

Anthony Brabazon, Michael O’Neill, and Dietmar G. Maringer (Eds.)

Natural Computing in Computational Finance

Studies in Computational Intelligence,Volume 293

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 272. Carlos A. Coello Coello, Clarisse Dhaenens, and
Laetitia Jourdan (Eds.)
Advances in Multi-Objective Nature Inspired Computing,
2009
ISBN 978-3-642-11217-1

Vol. 273. Fatos Xhafa, Santi Caballé,Ajith Abraham,
Thanasis Daradoumis, and Angel Alejandro Juan Perez
(Eds.)
Computational Intelligence for Technology Enhanced
Learning, 2010
ISBN 978-3-642-11223-2

Vol. 274. Zbigniew W. Raś and Alicja Wieczorkowska (Eds.)
Advances in Music Information Retrieval, 2010
ISBN 978-3-642-11673-5

Vol. 275. Dilip Kumar Pratihar and Lakhmi C. Jain (Eds.)
Intelligent Autonomous Systems, 2010
ISBN 978-3-642-11675-9

Vol. 276. Jacek Mańdziuk
Knowledge-Free and Learning-Based Methods in Intelligent
Game Playing, 2010
ISBN 978-3-642-11677-3

Vol. 277. Filippo Spagnolo and Benedetto Di Paola (Eds.)
European and Chinese Cognitive Styles and their Impact on
Teaching Mathematics, 2010
ISBN 978-3-642-11679-7

Vol. 278. Radomir S. Stankovic and Jaakko Astola
From Boolean Logic to Switching Circuits and Automata, 2010
ISBN 978-3-642-11681-0

Vol. 279. Manolis Wallace, Ioannis E.Anagnostopoulos,
Phivos Mylonas, and Maria Bielikova (Eds.)
Semantics in Adaptive and Personalized Services, 2010
ISBN 978-3-642-11683-4

Vol. 280. Chang Wen Chen, Zhu Li, and Shiguo Lian (Eds.)
Intelligent Multimedia Communication: Techniques and
Applications, 2010
ISBN 978-3-642-11685-8

Vol. 281. Robert Babuska and Frans C.A. Groen (Eds.)
Interactive Collaborative Information Systems, 2010
ISBN 978-3-642-11687-2

Vol. 282. Husrev Taha Sencar, Sergio Velastin,
Nikolaos Nikolaidis, and Shiguo Lian (Eds.)
Intelligent Multimedia Analysis for Security
Applications, 2010
ISBN 978-3-642-11754-1

Vol. 283. Ngoc Thanh Nguyen, Radoslaw Katarzyniak, and
Shyi-Ming Chen (Eds.)
Advances in Intelligent Information and Database Systems,
2010
ISBN 978-3-642-12089-3

Vol. 284. Juan R. González, David Alejandro Pelta,
Carlos Cruz, Germán Terrazas, and Natalio Krasnogor (Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010), 2010
ISBN 978-3-642-12537-9

Vol. 285. Roberto Cipolla, Sebastiano Battiato, and
Giovanni Maria Farinella (Eds.)
Computer Vision, 2010
ISBN 978-3-642-12847-9

Vol. 286. Zeev Volkovich,Alexander Bolshoy,Valery Kirzhner,
and Zeev Barzily
Genome Clustering, 2010
ISBN 978-3-642-12951-3

Vol. 287. Dan Schonfeld, Caifeng Shan, Dacheng Tao, and
Liang Wang (Eds.)
Video Search and Mining, 2010
ISBN 978-3-642-12899-8

Vol. 288. I-Hsien Ting, Hui-Ju Wu, Tien-Hwa Ho (Eds.)
Mining and Analyzing Social Networks, 2010
ISBN 978-3-642-13421-0

Vol. 289.Anne Håkansson, Ronald Hartung, and
Ngoc Thanh Nguyen (Eds.)
Agent and Multi-agent Technology for Internet and
Enterprise Systems, 2010
ISBN 978-3-642-13525-5

Vol. 290.Weiliang Xu and John E. Bronlund
Mastication Robots, 2010
ISBN 978-3-540-93902-3

Vol. 291. Shimon Whiteson
Adaptive Representations for Reinforcement Learning, 2010
ISBN 978-3-642-13931-4

Vol. 292. Fabrice Guillet, Gilbert Ritschard,
Djamel A. Zighed, and Henri Briand (Eds.)
Advances in Knowledge
Discovery and Management, 2010
ISBN 978-3-642-00579-4

Vol. 293.Anthony Brabazon, Michael O’Neill, and
Dietmar G. Maringer (Eds.)
Natural Computing in Computational Finance, 2010
ISBN 978-3-642-13949-9

Anthony Brabazon, Michael O’Neill,
and Dietmar G. Maringer (Eds.)

Natural Computing in
Computational Finance

Volume 3

123

Prof.Anthony Brabazon
Quinn School of Business

University College Dublin, Belfield

Dublin 4

Ireland

E-mail: anthony.brabazon@ucd.ie

Dr. Michael O’Neill
UCD CASL

8 Belfield Office Park

Beaver Row, Clonskeagh

Dublin 4

Ireland

E-mail: m.oneill@ucd.ie

Prof. Dietmar Maringer
University of Basel

Wirtschaftswissenschaftliches

Zentrum (WWZ)

Abteilung Quantitative Methoden

Peter Merian-Weg 6

4002 Basel

Switzerland

E-mail: dietmar.maringer@unibas.ch

ISBN 978-3-642-13949-9 e-ISBN 978-3-642-13950-5

DOI 10.1007/978-3-642-13950-5

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: Applied for

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To Maria
Tony

To Gráinne, Aoife and Michael
Michael

To Klaus
Dietmar

Preface

Recent years have seen the application of various Natural Computing algorithms
for the purposes of financial modelling. In this context Natural Computing al-
gorithms can be broadly defined as computer algorithms whose design draws
inspiration from phenomena in the natural world. Particular features of financial
markets, including their dynamic and interconnected characteristics, bear par-
allels with processes in the natural world and prima facie, this makes Natural
Computing methods ‘interesting’ for financial modelling applications. In addition
to the problem-solving potential of natural processes which Natural computing
seeks to embody in its algorithms, we can also consider Natural Computing
in terms of its potential to understand the natural processes which themselves
serve as inspiration. For example, financial and biological systems exhibit the
phenomenon of emergence, or the activities of multiple individual agents com-
bining to co-evolve their own environment, and a stream of work has emerged
which applies learning mechanisms drawn from Natural Computing algorithms
for the purposes of agent-based modelling in finance and economics.

This book consists of eleven chapters each of which was selected following a
rigorous, peer-reviewed, selection process. The chapters illustrate the application
of a range of cutting-edge natural computing and agent-based methodologies in
computational finance and economics. While describing cutting edge applica-
tions, the chapters are written so that they are accessible to a wide audience.
Hence, they should be of interest to academics, students and practitioners in the
fields of computational finance and economics.

The inspiration for this book was due in part to the success of EvoFIN 2009,
the 3rd European Workshop on Evolutionary Computation in Finance and Eco-
nomics. EvoFIN 2009 took place in conjunction with Evo* 2009 in Tübingen,
Germany (15-17 April 2009). Evo* is an annual collection of European confer-
ences and workshops broadly focused on Evolutionary Computation, and is the
largest European event dedicated to this field of research. A number of the chap-
ters presented in this book are extended versions of papers presented at EvoFIN
2009 and these have undergone the same rigorous, peer-reviewed, selection pro-
cess as the other chapters.

VIII Preface

This book follows on from Natural Computing in Computational
Finance Volumes I and II.

We would like to thank all the authors for their high-quality contributions,
the reviewers who generously gave of their time to peer-review all submissions,
and Wei Cui who helped with the preparation of the final manuscript. We
would also like to thank Dr. Thomas Ditzinger of Springer-Verlag and Professor
Janusz Kacprzyk, editor of this book series, for their encouragement of, and their
support during, the preparation of this book. Finally, Anthony Brabazon and
Michael O’Neill would like to acknowledge the support of their research activities
provided by Science Foundation Ireland (Grant number 08/SRC/FM1389).

Dublin and Basel Anthony Brabazon
February 2010 Michael O’Neill

Dietmar Maringer

Contents

1 Natural Computing in Computational Finance
(Volume 3): Introduction
Anthony Brabazon, Michael O’Neill, Dietmar Maringer 1

Part I: Financial and Agent-Based Models

2 Robust Regression with Optimisation Heuristics
Manfred Gilli, Enrico Schumann . 9

3 Evolutionary Estimation of a Coupled Markov Chain
Credit Risk Model
Ronald Hochreiter, David Wozabal . 31

4 Evolutionary Computation and Trade Execution
Wei Cui, Anthony Brabazon, Michael O’Neill . 45

5 Agent-Based Co-operative Co-evolutionary Algorithms for
Multi-objective Portfolio Optimization
Rafał Dreżewski, Krystian Obrocki, Leszek Siwik . 63

6 Inferring Trader’s Behavior from Prices
Louis Charbonneau, Nawwaf Kharma . 85

Part II: Dynamic Strategies and Algorithmic Trading

7 Index Mutual Fund Replication
Jin Zhang, Dietmar Maringer . 109

8 Frequent Knowledge Patterns in Evolutionary Decision
Support Systems for Financial Time Series Analysis
Piotr Lipinski . 131

X Contents

9 Modeling Turning Points in Financial Markets with Soft
Computing Techniques
Antonia Azzini, Célia da Costa Pereira, Andrea G.B. Tettamanzi 147

10 Evolutionary Money Management
Philip Saks, Dietmar Maringer . 169

11 Interday and Intraday Stock Trading Using Probabilistic
Adaptive Mapping Developmental Genetic Programming and
Linear Genetic Programming
Garnett Wilson, Wolfgang Banzhaf . 191

Index . 213

1

Natural Computing in Computational Finance
(Volume 3): Introduction

Anthony Brabazon1,2, Michael O’Neill1,3, and Dietmar Maringer4

1 Natural Computing Research & Applications Group,
Complex & Adaptive Systems Laboratory,
University College Dublin, Ireland
{anthony.brabazon,m.oneill}@ucd.ie

2 School of Business, University College Dublin, Ireland
3 School of Computer Science and Informatics, University College Dublin, Ireland
4 Business and Economics Faculty, University of Basel, Switzerland
dietmar.maringer@unibas.ch

1.1 Introduction

Computational Finance covers a wide and still growing array of topics and methods
within quantitative economics. The core focus has long been on efficient methods,
models and algorithms for numerically demanding problems. The advent of new com-
putational methods, together with the advances in available hardware, has pushed the
boundaries of this field outwards. Not only can the complexity of investigated problems
be increased, one can even approach problems that defy traditional analytical examina-
tion all together. One major contributor of such methods is natural computing.

Natural computing draws its inspiration from phenomena and systems in nature, con-
verts them into computer programs and algorithms which can then be applied in many
real-world application areas, including computational finance. The rationale behind this
approach comes from the parallels between economic systems and the real world: Fi-
nancial environments are typically extremely complex with high levels of uncertainty,
noise and dynamics. This is equally true for real environments, yet nature has produced
many mechanisms to deal with these requirements. Successful strategies from the nat-
ural world could therefore serve as blueprints for solving problems in all sort of areas.
Some of these methods are valuable supplements to existing techniques: optimization
heuristics, e.g., can be used where traditional concepts failed or required unreasonable
simplifications in the problem statements. Typical examples would be evolution and
natural selection: individuals with superior features have a higher chance of outper-
forming their competitors and, eventually, passing these features on to their offspring.
Analogously, evolutionary search and optimization techniques have populations of can-
didate solutions to the (financial) problem at hand, and the better suitable one of them
is, the better its chances that it replaces a weaker one and forms the basis for new (and
further improved) ones. Akin to natural evolution, superior offspring will replace their
not-so-good competitors and ancestors. Several chapters in this book use evolutionary

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 1–6.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

2 A. Brabazon, M. O’Neill, and D. Maringer

principles in this manner to develop populations that fit a pre-defined objective function
as well as possible.

More recently a new variety has been added to this area, co-evolution. In simple evo-
lutionary systems, one population searches for the optimum location or strategy within
a given environment. In certain situations, however, the population shapes and changes
this environment, mutually affecting the development of other species or populations.
Natural examples range from “arms races” between predators and prey to symbiotic
“partnerships” between species. Natural computing builds on these ideas and utilizes
them for both competitive and cooperative co-evolution. This book series includes some
of the first financial applications of such methods.

Nature inspired methods can be used not only for previously unapproachable prob-
lems, they have also created whole new avenues of research. Artificial life is concerned
with the creation of artificial creatures or systems that have properties similar to those
of their natural counterparts. Such artificial systems can be used to study complexity
and self-organizing properties. In economics, agent-based models do exactly that: To
emulate realistic properties of macro structures, behavior and interaction is modelled
on an individual micro level. The decision-making agents are autonomous, yet their be-
haviours are interdependent and interacting. They can be equipped with heterogenous
risk preferences, learning rules and behaviour. Even when agents follow rather simple
rules and strategies, highly complex systems can emerge with properties very similar to
those of real financial markets.

Another strand of natural computing borrows from linguistics and developmental
processes. Examples for this are Genetic Programming and Grammatical Evolution
which develop rules or formulae, using a given grammar which contain a set of vari-
ables and sub-structures. Early financial applications of these approaches included the
derivation of models for pricing and estimation where analytical solutions are not feasi-
ble, such as implied volatility models. More recently, finding patterns and trade triggers
for financial time series has become a fruitful area of research. This raised interest in the
development of automated trading systems is also reflected in the real world where algo-
rithmic trading contributes substantially to the traded volume in major equity markets
(cf. [5]).

Other popular areas in natural computing include (but are not limited to) neuro-
computing (which loosely draws its inspiration from the workings of the human brain);
social computing (adopting swarming or communication behaviours of social animal
such as birds, fish or insects); physical computing (mimicking chemical or physical
processes); and immunocomputing (algorithms inspired by biological immune sys-
tems). Readers interested in a broader introduction to these methods are referred to
[1, 2, 3, 4, 6, 7, 8] and the literature quoted therein.

As in the previous two volumes of this series, this volume covers a variety of finan-
cial applications. The first part of the book addresses topics that combine financial and
agent-based models with optimization. The applications range from the use of natural
computing techniques to calibrate financial econometric models, to agent-based models
for optimal financial decision-making. The second part of the book collects applications
of natural computing to the uncovering of dynamic and automated trading strategies.
The following section provides a short introduction to the individual chapters.

1 Natural Computing in Computational Finance (Volume 3): Introduction 3

1.2 The Chapters

1.2.1 Financial and Agent-Based Models

Optimization is one of the key areas in quantitative finance. The problems range from
estimation and model calibration, to portfolio optimization, asset selection and develop-
ment of trading strategies.

Chapter 2 (Robust Regression with Optimisation Heuristics by Manfred Gilli and En-
rico Schumann) demonstrates how heuristic methods can be used in regression analysis.
To obtain parameter estimations for linear models, the traditional way is to minimize the
mean squared error. The advantage of a closed form solution, however, comes at a high
price: the data ought to be normally distributed – a requirement rarely met by financial
data. These are known to have fat tails, and extreme observations and outliers can make
the estimated parameters unstable. Minimizing a quantile, e.g., the median, of squared
residuals instead can remedy this problem: extreme values have substantially less
impact and the estimates are more robust. Unfortunately, there exist no closed form solu-
tions for this approach, and the rough search space makes traditional gradient based es-
timation methods unreliable. Heuristic methods can deal with demanding search spaces
because they incorporate strategies to escape local optima and are more flexible in the
generation of new candidate solutions. Gilli and Schumann test a variety of settings for
Differential Evolution, Particle Swarm Optimisation (PSO) and Threshold Accepting
for the estimation problem at hand. They find that PSO works best in their experiments,
but the other methods also perform very well.

Another estimation problem is dealt with in Chapter 3 (Evolutionary Estimation of
a Coupled Markov Chain Credit Risk Model by Ronald Hochreiter and David Woza-
bal). Markov Chain models are a popular approach to capture risk class transitions. In
Coupled Markov Chains, defaults are directly modelled as Bernoulli events. Two ma-
jor advantages of this approach are the ability to capture different default correlations
for different sectors and rating classes, and that “closeness to default” is pictured more
accurately than in the standard model. Empirical application of this model requires the
maximization of a log likelihood function which, from an optimizer’s point of view, is
not well behaved. Hochreiter and Wozabal therefore suggest evolutionary estimation.
They, too, suggest Particle Swarm Optimization, but contrast it with Evolutionary Algo-
rithms. Numerical experiments show that both methods are suitable candidates to solve
the estimation problem.

The complexity of markets does not allow easy learning from mere observation for
many reasons, including the inability of researchers to undertake ’what - if’ experiments
and the open rather than closed nature of market systems. An increasingly popular ap-
proach to boost our theoretical understanding of financial markets is to undertake “in
silico” experiments, using computer simulations to investigate interesting aspects of
financial markets. To capture market microstructure and the aggregate effects of indi-
vidual decision makers, agent-based models can be employed. An agent represents an
individual decision maker who acts and reacts within an artificial environment. De-
pending on the specifics of the model, agents can have different levels of intelligence
and perception, their set of possible activities can be rather diverse, as can be the de-
gree of interaction (or, sometimes, interference) with their fellow agents and / or the

4 A. Brabazon, M. O’Neill, and D. Maringer

environment. Equally diverse as the models are the problems they can be applied to:
from investigating the price processes emerging in such markets to testing the stabil-
ity and consequences of market frameworks and current or possible new regulations to
understanding and optimizing individual behaviour.

Chapter 4 (Evolutionary Computation and Trade Execution by Wei Cui, Anthony
Brabazon and Michael O’Neill) focuses mainly on the latter issues. Trade execution
is the process of trading a particular instrument of interest. A practical issue in trade
execution is how to trade a large order as efficiently as possible. For example, trading
of a large order in one lot may produce significant market impact costs. Conversely, by
dividing an order into smaller lots and spreading these over time, a trader can reduce
market impact cost but increases the risk of suffering opportunity cost. An efficient
trade execution strategy seeks to balance out these costs in order to minimise the total
trade cost. order or a market order. Learning suitable strategies cannot be easily done
using historical observations alone: as from past observed prices one cannot conclude
how the market would have reacted to different decisions by the agents. In this chapter,
the authors implement an agent-based artificial stock market that responds to the agents’
decisions. The agents place orders which are carried out or not, depending on the orders
of the other agents and according to market rules. The individual agents are equipped
with some intelligence: using genetic algorithms, they can learn successful strategies
and how to place optimal orders. In addition to results from numerical experiments,
different opportunities for promising future research are suggested.

A different case of optimal decision making is considered in Chapter 5 (Agent-
Based Co-operative Co-evolutionary Algorithms for Multi-Objective Portfolio Opti-
mization by Rafał Dreżewski, Krystian Obrocki and Leszek Siwik). In their model,
co-evolutionary techniques are combined with an agent-based framework. Several dif-
ferent settings are tested against each other. The results show that the agents find Pareto-
efficient solutions and are therefore capable of solving a multi-objective optimization
problem.

Louis Charbonneau and Nawwaf Kharma, on the other hand, focus on the price pro-
cesses generated by agent-based models. In Chapter 6 (Inferring Trader’s Behavior
From Prices), they assume a market where a group of heterogenous agents follows trad-
ing rules to make investment decisions which drive the price process. The agents are
able adopt their behaviour and change their rules, which in return will influence the sub-
sequent price process, and so on. The resulting time series exhibit patterns and statistical
signatures that reflect those of actual real-world data.

1.2.2 Dynamic Strategies and Algorithmic Trading

Real investment strategies are not just a sequence of single period investment decisions.
Ideally, a dynamic strategy considers several future time periods in making each de-
cision. Economic wisdom suggests that, in a perfect market, previous decisions should
not affect current decisions. In practice, however, it is not always possible to pretend that
one can start from scratch. When previous decisions have led to the current status quo
and moving away from the current situation is too costly, optimal decision making is
sometimes reduced to making the best of a given situation. This shows all the more, that
in a dynamic framework, all current decisions should avoid future costly adjustments.

1 Natural Computing in Computational Finance (Volume 3): Introduction 5

Dynamic financial decision making is not only concerned with how, but also when
to react. Entering or leaving a position at the wrong moment can have devastating ef-
fects. The heavy tails and negative skewness of asset returns can potentially destroy a
cumulation of past profits in a very short period of time. Hence, spotting potentially
devastating events as well as profitable stretches of time in advance can be crucial.

Chapter 7 (Index Mutual Fund Replication by Jin Zhang and Dietmar Maringer)
addresses a different approach. In the tradition of passive portfolio management strate-
gies, index tracking aims to find a portfolio whose return process is as close to that of the
benchmark index as possible. Typically, these approaches assume no specific parametric
distribution for asset returns, but use historical simulation as a close enough estimation
of possible future events. Consequently, they require no specific predictions of assets’
returns or risks, nor do they target a prespecified return or risk limit. While simple
in concept, practical application is, again, hampered by numerical issues in the opti-
mization process, in particular when, as in this chapter, realistic constraints on different
dynamic portfolio adjustment strategies are considered. Using Differential Evolution,
numerical experiments for five mutual funds demonstrate that this method can identify
suitable tracker portfolios with appropriate in sample and out of sample behaviour.

Chapter 8 (Frequent Knowledge Patterns in Evolutionary Decision Support Systems
for Financial Time Series Analysis by Piotr Lipinski) addresses the issue of recogniz-
ing patterns in financial time series. These patterns can then be used for the successful
implementation of trading rules. Given the vast range of potential trading rule candi-
dates, the search space needs to be reduced to a realistic size. The authors suggest the
use of frequent knowledge patterns. Evolutionary methods are then used to optimize
the system by modeling trading experts who can choose any combination from a list of
given trading rules. Numerical experiments compare different frequencies of updating
knowledge patterns.

Chapter 9 (Modeling Turning Points in Financial Markets with Soft Computing Tech-
niques, by A. Azzini, C. da Costa Pereira and A. Tettamanzi) is also about detecting
patterns in financial time series. Here, the main objective is to spot as soon as possible
when an upward trend changes into a downward trend and vice versa. In bullish markets,
investors want to be long to benefit from the price increases, while in bearish markets,
short position generate them profits. Identifying such turning points correctly can there-
fore be easily translated into profitable strategies. The authors suggest two different
approaches, fuzzy logic and neural networks. Applied to different financial instruments,
they find both methods can be used to predict some of the trend reversals.

Chapter 10 (Evolutionary Money Management, by Philip Saks and Dietmar
Maringer) uses Genetic Programming to generate high-frequency trading rules for for-
eign exchange markets. Automatically derived trading rules sometimes suffer from a
high level of complexity, making them difficult to interpret and even harder to manu-
ally evaluate. Also, human traders often follow a so-called money management strategy.
The idea behind this reflects again the problem that what is a good decision can depend
on the current status quo. If a decision maker has no clear opinion about the trend or pre-
dicts no substantive changes, then she might keep her current position. Hence, if staying
long is optimal, then going long is not necessarily optimal, too. Optimal signals might
therefore be contingent to the current position. This chapter introduces a multiple tree

6 A. Brabazon, M. O’Neill, and D. Maringer

structure with contingent trading rules. Numerical experiments show that these distinc-
tions can lead to superior decisions, in particular when transaction costs and different
forms of risk and loss aversion are considered.

Genetic Programming approaches are also employed in Chapter 11 (Interday and In-
traday Stock Trading Using Probabilistic Adaptive Mapping Developmental Genetic
Programming and Linear Genetic Programming, by Garnett Wilson and Wolfgang
Banzhaf). In this implementation, trading rules are represented as binary strings that
undergo instruction-dependent interpretation. Unlike traditional settings, however, co-
evolution takes place, and a population of genotypes co-evolves cooperatively with a
separate population of mappings. The two populations are linked via a probability table.
This approach, and a linear genetic programming approach, are then tested on differ-
ent technology stocks, both for interday as well as intraday data. The results show that
both methods can produce profits and that relative advantages can be traced back to
differences in the market situation.

References

1. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling.
Springer, Berlin (2006)

2. Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance. Springer,
Berlin (2008)

3. Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance, vol. 2.
Springer, Berlin (2009)

4. de Castro, L.N.: Fundamentals of natural computing: an overview. Physics of Life Re-
views 4(1), 1–36 (2007)

5. Grant, J.: Computer-driven trading boom raises meltdown fears, p. 19. Financial Times (Jan-
uary 26, 2010)

6. Maringer, D.: Portfolio Management with Heuristic Optimization. Springer, Berlin (2005)
7. Tesfatsion, L., Judd, K. (eds.): Handbook of Computational Economics. Agent-Based Com-

putational Economics, vol. 2. North-Holland, Amsterdam (2006)
8. Wong, B., Lai, V., et al.: A bibliography of neural network business applications research:

1994-1998. Computers and Operations Research 27, 1045–1076 (2000)

Part I

Financial and Agent-Based Models

2

Robust Regression with Optimisation Heuristics

Manfred Gilli and Enrico Schumann

Department of Econometrics, University of Geneva,
Bd du Pont d’Arve 40, 1211 Geneva 4, Switzerland
Manfred.Gilli@unige.ch, Enrico.Schumann@unige.ch

Summary. Linear regression is widely-used in finance. While the standard method to obtain
parameter estimates, Least Squares, has very appealing theoretical and numerical properties, ob-
tained estimates are often unstable in the presence of extreme observations which are rather com-
mon in financial time series. One approach to deal with such extreme observations is the applica-
tion of robust or resistant estimators, like Least Quantile of Squares estimators. Unfortunately, for
many such alternative approaches, the estimation is much more difficult than in the Least Squares
case, as the objective function is not convex and often has many local optima. We apply different
heuristic methods like Differential Evolution, Particle Swarm and Threshold Accepting to obtain
parameter estimates. Particular emphasis is put on the convergence properties of these techniques
for fixed computational resources, and the techniques’ sensitivity for different parameter settings.

2.1 Introduction

Linear regression is a widely-used tool in finance. A common practice is, for instance, to
model the returns of single assets as a linear combination of the returns of various types
of ‘factors’. Such regressions can then be used to explain past returns, or in attempts to
forecast future returns. In financial economics, such factor models are the main tools for
asset pricing, for instance in the Capital Asset Pricing Model (capm), or in the Arbitrage
Pricing Theory (apt). Even if these models, when interpreted as equilibrium models,
do not hold in practice, the underlying regressions are still valuable. A main area of
application is risk management, where the regression estimates can be used to construct
variance–covariance matrices. There is considerable evidence of the usefulness of such
models in this context [6].

Regression models may not only be used to inform financial decisions by analysing
assets, but may be more explicitly used when constructing portfolios. For instance, a
possible approach to replicate a portfolio or an index is to find investable assets whose
returns ‘explain’ the chosen regressand (eg, the index); see for instance [26]. Assume
we have p assets, and let the symbol xi stand for the return of asset i at some point in
time; we use x∗i for the excess return over a constant riskfree rate. If a riskfree asset
exists, mean–variance portfolio optimisation reduces to finding the portfolio with the
maximum Sharpe ratio. This optimisation problem can be rewritten as

1 = θ1 x∗1+ θ2x∗2+ · · ·+ θpx∗p+ ε

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 9–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

10 M. Gilli and E. Schumann

where θi are the coefficients to be estimated, and ε holds the errors. Estimating the θi

with Least Squares and rescaling them to conform with the budget constraint is equiv-
alent to solving a mean–variance problem for the tangency portfolio weights, see [4].
The approach is outlined in the Appendix.

We can also find the global minimum-variance portfolio by running a regression [19].
We write the portfolio return as the sum of its expectation μ and an error ε, hence

μ+ ε = θ1x1 + θ2x2 + · · ·+ θpxp .

Imposing the budget constraint
∑

θ = 1 and rearranging we get

xp = μ+ θ1(xp− x1)+ θ2(xp− x2)+ · · ·+ θp−1(xp− xp−1)+ ε .

We can directly read off the portfolio weights from the regression; the weight of the pth
position is determined via the budget constraint.

Finally, linear models are used to evaluate the ex post performance of investment
managers: since [28], ‘style analysis’ has become a building block in performance mea-
surement and evaluation. The regression coefficients are then interpreted as portfolio
weights and the residuals as managerial skill (or luck).

The standard method to obtain parameter estimates for a linear regression model
is Least Squares (ls). ls has very appealing theoretical and numerical properties, but
the resulting estimates are often unstable if there exist extreme observations which are
common in financial time series [5, 21, 11]. In fact, a few or even a single extreme data
point can heavily influence the resulting estimates. A much-studied example is the es-
timation of β-coefficients for the capm, where small changes in the data (resulting, for
instance, from a moving-window scheme) often lead to large changes in the estimated
β-values. Earlier contributions in the finance literature suggested some form of shrink-
age of extreme coefficients towards more reasonable levels, with different theoretical
justifications (see for example [2, 32, 20]). An alternative approach, which we will deal
with in this Chapter, is the application of robust or resistant estimation methods [5, 22].

There is of course a conceptual question as to what constitutes an extreme observa-
tion or outlier in financial time series. Extreme returns may occur rather regularly, and
completely disregarding such returns by dropping or winsorising them could mean to
throw away information. Errors in the data, though, for example stock splits that have
not been accounted for, are clearly outliers. Such data errors occur on a wide scale,
even with commercial data providers [18]. Hence in particular if data are processed
automatically, alternative techniques like robust estimation methods may be advisable.

In this Chapter, we will discuss the application of robust estimators. Such estimators
were specially designed not to be influenced too heavily by outliers, even though this
characteristic often comes at the price of low efficiency if the data actually contain no
outliers. Robust estimators are often characterised by their breakdown value. In words,
the breakdown point is the smallest percentage of contaminated (outlying) data that may
cause the estimator to be affected by an arbitrary bias [25]. While ls has a breakdown
point of 0%, other estimators have breakdown points of up to 50%. Unfortunately, the
estimation becomes much more difficult, and for many models only approximative solu-
tions exist. We will describe the application of heuristics to such optimisation problems.
More precisely, we will compare different optimisation methods, namely Differential

2 Robust Regression with Optimisation Heuristics 11

Evolution, Particle Swarm, and Threshold Accepting. All three methods are general-
purpose heuristics and have been successfully applied to a wide range of problems, see
for instance [23], [33].

The remaining Chapter is structured as follows: Section 2.2 will introduce the linear
regression model and several alternative optimisation criteria for parameter estimation.
Section 2.3 will discuss numerical estimation strategies, ie, we will discuss different
optimisation procedures. In Section 2.4 then, we use the Monte-Carlo setup from [27]
to test the convergence behaviour of the different optimisation methods when used for
a specific estimator, Least Median of Squares. Section 2.5 concludes.

2.2 The Linear Regression Model

We consider the linear regression model

y =
[

x1 · · · xp

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
...
θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ε .

Here, y is a vector of n observations of the independent variable; there are p regressors
whose observations are stored in the column vectors x j. We will usually collect the

regressors in a matrix X =
[
x1 · · · xp

]
, and write θ for the vector of all coefficients. The

jth coefficient is denoted by θ j. We will normally include a constant as a regressor,
hence x1 will be a vector of ones. The residuals r (ie, the estimates for the ε), are
computed as

r = y−Xθ̂

where θ̂ is an estimate for θ. Least Squares (ls) requires to minimise the sum or, equiv-
alently, the mean of the squared residuals, hence the estimator is defined as

θ̂ls = argmin
θ

1
n

n∑

i=1

r2
i .

The advantage of this estimator is its computational tractability: the ls solution is found
by solving the system of normal equations

(X′X)θ = X′y

for θ.
Rousseeuw [24] suggested to replace the mean of the squared residuals with their

median. The resulting Least Median of Squares (lms) estimator can be shown to be
less sensitive to outliers than ls; in fact, lms’s breakdown point is almost 50%. More
formally, lms is defined as

θ̂lms = argmin
θ

median(r2) .

12 M. Gilli and E. Schumann

lms can be generalised to the Least Quantile of Squares (lqs) estimator. Let Qq be
the qth quantile of the squared residuals, that is

Qq = CDF−1(q) =min{r2
i | CDF(r2

i) ≥ q} , (2.1)

where q may range from 0% to 100% (we drop the %-sign in subscripts). Hence the
lms estimator becomes

θ̂lms = argmin
θ
Q50(r2) ,

and more generally we have

θ̂lqs = argmin
θ
Qq(r2) .

For a given sample, several numbers satisfy definition (2.1), see [17]. A convenient
approach is to work directly with the order statistics [r2

[1] r2
[2] . . . r2

[n]]
′. For lms, for

instance, the maximum breakdown point is achieved not by minimising Q50(r2), but by
defining

h =
⌊n
2

⌋

+

⌊
p+1

2

⌋

(2.2)

and minimising r2
[h] [24][p. 873].

The Least Trimmed Squares (lts) estimator requires to minimise the order statistics
of r2 up to some maximum order k. Formally,

θ̂lts = argmin
θ

1
k

k∑

i=1

r2
[i] .

To achieve a high breakdown value, the number k is set to roughly �1/2(n+ p+ 1)�, or
the order statistic defined in Equation (2.2).
lqs and lts estimators are sometimes called ‘resistant’ estimators, since they do not

just reduce the weighting of outlying points, but essentially ignore them. This property
in turn results in a low efficiency if there are no outliers. However, we can sometimes
exploit this characteristic when we implement specific estimators.

2.3 Estimation

2.3.1 Strategies

Robust estimation is computationally more difficult than ls estimation. A straightfor-
ward estimation strategy is to directly map the coefficients of a model into the objective
function values, and then to evolve the coefficients according to a given optimisation
method until a ‘good’ solution is found. For lms, for instance, we may start with a
‘guess’ of the parameters θ and then change θ iteratively until the median squared resid-
ual cannot be reduced any further. We will refer to this strategy as the ‘direct approach’.

2 Robust Regression with Optimisation Heuristics 13

−0.5

0

0.5

1

−0.5

0

0.5

1
1

2

3

4

x 10
−4

θ
1

θ
2

m
ed

ia
n(

r2)

Fig. 2.1. Search space for lms.

The difficulty with the direct approach arises from the many local minima that the objec-
tive function exhibits. This is illustrated in Figure 2.1 which shows the mapping from
a given set of coefficients into the median squared residual (ie, the search space) for a
capm regression y = θ1 + θ2x+ ε (here y is the excess return of a specific asset over the
riskfree rate, and x the excess return of the market).

Heuristic methods deploy different strategies to overcome such local minima. We
will compare three different techniques – Differential Evolution, Particle Swarm, and
Threshold Accepting – for the direct approach.

Since many resistant estimators essentially fit models on only a subset of the data,
we may also associate such subsets with particular objective function values – hence
transform the estimation into a combinatorial problem. An intuitive example is the lts
estimator: since the objective is to minimise the sum of the k smallest squared residuals,
we could also, for every subset of size k, estimate ls-coefficients. The subset with the
minimum objective function will give us the exact solution to the problem. Since such
a complete enumeration strategy is clearly infeasible for even moderately-sized models,
we will investigate an alternative search strategy based on Threshold Accepting. We
refer to this estimation strategy as the ‘subset approach’.

In the remainder of this Chapter, we will limit ourselves to lms estimation. The
direct approach is, however, applicable to any estimation criterion that allows to directly
connect the coefficients to the residual vector r. The subset approach presented later is
applicable to lqs estimation; it could easily be modified (in fact, simplified) for lts.
Next we outline the different algorithms.

14 M. Gilli and E. Schumann

2.3.2 Differential Evolution

Differential Evolution (de) was developed for continuous optimisation problems [29],
we outline the procedure in Algorithm 2.1. de evolves a population of nP solutions,
stored in real-valued vectors of length p (ie, the number of coefficients of the regres-
sion model). The population P may be visualised as a matrix of size p×nP, where each
column holds one candidate solution. In every iteration (or ‘generation’), the algorithm
goes through the columns of this matrix and creates a new candidate solution for each
existing solution P(0)

·,i . This candidate solution is constructed by taking the difference be-
tween two other solutions, weighting this difference by a parameter F, and adding it to a
third solution. Then an element-wise crossover takes place with probability CR between
this auxiliary solution P(v)

·,i and the existing solution P(0)
·,i (the symbol ζ represents a ran-

dom variable that is uniformly distributed between zero and one). If this final candidate
solution P(u)

·,i is better than P(0)
·,i , it replaces it; if not, the old solution P(0)

·,i is kept.

Algorithm 2.1. Differential Evolution.
initialise parameters nP, nG, F and CR;
initialise population P(1)

j,i , j = 1, . . . , p, i = 1, . . . ,nP;

for k = 1 to nG do
P(0) = P(1);
for i = 1 to nP do

generate �1, �2, �3 ∈ {1, . . . ,nP}, �1 � �2 � �3 � i;
compute P(v)

·,i = P(0)
·,�1
+F× (P(0)

·,�2
−P(0)
·,�3

);

for j = 1 to p do
if ζ < CR then P(u)

j,i = P(v)
j,i else P(u)

j,i = P(0)
j,i ;

end

if Φ(P(u)
·,i) < Φ(P(0)

·,i) then P(1)
·,i = P(u)

·,i else P(1)
·,i = P(0)

·,i ;

end
end

2.3.3 Particle Swarm Optimisation

The narrative for Particle Swarm Optimisation (ps) is based on swarms of animals like
birds or fish that look for food [9]. Like de, ps is applicable to continuous problems;
Algorithm 2.2 details the procedure. We have, again, a population that comprises nP

solutions, stored in real-valued vectors. In every generation, a solution is updated by
adding another vector called velocity vi. We may think of a solution as a position in the
search space, and of velocity as a direction into which the solution is moved. Velocity
changes over the course of the optimisation, the magnitude of change is the sum of
two components: the direction towards the best solution found so far by the particular
solution, Pbesti, and the direction towards the best solution of the whole population,
Pbestgbest. These two directions are perturbed via multiplication with a uniform random
variable ζ and constants c(·), and summed, see Statement 2.2. The vector so obtained
is added to the previous vi, the resulting updated velocity is added to the respective

2 Robust Regression with Optimisation Heuristics 15

Algorithm 2.2. Particle Swarm.
initialise parameters nP, nG, δ, c1 and c2;
initialise particles P(0)

i and velocity v(0)
i , i = 1, . . . ,nP;

evaluate objective function Fi = Φ(P(0)
i), i = 1, . . . ,nP;

Pbest = P(0), Fbest = F, Gbest =mini(Fi), gbest = argmini(Fi);
for k = 1 to nG do

for i = 1 to nP do
�vi = c1 × ζ1× (Pbesti −P(k−1)

i)+ c2× ζ2× (Pbestgbest −P(k−1)
i);

v(k)
i = δv(k−1)+ �vi;

P(k)
i = P(k−1)

i + v(k)
i ;

end
evaluate objective function Fi = Φ(P(k)

i), i = 1, . . . ,nP;
for i = 1 to nP do

if Fi < Fbesti then Pbesti = P(k)
i and Fbesti = Fi;

if Fi < Gbest then Gbest = Fi and gbest = i;
end

end

solution. In some implementations, the velocities are reduced in every generation by
setting the parameter δ to a value smaller than unity.

2.3.4 Threshold Accepting (Direct Approach)

Threshold Accepting (ta) is a descendant of Simulated Annealing and was introduced
by [8]. Other than de and ps, ta is a so-called trajectory method and evolves only a
single solution. It is based on a local search [14] but may, like Simulated Annealing,
also move ‘uphill’ in the search space. More specifically, it accepts new solutions that
are inferior when compared with the current solution, as long as the deterioration does
not exceed a specified threshold, thus the method’s name. Over time, this threshold
decreases to zero, and so ta turns into a classical local search. Algorithm 2.3 describes
the procedure; for an in-depth description see [33].

Algorithm 2.3. Threshold Accepting.
initialise nRounds and nSteps;
compute threshold sequence τ;
randomly generate current solution θc;
for r = 1 : nRounds do

for i = 1 : nSteps do
generate θn ∈ N(θc) and compute Δ = Φ(θn)−Φ(θc);
if Δ < τr then θc = θn;

end
end
θsol = θc;

16 M. Gilli and E. Schumann

Here, θc denotes the current solution, and θn is the ‘new’ (or neighbour) solution.
For each of the nRounds thresholds, stored in the vector τ, the algorithm performs nSteps

iterations, so the number of objective function evaluations is nRounds×nSteps.

Algorithm 2.4. Threshold Accepting – Neighbourhood definition.
θn = θc;
randomly select j ∈ {1, . . . , p};
randomly generate ζ ∈ [−z,z];
θn

j = θc
j + ζ × (1+ |θc

j|);

Neighbourhood Definition

While ta was originally introduced for combinatorial (ie, discrete) problems, it can
easily be modified for continuous functions. We implement the neighbourhood function
N as a small perturbation of the current coefficients vector. We use a random step
size that is proportional to the respective coefficient (see Algorithm 2.4). Variations
are possible; [35] for example suggest to shrink the step size over time.

The constant 1 is added in Statement 2.4 to make a sign-change for the given param-
eter more probable: without such a constant, when a coefficient gets closer to zero in
absolute terms, its variation also goes to zero.

Threshold Sequence

To compute the threshold sequence we take a random walk through the solution space
under the specified neighbourhood function and record the changes in the objective
function. The thresholds are then equidistant quantiles of the distribution of the absolute
values of the changes. For the rationale of this approach see [34, 15].

This procedure requires the number of thresholds nRounds to be set in advance. We
set nRounds to 10, even though ta is robust for other choices. There is some evidence,
though, that for very small numbers of thresholds, for instance 2 or 3, the performance
of the algorithm deteriorates [13].

Algorithm 2.5. Computing the threshold sequence.
randomly choose θc;
for i = 1 : nDeltas do

compute θn ∈ N(θc) and Δi = |Φ(θc)−Φ(θn)|;
θc = θn;

end
compute empirical distribution CDF of Δi, i = 1, . . . ,nDeltas;

compute threshold sequence τr = CDF−1
(nRounds−r

nRounds

)

, r = 1, . . . ,nRounds;

2 Robust Regression with Optimisation Heuristics 17

Algorithm 2.6. Chebyshev regression for p+1 subset.

solve (X′sXs)θ = X′sys for θ;
compute rs = ys −Xsθ;
compute ω =

∑
r2

s/
∑
|rs|;

compute σ = sign(rs);
compute y∗s = ys−ωσ;
solve (X′sXs)θ = X′sy

∗
s for θ;

θc = θ;

2.3.5 Threshold Accepting (Subset Approach)

Let r2
[h] denote the median order statistic of the squared residuals. [30] noted that an

estimator that minimises r2
[h] is equivalent to an estimator that minimises the largest

squared residual for a subset of size h. This is almost equivalent to the so-called Cheby-
shev estimator for this subset, defined by

θ̂c = argmin
θ

max |ri| .

(Only ‘almost equivalent’ because of using the absolute value instead of squaring the
residuals.) A convenient fact about θ̂c is that there exists also a subset of size p+1 that
yields the same fit as a h-subset. More generally, the lqs estimator for any order statis-
tic h (not just lms) corresponds to a Chebyshev estimate of some subset of size p+ 1.
Thus a solution with this approach is identified by p+ 1 indices, pointing to specific
rows in [y X]. Then, by computing θ̂c for this subset, we obtain a link from the subset
into an objective function value for the total data set. [30] suggested to examine all
subsets of size p+1, which is infeasible even for small models. We will thus apply ta
to this subset selection problem. Algorithms 2.3 and 2.5 remain valid; the neighbour-
hood is implemented as an exchange of one element from the solution against an index
that is currently not in the solution. (A similar approach is taken in [10] for quantile
regression.)

We thus need to solve two nested optimisation problems: the outer loop moves
through different subsets, while the inner loop needs to find θ̂c for the given subset.
Fortunately, for a subset of size p+1, there exists an exact and fast method to compute
the Chebyshev-fit. Let Xs be a subset of X of size (p+1)× p, the corresponding entries
of y are stored in the vector ys. Then Algorithm 2.6 describes a method, based on ls, to
obtain the Chebyshev-fit [30, 1].

2.4 Numerical Experiments

All the considered optimisation techniques are stochastic algorithms, so restarting
the same algorithm several times for the same data will result in different solutions.
We characterise a solution θ by its associated objective function value. We may now

18 M. Gilli and E. Schumann

describe the solution obtained from one optimisation run as the realisation of a random
variable with an unknown distribution F . For a given data set and a model to estimate
(lms in our case), the shape of F will depend on the particular optimisation technique,
and on the amount of computational resources spent on an optimisation run. Heuristic
methods are specially designed such that they can move away from local optima, hence
if we allow more iterations, we would expect the method to produce better results on
average. In fact, for an ever increasing number of iterations, we would finally expect F
to degenerate to a single point, the global minimum. In practice, we cannot let an algo-
rithm run forever, hence we are interested in the convergence of specific algorithms for
finite amounts of computational resources. ‘Convergence’ here means the change in the
shape of F when we increase the number of iterations. Fortunately, it is straightforward
to investigate F : fix the settings for a method (data, parameters, numbers of iterations)
and repeatedly restart the algorithm. Thus we obtain a sample of draws from F , from
which we can compute an empirical distribution function as an estimate for F .

Since we deal with different heuristics – population-based techniques and trajectory
methods – we define computational resources as the number of objective function eval-
uations. For de and ps, this is equal to the number of generations times the population
size, for ta it is the number thresholds times the steps per threshold. This is justified for
lms regression since the overhead incurred from evolving solutions is small compared
with the run time necessary to compute the median of the squared residuals (which re-
quires a least a partial sorting of the squared residuals). Fixing the number of function
evaluations has the advantage of allowing us to compare the performance of different
methods for a given amount of computational resources. However, we cannot directly
compare the subset approach with the direct approach, since in the former the objective
function is much more expensive.

We use the experimental setting described in [27], thus we consider the regression
model

y = Xθ+ ε , (2.3)

where X is of size n× p, θ is the p-vector of coefficients, and ε is Gaussian noise, ie,
ε ∼N(0,1). We always include a constant, so the first column of X is a vector of ones.
The remaining elements of X and y are normally distributed with a mean of zero and a
variance of one. Thus, the true θ-values are all zero, and the estimated values should be
close to zero. We replace, however, about 10% of the observations with outliers. More
precisely, if a row in [y X] is contaminated with an outlier, it is replaced by

[M 1 100 0 . . . 0]

where M is a value between 90 and 200. This setting results in a region of local minima
in the search space where θ2 will be approximately M/100. In their paper, [27] analyse
how often a given estimator converges to this wrong solution. This analysis, however,
confounds two issues: the ability of a given estimator to identify the outliers on the
one hand, and the numerical optimisation on the other. Since we are interested in the
optimisation, we will not compare coefficients, but look at the value of the objective
function.

2 Robust Regression with Optimisation Heuristics 19

We set M to 150, and vary the number of regressors p between 2 and 20. The number
of observations n is fixed at 400.

2.4.1 Results: Direct Approach

All the methods employed require us to set a number of parameters. We start
with ‘typical’ parameter values: for de, we set the population size nP to 10 times
the number of coefficients; CR and F are set to 0.9 and 0.75, respectively.
Thus we stay closely with the recommendations of K. Price and R. Storn (see
http://www.icsi.berkeley.edu/~storn/code.html). For ps, we set nP to 200,
c1 to 1 and c2 to 2. Inertia (δ) is set to 1, hence velocity is not reduced systematically.
For ta, there are no typical parameter choices, in particular since the neighbourhood
function (Algorithm 2.4) is problem-specific. The variable z, which controls the size of
the step, was initially set to 0.2.

Figures 2.2, 2.3 and 2.4 give the results for models with 5, 10, and 20 coefficients,
respectively. We estimated the distributions (ie, F) by restarting the algorithms 1 000
times. The three panels (top to bottom) in every graphic show the resulting objective
function values for 10 000, 20 000, and 30 000 function evaluations.

For the model with 5 coefficients (which is, in practice, a reasonably-sized model),
de gives the best results. With more function evaluations, the de runs converge on a
small number of local minima. The performance of de deteriorates, though, with more

0

0.5

1

10 000 function evaluations

de

ps
ta

0

0.5

20 000 function evaluations

de

ps ta

0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.5

objective function

30 000 function evaluations

de

ps
ta

Fig. 2.2. Estimated distributions F : direct approach with p = 5.

http://www.icsi.berkeley.edu/~storn/code.html

20 M. Gilli and E. Schumann

0

0.5

1

10 000 function evaluations

de

ps

ta

0

0.5 20 000 function evaluations

de

ps

ta

0.45 0.5 0.55 0.6 0.65 0.7
0

0.5

objective function

30 000 function evaluationsde
ps

ta

Fig. 2.3. Estimated distributions F : direct approach with p = 10.

coefficients, ie, larger models. For p = 20 no solution for de is visible any more in Fig-
ure 2.4, the distribution is too far to the right. ps performs best for such larger models,
even though the distribution is skewed to the right. In other words, the method occasion-
ally converges on a comparatively bad solution. ta gives reasonable solutions, though
generally either de or ps give better results. In particular, the distribution of solutions
for ta is rather dispersed. Take for instance the model with p = 20 and 30 000 func-
tion evaluations: the probability of reaching the median solution of ps with ta is only
about 1%.

These results are conditional on the chosen values for the method’s parameters. An
important part of implementing heuristics is hence the ‘tuning’ of the algorithm, ie, find-
ing ‘good’ parameter values. This search is again an optimisation problem: find those
parameter values that lead to optimal (or ‘good’) results in every restart, ie, parameter
values that lead to a ‘good’ F . Since all methods need several parameters to be set,
this optimisation problem is not trivial, in particular since the objective function has
to be evaluated from simulation and thus will be noisy. Though this is an (interesting)
problem to be investigated, for our purposes here, we do not need such an optimisation –
quite the opposite actually. Parameter setting is sometimes portrayed as an advantage,
for it allows to adapt methods to different problems. True. But at the same time it re-
quires the analyst who wishes to apply the method to have a much deeper understanding
of the respective method. In other words, the analyst will have to be a specialist in opti-
misation, rather than in finance or econometrics.

2 Robust Regression with Optimisation Heuristics 21

0

0.5

1

10 000 function evaluations

ps

ta

0

0.5 20 000 function evaluations
ps

ta

0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.5

objective function

30 000 function evaluations
ps

ta

Fig. 2.4. Estimated distributions F : direct approach with p = 20.

Boyd and Vandenberghe [3] [p. 5] call a method for solving a particular problem
‘a (mature) technology, [if it] can be reliably used by many people who do not know,
and do not need to know, the details.’ (Their example is, fittingly, ls.) If heuristics are
to become a technology in this sense, the more pressing question is not whether we
have used the ‘optimal’ parameters, but how sensitive our method’s solutions are to
specific parameter settings. Since this is a volume on computational finance, let us give
a financial analogy: while parameter optimisation may be regarded equivalent to the
trading side of a business, we are more interested in risk management.

To illustrate this point, we look at the model with p = 20 which proved the most
difficult, and solve it with different settings for the parameters. The number of function
evaluations was set to 30 000. For every parameter setting we conducted 1 000 restarts.
All calculations are based on the same data, hence the results in the following tables are
directly comparable for different methods.

Parameter Sensitivity for Differential Evolution

Table 2.1 shows the results when we vary F and CR. We include the median, best, and
worst value of the obtained solutions. Furthermore we include quartile plots [31, 12] of
the distributions. A quartile plot is constructed like a boxplot, but without the box: it
only shows the median (the dot in the middle) and the ‘whiskers’.

22 M. Gilli and E. Schumann

Table 2.1. Parameter sensitivity de.

CR F median best worst
2.01.51.00.50

0.2 0.2 0.47 0.424 0.507 �

0.4 0.53 0.464 0.575 �

0.6 0.75 0.560 0.962 �

0.8 1.54 0.988 2.080 �

0.4 0.2 0.44 0.399 0.472 �

0.4 0.49 0.437 0.558 �

0.6 0.91 0.631 1.190 �

0.8 2.81 1.660 4.030 not pictured

0.6 0.2 0.41 0.356 0.443 �

0.4 0.48 0.410 0.512 �

0.6 1.39 0.848 1.880 �

0.8 5.36 2.350 7.730 not pictured

0.8 0.2 0.38 0.338 0.432 �

0.4 0.48 0.409 0.523 �

0.6 2.29 1.200 3.640 not pictured

0.8 9.05 3.360 12.770 not pictured

2.01.51.00.50%

The solutions returned by de improve drastically when we set F to low values while
different choices for CR have less influence. This suggests that for lms-regression, using
de needs to be accompanied by testing of the robustness of the solutions. With small F,
we evolve the solutions by adding small changes at several dimensions of the solution.
In a sense, then, we have a population of local searches, or at least of slowly-moving
individuals.

Parameter Sensitivity for Particle Swarm Optimisation

Tables 2.2–2.5 give the result for ps; here the picture is different. While there are differ-
ences in the results for different settings of the parameters, the results are more stable
when we vary δ, c1 and c2. Each table gives results for different values of c1 and c2,
with δ fixed for the whole table. The most salient result is that velocity should not be
reduced too fast, hence δ should be below but close to one.

Though not reported here, we also reran our initial tests (Figures 2.2, 2.3 and 2.4).
With ‘improved’ parameter values for both de and ps, both methods performed equally
well for small models, but ps still was superior for large models.

Parameter Sensitivity for Threshold Accepting

We ran ta with different values for z (see Algorithm 2.4): 0.05, 0.10, and 0.20. Ta-
ble 2.6 gives the results. The results indicate that z should be small; in our setting 0.05
performed best on average. At the same time, reducing z deteriorated the worst solution.
Thus for too small step sizes, ta more often seemed to get stuck in local, but globally
suboptimal, minima.

2 Robust Regression with Optimisation Heuristics 23

Table 2.2. Parameter sensitivity ps for δ = 1.

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.46 0.384 0.921 �

1.0 0.45 0.376 0.944 �

1.5 0.45 0.394 0.985 �

2.0 0.45 0.399 0.938 �

1.0 0.5 0.47 0.404 0.872 �

1.0 0.46 0.391 0.910 �

1.5 0.45 0.371 0.936 �

2.0 0.45 0.402 1.030 �

1.5 0.5 0.46 0.406 0.960 �

1.0 0.46 0.395 0.890 �

1.5 0.45 0.399 0.926 �

2.0 0.45 0.402 0.829 �

2.0 0.5 0.46 0.402 1.120 �

1.0 0.46 0.390 1.010 �

1.5 0.45 0.401 0.850 �

2.0 0.45 0.392 0.833 �

2.01.51.00.50%

Table 2.3. Parameter sensitivity ps for δ = 0.5.

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.61 0.416 1.230 �

1.0 0.59 0.409 1.010 �

1.5 0.59 0.419 0.935 �

2.0 0.58 0.401 0.962 �

1.0 0.5 0.57 0.385 1.090 �

1.0 0.55 0.372 1.040 �

1.5 0.54 0.366 0.854 �

2.0 0.52 0.343 0.890 �

1.5 0.5 0.53 0.353 1.030 �

1.0 0.53 0.361 1.050 �

1.5 0.50 0.360 0.924 �

2.0 0.48 0.339 1.070 �

2.0 0.5 0.50 0.348 0.933 �

1.0 0.49 0.337 0.900 �

1.5 0.46 0.331 0.867 �

2.0 0.44 0.330 0.835 �

2.01.51.00.50%

2.4.2 Results: Subset Approach

As a first benchmark for our algorithm we ran a greedy search, described in
Algorithm 2.7. That is, for some random initial solution we check all neighbours, and
always move to the best one, given it improves the current solution. For any given solu-
tion, there are (p+1)(n− p−1) neighbours, hence visiting them all is time-consuming
but still feasible. If, at some point, no improvement can be found any more, the search
stops.

24 M. Gilli and E. Schumann

Table 2.4. Parameter sensitivity ps for δ = 0.75.

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.47 0.348 0.890 �

1.0 0.46 0.339 0.923 �

1.5 0.45 0.339 0.797 �

2.0 0.43 0.327 0.806 �

1.0 0.5 0.46 0.333 0.881 �

1.0 0.44 0.324 0.822 �

1.5 0.43 0.326 0.810 �

2.0 0.41 0.327 0.800 �

1.5 0.5 0.43 0.328 0.834 �

1.0 0.43 0.316 0.818 �

1.5 0.42 0.316 0.840 �

2.0 0.42 0.338 0.847 �

2.0 0.5 0.42 0.332 0.818 �

1.0 0.42 0.337 0.878 �

1.5 0.43 0.327 0.774 �

2.0 0.44 0.358 0.873 �

2.01.51.00.50%

Table 2.5. Parameter sensitivity ps for δ = 0.9.

