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Abstract. In this chapter we discuss a wide class of combinatorial optimization
problems with a linear sum and a bottleneck cost function. We first investigate the
case when the weights in the problem are modeled as closed intervals. We show how
the notion of optimality can be extended by using a concept of a deviation interval.
In order to choose a solution we adopt a robust approach. We seek a solution that
minimizes the maximal regret, that is the maximal deviation from optimum over all
weight realizations, called scenarios, which may occur. We then explore the case in
which the weights are specified as fuzzy intervals. We show that under fuzzy weights
the problem has an interpretation consistent with possibility theory. Namely, fuzzy
weights induce a possibility distribution over the scenario set and the possibility and
necessity measures can be used to extend the optimality evaluation and the min-max
regret approach.

1 Introduction

In many optimization problems we seek an object composed of elements of a given
set to achieve some goal. For instance, in a wide class of network problems the
element set consists of all edges of a given graph and we seek an optimal path, span-
ning tree, cut, matching etc. in this graph. A comprehensive review of various prob-
lems of this type can be found in [1, 30, 35]. While describing a particular system
we often meet some parameters associated with the elements whose values are not
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precisely known. For instance, in a traffic network the traveling times between dis-
tinct points are rarely known in advance and this uncertainty must be taken into
account while choosing a path in this network. In order to model the risk connected
with imprecise parameters a stochastic approach can be adopted (see. e.g. [21]). For
every parameter a probability distribution for its values is specified and, typically,
the expected cost of a solution is minimized. The stochastic approach has several
drawbacks. Namely, it may be hard or expensive to estimate the probability distri-
bution for an unknown parameter. Also, the obtained solution may be not reasonable
if it is used only once because it may be poor under the worst parameter realization
which may occur.

An approach which has received an increasing attention in the recent years is
the one of robust optimization. The idea of robust approach is to find a solution
that hedges against the worst realizations of parameters which may occur. A good
introduction to robust optimization can be found in a book [29]. For this class of
problems a part of the input is a scenario set, which contains all realizations of the
parameters, called scenarios, which may occur. No probability distribution over the
scenario set is specified. Then a solution is computed, which minimizes a given cri-
terion under the worst scenario. One of the most popular methods of defining the
scenario set is to specify for every parameter a closed interval, which contains all its
possible values. The scenario set is then the Cartesian product of all the uncertainty
intervals. In order to choose a solution a maximal regret criterion can be used. The
maximal regret is the maximal difference between the cost of a solution and the op-
timum over all scenarios. It was first suggested as a criterion for choosing a decision
under uncertainty by Savage [39]. A deep discussion on the maximal regret can also
be found in a book [31].

The min-max regret approach to combinatorial optimization problems with in-
terval data has attracted a considerable attention recently. A recent survey of the
known results in this area can be found in [2, 22]. It turns out that the complexity of
the min-max regret problem strongly depends on the choice of the cost function in its
deterministic version. Under a bottleneck cost the min-max regret problem is poly-
nomially solvable if only the deterministic problem is polynomially solvable [7].
However, under a more popular linear sum cost, the min-max regret versions of the
shortest path [7, 24, 42], the minimum spanning tree [6, 7], the minimum assign-
ment [3] and the minimum s− t cut [4] turned out to be NP-hard. A polynomial
algorithm is known for the min-max regret selecting items problem [8, 12], which is
a special case of the 0-1 Knapsack with unit capacities of all items. Some approxi-
mation algorithms for the class of min-max regret problems with the linear sum cost
can be found in [23, 26].

In this chapter we show how the known min-max regret approach can be ex-
tended. The key idea is to model the imprecision using fuzzy intervals. A fuzzy
interval can be seen as a monotone, under inclusion, family of closed intervals
parametrized by the value of λ ∈ [0,1]. It is also a fuzzy set in the space of re-
als, whose membership function is a possibility distribution for the values of an
unknown quantity. A description of possibility theory can be found in a book [14],
where one can also find some methods of obtaining possibility distributions from
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the possessed knowledge. Fuzzy intervals allow us to define a possibility distribu-
tion over the scenario set. So now, for every scenario we can assign a real number
from the interval [0,1], which says us what is the possibility that this scenario will
occur. In order to choose a solution we can adopt an elegant concept proposed for
fuzzy linear programming in [19, 20]. It turns out that this solution method can be
viewed as a direct extension of the min-max regret approach to the fuzzy case, which
additionally has a clear possibilistic interpretation. Furthermore, the fuzzy combi-
natorial optimization problems are easier to solve than fuzzy linear programming
described in [20].

This chapter is organized as follows. First, in Section 2, we recall a formulation of
a combinatorial optimization problem with deterministic weights. We describe the
problems with two types of cost functions, namely the bottleneck and the linear sum
ones. We also introduce the concept of a deviation, which is a distance of a solution
(element) from optimality. The concept of deviation will play a central role in our
analysis. In Section 3, we discuss the combinatorial optimization problems with
interval weights. By extending the concept of deviation we show how the optimality
of solutions and elements can be characterized and how to choose a solution. We
seek a solution that minimizes the maximal regret, that is the largest deviation which
may occur for this solution. We present all known complexity results for the interval
problems. In Section 4, we investigate the combinatorial optimization problems with
fuzzy weights. We first recall some basic notions of possibility theory. We then show
how the concept of scenario set can be extended by defining a possibility distribution
over all scenarios. We also introduce the concept of a fuzzy deviation and show
how to characterize the optimality of solutions and elements, using possibility and
necessity measures. Finally, we adopt a method of choosing a solution under fuzzy
weights and we construct several methods of computing this solution.

2 Deterministic Combinatorial Optimization Problems

In this section we briefly recall a formulation of a general combinatorial optimiza-
tion problem. Let E = {e1, . . . ,en} be a finite set of elements and let Φ ⊆ 2E be a set
of subsets of E called a set of feasible solutions. For every element e ∈ E there is a
nonnegative weight we, which expresses a single parameter associated with e such
as cost, time, length etc. We will use F(X) to denote a cost of solution X ∈Φ . Two
types of the cost function are widely used, namely a linear sum cost F(X)= ∑e∈X we

and a bottleneck cost F(X) = maxe∈X we. The deterministic combinatorial optimiza-
tion problem P is the following one:

P: min
X∈Φ

F(X), (1)

where F(X) is either the linear sum or the bottleneck cost. So, an instance of the
problem is specified by a triple (E,Φ,w), where w is a vector of element weights.

The formulation (1) encompasses a large variety of problems. In the important
class of network problems, E is a set of edges of a given directed or undirected
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graph G = (V,E) and Φ consists of all subsets of the edges that form some objects
in G such as paths, spanning trees, matchings, cuts etc. In general (1) includes the
problems, which can be formulated as 0-1 programming ones. To see this, we need
to associate a binary variable xi ∈ {0,1} with every element ei ∈ E and describe Φ
using a system of constraints involving the binary variables. Notice that some of the
problems are polynomially solvable while the other ones are NP-hard. In this chapter
we will assume that P is polynomially solvable. A description of such problems with
both linear sum and bottleneck cost can be found for instance in books [30, 35] and
in papers [10, 17, 36, 37].

