrum of a-Paths of dX; = adt + bdC;

Definition 7.4. The uncertain differential equation (7.23) is said to be
monotone increasing if for any o € (0,1) and any t > 0, we have

M{X, < X} =a (7.27)

where Xy and X7 are the solution and a-path of (7.29), respectively.

Example 7.10: The homogeneous linear uncertain differential equation
dXt = CLXtdt + bXtdCt (728)

is monotone increasing whenever b > 0.

Example 7.11: The special linear uncertain differential equation
dXt = (m — aXt)dt + O'dCt (729)
is monotone increasing whenever o > 0.

Theorem 7.3. If an uncertain differential equation is monotone increasing,
then its a-path X is increasing with respect to o at each time t. That is,

Xp < xP (7.30)
at each time t whenever a < f3.

Proof: Since the uncertain differential equation is monotone increasing, we
immediately have

M{X, < XP} = a < f=M{X, < X/}.

It follows from the monotonicity of uncertain measure that X < X/
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Figure 7.2: A Spectrum of a-Paths of dX; = aX;dt + bX;dC}

Definition 7.5. The uncertain differential equation (7.23) is said to be
monotone decreasing if for any « € (0,1) and any t > 0, we have

MX; <X{}=1-a (7.31)
where Xy and X7 are the solution and a-path of (7.29), respectively.

Theorem 7.4. If an uncertain differential equation is monotone decreasing,
then its a-path X is decreasing with respect to o at each time t. That is,

Xp > X7 (7.32)
at each time t whenever a < f3.

Proof: Since the uncertain differential equation is monotone decreasing, we
immediately have

M{X, < XP}=1-a>1-p8=M{X, <X}
It follows from the monotonicity of uncertain measure that X > Xtﬁ .

99-Method for Solving dX; = f(¢, X;)dt + g(t, X;)dCy

For solving a monotone uncertain differential equation, a key point is to
obtain a 99-table of its solution X. In order to do so, a 99-method is designed
as follows:
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Step 1. Fix a time s and set a = 0.

Step 2. Set oo +— a + 0.01.

Step 3. Employ a classical numerical method to solve the corresponding or-
dinary differential equation dX¢ = f(t, X2)dt + g(t, X2)®~(a)dt
and obtain X

Step 4. Repeat the second and third steps until o = 0.99.

Step 5. For a monotone increasing equation, the solution X has a 99-table,

0.01 0.02 --- 099

X001 x0.02 ... x0.99 (7.33)

Step 6. For a monotone decreasing equation, the solution X has a 99-table,

0.01 0.02 --- 0.99
X099  x098 . x001 (7.34)
S S S
Note that the 99-method works only when the uncertain differential equa-
tion is almost monotone. In addition, the 99-method may be extended to
the 999-method if a more precise result is needed. It is suggested that the
ordinary differential equations in Step 3 are approximated by the recursion
formula
S = X (s XP)A + g(ts, X2 (@)A (7.35)

where A is the step length.

Example 7.12: Consider a monotone increasing uncertain differential
equation
dX; = Xpdt + X dCy, Xo=1 (7.36)

whose solution is X; = exp(t + C¢). The 99-method may solve this equation
successfully and obtain a 99-table of X; at time ¢ = 1 shown in Figure
The computer program is available at |http://orsc.edu.cn/liu/resources.htm.

Example 7.13: Consider a monotone increasing uncertain differential equa-
tion
dX; =(1—-Xpdt+dC;, Xo=1 (7.37)
whose solution is .
X:=1 —|—/ exp(s — t)dCs. (7.38)
0
The 99-method obtains a 99-table of X, at time ¢ = 1 shown in Figure [.4
Example 7.14: Consider a nonlinear uncertain differential equation

dX; = (t+ X)dt + /1 + X,dCy,  Xo = 2. (7.39)

This equation is not completely monotone, even is not well defined because
1 + X; may take negative values on some extreme sample paths. However,


http://orsc.edu.cn/liu/resources.htm#UDE
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X1

Figure 7.3: The 99-Table of dX; = X;dt + X;dC; with Xy =1

Xy

Figure 7.4: The 99-Table of dX; = (1 — X;)dt + dC; with Xg =1

this blemish may be ignored and the 99-method is still valid. The 99-method
obtains a 99-table of X; at time ¢ = 1 shown in Figure

Open Problem: A necessary condition of monotone uncertain differential
equation is that its a-path X is monotone with respect to a. What is a
sufficient condition?

7.5 Uncertain Differential Equation with Jumps

In many cases the stock price is not continuous because of economic crisis
or war. In order to incorporate those into stock model, we should develop
an uncertain calculus with jump process. For many applications, a renewal
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X1

Figure 7.5: The 99-Table of dX; = (t + X;)dt + /1 + X,dC; with X = 2

process N is sufficient. The uncertain integral of uncertain process X; with
respect to Ny is

b k
/a X,dN; = Aigloz;Xti “(Nepy, = Niy) = > Xi- (Ny = Nio). (7.40)
1=

a<t<b
Definition 7.6. Suppose Cy is a canonical process, Ny is a renewal process,
and f,g,h are some given functions. Then
s called an uncertain differential equation with jumps. A solution is an
uncertain process X, that satisfies (7.41) identically in t.
Example 7.15: Let C; be a canonical process and N; a renewal process.
Then the uncertain differential equation with jumps

dXt = adt + det + CdNt

has a solution X; = at + bCy 4+ ¢Ny which is just a jump process.

Example 7.16: Let C; be a canonical process and N; a renewal process.
Then the uncertain differential equation with jumps

dXt = aXtdt + bXtdCt + CXtht

has a solution X; = exp (at + bC; + ¢N;) which may be employed to model
stock price with jumps.
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7.6 Uncertain Finance

If we assume that the stock price follows some uncertain differential equation,
then we may produce a new topic of uncertain finance. As an example, Liu
[123] supposed that the stock price follows geometric canonical process and
presented a stock model in which the bond price X; and the stock price Y;
are determined by

dXt = TXtdt
(7.42)

dY; = eYidt + oY1 dCy

where r is the riskless interest rate, e is the stock drift, o is the stock diffusion,
and C} is a canonical process.

European Call Option Price

A European call option gives the holder the right to buy a stock at a speci-
fied time for specified price. Assume that the option has strike price K and
expiration time s. Then the payoff from such an option is (Y; — K)*. Con-
sidering the time value of money resulted from the bond, the present value
of this payoff is exp(—rs)(Ys; — K)T. Hence the European call option price
should be the expected present value of the payoff,

fe=exp(—rs)E[(Y, — K)*]. (7.43)

It is clear that the option price is a decreasing function of interest rate r.
That is, the European call option will devaluate if the interest rate is raised;
and the European call option will appreciate in value if the interest rate is
reduced. In addition, the option price is also a decreasing function of strike
price K.

Y,
- »/\/\’\/\r’\/\’/\\.[/\/\/f/
K/\//VV VV A= v
Yo
0 E ¢

Figure 7.6: Payoff (Y; — K)* from European Call Option
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Let us consider the financial market described by the stock model (7.42).
The European call option price is

fe =exp(—rs)E[(Yexp(es + oCy) — K)7]

+oo
= exp(—rs) M{Yoexp(es + 0Cs) — K > z}dx
0

+oo
= exp(—rs)Yp M{exp(es + oCs) > y}dy
K/Yo
+oo
= exp(—rs)Yp M{es+ 0Cs > Iny}dy
K/Yo

too m(lny — es) -t
= exp(—7s)Yp 1+ exp dy.
K/ Yo V3os

Thus Liu [123] derived the following European call option price formula,

fe=exp(-rs)Yp /};: (1 + exp (ﬂ(h\l/%;ses)))l dy. (7.44)

European Put Option Price

A European put option gives the holder the right to sell a stock at a speci-
fied time for specified price. Assume that the option has strike price K and
expiration time s. Then the payoff from such an option is (K — Y;)™. Con-
sidering the time value of money resulted from the bond, the present value
of this payoff is exp(—rs)(K — Y;)T. Hence the European put option price
should be the expected present value of the payoff,

fp = exp(—7rs)E[(K — Y;)T]. (7.45)

It is easy to verify that the option price is a decreasing function of interest
rate r, and is an increasing function of strike price K.

Let us consider the financial market described by the stock model (742).
The European put option price is

fp =exp(—71s)E[(K — Yyexp(es + 0Cy)) "]

+oo
= exp(—rs) M{K — Yyexp(es + 0Cs) > z}dz
0
+o0o
= exp(—7s8)Yp M{exp(es + 0Cs) < y}dy
K/Y,

K/Yo
= exp(—rs)YO/ M{es+ 0Cs < lny}dy
0

— exp(—rs)Yp /0 e (1 +exp (”(ef/;;; y)))_l dy.
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Thus Liu [123] derived the following European put option price formula,

ﬂyzemx—r@szfvn)(1+exp(ﬂgjégﬁy)>>ldy (7.46)

Multi-factor Stock Model

Now we assume that there are multiple stocks whose prices are determined
by multiple canonical processes. For this case, we have a multi-factor stock
model in which the bond price X; and the stock prices Y;; are determined by

dXt = ’I”Xtdt

n
. (7.47)
dYie = e,Yirdt + ) 0 YirdCje, i =1,2,--+ ,m
j=1
where 7 is the riskless interest rate, e; are the stock drift coefficients, o;;
are the stock diffusion coefficients, C;; are independent canonical processes,
i=1,2,,m,j=12-n.

Portfolio Selection

For the stock model (Z47T), we have the choice of m+1 different investments.
At each instant ¢ we may choose a portfolio (3¢, Bit, -+, Bmt) (i-e., the in-
vestment fractions meeting B¢ + 011 + -+ - + Ome = 1). Then the wealth Z; at
time ¢ should follow the uncertain differential equation

AZ = rBiZedt + Y eifuZedt + > > 0458 ZdCy. (7.48)

i=1 i=1 j=1

Portfolio selection problem is to find an optimal portfolio (8, B1¢, -, Bmt)
such that the expected wealth F[Z,] is maximized.

No-Arbitrage
The stock model (T47) is said to be no-arbitrage if there is no portfolio

(Bt, B1ty -+ Bmt) such that for some time s > 0, we have

M{exp(—rs)Zs > Zp} =1 (7.49)
and

M{exp(—rs)Zs > Zp} > 0 (7.50)

where Z; is determined by ((48]) and represents the wealth at time ¢. We may
prove that the stock model (47) is no-arbitrage if and only if its diffusion
matrix

o111 012 **° Oin
021 022 ¢ O2n
Om1 Om?2 Omn

has rank m, i.e., the row vectors are linearly independent.
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Stock Model with Mean-Reverting Process

Peng [I75] assumed that the stock price follows a type of mean-reverting
uncertain process and proposed the following stock model,

dXt = ’I"Xtdt
(7.51)

dY; = (m — aYy)dt + odC

where r,m, a, o are given constants.

Stock Model with Periodic Dividends

Liu [I34] assumed that a dividend of a fraction § of the stock price is paid
at deterministic times 77,75, - - - and presented a stock model with periodic
dividends,

{ X = Xoexp(rt) (7.52)

Y;: = Yo (1 — 6)" exp(et + oC})

where n; = max{i : T; < t} is the number of dividend payments made by
time t.

Currency Models

Liu [133] assumed that the exchange rate follows a geometric canonical pro-
cess and proposed a currency model with uncertain exchange rate,

dX; = eXydt + 0 X;dC; (Exchange rate)
dY; = «Y;dt  (Yuan Bond) (7.53)
dZ; = vZydt (Dollar Bond)

where e, 0,u,v are constants. If the exchange rate follows a mean-reverting
uncertain process, then the currency model with uncertain exchange rate is

dX; = (m — aX;)dt + 0dC; (Exchange rate)
dY; = uYidt (Yuan Bond) (7.54)
dZ; = vZ;dt  (Dollar Bond)

where m, o, 0, u, v are constants.



Chapter 8

Uncertain Logic

Uncertain logic is a generalization of mathematical logic for dealing with
uncertain knowledge via uncertainty theory. The first model is uncertain
propositional logic designed by Li and Liu [96] in which the truth value
of an uncertain proposition is defined as the uncertain measure that the
proposition is true. An important contribution is the truth value theorem by
Chen and Ralescu [I8] that provides a numerical method for calculating the
truth value of uncertain formulas. The second model is uncertain predicate
logic proposed by Zhang and Peng [227] in which an uncertain predicate
proposition is defined as a sequence of uncertain propositions indexed by one
or more parameters.

One advantage of uncertain logic is the well consistency with classical
logic. For example, uncertain logic obeys the law of truth conservation and is
consistent with the law of excluded middle and the law of contradiction. This
chapter will introduce uncertain propositional logic and uncertain predicate
logic.

8.1 Uncertain Proposition

Definition 8.1 (Li and Liu [96]). An uncertain proposition is a statement
whose truth value is quantified by an uncertain measure.

That is, if we use £ to express an uncertain proposition and use ¢ to express
its truth value in uncertain measure, then the uncertain proposition ¢ is
essentially an uncertain variable

(8.1)

1 with uncertain measure ¢
0 with uncertain measure 1 — ¢

where £ = 1 means ¢ is true and £ = 0 means £ is false.

Example 8.1: “Tom is tall with truth value 0.7” is an uncertain proposition,
where “Tom is tall” is a statement, and its truth value is 0.7 in uncertain
measure.

Example 8.2: “Beijing is a big city with truth value 0.9” is an uncertain
proposition, where “Beijing is a big city” is a statement, and its truth value
is 0.9 in uncertain measure.

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 163
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Definition 8.2. Uncertain propositions are called independent if they are
independent uncertain variables.

Example 8.3: If £ and 7 are independent uncertain propositions, then for
any = and y taking values either 0 or 1, we have

M{E=z)N(n=y)}=ME=2} A\M{n=y},
M{E=2)U(n=y)} =M=z} VvM{n=uy}

8.2 Connective Symbols

In addition to the proposition symbols £ and 7, we also need the negation
symbol —, conjunction symbol A, disjunction symbol V, conditional symbol
—, and biconditional symbol <. Note that

—¢ means “not £7; (82)

&V n means “¢ or n”; (8.3)

EAD =—(=€V —n) means “¢ and 7”; (8.4)

& —n= (¢ Vnmeans “if £ then n”; (8.5)
E=n=(£—n)A(n— &) means “¢ if and only if ”. (8.6)

8.3 Uncertain Formula

An uncertain formula is a finite sequence of uncertain propositions and con-
nective symbols that must make sense. For example, let £, 7, 7 be uncertain
propositions. Then

X=-¢ X=¢An X=(EVn)—r

are all uncertain formulas. However, =V ¢, £ — V and &n — 7 are not for-
mulas. Note that an uncertain formula X is essentially an uncertain variable
taking values 0 or 1. If X =1, then X is true; if X = 0, then X is false.

Definition 8.3. Uncertain formulas are called independent if they are inde-
pendent uncertain variables.

8.4 Truth Function

Assume X is a formula containing propositions &1, o, - - - , &, It is well-known
that there is a truth function f : {0,1}" — {0,1} such that X = 1 if and

Only if f(£17§27 e 7§n) =1
Example 8.4: The truth function of formula & V & (& or &) is

fQ,1)=1, f(1,00=1, f(0,1)=1, f(0,0)=0.
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Example 8.5: The truth function of formula §; A & (& and &) is
f(1,1)=1, f(1,0)=0, f(0,1)=0, f(0,0)=0.

Example 8.6: The truth function of formula & — & (if & then &) is

Example 8.7: The truth function of & « & (& if and only if &) is

fQ,1)=1, f(1,0)0=0, f(0,1)=0, f(0,0)=1.

Example 8.8: The truth function of £&; V & — &3 is given by

f(l, 1, 1) =1, f(l,O, 1) =1, f(O, 1, 1) =1, f(0,0, 1) 1,
f(l,].,O) 0, f(].,0,0) =0, f((),l,()) =0, f(0,0,0) =1

8.5 Truth Value

Truth value is a key concept in uncertain logic, and is defined as the uncertain
measure that the uncertain formula is true.

Definition 8.4 (Li and Liu [96]]). Let X be an uncertain formula. Then
the truth value of X is defined as the uncertain measure that the uncertain

formula X is true, i.e.,
T(X)=M{X =1}. (8.7)

The truth value is nothing but an uncertain measure. The higher the truth
value is, the more true the uncertain formula is.

An uncertain formula X is called a tautology if T(X) = 1. For this case, X
is certainly true. In other words, it is always true for all possible combinations
of the values assigned to its propositions.

An uncertain formula X is called a contradiction if T(X) = 0. For this
case, X is certainly false. In other words, it is always false for all possible
combinations of the values assigned to its propositions.

An uncertain formula X is called a contingency if 0 < T'(X) < 1. For this
case, X can be made either true or false based on the values assigned to its
propositions.

Example 8.9: Let £ and i be two independent uncertain propositions with
truth values a and b, respectively. Then

T() =M{ =1} =qa, (8.8)

T(=€) =M{E=0}=1—aq, (8.9)

TEVn) =MV =1} =M{(=1)UMn=1}=aVb (8.10)
TEAN) =MEAN=1}=M{(=1)N(n=1}=anb, (8.11)
T(€—n)=T(=£Vn) = (1—a)Vb. (8.12)
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8.6 Truth Value Theorem

Theorem 8.1 (Law of Excluded Middle). Let & be an uncertain proposition.
Then £V =€ is a tautology, i.e.,

TV —€) = 1. (8.13)

Proof: It follows from the definition of truth value and property of uncertain
measure that

TEV-E) =MEVE¢=1=M{(=1U((=0)} =1
The theorem is proved.

Theorem 8.2 (Law of Contradiction). Let & be an uncertain proposition.
Then & A =€ is a contradiction, i.e.,

T(EA—E) =0. (8.14)

Proof: It follows from the definition of truth value and property of uncertain
measure that

TEANE) =M{ENE =1} =M{({=1)N({=0)} = M{0} = 0.
The theorem is proved.

Theorem 8.3 (Law of Truth Conservation). Let £ be an uncertain proposi-
tion. Then we have

TE)+T(=¢) =1. (8.15)
Proof: It follows from the self-duality of uncertain measure that

T(=6) =M{~§ =1} =M{{ =0} =1 -=M{{ =1} = 1 = T(¢).
The theorem is proved.

Theorem 8.4 (De Morgan’s Law). For any uncertain propositions & and 1,
we have

T(=(EAn) =T((=§) V (-n)), (8.16)
T(=(EVn) =T((=&) A (=) (8.17)

Proof: It follows from the basic properties of uncertain measure that

T(~(EAn) =M{EAN =0} =M{(E=0)U(n=0)}
=M{(=§) V (-n) = 1} = T((=§) V (-n))

which proves the first equality. A similar way may verify the second equality.
The theorem is proved.
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Theorem 8.5 (Law of Contraposition). For any uncertain propositions &
and 1, we have

T —n)=T(n——E). (8.18)

Proof: It follows from the definition of conditional symbol and basic prop-
erties of uncertain measure that

TE—n) =M= Vn=1} =M{({=0)U(n=1)}
=M{nV (=§) =1} =T(-n — =§).

The theorem is proved.

Theorem 8.6 (Monotonicity and Subadditivity). For any uncertain propo-
sitions £ and n, we have

TEVTm) <TEVn) <TE)+T(n). (8.19)
Proof: It follows from the monotonicity of uncertain measure that
TEVn) =MEvn=1} =M{((=1)U(n=1)}
> ME =1 vM{n =1} =T (&) VT(n).
It follows from the subadditivity of uncertain measure that
TEVn) =MEvn=1} =M{((=1)U(n=1)}
SME=11+M{n =1} =T (&) +T(n).
The theorem is verified.
Theorem 8.7. For any uncertain propositions £ and n, we have
TE)+Tm) —1<TEAn) <TE)NT(n). (8.20)
Proof: It follows from the monotonicity of truth value that
TEAn) =1=T(=E{V-m) <1-=T(=€) VT (-n)
=1 =TE) N1 =T(m)=T(&) ANT(n).
It follows from the subadditivity of truth value that
TEAn) =1=T(=&Vm) =1 —(T(=¢) +T(-n))
=1-(01=-T()-10-TH) =T +THn) -1
The theorem is proved.

Theorem 8.8. Let & be an uncertain proposition. Then & — £ is a tautology,
1.€.,

rE—¢ =1 (8.21)
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Proof: It follows from the definition of conditional symbol and the law of
excluded middle that

TE—§)=TH¢vE =1
The theorem is proved.

Theorem 8.9. Let £ be an uncertain proposition. Then & < £ is a tautology,
1.€.,

T(¢ &) =1. (8.22)

Proof: It follows from the definition of biconditional symbol and Theo-
rem .8 that

TE=)=T((—=HONE—=8) =TE—§=1
The theorem is proved.
Theorem 8.10. Let & be an uncertain proposition. Then we have
T — =& =1-T(). (8:23)

Proof: It follows from the definition of conditional symbol and the law of
truth conservation that

T(€— 8 =THEV L) =T(=§) =1-T().
The theorem is proved.

Theorem 8.11. If two uncertain propositions & and n are independent, then
we have

TEVn) =TEVTm), TEAn=TEANT). (8.24)

Proof: Since £ and 7 are independent uncertain propositions, they are inde-
pendent uncertain variables. Hence

TEvVn) =MV =1} =ME=1}vM{n =1} =T() v T(n),
TEA) =MEAN =1} =ME =1} AM{n =1} = T(E) AT(n).

The theorem is proved.

Theorem 8.12. If two uncertain propositions & and n are independent, then
we have

T —mn)=@=T()VTH). (8.25)

Proof: Since ¢ and n are independent, the uncertain propositions =£ and 7
are also independent. It follows that

TE—=n)=TEEVn) =TEHOVT0) =1 -T(¢)VTH)

which proves the theorem.
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Theorem 8.13 (Chen and Ralescu [18], Truth Value Theorem). Assume
that &1,&,- -+ , &, are independent uncertain propositions with truth values
a1,ag, -+ Gy, respectively. If X is an uncertain formula containing 1,82, ,&n
with truth function f, then the truth value of X is

sup min v;(x;),
flar,o, wn)=1 1SS0

if Sup min v;(z;) < 0.5

T(X) = f(zl’z2a"' ﬂ?n)zl 1<i<n (8 26)

1- sup min vi(z;), :
f(z1,m0, 2n)=0 1SS0

if sup min v;(x;) > 0.5
f(zla(v2a"' ,In)zl 1<i<n

where x; take values either 0 or 1, and v; are defined by

vi(w;) = { 1 ii;i’ Zz: 2(1) (8.27)

fori=1,2,---,n, respectively.

Proof: Since X =1 if and only if f(&1,&2, -+ ,&,) = 1, we immediately have
T(X)=M{f(&, &, -, &) =1}

Thus the equation ([826]) follows from Theorem immediately.

Example 8.10: Let &,&, -+ ,&, be independent uncertain propositions
with truth values aq, a9, -+ ,ay, respectively. Then
X=E NN NE, (8.28)

is an uncertain formula whose truth function is
flx, e, ,xn) =1 AT2 Ao ATy

It follows from the truth value theorem or Theorem [[L28] that the truth
value is

T(f1/\§2/\“‘/\fn)=a1/\a2/\°-‘/\an. (8.29)

Example 8.11: Let &,&,---,&, be independent uncertain propositions
with truth values a1, a2, - ,ay,, respectively. Then

X=4LVE&EV--VE, (8.30)

is an uncertain formula whose truth function is

f($17$2a"'axn):$1\/x2\/~-~\/xn



170 CHAPTER 8 - UNCERTAIN LOGIC

It follows from the truth value theorem or Theorem that the truth
value is
T(§1\/§2\/~-~\/§n):al\/ag\/~-~\/an. (831)

Example 8.12: Let &,&,---,&, be independent uncertain propositions
with truth values aq,as,- - ,an, respectively. For any integer k£ with 1 <
k< n,

X = “at least k propositions of &1,&s, -+ , &, are true” (8.32)
is an uncertain formula whose truth function is

1, ifey+as+---+x, >k
0, ifwxy+zo+4+---+z, <k.

f($1,$2,~'~ "TTL) :{

It follows from the truth value theorem or Theorem that the truth
value is
T(X) = the kth largest value of a1, ag, - ,an. (8.33)

Example 8.13: Let £ and & be independent uncertain propositions with
truth values a; and as, respectively. Then

X=6 o6& (8.34)
is an uncertain formula whose truth function is
f, =1, f(1,00=0, f(0,1)=0, f(0,0)=1.
Then we have

sup  min v;(z;) = max{a; Aasz, (1 —a;) A (1 —a9)},
F(ay,a0)=1 15952

sup  min vi(z;) = max{(l —a1) Aaz, a1 A (1 —az)}.
F(x1,0)=0 1 <952

When a; > 0.5 and as > 0.5, we have

sup - min v;(2;) = a1 Aaz > 0.5.
f(z1,m0)=1 15952

It follows from the truth value theorem that

T(X)=1-— sup min vi(z;) =1—(1—a1) V(1 —az) =a1 Aas.
f(z1,m0)=0 15152

When a; > 0.5 and as < 0.5, we have

sup  min v;(z;) = (1 —a1) Vaz <0.5.
fley,ze)=11Si<2 i(25) = ( )
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It follows from the truth value theorem that

T(X)= sup min v;(z;) = (1 —a1) Vas.
(X) PR 22 (zi) = ( )

When a; < 0.5 and as > 0.5, we have

sup  min vi(z;) = a1V (1 —az) <0.5.
f(x1,m0)=1 15952 e

It follows from the truth value theorem that

T(X)= sup min v;(z;) = a1 V(1 —as).
(X) S, (zi) ( )

When a; < 0.5 and as < 0.5, we have

sup  min v;(z;) = (1 —a1) A (1 —az) > 0.5.
F(ay,a0)=1 15952 Z( g

It follows from the truth value theorem that

T(X)=1— sup min vi(z;)=1—a1Vaz=(1—a1)A(l—ag).
f(Il,(l?g):O 1<i<2

Thus we have

a1 N ag, if ay > 0.5 and as > 0.5
1—a1)Vas, if a1 > 0.5 and as < 0.5

T(X) = I-a)Va, ifa 2 (8.35)
a1 V(1 — ag), if a; < 0.5 and ay > 0.5

(I—a1) AN(1—ag), ifa; <0.5and az <0.5.
Example 8.14: Let £ and & be independent uncertain propositions with
truth values a; and as, respectively. Then
X = “€; or & and not both” (8.36)
is an uncertain formula whose truth function is
f, =0, f(1,00=1, f(0,1)=1, f(0,0)=0.
Then we have

sup  min v;(x;) = max{a; A (1 —az2), (1 —a1) Aaz},
f(:vl,:vg)ZI 1<i<2

sup  min v;(x;) = max{a; Aag, (1 —a1) A (1 —a2)}.
Fx1,22)=0 15952
When a; > 0.5 and as > 0.5, we have

sup  min v(2z;) = (1 —a1) V(1 —az) <0.5.
F(ay,a0)=1 15952 (i) = ( )V ( )
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It follows from the truth value theorem that

T(X)= sup min vi(z:)=(1-a1)V(1-az).
( f(z1,m0)=1 15952 e (

When a; > 0.5 and as < 0.5, we have

sup  min vi(z;) = a1 A(1—az) = 0.5.
F(a1,m0)=1 15952 e

It follows from the truth value theorem that

T(X)=1— sup min vi(z;) =1~ (1~a1)Vaz=arA(l~a).
f(z1,m0)=0 15152

When a; < 0.5 and as > 0.5, we have

sup  min vi(z;) = (1 —a1) Aaz > 0.5.
f(x1,m0)=1 15952 e

It follows from the truth value theorem that

T(X)=1— sup min vi(z;)=1—a1V(l—az)=(1-a1)Aas.
fl@1,22)=0151=2

When a; < 0.5 and as < 0.5, we have

sup  min v;(z;) = a; Vas < 0.5.
Foam)=1 1552 "

It follows from the truth value theorem that

T(X)= sup min v(x;) = a1 Vas.
Pt 1zi<2

Thus we have

(I1—a1)V(1l—az), ifa; >0.5and az >0.5

A (1 —a2), ifa; > 0.5and az < 0.5

T(X) = aA(l=aa), o2 ? (8.37)
(1—a1) A as, if a; < 0.5 and ay > 0.5
ay V asg, if a1 < 0.5 and ay < 0.5.

Exercise 8.1: Let &, n, 7 be independent uncertain propositions with truth
values a, b, ¢, respectively. What is T(§Vn — 7)?

Exercise 8.2: Let £, n, 7 be independent uncertain propositions with truth
values a, b, ¢, respectively. What is T(§ = n A T)?
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8.7 Truth Value Solver

Truth Value Solver is a software for computing the truth values of uncertain
formula based on the truth value theorem. This software may be downloaded
from http://orsc.edu.cn/liu/resources.htm. Now let us perform it via some
numerical examples.

Example 8.15: Assume that &1,&2,83,84,&5 are independent uncertain
propositions with truth values 0.1,0.3,0.5,0.7,0.9, respectively. Let

X =& NE&)V(EANE)V(E3NE)V (4 NEs). (8.38)

It is clear that the truth function is

1, ifz;+a0=2
1, ifzo+ax3=2

flx1,xe, 3, x4, w5) = 1, ifas+xs=2
1, feg+as5=2
0, otherwise.

A run of the truth value solver shows that the truth value of X is 0.7 in
uncertain measure.

Example 8.16: Assume that &1,&2,83,84,&5 are independent uncertain
propositions with truth values 0.1,0.3,0.5,0.7,0.9, respectively. Let

X = “only 4 propositions of &1, &2, &3, &y, & are true”. (8.39)
It is clear that the truth function is

1, ifzi+axo+a3+a4+25=4

x7$ 7$ 7$ "T - .
Fl@r,we, w3, 24, 75) {0, if 21 + 29 + T3 + 34 + 15 £ 4.

A run of the truth value solver shows that the truth value of X is 0.3 in
uncertain measure.

Example 8.17: Assume that &1,&2,83,84,&5 are independent uncertain
propositions with truth values 0.1,0.3,0.5,0.7,0.9, respectively. Let

X = “only odd number of propositions of &1, &, &3,&4,&5 are true”. (8.40)
It is clear that the truth function is

1, ifxy+x0+ 23+ 24+ 25 6{1,3,5}

X1,%2, T3, T4, T5) = .
f(@r, w2, 23, 74, 25) {O, if &1 + @2 + 23 + x4 + x5 € {0,2,4}.

A run of the truth value solver shows that the truth value is 0.5 in uncertain
measure.


http://orsc.edu.cn/liu/resources.htm#TruthValueSolver
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8.8 Uncertain Predicate Logic

Uncertain predicate logic, proposed by Zhang and Peng [227], is a general-
ization of classical predicate logic for dealing with uncertain knowledge via
uncertainty theory.

Consider the following propositions: “Beijing is a big city”, and “Tianjin
is a big city”. Uncertain propositional logic treats them as unrelated propo-
sitions. However, uncertain predicate logic represents them by a predicate
proposition £(a). If a represents Beijing, then

&(a) = “Beijing is a big city”. (8.41)
If a represents Tianjin, then
&(a) = “Tianjin is a big city”. (8.42)

Definition 8.5 (Zhang and Peng [227]). Uncertain predicate proposition is
a sequence of uncertain propositions indexed by one or more parameters.

That is, if we use £(a) to express an uncertain predicate proposition where the
parameter a is called a variable, then for each fixed a*, we obtain an uncertain
proposition £(a*) in the sense of uncertain propositional logic. In other words,
an uncertain predicate proposition may be regarded as a function on a € A
that takes values of uncertain propositions in the sense of Definition Bl

In order to deal with uncertain predicate propositions, we need a universal
quantifier ¥V and an existential quantifier 3. If {(a) is a predicate proposition

defined by (84I]) and (842), then
(Va)¢(a) = “Both Beijing and Tianjin are big cities”, (8.43)
(Fa)é(a) = “At least one of Beijing and Tianjin is a big city”. (8.44)

Note that (Va)é(a) and (Ja)—€&(a) are essentially uncertain propositions
in the sense of uncertain propositional logic. In addition, it is easy to verify
that

—(Va)é(a) = (a)—&(a). (8.45)
Thus we have
T((Va)é(a) v (Ja)=¢(a)) =1 (8.46)
T((Va)é(a) A (Ja)=€(a)) =0, (8.47)
T'((Va)é(a)) + T((Ja)~¢(a)) = 1. (8.48)

Theorem 8.14 (Zhang and Peng [227]). Let £(a) be an uncertain predi-
cate proposition such that {£(a)|la € A} is a class of independent uncertain
propositions. Then we have

T((Va)¢(a)) = inf T(&(a)), (8.49)
T((3a)¢(a)) = sup T (£(a))- (8.50)

acA



SECTION 8.8 - UNCERTAIN PREDICATE LOGIC 175

Proof: For each uncertain predicate proposition £(a), by the meaning of
universal quantifier, we obtain

T((Va)¢(a)) = M{(Va)¢(a) =1} =M { ) (€(a) = 1)} -
acA

Since {£(a)|a € A} is a class of independent uncertain propositions, we get
T((Ya)e(a)) = inf M{E(a) = 1} = inf T(E(a).

The first equation is verified. Similarly, by the meaning of existential quan-
tifier, we obtain

T((Ba)é(a)) = M{(Fa)¢(a) =1} =M { U €(a) = 1)} -
acA

Since {{(a)]a € A} is a class of independent uncertain propositions, we get
T((3a)é(a)) = sup M{&(a) = 1} = sup T'({(a)).
acA acA
The second equation is proved.

Theorem 8.15 (Zhang and Peng [227]). Let £(a,b) be an uncertain pred-
icate proposition such that {£{(a,b)la € A,b € B} is a class of independent
uncertain propositions. Then we have

T((¥a) (30)6(a, b)) = in, sup T(€(a, b)), (8.51)
7((3a) (¥0)¢(a. b)) = sup inf T(€(a. ). (8.52)

Proof: Since {{(a,b)la € A,b € B} is a class of independent uncertain
propositions, both {(3b)&(a, b)|a € A} and {(Vb)é(a,b)|a € A} are two classes
of independent uncertain propositions. It follows from Theorem [R.14] that

T((¥a) (30)€(a.1)) = inf T((3)E(a. b)) = inf, sup T(€(a. ).

T((Ja)(¥b)é(a, b)) = sup T((Vb)&(a, b)) = sup inf T(&(a,b)).

a€A acAbEB

The theorem is proved.



Chapter 9

Uncertain Entailment

Uncertain entailment, developed by Liu [124] in 2009, is a methodology for
calculating the truth value of an uncertain formula via the maximum uncer-
tainty principle when the truth values of other uncertain formulas are given.
In order to solve this problem, this chapter will introduce an entailment
model. As applications of uncertain entailment, this chapter will also discuss
modus ponens, modus tollens, and hypothetical syllogism.

9.1 Entailment Model

Assume &1,&s, - -, &, are independent uncertain propositions with unknown
truth values ay,aq, - -, ayn, respectively. Also assume that Xy, Xo, -+, X,
are uncertain formulas containing &1, &, -+ , &, with known truth values 1,
B2, , Bm, respectively. Now let X be an additional uncertain formula con-
taining &1,&s, -+ ,&,. What is the truth value of X7

This is just the uncertain entailment problem. In order to solve it, let us
consider what values ay, as, - -, a, may take. The first constraint is

0<a; <1, j=1,2,---,n. (9.1)

We also hope
where each T(X;) (1 < i < m) is determined by the truth function f; as
follows,
sup min v;(z;),
P R -8 5(25)
if sup min v;(z;) < 0.5
fi(z1,m2, xn)=

1-— sup  min vi(z;),
fi(z1,@2, 2y )=0 "SIST

it sup min v;(z;) > 0.5
fi(zm1,@a, @,)=11555n

and ( )_ g, iijzl (94)
il = ].—ij, iij:() ’

for j=1,2,--- ,n.

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 177
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Based on the truth values ay, s, - ,a, and truth function f, the truth
value of X is

sup min v;(z;),
f(@1,m2, an)=1 15750
if sup min v;(z;) < 0.5
f(@1,ma, mn)=1 15950
L= swpmin ()
f(@1,m0, - mn)=0 15T
if Sup min v;(z;) > 0.5.

f(zla(v2a"' aIn):

Since the truth values ay, as, - - , a, are not uniquely determined, the truth
value T'(X) is not unique too. For this case, we have to use the maximum
uncertainty principle to determine the truth value T'(X). That is, T(X)
should be assigned the value as close to 0.5 as possible. In other words,
we should minimize the value |T'(X) — 0.5] via choosing appreciate values of
A1, 2, ,Op.

