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Abstract. This work deals with the problems of the Expremal Fuzzy Continuous
Dynamic System (EFCDS) optimization problems and briefly discuss the results
developed by G. Sirbiladze [31]–[38]. The basic properties of extended extremal
fuzzy measure are considered and several variants of their representation are given.
In considering extremal fuzzy measures, several transformation theorems are repre-
sented for extended lower and upper Sugeno integrals. Values of extended extremal
conditional fuzzy measures are defined as a levels of an expert knowledge reflec-
tions of EFCDS states in the fuzzy time intervals. The notions of extremal fuzzy
time moments and intervals are introduced and their monotone algebraic structures
that form the most important part of the fuzzy instrument of modeling extremal
fuzzy dynamic systems are discussed. New approaches in modeling of EFCDS are
developed. Applying the results of [31] and [32], fuzzy processes with possibilistic
uncertainty, the source of which is extremal fuzzy time intervals, are constructed.
The dynamics of EFCDS’s is described. Questions of the ergodicity of EFCDS’s
are considered. Fuzzy-integral representations of controllable extremal fuzzy pro-
cesses are given. Sufficient and necessary conditions are presented for the existence
of an extremal fuzzy optimal control processes, for which we use R. Bellman’s opti-
mality principle and take into consideration the gain-loss fuzzy process. A separate
consideration is given to the case where an extremal fuzzy control process acting
on the EFCDS does not depend on an EFCDS state. Applying Bellman’s optimality
principle and assuming that the gain-loss process exists for the EFCDS, a variant of
the fuzzy integral representation of an optimal control is given for the EFCDS. This
variant employs the instrument of extended extremal fuzzy composition measures
constructed in [32]. An example of constructing of the EFCDS optimal control is
presented.
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1 Introduction

In recent years, both the dynamics of fuzzy system and the modeling issue
received an increased attention. Dynamics is an obvious problem in control; more-
over, its interest goes far beyond control applications. Applications of the dynam-
ics of fuzzy systems and of the modeling of dynamic systems by fuzzy systems
range from physics to biology to economics to pattern recognition and to time series
prediction.

Evidence exists that fuzzy models can explain cooperative processes, such as in
biology, chemistry, material sciences, or in economy. Relationships between dynam-
ics of fuzzy systems and the performance of decision support systems were found,
and chaotic processes in various classes of fuzzy systems were shown as a power-
ful tool in analyzing complex, weakly structurable systems, as anomal and extremal
processes.

To make the decision-making effective in the framework of computer systems
supporting this process, we must solve analytic problems of optimization, state eval-
uation, model identification, complex dynamic system control, optimal control, fil-
tering and so on.

It is well recognized that optimization and other decision support technologies
have been playing an important role in improving almost every aspect of human so-
ciety. Intensive study over the past several years has resulted in significant progress
in both the theory and applications of optimization and decision science.

Optimization and decision-making problems are traditionally handled by either
the deterministic or probabilistic approaches. The former provides an approximate
solution, completely ignoring uncertainty, while the latter assumes that any uncer-
tainty can be represented as a probability distribution. Of course, both approaches
only partially capture reality uncertainty (such as stock price, commodity, cost, nat-
ural resource availability and so on) that indeed exist but not in the form of known
probability distributions.

In the Preface of the Journal of Fuzzy Optimization and Decision Making (vol. I,
2002, pp. 11–12) Professor L. A. Zadeh had said: “My 1970 paper with R.E. Bell-
man, “Decision-Making in a Fuzzy Environment” was intended to suggest a frame-
work based on the theory of fuzzy sets for dealing with imprecision and partial truth
in optimization and decision analysis. In the intervening years, a voluminous litera-
ture on applications of fuzzy logic to decision analysis has come into existence.”