In theory and practice the class of matroidal problems is of great importance. Re-
call that a matroid is a pair (E,I ), where E is a nonempty element set
and I is a set of subsets of E such that I is closed under inclusion (if A ∈ I
and B ⊆ A then B ∈I ) and fulfills the so-called growth property (if A,B ∈I and
|A|< |B| then there is e∈B\A such that A∪{e}∈I ). The maximal under inclusion
elements in I are called bases. In a matroidal problem the set of feasible solutions
Φ consists of all bases of a given matroid. Perhaps, the best known example of a ma-
troidal problem is the minimum spanning tree, where E is a set of edges of a given
undirected graph and I consists of all subsets of the edges that form acyclic sub-
graphs of G. Then (E,I ) is called a graphic matroid and its base is a spanning tree
of G, so Φ contains all spanning trees of G. Another important example is the mini-
mum selecting items problem. In this problem, E is a set of items and I consists of
all subsets of E , whose cardinalities are less than or equal to a given number p. The
system (E,I ) is the so-called uniform matroid and X is a base of this matroid if
and only if |X |= p. In this case Φ contains all subsets of E , whose cardinalities are
precisely p. We will see in the next sections that the particular structure of matroidal
problems sometimes allows us to design efficient algorithms under uncertainty.

In the approach presented in this chapter a central role will be played by the
concept of a deviation. A deviation of solution X ∈Φ is defined as follows:

δX = F(X)−min
Y∈Φ

F(Y ).

Hence deviation δX expresses a “distance” of X from optimum. Obviously X is
optimal if and only if δX = 0. A similar concept can be introduced for elements. Let
Φ f ⊆Φ be the set of all feasible solutions that contain element f . Then a deviation
of element f ∈ E is defined as follows:

δ f = min
Y∈Φ f

F(Y )−min
Y∈Φ

F(Y ).

We call element f optimal if δ f = 0. In other words, f is optimal if and only if it is a
part of an optimal solution. The solution (element) deviation gives us an information
how far from optimality a solution (element) is.
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3 Combinatorial Optimization Problems with Interval Weights

In practice, precise values of the element weights in a combinatorial optimization
problem may be unknown. In this section we discuss perhaps the simplest uncer-
tainty representation, where for every unknown weight a closed interval containing
all its possible values is specified. We extend the concept of deviation and we show
how the optimality of a given solution or element can be characterized and how to
choose a solution under interval weights.

3.1 Scenario Set

Assume that we only know that the value of the weight we of element e ∈ E will
fall within a closed interval We = [we,we]. Notice that a precise weight we can be
modeled as a degenerate interval such that we = we. We assume that there is no
probability distribution in We, e ∈ E , and all weights are unrelated, that is the value
of every weight does not depend on the values of the remaining weights. A vector
S = (se)e∈E such that se ∈We for all e ∈ E is called a scenario and it represents the
state of the world in which we = se for all e ∈ E . A scenario set Γ is formed by
the Cartesian product of all the uncertainty intervals, namely Γ = ×e∈EWe. Notice
that our assumptions imply that for any two scenarios S1 and S2 it is not possible
to say which one is more likely to happen. In other words, there is no probability
distribution in scenario set Γ .

Among the scenarios an important role is played by the extreme ones, where
all weights take the lower or upper bounds in their uncertainty intervals, i.e. the
scenarios from the set ×e∈E{we,we}. Let A ⊆ E be a subset of the elements. In
scenario S+

A all elements e ∈ A have weights we and all the remaining elements have
weights we. In the symmetric scenario S−A all elements e ∈ A have weights we and
all the remaining elements have weights we.

Under the interval uncertainty representation the cost of solution X depends on
scenario S∈Γ an we will denote it as F(X ,S). Of course, F(X ,S) is either the linear
sum cost ∑e∈X se or the bottleneck cost maxe∈X se. We will use F∗(S) to denote the
cost of an optimal solution under scenario S. In order to obtain F∗(S) we must solve
the deterministic problem (1) under the weight realization specified by scenario S.
Now the solution and element deviations also depend on scenario S and we will
denote them as δX(S) and δ f (S), respectively.

3.2 Deviation Interval and Optimality Evaluation

Recall that in the deterministic case a deviation gives a full characterization of op-
timality. In the interval case the optimality can be fully characterized by the so-
called deviation interval. For a given solution X ∈ Φ we define ΔX = [δ X ,δ X ],
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where δ X = minS∈Γ δX(S) and δ X = maxS∈Γ δX(S). The quantity δ X is called in
literature the maximal regret of X [29] and it expresses the largest distance of X
from optimality. Similarly, for a given element f ∈ E we have Δ f = [δ f ,δ f ], where
δ f = minS∈Γ δ f (S) and δ f = maxS∈Γ δ f (S).

The intervals ΔX and Δ f contain all values of solution and element deviations
which may occur and allow us to give the following optimality characterization. We
say that a solution X is possibly optimal if δ X = 0 and it is necessarily optimal if
δ X = 0. Obviously, solution X is possibly optimal if and only if it is optimal under
some scenario S∈Γ and it is necessarily optimal if and only if it is optimal under all
scenarios S ∈ Γ . Exactly the same optimality characterization can be given for the
elements. So, we can also introduce the possibly and necessarily optimal elements
using deviation intervals of elements. It is easy to check that every possibly (nec-
essarily) optimal solution is composed of possibly (necessarily) optimal elements.
However, the converse statement is not true since it is not difficult to give an exam-
ple of a solution composed of possibly (necessarily) optimal elements, which is not
possibly (necessarily) optimal (see [25]).

3.3 Choosing a Solution under Interval Weights

Now an important question arises which solution should be chosen under inter-
val weights. One can simply choose a possibly optimal one. This can be done by
computing an optimal solution under any particular scenario S ∈ Γ . This choice is
optimistic because we need to assume that a good scenario will occur. However,
the quality of the solution may be very poor if a bad scenario will realize. One can
also try to compute a necessarily optimal solution. Indeed, such a solution is an
ideal choice but, contrary to the possibly optimal solutions, it rarely exists. In other
words, the necessary optimality is too strong criterion. We thus can see that in order
to choose a solution, a compromise between the possible and necessary optimality
is required. This compromise is achieved by computing a solution that minimizes
the maximal regret δ X , that is the largest deviation (a distance to optimality) over
all scenarios. So, under the interval uncertainty representation we focus on the fol-
lowing optimization problem:

min
X∈Φ

δ X . (2)

An optimal solution to (2) is called an optimal min-max regret solution. We get
immediately that every necessarily optimal solution is an optimal min-max regret
one (but the converse statement is not true). In the next two sections we will show
that every optimal min-max regret solution is possibly optimal. Hence it fulfills the
minimum requirement of being optimal under some scenario. In consequence, the
deviation interval of an optimal min-max regret solution is of the form [0,δ X ], where
δ X is the smallest among all X ∈Φ .
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3.4 Computational Properties of the Interval-Valued Problem

In this section we focus on the computational properties of problem P with interval
weights. We will show that the complexity of computing deviation intervals and
min-max regret solutions strongly depends on the choice of the cost function.

