
5

Agent-Based Co-operative Co-evolutionary Algorithms
for Multi-objective Portfolio Optimization

Rafał Dreżewski, Krystian Obrocki, and Leszek Siwik

Department of Computer Science
AGH University of Science and Technology, Kraków, Poland
drezew@agh.edu.pl, kobrocki@gmail.com, siwik@agh.edu.pl

Summary. Co-evolutionary techniques makes it possible to apply evolutionary algorithms in the
cases when it is not possible to formulate explicit fitness function. In the case of social and eco-
nomic simulations such techniques provide us tools for modeling interactions between social and
economic agents—especially when agent-based models of co-evolution are used. In this chapter
agent-based versions of multi-objective co-operative co-evolutionary algorithms are presented
and applied to portfolio optimization problem. The agent-based algorithms are compared with
classical versions of SPEA2 and NSGA2 multi-objective evolutionary algorithms with the use
of multi-objective test problems and multi-objective portfolio optimization problem. Presented
results show that agent-based algorithms obtain better results in the case of multi-objective test
problems, while in the case of portfolio optimization problem results are mixed.

5.1 Introduction

Evolutionary algorithms are heuristic techniques which can be used for finding approx-
imate solutions of global optimization problems. Evolutionary algorithms were also
applied with great success to multi-modal and multi-objective problems (for example
compare [1]), however in these cases some special mechanisms should be used in or-
der to obtain good results. These are of course mechanisms specific for problems being
solved but it seems that very important mechanisms in the case of multi-modal and
multi-objective problems are the ones that maintain population diversity, because we
are interested in finding not a single solution (as in the case of global optimization
problems) but rather the whole sets of solutions.

Co-evolution is one of the mechanisms that can support maintaining of population
diversity (see [14]). Another effect of applying co-evolutionary mechanisms is that we
do not have to explicitly formulate the fitness function—we can just encode solutions in
the genotypes and approximate fitness values for individuals on the basis of tournaments
(competitive co-evolutionary algorithms) or co-operation (co-operative co-evolutionary
algorithms).

Agent-based co-evolutionary algorithms are decentralized models of co-evolutionary
computation. In fact two approaches are possible when we try to mix agent-based and
evolutionary paradigms. In the first one agents are used to “manage” the evolutionary
computations (see Figure 5.1). In such an approach each agent has the population of

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 63–84.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

64 R. Dreżewski, K. Obrocki, and L. Siwik

Fig. 5.1. Agent-based layer used for managing evolutionary computations

individuals inside of it, and this sub-population is evolved with the use of a standard
evolutionary algorithm. Agents themselves can migrate within the computational envi-
ronment, from one computational node to another, trying to utilize in a best way free
computational resources.

The example of the second approach is co-evolutionary multi-agent system (Co-
EMAS) which results from the realization of co-evolutionary processes in multi-agent
system (for example see [3, 4]). In such systems agents “live” within the environment
(see fig. 5.2). All agents posses the ability to reproduce, they can compete for limited
resources present within the environment, and die when they run out of resources.

In order to realize the selection process “better” (what means that they simply bet-
ter solve the given problem) agents are given more resources from the environment (or
from other agents) and “worse” agents are given less resources (or should give some of
its resources to “better” agents). Such mechanisms result in decentralized evolutionary
processes in which individuals (agents) make independently all their decisions concern-
ing reproduction, migration, interactions with other agents, etc., taking into considera-
tion conditions of the environment, other agents present within the neighborhood, and
resources possessed.

The approaches described above can be mixed. For example, one can imagine a sys-
tem in which agents serve as management layer, and individuals, which “live” within
such agents are also agents (see Figure 5.3). They can also migrate from one manage-
ment agent to another and make independently all decisions (the system in which such
approach was proposed is presented for example in [4]).

Agent-based co-evolutionary systems have some distinguishing features, among
which the most interesting seem to be:

• the possibility of constructing hybrid systems, in which many different bio-inspired
algorithms and techniques are used together within one coherent agent-based com-
putational model,

5 Agent-Based Co-operative Co-evolutionary Algorithms 65

Fig. 5.2. Co-evolutionary multi-agent system—population of evolving agents

Fig. 5.3. Mixed approach—agent-based layer is used for managing computations and evolving
individuals are agents

• relaxation of computational constraints (because of the decentralization of evolu-
tionary computations),

• the possibility of introducing new biologically and socially inspired operators or
relations, which were hard or impossible to introduce in the case of “classical”
evolutionary algorithms.

In the case of modeling and simulation of social and economic phenomena the model
of co-evolutionary multi-agent system provides all necessary mechanisms like: agents,
environment, agent-agent and agent-environment interactions needed for simulation of

66 R. Dreżewski, K. Obrocki, and L. Siwik

complex social systems. The basic model with biological (evolutionary) layer can be
easily extended—social and economical layers can be added on the top of biological
one. Thus, we can construct artificial worlds and observe different emergent phenomena
resulting from agents activities and interactions.

Multi-agent co-evolutionary algorithms based on CoEMAS model (utilizing differ-
ent co-evolutionary interactions like: predator-prey, host-parasite, and sexual selection)
were already applied to multi-objective problems (for example see [9], [7], [6]).