In alternative classical approaches to modeling and when working with complex
systems the main accent is placed on the assumption of fuzziness. As the complexity
of systems increases, our ability to define exactly their behaviour drops to a certain
level, below which such characteristics of information as exactness and uncertainty
become mutually excluding. In such situations an exact quantitative analysis of real
complex systems is apt to be not quite plausible. Hence, a conclusion comes to
mind that problems of this kind should be solved by means of analytic-fundamental
methods of fuzzy mathematics, while the system approach to constructing models
of complex systems with fuzzy uncertainty guarantees the creation of computer-
aided systems forming the instrumental basis of intelligent technology solutions of
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expert-analytic problems. It is obvious that the source of fuzzy-statistical samples is
the population of fuzzy characteristics of expert knowledge. Fuzziness arises from
observations of time moments as well as from other expert measurements.

Problems of making an optimal solution for systems with fuzzy uncertainty are
difficult because it frequently happens that the controllable object possesses con-
flicting properties which might include:

1) imperfection of a control process due to information uncertainty;
2) unreliable elements of a control system;
3) nonuniqueness and the applicability of many criteria encountered in a control

process;
4) restriction of possibilities (resources) of a control system;
5) loss of the ability of a control system to solve arising control problems.

Fuzzy programming problems have been discussed widely in literature ([1]–[3], [5],
[7], [10], [11], [23], [25], [26], [35], [37], [39], [45]–[47] and so on) and applied in
such various disciplines as operations research, economic management, business
administration, engineering and so on. B. Liu [25] presents a brief review on fuzzy
programming models, and classifies them into three broad classes: expected value
models, chance-constrained programming and chance-dependent programming.

Our further study belongs to the first class, where we use the instrument of fuzzy
measures and integrals ([8], [14]–[16], [31]–[33], [38], [40]–[42], [44] and so on) or,
speaking more exactly, extremal fuzzy measures and Sugeno’s type integrals along
with extremal fuzzy expected values.

Therefore in the paper the new approach to the study of weakly structurable fuzzy
dynamic systems optimization is presented (Extremal Fuzzy Continuous Dynamic
System). This approach is based on the six papers published in the Int. Journal of
General Systems (by G. Sirbiladze, ”Modeling of Extremal Fuzzy Dynamic Sys-
tems”. Parts I-VI: 34,2, 2005, 107-138; 139-167; 169-198; 35, 4, 2006, 435-459;
35, 5, 2006, 529-554; 36,1 2007, 19-58). Different from other approaches where the
source of fuzzy uncertainty in dynamic systems is expert, this approach considers
time as long as an expert to be the source of fuzzy uncertainty. This notably widens
the area of studied problems. All these is connected to the incomplete, imprecise,
anomal and extremal processes in nature and society, where connections between
the system’s objects are of subjective (expert) nature, which is caused by lack of
objective information about the evolution of studied system, for example in 1) eco-
nomics and business of developing countries, conflictology, sociology, medical di-
agnosis etc; 2) management of evacuation processes in catastrophe areas, estimation
of disease spreading in epidemical regions; 3) research of complex systems of ap-
plied physics, etc. One of our purposes is to create scenarios describing possible
evolution of EFCDS using methods of optimization developed in this paper by the
framework of expert-possibilistic theory. This includes construction of algorithms
of logical-possibilistic simulations of anomal and extremal process analysis.

Our attention is focused on the rapidly developing theory of fuzzy measures
and integrals ([8], [14]–[16], [31]–[33], [38], [40]–[42], [44] and so on). The ap-
plication of fuzzy measures and integrals as an instrument of constructing the
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intelligent decision-making systems is not a novel idea ([8], [13]–[16], [18], [20],
[22], [25], [29], [30], [33]–[37], [39]–[42], [44], [46] and so on). We employ the
part of the theory of fuzzy measures which concerns extremal fuzzy measures ([31]–
[33], [38]) and which, in our opinion, is rather seldom used. We have constructed
a new instrument of a fuzzy measure, the extension of which is based on Sugeno
lower and upper integrals.