3.4.1 Problems with Linear Sum Cost

In this section we discuss the case when F(X ,S) = ∑e∈X se, so we consider a prob-
lem with the linear sum cost function. The following proposition results directly
from the definition of the cost function:

Proposition 1. For any solution X ∈Φ it holds δ X = δX (S−X ) and δ X = δX (S+
X ).

If the deterministic problem P is polynomially solvable, then the deviation interval
ΔX for a given solution X can be computed in polynomial time. Hence we can also
characterize efficiently the optimality of X and compute its maximal regret. This
is very important property of this class of problems. It is worth pointing out that
for the linear programming problem with interval objective function coefficients,
computing the maximal regret of a given solution is NP-hard [9]. Proposition 1
implies the following result:

Proposition 2. Every optimal min-max regret solution X is possibly optimal and it
is composed of possibly optimal elements.

Proof. Suppose, by contradiction, that an optimal min-max regret solution X is not
possibly optimal. Then, by Proposition 1, δ X = δX(S−X ) = F(X ,S−X )−F∗(S−X ) > 0.
Let Y ∈Φ be an optimal solution under S−X . Hence F(Y,S−X ) < F(X ,S−X ). Using the
definition of the linear sum cost function we can see that F(Y,S) < F(X ,S) for all
scenarios S ∈ Γ , so δY (S) < δX(S) for all S ∈ Γ . Finally, using again Proposition 1,
we get δY = δY (S+

Y ) < δX(S+
Y )≤ δ X , which contradicts the assumption that X is an

optimal min-max regret solution. Since X is possibly optimal it must be composed
of possibly optimal elements. ��
We know that a necessarily optimal solution X , i.e. such that δ X = 0, is an optimal
min-max regret one. Sometimes such a solution may exist and it can be detected by
using the following result:

Theorem 1 ([23]). Let Y be an optimal solution under scenario S such that se =
1
2 (we + we) for all e ∈ E. Then there is a necessarily optimal solution if and only if
Y is necessarily optimal.

So, if problem P is polynomially solvable, then we can detect in polynomial time a
necessarily optimal solution if it exists. There is also a general link between neces-
sarily optimal elements and optimal min-max regret solutions.

Theorem 2 ([28]). If all weight intervals are nondegenerate, then there is an opti-
mal min-max regret solution which contains all necessarily optimal elements.
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The assumption that all weight intervals are nondegenerate is crucial. To see this,
consider the minimum spanning tree problem in a connected graph G = (V,E). As-
sume that We = [1,1] for all e∈E . Of course, every element (edge) e∈E is necessar-
ily optimal but all elements do not even form a feasible solution. If there are some
degenerate weights, then it can only be shown that for every necessarily optimal
element f there is an optimal min-max regret solution that contains f [28].

Let us now focus on computing the deviation interval Δ f for a given element
f ∈ E . Unfortunately, this problem is much harder than computing a solution devi-
ation interval. It is not difficult to show that δ f (S) attains minimum and maximum
in some extreme scenarios [22]. However, computing these scenarios is not trivial
and algorithms for performing this task are known only for some special cases of
problem P. A general result can be proven for matroidal problems:

Theorem 3 ([25]). If P is a matroidal problem, then for any element f ∈ E it holds
δ f = δ f (S−{ f}) and δ f = δ f (S+

{ f}).

If P is not a matroidal problem, then computing Δ f may be NP-hard. Specifically, if
P is the shortest path, the minimum assignment or the minimum s-t cut, then com-
puting δ f for a given element f is NP-hard [28]. Furthermore, for these problems
even deciding whether δ f ≤ 0 is NP-complete, so the problem of asserting the pos-
sible optimality of a given element is computationally intractable. This result also
means that the lower bound of an element deviation interval is hard to approximate.
Interestingly, no polynomially solvable deterministic problem is known for which
computing the upper bound δ f under interval weights is NP-hard. Apart from ma-
troidal problems, δ f can be efficiently computed in the shortest path problem pro-
vided that the input graph is directed and acyclic [16].

Finally, let us focus on solving the min-max regret problem (2). Unfortunately, it
turns out to be NP-hard if P is shortest path [7, 24, 42], minimum spanning tree [7,
6], minimum assignment [3] and minimum s− t cut [4]. It is polynomially solvable
for the minimum selecting items problem, which has a very simple combinatorial
structure [7, 12]. In literature there are two general methods of solving (2). One
can design a mixed integer programming model and solve it by using one of many
available packages [22, 32, 40]. Alternatively, a branch and bound algorithm can be
used to solve the problem [5, 33, 34]. Both techniques have appeared to be quite
efficient for some problems and for a description of the results of computational
tests we refer the reader to [22, 33, 34, 40].

Notice that Proposition 2 and Theorem 2 suggest a method of preprocessing a
problem before solving it. Suppose that we are able to partition the set of elements
into three sets, namely E = A∪B∪C, where A contains nonpossibly optimal el-
ements, B contains necessarily optimal elements and C contains all the remaining
elements (the set C contains possibly optimal elements and elements whose status
is unknown). According to Proposition 2, we can remove all elements in A from E
without violating optimal min-max regret solutions. Similarly, according to Theo-
rem 2, under nondegenerate weights we can automatically add all elements from B
to the constructed solution (if there are some degenerate weights, then we can add
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a single element from B to the constructed solution). This may significantly reduce
the problem size and speed up determining of an optimal min-max regret solution.

3.4.2 Problems with Bottleneck Cost

In this section we discuss a problem with the bottleneck cost F(X ,S) = maxe∈X se.
The following theorem suggests a method of computing the deviation interval of a
specified solution:

Theorem 4. For any solution X it holds

δ X = max{0,max
e∈X

we−F∗(S+
E )}, (3)

δ X = max
e∈X

max{0,we−F∗(S+
{e})}. (4)

Proof. The proof of equality (4) can be found in [7]. We prove equality (3). Let S ∈
Γ be a scenario that minimizes the deviation, that is δ X = δX (S) = F(X ,S)−F∗(S).
Since maxe∈X we ≤ F(X ,S), F∗(S+

E ) ≥ F∗(S) and δ X ≥ 0 it follows immediately
that

δ X ≥max{0,max
e∈X

we−F∗(S+
E )}. (5)

It remains to show that the inequality ≤ also holds in (5). Let Y be an optimal solu-
tion under S+

E and let g = argmaxe∈Y we. We consider two cases. (i) maxe∈X we > wg.
Denote h = argmaxe∈X we. Consider scenario S such that se = min{wh,we} for all
e ∈ X and se = we for all e ∈ E \X . Since wh ≥ we for all e ∈ X , S ∈ Γ . It is easy to
check that F(X ,S) = wh and F∗(S) = F(S+

E ). Hence δ X ≤ δX(S) = maxe∈X we−
F∗(S+

E ) ≤ max{0,maxe∈X we − F∗(S+
E )}, which together with (5) yield (3). (ii)

maxe∈X we ≤ wg. Consider scenario S such that under this scenario all elements
e ∈ E \X have weights we and all the elements e ∈ X have weights min{we,wg}.
Since we ≤ wg for all e ∈ X , S ∈ Γ . One can easily verify that X is optimal under S,
which means that δ X = 0 ≤ max{0,maxe∈X we−F∗(S+

E )}. This, together with (5),
give (3). ��
We thus can see that it is not difficult to compute the deviation interval for a given
solution and to characterize its optimality, provided that the deterministic problem
P is polynomially solvable. Similarly to the problems with linear sum cost function,
the following proposition holds:

Proposition 3. Every optimal min-max regret solution X is possibly optimal and it
is composed of possibly optimal elements.