Entailment Model (Liu [124]). Let &1,&s,- - , &, be independent uncertain

propositions with unknown truth values oy, g, - -+, au,, respectively. Assume
X1, Xo,--+, X are uncertain formulas containing &1, &a, -+ - , &, with known
truth values By, B2,- -+, Bm, respectively. Then the truth value T(X) of an
additional uncertain formula X containing &1,&2, -+ , &, solves
min |T(X) — 0.5]
subject to:
/ _ (9.6)
T(Xz):ﬁu 22172a"'am
0<a;<1, j=1,2,---,n

where T'(X1),T(X2),- -, T(Xm), T(X) are functions of ay,aa,-- ,a, via
(@3) and (@3).

If the entailment model ([@.6]) has no feasible solution, then the truth values

081,02, +, Bm are inconsistent with each other. For this case, we cannot
entail anything on the uncertain formula X.
If the entailment model (@.6) has an optimal solution (af,as,---,ak),
then the truth value of X is just (@) with
ol ife; =1
J’ J
vi(z;) = 9.7

forj=1,2,---,n.

Example 9.1: Let & and & be independent uncertain propositions with
unknown truth values a; and s, respectively. It is known that

T V&) =01, T NE)=/pe. (9.8)
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What is the truth value of & — &7 In order to answer this question, we
write

X1= V&, Xo=&G A&, X=§6 -6
Then we have
T(X1)=a1Vaz=fi,
T(X2) = a1 A ag = [,
T(X) = (1—a1) V as.

For this case, the entailment model ([@6]) becomes

min [(1 — a1) V ag — 0.5]
subject to:
o1 Vo=
ap Nag = (3
0<a; <1
0<a<1.

When 31 > (2, there are only two feasible solutions (a1, @) = (51, S2) and
(a1, 0) = (B2, 41). If B1 + P2 < 1, the optimal solution produces

T(X)=(—-aj)Vay=1=p;
if 81 + B2 = 1, the optimal solution produces
T(X)=Q1-aj)Va;=por B
if 81 + (B2 > 1, the optimal solution produces
T(X)=1-a7)Vay = [

When ;1 < (2, there is no feasible solution and the truth values are ill-
assigned. As a summary, we have

1—p1, ifB1>pP2and B+ f2 <1
pror B2, if B1 > B2 and By + B2 =1

B2, if 1 > B2 and By + 2 > 1
illness,  if 51 < Bs.

T(& — &) = (9.10)

Example 9.2: Let &1,&,&3 be independent uncertain propositions with
unknown truth values a1, as, a3, respectively. It is known that

T(§ — &) =01, T(& — &) = fe. (9.11)
What is the truth value of &7 In order to answer this question, we write

X1=86 =&, Xo=86—&, X=~¢(.
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Then we have
T(X1) = (1 — CV1) V ag = 51,

T(X2) =(1—a2) Vasg =0,
T(X) = as.
For this case, the entailment model ([@6]) becomes
min |ag — 0.5]
subject to:
(I-a)Vaz=p
(1 —a2)Vag =[5 (9.12)
0<a; <1
0<ay <1
0<a3<1.

The optimal solution (af, ad, o) produces
B, ifpi+B2>1and B <0.5
11—, iff1+pP2>1and f2 <0.5
0.5, if f; >0.5and B2 > 0.5
illness, if B1 + B2 < 1.

T(&2) = (9.13)

Example 9.3: Let &1,&,&3 be independent uncertain propositions with
unknown truth values aq, as, ag, respectively. It is known that

T(6 — &) =51, T(& — &) = Pe. (9.14)
What is the truth value of & — & A €37 In order to answer this question,
we write
Xi=& =&, Xo=84—-28, X=-280AE.
Then we have
TX1)=01—-a1)Va =/,
T(X2)=(1—-a1)Vag= [0,
T(X)=(1—-0a1)V(az Aas).
For this case, the entailment model ([@.6]) becomes
min [(1 —aq) V (a2 A as) — 0.5
subject to:
(I-—a1)Var=p
(I —a1)Vag=p0 (9.15)
0<a; <1
0<as <1
0<az<l1.

The optimal solution (af, s, af) produces T'(§1 — &2 A &3) = P1 A Ba.
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Example 9.4: Let &1,&,&3 be independent uncertain propositions with
unknown truth values a1, as, ag, respectively. It is known that

T(& — &) =51, T — &) =P (9.16)

What is the truth value of & — & Vv €37 In order to answer this question,
we write

X1=6 =&, Xo=6 -8, X=L—6VE.

Then we have
T(X1) = (1 — CV1) V ag = 51,

T(Xg) = (1 — CV1) Vag = s,
T(X) = (1 —CV1) Vo V as.
For this case, the entailment model ([@6]) becomes

min [(1 — a1) V ag V ag — 0.5]
subject to:
(I-—a1)Vas=p
(I—a1)Vag=p0 (9.17)
0<a; <1
0<ar <1
0<a3<1.

The optimal solution (af, s, af) produces T'(§1 — &2 V &3) = B1 V fa.

Example 9.5: Let &1,&,&3 be independent uncertain propositions with
unknown truth values «aq, as, ag, respectively. It is known that

T — &) =01, T(§— &)= /pa. (9.18)

What is the truth value of & V & — £37 In order to answer this question,
we write

X1=64 -8, Xo=6—-8G X=4VE6E—EG.

Then we have
T(Xl) = (1 — 041) \/043 = ﬁl,

T(X2) = (1 —a2) Vas=fs,

T(X) = (1 — X7 \/042) \/043.
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For this case, the entailment model (@) becomes

min [(1 — oy Vag) Vaz — 0.5
subject to:
(I-—a1)Vas=/p
(1 —ag)Vag=0 (9.19)
0<a; <1
0<ax <1
0<az<l1.

The optimal solution (af, a3, af) produces T'(§1 V &2 — &3) = f1 A Ba.

Example 9.6: Let &1,&,&3 be independent uncertain propositions with
unknown truth values a1, as, agz, respectively. It is known that

T(61 — &) =51, T(& — &) = P (9.20)

What is the truth value of & A & — £37 In order to answer this question,
we write

X1=4a -8, Xo=8L—8G X=LAN0—E.
Then we have
T(X1) =(1-a1)Vasz=p,
T(X2) = (1 —ag) Vasg =0,
T(X)=(1-oa1 Aag) V as.
For this case, the entailment model ([@6]) becomes
min [(1 — a3 Aag) Vaz — 0.5
subject to:
(I—a1)Vas =/
(1—az)Vasz =/ (9.21)
0<a; <1
0<ar <1
0<a3<1.

The optimal solution (af, a3, af) produces T'(§1 A &2 — &3) = P11V Pa.

9.2 Modus Ponens

Classical modus ponens tells us that if both £ and £ — n are true, then 7 is
true. This section provides a version of modus ponens in the framework of
uncertain logic.
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Theorem 9.1 (Liu [T1Z])], Modus Ponens). Let & and n be independent un-
certain propositions. Suppose & and £ — 1 are two uncertain formulas with
truth values B1 and B2, respectively. Then the truth value of 1 is

B2, if 14 B2 > 1
T(m)=4q 05AB2, iffr+Pa=1 (9.22)
illness, if 01 + [2 < 1.

fa

[a

illness

b1

Figure 9.1: Modus Ponens

Proof: Denote the truth values of £ and 1 by a; and «s, respectively, and
write

X1=¢ Xo=¢—n X=n
It is clear that
T(X1) = a1 = b,
T(XQ) = (1 — 041) \/042 = ﬁg,
T(X) = Q9.

For this case, the entailment model ([@6]) becomes
min |ag — 0.5]
subject to:

ar = fh

(1-0a1)Vag =P

0<a; <1

0 S (6%) S 1.

(9.23)

When (1 + B2 > 1, there is only one feasible solution and then the optimal
solution is
aik = ﬁlv Oé; = ﬁQ'
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Thus T'(n) = a5 = B2. When 1 + B2 = 1, the feasible set is {81} x [0, 52]
and the optimal solution is
o] =p1, a5 =0.5A .

Thus T(n) = a3 = 0.5 A B2. When (1 + 32 < 1, there is no feasible solution
and the truth values are ill-assigned. The theorem is proved.

Remark 9.1: Different from the classical logic, the uncertain propositions
¢ and 7 in £ — n are statements with some truth values rather than pure
statements. Thus the truth value of £ — 7 is understood as

T —mn)=1=T()VTmn). (9.24)

Remark 9.2: Note that T'(n) in ([@22) does not necessarily represent the
objective truth degree of 7. For example, if T'(§) is small, then T'(n) is the
truth value that 1 might (not must) be true.

9.3 Modus Tollens

Classical modus tollens tells us that if £ — 7 is true and 7 is false, then € is
false. This section provides a version of modus tollens in the framework of
uncertain logic.

Theorem 9.2 (Liu [12])], Modus Tollens). Let & and n be independent un-
certain propositions. Suppose & — n and n are two uncertain formulas with
truth values B and B2, respectively. Then the truth value of € is

1—pu, if b1 > Pa
TE)=q (=51 V05, if =/ (9.25)

illness, if B1 < Pa.
Proof: Denote the truth values of £ and n by a; and as, respectively, and
write

X1=8—n Xo=n X=¢
It is clear that
T(Xl) = (1 — 041) Vg = ﬁl,
T(X2) = az = fa,

T(X) = Q1.
For this case, the entailment model (@) becomes
min |ag — 0.5]
subject to:

(1-a)Vas=p (9.26)




SECTION 9.4 - HYPOTHETICAL SYLLOGISM 185

fa

illness

1—0

b1

0 1

Figure 9.2: Modus Tollens

When ;1 > (32, there is only one feasible solution and then the optimal
solution is

Oéik:l—ﬁl, a;:ﬁg.
Thus T'(¢) = af =1 — 1. When (1 = (32, the feasible set is [1 — 81, 1] x {#2}
and the optimal solution is

af=(1-p1)Vv05, ab=ps.

Thus T'(§) = af = (1 — £1) V0.5. When 31 < [32, there is no feasible solution
and the truth values are ill-assigned. The theorem is proved.

9.4 Hypothetical Syllogism

Classical hypothetical syllogism tells us that if both & — n and n — 7 are
true, then & — 7 is true. This section provides a version of hypothetical
syllogism in the framework of uncertain logic.

Theorem 9.3 (Liu [12])], Hypothetical Syllogism). Let &, n, T be independent
uncertain propositions. Suppose & — 1 andn — T are two uncertain formulas
with truth values B1 and (o, respectively. Then the truth value of & — 7 is
Br A B2, if 1 A B2 > 0.5
TE¢—71)= 0.5, if b1+ P2>1 and /1 NP2 < 0.5 (9.27)
illness, if B1 + B2 < 1.
Proof: Denote the truth values of £,n,7 by a1, s, as, respectively, and

write

Xlzf—”?» X2:77_}7_7 X:£_>T
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B2
1
0.5
B1 A B2
illness 0.5
0 1 B

Figure 9.3: Hypothetical Syllogism

It is clear that

T(X1) = (1 — 011) V ag = 51,
T(Xg) = (1 — 012) V ag = 52,
T(X) = (1 — 011) V as.

For this case, the entailment model (@) becomes

min |(1 —aq) V ag — 0.5]
subject to:
(I1—ai)Vaz=p
(I —a2)Vag=[0 (9.28)
0<a; <1
0<ay <1
0<a3<1.

When 31 A B2 > 0.5, we have
T —7)=(1—-aj)Vaz=/piApa.
When 1 + 62 > 1 and 31 A B2 < 0.5, we have
T —71)=(1—-aj)Va;=0.5.

When 1 + B2 < 1, there is no feasible solution and the truth values are
ill-assigned. The theorem is proved.

9.5 Automatic Entailment Machine

Automatic Entailment Machine is a software for solving the entailment model.
This software may be downloaded from http://orsc.edu.cn/liu/resources.htm.


http://orsc.edu.cn/liu/resources.htm#AutomaticEntailmentMachine

Chapter 10

Uncertain Set Theory

Uncertain set theory was proposed by Liu [I125] in 2010 as a generalization
of uncertainty theory to the domain of uncertain sets. This chapter will
introduce the concepts of uncertain set, membership degree, membership
function, uncertainty distribution, independence, operational law, expected
value, critical values, Hausdorff distance, and conditional uncertain set.

10.1 Uncertain Set

Roughly speaking, an uncertain set is a set-valued function on an uncertainty
space. Thus uncertain set is neither a random set nor a fuzzy set. A formal
definition is given as follows.

Definition 10.1 (Liu [125]). An uncertain set is a measurable function &
from an uncertainty space (I'; L, M) to a collection of sets of real numbers,
i.e., for any Borel set B of real numbers, the set

{ecBy={yeT|emCB) (10.1)

1S an event.

Example 10.1: Take an uncertainty space (I, £, M) to be {1, 72,73} with
power set L. Then the set-valued function

[173]7 if'y =M
[375]7 if'y =73

is an uncertain set on (I', £, M).

Example 10.2: Take an uncertainty space (I',£,M) to be R with Borel
algebra L. Then the set-valued function

E(v)=[v+1], VyeTl (10.3)

is an uncertain set on (I', L, M).

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 187
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Example 10.3: Take an uncertain space (I', £, M) to be [0, +00) with Borel
algebra L. Then the set-valued function

1 1

&(y) = [—1_'_72,1_’_72}, VyeTl (10.4)

is an uncertain set on (T', L, M).

Example 10.4: Any uncertain variable in the sense of Definition [L.J] is a
special uncertain set in the sense of Definition [I0.1]

Theorem 10.1. Let £ be an uncertain set and let B be a Borel set of real
numbers. Then

{¢Z By ={vel|&n) ¢ B} (10.5)

s an event.

Proof: Since £ is an uncertain set and B is a Borel set, the set {{ C B} is an
event. Thus {{ ¢ B} is an event by using the relation {¢ ¢ B} = {¢{ C B}°.

Theorem 10.2. Let £ be an uncertain set and let B be a Borel set. Then
{eNB=0}={yel |[&()NB=0} (10.6)
15 an event.

Proof: Since £ is an uncertain set and B is a Borel set, the set {£ C B¢} is
an event. Thus {£ N B = 0} is an event by using the relation {{N B =0} =

[¢C B},
Theorem 10.3. Let £ be an uncertain set and let B be a Borel set. Then

(ENB A0} ={y €T | &() N B £0} (10.7)
s an event.

Proof: Since ¢ is an uncertain set and B is a Borel set, the set {EN B =0}
is an event. Thus {€ N B # (0} is an event by using the relation {£ N B #
0} ={¢nB =0}

Theorem 10.4. Let € be an uncertain set and let a be a real number. Then
{acgy={vel|acemH)} (10.8)
15 an event.

Proof: Since £ is an uncertain set and a is a real number, the set {£ ¢ {a}“}
is an event. Thus {a € £} is an event by using the relation {a € £} = {£ ¢

{a}°}-
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Theorem 10.5. Let € be an uncertain set and let a be a real number. Then
{ag&={yel|agi()} (10.9)
s an event.

Proof: Since ¢ is an uncertain set and a is a real number, the set {a € £} is
an event. Thus {a ¢ £} is an event by using the relation {a & £} = {a € £}°.

Definition 10.2. Let £ and n be two uncertain sets on the uncertainty space
(T,L,M). Then the complement £° of uncertain set & is

() =&, vyel. (10.10)
The union & Un of uncertain sets & and 1 is
Eun () =& un(y), vyerl. (10.11)
The intersection £ N1 of uncertain sets & and 1) is
Enn) =& nnly), vyerl. (10.12)

Theorem 10.6 (Law of Excluded Middle). Let & be an uncertain set and let
£°¢ be its complement. Then
EUE =R, (10.13)

Proof: For each v € T, it follows from the definition of £ and £¢ that the
union is

(EUE)() =& UE(y) =€) VL) =R
Thus we have £ U£° = R.

Theorem 10.7 (Law of Contradiction). Let & be an uncertain set and let

&° be its complement. Then
ENgs =0. (10.14)

Proof: For each v € T, it follows from the definition of £ and £¢ that the
intersection is

(ENEN) =& NE() =&(y)NEM) = 0.
Thus we have £ N &€ = 0.

Theorem 10.8 (Double-Negation Law). Let & be an uncertain set. Then we
have

(€ =¢. (10.15)
Proof: For each v € T, it follows from the definition of complement that
(€)°(7) = (€°())° = (€())° = &)
Thus we have (£°)¢ = £.
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Theorem 10.9 (De Morgan’s Law). Let & and n be uncertain sets. Then
EUn)®=¢&nn, (ENn°=EUn (10.16)
Proof: For each v € T, it follows from the definition of complement that
EUn)(y) = (€0 Un(v))® = &) Nn()° = (€ Nn°)(v).
Thus we have (£ Un)¢ = £°Nn°. In addition, since
Enn)(y) = (E() Nn(v))* = £ Un() = € Un)(v),
we get (§Nn)°=E Une.

Definition 10.3. Let &y, &s, -+ , &, be uncertain sets on the uncertainty space
(T, L, M), and f a measurable function. Then & = f(&1,&,- -+ ,&,) is an
uncertain set defined by

(V) = f(&(7),6(), 1 6n(y), VyeT. (10.17)

Example 10.5: Let £ and 1 be two uncertain sets on the uncertainty space
(T, L,M). Then

E+n)(y) =&() +nly), Vyerl, (10.18)
E=n)=8&(0) —nly), Yver, (10.19)
(Exn)(y) =&(v) xnly), Vyerl, (10.20)
E+ny) =8&() +nly), Vyel. (10.21)

Definition 10.4. Let & and n be two uncertain sets. We say £ is included
inn (i.e., £Cn)if £(v) Cn(y) for almost all v € T in the sense of classical
set theory.

Definition 10.5. Let £ and n be two uncertain sets. We say £ is equal to n
(i.e., € =n) if £&(v) = n(7y) for almost all v € T in the sense of classical set
theory.

Definition 10.6. An uncertain set £ is said to be nonempty if () # 0 for
almost all v € T in the sense of classical set theory.

10.2 Membership Degree

Let ¢ and i be two nonempty uncertain sets. What is the degree that 7 is
included in £?7 In other words, what is the degree that 7 is a subset of &7
Unfortunately, this problem is not as simple as you think. In order to discuss
this issue, we introduce some symbols. At first, the set
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{nc&={vel|nly) céH)} (10.22)

is an event that 7 is strongly included in &; and the set

ngey={el|n) ¢ge}={el|n)neH) #0} (10.23)

is an event that 7 is weakly included in £. It is easy to verify that

{nc&ci{ng ) (10.24)
That is, “strong inclusion” is a subset of “weak inclusion”.

Definition 10.7. Let & and n be two nonempty uncertain sets. Then the
strong membership degree of n to £ is defined as the uncertain measure that
n is strongly included in &, i.e., M{n C &}.

Definition 10.8. Let & and n be two nonempty uncertain sets. Then the
weak membership degree of n to £ is defined as the uncertain measure that 7
is weakly included in £, i.e., M{n ¢ &°}.

What is the appropriate event that 7 is included in &7 Intuitively, it is too
conservative if we take the strong inclusion {n C £}, and it is too adventurous
if we take the weak inclusion {n ¢ £°}. Thus we have to introduce a new
symbol > to represent this inclusion relationship called imaginary inclusion.
That is, n > & represents the event that 7 is imaginarily included in £.

Figure 10.1: Strong Inclusion, Weak Inclusion and Imaginary Inclusion

How do we determine M{n > £}? It is too conservative if we take the
strong membership degree M{n C &}, and it is too adventurous if we take
the weak membership degree M{n ¢ £°}. In fact, it is reasonable to take the
middle value between M{n C £} and M{n ¢ £°}.

Definition 10.9 (Liu [125)]). Let & and n be two nonempty uncertain sets.
Then the membership degree of 1 to £ is defined as the average of strong and
weak membership degrees, i.e.,

M{ne € = ) Oy € €1+ Min ¢ €). (10.25)

The membership degree is understood as the uncertain measure that n is imag-
wnarily included in €.
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For any uncertain sets £ and 7, the membership degree M{n > ¢} reflects the
truth degree that 7 is a subset of £. If M{n > ¢} = 1, then 7 is completely
included in €. If M{n > £} = 0, then 1 and & have no intersection at all. It
is always true that

M{nc & <M{ne& <M{n g} (10.26)
In addition, the membership degree is asymmetrical, i.e., generally speaking,
M{ne &} # M{E>n} (10.27)

Furthermore, any uncertain set is included in itself completely, i.e.,
M{E> €= 1. (10.28)

Theorem 10.10. Let £ be a nonempty uncertain set, and let A be a Borel
set of real numbers. Then

M{{> A+ M{{> A%} = 1. (10.29)

Proof: Since A is a special uncertain set, it follows from Definition [[0.9] that

ME> A} = ) (M{EC A} + M€ 2 A%Y),

1
Mg A%} = ) (M€ © A} +M{E ¢ A}).
By using the self-duality of uncertain measure, we get
M{E> A} + M{{ > A%}

= | (OM{EC A} +M{E ¢ A7)+ | (M{E C A} + D€ ¢ A})

= ) (MIEC A} +M{E ¢ A) + ) (M{E C A} + M€ ¢ A7)

1 1
= :1.
2+2

The theorem is verified.

10.3 Membership Function

This section will introduce a concept of membership function for a special
type of uncertain set that takes values in a nested class of sets. Keep in mind
that only some special uncertain sets have their own membership functions.

Definition 10.10. A real-valued function u is called a membership function
if
0<uplz)<1l, zeR. (10.30)
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Figure 10.2: The a-Cut po of Membership Function p(x)

The link between membership function and uncertain set will be discussed
later.

Definition 10.11. Let p be a membership function. Then for any number
a € [0,1], the set
o = {z € R | plz) > a} (10.31)

1s called the a-cut of .

Theorem 10.11. The a-cut p, s a monotone decreasing set with respect
to a. That is, for any real numbers o and B in [0,1] with o > (3, we have

Ha C pg-

Proof: For any z € s, we have pu(z) > «. Since a > 3, we have u(x) > 3
and x € pg. Hence po C pg.

Definition 10.12. Let p be a membership function. Then for any number
a € [0,1], the set
Wo={pg|B<a} (10.32)

1s called the a-class of . Especially, the 1-class is called the total class of .

Note that each element in W, is a B-cut of u where ( is a number less than
or equal to o. In addition, pg, and pg, are regarded as distinct elements in
W, whenever 31 # (2. Each a-class (including total class) forms a family of
nested sets. In the sense that the universe is assumed to be the total class,
the complement W is the class of 8-cuts with 8 > «, i.e.,

WS={ps|B>a}. (10.33)

Thus W, U W is just the total class.

Now it is ready to assign a membership function to an uncertain set.
Roughly speaking, an uncertain set £ is said to have a membership function g
if £ takes values in the total class of u and contains each a-cut with uncertain
measure «. Precisely, we have the following definition.
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Definition 10.13 (Liu [125]). An uncertain set £ is said to have a mem-
bership function p if the range of € is just the total class of u, and

M{EeW,}=a, Vae]|0,1] (10.34)
where Wy, is the a-class of p.

Since W¢ is the complement of W,, it follows from the self-duality of uncer-
tain measure that

M{EeWst=1-a, Vac]|0,1]. (10.35)
In addition, it is easy to verify that {§ € Wy} = {£ € W<}, Hence
M{EEgWL=1—a, Vaec]|0,1]. (10.36)

If you think that Definition [0.13] is hard-to-understand, you may accept
the following representation theorem.

Theorem 10.12 ((Liu [125]]), Representation Theorem). Let & be an uncer-
tain set with membership function p. Then & may be represented by

&= U Q- o, (10.37)

0<a<l1
where o, is the a-cut of membership function p.

Proof: The representation theorem is essentially nothing but an alternative
explanation of membership function. The equation (I037) tells us that the
range of ¢ is just the total class of pu, and M{¢ € W, } = « for any « € [0, 1].

Remark 10.1: What uncertain set does the representation theorem stand
for? Take an uncertainty space (I', £, M) to be [0,1] with M{[0,~]} = v for
each vy € [0,1]. Then the set-valued function

£(v) = py (10.38)
on the uncertainty space (I'; £, M) is just the uncertain set.

Remark 10.2: It is not true that any uncertain set has its own membership
function. For example, the uncertain set

¢ = [1,2] with uncertain measure 0.5
| [2,3] with uncertain measure 0.5

has no membership function.

Remark 10.3: Although an uncertain variable is a special uncertain set, it
has no membership function.
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Example 10.6: The set R of real numbers is a special uncertain set () = R.
Such an uncertain set ¢ has a membership function

plr) =1, VreR. (10.39)

For this case, the membership function g is identical with the characteristic
function of R.

Example 10.7: The empty set @) is a special uncertain set £(y) = (). Such
an uncertain set ¢ has a membership function

uw(x) =0, VeeR. (10.40)

For this case, the membership function g is identical with the characteristic
function of §.

Example 10.8: Let a be a number in R and let a be a number in (0,1).
Then the membership function

a, ifz=a
= 10.41
(o) {07 e (10.41)

represents the uncertain set

{a} with uncertain measure «
= (10.42)

(0  with uncertain measure 1 — «

that takes values either the singleton {a} or the empty set ). This means
that uncertainty exists even when there is a unique element in the universal
set.

Example 10.9: By a rectangular uncertain set we mean the uncertain set
fully determined by the pair (a,b) of crisp numbers with a < b, whose mem-
bership function is

wr)=1, a<z<b.

Example 10.10: By a triangular uncertain set we mean the uncertain set
fully determined by the triplet (a,b,c) of crisp numbers with a < b < ¢,
whose membership function is

r—a

, ifa<z<b

b—a

pr)=q .
, ifv<x<e

b—c

Example 10.11: By a trapezoidal uncertain set we mean the uncertain set
fully determined by the quadruplet (a,b, ¢, d) of crisp numbers with a < b <
¢ < d, whose membership function is
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xT

0] a b
Figure 10.3: Rectangular, Triangular and Trapezoidal Membership Functions

T—a
b—a’

wlx) = 1, ifo<z<c

fa<z<b

e ife<z<d.

Theorem 10.13. Let £ be a nonempty uncertain set with membership func-
tion p. Then for any number x € R, we have

Mz € & = p(x), Ma gt =1— p(x),
Mz ¢ £} = p(x), Mz €} =1— p(z).

Proof: Since p is the membership function of , we have {z € £} = {£ € W, }
where o = p(z). Thus

(10.43)

M{z € £} =M{E € W} = a = pu(z).
In addition, it follows from the self-duality of uncertain measure that
Mz ¢ €} = 1Mz € €} =1 p(a).

Finally, it is easy to verify that {z € £} = {z & &}. Hence M{z € £} =
1 — ple) and Mz ¢ €} = ().

Theorem 10.14. Let £ be a nonempty uncertain set with membership func-
tion w, and let x be a constant. Then

M{z > €&} = p(x). (10.44)

Proof: Note that M{z € £} = p(x) and M{x & £°} = u(x). It follows that

Mz o€} =, Mz € & + Mz ¢ ) = ule).
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Theorem 10.15. Let £ be a nonempty uncertain set with membership func-
tion w. Then for any number a, we have

Mipa €& =, M{pa £ =1-a. (10.45)

Proof: Since {u, C £} is just the a-class of p, we immediately have M{ 1, C
¢} = a. In addition, by the self-duality of uncertain measure, we obtain

M{ppo €6t =1—M{po C&t=1— 0

Theorem 10.16. Let £ be a nonempty uncertain set with membership func-
tion p, and let A be a set of real numbers. Then

M{AcC = inf p(z), M{AZE} =1~ inf u(z),

(10.46)
M{A ¢ £} = sup p(x), M{AC &} =1—supp(z).
TEA z€A

Proof: Since p is the membership function of £, we immediately have
{AcC ¢ ={{eW,}, witha= iggu(aj).
x
Thus we get
MACE =M{ceW,}=a= iggu(x).

Since {A ¢ &} = {A C &}°, it follows from the self-duality of uncertain
measure that

MAZgE=1-M{ACE=1— igg,u(x).
In addition, we have

{AZ €} ={€ € Wa}, with o = sup p(a).

z€A

Thus
MAGZ =M€ Wo} =a=supu(z).

z€A

Since {A C &} = {A ¢ ¢°}°, it follows from the self-duality of uncertain
measure that

MACE}=1-MAZE =1~ Sggu(x)
The theorem is verified.

Theorem 10.17. Let £ be an uncertain set with membership function pu,
and let A be a set of real numbers. Then

M{A>¢F = ; (;relgu(x) + sup ,u(:c)) . (10.47)

TEA
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Proof: Since p is the membership function of £, we immediately have
M{A C &} = inf pu(z), M{A ¢ £} = sup u(x).
€A T€A
The theorem follows from the definition of membership degree directly.

Theorem 10.18. Let & be an uncertain set with membership function u,
and let f be a strictly monotone function. Then f(€) is an uncertain set with
membership function

v(z) = p(f~(2)). (10.48)

Proof: At first, for each « € [0,1], let = be a point in the a-cut of v, i.e.,
T € ig. Then

v(z) 2 a= u(fH(2) 2 a= fH(2) € pa = 2 € f(pa) = va C flua).
If z is a point in f(puqa), i.e., * € f(ta), then
fl@)epa=plf ) >a=v@)>a=2€vy = fla) C Va-

Thus v = f(te)- In addition, since the range of ¢ is the total class of u, the
range of f(£) is the total class of v. Finally, since the a-classes of u and v
have the same preimagine, i.e.,

M{f(§) e Wit =M{{ e Wi} =«
for each « € [0, 1], the membership function of f(§) is just v.

Example 10.12: Let £ be an uncertain set with membership function pu.
Then —¢ is an uncertain set with membership function pu(—zx).

Example 10.13: Let £ be an uncertain set with membership function pu
and let k be a real number. Then £ + k is an uncertain set with membership
function p(z — k).

Example 10.14: Let £ be an uncertain set with membership function x4 and
let a be a positive number. Then af is an uncertain set with membership
function p(z/a).

Example 10.15: Let £ be a positive uncertain set with membership function
w. Then 1/€ is an uncertain set with membership function u(1/z).

Membership Function is Frangible for Arithmetic Operations

Generally speaking, the complement £¢, union £ U 7, intersection £ N 7, sum
&+ n and product £ X n of uncertain sets have no membership functions even
though the original uncertain sets have their own membership functions.
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10.4 Uncertainty Distribution

This section introduces the concept of uncertainty distribution for nonempty
uncertain sets, and gives a sufficient and necessary condition for uncertainty
distribution.

Definition 10.14 (Liu [125]). Let & be a nonempty uncertain set. Then the
function
P(z) =M{{> (—00,2]}, VzeR (10.49)

18 called the uncertainty distribution of &.

Example 10.16: The uncertainty distribution of the uncertain set £ = R is
d(x) =0.5. (10.50)

Example 10.17: The uncertain set £ = () has no uncertainty distribution

because it is not a nonempty set.

Example 10.18: Let £ be an uncertain set taking value [1,2] with uncertain

measure 0.5 and value [3, 4] with uncertain measure 0.5. That is,

&=

[1,2] with uncertain measure 0.5
[3,4] with uncertain measure 0.5.

Then its uncertainty distribution is

0, ife<l1
0.25, ifl<z<?2
O(z) = 0.5, if2<z<3
0.75, if3<z<4

1, ifz>4

Theorem 10.19 (Measure Inversion Theorem). Let & be a nonempty un-
certain set with continuous uncertainty distribution ®. Then

M{E> (—o0, 2]} = ®(z), M{{D> [z,400)} =1—P(x) (10.51)
for any x € R.

Proof: The first equation follows from the definition of uncertainty distri-
bution, and the second equation follows from the self-duality of uncertain
measure.

Theorem 10.20 (Sufficient and Necessary Condition for Uncertainty Dis-
tribution) A function ® : R — [0, 1] is an uncertainty distribution of uncertain
set if and only if it is an increasing function except ®(x) =0 and ®(z) = 1.
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Proof: Suppose @ is an uncertainty distribution. Since an uncertain variable
is a special uncertain set, it follows from Theorem [[.T1] that ® is an increas-
ing function except ®(z) = 0 and ®(x) = 1. Conversely, suppose P is an
increasing function but ®(x) #Z 0 and ®(x) # 1. Theorem [Tl tells us that
there is an uncertain variable (a degenerate uncertain set) whose uncertainty
distribution is just ®.

Theorem 10.21. Let £ be a nonempty uncertain set with continuous mem-
bership function p. If x¢ is a point with u(xg) = 1, then the uncertainty
distribution of £ is

sup u(y)/2, ifx <uxg
d(z) = yse (10.52)

1 —supu(y)/2, if x> .
y>w

Especially, if i is unimodal, then

®(z) = { p@)/2, ife < (10.53)

1—u(x)/2, if x> xo.

Proof: When x < g, it follows from the continuity of membership function
that

M C (=o0,2]} =0, M{{ Z (x,+00)} = sup u(y).

y<z

Thus we have

Do) = M{€ > (~ocsal) = 5 (04 swputs) ) = sup o)/

y<z y<z

When z > z(, we get

M{f - (_OO"T}} =1- supu(y), M{f ¢ ($7+OO)} =1

y>z

Thus we have

B(o) = M{€ > (~ooral} =} (1= swpuly) +1) = 1= supuo)/2

y>x y>z
The theorem is proved.

Example 10.19: The rectangular uncertain set (a,b) has an uncertainty
distribution
0, ifzx<a
O(z)=1<¢ 0.5, ifa<z<b (10.54)
1, ifx>b.
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0.5

0

Figure 10.4: Membership Function and Uncertainty Distribution

Example 10.20: The triangular uncertain set (a,b,c) has an uncertainty

distribution
Tr—a

2(b )’ fa<z<b

—Qa

B(z) = 10.

@ c=2FT e (1059
2c—b) @ NI E

Example 10.21: The trapezoidal uncertain set (a, b, ¢, d) has an uncertainty
distribution

T —a
i <zx<
2b—a)’ ifa<x<b
O(z) = 0.5, ifb<z<e (10.56)
d—2c+x
ife<ax<d.
2d—c) fe<z<d

10.5 Independence

Definition 10.15 (Liu [125]). The uncertain sets &1,&a,- - ,&m are said to
be independent if

M{ﬁ(& c BZ-)} = min M{& C B} (10.57)
=1

1<i<m
and
M{Ul(fi C Bi)} = max M{¢ C B;} (10.58)
=
for any Borel sets By, Ba, -+, By, of real numbers.
Theorem 10.22. The uncertain sets £&1,&2,- -+ ,&m are independent if and
only if

{m e } - g‘iéan{fi ¢ Bi} (10.59)

1
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and .

M {H(& ¢ B»} = max M{& ¢ By} (10.60)
for any Borel sets By, Ba, -+, By, of real numbers.
Proof: Since &1,&s, -+, &, are independent uncertain sets, we immediately

have (I0.57) and (I05Y). It follows from the self-duality of uncertain measure

that
ez o} -1-a Ue < )
—1z—lglza)$nj\/[{§ZCB}— nznn L A& ¢ Bi}
and

M{Q(&gZB }_1— {O@CB }

=1- min M{& C Bi} = max M{& ¢ Bi}.

Thus (I059) and (I0.60) are proved. Conversely, assume ([0.59) and (I0.60).

Then
ffiecmb1owffec )
—12—112ax M{& ¢ Bi} = nznn L M{& C Bi)
and

i=1 i=1

—1—1£n1n M{& & B} = max M{@CB}

Thus (ITET) and (I0E5S) are verified. The proof is complete.

Theorem 10.23. The uncertain sets £&1,&2,- -+ ,&m are independent if and
only if

{ﬁ & N B; —V)}— min M{& N B; = 0} (10.61)

1<i<
and
M { L_Jl(fz NB; = @)} = 128;5”3\/[ {&NB; =0} (10.62)
for any Borel sets By, Ba, -+, By, of real numbers.

Proof: The theorem follows from the fact that & N B; = ( if and only if
& C Bf for each i.
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Theorem 10.24. The uncertain sets £&1,&2,- -+ ,&m are independent if and
only if

Dk

{ (& N B; #@)} = mln M{&ZQB £ 0} (10.63)

and
{UQOB #Q}:&n‘i}( MA{& N B; # 0} (10.64)
for any Borel sets By, Ba, -+, By, of real numbers.