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.41 0.330 0.879 �

1.0 0.41 0.328 0.820 �

1.5 0.41 0.335 0.776 �

2.0 0.42 0.348 0.766 �

1.0 0.5 0.42 0.335 0.913 �

1.0 0.42 0.332 0.884 �

1.5 0.42 0.356 0.845 �

2.0 0.43 0.365 0.758 �

1.5 0.5 0.44 0.366 0.882 �

1.0 0.44 0.361 0.830 �

1.5 0.44 0.367 0.781 �

2.0 0.44 0.377 0.832 �

2.0 0.5 0.45 0.375 0.790 �

1.0 0.45 0.386 0.858 �

1.5 0.44 0.380 0.922 �

2.0 0.44 0.364 0.891 �

2.01.51.00.50%

Table 2.6. Parameter sensitivity ta.

z median best worst
2.01.51.00.50

0.05 0.58 0.372 6.860 �

0.10 0.63 0.402 4.840 �

0.20 0.77 0.425 3.320 �

2.01.51.00.50%

2 Robust Regression with Optimisation Heuristics 25

Algorithm 2.7. Greedy search for subset selection.
select random initial solution θc;
set converged = false;
while not converged do

choose best neighbour θbest = argminθn∈N(θc) Φ(θn);
if Φ(θbest) < Φ(θc) then

θc = θbest;
end
converged = true;

end
θsol = θc;

A second benchmark is a classical local search: we start with a random solution
and choose a neighbour randomly. If the neighbour is better than the current solution,
we move to this new solution. This is equivalent to ta with just one zero-threshold.
Results for both searches are shown in Figure 2.5 (p = 10), again the distributions are
computed from 1 000 restarts. We also add the results for a subset-selection ta with
10 000 function evaluations. Local search performs already much better than the greedy
search, and even reaches solutions as good as the ta. The ta runs result in a very steep
distribution, thus giving consistently better solutions than the benchmarks.

To illustrate the quality of the solutions obtained with the subset approach, we next
plot results for all methods (direct approach and subset approach) for 10 000 function
evaluations. It needs to be stressed, though, that the objective function for the subset
approach is computationally much more expensive than for the direct approach (one
restart needs about 5 times the computing time). We set the parameters of the direct
approach techniques to ‘good’ values (de: F is 0.2, CR is 0.8; ps: δ is 0.75, c1 is 2 and
c2 is 1; ta: z is 0.05.) We give just selected results to outline the general findings: with
a low level of contamination (10%), for small models, the subset approach gives very
good solutions, but lacks behind ps once the model grows. The subset-selection ta is,

0 0.5 1 1.5
0

0.5

1

objective function

ta (subsets)

local search

greedy search

Fig. 2.5. Estimated distributions F : greedy search, local search, and ta (subsets).

26 M. Gilli and E. Schumann

0.49 0.495 0.5 0.505 0.51
0

0.5

1

← de

ps →
tata (subsets)

Fig. 2.6. Comparison of F for models with 10 000 function evaluations (p = 2).

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.5

1

← de

ps

ta

ta (subsets) →

Fig. 2.7. Comparison of F for models with 10 000 function evaluations (p = 20).

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

objective function

5, 10, 100, 500,
10 000 thresholds ⇒ ⇐ 2 thresholds

Fig. 2.8. ta (subsets): distributions F for different numbers of thresholds.

however, very robust when the degree of contamination increases, ie, when the number
of outliers increases.

Figure 2.6 and 2.7 show results for p = 2 and p = 20 with 10% outliers. The distribu-
tions are obtained from 1 000 restarts.

2 Robust Regression with Optimisation Heuristics 27

Parameter Sensitivity for Threshold Accepting

We ran tests where we fixed the number of function evaluations, but varied the distri-
bution between thresholds (nRounds) and steps per thresholds (nSteps) (see Algorithm 2.3).
Figure 2.8 shows the resulting distributions for 10 000 function evaluations.

The algorithm performs worse for very small numbers of thresholds, but once more
than about five thresholds are used, performance becomes stable.

2.5 Conclusion

In this Chapter we described how optimisation heuristics can be used for robust regres-
sion. More precisely, we investigated whether Differential Evolution, Particle Swarm
Optimisation, and Threshold Accepting are able to minimise the median squared resid-
ual of a linear model.

While all the tested methods seem capable of giving ‘good’ solutions to the lms-
problem, the computational resources (ie, number of function evaluations) would have
to be increased drastically to make the distribution of outcomes collapse to a narrow
support. In other words, there always remains stochasticity in the solutions. It is difficult
to judge the importance of this remaining randomness without a particular application.

For the direct approach we found that while de performed well for small models, the
obtained results were very sensitive to the specific parameter settings once we estimated
models with more coefficients. ps showed a much more robust performance. When us-
ing good parameter values for both de and ps, the latter method always dominated de in
our tests. The ta implementations were less efficient in the sense of having much more
variable distributions of solutions. The subset approach was more expensive in terms
of computing time, but had the advantage of being very robust for different models, in
particular for high levels of contamination.

Given its speed and robustness, ps would certainly be our first choice for lms-
estimation. But there are several points to be kept in mind. Firstly, all results are condi-
tional on our model setup. The study of [27] uses one specific data setup; for alternative
data the results do not have to be similar. Furthermore, while ps performed well on av-
erage, some restarts returned low-quality solutions. It is difficult to judge the relevance
of such outcomes: the errors that may occur from the optimisation have to be weighted
in light of the actual application, eg, a portfolio construction process. Our suggestion
for actual implementations is thus to diversify, that is to implement several methods for
the problem given, at least as benchmarks or test cases.

Acknowledgement

The authors gratefully acknowledge financial support from the eu Commission through
mrtn-ct-2006-034270 comisef. The chapter partially builds on work with Alfio Marazzi
whom the authors would like to thank.

28 M. Gilli and E. Schumann

A Maximising the Sharpe Ratio

Assume there are p assets, with expected excess returns (over the riskfree rate) collected
in a vector x̄. The variance–covariance matrix of the assets’ returns is Ω. Maximising
the Sharpe ratio can be formalised as

max
θ

θ′ x̄
√
θ′Ωθ

.

The first-order conditions of this problem lead to the system of linear equations

x̄ = Ωθ,

see for instance [7] [ch. 6]. Solving the system and rescaling θ to sum to unity gives the
optimal weights.

Assume now that we have T observations; we define x̄ to be the sample mean, and
collect the p return series in a matrix X of size T × p. For the regression representation
as proposed in [4], we need to solve

ι = Xθ∗

(which is an ls problem here), where ι is the unit vector and the superscript ∗ only serves
to differentiate between θ and θ∗.

This can be rewritten as

1
T

X′ι =
1
T

X′Xθ∗ ,

x̄ =
1
T

X′Xθ∗ ,

x̄ =
1
T

(Ω+ x̄x̄′)θ∗ .

Applying the Sherman–Morrison formula [16] [ch. 2] allows to show that θ∗ will be
proportional to θ, and hence after rescaling we have θ∗ = θ.

References

1. Agulló, J.: Exact Algorithms for Computing the Least Median of Squares Estimate in Multi-
ple Linear Regression. In: Dodge, Y. (ed.) L1-Statistical Procedures and Related Topics. IMS
Lecture Notes – Monograph Series, vol. 31, pp. 133–146. IMS (1997)

2. Blume, M.: On the Assessment of Risk. Journal of Finance 26(1), 1–10 (1971)
3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge

(2004)
4. Britten-Jones, M.: The Sampling Error in Estimates of Mean–Variance Efficient Portfolio

Weights. Journal of Finance 54(2), 655–671 (1999)
5. Chan, L., Lakonishok, J.: Robust Measurement of Beta Risk. Journal of Financial and Quan-

titative Analysis 27(2), 265–282 (1992)
6. Chan, L., Karceski, J., Lakonishok, J.: On Portfolio Optimization: Forecasting Covariances

and Choosing the Risk Model. Review of Financial Studies 12(5), 937–974 (1999)

2 Robust Regression with Optimisation Heuristics 29

7. Cuthbertson, K., Nitzsche, D.: Quantitative Financial Economics, 2nd edn. Wiley, Chichester
(2005)

8. Dueck, G., Scheuer, T.: Threshold Accepting. A General Purpose Optimization Algorithm
Superior to Simulated Annealing. Journal of Computational Physics 90(1), 161–175 (1990)

9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of
the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan,
pp. 39–43 (1995)

10. Fitzenberger, B., Winker, P.: Improving the computation of censored quantile regressions.
Computational Statistics & Data Analysis 52(1), 88–108 (2007)

11. Genton, M., Elvezio Ronchetti, E.: Robust Prediction of Beta. In: Kontoghiorghes, E.,
Rustem, B., Winker, P. (eds.) Computational Methods in Financial Engineering – Essays
in Honour of Manfred Gilli. Springer, Heidelberg (2008)

12. Gilli, M., Schumann, E.: An Empirical Analysis of Alternative Portfolio Selection Criteria.
Swiss Finance Institute Research Paper No. 09-06 (2009)

13. Gilli, M., Schumann, E.: Distributed Optimisation of a Portfolio’s Omega. Parallel Comput-
ing (forthcoming)

14. Manfred Gilli, M., Winker, P.: Heuristic optimization methods in econometrics. In: Belsley,
D., Kontoghiorghes, E. (eds.) Handbook of Computational Econometrics. Wiley, Chichester
(2009)

15. Gilli, M., Këllezi, E., Hysi, H.: A data-driven optimization heuristic for downside risk mini-
mization. Journal of Risk 8(3), 1–18 (2006)

16. Golub, G., Van Loan, C.: Matrix Computations. John Hopkins University Press, Baltimore
(1989)

17. Hyndman, R., Fan, Y.: Sample quantiles in statistical packages. The American Statisti-
cian 50(4), 361–365 (1996)

18. Ince, O., Porter, R.B.: Individual Equity Return Data from Thomson Datastream: Handle
with Care! Journal of Financial Research 29(4), 463–479 (2006)

19. Kempf, A., Memmel, C.: Estimating the Global Minimum Variance Portfolio. Schmalenbach
Business Review 58(4), 332–348 (2006)

20. Klemkosky, R., Martin, J.: The Adjustment of Beta Forecasts. Journal of Finance 30(4),
1123–1128 (1975)

21. Knez, P., Ready, M.: On the Robustness of Size and Book-to-Market in Cross-Sectional
Regressions. Journal of Finance 52(4), 1355–1382 (1997)

22. Martin, R.D., Simin, T.: Outlier-Resistant Estimates of Beta. Financial Analysts Jour-
nal 59(5), 56–69 (2003)

23. Price, K., Storn, R., Lampinen, J.: Differential Evolution – A practical approach to global
optimization. Springer, Heidelberg (2005)

24. Rousseeuw, P.: Least median of squares regression. Journal of the American Statistical As-
sociation 79(388), 871–880 (1984)

25. Rousseeuw, P.: Introduction to Positive-Breakdown Methods. In: Maddala, G.S., Rao, C.R.
(eds.) Handbook of Statistics, vol. 15, ch. 5. Elsevier, Amsterdam (1997)

26. Rudolf, M., Wolter, H., Zimmermann, H.: A linear model for tracking error minimization.
Journal of Banking & Finance 23(1), 85–103 (1999)

27. Salibian-Barrera, M., Yohai, V.: A Fast Algorithm for S-Regression Estimates. Journal of
Computational and Graphical Statistics 15(2), 414–427 (2006)

28. Sharpe, W.: Asset Allocation: Management Style and Performance Measurement. Journal of
Portfolio Management 18(2), 7–19 (1992)

29. Storn, R., Price, K.: Differential Evolution – a Simple and Efficient Heuristic for Global Op-
timization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)

30 M. Gilli and E. Schumann

30. Stromberg, A.: Computing the Exact Least Median of Squares Estimate and Stability Diag-
nostics in Multiple Linear Regression. SIAM Journal on Scientific Computing 14(6), 1289–
1299 (1993)

31. Tufte, E.: The Visual Display of Quantitative Information, 2nd edn. Graphics Press (2001)
32. Vasicek, O.: A Note on the Cross-Sectional Information in Bayesian Estimation of Security

Betas. Journal of Finance 28(5), 1233–1239 (1973)
33. Winker, P.: Optimization Heuristics in Econometrics: Applications of Threshold Accepting.

Wiley, Chichester (2001)
34. Winker, P., Fang, K.-T.: Application of threshold-accepting to the evaluation of the discrep-

ancy of a set of points. SIAM Journal on Numerical Analysis 34(5), 2028–2042 (1997)
35. Winker, P., Lyra, M., Sharpe, C.: Least Median of Squares Estimation by Optimization

Heuristics with an Application to the CAPM and a Multi Factor Model. Journal of Com-
putational Management Science (2009) (forthcoming)

3

Evolutionary Estimation of a Coupled Markov Chain
Credit Risk Model

Ronald Hochreiter1 and David Wozabal2

1 Department of Statistics and Mathematics, WU Vienna University of Economics and
Business, Augasse 2-6, A-1090 Vienna, Austria
ronald.hochreiter@wu.ac.at

2 Department of Business Administration, University of Vienna, Brünner Straße 72,
A-1210 Vienna, Austria
david.wozabal@univie.ac.at

Summary. There exists a range of different models for estimating and simulating credit risk
transitions to optimally manage credit risk portfolios and products. In this chapter we present a
Coupled Markov Chain approach to model rating transitions and thereby default probabilities of
companies. As the likelihood of the model turns out to be a non-convex function of the parameters
to be estimated, we apply heuristics to find the ML estimators. To this end, we outline the model
and its likelihood function, and present both a Particle Swarm Optimization algorithm, as well as
an Evolutionary Optimization algorithm to maximize the likelihood function. Numerical results
are shown which suggest a further application of evolutionary optimization techniques for credit
risk management.

3.1 Introduction

Credit risk is one of the most important risk categories managed by banks. Since the
seminal work of [13] a lot of research efforts have been put into the development of both
sophisticated and applicable models. Furthermore, de facto standards like CreditMetrics
and CreditRisk+ exist. Numerous textbooks provide an overview of the set of available
methods, see e.g. [4], [12], and [14]. Evolutionary techniques have not yet been ap-
plied extensively in the area of credit risk management – see e.g. [5] for credit portfolio
dependence structure derivations or [15] for optimization of transition probability ma-
trices. In this chapter, we apply the Coupled Markov Chain approach introduced by [9]
and provide extensions to the methods presented in [8]. Section 3.2 briefly describes
the Coupled Markov Chain model and its properties, and outlines the data we used for
subsequent sampling. The likelihood function, which is to be maximized, is discussed
in Section 3.3. A non-trivial method to sample from the space of feasible points for
the parameters is outlined in Section 3.4. Two different evolutionary approaches to op-
timize the maximum likelihood function are presented: in Section 3.5 a Particle Swarm
Algorithm is shown, and Section 3.6 introduces an Evolutionary Optimization approach.
Section 3.7 provides numerical results for both algorithmic approaches, while Section
3.8 concludes the chapter.

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 31–44.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

32 R. Hochreiter and D. Wozabal

3.2 Coupled Markov Chain Model

3.2.1 Model Description

In the Coupled Markov Chain model proposed in [9] company defaults are modeled
directly as Bernoulli events. This is in contrast to standard models used in the literature
where indirect reasoning via asset prices is used to model default events of companies.
The advantage of the proposed approach is that there are no heavy model assumptions
necessary (normality of asset returns, no transaction costs, complete markets, continu-
ous trading . . .).

Portfolio effects in structured credit products are captured via correlations in default
events. Companies are characterized by their current rating class and a second charac-
teristic which can be freely chosen (industry sector, geographic area, . . .). This classifi-
cation scheme is subsequently used to model joint rating transitions of companies. We
keep the basic idea of the standard Gaussian Copula model

X = ρτ+ (1−ρ)φ,

where τ is the idiosyncratic part and φ is the systematic part determining the rating
transition, while 0 ≤ ρ ≤ 1 is a relative weighting factor. More specifically the Coupled
Markov Chain model can be described as follows: A company n belongs to a sector s(n)
and is assigned to a rating class Xt

n at time t with Xt
n ∈ {0, . . . ,M+1} and t : 1 ≤ t ≤ T ,

with the credit quality decreasing with rating classes, i.e. (M + 1) being the default
class, while 1 is the rating class corresponding to the best credit quality. The ratings
of company n are modeled as Markov Chains Xt

n. The rating process of company n is
determined by

• an idiosyncratic Markov Chain ξt
n.

• a component ηt
n which links n to other companies of the same rating class.

• Bernoulli switching variables δt
n which decide which of the two factors determines

the rating, with P(δt+1
n = 1) = qs(n),Xt

n
, i.e. the probability of success depends on

sector and rating.

All the ξt
n and δt

n are independent of everything else, while the ηt
n have a non-trivial joint

distribution modeled by common Bernoulli tendency variables χi, i : 1 ≤ i ≤ M, such
that

P(ηt
n ≤ Xt

n) = P(χXt−1
n
= 1) and P(ηt

n > Xt
n) = P(χXt−1

n
= 0),

i.e. the variables χi are indicators for a (common) non-deteriorating move of all the
companies in rating class i. The rating changes of companies in different rating classes
are made dependent by the non-trivial probability mass function Pχ : {0,1}M → R of
the vector χ = (χ1, . . . ,χM).

The Coupled Markov Chain model is of the form:

Xt
n = δt

nξ
t
n+ (1− δt

n)ηt
n

and exhibits properties, which are interesting for practical application. It takes a tran-
sition matrix P = (pi, j) as input which governs the probability of transitions for ξt

n and
ηt

i, i.e.

3 Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model 33

P(ξt
n = j) = pm(n), j and P(ηt

i = j) = pi, j.

The model is capable of capturing different default correlations for different sectors and
rating classes, and is able to give a more accurate picture of closeness to default than the
standard model by including more than two states. The overall transition probabilities
of Xn again follow P, i.e.

P(Xn = j) = pm(n), j.

3.2.2 Data

Rating data from Standard & Poors has been used, whereby 10166 companies from
all over the world have been considered. The data consists of yearly rating changes
of these companies over a time horizon of 23 years up to the end of 2007. In total a
number of 87.296 data points was used. The second characteristic is the SIC industry
classification code. Sectoral information has been condensed to six categories: Mining
and Construction (1), Manufacturing (2), Transportation, Technology and Utility (3),
Trade (4), Finance (5), Services (6). Likewise, rating classes are merged in the following
way: AAA, AA→ 1, A→ 2, BBB→ 3, BB, B→ 4, CCC, CC, C→ 5, D→ 6. These
clusters allow for a more tractable model by preserving a high degree of detail. The
estimated rating transition probabilities from the data are shown in Table 3.1.

Table 3.1. Estimated rating transition probabilities

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9191 0.0753 0.0044 0.0009 0.0001 0.0001
0.0335 0.8958 0.0657 0.0036 0.0006 0.0009
0.0080 0.0674 0.8554 0.0665 0.0011 0.0016
0.0039 0.0092 0.0794 0.8678 0.0244 0.0153
0.0023 0.0034 0.0045 0.1759 0.6009 0.2131

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.3 Maximum Likelihood Function

The approach proposed by [9] takes a Markov transition matrix P =
(pm1,m2)1≤m1,m2≤(M+1) as an input, i.e.

M+1∑

i=1

pi,m =

M+1∑

i=1

pm,i = 1, ∀m : 1 ≤ m ≤ (M+1).

For (M + 1) rating classes, N companies and S industry sectors the parameters of the
model are a matrix Q= (qm,s)1≤s≤S , 1≤m≤M and a probability measure Pχ on {0,1}M satis-
fying some constraints dependent on P (see problem (3.1)). Given rating transition data
X ranging over T time periods we maximize the following monotone transformation of
the likelihood function of the model

L(X; Q,Pχ) =
T∑

t=2

log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

χ̄∈{0,1}M
Pχ(χt = χ̄)

∏

s,m1,m2

f (xt−1, s,m1,m2, ; Q,Pχ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

34 R. Hochreiter and D. Wozabal

with

f (xt−1, s,m1,m2, ; Q,Pχ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
qm1 ,s(p+m1

−1)+1

p+m1

)It

, m1 ≥ m2, χ̄m1 = 1
(

qm1 ,s(p−m1
−1)+1

p−m1

)It

, m1 < m2, χ̄m1 = 0

qIt

m1,s, otherwise.

where It ≡ It(m1,m2, s) is a function dependent on the data X which takes values in N,
p+m =

∑m
i=1 pm,i and p−m = 1− p+m.

The above function is clearly non-convex and since it consists of a mix of sums and
products this problem can also not be overcome by a logarithmic transform. Maximiz-
ing the above likelihood for given data X in the parameters Pχ and Q amounts to solving
the following constrained optimization problem

maxQ,Pχ L(X; Q,Pχ)
s.t. qm,s ∈ [0,1]

∑
χ̄:χ̄i=1 Pχ(χ̄) = p+mi

, ∀i : 1 ≤ i ≤ M
∑

χ̄:χ̄1=0 Pχ(χ̄) = 1− p+i .

(3.1)

3.4 Sampling Feasible Points

To sample from the space of feasible joint distributions for χ (i.e. the distributions whose
marginals meet the requirements in (3.1)), first note that the distributions Pχ of the
random variable χ are distributions on the space {0,1}M and therefore can be modeled
as vectors in R2M

. To obtain samples we proceed as follows.

1. To get a central point in the feasible region, we solve the following problem in
dependence of a linear functional Ψ : R2M →R.

maxPχ Ψ (Pχ)
s.t. qm,s ∈ [0,1]

∑
χ̄:χ̄i=1 Pχ(χ̄) = p+mi

, ∀i : 1 ≤ i ≤ M
∑

χ̄:χ̄1=0 Pχ(χ̄) = 1− p+i .

(3.2)

and call the solution set S(Ψ). By generating linear Ψ functionals with random
coefficients and picking x+ ∈ S(Ψ) and x− ∈ S(−Ψ) we get vertices of the feasible
set of distributions for χ modeled as a polyhedron in R2M

. In this way we generate
a set of vertices V for the feasible region Ω of the above problem. Note that to
enforce all the constraints in (3.2) we need M+1 linear equality constraints which
describe a 2M − (M+1) dimensional affine subspace in R2M

.
2. Get a central point in c ∈ Ω by defining

c =
1
|V |

∑

v∈V
v.

3 Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model 35

3. Sample K ∈ N directions of unit length from a spherical distribution (like the
multivariate standard normal with independent components) in R2M−M−1 to get
uniformly distributed directions. Map these directions to R2M

using an orthogonal
basis of the affine subspace A of R2M

described by the last set of constraints in (3.2)
to obtain a set of directionsD in A.

4. For every d ∈ D determine where the line c+λd meets the boundary of the feasible
set of (3.2). Call the length of the found line segment ld .

5. Fix a number L ∈N and sample
⌈

ld
∑

d∈D l̄d
L

⌉

points on the line ld . In this way we get approximately KL samples for Pχ.

Contrary to obtaining samples from Pχ, getting suitable samples for Q is fairly easy,
since all the components are in [0,1] and independent of each other. Note that both the
set of feasible matrices Q as well as the set of feasible measures Pχ are convex sets in
the respective spaces.

3.5 Particle Swarm Algorithm

In the following we give a brief description of the Particle Swarm Algorithm (PSA),
which follows the ideas in [10].

1. Choose δ > 0 and S ∈N.
2. Generate S permissible random samples xk = (Qk,Pk

χ) for k = 1, . . . ,S as described
above, i.e. qk

s,m ∈ [0,1] and Pχ is consistent with the constraints in (3.2). Each sam-
ple is a particle in the algorithm. Set x̂k = xk and vk = 0 for all k = 1, . . . ,S .

3. Set ĝ← argmink L(xk).
4. For all particles xk

a) Let the particles fly by first computing a velocity for the k-th particle

vk← c0vk + c1r1 ◦ (x̂k− xk)+ c2r2 ◦ (ĝ− xk) (3.3)

where c0, c1, c2 are fixed constants, r1 and r2 are random matrices (component-
wise uniform) of the appropriate dimension and ◦ is the Hadamard matrix
multiplication. Then a new position for the particle is found by the following
assignment

xk← xk + vk.

b) If L(xk) > L(x̂k) then x̂k← xk.
5. L(xk) > L(ĝ) for some xk, then ĝ← xk.
6. If var(L(xk)) < δ terminate the algorithm, otherwise go to step 3.

The main idea is that each particle k knows its best position x̂k as of yet (in terms of the
likelihood function) and every particle knows the best position ever seen by any particle
ĝ. The velocity of the particle changes in such a way that it is drawn to these positions

36 R. Hochreiter and D. Wozabal

(to a random degree). Eventually all the particles will end up close to one another and
near to a (local) optimum.

Note that in step 4(a) of the above algorithm, a particle may leave the feasible region
either by violating the constraints on Pχ or Q. In this case the particle bounces off the
border and completes its move in the modified direction. To be more precise: the parti-
cles can only leave the feasible region by violating the constraints that either elements
of Q or probabilities assigned by Pχ are no longer in [0,1] (the last two constraints in

(3.2) can not be violated since the particles only move in the affine subspace of R2M

where these constraints are fulfilled).
If xi

k + vi
k > 1 for some 1 ≤ i ≤ 22M

+MS (the case where xi
k + vi

k < 0 works analo-
gously), determine the maximum distance λ that the particle can fly without constraint
violation, i.e. set

λ =
(1− xi

k)

vi
k

and set xk← xk +λvk. Now set v̄k such that the new velocity makes the particle bounce
off the constraint as would be expected and make the rest of the move, i.e. set

xk← xk + (1−λ)v̄k.

In the case that the violation concerns an element of Q the modification only concerns
a change of sign, i.e. v̄i

k←−vi
k and v̄ j

k← v j
k for all j � i.

In the following we describe how to find a bounce off direction, if a constraint on an
element of Pχ is violated: first determine the hyperplane H in R2M

that represents the

constraint. Notice that H =
{
x ∈R2M

: xi = 1
}

for some i. We use the following Lemma
to get a representation of the hyperplane H in the affine subspace A.

Lemma 3.1. Let A be an affine subspace of RD with orthonormal basis e1, . . . ,ed with
D < d and H a hyperplane with normal vector n. The normal vector of the hyperplane
A∩H in A is

n̄ =
d∑

i=1

〈ei,n〉ei.

Proof. Let H =
{
x ∈RD : 〈x,n〉 = c

}
for some c ∈R, then

c = 〈y,n〉 =
〈 d∑

i=1

〈y,ei〉ei,n

〉

=

d∑

i=1

〈y,ei〉〈ei,n〉

=

〈

y,
d∑

i=1

〈ei,n〉ei

〉

= 〈y, n̄〉.

This implies that the point y ∈ A∩H, iff 〈y, n̄〉 = c.

Using the above Lemma we identify the normal vector n̄ ∈ A of the hyperplane H̄ =
H∩A in A. Without loss of generality we assume that ||n̄|| = 1. Now use Gram-Schmidt
to identify a orthonormal system n̄,y2, . . . ,y22M−(M+1)

in A and represent vk as

3 Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model 37

vk = 〈n̄,vk〉n̄+
∑

i≥2

〈yi,vk〉yi.

The transformed velocity can now be found as

v̄k = −〈n̄,vk〉n̄+
∑

i≥2

〈yi,vk〉yi.

Obviously an implementation of the algorithm has to be able to handle multiple such
bounces in one move (i.e. situation where the new direction v̄k again leads to a constraint
violation). Since the details are straightforward and to avoid too complicated notation,
we omit them here for the sake of brevity.

3.6 Evolutionary Algorithm

Evolutionary algorithms are well suited to handle many financial and econometric ap-
plications, see especially [2], [3], and [1] for a plethora of examples.

Each chromosome consists of a matrix Q and a vector Pχ. While the parameters
in Q can be varied freely between 0 and 1, and the parameters Pχ do need to fulfill
constraints (see above), the genetic operators involving randomness are mainly focused
around the matrix Q. Therefore, four different genetic operators are used:

• Elitist selection. A number e of the best chromosomes are added to the new popu-
lation.

• Intermediate crossover. c intermediate crossovers (linear interpolation) between
the matrices Q1 and Q2 of two randomly selected parents are created using a ran-
dom parameter λ between 0 and 1, i.e. two children Q3,Pχ,3 and Q4,Pχ,4 are calcu-
lated as follows:

Q3 = λQ1 + (1−λ)Q2,Pχ,3 = Pχ,1,

Q4 = (1−λ)Q1+λQ2,Pχ,4 = Pχ,2.

• Mutation. m new chromosomes are added by mutating a randomly selected chro-
mosome from the parent population, and adding a factor φ in the range [−0.5,0.5] to
the matrix Q. The values are truncated to values between 0 and 1 after the mutation.

• Random additions. r random chromosomes are added with a random matrix Q
and a randomly selected vector Pχ from the parent population.

3.7 Numerical Results

Both algorithms were developed in MatLab R2007a, while the linear problems (3.2)
were solved using MOSEK 5. A stability test has been conducted to validate the results
of both optimization algorithms: the maximum (pointwise) differences of parameter
estimates Pχ and Q between the different optimization runs is used to verify that these
important parameters, which are e.g. used for a credit portfolio optimization procedure,
do not differ significantly.

38 R. Hochreiter and D. Wozabal

Fig. 3.1. Objective function of the PSA algorithm: maximum per iteration.

Fig. 3.2. Objective function of the PSA algorithm: population mean.

3.7.1 Particle Swarm Algorithm

The parameters in (3.3) were set to c0 = 0.5, c1 = 1.5 and c2 = 1.5. The algorithm
was made to complete 150 iterations with around 200 initial samples (where the χ are
simulated on 40 lines with approximately 5 samples each). To test the stability of the
algorithm, 50 runs of the algorithm were performed. As can be clearly observed in Fig.
3.1 and 3.2, the likelihood of the best particle as well as the mean likelihood of the
swarm converges nicely and stabilizes after around 25 iterations. Each run took around
1 hour to complete 150 iterations. Stability results are shown in Fig. 3.3 and 3.4.

The variances of the populations in every iteration are plotted in Fig. 3.5. Since
the variances sharply decrease from very high initial values and in most cases drop

3 Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model 39

Fig. 3.3. Maximum (pointwise) differences of parameter estimates Pχ for different runs for
the PSA.

Fig. 3.4. Maximum (pointwise) differences of parameter estimates Q for different runs for
the PSA.

to rather low values quickly, the plot depicts the variance after applying a logarithmic
transformation (base 10) as well as the mean variance over all the runs. While in most
runs the variances decreases from values of the magnitude 105 to the range of 103, some
of the runs end up with significantly lower and higher variances. The latter being a sign
that the PSA sometimes fails to converge, i.e. the particles do not concentrate at one
point after the performed number of iterations. However, this is not problematic since
we are only interested in the likelihood of the best particle which seems to be pretty
stable at around 400. The results depicted in Fig. 3.3 and 3.4 confirm, that despite the
high variance in some of the runs the likelihood of the best particle remains stable for
all the runs.

40 R. Hochreiter and D. Wozabal

Fig. 3.5. Variances of the objective values of the swarm (variances are transformed with x �→
log10(x) for better interpretability of the results. The mean (logarithmic) variance is depicted by
the bold line.

Fig. 3.6. Objective function of the EA: maximum per iteration.

3.7.2 Evolutionary Algorithm

The following parameters have been used to calculate results: The number of maximum
iterations has been set to 150. Each new population consists of e = 30 elitist chromo-
somes, c = 50 intermediate crossovers, m = 100 mutations, and r = 50 random additions.
50 runs have been calculated, and 10 tries out of these are shown in Fig. 3.6 and 3.7 –
both the maximum objective value per iteration (3.6) as well as the population mean
(3.7). Due to the high number of random additions, mutations and crossovers, the mean
is relatively low and does not significantly change over the iterations, which does not
influence the results. The initial population were 750 randomly sampled chromosomes,

3 Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model 41

Fig. 3.7. Objective function of the EA: population mean.

Fig. 3.8. Maximum (pointwise) differences of parameter estimates Pχ for different runs for
the EA.

independently sampled for each try. It can be clearly seen, that due to the different
algorithmic approach, the convergence is different from the PSA.

Each run took approximately 70 minutes to complete the 150 iterations. Stability
results are shown in Fig. 3.8. The population variance is shown in Fig. 3.10, and clearly
exhibits a different behavior than the PSA algorithm as expected.

3.7.3 Comparison of Methods

Comparing the results of the current implementations of the two optimization heuris-
tics, the results found by the PSA consistently yield a higher objective value than the

42 R. Hochreiter and D. Wozabal

Fig. 3.9. Maximum (pointwise) differences of parameter estimates Q for different runs for the EA.

Fig. 3.10. Population variance of the EA.

solutions obtained with the EA (for the best particle/chromosome as well as for the
mean). The computing time for the two methods is similar and is mainly used for the
expensive objective function evaluations. Furthermore the presented computational ev-
idence shows the typical behavior of the variance given the two heuristic optimization
techniques. While the PSA generally performs slightly better than the EA, it might well
be that it gets stuck in a local optimum, which might be avoided using the EA. One can
see from the figures that the maximum difference between the estimated parameters for
different runs are smaller on average for the PSA. However, the analysis of the distribu-
tion of these differences reveals the interesting fact, that while for the EA the differences
are more uniform in magnitude and the highest as well as the lowest deviations can be

3 Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model 43

observed for the PSA. With the realistically sized data set both methodologies are well
suited and the final choice is up to the bank or company which implements and extends
the presented method, i.e. has to be based on the expertise available.

3.7.4 Application of the Model

Once the Coupled Markov Chain model has been estimated using evolutionary tech-
niques shown above, it can be used to simulate rating transition scenarios for differ-
ent sets of companies, which allows for pricing and optimization of various structured
credit contracts like specific CDX tranches, e.g. a Mean-Risk optimization approach in
the sense of [11] can be conducted for which evolutionary techniques can be used again
as shown by e.g. [6] and [7], such that a whole credit risk management framework based
on evolutionary techniques can be successfully implemented.

3.8 Conclusion

In this chapter, we presented the likelihood function for a Coupled Markov Chain model
for contemporary credit portfolio risk management. We presented two different heuristic
approaches for estimating the parameter of the likelihood function. Both are structurally
different, i.e. the population mean of each method differs significantly. However, both
are valid approaches to estimate parameters. Once the parameters are estimated, many
applications are possible. One prominent example is to generate scenarios for future
payment streams implied by an existing portfolio of Credit Default Swap Indices (CDX)
by Monte Carlo simulation. This allows for assessing the risk of the current position and
price products which might be added to the portfolio in the future and thereby determine
their impact on the overall exposure.

Acknowledgement

This research was partly supported by the Austrian National Bank Jubiläumsfond
Project 12306.

References

1. Brabazon, A., O’Neill, M.: Biologically inspired algorithms for financial modelling. Natural
Computing Series. Springer, Berlin (2006)

2. Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance, Studies in
Computational Intelligence, vol. 100. Springer, Heidelberg (2008)

3. Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance, vol. 2. Stud-
ies in Computational Intelligence, vol. 185. Springer, Heidelberg (2009)

4. Duffie, D., Singleton, K.J.: Credit Risk: Pricing, Measurement, and Management. Princeton
University Press, Princeton (2003)

5. Hager, S., Schöbel, R.: Deriving the dependence structure of portfolio credit derivatives using
evolutionary algorithms. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2006, Part IV. LNCS, vol. 3994, pp. 340–347. Springer, Heidelberg (2006)

44 R. Hochreiter and D. Wozabal

6. Hochreiter, R.: An evolutionary computation approach to scenario-based risk-return portfolio
optimization for general risk measures. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 199–207. Springer, Heidelberg (2007)

7. Hochreiter, R.: Evolutionary stochastic portfolio optimization. In: Brabazon, A., O’Neill, M.
(eds.) Natural Computing in Computational Finance. Studies in Computational Intelligence,
vol. 100, pp. 67–87. Springer, Heidelberg (2008)

8. Hochreiter, R., Wozabal, D.: Evolutionary approaches for estimating a coupled markov chain
model for credit portfolio risk management. In: Giacobini, M., Brabazon, A., Cagnoni, S.,
Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.)
EvoCOMNET. LNCS, vol. 5484, pp. 193–202. Springer, Heidelberg (2009)

9. Kaniovski, Y.M., Pflug, G.C.: Risk assessment for credit portfolios: A coupled markov chain
model. Journal of Banking and Finance 31(8), 2303–2323 (2007)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, vol. 4, pp. 1942–1948. IEEE Computer Society, Los Alamitos (1995),
doi:10.1109/ICNN.1995.488968

11. Markowitz, H.M.: Mean-variance analysis in portfolio choice and capital markets. Basil
Blackwell, Oxford (1987)

12. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative risk management. Princeton University
Press, Princeton (2005)

13. Merton, R.: On the pricing of corporate debt: the risk structure of interest rates. Journal of
Finance 29, 449–470 (1974)

14. Schönbucher, P.J.: Credit Derivatives Pricing Models: Models, Pricing, Implementation. Wi-
ley Finance, Chichester (2003)

15. Zhang, J., Avasarala, V., Subbu, R.: Evolutionary optimization of transition probability matri-
ces for credit decision-making. European Journal of Operational Research 200(2), 557–567
(2010)

4

Evolutionary Computation and Trade Execution

Wei Cui1,2, Anthony Brabazon1,2, and Michael O’Neill1,3

1 Natural Computing Research and Applications Group,
University College Dublin, Ireland
will.weicui@gmail.com, anthony.brabazon@ucd.ie, m.oneill@ucd.ie

2 School of Business, University College Dublin, Ireland,
3 School of Computer Science and Informatics, University College Dublin, Ireland

Summary. Although there is a plentiful literature on the use of evolutionary methodologies for
the trading of financial assets, little attention has been paid to the issue of efficient trade execu-
tion. Trade execution is concerned with the actual mechanics of buying or selling the desired
amount of a financial instrument of interest. This chapter introduces the concept of trade execu-
tion and outlines the limited prior work applying evolutionary computing methods for this task.
Furthermore, we build an Agent-based Artificial Stock Market and apply a Genetic Algorithm
to evolve an efficient trade execution strategy. Finally, we suggest a number of opportunities for
future research.

4.1 Introduction

Algorithmic trading (AT) can be broadly defined as the use of computers to automate as-
pects of the investment process. Hence, AT can encompass the automation of decisions
ranging from stock selection for investment, to the management of the actual purchase
or sale of that stock. A significant proportion of all financial asset trading is now under-
taken by AT systems with this form of trading accounting for approximately 20-25%
of total US market volume in 2005. Boston-based research firm Aite Group predicts
that AT will account for more than half of all shares traded in the U.S. by the end of
2010 [21]. AT is also common in European financial markets with approximately 50%
of trading volumes being accounted for by algorithmic trading programs [15]. Signifi-
cant volumes in Asian markets are similarly traded [14]. Algorithmic trading is seen in
multiple financial markets ranging from equities to FX (foreign exchange), to derivative
(futures, options etc.) markets.

In this chapter we restrict attention to one aspect of financial trading to which AT can
be applied, namely efficient trade execution. A practical issue that arises for investors
is how they can buy or sell large quantities of a share (or some other financial asset)
as efficiently as possible in order to minimize market impact. Typically, orders to buy
or sell a share can be either market orders (the transaction is undertaken immediately
in the market at current prices) or limit orders (the purchase (sale) must occur at a
price which is no greater than (or less than) a pre-specified price). So for example, if
a customer places a limit order to buy a stock at $125 per share the transaction will
only take place if the market price falls to $125 or less. Hence, when a market order
is placed, the customer does not have control over the final price(s) at which the order

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 45–62.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

46 W. Cui, A. Brabazon, and M. O’Neill

Table 4.1. Sample order book for a share with volume and price information for bid and ask

Bid Ask
Vol Price Price Vol
300 132.9 133.2 200
200 132.8 133.3 300
400 132.7 133.4 100
500 132.6 133.5 300
300 132.5 133.6 200
100 132.4 133.7 400

will be filled, and in a limit order, while the customer has some price control, there is
no guarantee that the order will actually be executed.

Most major financial markets now are limit order markets which operate based on
an electronic order book, where participants can see the current unfilled buy and sell
orders. Table 4.1 illustrates a sample order book, showing the quantities that investors
are willing to buy (bid side) and sell (ask side) at each price. We can see that 200 shares
are currently available for sale at a price of 133.2 (or higher), and buyers are seeking
300 shares at a price of 132.9 (or lower). The order book also illustrates that there
are limits to the quantity of shares available for purchase / sale at each price point. Of
course, the order book is highly dynamic, with the quantities of shares offered at each
price changing constantly as trades are executed, as investors add new limit orders on
the bid and ask sides, or as investors cancel limit orders they have previously placed.

When trading financial assets, particularly when an investor is looking to buy or sell
a large quantity of the asset, the problem of market impact arises. Market impact arises
when the actions of an investor start to move the price adversely against themselves.
Hence, market impact is the difference between a transaction price and what the market
price would have been in the absence of the transaction. For example, if an investor
wished to buy 400 shares given the above order book, he would end up driving up the
price paid for some shares to 133.3. The obvious strategy to minimize market impact is
to break the order up into smaller lots and spread them out over time. While this may
reduce the market impact, it incurs the risk of suffering opportunity cost, that market
prices may start moving against you during the multiple purchases. Hence, the design
of trade execution strategies when trading large blocks of financial assets is intended to
balance out these factors.

The task in devising an efficient execution strategy is complex as it entails multiple
sub-decisions including how best to split up the large order, what execution style to
adopt in executing each element of the order (aggressive or passive), what type of order
to use, when to submit the order, and how execution performance is to be measured. In
addition, the electronic order book(s) faced by the investor are constantly changing.

In the past the task of designing an execution strategy was undertaken by human
experts but it is amenable to automation. In this chapter we apply a Genetic Algorithm
(GA) to evolve an efficient trade execution strategy and highlight other possible Evolu-
tionary Computation (EC) applications for this issue.

4 Evolutionary Computation and Trade Execution 47

To test the performance of any trade execution strategy, we need highly detailed trans-
action level data. An ordinary way is to obtain the data from the exchange. However,
this only provides us with a single sample path of order book data over time. Another
approach is to consider the output data from an Artificial Stock Market (ASM), a simula-
tion of the real stock market. An advantage of a simulation-based approach is that many
sample paths can be generated and utility of a trade execution strategy can be tested
over all of these paths. Most ASM models are built by a computer technique called
Agent-based Modeling (ABM). Novelly, this chapter evaluates the strategy employing
the data from an ASM.

This chapter is organized as follows: Section 4.2 gives the necessary microstructure
background relevant to the trade execution from two aspects: trading cost and price for-
mation. Section 4.3 discusses trade execution strategy and corresponding performance
evaluation. Section 4.4 provides concise introduction to the EC methodologies, and
related work with application in trade execution. Section 4.5 explains agent-based mod-
eling and simulates an artificial stock market. Section 4.6 demonstrates the use of GA
to evolve a quality execution strategy. Section 4.7 conclude this chapter by giving a
number of avenues for future work.

4.2 Background

The finance literature on market microstructure is vast and consequently, we only dis-
cuss a limited subset of concepts from it, trading cost and price formation, which are
most relevant to this chapter.

4.2.1 Trading Cost

Trading cost can be decomposed into direct cost and indirect cost. Direct cost are ob-
servable directly, such as commissions, fees and taxes. Indirect costs are more difficult
to observe. Indirect costs can be divided into three main components: market impact
cost, opportunity cost and bid-ask spread cost. Early studies of indirect costs focused
on the bid-ask spread [20]. Lately, market impact cost and opportunity cost have re-
ceived more attention.

Execution needs to balance all of these factors [1]. If trading costs are not prop-
erly managed throughout trading it could cause a superior opportunity to become only
marginally profitable and a normally profitable opportunity to turn into a loss [22]. Fac-
tors which influence transaction cost are trade size, market capacitation, time windows,
trading time, order imbalance, volume of time horizon etc.

Market Impact

As investors transact shares in the market they cause market impact (price impact) in
the stock. Buy orders are associated with increasing prices and sell orders are associated
with decreasing prices. The market impact is typically decomposed into permanent and
transitory components which provide estimates of the information and liquidity costs
of the trade [20].

48 W. Cui, A. Brabazon, and M. O’Neill

Make decisions Order Matching
Mechanism

Fig. 4.1. Price Formation

Due to its importance, there is much research on the causes of market impact [22].
Empirical evidence showed that block price impacts are a concave function of order
size and a decreasing function of market capitalization (liquidity). Bikker [4] found
that average market impact costs equal 20 basis points for buys and 30 basis points for
sells, and market impact costs are influenced by timing of the trades, such as the day
of the week, the period of the month and the month of the year at which the stock is
traded. Stocks with high capitalization yield lower price impact cost than stocks with
low capitalization [28]. Price impact costs increase as order imbalance increases [27].

Opportunity Cost

There are two reasons why opportunity cost can arise [20]. One reason is that an order
is only partially filled or is not executed at all. This often happens using passive trading
strategies, such as a limit order strategy which trades only limit order in the market. For
example, a trader who anticipates that the market price will move down, sets the limit
price below the best available bid price. If the market price actually moves up during
that day, he will suffer a high cost due to unexecuted order. The other reason is that
some orders traded in the market are executed with a delay, in times of adverse price
movement.

4.2.2 Price Formation

Many modern markets operate using an electronic limit order book as described above.
In a limit order market, orders arrive randomly in time. The price limit of a newly arrived
order is compared to those of orders already held in the system to ascertain if there is
a match. If so, the trade occurs at the price set by the first order. The set of unexecuted
limit orders held by the system constitutes the dynamic order book, where limit orders
can be cancelled or modified at any time or executed in price priority and time priority
sequence. According to the first rule, the buy (or sell) limit order with higher (or lower)
price get executed prior to others with lower (or higher) price. The second rule means
that where two or more limit buy (or sell) orders have the same limit price, the buy (or
sell) limit order which arrives at the market earlier get executed prior to the others. A
simple price formation process is shown in Figure 4.1.

4.3 Trade Execution Strategy

A dilemma facing traders is that trading too quickly reduces the risk of suffering high
opportunity costs but is associated with high market impact cost. Trading too slowly
minimizes market impact cost but can give rise to opportunity cost. These costs are

4 Evolutionary Computation and Trade Execution 49

balanced out in a trade execution strategy, by splitting a large trade into lots of small
pieces and spreading them over several hours using market or limit orders. For example,
an algorithmic trading strategy may equally divide a 100,000-share order into 100 small
orders, where each small order has 1,000 shares. These orders then may be sent to the
market over the course of the day, in order to minimize market impact. Another advan-
tage of doing this is that these orders can be disguised in the market and prevented from
being detected by other participants in the market. This section presents important fac-
tors in a trade execution strategy and discusses how to evaluate performance of trading
strategies.

4.3.1 Factors

Factors of a trading strategy include the number of orders, type of each order, size per
order and submission time per order. Moreover, if a submitted order is a limit order, the
strategy has to specify a limit price and a duration time.

If immediacy is desired, the market order is the appropriate instrument to use. How-
ever, market orders pay an implicit price for immediacy. Limit orders avoid impact cost
but bear the risks of non-execution. In practice, traders submit both types of orders, in
order to balance the opportunity cost of delaying execution against the price impact
associated with immediate execution.

Duration time or lifetime is another important factor. The lifetime can range from
zero to entire trading time of the day. However, longer lifetime is not always the better
choice, since transacting on longer period also faces more risk.

The limit price of a limit order plays a significant role in order execution, which
always floats around the best bid/ask price. When placing a limit order, it is simpler
to just consider the relative limit price, which is the difference between the limit price
of buy/sell order and the current best bid/ask price. Choosing a relative limit price is
a strategic decision that involves a trade-off between patience and cost. For example,
if a trader wants to submit a limit buy order when the current best ask price is a, an
impatient buyer will submit a limit order with a limit price p well above a, which will
immediately result in a transaction. A buyer of intermediate patience will submit an
order with price p a little smaller than a; this will not result in a immediate transaction,
but will have high priority as new sell orders arrive. A very patient buyer will submit an
order with p much smaller than a; this order is unlikely to be executed soon, but it will
trade a good price if it does. A lower price is clearly desirable to the buyer, but it comes
at the cost of lowering the probability of trading. Usually, the lower the price to buy or
the higher the price to sell, the lower the probability there will be a trade. However, the
choice of limit price is a complex decision that depends on market environment.

4.3.2 Types of Execution Systems

Algorithmic Trading systems typically aim at achieving or beating a specified bench-
mark with their executions and may be distinguished by their underlying benchmark,
their aggressiveness or trading style as well as their adaptation behavior [23].

In practice the most commonly used algorithms in the market place according to their
benchmarks are: arrival price, time weighted average price (TWAP), volume weighted

50 W. Cui, A. Brabazon, and M. O’Neill

average price (VWAP), market-on-close (MOC), and implementation shortfall (the dif-
ference between the share-weighted average execution price and decision price for a
trade). Arrival price is the midpoint of the bid-ask spread at order-receipt time. VWAP
is calculated as the ratio of the value traded and the volume traded within a specified
time horizon. MOC measures the last price obtained by a trader at the end of the day
against the last price reported by the exchange. Implementation shortfall is a model that
weighs the urgency of executing a trade against the risk of moving the stock.

In terms of adaptation behavior, any algorithmic trading strategy can also be catego-
rized into one of the two categories: static strategy and adaptive strategy. Static strategy
pre-determines order trading schedule and will not change during the process of trad-
ing. This strategy can not adapt to changing environment. For example, an aggressive
strategy that places only market orders to buy can not change its aggressiveness if the
market price keeps moving up. On the other hand, adaptive strategy adapts to chang-
ing market conditions such as market price movements, volume profiles due to special
events such as new announcements or fed indicators, as well as changes in volatility,
by altering their aggressiveness of trading adequately. Intuitively, a more aggressive ac-
tion can be represented either as raising (or lowering) the buy (or sell) limit order price
or as increasing (or decreasing) the order volume. For example, in times of favorable
price movement adaptive strategies are likely to become more aggressive by submitting
more market orders or raising (or lowering) buy (sell) price or increasing order volume,
and in times of adverse price movement adaptive strategies are more passive in order to
avoid unnecessary market impact cost by submitting more limit orders or lowering (or
raising) buy (sell) price or decreasing order volume.

Several researchers have made contributions to adaptive trading strategy. Almgren
[2] showed evidence that strategies that are adaptive to market developments, i.e. that
can for example vary their aggressiveness, are superior to static strategies. Nevmyvaka
[30] proposed dynamic price adjustment strategy, where limit order’s price is revised
every 30 seconds adapting to the changing market state. Wang [35] proposed a dynamic
focus strategy, which dynamically adjusts volume according to real-time update of state
variables such as inventory and order book imbalance, and showed that dynamic focus
strategy can outperform a static limit order strategy.

4.3.3 Performance Evaluation

Execution performance is assessed by comparing execution costs relative to a bench-
mark. The execution cost measure is a weighted sum of the difference between the
transaction price and the benchmark price where the weights are simply the quantities
traded [15]. The most used benchmark prices are VWAP, TWAP, arrival price, imple-
mentation shortfall, which have been introduced above.

The rationale here is that performance is considered good if the average execution
price is more favorable than the benchmark price and bad if the average execution price
is less favorable than the benchmark price. Take the VWAP as an example, which is
an industry standard benchmark. The VWAP benchmark is calculated across the time
horizon during which the trade was executed and is calculated as

∑
(Volume ∗Price)
∑

(Volume)

4 Evolutionary Computation and Trade Execution 51

Hence, if the price of a buy trade is lower than VWAP, it is a good trade. If the price is
higher, it is a bad trade. Although this is a simple metric, it largely filters out the effects
of volatility, which composes market impact and price momentum during the trading
period [1].

4.4 Evolutionary Computation in Trade Execution

Evolutionary computation is a subfield of artificial intelligence. The basic idea of an
evolutionary algorithm is to mimic the evolutionary process, just as the name implies.
The evolutionary process is operated on the solutions or the encodings of solutions.
In financial markets, EC methodologies have been used for solving a broad selection
of problems, ranging from predicting movements in current values to optimizing eq-
uity portfolio composition. An overview of EC applications in finance can be seen in
[8]. Taking one of the best-known EC algorithms, the genetic algorithm, its key steps
are [7]:

1. Initialization. Construct an initial population of encodings to potential solutions to
a problem;

2. Calculation. Calculate the fitness of each potential solution in the population;
3. Selection. Select a pair of encodings (parents) corresponding to potential solutions

from the existing population according to the fitness;
4. Crossover. Perform a crossover process on the encodings of the selected parent

solutions;
5. Mutation. Apply a mutation process on the encodings of the two child solutions

and then store them in the next population;
6. Repeat. Repeat steps 3-5 until n encodings of potential solutions have been created

in the new population, and the old population are discarded;
7. Repeat Again. Go to step 2 and repeat until the desired fitness level has been

reached or until a predefined number of populations have elapsed.

Another kind of EC is Genetic Programming (GP), an extension of GA. In GP, the
evolutionary operators are applied directly to the solutions, thus the evolutionary search
is operated on a space of computer programs. In financial application, this space can be
a society of option pricing formulas, trading rules, or forecasting models. GP offers the
potential to generate human-readable rules.

4.4.1 Related Work

Despite the importance of optimizing trade execution, there has been relatively little
attention paid in the literature to the application of evolutionary methodologies for this
task. One notable exception is Lim and Coggins [29] who applied a genetic algorithm
to evolve a dynamic time strategy to optimize the trade execution performance using or-
der book data from a fully electronic limit order market, the Australian Stock Exchange
(ASX). In their study, the total volume of the order was divided into 10 slices and was
traded within one day using limit orders. Each evolved chromosome had N genes where

52 W. Cui, A. Brabazon, and M. O’Neill

each gene encoded the maximum lifetime that an individual order (1→ N) would re-
main on the order book (if it had not already been executed) before it was automatically
ticked over the spread to close out the trade. The fitness function was the VWAP perfor-
mance of that strategy relative to the benchmark daily VWAP. Each strategy was trained
on three months’ worth of transaction-level data using a market simulator. The results
were tested out of sample on three highly liquid stocks and tested separately for sell
side and buy side. The in sample and out of sample performances were better than pure
limit / market order strategies.

4.5 Agent-Based Artificial Stock Market

In this chapter, the data used to test the execution strategies are derived from an artifi-
cial stock market. This section gives a brief introduction to the agent-based modeling
technique.

4.5.1 Agent-Based Modeling

Agent-based modeling is a simulation technique to model non-linear systems consisting
of heterogeneous interacting agents. The emergent properties of an agent-based model
are the results of “bottom-up" processes, where the decisions of agents at a microscopic
level determine the macroscopic behavior of the system. An ‘agent’ refers to a bundle of
data and behavioral methods representing an entity constituting part of a computation-
ally constructed world. The agents can vary from simple random zero-intelligence (ZI)
agents as in [18] to sophisticated inductive learning agents. Even a simple agent-based
model can exhibit complex behavior patterns and provide valuable information about
the dynamics of the real-world system that it emulates [5].

The branch of agent-based modeling that deals with economic environments is some-
times referred to as agent-based computational economics (ACE), which naturally in-
cludes agent-based artificial markets [3]. They view financial markets as interacting
groups of learning, boundedly-rational agents, by incorporating a well-defined price
formation mechanism and a representation of market participants.

4.5.2 Artificial Market Models

Most artificial markets implement simplified market models, which omit some institu-
tional details of trading, but serve their research needs sufficiently. One example is the
clearing house model, where a number of agents only trade an asset at discrete time in-
tervals. At the start of each time period, every agent forms his expectation for the future
price in the next period, according to the available information, such as current market
price and historical prices. Then, the trader can decide the proportion of the asset he
will hold in the next period in order to maximize his profit. After collecting the accumu-
lated buy and sell orders of all the agents, the market is cleared at a new market price.
The renowned Santa Fe artificial stock market [26] is a such market, based on clearing
house model. For general reviews, see for example [10, 24, 26, 25, 32, 34].