Proof. If X is not possibly optimal, then by Theorem 4, we have maxe∈X we >
F∗(S+

E ). Let Y be an optimal solution under S+
E . It is easy to verify that F(X ,S) >

F(Y,S) under all scenarios S ∈ Γ . The same argument as in the proof of Propo-
sition 1 yields δ X > δY , so X cannot be an optimal min-max regret solution.
Of course, a possibly optimal solution is entirely composed of possibly optimal
elements. ��
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Let us now focus on the elements. The following theorem allows us to compute
a lower bound on the deviation interval of a given element. Its proof is very similar
to the proof of Theorem 2.

Theorem 5. For any element f ∈ E it holds

δ f = max{0, min
X∈Φ f

F(X ,S−E )−F∗(S+
E )}. (6)

Using Theorem 5 we can design an efficient method of computing the quantity δ f
for every particular problem, which is polynomially solvable. In order to compute
minX∈Φ f F(X ,S−E ) a slight modification of the algorithm for solving P is only re-
quired. Therefore, contrary to the problems with the linear sum cost, we can also
characterize efficiently the possible optimality of a given element. However, a gen-
eral characterization of the quantity δ f is unknown and it is an interesting subject
of further research. Both bounds of Δ f can be efficiently computed if P is matroidal
problem. It is not difficult to prove the following result:

Proposition 4. If P is a matroidal problem then δ f = max{0,wf −F∗(S+
E )} and

δ f = max{0,wf −F∗(S+
{ f})}.

Equality (4) allows us to solve efficiently the min-max regret problem (2), provided
that P is polynomially solvable. To see this let us define weights ŵe = max{0,we−
F∗(S+

{e})} for all e ∈ E . Then

min
X∈Φ

δ X = min
X∈Φ

max
e∈X

ŵe

and the min-max regret problem reduces to solving the deterministic problem P with
nonnegative real weights ŵe, e ∈ E . We thus get the following theorem:

Theorem 6 ([7]). If the deterministic problem P can be solved in f (n) time, then its
min-max regret version can be solved in O(n f (n)) time.

The running time O(n f (n)) follows from the fact that we need to solve n times the
deterministic problem P to obtain weights ŵe for all e ∈ E . The computations can
be additionally refined and for details we refer the reader to [7]. The most important
consequence of Theorem 6 is that the min-max regret version of problem P is poly-
nomially solvable if only the deterministic problem P is polynomially solvable. So,
the situation is quite different from the problems with the linear sum cost.

4 Combinatorial Optimization Problems with Fuzzy Weights

In the previous section we have described the class of problems with interval
weights. It turns out that all the introduced concepts can be naturally extended with-
out significant increasement of the problem complexity. The key idea is to use fuzzy
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intervals to model the uncertain element weights and apply possibility theory to
extend the concept of deviation. This section is devoted to the class of combinatorial
problems with fuzzy weighs.

4.1 Basic Notions of Possibility Theory

Possibility theory offers us a framework of dealing with imprecision. A detailed
description of this theory can be found in a book [14]. We now recall some of its
notions, which will be used later in this section. A fuzzy interval Ã is a fuzzy set
in the space of reals whose membership function μÃ : IR→ [0,1] is normal, quasi
concave, upper semicontinuous and has a compact support. The main property of a
fuzzy interval is that all its λ -cuts, that is the sets Ãλ = {x : μÃ(x)≥ λ} for λ ∈ (0,1],
are closed intervals. We will also denote by Ã0 the smallest closed set containing the
support of Ã. So, we can represent a fuzzy interval Ã as a family of closed intervals
Ãλ = [aλ ,aλ ] parametrized by the value of λ ∈ [0,1]. It is easy to see that this
family is monotone, that is Ãλ1 ⊆ Ãλ

2 if λ1 ≥ λ2. Having the family of λ -cuts of Ã,
the membership function μÃ can be computed as follows:

μÃ(x) = sup{λ ∈ [0,1] : x ∈ Ãλ} (7)

and μÃ(x) = 0 if x /∈ Ã0.
In practice the class of trapezoidal fuzzy intervals is commonly used (see Fig-

ure 1). Every trapezoidal fuzzy interval can be described as a quadruple (a,a,α,β )
and can be represented by the following family of λ -cuts:

Ãλ = [a−α(1−λ ),a+ β (1−λ )], λ ∈ [0,1]. (8)

1 1

a−α a a a+β a a

Fig. 1 Trapezoidal fuzzy interval (a,a,α,β ) and closed interval [a,a] = (a,a,0,0).

Notice that this representation also contains closed intervals (if α = β = 0) and
real numbers (if additionally a = a). We will use shorter notation (a,α,β ) if a =
a = a and we will call (a,α,β ) a triangular fuzzy interval. We also define (a,β ) =
(0,a,0,β ). In order to simplify notations and discussion we will only use trapezoidal
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fuzzy intervals. However, it is not difficult to extend all the introduced notions to a
more general class of fuzzy intervals of the L-R type with compact support (see [14]
for a descriptions of this class of fuzzy intervals).

W now give an interpretation of a fuzzy interval. Let a be a real quantity whose
value is not precisely known. We associate with a a fuzzy interval Ã, whose mem-
bership function μÃ is a possibility distribution for the values of a, that is

Π(a = x) = μÃ(x),

where Π(a = x) is the possibility of the event that a will take the value of x. There
are several methods of obtaining possibility distribution for an unknown quantity
and their description can be found in [14]. Observe that Ãλ contains all values of
a whose possibility of occurrence is not less than λ . In consequence, Ã0 should
contain all possible values of a and Ã1 should contain the most plausible ones.

Let G̃ be a fuzzy set in the space of reals. Then a ∈ G̃ is a fuzzy event and the
possibility and necessity of a ∈ G̃ are defined as follows [13]:

Π(a ∈ G̃) = sup
x∈IR

min{μÃ(x),μG̃(x)}. (9)

N(a ∈ G̃) = 1−Π(a /∈ G̃) = 1− sup
x∈IR

min{μÃ(x),1− μG̃(x)}. (10)

where 1− μG̃(x) is the membership function of the complement of the fuzzy set G̃.
It is not difficult to show that if G̃ = (0,g,0,β ) = (g,β ), then the following equality
is true:

N(a ∈ G̃) = 1− inf{λ ∈ [0,1] : aλ ≤ g1−λ} (11)

and N(a ∈ G̃) = 0 if a1 > g0. Equality (11) is illustrated in Figure 2.