Proof: The theorem follows from the fact that & N B; # @ if and only if
& ¢ B¢ for each .
10.6 Operational Law

This section will discuss the operational law on independent uncertain sets
via uncertainty distributions.

Theorem 10.25 (Liu [125], Operational Law). Let &1,&a,-+ , &, be inde-
pendent uncertain sets, and f : R" — R a measurable function. Then

E= f(&1,&, -+, &) is an uncertain set such that
sup min My{& C Bk},
f(B1,Ba,-,By)CB1Sk<n
if sup min Mi{& C Br} > 0.5
f(Bl7B2 ,B, )CB 1<k<n { }
MecBi=y 17 Sup min My{& C Br},
f(B1,By,,B,)CBe 1Sk
if Sup min Mg{& C Bi} > 0.5
f(B1,Ba,-,B,)CBe 1Sk<n { }
0.5, otherwise

for Borel sets B, By, Ba,- -+, B, of real numbers.

Proof: Write A = {£ C B} and Ay = {& C Bg} for k=1,2,--- ,n. Itis
easy to verify that

Ay X Ag x -+ x A, C Aif and only if f(Bq,Ba, -+, B,) C B,

Ay x Ay x -+ x A, C A®if and only if f(By, Bs, -+, Bn) C B.

Thus the operational law follows from the product measure axiom immedi-
ately.
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Increasing Function of Uncertain Sets

Theorem 10.26 (Liu [125)]). Let &1,&2, -+, &, be independent uncertain

sets with uncertainty distributions ®1, ®o,--- , &, respectively. If f : R —
R is a strictly increasing function, then
f :f(§17£27"' 75”) (1065)
s an uncertain set whose inverse uncertainty distribution is
7 a) = f(21 (), 23 (), -+, @, (a)) (10.66)

for any o with 0 < o < 1.

Proof: For simplicity, we only prove the case n = 2. Since & and & are
independent uncertain sets and f is a strictly increasing function, we have

M{E > (=00, @~ ()]}

M{f(&1,&) > (—o0, f(@7 (@), @3 ()]}

M{(&1 &> (=00, @7 (@)]) N (&2 &> (—00, @5 (@)}
M{& & (=00, 7 ()]} A M{&2 > (—00, B3 (a)]}

= aANa=a.

v

On the other hand, there exists some index 4 such that

{f(&1.&2) > (=00, f(@1 ' (a), 5 ()]} C {& > (—00, 7 ()]}
Thus
M{E > (=00, @7 ()]} < M{& &> (—00, 27 ()]} =
It follows that M{¢ > (—o00, @ 1(a)]} = a. In other words, ® is just the
uncertainty distribution of £&. The theorem is proved.

Example 10.22: Let £ and & be independent uncertain sets with uncer-
tainty distributions @4 (z) and ®5(x), respectively, and let a1 and as be non-
negative numbers. Then the inverse uncertainty distribution of the weighted
sum a1&y + a96s is

O Ha) = a9 (a) + ax®; (), Va e (0,1). (10.67)

Example 10.23: Let & and & be independent and nonnegative uncertain
sets with uncertainty distributions ®; and ®5, respectively. Then the inverse
uncertainty distribution of the product & X & is

dHa) =0 () x Dy (a), 0<a<l. (10.68)

Example 10.24: Assume &1, &5, &3 are independent and nonnegative uncer-
tain sets with uncertainty distributions ®;, ®5, ®3, respectively. Then the
inverse uncertainty distribution of (&1 + &£2)&3 is

o Ha) = (27" (a) + ;' (a)) 25" (2), O<a<l. (10.69)
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Decreasing Function of Uncertain Sets

Theorem 10.27 (Liu [125)]). Let &1,&2,--+ , &, be independent uncertain

sets with uncertainty distributions ®1, ®o,--- , &, respectively. If f : R —
R is a strictly decreasing function, then
f :f(§17£27"' 75”) (1070)

18 an uncertain set whose inverse uncertainty distribution is
o7 (a) = (@7 (1~ a), 07 (1 —a),--, @, (1 —a))  (10.71)
for any o with 0 < o < 1.

Proof: For simplicity, we only prove the case n = 2. Since & and & are
independent uncertain sets and f is a strictly decreasing function, we have

M{E > (=00, 27 H(a)]}

= M{f(&,&) > (=00, f(PT (1 - ), @31 (1 - )]}

> M{(& > [@71(1 — @), +00)) N (&2 > [P (1 = @), +00))}

= M{& > [@71(1 - a),+00)} AM{& > [@5 (1 - @), +00)}

= aNa=ao.
On the other hand, there exists some index 4 such that
{f(&1,6) > (=00, f(@71(1 = @), @57 (1 — )]} C {& > [®;(1 — a), +00)}.
Thus

M{E > (=00, @ )]} <M{& > [@; (1 — a), +00)} = a.

It follows that M{¢ > (—o0, @ 1(a)]} = a. In other words, ® is just the
uncertainty distribution of £&. The theorem is proved.

Alternating Monotone Function of Uncertain Sets

Theorem 10.28 (Liu [125)]). Let &1,&,--+ ,&, be independent uncertain

sets with uncertainty distributions ®1, ®a, - - -, ®,,, respectively. If f(x1,z2,- -, Ty)
18 strictly increasing with respect to x1, o, -+ , Ty and strictly decreasing with
respect t0 Tip41, Tma2,* , Ty, then

g :f(£17§27“' 7§n) (1072)

s an uncertain set whose inverse uncertainty distribution is
o a) = f(@7 (), -, @, (), @ (L —a), - @M (1 — @) (10.73)

for any o with 0 < o < 1.
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Proof: For simplicity, we only prove the case n = 2. Since & and & are in-
dependent uncertain sets and and the function f(z1,x2) is strictly increasing
with respect to z1 and strictly decreasing with xo, we have

M{E > (00,27} (a)]}
= M{f(&,&) > (—o0, f(@7"(a), D31 (1 — )]}
> M{(& & (—00, 27 (@) N (&2 & [@5 (1 — a), +00))}
= M{& > (—o0, 27 ()]} AM{& & [@57(1 — a), +00)}
= aNa=aqa.

On the other hand, the event {£ > (—oo, ®~1(a)] is a subset of either {& >
(=00, @7 ()]} or {€2 > [®; (1 - a), +00)}. Thus

M{E > (—00, @ Ha)]} < a.

It follows that M{¢ > (—o00, @ 1(a)]} = a. In other words, ® is just the
uncertainty distribution of £&. The theorem is proved.

Example 10.25: Let £ and & be independent uncertain sets with uncer-
tainty distributions ®; and ®,, respectively. Then the inverse uncertainty
distribution of the difference & — & is

> Ha) =3 (a) -0, (1 —a), O0<a<l. (10.74)

Example 10.26: Let & and & be independent and positive uncertain sets
with uncertainty distributions ®; and ®5, respectively. Then the inverse
uncertainty distribution of the quotient & /& is

dHa) =07 ()/P;'(1—a), O0<a<]l. (10.75)

10.7 Expected Value

Definition 10.16 (Liu [125]). Let & be a nonempty uncertain set. Then the
expected value of € is defined by
+oo 0
E§] = M{E > [r,+o0) }dr — / M{& > (—o0, 7] }dr (10.76)
0 —o0

provided that at least one of the two integrals is finite.
Example 10.27: Consider an uncertain set £ that has no membership func-
tion but may be represented by

£= { [1,2] with uncertain measure 0.5

[2, 3] with uncertain measure 0.5.
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Intuitively, the expected value of £ should be 2. Let us verify it by Defini-
tion At first, we have

1, ifo<r<i
0.75, ifl<r<2
0.25, if2<r<3
0, ifr>3,

M{E> [r,+00)} =

M{E> (—o0,7]} =0, Vr<O0.
Thus . ) 5
El¢] = / 1dr +/ 0.75dr +/ 0.25dr = 2.
0 1 2

Example 10.28: Let (I, £, M) be an uncertainty space with T' = [0, 1] and
M{[0,~]} = v for each v € [0, 1]. Define an uncertain set

Ey)=hv+1], vyelo1]
At first, we have

1—7r/2, if0<r<2

M{fb[r’ﬁo)}:{ 0 ifr> 2

M{E> (—o0,7]} =0, Vr<O0.
Thus 9
E[¢] = /0 (1-r/2)dr =1.

Example 10.29: Let £ be an uncertain variable (a degenerate uncertain
set). Then we have

MEE > [, +00)} = M{E >}, M{E > (—o0, 7]} = M{E < r}.

Thus
+oo

Bl = [ e rjdr - / M{¢ < r}dr.

That is, the expected value of uncertain set does coincide with that of un-
certain variable.

Theorem 10.29. Let £ be a nonempty uncertain set with uncertainty dis-
tribution ®. If & has a finite expected value, then

“+o0 0
E[¢] = /0 (1—®(z))dx — / O (z)dz. (10.77)

— 00
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Proof: The theorem follows immediately from ®(z) = M{& > (—o0, z]} and
1—®(z) = M{{> (x,400)} for any = € R.

Theorem 10.30. Let £ be a nonempty uncertain set with uncertainty dis-
tribution ®. If £ has a finite expected value, then

1
El¢] = /O & !a)da. (10.78)

Proof: It follows from the definitions of expected value operator and uncer-
tainty distribution that

—+oo

me - [ M{fb[r,+m)}dr—[ M{¢ > (—o0, r]}dr

1 3(0) 1
:/ @71(a)doz—|—/ @71(a)da:/ & Ha)do
2(0) 0 0

The theorem is proved.

Theorem 10.31. Let £ be a nonempty uncertain set with membership func-
tion p. If € has a finite expected value and p is a unimodal function about xg
(i.e., increasing on (—oo,xg) and decreasing on (xg,+00)), then the expected
value of & is

1 o[tee 1 [

E[¢] =z + 9 / pw(x)de — 2/ w(x)de. (10.79)
o — 00

Proof: Since p is increasing on (—oo,z¢) and decreasing on (zg, +00), it

follows from the definition of membership degree that

w(zx)/2, if z <z

M{€ > (—o00, 2]} = { Y (10.80)

and () ;
1—p(x)/2, ifz<x
M{E D> [z, +0)} = (10.81)
w(zx)/2, if z >z
for almost all z € . If zg > 0, we have

—+oo

Bl = [ (e oroo)da - / M{€ > (oo, 2] }dz

-/ (1 ) f2) d / )20 / " )20

0 — o0

1 ) 1 “+o0 1 0
Zo — / p(z)de + / p(z)de — / p(x)dx
2 Jy 2/, 2

0 — o0

1 +oo 1 zo
=z + 5 / w(z)dz — 5 / p(z)de.

0 — 00
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If g < 0, we have

+o0 0
E[§] = ; M{E > [z, +o0) }da — [ M{E > (—o0, z]}dx

_ /;Oo () /2da — / () /2da — /0(1 — p(x)/2)da

—o00 zo

1 [+ 1 [eo 10
= / p(x)de — / p(z)de + zo + / p(z)de
2/ 2 2/,

—00 0

1 +oo 1 zo
=z + 5 / w(z)dx — 2/ p(z)de.

0 —00

The theorem is thus proved.

Example 10.30: The rectangular uncertain set £ = (a, b) has an expected
value

a+b

Elg] =", (10.82)

Example 10.31: The triangular uncertain set £ = (a,b, ¢) has an expected

value
a+2b+c

A (10.83)

El¢] =

Example 10.32: The trapezoidal uncertain set £ = (a, b, c,d) has an ex-

pected value
a+b+c+d

E =
€] J
Theorem 10.32 (Liu [125]). Let & and & be independent nonempty un-

certain sets with finite expected values. Then for any real numbers a1 and as,
we have

(10.84)

Ela1&1 + a282] = a1 E[1] + a2 E[&). (10.85)

Proof: Suppose that & and & have uncertainty distributions ®; and ®s,
respectively. It follows from Theorem [[0.26 that a1&1 + a2&> has an inverse
uncertainty distribution,

37 (a) = 1%y (a) + a2 (@)

and

1 1 1
/ & Ha)da = al/ d7 ! (e)da + (12/ @5 (a)da.
0 0

0
Then Theorem tells us that

1
Bl + as6e] = [ @7} (a)da = anBlés] + aaFle)

The theorem is proved.
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Theorem 10.33. Assume £1,&2,- -+ ,&, are independent uncertain sets with
uncertainty distributions ®,, Py, -+, @, respectively. If f : R — RN is a
strictly monotone function, then the uncertain set & = f(&1,&2, -, &) has

an expected value

Elf] = / F@7 (), 854 @), -, &5 (a))da (10.56)

provided that the expected value E[€] exists.

Proof: Suppose that f is a strictly increasing function. It follows that the
inverse uncertainty distribution of £ is

¢~ (a) = f(®1 (@), 23 (o), -+, @y (a))-

Thus we obtain ([0.86). When f is a strictly decreasing function, it follows
that the inverse uncertainty distribution of & is

o) = (97 (1 - a), @ (1 —a), -, @, (1~ a)).

By using the change of variable of integral, we obtain (I0.86). The theorem
is proved.

Example 10.33: Let £ and 1 be independent and nonnegative uncertain
sets with uncertainty distributions ® and W, respectively. Then

1
E[¢n] =/ > ()T (@)dov (10.87)

0
Exercise 10.1: What is the expected value of an alternating monotone

function of uncertain sets?

Exercise 10.2: Let £ and n be independent and positive uncertain sets with
uncertainty distributions ® and W, respectively. Prove

ﬂ B /01 xpi_(i(f)a) da. (10.88)

10.8 Critical Values

E

In order to rank uncertain sets, we may use two critical values: optimistic
value and pessimistic value.

Definition 10.17 (Liu [125]). Let £ be an uncertain set, and o € (0,1].
Then

fsup(a) = sup {7" | M {5 > [7“, +OO)} > Ot} (1089)
1s called the a-optimistic value to &€, and
&ine () = inf {r | M{{> (=00, 7]} > a} (10.90)

1s called the a-pessimistic value to &.
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Theorem 10.34. Let & be an uncertain set with uncertainty distribution ®.
Then its a-optimistic value and a-pessimistic value are

up(@) =27 (1~ a), &ur(a) = 27} (a) (10.91)
for any o with 0 < o < 1.

Proof: Since ® is a strictly monotone function when 0 < ®(z) < 1, we have
Euup(@) = Sup {rIM{E & [r, +00)} = a} = sup{r[1—(r) > a} = 8~ (1—a),
int(@) = inf {r M {£ > (=00, 7]} > a} = inf{r|®(r) > a} = &7 ().

The theorem is proved.

Theorem 10.35. Let &1,&, - ,&, be independent uncertain sets with un-
certainty distributions. If f: R™ — R is a continuous and strictly increasing
function, then & = f(&1,&2, -+ ,&n) s an uncertain set, and

Ssup (@) = f(E1sup(@), E25up (@), -+, Ensup(@)), (10.92)
int(@) = f(§rine(@), S2int (@), -+ Enint(@)). (10.93)

Proof: Since f is a strictly increasing function, it follows that the inverse
uncertainty distribution of & is

¢ a) = f(@1 (@), 25 (o), -+, @, M (a))

where @1, o, - , P, are uncertainty distributions of &£1,&s, - ,&,, respec-
tively. Thus we get (I0.92) and (I093]). The theorem is proved.

Example 10.34: Let £ and n be independent uncertain sets with uncertainty
distributions. Then

(§+M)sup(@) = Esup (@) +Nsup (@), (E+0)int (@) = Eint(@) +Mine (). (10.94)

Example 10.35: Let £ and n be independent and positive uncertain sets
with uncertainty distributions. Then

(EM)sup (@) = &sup () Msup (@), (EN)int (@) = &int (@) Mint (). (10.95)

Theorem 10.36. Let £1,&2,--+ , &, be independent uncertain sets with un-
certainty distributions. If f is a continuous and strictly decreasing function,
then

Eoup(a) = f(&rint(a), &2ine(a), -+, &nint (@), (10.96)
Eint(@) = f(&1sup(@), E25up(@), -+ Ensup(@)). (10.97)
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Proof: Since f is a strictly decreasing function, it follows that the inverse
uncertainty distribution of & is

oM a) = (@' (1 - a), @5 (1 - ), 2, (1 —a)).
Thus we get (I0.96) and ([I0.97). The theorem is proved.

Exercise 10.3: What are the critical values to an alternating monotone
function of uncertain sets?

Exercise 10.4: Let £ and n be independent and positive uncertain sets.

Prove
()i ()o@ iy 1059

10.9 Hausdorff Distance

Liu [125] generalized the Hausdorff distance to the domain of uncertain sets.
Let £ and n be two uncertain sets on the uncertainty space (I, L, M). For
each v € T, it is clear that £(vy) and n(7y) are two sets of real numbers. Thus
the Hausdorff distance between them is

ply) = ( sup inf |a— b> v ( sup inf |a— b> . (10.99)

acg(y) ben(v) ben(v) a€€(Y)

Note that p is a function from (I', L, M) to the set of nonnegative numbers,
and is just a nonnegative uncertain variable in the sense of Definition

Definition 10.18 (Liu [125]). Let & and n be two uncertain sets. Then the
Hausdorff distance between & and n is

d(&,n) = O+OO M{p > r}dr (10.100)

where p is a nonnegative uncertain variable determined by [10.99).

If the uncertain sets degenerate to uncertain variables, then the Hausdorff
distance between uncertain sets degenerates to the distance between uncer-
tain variables in the sense of Definition [[.25]

Theorem 10.37. Let &, n, T be uncertain sets, and let d(-,-) be the Hausdorff
distance. Then we have

(a) (Nonnegativity) d(§,n) > 0;

(b) (Identification) d(€,n) = 0 if and only if £ = n;

(¢c) (Symmetry) d(§,n) = d(n, §).

Proof: The theorem follows immediately from the definition.
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10.10 Conditional Uncertainty

Let £ be an uncertain set on (I', £, M). What is the conditional uncertain set
of £ after it has been learned that some event B has occurred? This section
will answer this question.

Definition 10.19 (Liu [125]). Let & be an uncertain set with membership
function p, and let B be an event with M{B} > 0. Then the conditional
membership function of & given B is defined by

p(x|B) = M{¢ € Wy, | B} (10.101)
where W,y is the pu(x)-class of pu.

Definition 10.20 (Liu [125]). Let & be an uncertain set and let B be an
event with M{B} > 0. Then the conditional uncertainty distribution ®:
R — [0,1] of & given B is defined by

®(z|B) =M {£> (—o0,2] | B}. (10.102)

Definition 10.21 (Liu [125]). Let & be an uncertain set and let B be an
event with M{B} > 0. Then the conditional expected value of & given B is
defined by

+00 0
E[g|B]:/O M{g>[r,+oo)yB}dr—/ M{&> (—o0,r] | B} dr

provided that at least one of the two integrals is finite.



Chapter 11

Uncertain Inference

Uncertain inference was proposed by Liu [125] in 2010 as a process of deriving
consequences from uncertain knowledge or evidence via the tool of conditional
uncertain set. Gao, Gao and Ralescu [42] extended the inference rule to the
one with multiple antecedents and with multiple if-then rules.

This chapter will introduce an inference rule, and apply the tool to un-
certain system and inference control. The technique of uncertain inference
controller is also illustrated by an inverted pendulum system.

11.1 Inference Rule

Let X and Y be two concepts. It is assumed that we only have a rule “if X
is & then Y is ” where £ and 7 are two uncertain sets. We first have the
following inference rule.

Inference Rule 11.1 (Liu [125]). Let X and Y be two concepts. Assume a
rule “if X is an uncertain set € then Y is an uncertain set n”. From X is an
uncertain set £ we infer that Y is an uncertain set

. (11.1)

which is the conditional uncertain set of n given £* > €. The inference rule
s represented by

nt=n

Rule: If X is £ then Y is n
From: X is &* (11.2)
Infer: Y is n* = n]e-pe

Theorem 11.1. Let £ and n be independent uncertain sets with membership
functions p and v, respectively. If £* is a constant a, then inference rule[I1.1]
yields that n* has a membership function

v(y) ‘
o i) < )2
viy)=q v+ ue) -1 if v(y) > 1 — u(a))2 (11.3)
p(a)
0.5, otherwise.

B. Liu: Uncertainty Theory: A Branch of Mathematics, SCI 300, pp. 215
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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Figure 11.1: Graphical Illustration of Inference Rule

Proof: It follows from inference rule [T.Ilthat n* has a membership function

v (y) = My € nla> &}
By using the definition of conditional uncertainty, we have
Myent . Myen}
f 0.5
Mo} " Masg}
M{yenla€p =1 | M{y¢n}7 g My g _ o
Ma >} Mar> ¢}

0.5, otherwise.

The equation (I1.3) follows from M{y € n} = v(y), M{y € n} =1 — v(y)
and M{a > ¢} = p(a) immediately. The theorem is proved.

Inference Rule 11.2 (Gao, Gao and Ralescu [42]). Let X, Y and Z be three
concepts. Assume a rule “if X is an uncertain set £ and Y is an uncertain
set n then Z is an uncertain set 7”. From X is an uncertain set £ and Y is
an uncertain set n* we infer that Z is an uncertain set

T* = T|(f*>f)ﬂ(n*>n) (114)

which is the conditional uncertain set of T given & > & and n* >n. The
inference rule is represented by

Rule: If X'is £ and Y is n then Z is 7
From: X is * and Y is n* (11.5)
Infer: Z is 7" = 7|(e+pe)n(n=n)

Theorem 11.2. Let &, 1,7 be independent uncertain sets with membership

functions p, v, \, respectively. If £ is a constant a and n* is a constant b,
then inference rule [I1.2 yields that T has a membership function

A(z) ) w(a) A v(b)
(@) A v(b)’ AR <7,
N(z) =14 AR +u@Av) =1 _ ) Av(b)  (11.6)
wa)nvp) 0 FAE>T 2

0.5, otherwise.
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Proof: It follows from inference rule [T.21that 7* has a membership function
N(iz)=M{zeT|lax&)N(b>n)}.

By using the definition of conditional uncertainty, M{z € 7|(a>&)N(b>n)} is

M{z e} . M{z e}
M{@s&nben)  M{@sonben) <0
O Mzgr} L M(zgn)

Y M{asonpen)y T M{@sonesgy <0
0.5, otherwise.

The theorem follows from M{z € 7} = A(2), M{z & 7} = 1 — A(z) and
M{(a>&) N (br>n)} = pla) A v(b) immediately.

Inference Rule 11.3 (Gao, Gao and Ralescu [{2]). Let X and Y be two
concepts. Assume two rules “if X is an uncertain set & thenY is an uncertain
set m1” and “if X is an uncertain set & then Y is an uncertain set ny”. From
X is an uncertain set £ we infer that Y is an uncertain set

= M > &} mlese, n M{E" > &a} - malenes (11.7)
M{E > &} +M{E > & M{E > &} +M{E > &} '

The inference rule is represented by

Rule 1: If X'is & then Y is n;
Rule 2: If X is & then Y is 72
From: X is &*

Infer: Y is n* determined by (II1)

(11.8)

Theorem 11.3. Let &1, &2,11, 12 be independent uncertain sets with member-
ship functions uy, po, v1, Ve, Tespectively. If £ is a constant a, then inference
rule yields

. p1(a) . p2(a) .
= + 11.9

T @) + e T i) + pa(a) ™ ()
where 7 and 03 are uncertain sets whose membership functions are respec-
tively given by

1 (y) ,
pa(a)’ ifri(y) < p(a)/2
B foiga) - 1, ifvi(y) > 1 —pa(a)/2 (11.10)

0.5, otherwise,
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P i) < ela)2
vy(y) =14 rely )ﬂZzga) i) > 1 — pa(a))2 (11.11)

0.5, otherwise.

Proof: It follows from inference rule [1.3] that the uncertain set n* is just

e Mar &l omlese | Mab &}kl
M{a>§1}+M{a>§2} M{al>§1}+3\/[{a>§2}'

The theorem follows from M{a > &1} = pi(a) and M{a> &2} = po(a) imme-
diately.

Ui

Inference Rule 11.4. Let X1,Xy, -+ ,X,, be concepts. Assume rules “if
Xy is &1 and -+ and Xy, 08 & then Y is ;7 fori=1,2,--- k. From X3
is & and - - and X, is &, we infer that Y is an uncertain set

k
Z Ci 772‘ 51 >£,1)H(£2|>§12)ﬂ N(EE >Eim) (11 12)
P €L+ cC2+ -+ '

where the coefficients are determined by
ci =M{E > &) N (&> &) NN (&L > &m)} (11.13)
fori=1,2,--- k. The inference rule is represented by

Rule 1: If X is &17 and - -+ and X, is &1, then Y is 7
Rule 2: If X; is &1 and - -+ and X, is &2, then Y is 1

Rule k: Tf X is &1 and - - and X, is Epm then Y is 7 (11.14)

From: X; is {§ and -+ and X,,, is &,

Infer: Y is n* determined by (IT12)
Theorem 11.4. Assume &1,&z2, - ,&im,"n; are independent uncertain sets
with membership functions i1, fig, -+ 5 thim, Vi, © = 1,2, |k, respectively.
If€7,&5, -+ L&), are constants ay, az, - - - , am, respectively, then inference rule
yields

k
Z (11.15)
S atoe + CF

where 1} are uncertain sets whose membership functions are given by
v )
W uw <
fk = 7 7 ]. . .
vi (y) vily) e -1 i i) > 1— ci/2 (11.16)

Ci

0.5, otherwise
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and c; are constants determined by

¢ = 1g}ignmmz(al) (11.17)

fori=1,2,---  k, respectively.

Proof: For each i, since a1 > &1,a2 > &, -+, am > &y are independent
events, we immediately have

m
M ml(aj >&ij) ¢ =  Doin Ma; > &i;} = i pir(ar)
]:
for : = 1,2,--- , k. From those equations, we may prove the theorem by

inference rule [[T.4] immediately.

11.2 Uncertain System

An uncertain system, proposed by Liu [125], is a function from its inputs
to outputs based on the inference rule. Now we consider a system in which
there are m deterministic inputs aq, as, - - - , aun, and n deterministic outputs
0B1, 02, , Bn. At first, we infer n uncertain sets ny,ns,--- ,n; from the m
deterministic inputs by the rule-base (i.e., a set of if-then rules),

If &7 and &2 and- - - and &4y, then 717 and 712 and- - -and 7y,

If £57 and &2 and- - - and &), then 721 and 720 and- - - and 79, (11.18)
If £k1 and & and- - - and gy, then ngy and ngo and- - -and 7y,
and the inference rule
= Zf; ci - mj|(alci,si);;of?z):-;:(am>5m> (11.19)
for j =1,2,---,n, where the coefficients are determined by
ci =M{(a1>&1) N (aa>E&2) NN (g > Eim) } (11.20)
fori=1,2, -+ ,k. Thus we obtain
8; = En]] (11.21)
for j = 1,2,--- ,n. Until now we have constructed a function from inputs
Q1,Q9,+ , Qpy to outputs B1, B2, -+, Bn. Write this function by f, i.e.,
(B1, B2, -+, Bn) = flaa, @z, -+ ). (11.22)

Then we get an uncertain system f.
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] —>

n
n5

B = Eni] =51
B2 = En3] B2

Inference Rule

vy
vy

g —>

1 " [ ﬁn:E[nZ] _>ﬁn

Qi —>
Figure 11.2: An Uncertain System
Theorem 11.5. Assume &;1,&2, , m,Mi1, M2, - -+ » Min are independent
uncertain sets with membership functions pui1, 2, 5 fim, Vils Vi2s " * * s Vins
i=1,2,---  k, respectively. Then the uncertain system from (a1, a9, -+, Qm)

to (ﬁlvﬂQa"' aﬁn) 18

k *
Ci* E[mj]
o= 11.23
b ;cl—i—cz—k-”—kck ( )
for j =1,2,---,n, where n;; are uncertain sets whose membership functions
are given by
Vij )
Zchy), if vij(y) < ci/2
vij(y) vij(y) + ¢ i) > 1—a)2 (11.24)
&
0.5, otherwise
and c; are constants determined by
¢i= min pi(ag) (11.25)

1<I<m
fori=1,2,---k, j=1,2,---  n, respectively.

Proof: It follows from inference rule [T.4l that the uncertain sets n; are

k *
. _ Ci * 15
K ;C1+C2+"'+Ck

for j =1,2,---,n. Since nj;,4 = 1,2,--- ,k,j = 1,2,--- ,n are independent
uncertain sets, we get the theorem immediately by the linearity of expected
value operator.

Remark 11.1: The uncertain system allows the uncertain sets n;; in the
rule-base (ITI8)) become constants b;;, i.e.,

Mij = bij (11.26)
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fori =1,2,---,kand j = 1,2,---,n. For this case, the uncertain system

([IT23) becomes
k
Ci-bi]‘
= 11.27
fi ;cl—i—cz—k-”—kck ( )
forj=1,2,---,n.

Remark 11.2: The uncertain system allows the uncertain sets 7;; in the

rule-base (IT.I8) become functions h;; of inputs o, s, - -, o, i€,

772‘]‘ = hij(al,a2,~-~ ,am) (1128)
fori =1,2,--- ,kand j = 1,2,--- ,n. For this case, the uncertain system
([IT23) becomes

" eioh (a1, Q)

gt Tbig \Cv1, 2,y iy
P= 11.29
5J ; c1+cCa+ -+ ( )

forj=1,2,--- ,n.

Uncertain Systems are Universal Approximators

Uncertain systems are capable of approximating any continuous function on
a compact set (i.e., bounded and closed set) to arbitrary accuracy. This is the
reason why uncertain systems may play a controller. The following theorem
shows this fact.

Theorem 11.6 (Peng [178]). For any given continuous function g on a
compact set D C R™ and any given € > 0, there exists an uncertain system

f such that

sup | f(ar, a0, yam) — glar,ag, - ,am)| <& (11.30)

(05170127"' 7am)€D

Proof: Without loss of generality, we assume that the function g is a real-
valued function with only two variables «; and as, and the compact set is
a unit rectangle D = [0,1] x [0,1]. Since g is continuous on D and then is
uniformly continuous, for any given number £ > 0, there is a number § > 0
such that

l9en, a2) — glef, ab)| < e (11.31)

whenever ||(a1, as) — (o}, ab)|| < 6. Let k be an integer larger than 1/(1/26),
and write
i—1 i j—1

DijZ{(al,Oéz) | <a; <

. <a2<J} (11.32)

k' ok k

for 4,j = 1,2,--- ,k. Note that {D;;} is a sequence of disjoint rectangles
whose “diameter” is less than §. Define rectangular uncertain sets
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i—1 i
o =1,2,.. 11.
gz ( k 7k)a 1 <y 7ka ( 33)
n; = J=1 j=1,2,-- k. (11.34)
i I{i ’k' 9 )<y ’

Then we assume a rule-base with k x k if-then rules,
Rule ij: If § and n; then g(i/k,j/k), 4,j=1,2,--- k. (11.35)

According to the inference rule, the corresponding uncertain system from D
to R is

f(alao@):g(i/kaj/k)a if (alon)EDijvivj:vaa"' 7k' (1136)
It follows from (I1.3T)) that

sup |f(ar,a2) —g(ar,az)| = max  sup  |f(a1, a2) —g(ar, az)|
((11,(12)€D 1<i,j<k ((11,(12)€Dij

I e l9(i/k, 3/k) = glar, a2)] < max e=e

The theorem is thus verified.

11.3 Inference Control

An inference controller is a controller based on the inference rule. Fig-
ure shows an inference control system consisting of an inference con-
troller and a process. Note that t represents time, aq(t), aa(t),- -+ , aun,(t) are
not only the inputs of inference controller but also the outputs of process,
and (1 (t), Ba2(t), -, Bn(t) are not only the outputs of inference controller but
also the inputs of process.

Inputs of Controller p Outputs of Controller
Outputs of Process rocess Inputs of Process
O e O OB Ol {50
() > 13 () = B2(t)=E[n3 (t)] | B2(t)
v () > =105, (8) =1 Bn (1) =E [1;; ()] | Bn (1)

Figure 11.3: An Inference Control System
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11.4 Inverted Pendulum

Inverted pendulum system is a nonlinear unstable system that is widely used
as a benchmark for testing control algorithms. Many good techniques already
exist for balancing inverted pendulum. Especially, Gao [43] successfully bal-
anced an inverted pendulum by the inference controller with 5 x 5 if-then
rules.

A(t)
F(t) ]
7 7D
N\ \)

Figure 11.4: An Inverted Pendulum in which A(t) represents the angular
position and F'(t) represents the force that moves the cart at time ¢.



Appendix A

Supplements

This appendix introduces a law of truth conservation and a maximum un-
certainty principle that have been used in this book. This appendix also
provides a brief history of evolution of measures and discusses why uncer-
tainty theory is reasonable. In addition, this appendix proposes a way to
determine uncertainty distributions via expert’s experimental data. Finally,
we answer the question “what is uncertainty”.

A.1 Law of Truth Conservation

The law of excluded middle tells us that a proposition is either true or false,
and the law of contradiction tells us that a proposition cannot be both true
and false. In the state of uncertainty, some people said, the law of excluded
middle and the law of contradiction are no longer valid because the truth
degree of a proposition is no longer 0 or 1. I cannot gainsay this viewpoint
to a certain extent.

But it does not mean that you might “go as you please”. At least, I think,
the law of truth conservation should be valid in the state of uncertainty.
In other words, the sum of truth values of a proposition and its negative
proposition is identical to 1. That is, we always have

M{A} + M{A°} =1 (A1)

for each proposition A. This means that the law of truth conservation is
nothing but the self-duality property. The law of truth conservation is weaker
than the law of excluded middle and the law of contradiction. Furthermore,
the law of truth conservation agrees with the law of excluded middle and the
law of contradiction when the uncertainty vanishes, i.e., when M{A} tends
to either 0 or 1.

A.2 Maximum Uncertainty Principle

An event has no uncertainty if its measure is 1 (or 0) because we may believe
that the event occurs (or not). An event is the most uncertain if its measure
is 0.5 because the event and its complement may be regarded as “equally
likely”.

In practice, if there is no information about the measure of an event, we
should assign 0.5 to it. Sometimes, only partial information is available.
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Law of Truth Conservation

Law of Law of

Excluded Middle . Contradiction

Figure A.1: Relationship among Three Laws

For this case, the value of measure may be specified in some range. What
value does the measure take? For the safety purpose, we should assign it the
value as close to 0.5 as possible. This is the maximum uncertainty principle
proposed by Liu [120].

Maximum Uncertainty Principle: For any event, if there are multiple

reasonable values that an uncertain measure may take, then the value as close
to 0.5 as possible is assigned to the event.

Example A.1: Let A be an event. Based on some given information, the
measure value M{A} is on the interval [a,b]. By using the maximum uncer-
tainty principle, we should assign

a, if0b<a<b
M{A}=<¢ 0.5, ifa<05<b (A.2)
b, ifa<b<0.5.

Especially, if M{A} is known to be less than a, then we assign

a, ifa<0.5
M{A} = A3
{A} { 0.5, ifa>0.5: (A.3)
if M{A} is known to be greater than b, then we assign
0.5, ifb<05
M{A} = ’ A4
{a} { b, ifb>0.5. (A4)

A.3 How to Determine Distribution?

How do we determine the uncertainty distribution for an uncertain variable
like “about 100km”? Personally I think uncertainty distribution determina-
tion is based on expert’s experimental data rather than historical data!

How do we obtain expert’s experimental data? The starting point is to
invite one or more domain experts who are asked to complete a questionnaire
about the meaning of an uncertain variable £ like “about 100km”.
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We may ask the domain expert to choose a possible value x (say 110km)
that the uncertain variable £ may take, and then quiz him
“How likely is & less than z7”

Denote the expert’s belief degree by « (say 0.6). An experimental data (x, )
is thus acquired from the domain expert.

« 1l -«

M <z} ME =z}

Figure A.2: An Experimental Data (x, «)

Assume that the following experimental data are obtained by the ques-
tionnaire,
(x1,01), (T2, 2), -+, (Tp,an). (A.5)

We will accept them as the expert’s experimental data if (perhaps after a
rearrangement)

1 <To< - <ZTp, 0<a<an<---<a, <1 (A.6)

Otherwise, the experimental data are inconsistent and rejected.