4 Evolutionary Computation and Trade Execution 53

Table 4.2. Artificial Model Comparison

Market Order
Order Size Agent Type

Mechanism Waiting Time

Chiarella:2002 Double Auction
Discrete One unit Fundamentalist,

time of the chartist and
steps stock noise trader

Chiarella:2009 Double Auction
Discrete Generated using Fundamentalist,

time a specified chartist and
steps demand function noise trader

Raberto:2005 Double Auction
Exponential Depend on cash ZI agent
distributed endowment

Chan:2001 Double Auction
Discrete Artificial

time One share -intelligent
steps trader

Yang:2003 Double Auction
Discrete A fixed Neural

time number of learning
steps shares agent

Daniel:2006 Double Auction
Exponential Normal ZI agent
distributed distributed

However, the clearing house is only an approximate description of the way stock
exchanges operate around the world. Nowadays, most financial markets are electronic
markets, operating on an order book. Several researchers have made contributions to the
models which implement the realistic trading market model, e.g. a limit order market,
moving from the more stylized earlier financial market models toward more models
incorporating explicit market microstructure [9, 31, 36].

It is difficult to design a market that perfectly reflects all the details of a real stock
market. Therefore several choices, simplifications and assumptions are needed in order
to make attempts to represent market structures and traders’ behavior. In Chan’s market
[9], a submitted limit order price has to be better than the current price, for instance, any
subsequent bid must be higher than the current bid to be posted, and subsequent ask is
lower than the current ask to be posted. Yang’s market [36] is similar to Chan’s [9]. In
Chiarella’s markets [11, 12], traders set bids and asks and post market or limit orders
according to exogenously fixed rules. One major drawback of the Chiarella’s model
comes from the assumption that there exists a constant fundamental value of the asset
that all agents know, which is not realistic [19]. A comparison of these models can be
seen in Table 4.2.

4.5.3 Simulation

In this chapter, our model is based on the zero-intelligence (ZI) model [13], which
aims to generate a realistic aggregate order flow using very simple assumptions. The ZI
agents are responsible for generating the order flow, by placing random orders to buy
or sell. In this model, only one stock is traded, and dividends are ignored. Traders trade
orders via a centralized limit order book, without the intermediacy of a market maker,

54 W. Cui, A. Brabazon, and M. O’Neill

Current Best Bid Price

Current Best Ask Price

Price range of incoming limit buy orders

Price range of incoming limit sell orders

Price increases

Fig. 4.2. Place Limit Price

Table 4.3. Initial Parameters for Order Book based ASM

Explanation Value
Initial Price price0 = 100
Tick Price δ = 0.01

Probability of Cancellation Order λc = 0.07
Probability of Market Order λm = 0.33
Probability of Limit Order λl = 0.60

Probability of Limit Order in Spread λin = 0.35
Probability of Limit Order Out of Spread λout = 0.65

Limit Price Tail Index 1+α = 1.3
Order Size (μ,σ) ∼ (4.5,0.8) ∗100 shares

Waiting Time τ = 6,90

aiming to focus on the dynamics of a pure double auction. There are four aspects to
design the ZI model, which are order sign, order type, limit order price and order size.

There are two order signs, buy or sell. The agents are equally probable to generate a
buy order or a sell order. There are three types of orders in our model: market order, limit
order and cancellation order (to delete an order from the order book). In London Stock
Exchange, about 2/3 of the submitted order are limit orders and 1/3 are market orders
[16], and roughly 10% of limits order in the order book are canceled before before
being executed [6]. When an agent is active, she can try to issue a cancelation order
with probability λc (oldest orders are canceled first), a market order with probability λm,
a limit order with probability λl = 1−λc−λm. Traders do not always place limit order
at best bid/ask prices or inside the bid-ask spread. About 1/3 of limit orders fall outside
the bid-ask spread and the density of placement falls off as a power law as a function
of the distance from the best bid/ask price [17]. In our model, limit order price will
be uniformly distributed in the spread with probability λin, and power-law distributed
outside the spread with probability 1− λin. Limit order price ranges are illustrated in
Figure 4.2. The parameters used in our simulation are presented in Table 4.3.

In this model, the order generation is modeled as a poisson process, which means
that the time between orders follows an exponential distribution. In our simulation, we
adopt a Swarm platform in JAVA [33], which is one of the most popular agent-based
modeling platforms. The algorithm used in our simulation is described in Figure 4.1.

4 Evolutionary Computation and Trade Execution 55

Algorithm 4.1. Behavior of ZI Agent
Simulator: generate t from EXPONENTIAL(τ);
current_time = current_time+ t;
Agent: generate Psign from BERNOULLI(0.5);
generate independent Ptype from UNIFORM(0,1];
if Ptype <= λc then
/* a cancel order to be submitted */;
Cancel oldest outstanding order;

end
else if Ptype > (λc+λm) then
/* a limit order to be submitted */;
generate OrderSize log(vol) ∼NORMAL(μ,σ);
generate independent Pspread from UNIFORM(0,1];
if Pspread <= λin then
/* limit price to be in the spread */;
generate LimitPrice price(t) ∈UNIFORM(b(t),a(t));

end
/* limit price to be out of the spread */;
generate LimitPricepricei(Δ) ∼ 1

Δ1+α ;
/* power-law distributed*/;
/* a market order to be submitted */;
generate OrderSize vol(t) = [vol(a(t))|vol(b(t))];
/* same size as best counterpart*/;

end

4.6 Experiments

This section describes how to use a GA to uncover a quality trade execution strategy
and evaluate it using the data generated from the artificial market described above.

4.6.1 Data

This simulated market collects four kinds orders: market buy orders, limit buy orders,
market sell orders and limit sell orders. The ASM simulation uses a database to store
the details of each incoming order and best prices at each time point, which are limit
buy orders, limit sell orders, market buy orders, market sell orders and best buy/sell
orders.

The limit buy/sell order record contains each limit order’s index number, arrival time,
volume, submitting limit price, time when canceled or traded. The market buy/sell order
record contains each market order’s index number, arrival time, traded volume, traded
price and the index number of corresponding traded limit order. The best price record
contains the best bid and ask orders’ index number, volume, price, and mid-spread price
at each time when new order comes.

The ASM simulation was run for 30 virtual days. Each record in our dataset includes
the following order-specific variables: size (in number of shares), side (buy or sell),

56 W. Cui, A. Brabazon, and M. O’Neill

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

91

92

93

94

95

96

97

98
In−sample Best Prices

time

pr
ic

e

best bid
mid spread
best ask

Fig. 4.3. In-sample Data

market or limit, limit price (if a limit order), starting time and ending time for the
entire order.

4.6.2 GA Strategies

Commonly, a trader may wish to trade an order over a specified period, if the order can
not be filled at once. For the special characteristic of our artificial market, we assume
that trading period is two and a half hours.

The design of an execution strategy can be considered of consisting of two steps. The
first stage is to divide a big block of shares into multiple small orders, and the second
step is to determine the parameters of each order, including order type (limit/market
order), submission time, limit price (limit order) and lifetime (the time length when a
limit order appears in the order book before it is canceled or changed).

How to divide a large trade depends on the order size and trading time. For simplicity,
we divide our large trade into 30 smaller orders equally, and submit each smaller order
into the market every 5 minutes (300 seconds).

Bear in mind that limit orders do not guarantee execution. When we are trading limit
orders, we also need to consider how to deal with the unexecuted limit orders. They can
either be executed as market orders at the end of their lifetimes to avoid unexecuted risk,
or at the end of the whole trading period for better execution price.

In our experiment, we use both market and limit orders. The orders are submitted to
the market every 5 minutes. As in the real market, divided orders can always be fully

4 Evolutionary Computation and Trade Execution 57

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

96

97

98

99

100

101

102
Out−sample Best Prices

time

pr
ic

e

best bid
mid spread
best ask

Fig. 4.4. Out-sample Data

301 301

1 30

1 30

Fig. 4.5. Representation

traded if they are small enough. We assume that every market buy/sell order has the
same size as the best limit sell/buy order in the order book, which is in accordance with
the assumption in the ASM simulation. This means that one market order will cause
only one limit order to be traded. So the parameters left for the 30 limit orders include
limit order’s price, lifetime in the order book before canceled if not executed by other
market orders, which will be determined by the GA methodology. Figure 4.5 shows the
representation of each GA individual or chromosome. These parameters of every GA
individual form a GA strategy. The purpose of this experiment is to evolve an efficient
execution strategy which has the best average execution price.

The objective function we used here is ratio of the difference between the VWAPs of
the 30 orders and the entire executed orders generated from the ASM simulation to the
entire executed orders’ VWAP, which are VWAP30 and VWAPglobal respectively. For
both buy and sell orders, the smaller the VWAP Ratio, the better the strategy is.

58 W. Cui, A. Brabazon, and M. O’Neill

VWAPRatio =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1000∗(VWAP30−VWAPglobal)
VWAPglobal

Buy Strategy
1000∗(VWAPglobal−VWAP30)

VWAPglobal
Sell Strategy

4.6.3 Parameter Settings

In each generation of GA computation, several new individuals are produced, each be-
ing a strategy which defines how to send the 30 orders into market. To test the perfor-
mance of each strategy, we incorporate the 30 new orders into the order flow generated
from ASM. The new order flow is simulated as a market, where the new order will be
traded.

Fig. 4.6. Experiment

And we also assume that orders executed do not impact on the orders which arrive in
the order book later. Figure 4.6 illustrates how the experiment works. In our experiment,
orders can be executed in three different ways. The GA generates the limit price for
each limit order. At the time when limit order is submitted to the order book, if the limit
price crosses the best price in the opposite side of the order book, it will be executed
immediately at the current best price as a marketable limit order (MLO). For instance,
if the limit price of a buy order generated from GA is higher than the best ask price, this
limit buy order is traded at the best ask price. If an order can not be executed during its
lifetime, it will be automatically traded as a market order (MO) at the best price at the
end of its lifetime. The last possibility is that the limit order (LO) is traded during its
lifetime.

We used a population of 30 individuals, running for 100 generations, to evolve ef-
ficient GA strategies and we tested them with in-sample data and out-of-sample data
separately. The parameters used in GA can be seen from Table 4.4. At the same time,
we adopted another strategy to benchmark against our GA strategy, namely a pure mar-
ket order strategy (MOS). It trades orders as market orders immediately on submission
to the market.

4.6.4 Results and Discussion

Running both simulations for buy orders and sell orders over, we obtain the results
shown in Tables 4.5 & 4.6.

4 Evolutionary Computation and Trade Execution 59

Table 4.4. Parameters for Genetic Algorithm

Population size 30
Maximum number of generation 100

Generation gap 0.8
Crossover rate 0.75
Mutation rate 0.05

Selection method Stochastic Universal Sampling
Crossover method Single-Point

Table 4.5. Results of Buy Order.

MOS GA Strategy
VWAP Ratio VWAP Ratio TradedOrderType

(10−3) (10−3) MLO LO MO
In-sample 4.4474 –2.5899 4 20 6

Out-of-sample 5.9748 0.5146 11 8 11

Table 4.6. Results of Sell Order.

MOS GA Strategy
VWAP Ratio VWAP Ratio TradedOrderType

(10−3) (10−3) MLO LO MO
In-sample 2.7389 –5.8376 6 23 1

Out-of-sample 3.2378 –1.8244 13 7 10

The VWAP Ratio reveals the difference between the volume weighted execution
price of GA orders and the average traded price of all orders during the whole simulation
time. The better strategies have smaller VWAP ratios. The VWAP ratio of pure market
order strategy, namely MOS, is also shown in Tables 4.5 & 4.6. In order to analyze the
GA strategy, the execution types of the 30 orders are also calculated in our experiment.
The three types are MLO, LO and MO.

From Tables 4.5 & 4.6, the GA strategy outperforms the MOS strategy significantly,
both in-sample and out-of-sample, which is consistent with the results in [29]. The two
tables show that the GA strategy, which has more orders executed in the way of LO, has
a smaller VWAP ratio, meaning better performance. All the GA strategies with negative
VWAP ratios have more orders executed in the way of LO than those executed in the
two other ways, except the best out-of-sample strategy in Table 4.6. Also, GA strategies
have achieved better VWAP than that of the whole simulation time for buy and sell in
in-sample test, which is showed by the negative values of VWAP ratios. This is more
significant for the sell order. These results suggest the applicability and potential of GA
for trade execution.

60 W. Cui, A. Brabazon, and M. O’Neill

4.7 Conclusion and Future Work

In this chapter, we present a problem in trade execution and emphasize an evolutionary
approach to this problem. Initially, we built an order book using agent-based modeling.
Using the order flow produced by the ASM, we applied a Genetic Algorithm to opti-
mize the parameters of efficient trade execution strategies, in order to achieve a better
execution price than the currently popular benchmark Volume Weighted Average Price
(VWAP). In our experiments, GA evolved strategies provide satisfactory results for this
trade execution problem, indicating Evolutionary Computation methodologies have po-
tential applications in the domain of trade execution. The success of applying order
book based ASM for trade execution experiment suggests an alternative way for test-
ing trade execution strategies, instead of using backtesting strategies based on historical
market data.

In future work, we intend to extend the application of EC to harder, dynamic, opti-
mization problems in trade execution. For instance, if the price in market moves up or
moves down, how should the trader change the limit price of limit order to get a better
execution price? Kissell [23] proposed three adaptation tactics, which are Target Cost,
Aggressive in the Money (AIM) and Passive in the Money (PIM), based on price adjust-
ments to be consistent with investor’s implementation goal during execution. Genetic
Programming can be applied to this problem. Also, Agent-based Artificial Stock Mar-
ket can be combined with GP. An agent with GP evolved strategy can be represented
as an Algorithmic Trader in ASM, whose purpose is to evolve best execution strategy
using GP. We also plan to relax some of the assumptions in our ASM, such as adding
market impact into the current model.

Acknowledgement

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant Number 08/SRC/FM1389.

References

1. Almgren, R.: Execution costs. In: Encyclopedia of Quantitative Finance. Wiley, Chichester
(2008)

2. Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. Journal of Risk 3(2),
5–39 (2000)

3. Berseus, P.: Creating an agent-based artificial market. Master’s thesis, Lunds Tekniska
Hogskola (2007)

4. Bikker, J., Spierdijk, L., Sluis, P.: Market impact costs of institutional equity trades. Technical
Report 27, Netherlands Central Bank, Research Department (2007)

5. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human sys-
tems. Proceedings of the National Academy of Sciences 93(3), 7280–7287 (2002)

6. Bouchaud, J., Mezard, M., Potters, M.: Statistical properties of stock order books: empirical
results and models. Quantitative Finance 2(4), 251–256 (2002)

7. Brabazon, A., O’Neil, M.: Biologically Ispired Algorithms for Financial Modeling. Springer,
Berlin (2006)

4 Evolutionary Computation and Trade Execution 61

8. Brabazon, A., O’Neill, M., Dempsey, I.: An introduction to evolutionary computation in
finance. Computational Intelligence Magazine 10(10), 1–12 (2008)

9. Chan, N., LeBaron, B., Lo, A., Poggio, T.: Agent-based models of financial markets: A
comparison with experimental markets. Technical Report 4195-01, Massachusetts Institute
of Technology (2001)

10. Chen, S.: Computationally intelligent agents in economics and finance. Information Sci-
ences 177(5), 1153–1168 (2007)

11. Chiarella, C., Iori, G.: A simulation analysis of the microstructure of double auction markets.
Quantitative Finance 2, 246–253 (2002)

12. Chiarella, C., Iori, G., Perello, J.: The impact of heterogeneous trading rules on the limit
order book and order flows. Journal of Economic Dynamics and Control 33(3), 525–537
(2007)

13. Daniel, G.: Asynchronous simulations of a limit order book. PhD thesis, University of
Manchester, U.K (2006)

14. Decovny, S.: Asian-pacific gears up for algorithmic trading. Market View 1, 13 (2008)
15. Engle, R., Ferstenberg, R., Russell, J.: Measuring and modeling execution cost and risk.

Technical Report 08-09, Chicago GSB Research Paper (2008)
16. Farmer, J., Gerig, A., Lillo, F., Mike, S.: Market efficiency and the long-memory of supply

and demand: Is price impact variable and permanent or fixed and temporary? Quantitative
Finance 6(2), 107–112 (2006)

17. Farmer, J., Patelli, P., Zovko, I.: Supplementary material for ‘the predictive power of zero
intelligence in financial markets’ (2005),
http://www.santafe.edu/~jdf/papers/zerosuppl.pdf

18. Gode, D., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders. Journal
of political economy 101, 119–137 (1993)

19. Guo, T.: An agent-based simulation of double-auction markets. Master’s thesis, University
of Toronto (2005)

20. Keim, D., Madhavan, A.: The cost of institutional equity trades. Financial Analysts Jour-
nal 54(4), 50–52 (1998)

21. Kim, K.: Electronic and Algorithmic Trading Technology. Academic Press, U.S.A (2007)
22. Kissell, R.: Algorithmic Trading Strategies. PhD thesis, Fordham University (2006)
23. Kissell, R., Malanut, R.: Algorithmic decision-making framework. Journal of Trading 1(1),

12–21 (2006)
24. LeBaron, B.: Agent-based computational finance: suggested readings and early research. J.

Econom. Dynam. Control 24, 679–702 (2000)
25. LeBaron, B.: Agent-based computational finance. In: Tesfatsion, L., Judd, K. (eds.) Hand-

book of Computational Economics. Agent-based Computational Economics, vol. 2, pp. 134–
151. Elsevier, Amsterdam

26. LeBaron, B.: A builder’s guide to agent based financial markets. Quantitative Finance 1(2),
254–261 (2001)

27. Lim, M., Coggins, R.: Price impact of trades on the ASX. Presented at Australasian Finance
and Banking Conference (2003)

28. Lim, M., Coggins, R.: The immediate price impact of trades on the australian stock exchange.
Quantitative Finance 5(4), 365–377 (2005)

29. Lim, M., Coggins, R.: Optimal trade execution: an evolutionary approach. In: Proc. IEEE
Congress on Evolutionary Computation, vol. 2, pp. 1045–1052 (2005)

30. Nevmyvaka, Y., Feng, Y., Kearns, M.: Reinforcement learning for optimized trade execution.
In: ICML 2006: Proceedings of the 23rd International Conference on Machine Learning, pp.
673–680. ACM Press, New York (2006)

31. Raberto, M., Cincotti, S.: Modeling and simulation of a double auction artificial financial
market. Physica A: Statistical Mechanics and its applications 355(1), 34–45 (2005)

http://www.santafe.edu/~jdf/papers/zerosuppl.pdf

62 W. Cui, A. Brabazon, and M. O’Neill

32. Samanidou, E., Zschischang, E., Stauffer, D., Lux, T.: Agent-based models of financial mar-
kets. Reports on Progress in Physics 70(3), 409–450 (2007)

33. Swarm. Swarm package can be obtained from http://www.swarm.org
34. Tesfatsion, L.: Agent-based computational economics: A constructive approach to economic

theory. In: Tesfatsion, L., Judd, K. (eds.) Handbook of computational economics: agent-
based computaional economics, pp. 269–277. Elsevier, North-Holland, Amsterdam (2006)

35. Wang, J., Zhang, C.: Dynamic focus strategies for electronic trade execution in limit order
markets. In: CEC-EEE 2006: Proceedings of the 8th IEEE International Conference on E-
Commerce Technology and the 3rd IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services, pp. 26–35. IEEE Press, Washington (2006)

36. Yang, J.: The efficiency of an artificial double auction stock market with neural learning
agents. In: Chen, S. (ed.) Evolutionary Computation in Economics and Finance, pp. 85–106.
Springer, Berlin (2002)

http://www.swarm.org

5

Agent-Based Co-operative Co-evolutionary Algorithms
for Multi-objective Portfolio Optimization

Rafał Dreżewski, Krystian Obrocki, and Leszek Siwik

Department of Computer Science
AGH University of Science and Technology, Kraków, Poland
drezew@agh.edu.pl, kobrocki@gmail.com, siwik@agh.edu.pl

Summary. Co-evolutionary techniques makes it possible to apply evolutionary algorithms in the
cases when it is not possible to formulate explicit fitness function. In the case of social and eco-
nomic simulations such techniques provide us tools for modeling interactions between social and
economic agents—especially when agent-based models of co-evolution are used. In this chapter
agent-based versions of multi-objective co-operative co-evolutionary algorithms are presented
and applied to portfolio optimization problem. The agent-based algorithms are compared with
classical versions of SPEA2 and NSGA2 multi-objective evolutionary algorithms with the use
of multi-objective test problems and multi-objective portfolio optimization problem. Presented
results show that agent-based algorithms obtain better results in the case of multi-objective test
problems, while in the case of portfolio optimization problem results are mixed.

5.1 Introduction

Evolutionary algorithms are heuristic techniques which can be used for finding approx-
imate solutions of global optimization problems. Evolutionary algorithms were also
applied with great success to multi-modal and multi-objective problems (for example
compare [1]), however in these cases some special mechanisms should be used in or-
der to obtain good results. These are of course mechanisms specific for problems being
solved but it seems that very important mechanisms in the case of multi-modal and
multi-objective problems are the ones that maintain population diversity, because we
are interested in finding not a single solution (as in the case of global optimization
problems) but rather the whole sets of solutions.

Co-evolution is one of the mechanisms that can support maintaining of population
diversity (see [14]). Another effect of applying co-evolutionary mechanisms is that we
do not have to explicitly formulate the fitness function—we can just encode solutions in
the genotypes and approximate fitness values for individuals on the basis of tournaments
(competitive co-evolutionary algorithms) or co-operation (co-operative co-evolutionary
algorithms).

Agent-based co-evolutionary algorithms are decentralized models of co-evolutionary
computation. In fact two approaches are possible when we try to mix agent-based and
evolutionary paradigms. In the first one agents are used to “manage” the evolutionary
computations (see Figure 5.1). In such an approach each agent has the population of

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 63–84.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

64 R. Dreżewski, K. Obrocki, and L. Siwik

Fig. 5.1. Agent-based layer used for managing evolutionary computations

individuals inside of it, and this sub-population is evolved with the use of a standard
evolutionary algorithm. Agents themselves can migrate within the computational envi-
ronment, from one computational node to another, trying to utilize in a best way free
computational resources.

The example of the second approach is co-evolutionary multi-agent system (Co-
EMAS) which results from the realization of co-evolutionary processes in multi-agent
system (for example see [3, 4]). In such systems agents “live” within the environment
(see fig. 5.2). All agents posses the ability to reproduce, they can compete for limited
resources present within the environment, and die when they run out of resources.

In order to realize the selection process “better” (what means that they simply bet-
ter solve the given problem) agents are given more resources from the environment (or
from other agents) and “worse” agents are given less resources (or should give some of
its resources to “better” agents). Such mechanisms result in decentralized evolutionary
processes in which individuals (agents) make independently all their decisions concern-
ing reproduction, migration, interactions with other agents, etc., taking into considera-
tion conditions of the environment, other agents present within the neighborhood, and
resources possessed.

The approaches described above can be mixed. For example, one can imagine a sys-
tem in which agents serve as management layer, and individuals, which “live” within
such agents are also agents (see Figure 5.3). They can also migrate from one manage-
ment agent to another and make independently all decisions (the system in which such
approach was proposed is presented for example in [4]).

Agent-based co-evolutionary systems have some distinguishing features, among
which the most interesting seem to be:

• the possibility of constructing hybrid systems, in which many different bio-inspired
algorithms and techniques are used together within one coherent agent-based com-
putational model,

5 Agent-Based Co-operative Co-evolutionary Algorithms 65

Fig. 5.2. Co-evolutionary multi-agent system—population of evolving agents

Fig. 5.3. Mixed approach—agent-based layer is used for managing computations and evolving
individuals are agents

• relaxation of computational constraints (because of the decentralization of evolu-
tionary computations),

• the possibility of introducing new biologically and socially inspired operators or
relations, which were hard or impossible to introduce in the case of “classical”
evolutionary algorithms.

In the case of modeling and simulation of social and economic phenomena the model
of co-evolutionary multi-agent system provides all necessary mechanisms like: agents,
environment, agent-agent and agent-environment interactions needed for simulation of

66 R. Dreżewski, K. Obrocki, and L. Siwik

complex social systems. The basic model with biological (evolutionary) layer can be
easily extended—social and economical layers can be added on the top of biological
one. Thus, we can construct artificial worlds and observe different emergent phenomena
resulting from agents activities and interactions.

Multi-agent co-evolutionary algorithms based on CoEMAS model (utilizing differ-
ent co-evolutionary interactions like: predator-prey, host-parasite, and sexual selection)
were already applied to multi-objective problems (for example see [9], [7], [6]).

One of the first attempts of applying agent-based co-operative co-evolutionary ap-
proach to multi-objective optimization problems was presented in [8]. In the system
presented in that paper the approach that uses agents as individuals living and evolving
within the environment was used. There were several sub-populations (species) in the
system. One criteria was assigned to each species. Agents competed for resources only
within the species—there was no competition between agents that belonged to differ-
ent species. Reproduction took place when the agent had enough resources to perform
it. The agent searched for a reproduction partner from one of the opposite species. As
the multi-objective test problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 functions [15]
were used. Co-operative co-evolutionary multi-agent system was compared to NSGA2
and SPEA2 algorithms. Obtained results showed that proposed algorithm initially al-
lowed for obtaining better solutions, but with time classical algorithms—especially
NSGA2—were the better alternatives. However, in the case of ZDT4 problem this
characteristic was reversed—co-operative co-evolutionary multi-agent system finally
obtained better results.

Agent-based co-evolutionary algorithms have also been applied to financial prob-
lems. Agent-based co-evolutionary algorithm with predator-prey interactions solving
multi-objective portfolio optimization problem was presented in [9]. Co-operative co-
evolutionary algorithm using genetic programming approach for generating investment
strategies was described in [10]. These two systems were based on the first presented
above approach to constructing agent-based co-evolutionary algorithms—individuals
were agents, which competed for limited resources, could reproduce, migrate, and
which could eventually die when they ran out of resources.

The system presented in this chapter uses agents for managing evolutionary computa-
tions (first of the presented above approaches of mixing agent-based systems and evolu-
tionary algorithms). Additionally, agent-based co-operative co-evolutionary approach is
adapted for solving the multi-objective problem of portfolio optimization. The results of
experiments with multi-objective test problems and portfolio optimization problem are
used to compare proposed agent-based co-operative co-evolutionary algorithm, agent-
based co-operative versions of well known SPEA2 and NSGA2 algorithms, and original
versions of SPEA2 and NSGA2. The chapter is organized in the following way:

• In section 5.2 we will present the system and algorithms used in experiments:
co-operative co-evolutionary multi-agent algorithm, agent-based co-operative co-
evolutionary version of NSGA2 algorithm, and agent-based co-operative co-evo-
lutionary version of SPEA2 algorithm.

• In section 5.3 the results of experiments with the proposed algorithms are presented.
The problems used during experiments include commonly used multi-objective

5 Agent-Based Co-operative Co-evolutionary Algorithms 67

test functions: ZDT [16] and DTLZ [2], and multi-objective portfolio optimization
problem.

• Conclusions and future work plans are presented in section 5.4.

5.2 Agent-Based Co-operative Co-evolutionary System

In the presented system co-operative co-evolutionary techniques were adapted to meet
the demands of multi-objective problems and implemented with the use of mecha-
nisms supported by the Java based framework jAgE [12]. This framework is particularly
suitable for implementing agent-based evolutionary algorithms because it provides all
necessary elements like environment composed of computational nodes, agents, basic
mechanisms for agent-agent and agent-environment interactions.

Fig. 5.4. The architecture of agent-based co-operative co-evolutionary system

The co-operative co-evolutionary approach can be easily parallelized because
the interaction between individuals from different sub-populations takes place only
during forming complete solutions and evaluating their fitness. In co-operative
co-evolutionary algorithm computational nodes do not have to communicate very
often—communication is needed only during evaluation of the solutions—thus the par-
allelization of computations can be realized effectively in the decentralized system (like
jAgE), not only on parallel machines.

Because the representatives of each species (sub-populations) had to be aggregated
(in order to form the complete solution) and also because of the necessity of storing the
complete non-dominated solutions, the central computational node (agent-aggregate)
was introduced (see Figure 5.4). Its tasks include forming complete solutions (com-
posed of the representatives of each species) and evaluation of the solutions. It also

68 R. Dreżewski, K. Obrocki, and L. Siwik

maintains the set of non-dominated solutions found so far (the definition of domination
relation and other issues connected with the Pareto approach to multi-objective opti-
mization can be found for example in [1] or [9]). Each sub-population is responsible
only for the selected part of solution, and evolved by one computational agent.

The system which we describe here has five implemented algorithms. Agent-based
algorithms utilize agent layer for managing evolutionary computations. Three versions
of agent-based co-evolutionary algorithms were implemented: co-operative co-evolutio-
nary multi-agent algorithm (CCEA-jAgE), agent-based co-operative co-evolutionary
version of NSGA2 algorithm (CCNSGA2-jAgE), and agent-based co-operative co-evo-
lutionary version of SPEA2 algorithm (CCSPEA2-jAgE). Also two classical multi-
objective evolutionary algorithms were implemented: NSGA2 and SPEA2 (details of
these algorithms may be found in [1]).

5.2.1 The Algorithms

Co-Operative Co-Evolutionary Multi-Agent Algorithm

In the co-operative co-evolutionary multi-agent algorithm (CCEA-jAgE), which is
based on the co-operative algorithm proposed in [13], there are computational agents
which have individuals inside of them. Computational agents are located within the
computational nodes of the jAgE platform—these nodes can be located on the same
machine or on different machines connected with network. Agent-aggregate (which is
a kind of “central point” of the system) is responsible for the creation of complete
solutions and maintaining the set of non-dominated solutions found so far.

In the first step of this algorithm each of the computational agents performs the initial-
ization of its sub-population (which is associated with the selected part of the problem—
in our case this is one decision variable). Aggregate agent waits for receiving all of the
sub-populations. When it receives all sub-populations, it forms complete solutions and
computes the contribution of individuals coming from each species (sub-populations) to

Algorithm 5.1. The first step of the aggregate agent

for a← a1 to an do
/* ai is the i-th computational agent */;
receive the initial population P0

a from agent a;
/* P0

a is the sub-population of agent a in step 0 */;
end
C = aggregation of the solutions from P0;
/* C is the set of complete solutions (co-operations) consisted of;
the individuals coming from different sub-populations */ ;
calculate the contribution of each of the individuals in the co-operation;
for a← a1 to an do

send the sub-population P0
a to agent a;

end
A0 = choose the non-dominated solutions from C;
/* A is the set of non-dominated solutions found so far */

5 Agent-Based Co-operative Co-evolutionary Algorithms 69

Algorithm 5.2. Step of the computational agent

receive sub-population Pt from aggregate agent;
/* Pt is the sub-population in time t */ ;
compute the fitness of individuals from Pt on the basis of their contribution to the
whole solution quality;
Pt+1←∅;
while Pt+1 is not full do

select parents from Pt;
generate offspring from parents and apply recombination;
Pt+1 = Pt+1 + offspring;

end
mutate individuals from Pt+1;
send Pt+1 to aggregate agent;

the whole solution quality. Then the aggregate sends back all sub-populations and puts
copies of all non-dominated solutions into the set of non-dominated solutions found so
far (see Algorithm 5.1).

Each following step of computational agents (see Algorithm 5.2) begins with re-
ceiving of the sub-population from aggregate agent, then fitness of the individuals is
computed. Next the selection of parents is performed, followed by the reproduction, re-
combination and mutation. At the end, the set of generated offspring is again sent to the
aggregate agent.

Actions performed by the aggregate agent in the following steps start from check-
ing whether the stop condition is fulfilled (see Algorithm 5.3). If yes, then the whole
algorithm stops and the set of non-dominated solutions is the resulting Pareto frontier.

Algorithm 5.3. Step of the aggregate agent managing the computations

while stop condition is not fulfilled do
for a← a1 to an do

receive sub-population Pt
a from agent a;

end
for a← a1 to an do

Pt+1
a = select individuals for new generation from Pt−1

a
⋃

Pt
a;

end
Ct+1← complete solutions formed from Pt+1;
calculate the contribution of individuals coming from different species to the
whole solution quality;
for a← a1 to an do

send the sub-population Pt+1
a to the agent a;

end
update the set of non-dominated solutions At+1 with the use of Ct+1;

end

70 R. Dreżewski, K. Obrocki, and L. Siwik

Algorithm 5.4. Calculating the contribution of individuals coming from different
species to the whole solution quality

for species Ps← P0 to Pn do
choose representatives rs from Ps;

end
C←∅;
for species Ps← P0 to Pn do

for individual is← i0 to iN do
cpool← ∅;
for j← 1 to |rs| do

x← aggregation of is with the representatives of the other species;
compute F(x);
cpool← cpool+ {x};

end
x← solution chosen from cpool;
C←C+ {x};
F(x) is set as the contribution of individual is to the whole solution quality;

end
end
return C;

When the stop condition is not fulfilled then aggregate agent receives sub-
populations from computational agents, and for each sub-population generates the set
containing next generation of individuals (Pt+1) using individuals from previous gen-
eration of the given species and offspring sent by the given computational agent. Next
the new set of complete solutions is generated on the basis of Pt+1 and the contribution
of individuals coming from different species to the whole solution quality is computed.
Then the set of non-dominated solutions is updated (the new non-dominated solutions
are inserted into the set and then all dominated solutions are removed from the set)—if
the number of individuals in the set is greater than the maximal value then some in-
dividuals are removed on the basis of crowding algorithm (individuals from the most
“crowded” areas are removed in the first place). Next, sub-populations are sent back to
computational agents.

The process of creating complete solutions (aggregating individuals) and computing
the contribution of the given individual to the quality of the whole solution is made with
the use standard co-operative co-evolutionary schema. Firstly representatives rs of all
species are chosen, and then for subsequent individuals is from subsequent species s the
pool cpool of complete solutions is created. For every solution from the pool (which is
composed of the given individual is and representatives of all other species) the values
of all criteria are computed. One solution is chosen from the pool and inserted into the
set C of currently generated solutions. The vector of values F(x) of the chosen solution
is the measure of contribution of the given individual is to the quality of the solution
(see Algorithm 5.4).

5 Agent-Based Co-operative Co-evolutionary Algorithms 71

Agent-Based Co-Evolutionary Version of NSGA2 Algorithm with Co-Operative
Mechanism (CCNSGA2-jAgE)

CCNSGA2-jAgE—agent-based co-operative co-evolutionary version of NSGA2 al-
gorithm—is possible to obtain via proper configuration of the previously described al-
gorithm (very similar solution was in fact applied in non-dominated sorting co-operative
co-evolutionary genetic algorithm [11]).

As a result of integration of the previously described algorithm and NSGA2 [1] the
agent-based co-operative version of NSGA2 was created. Thanks to the computed con-
tribution of the given individual to the quality of the complete solution, the fitness
computation in agent-based co-evolutionary NSGA2 is realized with the use of non-
dominated sorting and crowding distance metric (see [1]). Additionally, the aggregate
agent joins the populations of parents and offspring, and chooses (on the basis of elitist
selection and within each sub-population separately) individuals which will form the
next generation sub-population used for the creation of complete solutions. The applied
schema implies that N best (according to non-dominated sorting and crowding distance
metric) individuals survive. Other parts of algorithm are realized in the same way as in
the case of previously described agent-based co-operative algorithm.

Agent-Based Co-Evolutionary Version of SPEA2 Algorithm with Co-Operative
Mechanism

In the case of agent-based co-operative co-evolutionary version of SPEA2 algo-
rithm (CCSPEA2-jAgE) some modifications of the algorithms presented previously
had to be done. It was caused mainly by the fact that SPEA2 uses additional external
set of solutions during the process of evaluating individuals (compare [17]). In the de-
scribed agent-based co-evolutionary version of SPEA2 algorithm each computational
agent has its own, local, external set of solutions (lA) used during the fitness estima-
tion. This set is also sent to the aggregate agent, along with the sub-population which is
evolved by the given computational agent.

First step of aggregate agent and computational agents is the same as in the case of
CCEA-jAgE. Next steps of the algorithm of computational agents begin with receiving
of the sub-population Pt and local external set of solutions lAt from the aggregate agent
(see Algorithm 5.5). On the basis of the contributions of the individuals to the quality
of the complete solutions (computed by the aggregate agent), the fitness of individuals
is computed. Next the archive lAt+1 is updated with the use of environmental selection
mechanism adapted from SPEA2 algorithm [17]. Parents are selected from lAt+1 and
children generated with the use of recombination operator are inserted into Pt+1 (off-
spring population). Then mutation is applied to the individuals from set Pt+1 and this
set is sent to the aggregate agent together with the individuals from lAt+1.

In the case of aggregate agent, the changes include receiving and sending additional
sets of individuals lAt (see Algorithm 5.6). Due to the fact that lAt is the set of parents,
now the step of selecting individuals to the next generation sub-population may be
omitted. In order to create the set of complete solutions Ct and compute contributions
of the individuals to the quality of the complete solutions, the aggregates are created
from the individuals coming from populations Pt and lAt. Finally all sub-populations

72 R. Dreżewski, K. Obrocki, and L. Siwik

Algorithm 5.5. Step of the computational agent of CCSPEA2-jAgE algorithm

receive sub-population Pt and local external set of solutions lAt from aggregate
agent;
compute the fitness of individuals from Pt and lAt on the basis of their
contribution to the whole solution quality;
lAt+1 = environmental selection from Pt ⋃ lAt;
Pt+1←∅;
while Pt+1 is not full do

select parents (using tournament selection) from lAt+1;
generate offspring from parents and apply recombination;
Pt+1 = Pt+1 + {o f f spring};

end
mutate individuals from Pt+1;
send Pt+1 and lAt+1 to the aggregate agent;

Algorithm 5.6. Step of the aggregate agent managing the computations of
CCSPEA2-jAgE algorithm

while stop condition is not fulfilled do
for a← a1 to an do

receive sub-population Pt
a and additional set of individuals lAt from agent

a;
end
Ct ← complete solutions formed from Pt ⋃ lAt;
calculate the contribution of individuals coming from different species to the
whole solution quality;
for a← a1 to an do

send the sub-population Pt
a and additional set of individuals lAt to the

agent a;
end
update the set of non-dominated solutions At+1 with the use of Ct;

end

are sent back to the proper computational agents and the set of non-dominated solutions
is updated.

5.3 The Experiments

The algorithms presented in the previous section were preliminary assessed with the
use of commonly used multi-objective ZDT [16] and DTLZ [2] test functions (detailed
description of these test problems is presented in sections 5.3.1 and 5.3.2). Some of the
results of these experiments were also presented in [5]. Generally speaking, the results
obtained with the use of agent-based algorithms (especially CCEA-jAgE) were compa-
rable, and in the case of some test problems better, than those obtained with the use of

5 Agent-Based Co-operative Co-evolutionary Algorithms 73

SPEA2 and NSGA2. In this section we will present results of selected experiments with
test functions and the problem of multi-objective portfolio optimization.

5.3.1 ZDT Test Functions

Test problems designed by Zitzler, Deb and Thiele [16] represent typical difficulties
faced while performing real life multi-objective optimization tasks. Each of the six prob-
lems consists in minimization of function:

T (x) =
(
f1(x1), f2(x)

)
(5.1)

where x = (x1, ..., xm), f1 is a function of the first decision variable x1 and f2 is defined
as:

f2 = g(x2, ..., xm) ·h
(
f1(x1),g(x2, ..., xm)

)
(5.2)

where g is a function of the remaining m−1 decision variables and the parameters of h
are the function values of f1 and g. Each of functions f1, g and h is separately defined
for every ZDT test problem. The number of decision variables m as well as their range
of permissible values varies. ZDT problems are defined in the following way [16]:

• Test function T1 has a convex Pareto frontier formed with g(x) = 1 and is defined
as follows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+9 ·
m∑

i=2

xi
m−1

h(f1,g) = 1−
√

f1
g

(5.3)

where m = 30 and xi ∈ 〈0;1〉.
• Test function T2 has a non-convex Pareto frontier formed with g(x) = 1:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+9 ·
m∑

i=2

xi
m−1

h(f1,g) = 1−
(

f1
g

)2

(5.4)

where m = 30 and xi ∈ 〈0;1〉.
• Test function T3 has a Pareto frontier composed of several non-continuous convex

parts formed with g(x) = 1. The function is defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+9 ·
m∑

i=2

xi
m−1

h(f1,g) = 1−
√

f1
g −

(
f1
g

)
· sin(10π f1)

(5.5)

where m = 30 and xi ∈ 〈0;1〉.
• Test function T4 has 219 local Pareto frontiers. It is well suited for testing algo-

rithm’s capability of dealing with multi-modality. The true Pareto frontier is formed
with g(x) = 1:

74 R. Dreżewski, K. Obrocki, and L. Siwik

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1) = x1

g(x2, ..., xm) = 1+10 · (m−1)+
m∑

i=2

(
x2

i −10 · cos(4πxi)
)

h(f1,g) = 1−
√

f1
g

(5.6)

where m = 10 and xi ∈ 〈0;1〉.
• Test functionT5 represents a problem with multiple deceptive local Pareto frontiers.

The best of them is formed with g(x)= 11 while the global Pareto frontier is formed
with g(x) = 10. The function requires binary representation of decision variables:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x1) = 1+u(x1)

g(x2, ..., xm) =
m∑

i=2
v
(
u(xi)

)

h(f1,g) = 1
f1

(5.7)

where m = 11, x1 ∈ {0,1}30 and x2, ..., xm ∈ {0,1}5. Function u(xi) gives the number
of ones in the bit vector xi and v

(
u(xi)

)
is defined as follows:

v
(
u(xi)

)
=

{
2+u(xi) , u(xi) < 5
1 , u(xi) = 5

(5.8)

• Test functionT6 introduces difficulties based on non-uniformity of the search space.
The density of solutions is decreasing while closing to the true Pareto frontier. The
frontier is formed with g(x) = 1:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x1) = 1− exp(−4x1) · sin6 (6πx1)

g(x2, ..., xm) = 1+
(

9 ·
m∑

i=2

xi
m−1

)0.25

h(f1,g) = 1
f1

(5.9)

where m = 10 and xi ∈ 〈0;1〉.

5.3.2 DTLZ Test Functions

The main limitation of ZDT test functions is the use of two criteria only. Such simpli-
fication facilitates graphical illustration of solutions and their verification against true
Pareto frontier localization. Scalable test problems proposed by Deb, Thiele, Laumanns
and Zitzler [2] represent M-criteria optimization tasks. Each of the DTLZ problems
consists in minimization of functions f1, ..., fm. Due to space limitations, we define here
only DTLZ1 problem, which will be used during presentation of the results of experi-
ments [2]:

• DTLZ1 test problem has a linear Pareto frontier located on a hyperplane, which
satisfies the condition

∑M
m=1 fm = 0.5, and 11k−1 local frontiers:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1
2 x1x2 · · · xM−1

(
1+g(xM)

)

f2(x) = 1
2 x1x2 · · · (1− xM−1)

(
1+g(xM)

)

...

fM−1(x) = 1
2 x1(1− x2)

(
1+g(xM)

)

fM(x) = 1
2 (1− x1)

(
1+g(xM)

)

(5.10)

5 Agent-Based Co-operative Co-evolutionary Algorithms 75

where xi ∈ 〈0;1〉 for i = 1,2, ...,n and n = M + k − 1 with suggested value of k =
|xM | = 5.

5.3.3 Methodology of the Experiments

In all compared algorithms (CCEA, CCNSGA2, CCSPEA2, NSGA2 and SPEA2) the
binary representation was used. One point crossover and bit inversion were used as
genetic operators. As the selection mechanism tournament selection with elitism was
used. The size of the population was set to 50. In order to minimize the differences
between algorithms the values of crucial (and specific to each algorithm) parameters
were obtained during preliminary experiments.

The results presented in this section include Pareto frontiers generated by the algo-
rithms. Also, in order to better compare the generated results, hypervolume metric (HV)
was used. Hypervolume metric [1] allows to estimate both the convergence to the true
Pareto frontier as well as distribution of solutions over the whole approximation of the
Pareto frontier. Hypervolume describes the area covered by solutions of obtained ap-
proximation of the Pareto frontier result set. For each found non-dominated solution,
hypercube is evaluated with respect to the fixed reference point. In order to evaluate hy-
pervolume ratio, value of hypervolume for obtained set is normalized with hypervolume
value computed for true Pareto frontier.

HV is defined as follows: HV = v
(⋃N

i=1 vi

)
, where vi is hypercube computed for i− th

found non-dominated solution, PF∗ represents obtained approximation of the Pareto
frontier and PF is the true Pareto frontier.

Values presented in the figures are averages from 15 runs of each algorithm against
each test problem. Due to space limitations only selected Pareto frontiers and values of
hypervolume metrics are presented.

5.3.4 Experiments with Multi-objective Test Problems

Due to using three criteria in DTLZ problems it is possible to present the non-dominated
solutions found by all compared algorithms. In the Figure 5.5 results from runs of all al-
gorithms against DTLZ1 function are presented. Its Pareto frontier was properly located
by all agent-based algorithms. It is worth to mention though, that the solutions obtained
by CCNSGA2-jAgE and CCSPEA2-jAgE algorithms were located on the edges of the
frontier rather than on its surface. Solutions found by NSGA2 and SPEA2 are all located
at local Pareto frontiers (which are localized far away from the global frontier).

ZDT test problems are designed to use two criteria in order to facilitate presentation
of the non-dominated solution sets in two dimensional space. In the Figures 5.6-5.8 we
present selected Pareto frontiers obtained during experiments.

Multiple runs of the algorithms against test problems make it possible to present av-
erage values of hypervolume metric during experiments. In the Figures 5.9-5.11 values
of hypervolume metric are presented for all six ZDT test problems.

In the case of ZDT1, ZDT2 and ZDT3 test problems the quality of non-dominated
sets obtained with the use of CCEA-jAgE, CCNSGA2-jAgE, NSGA2 and SPEA2 al-
gorithms is comparable. CCSPEA2-jAgE performs noticeably worse in this case. As it

76 R. Dreżewski, K. Obrocki, and L. Siwik

0
1

2
3

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

f1
f2

f3

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Pareto Front

(a) The whole search domain

0

0.5

1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1
f2

f3

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Pareto Front

(b) Magnification of the Pareto frontier

Fig. 5.5. Pareto frontiers obtained for DTLZ1 problem

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(b)

Fig. 5.6. Pareto frontiers obtained for ZDT1 (a) and ZDT2 (b) problems after 5000 fitness function
evaluations for all compared algorithms

can be seen in Figure 5.7b and fig. 5.10b agent-based co-evolutionary algorithms gen-
erate significantly better results for ZDT4 test problem than NSGA2 and SPEA2. On
the contrary, in the case of ZDT5, the latter two produce solutions wider spread and lo-
cated closer to the true Pareto frontier (see Figure 5.8a and Figure 5.11a). The quality of
the solutions generated for ZDT6 problems is comparable in the case of all algorithms,
though NSGA2 and SPEA2 show slightly faster convergence to the true Pareto frontier
(see Figure 5.8b and Figure 5.11b).

5.3.5 Experiments with Multi-objective Portfolio Optimization Problem

In experiments with multi-objective portfolio optimization problem complete solution is
represented as a p-dimensional vector. Each decision variable represents the percentage
participation of i-th (i ∈ 1 . . . p) share in the whole portfolio. The problem is described
with details in [9] (in that paper the agent-based predator-prey algorithm was used to
solve this problem). Below we will present only the most important issues.

5 Agent-Based Co-operative Co-evolutionary Algorithms 77

0 0.2 0.4 0.6 0.8 1
1

0.5

0

0.5

1

1.5

2

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(b)

Fig. 5.7. Pareto frontiers obtained for ZDT3 (a) and ZDT4 (b) problems after 5000 fitness function
evaluations for all compared algorithms

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f2

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2
Front Pareto

(b)

Fig. 5.8. Pareto frontiers obtained for ZDT5 (a) and ZDT6 (b) problems after 5000 fitness function
evaluations for all compared algorithms

During presented experiments Warsaw Stock Exchange quotations from 2003-01-01
until 2005-12-31 were taken into consideration. Simultaneously, the portfolio consists
of the three or seventeen stocks quoted on the Warsaw Stock Exchange. As the market
index WIG20 has been taken into consideration.

During experiments one-factor Sharpe model was used. This model was also used
in [9] (in that work also comparison to other models and explanation why this partic-
ular model was used during experiments may be found). The algorithm (based on the
one-factor Sharpe model) of computing the expected risk level and income expectation
related to the portfolio of p assets is presented in Algorithm 5.7.

The meanings of the symbols used in Algorithm 5.7 are as follows:

p is the number of assets in the portfolio;
n is the number of periods taken into consideration (the number of rates of return taken

to the model);
αi,βi are coefficients of the equations;

78 R. Dreżewski, K. Obrocki, and L. Siwik

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.9. Average values of hypervolume metric for ZDT1 (a) and ZDT2 (b) problems

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.10. Average values of hypervolume metric for ZDT3 (a) and ZDT4 (b) problems

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.11. Average values of hypervolume metric for ZDT5 (a) and ZDT6 (b) problems

5 Agent-Based Co-operative Co-evolutionary Algorithms 79

Algorithm 5.7. The algorithm (based on the one-factor Sharpe model) of comput-
ing the expected risk level and income expectation

Compute the arithmetic means on the basis of rate of returns;
Compute the value of α coefficient αi = Ri −βiRm;

Compute the value of β coefficient βi =

∑n
t=1(Rit−Ri)(Rmt−Rm)
∑n

t=1(Rmt−Rm)2 ;

Compute the expected rate of return of asset i Ri = αi +βiRm+ ei;

Compute the variance of random index sei
2 =

∑n
t=1(Rit−αi−βiRm)2

n−1 ;

Compute the variance of market index sm
2 =

∑n
t=1(Rmt−Rm)2

n−1 ;
Compute the risk level of the investing portfolio βp =

∑p
i=1(ωiβi);

sep
2 =

∑p
i=1(ω2

i sei
2);

risk = β2
psm

2+ sep
2;

Compute the portfolio rate of return Rp =
∑p

i=1(ωiRi);

ωi is percentage participation of i-th asset in the portfolio;
ei is random component of the equation;
Rit is the rate of return in the period t;
Rmt is the rate of return of market index in period t;
Rm is the rate of return of market index;
Ri is the rate of return of the i-th asset;
Rp is the rate of return of the portfolio;
si

2 is the variance of the i-th asset;
sei

2 is the variance of the random index of the i-th asset;
sep

2 is the variance of the portfolio;

Ri is arithmetic mean of rate of return of the i-th asset;
Rm is arithmetic mean of rate of return of market index;

(a) (b)

Fig. 5.12. The model Pareto frontier obtained using utter review method for 3 (a) and 17 (b)
stocks set

80 R. Dreżewski, K. Obrocki, and L. Siwik

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCEA jAgE

(a)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.13. Pareto frontiers obtained for 3 stocks problem after 2500 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

NSGA2

(a)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.14. Pareto frontiers obtained for 3 stocks problem after 2500 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCEA jAgE

(a)

0 100 200 300 400 500
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.15. Pareto frontiers obtained for 3 stocks problem after 5000 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

The goal of the optimization is to maximize the portfolio rate of return and minimize
the portfolio risk level. The task consists in determining values of decision variables
ω1 . . .ωp forming the vector Ω = [ω1, . . . ,ωp]T , where 0% ≤ ωi ≤ 100% and

∑p
i=1 ωi =

100% and i= 1 . . . p and which is the subject of minimization with respect of two criteria
F = [Rp(Ω) ∗ (−1),risk(Ω)]T .

Model Pareto frontiers for two cases (portfolios consisting of three and seventeen
stocks set), which are the subject of analysis in the following section, are presented in
Figure 5.12.

5 Agent-Based Co-operative Co-evolutionary Algorithms 81

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

NSGA2

(a)

0 100 200 300 400 500 600
500

0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.16. Pareto frontiers obtained for 3 stocks problem after 5000 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

0 10 20 30 40 50 60
0

200

400

600

800

1000

Risk

Pr
of
it

CCEA jAgE

(a)

0 20 40 60 80
200

0

200

400

600

800

1000

1200

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Risk
Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.17. Pareto frontiers obtained for 17 stocks problem after 25000 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

0 100 200 300 400 500 600 700

0

1000

2000

3000

Risk

Pr
of
it

NSGA2

(a)

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.18. Pareto frontiers obtained for 17 stocks problem after 25000 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

The Pareto frontiers obtained for 3 stocks problem after 2500 fitness function eval-
uations in typical experiment are presented in Figures 5.13 and 5.14. Pareto frontiers
obtained after 5000 fitness function evaluations are shown in Figures 5.15 and 5.16.

The Figure 5.21a shows the average values of HV metric from 15 experiments for
all compared algorithms. In this case (3 stocks) results are quite comparable for all
implemented algorithms. Slightly worse results were obtained with the use of agent-
based versions of SPEA2 and NSGA2 algorithms.

The Pareto frontiers obtained for 17 stocks problem after 25000 fitness function eval-
uations in typical experiment are presented in Figures 5.17 and 5.18. Pareto frontiers
obtained after 50000 fitness function evaluations are shown in Figures 5.19 and 5.20.

82 R. Dreżewski, K. Obrocki, and L. Siwik

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Risk

Pr
of
it

CCEA jAgE

(a)

0 20 40 60 80
200

0

200

400

600

800

1000

1200

Risk

Pr
of
it

CCNSGA2 jAgE

(b)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Risk

Pr
of
it

CCSPEA2 jAgE

(c)

Fig. 5.19. Pareto frontiers obtained for 17 stocks problem after 50000 fitness function evaluations
for CCEA (a), CCNSGA2 (b), and CCSPEA2 (c)

0 200 400 600 800

0

1000

2000

3000

Risk

Pr
of
it

NSGA2

(a)

0 200 400 600 800
0

500

1000

1500

2000

2500

3000

3500

Risk

Pr
of
it

SPEA2

(b)

Fig. 5.20. Pareto frontiers obtained for 17 stocks problem after 50000 fitness function evaluations
for NSGA2 (a) and SPEA2 (b)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(a)

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Function evaluations

H
yp
er
vo
lu
m
e
m
et
ri
c

CCEA jAgE
CCNSGA2 jAgE
CCSPEA2 jAgE
NSGA2
SPEA2

(b)

Fig. 5.21. Values of HV metrics for 3 (a) and 17 (b) stocks problems

In the Figure 5.21b the average values of HV metric are presented (these are also
average values from 15 experiments). In the case of the problem with 17 stocks the
best results were obtained with the use of NSGA2 and SPEA2. When we look at the
presented sample Pareto frontiers the CCEA-jAgE algorithm formed a quite comparable
frontier—but the average value of HV metric was worse than in the case of NSGA2 and
SPEA2. Agent-based versions of SPEA2 and NSGA2 decisively obtained worse results
than other algorithms in this case.

5 Agent-Based Co-operative Co-evolutionary Algorithms 83

5.4 Summary and Conclusions

In this chapter we have presented agent-based co-operative co-evolutionary algorithm
for solving multi-objective problems. Also four other algorithms were implemented
within the agent-based system: NSGA2, SPEA2 and agent-based co-operative co-
evolutionary versions of these two state-of-the-art algorithms. The algorithms were ver-
ified with the use of standard multi-objective test problems—ZDT [16] and DTLZ [2]
functions, and the multi-objective problem of constructing optimal portfolio.

In the case of ZDT and DTZL problems the winner was CCEA-jAgE algorithm—
agent-based version of co-operative co-evolutionary algorithm. In the case of optimal
portfolio problem the results were mixed. In the case of portfolio consisted of three
stocks the results of all algorithms were rather comparable—only agent-based versions
of SPEA2 and NSGA2 algorithms obtained slightly worse results. In the case of seven-
teen stocks decisive winners were SPEA2 and NSGA2—especially when the values of
HV metric were taken into consideration. Presented results lead to the conclusion that
certainly more research is needed in the case of multi-objective agent-based techniques.
But also it can be said that the results presented here (and in [5]) show that neither clas-
sical nor agent-based techniques can alone obtain good quality results for all kinds of
multi-objective problems. We must carefully choose the right technique on the basis of
the problem characteristics because there are no universal solutions. The algorithm that
can obtain very good solutions for all types of multi-objective problems simply does
not exist and we think that results presented here and in other our papers show this fact
clearly.