One of the first attempts of applying agent-based co-operative co-evolutionary ap-
proach to multi-objective optimization problems was presented in [8]. In the system
presented in that paper the approach that uses agents as individuals living and evolving
within the environment was used. There were several sub-populations (species) in the
system. One criteria was assigned to each species. Agents competed for resources only
within the species—there was no competition between agents that belonged to differ-
ent species. Reproduction took place when the agent had enough resources to perform
it. The agent searched for a reproduction partner from one of the opposite species. As
the multi-objective test problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 functions [15]
were used. Co-operative co-evolutionary multi-agent system was compared to NSGA2
and SPEA2 algorithms. Obtained results showed that proposed algorithm initially al-
lowed for obtaining better solutions, but with time classical algorithms—especially
NSGA2—were the better alternatives. However, in the case of ZDT4 problem this
characteristic was reversed—co-operative co-evolutionary multi-agent system finally
obtained better results.

Agent-based co-evolutionary algorithms have also been applied to financial prob-
lems. Agent-based co-evolutionary algorithm with predator-prey interactions solving
multi-objective portfolio optimization problem was presented in [9]. Co-operative co-
evolutionary algorithm using genetic programming approach for generating investment
strategies was described in [10]. These two systems were based on the first presented
above approach to constructing agent-based co-evolutionary algorithms—individuals
were agents, which competed for limited resources, could reproduce, migrate, and
which could eventually die when they ran out of resources.

The system presented in this chapter uses agents for managing evolutionary computa-
tions (first of the presented above approaches of mixing agent-based systems and evolu-
tionary algorithms). Additionally, agent-based co-operative co-evolutionary approach is
adapted for solving the multi-objective problem of portfolio optimization. The results of
experiments with multi-objective test problems and portfolio optimization problem are
used to compare proposed agent-based co-operative co-evolutionary algorithm, agent-
based co-operative versions of well known SPEA2 and NSGA2 algorithms, and original
versions of SPEA2 and NSGA2. The chapter is organized in the following way:

• In section 5.2 we will present the system and algorithms used in experiments:
co-operative co-evolutionary multi-agent algorithm, agent-based co-operative co-
evolutionary version of NSGA2 algorithm, and agent-based co-operative co-evo-
lutionary version of SPEA2 algorithm.

• In section 5.3 the results of experiments with the proposed algorithms are presented.
The problems used during experiments include commonly used multi-objective

5 Agent-Based Co-operative Co-evolutionary Algorithms 67

test functions: ZDT [16] and DTLZ [2], and multi-objective portfolio optimization
problem.

• Conclusions and future work plans are presented in section 5.4.

5.2 Agent-Based Co-operative Co-evolutionary System

In the presented system co-operative co-evolutionary techniques were adapted to meet
the demands of multi-objective problems and implemented with the use of mecha-
nisms supported by the Java based framework jAgE [12]. This framework is particularly
suitable for implementing agent-based evolutionary algorithms because it provides all
necessary elements like environment composed of computational nodes, agents, basic
mechanisms for agent-agent and agent-environment interactions.

Fig. 5.4. The architecture of agent-based co-operative co-evolutionary system

The co-operative co-evolutionary approach can be easily parallelized because
the interaction between individuals from different sub-populations takes place only
during forming complete solutions and evaluating their fitness. In co-operative
co-evolutionary algorithm computational nodes do not have to communicate very
often—communication is needed only during evaluation of the solutions—thus the par-
allelization of computations can be realized effectively in the decentralized system (like
jAgE), not only on parallel machines.

Because the representatives of each species (sub-populations) had to be aggregated
(in order to form the complete solution) and also because of the necessity of storing the
complete non-dominated solutions, the central computational node (agent-aggregate)
was introduced (see Figure 5.4). Its tasks include forming complete solutions (com-
posed of the representatives of each species) and evaluation of the solutions. It also

68 R. Dreżewski, K. Obrocki, and L. Siwik

maintains the set of non-dominated solutions found so far (the definition of domination
relation and other issues connected with the Pareto approach to multi-objective opti-
mization can be found for example in [1] or [9]). Each sub-population is responsible
only for the selected part of solution, and evolved by one computational agent.

The system which we describe here has five implemented algorithms. Agent-based
algorithms utilize agent layer for managing evolutionary computations. Three versions
of agent-based co-evolutionary algorithms were implemented: co-operative co-evolutio-
nary multi-agent algorithm (CCEA-jAgE), agent-based co-operative co-evolutionary
version of NSGA2 algorithm (CCNSGA2-jAgE), and agent-based co-operative co-evo-
lutionary version of SPEA2 algorithm (CCSPEA2-jAgE). Also two classical multi-
objective evolutionary algorithms were implemented: NSGA2 and SPEA2 (details of
these algorithms may be found in [1]).

5.2.1 The Algorithms

Co-Operative Co-Evolutionary Multi-Agent Algorithm

In the co-operative co-evolutionary multi-agent algorithm (CCEA-jAgE), which is
based on the co-operative algorithm proposed in [13], there are computational agents
which have individuals inside of them. Computational agents are located within the
computational nodes of the jAgE platform—these nodes can be located on the same
machine or on different machines connected with network. Agent-aggregate (which is
a kind of “central point” of the system) is responsible for the creation of complete
solutions and maintaining the set of non-dominated solutions found so far.