1
μÃ(x)μG̃(x) 1−μG̃(x)

λ ∗

x

Fig. 2 N(a ∈ G̃) = 1−λ ∗

In the next section we will show how possibility theory allows us to extend the
concept of scenario set.
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4.2 Fuzzy Scenario Set

Assume that the element weights in a combinatorial optimization problem are
unknown real quantities we, e ∈ E . We associate with every weight we a fuzzy in-
terval W̃e. According to the interpretation given in the previous section, the mem-
bership function μW̃e

is a possibility distribution for the values of the weight we. Let
S = (se)e∈E ∈ IRn be a vector representing the state of the world in which we = se

for all e ∈ E . As in Section 3, we will call S a scenario. The possibility distributions
associated with element weights induce the following possibility distribution over
all scenarios S ∈ IRn:

π(S) = Π

( ∧
e∈E

[we = se]

)
= min

e∈E
Π(we = se) = min

e∈E
μW̃e

(se). (12)

Observe that π(S) may be regarded as a membership function of a fuzzy set in IRn.
We will call this fuzzy set a fuzzy scenario set and π(S) is the possibility of the event
that scenario S∈ IRn will occur. Notice that we generalize in this way scenario set Γ
defined in Section 3. Indeed, under interval uncertainty representation π(S) = 1 if
S ∈ Γ and π(S) = 0 otherwise, so π(S) is then a characteristic function of the set
Γ . Under fuzzy weights, π(S) may take any value in the interval [0,1]. Hence fuzzy
weights provide us more information about the state of the world which may occur.
In particular, scenario S is impossible if π(S) = 0 and we have π(S) = 1 for the
most plausible scenarios. Notice that the definition of a fuzzy interval assures that
π(S) = 1 for at least one scenario S.

Using (12) and the definition of λ -cut it is easily seen that for every λ ∈ [0,1] the
following equality holds:

{S : π(S)≥ λ}=×e∈E [wλ
e ,wλ

e ]. (13)

So, the set of all scenarios whose possibility of occurrence is not less than λ is
the Cartesian product of the interval weights being the λ -cuts of the fuzzy weights.
Hence it forms a scenario set, which we will denote as Γ λ . This property allows us
to decompose the fuzzy problem into a family of interval problems. We will make
use of this fact in the next sections.

4.3 Fuzzy Deviations

As for the problems with deterministic and interval weights, we can use the concept
of deviation to characterize the optimality of solutions and elements. Recall that un-
der interval weights deviations δX and δ f fall within closed intervals ΔX and Δ f .
Under fuzzy weights, the solution and element deviations are unknown quantities,
which fall within fuzzy intervals Δ̃X and Δ̃ f . The membership functions μΔ̃X

and μΔ̃ f
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are possibility distributions for the values of δX and δ f and, according to possibility
theory, they are defined as follows:

μΔ̃X
(y) = Π(δX = y) = sup

{S: δX (S)=y}
π(S),

μΔ̃ f
(y) = Π(δ f = y) = sup

{S: δ f (S)=y}
π(S).

Consider fuzzy deviation interval Δ̃X of a given solution X ∈ Φ . A λ -cut of Δ̃X

contains all values of the deviation of X whose possibility of occurrence is not less
than λ . Hence

Δ̃ λ
X = {y : μΔ̃X

(y)≥ λ}= {δX(S) : π(S)≥ λ ,S ∈ IRn}.

But (13) implies Δ̃ λ
X = {δX(S) : S ∈ Γ λ} = [δ λ

X ,δ
λ
X ], where δ λ

X minimizes and δ
λ
X

maximizes δX(S) over all S ∈ Γ λ . We can now use the results from Sections 3.4.1
and 3.4.2 to compute the bounds of Δ̃ λ

X . For a problem with the linear sum cost,
Proposition 1 gives

δ λ
X = δX (S−λ

X ) = F(X ,S−λ
X )−F∗(S−λ

X ) = ∑
e∈X

wλ
e −F∗(S−λ

X ), (14)

δ
λ
X = δX (S+λ

X ) = F(X ,S+λ
X )−F∗(S+λ

X ) = ∑
e∈X

wλ
e −F∗(S+λ

X ), (15)

where S−λ
X and S+λ

X are the corresponding extreme scenarios in Γ λ .
Now our aim is to compute the family of cuts Δ̃ λ

X for λ ∈ [0,1]. The possibil-
ity distribution for the deviation of X can be then obtain by formula (7). Observe
that it remains to compute functions F∗(S−λ

X ) and F∗(S+λ
X ) of λ ∈ [0,1]. This task

can be performed by applying a parametric technique. Namely, we wish to compute
sequences 0 = λ0 < λ1 < ... < λk = 1 and X0, . . . ,Xk−1 such that Xi is an optimal
solution under S+λ

X or S−λ
X for λ ∈ [λi,λi+1]. Having these sequences it is easy to

describe analytically functions F∗(S−λ
X ) or F∗(S+λ

X ) for λ ∈ [0,1]. It turns out that
if wλ

e and wλ
e are linear functions of λ for each e ∈ E , then for some particular

problems such as shortest path or minimum spanning tree their parametric coun-
terparts can be efficiently solved (see e.g. [15, 38, 41]). In consequence, the family
of intervals Δ̃ λ

X , λ ∈ [0,1], can be efficiently computed if the uncertain weights are
modeled as trapezoidal fuzzy intervals. A similar reasoning applies to the problems
with the bottleneck cost function. One should only use Theorem 4 to obtain the cor-
responding parametric problems. We now illustrate the computation of Δ̃X by an
example.

Example 1. Consider a shortest path problem shown in Figure 3a. We are given a
directed graph composed of 5 arcs and we wish to find a shortest path between nodes
s and t.
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2−2(1−λ ) 6−2(1−λ )

1+(1−λ )

2+4(1−λ ) 2+4(1−λ )

2+2(1−λ )

2− (1−λ )

1− (1−λ )

6+(1−λ )

2− (1−λ )

s

ss

t

tt

(2,2,2)

(2,1,4)

(1,1,1)

(6,2,1)

(2,1,4)

b) c)

a)

a1

a1a1

a2

a2a2

a3

a3a3

a4

a4a4

a5

a5a5

Fig. 3 a) A sample shortest path problem with fuzzy weights. b) The extreme scenario
S−λ
{a1,a3}. c) The extreme scenario S+λ

{a1 ,a3}.

For every arc weight wa, a ∈ A, a triangular fuzzy interval W̃a = (wa,αa,βa)
is given. Let us examine path X = {a1,a3}. In Figures 3b and 3c the extreme
scenarios S−λ

X and S+λ
X are shown. Notice that these scenarios are linear func-

tions of λ ∈ [0,1] obtained by formula (8). It holds F(X ,S−λ
X ) = 8− 4(1−λ ) and

F(X ,S+λ
X ) = 8 + 3(1− λ ) for λ ∈ [0,1]. Applying a parametric technique to the

problem shown in Figure 3b, we get a sequence of λ ’s 0 < 4
7 < 4

5 < 1 that cor-
responds to the sequence of optimal solutions {a1,a3},{a1,a5,a4},{a2,a4}. That
is, solution {a1,a3} is optimal for λ ∈ [0, 4