When the future work is taken into consideration we can say that certainly presented
agent-based algorithms will be further developed and tested on other multi-objective
problems. Another direction of the research is (mentioned in section 5.1) the other way
of merging multi-agent and evolutionary paradigms—the way in which agents are not
used as the management layer but as the individuals that live, evolve and co-operate or
compete with each other. Beside the financial problems which we have already used in
our research, like investment strategies generation or multi-objective portfolio optimiza-
tion, we are also planning to use agent-based co-evolutionary approach in modeling and
simulation of economical and social phenomena.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
Chichester (2001)

2. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-
objective optimization. Tech. rep., Computer Engineering and Networks Laboratory, Swiss
Federal Institute of Technology (2001)

3. Dreżewski, R.: A model of co-evolution in multi-agent system. In: Mařík, V., Müller, J.P.,
Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 314–323. Springer,
Heidelberg (2003)

4. Dreżewski, R.: Co-evolutionary multi-agent system with speciation and resource sharing
mechanisms. Computing and Informatics 25(4), 305–331 (2006)

84 R. Dreżewski, K. Obrocki, and L. Siwik

5. Dreżewski, R., Obrocki, K.: Co-operative co-evolutionary approach to multi-objective op-
timization. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009.
LNCS (LNAI), vol. 5572, pp. 277–284. Springer, Heidelberg (2009)

6. Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system with sexual selection mecha-
nism for multi-objective optimization. In: Proceedings of the IEEE World Congress on Com-
putational Intelligence (WCCI 2006). IEEE press, Los Alamitos (2006a)

7. Dreżewski, R., Siwik, L.: Multi-objective optimization using co-evolutionary multi-agent
system with host-parasite mechanism. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 871–878. Springer, Heidelberg (2006b)

8. Dreżewski, R., Siwik, L.: Agent-based co-operative co-evolutionary algorithm for multi-
objective optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 388–397. Springer, Heidelberg (2008a)

9. Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio optimization. In:
Brabazon, A., O’Neill, M. (eds.) Natural Computation in Computational Finance, pp. 271–
299. Springer, Heidelberg (2008b)

10. Dreżewski, R., Sepielak, J., Siwik, L.: Classical and agent-based evolutionary algorithms for
investment strategies generation. In: Brabazon, A., O’Neill, M. (eds.) Natural Computation
in Computational Finance, vol. 2. Springer, Heidelberg (2009)

11. Iorio, A., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-
dominated sorting. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.G., Burke, E.K., Darwen,
P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O., Lanzi, P.L., Spector,
L., Tettamanzi, A., Thierens, D., Tyrrell, A.M. (eds.) GECCO 2004. LNCS, vol. 3102, pp.
537–548. Springer, Heidelberg (2004)

12. jAgE—Agent-Based Evolution Platform (2009), http://age.iisg.agh.edu.pl
13. Keerativuttitumrong, N., Chaiyaratana, N., Varavithya, V.: Multi-objective co-operative co-

evolutionary genetic algorithm. In: Merelo, J.J., Adamidis, P., Beyer, H.G. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 288–297. Springer, Heidelberg (2002)

14. Paredis, J.: Coevolutionary algorithms. In: Bäck, T., Fogel, D., Michalewicz, Z. (eds.)
Handbook of Evolutionary Computation, (suppl.1). IOP Publishing/Oxford University Press
(1998)

15. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applica-
tions. PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Em-
pirical Results. Evolutionary Computation 8(2), 173–195 (2000)

17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary
algorithm. Tech. Rep. TIK-Report 103, Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (2001)

http://age.iisg.agh.edu.pl

6

Inferring Trader’s Behavior from Prices

Louis Charbonneau1 and Nawwaf Kharma2

1 Computer Science Department, Concordia University, Montreal, Canada
louischa@jmsb.concordia.ca

2 Electrical and Computer Engineering Department, Concordia University, Montreal, Canada
kharma@ece.concordia.ca

Summary. We propose a representation of the stock market as a group of rule-based trading
agents, with the agents evolved using past prices. We encode each rule-based agent as a genome,
and then describe how a steady-state genetic algorithm can evolve a group of these genomes (i.e.
an inverted market) using past stock prices. This market is then used to generate forecasts of
future stock prices, which are compared to actual future stock prices. We show how our method
outperforms standard financial time-series forecasting models, such as ARIMA and Lognormal,
on actual stock price data taken from real-world archives.

6.1 Introduction

The standard financial economics models of markets usually take the form of linear
regressions, in which a key market variable is “explained” by independent variables.
For instance, the Capital Asset Pricing Model (CAPM) posits that the rate of return
on a stock, rs depends on that of the general market, rm, through the relationship rs =

α+ β(rm − r f)+ ε, where r f is the risk-free rate [13]. Regression-based models have
the advantage of being parsimonious, and their parameters can be inferred from market
data. Their disadvantage lies in the remoteness of the specification from how markets
work in reality, which generally results in a low statistical explanatory power.

In reality, financial market prices are created by the interaction between traders and
market-makers. In organized exchanges, market-makers are the entities that take the
counterparty to each order from the public, and have the power to set prices to the
level they choose. For instance, if one wants to buy 100 shares of company XYZ as a
member of the public, one will first look at the market-maker’s quote - on an broker’s
website, for instance. If the quote is satisfactory, then a transaction will be recorded at
the quoted price and the shares bought will come from the market-maker’s inventory.
The market-maker may then update its quote after the transaction for the next customer.

If we knew what rules traders from the public use to submit their orders and what
rules market-makers follow to update their quoted prices, we would be in a better po-
sition to explain the dynamics of market prices than by using the more abstract market
models: we would simply need to observe the initial conditions, and forward-simulate
trading and market-making for as many periods as we please to get forecasts, assuming
that the rules of the market participants remain reasonably stable during the simulation

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 85–105.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

86 L. Charbonneau and N. Kharma

period. We would obtain a high statistical explanatory power because of the similarity
between our model’s structure and the reality of the market.

So the question is, how much do we know about the behaviour rules of market par-
ticipants? The behaviour of the market-maker is addressed in the literature of market
micro-structure [12, 10]; the variables that market-makers consider in order to adjust
their quotes are relatively well-defined and it is a simple matter to set up a stylized
behaviour model. The difficulty lies on the side of the public traders: there are a huge
variety of patterns of behaviour known as “trading rules” that public traders can poten-
tially follow - assuming that traders follow a principled approach. Since there is a great
variety of trading rules and no rule is clearly the best, traders cannot be expected to
follow the same rules. For instance, the groups of traders on stock ABC may follow
different rules than those trading stock DEF. It may be that traders on ABC are largely
institutional and therefore conservative in their approach; traders on DEF may be hedge
funds, and therefore more adventurous. Our main hypothesis is that the difference be-
tween the price time-series of ABC and DEF is due to the different rules that traders use
on these stocks. Market-makers, on the other hand, follow the same pattern of behavior
for both stocks.

This chapter explains how to use a genetic algorithm to infer the rules that traders use
on a given stock by inferring these rules from past stock prices, if we assume suitable
restrictions on the nature of these rules as well as on the set of trader’s states. For
instance, we assume memoryless traders, with no budget constraints – because we try to
capture wide behaviour patterns in the market, not individual agent histories. A genetic
algorithm is a parallel search technique in which a population of possible solutions
to a problem evolves through many generations, the survival of each solution from a
generation to the next depending on its quality, or “fitness”. Eventually, after many
generations, the best solutions would have been found. In this application, we do not
know what rules traders use, so we create a population of randomly selected rule sets.
These rule sets are used to simulate stock prices in the presence of an artificial market-
maker, and the closeness of the resulting time-series of simulated prices compared to
the real historical prices is evaluated for each rule set and constitutes its fitness. The
final section of the chapter examines the forecasting power of the rule sets that were
inferred by evolution, and conclusions are drawn.

6.2 An Artificial Market Model

6.2.1 Price Discretization and Trading Rules

We first define the empirical cumulative distribution of 1-day continuously compounded
returns. An empirical cumulative distribution is obtained by sorting returns taken from
a sample of historical observations, assuming that each sample return is equiprobable.
Formally, if we have a sample of n return observations x1, x2, x3, . . . , xn, the empirical
cumulative distribution ̂Fn [x] is defined as the number of observations that are less
than or equal to x, divided by the size of the sample n. If the sample is sorted such that
x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn , then we have:

̂Fn [x] =
1
n
·# {i; 1 ≤ i ≤ n; xi ≤ x}

6 Inferring Trader’s Behavior from Prices 87

where the symbol # denotes the cardinality of the set. This empirical distribution is used
to extract empirical return octiles, which are the returns for which ̂Fn [x] = 1

8 , ̂Fn [x] = 2
8 ,

etc. We refer to these octiles as r(o1), r(o2), . . .r(o8). Due to the nature of continuously
compounded returns, and the fact that in weakly stationary markets the median return
is about zero, it follows that return octiles for n days can be approximated by a linear
scaling of the 1-day return octiles n · r(o1), n · r(o2), . . .n · r(o8).

Once the octiles are obtained, each return is coded in terms of which octile it belongs
to. Denoting the present moment as time t, we write the n-days return from i− n days
back in the past to i days back as rt−i−n,t−i. We denote the coded return in term of octiles

as
〈
rt−i−n,t−i

〉n

8
∈ {1, 2, . . . , 8} ,∀n,∀i.

A trading rule is defined as a IF–THEN construct based on a certain number of past
stock return octiles relative to the current stock return octile. The choice of octiles as op-
posed to any other percentile is arbitrary; however, octiles offer an intuitively acceptable
compromise between data granularity and rule specificity. Since continuous returns are
centered around zero, choosing octiles gives us four different grades of down markets –
that we could paraphrase as mildly down, moderately down but less than average, down
and more than average, and severely down – and four different grades of up markets,
which is probably sufficient for most practical purposes. When the logical expression
in the IF part evaluates to TRUE, a market position is established for a specific amount.
There are two kinds of market positions: a “long” (buy) or a “short” (sale). A market
is defined as a population of trading rules. At any given point, only a certain subset of
rules will fire under a given series of past prices, generating a market demand that varies
through time.

We now turn to a general representation for trading rules, that subsumes fundamental
as well as technical schemes.

We define the rule lookback H as the maximum number of past periods a rule con-
siders in order to make its decision. A variable-length generalized trading rule is a
quadruple (P, vboundary, vthresholds, vconditions) containing the following elements:

• A symbol P taken from the set {B,S }, which determines whether a positive identifi-
cation of the rule’s condition results in a buy (B) or a sell (S) order.

• A variable-length vector vboundary of integers taken between 1 and H − 1 (inclu-
sively), selected without replacement. These numbers define the boundary points
for return calculations. This vector of integers needs not be sorted in the genome
(since the application of genetic operators will scramble their order), but is sorted
when interpreted. For instance, if H = 10 and the numbers selected are 8, 2 and 5,
this means that the rule will look at returns from t− 2 to present (a 2-days return),
t− 5 to t− 2 (a 3-days return), t− 8 to t− 5 (a 3-days return) and t− 10 to t− 8 (a
2-days return). If the vector has k elements, then k+1 periods are implicitly defined.

• A vector vthresholds of 2(k+1) integers tα, tβ ∈ {1, 2, . . .8}, one pair for each interval
defined implicitly by vector vboundary. Again, it is not necessary to keep the pairs
sorted.

• A vector vconditions of k+1 symbols taken with replacement from the set {a, b, c, d}.
These define four possible relationships between the returns on the intervals defined
in vboundary and the corresponding threshold numbers tα and tβ from vthresholds. For
instance, if a given interval is from t− i−n to t− i:

88 L. Charbonneau and N. Kharma

1.
〈
rt−i−n,t−i

〉n

8
≤ tα, (denoted by the symbol “a”)

2. tα ≤
〈
rt−i−n,t−i

〉n

8
, (denoted by the symbol “b”)

3. tα ≤
〈
rt−i−n,t−i

〉n

8
≤ tβ, (denoted by the symbol “c”)

4. (
〈
rt−i−n,t−i

〉n

8
≤ tα)∨ (tβ ≤

〈
rt−i−n,t−i

〉n

8
), (denoted by the symbol “d”)

Note that relationships “a” or “b” require the definition of only one threshold number,
and in this case, the rule simply ignores the second number tβ from the pair. This second
number is kept in the chromosome and may become expressed in later generations if
transmitted to the offspring. “Don’t care” conditions may occur in multiple ways in this
representation: for instance, with relationship “a”, when tα = 8; with relationship “b”,
when tα = 1; with relationship “c”, when tα = 1 and tβ = 8; and with relationship “d”,
when tα = tβ.

We can obtain a more parsimonious representation for simple trading rules by setting
a global vboundary vector for the whole population of rules. This may be a good idea,
since it allows us to impose as a constraint on the genetic algorithm coming from what
is known about the behaviour of real traders, namely that more weight is usually given
to more recent events. This restricts the search space to regions that we know are more
likely to contain reasonable solutions.

This convention allows us to define rule specificity in the following obvious fashion:
if the global vboundary has k elements, the specificity S of a fixed-length generalized rule
is defined as 9(k+1) minus the sum of the (k+1) integers defined in the vconditions and
the vthreshold sets, where the integers to sum are:

tα, if condition = “a”

8− tα, if condition = “b”

max(tα, tβ)−min(tα, tβ)+1, if condition = “c”

(min(tα, tβ)−1)+ (8−max(tα, tβ)), if condition = “d”

This is simply the sum of the “off” octiles for each condition in the rule. Since we have a
fixed-length representation, the maximum specificity of a rule is 9(k+1) (a rule that can
never be satisfied), and the minimum specificity is 0 (a rule that is always satisfied). We
make the amount bet on each trade depend proportionally on specificity: for instance,
as $100 S

9(k+1) . That way, a rule that is hard to satisfy will bet more money when it
fires, and a rule that gets satisfied more often will bet less every time it is satisfied.
This setup ensures that populations do not get dominated by sets of looser rules, which
provide little forecasting power. Setting the amount of money bet based on specificity
also reflects the behaviour of real traders.

6.2.2 Calibrating an Empirical Market-Maker

The market-maker posts new prices based on the state of its inventory. This process
can be very complex and may require sophisticated artificial intelligence; what we want
here is to capture the broad aspects of this behaviour. So we assume that the only thing
that matters to market-makers is to minimize their inventory. Large inventories (long

6 Inferring Trader’s Behavior from Prices 89

or short) create a speculative position in the stock, almost certainly contrary to the
direction of where the smart money is. Indeed, one of the main observations of the
literature on market-making is that asymmetric information is one of the greatest risk
to the business. Indeed, traders having privileged information will trade early against
the market-makers; therefore, any accumulation of inventory should prompt a change
in price to neutralize the direction of the change. The disadvantage coming from asym-
metric information should thus be combated by the “price adjustment function”, which
is based on the following observations:

• if the value of the market-maker’s inventory is high (an indication that stocks were
recently bought), then it indicates that the current price is too high: too many trading
agents want to sell. The function should therefore return a lower price, which will
discourage agents from selling further.

• if the value of the market-maker’s inventory is low – meaning in this case that it is a
large short position (an indication that stocks were recently sold), then it indicates
that the current price is too low: too many trading agents want to buy. The function
should therefore return a higher price, which will discourage agents from buying
further.

The only remaining problem is to determine what should be considered a low and a
high inventory. To do that, we create an empirical distribution of inventory values that
is calibrated to the price time-series and the market under consideration as follows:

• a historical price time-series of at least 100 observations is selected.
• we set the H first prices from the time-series as the current price stack.
• all the “IF” conditions of the current market are evaluated on the H prices in the

stack, causing a subset of rules from the population to fire.
• firing rules create orders that are put in the book and immediately submitted to the

market-maker. These orders constitute a market demand for the current moment in
time.

• the market-maker fills the orders at the current price and computes his new stock
inventory.

• the value of the stock inventory of the day is stored. Initially, the inventory is zero.
• the time counter is increased; the market-maker does not push a new price on the

stack, but the next historical price is pushed onto the stack.

The behavioural rule of the market-maker is specified by matching the two empirical
distributions (price returns and inventory values) octile by octile. As inventory octiles
go from 1 to 8, corresponding price octiles go from 8 to 1. For any probability p ∈ (0,1),
the percentile to percentile matching condition can be written as:

1−̂Gn
[
y
]
=̂Fn [x],

and a behavioural response function that maps inventory levels to price changes, ex-
pressed as a continuously compounded rate x, is given by:

x =
̂

F−1
n [1−̂Gn

[
y
]
]

90 L. Charbonneau and N. Kharma

At this stage, we substitute the empirical distribution with a parameterized form, such
as a logistic distribution:

F(α,β) =
1

1+ e(− x−α
β)

There are many ways to do so; we can optimize the parameters α and β by using steepest
descent, while minimizing the Kolmogorov-Smirnov statistic, given by:

D =max
i

Di =max
i

[∣∣∣F(α,β)−̂Fn [x]
∣∣∣
]

An interesting fact about our calibration procedure is that genomes depend on the nature
of the market-maker to affect prices via forward simulation. Not unlike actual biologi-
cal genes, our trading rules can be traced to a position in the genome in abstracto, but
they do not exist independently when the genome is activated within a particular envi-
ronment. Depending on the environment (in this case the past price history), this or that
different gene may or may not be expressed (or responded to by the price-adjustment
mechanism) as much as another. Gene dominance is a phenomenon emerging from the
interaction between genome and current state of the environment.

6.3 The Genetic Algorithm

We want to find what is the best population of trading rules that will generate market
prices that are closest to a given market price history. Once a population of rules is
evolved and generates prices that are close to a given historical interval on a training
sample, we consider this population as a reconstruction of the underlying dynamic of
the market. Hence, we forward simulate the market, generating a forecast, which may
be evaluated against actual market performance. We divide a historical sample of data
into two intervals:

1. the pre-processing interval, used to construct the empirical distributions ̂Fn [x] and
̂Gn

[
y
]
. ̂Fn [x] is pre-computed and stored, whereas ̂Gn

[
y
]

is computed at each
genome evaluation. In our implementation, we use a pre-processing sample of 100
observations, which is reasonably large.

2. the training interval, composed of the data that comes next to the pre-processing
sample, is used by the inner GA to evaluate the fitness of a given genome. The
length of this interval can be selected at will. The trade-off is that the longer the in-
terval, the more lengthy the resulting genome, and the more processing time. In the
experiments described in the next section, a training sample length of 50 weekly ob-
servations has been used, for forecasts of up to one year. Judging from the amount
of time it takes to evolve a market on a standard machine, it would be quite imprac-
tical to attempt to train the GA on much longer intervals.

When an acceptably fit individual has been found, the individual can be used to simulate
a market run beyond the training interval. The newly generated prices can be used as
a forecast. If the model is used in a business setting to generate forecasts, the training
interval ends at the present day and a forecast can be made for any desired number of

6 Inferring Trader’s Behavior from Prices 91

future periods. The forecast interval is composed of the prices immediately following
the training sample. This forecast interval contains historical data that the model has
never seen during training via evolution. We will evaluate the forecast performance on
these prices.

Forecast accuracy is expected to get worse, as the forecast is extended further into
the future. It makes sense to evaluate forecasts over a length that is commensurate with
the training interval: it would indeed be surprising if a model trained using a small
historical sample succeeded in generating reliable forecasts over a much longer period
into the future.

6.3.1 Genome Structure

Since our rules are composed of tuples, they can be easily expressed as a variable-length
or a fixed length representation. In practice, variable-length rules are implemented as
tuples having a specific maximum length, which keeps memory usage under reasonable
bounds. Rules are collected into a variable-length set that constitutes a genome, the
unity of selection. The data structure used for a genome is a two-dimensional array
of alleles, composed of symbols taken from the set {1, 2, . . . , 8} . We do not need the
symbols {B, S } (“B” is for a buy condition and “S”for a sell); we interpret the second
allele as meaning a “B” if the allele is between 1 and 4, and a “S” otherwise.

To implement a variable number of rules per genome within a data structure of fixed
dimensions, we interpret the very first allele of every line as an “on/off” expression.
Genomes therefore carry junk genetic baggage that play no role in the current gen-
eration, but may be reinterpreted and play an useful role in future generations if the
expression allele flips due to a mutation or a crossover.

We have already mentioned the important parameter H that we call “rule lookback”,
which controls how far in the past the rules of a genome can look to take their decision.
This should intuitively set to match the number of lags that are significant in the data
correlogram and autocorrelogram.

6.3.2 Genetic Operators and Parent Selection

We evolve populations of genomes (which are themselves sets of rules) within an over-
lapping steady-state genetic algorithm. Each genome is a two-dimensional array of di-
mensions N ×M. N represents the maximum number of rules in a genome and M is

Table 6.1. Genetic algorithm parameters for a typical run

Genetic parameter value
elitism proportion 40%

population size 200 (constant)
maximum number of rules (N) 70

crossover type one-point
mutation type uniform, p = 10%

parent selection 3-way tournament
termination criterion number of generations (500000)

92 L. Charbonneau and N. Kharma

the maximum rule representation length, which is simply defined as 4H + 5 to allow
for sufficient space to represent even the longest rules. Parents are selected by tourna-
ments with a window size of 3, and crossover is of the single point variety. Mutation is
uniform.

To choose acceptable values for the simulation parameters, we use a simple static
parameter strategy combined with a grid search over the space of the two most prob-
lematic model-specific parameters.

6.3.3 Fitness Evaluation and Objective Function

The objective function is bipartite; it is calculated for each genome as a weighted sum
of two criteria:

1. a statistical closeness criteria that compares the price path generated by a genome
to the prices in the training sample, namely the sum of squared errors between
the price forecast given by market forward simulation and the actual price training
sample.

2. a parsimony criterion, the effective genome length, defined as the number of “on”
rules in the current genome. Recall that this varies from one individual to the other,
as a specific allele on every line of the code matrix defines whether the correspond-
ing rule is active or not.

Formally, the objective function of a genome is:

Ob j(genome) = w(S S E)+ (1−w)(len(genome))

where the parameter w ∈ [0,1] is the relative importance of the error minimization
part of the objective function. From this definition, it is plain that the higher the
objective function, the lower the fitness of an individual.

The objective function of an individual genome is computed with the following steps:

1. the empirical market-maker calibration process is performed for the market defined
by the genome, using the pre-processing interval.

2. the market defined by the genome is forward-simulated to generate as many prices
as there are in the training interval. The initial price conditions for this forward
simulation are the H last prices from the pre-processing interval.

3. These forward simulated prices are compared to the actual training data to compute
the sum of squared errors over the training interval. Denote the actual prices as
a1, a2, a3, . . . , an , and the simulated prices as s1, s2, s3, . . . , sn , we have:

S S E =
n∑

i

(si −ai)2

4. The length of the genome is calculated. At this point, we have all the required
elements to compute the objective function of the individual.

6 Inferring Trader’s Behavior from Prices 93

6.4 Model Evaluation

6.4.1 Experimental Data Selection

It would be a waste of time to apply the model to time-series that exhibit a clear trend.
At the cost of much computation, the end result would be a forecast that would be very
similar to that obtained by fitting a linear trend line to the same data. More importantly,
testing a nonlinear model on linearly trending data would tend to over-estimate the
true performance of the nonlinear model. It is indeed an easy problem to infer a linear
tendency in data.

So the stocks we take to evaluate the model on are the components of the S&P500
that are stationary. Formally, a stochastic process yt (indexed by time t) is weakly sta-
tionary [8] if:

1. E
[
yt

]
is independent of t.

2. Var
[
yt

]
is independent of t, and

3. Cov
[
yt, ys

]
is a finite function of |t− s|, but not of only t or s.

To test for stationarity, we have used the Dickey–Fuller test [5]. Of all the components
of the S&P500 index over the 2004-2006 period, 276 were found to be stationary. 200
stocks from that sample were used in our experiments.3

6.4.2 Parameter Optimization

Any evolutionary computation model has a wealth of parameters. As shown in Table
6.1, we have chosen most general GA parameters a priori (with some degree of exper-
imentation in the course of developing the software). This is justified by the literature,
as it has been shown by trials on test suites that GAs are quite robust with respect to
their parameter settings [7].

However, it is apparent from our discussion that the value of parameter w in the
objective function (the relative importance of the SSE, which is model-specific) has
a potentially important effect on the nature of the solution that is found at the end of
the evolution process: no a priori choice is obvious in this case. Another problematic

3 The ticker symbols of these stocks are ASH, AIZ, ADSK, ADP, AN, AZO, AVY, AVP, BHI,
BLL, BK, BCR, BRL, BAX, BBT, BBBY, BBY, BIIB, BJS, BDK, HRB, BMY, BRCM, BNI,
CHRW, CA, CAM, COF, CAH, CCL, CAT, CBG ,CNP, CTX, CHK, CVX, CIEN, CI, CTAS,
CC, CSCO, CIT, C, CTXS, CCU, CLX, COH, CCE, CMA, CBH, CSC, CPWR, CAG, COP,
CNX, ED, STZ, CEG, CBE, GLW, COST, CFC, CVH, DHI, DRI, DE, DVN, DDS, D, RRD,
DOW, DTE, DD, ETFC, EMN, EK, ETN, EBAY, EIX, EP, ERTS, EDS, EMC, ESV, EOG,
EFX, EL, ESRX, FDO, FNM, FRE, FII, FDX, FIS, FITB, FHN, FRX, FO, GPS, GE, GM,
GPC, GENZ, GR, GT, GOOG, GWW, HAL, HOG, HAR, HAS, HNZ, HPC, HES, HD, HON,
HSP, HBAN, IACI, ITW, RX, IR, TEG, INTC, IBM, IFF, IP, IPG, ITT, JBL, JEC, JNS, JDSU,
JNJ, JCI, JNY, KBH, KMB, KG, KLAC, LLL, LH, LM, LEG, LEH, LEN, LUK, LXK, LLY,
LIZ, LOW, LSI, MMC, MAS, MAT, MBI, MKC, MHP, MCK, MWV, MHS, MDT, MDP,
MTG, MCHP, MU, MSFT, MIL, MOLX, TAP, MNST, MUR, MYL, NBR, NCC, NOV, NSM,
NTAP, NEM, NKE, NI, NE, NBL, NSC, NOVL, NVLS, NYX, PLL, PH, PAYX, BTU, PKI,
PFE, PNW, PBI, PCL, PPG, PGR, PRU and PHM.

94 L. Charbonneau and N. Kharma

Fig. 6.1. Average SSE of forecast errors for 20 stationary stocks

model-specific parameter is the rule lookback H, which determines how far back in
the past rules look to make their decisions, and represents the maximum memory size
of traders. Ideally, all GA and model parameters should be selected as to maximize
forecast performance of the forward simulated price on the forecast interval, but in
practice this is too computationally expensive to do. We performed instead a grid search
over a range of plausible values for these two problematic parameters: rule lookback
and relative importance of SSE. Figure 6.1 shows a “fitness landscape” for these two
parameters. Each point on the surface represents the average SSE of forecast errors for
20 stationary stocks 4 over the forecast interval of 50 weekly observations from 2006,
produced by allocating the value of the lookback parameter H to the range {3, 4, . . . , 9}
and of the SSE weight parameter w to the range {0.91, 0.92, . . . , 0.99}.

All the other parameters were set to the values shown in Table 6.1. The SSE of
forecasts is minimized by selecting H = 6 (each rule looks back 6 periods in the past)
and w = 93% (weight SSE criterion in the objective function as 93% of the total). The
graph has the shape of a bowl, but is quite noisy, a fact that is not surprising considering
the stochastic nature of financial prices. As a matter of fact, the point we have selected
is not the lowest on figure 6.1: H = 9 and w = 92% is. However, since this better point
is in a corner, and it beats the selected point by only a small margin, it was rejected.
Moreover, model evaluations for H = 9 are twice as expensive in terms of time (19
hours) as for H = 6 (9 hours). An important detail is that the 20 stocks selected for this

4 These stocks are MMM, ABT, ADBE, AMD, AET, ACS, AFL, A, AA, ALTR, AMZN, AIG,
AMGN, APC, ADI, BUD, APA, AAPL, AMAT and ADM.

6 Inferring Trader’s Behavior from Prices 95

graph were chosen at random from the stationary sample, and were not re-used in any
future experiment, in order to eliminate any data snooping bias.

Optimizing parameter values using the fitness landscape is not the only way to pro-
ceed; another approach to this problem is to set up a nested evolution strategy, such that
the top-level GA evolves the parameters of the lower-level GA. De Jong [4] cogently
remarks that this leaves open the question of which parameters are to be selected for
the top-level GA, opening the door to infinite regression. Nested evolution therefore
does not solve the problem of parameter selection, but simply transfers to a higher level,
where parameter choice is even less intuitive. Apart from the difficulty and computa-
tional cost of a nested scheme, we feel that due to the large amount of noise present in
financial data, the parameter’s “sweet spot” is probably going to be quite large.

In what follows, we will apply the fixed-length generalized trading rule version of
our model for different experiments using the parameter values we just found.

6.5 Forecast Quality Evaluation

Our GA model, apart from its theoretical interest, ultimately results in a forecast. From
a practical point of view, one may want to know whether it improves upon other stan-
dard methods. There has been a very wide variety of forecasting methods that have been
tried, using varied angles of attack. For instance, studies have proposed using attractor
reconstruction from chaos theory, or Fourier analysis, wavelet analysis, Hilbert trans-
forms, artificial neural networks, genetic programming, kernels, evolutionary strategies
and many other approaches, with various degrees of success. There is even a mythical
folklore of forecasting; for instance, several popular books report that chaos theory has
been applied to financial forecasting with great success, but the precise way to do so is
of course not divulged [1].

We chose not to compare our method to any such complex models, since they are
often ill-defined (because of the strong incentive to publish only the unsuccessful mod-
els and keep the successful ones under wraps for profitable use). Moreover, in many
cases their implementation is non trivial, because of the fair amount of tuning required.
Skeptics could always claim that we compare out method to a straw man. So we have
chosen to compare our method to two very simple and accepted methods of financial
forecasting: a linear trend based on the lognormal random walk model, and ARIMA
forecasting.

6.5.1 Comparison to Two Benchmarks

According to the lognormal model of stock prices, the expected value of the stock at
time T is S 0 · eμT , where μ is the drift parameter, which can be estimated by linear
regression. This forecast is of course only a baseline that should be easy to beat: the
drift estimator is known to have an unreasonably high variance, and is therefore close
to be useless for forecasting purposes.

The standard algorithm for the ARIMA model was proposed by Box and Jenkins
in 1970 [2]. It is a very tough benchmark to beat, as it is the optimal linear forecast.
Denoting Y∗ as the stationary series, the general ARIMA is:

96 L. Charbonneau and N. Kharma

Y∗t = φ1Y∗t−1 +φ2Y∗t−2 + . . .+φpY∗t−p+ εt + θ1εt−1 + . . .+ θqεt−q

where the θi and φi are the parameters to be estimated (along with the correct lags p and
q), and εi is Gaussian white noise. Any time-series is therefore explained solely by its
previous values.

Figures 6.2 and 6.3 display examples of weekly forecasts over one year for the Ash-
land, Inc. stock (ASH), and for the McCormick & Co. stock (MKC). The blue line
represents the 2007 historical weekly data that none of the models have seen in their
estimation procedure. Each model used only the 2006 data as a training period. Our
model (“GA”) was trained with 500 000 generations.

We can see that in the case of ASH, the forecasts from ARIMA and the GA are
comparable. However, the GA exhibits a trending behaviour for MKC. Over the 200
stocks in the sample, ARIMA is never far from the general data trend to the point
that is seems to “guess” the future quite well, even for a forecast period of one full
year. However, the ARIMA forecast is always a bit lagging with respect to actual data.
The GA model is sometimes good, but most of the time it is far off the mark, as for
MKC. It tends to exhibit explosive or cyclical behaviour often. Table 6.2 confirms this
impression: for all the stocks, the RMSE (root mean square errors) and the MAD (mean
absolute deviations) of the forecasts are higher for the GA model.

Fig. 6.2. Forecast comparison for Ashland, Inc. (2007)

Fig. 6.3. Forecast comparison for McCormick & Co. (2007)

6 Inferring Trader’s Behavior from Prices 97

Table 6.2. Average RMSE and MAD of forecasts for all 200 stocks, year 2007

Model Average RMSE over 200 stocks Average MAD over 200 stocks
lognormal 50.54 6.40
ARIMA 58.61 3.71

GA 64.08 7.58

Table 6.3. Average RMSE and MAD of forecasts for all stocks and noncyclical subset

Model Average RMSE over 200 stocks Average RMSE over noncyclical subset
lognormal 50.54 45.18
ARIMA 58.61 57.41

GA 64.08 39.22
Model Average MAD over 200 stocks Average MAD over noncyclical subset

lognormal 6.40 5.62
ARIMA 3.71 3.63

GA 7.58 4.58

The fact that the GA model often shows cyclical behaviour opens the door to an
interesting question: what would be the performance of the GA model if we filtered
out the cyclical forecasts? This can be done by a user of the system in a automatic
objective manner by applying the Box-Pierce-Ljung “Q-statistic” [11]. Looking at the
first 13 lags, we retain only the GA forecasts that exhibit no cyclical behaviour: any
forecast with a Q-statistic rejected for any lag at the 1% level is excluded. This has the
disadvantage of reducing drastically the number of usable forecasts; we find only 15
noncyclical forecasts in the original set of 200.

We can now revisit the previous table by comparing models again on that noncyclical
subset. Table 6.3 displays the results.

When the cyclical forecasts are removed, the GA model performs better than
ARIMA according to the RMSE criterion, but worse than ARIMA by the MAD cri-
terion. The lognormal model is the worst performer according to both criteria over that
restricted subset. In all fairness, even if the models were ranked identically by both
closeness criteria, this experiment would not be conclusive statistically, since the num-
ber of stocks involved in the restricted subset is too small. We can however take note
of an interesting fact: the GA fitness function minimizes the MSE, and not the MAD.
It is therefore encouraging to see that the GA model beats ARIMA with respect to that
criterion, which after all is the one that we explicitly targeted.

We make one last point concerning RMSE and MAD. It could be argued that finan-
cial practitioners would be a priori more interested in models that are heavily penalized
when they make large errors, which is what the RMSE criterion does. The reason is
that large forecast deviations are likely to cause catastrophic financial losses, and any
model that provides a closer fit for these large deviations is more useful than a model
that fits well on average, but does not capture exceptional movements. This argument
would tend to confirm that the minimization criterion should indeed be the RMSE, and
that the GA would indeed be more useful than ARIMA.

98 L. Charbonneau and N. Kharma

Table 6.4. Number of noncyclical forecasts by number of generations

Number of generations Noncyclical forecasts over 200 stocks
50 000 15
100 000 26
200 000 20
300 000 14
400 000 19
500 000 15

Table 6.5. Average RMSE and MAD of forecasts by number of generations

Average RMSE Average MAD
Number of generations GA lognormal ARIMA GA lognormal ARIMA

50 000 45.03 58.64 62.79 4.99 7.09 4.57
100 000 74.67 81.35 74.07 8.91 10.26 5.24
200 000 51.57 48.95 60.36 5.91 6.05 4.02
300 000 51.20 37.75 52.35 6.26 4.71 3.38
400 000 42.48 46.45 58.50 4.83 5.63 3.77
500 000 39.21 45.18 57.41 4.58 5.62 3.63

What causes cyclical forecasts to appear in the GA model? A possible explanation
lies in the fact that we selected individuals through a fitness function that encouraged
parsimonious representations. Obtaining cycles is a natural consequence of that selec-
tion pressure since cycles are about the most economical way to represent any given
data, as in Fourier decompositions. But cycles do not do well out-of-sample, so they de-
feat the broader purpose of our model, which is forecasting. This phenomenon is typical
of genetic algorithms. The specification of the fitness function can have consequences
unintended by the modeller. Evolution produces individuals exactly in accordance with
the kind of selection pressure applied.

We can check whether parsimony pressure is responsible for cyclical behaviour by
examining how many noncyclical forecasts remain when we evolve our model for a
smaller number of generations, on the same stocks. Table 6.4 shows the number of
remaining noncyclical forecasts for various number of generations. Table 11.4 reveals
no clear pattern. It seems that parsimony may not be responsible and that cyclicality
may be a feature of the model.

It may be interesting to see the average RMSE and MAD of the forecasts produced
when we evolve the algorithm for a lesser number of generations compare to those
obtained when the model is fully evolved (Table 6.5). Notice that in this table, the
lognormal and ARIMA models do not give always the same RMSE, since they are
evaluated not on all samples, but only those determined by the Q-statistic for the GA
forecast.

Again, the results of Table 6.5 send a mixed message. GA usually outperforms both
models by the RMSE criterion except for the 300 000 generations noncyclical sam-
ple. ARIMA is always better by the MAD criterion. We conclude that it is probably

6 Inferring Trader’s Behavior from Prices 99

better to let evolution follow its course, even if that means that only a small percent-
age of forecasts are going to be noncyclical; at any rate, there is no clear advantage of
evolving less.

In practice, a end-user of the GA model with enough patience can always obtain
a noncyclical forecast: evolution can indeed be re-initiated from another random seed
until a noncyclical forecast is obtained. If we model this process as a geometric random
variable with the probability of success being 15/200, we would need on average 13
trials before getting a noncyclical forecast, so about 120 hours of continuous processing
time on a 2.2 GHz machine.

6.5.2 An Encompassing-in-Forecast Test

Ordering forecasts on the basis of RMSE or MAD is standard in the literature, and it
is why we have provided these statistics in the previous section. However, an impor-
tant shortcoming of this procedure lies in the fact that we cannot tell what constitutes
a significant difference between RMSE or MAD scores. Suppose, for instance, that the
RMSE of model A is 2% higher than the RMSE of model B. Does that constitute suf-
ficient reason to prefer model A over model B? We do not know, since the statistical
distribution of RMSE and MAD scores is unknown. A remedy to this situation would
be to get bootstrap estimates of these scores and test significance on that basis. Since
this is slightly controversial, another avenue is to use encompassing-in-forecast tests.

Encompassing-in-forecast tests [3, 9] provide a way of deciding whether forecasts
produced by one model provide significantly more information than forecasts from an-
other model. To give an example, if the forecast errors of model A are explained by the
model B forecasts, then this is evidence that model A does not add anything new to our
knowledge. But in order to be certain that model B is better than model A, one has to
examine the converse, namely whether the forecast errors of model B are not explained
by the model A forecasts. If that last proposition is not true, the test is inconclusive as
we might have a case of forecast multicollinearity. The various combinations that can
occur are:

1. forecast errors of model A are explained by model B forecasts AND forecast errors
of model B are unexplained by model A forecasts =⇒ then model B encompasses-
in-forecast model A.

2. forecast errors of model B are explained by model A forecasts AND forecast errors
of model A are unexplained by model B forecasts =⇒ then model A encompasses-
in-forecast model B.

3. forecast errors of model A are explained by model B forecasts AND forecast errors
of model B are explained by model A forecasts =⇒ then the test is inconclusive.

4. forecast errors of model A are unexplained by model B forecasts AND forecast
errors of model B are unexplained by model A forecasts =⇒ then the test is incon-
clusive.

To test whether the forecast errors of a model are explained or not by another, we per-
form the following ordinary least-squares regression:

ŶAt −Yt = β0+β1ŶBt + εt

100 L. Charbonneau and N. Kharma

Table 6.6. p-values of encompassing-in-forecast tests for the three models

Regressor Regressand
↓ GA ARIMA Lognormal

GA − 0.0356 0.0607
ARIMA 0.2761 − 0.1714

Lognormal 0.1047 0.0141 −

where ŶAt refers to the forecast of model A at time t on the forecast interval and Yt to the
realized value. If the coefficient β1 is significantly different from zero, we conclude that
forecast errors of model A are explained by model B forecasts. Table 6.6 presents the
p-values of the t-statistics of the regression coefficient β1 for all possible combinations
of regressor and regressand5 permitted by our three models.

At the 5% significance level, ARIMA is explained by GA, but GA is not explained
by ARIMA. We conclude that GA encompasses-in-forecast ARIMA, and this is good
news for our model.

6.6 Is the Market Reconstruction Unique?

Since the method we propose creates a demand function that is consistent with the prices
in the sample, we could wonder whether this reconstruction is unique. A worrying fact
is the so-called “curse of dimensionality”: specifying (or reconstructing) a demand func-
tion requires orders of magnitudes more information than what is available in prices, so
the process should logically fail.

To illustrate, we attempt to reconstruct a known market. We take an arbitrary market
genome with 50 fixed-length generalized trading rules that we call the “target” market,
that we use to forward-simulate 50 weekly stock observations from arbitrary initial
conditions. We then apply our method on these prices in the hope of reconstructing the
target market.

The main difficulty of this experiment is that deciding whether one set of rules is
close to another; we need to define a measure of similarity between market genomes,
but an easy solution such as computing the Levenshtein distance between alleles in
corresponding positions is not suitable, for the following reasons:

• rules are in no specific order in individuals, so we can neither compare genes (i.e.
rules) nor alleles based on their position within the individual.

• even though rules are of the fixed-length type, the individuals themselves are of
variable length, with a maximum set to 70. We know as experiment designers that
our target individual has length 50, but this is not information that is made avail-
able to the GA model. The reconstructed individual can therefore end up having
any length. So we need a similarity measure that will still work if presented with
individuals of differing lengths.

5 In a regression, the regressand is the variable we attempt to explain (to the left of the equality
sign), and the regressor(s) is (are) the explanatory variables (to the right of the equality sign).

6 Inferring Trader’s Behavior from Prices 101

• recalling that “don’t care” conditions are possible, a rule present in one chromo-
some may be expressed as a set of rules in another. It is also possible that a rule or
a rule set cancel another rule in a given individual, if the respective rule activation
conditions are identical and if one rule is a “buy” while the other is a “sell”.

In light of these problems, we suggest comparing markets not structurally, but function-
ally. Recall that a market “demand” means the sum of individual rule demands when the
market is presented with a particular market run, which is a stack of H discretized his-
torical prices. Using octiles, we denote this stack by {1,2, . . . ,8}H . Formally, a demand
function is a mapping:

D : {1, 2, . . . , 8}H �−→ R

The set of H-tuples {1, 2, . . . , 8}H constitutes a H-dimensional lattice over the integers
1 to 8. Recall that the market-maker is presented with the demand for each period, and
applies its own response function, which is another mapping:

f : R �−→ R

and that this mapping produces a new price which is discretized based on an empirical
price distribution:

g : R �−→ {1,2, . . . ,8}

and pushed onto the current price stack, which is another function:

h : {1,2, . . . ,8}H �−→ {1,2, . . . ,8}H .

With given initial conditions, the repeated application of these four functions creates
an orbit of a dynamical system. A market orbit will therefore repeat after a certain
time, since the lattice is finite in size. This explains why prices often exhibit cyclical
behaviour. As a matter of fact, they always exhibit cyclical behaviour, and all we did
previously was to exclude cases where the period is too short. The largest possible
period is obviously QH , where Q is the number of quantiles used for discretization,
but in practice the average period is much shorter. Forecast cyclicality is therefore an
unavoidable property of the model, and the frequency of cyclical behaviour should be
inversely proportional to the value of the lookback parameter H.

Recalling that the optimized lookback parameter was found to be H = 6, we now
describe a graphical representation of a demand function on the {1,2, . . . ,8}6 lattice to
R. Since there is no convenient way to represent such a high-dimensional mapping, we
project each point of the lattice to a two-dimensional square array indexed by a row and
a column number:

i = 0;
For (a = 1 ... 8)
For (b = 1 ... 8)
For (c = 1 ... 8)
For (d = 1 ... 8)
For (e = 1 ... 8)
For (f = 1 ... 8) {

102 L. Charbonneau and N. Kharma

array[floor(i/8^3), i mod (8^3)] =
demand(a,b,c,d,e,f)
i <- i + 1

}

This projection can be displayed in color as a “market tapestry”, using a colormap that
maps net “sell” states to blue and net “buy” values to red, and intermediate values
to a continuum of colors. All demand values have been scaled to between zero and
one. Obviously, a projection from a high-dimensional space to a square destroys the
proximity relation: proximity of two pixels in the image does not mean proximity in the
lattice. This unfortunately cannot be avoided, since we are compressing six dimensions
into two. However, we get pictures that can be compared visually; the human brain is
a good judge of visual similarity. Independently of the visual observer, reconstructed
markets can be objectively compared by computing the Pearson correlation coefficient
between the pixel intensities of the two images.

Figure 6.4 displays the target market; figure 6.5 shows the market obtained with our
method, after evolving one run for 500 000 generations. The colormap appears to the
right of each figure. It is clearly visible that there is little similarity between the two
demand functions for that run, although both produce about the same prices using the
same initial conditions for a simulation of length 50. The Pearson correlation between
these two markets is −0.07, which shows that this resulting market cannot be said to be
a faithful reconstruction of the target market.

Fig. 6.4. Market tapestry of target demand function

6 Inferring Trader’s Behavior from Prices 103

Fig. 6.5. Resulting market tapestry after 500 000 generations

Table 6.7. Average correlation by number of generations

Number of generations Restricted demand ρ with target (100 runs) σ̂ρ

50 000 10.74% 7.38%
100 000 9.83% 6.64%
200 000 12.34% 6.52%
300 000 19.42% 5.39%
400 000 22.50% 6.27%
500 000 21.45% 5.14%

Recall that the model is applied to a training sample with length 50, namely one
year of weekly observations. On the other hand, the graphical representation of the
demand function shows demands for all possible inputs, a set of 86 = 262144 different
price stacks. There is huge discrepancy in size between the full range of behaviours
that can be inferred from the genome and the restricted part of that range acted upon by
evolution, which represents only a fraction of 19

100000 of it. We may still examine whether
evolution is effective on the part of the genome that is restricted to the historical set of
H-tuples {1,2, . . . ,8}H that were encountered in the training sample. Since there were 50
of them, we remove the first to get arrays of 72 pixels. Table 6.7 displays the average
correlations for 100 runs, if we restrict demand for only the actual market conditions
that were encountered historically.

104 L. Charbonneau and N. Kharma

We can conclude from Table 6.7 that although the goal of evolution is not to repro-
duce demand functions, but prices, reproducing prices will create a certain similarity
between the demand functions inferred. Because of the curse of dimensionality, this
similarity will not raise beyond a certain point.

6.7 Conclusions and Future Work

We have presented a model of an artificial stock market that is simple enough as to allow
calibration to a time-series of market prices, by using evolution. To our knowledge, this
has been attempted in the literature only once, and using a very different artificial market
model [6]. The main drawback of this method is a rather prohibitive computational cost;
instances of the model had to be run in parallel on a cluster machine.

While the model cannot be said to faithfully reconstruct the underlying market struc-
ture because of the curse of dimensionality, we have presented empirical evidence that
forward-simulation provides a better forecast, over one year, compared to the lognor-
mal model and ARIMA, if one uses the financially-relevant RMSE criterion. However,
when cyclical forecasts are not removed from consideration, our model forecasting per-
formance is clearly dominated by both ARIMA and the lognormal model. Cyclical
behaviour is a natural consequence of the price discretization that is used to simplify
rule representation within genomes.

Useful noncyclical forecasts are obtained in 1 case out of 10 on average, which limits
the practical use of the model. However, this proportion can possibly be raised, by
increasing the lookback parameter H to a higher value, which however increases the
computational burden.

References

1. Bass, T.: The Predictors: How a Band of Maverick Physicists Used Chaos Theory to Trade
Their Way to a Fortune on Wall Street, Holt, USA (2000)

2. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day,
San Francisco (1970)

3. Chong, Y.Y., Hendry, D.F.: Econometric Evaluation of Linear Macroeconomic Models. Re-
view of Economic Studies 53, 671–690 (1986)

4. De Jong, K.: Parameter Setting in EA’s: A 30 Years Perspective. In: Lobo, F., et al. (eds.) Pa-
rameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. (54).
Springer, Heidelberg (2007)

5. Dickey, D., Said, E.: Testing for Unit Roots in Autoregressive Moving Average Models of
Unknown Order. Biometrika 71, 599–607 (1984)

6. Ecemis, I., Bonabeau, E., Ashburn, T.: Interactive Estimation of Agent-Based Financial Mar-
ket Models: Modularity and Learning. In: Proceedings of GECCO 2005, Washington, DC,
USA, June 25-29. ACM Press, New York (2005)

7. Goldberg, D.: The Design of Innovation: Lessons From and For Competent Genetic Algo-
rithms. Kluwer, Boston (2002)

8. Greene, W.H.: Econometric Analysis. Prentice-Hall, New Jersey (2003)

6 Inferring Trader’s Behavior from Prices 105

9. Harrald, P.G., Kamstra, M.: Evolving Artificial Neural Networks to Combine Financial Fore-
casts. IEEE Transactions on Evolutionary Computation 1(1), 40–52 (1997)

10. Hasbrouck, J.: Empirical Market Microstructure. Oxford Press, Oxford (2007)
11. Ljung, G.M., Box, G.E.P.: On a Measure of Lack of Fit in Time-Series Models.

Biometrika 65, 297–303 (1978)
12. O’Hara, M.: Market Microstructure Theory. Blackwell, Oxford (1995)
13. Sharpe, W.F.: Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of

Risk. Journal of Finance 19(3), 425–442 (1964)

Part II

Dynamic Strategies and Algorithmic Trading

7

Index Mutual Fund Replication

Jin Zhang1 and Dietmar Maringer2

1 Centre for Computational Finance and Economic Agents, University of Essex,
United Kingdom
jzhangf@essex.ac.uk

2 Business and Economics Faculty, University of Basel, Switzerland
dietmar.maringer@unibas.ch

Summary. This chapter discusses the application of an index tracking technique to mutual fund
replication problems. By using a tracking error (TE) minimization method and two tactical rebal-
ancing strategies (i.e. the calendar based strategy and the tolerance triggered strategy), a multi-
period fund tracking model is developed that replicates S&P 500 mutual fund returns. The impact
of excess returns and loss aversion on overall tracking performance is also discussed in two ex-
tended cases of the original TE optimization. An evolutionary method, Differential Evolution, is
used for optimizing the asset weights. According to the experiment results, it is found that the
proposed model replicates the first two moments of the fund returns by using only five equities.
The TE optimization strategy under loss aversion with tolerance triggered rebalancing dominates
other combinations studied with regard to tracking ability and cost efficiency.

7.1 Introduction

In the last decade, individual holdings of corporate stocks have decreased while hold-
ings through fund management institutions have correspondingly increased. According
to the Investment Company Institute’s official survey, the combined assets of U.S. mu-
tual funds reached a peak of 12 trillion dollars in May 2008; although there was a great
redemption pressure on the fund industry due to the recent credit crunch, the net asset
value of the funds was in excess of 9 trillion dollars at the end of 2008. As the survey
shows, approximately half of the fund holdings were claimed and managed by equity
funds. The latter typically choose from three management styles, namely active man-
agement, passive management, or a blend of the two. The literature shows that most of
actively managed equity funds under perform their passive benchmark portfolios after
adjustments are made for fund management fees and expenses. For example, actively
managed funds usually do not outperform index mutual funds which are passively man-
aged to mimic certain indices in the long-term (see [10], [6], [5] and [9]). According to
the official survey, the number of U.S. index funds increased almost three-fold from 134
to 373, in which the number of S&P 500 index funds rose from 72 to 124 at a growth
rate of over 70% in the last decade. And more recently, the institutional investment in
index funds increased dramatically after the bankruptcy of major investment banks on
Wall Street in September 2008.

While investing in funds brings several advantages over direct investments in equi-
ties, expenses such as management fees or distribution fees have continued to increase

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 109–130.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

110 J. Zhang and D. Maringer

during the last two decades. The question of whether charging higher fund fees ben-
efits investors has been discussed at great length (see [3]). Furthermore, researchers
have drawn attention to a confusing phenomenon in the fund market: while fund fees
and expenses vary quite a lot, the return patterns of the funds typically show relatively
small amounts of dispersion. Therefore, it is not necessary to use expensive funds if the
performance of funds are similar. As [17] pointed out, funds with lower expenses tend
to have higher reward-to-risk ratios; and investors should avoid using expensive funds
since the high fund fees reduce the overall payout.

This paper extends index tracking techniques to perform index fund return replica-
tion. From the literature, several index tracking methods have been discussed by re-
searchers: the classic tracking error (TE) minimization method of [16]; the principal
components factor model and the cointegration based index tracking method in [1, 2].
The classic index TE minimization model has been widely studied by researchers. [14]
used quadratic programming to construct equity index funds by minimizing tracking
errors between index returns and asset returns which were generated from the autore-
gressive conditional heteroscedastic (ARCH) process. [15] applied an optimized sam-
pling method in order to select equities to minimize tracking errors. As an alternative to
traditional numerical methods, heuristic methods provide ways of approaching difficult
combinatorial optimization problems, especially of solving financial optimization prob-
lems. An interesting feature of heuristic methods is that they combine stochastic search
with supervised search; this can provide investors with new and efficient methods to ob-
tain good solutions for complex and constrained optimization problems. Traditional de-
terministic optimization approaches tend to be poorly served for these problems whose
solution space becomes rough and discontinuous after imposing different types of con-
straints on optimization problems. There exists some literature on the use of heuristic
methods for index tracking problems. [8], e.g., adopt the Threshold Accepting algo-
rithm, a trajectory search method, while [4] and [12] use evolutionary approaches. A
classification of index tracking problems as well as a survey of applications of heuris-
tics methods to this type of problems can be found in [19].

There are three main reasons to study the fund replication problem by using index
tracking methods. First, although index mutual funds are usually considered to be cheap,
they tend to outperform most of the actively managed funds in the long-term according
to the literature. Secondly, the application of index tracking techniques in index mu-
tual fund replications has not been widely discussed in the literature yet; this chapter
therefore discusses such applications in order to address this issue. Thirdly, if the index
fund returns can be replicated, the dispersion in respect of the fund fees and expenses
should not be great. Several important issues which are not usually included in the index
tracking discussion are addressed in this study. For example, the proposed multi-period
tracking model involves the tactical rebalancing issue, the transaction cost limitation
and the cash reservation issue. Furthermore, a cardinality constraint is imposed that
limits the number of different equities included in the portfolio to lower managing and
survey costs.

The remainder of this chapter is organized as follows: Section 7.2 introduces
the fund tracking model and a population based heuristic method for tackling the

7 Index Mutual Fund Replication 111

multi-period optimization problem; Section 7.3 provides the results and discussions
from the in-sample and out-of-sample experiments; and Section 7.4 concludes.

7.2 Tracking Error Minimization and Multi-period Readjustment

7.2.1 The Optimization Problem for Tracker Construction

The optimal solution for the fund tracking problem is a portfolio that exhibits properties
as similar to those of the tracked fund as possible. Primarily, this means that both the
original fund and the tracker ought to have similar return patterns. From a management
point of view, these similarities might also affect the frequency of portfolio revisions.
If an index fund adopts a passive management, its composition should rarely change;
in consequence, this should also apply to the tracker. However, since the tracker funds
are not perfect replications of the original funds, and are potentially subject to certain
restrictions, the suitability of the this selection might change over time and the tracker
requires revision. Hence, the initial construction of a tracker fund is just one part of the
optimization problem while the second part is the optimal readjustment of asset weights
and, where necessary, change of included equities. One can therefore distinguish an
(initial) construction stage and an (ongoing) adjustment stage.

At the construction stage, an investor observes the daily prices of N equities, as well
as the daily net asset values (NAV) of target funds over historical time [T�,T0]. Let T�

and T0 denote the first day and the end of the construction stage respectively. At time
T0, an optimal set of k equities (k < N) and holding quantities ni,T0 need to be known in
order to construct a tracker which best replicates its target over the period [T�,T0]. To
measure the similarity of tracker returns and fund returns, a difference measure between

the returns is adopted, i.e. the tracking error T E =
√

1
T

∑
t(rP,t − rI,t)2. The market value

of the tracker at time t is the sum of the market value of holdings, Pt =
∑N

i=1 ni,t · S i,t.
Since the short selling of equities is not considered in this study, ni,t must be positive
integers. Let S i,t denote the market price of equity i at time t, and the tracker daily return
at time t is defined as rP,t = ln (Pt/Pt−1). The NAV reflects the dollar value of one share
of a fund, which is used to compute the fund return at time t: rI,t = ln (NAVt/NAVt−1).