In the framework of this theory a new apparatus of extended fuzzy measures was
constructed on the basis of Sugeno’s upper and lower integrals ([31]–[33], [38]).
Using this apparatus new fuzzy extremal models of weakly structurable dynamic
system control were created, where fuzziness is represented in time. Here the struc-
ture of time is represented by monotone extremal classes of measurable sets. On
such structures uncertainty is described by extremal fuzzy measures and problems
of fuzzy analysis of extremal fuzzy processes: 1. Fuzzy Optimization, 2. Fuzzy Iden-
tification, 3. Fuzzy Filtration and so on. We will deal with the fuzzy control prob-
lems of fuzzy dynamic systems (EFCDS) ([33]–[36], [39]), where fuzzy uncertainty
arises with time and time structures are monotone classes of measurable sets.

As known (Subsection 2.2 and [31]), in fuzzy dynamic processes where fuzzi-
ness participates as a time factor, an important role is assigned to the structures of

extremal fuzzy time intervals {˜F I∗(T ),� ⊗
∗
}〉), (〈{˜F I

∗
(T ),� ∗⊗}. As the fuzzy

time flows, the process of expert knowledge measurement on the system states
with respect to time is affected by the incompleteness of the obtained information.
The polar characteristics of this information manifest themselves as imprecision
and uncertainty. A degree of information imprecision is defined by current fuzzy
time moments (˜t ∈ ˜B∗

1) and future fuzzy time moments (˜t ∈ ˜B1∗), while an uncer-
tainty degree is defined by current fuzzy time intervals (r̃ ∈ ˜B∗

2) and future fuzzy
time intervals (r̃ ∈ ˜B2∗). We have constructed the corresponding fuzzy monotone
structures

{˜F I∗(T ),�,⊕
∗
} and {˜F I

∗
(T ),�,

∗⊕}, (1)

in which sequential extremal fuzzy time intervals are calculated recurrently.
Here only note that when expert describes the dynamics of complex objects and

“measure” system states, where the source of uncertainty is fuzzy measurements
with respect to time, it is necessary to carry out “extremal” “dual” measurements,
namely, measurements in extended current and compressed future fuzzy time inter-
vals [31].

In the present paper, we represent the controllable extremal fuzzy processes de-
fined in [35]–[37], [39]. The subject/matter of our investigation is the existence of
an optimal control for EFCDS’s. Section 2 contains some necessary preliminary
concepts presented in [31]–[33], [38]. Sections 3 and 4 describe models of extremal
fuzzy continuous dynamic system. Section 5 deals with problems of EFCDS opti-
mization when the control parameter does not depend on a state in which an EFCDS
is. Questions of the existence of an optimal control are studied, and variants of their
fuzzy integral representation are proposed. Section 6 contains an example in which
the EFCDS fuzzy optimal control process is constructed.
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2 Preliminary Concepts

All definitions and results see in [31]–[33], [38].

2.1 On the Space of Extended Extremal Fuzzy Measures

Definition 1. Let X be some nonempty set.
a) We call some class B∗ ⊂ 2X of subsets of X an upper σ∗-monotone class

if (i) ∅,X ∈ B∗; (ii) ∀A,B ∈ B∗ ⇒ A∪B ∈ B∗; (iii) ∀{An} ∈ B∗, n = 1,2, . . . ,
An ↑ A⇒ A ∈B∗.

b) We call some class B∗ ⊂ 2X of subsets of X a lower σ∗-monotone class if
(i) ∅,X ∈B∗; (ii) ∀A,B ∈B∗ ⇒ A∩B ∈B∗; (iii) ∀{An} ∈B∗, n = 1,2, . . . , An ↓
A⇒ A ∈B∗.

Definition 2. We call the classes B∗ and B∗ extremal if and only if

∀A ∈B∗ ⇔ A ∈B∗.