In the first step of this algorithm each of the computational agents performs the initial-
ization of its sub-population (which is associated with the selected part of the problem—
in our case this is one decision variable). Aggregate agent waits for receiving all of the
sub-populations. When it receives all sub-populations, it forms complete solutions and
computes the contribution of individuals coming from each species (sub-populations) to

Algorithm 5.1. The first step of the aggregate agent

for a← a1 to an do
/* ai is the i-th computational agent */;
receive the initial population P0

a from agent a;
/* P0

a is the sub-population of agent a in step 0 */;
end
C = aggregation of the solutions from P0;
/* C is the set of complete solutions (co-operations) consisted of;
the individuals coming from different sub-populations */ ;
calculate the contribution of each of the individuals in the co-operation;
for a← a1 to an do

send the sub-population P0
a to agent a;

end
A0 = choose the non-dominated solutions from C;
/* A is the set of non-dominated solutions found so far */

5 Agent-Based Co-operative Co-evolutionary Algorithms 69

Algorithm 5.2. Step of the computational agent

receive sub-population Pt from aggregate agent;
/* Pt is the sub-population in time t */ ;
compute the fitness of individuals from Pt on the basis of their contribution to the
whole solution quality;
Pt+1←∅;
while Pt+1 is not full do

select parents from Pt;
generate offspring from parents and apply recombination;
Pt+1 = Pt+1 + offspring;

end
mutate individuals from Pt+1;
send Pt+1 to aggregate agent;

the whole solution quality. Then the aggregate sends back all sub-populations and puts
copies of all non-dominated solutions into the set of non-dominated solutions found so
far (see Algorithm 5.1).

Each following step of computational agents (see Algorithm 5.2) begins with re-
ceiving of the sub-population from aggregate agent, then fitness of the individuals is
computed. Next the selection of parents is performed, followed by the reproduction, re-
combination and mutation. At the end, the set of generated offspring is again sent to the
aggregate agent.

Actions performed by the aggregate agent in the following steps start from check-
ing whether the stop condition is fulfilled (see Algorithm 5.3). If yes, then the whole
algorithm stops and the set of non-dominated solutions is the resulting Pareto frontier.

Algorithm 5.3. Step of the aggregate agent managing the computations

while stop condition is not fulfilled do
for a← a1 to an do

receive sub-population Pt
a from agent a;

end
for a← a1 to an do

Pt+1
a = select individuals for new generation from Pt−1

a
⋃

Pt
a;

end
Ct+1← complete solutions formed from Pt+1;
calculate the contribution of individuals coming from different species to the
whole solution quality;
for a← a1 to an do

send the sub-population Pt+1
a to the agent a;

end
update the set of non-dominated solutions At+1 with the use of Ct+1;

end

70 R. Dreżewski, K. Obrocki, and L. Siwik

Algorithm 5.4. Calculating the contribution of individuals coming from different
species to the whole solution quality

for species Ps← P0 to Pn do
choose representatives rs from Ps;

end
C←∅;
for species Ps← P0 to Pn do

for individual is← i0 to iN do
cpool← ∅;
for j← 1 to |rs| do

x← aggregation of is with the representatives of the other species;
compute F(x);
cpool← cpool+ {x};

end
x← solution chosen from cpool;
C←C+ {x};
F(x) is set as the contribution of individual is to the whole solution quality;

end
end
return C;

When the stop condition is not fulfilled then aggregate agent receives sub-
populations from computational agents, and for each sub-population generates the set
containing next generation of individuals (Pt+1) using individuals from previous gen-
eration of the given species and offspring sent by the given computational agent. Next
the new set of complete solutions is generated on the basis of Pt+1 and the contribution
of individuals coming from different species to the whole solution quality is computed.
Then the set of non-dominated solutions is updated (the new non-dominated solutions
are inserted into the set and then all dominated solutions are removed from the set)—if
the number of individuals in the set is greater than the maximal value then some in-
dividuals are removed on the basis of crowding algorithm (individuals from the most
“crowded” areas are removed in the first place). Next, sub-populations are sent back to
computational agents.

The process of creating complete solutions (aggregating individuals) and computing
the contribution of the given individual to the quality of the whole solution is made with
the use standard co-operative co-evolutionary schema. Firstly representatives rs of all
species are chosen, and then for subsequent individuals is from subsequent species s the
pool cpool of complete solutions is created. For every solution from the pool (which is
composed of the given individual is and representatives of all other species) the values
of all criteria are computed. One solution is chosen from the pool and inserted into the
set C of currently generated solutions. The vector of values F(x) of the chosen solution
is the measure of contribution of the given individual is to the quality of the solution
(see Algorithm 5.4).

5 Agent-Based Co-operative Co-evolutionary Algorithms 71

Agent-Based Co-Evolutionary Version of NSGA2 Algorithm with Co-Operative
Mechanism (CCNSGA2-jAgE)

CCNSGA2-jAgE—agent-based co-operative co-evolutionary version of NSGA2 al-
gorithm—is possible to obtain via proper configuration of the previously described al-
gorithm (very similar solution was in fact applied in non-dominated sorting co-operative
co-evolutionary genetic algorithm [11]).