The tracker portfolio is constructed with three constraints. Suppose that an initial
budget BT0 is available at T0, and an amount of PT0 =

∑N
i=1 ni,T0 · S i,T0 ≤ BT0 · (1−C)

is used to purchase a set of non-negative and integer quantities ni,T0 of equities from
the market, where C is the initial cash reserve rate. If an equity has a price S i,T0 at
time T0, the weight invested can be written as xi,T0 = (ni,T0 ·S i,T0)/PT0 . For the purpose
of portfolio diversification, if an equity i is included, its corresponding weight should
satisfy two weight constraints, x�g ≤ xi,T0 ≤ xu

g, otherwise its holding quantity ni,T0 should
be zero. After taking out the value PT0 from the initial budget BT0, one has the initial
cash reserve: CashT0 = BT0−PT0 , which is used to cover transaction costs. Secondly, the
tracker can only use a subset k out of the market equities N to track funds. Therefore, a
cardinality constraint �Cg =

∑N
i=1 ICg(i) ≤ k is imposed to control the number of equities

purchased. Cg is the equity set; k the number of equities purchased; and ICg(i) is an
indicator function. It should be noted that introducing lower and upper limits also incurs
implicit cardinality constraints: if the weight of each equity must be kept below a weight

112 J. Zhang and D. Maringer

xu
g, at least kmin = �1/xu

g� equities must be bought; on the other hand, the maximum
number of equities which should be purchased to satisfy the minimum weight constraint
is kmax = �1/x�g�. Finally, the tracker has an upper limit on the costs of each transaction:
the costs cannot grow beyond the amount which is a small proportion γ of the tracker
value Pt, i.e. TCt ≤ γ · Pt. The transaction costs TC are set as linear functions of the
amount for buying the equities. Thus, the costs can be modelled as TCT0 =

∑
i∈Cg ρ ·

ni,T0 · S i,T0 , where ρ is defined as a transaction cost coefficient. Although the current
work uses only linear transaction cost functions, the model can handle also transaction
cost functions when the solution spaces are neither continuous nor convex.

For ease of reading, the TE optimization problem is summarized using the following
notation.

min
n

T E =

√
∑

t(rP,t − rI,t)2

T0−T�

s.t.

ni,T0 ∈N
+
0

t ∈ [T�,T0]

kmin < �Cg =

N∑

i=1

ICg(i) ≤ k < kmax

x�g ≤
ni,T0 ·S i,T0

PT0

≤ xu
g for i ∈ Cg

TCT0 =
∑

i∈Cg

ρ ·ni,T0 ·S i,T0 ≤ γ ·PT0

where

ni,T0 number of shares of the i-th equity invested at time T0

γ the transaction cost limiting ratio
Pt market value of the tracker at time t
rP,t tracker return at time t
rI,t index fund return at time t
Cg tracker equity set
x�g minimum weight of each equity
xu

g maximum weight of each equity
TCt transaction cost at time t
ρ transaction cost coefficient
Casht cash reserve at time t
C cash reserve rate
Bt sum of the tracker market value and cash reserve at time t
S i,t per-share market value of the i-th equity at time t
N number of available equities in the equity market

7 Index Mutual Fund Replication 113

While the market moves over time, the tracker holdings should be revised if the tracker
return drifts away from its target return. The following subsection introduces the rebal-
ancing problem and two rebalancing strategies.

7.2.2 Tracker Rebalancing Stage

At rebalancing time T j, an optimal adjustment set δ(ni,T j) of k equities should be known.
After rebalancing, the replicator should best track its target over the period [T j−1,T j].
The decision variables are a set of adjusted quantities δ(ni,t), which can be either positive
or negative integers. The holding of equity i after the rebalancing at time t = T j can be
written as: ni,T j = ni,T j−1 + δ(ni,T j). As the rebalancing involves both selling and buying,
the transaction cost is modelled as twice the cost at the construction stage: TCT j =∑

i∈Cg 2 · ρ · |ni,T j − ni,T j−1 | · S i,T j . If the cash reserve is not enough to cover transaction
costs, the model will recover the cash reserve by liquidating assets, which depends on
the reserve rate C, the tracker value Pt, and the optimal holdings of the next period. At
the rebalancing stage, all the constraints from the construction stage must be satisfied.
Thus the optimization problem at this stage is summarized as follows.

min
δ(n)

T E =

√∑
t(rP,t − rI,t)2

T j−T j−1

s.t.

δ(ni,T j) ∈Z
ni,T j ∈N

+
0

t ∈ [T j−1,T j]

kmin < �Cg =

N∑

i=1

ICg(i) ≤ k < kmax

x�g ≤
(ni,T j−1 + δ(ni,T j)) ·S i,T j

PT j

≤ xu
g for i ∈ Cg

TCT j =
∑

i∈Cg

2 ·ρ · |ni,T j −ni,T j−1 | ·S i,T j ≤ γ ·PT j

7.2.3 Rebalancing Strategies

Two portfolio rebalancing strategies are usually adopted by market practitioners (see
[7]). One is portfolio readjustment at regular calendar intervals (e.g. quarterly), which
is referred to as calendar based rebalancing. The other is a tolerance triggered strategy
which initiates readjustments when certain thresholds or limits are exceeded.

Calendar Based Rebalancing

This strategy schedules rebalancing at a regular calendar interval Tψ.

114 J. Zhang and D. Maringer

1. The model splits the future time horizon [T0,Tω] into M subintervals [T0,T1],
[T1,T2], · · · , [TM−1,Tω] according to a fixed calendar interval Tψ. The interval
number M is decided by the length of the rebalancing stage and the time interval:
M = �(Tω−T0)/Tψ�.

2. At the rebalancing time T j, the model
a) decides an optimal set of quantities δ

(
ni,T j

)
based on the market information

over the time period [T j−1,T j],
b) adjusts portfolio holdings ni,T j = ni,T j−1 + δ(ni,T j),
c) updates cash reserves CashT j =CashT j−1 −TCT j , and
d) waits till the next planned rebalancing point T j+1 = T j+Tψ.

3. The model repeats the second step until the end of the rebalancing stage Tω.

Tolerance Triggered Rebalancing

The second strategy checks whether the properties of the original and the tracker funds
are similar enough or have drifted too far apart. If a certain tolerance level has been
exceeded and the differences are too big, the system triggers rebalancing activities. Also,
due to price changes, the portfolio weights of individual equities might have changed
so much that they now exceed the upper or lower limits. In this case, a readjustment of
the portfolio is necessary to ensure that the solution is valid again.

Practically speaking, for the rebalancing stage [T0,Tω], M = �(Tω − T0)/℘� check-
points are introduced that are equidistant with an interval length of ℘ days. At each of
these check-points T j with j = 1..M, the system evaluates whether the asset weights at
time T j are still within [x�g, x

u
g] or whether the tracking error over a recent period of time

[T j−WL,T j] exceeds the prespecified tolerance level of ξ1. The rebalancing procedure
is described as follows.

1. At each check-point T j, the tracker has the starting point of the j-th window, Tς, j =

T j −WL with j = 1,2, ...,M.
2. a) If any one of the following conditions is violated:√

1
WL
·
∑T j

t=Tς, j
|rP,t − rI,t |2 < ξ1,

ni,T j ·S i,T j
PT j

> x�g, and
ni,T j ·S i,T j

PT j
< xu

g, the model

(i) finds an optimal set of δ(ni,T j) based on the market information in the time
period [Tς, j,T j],
(ii) adjusts portfolio holdings: ni,T j = ni,T j−1 + δ(ni,T j),
(iii) updates cash reserves: CashT j = CashT j−1 −TCT j ;

b) otherwise the model keeps the holdings unchanged: ni,T j = ni,T j−1;
c) the model waits till the next check-point T j+1 = T j+℘.

3. The model repeats the second step up till the end of rebalancing stage Tω.

7.2.4 Extensions of Traditional Tracking Error Optimization

Extension to Include Excess Return

[8] considered the following average positive deviations from market benchmarks, or
the average excess return (ER):

7 Index Mutual Fund Replication 115

ER = 1
TN

∑
t(rP,t − rI,t), for rP,t ≥ rI,t

as a part of the index tracking objective, where TN represents the number of returns
observed over the period. The model considers index fund return as the benchmark, and
extends the traditional TE optimization objective to

min(λ ·T E− (1−λ) ·ER).

λ is a value between 0 and 1, representing the trade-off between TE and ER.

Extension to Include Loss Aversion

The classic TE minimization objective does not distinguish between positive and nega-
tive deviations of the tracker relative to its target, due to ignorance of the sign of return
deviations. Loss averse investors tend to strongly prefer avoiding losses to acquiring
gains, therefore the behaviour can be modelled by introducing an aversion coefficient ϑ
to the TE measure with ϑ > 1 (see [12]).

Δ̃r =

⎧
⎪⎪⎨
⎪⎪⎩

rP,t − rI,t rP,t ≥ rI,t

(rP,t − rI,t) ·ϑ rP,t < rI,t
.

Thus the original objective function at the construction and rebalancing stage is modi-
fied to:

min T̃ E =

√
1

TN

∑

t

(Δ̃r)2.

7.2.5 The Optimization Method

Heuristic methods provide ways of tackling combinatorial optimization problems, and
they are most suitable for solving constrained financial optimization problems. Dif-
ferential Evolution (DE) is a population based heuristic method which was originally
proposed by [18] for continuous optimization problems. It generates new solutions by
combining three solutions, and cross-over with a fourth solution. With the standard DE
method, only the population size P, the scaling factor F for the linear combination and
the cross-over probability π1 need to be considered. A crucial property of this version
of DE is that all individuals of the population eventually converge to the same opti-
mum. For genuinely different new solutions to emerge, however, the parent individuals
must represent different solutions. The more challenging the search space and the (rel-
atively) smaller the population, the higher the chance that the population converges
prematurely to what is only local optima. The lack of diversity within the population
requires additional perturbation by introducing noise. This is typically done by adding
normally distributed random numbers to F value and the difference of two solution
vectors respectively. Vectors z1 and z2 represent the extra noise in the algorithm; they
contain random numbers being zero with probability π2 and π3 respectively, or follow-
ing normally independent distribution N(0,σ2

1) and N(0,σ2
2). The linear combination

and cross-over procedure are described as follows:

116 J. Zhang and D. Maringer

ṽc[i] :=

⎧
⎪⎪⎨
⎪⎪⎩

vp1[i]+ (F+ z1[i]) · (vp2[i]− vp3[i]+ z2[i]) with probability π1

vp4[i] otherwise,

where π1 is the cross-over probability and p1, . . . p4 are four distinct solutions. After
creating a set of new candidate solutions, a tournament mechanism replaces some of
the existing solutions with new ones. The process is repeated until a halting criterion is
met. The DE algorithm is described by using the pseudo code as follows.

Algorithm 7.1. Differential Evolution.
randomly initialize population of vectors vp, p= 1...P;
while the halting criterion is not met do

for all current solutions vc, c=1...P do
randomly pick p1 � p2 � p3 � p4;
for all elements i do

ṽc[i]← vp1[i]+ (F+ z1[i])(vp2[i]− vp3[i]+ z2[i]) with probability π1, or
ṽc[i]← vp4[i] otherwise;

end
interpret ṽc into equity weights and compute the fitness value;

end
for the current solution vc, c = 1...P do

if Fitness(ṽc) > Fitness(vc) then vc← ṽc;
end

end

Since the solutions from DE may be either positive or negative, the no-short-selling
constraint would be violated if one directly took vp as weight solutions. In other words,
the solutions from DE may not be valid for the current problem. According to the lit-
erature, one may use penalty functions to impair the fitness of solutions which violate
constraints. Despite the straightforwardness of using penalty functions, computational
efficiency would be reduced if one intended to use penalty functions to satisfy all con-
straints. A mapping function is used to translate vp into valid equity weights, in order
to satisfy the integer, cardinality and weight constraints. The mapping function first
checks the number of positive elements κ in vp. If κ ≤ 0, the function prohibits the vp

entering the fitness evaluation procedure. Otherwise, the mapping function selects the
k largest positive elements in vp giving κ > k. If the positive number satisfies the condi-
tion κ < kmin, the function picks kmin largest elements from vp. If the positive number
of elements satisfies the condition kmin < κ < k, those equities with positive values are
included in the tracker.

The included equities are first assigned the minimum weight x�g, and then they are
increased in proportion to the values in vp until the sum of them add up to unity. If
an equity weight exceeds the maximum weight, its weight is decreased to xu

g, and the
excess part is superadded proportionally to other selected equities according to their
weights. The optimal holding of the i-th equity is computed by rounding up xi,tPt/S i,t

to the closest integer. The simple rounding approximation may bring neutrality bias to

7 Index Mutual Fund Replication 117

the final solutions of such problems with binary variables, e.g. the problem of modelling
yes/no decisions; a unit difference in stock holdings due to the rounding approximation
could be usually ignored when the holding amount of a stock is large. In addition to
the mapping function, a penalty function is used to guarantee the solutions satisfying
the transaction cost constraint. The penalty function impairs the fitness value of the
unsatisfied solutions by imposing a punishment: −max(CTt −2 ·γ ·Pt,0).

The mapping function is largely based on the one applied in [13] for a similar opti-
mization problem. It must be noted that some elements in this procedure can potentially
generate some bias in the search process. Preliminary experiments found that this bias
has typically no negative impact on the actual quality of the final result and that it was
the most efficient of the tested alternatives.

7.2.6 Experiment Settings and Data

The following experiment settings were used: Initial budget Bt = 10,000,000 dollars;
Cash Reserve Rate C = 10%; Transaction Cost Limiting Rate γ = 1%; Transaction Cost
Coefficient ρ = 0.1%; Cardinality Size k = 5. To the portfolios with fewer dimensions,
the transaction costs will be low; and the costs can easily be modelled if the cost func-
tions are nonlinear. Furthermore, a well diversified portfolio can be achieved by using
limited assets (see [11]). Therefore, the cardinality size in this study was set at the
relatively low value of five. The calendar based rebalancing strategy considered a rebal-
ancing time interval Tψ being 60 trading days, representing quarterly readjustment. In
the tolerance triggered rebalancing, the window size WL was set at 60. As a result, the
trigger values were computed by using the information in the last 60 trading days. A
step size ℘ = 10 was adopted, i.e. the minimum rebalancing frequency was two weeks
to prevent the rebalance from occurring too frequently. The TE value was used as a
trigger in the tolerance triggered rebalancing. The TE tolerance ξ1 was set at 0.004,
which is proposed to set the value as twice the in-sample tracking errors. The equity
weight trigger xi,t had minimum and maximum values being 1% and 50%, respectively.
Setting such a high upper limit helps to study the actual diversification ability of the
tracking model, as the DE algorithm has greater degrees of freedom in choosing asset
weights. For real-world applications, the upper limit should be reduced further to avoid
the risk due to sudden changes of major index shares (in this study it was found that the
highest optimized weights always varied around 40%). In the TE and ER optimization
experiments, the weighting difference λ was set at 50%. In the TE with loss aversion
experiments, the aversion coefficient ϑ was set at 2, thereby doubling the impairment of
negative deviations.

The technical parameters of DE algorithm are listed as follows. Population size and
iteration number were set at 1,000 and 4,000; the factor F was set at a value 0.5; and the
cross-over probability π1 was at 60%. The parameters were used to generate the artifi-
cial noise: π2 = 50%, π3 = 10%, σ1 = 0.1 and σ2 = 0.1. The above settings was found
to be highly suited for solving this index mutual fund tracking problem; in preliminary
experiments, the relative differences between the TE and its corresponding lowest TE
recorded after independent restarts were found to be zero or negligible.

A total of 445 equities were used to track index mutual funds. The following five
S&P 500 index funds were considered as targets in this study: ETRADE S&P 500 Index;

118 J. Zhang and D. Maringer

Vanguard 500 Index; USAA S&P 500 Index; UBS S&P 500 Index A; and TIAA-CREF
S&P 500 Index Retire. The five index funds were traced by Tracker 1 to 5, respectively.
The data comprise of daily prices and the net asset values of the equities and funds in
the period January 2004 to December 2007, downloaded from Datastream. The equities
have price sequences with 1,043 observations. To decide whether a large or a small data
sample is suitable for this fund replication, different in-sample data sizes are considered
at the construction stage and at the rebalancing stage. The first 250 observations (i.e. the
information in 2004) were used to construct trackers, which would be held from the be-
ginning of 2005. At the rebalancing stage, the latest 60 observations at each rebalancing
point were employed to decide on the optimal adjusted quantities.

7.3 Experiment Results

7.3.1 In-Sample Tracking Performance

In order to determine how well the model replicates the fund returns over the in-sample
periods for calender-based rebalancing, scatter plot of the means and standard devia-
tions of the actual and replicated daily returns at monthly intervals are shown in Figure
7.1. The first to fifth replicated case are identified by using different markers: Plus sign,
Circle, Asterisk, Point and Cross. It can be seen that there are linear relationships exist-
ing between the fund return moments and replicated return moments. In order to show
clearly the impact of the three objective functions on the in-sample tracker performance,
Figure 7.2 provides the TE and the excess return to risk ratio (or the excess Sharpe ratio
(rp/σp − rI/σI)), which were computed at monthly intervals. The return to risk ratio
was approximately equal to the Sharpe Ratio when one considers the daily safe rate
being tiny. In the figure, different line styles (i.e. solid, solid-circle, dashed, dotted, and
dash-dot) illustrate the performance of the five trackers respectively. In Figure 7.2, the
left and right panels show the in-sample TE and the excess Sharpe ratio respectively. As
the figure shows, the excess Sharpe ratios are improved after considering the ER and
loss aversion; and the TE from the two extended objective functions are higher than that
from the classic TE optimization as expected. For the tolerance triggered rebalancing,
the in-sample tracker performance from the three objective functions should have been
similar to those from the calendar based rebalancing, since the in-sample results are
independent of the rebalancing strategies.

The next subsection provides the results from the out-of-sample experiments and
analysis in order to judge whether the model replicates the fund returns over the out-of-
sample periods. The impact of the objective functions and the two rebalancing strategies
on tracker performance are further explored and discussed.

7.3.2 The Out-of-Sample Analysis of Replicators

Figure 7.3 and Figure 7.4 provide scatter plots of the return means and return standard
deviations. The scatters were computed on the basis of the replicated returns and fund
returns at monthly intervals.

In order to quantify the relationship between the fund return and tracker return mo-
ments, linear regression analysis is employed to study the observations shown in the

7 Index Mutual Fund Replication 119

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(a) Tracking Error Optimization

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(b) Tracking Error with Excess Return Optimization

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(c) Tracking Error with Loss Aversion Optimization

Fig. 7.1. In-Sample Monthly Means and Standard Deviations of Actual and Replicated Returns
from Calendar Based Rebalancing.

120 J. Zhang and D. Maringer

Jan. 2004 Dec. 2004 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Jan. 2004 Dec. 2004 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(a) Tracking Error Optimization

Jan. 2004 Dec. 2004 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Jan. 2004 Dec. 2004 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8
E

xc
es

s
S

R

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(b) Tracking Error and Excess Return Optimization

Jan. 2004 Dec. 2004 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Jan. 2004 Dec. 2004 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(c) Tracking Error and Loss Aversion Optimization

Fig. 7.2. In-Sample Monthly Tracking Errors and Excess Sharpe Ratios from Calendar Based
Rebalancing.

7 Index Mutual Fund Replication 121

Table 7.2. Regression Analysis of Actual and Replicated Return Means.

TE Opt. Ext. 1 Ext. 2
C. T. C. T. C. T.

SSE (10−3) 0.0983 0.0818 0.1296 0.1427 0.1110 0.0919
R2 0.6494 0.6924 0.5576 0.6682 0.6117 0.7094
ᾱ (10−3) −0.0199 −0.1942 −0.1054 −0.0692 −0.0969 −0.1239
S.D.(α) (10−3) 0.0661 0.0603 0.0758 0.0796 0.0702 0.0639
p(α � 0) 0.7436 0.0016 0.1665 0.3860 0.1696 0.0542
β̄ 0.8950 0.8999 0.8474 1.1238 0.8771 0.9931
S.D.(β) 0.0532 0.0485 0.0610 0.0640 0.0565 0.0514
p(β � 1) 0.0497 0.0413 0.0124 0.0536 0.0308 0.8966

Table 7.3. Regression Analysis of Actual and Replicated Return Standard Deviations.

TE Opt. Ext. 1 Ext. 2
C. T. C. T. C. T.

SSE (10−3) 0.2516 0.1623 0.3170 0.1736 0.2793 0.2316
R2 0.8206 0.8650 0.7597 0.8664 0.7908 0.8294
ᾱ (10−3) 0.5485 0.7363 1.6700 1.1030 1.0100 0.6546
S.D.(α) (10−3) 0.2920 0.2346 0.3278 0.2426 0.3077 0.2802
p(α � 0) 0.0623 0.0020 < .0001 < .0001 0.0013 0.0208
β̄ 0.9654 0.9176 0.9008 0.9548 0.9245 0.9548
S.D(β) 0.0365 0.0293 0.0410 0.0303 0.0384 0.0350
p(β � 1) 0.3472 0.0051 0.0163 0.1362 0.0495 0.1973

scatter plots. Tables 7.2 and 7.3 summarize the regression analysis results. As the two
tables show, the R2 values from the standard deviation regression are all higher than the
values from the mean regression, indicating that the model replicates the return stan-
dard deviations better than the return means. The intercept α and slope β values from
the analysis can be used as indicators to evaluate tracking performance: if a tracker
perfectly replicates a fund, the regression intercept and slope should be equal to 0 and
1 respectively. According to the table, most of the intercept α values from the mean
regression are close to 0, and not statistically different from 0. Although the α values
in the standard deviation regression case are small, they are statistically different from
0 at a 5% confidence level, indicating the risk of trackers are slightly higher than their
targets. The impact of the extra risk on tracker performance will be discussed together
with the excess Sharpe ratio.

When using calendar based rebalancing, most of the β values are lower than 1, and
statistically different from 1. However, while using the tolerance triggered rebalancing,
there is evidence that the β values are not statistically different from 1. Therefore, the
tracker using the tolerance triggered strategy should have had a higher tracking ability
than the one using the calendar based strategy. Moreover, the β values from the two
extended objective functions are higher than the one from the classic TE optimization

122 J. Zhang and D. Maringer

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(a) Tracking Error Optimization

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(b) Tracking Error with Excess Return Optimization

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(c) Tracking Error with Loss Aversion Optimization

Fig. 7.3. Out-of-Sample Means and Standard Deviations of Actual and Replicated Returns from
Calendar Based Rebalancing.

7 Index Mutual Fund Replication 123

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(a) Tracking Error Optimization

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(b) Tracking Error with Excess Return Optimization

−5 −2.5 0 2.5 5

x 10
−3

−5

−2.5

0

2.5

5
x 10

−3

Fund Mean

R
ep

lic
at

ed
 M

ea
n

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

Fund Standard Deviation

R
ep

lic
at

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

(c) Tracking Error with Loss Aversion Optimization

Fig. 7.4. Out-of-Sample Means and Standard Deviations of Actual and Replicated Returns from
Tolerance Triggered Rebalancing.

124 J. Zhang and D. Maringer

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10

15
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10

15
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(a) Tracking Error Optimization

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10

15
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10

15
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(b) Tracking Error with Excess Return Optimization

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10

15
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−5

0

5

10

15
x 10

−3

T
ra

ck
in

g
E

rr
or

s

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(c) Tracking Error with Loss Aversion Optimization

Fig. 7.5. Out-of-Sample tracking errors from using the three objective functions and two rebal-
ancing strategies (left – calendar based rebalancing, right – tolerance triggered rebalancing).

7 Index Mutual Fund Replication 125

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(a) Tracking Error Optimization

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8
E

xc
es

s
S

R

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(b) Tracking Error and Excess Return Optimization

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Jan. 2005 Dec. 2005 Dec. 2006 Dec. 2007
−0.8

−0.4

0

0.4

0.8

E
xc

es
s

S
R

Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

(c) Tracking Error and Loss Aversion Optimization

Fig. 7.6. Out-of-Sample excess Sharpe ratios from using the three objective functions and two
rebalancing strategies (left – calendar based rebalancing, right – tolerance triggered rebalancing).

126 J. Zhang and D. Maringer

Table 7.4. Rebalancing Times at Rebalancing Stage.

Replicator 1 Replicator 2 Replicator 3 Replicator 4 Replicator 5
TE Opt. 2005 3 7 3 2 4

2006 3 8 2 0 0
2007 2 7 3 0 0
sum 8 22 8 2 4

Ext. 1 2005 3 9 4 5 7
2006 5 13 0 0 2
2007 2 13 1 1 6
sum 10 35 5 6 15

Ext. 2 2005 3 8 3 4 4
2006 0 7 0 1 0
2007 1 9 1 2 1
sum 4 24 4 7 5

when the trackers employ the tolerance triggered strategy. Due to the strict constraints
imposed, it is reasonable that the replication criteria, i.e. the α = 0 and β = 1 criteria are
not perfectly satisfied. However, the current tracking performance could be improved
further by relaxing some constraints, e.g. increasing the cardinality size.

It may be interesting to further compare the tracker performance of the model using
the rebalancing strategies. The sub-figures in Figure 7.5 report the TE computed at
monthly intervals; and the left and right panels of Figure 7.5 show the TE as a result of
using the calendar based rebalancing and tolerance triggered rebalancing respectively.
There is no significant difference found between the TEs which are optimized by using
the two different rebalancing strategies. In other words, setting the TE tolerance ξ1 as
twice the in-sample TE achieved the same result as that from the calendar based strategy
case.

Figure 7.6 shows the impact of different objective functions and rebalancing strate-
gies on the excess Sharpe ratio over the out-of-sample periods. The upper panel of Fig-
ure 7.6 reveals that there are consistent negative deviations of the ratios in year 2005.
While considering the ER maximization as a part of the objective function, the negative
excess Sharpe ratios in the year are reduced. However, it should be noted that both the
positive and negative deviation of the ratio are larger than those in the upper panel. In
the lower panel, the effect of loss aversion can be seen. The negative deviations of the
excess Sharpe ratios are reduced, while the positive deviations can still be maintained
at the same magnitude as those in the middle panel. The statistical results suggest that
the excess Sharpe ratios are not significantly different from 0 at a 5% confidence level.
The insignificancy of the excess Sharpe ratios indicates that the extra risk taken by the
trackers has been compensated by return premiums.

When comparing the left and right panels of Figure 7.6, the tolerance triggered rebal-
ancing tends to produce more consistent positive deviations of the excess Sharpe ratio,
than that using the calendar based rebalancing over the years 2006 and 2007. These
positive deviations also explain the reason of the higher β values shown in Table 7.2.

7 Index Mutual Fund Replication 127

Table 7.5. Means and Standard Deviations of Actual and Replicated Returns.

Fu
nd

R
et

ur
n

R
ep

li
ca

te
d

R
et

ur
n

T
E

O
pt

m
iz

at
io

n
E

xt
.1

E
xt

.2
M

ea
n(

10
−3

)
S.

D
.(

10
−2

)
M

ea
n(

10
−3

)
S.

D
.(

10
−2

)
M

ea
n(

10
−3

)
S.

D
.(

10
−2

)
M

ea
n(

10
−3

)
S.

D
.(

10
−2

)
R

ep
lic

at
io

ns
C

.
T.

C
.

T.
C

.
T.

C
.

T.
C

.
T.

C
.

T.
1

0.
18

0.
64

-0
.4

4
-0

.3
4

0.
75

0.
67

-0
.0

6
-0

.2
8

0.
66

0.
79

-0
.1

5
-0

.3
6

0.
73

0.
72

2
0.

38
0.

76
-0

.2
3

-0
.1

6
0.

89
0.

88
-0

.0
5

0.
21

0.
93

0.
93

-0
.1

8
-0

.4
4

0.
92

0.
91

20
05

3
0.

18
0.

64
-0

.0
6

-0
.4

6
0.

69
0.

69
0.

10
0.

17
0.

75
0.

76
-0

.1
3

-0
.2

4
0.

72
0.

70
4

0.
19

0.
64

-0
.1

8
-0

.0
4

0.
66

0.
67

-0
.0

3
-0

.0
2

0.
77

0.
79

-0
.0

3
0.

12
0.

77
0.

74
5

0.
15

0.
66

-0
.1

8
0.

05
0.

73
0.

65
0.

21
-0

.0
5

0.
75

0.
73

-0
.2

7
0.

09
0.

79
0.

74
1

0.
42

0.
63

0.
95

0.
21

0.
63

0.
68

0.
35

0.
34

0.
75

0.
77

0.
63

0.
68

0.
61

0.
66

2
0.

20
0.

90
0.

45
-0

.0
8

0.
91

0.
91

0.
44

-0
.0

1
0.

98
1.

00
0.

43
0.

14
0.

98
0.

96
20

06
3

0.
41

0.
62

0.
89

0.
23

0.
60

0.
65

0.
44

0.
15

0.
70

0.
70

0.
70

0.
59

0.
65

0.
60

4
0.

42
0.

63
0.

84
0.

56
0.

60
0.

59
0.

33
-0

.0
1

0.
76

0.
77

0.
55

0.
32

0.
63

0.
64

5
0.

43
0.

62
1.

11
0.

56
0.

58
0.

59
0.

45
0.

29
0.

79
0.

73
0.

75
0.

58
0.

64
0.

59
1

0.
17

0.
98

0.
11

-0
.1

8
1.

03
0.

97
-0

.0
1

0.
22

1.
00

0.
98

0.
20

0.
51

0.
99

1.
00

2
0.

71
1.

10
0.

03
0.

39
1.

07
1.

11
-0

.0
3

0.
55

1.
29

1.
18

0.
07

0.
40

1.
08

1.
14

20
07

3
0.

18
0.

98
0.

13
0.

05
1.

04
0.

95
-0

.1
1

0.
11

1.
01

1.
01

0.
07

0.
43

1.
00

0.
92

4
0.

17
0.

98
0.

20
0.

07
1.

03
0.

96
0.

33
0.

34
1.

01
1.

04
0.

13
0.

26
0.

95
1.

07
5

0.
17

0.
98

0.
11

0.
08

1.
01

0.
96

-0
.1

6
0.

11
1.

00
1.

03
0.

06
0.

36
1.

00
0.

92

Cost efficiency is an important criterion for rebalancing strategy evaluation. In the
experiments, the rebalancing stage consisted of three years. Thus there would be 12
rebalances if one takes 60 trading days as rebalancing interval in the calendar based

128 J. Zhang and D. Maringer

strategy. It will be interesting to know how many rebalancing times occur during the
rebalancing period while using the tolerance triggered rebalancing; Table 7.4 records
the number of rebalances in this case. From the table, it is found that excepting Repli-
cator 2, most of the rebalancing times of others in the rebalancing stage are less than
12, suggesting the tolerance triggered strategy is more cost-efficient than the calendar
based strategy.

To explore the reason for the high rebalancing times of Replicator 2, the actual fund
returns are examined. Table 7.5 shows the means and standard deviations which were
computed based on the actual and replicated returns. It should be noted that Fund 2
exceeds the other four funds by yielding almost two and four times more than that of
others in 2005 and 2007, respectively, but it gains only half of the rewards of others in
2006. The remarkable performance of Fund 2 implies that the fund may adopt a different
management strategy from that of the passive management style, thereby resulting in
the high tracking errors (the case of solid line with circle marker in Figure 7.5) and the
high rebalancing times.

In Table 7.5, one may note that most of the negative returns of the replicators occur in
2005; correspondingly, it is straightforward to observe that the excess Sharpe ratios are
negative during 2005 from Figure 7.6. This evidence indicates that the tracker portfolios
constructed at the beginning are not robust. One possible explanation for this is that the
authors made use of one year observations, i.e. the first 250 daily data to construct the
trackers. Using long historical data, e.g. one year or half year observations to analyze
index compositions may be appropriate, but it may lead to unreliable outcomes for
fund tracking. The main difference between indices and index funds is that the funds
are under professional management. To maintain effective diversification of portfolios,
fund mangers normally do not keep their holdings unchanged for such long periods,
e.g. one year. Therefore, a long data sample will shield the true fund compositions if
there is rebalance taken place just before the tracker construction; thus, using short term
data, e.g. quarterly data may be more appropriate. Apart from directly using short term
data samples, one can modify the TE definition to include a weighting factor, for more
recent time periods getting a higher weighting than other time periods (see [4]).

7.4 Conclusion

In this paper, the authors develop a fund tracking model in order to track index mu-
tual funds with constraints on the cardinality size, assets’ weights, transaction costs,
and integer constraints. This paper proposes a novel way of decomposing the index
mutual fund replication into the traditional index tracking problem and a multi-period
optimization problem. By employing a heuristic method to solve the optimization prob-
lem, an empirical study is performed to track five S&P 500 mutual funds dynamically.
The regression results show that the model replicates the first two moments of index
fund returns by using limited equities; moreover, the optimized tracker portfolios do
not exhibit significant difference between the original and replicated Sharpe ratios. By
setting the tracking error tolerance at twice the in-sample tracking error in the tolerance
triggered rebalancing, the model produced the same tracking error magnitude as that
using the calendar based rebalancing. Also, it has been shown that tolerance triggered

7 Index Mutual Fund Replication 129

rebalancing outperformed the calendar based rebalancing in terms of both tracking abil-
ity and cost-efficiency. Financial practitioners may employ the model to build up their
own portfolios based on any interesting index mutual funds for certain purposes, such as
the funds from different geographical areas for global investments. In future research,
the short selling constraint may be relaxed; some financial products, such as bonds,
futures and options may be included into tracker portfolios for more advanced appli-
cations, e.g. enhanced index funds (EIF) replications. Differential Evolution is reliable
and flexible enough for these further extensions.

Acknowledgement

The authors gratefully acknowledge financial support from the EU Commission through
MRTN-CT-2006-034270 COMISEF.

References

1. Alexander, C., Dimitriu, A.: Sources of out-performance in equity markets. The Journal of
Portfolio Management 30, 170–185 (2004)

2. Alexander, C., Dimitriu, A.: Indexing and statistical arbitrage. The Journal of Portfolio Man-
agement 31, 50–63 (2005)

3. Anderson, S.C., Ahmed, P.: Mutual Fund Fees and Expenses. In: Mutual Funds: Fifty Years
of Research Findings, ch. 3, pp. 57–69. Springer, Heidelberg (2005)

4. Beasley, J.E., Meade, N., Chang, T.J.: An evolutionary heuristic for the index tracking prob-
lem. European Journal of Operational Research 148, 621–643 (2003)

5. Bogle, J.C.: Common Sense on Mutual Funds: New Imperatives for the Intelligent Investor.
Wiley, John & Sons (1999)

6. Carhart, M.M.: On persistence of mutual fund performance. Journal of Finance 52, 57–82
(1997)

7. Eakins, G.S., Stansell, S.: An examination of alternative portfolio rebalancing strategies ap-
plied to sector funds. Journal of Asset Management 8, 1–8 (2007)

8. Gilli, M., Këllezi, E.: The threshold accepting heuristic for index tracking. In: Pardalos, P.,
Tsitsiringos, V. (eds.) Financial Engineering, E-Commerce, and Supply Chain. Kluwer Ap-
plied Optimization Series, ch. 1, pp. 1–18 (2002)

9. Haslem, J.A., Baker, H.K., Smith, D.M.: Performance and characteristics of actively man-
aged retail equity mutual funds with diverse expense ratios. Financial Services Review 17,
49–68 (2008)

10. Malkiel, B.G.: Returns from investing in equity mutual funds. Journal of Finance 50, 549–
572 (1995)

11. Maringer, D.: Small is beautiful: Diversification with a limited number of assets, centre for
Computational Finance and Economic Agents Working Paper Series (2006)

12. Maringer, D.: Constrained index tracking under loss aversion using differential evolution. In:
Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance, ch. 2, pp.
7–24. Springer, Berlin (2008)

13. Maringer, D., Oyewumi, O.: Index tracking with constrained portfolios. Intelligent Systems
in Accounting and Finance Management 15(1), 51–71 (2007)

14. Meade, N., Salkin, G.R.: Developing and maintaining an equity index fund. Journal of the
Operational Research Society 41, 599–607 (1990)

130 J. Zhang and D. Maringer

15. Montfort, K.V., Visser, E., Draat, L.F.V.: Index tracking by means of optimized sampling.
The Journal of Portfolio Management 34, 143–151 (2008)

16. Roll, R.: A mean–variance analysis of tracking error. Journal of Portfolio Management 18,
13–22 (1992)

17. Sharpe, W.F.: Mutual fund performance. Journal of Business 39, 119–138 (1966)
18. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global opti-

mizationover continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)
19. di Tollo, G., Maringer, D.: Metaheuristics for the index tracking problem. In: Geiger, M.J.,

Habenicht, W., Sevaux, M., Sörensen, K. (eds.) Metaheuristics in the Services Industry. Lec-
ture Notes in Economics and Mathematical Systems, vol. 624, ch. 8, pp. 127–154. Springer,
Heidelberg (2009)

8

Frequent Knowledge Patterns in Evolutionary Decision
Support Systems for Financial Time Series Analysis

Piotr Lipinski

Institute of Computer Science,
University of Wroclaw, Wroclaw, Poland
lipinski@ii.uni.wroc.pl

Summary. This chapter discusses extracting and reusing frequent knowledge patterns in build-
ing trading experts in an evolutionary decision support system for financial time series analysis.
It focuses on trading experts built by an evolutionary algorithm as binary sequences represent-
ing subsets of a specific set of trading rules, where frequent knowledge patterns correspond to
common building blocks of trading rules occurring in previous trading experts. Reusing frequent
knowledge patterns leads to a significant reduction of the search space, due to fixing a part of chro-
mosome and running the evolution process to set only the remaining genes, without significant
decreases of results.

This chapter presents a number of experiments carried out on financial time series from the
Paris Stock Exchange, discusses some examples of the frequent knowledge patterns as well as
analyses the results obtained in terms of their financial relevance and compares them with some
popular benchmarks.

8.1 Introduction

Evolutionary algorithms are often applied in economic and financial modelling, [3], [6],
[10], [12], where their capabilities of robust prediction and possibilities of dynamic
modelling are particularly important to elaborate an efficient economic or financial
model. For instance, genetic programming was applied to building decision trees for
supporting financial decision making, [20], various evolutionary algorithms were con-
structed for portfolio optimization, [9], [14], grammatical evolution was applied to dis-
covering trading rules for stock market speculations, [7].

One popular application concerns decision support systems for economic and finan-
cial time series analysis, especially time series containing stock price quotations, for-
eign exchange rates as well as gold or oil price quotations. Although there are a number
of classic approaches, such as those based on statistical or stochastic modelling, evolu-
tionary algorithms often outperform them in short-term or real-time analysis, where the
mathematical trading model becomes too complex, uncertainty and information noise
become very high and a solution must be found as soon as possible, [2], [4]. However,
one of the bottlenecks in real-time evolutionary systems is the lengthy computing time,
which creates a serious barrier to further development of such approaches.

This chapter refers to a class of decision support systems for time series analysis
that bases its knowledge on evolutionarily generated artificial experts built on a set

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 131–145.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

132 P. Lipinski

of defined rules. These experts are generated on the basis of available past data and
applied to new data until they are efficient. Since the analysed data exhibit time-varying
properties, the efficiency of experts falls, at which point they should be regenerated or
updated. The process of expert generation is time-consuming, prompting many ideas
for its improvement. Updating an expert takes less time than regenerating one, although
efficiency of an updated expert is often slightly lower than that of a newly-generated
one. In this chapter, we discuss methods of expert updating based on discovering and
reusing frequent knowledge patterns from a set of experts generated over a specific time
period.

This chapter focuses on the optimization of expertise elaboration, which is discussed
in the context of real-time stock trading systems and discovering frequent knowledge
patterns in trading experts. The significance of delays in such systems, along with the
issue of time necessary for discovering a profitable composition of indicator-based trad-
ing rules, is discussed. The proposed optimization was applied to a real-time financial
data analysis system based on the genetic algorithm presented in [10].

The goal of the presented approach is to improve the throughput of the expert dis-
covery process by discovering frequent knowledge patterns and shortening the time
of expert computing by using this knowledge. The idea is to reuse previous trading
experience of generated experts instead of computing experts ex nihilo. The trading ex-
perience can be found in patterns that are a kind of abstraction from the most recent
sequence of chromosomes of the best experts. These patterns can be easily used to gen-
erate an initial population of experts that are located close to the place where the final
solution might be found. Two effects of using patterns as building blocks are expected:
first, reduction of the search space by decreasing the number of trading rules used for
evaluation; second, acceleration of the convergence process due to the heuristics used to
create an initial population of experts. The building blocks discovery process is based
on sequential pattern mining algorithms applied to a list of previously generated ex-
perts [1].

This chapter is structured in the following manner: Section 2 defines the trading rules
and the financial knowledge base containing them. Section 3 discusses the decision
making process and Section 4 presents an overview of the evolutionary decision support
system for such a decision making process. Section 5 describes frequent knowledge
patterns and their applications in decision support systems. In Section 6, experiments
on real-data from the Paris Stock Exchange are presented. Finally, Section 7 concludes
the chapter and points out some directions for further research.

8.2 Financial Knowledge Base

A popular technique of financial time series analysis is the technical analysis, [5], [17],
[11], which considers past stock price quotations as a principal factor affecting future
price directions. It introduces many indicators, which characterise financial time series,
and uses them to forecast future trends and particular events like falls and rises in stock
prices. Such indicators may be formalised by a concept of a stock market trading rule.

Definition 1. A stock market trading rule is a function

f :K �→ y ∈ R (8.1)

8 Frequent Knowledge Patterns in Evolutionary DSS 133

which maps a factual financial knowledge K to a real number y, interpreted later as
a trading signal: values lower than a certain threshold α1 correspond to a sell signal
(-1.0), values greater than a certain threshold α2 correspond to a buy signal (+1.0), and
remaining values correspond to no signal (0.0). In the case of the technical analysis, the
factual financial knowledge represents past stock price quotations, but in other cases, it
may also include fundamental information, tax rates, exchange rates, etc.

In the experiments, the financial knowledge base was composed of 250 popular trad-
ing rules, defined on the basis of [5] and [17], where the factual financial knowledge
was composed of financial time series containing one-minute stock price quotations (i.e.
open, high, low, close prices, transaction volumes and index values). Although, in all
the experiments, α1 = −1 and α2 = 1, different thresholds may be also tested in order
to tune the number of trading signals obtained (the closer the values of α1 and α2, the
larger the number of trading signals obtained).

8.3 Decision Making Process

In most cases, different trading rules produce different, often opposing, trading signals,
so the decision support system must spend some effort to transform them into one final
trading decision [18]. Such a problem may be solved by selecting an efficient set of
trading rules, referred to as a stock market trading expert, and defining the final trading
decision by the trading signal proposed by the majority of the trading rules from the
chosen set.

Definition 2. A stock market trading expert over a set of trading rules R = { f1, f2, . . . , fd}
is a subset of the entire set of trading rules

E ⊂ R. (8.2)

A result E(K) of a trading expert E, for a given factual financial knowledge K , is an
arithmetic average of the results of the trading rules from the subset E,

E(K) =
1
|E|

∑

f∈E

f (K), (8.3)

interpreted later as a trading signal in the same way as in the case of a single trading
rule.

In practice, the decision support system usually focuses on trading strategies for a spe-
cific time period rather than on single trading decisions for particular moments. For
successive time instants t0, t1, t2, . . . , tT−1 of the specific time period, the trading expert
E produces trading decisions d(E)

0 ,d(E)
1 ,d(E)

2 , . . . ,d(E)
T−1. In order to apply such trading de-

cisions on the stock market, it is also necessary to define the amount of stocks to be
bought or sold. Such amounts may be obtained by simulating the behavior of a hypo-
thetical investor, who is given an initial endowment (c0, s0) with c0 the initial amount of
cash and s0 the initial quantity of stocks (in the experiments, c0 = 10000 and s0 = 100)
and follows the trading decisions of the trading expert.

134 P. Lipinski

At time t0, the investor takes the decision d(E)
0 . If the decision is to sell, i.e. d(E)

0 = −1,
he sells q% of stocks (in experiments, q = 50%), i.e. the amount of stock Δs in the
investor’s order is equal to

Δs = s0 ·q. (8.4)

If the decision is to buy, i.e. d(E)
0 = 1, he invests q% of money in stocks (in experiments,

q = 50%), i.e. the amount of stock Δs in the investor’s order is equal to

Δs =
c0 ·q

(1+ τ) ·Open(t1)
, (8.5)

where Open(t) denotes the open price at time t and τ denotes transaction costs (in exper-
iments, τ = 0.2%). Next, the transaction is executed at time t1 and the investor’s capital
changes accordingly. At time t1, the investor’s capital consists of the amount of cash

c1 = c0 −d(E)
0 ·Δs ·Open(t1)− τ ·Δs ·Open(t1), (8.6)

and the quantity of stocks
s1 = s0 +d(E)

0 ·Δs. (8.7)

Next, the investor takes the decision d(E)
1 , which is executed at time t2 and the investor’s

capital changes again, and so on. Finally, c0,c1, . . . ,cT denote the successive amounts of
cash and s0, s1, . . . , sT the corresponding quantities of stocks at successive time instants
t0, t1, t2, . . . , tT−1 of the specific time period.

8.4 Evolutionary Decision Support System

8.4.1 Objectives and Optimization Problem

In practice, the objectives of the decision support system are to build a trading expert
efficient over a future time period with unknown stock prices, where exact sequences
of amounts of cash and quantities of stocks cannot be evaluated, so the decision sup-
port system must estimate the future performance of the trading expert on the basis
of its behavior over a past time period. It may use a number of so-called performance
measures, [16], [13], which consider not only the future return rates, but also the risk
factors related to achieving them. Experiments focus on the Sharpe ratio, [19], but dif-
ferent performance measures, such as the Sortino ratio, the Sterling ratio or the Treynor
ratio, may also be tested in order to adjust the financial model and the risk definition.

Formally, the performance measure !(E) of the trading expert E (the Sharpe ratio) is
equal to

!(E) =
E[R]− r0

Std[R]
, (8.8)

where E[R] denotes the expected return rate of the trading expert E, the Std[R] denotes
the standard deviation of the return rate and r0 denote the reference return rate of risk-
free asset.

For the specific time period studied in the previous section, let Ci denote the capital
at time ti, for i = 0,1,2, . . . ,T −1,

8 Frequent Knowledge Patterns in Evolutionary DSS 135

Ci = ci+ si ·Open(ti) (8.9)

and Ri denote the return rate for the time period [ti−1, ti], for i = 1,2, . . . ,T −1,

Ri =
Ci −Ci−1

Ci−1
, (8.10)

therefore, the expected return rate E[R] and the standard deviation of the return rate
Std[R] may be estimated on the basis of R1,R2, . . . ,RT−1.

Discovering efficient trading experts is an optimization problem with the objec-
tive function !(E) over the search space of all trading experts E. Formally, let R =
{ f1, f2, . . . , fd} be the set of all available trading rules and E(R) be the set of all avail-
able trading experts built on these trading rules. The objective is to find a trading expert
E ∈ E(R) such as

!(Ẽ) ≤ !(E) (8.11)

for all Ẽ ∈ E(R), for a given time period and for given the other parameters of the
financial simulation described in the previous section.

8.4.2 Binary Representation of Trading Experts

Each trading expert E may be represented in a natural way by a binary sequence e =
(e1,e2, . . . ,ed), in such a way that, for i = 1,2, . . . ,d, ei corresponds to the i-th trading
rule fi ∈ R; ei = 0 denotes the absence and ei = 1 denotes the presence of the trading
rule fi in the set E.

Such a representation defines a one-to-one map between trading experts and binary
sequences of length d, so the search space in the optimization problem defined in the
previous section is simply {0,1}d and the objective function !(e) is the performance
measure of the trading expert E corresponding to the binary vector e.

8.4.3 Building Trading Experts Using Evolutionary Algorithm

Building an efficient trading expert was transformed in the previous sections to the
optimization problem with the objective function defined by the performance measure
!, being the Sharpe ratio, and the search space {0,1}d. Naturally, the objective function
is defined in the context of a given set R of trading rules, a given stock, a given training
period and given the other parameters of the financial simulation.

Algorithm 8.1 shows the framework of the evolutionary algorithm, based on the
Simple Genetic Algorithm [8], [15], designed to solve the optimisation problem.

First, the algorithm creates an initial populationP = {e1,e2, . . . ,eN} ⊂ {0,1}d in such a
way that each gene ei j of each chromosome ei is generated randomly using the uniform
distribution, i.e. the probability of ei j = 0 and the probability of ei j = 1 are both equal to
0.5. After creation, the population is evaluated.

Afterwards, the population evolves under the influence of four evolutionary opera-
tors, namely parent selection, crossover, mutation and replacement, until a termination
condition is satisfied (M denotes the number of parent individuals chosen for reproduc-
tion, θC and θM denote the probabilities of crossing over and mutation, respectively).

136 P. Lipinski

Algorithm 8.1. The Simple Genetic Algorithm designed to optimise the objective
function ! with a population P composed of N individuals, where M, θC , θM are
some algorithm parameters
P = Random-Population(N);
Population-Evaluation(P, !);
while not Termination-Condition(P) do
P(P) = Parent-Selection(P, M);
P(C) = Crossover(P(P), θC);
Mutation(P(C), θM);
Replacement(P, P(C));
Population-Evaluation(P, !);

end
Best-Expert(P);

The evolution terminates when it completes a specific number of iterations or when
there is no increase in objective function values over a specific number of recent iter-
ations. Due to size constraints, complete specifications of evolutionary operators are
omitted and may be found in [8] or [15].

8.5 Frequent Knowledge Patterns

Trading experts, built on the basis of financial information related to a specific time
period, become outdated and lose profitability when the stock market starts to differ
significantly from its initial state. Normally, the stock market changes incessantly, so
trading experts must be built anew or updated very often.

In the simplest approach, the decision support system builds a new trading expert
each time when the current trading expert loses profitability, without reusing any infor-
mation from previous trading experts. Algorithm 8.2 shows the framework of such an
approach. When the decision support system starts, it initialises the financial knowledge
base and builds the initial trading expert using the Simple Genetic Algorithm (see Al-
gorithm 8.1). Next, in the loop, usually once per minute, it publishes the current trading
expert and updates the financial knowledge base. If the efficiency of the current trad-
ing expert evaluated on the current knowledge base falls below a specific threshold, a
new trading expert is built using the same algorithm (but with a new objective function
related to the new knowledge base).

However, studies on trading experts built in successive iterations in the decision sup-
port system suggest that a new trading expert often has a similar structure to a number
of recent trading experts, i.e. it often contains trading rules included in previous trading
experts and does not usually contain trading rules excluded in previous trading experts.
Such information may be formalised by a concept of a frequent knowledge pattern.

Definition 3. A knowledge pattern of trading experts over a set of trading rules R =
{ f1, f2, . . . , fd} is a sequence

k = (k1,k2, . . . ,kd) ∈ {0,1,#}d,

8 Frequent Knowledge Patterns in Evolutionary DSS 137

Algorithm 8.2. The decision support system, which builds new trading experts
without reusing any information from previous ones

Financial-Knowledge-Base-Initializing(K);
e = SGA(!, N, M, θC , θM);
while System-Is-Running() do

Trading-Expert-Publishing(e);
Financial-Knowledge-Base-Updating(K);
if Trading-Expert-Efficiency(e) < ζ then

e = SGA(!, N, M, θC , θM);
end
Wait();

end

such that each element ki, for i = 1,2, . . . ,d, corresponds to the i-th trading rule fi in
such a way that ki = 0 denotes the permanent absence and ki = 1 denotes the permanent
presence of the trading rule fi in the trading experts representing the knowledge pattern
k (if ki = #, trading experts representing the knowledge pattern k may include the trading
rule fi or not). An order of the knowledge pattern k is a number of its elements equal
to 0 or to 1, i.e.

ord(k) = #{i = 1,2, . . . ,d : ki = 0∨ ki = 1}.

Definition 4. A trading expert e = (e1,e2, . . . ,ed) represents a knowledge pattern k =
(k1,k2, . . . ,kd), which is denoted as k � e, if it excludes all the trading rules fi for which
ki = 0 and includes all the trading rules fi for which ki = 1, i.e. if ei = ki, for each
i = 1,2, . . . ,d, such that ki = 0 or ki = 1.

Definition 5. For a set E of trading experts, a support of a knowledge pattern k is a
subset of the set E containing the trading experts representing the knowledge pattern,
i.e.

supp(k;E) = {e ∈ E : k � e}.

Definition 6. For a set E of trading experts, a frequent knowledge pattern is the knowl-
edge pattern of the highest order which is represented by all the trading experts, i.e.

arg max{ord(k) : k � e for each e ∈ E}.

More efficient approaches may reuse frequent knowledge patterns, extracted earlier
from previous trading experts, by a priori excluding or including some trading rules
in all the trading experts generated and running the evolutionary process only to set
the remaining part of trading rules. Algorithm 8.3 shows the framework of such an ap-
proach. When the decision support system starts, it initialises the financial knowledge
base and builds the initial trading expert using the original algorithm. Next, in the loop,
usually once per minute, it publishes the current trading expert and updates the financial
knowledge base. If the efficiency of the current trading expert evaluated on the current
knowledge base falls below a specific threshold, the decision support system extracts
a frequent knowledge pattern from a number of previous trading experts and builds a

138 P. Lipinski

Algorithm 8.3. The decision support system which builds new trading experts us-
ing frequent knowledge patterns extracted earlier from previous trading experts

Financial-Knowledge-Base-Initializing(K);
e = SGA(!, N, M, θC , θM);
while System-Is-Running() do

Trading-Expert-Publishing(e);
Financial-Knowledge-Base-Updating(K);
if Trading-Expert-Efficiency(e) < ζ then

k = Frequent-Knowledge-Pattern-Extracting();
e = SGA-With-Knowledge-Patterns(!, N, M, θC , θM , k);
if Trading-Expert-Efficiency(e) < ζ then

e = SGA(!, N, M, θC , θM);
end

end
Wait();

end

new trading expert using a modified algorithm with the frequent knowledge pattern ex-
tracted (and with a new objective function related to the new knowledge base). If the
efficiency of the new trading expert is still below the specific threshold, a new trading
expert is built using the original algorithm.

8.6 Experiments

In order to illustrate the discovery and usage of frequent knowledge patterns, a number
of experiments were carried out on 4 financial time series containing one-minute stock
price quotations from the Paris Stock Exchange (namely, AXA, Peugeot, Renault and
STMicroelectronics). Each experiment concerned one of these time series and a chosen
time period.

In all the experiments, the same set of 250 trading rules was used and the Simple
Genetic Algorithm was run with the same configuration (the Sharpe ratio objective
function !, the population size N equal to 50, the number of iterations n equal to 200
and M = 45, θC = 0.95, θM = 0.05).

Although each experiment was considered separately, similar results were obtained.
Due to size constraints, the further discussion focuses on only one of the cases.

8.6.1 Evolution of Gene Values

First, an initial trading expert was built using the original algorithm with a population
of 50 individuals, each consisted of 250 genes, evolved in 200 iterations. Figure 8.1
presents values of the objective function in populations in successive iterations of the
Simple Genetic Algorithm. It is easy to see that the optimisation algorithm led to a
significant improvement of values of the objective function and consequently to a con-
struction of an efficient trading expert. In practice, the number of iterations could be

8 Frequent Knowledge Patterns in Evolutionary DSS 139

50 100 150 200
0

0.5

1

iteration

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

50 100 150 200
0

0.05

0.1

iteration

st
d

of
 o

bj
ec

tiv
e

fu
nc

tio
n

va
lu

es

Fig. 8.1. Values of the objective function (lowest, average and highest), as well as the standard
deviation, in populations in successive iterations of the Simple Genetic Algorithm

decreased to about 75 – 100, but for the sake of comparison with other experiments it
remains unchanged.

Further studies on the evolution of particular genes and its stabilisation in successive
iterations of the Simple Genetic Algorithm, which is crucial to analyse frequent knowl-
edge patterns, requires definitions of two additional factors: a frequency of usage α and
a stabilisation factor β.

Let P(0) = {e(0,1),e(0,2), . . . ,e(0,N)} denote the initial population created before the first
iteration starts, and P(k) = {e(k,1),e(k,2), . . . ,e(k,N)} denote the current population after the
k-th iteration of the Simple Genetic Algorithm, for k = 1,2, . . . ,n, where n is the number
of iterations and N is the population size. For i = 1,2, . . . ,d and k = 0,1, . . . ,n, let

α(k)
i = 1/N ·

N∑

j=1

e(k, j)
i and β(k)

i = |0.5−α
(k)
i |

be the frequency of usage and the stabilisation factor of the i-th gene in the k-th iteration,
respectively.