Empirical Uncertainty Distribution

Based on the expert’s experimental data (z1, 1), (x2,a2), -, (Tn, ay), we
obtain an empirical uncertainty distribution

0, if v <
O(r)=< o+ (i1 —ai)(@ - gji), fo; <z <zip1,1<i<n (A7)
Tit+1 — Ty
1, if x>z,

Multiple Domain Experts

Assume there are m domain experts and each produces an uncertainty distri-
bution. Then we may get m uncertainty distributions ®1(x), ®2(x), - - -, Py ()
that are aggregated to an uncertainty distribution

O(z) = w1P1(z) + wePs(z) + - - - + W Py (2) (A.8)

where wi,ws, - ,w,, are convex combination coefficients representing
weights of the domain experts.
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Figure A.3: Empirical Uncertainty Distribution ®(x)

Principle of Least Squares

Assume that the uncertainty distribution to be determined has a known func-
tional form with one or more unknown parameters, say, ®(x|a,b). Based on
the expert’s experimental data (z1, 1), (z2,a2), -, (Tn, ay), the unknown
parameters a and b should solve the optimization problem,

n

mlnz (zi]a,b) — a;)?. (A.9)

For example, assume that the uncertainty distribution has a linear form with
two unknown parameters, i.e.,

b(x)=ax+b (A.10)

where the unknown parameters a and b should solve
n
i b —a;)? All
min ;(awz +b— ) (A.11)

whose optimal solution tells us that the linear uncertainty distribution is (not
rigorous)
O(z) =a*r+ b (A.12)

where

n
nrTo — E Ti0

at = = (A.13)

nz? — E x?
i=1
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b* =a—a'z, (A.14)
T=(x1+z2+ - +zp)/n, (A.15)
a= (g +as+---+a,)/n (A.16)

A.4 Evolution of Measures

Perhaps we are accustomed to assigning to an event two state symbols, true
or false, to represent the truth degree of the event. However, starting with
Aristotle’s epoch, it was observed that such a two-valued assignment has its
shortages. Today, it is well-known that the truth degree may be assigned
any values between 0 and 1, where 0 represents “completely false” and 1
represents “completely true”. The higher the truth degree is, the more true
the event is. It is clear that there are multiple assignment ways. This fact
has resulted in several types of measure, for example,

1933: Probability Measure (A.N. Kolmogoroff);
1954: Capacity (G. Choquet);

1974: Fuzzy Measure (M. Sugeno);

1978: Possibility Measure (L.A. Zadeh);

2002: Credibility Measure (B. Liu and Y. Liu);
2007: Uncertain Measure (B. Liu).

Probability Measure

A classical measure is essentially a set function satisfying nonnegativity and
countable additivity axioms. In order to deal with randomness, Kolmogoroff
(1933) defined a probability measure as a special classical measure with nor-
mality axiom. In other words, the following three axioms must be satisfied:

Axiom 1. (Normality) Pr{Q} =1 for the universal set .

Axiom 2. (Nonnegativity) Pr{A} > 0 for any event A.

Axiom 3. (Countable Additivity) For every countable sequence of mutually
disjoint events {A;}, we have

Pr{E‘jAZ} = iPr{Ai}. (A.17)

It is clear that probability measure obeys the law of truth conservation and
is consistent with the law of excluded middle and the law of contradiction.

Capacity

In order to deal with human systems, the additivity axiom seems too strong.
The earliest challenge was from the theory of capacities by Choquet (1954)
in which the following axioms are assumed:
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Axiom 1. 7{0} = 0.
Axiom 2. 7{A} < n{B} whenever A C B.
Axiom 3. 7 {lim Ai} = lim {4}

71— 00 71— 00

One disadvantage is that capacity does not obey the law of truth conser-
vation and is inconsistent with the law of excluded middle and the law of
contradiction.

Fuzzy Measure

Sugeno (1974) generalized classical measure theory to fuzzy measure the-
ory by replacing additivity axiom with weaker axioms of monotonicity and
continuity:
Axiom 1. {0} = 0.
Axiom 2. 7{A} < 7{B} whenever A C B.
Axiom 3. W{llim Ai} = lim {4}

71— 00 71— 00

This version of fuzzy measure seems identical with Choquet’s capacity. The
continuity axiom was replaced with semicontinuity axiom by Sugeno in 1977.
However, every version of fuzzy measure does not obey the law of truth
conservation and is inconsistent with the law of excluded middle and the law
of contradiction.

Possibility Measure

In order to deal with fuzziness, Zadeh (1978) proposed a possibility measure
that satisfies the following axioms:

Axiom 1. (Normality) Pos{O} =1 for the universal set O.
Axiom 1. (Nonnegativity) Pos{(}} =0 for the empty set (.

Axiom 3. (Mazimality) For every sequence of events {A;}, we have

i=1

Unfortunately, possibility measure does not obey the law of truth conser-
vation and is inconsistent with the law of excluded middle and the law of
contradiction.

Credibility Measure

In order to overcome the shortage of possibility measure, Liu and Liu (2002)
presented a credibility measure that may be defined by the following four
axioms:
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Axiom 1. (Normality) Cr{©} =1 for the universal set ©.
Axiom 2. (Monotonicity) Cr{A} < Cr{B} whenever A C B.
Axiom 3. (Self-Duality) Cr{A} + Cr{A°} =1 for any event A.

Axiom 4. (Mazimality) For every sequence of events {A;}, we have

Cr { G AZ} = §7 Cr{4;}, if (7 Cr{4;} < 0.5. (A.19)
=1

i=1 i=1

Note that credibility measure and possibility measure are uniquely deter-
mined by each other via the following two equations,

Cr{A} = ; (Pos{A} +1 —Pos{A}), (A.20)

Pos{A} = (2Cr{A}) A 1. (A.21)

Credibility measure obeys the law of truth conservation and is consistent
with the law of excluded middle and the law of contradiction. For exploring
the credibility theory, the reader may consult the book [120].

Uncertain Measure

In order to deal with uncertainty in human systems, Liu (2007) proposed an
uncertain measure based on the following five axioms:

Axiom 1. (Normality) M{T'} =1 for the universal set T'.
Axiom 2. (Monotonicity) M{A1} < M{A2} whenever Ay C As.
Axiom 3. (Self-Duality) M{A} + M{A°} =1 for any event A.

Axiom 4. (Countable Subadditivity) For every countable sequence of events

{A;}, we have
(o) o0
M {U AZ} <> M{A} (A.22)
i=1 i=1
Axiom 5. (Product Measure Aziom) Let (T, L, M) be uncertainty spaces
for k=1,2,--- n. Then the product uncertain measure M is an uncertain
measure on the product o-algebra L1 X Lo X +-- X L, satisfying

M { 11 Ak} = min Me{Ax} (A.23)

k=1

Uncertain measure is neither a completely additive measure nor a completely
nonadditive measure. In fact, uncertain measure is a “partially additive
measure” because of its self-duality. Uncertain measure obeys the law of
truth conservation and is consistent with the law of excluded middle and the
law of contradiction.
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Capacity

Probability
Measure

Credibility \ Uncertain
Measure Measure

Possibility Measure

Fuzzy Measure

Figure A.4: Relationship among Various Measures. Randomness belongs to
the domain of probability measure and uncertainty belongs to the domain of
uncertain measure undoubtedly. Fuzziness belongs to the domain of possi-
bility /credibility measure. Some scholars deal with roughness by probabil-
ity measure and then roughness is an alternative explanation of randomness;
some scholars deal with roughness by possibility /credibility measure and then
roughness is an alternative explanation of fuzziness; and some scholars deal
with roughness by uncertain measure and then roughness is an alternative
explanation of uncertainty. Greyness uses probability measure and then is
an alternative explanation of randomness.

A.5 Uncertainty vs. Randomness

Probability theory is a branch of mathematics based on Kolmogoroff’s ax-
ioms. In fact, probability theory may be equivalently reconstructed based on
the following 5 axioms:

Axiom 1. (Normality) Pr{Q} = 1 for the universal set §Q.

Axiom 2. (Monotonicity) Pr{A;} < Pr{As} whenever A; C As.

Axiom 3. (Self-Duality) Pr{A} + Pr{A°} =1 for any event A.

Axiom 4. (Countable Additivity) For every countable sequence of mutually
disjoint events {A;}, we have

i=1 i=1
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Axiom 5. (Product Probability Aziom) Let (Q, Ak, Pry) be probability spaces
for k=1,2,--- . n. Then the product probability measure Pr is a probability
measure on the product o-algebra A1 X Ag X -+ X A, satisfying

Pr { ﬁ Ak} = ﬁ Prk{Ak}. (A25)
k=1

k=1

It is clear that uncertain measure and probability measure share first three
axioms. The first differentia is that uncertain measure assumes countable
subadditivity axiom and probability measure assumes countable additivity
axiom. The second differentia is that product uncertain measure is the min-
imum of uncertain measures of independent uncertain events and product
probability measure is the product of probability measures of independent
random events.

Probability theory and uncertainty theory are complementary mathemat-
ical systems that provide two acceptable mathematical models to deal with
imprecise quantities. Probability model usually simulates objective random-
ness, and uncertainty model usually simulates human uncertainty.

A.6 Uncertainty + Randomness

In many cases, uncertainty and randomness simultaneously appear in a sys-
tem. For example, what is an uncertain variable plus a random variable?
Actually, you will find that the answer is quite simple.

Suppose (I, L, M) is an uncertainty space and (2, A, Pr) is a probability
space. Then their product is (I' x Q,L x A, M A Pr) in which the universal
I' x Q is clearly the set of all ordered pairs of (v,w) whenever v € T" and
w € Q. Also, the product o-algebra L x A is unambiguous too. What is the
product measure M A Pr? In fact, since a probability measure satisfies the
first four axioms of uncertain measure, the product measure MA Pr satisfying

(M APr){A x A} = M{A} A Pr{A} (A.26)

is just an uncertain measure on I' x €, where A is an uncertain event and A
is a random event.

Recall that an uncertain variable £ is a measurable function from an un-
certainty space to the set of real numbers, and a random variable 7 is a
measurable function from a probability space to the set of real numbers.
Since

(T xQ,L x A MAPr)

is an uncertainty space, the functions of uncertain variable and random vari-
able, say £ +n or £ x n, are uncertain variables because they are measurable
functions on the uncertainty space (I' x Q,L x A, M A Pr).

Theorem A.1. Let & be an uncertain variable with uncertainty distribution
O, and let ) be a random variable with probability distribution V. If f(x,y) is



234 APPENDIX A - SUPPLEMENTS

a strictly increasing function, then 7 = f(£,7n) is an uncertain variable with
inverse uncertainty distribution

T Ha) = f(@ (@), ¥} a)). (A.27)
Proof: It follows from Theorem immediately.

Example A.2: Let £ be an uncertain variable with uncertainty distribution
®, and let 7 be a random variable with probability distribution ¥. Then £+n
is an uncertain variable with inverse uncertainty distribution

YT a) = d 1 (a) + T} (a). (A.28)

Example A.3: Let £ be a nonnegative uncertain variable with uncertainty
distribution ®, and let n be a nonnegative random variable with probability
distribution ¥. Then £ X 7 is an uncertain variable with inverse uncertainty
distribution

T a)=d"a) x T (a). (A.29)

Theorem A.2. Let £ be an uncertain variable with uncertainty distribution
O, and let n be a random variable with probability distribution V. If f(x,y) is
a strictly decreasing function, then T = f(£,1n) is an uncertain variable with
mverse uncertainty distribution

T Ha)=f(@ 11 —a), ¥ 11 —a)). (A.30)
Proof: It follows from Theorem immediately.

Theorem A.3. Let £ be an uncertain variable with uncertainty distribution
O, and let ) be a random variable with probability distribution V. If f(x,y) is
strictly increasing with respect to x and strictly decreasing with respect to y,
then T = f(§,m) is an uncertain variable with inverse uncertainty distribution

T-(a) = (@ (a), (1 - ). (A.31)
Proof: It follows from Theorem immediately.

Example A.4: Let £ be an uncertain variable with uncertainty distribution
®, and let n be a random variable with probability distribution ¥. Then £ —n
is an uncertain variable with inverse uncertainty distribution

T a)=d 1 a) - ¥ (1-a). (A.32)
Example A.5: Let £ be a positive uncertain variable with uncertainty distri-

bution ®, and let 7 be a positive random variable with probability distribution
U. Then £/n is an uncertain variable with inverse uncertainty distribution

T a) =3 a)/T 1 - a). (A.33)
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Exercise A.1: Let &,&,---,&, be uncertain variables with uncertainty
distributions ®1, @y, --- , ®,,, and let n1, 12, -+ ,n, be random variables with
probability distributions Wy, Wsy, -+ W, respectively. Assume f is an alter-
nating monotone function. Please determine the uncertainty distribution of

T:f(£17£2a"' 7£mv7717772a"' a77n) (A34)

Theorem A.4. Assume that £ is a Boolean uncertain variable and n is a
Boolean random variable, i.e.,

1 with uncertain measure a
= . . (A.35)
0 with uncertain measure 1 — a,
1 with probability measure b
0= o prona ity (A.36)
0 with probability measure 1 — b.

For any Boolean function f, the uncertain variable T = f(&,n) is also Boolean
and

sup pu(z) Av(y), if sup p(z) Av(y) <0.5

M{r =1} = fly)=1 flzy)=1
1— sup p(z)Av(y), if sup p(x)Av(y) =05

f(x,y)=0 flz,y)=1

and

f(su;)) w(z) Av(y), if f(su;)) p(z) Av(y) < 0.5

,y)=0 x,y)=0

Mir =0 = oy

r=0} 1— sup p(@)Av(y), i sup plx)Av(y)>0.5

fzy)=1 f(z,y)=0

where x and y take values either 0 or 1, and p and v are defined by

a, ifr=1
plx) = { | —a o0, (A.37)

b, ify=1
= A.38

V) {1—b, ify=0. (4.38)
Proof: It follows from Theorem immediately.

Example A.6: Let £ be an uncertain proposition with truth value a in
uncertain measure, and let 7 be a random proposition with truth value b in
probability measure. Then

TEAD) =M{E{=1}APr{n=1}=a A}, (A.39)

TEVy) =M{{=1}VPr{n=1}=a V), (A.40)
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TE—-n=01-M{=1})vPr{n=1}=(1—-a) Vb (A.41)
Exercise A.2: Let &,&, -+ ,&, be Boolean uncertain variables, and let
M,M2, - , 7 be Boolean random variables. Assume f is a Boolean function.
Please determine the Boolean uncertain variable

T:f(£17£2a"' 7£mv7717772a"' a77n) (A42)

A.7 Uncertainty vs. Fuzziness

The essential differentia between fuzziness and uncertainty is that the former
assumes

Cr{AUB} =Cr{A} Vv Cr{B}, if Cr{A}VvCr{B} <05

for any events A and B no matter if they are independent or not, and the
latter assumes

M{AU B} = M{A} v M{B}

only for independent events A and B. However, a lot of surveys showed that
the measure of union of events is not necessarily maxitive, i.e.,

M{AU B} # M{A} v M{B}

when the events A and B are not independent. This fact states that human
systems do not behave fuzziness.

For example, it is assumed that the distance between Beijing and Tianjin
is “about 100km”. If “about 100km” is regarded as a fuzzy concept, then we
may assign it a membership function, say

(e) (z —80)/20, if 80 <z <100
| (120 —2)/20, if 100 <z < 120.

This membership function represents a triangular fuzzy variable (80, 100, 120).
Please do not argue why I choose such a membership function because it is not
important for the focus of debate. Based on this membership function, possi-
bility theory (or credibility theory) will conclude the following proposition:

The distance between Beijing and Tianjin is “exactly 100km” with
belief degree 1 in possibility measure (or 0.5 in credibility measure).

However, it is doubtless that the belief degree of “exactly 100km” is almost
zero. Nobody is so naive to expect that “exactly 100km” is the true dis-
tance between Beijing and Tianjin. This paradox shows that those imprecise
quantities like “about 100km” cannot be quantified by possibility measure
(or credibility measure) and then they are not fuzzy concepts.

If those imprecise quantities are understood as uncertain variables, then
the paradox will disappear immediately. Furthermore, uncertainty theory is
competent to do almost all jobs of fuzzy theory. This is the main reason why
we need the uncertainty theory.
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A.8 What Is Uncertainty?

Now we are arriving at the end of this book. Perhaps some readers may
complain that I never clarify what uncertainty is. In fact, I really have no
idea how to use natural language to define the concept of uncertainty clearly,
and I think all existing definitions by natural language are specious just like a
riddle. A very personal and ultra viewpoint is that the words like randomness,
fuzziness, roughness, greyness, and uncertainty are nothing but ambiguity of
human language!

However, fortunately, some “mathematical scales” have been invented to
measure the truth degree of an event, for example, probability measure, ca-
pacity, fuzzy measure, possibility measure, credibility measure as well as un-
certain measure. All of those measures may be defined clearly and precisely
by axiomatic methods.

Let us go back to the first question “what is uncertainty”. Perhaps we can
answer it this way. If it happened that some phenomena can be quantified
by uncertain measure, then we call the phenomena “uncertainty”. In other
words, uncertainty is any concept that satisfies the axioms of uncertainty
theory. Thus there are various valid possibilities (e.g., a personal belief de-
gree) to interpret uncertainty theory. Could you agree with me? I hope that
uncertainty theory may play a mathematical model of uncertainty in your
own problem.



Appendix B

Probability Theory

Probability theory is a branch of mathematics for studying the behavior of
random phenomena. The emphasis in this appendix is mainly on probabil-
ity space, random variable, probability distribution, independence, expected
value, variance, moments, critical values, entropy and conditional probabil-
ity. The main results in this appendix are well-known. For this reason the
credit references are not provided.

B.1 Probability Space

Let €2 be a nonempty set, and A a o-algebra over €). If Q is countable, usually
A is the power set of Q. If Q is uncountable, for example @ = [0, 1], usually
A is the Borel algebra of 2. Each element in A is called an event. In order
to present an axiomatic definition of probability, it is necessary to assign to
each event A a number Pr{A} which indicates the probability that A will
occur. In order to ensure that the number Pr{A} has certain mathematical
properties which we intuitively expect a probability to have, the following
three axioms must be satisfied:

Axiom 1. (Normality) Pr{Q} = 1.
Axiom 2. (Nonnegativity) Pr{A} > 0 for any event A.

Axiom 3. (Countable Additivity) For every countable sequence of mutually
disjoint events {A;}, we have

Definition B.1. The set function Pr is called a probability measure if it
satisfies the normality, nonnegativity, and countable additivity axioms.

Example B.1: Let Q@ = {wy,ws, -}, and let A be the power set of Q.

Assume that p1,ps,- -+ are nonnegative numbers such that p; +ps +--- = 1.
Define a set function on A as
Pr{A} =Y p, AcA (B.2)
w; €A

Then Pr is a probability measure.
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Example B.2: Let ¢ be a nonnegative and integrable function on R (the
set of real numbers) such that

/ o(z)dx = 1. (B.3)
®

Then for any Borel set A, the set function

Pr{A} = / ¢(z)dx (B.4)
A
is a probability measure on R.

Theorem B.1. Let Q be a nonempty set, A a o-algebra over 0, and Pr a
probability measure. Then we have

(a) Pr is self-dual, i.e., Pr{A} + Pr{A°} =1 for any A € A;

(b) Pr is increasing, i.e., Pr{A} < Pr{B} whenever A C B.

Proof: (a) Since A and A¢ are disjoint events and A U A° = Q, we have
Pr{A} +Pr{A°} = Pr{Q} = 1. (b) Since A C B, we have B = AU (BN A°),
where A and BN A€ are disjoint events. Therefore Pr{B} = Pr{A}+Pr{Bn
A} > Pr{A}.

Probability Continuity Theorem

Theorem B.2 (Probability Continuity Theorem). Let Q be a nonempty set,
A a o-algebra over Q, and Pr a probability measure. If Ay, As,--- € A and
lim; .., A; exists, then

lim Pr{4;} = Pr{hm Ai} . (B.5)

71— 00

Proof: STEP 1: Suppose {A;} is an increasing sequence. Write A; — A and
Ap = 0. Then {A;\A;_1} is a sequence of disjoint events and

[e's) k
U(Ai\Ai—l) =A, U(Ai\Ai—l) = Ay

for k =1,2, -+ Thus we have

Pr{A} — Pr{ U (Ai\Ail)} _ iPr{Ai\Ai,l}

i=1

k k

k=00 = i=1

= klim Pr{A}.
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StEP 2: If {A;} is a decreasing sequence, then the sequence {A1\A4;} is
clearly increasing. It follows that

Pr{A,} — Pr{A} = Pr{.lim (Al\Ai)} = lim Pr{A;\4;}
=Pr{A;} — _lim Pr{4;}

which implies that Pr{A4;} — Pr{A}.
STEP 3: If {4;} is a sequence of events such that A; — A, then for each

k, we have
m A, C Ak C U A,
i=k i=k

Since Pr is increasing, we have

Pr{ﬁAz} < Pr{4;} < Pr{GAZ}.
i=k

i=k
Note that
ﬂAz‘TA UAz‘lA
i=k i=k

It follows from Steps 1 and 2 that Pr{4,;} — Pr{A}.

Probability Space

Definition B.2. Let Q) be a nonempty set, A a og-algebra over ), and Pr a
probability measure. Then the triplet (2, A, Pr) is called a probability space.

Example B.3: Let Q@ = {w1,ws, -}, A the power set of Q, and Pr a
probability measure defined by (B:2)). Then (2, A, Pr) is a probability space.

Example B.4: Let Q = [0,1], A the Borel algebra over 2, and Pr the
Lebesgue measure. Then ([0, 1], A, Pr) is a probability space, and sometimes
is called Lebesgue unit interval. For many purposes it is sufficient to use it
as the basic probability space.

Product Probability Space

Let (9;,A;,Pr;), i = 1,2,--- ,n be probability spaces, and Q = 7 x Qg X

X Qp, A = A Xx Ay X --- X A,. Note that the probability measures
Pr;,i = 1,2,--- ,n are finite. It follows from the classical measure theory
that there is a unique measure Pr on A such that

PI‘{Al X A2 X oo X An} = PI‘l{Al} X PI‘Q{AQ} X X PI‘n{An}
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for any A; € A;, i =1,2,--- ,n. This conclusion is called the product proba-
bility theorem. The measure Pr is also a probability measure since

PT{Q} = Pr1{Q1} X PTQ{QQ} X e X Prn{Qn} =1.

Such a probability measure is called the product probability measure, denoted
by Pr = Pry X Pro x .-+ x Pr,,.

Definition B.3. Let (Q;,A;,Pr;), i = 1,2,--- ,n be probability spaces, and
Q=N xQox - xQ,, A= A1 XA X ---x Ay, Pr = Pr; x Prg X --- X Pry,.
Then the triplet (Q, A, Pr) is called the product probability space.

B.2 Random Variable

Definition B.4. A random variable is a measurable function from a proba-
bility space (2, A, Pr) to the set of real numbers, i.e., for any Borel set B of
real numbers, the set

{¢eB}={we]|{w) e B} (B.6)
1S an event.
Example B.5: Take (2, A, Pr) to be {w1,ws} with Pr{w;} = Pr{ws.} = 0.5.
Then the function
0, fw=uwy
§w) = { 1, ifw=ws
is a random variable.

Example B.6: Take (2, A,Pr) to be the interval [0, 1] with Borel algebra
and Lebesgue measure. We define ¢ as an identity function from Q to [0,1].
Since ¢ is a measurable function, it is a random variable.

Example B.7: A deterministic number ¢ may be regarded as a special ran-
dom variable. In fact, it is the constant function £(w) = ¢ on the probability
space (Q, A, Pr).

Definition B.5. Let & and & be random variables defined on the probability
space (Q,A,Pr). We say & = & if &1 (w) = &a(w) for almost all w € .
Random Vector

Definition B.6. An n-dimensional random vector is a measurable function
from a probability space (2, A,Pr) to the set of n-dimensional real vectors,
i.e., for any Borel set B of R", the set

{¢eB}={weQ|&w)e B} (B.7)

1S an event.
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Theorem B.3. The vector (&1,&2,- -+ ,&n) is a random vector if and only if
&1,&, -+, &, are random variables.

Proof: Write € = (£1,&2,- -+ ,&,). Suppose that £ is a random vector on the
probability space (2, A, Pr). For any Borel set B of R, the set B x R~ ! is
also a Borel set of R"™. Thus we have

{@eBl={a€B&eR, - LeRt={€ecBxR"}eA

which implies that &; is a random variable. A similar process may prove that
&,8&3,- -, &, arerandom variables. Conversely, suppose that all £, &, -+ , &,
are random variables on the probability space (2, A, Pr). We define

B={BCR"|{¢€B}eA}.

The vector & = (£1,&2,- -+ ,&,) is proved to be a random vector if we can
prove that B contains all Borel sets of R™. First, the class B contains all
open intervals of " because

{genazaz} m{é-z az, }G.A
i=1

Next, the class B is a o-algebra of R™ because (i) we have R™ € B since
{EeR"}=Q e A; (ii) if B e B, then {£ € B} € A, and

{€eB}t={fecB}cA

which implies that B¢ € B; (iii) if B; € Bfori=1,2,---, then {é € B;} € A

and
{ge UBZ}:U{{eBi}eA

i=1
which implies that U;B; € B. Since the smallest o-algebra containing all

open intervals of R” is just the Borel algebra of R™, the class B contains all
Borel sets of R”. The theorem is proved.

Random Arithmetic

In this subsections, we will suppose that all random variables are defined on a
common probability space. Otherwise, we may embed them into the product
probability space.

Definition B.7. Let f : R — R be a measurable function, and £1,&2, -+ ,&n
random wvariables defined on the probability space (2, A,Pr). Then £ =
f(&, &, &) is a random variable defined by

g(w) = f(gl(w)7§2(w)7 U 7571("‘)))7 Vw € Q. (B8)
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Example B.8: Let & and & be random variables on the probability space
(Q,A,Pr). Then their sum is

(&G +&)(w) =&Ww) +&(w), Ywe
and their product is
(€1 x &)(w) = &1 (w) x &(w), Yw € Q.

The reader may wonder whether &(wi,ws, -+ ,w,) defined by (B is a
random variable. The following theorem answers this question.

Theorem B.4. Let € be an n-dimensional random vector, and f : R" — R
a measurable function. Then f(&) is a random variable.

Proof: Assume that £ is a random vector on the probability space (2, A, Pr).
For any Borel set B of R, since f is a measurable function, f~!(B) is also a
Borel set of R”. Thus we have

{f(§)eBy={¢cf'(B)}ecA

which implies that f(£€) is a random variable.

B.3 Probability Distribution

Definition B.8. The probability distribution ®: R — [0,1] of a random
variable & is defined by
O(z) =Pr{¢ <a}. (B.9)

That is, ®(x) is the probability that the random variable ¢ takes a value less
than or equal to x.

Example B.9: Take (2, A, Pr) to be {w1,ws} with Pr{w;} = Pr{w.} = 0.5.
We now define a random variable as follows,

e ={ eI

if w=ws.

Then & has a probability distribution

0, ifz<-1
O(z)=¢ 05, if —1<z<1
1, ifz>1.

Theorem B.5 (Sufficient and Necessary Condition for Probability Distribu-
tion). A function ® : R — [0,1] is a probability distribution if and only if it
18 an increasing and right-continuous function with

lim ®(z) =0; lim &(z)=1. (B.10)

T——00 T——+00
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Proof: For any z,y € R with < y, we have
O(y) — (z) =Pr{z <{ <y} >0.

Thus the probability distribution ® is increasing. Next, let {;} be a sequence
of positive numbers such that ¢; — 0 as i — co. Then, for every i > 1, we
have

O(x+e;)—P(x) =Pr{r <& <x+e}

It follows from the probability continuity theorem that

lim ®(z +¢;) — ®(z) = Pr{0} = 0.

11— 00

Hence @ is a right-continuous function. Finally,

lim @(z) = xgglw Pr{¢ <z} =Pr{l} =0,

T——00

lim ®(z) = zEToo Pr{¢ <z} =Pr{Q} =1.

r——+00

Conversely, it is known there is a unique probability measure Pr on the Borel
algebra over R such that Pr{(—oco,z]} = ®(z) for all z € R. Furthermore,
it is easy to verify that the random variable defined by &(x) = = from the
probability space (R, A, Pr) to R has the probability distribution ®.

Probability Density Function

Definition B.9. The probability density function ¢: R — [0,4+00) of a
random variable £ is a function such that

o) - [ " )y (B.11)

holds for all x € R, where ® is the probability distribution of the random
variable &.

Theorem B.6 (Probability Inversion Theorem). Let £ be a random variable

whose probability density function ¢ exists. Then for any Borel set B of R,
we have

Pr¢ e B} = [ olu)dy. (B.12)
B
Proof: Let € be the class of all subsets C' of & for which the relation
Prg e C}= [ oy (B.13)
c

holds. We will show that C contains all Borel sets of . It follows from
the probability continuity theorem and relation (B.I3) that € is a monotone
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class. Tt is also clear that € contains all intervals of the form (—o0, a], (a, b],
(b,00) and @ since

Pr{¢ € (—o0,a]} = ®(a / o(y)dy,
+oo
Pr{€ € (b +00)} = ®(+00) — B(b) = / o(y)dy,

Pr{¢ € (a,b]} = ®(b) — / #(y)dy,
Pr{¢ el /¢

where @ is the probability distribution of £. Let F be the algebra consisting of
all finite unions of disjoint sets of the form (—oo, a], (a, b], (b, o) and (. Note
that for any disjoint sets C1,Cs, -+ ,Cpy of Fand C = C1 UCy U - - U Cyy,
we have

PriceC) =Y Price iy =3 [ oty = [ sy
j=1 j=17Cj

That is, C € €. Hence we have F C €. Since the smallest g-algebra containing
F is just the Borel algebra of R, the monotone class theorem implies that €
contains all Borel sets of R.

Some Special Distributions

Uniform Distribution: A random variable £ has a uniform distribution if
its probability density function is defined by

qb(w):bia, a<z<b. (B.14)

where a and b are given real numbers with a < b.

Exponential Distribution: A random variable ¢ has an exponential dis-
tribution if its probability density function is defined by

P(x) = ;exp (—;) , 220 (B.15)

where 3 is a positive number.

Normal Distribution: A random variable ¢ has a normal distribution if
its probability density function is defined by

1 (x —p)?
o(z) = /2 exp <— 902 > , zeR (B.16)

where p and o are real numbers.
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B.4 Independence

Definition B.10. The random variables £1,&2,- -+ ,&m are said to be inde-
pendent if

Pr{ﬂ{gi S Bi}} = HPr{fi € B} (B.17)
i=1 i=1

for any Borel sets By, Ba,--- , By, of R.

Theorem B.7. Let & be random variables with probability distributions ®;,

1=1,2,---,m, respectively, and ® the probability distribution of the random
vector (1,82, ,&m). Then &1,&a, -+, &m are independent if and only if

D(z1, T2, Tm) = P1(x1)Pa2(x2) -+ - Py (7)) (B.18)
for all (1,22, - ,2m) € R™.
Proof: If &,&, -, &, are independent random variables, then we have
O(x1, 29, ,xm) =Pr{& < z1,& < x2, - ,E&m < T}

=Pr{& < a1} Pr{& < ao} - Pr{&n < ap}
= @1(%1)@2(1’2) e (I)m(l’m)

for all (z1,29, - ,2m) € R™. Conversely, assume that (BI8) holds. Let
To, T3, , Ty be fixed real numbers, and € the class of all subsets C' of &
for which the relation

Pr{¢i1 € C,& < g, - ,&m <z} =Pr{& € C}HPr{& <z} (B.19)

=2

holds. We will show that € contains all Borel sets of . It follows from
the probability continuity theorem and relation (B.I9) that € is a monotone
class. Tt is also clear that € contains all intervals of the form (—o0, a], (a, b],
(b,00) and (. Let F be the algebra consisting of all finite unions of disjoint
sets of the form (—oo,al, (a,b], (b,00) and . Note that for any disjoint sets
C1,Cq,--- ,Crof Fand C =CLUCyU---UCy, we have

Pr{gl 6C7§2 Sva"‘ vé-m Swm}

— Y Pr{¢; €Cja <o, ,Em < T}
j=1

=Pr{& € C}Pr{& <z} Pr{&, <zn}

That is, C € €. Hence we have F C €. Since the smallest g-algebra containing
JF is just the Borel algebra of R, the monotone class theorem implies that €
contains all Borel sets of . Applying the same reasoning to each &; in turn,
we obtain the independence of the random variables.
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Theorem B.8. Let & be random variables with probability density functions
¢i, 1 =1,2,--- ,m, respectively, and ¢ the probability density function of the

random vector (§1,&2,+++ ,&m). Then &,&, -+ ,&m are independent if and
only if

d(w1, 22, ) = P1(21)P2(22) - - - P (Tim) (B.20)
for almost all (x1,x2, - ,Ty) € R™.

Proof: If ¢(z1,x2, - ,xm) = d1(x1)d2(x2) - -+ G (Tm) a.e., then we have
ZT1 T2 Tm
O(x1, 29, ,Tm) :/ / / Gt ta, - ty)dtydts - - - dbp,
o pme g
:/ / / $1(t1)P2(t2) - - - Gt )dtrdty - - - dt
—o0 J —o0 —o0

— [ sutn)an / " ha(ta)dta - / " bt )t

= @1(%1)@2(«T2) te (I)m(l'M)

for all (z1,z2, -+ ,2m) € ™. Thus &,&, -+, &y are independent. Con-
versely, if &1, &a, - -+ , & are independent, then for any (1, x2,- -+ ,x,) € ™,
we have ®(x1, 22, -, Tpm) = P1(x1)Pa(22) - - - Py (24n). Hence

q’(l‘1,$2,"',l‘m):/ 1 / 2 / m¢1(t1)¢2(t2)"'¢m(tm)dt1dt2~-~dtm

which implies that ¢(z1, 22, -+, Zm) = ¢1(x1)d2(22) - - - P (Tm) ace.

Example B.10: Let &1,&, -+, &y, be independent random variables with
probability density functions ¢1,pa, -« , ¢, respectively, and f : R —
R a measurable function. Then for any Borel set B of real numbers, the
probability Pr{f(&1,&2, -+ ,&m) € B} is

/// od1(x1)Pa(22) -+ P (T )da1das - - - A,
f(z1,z2, ,xm)EB

B.5 Expected Value
Definition B.11. Let £ be a random variable. Then the expected value of &
1s defined by

“+oo 0
E[¢] = /0 Pr{¢ > r}dr —/ Pr{¢ <r}dr (B.21)

— 00

provided that at least one of the two integrals is finite.
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Example B.11: Assume that ¢ is a discrete random variable taking values
x; with probabilities p;, ¢ = 1,2, -+ ,m, respectively. It follows from the
definition of expected value operator that

E[ﬂ = szxz
i=1

Theorem B.9. Let & be a random variable whose probability density function
¢ exists. If the Lebesque integral

/+°° xo(x)dx

1s finite, then we have
+oo
E[¢] :/ x¢(z)dz. (B.22)

Proof: It follows from Definition [B.11] and Fubini Theorem that

£l - [ e s - / " Prle < r)ar

—0o0

= /(:00 [/:oo gzb(x)dw] dr—/ooo UOO ¢(x)dx} dr
:/(foo [/OI ¢(:c)dr} d:c—/ooo Uxogﬁ(:c)dr} dz

_ /O T (@) + [ 000 r(x)dz

- / T b,

— 00
The theorem is proved.

Theorem B.10. Let & be a random variable with probability distribution ®.
If the Lebesgue-Stieltjes integral

/_ :O 2dd(z)

1s finite, then we have

+oo
E[¢] = [ xd®(x). (B.23)

Proof: Since the Lebesgue-Stieltjes integral [ j;j xd®(x) is finite, we imme-
diately have

Y +oo 0 0
lim xd®(x) :/ xd®(x), lim xd®(x) :/ xd®(x)
y—+oo Jq 0 y——oo Jy — oo
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and
+oo Y

lim xd®(z) =0, lim xd®(z) = 0.
y——+o00 y y——0o0 | o

It follows from

+oo
[ w2 (hm B(z) - <1><y>):y<1—<1><y>>>o, ity >0,

z——400

/y zd®(z) <y (‘P(y) — lim ‘P(Z)) =yd(y) <0, ify<0

Z— — 00
—0o0

that
lim y(1—®(y)) =0, lim y®(y) =0.

y——+00 Yy——00

Let 0 =20 <21 < 22 < -+ < ,, =y be a partition of [0,y]. Then we have

sz (@)~ 0(w) — [ ad(a)

and )
n- Yy
> (= Bl — ) [ Prl¢ 2 r)dr
i=0 0
as max{|zi41 — ;| :9=0,1,--- ,n—1} — 0. Since
n—1
Z zi (D(wir1) = @) = D (1= P(@is1)) (@i — 2:) = y(@(y) —1) — 0
=0

as y — 4o0. This fact implies that

/0 T pe(e > rdr — /0 T pdd().