As a result of integration of the previously described algorithm and NSGA2 [1] the
agent-based co-operative version of NSGA2 was created. Thanks to the computed con-
tribution of the given individual to the quality of the complete solution, the fitness
computation in agent-based co-evolutionary NSGA2 is realized with the use of non-
dominated sorting and crowding distance metric (see [1]). Additionally, the aggregate
agent joins the populations of parents and offspring, and chooses (on the basis of elitist
selection and within each sub-population separately) individuals which will form the
next generation sub-population used for the creation of complete solutions. The applied
schema implies that N best (according to non-dominated sorting and crowding distance
metric) individuals survive. Other parts of algorithm are realized in the same way as in
the case of previously described agent-based co-operative algorithm.

Agent-Based Co-Evolutionary Version of SPEA2 Algorithm with Co-Operative
Mechanism

In the case of agent-based co-operative co-evolutionary version of SPEA2 algo-
rithm (CCSPEA2-jAgE) some modifications of the algorithms presented previously
had to be done. It was caused mainly by the fact that SPEA2 uses additional external
set of solutions during the process of evaluating individuals (compare [17]). In the de-
scribed agent-based co-evolutionary version of SPEA2 algorithm each computational
agent has its own, local, external set of solutions (lA) used during the fitness estima-
tion. This set is also sent to the aggregate agent, along with the sub-population which is
evolved by the given computational agent.

First step of aggregate agent and computational agents is the same as in the case of
CCEA-jAgE. Next steps of the algorithm of computational agents begin with receiving
of the sub-population Pt and local external set of solutions lAt from the aggregate agent
(see Algorithm 5.5). On the basis of the contributions of the individuals to the quality
of the complete solutions (computed by the aggregate agent), the fitness of individuals
is computed. Next the archive lAt+1 is updated with the use of environmental selection
mechanism adapted from SPEA2 algorithm [17]. Parents are selected from lAt+1 and
children generated with the use of recombination operator are inserted into Pt+1 (off-
spring population). Then mutation is applied to the individuals from set Pt+1 and this
set is sent to the aggregate agent together with the individuals from lAt+1.

In the case of aggregate agent, the changes include receiving and sending additional
sets of individuals lAt (see Algorithm 5.6). Due to the fact that lAt is the set of parents,
now the step of selecting individuals to the next generation sub-population may be
omitted. In order to create the set of complete solutions Ct and compute contributions
of the individuals to the quality of the complete solutions, the aggregates are created
from the individuals coming from populations Pt and lAt. Finally all sub-populations

72 R. Dreżewski, K. Obrocki, and L. Siwik

Algorithm 5.5. Step of the computational agent of CCSPEA2-jAgE algorithm

receive sub-population Pt and local external set of solutions lAt from aggregate
agent;
compute the fitness of individuals from Pt and lAt on the basis of their
contribution to the whole solution quality;
lAt+1 = environmental selection from Pt ⋃ lAt;
Pt+1←∅;
while Pt+1 is not full do

select parents (using tournament selection) from lAt+1;
generate offspring from parents and apply recombination;
Pt+1 = Pt+1 + {o f f spring};

end
mutate individuals from Pt+1;
send Pt+1 and lAt+1 to the aggregate agent;

Algorithm 5.6. Step of the aggregate agent managing the computations of
CCSPEA2-jAgE algorithm

while stop condition is not fulfilled do
for a← a1 to an do

receive sub-population Pt
a and additional set of individuals lAt from agent

a;
end
Ct ← complete solutions formed from Pt ⋃ lAt;
calculate the contribution of individuals coming from different species to the
whole solution quality;
for a← a1 to an do

send the sub-population Pt
a and additional set of individuals lAt to the

agent a;
end
update the set of non-dominated solutions At+1 with the use of Ct;

end

are sent back to the proper computational agents and the set of non-dominated solutions
is updated.

5.3 The Experiments

The algorithms presented in the previous section were preliminary assessed with the
use of commonly used multi-objective ZDT [16] and DTLZ [2] test functions (detailed
description of these test problems is presented in sections 5.3.1 and 5.3.2). Some of the
results of these experiments were also presented in [5]. Generally speaking, the results
obtained with the use of agent-based algorithms (especially CCEA-jAgE) were compa-
rable, and in the case of some test problems better, than those obtained with the use of

5 Agent-Based Co-operative Co-evolutionary Algorithms 73

SPEA2 and NSGA2. In this section we will present results of selected experiments with
test functions and the problem of multi-objective portfolio optimization.