Figure 8.2 presents frequencies of usage α(k)
i of particular genes, i = 1,2, . . . ,d, in

successive iterations, k = 0,1, . . . ,n. Each line corresponds to one gene. Values close to
0 correspond to rare usage of the gene, values close to 1 correspond to frequent usage
of the gene in the individuals of the population, values close to 0.5 denote that the
gene is set to 0 in approximately a half of the population and is set to 1 in the remaining

140 P. Lipinski

50 100 150 200
0

0.5

1

iteration

av
er

ag
e

ge
ne

 v
al

ue

Fig. 8.2. Frequencies of usage α
(k)
i of particular genes, i = 1,2, . . . ,d, in successive iterations,

k = 0,1, . . . ,n (d = 250, n = 200)

individuals. Clearly, after a number of iterations, gene values stabilise and most of genes
tend either to be used in most of individuals in the population or not used in any.

More detailed experiments showed that sets of well-stabilised genes in the last itera-
tion of the Simple Genetic Algorithm are similar for successive iterations of the decision
support system. For instance, Table 8.1 presents the comparison of 5 sets built from 200
best-stabilised genes (of all 250 genes in total) in the last iteration of the Simple Ge-
netic Algorithm for 5 successive iterations of the decision support system. Although, it
is easy to see that they are similar, which suggests that frequent knowledge patterns built
on the basis of these trading experts would be stable and also large enough to reasonably

Table 8.1. Comparison of 5 sets of 200 best-stabilised genes (of all 250 genes in total) in trading
experts built in 5 successive iterations of the decision support system (each element mi j of the
matrix corresponds to the number of trading rules from the i-th set occurring also in the j-th set)

1 2 3 4 5
1 200 191 183 172 159
2 191 200 193 182 174
3 183 193 200 191 184
4 172 182 191 200 189
5 159 174 184 189 200

8 Frequent Knowledge Patterns in Evolutionary DSS 141

reduce the search space, further studies are necessary to estimate the proper number of
previous trading experts used for extraction of the frequent knowledge pattern.

8.6.2 Extraction of Frequent Knowledge Patterns

In order to study the relation between the number of previous trading experts used in
the extraction and the order of the frequent knowledge pattern obtained, long sequences
of trading experts built in successive iterations of the decision support system were
considered. Each sequence considered a time period of 360 minutes, where a new trad-
ing expert was built in each minute, even if the previous one was efficient enough. All
the new trading experts were built independently without reusing any information from
previous ones.

Figure 8.3 (a) presents usage of 250 trading rules in 360 trading experts built for
successive minutes of a time period of 360 minutes. Each bar corresponds to one trading
rules and depicts the number of trading experts. It is easy to see that there is a number
of frequently chosen trading rules as well as a number of infrequently chosen trading
rules.

Unfortunately, only 10% to 15% of trading rules were either constantly used, or not
used at all, in trading experts built during time periods of 360 minutes, which limits
the order of the 360-minute frequent knowledge patterns to 25–40 and which does not
lead to a large reduction of the search space and the computing time. In order to obtain
frequent knowledge patterns of higher order, shorter time periods were considered.

Figures 8.3 (b) and (c) present usage of 250 trading rules in trading experts built
for successive minutes of a time period of 60 and 15 minutes, respectively. 60-minute

50 100 150 200 250
0

360
(a)

us
ag

e

50 100 150 200 250
0

60
(b)

us
ag

e

50 100 150 200 250
0

15
(c)

trading rule number

us
ag

e

Fig. 8.3. Usage of 250 trading rules in trading experts built for successive minutes of a time period
of 360, 60 and 15 minutes (a, b, and c, respectively)

142 P. Lipinski

Table 8.2. Usage of 250 trading rules in trading experts built for successive minutes of a time
period of 360, 60, 15, 10 and 5 minutes (orders and coverages of 360-, 60-, 15-, 10- and 5-minute
frequent knowledge patterns

order coverage
360-minute frequent knowledge patterns 32 13%
60-minute frequent knowledge patterns 60 24%
15-minute frequent knowledge patterns 98 39%
10-minute frequent knowledge patterns 145 58%
5-minute frequent knowledge patterns 207 83%

frequent knowledge patterns included approximately 24% of trading rules, while 15-
minute frequent knowledge patterns included approximately 39% of trading rules. In
additional experiments, 10-minute and 5-minute frequent knowledge patterns covered
58% and 83% of trading rules, respectively. Table 8.2 presents a brief summary of
results.

Clearly, shorter time periods lead to frequent knowledge patterns of higher order
and consequently to better optimisation of the original algorithm, assuming that the
trading experts built with frequent knowledge patterns would be efficient enough. In

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

usage in 15 trading experts

nu
m

be
r

of
 tr

ad
in

g
ru

le
s

Fig. 8.4. Histogram of usage of 250 trading rules in trading experts built in successive minutes of
a time period of 15 minutes

8 Frequent Knowledge Patterns in Evolutionary DSS 143

Table 8.3. Excess of the return rate of the trading strategies defined by trading experts built in
both decision support systems over the return rate of the B&H strategy

Market Condition Return over B&H
with patterns without patterns

extremely positive B&H, i.e. 0.01 ≤ B&H 0.0323%±0.0051 0.0412%±0.0013
positive B&H, i.e. 0.00 ≤ B&H < 0.01 0.0225%±0.0033 0.0268%±0.0024
negative B&H, i.e. −0.01 ≤ B&H < 0.00 0.0265%±0.0075 0.0283%±0.0082
extremely negative B&H, i.e. B&H < −0.01 0.0142%±0.0029 0.0157%±0.0015

practice, the reasonable trade off between the optimisation of the original algorithm and
the efficiency of solutions was achieved with 15-minute frequent knowledge patterns.

8.6.3 15-Minutes Frequent Knowledge Patterns

Further studies concerned 15-minute frequent knowledge patterns. Figure 8.4 presents
a histogram of usage of 250 trading rules in trading experts built in successive minutes
of a time period of 15 minutes. The first bar corresponds to 71 trading rules which are
not included in any trading expert. The last bar corresponds to 67 trading rules which
are included in each trading expert. In total, these 138 trading rules form the 15-minute
frequent knowledge pattern.

Introducing the 15-minute frequent knowledge patterns to the decision support sys-
tem, described in Algorithm 8.3, led to a significant reduction of the search space. New
trading experts were built by evolving only the part of the chromosome not covered by
the knowledge pattern (usually, about 150 genes). Naturally, such an approach could re-
sult in premature convergence of the evolutionary algorithm and finding local solutions
instead of global ones, so when the efficiency of the new trading experts decreased
excessively, new ones were built using the original algorithm evolving the entire chro-
mosome.

In order to study the financial aspect of the approach proposed, the trading strategies
defined by trading experts built using frequent knowledge patterns were compared with
the original trading strategies defined by trading experts built without reusing any in-
formation from previous trading experts in terms of profitability. 40 experiments were
carried out. Each experiment concerned a different stock and a different time period of
30 minutes. In each experiment, for each minute, two trading experts were built – one
using knowledge patterns and one using the original algorithm.

Table 8.3 presents the excess of the return rate of the trading strategies over the
return rate of the simple Buy-and-Hold (B&H) strategy, which consists in investing all
the capital in stocks at the start of the time period and keeping it until the end of the
time period. Results usually depend on the stock market conditions, so experiments
were divided into 4 groups according to the state of the stock market, defined by ranges
of B&H values over the time period.

Although results depend on the stock market conditions, in most cases, the modified
algorithm seems not to be worse than the original algorithm and both trading strategies
usually outperforms the B&H strategy.

144 P. Lipinski

8.7 Conclusions

This chapter discussed extracting and reusing frequent knowledge patterns in building
trading experts in evolutionary decision support systems for financial time series analy-
sis. It focused on trading experts built by an evolutionary algorithm from a specific set
of trading rules, where frequent knowledge patterns corresponded to common building
blocks of trading rules occurring in most previous trading experts. Reusing frequent
knowledge patterns led to a significant reduction in the search space (in experiments,
from 2250 to about 2150) without significant decreases in objective function values.

In general, results of experiments were encouraging. Many tests showed that the
knowledge pattern captured a subset of an already successful group of trading rules
applied to a recurring trading problem arisen within a certain context. Decreasing the
time of trading expert building significantly improved the overall throughput of the
decision support system.

At the moment, the approach uses 15-minute frequent knowledge patterns extracted
from 15 previous trading experts coming from the last 15 minutes. Although it is tempt-
ing to shorten the time horizon to 10 or even 5 minutes, which would lead to larger
knowledge patterns, this may provoke premature convergence of the evolutionary al-
gorithm, so this may also require additional studies on mutation operators capable of
diversifying the population and avoiding focusing on a small part of the search space
around local maxima.

On the other hand, one can analyse knowledge patterns occurring over longer time
horizon in order to promote or eliminate trading rules that are permanently chosen or
rejected. In this case, it would appear to be necessary to develop a strategy which would
allow a trading rule to go back to the previous status after a certain time. Otherwise, a
rule might be eliminated forever, even if it would turn out to be efficient in the future.

It is also worth noticing that relaxing the definition of frequent knowledge patterns
and accepting in knowledge patterns also the trading rules that occur or not occur in
majority of trading experts, but not in all of them, may lead to further increases in
orders of frequent knowledge patterns, even over shorter time horizons.

Reduction of the computing time enables further development of the decision support
system. Currently, the data aggregation period is equal to one minute, which implies that
the system generates trading decisions every minute. Since the decision making process
has been accelerated, it is tempting to lessen the aggregation period so that the system
will react faster, for instance, every 30 or 15 seconds.

References

1. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. of the International Confer-
ence on Data Engineering, ICDE, Taipei, Taiwan (1995)

2. Allen, F., Karjalainen, R.: Using Genetic Algorithms to Find Technical Trading Rules. Jour-
nal of Financial Economics 51, 245–279 (1999)

3. Bauer, R.: Genetic Algorithms and Investment Strategies. Wiley, Chichester (1994)
4. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling.

Springer, Heidelberg (2006)

8 Frequent Knowledge Patterns in Evolutionary DSS 145

5. Colby, W., Meyers, T.: The Encyclopedia of Technical Market Indicators. Down Jones-Irwin
(1990)

6. Dempster, M., Jones, C.: A Real-Time Adaptive Trading System using Genetic Programming.
Quantitative Finance 1, 397–413 (2001)

7. Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive Trading with Grammatical Evolution. In:
Proc. of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 2587–2592. IEEE,
Los Alamitos (2006)

8. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading (1989)

9. Korczak, J., Lipinski, P., Roger, P.: Evolution Strategy in Portfolio Optimization. In: Collet,
P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp.
156–167. Springer, Heidelberg (2002)

10. Korczak, J., Lipinski, P.: Evolutionary Building of Stock Trading Experts in a Real-Time
System. In: Proc. of the 2004 Congress on Evolutionary Computation (CEC 2004), pp. 940–
947. IEEE, Los Alamitos (2004)

11. Lipinski, P.: Discovering Stock Market Trading Rules using Multi-Layer Perceptrons. In:
Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507,
pp. 1114–1121. Springer, Heidelberg (2007)

12. Lipinski, P.: ECGA vs. BOA in Discoverying Stock Market Trading Experts. In: Proc. of
Genetic and Evolutionary Computation Conference, GECCO 2007, pp. 531–538. ACM, New
York (2007)

13. Lipinski, P., Korczak, J.: Performance Measures in an Evolutionary Stock Trading Expert
System. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004.
LNCS, vol. 3039, pp. 835–842. Springer, Heidelberg (2004)

14. Loraschi, A., Tettamanzi, A.: An Evolutionary Algorithm for Portfolio Selection within a
Downside Risk Framework. In: Dunis, C.L. (ed.) Forecasting Financial Markets, pp. 275–
286. Wiley, Chichester (1996)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
New York (1994)

16. Moody, J., Wu, L., Liao, Y., Saffell, M.: Performance Function and Reinforcement Learning
for Trading Systems and Portfolios. Journal of Forecasting 17(56), 441–470 (1998)

17. Murphy, J.: Technical Analysis of the Financial Markets, NUIF (1998)
18. Neely, C., Weller, P., Dittmar, R.: Technical Analysis in the Foreign Exchange market Prof-

itable? A Genetic Programming Approach. Journal of Financial Quantitative Analysis 32,
405–426 (1997)

19. Sharpe, W.: Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk.
Journal of Finance 19, 425–442 (1964)

20. Tsang, E., Li, J., Markose, S., Er, H., Salhi, A., Iori, G.: EDDIE in Financial Decision Making.
Journal of Management and Economics 4(4) (November 2000)

9

Modeling Turning Points in Financial Markets with Soft
Computing Techniques

Antonia Azzini, Célia da Costa Pereira, and Andrea G.B. Tettamanzi

Università degli Studi di Milano, Dipartimento di Tecnologie dell’Informazione
via Bramante 65, I-26013 Crema, Italy
antonia.azzini,celia.pereira,andrea.tettamanzi@unimi.it

Summary. Two independent evolutionary modeling methods, based on fuzzy logic and neural
networks respectively, are applied to predicting trend reversals in financial time series of the
financial instruments S&P 500, crude oil and gold, and their performances are compared. Both
methods are found to give essentially the same results, indicating that trend reversals are partially
predictable.

9.1 Introduction

Even the most casual observer of a financial time series will notice that prices of finan-
cial instruments move up and down [11]; furthermore, this behaviour happens and can
be observed at all scales [13]. However, price movements are not regular and look un-
predictable. In general, market action consists of alternating up-trends and down-trends,
separated by turning points, which correspond to maxima and minima. A trader able to
buy at minima and sell at maxima, i.e., trade exactly at the turning points, would gain the
maximum profit possible. For this reason, the main objective of financial market fore-
casting techniques is to call turning points consistently and correctly. Two approaches
for calling turning points in a financial time series are possible:

• reveal turning points when they occur, or just after they have occurred — this is
what most technical analysis indicators are all about, starting from simple moving
averages to the most sophisticated indicators;

• predict the price at which the next turning point will most likely occur — this is the
approach we follow in this chapter.

To do that, we summarize the past history of the series up to the last confirmed
turning point by applying a noise-eliminating filter. The output of the filter is given as
input to a predictive model, whose output provides an estimate of the price at which the
next turning point is going to happen.

Biologically inspired methods have become extremely popular as tools for modeling
financial markets [6, 7]; these include evolutionary algorithms (EAs), neural networks
(NNs), and fuzzy logic. In this chapter we employ two types of models, namely fuzzy
rule bases, i.e., sets of fuzzy IF-THEN rules, and feedforward neural networks. Both
types of models are designed and optimized by means of evolutionary algorithms. The

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 147–167.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

148 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

Fig. 9.1. A schematic illustration of the construction of the zig-zag indicator. Significant turning
points (tops and bottoms) are indicated by triangles. The original price chart is the light line; the
thick trendlines are the swings that make up the zig-zag.

performance of models of the two types are compared with the aim of assessing which
one is more suited to the task.

The chapter is organized as follows: Section 9.2 states the problem, Sections 9.3
and 9.4 provide a description of the two modeling methods, and Section 9.5 reports the
experiments and discusses their results. Section 9.6 concludes.

9.2 Problem Description

The zig-zag indicator [1, 14] is essentially used to help individuating changes by high-
lighting the most significant reversals and by filtering out changes less than a specified
amount. Such an indicator is a series of trendlines that connect significant tops and
bottoms on a price chart, as illustrated by Figure 9.1. The minimum price reversal pa-
rameter θ specifies the percentage that the price must trace back from a top or bottom
in order to form a new “zig” or “zag” line.

The time series of prices of the financial instrument under study is pre-processed
by applying the zig-zag filter with a threshold θ — the reversal amount set by the user.
The threshold is used as follows. If a reversal in price trend fails to follow through to θ,
zig-zag will revise itself. The apparent upswing or downswing will be filtered out and
the previous trend will appear to continue without interruption. Once the price reversal
has reached or exceeded the threshold, zigzag’s last leg is no longer revisable.

Such a filter is used primarily to help us see changes by both punctuating the most
significant reversals and to eliminate noise by filtering out small and unimportant price
movements. This is done by decomposing the input time series into a series of alter-
nating up- and down-swings. The length of each swing which is given by the price
difference of its ends is divided by the length of the previous swing. The output result-
ing from the noise-eliminating filter is composed by the series of the resulting ratios.

The problem of predicting the price at which the next turning point will occur can
thus be transformed into the problem of predicting the next ratio of the series of ratios
of swing lengths, since the price of a turning point xt+1 can be calculated by knowing
the price of the two previous turning points xt−1 and xt and the ratio rt =

|xt+1−xt |
|xt−xt−1 | . The

9 Modeling Turning Points in Financial Markets 149

working hypothesis is that such prediction can be done at any time by considering the
n most recent ratios. In other words, we are searching the space of all autoregressive
models of {rt}t of order n.

A baseline for any model is provided by the simplest model possible, namely a
model that always predicts E[rt], without taking the last n ratios into account. E[rt]
can be estimated by taking the longest available time series for the financial instrument
considered and computing the average ratio of a swing length to the length of the pre-
vious swing. Such a model has a mean absolute error E[|rt −E[rt]|] and a mean square
error E[(rt − E[rt])2] = Var[rt], while the relative mean absolute error corresponds to
E[|rt −E[rt]|]/E[rt]. This, by the way, is the best performance one would expect from a
predictive model if the time series under observation were completely random or, which
is roughly equivalent [13], if the market were perfectly efficient.

9.3 Fuzzy Rule Base Optimization

Data mining is a process aimed at discovering meaningful correlations, patterns, and
trends between large amounts of data collected in a dataset. This process is able to tell us
important features that we didn’t know (or we could not see) or what is going to happen
next. This technique is called modeling, that is the act of building a model of a situation
where the answer is known and then applying that model to another situation where the
answer is unknown. In our case, a model is determined by observing past behaviour of
a financial instrument and extracting the relevant variables and correlations between the
data and the dependent variable. More precisely, model is described through a set of
fuzzy rules, made by one or more antecedent clauses (“IF . . . ”) and a consequent clause
(“THEN . . . ”). Clauses are represented by a pair of indices referring respectively to a
variable and to one of its fuzzy sub-domains, i.e., a membership function.

Using fuzzy rules makes it possible to get homogenous predictions for different clus-
ters without imposing a traditional partition based on crisp thresholds, that often do not
fit the data, particularly in financial applications. Fuzzy decision rules are useful in ap-
proximating non-linear functions because they have good interpolative power and are
intuitive and easily intelligible at the same time. Their characteristics allow the model to
give an effective representation of the reality and simultaneously avoid the “black-box”
effect of, e.g., neural networks.

The intelligibility of the model is useful for a trader, because understanding the rules
helps the user to judge if a model can be trusted.

9.3.1 Fuzzy Rule-Based Systems

A prominent role in the application of fuzzy logic to real-world problems is played
by fuzzy rule-based systems. Fuzzy rule-based systems are systems of fuzzy rules that
embody expert knowledge about a problem, and can be used to solve it by performing
fuzzy inferences.

The ingredients of a fuzzy rule-based systems are linguistic variables, fuzzy rules,
and defuzzification methods.

150 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

Linguistic Variables

A linguistic variable [23] is defined on a numerical interval and has linguistic values,
whose semantics is defined by their membership function. For example, a linguistic
variable temperature might be defined over the interval [−20◦C,50◦C]; it could have
linguistic values like cold, warm, and hot, whose meanings would be defined by appro-
priate membership functions.

Fuzzy Rules

A fuzzy rule is a syntactic structure of the form

IF antecedent THEN consequent, (9.1)

where each antecedent and consequent are formulas in fuzzy logic.
Fuzzy rules provide an alternative, compact, and powerful way of expressing func-

tional dependencies between various elements of a system in a modular and, most im-
portantly, intuitive fashion.

Inference in Fuzzy Rule-Based Systems

The semantics of a fuzzy rule-based system is governed by the calculus of fuzzy rules
[24]. In summary, all rules in a fuzzy rule base take part simultaneously in the inference
process, each to an extent proportionate to the truth value associated with its antecedent.
The result of an inference is represented by a fuzzy set for each of the dependent vari-
ables. The degree of membership for a value of a dependent variable in the associated
fuzzy set gives a measure of its compatibility with the observed values of the indepen-
dent variables.

Given a system with n independent variables x1, . . . , xn and m dependent variables
y1, . . . ,ym, let R be a base of r fuzzy rules

IF P1(x1, . . . , xn) THEN Q1(y1, . . . ,ym),
...

...
IF Pr(x1, . . . , xn) THEN Qr(y1, . . . ,ym),

(9.2)

where P1, . . . ,Pr and Q1, . . .Qr represent fuzzy predicates respectively on independent
and dependent variables, and let τP denote the truth value of predicate P. Then the
membership function describing the fuzzy set of values taken up by dependent variables
y1, . . . ,ym of system R is given by

τR(y1, . . . ,ym; x1, . . . , xn)
= sup1≤i≤r min{τQi (y1, . . . ,ym), τPi(x1, . . . , xn)}. (9.3)

The Mamdani Model

The type of fuzzy rule-based system just described, making use of the min and max
as the triangular norm and co-norm, is called the Mamdani model. A Mamdani system
[12] has rules of the form

9 Modeling Turning Points in Financial Markets 151

IF x1 is A1 AND . . . AND xn is An THEN y is B, (9.4)

where the Ais and B are linguistic values (i.e., fuzzy sets) and each clause of the form
“x is A” has the meaning that the value of variable x is in fuzzy set A.

Defuzzification Methods

There may be situations in which the output of a fuzzy inference needs to be a crisp
number y∗ instead of a fuzzy set R. Defuzzification is the conversion of a fuzzy quantity
into a precise quantity.

At least seven methods in the literature are popular for defuzzifying fuzzy outputs
[10], which are appropriate for different application contexts. The centroid method is the
most prominent and physically appealing of all the defuzzification methods. It results
in a crisp value

y∗ =

∫
yμR(y)dy

∫
μR(y)dy

, (9.5)

where the integration can be replaced by summation in discrete cases.
The next section introduces evolutionary algorithms, a biologically inspired tech-

nique which we use to learn and optimize fuzzy rule bases. We describe below a data-
mining approach based on the use of EAs, which recognize patterns within a dataset,
by learning models represented by sets of fuzzy rules.

9.3.2 The Evolutionary Algorithm

The described approach incorporates an EA for the design and optimization of fuzzy
rule-based systems originally developed to learn fuzzy controllers [17, 16], then adapted
for data mining, which has already been used for financial modeling by two of the
authors [9].

A model is a rule base, whose rules comprise up to four antecedent and one con-
sequent clause each. Input and output variables are partitioned into up to 16 distinct
linguistic values each, described by as many membership functions. Membership func-
tions for input variables are trapezoidal, while membership functions for the output
variable are triangular. Models are encoded in three main blocks:

1. a set of trapezoidal membership functions for each input variable; a trapezoid is
represented by four fixed-point numbers;

2. a set of symmetric triangular membership functions, represented as an area-center
pair, for the output variable;

3. a set of rules, where a rule is represented as a list of up to four antecedent clauses
(the IF part) and one consequent clause (the THEN part); a clause is represented by
a pair of indices, referring, respectively, to a variable and to one of its membership
functions.

An island-based distributed EA is used to evolve models. Island-based approaches
are useful in harnessing distributed computing power and maintaining solution diver-
sity and thereby reducing the chance of premature convergence of the population.

152 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

The sequential algorithm executed on every island is a standard generational replace-
ment, elitist EA. Crossover and mutation are never applied to the best individual in the
population.

The recombination operator is designed to preserve the syntactic legality of models.
A new model is obtained by combining the pieces of two parent models. Each rule of
the offspring model can be inherited from one of the parent models with probability 1/2.
When inherited, a rule takes with it to the offspring model all the referred domains with
their membership functions. Other domains can be inherited from the parents, even if
they are not used in the rule set of the child model, to increase the size of the offspring
so that their size is roughly the average of its parents’ sizes.

Like recombination, mutation produces only legal models, by applying small
changes to the various syntactic parts of a fuzzy rulebase.

Migration is responsible for the diffusion of genetic material between populations
residing on different islands. At each generation, with a small probability (the migration
rate), a copy of the best individual of an island is sent to all connected islands and as
many of the worst individuals as the number of connected islands are replaced with an
equal number of immigrants. A detailed description of the algorithm and of its genetic
operators can be found in [17].

9.4 Neuro Genetic Optimization

The second evolutionary approach [3, 4, 5] considered in this work, evolves a popula-
tion of neural networks. It is based on a particular type of evolving systems, namely
neuro-genetic systems, which have become a very important topic of study in neu-
ral network design. They make up so-called Evolutionary Artificial Neural Networks
(EANNs) [18, 19, 20], i.e., biologically-inspired computational models that use evolu-
tionary algorithms in conjunction with neural networks in a synergetic way.

Several approaches presented in the literature have been developed to apply evo-
lutionary algorithms to neural network design [2]. Some consider the setting of the
weights in a fixed topology network. Others optimize network topologies, or evolve
the learning rules, the input feature selection, or the transfer function used by the net-
work. Several systems also allow an interesting conjunction of the evolution of network
architecture and weights, carried out simultaneously.

Important aspects of such a simultaneous evolution underline that an evolutionary
algorithm allows all aspects of a neural network design to be taken into account at once,
without requiring any expert knowledge of the problem. Furthermore, the conjunction
of weights and architecture evolution overcomes the possible drawbacks of each single
technique and combines their advantages. The main advantage of weight evolution, for
example, is to simulate the learning process of a neural network, avoiding the drawbacks
of the traditional gradient descent techniques, such as the backpropagation algorithm
(BP). Generally, the ANN architecture design follows some performance optimality
criteria, regarding, for example, the setting of two network parameters, like the learning
rate and the momentum. The first affects the speed at which the ANN arrives at the
minimum solution, and it is analogous to the step-size parameter of a gradient-descent
algorithm when the BP is used.

9 Modeling Turning Points in Financial Markets 153

The second is used to prevent the system from converging to local minima. A high
value of this parameter can help to increase the speed of convergence of the system.
However, if too high, it could create a risk of overshooting the minimum, causing the
system to become unstable. Similarly, if too low, it could slow down the training of the
system.

The performance level of such network’s parameters forms a surface in the design
space. The advantage of such a representation is that determining the optimal architec-
ture design is equivalent to finding the highest point on this surface.

The simultaneous evolution of architecture and weights limits the negative effects
of a noisy-fitness evaluation in a NN structure optimization, by defining a one-to-one
mapping between genotypes and phenotypes of the individuals.

9.4.1 The Neuro-genetic Approach

The neuro-genetic approach considered in this financial application restricts the atten-
tion to a specific subset of feedforward neural networks, namely Multi-Layer Percep-
trons (MLPs), which make use of advantages like the ability of EAs and NNs to learn
and generalize, reduced dataset dimensions and computational time requirements, ease
of implementation and the use of simple structures.

The approach can be considered as a hybrid algorithm. The basic idea is to exploit
the ability of the EA to find a solution close enough to the global optimum, together
with the ability of a gradient descent technique, the Backpropagation algorithm (BP),
to finely tune a solution and reach the nearest local minimum. BP is not able to find
a global minimum if the error function is multimodal and/or non-differentiable, but it
becomes useful when the minimum of the error function currently found is close to a
solution but not close enough to solve the problem. The adaptive nature of NN learning
by examples is a very important feature of these methods, and the training process mod-
ifies the weights of the ANN, in order to improve a pre-defined performance criterion,
that corresponds to an objective function over time. In several methods to train neural
networks, BP has emerged as a suitable solution for finding a set of good connection
weights and biases.

In the overall evolutionary process the population is randomly created, initialized,
and the genetic operators are then applied to each network until termination conditions
are satisfied. The idea proposed in this work is close to the solution presented in EPNet
[20]: a new evolutionary system for evolving feedforward ANNs, that puts emphasis on
evolving ANN’s behaviours. This neuro-genetic approach evolves ANN’s architecture
and connection weights simultaneously, just like EPNet, in order to reduce noise in
fitness evaluation. Close behavioural link between parents and offspring is maintained
by applying the genetic operators and a partial training, in order to reduce behavioural
disruption. The genetic operators include selection and two kinds of mutations, that are
applied, respectively, to the weights and to the network topologies. Mutation is applied
before the training process; in particular, weight mutation is carried out before topology
mutation, in order to perturb the connection weights of the neurons in a neural network.
After each weight mutation, a weight check is carried out, in order to delete neurons
whose contribution is negligible with respect to the overall network output. This allows

154 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

IW

b

b

b

b

b

b

y

Input First Layer Second Layer Output

Genotype Vector 3 2 1

},{ jilw

},{ jilw

232221

131211

lwlwlw

lwlwlw
LW

1,1

1,2

1,3

2,1

2,2

3,1

1,1a

2,1a

3,1a

1,2
a

2,2a

Fig. 9.2. Example of an individual.

us to obtain, if possible, a reduction of the computational cost of the entire network
before any structure mutation.

In the literature it is well known that recombination of neural networks of arbitrary
structure is a very hard issue, due to the detrimental effect of the permutation problem.
No satisfactory solutions have been proposed so far. As a matter of fact, the most suc-
cessful approaches to neural network evolution do not use recombination at all [20].
Therefore, in this approach the crossover operator is not applied, due to the disruptive
effects it could have on the neural models, after the cut and recombination processes on
the network structures of the selected parents.

9.4.2 Individual Encoding

As described in detail in [3], individuals are not constrained to a pre-established topol-
ogy, and the population is initialized with different hidden layer sizes and different
numbers of neurons for each individual, according to two exponential distributions, in
order to maintain diversity among all the individuals in the new population. Such di-
mensions are not bounded in advance, even though the fitness function may penalize
large networks. The number of neurons in each hidden layer is constrained to be greater
than or equal to the number of network outputs, in order to avoid hourglass structures,
whose performance tends to be poor. Indeed, a layer with fewer neurons than the outputs
destroys information which later cannot be recovered. An example of an individual en-
coded through a neural network is shown in Figure 9.2. The genotype vector represents
the number of elements defining the hidden layers and the output.

Each individual is encoded in a structure in which basic information are maintained
as illustrated in Table 9.1. A normal distribution is applied to determine the weights, the
biases, and variance matrices. The latter are initialized to one for all individuals and are
applied in conjunction with evolutionary strategies in order to perturb network weights
and biases.

The values of all the parameters are affected by the genetic operators during evo-
lution, in order to perform incremental (adding hidden neurons or hidden layers) and
decremental (pruning hidden neurons or hidden layers) learning.

9 Modeling Turning Points in Financial Markets 155

Table 9.1. Individual Representation.

Element Description

l Length of the topology string, corresponding to the number of layers.
topology String of integer values that represent the number of neurons in each layer.

W(0) Weights matrix of the input layer neurons of the network.
Var(0) Variance matrix of the input layer neurons of the network.
W(i) Weights matrix for the ith layer, i = 1, . . . , l.

Var(i) Variance matrix for the ith layer, i = 1, . . . , l.
bi j Bias of the jth neuron in the ith layer.

Var(bi j) Variance of the bias of the jth neuron in the ith layer.

9.4.3 The Evolutionary Process

The general framework of the evolutionary process can be described by the following
pseudo-code. Individuals in a population compete and communicate with other individ-
uals through genetic operators applied with independent probabilities, until termination
conditions are satisfied.

1. Initialize the population by generating new random individuals.
2. Create for each genotype the corresponding MLP, and calculate its cost and its fitness values.
3. Save the best individual as the best-so-far individual.
4. While not termination condition do

a) Apply the genetic operators to each network.
b) Decode each new genotype into the corresponding network.
c) Compute the fitness value for each network.
d) Save statistics.

In each new generation a new population has to be created, and the first half corre-
sponds to the best parents that have been selected with the truncation operator, while the
second part of the new population is defined by creating offspring from the previously
selected parents. Then, each individual of the new population is mutated, trained and
the new corresponding fitness function is calculated, in order to determine the new best
one. Genetic operators are applied to each network as follows:

1. Select from the population (of size n) �n/2� individuals by truncation and create a new pop-
ulation of size n with copies of the selected individuals.

2. For all individuals in the population:
a) Mutate the weights and the topology of the offspring.
b) Train the resulting network using the training set.
c) Calculate f on the test set (see Section 9.4.3).
d) Save the individual with lowest f as the best-so-far individual if the f of the previously

saved best-so-far individual is higher (worse).
3. Save statistics.

For each generation of the population all information of the best individual is saved.

Selection

The selection method implemented in this work is taken from the breeder genetic al-
gorithm [8], and differs from natural probabilistic selection in that evolution considers

156 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

only the individuals that best adapt to the environment. Elitism is also used, allowing
the best individual to survive unchanged in the next generation and solutions to mono-
tonically get better over time.

The selection strategy implemented is truncation. It is not a novel solution, indeed,
several evolutionary approaches described this operator in order to prevent the popula-
tion from remaining too static and perhaps not evolving at all. Moreover, this kind of
selection is a very simple technique and produces satisfactory solutions through con-
junction with other strategies (like elitism).

Mutation

The aim of this operator is to introduce new genetic material and to maintain diversity
in the population. Generally, the purpose of mutation is to simulate the effect of tran-
scription errors that can occur with a very low probability, the mutation rate, when a
chromosome is duplicated. The evolutionary process applies two kinds of neural net-
work perturbations:

• Weights mutation, that perturbs the weights of the neurons before performing any
structural mutation and applying BP. This kind of mutation defines a Gaussian dis-
tribution for the Variance matrix values Var(i) of each network weight W(i), defined
in Table 9.1. This solution is similar to the approach implemented by Schwefel [15],
who defined evolution strategies, algorithms in which the strategy parameters are
proposed for self-adapting the mutation concurrently with the evolutionary search.
The main idea behind these strategies, moreover considered in this approach, is to
allow a control parameter, like mutation variance, to self-adapt rather than changing
their values by some deterministic algorithms. Evolution strategies perform very
well in numerical domains, since they are dedicated to (real) function optimization
problems.

This kind of mutation offers a simplified method for self-adapting the variance
matrix Var(i)

j , whose values are defined as log-normal perturbations of their parent
parameter values.

• Topology mutation is defined with four types of mutation by considering neurons
and layer addition and elimination. It is implemented after weight mutation because
a perturbation of weight values changes the behaviour of the network with respect
to the activation functions; in this case, all neurons whose contribution becomes
negligible with respect to the overall behaviour, will be deleted from the structure.
The addition and the elimination of a layer and the insertion of a neuron are ap-
plied with independent probabilities, corresponding respectively to three algorithm
parameters p+layer, p−layer and p+neuron. These parameters are set at the beginning and
maintained unchanged during the entire evolutionary process. Anyway, such topol-
ogy mutation operators are aimed at minimizing their impact on the behaviour of
the network; in other words, they are designed to be as little disruptive, and as
much neutral, as possible, preserving the behavioural link between the parent and
the offspring better than by adding random nodes or layers.

9 Modeling Turning Points in Financial Markets 157

Fitness Function

An important aspect that has to be considered in the overall evolutionary process is
that the depth of the network structure could in principle increase without limits under
the influence of some of the topology mutation operators, defining a so-called bloating
effect. In order to avoid this problem some penalization parameters are introduced in
the fitness function in order to control the structure growth, reducing the corresponding
computational cost.

Then, the fitness of an individual depends both on its accuracy (i.e., its mse, the mean
square error) and on such cost. Although it is customary in EAs to assume that better
individuals have higher fitness, the convention that a lower fitness means a better NN is
adopted in this work. This maps directly the objective function into a cost minimization
problem, that is defined as:

f = λkc+ (1−λ) ∗mse, (9.6)

where λ corresponds to the desired tradeoff between network cost and accuracy, and has
been set to 0.2 after some preliminary experiments. k is a scaling constant set to 10−6,
and c models the computational cost of a neural network, defined by

c = αNhn +βNsyn, (9.7)

where Nhn is the number of hidden neurons, Nsyn is the number of synapses, and α = 2
and β = 4 represent, respectively, the costs of each hidden neuron and of each synapse.
This term has been introduced to keep the demand of computational resources at a
reasonable level by penalizing large networks. In this work we have assumed these
values in order to put more emphasis the number of neural network synapses. The fitness
is calculated according to Equation 9.6 over the test set.

9.5 Experiments and Results

To empirically assess the extent to which turning points in financial time series are pre-
dictable, we have applied the two evolutionary modeling methods described above in
Sections 9.3 and 9.4 to predicting turning points for three very diverse financial instru-
ments, namely the S&P 500 stock index, a crude oil future, and gold.

First of all, we would like to stress the fact that, although they both rely on evolution-
ary algorithms for optimization, the two modeling methods are as different from each
other as two modeling methods can be, in that they use diametrically opposed languages
to express their models: on one side, we have linguistic, symbolic models, expressed in
the language of IF-THEN rules; on the other side, we have connectionist, subsymbolic
models, expressed as multilayer perceptrons.

Furthermore, the three financial instruments under study have been selected to be
heterogeneous and representative of different types of markets:

• the S&P 500 is a value-weighted index of the prices of 500 large-cap common
stocks actively traded in the United States, to date still the strongest economy of
the world; the S&P 500 is one of the most widely followed indices of large-cap
American stocks and is considered a bellwether for the American economy;

158 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

Table 9.2. E[rt], Var[rt] and relative error values obtained from different settings of θ for each
financial instrument.

Instrument θ E[rt] Var[rt] Relative Error
S&P 500 0.01 1.2918 1.1062 0.5586

0.02 1.2418 0.6895 0.4962
crude oil 0.005 1.3811 1.6176 0.6494

0.01 1.3199 1.2811 0.5864
gold 0.005 1.2916 1.0146 0.5680

0.01 1.2815 1.0781 0.5622

• crude oil is perhaps the most representative and influential industrial commodity,
whose demand goes hand in hand with global industrial production; it may be re-
garded as a convenient proxy for the complex of all raw matters that constitute the
input to the world’s industry;

• gold is a commodity too, but a very special one, with unique features: since the
dawn of civilization, gold has been used as a store of value and a medium of ex-
change; until very recently, it served as a standard for monetary systems; to date,
most of above-surface gold is hoarded as reserve by central banks and supernational
institutions; its price follows patterns that are more typical of foreign exchange mar-
kets than anything else.

For the S&P 500 index, we have considered the time series of daily prices from
September 26, 1985 to October 31, 2008, while for the crude oil future and gold we
have used time series of five-minute prices ranging from May 5, 2008 at 3:00 am to
April 9, 2009 at 5:10 pm for crude oil and from June 5, 2008 at 3:00 am to April 9,
2009 at 5:10 pm for gold.

With n = 12, applying the zig-zag filter with two different values of threshold θ pro-
duces datasets of, respectively, 2,769 and 1,095 records for the S&P 500 index, 4,708
and 1,892 for crude oil, and 1,960 and 620 for gold.

The values of E[rt], Var[rt], and the relative error of the baseline model, which
always predicts a swing of length E[rt], are reported in Table 9.2 for the different com-
binations of instrument and zig-zag threshold θ that have been employed.

The reason why different values of θ were selected for S&P 500 and for the two com-
modities is the time series have different temporal resolutions (daily vs. five-minute),
which result in different scales of period-over-period variations. The values selected for
θ somehow compensate for such difference in scale.

Following the commonly accepted practice of machine learning, the problem data
are partitioned into training, test and validation sets, used, respectively for training, to
stop learning avoiding overfitting, and to test the generalization capabilities of each
model.

We have set aside, for the validation of the S&P 500, the 200 most recent records
for θ = 0.01 and the 100 most recent records for θ = 0.02. Of the remaining records, a
random 10% is used as the test set by the fuzzy-evolutionary method and 18% and 10%
respectively by the neuro-genetic method.

9 Modeling Turning Points in Financial Markets 159

Table 9.3. A comparison of the results obtained by the two methods on the two datasets generated
for θ = 0.01 and θ= 0.02 when applied to the validation set (out of sample) for the S&P 500 index.

Financial Dataset→ θ = 0.01 θ = 0.02
Instrument Method mean stdev best mean stdev best
S&P 500 Fuzzy-Evolutionary 0.4720 0.0055 0.4657 0.4110 0.0049 0.4057

Neuro-Evolutionary 0.4813 0.0096 0.4740 0.40307 0.0250 0.3958

Table 9.4. A comparison of the results obtained by the two methods on the two datasets generated
for θ = 0.005 and θ = 0.01 when applied to the validation set (out of sample) for crude oil and
gold.

Financial Dataset→ θ = 0.005 θ = 0.01
Instrument Method mean stdev best mean stdev best
crude oil Fuzzy-Evolutionary 0.5370 0.1501 0.4807 0.4768 0.0072 0.4682

Neuro-Evolutionary 0.5109 0.0059 0.4984 0.5150 0.0119 0.4806

gold Fuzzy-Evolutionary 0.4679 0.0071 0.4574 0.4631 0.0116 0.4399
Neuro-Evolutionary 0.5096 0.0081 0.4945 0.5145 0.0400 0.4278

Similarly, we have set aside, for the validation of crude oil the 709 most recent
records for θ = 0.005 and 193 for θ = 0.01, while, for the validation of gold, we have
considered, respectively, the 161 and the 100 most recent records. Then, the fuzzy-
evolutionary method used the 10% of the remaining dataset as the test set, while 10%
and 25% are used by the neuro-genetic method as the test set, respectively, for θ = 0.005
and θ = 0.01.

We performed 20 runs for either dataset with the neuro-genetic method and 10 runs
for either dataset with the fuzzy-evolutionary method, which is more demanding in
terms of computational resources. The results of those runs are shown in Tables 9.3
and 9.4.

Tables 9.3 and 9.4 summarize, respectively, the performance of the two modeling
methods on the validation set for S&P 500 (for θ = 0.01 and θ = 0.02) and on crude oil
and gold (for θ = 0.005 and θ = 0.01). Although the fuzzy-evolutionary method appears
to slightly outperform the neural-evolutionary method, it does not do so consistently,
nor by a wide margin. Instead, both methods perform largely better than the baseline
model for every instrument and threshold θ, suggesting that some regularities exist that
may be exploited by the evolved models.

The fact that two independent methods, both based on global optimization methods
like evolutionary algorithms, yet using two radically different “languages” to represent
models, have obtained very similar results, leads us to doubt that there is room for
significant further improvement. In other words, there is reason to presume that their
results are very close to the optimum. Of course, this might also mean that the zig-zag
indicator can only capture a limited amount of information—and no matter how one
processes it, one can only do so well.

160 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

0 50 100 150 200
−1

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100
−1

0

1

2

3

4

5

6

θ = 0.01 θ = 0.02

Fig. 9.3. Performance on the validation set (out-of-sample data) of the neural networks evolved
by independent runs of the neuro-genetic method for the two datasets considered for S&P 500.
The records of the validation set have been sorted by increasing rt . The thick black line is the
actual rt , the thick light-grey line is E[rt], while the other lines represent the predictions of each
neural network.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100
0

1

2

3

4

5

6

θ = 0.01 θ = 0.02

Fig. 9.4. Performance on the validation set (out-of-sample data) of the fuzzy rule bases evolved by
independent runs of the fuzzy-evolutionary method for the two datasets considered for S&P 500.
The records of the validation set have been sorted by increasing rt . The thick black line is the
actual rt , the thick light-grey line is E[rt], while the other lines represent the predictions of each
fuzzy model.

Figures 9.3 and 9.4 plot, respectively, the performance of the best neural networks
and fuzzy rule-based models produced by each run for the financial instrument S&P 500,
while Figure 9.5 compares the two best solutions obtained from the fuzzy and neuro-
genetic approaches over the validation set of S&P 500 for, respectively, θ = 0.01 and
θ = 0.02.

In the same way, Figures 9.6, 9.7, 9.9, and 9.10 plot, respectively, the performance
of the best neural networks and fuzzy rule-based models produced by each run for
the crude oil and gold commodities, while Figures 9.8 and 9.11 compare the two best

9 Modeling Turning Points in Financial Markets 161

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

E [r
t
]

best neural
Actual r

t

best fuzzy

0 20 40 60 80 100
0

1

2

3

4

5

6
best neural
best fuzzy
Actual r

t

E[r
t
]

θ = 0.01 θ = 0.02

Fig. 9.5. Comparison of the best results on the validation set of the fuzzy- and the neuro-
evolutionary approaches for S&P 500. The dashed black line is the actual rt , the dashed grey
line is E[rt], while the grey line represents the best fuzzy model and the black line the best neural
model.

0 100 200 300 400 500 600 700 800
−2

0

2

4

6

8

10

0 50 100 150 200
0

1

2

3

4

5

6

7

θ = 0.005 θ = 0.01

Fig. 9.6. Performance on the validation set (out-of-sample data) of the neural networks evolved
by independent runs of the neuro-genetic method for the two datasets considered for crude oil.
The records of the validation set have been sorted by increasing rt . The thick black line is the
actual rt , the thick light-grey line is E[rt], while the other lines represent the predictions of each
neural network.

solutions obtained by the fuzzy- and neuro-evolutionary approaches over the validation
sets of these two commodities for, respectively, θ = 0.005 and θ = 0.01.

Although at first sight the predictions provided by the models found by both methods
may appear disappointing, a closer examination of the graphs in these figures reveals
something interesting.

What is striking in all these figures is that the lines representing the predictions by
the various models appear to follow the same or very similar patterns. The graphs have
been obtained by sorting the records of the validation set by increasing rt, and then
plotting the actual rt (which, by construction, comes out as a monotonically increasing

162 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

0 100 200 300 400 500 600 700 800
−2

0

2

4

6

8

10

0 50 100 150 200
0

1

2

3

4

5

6

7

θ = 0.005 θ = 0.01

Fig. 9.7. Performance on the validation set (out-of-sample data) of the fuzzy rule bases evolved
by independent runs of the fuzzy-evolutionary method for the two datasets considered for crude
oil. The records of the validation set have been sorted by increasing rt. The thick black line is the
actual rt , the thick light-grey line is E[rt], while the other lines represent the predictions of each
fuzzy model.

0 100 200 300 400 500 600 700 800
−2

0

2

4

6

8

10
Actual r

t

E[r
t
]

best neural
best fuzzy

0 50 100 150 200
0

1

2

3

4

5

6

7
Actual r

t

E[r
t
]

best neural
best fuzzy

θ = 0.005 θ = 0.01

Fig. 9.8. Comparison of the best results on the validation set of the fuzzy- and the neuro-
evolutionary approaches for crude oil. The dashed black line is the actual rt , the dashed grey
line is E[rt], while the grey line represents the best fuzzy model and the black line the best neural
model.

line), the prediction of the baseline model E[rt] (which, being constant, comes out as a
flat line), and the predictions of the various models.

A clear tendency can be observed for models evolved by independent runs of both
methods to provide similar predictions for the same records.

The fact that independently evolved models commit similar errors for the same
records cannot be a coincidence, but it must be understood as evidence that the mod-
els are striking systematic trade-offs among errors committed when predicting rt in
contexts that look similar as far as the recent previous history of the time series is con-
cerned, in a struggle to achieve the smallest possible overall error.

9 Modeling Turning Points in Financial Markets 163

0 20 40 60 80 100 120 140 160 180
−2

0

2

4

6

8

10

12

14

0 20 40 60 80 100
−4

−2

0

2

4

6

8

10

θ = 0.005 θ = 0.01

Fig. 9.9. Performance on the validation set (out-of-sample data) of the neural networks evolved
by independent runs of the neuro-genetic method for the two datasets considered for gold. The
records of the validation set have been sorted by increasing rt. The thick black line is the actual
rt, the thick light-grey line is E[rt], while the other lines represent the predictions of each neural
network.

0 20 40 60 80 100 120 140 160 180
−2

0

2

4

6

8

10

12

14

0 20 40 60 80 100
−4

−2

0

2

4

6

8

10

θ = 0.005 θ = 0.01

Fig. 9.10. Performance on the validation set (out-of-sample data) of the fuzzy rule bases evolved
by independent runs of the fuzzy-evolutionary method for the two datasets considered for gold.
The records of the validation set have been sorted by increasing rt . The thick black line is the
actual rt , the thick light-grey line is E[rt], while the other lines represent the predictions of each
fuzzy model.

Figures 9.5, 9.8, and 9.11 are even more impressive because they show that the best
fuzzy and neural models, which are not only independently evolved, but also based on
different representations, behave in the same manner, although neural networks seem
more “extremist” in their predictions, whereas fuzzy rule bases look more “moderate”.
However, in despite of this apparent quantitative difference, their qualitative behaviour
is almost identical.

To give the curious reader an idea of the kinds of models that turn out to be
good at predicting turning points, the best topologies obtained from the neuro-genetic

164 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14
Actual r

t

E[r
t
]

best neural
best fuzzy

0 20 40 60 80 100
−2

0

2

4

6

8

10
Actual r

t

E[r
t
]

best neural
best fuzzy

θ = 0.005 θ = 0.01

Fig. 9.11. Comparison of the best results on the validation set of the fuzzy- and the neuro-
evolutionary approaches for gold. The dashed black line is the actual rt , the dashed grey line
is E[rt], while the grey line represents the best fuzzy model and the black line the best neural
model.

0.6709

0.4538

-0.4175

-0.2210

-0.9059

-0.1402

Swing(t)

1.2245

0.6224

0.4636

0.8807

1.3976

Swing(t-1)

Swing(t-2)

Swing(t-3)

Swing(t-4)

Swing(t-5)

Swing(t-6)

Swing(t-7)

Swing(t-8)

Swing(t-9)

Swing(t-10)

Swing(t-11)

Swing(t-12)

Fig. 9.12. Topology of the best neural network for θ = 0.01. The thick black line refers to connec-
tion weights w ≥ 1. The thick dark grey line corresponds to values defined as 0.5 ≤ w < 1, while
the light grey line to those defined as 0 ≤ w < 0.5. Finally the dashed light grey line corresponds
to negative correlations w < 0.

approach for each of the two datasets for the financial instrument S&P 500 are shown
in Figures 9.12 and 9.13, corresponding, respectively, to θ = 0.01 and 0.02. An interest-
ing aspect that can be highlighted is that, while the first model corresponds to a more
usual network with normal connections, in the second network (see Figure 9.13) the
last hidden connection is set, together with the bias of the last node, to a negative value.
Such connection could represent a reversal (through a NOT operator) of the information

9 Modeling Turning Points in Financial Markets 165

0.2702

1.1295

-0.6951 0.4230 -1.2369

0.5641

0.8572

6.604 -0.526
Swing(t)

Swing(t-1)

Swing(t-2)

Swing(t-3)

Swing(t-4)

Swing(t-5)

Swing(t-6)

Swing(t-7)

Swing(t-8)

Swing(t-9)

Swing(t-10)

Swing(t-11)

Swing(t-12)

Fig. 9.13. Topology of the best neural network for θ = 0.02. As reported in Figure 9.12, the thick
black line refers to connection weights w≥ 1. The thick dark grey line corresponds to 0.5 ≤w < 1,
and the light grey line to 0 ≤ w < 0.5. Finally the dashed light grey line corresponds to negative
correlations w < 0.

IF TRUE THEN swing(t) is 1.44
IF swing(t−1) is medium-large THEN swing(t) is 0.12
IF swing(t−3) is very-large AND swing(t−11) is small-to-medium THEN swing(t) is 0.12
IF swing(t−1) is medium AND swing(t−2) is medium-to-large THEN swing(t) is 0.12
IF swing(t−1) is medium-to-huge AND swing(t−2) is medium THEN swing(t) is 0.12
IF swing(t−1) is medium-to-huge THEN swing(t) is 0.12
IF swing(t−1) is medium-to-huge THEN swing(t) is 0.12
IF swing(t−1) is medium AND swing(t−2) is medium-to-large THEN swing(t) is 0.12

Fig. 9.14. The best fuzzy rule base for θ = 0.01. The linguistic values have been manually given
meaningful names to improve readability.

flow; however, it seems to be an effect of the backpropagation algorithm used to train
the networks.

The best fuzzy rule bases obtained by the fuzzy-evolutionary approach for either
S&P 500 dataset are shown in Figures 9.14 and 9.15. It can be observed that both rule
bases feature a sort of default rule, which always fires, and sets the prediction of swing(t)
to 1.44 for θ = 0.01 and 1.57 for θ = 0.02, while all the remaining rules appear to be
there to recognize and handle significant patterns where different predictions can be
made. Interestingly, the rule base in Figure 9.14 uses but the three most recent swings
to predict the next one; the most recent swings have a prevailing role in the rule base in
Figure 9.15 as well, although “older” swings are looked at in a few rules.

166 A. Azzini, C. da Costa Pereira, and A.G.B. Tettamanzi

IF swing(t−7) is large AND swing(t−11) is medium-large AND swing(t−5) is large
AND swing(t−2) is medium THEN swing(t) is 8.65

IF swing(t−7) is large AND swing(t−5) is medium-large AND swing(t−1) is large
THEN swing(t) is 15

IF TRUE THEN swing(t) is 1.57
IF swing(t−1) is large AND swing(t−8) is medium-small THEN swing(t) is 0.13
IF swing(t−1) is small-to-large AND swing(t−2) is medium THEN swing(t) is 0.13
IF swing(t−2) is medium THEN swing(t) is 0.13
IF swing(t−6) is around 11 AND swing(t−12) is between 6 and 10

AND swing(t−8) is medium-small THEN swing(t) is 0.13
IF swing(t−1) is small-to-large THEN swing(t) is 0.13
IF swing(t−1) is large AND swing(t−9) is small THEN swing(t) is 0.13
IF swing(t−1) is large THEN swing(t) is 0.13

Fig. 9.15. The best fuzzy rule base for θ = 0.02. The linguistic values have been manually given
meaningful names to improve readability.

9.6 Conclusion and Future Work

Two independent evolutionary modeling methods have been applied to predicting trend
reversals in financial time series. The results obtained indicate that the lengths of price
swings of financial instruments follow a largely, but not exclusively, random pattern.
However, the results of the experiments that have been performed provide empirical
evidence that the non-random part of their behaviour can be modeled and predicted.

Whether this predictable part of a financial time series behaviour can be effectively
exploited for gaining excess returns is an open question, but we believe our results might
constitute yet another small piece of evidence against the efficient market hypothesis, if
one could trade them profitability having adjusted for risk.

Detailed results have been shown regarding the S&P500 index, crude oil, and gold,
which, we argued, form a representative selection of financial instruments. However,
the time series of all the other instruments we have tried to apply the same approach to,
show the same behaviour.

References

1. Achelist, S.: Technical analysis from A to Z. Probus Publisher, Chicago (1995)
2. Azzini, A.: A New Genetic Approach for Neural Network Design. Ph.D. Thesis (March

2007), http://www.dti.unimi.it/azzini/wwwmat/azzinipublication.htm
3. Azzini, A., Tettamanzi, A.: A neural evolutionary approach to financial modeling. In: Pro-

ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2006, vol. 2,
pp. 1605–1612. Morgan Kaufmann, San Francisco (2006)

4. Azzini, A., Tettamanzi, A.: Evolving Neural Networks for Static Single-Position Automated
Trading. Journal of Artificial Evolution and Applications (2008), doi:10.1155/2008/184286

5. Azzini, A., Tettamanzi, A.: Evolutionary Single-Position Automated Trading. In: Proceed-
ings of European Workshop on Evolutionary Computation in Finance and Economics,
EVOFIN 2008, pp. 1605–1612 (2008)

6. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling.
Springer, Berlin (2006)

http://www.dti.unimi.it/azzini/wwwmat/azzinipublication.htm

9 Modeling Turning Points in Financial Markets 167

7. Brabazon, A., O’Neill, M.: Natural Computing in Computational Finance. Springer, Berlin
(2008)

8. Muhlenbein, H., Schlierkamp-Voosen, D.: The science of breeding and its application to the
breeder genetic algorithm (bga). Evolutionary Computation 1(4), 335–360 (1993)

9. da Costa Pereira, C., Tettamanzi, A.: Fuzzy-evolutionary modeling for single-position day
trading. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance,
pp. 131–159. Springer, Berlin (2008)

10. Hellendoorn, H., Thomas, C.: Defuzzification in Fuzzy Controllers. Intelligent and Fuzzy
Systems 1, 109–123 (1993)

11. Herbst, A.: Analyzing and Forecasting Futures Prices. Wiley, New York (1992)
12. Mamdani, E.: Advances in Linguistic Synthesis of Fuzzy Controllers. International Journal

of Man Machine Studies 8, 669–678 (1976)
13. Peters, E.: Chaos and Order in the Capital Markets, 2nd edn. Wiley, New York (1996)
14. Raftopoulos, S.: The Zigzag Trend Indicator. Technical Analysis of Stocks and Commodi-

ties 21(11), 26–32 (2003)
15. Schwefel, H.: Numerical Optimization for Computer Models. John Wiley, Chichester (1981)
16. Tettamanzi, A.: An evolutionary algorithm for fuzzy controller synthesis and optimization.