A similar way may prove that
0 0
—/ Pr{¢ <r}dr= / xd®(x).
— 00 — 00

Thus (B23) is verified by the above two equations.

Linearity of Expected Value Operator

Theorem B.11. Let £ and n be random variables with finite expected values.
Then for any numbers a and b, we have

Ela& + bn] = aE[€] + bE[n). (B.24)
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Proof: STEP 1: We first prove that E[¢ +b] = E[¢] + b for any real number
b. When b > 0, we have

0

El +1) :/OooPr{£+b2r}dr—/ Pr{¢ +b < r}dr

—00

o5} 0
= / Pr{¢ >r —b}dr — / Pr{¢ <r —b}dr
0 o5}

b _
:E[g]—i—/o (Pr{&¢>r—0b}+Pr{{ <r—>b})dr
= E[¢] +b.

If b < 0, then we have
0
El¢ +b] = B¢ _/b (Pr{€ > r— b} + Pr{€ < r — b)) dr = El¢] + b.

STEP 2: We prove that E[af] = aFE[{] for any real number a. If a = 0,
then the equation Efaf] = aE[¢] holds trivially. If a > 0, we have

0

Flag] = /0 " Pr{ag > r}dr — / Pr{at < r}dr

:/Ooopr{gz Z}dr—/_oooPr{fg "
—a[TreefezTha(l)—a [ pefe<T}a(?)
= aLE[¢].

If a < 0, we have

0

Elag] = /000 Pr{a& > r}dr —/ Pr{a¢ < r}dr

:/OOOPr{£< Z}dr—/OOOPT{§> Z}dr
—a [Terfe="Ya(l) —a [ pefe<Ya(])
= aE[g].

STEP 3: We prove that E[§ + n] = E[¢] + E[n] when both & and n
are nonnegative simple random variables taking values ai,aq, - ,a, and
b1,ba, -, by, respectively. Then £ 4 7 is also a nonnegative simple random
variable taking values a; +b;,¢=1,2,---,m, 7 =1,2,--- ,n. Thus we have



252 APPENDIX B - PROBABILITY THEORY

|
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STEP 4: We prove that E[¢ + 7] = E[¢] + E[n] when both £ and 7 are
nonnegative random variables. For every ¢ > 1 and every w € (), we define

1 -1 ;
k- , T <) < k,k—12 ,i2!
=0 272 2
i if i <¢(w)
k-1 k—1 k ;
. < _
oi if i S N(w) < i k=1,2,---,i2"

i, if i < n(w).

Then {&}, {n:} and {& + n;} are three sequences of nonnegative simple
random variables such that & T &, m; Tnand & +n; T &+ n as i — co. Note
that the functions Pr{¢; > r}, Pr{n; > r}, Pr{& +mn > r}, i =1,2,--- are
also simple. It follows from the probability continuity theorem that

Pr{& >r} TPr{{>r}, ¥r>0

as i — oo. Since the expected value F[] exists, we have

+oo +o00
6= [ P> rpar— [ pee > rjar = Bl
asi — oo. Similarly, we may prove that E[n;] — E[n] and E[;+n;] — E[£+1)]

as i — oo. It follows from Step 3 that E[§ + 7] = E[§] + E[n).

STEP 5: We prove that E[¢ +n] = E[¢] 4+ E[n] when £ and 7 are arbitrary
random variables. Define

&i(w) :{ ), HElw) 2 = ni(w) = { nw), if n(w) = —i

—i, otherwise, —i, otherwise.

Since the expected values E[¢] and E[n] are finite, we have

lim El&] = Blg),  Jim Eln] = Ell,  lim Fl&+ ] = B¢+

71— 00
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Note that (¢; 4+ i) and (7; + ¢) are nonnegative random variables. It follows
from Steps 1 and 4 that

E[¢ +n]

zli)fgo E[&i + ni

T (E[(&+1) + (n + )] - 20)
ler& (El& +1d)+ En; + 1] — 29)
lim (E[6] + i+ El] 4+ — 20
i Ble] + Jim Bl

= E[§] + E[n].

STEP 6: The linearity E[a&+bn] = aE[¢]+bE[n] follows immediately from
Steps 2 and 5. The theorem is proved.

Product of Independent Random Variables

Theorem B.12. Let £ and n be independent random variables with finite
expected values. Then the expected value of &n exists and

Ef¢n] = EEIED)]- (B.25)

Proof: STEP 1: We first prove the case where both £ and 7 are nonnega-
tive simple random variables taking values a1,as, - ,a;, and by,bs,--- , by,
respectively. Then &7 is also a nonnegative simple random variable taking
values a;b;, 1 =1,2,--- ,m, j=1,2,--- ,n. It follows from the independence
of £ and 7 that

&
L
Il
™3
M=

N
Il
—

<
Il
—

aibj Pr{f = Q;, N = bj}

Il
M
M=

s
Il
—
AN
Il
—

a;b; Pr{& = a;} Pr{n =b;}

Mz

Il
_

a; Pr{¢ = ai}> (22 b; Pr{n = bj}>

Enl.

STEP 2: Next we prove the case where ¢ and 7 are nonnegative random
variables. For every i > 1 and every w € 2, we define
k-1 k-1 k
g i < Ew) <,
fiw) =] 2 2 2
i, if 1 < &(w),

I
&
o~

k=1,2,-,i2’

k—1 'fk_1< ()<k
i g SNW i
mw)={ 2 2 2

i, ifi < nw).
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Then {&;}, {n:} and {&n;} are three sequences of nonnegative simple random
variables such that & T &, n; T nand &n; T &n as ¢ — oo. It follows from
the independence of £ and n that &; and 7; are independent. Hence we have
E[¢m;] = E[&)E[n;) for i = 1,2, - - It follows from the probability continuity
theorem that Pr{¢; > r},i =1,2,--- are simple functions such that

Pr{¢& >r} TPr{ >r}, forallr >0

as ¢ — oo. Since the expected value E[¢] exists, we have

+o0 400
El&) = /0 Pr{& > r}dr — /0 Pr{¢ > r}dr = E[¢]

as ¢ — oco. Similarly, we may prove that E[n;] — E[n] and E[§n;] — E[&n)
as ¢ — oo. Therefore E[¢n] = E[¢]En).

STEP 3: Finally, if £ and n are arbitrary independent random variables,
then the nonnegative random variables £t and 5t are independent and so
are £t and 7, € and ™, € and n~. Thus we have

Elgn] =

which proves the theorem.

B.6 Variance

Definition B.12. Let £ be a random wvariable with finite expected value e.
Then the variance of & is defined by V[£] = E[(€ — e)?].

The variance of a random variable provides a measure of the spread of the
distribution around its expected value. A small value of variance indicates
that the random variable is tightly concentrated around its expected value;
and a large value of variance indicates that the random variable has a wide
spread around its expected value.

Theorem B.13. If € is a random wvariable whose variance exists, a and b
are real numbers, then V[aé + b] = a®V[¢].
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Proof: It follows from the definition of variance that
Via& +b] = B [(a€ + b~ aB[¢] - b)*] = a®B[(¢ — B[E])’] = a®V[¢].

Theorem B.14. Let £ be a random wvariable with expected value e. Then
V[E] =0 if and only if Pr{¢ = e} = 1.

Proof: If V[¢] = 0, then E[( —€)?] = 0. Thus we have
+oo
/ Pr{(¢ —e)? >r}dr =0
0
which implies Pr{((—e)? > r} = 0 for any r > 0. Hence we have Pr{({—e¢)? =

0} =1, ie., Pr{€ = e} = 1. Conversely, if Pr{¢ = e} = 1, then we have
Pr{(( —e)> =0} =1 and Pr{({ —e)®> > r} = 0 for any 7 > 0. Thus

+o0
V(¢ = /O Pr{(¢ —e)? > r}dr = 0.

Theorem B.15. If &,&, -+ ,&, are independent random wvariables with
finite expected values, then
ViG+&+-+&]I=VIal+ V] +-- + V][] (B.26)
Proof: It follows from the definition of variance that
v|S6| —Bl@+et+o- Bl - Bl - - Bl
n n—1 n
= ZlE [(& — E[&])%] +2 21 , Z+1E [(& — E&GD(& — EE))]-
i= i=1 j=1

Since &1, &2, -+, &, are independent, E [(& — E[&])(& — E[¢;])] = 0 for all
1,7 with 4 # j. Thus (B.26) holds.

B.7 Moments

Definition B.13. Let £ be a random wvariable, and k a positive number.
Then

(a) the expected value E[€*] is called the kth moment;

(b) the expected value E[|€|¥] is called the kth absolute moment;

(c) the expected value E[(€ — E[¢])*] is called the kth central moment;

(d) the expected value E[|& — E[€]|*] is called the kth absolute central moment.

Note that the first central moment is always 0, the first moment is just the
expected value, and the second central moment is just the variance.

Theorem B.16. Let £ be a nonnegative random variable, and k a positive
number. Then the k-th moment

E[" =k /0 - rF= 1 Pr{¢ > r}dr. (B.27)



256 APPENDIX B - PROBABILITY THEORY

Proof: It follows from the nonnegativity of £ that

E[¢¥) = /O OOPr{fk > g}de = /O OoPr{§ > r}drk =k /O ke Pr{¢ > r}dr.

The theorem is proved.

B.8 Critical Values

Let € be a random variable. In order to measure it, we may use its expected
value. Alternately, we may employ a-optimistic value and a-pessimistic value
as a ranking measure.

Definition B.14. Let £ be a random variable, and o € (0,1]. Then

&oup () = sup {r ’ Pr{¢>r}>a} (B.28)
18 called the a-optimistic value of €, and

&int(a) = inf {r | Pr{¢ <r}>a} (B.29)
18 called the a-pessimistic value of &.

This means that the random variable £ will reach upwards of the a-optimistic
value &gup(r) at least a of time, and will be below the a-pessimistic value
&int(a) at least v of time. The optimistic value is also called percentile.

Theorem B.17. Let £ be a random variable, and « € (0,1]. Then we have
Pr{€ > &up(a)} > o, Pr{€ <&nt(a)} > a (B.30)

where Eup(a) and &ing(er) are the a-optimistic and a-pessimistic values of the
random variable &, respectively.

Proof: It follows from the definition of the optimistic value that there exists
an increasing sequence {r;} such that Pr{€ > r;} > o and r; T &up(@) as
i — oo. Since {{ > m} | {§ > &up(@)}, it follows from the probability
continuity theorem that

Pr{¢ > &up(@)} = lim Pr{{ > r;} > a.
The inequality Pr{¢ < &pu¢(a)} > o may be proved similarly.
Theorem B.18. Let £ be a random variable, and o € (0,1]. Then we have

(a) &ne(@) is an increasing and left-continuous function of «;
(b) &sup(@v) is a decreasing and left-continuous function of a.
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Proof: (a) Let a7 and as be two numbers with 0 < a3 < az < 1. Then
for any number r < &up(a2), we have Pr{¢ > r} > as > ;. Thus, by the
definition of optimistic value, we obtain &up(a1) > &up(az). That is, the
value &gup (@) is a decreasing function of a. Next, we prove the left-continuity
of &nr(a) with respect to a. Let {o;} be an arbitrary sequence of positive
numbers such that «; T «. Then {&ne(o;)} is an increasing sequence. If the
limitation is equal to &n¢(), then the left-continuity is proved. Otherwise,
there exists a number z* such that

lim &) < 2% < &ing(a).
71— 00

Thus Pr{¢ < 2*} > a; for each i. Letting i — oo, we get Pr{¢ < 2*} > a.
Hence z* > &ne(a). A contradiction proves the left-continuity of &, (ar) with
respect to . The part (b) may be proved similarly.

B.9 Entropy

Given a random variable, what is the degree of difficulty of predicting the
specified value that the random variable will take? In order to answer
this question, Shannon [I91] defined a concept of entropy as a measure of
uncertainty.

Entropy of Discrete Random Variables

Definition B.15. Let & be a discrete random variable taking values x; with
probabilities p;, i = 1,2, - -+, respectively. Then its entropy is defined by

H[¢] = - sz‘ Inp;. (B.31)

It should be noticed that the entropy depends only on the number of values
and their probabilities and does not depend on the actual values that the
random variable takes.

S(#)

1/e

Figure B.1: Function S(¢) = —tInt is concave
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Theorem B.19. Let £ be a discrete random variable taking values x; with
probabilities p;, i = 1,2, - -+, respectively. Then

H[¢]>0 (B.32)

and equality holds if and only if there exists an index k such that pr =1, i.e.,
& is essentially a deterministic number.

Proof: The nonnegativity is clear. In addition, H[¢] = 0 if and only if
pi = 0 or 1 for each i. That is, there exists one and only one index k& such
that pr = 1. The theorem is proved.

This theorem states that the entropy of a discrete random variable reaches its
minimum 0 when the random variable degenerates to a deterministic number.
In this case, there is no uncertainty.

Theorem B.20. Let £ be a simple random variable taking values x; with
probabilities p;, 1 = 1,2,--- ,n, respectively. Then

H[{] <Inn (B.33)
and equality holds if and only if p; = 1/n for alli=1,2,--- n.

Proof: Since the function S(t) is a concave function of ¢ and p; +p2 +-- -+
pn = 1, we have

_zn:pilnpi <-n (71 zn:pz> In (711 zn:pz> =lnn
i=1 i=1 i=1

which implies that H[¢{] < Inn and equality holds if and only if p; = py =
ceo=pp,le,p=1/nforalli=1,2,--- n.

This theorem states that the entropy of a simple random variable reaches its
maximum Inn when all outcomes are equiprobable. In this case, there is no
preference among all the values that the random variable will take.

Entropy of Absolutely Continuous Random Variables

Definition B.16. Let & be a random variable with probability density func-
tion ¢. Then its entropy is defined by

+oo
H[¢ =- () In ¢(x)dx. (B.34)

— 00

Example B.12: Let £ be a uniformly distributed random variable on [a, b].
Then its entropy is H[¢] = In(b— a). This example shows that the entropy of
absolutely continuous random variable may assume both positive and nega-
tive values since In(b —a) < 0ifb—a < 1l;and In(b—a) >0if b —a > 1.
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Example B.13: Let £ be an exponentially distributed random variable with
expected value 8. Then its entropy is H[{] = 1+ Inf.

Example B.14: Let £ be a normally distributed random variable with ex-
pected value e and variance o2. Then its entropy is H[¢] = 1/2 + In/270.

Maximum Entropy Principle

Given some constraints, for example, expected value and variance, there are
usually multiple compatible probability distributions. For this case, we would
like to select the distribution that maximizes the value of entropy and satisfies
the prescribed constraints. This method is often referred to as the mazimum
entropy principle (Jaynes [61]).

Example B.15: Let £ be an absolutely continuous random variable on [a, b].
The maximum entropy principle attempts to find the probability density
function ¢(z) that maximizes the entropy

b
- / é(2) In $(z)dz

subject to the natural constraint f; ¢(x)dx = 1. The Lagrangian is

L:—/abgb(x)lngb(x)dx—)\ (/abgb(:r)dx—l).

It follows from the Euler-Lagrange equation that the maximum entropy prob-
ability density function meets

Ing(x) +1+A1=0

and has the form ¢(z) = exp(—1 — \). Substituting it into the natural
constraint, we get
" 1
¢ ('T) - b o aa
which is just the uniformly distributed random variable, and the maximum
entropy is H[*] = In(b — a).

a<zx<bd

Example B.16: Let £ be an absolutely continuous random variable on
[0,00). Assume that the expected value of & is prescribed to be 5. The
maximum entropy probability density function ¢(x) should maximize the

entropy
+oo

- (z) In ¢(x)dx
0

subject to the constraints

+oo +oo
/ o(x)dx =1, / zo(z)dx = f.
0 0
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The Lagrangian is

L=-— /OOO () In 6(z)da — M (/OOO b(a)dz — 1) “ o (/Ooo 2é(x)dz — g) .

The maximum entropy probability density function meets Euler-Lagrange
equation
Ing(z)+1+ M+ Xz=0

and has the form ¢(x) = exp(—1 — Ay — Agx). Substituting it into the
constraints, we get

o (x) = ;exp (—;) , >0

which is just the exponentially distributed random variable, and the maxi-
mum entropy is H[{*] =1+ 1ng.

Example B.17: Let £ be an absolutely continuous random variable on
(—00, +00). Assume that the expected value and variance of £ are prescribed
to be p and o2, respectively. The maximum entropy probability density
function ¢(z) should maximize the entropy

—+oo
- [ o o)
subject to the constraints
+o0 +o00 +o0
[ ewae=1 [ astade—p [ @ wews = o
The Lagrangian is

L=-— ;OO o(z) In¢(z)dx — M (/+°° o(z)dx — 1)

— 00

—o </+: zo(x)de — u) — A3 (/:)o(:c — ) p(z)dx — 02> .

The maximum entropy probability density function meets Euler-Lagrange
equation

ln¢($) +1 +)\1 +/\2$+)\3(1‘ —/,6)2 =0

and has the form ¢(z) = exp(—1 — Ay — Ao — A3(z — p)?). Substituting it
into the constraints, we get
202

V@) =y e (— (e~ “)2) Csew

which is just the normally distributed random variable, and the maximum
entropy is H[¢*] = 1/2 4 In/270.
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B.10 Conditional Probability

We consider the probability of an event A after it has been learned that
some other event B has occurred. This new probability of A is called the
conditional probability of A given B.

Definition B.17. Let (2, A, Pr) be a probability space, and A, B € A. Then
the conditional probability of A given B is defined by

Pr{AnN B}

PrHAIBY =L

(B.35)

provided that Pr{B} > 0.

Theorem B.21. Let (Q, A, Pr) be a probability space, and B an event with
Pr{B} > 0. Then Pr{:|B} defined by (B.33) is a probability measure, and
(Q,A,Pr{:|B}) is a probability space.

Proof: It is sufficient to prove that Pr{:|B} satisfies the normality, nonneg-
ativity and countable additivity axioms. At first, we have

Pr{Qn B} Pr{B}

PHOIBY =" bigy = pe(my ~

1.

Secondly, for any A € A, the set function Pr{A|B} is nonnegative. Finally,
for any countable sequence {4;} of mutually disjoint events, we have

VP L e B S

Thus Pr{:|B} is a probability measure. Furthermore, (Q, A,Pr{:|B}) is a
probability space.

Theorem B.22 (Bayes Formula). Let the events Ay, As, -+, A, form a
partition of the space Q such that Pr{A4;} > 0 for i =1,2,--- ,n, and let B
be an event with Pr{B} > 0. Then we have

PI‘{Ak} PI‘{B‘Ak}

; Pr{4;} Pr{B|A;}

Pr{A.|B} = (B.36)

fork=1,2,--- n.

Proof: Since Ai, As,--- , A, form a partition of the space €2, we have

Pr{B} = zn:Pr{Ai NB} = En:Pr{Ai} Pr{B|A;}
i=1 i=1
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which is also called the formula for total probability. Thus, for any k, we have
Pr{Ax N B}  Pr{A}Pr{B|As}

Pr{A;|B} = &
k Pr{B} 3 Pr{4;} Pr{B|A;}
i=1

The theorem is proved.

Remark B.1: Especially, let A and B be two events with Pr{A} > 0 and
Pr{B} > 0. Then A and A form a partition of the space 2, and the Bayes

formula is
Pr{A}Pr{B|A}

PriAlBy =Y

(B.37)

Remark B.2: In statistical applications, the events A1, A, - -+ , A, are often
called hypotheses. Furthermore, for each i, the Pr{A;} is called the prior
probability of A;, and Pr{A;|B} is called the posterior probability of A; after
the occurrence of event B.

Example B.18: Let £ be an exponentially distributed random variable with
expected value 8. Then for any real numbers a > 0 and = > 0, the conditional
probability of £ > a + x given £ > a is

Pr{€ > a+al¢ > a} = exp(—a/B) = Pr{€ > 2}

which means that the conditional probability is identical to the original prob-
ability. This is the so-called memoryless property of exponential distribution.
In other words, it is as good as new if it is functioning on inspection.

Definition B.18. The conditional probability distribution ®: R — [0,1] of
a random variable £ given B is defined by

®(z|B) = Pr{¢ < z|B} (B.38)
provided that Pr{B} > 0.

Definition B.19. The conditional probability density function ¢ of a random
variable & given B is a nonnegative function such that

(x| B) = /_ " b(yB)dy, VieR (B.39)

where ®(x|B) is the conditional probability distribution of £ given B.

Example B.19: Let (£,7) be a random vector with joint probability density
function 9. Then the marginal probability density functions of £ and n are

+o0 +oo
flz) = Y(z,y)dy, gly) = Y(z,y)dr,

—00 —

respectively. Furthermore, we have
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pric<an<a=[ [ wwowa= [" 1[0 ar g

oo e 9(1)
which implies that the conditional probability distribution of £ given n = y is

“ p(ry)
P(xln=1y) = dr, a.s. B.40
(i =) o 9(y) (B.40)
and the conditional probability density function of £ given n =y is
x, x,
p(zln =y) = w;(yiy) = +:f( 2 ., as. (B.41)
Y(a,y)da

Note that (B40) and (BA4I) are defined only for g(y) # 0. In fact, the set
{ylg(y) = 0} has probability 0. Especially, if £ and 1 are independent random
variables, then ¢(z,y) = f(2)g(y) and ¢(z|n = y) = f(x).

Definition B.20. Let £ be a random variable. Then the conditional expected
value of & given B is defined by

0

+o00
E[¢|B] = /0 Pr{¢ > r|B}dr —/ Pr{¢ < r|B}dr (B.42)

—00

provided that at least one of the two integrals is finite.

B.11 Random Set

Random set is a well-known concept in probability theory, and widely applied
in science and engineering. Here we deal with random set after the fashion
of uncertain set.

Definition B.21. A random set is a measurable function & from a probability
space (2, A, Pr) to a collection of sets of real numbers, i.e., for any Borel set
B, the set

{¢c B ={weQ|¢{w)C B} (B.43)

1s an event.

Let £ and 1 be two nonempty random sets. Then the strong membership
degree of n to £ is defined as the probability measure that n is strongly
included in &, ie., Pr{n C &}. The weak membership degree of 7 to &
is defined as the probability measure that 7 is weakly included in &, i.e.,

Pr{n ¢ ¢°}.

Definition B.22. Let £ and n be two nonempty random sets. Then the
membership degree of n to £ is defined as the average of strong and weak
membership degrees, i.e.,

Priy>€) = ) (PrinC € + Pr{n 2 ). (5.44)
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The membership degree is understood as the probability measure that n s
imaginarily included in &.

Note that if n degenerates to a single point a, then the strong inclusion is
identical with the weak inclusion, and Pr{a > ¢} = Pr{a € {} = Pr{a & £°}.

Definition B.23. Let £ be a nonempty random set. Then the function
®(x) = Pr{{> (o0, x|}, VreR (B.45)
18 called the probability distribution of &.

The concept of membership function is also applicable to random set except
that the membership degree takes values in probability measure.

Definition B.24. A random set € is said to have a membership function p
if the range of € is just the total class of p, and

Pr{{ e Wo} =a, Vaec]0,1] (B.46)
where W, is the a-class of .

A representation theorem states that, if £ is a random set with membership
function p, then £ may be represented by

¢= U ama (B.47)

0<a<l1

where fi, is the a-cut of membership function pu.

Warning: The complement £¢, union £ U7, intersection £ N7, sum & +n and
product £ x n of random sets have no membership functions even though the
original random sets have their own membership functions.

Definition B.25. Let £ be a nonempty random set. Then the expected value
of € is defined by

+o0 0
E[¢] = /0 Pr{¢ > [r,+00)}dr — / Pr{¢ > (—oo,r]}dr (B.48)

—0o0

provided that at least one of the two integrals is finite.

Let £ be a nonempty random set with probability distribution ®. If £ has a
finite expected value, then

“+o0 0
E[¢] = /0 (1—®(z))dx — / O (z)dz. (B.49)

— 00
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Definition B.26. Let £ be a random set, and o € (0,1]. Then

Esup (@) = sup {r | Pr{¢ [r,+o0)} > a} (B.50)
1s called the a-optimistic value to &, and

&int(a) = inf {r ’ Pr{¢{ (—oo,r|} > a} (B.51)
1s called the a-pessimistic value to &.

Let & be a random set with probability distribution ®. Then its c-optimistic
value and a-pessimistic value are

fap(@) = @ (L =), Emila) = 37'(a) (B.52)

for any a with 0 < o < 1.



Appendix C
Credibility Theory

The concept of fuzzy set was initiated by Zadeh [222] via membership function
in 1965. In order to measure a fuzzy event, Zadeh [225] proposed the concept
of possibility measure. Although possibility measure has been widely used,
it does not obey the law of truth conservation and is inconsistent with the
law of excluded middle and the law of contradiction. The main reason is that
possibility measure has no self-duality property. However, a self-dual measure
is absolutely needed in both theory and practice. In order to define a self-
dual measure, Liu and Liu [114] presented the concept of credibility measure.
In addition, a sufficient and necessary condition for credibility measure was
given by Li and Liu [91]. Credibility theory, founded by Liu [II7] in 2004
and refined by Liu [I20] in 2007, is a branch of mathematics for studying the
behavior of fuzzy phenomena.

The emphasis in this appendix is mainly on credibility measure, credibil-
ity space, fuzzy variable, membership function, credibility distribution, in-
dependence, expected value, variance, moments, critical values, entropy and
conditional credibility.

C.1 Credibility Space

Let © be a nonempty set, and P the power set of © (i.e., the larggest o-
algebra over ©). Each element in P is called an event. In order to present an
axiomatic definition of credibility, it is necessary to assign to each event A a
number Cr{A} which indicates the credibility that A will occur. In order to
ensure that the number Cr{A} has certain mathematical properties which we
intuitively expect a credibility to have, we accept the following four axioms:

Axiom 1. (Normality) Cr{©} = 1.

Axiom 2. (Monotonicity) Cr{A} < Cr{B} whenever A C B.

Axiom 3. (Self-Duality) Cr{A} + Cr{A°} =1 for any event A.

Axiom 4. (Mazimality) Cr{U;A;} = sup, Cr{A;} for any events {A;} with
sup,; Cr{4;} < 0.5.

Definition C.1 (Liu and Liu [T17)]). The set function Cr is called a cred-
wbility measure if it satisfies the normality, monotonicity, self-duality, and
maximality axioms.
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Example C.1: Let © = {61,0,}. For this case, there are only four events:
0,{61},{62},O. Define Cr{0} = 0, Cr{h;} = 0.7, Cr{62} = 0.3, and Cr{O} =
1. Then the set function Cr is a credibility measure because it satisfies the
four axioms.

Example C.2: Let © be a nonempty set. Define Cr{@} =0, Cr{©} =1 and
Cr{A} = 1/2 for any subset A (excluding ) and ©). Then the set function
Cr is a credibility measure.

Example C.3: Let p be a nonnegative function on © (for example, the set
of real numbers) such that

sup p(z) = 1. (C.1)
€O
Then the set function
1
Cr{A} = (sup w(x)+1— sup ,u(x)) (C.2)
2 \zea zeAe

is a credibility measure on ©.

Theorem C.1. Let © be a nonempty set, P the power set of ©, and Cr the
credibility measure. Then Cr{0} =0 and 0 < Cr{A} <1 for any A € P.

Proof: It follows from Axioms 1 and 3 that Cr{0} =1—-Cr{©} =1-1=0.
Since ) C A C O, we have 0 < Cr{A} <1 by using Axiom 2.

Theorem C.2. Let © be a nonempty set, P the power set of ©, and Cr the
credibility measure. Then for any A, B € P, we have

Cr{AUB} =Cr{A} v Cr{B} if Cr{AU B} <0.5, (C.3)
Cr{AN B} =Cr{A} ACr{B} if Cr{AN B} >0.5. (C4)

The above equations hold for not only finite number of events but also infinite
number of events.

Proof: If Cr{AU B} < 0.5, then Cr{A} v Cr{B} < 0.5 by using Axiom 2.
Thus the equation (C.3) follows immediately from Axiom 4. If Cr{AU B} =
0.5 and (C.3) does not hold, then we have Cr{A} Vv Cr{B} < 0.5. It follows
from Axiom 4 that

Cr{AuU B} = Cr{A} v Cr{B} < 0.5.

A contradiction proves (C.3]). Next we prove (C4). Since Cr{AN B} > 0.5,
we have Cr{A°U B¢} < 0.5 by the self-duality. Thus

Cr{ANB} =1-Cr{A°UB°} =1-Cr{4°} Vv Cr{B°}
=(1-Cr{A°}) A (1 = Cr{B°}) = Cr{A} ACr{B}.

The theorem is proved.
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Theorem C.3. Let © be a nonempty set, P the power set of ©, and Cr the
credibility measure. Then for any A, B € P, we have
Cr{AU B} = Cr{A} v Cr{B} if Cr{A} + Cr{B} < 1, (C.5)
Cr{AN B} = Cr{A} ACr{B} if Cr{A} + Cr{B} > 1. (C.6)

Proof: Suppose Cr{A} + Cr{B} < 1. Then there exists at least one term
less than 0.5, say Cr{B} < 0.5. If Cr{A} < 0.5 also holds, then the equation
(C3) follows immediately from Axiom 4. If Cr{A} > 0.5, then by using
Theorem [C.2] we obtain

Cr{A} = Cr{AU(BNB)} = Cr{(AUB)N(AUB®)} = Cr{ AUB}ACr{AUB“}.
On the other hand, we have
Cr{A} <1-Cr{B} =Cr{B°} < Cr{AU B°}.

Hence we must have Cr{A U B} = Cr{A} = Cr{A} v Cr{B}. The equation
(C3H) is proved. Next we suppose Cr{A} + Cr{B} > 1. Then Cr{A°} +
Cr{B°} < 1. It follows from (C.5]) that

Cr{ANB} =1-Cr{A°UB°} =1-Cr{4°} v Cr{B°}
=(1-Cr{A°}) A (1 = Cr{B°}) = Cr{A} ACr{B}.

The theorem is proved.

Credibility Subadditivity Theorem

Theorem C.4 (Liu [I17)], Credibility Subadditivity Theorem). The credibil-
ity measure is subadditive. That is,

Cr{AU B} < Cr{A} + Cr{B} (C.7)

for any events A and B. In fact, credibility measure is not only finitely
subadditive but also countably subadditive.

Proof: The argument breaks down into three cases. Case 1: Cr{A} < 0.5
and Cr{B} < 0.5. It follows from Axiom 4 that

Cr{AuU B} = Cr{A} v Cr{B} < Cr{A} + Cr{B}.

Case 2: Cr{A} > 0.5. For this case, by using Axioms 2 and 3, we have
Cr{A°} <0.5 and Cr{AU B} > Cr{A} > 0.5. Then

Cr{A°} = Cr{A°N B} v Cr{A°N B}
< Cr{A°N B} + Cr{A° N B}
< Cr{B} + Cr{A°n B°}.
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Applying this inequality, we obtain
Cr{A} 4+ Cr{B} =1 - Cr{A°} + Cr{B}
>1—Cr{B} — Cr{A° N B¢} 4+ Cr{B}
=1-Cr{4°n B°}
= Cr{AU B}.

Case 3: Cr{B} > 0.5. This case may be proved by a similar process of Case
2. The theorem is proved.

Remark C.1: For any events A and B, it follows from the credibility sub-
additivity theorem that the credibility measure is null-additive, i.e., Cr{AU
B} = Cr{A} + Cr{B} if either Cr{A} =0 or Cr{B} = 0.

Theorem C.5. Let {B;} be a decreasing sequence of events with Cr{B;} — 0
as 1 — 0o. Then for any event A, we have

lim Cr{AU B;} = lim Cr{A\B;} = Cr{A}. (C.8)

Proof: It follows from the monotonicity axiom and credibility subadditivity
theorem that

Cr{A} < Cr{AU B;} < Cr{A} + Cr{B;}

for each ¢. Thus we get Cr{A U B;} — Cr{A} by using Cr{B;} — 0. Since
(A\B;) € A C ((A\B;) U B;), we have

Cr{A\B;} < Cr{A} < Cr{A\B;} + Cr{B;}.
Hence Cr{A\B;} — Cr{A} by using Cr{B;} — 0.

Credibility Semicontinuity Law

Generally speaking, the credibility measure is neither lower semicontinuous
nor upper semicontinuous. However, we have the following credibility semi-
continuity law.

Theorem C.6 (Liu [117], Credibility Semicontinuity Law). For any events
Ay, Ay, -+, we have

lim Cr{A;} = cr{hm Ai} (C.9)

if one of the following conditions is satisfied:
(a) Cr{A} <0.5 and A; T A; (b) lim Cr{4;} < 0.5 and A; T A;

(¢c) Cr{A} > 0.5 and A; | A; (d) lim Cr{A;} > 0.5 and A; | A.
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Proof: (a) Since Cr{A} < 0.5, we have Cr{4;} < 0.5 for each 4. It follows
from Axiom 4 that

Cr{A} = Cr{U;A;} = sup Cr{4;} = lim Cr{A;}.

(b) Since lim;_,o, Cr{4;} < 0.5, we have sup; Cr{4;} < 0.5. It follows from
Axiom 4 that

Cr{A} = Cr{U;A;} = sup Cr{A;} = lim Cr{A;}.

(c) Since Cr{A} > 0.5and A; | A, it follows from the self-duality of credibility
measure that Cr{A°} < 0.5 and A 1 A°. Thus

lim Cr{4;} =1— lim Cr{A{} =1— Cr{A°} = Cr{A}.

(d) Since lim; .o Cr{A;} > 0.5 and A; | A, it follows from the self-duality
of credibility measure that

lim Cr{A{} = lim (1 — Cr{4;}) <0.5

— 00
and A§ 7 A°. Thus Cr{4;} =1—-Cr{A{} - 1—-Cr{A°} = Cr{A} as i — oo.
The theorem is proved.
Credibility Asymptotic Theorem

Theorem C.7 (Credibility Asymptotic Theorem). For any events Ay, Ag, -+,
we have

lim Cr{4;} <0.5, if A; |0. (C.11)

Proof: Assume A; T ©. If lim; o, Cr{A;} < 0.5, it follows from the credi-
bility semicontinuity law that

Cr{©} = lim Cr{4;} < 0.5

which is in contradiction with Cr{©} = 1. The first inequality is proved.
The second one may be verified similarly.

Credibility Extension Theorem

Suppose that the credibility of each singleton is given. Is the credibility
measure fully and uniquely determined? This subsection will answer the
question.
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Theorem C.8. Suppose that © is a nonempty set. If Cr is a credibility
measure, then we have
sup Cr{6} > 0.5,
oee , (C.12)
Cr{6*} + sup Cr{f} =1 if Cr{6*} > 0.5.
046~

We will call (C12) the credibility extension condition.
Proof: If sup Cr{f} < 0.5, then by using Axiom 4, we have

1=Cr{©0} = 31618 Cr{6} < 0.5.

This contradiction proves sup Cr{f} > 0.5. We suppose that 6* € © is a point
with Cr{#*} > 0.5. It follows from Axioms 3 and 4 that Cr{©\ {6*}} < 0.5,
and

Cr{e\ {0"}} = 95;15)* Cr{6}.

Hence the second formula of (C12) is true by the self-duality of credibility
measure.

Theorem C.9 (Li and Liu [91)], Credibility Extension Theorem). Suppose
that © is a nonempty set, and Cr{0} is a nonnegative function on © satisfying
the credibility extension condition (C12). Then Cr{6} has a unique extension
to a credibility measure as follows,

sup Cr{0}, if sup Cr{f} < 0.5
Cr{AY — ocA ocA

w4} 1 — sup Cr{6}, if supCr{6} > 0.5.
ocAc ocA

(C.13)

Proof: We first prove that the set function Cr{A} defined by (CI3) is a
credibility measure.
STEP 1: By the credibility extension condition sup Cr{f} > 0.5, we have
9€o

Cr{®}=1—-supCr{f}=1-0=1.
0€b

STEP 2: If A C B, then B¢ C A°. The proof breaks down into two cases.