5.3.1 ZDT Test Functions

Test problems designed by Zitzler, Deb and Thiele [16] represent typical difficulties
faced while performing real life multi-objective optimization tasks. Each of the six prob-
lems consists in minimization of function:

T (x) =
(
f1(x1), f2(x)

)
(5.1)

where x = (x1, ..., xm), f1 is a function of the first decision variable x1 and f2 is defined
as:

f2 = g(x2, ..., xm) ·h
(
f1(x1),g(x2, ..., xm)

)
(5.2)

where g is a function of the remaining m−1 decision variables and the parameters of h
are the function values of f1 and g. Each of functions f1, g and h is separately defined
for every ZDT test problem. The number of decision variables m as well as their range
of permissible values varies. ZDT problems are defined in the following way [16]:

• Test function T1 has a convex Pareto frontier formed with g(x) = 1 and is defined
as follows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+9 ·
m∑

i=2

xi
m−1

h(f1,g) = 1−
√

f1
g

(5.3)

where m = 30 and xi ∈ 〈0;1〉.
• Test function T2 has a non-convex Pareto frontier formed with g(x) = 1:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+9 ·
m∑

i=2

xi
m−1

h(f1,g) = 1−
(

f1
g

)2

(5.4)

where m = 30 and xi ∈ 〈0;1〉.
• Test function T3 has a Pareto frontier composed of several non-continuous convex

parts formed with g(x) = 1. The function is defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+9 ·
m∑

i=2

xi
m−1

h(f1,g) = 1−
√

f1
g −

(
f1
g

)
· sin(10π f1)

(5.5)

where m = 30 and xi ∈ 〈0;1〉.
• Test function T4 has 219 local Pareto frontiers. It is well suited for testing algo-

rithm’s capability of dealing with multi-modality. The true Pareto frontier is formed
with g(x) = 1:

74 R. Dreżewski, K. Obrocki, and L. Siwik

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+10 · (m−1)+
m∑

i=2

(
x2

i −10 · cos(4πxi)
)

h(f1,g) = 1−
√

f1
g

(5.6)

where m = 10 and xi ∈ 〈0;1〉.
• Test functionT5 represents a problem with multiple deceptive local Pareto frontiers.

The best of them is formed with g(x)= 11 while the global Pareto frontier is formed
with g(x) = 10. The function requires binary representation of decision variables:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x1) = 1+u(x1)

g(x2, ..., xm) =
m∑

i=2
v
(
u(xi)

)

h(f1,g) = 1
f1

(5.7)

where m = 11, x1 ∈ {0,1}30 and x2, ..., xm ∈ {0,1}5. Function u(xi) gives the number
of ones in the bit vector xi and v

(
u(xi)

)
is defined as follows:

v
(
u(xi)

)
=

{
2+u(xi) , u(xi) < 5
1 , u(xi) = 5

(5.8)

• Test functionT6 introduces difficulties based on non-uniformity of the search space.
The density of solutions is decreasing while closing to the true Pareto frontier. The
frontier is formed with g(x) = 1:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x1) = 1− exp(−4x1) · sin6 (6πx1)

g(x2, ..., xm) = 1+
(

9 ·
m∑

i=2

xi
m−1

)0.25

h(f1,g) = 1
f1

(5.9)

where m = 10 and xi ∈ 〈0;1〉.

5.3.2 DTLZ Test Functions

The main limitation of ZDT test functions is the use of two criteria only. Such simpli-
fication facilitates graphical illustration of solutions and their verification against true
Pareto frontier localization. Scalable test problems proposed by Deb, Thiele, Laumanns
and Zitzler [2] represent M-criteria optimization tasks. Each of the DTLZ problems
consists in minimization of functions f1, ..., fm. Due to space limitations, we define here
only DTLZ1 problem, which will be used during presentation of the results of experi-
ments [2]:

• DTLZ1 test problem has a linear Pareto frontier located on a hyperplane, which
satisfies the condition

∑M
m=1 fm = 0.5, and 11k−1 local frontiers:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1
2 x1x2 · · · xM−1

(
1+g(xM)

)

f2(x) = 1
2 x1x2 · · · (1− xM−1)

(
1+g(xM)

)

...

fM−1(x) = 1
2 x1(1− x2)

(
1+g(xM)

)

fM(x) = 1
2 (1− x1)

(
1+g(xM)

)

(5.10)

5 Agent-Based Co-operative Co-evolutionary Algorithms 75

where xi ∈ 〈0;1〉 for i = 1,2, ...,n and n = M + k − 1 with suggested value of k =
|xM | = 5.

5.3.3 Methodology of the Experiments

In all compared algorithms (CCEA, CCNSGA2, CCSPEA2, NSGA2 and SPEA2) the
binary representation was used. One point crossover and bit inversion were used as
genetic operators. As the selection mechanism tournament selection with elitism was
used. The size of the population was set to 50. In order to minimize the differences
between algorithms the values of crucial (and specific to each algorithm) parameters
were obtained during preliminary experiments.

The results presented in this section include Pareto frontiers generated by the algo-
rithms. Also, in order to better compare the generated results, hypervolume metric (HV)
was used. Hypervolume metric [1] allows to estimate both the convergence to the true
Pareto frontier as well as distribution of solutions over the whole approximation of the
Pareto frontier. Hypervolume describes the area covered by solutions of obtained ap-
proximation of the Pareto frontier result set. For each found non-dominated solution,
hypercube is evaluated with respect to the fixed reference point. In order to evaluate hy-
pervolume ratio, value of hypervolume for obtained set is normalized with hypervolume
value computed for true Pareto frontier.