In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5/5, pp. 4021–
4026. IEEE Systems, Man, and Cybernetics Society (1995)

17. Tettamanzi, A., Poluzzi, R., Rizzotto, G.: An evolutionary algorithm for fuzzy controller syn-
thesis and optimization based on SGS-Thomson’s W.A.R.P. fuzzy processor. In: Zadeh, L.,
Sanchez, E., Shibata, T. (eds.) Genetic algorithms and fuzzy logic systems: Soft computing
perspectives. World Scientific, Singapore (1996)

18. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447
(1999)

19. Yao, X.: Evolutionary Optimization. Kluwer Academic Publishers, Norwell (2002)
20. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE

Transactions on Neural Networks 8(3), 694–713 (1997)
21. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE

Transactions on Neural Networks 8(3), 694–713 (1997)
22. Zadeh, L.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
23. Zadeh, L.: The concept of a Linguistic Variable and its application to Approximate Reason-

ing, I–II. Information Science 8, 199–249, 301–357 (1975)
24. Zadeh, L.: The Calculus of Fuzzy If-Then Rules. AI Expert 7(3), 22–27 (1992)

10

Evolutionary Money Management

Philip Saks1 and Dietmar Maringer2

1 Centre for Computational Finance and Economic Agents, University of Essex
psaks@essex.ac.uk

2 Economics and Business Faculty, University of Basel
dietmar.maringer@unibas.ch

Summary. This paper evolves trading strategies using genetic programming on high-frequency
tick data of the USD/EUR exchange rate covering the calendar year 2006. This paper proposes
a novel quad tree structure for trading system design. The architecture consists of four trees
each solving a separate task, but mutually dependent for overall performance. Specifically, the
functions of the trees are related to initiating (“entry”) and terminating (“exit”) long and short
positions. Thus, evaluation is contingent on the current market position. Using this architecture
the paper investigates the effects of money management. Money management refers to certain
measures that traders use to control risk and take profits, but the findings in this paper suggest
that it has detrimental effects on performance.

10.1 Introduction

The foreign exchange (FX) market is the largest financial market in the world. In theory,
exchange rates should be intimately linked to macro economic variables, such as interest
rates, inflation, money supply and real income. However, in their seminal paper, Meese
and Rogoff [15] found that these fundamentals are useless in forecasting exchange rate
changes even at medium frequencies. This is known as the determination puzzle of for-
eign exchange. At shorter time horizons many traders tend to use technical analysis in
decision making [1]. Technical analysis attempts to forecast future price changes based
on historical observations. This broad definition covers a wide range of methods from
visual pattern recognition to moving averages and more elaborate schemes. Tradition-
ally, it has encountered much skepticism from academia since it clearly contradicts the
Efficient Market Hypothesis (EMH) – one of the cornerstones of modern finance [7].
During the past few decades, however, there has been an increasing interest in technical
analysis among financial economists and extensive literature has emerged on the sub-
ject. There is a general consensus that technical analysis on a daily frequency has been
profitable in the past [3, 13, 12].

In contrast, this paper uses high-frequency intraday tick data where trading occurs
under market frictions through the quoted bid-ask spread. Instead of using a predeter-
mined strategy as a moving average rule or a chart pattern, the computer evolves its own
trading strategies using genetic programming (GP). GP has previously been applied to
trading rule induction for foreign exchange markets, but the results are mixed. In the

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 169–190.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

170 P. Saks and D. Maringer

early nineties GP was found to produce significant profits when trading in the presence
of realistic transaction costs [9, 2]. But performance has deteriorated since then [6, 16].

As mentioned above, this paper considers high-frequency intraday tick data on the
USD/EUR exchange rate covering the full year of 2006. Besides being a much needed
update on GP in this domain it adds to the existing literature in a number of ways. The
standard approach of GP in trading rule induction is to use a single tree structure that
makes buy or sell recommendations. This paper proposes a novel multiple tree structure
consisting of four (quad) trees for ternary decision problems. Hence, strategies can take
short, neutral and long positions. Which tree is evaluated is contingent on the current
market position. Each of the four trees returns Boolean values and their functions can
be characterised as long entry, long exit, short entry and short exit. The entry trees
initiate either long or short positions, while the exit trees terminate those positions and
revert to a neutral state. Using this division of entry and exit strategies, the benefits
of money management are examined. Money management refers to certain measures
that traders use to control risk and take profits, implying that closing of positions can be
initiated by events other than “standard” buy/sell signals. To reflect this in an automated
trading system, an extension to standard approaches needs to be made. Traditionally,
one common rule for both positions is evaluated, and depending on the outcome, the
signal is to enter (stay in) these positions or exit (stay out of) them, respectively. In
money management, different rule sets, contingent on the current position, are used.
Hence, a negative entry signal is not necessarily seen as an exit signal, but entirely
different rules are evaluated to find exit signals. Furthermore, these exit signals can be
based on other indicators or information. For example, stop losses are often placed to
trigger an exit signal in order to limit downside risk. Since money management is a
practitioner’s way of controlling risk, the effects of evolving strategies under different
utility functions are investigated.

The rest of this Chapter is structured as follows. Section 10.2 provides a brief intro-
duction to genetic programming. Section 10.3 presents the data. The fitness function,
model and parameter settings are described in Section 10.4. This is followed by empiri-
cal results in Section 10.5. Finally, Section 10.6 concludes and gives pointers to possible
future research.

10.2 Genetic Programming

Genetic programming (GP) was pioneered by Koza [11] and is often seen as a derivative
of genetic algorithms (GA). The GA was popularised by Holland [8] in his ambitious
quest to understand the principles of adaptive systems in a broad sense. An obvious
inspiration came from biology, where the success of natural adaptive systems rests on
competition and innovation in order to survive in changing and uncertain environments.

The GA is a population based search method, where the individuals are fixed-length
binary strings, known as genotypes or chromosomes [21]. Generally, this representation
requires an encoding which is problem specific. For example if the GA is used for real-
valued parameter optimization, then it is necessary to discretise the search space, where
the resolution depends on the number of bits chosen to represent a given variable.

10 Evolutionary Money Management 171

There exist many variations of GA, but their basic workings are illustrated in the fol-
lowing. To begin with an initial population of M individuals is generated randomly in
generation zero. Hereafter, the fitness of each individual is calculated according to the
pre-specified objective function. Then a new population is created by selecting between
the operators reproduction, crossover and mutation according to the probabilities pr, pc

and pm, respectively. The reproduction and mutation operators select individuals from
the parent population, such that better solutions are favored. A popular mechanism for
doing this is tournament selection, in which a fixed number of individuals are chosen
uniformly from the parent population, and the fittest individual wins the tournament
and is selected. By controlling the tournament size it is possible to regulate the selec-
tion pressure. The reproduction operator simply copies the selected string to the new
population. For the crossover operation, two individuals are selected from the parent
population. Hereafter a position or index is uniformly selected within the bit-string and
genetic material from the two parents is simply swapped around this point. The two
resulting offspring are then inserted into the new population. The mutation operator can
be applied to individuals from the population or resulting from reproduction. It simply
selects a random element within an individual and negates the value, i.e., zero becomes
one and vice versa. An advantage of the mutation operator is that it can introduce di-
versity into a population, but usually mutation is only invoked with a small probability.
When the population size of the new population is equal to M, the algorithm has com-
pleted one generation and the process repeats itself until a termination criterion has been
satisfied, e.g., until a maximum number of generations is reached.

Genetic programming is basically a GA operating on hierarchical computer pro-
grams instead of binary strings. Any problem that is concerned with finding an optimal
mapping from a set of inputs to a set of outputs, can be reformulated as a search for
an optimal computer program. GP provides the means to search the space of possible
programs. It is therefore a much more direct approach to problem solving than GAs,
that are heavily dependent on problem encoding. In practice the individuals in GP are
computer programs represented as tree structures. The programs are constructed from
functions and terminals, where by definition the former take arguments and the latter do
not. The sets of available functions and terminals for a given problem is known as the
function set and terminal set. For more details on GP and their application to automated
trading, see [11] and [19].

10.3 Data

The data is provided by OANDA FXticks, and comprises of 24-hour tick data on the
USD/EUR exchange rate covering the calendar year 2006. This constitutes a total of
3 894 525 bid-ask observations, and on average there are more than 12 000 per trading
day. Figure 10.1 shows the daily prices, together with the number of ticks per day.
Over the entire period the Dollar depreciates from 0.8439 to 0.7577, corresponding to
10.77%. The daily tick intensity appears fairly constant most of the year, but at the be-
ginning and the end of the year the activity is considerably higher. Moreover, during the

172 P. Saks and D. Maringer

01/01/06 04/11/06 07/11/06 10/17/06 12/29/06
0.74

0.76

0.78

0.8

0.82

0.84

0.86

Date

P
ric

e

USD/EUR

01/01/06 04/11/06 07/11/06 10/17/06 12/29/06
0

2

4
x 10

4

Date

T
ic

ks
/D

ay

Tick intensity

Fig. 10.1. Daily USD/EUR exchange rate (top), and number of ticks per day (bottom).

Table 10.1. Summary statistics of log-returns of 10-tick sampled USD/EUR middle prices. AC
denotes the auto-correlation and KS is the p-value of a Kolmogorov-Smirnov test.

Mean (·10−6) Std (·10−4) Skewness Kurtosis AC (lag-1) AC (lag-2) KS (p)
-0.277 1.323 -0.215 18.823 -0.048 0.002 0.000

month of May, there is also increased activity which coincides with a crisis in the equity
markets. The USD/EUR series exhibits strong intraday effects, e.g., the trading activity
is higher during European business hours. Moreover, there are two distinct peaks around
08:00 and 14:00 GMT with high activity, separated by lower activity at noon. By using
an equidistant intraday sampling in calendar time this seasonality is neglected leading
to disproportionately many samples during the night compared to daytime. Hence, sam-
pling is done in trading time. Specifically, the exchange rate is sampled every 10 ticks,
which yields 389 452 samples. On average this is close to 1 minute sampling in calendar
time. The data comprises bid-ask quotes, but in the following the statistical properties
of the logarithmic middle prices are analyzed.

Due to large spikes in the spreads, the top decile is winsorised. For the entire sample,
the median spread is 1.1870 bp, with an interquartile range of 0.0707 bp. Table 10.1
contains summary statistics for the log-returns of the sampled USD/EUR series. The
series has negative skewness and significant excess kurtosis, thus strongly rejecting the
null hypothesis of Gaussianity in a Kolmogorov-Smirnov test. At the 10-tick sampling
frequency there is a significantly negative first order auto-correlation. This phenomenon
has previously been reported in the literature using a one-minute sampling in calendar
time [5].

10 Evolutionary Money Management 173

10.4 Framework

10.4.1 Objectives and Fitness Function

The choice of objective function is essential in evolutionary computation. In relation to
trading system design an obvious candidate would simply be to maximise the return of
a strategy. This measure, however, is problematic because it ignores the risk dimension
associated with financial decision making and trading. In this respect, the Sharpe ratio
is better in that it evaluates the expected return relative to the standard deviation of
returns. While this is a popular measure it has certain undesirable properties. For the
Sharpe ratio to be an accurate measure, either the returns must be Gaussian, or people
should only have preferences for the first and second moment of returns. The findings in
Section 10.3 refute the former, while the latter has unrealistic implications. The standard
deviation is a symmetric measure, which implies that investors are equally concerned
with the positive as they are with the negative variation in returns.

In the context of financial decision making, economic utility theory provides a better
description of the objectives that drive investors. In classical utility theory, the sole ob-
jective of agents is to maximise expected utility of wealth, where more wealth is always
preferred to less [4]. However, cognitive psychology has revealed that, in evaluating
different outcomes, reference dependence plays a crucial role [10]. In the context of
financial investments the reference point is determined by how myopic an agent is, i.e.,
how frequently wealth is evaluated [20]. This implies that both the long-term level and
short-term changes in wealth are important factors in determining overall happiness of
investors. Hence, happiness is a path-dependent function of the evolution of wealth. To
capture this path dependency, the period over which the trading rule is optimised is di-
vided into I sub-intervals and the utility is evaluated for each interval. Let the return
within an interval i be defined as

ri = (wt −wt−k)/wt−k (10.1)

where k is the length of the interval. A modified terminal interval wealth is then intro-
duced,

v̂i =

⎧
⎪⎪⎨
⎪⎪⎩

v0 · (1+ ri) if ri ≥ 0

v0 · (1+ ri)λ if ri < 0 with λ ≥ 1
(10.2)

where λ > 1 implies loss aversion, i.e., a greater sensitivity to decreases in wealth, while
λ = 1 models no additional disutility from losses beyond risk aversion. The initial en-
dowment at the beginning of the interval is v0, but in this paper a unit investor is con-
sidered such that v0 = 1. Assuming a power utility function, the value of an interval is

U(v̂i) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v̂1−γ
i

1−γ −
1

1−γ if γ > 1

ln(v̂i) if γ = 1
. (10.3)

For a risk averse trader, γ > 1, whereas γ = 1 implies risk neutrality. From this the
objective function simply follows as the average interval utility,

F =
1
I

I∑

i=1

U(v̂i). (10.4)

174 P. Saks and D. Maringer

0.99 0.995 1 1.005 1.01

−10

−5

0

5

x 10
−3

Wealth

U
til

ity
Power utility, λ=1

γ=1
γ=20
γ=40
γ=60

0.99 0.995 1 1.005 1.01

−10

−5

0

5

x 10
−3

Wealth

U
til

ity

Power utility, γ=20

λ=1
λ=1.1
λ=1.2
λ=1.3

Fig. 10.2. Power utilities for different values of γ (left) and λ (right).

The power utility function is shown for different values of γ and λ in Figure 10.2. γ con-
trols the concavity of the utility function, and λ regulates the loss aversion by decreasing
utility for losses while leaving utility for gains unchanged.

10.4.2 Model

The purpose of this paper is to evolve trading models using genetic programming. The
traditional approach in the context of FX forecasting is to evolve binary decision rules
where outputs correspond to either long or short positions in a given currency. Using this
representation a trading model is forced to take a directional view and cannot remain
neutral. To overcome this problem in a single tree framework, it is possible to construct
programs that return a trinary Boolean variable instead of the normal binary Boolean
variable [2].

In the context of binary trading models it has previously been found that using a
dual tree structure instead of the traditional single tree model has significant impact on
performance, especially if market frictions are taken into account [18]. Capitalizing on
these findings this paper proposes a unique quad tree structure. The four trees consist
of a long entry (T1), long exit (T2), short entry (T3) and short exit (T4). Unlike a stock,
an exchange rate does not have a distinct up and down. The inverse relationship of
exchange rates dictates that up for one currency is down for the other and vice versa. In
this paper the positions relate to dollar. Thus, when a long (short) position is initiated
we expect an appreciation (depreciation) of the dollar relative to the euro.

The workings of the four trees is illustrated in Table 10.2. Each tree returns a Boolean
variable, but which tree is evaluated depends on the current market position. For exam-
ple if the current position is neutral, then either a long or a short position can be initiated.
This happens if either T1 or T3 is true. If both T1 and T3 are true, the signal is ambigu-
ous and a neutral position is maintained. If the current position is long and T2 is true,
a transition is made to a neutral position. If T3 is true, a short position is initiated. In
the short state, T1 initiates a long position and T4 results in a neutral position. In or-
der to resolve conflicting decisions, the strongest views are given precedence such that
directional views trump neutrality.

One objective of this paper is to examine the effects of money management on trad-
ing strategies. This is done by comparing strategies with special grammars for the exit

10 Evolutionary Money Management 175

Table 10.2. Transition table of the quad tree structure consisting of long entry (T1), long exit
(T2), short entry (T3) and short exit (T4), going from the current position to neutral (N), short
(S), long (L) position. 0=FALSE, 1=TRUE and -=not evaluated

Current position
Neutral Long Short

T1 0 0 1 1 - - - - 0 0 1 1
T2 - - - - 0 0 1 1 - - - -
T3 0 1 0 1 0 1 0 1 - - - -
T4 - - - - - - - - 0 1 0 1
new position N S L N L S N S S N L L

strategies (T2 and T4), to strategies where the grammar is the same across all the trees.
In addition to type constraints the trees have semantic restrictions, which improves the
search efficiency significantly, since computational resources are not wasted on non-
sensical solutions [2]. The function set for the entry strategies (T1 and T3) consists
of numeric comparators, Boolean operators and addition. Furthermore, three special
functions have been introduced. BTWN takes three arguments and evaluates if the first
is between the second and third. HASINC (HASDEC) returns true if the second argument
has increased (decreased) over the lag period given by the first argument. The termi-
nals include the variables price and moving averages thereof (price) and the time of
day (time). While sampling is done in trading time, the calendar time of each obser-
vation is recorded with a minutes precision (hhmm format). Special constants are avail-
able for conditioning on time (timeConst), and the difference between price indicators
(pConst). The entry strategy grammar is documented in Table 10.3.

In practice, traders employ various exit strategies for money management, such as
stop losses and profit targets. A stop loss automatically exits the strategy when the
current profit is below a certain level. Likewise a profit target closes out a position when
a given profit is obtained. A more elaborate scheme is a trailing stop, which ensures
that the drawdown does not exceed a given value. Simple stop losses and profit targets
might be augmented with time exits such that the duration of a trade is constrained. To
capture these ideas the exit strategy grammar contains information about the current
profit, drawdown and duration of a trade. The exit strategy grammar is an extension to
the entry strategy grammar and their difference is documented in Table 10.4.

10.4.3 Parameter Settings

In the following computational experiments a population of 500 individuals is initialised
using the ramped half-and-half method. It evolves for a maximum of 50 generations,
but is stopped after 20 generations if no new elitist (best-so-far) individual has been
found. A normal tournament selection is used with a size of 5, and the crossover and
mutation probabilities are 0.9 and 0.05, respectively. Moreover, the probability of select-
ing a function node during reproduction is 0.5, and each of the trees in the programs are
constrained to a maximum complexity of 25 nodes. This constraint might seem overly
restrictive, but given the highly specialised grammar described in Section 10.4.2 it is

176 P. Saks and D. Maringer

Table 10.3. Entry strategy grammar. BTWN checks if the first argument is between the second and
third. HASINC (HASDEC) returns true if the price has increased (decreased) over the last period.

Function Arguments Return Type
+ (price, pConst) priceNew
<=, >= (price, price) bool
<=, >= (price, priceNew) bool
<=, >= (time, timeConst) bool
BTWN (price, price, price) bool
BTWN (price, priceNew, priceNew) bool
BTWN (time, timeConst, timeConst) bool
HASDEC, HASINC (lag, price) bool
AND, OR, XOR (bool, bool) bool
NOT (bool) bool

Table 10.4. Additional exit strategy grammar. The complete grammar is composed of the entry
strategy grammar and the functions in this table.

Function Arguments Return Type
<=, >= (duration, durationConst) bool
<=, >= (profit, pConst) bool
>= (drawdown, drawdownConst) bool
BTWN (duration, durationConst, durationConst) bool
BTWN (profit, pConst, pConst) bool

possible to construct very complicated rules within that limit. Hence the complexity
constraint aims to minimise the risk of overfitting.

The entire data set is split into four equal-size blocks of 97,364 samples each. Hence-
forth the blocks are denoted; I, II, III and IV. Since the blocks have been constructed
in trading time, their durations in calendar time differ. Block I covers the period from
01-Jan-2006 to 11-Apr-2006, Block II continues to 11-Jul-2006, Block III ends 17-Oct-
2006, and Block IV is the remainder until 29-Dec-2006. The four blocks are shown in
Figure 10.1. The returns in each of the blocks are -2.37%, -4.75%, 1.40% and -5.06%,
respectively. In the following experiments, rolling window estimation is made on blocks
I-III and successive out-of-sample tests are made on blocks II-IV.

As fitness functions, three different utility functions are considered: risk neutral (γ =
1, λ = 1), risk averse (γ = 35, λ = 1) and loss averse (γ = 35, λ = 1.15). Each block is
divided into a number of sub-intervals, each consisting of 1000 samples. This implies
that, on average, wealth is evaluated between one and two times per day, which does
not seem unreasonable for a high-frequency trader. As mentioned in Section 10.4.1,
the fitness of an individual trading strategy is the average utility obtained within each
sub-interval. Due to the high-frequency domain considered in this paper the overnight
interest rates are neglected when calculating the returns of the strategies.

10 Evolutionary Money Management 177

10.5 Empirical Results

In this section the results from rolling window estimation and testing on blocks I to IV
are presented. For statistical inferences ten independent runs are considered for both the
entry-entry and entry-exit grammar strategies. As mentioned previously the strategies
are evolved in the presence of market frictions.

Appendix A contains detailed results of interval statistics, for both the entry-entry
and entry-exit grammar strategies under various utility functions. Naturally, the intro-
duction of market frictions has an adverse effect on performance. Under risk neutrality
the in-sample median fitness in Block I drops to 7.78 and 8.08 for the entry-entry and
entry-exit grammar strategies, respectively. What is more interesting is that the out-of-
sample median fitnesses in Block II are positive for both grammars (4.51 and 4.37).
Unfortunately, this pattern does not repeat itself during the later periods. This holds
for all utility functions. However, it should be noted that negative utility need not im-
ply unprofitability – the out-of-sample results in Block III for the entry-exit grammar
strategies under loss aversion illustrate this point (Table 10.12). When risk aversion and
loss aversion are introduced it has an adverse effect on in-sample performance for both
grammars as expected.

To test the null hypothesis that the evolved strategies have uncovered significant reg-
ularities, their fitness values are compared to that of 1000 randomly initialised strategies.
Figure 10.3 show the empirical fitness distributions for the random strategies under the
different utility functions. Given a frictionless environment and risk neutral utility func-
tion, then trading would be a fair game where the expected utility is zero. However,
under market frictions the expected utility is negative even for risk neutral agents. Risk

−1000 −500 0
0

20

40

60

80

100

Fitness

F
re

qu
en

cy

Random strategies, risk neutral

−2 −1.5 −1 −0.5 0

x 10
4

0

100

200

300

Fitness

F
re

qu
en

cy

Random strategies, risk averse

−3 −2 −1 0

x 10
4

0

100

200

300

Fitness

F
re

qu
en

cy

Random strategies, loss averse

Fig. 10.3. Histograms of the performance of 1000 random strategies for different utility functions;
risk neutral (left), risk averse (center) and loss averse (right). The triangle marks the average
utility.

Table 10.5. Rank sum test p-values for the null hypothesis of equal median fitnesses of the entry-
entry and entry-exit grammar strategies.

In-sample Out-of-sample
Utility function I II III II III IV
Risk neutral 0.3847 0.6232 0.2730 0.5708 0.9097 0.0312
Risk averse 0.6776 0.7913 0.3447 0.0757 0.4727 0.9097
Loss averse 0.7337 0.4274 0.2413 0.5452 0.9097 0.2413

178 P. Saks and D. Maringer

Risk neutral Risk averse Loss averse

−5

0

5

10

15
M

ea
n

(b
p)

Entry−entry grammar, interval statistics, in−sample I

Utility function
Risk neutral Risk averse Loss averse

−5

0

5

10

15

M
ea

n
(b

p)

Entry−entry grammar, interval statistics, out−of−sample II

Utility function

Risk neutral Risk averse Loss averse

−5

0

5

10

15

M
ea

n
(b

p)

Entry−entry grammar, interval statistics, in−sample II

Utility function
Risk neutral Risk averse Loss averse

−5

0

5

10

15

M
ea

n
(b

p)

Entry−entry grammar, interval statistics, out−of−sample III

Utility function

Risk neutral Risk averse Loss averse

−5

0

5

10

15

M
ea

n
(b

p)

Entry−entry grammar, interval statistics, in−sample III

Utility function
Risk neutral Risk averse Loss averse

−5

0

5

10

15

M
ea

n
(b

p)

Entry−entry grammar, interval statistics, out−of−sample IV

Utility function

Fig. 10.4. Boxplots of the average of interval returns across the 10 runs for each block and differ-
ent utility functions.

aversion and loss aversion only exacerbates this effect. Most of the evolved strategies
significantly outperform the random strategies both in-sample and out-of-sample, de-
spite being less successful in monetary terms. This suggests that real speculation in the
considered currency markets requires either a strong risk-seeking behavior or a signifi-
cant edge.

As mentioned previously, a main objective of this chapter is to examine the effects of
money management for different types of speculators. To test formally whether money
management, i.e., an extended exit grammar, makes a difference, the Wilcoxon rank
sum test is employed for each block and for each utility function. Table 10.5 lists the
p-values for the null hypothesis of identical median fitnesses for the two grammars.
Only Block IV out-of-sample under risk neutrality is significant at the usual level. In the
context of the other results, this can clearly be treated as a spurious rejection and does

10 Evolutionary Money Management 179

Risk neutral Risk averse Loss averse
0

10

20

30

40

S
ta

nd
ar

d
de

vi
at

io
n

Entry−entry grammar, interval statistics, in−sample I

Utility function
Risk neutral Risk averse Loss averse

0

10

20

30

40

S
ta

nd
ar

d
de

vi
at

io
n

Entry−entry grammar, interval statistics, out−of−sample II

Utility function

Risk neutral Risk averse Loss averse
0

10

20

30

40

S
ta

nd
ar

d
de

vi
at

io
n

Entry−entry grammar, interval statistics, in−sample II

Utility function
Risk neutral Risk averse Loss averse

0

10

20

30

40

S
ta

nd
ar

d
de

vi
at

io
n

Entry−entry grammar, interval statistics, out−of−sample III

Utility function

Risk neutral Risk averse Loss averse
0

10

20

30

40

S
ta

nd
ar

d
de

vi
at

io
n

Entry−entry grammar, interval statistics, in−sample III

Utility function
Risk neutral Risk averse Loss averse

0

10

20

30

40

S
ta

nd
ar

d
de

vi
at

io
n

Entry−entry grammar, interval statistics, out−of−sample IV

Utility function

Fig. 10.5. Boxplots of the standard deviation of interval returns across the 10 runs for each block
and different utility functions.

not lead to an overall rejection of the null hypothesis. It must therefore be concluded that
money management has a detrimental effect on utility, since the evolved strategies do
not make use of it. Osler [17] offers a possible explanation for this result: in the foreign
exchange markets, stop and limit orders tend to be clustered around round numbers
giving rise to distinct support and resistance levels, where trend reversals are more
likely to occur. This has not been taken into account in this paper. Having concluded
that money management does not add significant value, a more detailed analysis of the
entry-entry grammar results is provided in the following.

Figures 10.4 to 10.7 show boxplots of the moments of the interval return distribu-
tions under risk neutrality, risk aversion and loss aversion. To determine if medians
differ across utility functions, the Kruskal-Wallis test is employed. Table 10.6 reports
the p-values for the null hypothesis of equal medians. For the mean interval returns the

180 P. Saks and D. Maringer

Risk neutral Risk averse Loss averse

−6

−4

−2

0

2

4
S

ke
w

ne
ss

Entry−entry grammar, interval statistics, in−sample I

Utility function
Risk neutral Risk averse Loss averse

−6

−4

−2

0

2

4

S
ke

w
ne

ss

Entry−entry grammar, interval statistics, out−of−sample II

Utility function

Risk neutral Risk averse Loss averse

−6

−4

−2

0

2

4

S
ke

w
ne

ss

Entry−entry grammar, interval statistics, in−sample II

Utility function
Risk neutral Risk averse Loss averse

−6

−4

−2

0

2

4

S
ke

w
ne

ss

Entry−entry grammar, interval statistics, out−of−sample III

Utility function

Risk neutral Risk averse Loss averse

−6

−4

−2

0

2

4

S
ke

w
ne

ss

Entry−entry grammar, interval statistics, in−sample III

Utility function
Risk neutral Risk averse Loss averse

−6

−4

−2

0

2

4

S
ke

w
ne

ss

Entry−entry grammar, interval statistics, out−of−sample IV

Utility function

Fig. 10.6. Boxplots of the skewness of interval returns across the 10 runs for each block and
different utility functions.

different utility functions have the same median values in-sample on Block I and II, but
for Block III the median under loss aversion is significantly lower. Out-of-sample on
Block II, loss aversion produces lower means, while on Block IV the opposite holds.

Strategies evolved under loss aversion have significantly smaller standard deviations
of interval returns both in-sample and out-of-sample. In accordance with [14], the skew-
ness of the interval returns is generally also higher in-sample under loss aversion, but it
does not seem to generalise out-of-sample. Finally, the kurtoses are significantly higher
across all blocks under loss aversion.

This can be explained from the proportion of time that the strategies have neutral
exposure. Under risk neutrality and risk aversion, the strategies generally remain neutral
less than 10% of the time, but when loss aversion is introduced it increases significantly
to around 70%. Having a neutral position results in zero return. Thus, by increasing the

10 Evolutionary Money Management 181

Risk neutral Risk averse Loss averse

10

20

30

40

50

K
ur

to
si

s

Entry−entry grammar, interval statistics, in−sample I

Utility function
Risk neutral Risk averse Loss averse

10

20

30

40

50

K
ur

to
si

s

Entry−entry grammar, interval statistics, out−of−sample II

Utility function

Risk neutral Risk averse Loss averse

10

20

30

40

50

K
ur

to
si

s

Entry−entry grammar, interval statistics, in−sample II

Utility function
Risk neutral Risk averse Loss averse

10

20

30

40

50

K
ur

to
si

s

Entry−entry grammar, interval statistics, out−of−sample III

Utility function

Risk neutral Risk averse Loss averse

10

20

30

40

50

K
ur

to
si

s

Entry−entry grammar, interval statistics, in−sample III

Utility function
Risk neutral Risk averse Loss averse

10

20

30

40

50

K
ur

to
si

s

Entry−entry grammar, interval statistics, out−of−sample IV

Utility function

Fig. 10.7. Boxplots of the kurtosis of interval returns across the 10 runs for each block and
different utility functions.

time with neutral exposure the effect is that more zero interval returns are introduced.
Naturally, this decreases the standard deviation whilst increasing the kurtosis, ceteris
paribus.

As the random strategies in Figure 10.3 indicate, the required risk premium to enter
a market position grows significantly under loss aversion, and as a result the number
of opportunities in strategy space decreases. The interval returns under loss aversion
have higher skewness in-sample, but do not generalise out-of-sample. This suggests
that loss aversion can lead to a higher degree of overfitting. However, loss aversion
is not necessarily a bad thing. As mentioned previously the mean interval returns are
smaller out-of-sample for Block II and larger for Block IV under loss aversion. The
main difference between these two blocks is that during the former there is significant
generalization from the in-sample results, while in the latter there is none. Consequently,

182 P. Saks and D. Maringer

Table 10.6. Kruskal-Wallis test p-values for the null hypothesis of equal median moments of the
interval return distributions across utility functions.

Mean
In-sample Out-of-sample

Grammar I II III II III IV
Entry-entry 0.2058 0.1756 0.0025 0.0013 0.6755 0.0649
Entry-exit 0.1194 0.8973 0.0038 0.0097 0.0969 0.0087

Standard deviation
In-sample Out-of-sample

Grammar I II III II III IV
Entry-entry 0.0003 0.0004 0.0004 0.0004 0.0099 0.0013
Entry-exit 0.0001 0.0110 0.0306 0.0026 0.0363 0.1756

Skewness
In-sample Out-of-sample

Grammar I II III II III IV
Entry-entry 0.0466 0.0019 0.0039 0.2359 0.5693 0.6941
Entry-exit 0.0373 0.4569 0.3352 0.0985 0.2838 0.2360

Kurtosis
In-sample Out-of-sample

Grammar I II III II III IV
Entry-entry 0.0451 0.0022 0.0013 0.0087 0.0203 0.0032
Entry-exit 0.0164 0.0118 0.0965 0.0226 0.0049 0.2441

if persistent patterns exists in the data then loss aversion is problematic because it limits
the space for viable strategies. However, if persistent patterns have not been uncovered,
then it is beneficial because it encourages conservative trading under market frictions
and therefore minimises losses.

10.6 Conclusions

This chapter evolves trading strategies using genetic programming (GP) on high-
frequency tick FX data, an area that has been widely neglected in the literature so far.
Furthermore, this chapter proposes a novel quad tree structure for trading system design
to allow for a money management system where exit rules can be based on additional
indicators and triggers other than the rules for entering positions.

In practice traders often use so-called money management that builds on a different
information set when deciding on whether to exit a trade. For example, a stop loss is
a measure to control downside risk and exits a position when a loss has exceeded a
given threshold. This chapter investigates the potential use of money management by
comparing strategies composed of two different grammars. The first is an entry-entry

10 Evolutionary Money Management 183

grammar, where the information set is the same for both entry and exit trees. The second
is an entry-exit grammar that has a larger information set including variables such as
current profit, drawdown and duration of a trade. Evolving money management as an
endogenous feature has not previously been attempted in the literature.

The quad tree architecture consists of four trees each solving a separate task, but
mutually dependent for overall performance. Specifically, the functions of the trees are;
long entry, long exit, short entry and short exit. Thus, evaluation is contingent on the
current market position. For example if the current position is neutral it is possible to
go either long or short, but if the current position is long, then the long exit and short
entry are evaluated. Making this distinction provides a more accurate description of the
decision problem facing real traders.

The trading strategies are evolved using a fitness measure based on the power util-
ity function, where three different kinds of behavior are investigated: risk neutral, risk
averse and loss averse. The empirical investigation uses the USD/EUR exchange rate
covering the calendar year 2006, sampled at 10 tick intervals. Under market frictions
and loss aversion, the strategies spend considerably more time in a neutral position
since there are fewer satisfying opportunities. The downside is that generalization can
suffer as a result. However, it cannot be concluded that loss aversion always has an
adverse effect on performance; it depends on the quality of the patterns discovered
in-sample. If the strategies have overfitted the data, or the patterns cease to exist out-of-
sample, then loss aversion is beneficial because it promotes cautious trading that limits
transaction costs.

When comparing the entry-entry and entry-exit grammar strategies, the null hypothe-
sis of identical median performance is not rejected, neither in-sample nor out-of-sample.
Hence, the results are not significantly different. This suggests that money management
has a detrimental effect on utility, and raises the question as to why it is extensively
used by practitioners. A possible explanation is that stop orders and limit orders, in the
foreign exchange market, tend to be clustered around round numbers, thus giving rise to
distinct support and resistance levels where trend reversals are more likely to occur [17].
This has not been taken into account in this study, but could be an interesting avenue
for future research.

References

1. Allen, H., Taylor, M.P.: Charts, noise and fundamentals in the London foreign exchange
market. The Economic Journal 100(400), 49–59 (1990)

2. Bhattacharyya, S., Pictet, O.V., Zumbach, G.: Knowledge-intensive genetic discovery in
foreign exchange markets. IEEE Transactions on Evolutionary Computation 6(2), 169–181
(2002)

3. Chang, K., Osler, C.L.: Methodical madness: Technical analysis and the irrationality of
exchange-rate forecasts. The Economic Journal 109, 636–661 (1999)

4. Copeland, T.E., Weston, J.F., Shastri, K.: Financial Theory and Corporate Policy. Pearson
Addison Wesley (2005)

5. Dacorogna, M.M., Gencay, R., Müller, U.A., Olsen, R.B., Pictet, O.V.: An Introduction to
High-Frequency Finance. Academic Press, London (2001)

6. Dempster, M.A.H., Jones, C.M.: A real-time adaptive trading system using genetic program-
ming. Quantitative Finance 1, 397–413 (2001)

184 P. Saks and D. Maringer

7. Fama, E.F.: Efficient capital markets: A review of theory and empirical work. Journal of
Finance 25(2), 383–417 (1970)

8. Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

9. Jonsson, H., Madjidi, P., Nordahl, M.G.: Evolution of trading rules for the FX market or how
to make money out of GP. Tech.rep., Institute of Theoretical Physics, Chalmers University
of Technology (1997)

10. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Economet-
rica 47(2), 263–291 (1979)

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge (1992)

12. LeBaron, B.: Technical trading profitability in foreign exchange markets in the 1990’s.
Tech.rep., Brandeis University (2002)

13. Maillet, B., Michel, T.: Further insights on the puzzle of technical analysis profitability. The
European Journal of Finance 6, 196–224 (2000)

14. Maringer, D.: Risk preferences and loss aversion in portfolio optimization. In: Kon-
toghiorhes, E.J., Rustem, B., Winker, P. (eds.) Computational Methods in Financial Engi-
neering, pp. 27–45. Springer, Heidelberg (2008)

15. Meese, R., Rogoff, K.: Empirical exchange rate models of the seventies, do they fit out-of-
sample? Journal of International Economics 14, 3–24 (1983)

16. Neely, C.J., Weller, P.A.: Intraday technical trading in the foreign exchange market. Tech.rep.,
Federal Reserve Bank of St. Louis (1999)

17. Osler, C.L.: Currency orders and exchange rate dynamics: An explanation for the predictive
success of technical analysis. The Journal of Finance 58(5), 1791–1819 (2003)

18. Saks, P., Maringer, D.: Genetic programming in statistical arbitrage. In: Giacobini, M. (ed.)
EvoWorkshops 2008. LNCS, vol. 4974, pp. 73–82. Springer, Heidelberg (2008a)

19. Saks, P., Maringer, D.: Single versus multiple tree genetic programming for dynamic decision
making. Tech.rep., Centre for Computational Finance and Economic Agents, University of
Essex (2008b)

20. Thaler, R., Tversky, A., Kahneman, D., Schwartz, A.: The effect of myopia and loss aversion
on risk taking: An experimental test. The Quarterly Journal of Economics 112(2), 647–661
(1997)

21. Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4, 65–85 (1994)

10 Evolutionary Money Management 185

A Interval Statistics

A.1 Entry-Entry Grammar, Market Frictions

Table 10.7. Interval statistics of entry-entry grammar strategies under market frictions and risk
neutrality.

Risk neutral
In-sample I Out-of-sample II

Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 7.16 0.000 7.22 36.04 0.70 4.98 5.09 0.002 5.16 37.64 0.37 3.42
2. 4.79 0.000 4.86 37.91 0.55 4.71 4.75 0.009 4.84 43.44 0.17 2.95
3. 7.66 0.000 7.72 35.61 1.06 5.11 4.28 0.009 4.36 40.93 0.71 3.08
4. 4.60 0.000 4.69 40.92 -0.12 3.19 2.02 0.013 2.11 41.86 0.25 3.06
5. 9.74 0.000 9.80 33.54 0.21 3.46 3.25 0.011 3.33 38.19 -0.19 3.14
6. 4.74 0.000 4.81 37.55 0.63 4.78 5.52 0.000 5.61 42.03 0.27 3.05
7. 9.36 0.000 9.43 36.40 0.70 4.83 3.45 0.011 3.55 43.11 0.24 3.09
8. 13.84 0.000 13.90 33.13 0.17 3.34 3.00 0.011 3.07 37.87 0.51 3.66
9. 8.01 0.000 8.08 35.44 0.57 5.54 9.54 0.000 9.63 41.17 0.19 3.32
10. 7.90 0.000 7.97 37.61 0.58 4.70 5.18 0.002 5.27 42.90 0.39 3.27
Med 7.78 0.000 7.85 36.22 0.58 4.74 4.51 0.009 4.60 41.51 0.26 3.12

In-sample II Out-of-sample III
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 11.43 0.000 11.52 41.11 0.08 3.06 1.05 0.011 1.11 36.61 0.49 5.41
2. 7.08 0.000 7.17 41.47 0.12 3.25 0.03 0.016 0.08 32.73 -0.28 3.39
3. 10.72 0.000 10.81 41.09 0.12 3.10 -0.23 0.051 -0.18 32.89 -0.26 3.32
4. 9.87 0.000 9.95 39.36 -0.01 4.45 -1.98 0.065 -1.93 32.47 -0.29 3.40
5. 6.62 0.000 6.71 42.59 0.18 3.11 -1.36 0.053 -1.31 34.23 -0.30 3.38
6. 6.32 0.000 6.41 41.72 0.24 2.83 -3.12 0.068 -3.06 35.27 -0.35 3.38
7. 8.34 0.000 8.42 40.18 0.24 3.27 -1.98 0.065 -1.94 28.89 -0.21 5.14
8. 11.27 0.000 11.36 40.92 -0.07 3.36 3.96 0.000 4.02 33.51 -0.34 3.48
9. 7.34 0.000 7.45 46.10 0.29 3.02 -4.02 0.069 -3.97 34.34 0.26 5.47
10. 11.06 0.000 11.15 41.48 0.14 3.11 -2.11 0.066 -2.08 27.65 -0.40 5.43
Med 9.10 0.000 9.19 41.29 0.13 3.11 -1.67 0.059 -1.62 33.20 -0.29 3.44

In-sample III Out-of-sample IV
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 4.89 0.000 4.95 33.05 0.08 3.06 -5.02 0.054 -4.97 31.04 -0.06 2.76
2. 7.92 0.000 7.96 29.33 0.39 4.40 -4.45 0.054 -4.41 28.60 -0.23 3.95
3. 5.04 0.000 5.07 23.50 -0.47 4.12 -4.01 0.052 -3.97 26.79 -0.53 3.32
4. 10.81 0.000 10.86 32.10 0.12 3.38 -6.40 0.069 -6.35 29.50 -0.20 2.74
5. 4.54 0.000 4.59 30.53 -0.12 3.54 0.74 0.018 0.79 30.24 -0.22 3.60
6. 8.85 0.000 8.91 32.51 0.38 3.44 -3.34 0.051 -3.30 28.85 0.21 3.36
7. 11.93 0.000 12.00 35.17 0.05 3.33 -1.36 0.051 -1.29 36.53 -1.05 6.93
8. 7.96 0.000 8.01 33.38 0.08 3.89 -5.44 0.067 -5.39 30.07 0.05 2.68
9. 5.64 0.000 5.70 34.71 0.05 3.17 -0.85 0.049 -0.80 33.12 -0.09 2.80
10. 5.46 0.000 5.50 29.05 -0.38 4.81 0.59 0.018 0.62 25.64 -0.75 5.21
Med 6.78 0.000 6.83 32.30 0.06 3.49 -3.67 0.051 -3.63 29.79 -0.21 3.34

186 P. Saks and D. Maringer

Table 10.8. Interval statistics of entry-entry grammar strategies under market frictions and risk
aversion.

Risk averse
In-sample I Out-of-sample II

Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 11.19 0.000 13.81 37.62 0.49 4.32 2.54 0.000 5.29 40.02 0.23 3.28
2. 6.17 0.000 8.56 36.96 0.49 5.28 1.82 0.008 5.16 44.04 0.17 2.83
3. 6.06 0.000 8.25 35.52 0.68 5.10 0.37 0.011 3.60 42.76 -0.38 2.85
4. 3.71 0.000 5.41 31.42 0.58 3.53 -3.05 0.046 -1.50 30.09 0.58 3.85
5. 2.38 0.000 4.83 38.03 0.69 4.44 1.89 0.008 5.01 42.68 0.30 3.04
6. 2.89 0.000 5.72 40.46 0.18 4.66 1.52 0.008 4.85 44.03 0.18 2.94
7. 6.90 0.000 8.78 32.39 0.24 3.15 -2.48 0.044 1.03 44.80 -0.12 4.00
8. 5.79 0.000 8.34 38.32 0.44 4.41 1.98 0.000 4.86 40.71 0.01 2.86
9. 8.22 0.000 10.50 35.87 0.71 4.70 3.34 0.000 6.31 41.61 0.33 3.16
10. 7.08 0.000 9.92 40.32 0.53 3.74 -7.97 0.051 -4.94 40.71 -0.30 3.17
Med 6.11 0.000 8.45 37.29 0.51 4.42 1.67 0.008 4.85 42.14 0.17 3.10

In-sample II Out-of-sample III
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 7.96 0.000 11.01 41.38 0.14 3.13 -3.62 0.047 -2.34 26.58 -0.76 5.14
2. 8.57 0.000 11.46 40.15 0.19 2.84 -4.06 0.055 -2.79 26.35 -0.75 5.23
3. 8.63 0.000 11.83 42.29 0.16 3.01 -0.90 0.044 1.43 37.24 0.72 6.58
4. 7.98 0.000 11.04 41.39 0.14 3.13 -2.27 0.045 -0.35 33.10 -0.26 3.27
5. 2.54 0.000 4.28 31.57 0.09 4.54 -1.21 0.045 -0.31 22.83 0.23 3.59
6. 4.86 0.000 5.61 20.60 1.53 7.94 0.47 0.001 0.79 13.66 1.16 10.48
7. 3.95 0.000 6.57 38.92 0.30 3.63 -0.20 0.028 1.32 29.69 0.11 3.12
8. 4.87 0.000 7.27 37.15 0.32 3.80 -0.84 0.044 0.47 27.62 0.16 3.35
9. 2.45 0.000 5.64 43.07 0.18 3.03 -1.91 0.045 -0.03 32.78 -0.27 3.36
10. 10.18 0.000 13.37 41.84 0.19 2.85 -6.02 0.065 -3.68 36.69 0.62 6.13
Med 6.41 0.000 9.14 40.77 0.18 3.13 -1.56 0.045 -0.17 28.65 0.14 4.36

In-sample III Out-of-sample IV
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 5.32 0.000 6.91 30.19 0.65 3.68 -5.38 0.058 -3.96 28.39 0.59 3.41
2. 10.60 0.000 12.23 28.92 0.33 2.76 -4.56 0.056 -3.16 27.71 -0.70 3.49
3. 3.34 0.000 5.78 37.42 0.00 3.52 -3.93 0.055 -2.05 32.30 -0.62 3.08
4. 6.19 0.000 8.09 32.64 0.22 3.44 -8.62 0.080 -7.07 28.52 -0.20 3.00
5. 5.17 0.000 6.76 29.71 -0.34 5.15 -4.91 0.056 -3.56 27.51 -0.10 2.48
6. 8.43 0.000 9.69 25.70 0.39 4.67 -1.21 0.048 0.37 30.04 -0.37 3.65
7. 11.82 0.000 14.28 36.32 0.87 4.44 -3.50 0.054 -2.10 28.04 -0.34 3.25
8. 10.86 0.000 12.87 32.07 -0.25 3.66 -1.81 0.052 -0.19 30.02 -0.81 3.76
9. 5.71 0.000 7.22 29.08 0.27 3.73 -7.15 0.076 -5.54 29.50 -0.23 3.00
10. 8.59 0.000 9.94 26.98 0.87 4.26 -1.17 0.048 -0.12 24.30 -0.85 4.47
Med 7.31 0.000 8.89 29.95 0.30 3.70 -4.24 0.056 -2.63 28.46 -0.36 3.33

10 Evolutionary Money Management 187

Table 10.9. Interval statistics of entry-entry grammar strategies under market frictions and loss
aversion.

Loss averse
In-sample I Out-of-sample II

Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 5.17 0.000 7.74 27.89 0.18 3.39 -4.33 0.055 0.15 34.84 0.13 3.19
2. 4.38 0.000 5.04 16.67 2.55 10.10 -0.78 0.047 -0.41 8.83 1.13 21.36
3. 4.02 0.000 6.63 30.40 0.73 5.54 -10.30 0.060 -5.05 35.90 -0.55 4.11
4. 7.17 0.000 8.39 23.20 2.15 7.71 -3.37 0.052 -0.42 28.23 -0.28 5.37
5. 3.87 0.000 4.12 11.31 3.15 12.93 0.53 0.001 1.22 14.04 1.07 12.40
6. 2.46 0.000 2.82 13.04 4.11 23.01 0.00 0.031 0.00 0.00 NaN NaN
7. 4.65 0.000 6.59 27.21 1.50 9.58 -0.97 0.049 1.70 27.73 0.32 4.41
8. 4.09 0.000 7.83 36.16 0.38 3.94 -7.66 0.058 -1.77 39.86 -0.03 3.04
9. 4.06 0.000 4.84 19.02 3.02 16.06 -3.47 0.054 -1.55 21.73 -0.21 7.20
10. 8.90 0.000 11.56 30.96 0.56 3.82 -3.37 0.052 1.88 39.61 -0.00 3.37
Med 4.24 0.000 6.61 25.21 1.82 8.65 -3.37 0.052 -0.20 27.98 -0.00 4.41

In-sample II Out-of-sample III
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 3.78 0.000 4.90 19.10 1.12 7.32 0.40 0.000 0.89 10.93 0.82 15.79
2. 0.75 0.001 0.88 7.00 4.60 33.16 0.00 0.033 0.00 0.00 NaN NaN
3. 1.58 0.000 2.11 12.95 1.35 9.83 -3.61 0.054 -1.86 20.66 -0.37 7.59
4. 3.70 0.000 6.44 28.84 0.72 5.82 -3.13 0.053 0.37 29.83 -0.51 3.96
5. 2.59 0.000 3.32 15.07 0.92 5.63 -0.60 0.034 0.04 12.11 0.56 11.51
6. 6.94 0.000 8.21 21.33 1.26 5.47 0.49 0.000 1.91 21.32 1.42 8.85
7. 3.67 0.000 4.28 15.38 2.38 10.80 -2.85 0.051 -0.70 24.05 -0.39 9.08
8. 9.53 0.000 12.31 32.31 1.12 4.52 -3.84 0.054 -1.62 22.81 0.95 4.59
9. 6.14 0.000 11.21 40.95 0.04 3.08 -9.06 0.077 -4.04 36.42 0.70 6.85
10. 4.42 0.000 7.48 31.15 0.82 4.53 -3.55 0.053 -0.07 29.61 -0.51 4.63
Med 3.74 0.000 5.67 20.22 1.12 5.72 -2.99 0.052 -0.04 22.07 0.56 7.59

In-sample III Out-of-sample IV
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 4.59 0.000 5.21 14.44 1.20 5.64 -1.19 0.044 1.42 26.13 -0.04 3.70
2. 2.10 0.000 2.49 11.05 2.35 11.73 -0.11 0.040 0.22 8.30 3.48 28.76
3. 1.25 0.000 1.66 10.50 -0.19 12.43 -0.73 0.044 -0.43 7.81 -6.62 58.87
4. 2.46 0.000 3.13 16.69 2.67 13.42 -8.36 0.049 -5.10 25.80 -0.35 4.02
5. 3.92 0.000 5.34 20.78 0.69 5.23 -0.66 0.044 -0.05 11.85 -2.75 22.54
6. 3.12 0.000 5.00 25.28 0.54 5.09 -0.14 0.041 0.32 11.10 1.16 19.12
7. 1.12 0.000 2.34 19.06 1.21 8.98 0.44 0.015 0.96 11.69 -1.26 20.11
8. 9.04 0.000 12.24 32.03 0.19 3.15 -7.81 0.049 -3.60 30.98 -0.18 2.84
9. 3.73 0.000 5.08 21.74 2.05 9.57 -1.26 0.044 -0.30 14.32 -0.44 7.39
10. 1.88 0.000 2.01 6.93 2.85 12.77 0.85 0.015 1.01 6.29 2.19 12.93
Med 2.79 0.000 4.07 17.87 1.21 9.28 -0.69 0.044 0.09 11.77 -0.27 16.03

188 P. Saks and D. Maringer

A.2 Entry-Exit Grammar, Market Frictions

Table 10.10. Interval statistics of entry-exit grammar strategies under market frictions and risk
neutrality.

Risk neutral
In-sample I Out-of-sample II

Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 7.96 0.000 8.03 38.06 0.41 4.93 4.05 0.016 4.15 44.17 0.18 2.91
2. 7.10 0.000 7.17 36.01 0.99 4.62 3.12 0.022 3.17 31.79 1.01 5.51
3. 9.75 0.000 9.82 36.83 0.63 4.57 1.97 0.025 2.06 41.78 0.30 3.17
4. 7.49 0.000 7.56 37.73 0.21 4.01 4.06 0.016 4.15 41.69 -0.08 2.88
5. 8.78 0.000 8.87 40.85 0.21 5.85 6.13 0.000 6.22 41.61 0.24 2.93
6. 5.85 0.000 5.93 38.61 0.36 4.74 4.68 0.013 4.78 43.84 0.14 2.97
7. 8.17 0.000 8.24 38.08 0.47 5.13 4.72 0.012 4.83 47.29 -0.10 3.46
8. 11.10 0.000 11.16 33.35 0.21 2.89 -0.20 0.064 -0.15 32.16 0.38 3.07
9. 9.51 0.000 9.57 35.29 0.77 4.94 4.91 0.011 5.00 41.63 0.22 3.25
10. 7.99 0.000 8.06 36.37 0.77 5.23 5.11 0.003 5.20 42.76 0.20 3.08
Med 8.08 0.000 8.15 37.28 0.44 4.84 4.37 0.014 4.46 41.73 0.21 3.08

In-sample II Out-of-sample III
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 6.19 0.000 6.26 37.96 0.48 3.32 -4.05 0.076 -4.00 31.39 0.18 2.59
2. 8.94 0.000 9.04 42.87 -0.29 3.16 -1.94 0.058 -1.88 34.30 -0.34 3.16
3. 7.52 0.000 7.58 33.83 0.16 3.45 -1.60 0.046 -1.57 25.94 -0.04 3.61
4. 8.39 0.000 8.45 36.50 0.38 3.79 -2.07 0.059 -2.03 28.12 0.20 3.01
5. 7.31 0.000 7.38 36.46 0.74 3.99 -1.19 0.044 -1.14 30.96 0.44 2.91
6. 7.35 0.000 7.44 41.58 -0.05 2.98 -1.27 0.044 -1.21 34.62 -0.32 3.13
7. 10.80 0.000 10.87 35.39 0.39 3.98 1.47 0.007 1.50 26.30 -0.22 4.64
8. 8.93 0.000 9.00 36.21 0.09 3.74 0.39 0.014 0.43 29.23 -0.24 2.89
9. 6.29 0.000 6.39 42.49 0.09 3.13 -1.51 0.045 -1.46 32.76 -0.17 2.85
10. 12.01 0.000 12.11 41.73 0.10 3.06 -3.66 0.075 -3.59 36.79 0.64 6.24
Med 7.95 0.000 8.02 37.23 0.13 3.38 -1.56 0.045 -1.51 31.18 -0.11 3.07

In-sample III Out-of-sample IV
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 6.25 0.000 6.30 31.21 0.47 3.57 -9.26 0.109 -9.20 34.22 -2.15 15.26
2. 6.25 0.000 6.31 32.15 -0.12 2.72 -4.96 0.079 -4.91 29.79 -0.24 2.83
3. 4.64 0.000 4.69 30.39 0.28 3.53 -5.26 0.085 -5.21 31.07 0.21 3.47
4. 6.84 0.000 6.89 31.49 0.31 3.61 -6.54 0.095 -6.51 24.37 -0.14 3.68
5. 8.83 0.000 8.87 27.66 -0.59 3.54 -5.57 0.090 -5.53 28.63 -0.22 2.66
6. 4.74 0.000 4.79 31.61 0.21 3.23 -5.48 0.090 -5.43 29.59 0.34 3.29
7. 4.75 0.000 4.78 23.93 0.53 5.24 -4.93 0.078 -4.88 31.14 0.18 3.43
8. 4.67 0.000 4.71 28.11 0.88 4.38 -2.16 0.070 -2.14 21.90 0.65 3.20
9. 5.60 0.000 5.65 31.46 0.39 3.67 -4.97 0.079 -4.93 25.63 0.13 2.78
10. 5.66 0.000 5.69 22.99 0.98 7.14 -5.22 0.083 -5.17 29.84 0.22 3.76
Med 5.63 0.000 5.67 30.80 0.35 3.59 -5.24 0.084 -5.19 29.69 0.16 3.36

10 Evolutionary Money Management 189

Table 10.11. Interval statistics of entry-exit grammar strategies under market frictions and risk
aversion.