Case 1: sup Cr{f} < 0.5. For this case, we have
0cA

Cr{4} = 21613 Cr{6} < Zlelg Cr{0} < Cr{B}.

Case 2: sup Cr{f#} > 0.5. For this case, we have sup Cr{f} > 0.5, and
0cA 0cB

Cr{A} =1— sup Cr{6} <1 - sup Cr{6} = Cr{B}.
geAe oeBe
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STEP 3: In order to prove Cr{A} + Cr{A°} = 1, the argument breaks
down into two cases. Case 1: supCr{#} < 0.5. For this case, we have

A
sup Cr{6} > 0.5. Thus,
0cAc

Cr{A} + Cr{A°} = supCr{f} + 1 —sup Cr{0} = 1.
gcA ocA
Case 2: sup Cr{f#} > 0.5. For this case, we have sup Cr{6} < 0.5, and
gcA geAe
Cr{A} + Cr{A°} =1 — sup Cr{#} + sup Cr{f} = 1.
9cAe peAe

STEP 4: For any collection {4;} with sup; Cr{4;} < 0.5, we have

Cr{U;A;} = sup Cr{6} =sup sup Cr{6} = sup Cr{4;}.
0eU; A; i O€EA; i

Thus Cr is a credibility measure because it satisfies the four axioms.

Finally, let us prove the uniqueness. Assume that Cr; and Crs are two
credibility measures such that Cri{6} = Cr{6} for each § € ©. Let us prove
that Cri{A} = Cro{A} for any event A. The argument breaks down into
three cases. Case 1: Cri{A} < 0.5. For this case, it follows from Axiom 4
that

Cri{A} = 21618 Cri{0} = 21618 Cro{0} = Cra{A}.

Case 2: Cri{A} > 0.5. For this case, we have Cr1{A°} < 0.5. It follows from
the first case that Cri{A°} = Cro{A°} which implies Cri{A} = Cry{A4}.
Case 3: Cri{A} = 0.5. For this case, we have Cr1{A°} = 0.5, and

Cro{A} > sup Cra{6} = sup Cr1{0} = Cr; {A} = 0.5,
veA gcA
Cra{A°} > sup Cra2{0} = sup Cri{0} = Cr1{A4A°} = 0.5.
9cAe peAe
Hence Cra{A} = 0.5 = Cr1{A}. The uniqueness is proved.

Credibility Space

Definition C.2. Let © be a nonempty set, P the power set of ©, and Cr a
credibility measure. Then the triplet (©, P, Cr) is called a credibility space.

Example C.4: The triplet (0, P, Cr) is a credibility space if
0 =1{61,0s,---},Cr{6;} =1/2 fori =1,2,--- (C.14)
Note that the credibility measure is produced by the credibility extension

theorem as follows,
0, ifA=0
Cr{A} = 1, ifA=0
1/2, otherwise.
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Example C.5: The triplet (0, P, Cr) is a credibility space if
0 ={601,02,---},Cr{0;} =i/(2i+ 1) fori=1,2,--- (C.15)

By using the credibility extension theorem, we obtain the following credibility
measure,
i

su . , if A is finite

b 20+ 1
Cr{A} = ;
1— sup _. , if A is infinite.

;€A 20+

Example C.6: The triplet (0, P, Cr) is a credibility space if
© ={61,02,---}, Cr{0,} =1/2, Cr{6;} =1/i fori =2,3,--- (C.16)

For this case, the credibility measure is

sup 1/i, if A contains neither 6; nor 6
6;,cA
Cr{A} = 1/2, if A contains only one of #; and 65

1— sup 1/i, if A contains both 6; and 65.
0, Ac

Example C.7: The triplet (0, P, Cr) is a credibility space if
©=10,1], Cr{f} =6/2 for 0 € O. (C.17)

For this case, the credibility measure is

1

sup 6, if supf <1

Cr{A} _ 196A 0cA
1— _supd, if supf=1.

2 gcae feA

Product Credibility Measure

Product credibility measure may be defined in multiple ways. This book
accepts the following axiom.

Axiom 5. (Product Credibility Aziom) Let ©y be nonempty sets on which
Cry are credibility measures, k = 1,2, -+ ,n, respectively, and © = ©1 X O3 X
-+ X 0,,. Then

Cr{(01,92, oo ,Qn)} = Cr1{91} A\ Cr2{92} VANEERWAN Crn{(‘)n} (C18)

for each (61,02, ,0,) € ©.
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Theorem C.10 (Product Credibility Theorem). Let Oy be nonempty sets
on which Cry are the credibility measures, k = 1,2,--- ,n, respectively, and
O =01:x0yx---x0,. Then Cr = Cr; ACra A---ACr,, defined by Aziom 5
has a unique extension to a credibility measure on © as follows,

sup min Crg{6:},
(01,05 ,0,)€ALSKkSn {0}
i Sup min Crp{0x} < 0.5
(61,02, ,6,)c A LSk=n {01}
Cr{A} = ©19)
1- sup min Crp{6},
(01,02, ,0,,) €A 1<k<n { }
if Sup min Crg{0x} > 0.5.
(61,02, ,0,)€A1SkSN {0}

Proof: For each 6 = (61,02, --,0,) € ©, we have Cr{0} = Cri{6:} A
Cra{02} A --- A Cr,{60,}. Let us prove that Cr{0} satisfies the credibility
extension condition. Since sup Cr{f} > 0.5 for each k, we have

0LEO

sup Cr{0} = sup min Crg{6;} > 0.5.
EG) (01,02, ,0,)€0 1Sk<n

Now we suppose that 8° = (07,65,---,6%) is a point with Cr{€*} > 0.5.

rYn

Without loss of generality, let ¢ be the index such that
Cr{6"} = in Cri{6;} = Cr;{0;}. (C.20)

We also immediately have

Crp{6;} >05, k=1,2,---,n; (C.21)
Crp{0;} + sup Crp{bi} =1, k=1,2,--- ,n; (C.22)
01,705,
sup Cr;{0;} > sup Crp{br}, k=1,2,---,m; (C.23)
6,707 0,40}
sup Crp{0y} <05, k=1,---,n. (C.24)
01,705
It follows from (C21)) and (C24]) that
sup Cr{6} = sup min Cri {6}
06 (01,02, ,00) (07,05, ,07) LSk=n

> s i * 1. ; .
> 9?%); (o Cri{0;} A Cri{0;} A L in_ Cre{0;}

= sup Cri{0;}.
0; 7391*

We next suppose that

sup Cr{0} > sup Cr;{6,}.
046" 0707
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Then there is a point (61,05,---,0) # (05,05, ,6%) such that

3 / Q . .
in Crp{0;} > 9?219): Cr;{0;}.

Let j be one of the index such that 0} # 6. Then

Cr;{6;} > sup Cr;{6;}.
0,407

That is,
sup. Cr;{6,} > bup Cr;{0;}
0,707 0,0;

which is in contradiction with ([C23]). Thus

sup Cr{6} = sup Cr;{6;}. (C.25)
60" 070}

It follows from (C20), (C:22) and (C25) that
Cr{0"} + sup Cr{0} = Cr;{6;} + sup Cr;{6;} = 1.
06" 0,707
Thus Cr satisfies the credibility extension condition. It follows from the cred-

ibility extension theorem that Cr{A} is just the unique extension of Cr{6}.
The theorem is proved.

Definition C.3. Let (O, Py, Crr), k =1,2,--- ,n be credibility spaces, © =
01 XxOy x---x0, and Cr = Cry ACra A---ACry. Then (©,P,Cr) is called
the product credibility space of (O, Pk, Cri), k=1,2,---.n

Theorem C.11. Let (0,P,Cr) be the product credibility space of (O,
Pr,Crr), k=1,2,--- ,n. Then for any Ay, € P, k=1,2,--- ,n, we have

CI‘{Al X A2 X oo X Ak} = CI‘l{Al} A CI‘Q{AQ} VARERIVAN CI‘n{An}

Proof: We only prove the case of n = 2. If Cr1{A4;} < 0.5 or Cra{A2} < 0.5,
then we have

sup Cr1{0:} <0.5 or sup Cra{f2} < 0.5.
01€A; 02€As

It follows from

sup Cr1{01} A Cra{b2} = sup Cr1{61} N sup Cra{62} < 0.5
(01,02)€A1XA2 0.€ 02€ Az

that

Cr{A; x Az} = sup Cri{61} A bup Cra{02} = Cr1{A1} A Cra{Az}.
0s€

01€A,
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If Cri{A;1} > 0.5 and Cry{As} > 0.5, then we have

sup Cri{f;} >0.5 and  sup Cra{62} > 0.5.
01€A1 02€A2

It follows from

sup Cr1{61} A Cro{62} = sup Cri{61} A sup Cra2{62} > 0.5
(91792)6141 X As 01€A; 02€ Az

that

CI‘{Al X AQ} =1- sup Cr1{01} AN Crg{eg}
(91,92)€A1XA2

= (1 — sup Cr1{91}> A (1 — sup Cr2{02}>
91614‘; 926145
= CT1{A1} A CTQ{AQ}.

The theorem is proved.

C.2 Fuzzy Variable

Definition C.4. A fuzzy variable is a (measurable) function from a credi-
bility space (0, P, Cr) to the set of real numbers.

Example C.8: Take (0, P, Cr) to be {61,602} with Cr{#;} = Cr{f2} = 0.5.
Then the function
£(0) = 0, if@=26;
Sl 1 if0=06,
is a fuzzy variable.

Example C.9: Take (0, P, Cr) to be the interval [0, 1] with Cr{f} = 6/2 for
each 0 € [0,1]. Then the identity function £(6) = 0 is a fuzzy variable.

Example C.10: A crisp number ¢ may be regarded as a special fuzzy vari-
able. In fact, it is the constant function £(6) = ¢ on the credibility space

(©,?,Cr).

Remark C.2: Since a fuzzy variable £ is a function on a credibility space,
for any set B of real numbers, the set

{¢eB}={0c0|0) € B} (C.26)

is always an element in P. In other words, the fuzzy variable ¢ is always a
measurable function and {£ € B} is always an event.

Definition C.5. Let & and & be fuzzy variables defined on the credibility
space (0,P,Cr). We say & = & if £&1(0) = £2(0) for almost all 6 € O.
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Fuzzy Vector

Definition C.6. An n-dimensional fuzzy vector is defined as a function from
a credibility space (©,P,Cr) to the set of n-dimensional real vectors.

Theorem C.12. The vector (£1,&2,- - ,&n) 18 a fuzzy vector if and only if
&1,&, -+, &, are fuzzy variables.

Proof: Write € = (£1,&2,- - ,&,). Suppose that £ is a fuzzy vector. Then
&,&, -, &, are functions from © to R. Thus &1, &, -, &, are fuzzy vari-
ables. Conversely, suppose that &; are fuzzy variables defined on the cred-
ibility spaces (©;,P;,Cr;), ¢ = 1,2,---,n, respectively. It is clear that
(&1,&2,+ -+ ,&,) is a function from the product credibility space (©,P,Cr)
to R, i.e.,

5(9179% T 7977) = (51(91)v§2(92)7 to 7§n(en))
for all (61,62,---,0,) € ©. Hence & = (£1,&2,- - , &) is a fuzzy vector.

Fuzzy Arithmetic

In this subsection, we will suppose that all fuzzy variables are defined on a
common credibility space. Otherwise, we may embed them into the product
credibility space.

Definition C.7. Let f : " — R be a function, and &1,&,--- , &, fuzzy
variables on the credibility space (©,P,Cr). Then & = f(&1,&2,-+- , &) is a
fuzzy variable defined as

£(0) = f(&(0),&(0), -, & (0)) (C.27)
for any 0 € ©.

The reader may wonder whether (61,62, - - ,0,,) defined by (C27]) is a fuzzy
variable. The following theorem answers this question.

Theorem C.13. Let &€ be an n-dimensional fuzzy vector, and f : R — R a
function. Then f(€) is a fuzzy variable.

Proof: Since f(€) is a function from a credibility space to the set of real
numbers, it is a fuzzy variable.

C.3 Membership Function

Definition C.8. Let & be a fuzzy variable defined on the credibility space
(©,P,Cr). Then its membership function is derived from the credibility mea-
sure by

wa)=02Cr{E¢=2})Al, xR (C.28)
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Membership function represents the degree that the fuzzy variable £ takes
some prescribed value. How do we determine membership functions? There
are several methods reported in the past literature. Anyway, the membership
degree p(x) = 0 if x is an impossible point, and p(x) = 1 if x is the most
possible point that & takes.

Example C.11: It is clear that a fuzzy variable has a unique membership
function. However, a membership function may produce multiple fuzzy vari-
ables. For example, let © = {61,0:} and Cr{6;} = Cr{f2} = 0.5. Then
(©,P,Cr) is a credibility space. We define

0, if6=0 1, if6=0
51(9):{ i 1 B i 1

1 itg—p, 0= { 0, if =0,
It is clear that both of them are fuzzy variables and have the same member-
ship function, pu(z) =1 onz =0 or 1.

Theorem C.14 (Credibility Inversion Theorem). Let € be a fuzzy variable
with membership function . Then for any set B of real numbers, we have

Cr{¢ € B} = ; <Sup pu(x) +1— sup ,u(x)) . (C.29)

reB reBe°

Proof: If Cr{¢ € B} < 0.5, then by Axiom 2, we have Cr{{ = x} < 0.5 for
each z € B. It follows from Axiom 4 that

1 1
Cr{¢ € B} = (sup (2Cr{¢ =z} A 1)) = _ sup u(x). (C.30)
2 z€EB 2 z€EB
The self-duality of credibility measure implies that Cr{¢ € B} > 0.5 and
sup,epge Cr{€ =z} > 0.5, i.e.,

sup pu(xz) = sup (2Cr{{ =z} A1) =1. (C.31)
r€B*° reB*

It follows from (C30) and (C31)) that (C29) holds.
If Cr{€ € B} > 0.5, then Cr{¢ € B¢} < 0.5. It follows from the first case

that

Cr{¢eB}=1-Cr{ceB}=1- ! (sup w(x) + 1 — sup u(m))
2 reB*® z€EB

1
= <sup p(x) +1— sup u(w)> :
2 zeB zeBe

The theorem is proved.

Example C.12: Let £ be a fuzzy variable with membership function p.
Then the following equations follow immediately from Theorem [C. 14}

Cr{¢ =z} = ; (,u(x) +1—sup u(y)) , VeeX; (C.32)

y#T
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1

Cr{e <o) = (supmy) . Supu(y)> L vre®m  (033)
2 y<z y>z
1

Cr{¢ >z} = (sup p(y) +1 —sup u(y)) , Yz eR. (C.34)
2 y>x y<z

Especially, if p is a continuous function, then
Cr{e =) = “(Qx), Yz € R. (C.35)

Theorem C.15 (Sufficient and Necessary Condition for Membership Func-
tion). A function p : R — [0,1] is a membership function if and only if
sup p(z) = 1.

Proof: If p is a membership function, then there exists a fuzzy variable £
whose membership function is just p, and

sup pu(x) = sup (2Cr{¢ = x}) A 1.
zeR zeR

If there is some point € R such that Cr{{ = z} > 0.5, then sup u(x) = 1.
Otherwise, we have Cr{¢ = =} < 0.5 for each z € R. It follows from Axiom 4
that

sup pu(z) = sup (2Cr{€ =2}) A1 =2sup Cr{¢ =z} =2 (Cr{O} A 0.5) = 1.
zeR zeR zeR

Conversely, suppose that sup pu(z) = 1. For each x € R, we define
1
Cr{z} = ) pw(z) +1—supu(y) | .
y#z
It is clear that

1
supCr{z} > (1+1—-1)=0.5.
zeR 2

For any z* € R with Cr{z*} > 0.5, we have p(z*) =1 and

Cr{z*} + sup Cr{y}
y£x*

; (u(x*) +1— sup u(y)> + sup ! (u(y) +1 —supu(2)>

yF#z* y#ar 2 27y

1 1
1=, sup p(y) +, sup p(y) = 1.
yF£z* yF£z*

Thus Cr{z} satisfies the credibility extension condition, and has a unique
extension to credibility measure on P(R) by using the credibility extension
theorem. Now we define a fuzzy variable £ as an identity function from the
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credibility space (R, P(R),Cr) to R. Then the membership function of the
fuzzy variable £ is

(2Cr{e = a}) A1 = (u(w) +1- sipmy)) AL= u(e)

for each x. The theorem is proved.

Some Special Membership Functions

By an equipossible fuzzy variable we mean the fuzzy variable fully determined
by the pair (a, b) of crisp numbers with a < b, whose membership function is
given by

w(x)=1, a<z<b.

By a triangular fuzzy variable we mean the fuzzy variable fully determined
by the triplet (a,b,c) of crisp numbers with a < b < ¢, whose membership
function is given by

Tr—a

, ifa<z<b

b—a

pa(x) =9
, ifb<z<ec

b—c

By a trapezoidal fuzzy variable we mean the fuzzy variable fully determined
by the quadruplet (a,b,c,d) of crisp numbers with a < b < ¢ < d, whose
membership function is given by

Tr—a

b o’ fa<z<b
us(x) = 1, fb<z<e
—d

e d’ fe<z<d.

Figure C.1: Membership Functions p1, po and ps
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C.4 Credibility Distribution

Definition C.9 (Liu [I12]). The credibility distribution ® : R — [0,1] of a
fuzzy variable £ is defined by

P(z)=Cr{fecO|0) <az}. (C.36)

That is, ®(x) is the credibility that the fuzzy variable £ takes a value less than
or equal to x. Generally speaking, the credibility distribution ® is neither
left-continuous nor right-continuous.

Example C.13: The credibility distribution of an equipossible fuzzy variable

(a,b) is
0, ifzx<a
Oy(x)=4q 1/2, fa<z<d
1, ifx>b.

Especially, if £ is an equipossible fuzzy variable on R, then ®,(z) = 1/2.

Example C.14: The credibility distribution of a triangular fuzzy variable
(a,b,c) is

0, ifz<a
roa , fa<z<b
2(b—a)
®a(2) = r+c—2b
, ifb<z<c
2(c—b)
1, ifx>c.

Example C.15: The credibility distribution of a trapezoidal fuzzy variable
(a,b,c,d) is

0, ifx<a
T —a
ifa<z<b
2b—a)’ fa<z<
1
P3(z) = o fb<z<ec
$+d_26, fe<z<d
2(d — ¢)
1, if x >d.

Theorem C.16. Let & be a fuzzy variable with membership function p. Then
its credibility distribution is

O(x) = ; (sup w(y) +1—sup u(y)) , Vo e R. (C.37)

y<z y>w

Proof: It follows from the credibility inversion theorem immediately.
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Figure C.2: Credibility Distributions ®;, ®, and &3

Theorem C.17 (Liu [117], Sufficient and Necessary Condition for Credi-
bility Distribution). A function ® : ® — [0,1] is a credibility distribution if
and only if it is an increasing function with

lim ®(z) <0.5< lim ®(z), (C.38)
hintb( y) = ®(x) if hm@( ) > 0.5 or ®(x) > 0.5. (C.39)
ylx ylx

Proof: It is obvious that a credibility distribution ® is an increasing func-
tion. The inequalities (C38) follow from the credibility asymptotic theorem
immediately. Assume that x is a point at which lim, |, ®(y) > 0.5. That is,

lilm Cr{¢ <y} > 0.5.
ylx

Since {¢ <y} | {¢ <z} asy | x, it follows from the credibility semicontinuity
law that

P(y) =Cr{{ <y} | Cr{{ <z} = @(x)
as y | x. When z is a point at which ®(z) > 0.5, if lim, |, ®(y) # ®(z), then

we have
lim ®(y) > ®(z) > 0.5.

ylz

For this case, we have proved that lim,|, ®(y) = ®(z). Thus (C38) and
([C39) are proved Conversely, if ® : ® — [0,1] is an increasing function

satisfying (C.38)) and (C.39), then
2(z),  if B(x) < 0.5

2—20(x), if 0 5 < lim ®(y)

ylz

takes values in [0, 1] and sup u(z) = 1. It follows from Theorem that
there is a fuzzy variable £ whose membership function is just p. Let us verify
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that ® is the credibility distribution of &, i.e., Cr{¢ < a2} = ®(z) for each x.
The argument breaks down into two cases. (i) If ®(x) < 0.5, then we have
sup,~, u(y) = 1, and p(y) = 2®(y) for each y with y < z. Thus

Cr{{ <z} = ; (zgp my) +1- zgr;u(@) = Zgg@(y) = ®(z).

(ii) If ®(x) > 0.5, then we have sup, ., u(y) = 1 and ®(y) > ®(x) > 0.5 for
each y with y > x. Thus p(y) =2 — 2®(y) and

Crl <) =, (supnts) +1-supuy))

y<z y>z

. ; (1 +1-sup(2 - 2(I>(y))>
= inf ®(y) = lim ®(y) = P(x).

y>x ylx
The theorem is proved.

Example C.16: Let a and b be two numbers with 0 < a < 0.5 <b < 1. We
define a fuzzy variable by the following membership function,

2a, ifx <0
w(x) = 1, ifx=0
2—-2b, ifzx>0.

Then its credibility distribution is

Thus we have
lim ®(z)=a, lim P(z)=0».

T——00 T——+00

C.5 Independence

The independence of fuzzy variables has been discussed by many authors
from different angles. Here we use the following definition.

Definition C.10 (Liu and Gao [T2]). The fuzzy variables &1,&,-+ ,&m
are said to be independent if

Cr{ﬁ{& IS BZ}} = 1£rz11<nm Cr{¢ € B;} (C.41)

i=1

for any sets By, Ba,--- , B, of R.
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Theorem C.18. The fuzzy variables &1,&2,- - ,&m are independent if and
only if
{U{&EB}}_ max Cr{¢ € Bi} (C.42)
i=1
for any sets By, Ba, -+, B, of R.

Proof: It follows from the self-duality of credibility measure that
&1,&, -+, &y are independent if and only if

Cr{U{fi EBi}} 21—01“{0{&635}}

_1—1I<m<n Cr{szB}— Jmax Cr{fzeB}

Thus (C42) is verified. The proof is complete.

Theorem C.19. The fuzzy variables &1,&2,- - ,&m are independent if and
only if

{ﬂ &= l‘z}} = min Cr{§ =} (C.43)

i=1

for any real numbers 1,2, , Tp.

Proof: If &, &, - -+, &y are independent, then we have (C.43) immediately by
taking B; = {z;} for each i. Conversely, if Cr{N>, (& € B;)} > 0.5, it follows
from Theorem that (CA4I) holds. Otherwise, we have Cr{n™, (& =
x;)} < 0.5 for any real numbers x; € B;, i =1,2,--- ,m, and

Cr{ﬂ{gieBi}}:Cr U Nte=q3
i=1 z;€B;,1<i<m i=1

= sup Cr { m{fz = .Z‘Z}} sup min Cr{& = x;}
i=1

z;€B;,1<i<m 2;€B;,1<i<m 1<i<m

= min sup Cr{{ =z} = mln Cr{& € Bi}.

1<i<m z,€B;

Hence (CAI) is true, and &;1,&2,- -+, &y are independent. The theorem is
thus proved.

Theorem C.20. Let pu; be membership functions of fuzzy variables &;, i =
1,2,--- ,m, respectively, and p the joint membership function of fuzzy vector
(&1,82, -+ ,&m). Then the fuzzy variables &1,&2,- -+ , &y are independent if
and only if

(@1, 22, ) = in () (C.44)

for any real numbers 1,2, Tp,.
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Proof: Suppose that &1,&, -, &, are independent. It follows from Theo-
rem [C. 19| that

w(xr, T2, &m) = (20r{m{fi =$z}}> A1
= (2 min Cr{¢; = a:z}) A1

1<i<m
= min 2Cr{§ =z} Al= ?in i)

1<i<m 1<i<m

Conversely, for any real numbers x1,xg, - , &, with Cr{n™,{& = x;}} <
0.5, we have

i=1 =1
= ;#(93173327"' y Tm) = ; 1gignmm(xi)
= ; (lin_i<n (2Cr{& = z;i}) A 1)

min Cr{& =uz;}.

1<i<m

It follows from Theorem [C.19 that &1,&s, - , &, are independent. The the-
orem is proved.

C.6 Extension Principle of Zadeh

Theorem C.21 (Extension Principle of Zadeh). Let &1,&,--+ ,&, be in-
dependent fuzzy variables with membership functions py, po, - , fin, TESPEC-
tively, and f : R™" — R a function. Then the membership function p of £ =
f(&, &, &) is derived from the membership functions u1, o, - , tin by

wlz) = sup min g, (x;) (C.45)
s=f(x1,00, 0y) LIS
for any x € R. Here we set u(x) = 0 if there are not real numbers
T1,Za, - &y Such that x = f(x1,22, -, Tp).

Proof: It follows from Definition that the membership function of ¢ =
f(§1a§27 e agn) Is
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/”L(:E) = (2Cr{f(£1,£2,-~- 7571) :.’E})/\l
=2 sup Cr{&i =z1,& =22, ,&n=an} | A1
z=f(z1,T2, ,Tn)
=12 sup min Cr{¢ =z;} | A1 (by independence)
z=f(z1,22,,Tn) 1<k<n

= sup min (2Cr{g; = z:}) A1

z=f(x1,22, ,Tn)
= sup min f1;(x;).
a=f (1,22, ap,) 1SISN

The theorem is proved.

Remark C.3: The extension principle of Zadeh is only applicable to the
operations on independent fuzzy variables. In the past literature, the exten-
sion principle is used as a postulate. However, it is treated as a theorem in
credibility theory.

Example C.17: The sum of independent equipossible fuzzy variables & =
(a1,a2) and n = (b1, b2) is also an equipossible fuzzy variable, and

&4+ n= (a1 +b1,a2 + ba).

Their product is also an equipossible fuzzy variable, and

&E-n= ( min Y, max a:y) .

a1<z<az,b1<y<bs a1 <x<az,b; <y<bs

Example C.18: The sum of independent triangular fuzzy variables £ =
(a1,a2,a3) and n = (b1, by, b3) is also a triangular fuzzy variable, and

§+n = (a1 +bi,az + by, a3 + b3).

The product of a triangular fuzzy variable £ = (a1, az, ag) and a scalar number
A s
A 5 (/\al,)\ag,/\ag), lf/\ZO
| (Aas, Aag, Aap), if A< 0.

That is, the product of a triangular fuzzy variable and a scalar number is
also a triangular fuzzy variable. However, the product of two triangular fuzzy
variables is not a triangular one.

Example C.19: The sum of independent trapezoidal fuzzy variables £ =
(a1,a2,as,a4) and n = (b1, be, b3, by) is also a trapezoidal fuzzy variable, and

§+n= (al+b17a2+b27a3+b3,a4+b4).
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The product of a trapezoidal fuzzy variable £ = (a1, a2, as,a4) and a scalar
number A is
A g ()\al,/\ag,)\ag,)\a4), lf)\Z 0
| (Mag, Aas, Aag, Aat), if A <O0.

That is, the product of a trapezoidal fuzzy variable and a scalar number is
also a trapezoidal fuzzy variable. However, the product of two trapezoidal
fuzzy variables is not a trapezoidal one.

Example C.20: Let &1,&s, - -+ , &, be independent fuzzy variables with mem-
bership functions puq, pa, -+, ftn, respectively, and f : £ — R a function.
Then for any set B of real numbers, the credibility Cr{f(&1,&2, -+ ,&.) €
B} is

1
sup min i (2;) +1 - sup min p;(x;) | .
2 (f(wl,w2,---,wn)€B1<’<” o F(@1,@2, yon)€Be 1SiS0 e

C.7 Expected Value

There are many ways to define an expected value operator for fuzzy variables.
The most general definition of expected value operator of fuzzy variable was
given by Liu and Liu [IT4]. This definition is applicable to not only continuous
fuzzy variables but also discrete ones.

Definition C.11 (Liu and Liu [11})]). Let & be a fuzzy variable. Then the
expected value of € is defined by

+o0 0
E¢] :/0 Cr{¢ > r}dr —/_ Cr{¢ <r}dr (C.46)

provided that at least one of the two integrals is finite.

Example C.21: Let £ be the equipossible fuzzy variable (a,b). Then its
expected value is E[¢] = (a + b)/2.

Example C.22: The triangular fuzzy variable £ = (a,b, ¢) has an expected
value E[¢] = (a +2b+¢)/4.

Example C.23: The trapezoidal fuzzy variable £ = (a,b,¢,d) has an ex-
pected value E[¢(] = (a+ b+ c+d)/4.

Example C.24: Let £ be a continuous fuzzy variable with membership
function p. If its expected value exists, and there is a point xgy such that
p(zx) is increasing on (—oo,xzp) and decreasing on (zg,400), then Cr{¢ >
x} = p(x)/2 for any x > z¢ and Cr{¢ < z} = u(z)/2 for any = < zp. Thus

+oo o
Blel=ao+, [ ptado =, [ pla)da.

0 —00
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Example C.25: The definition of expected value operator is also applicable
to discrete case. Assume that £ is a simple fuzzy variable whose membership
function is given by
w, ifx=umz
pz)={ Hz M=o (C.47)
i, X =xpy,

where 1,22, - , 2y, are distinct numbers. Note that pu1 Vs V---V iy, = 1.
Definition [C.TT] implies that the expected value of £ is

B¢ =) wiz; (C.48)
i=1
where the weights are given by

1
wi =, | max {plz; <z} — max {ulz; <ai)

dps > 2l — s .
+ max {pyley > a0} — max {ple; > wz})

for i = 1,2,---,m. It is easy to verify that all w; > 0 and the sum of all
weights is just 1.

Example C.26: Consider the fuzzy variable ¢ defined by (C.4T). Suppose
T < 9 < -+ < Iy, and there exists an index k£ with 1 < k < m such that

p1 Spg <o Spgoand g > g1 200 > e

Note that py = 1. Then the expected value is determined by (C48]) and the
weights are given by

231

iti—1
2, 11 7
’“_2‘”‘1, ifi=23,- k-1
w = 1= e TR e
P
’““_2“’“, ikt 1,k+2,---,m—1
Hm e
fi=nm.
9 ifi=m

Linearity of Expected Value Operator

Theorem C.22 (Liu and Liu [137]). Let & and n be independent fuzzy vari-
ables with finite expected values. Then for any numbers a and b, we have

Ela& 4+ bn] = aE[€] + bE[n). (C.49)
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Proof: STEP 1: We first prove that E[¢ +b] = E[¢] + b for any real number
b. If b > 0, we have

o] 0
E§ +b] :/0 Cr{£+b2T}dr—/_ Cr{€+b<r}dr
:/ooCr{§>r—b}dr—/0 Cr{¢ <r—b}dr

0 —00

b
= E[¢] +/O (Cr{{>r—0b}+Cr{{ <r—0b})dr
= E[¢] + 0.

If b < 0, then we have

0
El¢ +1) :E[g]—/b (Cr{€ > r— b} + Cr{€ < 1 — b}) dr = E[¢] + .

STEP 2: We prove that Efaf] = aFE[{] for any real number a. If a = 0,
then the equation Efaf] = aE[¢] holds trivially. If a > 0, we have

Flag] = /0  Crfag > rhdr — /_ Ooo Cr{a¢ < r}dr

- [Cofer o [ efes o
co[Tefen [Ja() - ferfes ya()) =i

— 00

If a < 0, we have

Ela&] :/OO Cr{a§>r}dr—/0 Cr{a& < r}dr
0 —oco
:/OOOCr{§< Z}dr—/ooocr{g> Z}dr
sofTerfez Ja() e [ erfes Ja()) = mta
STEP 3: We prove that E[¢ + 7] = E[¢] + E[n] when both & and 7 are

simple fuzzy variables with the following membership functions,

wi, ifx=a vy, ifx=10b

po, if x =as vo, if x=by

play =4 H v(w) =

m, if T = am, Vp, ifxz=0,.
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Then £+ is also a simple fuzzy variable taking values a;+b; with membership
degrees pu; Avj, 1 =1,2,--- ,m, j=1,2,--- ,n, respectively. Now we define

1
/
w; = (&n&x {prlar < a;} 1I<nax {prlar < a;}

> —
-|-1£r}€ax {prlar > a;} | ax {prlar > az}>

1
12 . — m .
v 2 (lrglag(n{uﬂbl = b]} 1§la§Xn{Vl|bl < bj}

>p.) )
+ 1r£lagxn{1/l|bl > b;} 1rélla§>§l{1/l\bl > b]}) ,

1
ma;
2 \1<k<m, 1<z<

— b
1<k<r21 1<i<n (e Avilak +be < ai+bj}

>
1<k<nr}1 i{<z< {1k Awilar + b 2 ai + b}

{uk/\z/l\ak+bl<az+b}

- A by > a; + b;
1gk£1na,“f(gzgn{”’“ vilak + by > a; + J})

fori=1,2,---,mand j=1,2,--- ,n. It is also easy to verify that

n m
w; = wij, w; = Wi
j=1 i=1

for i = 1,2,--- ,m and j = 1,2,--- ,n. If {a;}, {b;} and {a; + b;} are
sequences consisting of distinct elements, then

€)= awj, E Z B+ =)0 (a; + bj)wi;.
i=1 j=1

i=1 j=1

Thus E[¢ +n] = E[¢] + E[n]. If not, we may give them a small perturbation
such that they are distinct, and prove the linearity by letting the perturbation
tend to zero.

STEP 4: We prove that E[¢ + 7] = E[¢] + E[n] when & and 7 are fuzzy
variables such that

lim Cr{€ <y} < < Crfe <0},
vl | (C.50)
lim Cr{n <y} < _ <Cr{n <0}

y10 2
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We define simple fuzzy variables §; via credibility distributions as follows,

k-1 k-1 k .

o o if L SOr{E<al< k=122 1
Q;(z) = k L k=1 k . i
i) 9i’ if 9i gCr{fﬁfv}<2i,k:2 Ty1,--0,2

1, if Cr{¢ <z} =1
for i =1,2,--- Thus {&} is a sequence of simple fuzzy variables satisfying

Cr{&, <r}1Cr{€<r}, ifr<o
Cr{& >ry1Cr{E>r}, ifr>0

as i — oo. Similarly, we define simple fuzzy variables 7; via credibility
distributions as follows,

k-1 k-1 k i
oi ¢+ i, SC{n<ap< k=122 !
o giv g SCr{n<a} < k=27"4100 2

1, ifCr{n <z} =1
for i =1,2,--- Thus {n;} is a sequence of simple fuzzy variables satisfying

Cr{m; <r}1Cr{n<r}, ifr<o
Cr{m; >r}1Cr{n>r}, ifr>0

as i — oo. It is also clear that {&; +m;} is a sequence of simple fuzzy variables.
Furthermore, when r < 0, it follows from (C.50Q) that

lim Cr{& +mn <r} = lim sup Cr{¢& <z} ACr{m; <y}
o 1700 £<0,y<0,z4y<r

= sup lim Cr{¢& <z} ACr{n <y}
2<0,y<0,x+y<r ¥

= sup  Cr{{ <z} ACr{n <y}
2<0,y<0,z+y<r
=Cr{{+n<r}.

That is,
Cr{&+m <r}1Cr{¢+n<r}, ifr<o0.

A similar way may prove that

Cr{&+mn >r}1Cr{&+n>r}, ifr>0.
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Since the expected values E[€] and E[n] exist, we have
“+o0 0
Ble) = [ ceznar- [ g <nar
0 —00

- " e > rdr - / 000 Cr{e < r}dr = E[g),

“+oo 0
En] = /0 Cr{n; > r}dr —/ Cr{n; <r}dr

— 00

= /0 o Cr{n > r}dr — [ Ooo Cr{n < r}dr = Eln,

+o0 0
Ble+ml = /0 Cr{g +m; > r}dr - /_ Cr{& +m; < r}dr

+00 0
e/ Cr{s+nzr}dr—/ Crlé + 7 < r}dr = B[ + 1]
0 —00

as i — oo. It follows from Step 3 that E[§ + 7] = E[§] + E[n).