HV is defined as follows: HV = v
(⋃N

i=1 vi

)
, where vi is hypercube computed for i− th

found non-dominated solution, PF∗ represents obtained approximation of the Pareto
frontier and PF is the true Pareto frontier.

Values presented in the figures are averages from 15 runs of each algorithm against
each test problem. Due to space limitations only selected Pareto frontiers and values of
hypervolume metrics are presented.

5.3.4 Experiments with Multi-objective Test Problems

Due to using three criteria in DTLZ problems it is possible to present the non-dominated
solutions found by all compared algorithms. In the Figure 5.5 results from runs of all al-
gorithms against DTLZ1 function are presented. Its Pareto frontier was properly located
by all agent-based algorithms. It is worth to mention though, that the solutions obtained
by CCNSGA2-jAgE and CCSPEA2-jAgE algorithms were located on the edges of the
frontier rather than on its surface. Solutions found by NSGA2 and SPEA2 are all located
at local Pareto frontiers (which are localized far away from the global frontier).

ZDT test problems are designed to use two criteria in order to facilitate presentation
of the non-dominated solution sets in two dimensional space. In the Figures 5.6-5.8 we
present selected Pareto frontiers obtained during experiments.

Multiple runs of the algorithms against test problems make it possible to present av-
erage values of hypervolume metric during experiments. In the Figures 5.9-5.11 values
of hypervolume metric are presented for all six ZDT test problems.

In the case of ZDT1, ZDT2 and ZDT3 test problems the quality of non-dominated
sets obtained with the use of CCEA-jAgE, CCNSGA2-jAgE, NSGA2 and SPEA2 al-
gorithms is comparable. CCSPEA2-jAgE performs noticeably worse in this case. As it

76 R. Dreżewski, K. Obrocki, and L. Siwik

0
1

2
3

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

f1
f2

f3

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Pareto Front

(a) The whole search domain

0

0.5

1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1
f2

f3

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Pareto Front

(b) Magnification of the Pareto frontier

Fig. 5.5. Pareto frontiers obtained for DTLZ1 problem

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(b)

Fig. 5.6. Pareto frontiers obtained for ZDT1 (a) and ZDT2 (b) problems after 5000 fitness function
evaluations for all compared algorithms

can be seen in Figure 5.7b and fig. 5.10b agent-based co-evolutionary algorithms gen-
erate significantly better results for ZDT4 test problem than NSGA2 and SPEA2. On
the contrary, in the case of ZDT5, the latter two produce solutions wider spread and lo-
cated closer to the true Pareto frontier (see Figure 5.8a and Figure 5.11a). The quality of
the solutions generated for ZDT6 problems is comparable in the case of all algorithms,
though NSGA2 and SPEA2 show slightly faster convergence to the true Pareto frontier
(see Figure 5.8b and Figure 5.11b).

5.3.5 Experiments with Multi-objective Portfolio Optimization Problem

In experiments with multi-objective portfolio optimization problem complete solution is
represented as a p-dimensional vector. Each decision variable represents the percentage
participation of i-th (i ∈ 1 . . . p) share in the whole portfolio. The problem is described
with details in [9] (in that paper the agent-based predator-prey algorithm was used to
solve this problem). Below we will present only the most important issues.

5 Agent-Based Co-operative Co-evolutionary Algorithms 77

0 0.2 0.4 0.6 0.8 1
1

0.5

0

0.5

1

1.5

2

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(b)

Fig. 5.7. Pareto frontiers obtained for ZDT3 (a) and ZDT4 (b) problems after 5000 fitness function
evaluations for all compared algorithms

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(b)

Fig. 5.8. Pareto frontiers obtained for ZDT5 (a) and ZDT6 (b) problems after 5000 fitness function
evaluations for all compared algorithms

During presented experiments Warsaw Stock Exchange quotations from 2003-01-01
until 2005-12-31 were taken into consideration. Simultaneously, the portfolio consists
of the three or seventeen stocks quoted on the Warsaw Stock Exchange. As the market
index WIG20 has been taken into consideration.

During experiments one-factor Sharpe model was used. This model was also used
in [9] (in that work also comparison to other models and explanation why this partic-
ular model was used during experiments may be found). The algorithm (based on the
one-factor Sharpe model) of computing the expected risk level and income expectation
related to the portfolio of p assets is presented in Algorithm 5.7.

The meanings of the symbols used in Algorithm 5.7 are as follows:

p is the number of assets in the portfolio;
n is the number of periods taken into consideration (the number of rates of return taken

to the model);
αi,βi are coefficients of the equations;

78 R. Dreżewski, K. Obrocki, and L. Siwik

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.9. Average values of hypervolume metric for ZDT1 (a) and ZDT2 (b) problems

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.10. Average values of hypervolume metric for ZDT3 (a) and ZDT4 (b) problems

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.11. Average values of hypervolume metric for ZDT5 (a) and ZDT6 (b) problems

5 Agent-Based Co-operative Co-evolutionary Algorithms 79

Algorithm 5.7. The algorithm (based on the one-factor Sharpe model) of comput-
ing the expected risk level and income expectation

Compute the arithmetic means on the basis of rate of returns;
Compute the value of α coefficient αi = Ri −βiRm;