7 ], solution {a1,a5,a4} is optimal for

λ ∈ [ 4
7 , 4

5 ] and solution {a2,a4} is optimal for λ ∈ [ 4
5 ,1]. Hence F∗(S−λ

X ) is a piece-
wise linear function, whose value is 8− 4(1−λ ) for λ ∈ [0, 4

7 ], 5 + 3(1− λ ) for

λ ∈ [ 4
7 , 4

5 ] and 4 + 8(1− λ ) for λ ∈ [ 4
5 ,1]. Subtracting F∗(S−λ

X ) from F(X ,S−λ
X )

yields δ λ
X . Similarly, the function δ λ

X is obtained by applying the parametric tech-

nique to the problem shown in Figure 3c. The resulting functions δ λ
X and δ λ

X are

presented in Figure 4. Having the bounds δ λ
X and δ

λ
X for λ ∈ [0,1] we can construct

the possibility distribution μΔ̃X
for the deviations of X by applying formula (7). This

possibility distribution is shown in Figure 4. ��

Computing fuzzy deviation of a given element is more complex. It is a direct con-
sequence of the fact that the corresponding interval problem may be hard to solve.
In other words, it may be hard to identify extreme scenarios that minimize or max-
imize an element deviation. We can compute the fuzzy interval Δ̃ f only for some
particular problems such as matroidal ones (see e.g. [27]).
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Fig. 4 Bounds δ λ
X and δ λ

X and the possibility distribution μΔ̃X
(y) = Π(δX = y)

4.4 Degrees of Possible and Necessary Optimality

The fuzzy deviations allow us to characterize possible and necessary optimality of
solutions and elements. Recall that the statement “X is optimal” is equivalent to the
assertion δX = 0. So, we can define the degrees of possible and necessary optimality
of solution X in the following way:

Π(X is optimal) = Π(δX = 0) = μΔ̃X
(0), (16)

N(X is optimal) = 1−Π(δX > 0) = 1− sup
y>0

μΔ̃X
(y). (17)

In the same way we can define the degrees of optimality of the elements. It is enough
to replace X with f in (16) and (17). The following relations hold between the
optimality degrees of solutions and elements:

Π(X is optimal)≤max
e∈X

Π(e is optimal).

N(X is optimal)≤max
e∈X

N(e is optimal).

Having possibility distributions μΔ̃X
and μΔ̃ f

we can immediately compute the de-
grees of optimality of X and f . However, if one wishes to obtain only the opti-
mality degrees, then the computations can be significantly simplified. Equalities (7)
and (16) imply

Π(X is optimal) = sup{λ ∈ [0,1] : 0 ∈ Δ̃ λ
X }= sup{λ ∈ [0,1] : δ λ

X = 0} (18)

and Π(X is optimal) = 0 if δ 0
X > 0. So, in order to compute the degree of possible

optimality of X , we need to find the largest value of λ such that X is possibly optimal
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under scenario set Γ λ (which is equivalent to the condition δ λ
X = 0). Since δ λ

X is
nondecreasing function of λ , the standard binary search technique can be applied to
perform this task. Also, the following equality is easy to establish:

N(X is optimal) = 1− inf{λ ∈ [0,1] : δ
λ
X = 0} (19)

and N(X is optimal) = 0 if δ 1
X > 0. So, we need to find the smallest value of λ

such that X is necessarily optimal under scenario set Γ λ (which is equivalent to the

condition δ
λ
X = 0). Because δ

λ
X is nonincreasing function of λ , the binary search

technique also solves this problem. If f (n) is the time required to assert whether
a given solution is possibly (necessarily) optimal in the interval problem, then its
degree of possible (necessary) optimality can be computed in O( f (n) logε−1) time,
where ε ∈ (0,1) is an assumed precision of calculations.

Exactly the same reasoning can be applied to the elements (we only need to re-
place X with f in (18) and (19)). Note, however, that the complexity of computations
for an element strongly depends on the combinatorial structure of problem P.

4.5 Choosing a Solution under Fuzzy Weights

We now address the problem of choosing a solution under fuzzy weights. The de-
grees of optimality, introduced in the previous section, suggest us a solution method.
We can choose a solution, which maximizes the degree of possible or necessary op-
timality. Maximizing the degree of possible optimality is trivial. There is always at
least one solution X ∈Φ for which the degree of possible optimality attains its max-
imal value equal to 1. It can be obtained by computing an optimal solution under
scenario S such that π(S) = 1. On the other hand, the degree of necessary optimality
of every feasible solution may be very small or even equal to 0. We thus meet the
same problem as in the interval uncertainty representation - the possible optimal-
ity is too weak criterion of choosing a solution and the necessary optimality is too
strong.

Now the idea is to replace the strong optimality requirement with a weaker one.
Suppose that a decision maker knows his/her preference about solution deviation
and expresses it using a fuzzy goal G̃ = (g,βg). So, the values of deviation in [0,g]
are completely accepted, the values in [g + βg,∞) are not at all accepted and the
degree of acceptance decreases linearly in the interval [g,g + βg] (the assumption
that it decreases linearly is not restrictive and any decreasing function can be used to
model the decision maker preferences). We can now replace the strong requirement
δX = 0 with a weaker one, namely δX ∈ G̃. Recall that δX is an unknown quantity
characterized by possibility distribution μΔ̃X

. So, δX ∈ G̃ is a fuzzy event and we
can compute the necessity that it holds, N(δX ∈ G̃), using (10):

N(δX ∈ G̃) = 1− sup
y∈IR

min{μΔ̃X
(y),1− μG̃(y)}.



304 A. Kasperski and P. Zieliński

Consider again the shortest path problem from Example 1. The function μΔ̃X
is

a possibility distribution for deviation δX of path X . This possibility distribution
is shown in Figure 5. The part of μΔ̃X

representing the largest deviation of X is

shown in bold. In Figure 5 a fuzzy goal G̃ and its complement G̃d are also shown.
The complement G̃d expresses a degree of dissatisfaction of the values of solution
deviation.

μΔ̃X
(y)

μΔ̃X
(y)

μΔ̃X
(y)

1−μG̃(y)

1−μG̃(y)1−μG̃(y)

μG̃(y)

μG̃(y)μG̃(y)

y

yy

a) b)

c)

λ ∗

Fig. 5 Three different situations depending on the choice of fuzzy goal G̃: a) N(δX ∈ G̃) = 0,
b) N(δX ∈ G̃) = 1−λ ∗ , c) N(δX ∈ G̃) = 1

Consider the case illustrated in Figure 5a. The goal G̃ is chosen so that the largest
deviation of X is fully contained in its complement G̃d . So, Π(δX ∈ G̃d) = 1 and
N(δX ∈ G̃d) = 0. In other words, with possibility equal to 1 a scenario may occur
for which the deviation of X is not at all accepted. Figure 5c shows an opposite
case. The goal G̃ is chosen so that the largest deviation of X is completely not in
G̃d . So, Π(δX ∈ G̃d) = 0 and N(δX ∈ G̃d) = 1. In this case for every scenario S such
that π(S) > 0 the deviation δX(S) is completely accepted. Clearly, this is an ideal
situation. In Figure 5b a third case is shown, where the largest deviation of X is only
partially contained in G̃d . So, Π(δX ∈ G̃d) = λ ∗ and N(δX ∈ G̃d) = 1− λ ∗. This
means that for all scenarios S such that π(S) ≥ λ ∗ the degree of dissatisfaction is
not greater than λ ∗ or, equivalently, the degree of satisfaction is not less than 1−λ ∗.