Remark 1. Let B ⊆ 2X be some σ -algebra. Then B is both a σ∗-monotone class and
a σ∗-monotone class.

Definition 3. 1) (X ,B∗) is called an upper measurable space;
2) (X ,B∗) is called a lower measurable space;
3) If B∗ and B∗ are extremal σ∗- and σ∗-monotone classes, then (X ,B∗,B∗) is

called an extremal measurable space.

Example 1

B∗
1

Δ=
{

A⊂ R
+
0 | A=(α;+∞), α ∈ R

+
0

}∪{∅}∪{R+
0 } is a σ∗-monotone class,

B1∗
Δ=
{

A⊂ R
+
0 | A = [0;α], α ∈ R

+
0

}∪{∅}∪{R+
0 } is a σ∗-monotone class.

B∗
1 and B1∗ are respectively called a Borel σ∗-monotone class and a Borel σ∗-

monotone class of first kind. Clearly, B∗
1 and B1∗ are extremal.

Example 2

B∗
2

Δ=
{

A⊂ R
+
0 | A = [0;α), α ∈ R

+
0

}∪{∅}∪{R+
0 } is a σ∗-monotone class,

B2∗
Δ=
{

A⊂ R
+
0 | A=[α;+∞), α ∈R

+
0

}∪{∅}∪{R+
0 } is a σ∗-monotone class.

B∗
2 and B2∗ are respectively called a Borel σ∗- and a Borel σ∗-monotone class of

second kind. It is obvious that B∗
2 and B2∗ are extremal.

Definition 4. Let (X ,B∗) be some upper measurable space. A function g∗ : B∗ →
[0;1] is called an upper fuzzy measure if: (i) g∗(∅) = 0, g∗(X) = 1; (ii) ∀A,B ∈B∗,
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A ⊂ B ⇒ g∗(A) ≤ g∗(B); (iii) ∀{An} ∈ B∗, n = 1,2, . . . , An ↑ A ⇒ g∗(A) =
lim
n→∞

g∗(An).

Definition 5. Let (X ,B∗) be some lower measurable space. A function g∗ : B∗ →
[0;1] is called a lower fuzzy measure if: (i) g∗(∅) = 0, g∗(X) = 1; (ii) ∀A,B ∈
B∗, A ⊂ B ⇒ g∗(A) ≤ g∗(B); (iii) ∀{An} ∈ B∗, n = 1,2, . . . , An ↓ A ⇒ g∗(A) =
lim
n→∞

g∗(An).

Definition 6. Let (X ,B∗,B∗) be some extremal measurable space, g∗ be a lower
and g∗ an upper fuzzy measure.

Then:
a) g∗ : B∗ → [0;1] and g∗ : B∗ → [0;1] is called extremal if and only if

∀A ∈B∗ : g∗(A) = 1−g∗(A).

b) (X ,B∗,B∗,g∗,g∗) is called a space of extremal fuzzy measures.

Definition 7. Let (X1,B
′∗,B′∗) and (X2,B

′′∗ ,B′′∗) be some extremal measurable
spaces; h : X1 → X2 is called measurable if

∀A ∈B′′∗, B ∈B′′
∗ : h−1(A) ∈B′∗, h−1(B) ∈B′

∗.

Definition 8. Let (X ,B∗,B∗) be some extremal measurable space. Then:
a) The function h : X →R

∗
0 is called upper measurable if and only if h is measur-

able with respect to the spaces (X ,B∗,B∗) and (R+
0 ,B1∗,B∗

1). Then

∀α ≥ 0 h−1 ((α;+∞)) ∈B∗, h−1 ([0;α]) ∈B∗.

b) The function h : X → R
+
0 is called lower measurable if and only if h is mea-

surable with respect to the spaces (X ,B∗,B∗) and (R+
0 ,B2∗,B∗

2). Then

∀α ≥ 0 h−1 ([0;α)) ∈B∗, h−1 ([α;+∞)) ∈B∗.