STEP 5: We prove that E[{ 4+ n] = F[§] + E[n] when £ and 7 are arbi-
trary fuzzy variables. Since they have finite expected values, there exist two
numbers ¢ and d such that

1
11%Cf{€+6§y}§ o, < Cr{¢+e<o},
y

1
li%Cr{n—l—dSy} < 5 < Cr{n+d < 0}.
y

It follows from Steps 1 and 4 that

Elg+n] =E[+c)+(+d) —c—d]
=E[+c)+(n+d)]—c—d
=FE[{+c+En+d—c—d
=E[f]+c+En+d-—c—d
= E[¢] + E[n]

STEP 6: We prove that E[a& + bn] = aE[£] + bE[n] for any real numbers
a and b. In fact, the equation follows immediately from Steps 2 and 5. The
theorem is proved.

C.8 Variance

Definition C.12 (Liu and Liu [11])]). Let & be a fuzzy variable with finite
expected value e. Then the variance of ¢ is defined by V[¢] = E[(&€ — e)?].
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The variance of a fuzzy variable provides a measure of the spread of the
distribution around its expected value.

Example C.27: A fuzzy variable £ is called normally distributed if it has a
normal membership function

—1
,u(x)z?(l—l—exp <7T|£L'—6|>> , TzeR, 0>0. (C.51)
V6o

The expected value is e and variance is 02. Let & and & be independently
and normally distributed fuzzy variables with expected values e; and e,
variances 02 and o3, respectively. Then for any real numbers a; and az, the
fuzzy variable a1£1 + a2&s is also normally distributed with expected value
aie; + ages and variance (|ay|o + |az|o2)?.

Figure C.3: Normal Membership Function

Theorem C.23. If € is a fuzzy variable whose variance exists, a and b are
real numbers, then V[a& + b] = a*>V[¢].

Proof: It follows from the definition of variance that
Via& +b] = E [(a€ +b—aB[¢] - b)*] = a®B[(¢ — BE))’] = a®V[¢].

Theorem C.24. Let & be a fuzzy variable with expected value e. Then
V[l =0 if and only if Cr{ =e} = 1.
Proof: If V[¢] = 0, then E[(¢ — e)?] = 0. Note that

+oo

Blle—eP)= [ Crl(6—ef zrjar
0

which implies Cr{(£—e)? > r} = 0 for any r > 0. Hence we have Cr{(£—e)? =
0} =1, ie,, Cr{¢ = e} = 1. Conversely, if Cr{{ = e} = 1, then we have
Cr{(¢ —e)? =0} =1 and Cr{(¢ —e)? > 7} = 0 for any r > 0. Thus

+oo
Vie] = /0 Cr{(€ — €)2 > r}dr = 0.
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C.9 Moments

Definition C.13 (Liu [T16]). Let € be a fuzzy variable, and k a positive
number. Then

(a) the expected value E[¢*] is called the kth moment;

(b) the expected value E[|£|¥] is called the kth absolute moment;

(c) the expected value E[(§ — E[€])*] is called the kth central moment;

(d) the expected value E[|¢ — E[€]|F] is called the kth absolute central moment.

Note that the first central moment is always 0, the first moment is just the
expected value, and the second central moment is just the variance.

Example C.28: A fuzzy variable £ is called exponentially distributed if it
has an exponential membership function

u(w):2<1+exp<ff;>>l, x>0, m>0. (C.52)

The expected value is (v6mIn2)/7 and the second moment is m?. Let &
and & be independently and exponentially distributed fuzzy variables with
second moments m7 and m3, respectively. Then for any positive real numbers
a1 and ag, the fuzzy variable a1£; 4+ a2 is also exponentially distributed with
second moment (a;m; + agmsz)?.

Figure C.4: Exponential Membership Function

C.10 Critical Values

In order to rank fuzzy variables, we may use two critical values: optimistic
value and pessimistic value.

Definition C.14 (Liu [I12]). Let £ be a fuzzy variable, and o € (0,1]. Then

Eaup(@) = sup {r | Cr{¢ > r} > o} (C.53)
1s called the a-optimistic value to &, and
Gint(a) = inf {r | Cr{¢ <r} > a} (C.54)

1s called the a-pessimistic value to &.



296 APPENDIX C - CREDIBILITY THEORY

Example C.29: Let £ = (a,b,¢) be a triangular fuzzy variable. Then its
a-optimistic and a-pessimistic values are

2ab + (1 — 2a)c, if a <0.5
fsup(a) = .
(2 —1)a+ (2 — 2a)b, if a > 0.5,

fne(a) = (1 —2a)a+ 2ab, if <0.5
PN (2 - 2a)b+ (20— 1)e, if a > 0.5.

Theorem C.25. Let & be a fuzzy variable, and o € (0,1]. If « > 0.5, then
we have

Cr{¢ <&mi(a)} > a, Cr{€ > &upla)} > a. (C.55)

Proof: It follows from the definition of a-pessimistic value that there exists
a decreasing sequence {z;} such that Cr{¢ < z;} > a and z; | &ne(@) as
i — oo. Since {€ < z;} | {€ < &nr(a)} and lim; oo Cr{¢ < z;} > o > 0.5, it
follows from the credibility semicontinuity law that

Cr{€ < €ine(a)} = Jim Cr{€ <.} > o

Similarly, there exists an increasing sequence {x;} such that Cr{{ > z;} > «
and x; 1 &up(e) as ¢ — oo. Since {€ > z;} | {€ > &up(a)} and
lim; oo Cr{€ > z;} > a > 0.5, it follows from the credibility semicontinuity
law that

Cr{€ > &up(a)} = z.lirgo Cr{¢ > z;} > .

The theorem is proved.

Theorem C.26. Let € be a fuzzy variable, and o € (0,1]. Then we have
(a) &nt(@) is an increasing and left-continuous function of a;
(b) &sup(@v) is a decreasing and left-continuous function of a.

Proof: (a) Let a3 and as be two numbers with 0 < a3 < ag < 1. Then for
any number r < &uyp(az2), we have

Cr{{>r}>ay>an.

Thus, by the definition of optimistic value, we obtain &up(a1) > Eeuplag).
That is, the value &up(e) is a decreasing function of «. Next, we prove the
left-continuity of &n¢(a) with respect to a. Let {«;} be an arbitrary sequence
of positive numbers such that «; T . Then {&ine(e;)} is an increasing se-
quence. If the limitation is equal to &n¢(a), then the left-continuity is proved.
Otherwise, there exists a number z* such that

.lim finf(oti) < zzF< ginf(a)-
i—00

Thus Cr{¢ < z*} > «; for each 4. Letting i — oo, we get Cr{¢ < z*} > o
Hence z* > &ne(a). A contradiction proves the left-continuity of &n¢(ar) with
respect to . The part (b) may be proved similarly.
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C.11 Entropy

Fuzzy entropy is a measure of uncertainty and has been studied by many
researchers such as De Luca and Termini [27], Kaufmann [68], Yager [210],
Kosko [78], Pal and Pal [I65], Bhandari and Pal [7], and Pal and Bezdek
[167]. Those definitions of entropy characterize the uncertainty resulting
primarily from the linguistic vagueness rather than resulting from information
deficiency, and vanishes when the fuzzy variable is an equipossible one.

Liu [IT9] suggested that an entropy of fuzzy variables should meet at least
the following three basic requirements: (i) minimum: the entropy of a crisp
number is minimum, i.e., 0; (ii) mazimum: the entropy of an equipossible
fuzzy variable is maximum; (iii) wniversality: the entropy is applicable not
only to finite and infinite cases but also to discrete and continuous cases.

In order to meet those requirements, Li and Liu [89] provided a new defini-
tion of fuzzy entropy to characterize the uncertainty resulting from informa-
tion deficiency which is caused by the impossibility to predict the specified
value that a fuzzy variable takes.

Entropy of Discrete Fuzzy Variables

Definition C.15 (Li and Liu [89]). Let & be a discrete fuzzy variable taking
values in {x1,x2, - }. Then its entropy is defined by

H[g) =) S(Cr{¢ = z:}) (C.56)
i=1
where S(t) = —tlnt — (1 —¢t)In(1 —¢).

Example C.30: Suppose that ¢ is a discrete fuzzy variable taking values in
{1, x2,- - }. If there exists some index k such that the membership function
p(z) = 1, and 0 otherwise, then its entropy H[£] = 0.

Example C.31: Suppose that £ is a simple fuzzy variable taking values
in {1,292, -+ ,zy}. If its membership function pu(x) = 1, then its entropy
H[¢] =nln2.

Theorem C.27. Suppose that £ is a discrete fuzzy variable taking values in
{z1,22,---}. Then
H[] >0 (C.57)

and equality holds if and only if £ is essentially a crisp number.

Proof: The nonnegativity is clear. In addition, H[¢] = 0 if and only if
Cr{¢ =a;} =0 or 1 for each ¢. That is, there exists one and only one index
k such that Cr{€ =z} = 1, i.e., £ is essentially a crisp number.

This theorem states that the entropy of a fuzzy variable reaches its minimum
0 when the fuzzy variable degenerates to a crisp number. In this case, there
is no uncertainty.
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Theorem C.28. Suppose that € is a simple fuzzy variable taking values in
{z1,22, -+ ,2n}. Then
H[¢] <nln2 (C.58)

and equality holds if and only if £ is an equipossible fuzzy variable.

Proof: Since the function S(t) reaches its maximum In 2 at ¢t = 0.5, we have

Hlg = ZS(Cr{§ =xz;}) <nln2

i=1

and equality holds if and only if Cr{¢ = z;} = 0.5, i.e., p(z;) = 1 for all
i=1,2,--,n.

This theorem states that the entropy of a fuzzy variable reaches its maximum
when the fuzzy variable is an equipossible one. In this case, there is no
preference among all the values that the fuzzy variable will take.

Entropy of Continuous Fuzzy Variables

Definition C.16 (Li and Liu [89]). Let £ be a continuous fuzzy variable.
Then its entropy is defined by

+o0o
Hie] = / S(Cr{e = 2})dz (C.59)

where S(t) = —tlnt — (1 —¢)In(1 — ¢).

For any continuous fuzzy variable £ with membership function p, we have
Cr{¢ =z} = p(z)/2 for each x € R. Thus

Hig] = —/:o (“(;) In “(Qx) n (1 - “(2”;)) In (1 - “(2”;))) dz. (C.60)

Example C.32: Let £ be an equipossible fuzzy variable (a,b). Then u(z) =
1if a <z <b, and 0 otherwise. Thus its entropy is

H[g}:—/ab(;ln;Jr<1—;>1n(1—D)dx:(b—a)m.

Example C.33: Let £ be a triangular fuzzy variable (a,b,¢). Then its
entropy is H[¢] = (¢ —a)/2.

Example C.34: Let £ be a trapezoidal fuzzy variable (a, b, ¢, d). Then its
entropy is H[§] = (d—a)/24+ (In2 — 0.5)(c — b).

Example C.35: Let £ be an exponentially distributed fuzzy variable with
second moment m?. Then its entropy is H[¢] = mm//6.
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Example C.36: Let £ be a normally distributed fuzzy variable with expected
value e and variance o2. Then its entropy is H[¢] = v/670 /3.

Theorem C.29. Let £ be a continuous fuzzy variable taking values on the
interval [a,b]. Then

HIE) < (b—a)In2 (C.61)

and equality holds if and only if £ is an equipossible fuzzy variable (a,b).

Proof: The theorem follows from the fact that the function S(t) reaches its
maximum In2 at ¢t = 0.5.

Maximum Entropy Principle

Given some constraints, for example, expected value and variance, there are
usually multiple compatible membership functions. Which membership func-
tion shall we take? The mazimum entropy principle attempts to select the
membership function that maximizes the value of entropy and satisfies the
prescribed constraints.

Theorem C.30 (Li and Liu [92]). Let & be a continuous nonnegative fuzzy
variable with finite second moment m?. Then

H[¢] < (C.62)

V6

and the equality holds if € is an exponentially distributed fuzzy variable with
second moment m?2.

Proof: Let p be the membership function of £&. Note that p is a continuous
function. The proof is based on the following two steps.

STEP 1: Suppose that u is a decreasing function on [0, +00). For this case,
we have Cr{¢ > z} = p(z)/2 for any = > 0. Thus the second moment

El¢?Y] = /OJrOO Cr{¢% > z}dx = /0+<>° 22Cr{¢ > z}dx = /O+OO zp(z)de.

The maximum entropy membership function y should maximize the entropy

[ ()

subject to the moment constraint

+oo
/ rp(z)dr = m?.
0
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The Lagrangian is

L= —/()+OO (“(;) In “(2:”) + (1 - ”(2:”)> In (1 - “(25”)» dz
Y </O+OO x,u(x)dx—m2>.

The maximum entropy membership function meets Euler-Lagrange equation

1, @) 1 <1 _ u(2)

9 9 9 9 >+)\x:0

and has the form p(z) = 2 (1 4 exp(2Az)) ", Substituting it into the moment
constraint, we get

i (x) = 2 (1+exp (f;n»_l, x>0

which is just the exponential membership function with second moment m?2,
and the maximum entropy is H[¢*] = mm/V/6.

STEP 2: Let £ be a general fuzzy variable with second moment m?. Now
we define a fuzzy variable £ via membership function

fi(z) =supp(y), z>0.
y>

Then f is a decreasing function on [0, +00), and
1 N 1 1
Cr{&® > a} = sup fily) = o SUP supp(z) =, sup p(z) < Cr{¢* > a}
y> y> iz 2>y 2>
for any > 0. Thus we have

+oo

+o00
E[¢?] = /0 Cr{€® > z}dx < /0 Cr{¢? > x}dx = E[¢%] = m?.

Tt follows from p(x) < fi(x) and Step 1 that

~ m/E [E 2] ™m
g << e <
The theorem is thus proved.

Theorem C.31 (Li and Liu [92]). Let & be a continuous fuzzy variable with
finite expected value e and variance 0. Then

Véro
Hg <V

and the equality holds if £ is a normally distributed fuzzy variable with expected

value e and variance o2.

(C.63)
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Proof: Let p be the continuous membership function of £. The proof is
based on the following two steps.

STEP 1: Let p(z) be a unimodal and symmetric function about x = e.
For this case, the variance is

+00 +oo
ViE] = /0 Cr{(¢ —e)* > z}dx = /0 Cr{¢ —e > Va}dz

_ /:OO 2z — )Cr{¢ > z}de = /:oo(w — e)u(z)dz

and the entropy is

HI¢) = -2 /:oo (“(;) In u(;:) + (1 - “?) In (1 - u(;:))) da.

The maximum entropy membership function p should maximize the entropy
subject to the variance constraint. The Lagrangian is

L= -2 /:oo <’“L(2:”) In “(23”) + (1 - ”(2:”)> In (1 - “(25”)» da
5\ (/:m(x _ )pla)dz — 02> .

The maximum entropy membership function meets Euler-Lagrange equation
In /i(;) —1In <1 — ,u(;)) + Az —e€)=0

and has the form p(z) = 2(1 + exp (A(z —€)))". Substituting it into the
variance constraint, we get

() =2 <1 +exp <“$6_Ue|>>_l, zeR

which is just the normal membership function with expected value e and
variance o2, and the maximum entropy is H[¢*] = V670 /3.

STEP 2: Let § be a general fuzzy variable with expected value e and
variance o2. We define a fuzzy variable ¢ by the membership function

sgp(u(y) Vu(2e—y)), ifx<e
Yysx

sup (n(y) v p2e—y)), ifz>e.
y-x

Alz) =
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It is easy to verify that [(x) is a unimodal and symmetric function about
x = e. Furthermore,

~ 1 R 1
ar{@-ePzr} =, sw @)=, sup sup(uly)Vpe—y))
2 T>e++/7 2 T>et/ry2cT

1 1
=, sup (u(y) vV p(2e —y)) = sup  u(y)
y>e+y/r (y—e)?>r

<Cr{(¢-e3?>r}

for any r > 0. Thus

~ too =R +oo
VA= [ ed@-erznars [ ale- 0Pz =2

Tt follows from p(x) < fi(x) and Step 1 that

. V6m\/V[E] o
g < g < VoYV Ve

The proof is complete.

C.12 Conditional Credibility

We now consider the credibility of an event A after it has been learned that
some other event B has occurred. This new credibility of A is called the
conditional credibility of A given B.

In order to define a conditional credibility measure Cr{A|B}, at first we
have to enlarge Cr{A N B} because Cr{A N B} < 1 for all events whenever
Cr{B} < 1. It seems that we have no alternative but to divide Cr{ AN B} by
Cr{B}. Unfortunately, Cr{ANB}/Cr{B} is not always a credibility measure.
However, the value Cr{A|B} should not be greater than Cr{A N B}/Cr{B}
(otherwise the normality will be lost), i.e.,

Cr{ANn B}
< . .
Cr{A|B} < Cr{B)} (C.64)
On the other hand, in order to preserve the self-duality, we should have
Cr{A°N B}
= — ¢ > — .
Cr{A|B} =1-Cr{A°|B} > 1 Cr{B} (C.65)

Furthermore, since (AN B) U (A°N B) = B, we have Cr{B} < Cr{AN B} +
Cr{A° N B} by using the credibility subadditivity theorem. Thus

Cr{A°Nn B} _Cr{ANB}
0<1—- Cr{B) < Cr{B) <1 (C.66)
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Hence any numbers between 1 — Cr{A°N B}/Cr{B} and Cr{AN B}/Cr{B}
are reasonable values that the conditional credibility may take. Based on the
maximum uncertainty principle, we have the following conditional credibility
measure.

Definition C.17 (Liu [120]). Let (©,P,Cr) be a credibility space, and
A, B € P. Then the conditional credibility measure of A given B is defined
by

Cr{AN B} _Cr{ANn B}
sy 0 oo <0
Cr{A|B} = 3 Cr{A°nB}  Cr{A°n B} (C.67)
= sy 0 oy <09
0.5, otherwise

provided that Cr{B} > 0.
It follows immediately from the definition of conditional credibility that

_ Cr{A°Nn B} Cr{AN B}

! Cr{B} Cr{B}

< Cr{A|B} < (C.68)

Furthermore, the value of Cr{A|B} takes values as close to 0.5 as possible
in the interval. In other words, it accords with the maximum uncertainty
principle.

Theorem C.32. Let (©,P,Cr) be a credibility space, and B an event with
Cr{B} > 0. Then Cr{:|B} defined by is a credibility measure, and
(©,P,Cr{:|B}) is a credibility space.

Proof: It is sufficient to prove that Cr{:|B} satisfies the normality, mono-
tonicity, self-duality and maximality axioms. At first, it satisfies the normal-
ity axiom, i.e.,
Cr{e°nB} 1 Cr{0}
cr{B} Cr{B}
For any events A; and As with A; C As, if
CI‘{Al N B} < CI‘{AQ N B}
Cr{B} — Cr{B}

Cr{0|B} =1 - 1.

< 0.5,

then
CI‘{Al N B} < CI‘{AQ N B}

ClAlBY = "o S s

= Cr{A4z|B}.
If
Cr{A; N B}
Cr{B}
then Cr{A;|B} < 0.5 < Cr{A4y|B}. If

Cr{A; N B}

<05 <
s05< Cr{B}
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CI‘{Al N B} < CI‘{AQ N B}

05< By = By

then we have

Cr{A|B} = (1 - Cr{cﬁ E}B }) V0.5 < (1 - Cr{cf% E}B }) V0.5 = Cr{As|B).

This means that Cr{-|B} satisfies the monotonicity axiom. For any event
A, if
Cr{AN B} > 05 Cr{A°Nn B}
Cr{B} ~— 7 Cr{B}
then we have Cr{A|B} + Cr{A¢|B} = 0.5+ 0.5 = 1 immediately. Otherwise,
without loss of generality, suppose

Cr{AN B} Cr{A°N B}
crBy "0 orgmy

> 0.5,

then we have

Cr{A| B} + Cr{A°|B} = Créf{;f} + (1 _ Créﬁ;?) _1

That is, Cr{:|B} satisfies the self-duality axiom. Finally, for any events {4;}
with sup; Cr{4;|B} < 0.5, we have sup; Cr{A4; N B} < 0.5 and
sup, Cr{A; N B}  Cr{u;A; N B}

sgp Cr{A;|B} = Cr{B} N Cr{B}

Thus Cr{-|B} satisfies the maximality axiom. Hence Cr{:|B} is a credibility
measure. Furthermore, (0, P, Cr{-|B}) is a credibility space.

Definition C.18 (Liu [120]). The conditional membership function of a
fuzzy variable £ given B is defined by

w(x|B) = (2Cr{{ =z|B})Al, zeR (C.69)
provided that Cr{B} > 0.
Example C.37: Let £ be a fuzzy variable with membership function u(x),

and X a set of real numbers such that p(z) > 0 for some z € X. Then the
conditional membership function of £ given ¢ € X is

2u() A1, if sup p(x) <1
sug w(x) zeX
xrc
palx) =4 o (C.70)
Al, if su r)=1
2 - sup () zeg)(/i( )
reXe©

for x € X. Please mention that u(z|X)=0if z € X.
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p(x|X) p(z]X)
1 ........... 1 ...........................
0] & X Sna 0 —x= "

Figure C.5: Conditional Membership Function u(x|X)

Example C.38: Let £ and 1 be two fuzzy variables with joint member-
ship function p(z,y), and Y a set of real numbers. Then the conditional
membership function of £ given n € Y is

2 sup w(z,y)
ve A, if sup p(z,y) <1
sup  p(x,y) zeR,yeY
zeR,YeY
pw(z]Y) = (C.71)
2 sugu(w, Y)
ye :
AL if sup p(e,y) =1
2— sup  p(z,y) CER,yEY
zeR,YeY©

provided that p(z,y) > 0 for some x € R and y € Y. Especially, the
conditional membership function of £ given n =y is

2u(x,y)

AT, if sup p(z,y) <1
sup 1i(z, y) zER
zeR
m(zly) = 2. y)
’ A1, if sup p(z,y) =1
2= swp pla,2) Sap )
zER,z#£Y

provided that p(z,y) > 0 for some z € R.

Definition C.19 (Liu [120]). The conditional credibility distribution ®:
R — [0,1] of a fuzzy variable & given B is defined by

®(z|B) = Cr{¢ < z|B} (C.72)
provided that Cr{B} > 0.

Definition C.20 (Liu [120]). Let¢ be a fuzzy variable. Then the conditional
expected value of € given B is defined by

+o00 0
E[¢|B] = /0 Cr{¢ > r|B}dr —/_ Cr{{ < r[B}dr (C.73)

provided that at least one of the two integrals is finite.
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C.13 Fuzzy Set

Zadeh [222] introduced the concept of fuzzy set via membership function
in 1965: A fuzzy set is defined by its membership function p which assigns
to each element x a real number u(x) in the interval [0, 1], where the value
of pu(x) represents the grade of membership of x in the fuzzy set. Liu [120]
redefined a fuzzy set as a function from a credibility space to a collection of
sets.

Definition C.21 (Liu [I120]). A fuzzy set is a function & from a credibility
space (0, P, Cr) to a collection of sets of real numbers.

Warning: The fuzzy set in the sense of Definition is not equivalent
to Zadeh’s definition of fuzzy set. Thus the fuzzy set theory based on Defi-
nition is inconsistent with Zadeh’s fuzzy set theory. For example, the
extension principle of Zadeh is no longer valid.

Let £ and n be two nonempty fuzzy sets. Then the strong membership
degree of 11 to £ is defined as the credibility measure that 7 is strongly included
in &, i.e., Cr{n C &}. The weak membership degree of n to £ is defined as the
credibility measure that n is weakly included in &, i.e., Cr{n ¢ £°}.

Definition C.22. Let & and n be two nonempty fuzzy sets. Then the mem-
bership degree of 1 to & is defined as the average of strong and weak member-
ship degrees, i.e.,

Celn €} = , (Or{n C €} + Crin ¢ £°). (©74)

The membership degree is understood as the credibility measure that n is
mmaginarily included in &.

Note that if 1 degenerates to a single point a, then the strong inclusion is
identical with the weak inclusion, and Cr{a > ¢} = Cr{a € {} = Cr{a & £°}.

Definition C.23. Let £ be a nonempty fuzzy set. Then the function
®(x) = Cr{{ > (—o0,2]}, VeeR (C.75)
18 called the credibility distribution of &.

The concept of membership function is only applicable to a special class of
fuzzy sets. In other words, it is not true that every fuzzy set has its own
membership function.

Definition C.24. A fuzzy set & is said to have a membership function i if
the range of £ is just the total class of u, and

Cr{€eW,}=a, Vae]|0,1] (C.76)

where Wy, is the a-class of p.
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A representation theorem states that, if £ is a fuzzy set with membership
function u, then & may be represented by

¢= U o ma (C.77)

0<a<l1

where i, is the a-cut of membership function pu.

Warning: The complement £°, union £ U, intersection £ N7, sum & +n and
product £ x n of fuzzy sets have no membership functions even though the
original fuzzy sets have their own membership functions.

Definition C.25. Let & be a nonempty fuzzy set. Then the expected value
of € is defined by

+o0 0
Ele] :/0 Cr{em [r, +oo)}dr—/_ Cr{e > (—o0,r]}dr  (C.78)

provided that at least one of the two integrals is finite.

Let £ be a nonempty fuzzy set with credibility distribution ®. If £ has a finite
expected value, then

“+o0 0
E[¢] = /0 (1—®(z))dx — / O (z)dz. (C.79)

Definition C.26. Let £ be a fuzzy set, and o € (0,1]. Then

Esup (@) = sup {r | Cr{{>[r,+o0)} > a} (C.80)
1s called the a-optimistic value to &, and

&int(a) = inf {r | Cr{¢{r (—oo,r]|} > a} (C.81)
1s called the a-pessimistic value to &.

Let & be a fuzzy set with credibility distribution ®. Then its a-optimistic
value and a-pessimistic value are

fap(@) =27 (1 =), &ni(a) =2 (a) (C.82)

for any o with 0 < a < 1.



Appendix D

Chance Theory

Fuzziness and randomness are two basic types of uncertainty. In many cases,
fuzziness and randomness simultaneously appear in a system. In order to
describe this phenomena, a fuzzy random variable was introduced by Kwak-
ernaak [80] as a random element taking “fuzzy variable” values. In addition,
a random fuzzy variable was proposed by Liu [I12] as a fuzzy element taking
“random variable” values. For example, it might be known that the lifetime
of a modern engine is an exponentially distributed random variable with an
unknown parameter. If the parameter is provided as a fuzzy variable, then
the lifetime is a random fuzzy variable.

More generally, a hybrid variable was introduced by Liu [IT8] in 2006 as a
tool to describe the quantities with fuzziness and randomness. Fuzzy random
variable and random fuzzy variable are instances of hybrid variable. In order
to measure hybrid events, a concept of chance measure was introduced by Li
and Liu [94] in 2009. Chance theory is a hybrid of probability theory and
credibility theory. Perhaps the reader would like to know what axioms we
should assume for chance theory. In fact, chance theory will be based on the
three axioms of probability and five axioms of credibility.

The emphasis in this appendix is mainly on chance space, hybrid variable,
chance measure, chance distribution, expected value, variance, critical values
and conditional chance.

D.1 Chance Space

Chance theory begins with the concept of chance space that inherits the
mathematical foundations of both probability theory and credibility theory.
Definition D.1 (Liu [I18]). Suppose that (0,P,Cr) is a credibility space
and (Q,.A,Pr) is a probability space. The product (©,P,Cr) x (Q, A, Pr) is
called a chance space.

The universal set © x  is clearly the set of all ordered pairs of the form

(0,w), where 6 € © and w € . What is the product c-algebra P x A? What
is the product measure Cr x Pr? Let us discuss these two basic problems.

What is the product o-algebra P x A?

Generally speaking, it is not true that all subsets of © x ) are measurable.
Let A be a subset of © x Q. Write



310 APPENDIX D - CHANCE THEORY

AB) = {we ]| (B,w) e A}, (D.1)

Tt is clear that A(6) is a subset of Q. If A(f) € A holds for each 6 € ©, then
A may be regarded as a measurable set.

Q0

©

0

Figure D.1: © x 2, A and A(6)

Definition D.2 (Liu [120]). Let (©,P,Cr) x (Q, A, Pr) be a chance space.
A subset A C © x Q is called an event if A(0) € A for each 0 € ©.

Example D.1: Empty set () and universal set © x € are clearly events.

Example D.2: Let X € Pand Y € A. Then X x Y is a subset of © x Q.
Since the set
Y, ifoeX

f, if6eXxe
is in the o-algebra A for each 6 € ©, the rectangle X x Y is an event.

Theorem D.1 (Liu [120]). Let (©,P,Cr) x (Q,A,Pr) be a chance space.
The class of all events is a o-algebra over © X Q, and denoted by P x A.

(X xY)(0) = {

Proof: At first, it is obvious that © x 2 € P x.A. For any event A, we always
have
AB) e A, VO e 0.

Thus for each 8 € ©, the set
A°(9) = {w €N | (O,w) € AC} =(A(#))c e A

which implies that A° € P x A. Finally, let A;, As,--- be events. Then for
each 6 € ©, we have

(GM)(@): {weQ | (B,w) € GAZ} = G{weﬁ | (,w) € Ai} € A
i=1 i=1

i=1

That is, the countable union U;A; € P x A. Hence P x A is a o-algebra.
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What is the product measure Cr x Pr?

Product probability is a probability measure, and product credibility is a
credibility measure. What is the product measure Cr x Pr? We will call it
chance measure and define it as follows.

Definition D.3 (Li and Liu [9])]). Let (©,P,Cr) x (Q,A,Pr) be a chance
space. Then a chance measure of an event A is defined as

sup(Cr{f} A Pr{A(6)}),
e

if Sgg(Cr{G} APr{A(0)}) < 0.5

Ch{A} = (D.2)
1- Sgg(CrW} APr{A%(0)}),

if Sgg(Cr{G} APr{A(0)}) > 0.5.

Example D.3: Take a credibility space (0,P,Cr) to be {6,602} with
Cr{6:} = 0.6 and Cr{f2} = 0.4, and take a probability space (Q,.A,Pr)
to be {w1, w2} with Pr{w;} = 0.7 and Pr{ws} = 0.3. Then

Ch{(@l,wl)} = 06, Ch{(ag,a)g)} =0.3.

Theorem D.2. Let (0,P,Cr) x (Q,.A, Pr) be a chance space and Ch a chance
measure. Then we have

Ch{p} =0, (D.3)
Ch{® x Q} =1, (D.4)
0<Ch{A}<1 (D.5)

for any event A.
Proof: It follows from the definition immediately.

Theorem D.3. Let (0, P,Cr) x (Q, A, Pr) be a chance space and Ch a chance
measure. Then for any event A, we have

sup(Cr{6} A Pr{A(6)}) V sup(Cr{0} A Pr{A°(6)}) > 0.5, (D.6)
€6 €6

sup(Cr{6} APr{A(0)}) + sup(Cr{0} APr{A°(0)}) <1, (D.7)
) )

Sgg(Cr{H} APr{A(#)}) < Ch{A} <1-— Sgg(Cr{H} APr{A°(0)}). (D.8)
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Proof: It follows from the basic properties of probability and credibility that
sup(Cr{0} APr{A(6)}) V sup(Cr{6} APr{A°(0)})
0o 0o

> sup(Cr{8) A (Pr{A®)} v Pr{A(0)))
> supCr{f#} A0.5=10.5
0coe

and
sup(Cr{0} APr{A(0)}) + sup(Cr{0} A Pr{A°(0)})
9co 0co

= sup (Cr{61} APr{A(61)} + Cr{62} APr{A°(02)})

91,926@
sup (Cr{61} + Cr{02}) vV sup(Pr{A(0)} + Pr{A°(0)})
01#02 0O
<1lvili=1.
The inequalities (D.8]) follows immediately from the above inequalities and
the definition of chance measure.

IA

Theorem D.4 (Li and Liu [94)]). The chance measure is increasing. That is,
Ch{A1} < Ch{Az} (D.9)

for any events A1 and Ao with Ay C As.

Proof: Since A1(0) C Az(6) and A5(0) C A§(9) for each § € ©, we have

sup(Cr{0} APr{A1(0)}) < sup(Cr{6} A Pr{A2(0)}),
0co 0co

sup(Cr{0} A Pr{A5(0)}) < sup(Cr{6} A Pr{A](0)}).
0€o 0co

The argument breaks down into three cases.
Case 1: sup(Cr{0} A Pr{A2(0)}) < 0.5. For this case, we have
e

sup(Cr{0} A Pr{A1(0)}) < 0.5,
0co
Ch{Aq} = 31618(01"{9} APr{A;(0)}) > 31618(01"{9} APr{A;1(0)} = Ch{A1}.

Case 2: sup(Cr{6} APr{A2(0)}) > 0.5 and sup(Cr{0} APr{A1(6)}) < 0.5.
0€o 0co
It follows from Theorem [D.3 that
Ch{A2} > sup(Cr{6} A Pr{A2(6)}) > 0.5 > Ch{A}.
0coe

Case 3: sup(Cr{0} APr{A2(6)}) > 0.5 and sup(Cr{0} APr{A1(6)}) > 0.5.
) 0co
For this case, we have

Ch{Az}= 1—21618(Cr{9}/\Pr{A§(9)}) > l—sgg(Cr{G}/\Pr{Af (0)})=Ch{A:}.

Thus Ch is an increasing measure.
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Theorem D.5 (Li and Liu [9]]]). The chance measure is self-dual. That is,
Ch{A} + Ch{A°} =1 (D.10)
for any event A.

Proof: For any event A, please note that

sup(Cr{0} A Pr{A°(0)}), if sup(Cr{6} APr{A%(0)}) < 0.5
Ch{Ac} — 0O 0O
1 —sup(Cr{0} APr{A(6)}), if sup(Cr{0} APr{A°(6)}) > 0.5.
06 06

The argument breaks down into three cases.
Case 1: sup(Cr{0} A Pr{A(6)}) < 0.5. For this case, we have
e

sup(Cr{6} APr{A°(0)}) > 0.5,
€6

Ch{A}+Ch{A} = Slelg(Cr{H} APr{A()})+1— Slelg(Cr{H} APr{A(0)}) = 1.

Case 2: sup(Cr{f} APr{A(0)}) > 0.5 and sup(Cr{6} A Pr{A°(#)}) < 0.5.
0€o 0€o

For this case, we have
Ch{A}+Ch{A‘} = 1—Stelg(Cr{é)}/\Pr{Ac(t‘))})+31€18(Cr{0}/\Pr{AC(9)}) =1.
Case 3: sup(Cr{0} APr{A(6)}) > 0.5 and sup(Cr{0} A Pr{A(6)}) > 0.5.
For this Cagg,@it follows from Theorem thgie
sup(Cr{0} A Pr{A(0)}) = sup(Cr{0} A Pr{A°(6)}) = 0.5.
6c© 0ce
Hence Ch{A} + Ch{A°} = 0.5+ 0.5 = 1. The theorem is proved.
Theorem D.6 (Li and Liu [9])]). For any event X x Y, we have
Ch{X x Y} =Cr{X} APr{Y}. (D.11)

Proof: The argument breaks down into three cases.
Case 1: Cr{X} < 0.5. For this case, we have

sup Cr{0} APr{Y} = Cr{X} ACr{Y} < 0.5,
0eX
Ch{X x Y} =sup Cr{0} APr{Y} = Cr{X} APr{Y}.
0eX

Case 2: Cr{X} > 0.5 and Pr{Y'} < 0.5. Then we have
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sup Cr{6} > 0.5,
eXx

sup Cr{6} APr{Y} =Pr{Y} < 0.5,
oex
Ch{X x Y} =sup Cr{0} APr{Y} =Pr{Y} =Cr{X} APr{Y}.
0eX
Case 3: Cr{X} > 0.5 and Pr{Y'} > 0.5. Then we have

sup (Cr{0} APr{(X x Y)(0)}) > sup Cr{0} A Pr{Y} > 0.5,
0co oex

Ch{X xY}=1-—sup (Cr{f} APr{(X xY)°(0)}) = Cr{X} APr{Y}.
0co
The theorem is proved.

Example D.4: It follows from Theorem [D.6] that for any events X x Q and
O X Y, we have

Ch{X x Q} = Cr{X}, Ch{O x Y} =Pr{y}. (D.12)

Theorem D.7 (Li and Liu [9]], Chance Subadditivity Theorem). The
chance measure is subadditive. That is,

Ch{A; UAs} < Ch{A;} + Ch{As} (D.13)

for any events A1 and Ao. In fact, chance measure is not only finitely sub-
additive but also countably subadditive.