Now it is reasonable to choose a solution whose deviation belongs to G̃ with the
highest confidence. This leads to the following optimization problem:

max
X∈Φ

N(δX ∈ G̃). (20)
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An optimal solution to (20) is called a most necessarily soft optimal solution and it
was first proposed as a solution under fuzzy weights in [20]. If we choose G̃ = (0,0),
then we get the following special case of (20):

max
X∈Φ

N(δX = 0) = max
X∈Φ

N(X is optimal). (21)

So, in (21) we seek a most necessarily optimal solution. As we will see in the next
section, the problem (21) may be easier to solve than (20). Using (11) we can express
the problem (20) as the following mathematical programming one:

minλ
δ

λ
X ≤ g1−λ

X ∈Φ
λ ∈ [0,1]

(22)

If λ ∗ is the optimal objective value of (22) and X∗ is an optimal solution, then
N(δX∗ ∈ G̃) = 1− λ ∗. If (22) is infeasible, then N(δX ∈ G̃) = 0 for all feasible
solutions X .

It is easy to check that problem (22) is a generalization of the min-max regret
approach. If all W̃e, e ∈ E , are closed intervals and G̃ = (0,M) for a sufficiently
large number M, then (22) is equivalent to (2). In the next two sections we will
focus on some methods of solving (22).

4.5.1 Binary Search Technique

Observe that δ λ
X is nonincreasing and g1−λ is nondecreasing function of λ ∈ [0,1].

Therefore (22) can be solved by applying the standard binary search technique
shown in Figure 6. The algorithm simply seeks a minimal value of λ in the interval

[0,1], for which there is a solution X ∈ Φ that satisfies inequality δ λ
X ≤ g1−λ . The

quantity δ λ
X is the maximal regret of solution X under scenario set Γ λ . Therefore,

the inequality δ
λ
X ≤ g1−λ is satisfied for some X ∈Φ if and only if it is satisfied by

an optimal min-max regret solution under Γ λ . So, if we are able to solve the min-
max regret problem with interval data in f (n) time, then the binary search solves
the fuzzy problem in O( f (n) logε−1) time with a given precision ε ∈ (0,1).

We can see now that if the min-max regret problem is polynomially solvable,
then its fuzzy generalization is polynomially solvable up to a given precision ε .
Notice that for the class of problems with the bottleneck cost function, it is enough
that the deterministic problem is polynomially solvable (see Theorem 4). For the
problems with the linear sum cost the situation is more complex since the min-
max regret problem is mostly NP-hard. However, if the deterministic problem is
polynomially solvable, then we can solve efficiently the special case (21), that is we
can find efficiently a most necessarily optimal solution with a given precision ε . If

G̃ = (0,0), then gλ = 0 for all λ ∈ [0,1]. The condition δ λ
X ≤ 0 can be efficiently
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1: Find an optimal min-max regret solution X under Γ 1

2: if δ 1
X > g0 then return /0

3: λ1← 0.5, k← 1, λ2← 0
4: while |λ1−λ2|< ε do
5: λ2← λ1
6: Find an optimal min-max regret solution Y under Γ λ1

7: if δ λ1

Y ≤ g1−λ1 then λ1← λ1−1/2k+1, X ←Y else λ1← λ1 +1/2k+1

8: k← k +1
9: end while

10: return X

Fig. 6 Computing a most necessarily soft optimal solution with a given precision ε ∈ (0,1).
Algorithm returns /0 if N(δX ∈ G̃) = 0 for all X ∈ Φ .

verified for a fixed λ by using Theorem 1 because δ
λ
X ≤ 0 if and only if there is a

necessarily optimal solution under scenario set Γ λ .
The binary search is the most general method of solving the fuzzy problem. How-

ever, it gives only an approximate solution. Furthermore, it may be not efficient for
the problems with the linear sum cost function because solving O(logε−1) times
an NP-hard problem may be time consuming. In the next sections we show some
alternative methods of finding a most necessarily soft optimal solution.

4.5.2 Parametric Technique of the Problems with Bottleneck Cost

Consider the class of problems with the bottleneck cost function. Using (4) and (11)
we can express the fuzzy problem in the following way:

inf

{
λ ∈ [0,1] : min

X∈Φ
max
e∈X

ŵλ
e ≤ g1−λ

}
. (23)

where ŵλ
e = max{0,wλ

e −F∗(S+λ
{e})}. We can obtain weights ŵλ

e for all e ∈ E using
a parametric technique (see e.g. [11]). As the result we obtain another parametric
bottleneck problem with weights ŵλ

e , e ∈ E , that is

δ
λ

= min
X∈Φ

max
e∈X

ŵλ
e . (24)

Solving (24) we obtain sequences 0≤ λ0 ≤ λ1 ≤ ·· · ≤ λk = 1 and X0, . . . ,Xk−1 such
that Xi is an optimal solution for λ ∈ [λi,λi+1]. Having these sequences it is easy to

describe analytically function δ
λ

for λ ∈ [0,1]. The function δ
λ

is nonincreasing,
hence from (23) we can see that in order to obtain a most necessarily soft optimal

solution we must find the intersection point λ ∗ of δ λ
with g1−λ . Then, if λ ∗ ∈

[λi,λi+1], then Xi is a necessarily soft optimal solution. If such an intersection point

does not exist, then two cases are possible - either δ
1
> g0 or δ

0
< g1. In the former
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case N(δX ∈ G̃) = 0 for all feasible solutions X and in the latter one N(δX0 ∈ G̃) = 1
and X0 is a necessarily soft optimal solution.

The solution procedure based on a parametric technique is more time consuming
than the binary search shown in the previous section. It has, however, two important
advantages. First of all, it gives an exact necessarily soft optimal solution. Further-
more, it provides a lot of additional information in the fuzzy problem. Observe that,
regardless of fuzzy goal, a most necessarily soft optimal solution is always among
X0, . . . ,Xk−1. We can thus treat the set of solutions {X0, . . . ,Xk−1} as a solution of
the fuzzy problem. Introducing fuzzy goal G̃ allows us to chose one of these solu-
tions. One can also check easily how the solution changes when the fuzzy goal G̃ is
changed. So, we can perform a sensitivity analysis of the obtained solution.

4.5.3 MIP Formulation for the Problems with Linear Sum Cost

In this section we show an exact method of solving (20) for the problems with
the linear sum cost. Under some additional assumptions we design a mixed inte-
ger linear programming (MIP) model, which can be then solved by some avail-
able software. Let us assign a binary variable xi ∈ {0,1} to every element ei ∈ E .
This variable will indicate whether element ei is contained in a constructed solu-
tion. Every feasible solution X ∈ Φ can be represented as a vector of binary vari-
ables xxx = [x1, . . . ,xn], where xi = 1 if and only if ei ∈ X . We assume that the set
of feasible solutions can be described by a system of linear constraints of the form
{xxx∈ {0,1}n : A xxxT = bbb}, where A is a matrix and bbb is a vector of fixed coefficients.
We allow also inequalities ≤ and ≥ in the constraints since they can easily be con-
verted to equalities by adding a number of additional slack variables. In order to
simplify notations we will use W̃i to denote the fuzzy interval associated with the
weight of element ei.