Definition 9. Let (X ,B∗,B∗) be some extremal measurable space.
a) The class of fuzzy subsets ˜A ⊂ X with lower measurable compatibility func-

tions

˜B∗ =
{

˜A⊂ X | μ
˜A is lower measurable

}

=
{

˜A ∈ X | ∀ 0≤ α ≤ 1, μ−1
˜A

([0;α)) ∈B∗, μ−1
˜A

([α;+∞)) ∈B∗
}

is called an extension of the σ∗-monotone class B∗.
b) The class of fuzzy subsets ˜A ⊂ X with upper measurable compatibility

functions
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˜B∗ =
{

˜A⊂ X | μ
˜A is upper measurable

}

=
{

˜A ∈ X | ∀ 0≤ α ≤ 1, μ−1
˜A

([0;α]) ∈B∗, μ−1
˜A

((α;+∞)) ∈B∗
}

is called an extension of the σ∗-monotone class B∗.

Definition 10. An extremal measurable space (X , ˜B∗, ˜B∗) is called an extension of
an extremal measurable space (X ,B∗,B∗).

Using the Sugeno integral, we next introduce the notion of extension of fuzzy ex-
tremal measures.

Definition 11. Let (X ,B∗,B∗,g∗,g∗) be some space of extremal fuzzy measures,
and (X , ˜B∗, ˜B∗) be an extension of the extremal measurable space (X ,B∗,B∗).
Then:

a) the function

g̃∗(˜A)≡�

∫

∗
X

μ
˜A(x)◦ g∗(·) Δ= ∨

0<α≤1

[

α ∧g∗([˜A]ᾱ)
]

, ∀˜A ∈ ˜B∗; (2)

is called an extension of the fuzzy measure g∗ on ˜B∗;
b) the function

g̃∗(˜A)≡�

∫ ∗

X

μ
˜A(x)◦ g∗(·) Δ= ∧

0<α≤1

[

α ∨g∗([˜A]α)
]

, ∀˜A ∈ ˜B∗, (3)

is called an extension of the fuzzy measure g∗ on ˜B∗.
Here [˜A]α = {x ∈ X | μ

˜A(x) > α}, [˜A]ᾱ = {x ∈ X | μ
˜A(x)≥ α}, 0 < α ≤ 1.

Definition 12. A space of extremal fuzzy measures (X , ˜B∗, ˜B∗, g̃∗, g̃∗) is called an
extension of the space (X ,B∗,B∗,g∗,g∗).

Let (X ,B∗,B∗,g∗,g∗) be some space of extremal fuzzy measures and (X , ˜B∗,
˜B∗, g̃∗, g̃∗) be its extension.

Definition 13. a) Let ˜A, ˜B ∈ ˜B∗ be any fuzzy sets. Then the lower fuzzy Sugeno
integral of the compatibility function μ

˜B on the fuzzy set ˜A is defined with respect
to a lower fuzzy measure g̃∗ by the formula

�

∫

∗
˜A

μ
˜B(x)◦ g̃∗(·) Δ≡ ∨

0<α≤1

[

α ∧ g̃∗(˜A∩ [˜B]ᾱ)
]

. (4)

b) Let ˜A, ˜B ∈ ˜B∗ be any fuzzy sets. Then the upper fuzzy Sugeno integral of the
compatibility function μ

˜B on the fuzzy set ˜A is defined with respect to a upper fuzzy
measure g̃∗ by the formula
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�

∫ ∗

˜A

μ
˜B(x)◦ g̃∗(·) Δ≡ ∧

0<α≤1

[

α ∨ g̃∗(˜A∪ [˜B]α)
]

. (5)

Definition 14. Let (X ,B∗,B∗,g∗,g∗) be some space of extremal fuzzy measures.
a) Let h ∈ ˜B∗ be some fuzzy set. The measure