Compute the value of β coefficient βi =

∑n
t=1(Rit−Ri)(Rmt−Rm)
∑n

t=1(Rmt−Rm)2 ;

Compute the expected rate of return of asset i Ri = αi +βiRm+ ei;

Compute the variance of random index sei
2 =

∑n
t=1(Rit−αi−βiRm)2

n−1 ;

Compute the variance of market index sm
2 =

∑n
t=1(Rmt−Rm)2

n−1 ;
Compute the risk level of the investing portfolio βp =

∑p
i=1(ωiβi);

sep
2 =

∑p
i=1(ω2

i sei
2);

risk = β2
psm

2+ sep
2;

Compute the portfolio rate of return Rp =
∑p

i=1(ωiRi);

ωi is percentage participation of i-th asset in the portfolio;
ei is random component of the equation;
Rit is the rate of return in the period t;
Rmt is the rate of return of market index in period t;
Rm is the rate of return of market index;
Ri is the rate of return of the i-th asset;
Rp is the rate of return of the portfolio;
si

2 is the variance of the i-th asset;
sei

2 is the variance of the random index of the i-th asset;
sep

2 is the variance of the portfolio;

Ri is arithmetic mean of rate of return of the i-th asset;
Rm is arithmetic mean of rate of return of market index;

(a) (b)

Fig. 5.12. The model Pareto frontier obtained using utter review method for 3 (a) and 17 (b)
stocks set

80 R. Dreżewski, K. Obrocki, and L. Siwik

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCEA jAgE

(a)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.13. Pareto frontiers obtained for 3 stocks problem after 2500 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

NSGA2

(a)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.14. Pareto frontiers obtained for 3 stocks problem after 2500 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCEA jAgE

(a)

0 100 200 300 400 500
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.15. Pareto frontiers obtained for 3 stocks problem after 5000 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

The goal of the optimization is to maximize the portfolio rate of return and minimize
the portfolio risk level. The task consists in determining values of decision variables
ω1 . . .ωp forming the vector Ω = [ω1, . . . ,ωp]T , where 0% ≤ ωi ≤ 100% and

∑p
i=1 ωi =

100% and i= 1 . . . p and which is the subject of minimization with respect of two criteria
F = [Rp(Ω) ∗ (−1),risk(Ω)]T .

Model Pareto frontiers for two cases (portfolios consisting of three and seventeen
stocks set), which are the subject of analysis in the following section, are presented in
Figure 5.12.

5 Agent-Based Co-operative Co-evolutionary Algorithms 81

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

NSGA2

(a)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.16. Pareto frontiers obtained for 3 stocks problem after 5000 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

0 10 20 30 40 50 60
0

200

400

600

800

1000

Risk

Pr
of
it

CCEA jAgE

(a)

0 20 40 60 80
200

0

200

400

600

800

1000

1200

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Risk
Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.17. Pareto frontiers obtained for 17 stocks problem after 25000 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

0 100 200 300 400 500 600 700

0

1000

2000

3000

Risk

Pr
of
it

NSGA2

(a)

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.18. Pareto frontiers obtained for 17 stocks problem after 25000 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

The Pareto frontiers obtained for 3 stocks problem after 2500 fitness function eval-
uations in typical experiment are presented in Figures 5.13 and 5.14. Pareto frontiers
obtained after 5000 fitness function evaluations are shown in Figures 5.15 and 5.16.

The Figure 5.21a shows the average values of HV metric from 15 experiments for
all compared algorithms. In this case (3 stocks) results are quite comparable for all
implemented algorithms. Slightly worse results were obtained with the use of agent-
based versions of SPEA2 and NSGA2 algorithms.

The Pareto frontiers obtained for 17 stocks problem after 25000 fitness function eval-
uations in typical experiment are presented in Figures 5.17 and 5.18. Pareto frontiers
obtained after 50000 fitness function evaluations are shown in Figures 5.19 and 5.20.

82 R. Dreżewski, K. Obrocki, and L. Siwik

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Risk

Pr
of
it

CCEA jAgE

(a)

0 20 40 60 80
200

0

200

400

600

800

1000

1200

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Risk

Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.19. Pareto frontiers obtained for 17 stocks problem after 50000 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

0 200 400 600 800

0

1000

2000

3000

Risk

Pr
of
it

NSGA2

(a)

0 200 400 600 800
0

500

1000

1500

2000

2500

3000

3500

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.20. Pareto frontiers obtained for 17 stocks problem after 50000 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.21. Values of HV metrics for 3 (a) and 17 (b) stocks problems

In the Figure 5.21b the average values of HV metric are presented (these are also
average values from 15 experiments). In the case of the problem with 17 stocks the
best results were obtained with the use of NSGA2 and SPEA2. When we look at the
presented sample Pareto frontiers the CCEA-jAgE algorithm formed a quite comparable
frontier—but the average value of HV metric was worse than in the case of NSGA2 and
SPEA2. Agent-based versions of SPEA2 and NSGA2 decisively obtained worse results
than other algorithms in this case.