We will assume that the matrix A is totally unimodular. Recall that in a totally
unimodular matrix the determinants of all its nonsingular square submatrices are
equal to -1 or 1 (see e.g. [18]). This assumption restricts the class of considered
problems. However, if the deterministic problem P is polynomially solvable, then
it can often be formulated as a 0-1 linear programming problem with a totally uni-
modular constraints matrix. This is, for instance, the case for a wide class of network
flow problems such as shortest path, minimum spanning tree, minimum assignment
or minimum cut [1, 18].

Recall (see (15)) that δ λ
X = δX(S+λ

X ) = F(X ,S+λ
X )−F∗(S+λ

X ). Using the vector
of binary variables xxx representing X , we can see that F(X ,S+λ

X ) = ∑n
i=1 wλ

i xi. Under
scenario S+λ

X the weight of element ei is wλ
i xi + wλ

i (1− xi). So, F∗(S+λ
X ) can be

expressed as follows:

min
n

∑
i=1

[wλ
i xi + wλ

i (1− xi)]yi

A yyyT = bbb
yi ∈ {0,1} i = 1, . . . ,n

(25)
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We now use the assumption that matrix A is totally unimodular. Under this as-
sumption (see e.g. [18]) we can replace constraints yi ∈ {0,1} in (25) with 0≤ yi≤ 1
without changing the cost of an optimal solution to (25). As the result we get the
following problem:

min
n

∑
i=1

[wλ
i xi + wλ

i (1− xi)]yi

A yyyT = bbb
0≤ yi ≤ 1 i = 1, . . . ,n

(26)

We can now construct a dual model to (26). This dual model has a vector of dual
variables uuu associated with the constraints of (26). Denote by φ(uuu) the objective
of the dual and by Dλ (xxx) the set of feasible dual vectors. So, the dual model is
maxuuu∈Dλ (xxx) φ(uuu) and it is linear with respect to both uuu and xxx if λ is fixed. Now the
strong duality theorem implies:

F∗(S+λ
X ) = max

uuu∈Dλ (xxx)
φ(uuu).

Hence

δ
λ
X =

n

∑
i=1

wλ
i xi− max

uuu∈Dλ (xxx)
φ(uuu),

which together with (22) give

minλ
n

∑
i=1

wλ
i xi− max

uuu∈Dλ (xxx)
φ(uuu)≤ g1−λ

A xxxT = bbb
xi ∈ {0,1} i = 1, . . . ,n
λ ∈ [0,1]

(27)

We can omit the maximum operator in (27) obtaining the following equivalent
model:

minλ
n

∑
i=1

wλ
i xi−φ(uuu)≤ g1−λ

A xxxT = bbb
uuu ∈ Dλ (xxx)
xi ∈ {0,1} i = 1, . . . ,n
λ ∈ [0,1]

(28)

Assuming that the element weights are trapezoidal fuzzy intervalsW̃i = (wi,wi,αi,βi)
for all ei ∈ E , we can substitute wλ

i = wi +βi(1−λ ) and wλ
i = wi−αi(1−λ ) in (28).

The resulting model will be still not linear because some expressions of the form
λ xi may appear. However, we can make (28) linear by replacing all such expres-
sions with additional variables and adding some additional linear constraints. After
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this modification, problem (28) will be a mixed integer linear programming one. We
will illustrate this method by an example.

Example 2. Consider the following minimum selecting items problem. Let E =
{e1, . . . ,en} be a set of items. The solution set Φ consists of all subsets X of E
such that |X | = p, where p is a given integer. So, we wish to choose exactly p
items among E . Assume that fuzzy interval W̃i = (wi,wi,αi,βi) is given for every
ei ∈ E . We also fix a fuzzy goal G̃ = (g,βg). The binary variable xi ∈ {0,1} indicates
whether item ei is chosen or not. The solution set Φ in this problem can be described
by the single constraint x1 + x2 + · · ·+ xn = p. Obviously, matrix A = [1,1, . . . ,1]
is totally unimodular. The subproblem (26) takes the following form:

min
n

∑
i=1

[wλ
i xi + wλ

i (1− xi)]yi

y1 + y2 + · · ·+ yn = p
0≤ yi ≤ 1 i = 1, . . . ,n

Assigning dual variable u0 to the equality constraint and dual variables u1, . . . ,un to
constraints yi ≤ 1, i = 1, . . . ,n, we get the following dual model:

max pu0−u1−·· ·−un

u0−ui ≤ wλ
i xi + wλ

i (1− xi)
ui ≥ 0 i = 1, . . . ,n

Consequently, φ(uuu) = pu0− u1− ·· · − un and set Dλ (xxx) is described by the con-
straints of the dual model. We are now ready to design the model using formula-
tion (28). We also substitute wλ

i = wi + βi(1−λ ) and wλ
i = wi−αi(1−λ ). After

easy computations we get

minλ
n

∑
i=1

(wi + βi)xi−
n

∑
i=1

βiλ xi− pu0 +
n

∑
i=1

ui ≤ g+ βgλ
n

∑
i=1

xi = p

u0−ui ≤ (wi−wi + αi + βi)xi− (αi + βi)λ xi−αi(1−λ )+ wi i = 1, . . . ,n
ui ≥ 0 i = 1, . . . ,n
λ ∈ [0,1]
xi ∈ {0,1} i = 1, . . . ,n

The obtained model is still not linear. We can, however, substitute ti = λ xi and add
additional linear constraints ti− xi ≤ 0, λ − ti + xi ≤ 1, −λ + ti ≤ 0, ti ≥ 0 for all
i = 1, . . . ,n. This assures that ti = λ if xi = 1 and ti = 0 if xi = 0. The resulting final
model will be a mixed integer linear programming one and can be solved by using a
standard software. Of course, the same technique can be applied to other problems
with totally unimodular constraints matrix. ��
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5 Conclusions

In this chapter we have discussed a general class of combinatorial optimization
problems with fuzzy weights. We have provided an interpretation of such problems
in the setting of possibility theory. The possibility and necessity measures allow
us to characterize the optimality of solutions and elements and to define a solution
concept. This solution concept is an adaptation of the necessary soft optimality first
proposed for fuzzy linear programming. In general, every fuzzy problem boils down
to solving a small number of interval problems. Every algorithm for computing a de-
viation interval and a min-max regret solution under interval weights can be easily
adopted to solve a more general fuzzy problem. It is enough to apply a standard
binary search technique. The complexity of an interval problem depends on the type
of the cost function in its deterministic counterpart. In general, the problems with
bottleneck cost function are easier to solve than the ones with linear sum cost.

There are some open questions concerning the approach described in this chapter.
Most of them refer to the interval uncertainty representation. For instance, the prob-
lem of evaluating the necessary optimality of elements is open (its complexity is
known only for some particular problems). Also, designing fast algorithms for com-
puting optimal min-max regret solutions is an important subject of further research.
For fuzzy problems, the efficiency of the MIP formulation should be investigated.
Also, the parametric techniques, which allow us to compute fuzzy deviation inter-
vals and solve the bottleneck problems should be explored more deeply. Finally, if
the interval problem is NP-hard, then some heuristics and approximation algorithms
for its fuzzy generalization should be designed.
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