∀A ∈ ˜B∗ : g̃h∗(˜A) Δ= �

∫

∗
˜A

μh(x)◦ g̃∗(·) = �

∫

∗
h

μ
˜A(x)◦ g̃∗(·) = �

∫

∗
X

μh∩˜A(x)◦ g̃∗(·) (6)

is called the lower extension of g∗ on ˜B∗ with respect to h.
b) Let h ∈ ˜B∗ be some fuzzy set. The measure

∀A ∈ ˜B∗ : g̃∗h(˜A) Δ= �

∫ ∗

˜A

μh(x)◦ g̃∗(·) = �

∫ ∗

h

μ
˜A(x)◦ g̃∗(·) = �

∫ ∗

X

μh∪˜A(x)◦ g̃∗(·) (7)

is called the upper extension of g∗ on ˜B∗ with respect to h.

2.2 On the Composition Products of Spaces of Extremal Fuzzy
Measures

Let (X1,B
′∗,B′∗,g′∗,g′∗) and (X2,B

′′∗ ,B′′∗,g′′∗ ,g′′∗) be any two spaces of extremal
fuzzy measures.

Definition 15. Let some subset H ⊂ X1×X2 be a binary relation. We introduce the
following mappings ∀x0 ∈ X1 and ∀y0 ∈ X2:

EH(x0, ·) Δ= {y ∈ X2 | (x0,y) ∈H} ,
EH(·,y0)

Δ= {x ∈ X1 | (x,y0) ∈ H} .
(8)

a) A binary relation H ⊂ X1×X2 is called lower measurable if ∀A ∈ B′′∗ and
∀B ∈ B′∗ there exist sequences {xn}n∈N ⊂ B, {yn}n∈N ⊂ A such that EH(xn, ·) ⊃
EH(xn+1), EH(·,yn)⊃ EH(·,yn+1), n = 1,2, . . . . We have

ΓH∗(A) Δ= {x ∈ X1 | ∀y ∈ A : (x,y) ∈H} ≡
⋂

y∈A

EH(·,y) =
∞
⋂

n=1

EH(·,yn) ∈B′
∗ (9)

and

Γ ′H∗(B) Δ= {y ∈ X2 | ∀x ∈ B : (x,y) ∈ H} ≡
⋂

x∈B

EH(x, ·) =
∞
⋂

n=1

EH(xn, ·) ∈B′′
∗ . (10)
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b) Denote by B′∗ ⊗B′′∗ the set of all binary lower measurable relations from
X1×X2 and call it the composition product of measurable spaces B′∗ and B′′∗ .

a′) A binary relation H ⊂ X1×X2 is called upper measurable if ∀A ∈B′′∗ and
∀B ∈ B′∗ there exist sequences {xn}n∈N ⊂ B, {yn}n∈N ⊂ A such that EH(xn, ·) ⊂
EH(xn+1), EH(·,yn)⊂ EH(·,yn+1), n = 1,2, . . . . We have

Γ ∗H (A) Δ= {x ∈ X1 | ∃y ∈ A : (x,y) ∈ H} ≡
⋃

y∈A

EH(·,y) =
∞
⋃

n=1

EH(·,yn) ∈B′∗ (11)

and

Γ ′∗H (B) Δ= {y ∈ X2 | ∃x ∈ B : (x,y) ∈H}

≡
⋃

x∈B

EH(x, ·) =
∞
⋃

n=1

EH(xn, ·) ∈B′′∗. (12)

b′) Denote by B′∗ ⊗B′′∗ the set of all binary upper measurable relations from
X1×X2 and call it the composition product of measurable spaces B′∗ and B′′∗.

It is not difficult to verify that B′∗⊗B′′∗ is a lower σ∗-monotone class and B′∗⊗B′′∗
is a upper σ∗-monotone class.