5 Agent-Based Co-operative Co-evolutionary Algorithms 83

5.4 Summary and Conclusions

In this chapter we have presented agent-based co-operative co-evolutionary algorithm
for solving multi-objective problems. Also four other algorithms were implemented
within the agent-based system: NSGA2, SPEA2 and agent-based co-operative co-
evolutionary versions of these two state-of-the-art algorithms. The algorithms were ver-
ified with the use of standard multi-objective test problems—ZDT [16] and DTLZ [2]
functions, and the multi-objective problem of constructing optimal portfolio.

In the case of ZDT and DTZL problems the winner was CCEA-jAgE algorithm—
agent-based version of co-operative co-evolutionary algorithm. In the case of optimal
portfolio problem the results were mixed. In the case of portfolio consisted of three
stocks the results of all algorithms were rather comparable—only agent-based versions
of SPEA2 and NSGA2 algorithms obtained slightly worse results. In the case of seven-
teen stocks decisive winners were SPEA2 and NSGA2—especially when the values of
HV metric were taken into consideration. Presented results lead to the conclusion that
certainly more research is needed in the case of multi-objective agent-based techniques.
But also it can be said that the results presented here (and in [5]) show that neither clas-
sical nor agent-based techniques can alone obtain good quality results for all kinds of
multi-objective problems. We must carefully choose the right technique on the basis of
the problem characteristics because there are no universal solutions. The algorithm that
can obtain very good solutions for all types of multi-objective problems simply does
not exist and we think that results presented here and in other our papers show this fact
clearly.

When the future work is taken into consideration we can say that certainly presented
agent-based algorithms will be further developed and tested on other multi-objective
problems. Another direction of the research is (mentioned in section 5.1) the other way
of merging multi-agent and evolutionary paradigms—the way in which agents are not
used as the management layer but as the individuals that live, evolve and co-operate or
compete with each other. Beside the financial problems which we have already used in
our research, like investment strategies generation or multi-objective portfolio optimiza-
tion, we are also planning to use agent-based co-evolutionary approach in modeling and
simulation of economical and social phenomena.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
Chichester (2001)

2. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-
objective optimization. Tech. rep., Computer Engineering and Networks Laboratory, Swiss
Federal Institute of Technology (2001)

3. Dreżewski, R.: A model of co-evolution in multi-agent system. In: Mařík, V., Müller, J.P.,
Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 314–323. Springer,
Heidelberg (2003)

4. Dreżewski, R.: Co-evolutionary multi-agent system with speciation and resource sharing
mechanisms. Computing and Informatics 25(4), 305–331 (2006)

84 R. Dreżewski, K. Obrocki, and L. Siwik

5. Dreżewski, R., Obrocki, K.: Co-operative co-evolutionary approach to multi-objective op-
timization. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009.
LNCS (LNAI), vol. 5572, pp. 277–284. Springer, Heidelberg (2009)

6. Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system with sexual selection mecha-
nism for multi-objective optimization. In: Proceedings of the IEEE World Congress on Com-
putational Intelligence (WCCI 2006). IEEE press, Los Alamitos (2006a)

7. Dreżewski, R., Siwik, L.: Multi-objective optimization using co-evolutionary multi-agent
system with host-parasite mechanism. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 871–878. Springer, Heidelberg (2006b)

8. Dreżewski, R., Siwik, L.: Agent-based co-operative co-evolutionary algorithm for multi-
objective optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 388–397. Springer, Heidelberg (2008a)

9. Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio optimization. In:
Brabazon, A., O’Neill, M. (eds.) Natural Computation in Computational Finance, pp. 271–
299. Springer, Heidelberg (2008b)

10. Dreżewski, R., Sepielak, J., Siwik, L.: Classical and agent-based evolutionary algorithms for
investment strategies generation. In: Brabazon, A., O’Neill, M. (eds.) Natural Computation
in Computational Finance, vol. 2. Springer, Heidelberg (2009)

11. Iorio, A., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-
dominated sorting. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.G., Burke, E.K., Darwen,
P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O., Lanzi, P.L., Spector,
L., Tettamanzi, A., Thierens, D., Tyrrell, A.M. (eds.) GECCO 2004. LNCS, vol. 3102, pp.
537–548. Springer, Heidelberg (2004)

12. jAgE—Agent-Based Evolution Platform (2009), http://age.iisg.agh.edu.pl
13. Keerativuttitumrong, N., Chaiyaratana, N., Varavithya, V.: Multi-objective co-operative co-

evolutionary genetic algorithm. In: Merelo, J.J., Adamidis, P., Beyer, H.G. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 288–297. Springer, Heidelberg (2002)

14. Paredis, J.: Coevolutionary algorithms. In: Bäck, T., Fogel, D., Michalewicz, Z. (eds.)
Handbook of Evolutionary Computation, (suppl.1). IOP Publishing/Oxford University Press
(1998)

15. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applica-
tions. PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Em-
pirical Results. Evolutionary Computation 8(2), 173–195 (2000)

17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary
algorithm. Tech. Rep. TIK-Report 103, Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (2001)

http://age.iisg.agh.edu.pl

	Agent-Based Co-operative Co-evolutionary Algorithms for Multi-objective Portfolio Optimization
	Introduction
	Agent-Based Co-operative Co-evolutionary System
	The Experiments
	Summary and Conclusions
	References