Risk averse
In-sample I Out-of-sample II

Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 5.52 0.000 7.96 37.10 -0.06 3.63 -8.87 0.091 -5.56 42.50 -0.29 3.35
2. 10.49 0.000 13.22 38.69 0.46 3.78 0.86 0.027 3.80 40.80 -0.33 3.48
3. 3.99 0.000 6.36 36.98 0.34 4.57 1.35 0.023 4.86 45.04 0.03 3.56
4. 7.57 0.000 9.75 35.21 0.90 4.95 -0.10 0.053 2.02 35.23 0.36 5.16
5. 3.45 0.000 6.02 38.82 0.56 4.33 -10.87 0.105 -7.42 43.35 0.04 2.91
6. 3.66 0.000 5.93 36.65 0.83 4.50 -2.51 0.061 -0.26 36.31 0.48 4.84
7. 3.72 0.000 5.97 36.36 0.72 4.69 2.37 0.003 4.78 37.62 0.50 3.50
8. 5.73 0.000 7.34 30.65 1.31 5.93 -4.36 0.063 -2.05 36.70 0.63 5.21
9. 5.68 0.000 7.96 36.50 0.84 3.65 -4.78 0.064 -2.70 34.37 0.09 2.91
10. 7.10 0.000 9.32 35.43 0.40 3.69 -0.57 0.056 2.14 39.50 -0.06 3.20
Med 5.60 0.000 7.65 36.58 0.64 4.41 -1.54 0.058 0.88 38.56 0.06 3.49

In-sample II Out-of-sample III
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 8.01 0.000 10.76 39.08 0.13 3.95 -0.91 0.056 0.63 29.80 0.14 3.26
2. 5.08 0.000 7.02 32.74 -0.52 3.43 -4.67 0.102 -2.87 31.62 -0.45 4.06
3. 5.19 0.000 7.59 37.29 0.60 3.39 -5.90 0.109 -4.14 31.41 0.15 3.10
4. 6.22 0.000 8.35 34.45 -0.05 4.09 -3.64 0.076 -1.54 34.38 -0.35 3.15
5. 4.44 0.000 5.32 22.35 1.04 8.71 1.69 0.000 1.92 11.53 2.29 13.51
6. 8.29 0.000 9.52 25.56 0.67 5.75 -0.97 0.057 -0.30 19.80 0.65 7.49
7. 3.58 0.000 6.82 43.13 0.04 2.85 -4.00 0.089 -1.94 33.95 -0.38 3.23
8. 7.17 0.000 9.00 31.84 0.40 4.09 -1.38 0.061 0.10 28.87 -0.78 4.80
9. 7.02 0.000 8.25 25.72 -0.03 3.87 -3.24 0.071 -1.86 27.72 -0.65 5.70
10. 10.94 0.000 12.35 27.02 1.84 7.50 -2.14 0.067 -1.15 23.66 -0.36 7.86
Med 6.62 0.000 8.30 32.29 0.27 4.02 -2.69 0.069 -1.34 29.33 -0.36 4.43

In-sample III Out-of-sample IV
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 8.30 0.000 9.50 25.43 1.10 6.52 -3.01 0.067 -2.22 21.16 -0.04 6.64
2. 9.00 0.000 10.77 30.41 -0.44 3.69 0.57 0.032 2.04 29.09 0.05 4.14
3. 4.55 0.000 6.84 35.98 -0.15 2.75 -4.00 0.070 -2.07 32.70 -0.60 2.96
4. 8.48 0.000 10.31 31.46 0.17 4.34 -3.34 0.068 -1.46 32.49 -0.46 3.84
5. 5.87 0.000 8.70 39.87 -0.18 2.70 2.03 0.026 3.53 29.07 -0.60 3.69
6. 4.82 0.000 6.81 34.23 0.97 4.75 -6.40 0.076 -4.73 30.56 0.36 3.40
7. 5.48 0.000 7.00 29.46 0.66 3.81 -5.78 0.075 -4.20 29.80 0.30 2.98
8. 5.84 0.000 6.45 17.97 0.23 8.76 -6.41 0.076 -5.13 26.29 -0.47 3.78
9. 5.06 0.000 5.90 21.78 1.05 7.63 -5.15 0.073 -3.81 27.15 -0.41 3.58
10. 8.16 0.000 9.53 26.77 -0.32 2.76 -9.29 0.104 -7.28 32.50 -0.42 3.05
Med 5.85 0.000 7.85 29.94 0.20 4.07 -4.57 0.072 -3.01 29.45 -0.41 3.64

190 P. Saks and D. Maringer

Table 10.12. Interval statistics of entry-exit grammar strategies under market frictions and loss
aversion.

Loss averse
In-sample I Out-of-sample II

Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 5.01 0.000 6.87 28.29 2.21 12.55 -3.99 0.076 1.72 41.13 0.03 3.34
2. 7.56 0.000 8.57 20.16 2.66 14.91 0.29 0.002 1.99 21.41 0.48 7.40
3. 1.77 0.000 2.04 11.09 4.22 30.31 0.00 0.038 0.00 0.00 NaN NaN
4. 6.81 0.000 8.56 25.44 0.97 4.54 -10.66 0.090 -4.13 41.46 -0.06 3.05
5. 3.13 0.000 3.50 12.51 3.05 17.91 -3.91 0.076 -1.52 24.67 -1.29 9.98
6. 7.42 0.000 10.22 30.43 0.38 3.23 -6.25 0.080 -1.60 35.01 -0.45 4.26
7. 4.13 0.000 6.32 25.82 -0.57 5.74 0.36 0.002 3.73 32.43 0.09 5.42
8. 4.71 0.000 5.74 19.71 1.53 6.46 1.35 0.000 4.74 32.16 0.02 3.64
9. 3.65 0.000 4.16 14.32 2.49 9.98 -2.17 0.063 -0.69 20.17 -0.67 16.62
10. 5.84 0.000 7.00 19.80 0.70 4.75 -0.61 0.044 1.74 24.69 0.13 3.27
Med 4.86 0.000 6.60 19.98 1.87 8.22 -1.39 0.053 0.86 28.43 0.02 4.26

In-sample II Out-of-sample III
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 6.16 0.000 9.51 33.59 0.23 5.63 -0.13 0.032 1.42 20.18 -1.05 10.12
2. 3.14 0.000 7.42 37.07 0.06 3.59 -3.50 0.057 -0.05 29.79 -0.45 4.16
3. 6.98 0.000 8.83 25.98 1.60 10.93 -6.78 0.091 -2.14 34.08 -0.33 3.22
4. 5.74 0.000 7.68 25.96 0.29 5.30 -4.70 0.064 -1.38 28.42 -0.58 4.40
5. 3.25 0.000 4.05 17.54 1.80 8.19 -0.20 0.032 0.21 9.47 0.16 15.98
6. 3.81 0.000 7.63 34.93 -0.08 4.07 -1.85 0.035 1.06 27.77 -0.31 4.23
7. 6.47 0.000 8.07 25.52 1.52 5.77 -0.84 0.033 1.38 25.28 0.08 5.07
8. 1.48 0.000 2.12 13.98 1.04 7.58 -0.79 0.033 -0.02 13.33 0.55 9.74
9. 6.78 0.000 11.88 41.46 0.14 3.06 -1.11 0.033 -0.38 15.32 -0.63 39.94
10. 6.35 0.000 8.96 29.15 0.25 4.99 0.21 0.001 1.84 21.65 0.28 5.60
Med 5.95 0.000 7.87 27.57 0.27 5.46 -0.98 0.033 0.09 23.46 -0.32 5.34

In-sample III Out-of-sample IV
Run F p Mean Std Skew Kurt F p Mean Std Skew Kurt
1. 3.70 0.000 4.74 17.97 0.38 5.23 -0.41 0.059 2.37 27.12 -0.38 4.17
2. 2.68 0.000 2.92 9.59 0.94 8.72 1.85 0.000 2.38 13.49 1.14 15.72
3. 5.97 0.000 6.93 16.14 0.48 3.92 -4.70 0.086 -2.42 20.94 -0.45 3.76
4. 3.33 0.000 5.63 25.78 0.64 5.28 -9.16 0.102 -5.47 27.05 -0.15 2.87
5. 3.20 0.000 3.80 14.14 1.15 9.06 0.87 0.016 2.33 19.30 -0.05 4.60
6. 2.89 0.000 4.25 22.20 1.47 8.61 -2.96 0.080 -0.86 21.89 -0.04 4.34
7. 5.03 0.000 8.18 31.75 0.26 3.32 -5.66 0.088 -1.48 32.58 0.18 3.23
8. 3.68 0.000 6.97 31.75 0.25 4.06 -9.03 0.101 -4.84 30.50 0.23 3.32
9. 2.73 0.000 4.44 20.93 0.15 4.36 -9.52 0.113 -5.18 31.07 0.21 3.47
10. 4.86 0.000 5.80 17.60 0.82 5.00 -1.61 0.069 0.75 23.91 -0.23 3.64
Med 3.50 0.000 5.19 19.45 0.56 5.12 -3.83 0.083 -1.17 25.48 -0.04 3.70

11

Interday and Intraday Stock Trading Using
Probabilistic Adaptive Mapping Developmental Genetic
Programming and Linear Genetic Programming

Garnett Wilson and Wolfgang Banzhaf

Memorial University of Newfoundland, St. John’s, NL, Canada
gwilson@cs.mun.ca, banzhaf@cs.mun.ca

Summary. A developmental co-evolutionary genetic programming approach (PAM DGP) is
compared to a standard linear genetic programming (LGP) implementation for trading of stocks
in the technology sector. Both interday and intraday data for these stocks were analyzed, where
both implementations were found to be impressively robust to market fluctuations while reacting
efficiently to opportunities for profit. PAM DGP proved slightly more reactive to market changes
compared to LGP for intraday data, where the converse held true for interday data. Both imple-
mentations had very impressive accuracy in choosing both profitable buy trades and sells that
prevented losses for both interday and intraday stock data. These successful trades occurred in
the context of moderately active trading for interday prices and lower levels of trading for intraday
prices.

11.1 Introduction

Technical analysis of the stock market involves attempts to examine the past effects of
market movements in order to anticipate what traders will do next to affect the market.
Such analysis involves the use of technical indicators to examine price trends and trad-
ing volume in order to identify the likely future trading activity and change in price
of an asset [1]. In recent years, a number of Evolutionary Computation-inspired al-
gorithms, including genetic programming (GP), have been applied to the analysis of
financial markets with a reassuring degree of success. This paper explores the use of
a developmental GP system, Probabilistic Adaptive Mapping Developmental Genetic
Programming (PAM DGP), that uses co-operative co-evolution of genotype solutions
and genotype-phenotype mappings, as well as Linear Genetic Programming (LGP), for
both interday and intraday stock trading. While the encoding of functions is static for
LGP, PAM DGP allows emphasis of particular functions over others.

The following section describes previous related approaches to stock analysis. Sec-
tion 11.3 describes the LGP and PAM DGP implementations and their application to
trading of individual stocks, as well as the function set for this domain and the related
interpretation of an individual’s genotype. Results are provided in Section 11.4 for the
interday analysis of three technology sector stocks, with intraday analysis following in
Section 11.5. Conclusions and future work follow in Section 11.6.

A. Brabazon et al. (Eds.): Natural Computing in Computational Finance: Vol. 3, SCI 293, pp. 191–212.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

192 G. Wilson and W. Banzhaf

11.2 Related Approaches to Stock Prediction

Genetic programming approaches have met with considerable success when applied to
stock analysis. Yan et al. have shown standard GP to outperform other machine learning
techniques such as support vector machines for application to portfolio optimization
in highly volatile markets, where this success is attributed to adaptation to optimize
profits rather than simply predict returns [7]. Furthermore, the authors found that GP
was superior in its balance of Return On Investment (ROI) and robustness to volatility.
LGP has been applied to market analysis previously by Grosnan et al. [4], where Nasdaq
and Nifty indices were examined. Multi-expression programming (MEP), LGP, and an
MEP / LGP ensemble were found to surpass the predictive performance of the particular
neural network or neuro-fuzzy implementations chosen by the authors for next day
prediction of stock prices. The PAM DGP algorithm that is used in this study relies on
a co-evolutionary mechanism. A co-evolutionary process has also been applied to the
creation of trading rules by Drezewski and Sepielak [3] where one species represented
market entry strategies and one species represented exit strategies. In addition, a multi-
agent version of the co-evolutionary algorithm and evolutionary algorithm were tried.
For the particular data set used by the authors, the multi-agent co-evolutionary approach
generated the most profit. To the authors’ knowledge, developmental GP had not been
applied to stock market analysis until the original study by the authors on which this
chapter is partially based [6].

In terms of the application of the GP algorithm to interday trading rule generation, a
technique somewhat similar to the grammatical evolution (GE) approach of Brabazon
and O’Neill [1] was adopted: After a period of initial training, the best evolved rules
in the population were used to trade live for a window of n days. The window is then
shifted ahead and the current population is retrained on the data within the window on
which it was previously trading live in order to trade live on the following n days, and
so on. The authors compare two versions of the GE system, one that maintains its pop-
ulation across window-based training periods and one that re-initializes the population
with each window shift / training period. The authors found that maintaining the popu-
lations, rather than re-initializing them with each window, provided better trading rules
that yielded greater profits. As detailed in the following section, our technique uses a
shifting window of length 5 (increments of one day for interday analysis, minute inter-
val ticks for intraday), but shifts only in increments of 1 day/tick. Following the findings
and recommendations of [1], populations are not re-evolved with the shifting of each
window.

11.3 Stock Analysis Using Developmental and Linear GP

Genetic programing is one of a family of algorithms in machine learning classified
as evolutionary methods. In such methods, a population of candidate solutions (called
“individuals”) are ranked in their ability to perform the objective of solving an optimiza-
tion problem based on some measure of error or success, called a “fitness” function.
The individuals in the population are ranked using the fitness function, and the fittest
individuals are biased for selection as parents and used to create a new population of

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 193

solutions. The genetic material composing the parents is then manipulated, after being
copied, to create children who typically replace some individuals originally in the pop-
ulation. Population size thus does not typically change. The manipulation of genetic
material is accomplished through the use of the two operators of crossover and mu-
tation. Crossover allows swapping of genetic material between two individuals, while
mutation causes the creation of new genetic material by altering the genotype that is
already present.

11.3.1 Description of PAM DGP and LGP Algorithms

This work uses a well-established variant of genetic programming called “linear ge-
netic programming” or “LGP” [2]. In this variant, the genetic material of the individuals
(called “genotype”) has the form of a linear list of instructions. Program execution is
that of a simple register machine, and instructions are made up of opcodes and operands.
The opcodes correspond to functions in a functional set, with arguments to the func-
tions being considered a terminal set. As the program executes, it alters the contents of
internal registers and perhaps a separate solution register. The structure of a linear GP
individual is depicted below in Figure 11.1. When the bit strings are interpreted, they
correspond to members of the functional sets to produce a solution that makes semantic
sense in terms of the original problem, also called the “phenotype.” For instance, the bi-
nary sequence “011” in the individual’s genotype could be interpreted as the functional
set member “addition” in the phenotype. All the instructions in the phenotype are then
evaluated to determine its fitness.

A modern trend in genetic programming, called “developmental genetic program-
ming (DGP)” has been to develop models that more closely mirror the higher-level
developmental processes of nature. One type of developmental GP is accomplished by
using a genotype-phenotype mapping as an intermediary between an individual’s geno-
type and phenotype. Specifically, a genotype-phenotype mapping is the encoding of a
phenotypic symbol by one or more codons, where a codon is a non-zero contiguous
bit sequence from a binary genotype. The biological analogue of the evolution of a
genotype-phenotype mapping in a developmental system, as is described in this work,

100010101
010110101
001010101
110101010
101010101
110100101
010111010
100100100
111011011
000101001
100101001

Op code
corresponding to

function set

Program Code/
Instruction Sequence

Operand (s)
referring to

register
locations or
constants

1000101011

0010101010

Registers for Subresults

Fig. 11.1. Linear Genetic Programming (LGP) genotype

194 G. Wilson and W. Banzhaf

0.06
0.93
0.66
0.89
0.43
0.49
0.09
0.57

Ordered
Function Set Mapping

0 F1
1 F2
2 F3
3 F4
4 F5
5 F6
6 F7
7 F8

0000111011
1110110110
1010100001
11100011 10
0110111011
0111110100
0001011111
1001001100

Mapping
Individual

Binary to Normalized
Decimal Frequency

000 F1
001
010
011
100
101
110
111

F8
F6
F8
F3
F4
F1
F5

000
001
010
011
100
101
110
111

Binary
Encodings

Fig. 11.2. PAM DGP mapping process

is evolution of individuals and a shared “genetic code” that maps codons to amino acids
in actual biological organisms.

The developmental GP variant used in this work for stock analysis is Probabilis-
tic Adaptive Mapping Developmental Genetic Programming (PAM DGP), introduced
in [5]. Genotypes in PAM DGP are binary strings, with interpretation of sections of
the binary string being instruction-dependent (see next Section 11.4). Mappings in this
work are redundant such that individuals are composed of b ≥ s 10-bit binary strings,
where b is the minimum number of binary sequences required to represent a function
set of s symbols. Each 10 bit mapping section is interpreted as its decimal equivalent,
normalized to the range [0, 1], and mapped to an ordered function set index by multi-
plying by s - 1 and truncating to an integer value to yield an index value from 0 to s -
1 (allowing redundant encoding of symbols). For example, in the mapping expressed in
Figure 11.2, the first 10-bit binary sequence of the mapping individual “0000111011”
corresponds to an encoding for the genotype binary sequence “000.” By dividing the
decimal equivalent of the mapping individual’s 10-bit sequence (59) by the maximum
value (“0000000000”, 1023 in decimal), a normalized value of 0.06 results. Truncat-
ing 0.06 to the integer value 0 means that the genotype binary sequence (op code)
corresponds to the member of the ordered function set at index position 0, which is
function (F1). Thus, genotype binary sequence “000” corresponds to the function set
member F1.

Using this mapping mechanism with co-evolutionary selection, PAM DGP will em-
phasize the most useful members of the function set, ignore members of the function
set which are not pertinent, and simultaneously evolve an appropriate genotype solution.
PAM DGP is compared to the standard LGP implementation as described by Brameier
and Banzhaf in [2]. LGP individuals are also bit strings, and there is naturally only a
genotype population. The interpretation of instructions in PAM DGP can be considered
the same for LGP, only LGP uses a static mapping and constant function set. Thus, PAM
DGP extends LGP such that members of a function set are adaptively emphasized.

In PAM DGP there is a population of genotypes that cooperatively coevolves with a
separate population of mappings. A probability table is updated throughout algorithm
execution with entries corresponding to each pair of individual genotype and mapping
from both populations. The table entries represent frequencies that dictate the prob-
ability that roulette selection in a steady state tournament will choose the genotype-
phenotype pairing of individuals determined by the indices of the table. The genotype

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 195

and mapping individual that are members of the current best genotype-mapping pairing
are immune to mutation and crossover to maintain the current best solution discov-
ered. Each tournament round involves the selection of four unique genotype-mapping
pairings. Following fitness evaluation and ranking, the probability table columns asso-
ciated with the winning combinations have the winning combination in that column
updated using Equation 11.1 and the remaining combinations in that column updated
using Equation 11.2

P(g,m)new = P(g,m)old +α(1−P(g,m)old) (11.1)

P(g,m)new = P(g,m)old−α(P(g,m)old) (11.2)

where g is the genotype individual / index, m is the mapping individual / index, α is
the learning rate (corresponding to how much emphasis is placed on current values ver-
sus previous search), and P(g, m) is the probability in table element [g, m]. To prevent
premature convergence, the algorithm uses a noise threshold. If an element in the table
exceeds the noise threshold following a tournament round, a standard Gaussian prob-
ability in the interval [0, 1] is placed in that element and all values in its column are
re-normalized so the column elements sum to unity. The PAM DGP algorithm and se-
lection mechanism are summarized in Figure 11.3. Additional details of PAM DGP and
its improvements over other, related systems are described in [5].

Each steady state tournament consists of 1000 rounds (4 individuals per round). PAM
DGP uses a genotype population of size 10 (as does LGP) and mapping population of
size 10. Each genotype consists of 320 bits and 4 subresult registers, and each mapping
consists of 160 bits (10 bits for each of 16 required encodings for a function set of size
16). XOR mutation on a (uniform) randomly chosen instruction was used on genotypes,
with low threshold point mutation used on mappings to provide a more stable context
against which the genotype could evolve. The genotype population used a mutation rate
of 0.5 and a crossover rate of 0.9. The mapping population uses a lower crossover and
mutation rate, both set at 0.1. PAM DGP used a conservative learning rate of 0.1 and
noise threshold of 0.95 to prevent premature convergence.

Genotype
Population

Mapping
Population

Probability
TableChoice of

individual dictated
by table.

Choice of
individual dictated

by table.

genotype(mapping)
= phenotype

Fitness evaluation updates probability table.

Fig. 11.3. Probabilistic Adaptive Mapping Developmental Genetic Programming (PAM DGP)

196 G. Wilson and W. Banzhaf

11.3.2 Stock Analysis with PAM DGP and LGP Algorithms

The PAM DGP and LGP implementations are applied to three stocks in the technol-
ogy sector: Google Inc., ticker symbol “NASDAQ:GOOG,” Apple Inc., ticker symbol
“NASDAQ:AAP,” and Microsoft Corporation, ticker symbol “NASDAQ:MSFT.” The
initial exchange portion of the ticker symbols will be removed for brevity in the remain-
der of the paper. High, low, open, and close data was provided as input for the 200 day
period in 2007 for interday data analysis, which we use here to explain the operation of
the algorithm. (Particular differences in implementation for intraday data are discussed
in Section 11.5.) The first 16 days of the 200 day intraday data set were reserved as a ba-
sis on which to draw technical indicator data. After the first 16 days, the GP fitness was
evaluated on data corresponding to a moving window of 5 days. Individuals represent
sets of trading rules, based on functions in the function set (to be described). For each
window of 5 days corresponding to trading days m to n, each of m to n - 1 days were
used for calculation of a trading decision given the individual’s rule set, with m + 1 to
n being used to evaluate the recommendation based on the immediately preceding day.
Days used for the calculation of a trading decision were normalized using two-phase
preprocessing similar to [1]: All daily values were transformed by division by a lagged
moving average, and then normalized using linear scaling into the range [0, 1] using

vscaled =
vt − ln
hn− ln

(11.3)

where vscaled is the normalized trading value, vt is the transformed trading value at
time step t, hn is highest transformed value in the last n time steps, ln is the lowest
transformed value in the last n time steps, and n is length of the time lag chosen for the
initial transformation.

In addition to an instruction set, each individual consists of a set of four registers,
a flag for storing the current value of logical operations, and a separate output (trade)
register for storing a final value corresponding to a trade recommendation. Following
the execution of the trading rules of a GP individual, if the value of the trade register is 0,
no action is recommended. Otherwise, the final value in the trade register corresponds
to a value in the range [0, 1]. This value was multiplied by a maximum dollar amount to
be bought or sold per trade ($10,000 was used here based on an initial account balance
of $100,000 with which to trade) to give some portion of $10,000 to be traded. For each
trade conducted, there is a $10 commission penalty. The trading system is permitted
to run a small deficit ≥ $10 to either handle a sell recommendation when maximally
invested (where the deficit would be immediately recouped) or, similarly, to allow a
buy in order to be maximally invested. Fitness of an individual is the value of the cash
and shares held.

The best individual consisting of the best trading rule set is used by a “live” trading
algorithm. That is, the live trader provides known information to the GP for days m to
n. The GP algorithm returns a recommendation on which the live trading system bases
its decision to trade on the following day, n + 1. In particular, the net number of shares
bought and sold by the best evolved individual (trading rules) given the recommendation
of the trade register over all the fitness cases (4 cases given a 5 day window) is the buy
or sell recommendation to the “live” trading system. The best GP individual can thus

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 197

…16 17 18 19 20 21 22 23 24 25...17 18 232219 20 21

days m to n evaluated by GP system to determine action n+1 traded for by live system

Sliding Window

Days:

Fig. 11.4. Relationship between “live” trading system and GP tournament execution

recommend up to $40,000 worth of share selling or buying per actual trading day to the
live system. With the next window shift, the current cash and shares of stock held by
the “live” trading system are the new initial amounts for the GP individuals in the next
tournament on the new window content. The transactions of the live trading system are
what are actually based on unknown data, and determine the success of the algorithms.
The process is summarized in Figure 11.4.

While PAM DGP uses co-evolution to refine function set composition, the appropri-
ate initial function set members must be provided as a basis upon which the algorithm
can select it optimum function set. In the case of standard GP, this initial function set re-
mains constant throughout execution. The function set includes standard mathematical
operators (+, -, *) and instructions to trade based on logical operators (<, >, =) applied
to the four internal registers. In addition, there are four established financial analysis
metrics of moving average, momentum, channel breakout, and current day high, low,
open, or close price. The financial technical indicator moving average is the mean of
the previous n share prices. The momentum indicator provides the rate of change indi-
cator, and is the ratio of a particular time-lagged price to the current price. Momentum
is used to measure the strength of the trend of a stock price, and is often used to predict
price peaks [1]. Channel breakout establishes a trading range for a stock, and reflects
its volatility. The most popular solution places Bollinger bands around a n-day moving
average of the price at +/- 2 standard deviations of the price movement over the last n
days. A trader is typically alerted when the stock price passes the upper or lower bound
of the Bollinger bands.

11.4 Interday Trading Results

The worth of the assets held by the live trading system for each of 184 days of trading is
initially analyzed (200 fitness cases were used overall, with the initial 16 being reserved
so initial technical financial indicators had values). Fifty such trials over 184 days of
trading were conducted for each of the four stocks using an Apple iMac Intel Core 2
Duo 2.8 GHz CPU and 4GB RAM using OS X Leopard v10.5.4. Starting trading with
$100,000, the mean worth (with standard error) of the live trading system for PAM DGP,
LGP, and naïve buy-and-hold strategies is provided in Figures 11.5 to 11.7.

Given Figures 11.5 to 11.7, the prevalent observation is that PAM DGP and LGP
are both impressively robust to share price fluctuations (as indicated by the buy-and-
hold trend line). The evolved solutions seem to take advantage of the upward trends,
although the solutions reflect a conservative strategy overall, adept at anticipating and
buffering against sharp share price declines and volatility in general. In the instance

198 G. Wilson and W. Banzhaf

20 40 60 80 100 120 140 160 180
6

7

8

9

10

11

12
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Google Inc. (GOOG)

Linear GP
PAM DGP
Buy and Hold

Fig. 11.5. Mean total worth for GOOG interday prices (value of cash and shares) of PAM DGP,
LGP, and buy-and-hold strategies over 50 trials with standard error given initial $100,000 cash
value

20 40 60 80 100 120 140 160 180
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

5

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Apple Inc. (AAPL)

Linear GP
PAM DGP
Buy and Hold

Fig. 11.6. Mean total worth for AAPL interday prices (value of cash and shares) of PAM DGP,
LGP, and buy-and-hold strategies over 50 trials with standard error given initial $100,000 cash
value

of MSFT, there are no declines sharp enough or for long enough duration to cause
significant withdrawal of investments. The MSFT example shows that a moderately
volatile, gradual downward trend will have the algorithm gradually lose money as there
is no consistent period of gain or loss. However, in this degenerate case buy-and-hold
results in a similar loss of money-that is, one does not lose much even given such a
deceptive scenario. Both algorithms achieve final profits better than buy-and-hold for

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 199

20 40 60 80 100 120 140 160 180
5

6

7

8

9

10

11
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Microsoft Corporation (MSFT)

Linear GP
PAM DGP
Buy and Hold

Fig. 11.7. Mean total worth for MSFT interday prices (value of cash and shares) of PAM DGP,
LGP, and buy-and-hold strategies over 50 trials with standard error given initial $100,000 cash
value

20 40 60 80 100 120 140 160 180
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Day

R
at

io
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Google Inc. (GOOG)

Linear GP Ratio
PAM DGP Ratio

Fig. 11.8. Mean ratio of PAM DGP and LGP live trading system total worth to buy-and-hold
over 50 trials for GOOG interday prices. Values greater than 1 indicate greater GP worth than
buy-and-hold, values less than 1 vice versa

the remaining two stocks (GOOG and AAPL). Figures 11.8 to 11.10 provide a ratio
of PAM DGP and LGP to buy-and-hold total worth for a finer comparison, with profit
(final and cumulative measures) shown in Figure 11.11.

Comparing the ratio of PAM DGP and LGP worth across stocks in Figures 11.5 to
11.8, PAM DGP maintains higher worth than LGP for the large majority of trading
days in the instances of GOOG and AAPL, with LGP dominating PAM DGP almost

200 G. Wilson and W. Banzhaf

20 40 60 80 100 120 140 160 180
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Day

R
at

io
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Apple Inc. (AAPL)

Linear GP Ratio
PAM DGP Ratio

Fig. 11.9. Mean ratio of PAM DGP and LGP live trading system total worth to buy-and-hold
over 50 trials for AAPL interday prices. Values greater than 1 indicate greater GP worth than
buy-and-hold, values less than 1 vice versa

20 40 60 80 100 120 140 160 180
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Day

R
at

io
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Micorsoft Corporation (MSFT)

Linear GP Ratio
PAM DGP Ratio

Fig. 11.10. Mean ratio of PAM DGP and LGP live trading system total worth to buy-and-hold
over 50 trials for MSFT interday prices. Values greater than 1 indicate greater GP worth than
buy-and-hold, values less than 1 vice versa

the entire period for MSFT (but not by a significant margin). PAM DGP outperforms
buy-and-hold by almost 35% at times for GOOG and AAPL, with LGP outperforming
buy-and-hold by over 25% at times on those stocks. LGP and PAM DGP perform very
closely throughout MSFT (Figure 11.10). Both PAM DGP and LGP outperform buy-
and-hold for the majority of the time period for GOOG and AAPL. When buy-and-hold
outperforms the GP algorithms throughout MSFT it is by a lower margin (typically

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 201

GL GP AL AP ML MP
−50

−40

−30

−20

−10

0

10

20

30

40

50

F
in

al
 P

ro
fit

 (
%

)

Stock, Algorithm Combinations
GL GP AL AP ML MP

−10

−5

0

5

10

15

20

25

30

D
ai

ly
 C

um
ul

at
iv

e
P

ro
fit

 (
%

)
gr

ea
te

r
th

an
 B

uy
−

an
d−

H
ol

d

Stock, Algorithm Combinations

Fig. 11.11. Boxplot of mean final profit (%) and mean daily cumulative profit (%) greater than
buy-and-hold for PAM DGP and LGP over 50 trials for interday prices. First letter of label indi-
cates stock, second letter indicates algorithm. Value of 0 indicates the break even point

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Google Inc. (GOOG)

Linear GP
PAM DGP

Fig. 11.12. Mean shares held by PAM DGP (black) and LGP (grey) live trading systems for
GOOG interday prices as a percentage of total worth over 50 trials with standard error

5% or less). Comparing Figures 11.5 to 11.7 and 11.8 to 11.10, respectively, it is
evident that PAM DGP provides increased robustness to market downturns and quickly
capitalizes growth opportunities later in evolution.

In the boxplots of Figure 11.11, each box indicates the lower quartile, median, and
upper quartile values. If the notches of two boxes do not overlap, the medians of the
two groups differ at the 0.95 confidence interval. Points represent outliers to whiskers
of 1.5 times the interquartile range. PAM DGP outperforms LGP at the end of the
time period (Figure 11.11, left) for GOOG and AAPL, with no statistically significant
difference in final profits for MSFT (all at the 95% confidence interval). Figure 11.11
(left) shows impressive final profit for AAPL, where the algorithm took advantage of
market gains and losses (Figure 11.6). There was a general loss for both PAM DGP and

202 G. Wilson and W. Banzhaf

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Apple Inc. (AAPL)

Linear GP
PAM DGP

Fig. 11.13. Mean shares held by PAM DGP (black) and LGP (grey) live trading systems for
AAPL interday prices as a percentage of total worth over 50 trials with standard error

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Microsoft Corporation (MSFT)

Linear GP
PAM DGP

Fig. 11.14. Mean shares held by PAM DGP (black) and LGP (grey) live trading systems for
MSFT interday prices as a percentage of total worth over 50 trials with standard error

LGP considering final profit for GOOG. GOOG incurred losses during most of the time
period and was thus not profitable overall. Note that time period end is arbitrary and
profits are a direct reflection of underlying market trend. Figure 11.11 (right) shows the
mean daily cumulative profit (%) greater than buy-and-hold for the LGP and PAM DGP
live trading systems over all trading days. Figure 11.11 (right) indicates that both PAM
DGP and LGP were generally more profitable than buy-and-hold at any given time for
GOOG and AAPL, but not for the degenerate case of MSFT where all GP algorithms

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 203

GL GP AL AP ML MP

70

75

80

85

90

95

100
P

ro
fit

ab
le

 B
uy

 T
ra

de
s

(%
)

Stock, Algorithm Combinations
GL GP AL AP ML MP

75

80

85

90

95

100

S
el

l T
ra

de
s

P
re

ve
nt

in
g

Lo
ss

 (
%

)

Stock, Algorithm Combinations

GL GP AL AP ML MP

25

30

35

40

45

50

55

T
ra

de
s

C
on

du
ct

ed
 (

%
 o

f A
ll

P
os

si
bl

e
T

ra
de

s)

Stock, Algorithm Combinations
GL GP AL AP ML MP

10

15

20

25

30

35

40

45

50

55

60

N
o

T
ra

de
, M

ax
 o

r
M

in
 In

ve
st

ed
 (

%
 o

f A
ll

P
os

si
bl

e
T

ra
de

s)

Stock, Algorithm Combinations

Fig. 11.15. Percentage of profitable buy trades, sell trades preventing losses, percentage of trades
executed overall for each stock, and percentage of trades not conducted while maximally or min-
imally invested for each algorithm combination over 50 trials for interday prices. First letter of
label indicates stock, second letter indicates algorithm

and naïve buy-and-sell incur similar losses. PAM DGP was more profitable than LGP
at any given time by a large margin for GOOG and AAPL, and there was no statistically
significant difference (at the 95% confidence interval) between LGP and PAM DGP for
MSFT. Number of shares retained daily as a percentage of live trading total worth is
shown in Figures 11.12 to 11.14.

Comparing Figures 11.5 to 11.7 and 11.12 to 11.14, it is evident that both PAM
DGP and LGP are impressively reactive in that they will sell stock if a market downturn
starts and buy when the market appears to be experiencing gains. Figures 11.5 to 11.6
and 11.12 to 11.13 also indicate that both algorithms are effective at staying maxi-
mally invested during profitable periods. In the instance of MSFT (Figure 11.7), how-
ever, where frequent gains and losses of non-substantial amounts occur, Figure 11.14
indicates that the GP never fully invests or is out of the market. Indeed, given the trend
of Figure 11.7, it is not prudent to fully invest or sell all shares at any particular point.
Proportion of profitable trades is a common metric for evaluation of trading activity, al-
though it is deceptive: it does not even reflect the overall ability of an algorithm in terms
of actual profit generated [1]. Many trades, although not profitable, are beneficial in pre-
venting loss during market downturns. Thus, rather than percentage of profitable trades,
the percentage of profitable buy trades and percentage of sell trades preventing loss for
each algorithm are shown in the top left and right boxplot of Figure 11.15, respectively.
A profitable buy is defined as a buy where the total value of shares and cash held at a

204 G. Wilson and W. Banzhaf

time prior to the next sell exceeds the total value at the time of purchase (less transac-
tion cost). Similarly, a sell preventing further losses is defined as a sell where the total
value of shares and cash held at a time prior to the next buy is less than the total value
at the time of sale (less transaction cost). The percentage of trading opportunities where
action was taken is shown in Figure 11.15 (bottom left). Out of all possible trades, the
number of trades not conducted when the system was maximally or minimally invested
is shown in Figure 11.15 (bottom right).

Figure 11.15 reveals that both algorithms are extremely accurate at buying to gain
profit, with medians of approximately 80% - 95% profitable buys. There is no statisti-
cal difference (at the 95% confidence interval) in the ability of PAM DGP or LGP to
buy for profit for any of the stocks examined. In terms of protecting investment through
selling to prevent loss, the median for PAM DGP and LGP was very good (typically
95% to 100%) for GOOG and AAPL. For MSFT, the percentage of sells preventing
loss was lower (87 to 90%), where the trend in price was volatile with few sudden,
extreme changes (Figure 11.7). LGP had better, or no statistical difference in, perfor-
mance compared to PAM DGP when selling to prevent losses. Any outliers in either
buying for profit or selling to prevent loss were acceptably high percentages. These
beneficial transactions are also the result of trading levels with medians of 30% to 40%
of possible trades for GOOG and AAPL, with higher medians for MSFT (more trades
were conducted due to the volatility of MSFT). PAM DGP generally conducted more
trades (based on spread of data) than LGP for all stocks. Figure 11.15 (right, bottom)
indicates medians of approximately 35-40% of trades where the system wished to main-
tain a maximally or minimally invested position for GOOG and AAPL. Compared with
Figures 11.12 and 11.13, it is evident that most of these positions were maximal invest-
ment to generate profit. Neither algorithm maximally or minimally invested for a high
percentage of trades for MSFT in Figure 11.15 (right, bottom), also seen previously in
Figure 11.14, due to the volatility of MSFT. Overall, Figure 11.15 indicates that the
percentage of beneficial trades that were made to generate profit or protect from losses
were impressively high, where this occurred in the context of moderate levels of trading.

11.5 Intraday Trading Results

Both PAM DGP and LGP systems were applied to intraday data on the same three
technology stocks (GOOG, AAPL, and MSFT) in a different time period. The worth of
the assets held by the live trading system for each of 9 consecutive days of trading is
analyzed. For each of nine days, 370 stock ticks from the beginning of the trading day
are used where the value of the stock is requested from a server every minute (giving
3330 ticks total). As in [1], we opted not to trade during the final minutes of the trading
day due to extreme values (daily high/low points) and high volatility in early and late
trading. The last 20 minutes of trading each day are simply not used, as there are 390
minutes of trading on the NASDAQ (where all three stock prices are traded) exchange
per day. To avoid early trading but not lose too much trading time, the first 8 minutes of
trading are used to generate preprocessed values and then seed technical indicators. It is
also worth noting that the data was taken from a period during which the markets were
not doing well, namely September to October 2008, so the challenge was to trade for

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 205

Table 11.1. Intraday stock trading final profit (%)

GOOG AAPL MSFT

PAM DGP -11.52 -14.76 -7.84
LGP 7.07 -16.64 -3.97

profit on generally declining stocks. After each trading day, all shares were cashed out;
thus no overnight positions were held (a common practice for many intraday traders to
avoid the pitfalls of volatility in late trading).

At the start of the next trading day, the cash value left after the previous trading
day was used to invest. The nature of intraday data trends compared to interday trends
also necessitated some changes to the parametrization of the algorithm, since the in-
traday data was much more volatile. Thus, a smaller window for technical indicators
was adopted (5 ticks), but the size of the moving window used by the GP was kept the
same (also 5 ticks). Since there were considerably more opportunities to trade during
each day, with increased volatility of prices, the maximum trade allowed was reduced
to $1000. An Apple iMac Intel Core 2 Duo 2.8 GHz CPU and 4GB RAM using OS
X Leopard v10.5.4 was again used to conduct intraday trading, as for interday data. In
real time, the analysis took approximately 4 hours to analyze 3330 ticks for one stock,
giving a speed of 4.32 seconds per tick. Starting trading with $100,000, the mean worth
(with standard error) of the live trading system for PAM DGP, LGP, and naive buy-
and-hold strategies is given in Figures 11.16 to 11.18. Ratio of PAM DGP and LGP
performance to buy-and-hold is shown in Figures 11.19 to 11.21. Final profit is shown
in Table 11.1, with cumulative profit (%) greater than buy-and-hold in Figure 11.22.

500 1000 1500 2000 2500 3000
8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Google Inc. (GOOG)

Linear GP
PAM DGP
Buy and Hold

Fig. 11.16. Mean total worth for GOOG intraday prices (value of cash and shares) of PAM DGP,
LGP, and buy-and-hold strategies given initial $100,000 cash value. Vertical lines separate trading
days

206 G. Wilson and W. Banzhaf

500 1000 1500 2000 2500 3000
7

7.5

8

8.5

9

9.5

10

10.5
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Apple Inc. (AAPL)

Linear GP
PAM DGP
Buy and Hold

Fig. 11.17. Mean total worth for AAPL intraday prices (value of cash and shares) of PAM DGP,
LGP, and buy-and-hold strategies given initial $100,000 cash value. Vertical lines separate trading
days

500 1000 1500 2000 2500 3000
8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Microsoft Corporation (MSFT)

Linear GP
PAM DGP
Buy and Hold

Fig. 11.18. Mean total worth for MSFT intraday prices (value of cash and shares) of PAM DGP,
LGP, and buy-and-hold strategies given initial $100,000 cash value. Vertical lines separate trading
days

Figures 11.16 to 11.18 show Linear GP outperforming PAM DGP and buy-and-hold
for most portions of the time period for GOOG (Figure 11.16) and MSFT (Figure 11.18).
Moreover, for both GOOG and MSFT, LGP outperforms buy-and-hold for much of the
time period, whereas PAM DGP does not. LGP also seems to be better able to sell to
prevent loss during market downturns for GOOG and MSFT (Figure 11.16 and 11.18).
For AAPL (Figure 11.17), however, the performance of LGP and PAM DGP are closely

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 207

500 1000 1500 2000 2500 3000

0.95

1

1.05

1.1

1.15

1.2

Day

R
at

io
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Google Inc. (GOOG)

Linear GP Ratio
PAM DGP Ratio

Fig. 11.19. Mean ratio of PAM DGP and LGP live trading system total worth to buy-and-hold
for GOOG intraday prices. Values greater than 1 indicate greater GP worth than buy-and-hold,
values less than 1 vice versa

500 1000 1500 2000 2500 3000

0.95

1

1.05

1.1

1.15

1.2

Day

R
at

io
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Apple Inc. (AAPL)

Linear GP Ratio
PAM DGP Ratio

Fig. 11.20. Mean ratio of PAM DGP and LGP live trading system total worth to buy-and-hold for
AAPL intraday prices. Values greater than 1 indicate greater GP worth than buy-and-hold, values
less than 1 vice versa

matched, with PAM DGP outperforming LGP (albeit by a small margin) during a sig-
nificant portion of the time period. The intraday trend of AAPL differs from GOOG and
MSFT in that it presents a downward slope with less severe downturns and climbs, with
the exception of start of trading on the second day. The intraday AAPL trend is similar
to, but slightly more volatile than, MSFT interday data in Figure 11.7 where LGP and
PAM DGP performed closely throughout the time period. Figures 11.19 to 11.21 echo

208 G. Wilson and W. Banzhaf

500 1000 1500 2000 2500 3000

0.95

1

1.05

1.1

1.15

1.2

Day

R
at

io
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Microsoft Corporation (MSFT)

Linear GP Ratio
PAM DGP Ratio

Fig. 11.21. Mean ratio of PAM DGP and LGP live trading system total worth to buy-and-hold for
MSFT intraday prices. Values greater than 1 indicate greater GP worth than buy-and-hold, values
less than 1 vice versa

GL GP AL AP CL CP

−5

0

5

10

15

C
um

ul
at

iv
e

P
ro

fit
 (

%
)

gr
ea

te
r

th
an

 B
uy

−
an

d−
H

ol
d

Stock, Algorithm Combinations

Fig. 11.22. Intraday cumulative profit (%) greater than buy-and-hold for PAM DGP and LGP
over 50 trials. First letter of label indicates stock, second letter indicates algorithm. Value of 0
indicates the break even point

the observations of Figures 11.16 to 11.18: For GOOG and MSFT (Figures 11.19 and
11.21), LGP outperforms buy-and-hold the majority of the time whereas PAM DGP lags
behind simple buy-and-hold. In the case of AAPL, Figure 11.20, LGP and PAM DGP
perform closely throughout the data set. However, both more significantly outperform
buy-and-hold than was the case for either GOOG or MSFT.

Table 11.1 reflects that trading occurred during a difficult time for the markets. That
is, no final profit was made due to the general downward trend of all stocks. Greater

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 209

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Tick

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Google Inc. (GOOG)

Linear GP
PAM DGP

Fig. 11.23. Mean shares held by PAM DGP (black) and LGP (grey) live trading systems for
GOOG intraday prices as a percentage of total worth

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Tick

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Apple Inc. (AAPL)

Linear GP
PAM DGP

Fig. 11.24. Mean shares held by PAM DGP (black) and LGP (grey) live trading systems for
AAPL intraday prices as a percentage of total worth

losses were incurred by PAM DGP than for LGP for GOOG and MSFT, but AAPL
incurred greater (but similar) losses using LGP as when using PAM DGP. Considering
cumulative profit over buy-and-hold (Figure 11.22) for all intraday data, LGP outper-
formed buy-and-hold for every stock. LGP outperformed PAM DGP for GOOG and
MSFT, but performed on par with PAM DGP for AAPL (as seen also in Figures 11.16
to 11.18). The shares held by the algorithm as a percentage of total worth is shown in
Figures 11.23 to 11.25.

210 G. Wilson and W. Banzhaf

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Tick

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Microsoft Corporation (MSFT)

Linear GP
PAM DGP

Fig. 11.25. Mean shares held by PAM DGP (black) and LGP (grey) live trading systems for
MSFT intraday prices as a percentage of total worth

Figures 11.23 and 11.25 show that for GOOG and MSFT, respectively, on any given
trading day LGP will not maximally invest. Note that at the end of each trading day,
the shares are all sold so no overnight positions are held: the abrupt selling of all shares
is not a result of GP solutions. However, PAM DGP will maximally invest. Given the
overall performance of both algorithms compared to buy-and-hold (see Figure 11.22),
the LGP tendency not to maximally invest yields better performance. In contrast, for
AAPL in Figure 11.24, LGP shows a tendency to maximally invest prior to PAM DGP
taking a similar market position. In this instance, though, neither strategy significantly

Table 11.2. Profitable buy trades (% of all buys), protective sell trades that prevented loss (% of
all sells), trades conducted (% of all possible trades), and no trade with maximum or minimum
invested (% of all possible trades)

GOOG AAPL MSFT

Profitable PAM DGP 95.64 96.63 98.10
Buys(%) LGP 97.12 97.76 96.19

Protective PAM DGP 100.00 98.46 98.36
Sells(%) LGP 100.00 100.00 100.00

Conducted PAM DGP 12.22 15.88 11.60
Trades(%) LGP 8.09 20.62 7.02

Max/Min No PAM DGP 7.02 8.77 10.40
Trade(%) LGP 1.42 51.77 1.79

11 Interday and Intraday Stock Trading Using PAMDGP and LGP 211

outperforms the other (see Figure 11.22). Further analysis of the success of the trades
is provided in Table 2 including: profitable buy trades, protective sell trades, trades
conducted, and number of trades not made while maximally or minimally invested.
Profitable buys and protective sells were determined in the same way as interday data
(see previous Section).

Table 11.2 shows that both algorithms were very successful at choosing trades that
led to profitable buys and sells to prevent further losses across every stock. In this re-
spect, the interday and intraday performance of the algorithms was very similar. How-
ever, compared to interday data (Figure 11.15), the algorithms traded much less fre-
quently when operating on intraday data. As there were many more opportunities to
trade, but the price per trade was kept constant, the algorithms naturally had to be more
selective regarding the trades to be conducted. Regarding the number of trades not con-
ducted to allow maximum or minimum investment, it is clearly evident that PAM DGP
had a much greater tendency than LGP to stay entirely in or out of the market for GOOG
and MSFT, with the converse being true for AAPL.

11.6 Conclusions and Future Work

This work examined the trading performance of a co-evolutionary developmental GP
model (PAM DGP) using a genotype-phenotype mapping and a more traditional LGP
on four stocks. For interday data, PAM DGP was found to better adapt to guard invest-
ments during market downturns and readily take advantage of market gains than LGP.
However, for the more volatile intraday data where trading had to be more selective to
attempt to be profitable, LGP was found to perform better by not investing as reactively
as PAM DGP. For both interday and intraday data, the algorithm was found to not per-
form optimally in the degenerate case of a moderately volatile, gradual downward slope.
However, even in such a deceptive scenario, the GP algorithms performed comparably
with buy-and-hold. In both interday and intraday data sets, both algorithms exhibited
impressive accuracy in choosing beneficial trades, both for profitable buys and selling
to protect investments. The accurate trading ability occurred with moderate levels of
trading for interday and lower levels for intraday (indicating more selective trading).
Future work will examine options for risk adjusted fitness and portfolio management.

References

1. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling.
Springer, Berlin (2006)

2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, New York (2007)
3. Drezewski, R., Sepielak, J.: Evolutionary System for Generating Investment Strategies, Ap-

plications of Evolutionary Computing. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro,
G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J.,
O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops
2008. LNCS, vol. 4974, pp. 83–92. Springer, Heidelberg (2008)

4. Grosnan, C., Abraham, A.: Stock Market Modeling Using Genetic Programming Ensembles.
Studies in Computational Intelligence 13, 131–146 (2006)

212 G. Wilson and W. Banzhaf

5. Wilson, G., Heywood, M.: Introducing Probabilistic Adaptive Developmental Genetic Pro-
gramming with Redundant Mappings. Genetic Programming and Evolvable Machines 8, 187–
220 (2007)

6. Wilson, G., Banzhaf, W.: Prediction of Interday Stock Prices Using Developmental and Linear
Genetic Programming, Applications of Evolutionary Computing. In: Giacobini, M., Brabazon,
A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A.,
Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 172–181. Springer, Heidel-
berg (2009)

7. Yan, W., Sewell, M., Clack, C.: Learning to Optimize Profits Beats Predicting Returns–
Comparing Techniques for Financial Portfolio Optimisation. In: Proceedings of the 2008 Ge-
netic and Evolutionary Computation Conference (GECCO 2008), pp. 1681–1688. ACM Press,
New York (2008)

Index

adaptive strategy, 50
agent-based artificial stock market, 45, 52
agent-based co-evolutionary algorithms, 63
agent-based co-evolutionary systems, 64, 66
agent-based co-operative co-evolutionary

system, 67
agent-based computational economics, 52
agent-based modeling, 47, 52, 63
algorithmic trading, 45
antecedent clause, 149
arbitrage pricing theory, 9
ARIMA model, 95
artificial market model, 86
artificial stock market, 47
ask side, 46
asymmetric information, 89
aversion coefficient, 115

beta values, 10
bid side, 46
bid-ask spread, 47
breakdown value, 10
breeder genetic algorithm, 155

calculus of fuzzy rules, 150
calendar based rebalancing, 113
calendar based strategy, 109
Capital Asset Pricing Model, 9, 85
centroid method, 151
co-evolution, 63
co-evolutionary multi-agent system

(CoEMAS), 64
co-evolutionary algorithms, 63
co-evolve, 194

co-operative co-evolutionary multi-agent-
based algorithm, 68

cognitive psychology, 173
cointegration based index tracking, 110
consequent clause, 149
coupled Markov chain, 31
coupled Markov chain model, 32
credit risk, 31

data mining, 149
decision support system, 133
default probabilities, 31
defuzzification, 151
determination puzzle of foreign exchange, 169
developmental co-evolutionary genetic

programming, 191
developmental genetic programming, 193
differential evolution, 9, 14, 19, 109, 115, 116
DTLZ test functions, 74
dual tree structure, 174

economic utility theory, 173
efficient market hypothesis, 169
electronic order book, 46, 48
emergent properties, 52
entry strategies, 175
evolutionary algorithm, 37, 151
evolutionary algorithms, 63, 131
evolutionary artificial neural networks, 152
evolutionary decision support system, 131,

134
execution style, 46
exit strategies, 175
extreme observations, 9

214 Index

foreign exchange market, 169
fund tracking problem, 111
fuzzy logic, 147
fuzzy rule-based systems, 149
fuzzy rules, 149, 150

Gaussian copula model, 32
genetic algorithm, 51, 86, 90, 170
genetic programming, 169–171, 192
grammatical evolution, 131, 192

heuristic methods, 13
high-frequency tick data, 169
hourglass structures, 154

index fund replication problem, 110
index fund return replication, 110
index tracking, 109, 110
interday trading, 192
inverted market, 85
island-based distributed EA, 151

knowledge pattern, 136

least median of squares estimator, 11
least squares, 9, 10
least trimmed squares estimator, 12
limit order, 45
linear genetic programming, 191, 193
linear regression, 9
linear regression model, 11
linguistic variables, 150
lognormal model of stock prices, 95
loss aversion, 115, 173

Mamdani model, 150
Mamdani system, 150
market impact, 46, 47
market microstructure, 47, 86
market order, 45
mature technology, 21
maximum likelihood function, 33
mean variance problem, 10
migration, 152
minimum variance portfolio, 10
money management, 169, 174
multi-layer perceptrons, 153
mutual fund replication, 109

neural networks, 147

neuro-genetic approach, 153
NSGA2, 71

objective function, 173
opcodes, 193
opportunity cost, 46, 48
order statistics, 12

particle swarm algorithm, 35
particle swarm optimisation, 9, 14, 31
performance evaluation of trade execution

systems, 50
portfolio optimisation, 63, 76
portfolio replication, 9
predicting trend reversals, 147
price adjustment function, 89
price formation process, 48
principal components factor model, 110
probabilistic adaptive mapping developmental

genetic programming, 191, 194

quad tree structure, 169, 174

rating class, 32
rating transition, 31, 32
rebalancing strategies, 113
reference dependence, 173
resistant estimation, 10
resistant estimators, 9
risk management, 9
robust estimation, 10, 12
robust estimators, 9, 10

Santa Fe artificial stock market, 52
Sharpe Ratio, 9
Sharpe ratio, 134, 173
simple genetic algorithm, 135
simulated annealing, 15
SPEA2, 71
static strategy, 50
stock market trading expert, 133
stock market trading rule, 132
style analysis, 10
subset approach, 13
subsymbolic models, 157

technical analysis, 169, 191
technical indicators, 191
ternary decision problems, 170
threshold accepting, 9, 15

Index 215

tolerance triggered rebalancing, 114
tolerance triggered strategy, 109
tournament selection, 171
tracker portfolio, 111
tracker rebalancing, 113
tracking error, 109, 111
tracking error minimisation, 111
trade execution, 45
trade execution strategy, 48
trading cost, 47
trading experts, 131
trading rule, 86, 87
trading strategies, 169

trading system, 173
trinary Boolean variable, 174
truncation selection, 156
turning points, 147

USD/EUR series, 172
utility fucntions, 176

VWAP, 50

ZDT test functions, 72, 73
zero-intelligent agents, 52
zig-zag filter, 158
zig-zag indicator, 148

	Title
	Preface
	Contents
	Natural Computing in Computational Finance (Volume 3): Introduction
	Introduction
	The Chapters
	References

	Part I: Financial and Agent-Based Models
	Robust Regression with Optimisation Heuristics
	Introduction
	The Linear Regression Model
	Estimation
	Numerical Experiments
	Conclusion
	References

	Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model
	Introduction
	Coupled Markov Chain Model
	Maximum Likelihood Function
	Sampling Feasible Points
	Particle Swarm Algorithm
	Evolutionary Algorithm
	Numerical Results
	Conclusion
	References

	Evolutionary Computation and Trade Execution
	Introduction
	Background
	Trade Execution Strategy
	Evolutionary Computation in Trade Execution
	Agent-Based Artificial Stock Market
	Experiments
	Conclusion and Future Work
	References

	Agent-Based Co-operative Co-evolutionary Algorithms for Multi-objective Portfolio Optimization
	Introduction
	Agent-Based Co-operative Co-evolutionary System
	The Experiments
	Summary and Conclusions
	References

	Inferring Trader’s Behavior from Prices
	Introduction
	An Artificial Market Model
	The Genetic Algorithm
	Model Evaluation
	Forecast Quality Evaluation
	Is the Market Reconstruction Unique?
	Conclusions and Future Work
	References

	Part II: Dynamic Strategies and Algorithmic Trading
	Index Mutual Fund Replication
	Introduction
	Tracking Error Minimization and Multi-period Readjustment
	Experiment Results
	Conclusion
	References

	Frequent Knowledge Patterns in Evolutionary Decision Support Systems for Financial Time Series Analysis
	Introduction
	Financial Knowledge Base
	Decision Making Process
	Evolutionary Decision Support System
	Frequent Knowledge Patterns
	Experiments
	Conclusions
	References

	Modeling Turning Points in Financial Markets with Soft Computing Techniques
	Introduction
	Problem Description
	Fuzzy Rule Base Optimization
	Neuro Genetic Optimization
	Experiments and Results
	Conclusion and Future Work
	References

	Evolutionary Money Management
	Introduction
	Genetic Programming
	Data
	Framework
	Empirical Results
	Conclusions
	References
	Interval Statistics

	Interday and Intraday Stock Trading Using Probabilistic Adaptive Mapping Developmental Genetic Programming and Linear Genetic Programming
	Introduction
	Related Approaches to Stock Prediction
	Stock Analysis Using Developmental and Linear GP
	Interday Trading Results
	Intraday Trading Results
	Conclusions and Future Work
	References

	Index