Theorem 1. Let (X1,B
′∗,g′∗) and (X2,B

′′∗ ,g′′∗) be two spaces of lower fuzzy mea-
sures. Then on the composition lower measurable space (X1×X2,B

′∗ ⊗B′′∗ ) the
measure g∗ : ∀H ∈B′∗ ⊗B′∗ defined by

g∗(H)≡ g′∗ ⊗g′′∗(H) Δ= ∨
E∈B′∗

{

g′∗(E)∧g′′∗(Γ
′

H∗(E))
}

≡ ∨
F∈B′′∗

{

g′∗(ΓH∗(F))∧g′′∗(F)
}

(13)

is a lower fuzzy measure.

Theorem 2. Let (X1,B
′∗,g′∗) and (X2,B

′′∗,g′′∗) be two spaces of upper fuzzy mea-
sures. Then, on the composition upper measurable space (X1×X2,B

′∗ ⊗B′′∗), the
measure g∗ : ∀H ∈B′∗ ⊗B′′∗ defined by

g∗(H)≡ g′∗ ⊗g′′∗(H) Δ= ∧
E∈B′∗

{

g′∗(E)∨g′′∗(Γ ′∗H (E))
}

= ∧
F∈B′′∗

{

g′∗(Γ ∗H (F))∨g′′∗(F)
}

(14)

is an upper fuzzy measure.

Theorem 3. a) Let H ∈B′∗ ⊗B′′∗ be some binary lower measurable relation (H ⊂
X1×X2). Then the value of the measure g′∗ ⊗g′′∗ on H is represented through g′∗ and
g′′∗ as the following composition:

g′∗ ⊗g′′∗(H) = �

∫

∗
X2

g′∗(EH(·,y))◦ g′′∗(·) = �

∫

∗
X1

g′′∗(EH(x, ·))◦ g′∗(·); (15)
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b) Let H ∈B′∗ ⊗B′′∗ be some binary upper measurable relation. Then the value
of the measure g′∗ ⊗ g′′∗ on H is represented through g′∗ and g′′∗ as the following
composition:

g′∗ ⊗g′′∗(H) = �

∫ ∗

X2

g′∗(EH(·,y))◦ g′′∗(·) = �

∫ ∗

X1

g′′∗(EH(x, ·))◦ g′∗(·). (16)

Now let us proceed to defining fuzzy binary relations on X1×X2.

Definition 16. a) A fuzzy set ˜H ⊂ X1×X2 is called a lower fuzzy binary relation if
the compatibility function μ

˜H : X1×X2 → [0;1] is lower measurable;

b) A fuzzy set ˜H ⊂ X1×X2 is called an upper fuzzy binary relation if the com-
patibility function μ

˜H is upper measurable.

We have constructed the compositional space of extremal extended fuzzy measures
(X1×X2, ˜B

′∗ ⊗ ˜B′′∗ , ˜B∗′ ⊗ ˜B∗′′, g̃′∗ ⊗ g̃′′∗, g̃∗′ ⊗ g̃∗′′).

2.3 Extremal Fuzzy Time Moments and Intervals, and Their
Structures

The questions investigated in the preceding paragraphs enable us to consider some
extremal interval structures, in particular, extremal fuzzy time moments and
intervals.

We would like to say just a few words about the origination of these structures
and their importance in studying dynamic processes.

A person who makes a decision always gives an “incomplete” prognosis about a
time moment for extremal, crisis, anomalous and other situations that may occur in
the future. The person (expert) who makes a decision connects all such situations
with future fuzzy time moments and intervals. Clearly, his/her prognosis is of fuzzy
nature and the corresponding decisions should be obtained by possibilistic-statistical
analysis or, speaking more exactly, by analysis of fuzzy time intervals, for which we
need to construct a new mathematical fuzzy instrument.