Proof: The proof breaks down into three cases.
Case 1: Ch{A; UA2} < 0.5. Then Ch{A;} < 0.5, Ch{A2} < 0.5 and

Ch{A1 UAz} - = sup(Cr{g} A Pr{(A1 U A2)(0)})
<Cr{e} A (Pr{A1(6)} + Pr{As(6)}))

< sup(cr{e} APr{A;(6)} + Cr{6} A Pr{A+(6)})

< sup<Cr{9} APE{AL(0))) + sup(Cr{6) A Pr{As(6)})

- Ch{Al} + Ch{As}.

<bu

Case 2: Ch{A; UA3} > 0.5 and Ch{A;} V Ch{As} < 0.5. We first have

sup(Cr{0} APH{(A1 U A2)(@)}) 2 05

For any sufficiently small number € > 0, there exists a point 6 such that

Cr{0} APr{(A; UA2)(0)} > 0.5 — ¢ > Ch{A1} V Ch{As},
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Cr{0} > 0.5 — e > Pr{A4(0)},
Cr{0} > 0.5 — e > Pr{A2(0)}.
Thus we have
Cr{0} APr{(A1 UA2)(0)} + Cr{0} APr{A1(0)} + Cr{0} A Pr{A2(0)}
Cr{0} A Pr{(A1 UA2)°(0)} + Pr{As(0)} + Pr{As(0))
Cr{0} APr{(A1UA2)°(0)} + Pr{(A1 UA)(O)} > 1 —2¢

Y

because if Cr{6} > Pr{(A; U A2)°(#)}, then
Cr{6} APr{(A1 UA2)(0)} + Pr{(A1 UA2)(0)}
= Pr{(A1UA2)°(0)} +Pr{(A1 UA2)(6)}
= 1>1-2¢
and if Cr{f} < Pr{(A1 UA2)¢(0)}, then
Cr{0} APr{(A1 UA2)°(0)} + Pr{(A1 UA2)(0)}
Cr{0} + Pr{(A1 UA2)(0)}
(05—e)+ (05 —¢)=1-2e.

v

Taking supremum on both sides and letting ¢ — 0, we obtain
Ch{A1 UA2} =1—sup(Cr{f} APr{(A; UA2)(0)})
0co
< sup(Cr{f} A Pr{A1(0)}) + sup(Cr{6} A Pr{A>(0)})
4SS) G
= Ch{A1} + Ch{As}.

Case 3: Ch{A; UA2} > 0.5 and Ch{A;} VvV Ch{A2} > 0.5. Without loss of
generality, suppose Ch{A;} > 0.5. For each 6, we first have

Cr{6} APr{Af(0)} = Cr{0} APr{(A{(0) NA5(F)) U (A1(0) N A2(0))}
< Cr{f} A (Pr{(A1 UA2)*(0)} + Pr{A2(6)})
< Cr{0} APr{(A; UA2)S(0)} + Cr{6} A Pr{A,(0)},

ie., Cr{0} APr{(A1 UA2)¢(0)} > Cr{0} APr{A§(0)} — Cr{6} APr{A2(0)}. It
follows from Theorem [D.3 that

Ch{AitUA2} =1- Slelg(Cr{H} APr{(A1 UA2)(0)})
<1l- Zlelg(Cr{H} ANPr{Af(0)}) + Stelg(Cr{ﬁ} APr{As(6)})
< Ch{A1} + Ch{Az}.

The theorem is proved.
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Remark D.1: For any events A; and Ao, it follows from the chance subad-
ditivity theorem that the chance measure is null-additive, i.e., Ch{A; UA2} =
Ch{A1} + Ch{Az} if either Ch{A;} =0 or Ch{A2} = 0.

Theorem D.8. Let {A;} be a decreasing sequence of events with Ch{A;} — 0
as i — 00. Then for any event A, we have

lim Ch{AUA;} = lim Ch{A\A;} = Ch{A}. (D.14)

Proof: Since chance measure is increasing and subadditive, we immediately
have

Ch{A} < Ch{AUA;} < Ch{A} + Ch{A;}

for each i. Thus we get Ch{A U A;} — Ch{A} by using Ch{A;} — 0. Since
(A\A;) C A C ((A\A;) UA,), we have

Ch{A\A;} < Ch{A} < Ch{A\A;} + Ch{A;}.
Hence Ch{A\A;} — Ch{A} by using Ch{A;} — 0.

Theorem D.9 (Li and Liu [9])], Chance Semicontinuity Law). For events
A1, As, -+, we have

lim Ch{A;} = Ch { lim Ai} (D.15)

if one of the following conditions is satisfied:
(a) Ch{A} < 0.5 and A; T A; (b) lim Ch{A;} < 0.5 and A; T A;

(¢) Ch{A} > 0.5 and A; | A;  (d) lim Ch{A;} > 0.5 and A; | A.
Proof: (a) Assume Ch{A} < 0.5 and A; T A. We first have
Ch{A} = sup(Cr{0} APr{A(#)}), Ch{A;} =sup(Cr{6} APr{A;(0)})
0co 0co
for i = 1,2,--- For each 6 € O, since A;(8) T A(), it follows from the
probability continuity theorem that
lim Cr{0} APr{A;(0)} = Cr{0} APr{A(6)}.
Taking supremum on both sides, we obtain

lim sup(Cr{é} APr{A;(0)}) = sup(Cr{6} A Pr{A(0}).

10 e 0ce

The part (a) is verified.
(b) Assume lim; o, Ch{A;} < 0.5 and A; T A. For each 6 € ©, since

Cr{0} APr{A(0)} = ZIE& Cr{6} A Pr{A;(0)},
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we have

sup(Cr{0} APr{A(6)}) < lim sup(Cr{0} A Pr{A;(0)}) < 0.5.
4SS) Ea<(Cl

It follows that Ch{A} < 0.5 and the part (b) holds by using (a).
(c¢) Assume Ch{A} > 0.5 and A; | A. We have Ch{A°} < 0.5 and A T A°.
It follows from (a) that

lim Ch{A;} =1 — lim Ch{A¢} =1 — Ch{A°} = Ch{A}.
(d) Assume lim;_,oo Ch{A;} > 0.5 and A; | A. We have lim Ch{A$} < 0.5
and AS T A°. Tt follows from (b) that

lim Ch{A;} =1— lim Ch{A{} =1 — Ch{A°} = Ch{A}.
The theorem is proved.

Theorem D.10 (Chance Asymptotic Theorem). For any events A1, Aa,- -+,
we have

lim Ch{A;} > 0.5, if A; 1O xQ, (D.16)
lim Ch{A;} < 0.5, 4f A; | 0. (D.17)

Proof: Assume A; T © x Q. If lim; o Ch{A;} < 0.5, it follows from the
chance semicontinuity law that

Ch{® x Q} = lim Ch{A;} < 0.5

which is in contradiction with Cr{© x Q} = 1. The first inequality is proved.
The second one may be verified similarly.

D.2 Hybrid Variable

Recall that a random variable is a measurable function from a probability
space to the set of real numbers, and a fuzzy variable is a function from a
credibility space to the set of real numbers. In order to describe a quan-
tity with both fuzziness and randomness, we introduce a concept of hybrid
variable as follows.

Definition D.4 (Liu [118]). A hybrid variable is a measurable function from
a chance space (0, P, Cr) x (2, A, Pr) to the set of real numbers, i.e., for any
Borel set B of real numbers, the set

{¢e B} ={(0,w) €O x Q| £(0,w) € B} (D.18)

1S an event.
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Set of Real Numbers

Random
Variable

Fuzzy
Variable

Hybrid
Variable

Credibility Space Probability Space

Figure D.2: Graphical Representation of Hybrid Variable

Remark D.2: A hybrid variable degenerates to a fuzzy variable if the value
of £(0,w) does not vary with w. For example,

€0,w) =0, €0,w)=0*+1, &(0,w)=sind.

Remark D.3: A hybrid variable degenerates to a random variable if the
value of £(0,w) does not vary with 6. For example,

§0,w) =w, &0,w)= w? + 1, £(0,w) = sinw.

Remark D.4: For each fixed § € O, it is clear that the hybrid variable
£(0,w) is a measurable function from the probability space (€2, A, Pr) to the
set of real numbers. Thus it is a random variable and we will denote it by
£(0,-). Then a hybrid variable £(, w) may also be regarded as a function from
a credibility space (0,P,Cr) to the set {£(6,-)|0 € ©} of random variables.
Thus € is a random fuzzy variable defined by Liu [T12].

Remark D.5: For each fixed w € 2, it is clear that the hybrid variable
£(0,w) is a function from the credibility space (©,P,Cr) to the set of real
numbers. Thus it is a fuzzy variable and we will denote it by £(-,w). Then a
hybrid variable £(0, w) may be regarded as a function from a probability space
(Q, A, Pr) to the set {£(-,w)|w € 2} of fuzzy variables. If Cr{¢(-,w) € B} is
a measurable function of w for any Borel set B of real numbers, then £ is a
fuzzy random variable in the sense of Liu and Liu [I36].
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Model 1

If @ is a fuzzy variable and 7 is a random variable, then the sum £ = a+ 7 is
a hybrid variable. The product £ = @ -7 is also a hybrid variable. Generally
speaking, if f : ®2 — R is a measurable function, then

§=f(a,n) (D.19)

is a hybrid variable. Suppose that a has a membership function u, and 7 has
a probability density function ¢. Then for any Borel set B of real numbers,
we have

o p@)
if bl;p ( 5 A /f(z’y)EB (b(y)dy) < 0.5
()
1— A o(y)dy | |
st;p( ; /f W y>

if sup uiw) /\/ o(y)dy | > 0.5.
= \ 2 Ji@yes

More generally, let ay,aso, - - - , G, be fuzzy variables, and let ny, 72, - -+ , n, be
random variables. If f : R™*" —  is a measurable function, then

Ch{f(a,n) € B} =

ng(dlad2a"' adm;nlan%"' 777n) (D20)
is a hybrid variable. The chance Ch{f(ai,as, - ,am;n1,m2, -+ ,mm) € B}

may be calculated in a similar way provided that p is the joint membership
function and ¢ is the joint probability density function.

Model I1

Let ai,as, - ,anm be fuzzy variables, and let py,ps, - - - , pm be nonnegative
numbers with p; +ps + -+ -+ pm = 1. Then

a1 with probability p;
= ao with probability po (D.21)

a.m, With probability p,,

is clearly a hybrid variable. If a1, aso,--- ,a,; have membership functions
W1, b2, "+ + 5 m, Tespectively, then for any set B of real numbers, we have



320 APPENDIX D - CHANCE THEORY

. Mz(xz) -
Il,xs;.l}),xm <<lgl<nm 5 > A ;{pz |z; € B}) )
pi()) |
. ) . 1 1 . i
if 5upwm <(1£1§Hm 9 ) N Z{pz |z; € B}) <0.5

e i=1
Ch{¢ € B} =
:U'z(l'i) U
1 - 1 1 BC
m,f?up’zm ((lgznm 5 ) /\;{p |z; € })
pila))
if Su min ) A x; € B > 0.5
o <(1<z<m 2 ;{pz\ s€BY| >
Model II1
Let 11, m2, -+, nm be random variables, and let u, ug, - - - , um be nonnegative

numbers with uq Vug V---Vu,, = 1. Then
11 with membership degree u;
= 12 with membership degree us (D.22)
Nm with membership degree u,,

is clearly a hybrid variable. If 11,79, -+, have probability density func-
tions ¢1, Po, - , dm, respectively, then for any Borel set B of real numbers,

we have
u;
R ( 5 A/Bqﬁi(ﬂf)dw),
if maX( /gbz dx)<05
1<i<m
Ch{¢ € B} =
u;
1- max, ( 5 A . gbi(:r)dx) ,
if max< /gi)z dx>>05
1<i<m
Model IV

In many statistics problems, the probability density function is completely
known except for the values of one or more parameters. For example, it
might be known that the lifetime & of a modern engine is an exponentially
distributed random variable with an unknown expected value (3. Usually,
there is some relevant information in practice. It is thus possible to specify
an interval in which the value of g is likely to lie, or to give an approximate
estimate of the value of 3. It is typically not possible to determine the value
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of B exactly. If the value of 3 is provided as a fuzzy variable, then £ is a
hybrid variable. More generally, suppose that £ has a probability density
function

gi)(l’;dl,dg,-“ ,Elm), zeR (D23)

in which the parameters ai,as,- - ,a,, are fuzzy variables rather than crisp
numbers. Then ¢ is a hybrid variable provided that ¢(z;y1,v2, -+, Ym) iS
a probability density function for any (y1,y2,- - ,¥m) that (a1,ae, -, am)
may take. If a1,ase,- - ,a;, have membership functions pi, g2, -+, thm, re-
spectively, then for any Borel set B of real numbers, the chance Ch{¢ € B} is

o i(ya)
) d
oo, (257 [t i)

if sup <( min MZ(yl)) /\/ o(z5y1, Y2, - ,ym)dx> < 0.5
yYm B

Y1,Y2, 1<i<m 2
o pilyi)
1— . . d
o, (L0 )0 [ s vy
if sup <( min MZ(yl)) /\/ o(z5y1, Y2, - ,ym)dx> > 0.5.
Y1,y2, s ym \\1<i<m 2 B

When are two hybrid variables equal to each other?

Definition D.5. Let & and & be hybrid variables defined on the chance
space (©,P,Cr) x (2, A,Pr). We say & = & if &1(0,w) = &(0,w) for almost
all (0,w) € © x Q.
Hybrid Vectors

Definition D.6. An n-dimensional hybrid vector is a measurable function
from a chance space (0,P,Cr) x (2, A,Pr) to the set of n-dimensional real
vectors, i.e., for any Borel set B of R", the set

{¢€B}={(6,w) €O xQ|£&0,w) € B} (D.24)
1S an event.

Theorem D.11. The vector (&1,&2,- -+ ,&n) is a hybrid vector if and only if
&1,&, -+, &, are hybrid variables.

Proof: Write & = (£1,&2,--- ,&n). Suppose that € is a hybrid vector on
the chance space (©,P,Cr) x (Q,A,Pr). For any Borel set B of R, the set
B x R~ ! is a Borel set of #”. Thus the set

{$e€B}={& €B&LER, - L eR={€eB xR}
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is an event. Hence &7 is a hybrid variable. A similar process may prove that
&,&3,- -, &, are hybrid variables. Conversely, suppose that all £;,&s,-- ,&,
are hybrid variables on the chance space (0, P, Cr) x (2, A, Pr). We define

$:{BC§R”’{£€B}isanevent}.

The vector & = (&1,&2,- -+ ,&,) is proved to be a hybrid vector if we can
prove that B contains all Borel sets of R™. First, the class B contains all
open intervals of R because

{€ € H(ai,bi)} =N {& € (ai,b)}
i=1 i=1

is an event. Next, the class B is a o-algebra of R” because (i) we have R" € B
since {£€ € R"} = © x Q; (ii) if B € B, then {& € B} is an event, and

{€ e B} ={¢{ e B}

is an event. This means that B¢ € B; (iii) if B; € B for ¢ = 1,2,---, then
{€ € B;} are events and

{EE UBz} = U{EEBz‘}

is an event. This means that U;B; € B. Since the smallest o-algebra con-
taining all open intervals of ™ is just the Borel algebra of R", the class B
contains all Borel sets of ™. The theorem is proved.

Hybrid Arithmetic

Definition D.7. Let f : R" — R be a measurable function, and &1,&2, -+ ,&n
hybrid wvariables on the chance space (0,P,Cr) x (Q,A,Pr). Then & =
f(&1, &, &) is a hybrid variable defined as

£(0,w) = f(&1(0,w), &(0,w), - -+, &n(0,w)),  V(b,w) €O x Q. (D.25)
Example D.5: Let & and & be two hybrid variables. Then the sum & =
&1 + & is a hybrid variable defined by

E0,w)=60,w)+&(0,w), Y(0,w)e O XN
The product & = £1&5 is also a hybrid variable defined by
£0,w) =&(0,w) - &2(0,w), V(0,w) €O xQ.

Theorem D.12. Let € be an n-dimensional hybrid vector, and f : R — R
a measurable function. Then f(€) is a hybrid variable.
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Proof: Assume that £ is a hybrid vector on the chance space (0,P,Cr) x
(Q,A,Pr). For any Borel set B of R, since f is a measurable function, the
f~Y(B) is a Borel set of ®". Thus the set

{f(¢&)e By ={¢c f'(B)}

is an event for any Borel set B. Hence f(&) is a hybrid variable.

D.3 Chance Distribution

Chance distribution has been defined in several ways. Here we accept the
following definition of chance distribution of hybrid variables.

Definition D.8 (Li and Liu [94]). The chance distribution ®: R — [0,1] of
a hybrid variable £ is defined by

O(z) =Ch{¢ <x}. (D.26)
Example D.6: Let n be a random variable on a probability space (2, A, Pr).

It is clear that n may be regarded as a hybrid variable on the chance space
(©,P,Cr) x (22, A, Pr) as follows,

£0,w) =n(w), V(O,w)eOxQ.
Thus its chance distribution is
®(z) = Ch{§ <z} = Ch{O x {n < z}} = Cr{O} A Pr{n <z} = Pr{n < z}
which is just the probability distribution of the random variable 7.

Example D.7: Let a be a fuzzy variable on a credibility space (©, P, Cr).
It is clear that a may be regarded as a hybrid variable on the chance space
(©,P,Cr) x (22, A,Pr) as follows,

&0, w) =a(d), V(O,w)e O xQ.
Thus its chance distribution is
®(z) = Ch{¢{ <z} =Ch{{a <z} x Q} =Cr{a <z} APr{Q} = Cr{a < z}
which is just the credibility distribution of the fuzzy variable a.

Theorem D.13 (Sufficient and Necessary Condition for Chance Distribu-
tion). A function ® : R — [0,1] is a chance distribution if and only if it is
an increasing function with

lim &(z) <0.5< lim &(x), (D.27)

r——0Q r——+0o0

lim ®(y) = () if lifn ®(y) > 0.5 or ®(z) > 0.5. (D.28)

ylz
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Proof: It is obvious that a chance distribution ® is an increasing function.
The inequalities (D-27) follow from the chance asymptotic theorem immedi-
ately. Assume that z is a point at which lim,|, ®(y) > 0.5. That is,

lim Ch{€ < y} > 05.
ylx

Since {{ <y} | {£ <z} asy | z, it follows from the chance semicontinuity
law that

®(y) = Ch{¢ <y} | Ch{¢ <z} = ®(x)
as y | x. When z is a point at which ®(z) > 0.5, if lim, |, ®(y) # ®(z), then
we have

lifn O(y) > ®(x) > 0.5.
ylz

For this case, we have proved that lim, |, ®(y) = ®(x). Thus (D-28) is proved.

Conversely, suppose ® : 8 — [0,1] is an increasing function satisfying
(D27) and (D28)). Theorem [CIT states that there is a fuzzy variable whose
credibility distribution is just ®(z). Since a fuzzy variable is a special hybrid
variable, the theorem is proved.

D.4 Expected Value

Expected value has been defined in several ways. This book uses the following
definition of expected value operator of hybrid variables.

Definition D.9 (Li and Liu [94)). Let & be a hybrid variable. Then the
expected value of € is defined by

“+o0 0
E¢] = / Ch{¢ > r}dr — / Ch{{ < r}dr (D.29)
0 —00
provided that at least one of the two integrals is finite.

Example D.8: If a hybrid variable £ degenerates to a random variable
7, then
Chi¢ <z} =Pr{n<z}, Ch{i{>z}=Pr{n>z}, Vreh
It follows from (D.29)) that E[¢] = E[n]. In other words, the expected value
operator of hybrid variable coincides with that of random variable.
Example D.9: If a hybrid variable £ degenerates to a fuzzy variable a, then
Chi¢<z}=Cr{a<z}, Ch{¢>z}=Cr{a>z}, VrehR
It follows from (D.29)) that E[¢] = E[a]. In other words, the expected value

operator of hybrid variable coincides with that of fuzzy variable.

Example D.10: Let a be a fuzzy variable and 7 a random variable with
finite expected values. Then the hybrid variable £ = a+n has expected value
E[§] = Ela] + Eln].
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Theorem D.14. Let £ be a hybrid variable with finite expected values. Then
for any real numbers a and b, we have

Ela& 4+ b] = aE[¢] + b. (D.30)

Proof: STEP 1: We first prove that E[¢ +b] = E[£] + b for any real number
b. If b > 0, we have

+o00 0
E¢+b = /0 Chi{¢+b>r}idr— /_ Ch{¢+b < r}dr
[es) 0
:/+ Ch{gzr—b}dr—/ Ch{{ <r —b}dr
0 —00

b
= E[¢] +/O (Ch{€ >r—b} +Ch{{ <r —0b})dr
— Bl +b.
If b < 0, then we have
0
Elaé + 5] = Bl¢] - /b (Ch{¢ > r — b} + Ch{€ < r — b})dr = E[¢] +b.

STEP 2: We prove E[a€] = aFE[§]. If a = 0, then the equation E[af] =
aE[g] holds trivially. If a > 0, we have

+oo 0
Elag] = /0 Ch{a& > r}dr —/_ Ch{a& < r}dr
+oo 0
:/ Ch{¢ > r/a}dr —/ Ch{¢ <r/a}dr
0 —oo

+oo 0
_ Chie > tydt—a [ Chie <}d
a/o (¢ > tat a/_oo (€ < t)at
—aBlg)

If a < 0, we have
+oo 0
Elag) = / Ch{a& > r}dr — / Ch{a& < r}dr
0 —oo

+o0 0
:/ Ch{¢ < r/a}dr —/ Ch{¢ > r/a}dr
0

“+o0 0
—q / Ch{e > t}dt — a / Ch{e < t}dt
0 — 00
— aB[g).
STEP 3: For any real numbers a and b, it follows from Steps 1 and 2 that
Ela& +b) = Ela&] + b= aFE[¢] + b.

The theorem is proved.
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D.5 Variance

Definition D.10 (Li and Liu [9])]). Let & be a hybrid variable with finite
expected value e. Then the variance of & is defined by V[¢] = E[(& — e)?].

Theorem D.15. If £ is a hybrid variable with finite expected value, a and b
are real numbers, then V[aé + b] = a®V[¢].

Proof: It follows from the definition of variance that
Viag +b] = B [(a€ + b~ aB[¢] - b)*] = a®B[(¢ — B[E])*] = a®V[¢].

Theorem D.16. Let £ be a hybrid variable with expected value e. Then
VI[E] =0 if and only if Ch{¢ =e} = 1.

Proof: If V[¢] = 0, then E[(¢ — e)?] = 0. Note that

+oo
E[(€ )] = / Ch{(€ — ¢)® > r}dr

which implies Ch{(¢ —e)? > 7} = 0 for any r > 0. Hence we have

Ch{(¢ —e)> =0} =1.
That is, Ch{{ = e} = 1. Conversely, if Ch{¢ = e} = 1, then we have
Ch{(¢ —e)? =0} =1 and Ch{(¢ —e)? > r} =0 for any r > 0. Thus

—+oo
Ve = /O Ch{(€ — )2 > r}dr = 0.

The theorem is proved.

D.6 Critical Values

In order to rank hybrid variables, we introduce the following definition of
critical values of hybrid variables.

Definition D.11 (Li and Liu [9])]). Let & be a hybrid variable, and o €
(0,1]. Then

gsup(a) = sup {T | Ch {f > T} > a} (D31)

1s called the a-optimistic value to &€, and
&ne(a) =inf {r | Ch{¢ <r} > o} (D.32)

1s called the a-pessimistic value to &.
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The hybrid variable ¢ reaches upwards of the a-optimistic value &gup (), and
is below the a-pessimistic value &n¢(a) with chance a.

Example D.11: If a hybrid variable £ degenerates to a random variable 7,
then

Ch{¢ <z} =Pr{n<z}, Ch{{>z}=Pr{n=>z}, Veek
It follows from the definition of critical values that

gSUP (a) = Tlsup (a)v ginf(a) = ninf(a), Va € (0, 1}

In other words, the critical values of hybrid variable coincide with that of
random variable.

Example D.12: If a hybrid variable ¢ degenerates to a fuzzy variable a,
then

Chi¢ <z} =Cr{a<z}, Ch{¢>z}=Cr{a>z}, VreR
It follows from the definition of critical values that
gsup(a) = dsup(a)v ginf(a) - afinf(a)a Vo € (07 1]

In other words, the critical values of hybrid variable coincide with that of
fuzzy variable.

Theorem D.17. Let & be a hybrid variable, and « € (0,1]. If a > 0.5, then
we have
Ch{{ < &ut(a)} >, Ch{§ > &up(a)} > a. (D.33)

Proof: It follows from the definition of a-pessimistic value that there exists
a decreasing sequence {z;} such that Ch{¢ < z;} > «a and z; | &ne(@) as
i — o00. Since {€ < x;} | {€ < &nt(a)} and lim; oo Ch{¢ < 2;} > a > 0.5, it
follows from the chance semicontinuity theorem that

Ch{€ < Eime(a)} = Jim Ch{€ <2} > o

Similarly, there exists an increasing sequence {x;} such that Ch{{ > z;} > «
and z; T &up(a) as ¢ — oo. Since {{ > z;} | {€ > &up(a)} and
lim; ,oo Ch{¢ > z;} > a > 0.5, it follows from the chance semicontinuity
theorem that

Ch{{ > &up(a)} = ilir& Ch{¢ = i} = o

The theorem is proved.

Theorem D.18. Let £ be a hybrid variable, and o € (0,1]. Then we have
(a) &up (@) is a decreasing and left-continuous function of o;
(b) &ne() is an increasing and left-continuous function of a.
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Proof: (a) Let a; and as be two numbers with 0 < a3 < ag < 1. Then for
any number 7 < &gp(ag), we have

Ch{{>r} > as > a.

Thus, by the definition of optimistic value, we obtain &up(a1) > Eeuplag).
That is, the value &yp(e) is a decreasing function of .. Next, we prove the
left-continuity of &u¢(a) with respect to a. Let {«;} be an arbitrary sequence
of positive numbers such that a; T a. Then {&n(a;)} is an increasing se-
quence. If the limitation is equal to &u¢(ar), then the left-continuity is proved.
Otherwise, there exists a number z* such that

lim &) < 27 < &ing(a).
71— 00

Thus Ch{¢ < z*} > a; for each i. Letting ¢ — oo, we get Ch{¢ < z*} > a.
Hence z* > &ne(a). A contradiction proves the left-continuity of &,¢(ar) with
respect to . The part (b) may be proved similarly.

D.7 Conditional Chance

We consider the chance measure of an event A after it has been learned that
some other event B has occurred. This new chance measure of A is called
the conditional chance measure of A given B.

In order to define a conditional chance measure Ch{A|B}, at first we
have to enlarge Ch{A N B} because Ch{A N B} < 1 for all events whenever
Ch{B} < 1. It seems that we have no alternative but to divide Ch{ANB} by
Ch{B}. Unfortunately, Ch{A N B}/Ch{B} is not always a chance measure.
However, the value Ch{A|B} should not be greater than Ch{AN B}/Ch{B}
(otherwise the normality will be lost), i.e.,

Ch{AN B}

h{A|B} < D.34
Ch{AIB} < (D-34)
On the other hand, in order to preserve the self-duality, we should have
Ch{A°N B}
h{A|B} =1—-Ch{A°|B} >1— D.
Ch{AIB} =1~ {4718} > 1~ "' (D.35)

Furthermore, since (AN B)U(A°N B) = B, we have Ch{B} < Ch{AN B} +
Ch{A°nN B} by using the chance subadditivity theorem. Thus

Ch{A°N B} _ Ch{AN B}
0<1- "B = cnpy <t (D.36)

Hence any numbers between 1 —Ch{A°N B}/Ch{B} and Ch{ANB}/Ch{B}
are reasonable values that the conditional chance may take. Based on the
maximum uncertainty principle, we have the following conditional chance
measure.
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Definition D.12 (Li and Liu [97]). Let (©,P,Cr) x (Q,A,Pr) be a chance
space and A, B two events. Then the conditional chance measure of A given
B is defined by

Ch{A N B} LCh{ANBY _
c{By © 7 By '
Ch{A|B} ={ . Ch{A°nB} _ Ch{A°NB} (D.37)
om0 Y onsy <0°
0.5, otherwise

provided that Ch{B} > 0.

Remark D.6: It follows immediately from the definition of conditional

chance that

~ Ch{A°n B}
Ch{B}

Ch{AN B}

! Ch{B}

< Ch{A|B} < (D.38)
Furthermore, it is clear that the conditional chance measure obeys the max-

imum uncertainty principle.

Remark D.7: Let X and Y be events in the credibility space. Then the
conditional chance measure of X x Q given Y x (1 is

Cr{XNY} . Cr{X NY} <05
Cr{Y} ~ Cr{Y} '
Ch{X x QY x Q} =< | Cr{X°nY} £ Cr{X°NnY} <05
Cr{Yy} ~’ Cr{Y}
0.5, otherwise

which is just the conditional credibility of X given Y.

Remark D.8: Let X and Y be events in the probability space. Then the
conditional chance measure of © x X given © x Y is

Pr{XNY}

Ch{® x X|& x V=0 )

which is just the conditional probability of X given Y.

Theorem D.19 (Li and Liu [97]). Conditional chance measure is normal,
increasing, self-dual and countably subadditive.

Proof: At first, the conditional chance measure Ch{-|B} is normal, i.e.,

Ch{}

- Ch{B} L

Ch{O x Q|B} =1
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For any events A; and As with A; C As, if

Ch{4; N B} _ Ch{4>N B}

Ch{B} = cn P
then
cnfarfmy = o AT < PRI —ental),
It
Ch{A; N B} Ch{A; N B}
chiy == cunm

then Ch{A;|B} < 0.5 < Ch{Ay|B}. If

Ch{4, N B} _ Ch{4s N B}

05< “cniy = on(By

then we have

Ch{A,|B} = (1 - Chéﬁ E}B }) V0.5 < (1 - Chéﬁ E}B }) V0.5=Ch{As|B).

This means that Ch{-|B} is increasing. For any event A, if

Ch{AnB} _ . Ch{A°nB)

coiy =% onmy =05

then we have Ch{A|B}+ Ch{A¢|B} = 0.5+ 0.5 = 1 immediately. Otherwise,
without loss of generality, suppose
Ch{AN B} Ch{A°N B}
<05< ,
Ch{B} Ch{B}

then we have

Ch{A[B} + Ch{A°|B} = Ch{AnN B} n (1_ Ch{AmB}> _

Ch{B} Ch{B}

That is, Ch{:|B} is self-dual. Finally, for any countable sequence {4;} of
events, if Ch{4;|B} < 0.5 for all ¢, it follows from the countable subadditivity
of chance measure that

A;NB =l < =t = Ch{A4;|B}.
U Ch{B} Ch{B} ;

i=1

N Ch{GAmB} iCh{AiﬂB}
ofgenr)

Suppose there is one term greater than 0.5, say

Ch{A;|B} > 0.5, Ch{A;|B} <05, i=23,--
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If Ch{u;4;|B} = 0.5, then we immediately have

(oo} (oo}

Ch{U A, mB} < Ch{4i|B}.
i=1 i=1

If Ch{U;4;|B} > 0.5, we may prove the above inequality by the following

facts:
AsnBc|JAinB)U (ﬂA;mB) ,

i=2 =1

Ch{AgmB}<ZCh{AmB}+Ch{ﬂAgmB},

i=2 =1

) |}
Ch{UAZ-B}:l— .
i=1

Ch{B}
. f: Ch{4; N B}
Ch{ASNB} =
2 Oh{AilB} 21~ Ch{B} 2 Ch{B}

i=1
If there are at least two terms greater than 0.5, then the countable subad-
ditivity is clearly true. Thus Ch{:|B} is countably subadditive. Hence the
theorem is verified.

Definition D.13 (Li and Liu [97]). The conditional chance distribution ®:
R — [0,1] of a hybrid variable £ given B is defined by

®(z|B) = Ch{¢ < z|B} (D.39)
provided that Ch{B} > 0.

Definition D.14 (Li and Liu [97]). Let & be a hybrid variable. Then the
conditional expected value of £ given B is defined by

“+o0 0
E[¢|B] :/0 Ch{¢ > r|B}dr —[ Ch{{ < r|B}dr (D.40)

provided that at least one of the two integrals is finite.
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Five Plus One

Uncertainty theory is a branch of mathematics based the following five axioms
plus one principle:

Axiom 1. (Normality Axiom) M{T'} =1 for the universal set I'.
Monotonicity Axiom) M{A;} < M{A2} whenever A; C As.
Self-Duality Axiom) M{A} + M{A°} =1 for any event A.

Axiom 2.

Axiom 3.

(
(
(
Axiom 4. (Countable Subadditivity Axiom) For every countable sequence
of events A1, Ao, -+, we have

M {G AZ} < iM{Ai}.
i=1 i=1

Axiom 5. (Product Measure Axiom) Let (I'y, L1, M}, ) be uncertainty spaces
for Kk =1,2,--- ,n. Then the product uncertain measure M is an uncertain
measure on the product o-algebra L1 x Lo x - -+ x L, satisfying

M { 11 Ak} = min Me{A}

k=1
That is, for each event A € L1 x Lo X --- x L,,, we have
sup min Mg{Ag},
A1 XAgX--x N, CALSE<n

if sup min Mg{Ar} > 0.5
ApXAg X x N, CALSk<n

M{A} = 1-— sup min Mp{Ax},
(A} A1 XAz x--xAp, CAc 1Sk<n i}

if sup min Mi{Ar} > 0.5
A1 XAz XX A, CAC 1SESn

0.5, otherwise.

Principle. (Maximum Uncertainty Principle) For any event, if there are
multiple reasonable values that an uncertain measure may take, then the
value as close to 0.5 as possible is assigned to the event.
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99-method, 24 1541

99-table,

a-class,

a-cut, 193]

a-path,

U graph,

arithmetic canonical process, [1Z1]
Boolean function,

canonical process,

chain rule,

Chebyshev inequality,
conditional membership function,
conditional uncertain measure,
convergence almost surely,
convergence in distribution,
convergence in mean,
convergence in measure,
countable subadditivity axiom,
credibility measure,

critical value,

currency model, [[61]
dependent-chance programming,
discrete uncertain variable, [I7]
distance,

empirical uncertainty distribution,
entropy,

event, [I]

expected value, 4]

expected value model,
experimental data,
fractional canonical process,
geometric canonical process, [[41]
Hausdorff distance,

hazard distribution,

Holder’s inequality,

hybrid intelligent algorithm,
hypothetical syllogism,
imaginary inclusion, [[91]
independence, 2T

independent increment, [[31]
inference control,

inference rule,

inverse uncertainty distribution,
inverted pendulum,

Jensen’s inequality,

joint uncertainty distribution, 211
law of contradiction,

law of excluded middle,

law of truth conservation,
linear uncertain variable,
lognormal uncertain variable, [I7T]
machine scheduling problem,
Markov inequality,

maximum entropy principle,
maximum uncertainty principle,
measure inversion theorem, [I8]
membership degree, 197
membership function,
Minkowski inequality,

modus ponens, [[R4]

modus tollens, [[84]

moment, [54]

monotonicity axiom, [l

Nash equilibrium,

normal uncertain variable,
normality axiom, [I]

operational law, 24]
optimistic value,

option pricing,

Pareto solution,

pessimistic value,

portfolio selection,
possibility measure,

product measure axiom, [7]
product uncertainty space, [IT]
project scheduling problem,
ranking criterion,

rectangular uncertain set,
regular uncertainty distribution,
reliability index,

renewal process,
representation theorem, [[94]

risk index,

rule-base,

sample path, [31]

self-duality axiom,
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squared variation,

stability, [51]

Stackelberg-Nash equilibrium,
stationary increment, [I31]

stock model,

strong inclusion, [[97]

trapezoidal uncertain set,
triangular uncertain set,
total class,

total variation,

truth function, [T21] [T64]

truth value,

uncertain calculus,
uncertain control,

uncertain differential equation, [I47]
uncertain dynamic programming,
uncertain entailment, [[77]
uncertain finance,

uncertain inference,
uncertain integral, [[4T]

uncertain logic,

INDEX

uncertain measure,

uncertain multilevel programming,
94

uncertain process, [[31]

uncertain programming,

uncertain proposition,

uncertain reliability analysis,

uncertain risk analysis,

uncertain sequence,

uncertain set, [I87]

uncertain system,

uncertain variable, [[T]

uncertain vector,

uncertainty, 237]

uncertainty distribution, [I4]

uncertainty space,

variance,

vehicle routing problem,

weak inclusion, [[91]

zigzag uncertain variable,
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