When we make decisions on the basis of our past knowledge, we recall certain
facts, reference data and the like. When doing so, we perform certain “expert mea-
surements” (“expert reflections”) of our knowledge. These measurements are con-
nected with past time moments, which as a rule are fuzzy. Hence the results of such
“measurements” may frequently be also fuzzy and these results of recollections are
in the end reflected in experimental data (samples). It is understood that the source
of such samples is the population of fuzzy characteristics of our knowledge. This
can be explained mainly by the following two reasons: first, in terms of dynam-
ics, moments of recollections of facts and moments of “expert measurements” are
fuzzy moments; second, on frequent occasions the results of “measurements” are
fuzzy. Let us illustrate this viewpoint by examples. Suppose that prior to diagnos-
ing the disease the examining physician (expert) asked the patient to present data
on his temperature distribution in time. If the patient measured his temperature but



Fuzzy Dynamic Programming Problem for Extremal Fuzzy Dynamic System 241

for various reasons did not record the time of measurements, then his replies would
sound like this: “In the morning my temperature varied approximately from 38◦C
to 38.5◦C, at noon it dropped to something like 37◦ and in the evening it was not
higher than 39◦”. Clearly, the results of such “measurements” are fuzzy both in time
and in numerical values. It might happen that the patient made measurements of
his temperature during the whole day (measurement results are objective data with
uncertainty of probabilistic-statistical nature), but he did not record the time mo-
ments at which his temperature was measured. Therefore, when asking the patient
to present this information in dynamics, we deal with fuzzy time moments. In such
situations objective data are characterized by possibilistic uncertainty.

It is clear that decisions (prognoses) made about a future state of the object (prog-
noses) on the basis of such data by means of the classical statistical methods are less
plausible for one reason: the source from which data of this kind originate is the
person. The nature of data uncertainty is dual. It is only statistical-and-possibilistic
methods that can give us more or less plausible estimates and prognoses.

With this aim in view, we begin our study of fuzzy time moments and intervals
and their structures. For convenience, the observation time is identified with the set

of nonnegative real numbers: T
Δ= R

+
0 . Any time moment t ∈ T = R

+
0 is assumed to

be a nonnegative number.
Our notion of a fuzzy time moment is based on the definition presented in [8].

Definition 17. A fuzzy nonnegative real number˜t with the compatibility function

μ
˜t : R

+
0 → [0;1] (17)

with the following properties:
(i) μ

˜t(0) = 0;
(ii) ∨

τ≥0
μ
˜t(τ) = 1 (normed);

(iii) ∀τ0 ∈R
+
0 , μ

˜t(τ0) = ∨
τ<τ0

μ
˜t(τ) (left continuity);

(iv) μ
˜t(τ) is a nonincreasing function on R

+
0 ≡ T ,

is called a fuzzy time moment.
The set of all fuzzy time moments is denoted by ˜FM0(R+

0 )≡˜FM
∗
0(T ).

Now, let us consider the extremal measurable Borel space of first kind (R+
0 ,B1∗,

B∗
1) and its extension (R+

0 , ˜B1∗, ˜B∗
1). If ã ∈ ˜B∗

1 is a fuzzy number, then ∀α ≥ 0,
μ−1

ã ((α;+∞)) ≡ (τ;+∞) ∈B∗
1 and μ−1

ã ([0;α]) ≡ [0,τ] ∈B1∗, i.e., μã is an upper
measurable function (or μã : B∗

1 →B∗
1 , B1∗ →B1∗ is measurable). It is not difficult

to verify that the compatibility function of the fuzzy moment˜t is upper measurable,
i.e., the fuzzy time moment ˜t is an upper fuzzy number on T = R

+
0 . We obtain

˜FM0(R+
0 )⊂ ˜B∗

1.

Let us consider the negation of the fuzzy moment˜t. It clearly follows that˜t ∈ ˜B1∗
or ∀α ≥ 0, μ−1

˜t
([α;+∞)) ≡ [0,τ] ∈B1∗ and μ

˜t
([0;α)) ≡ (τ;+∞) ∈B∗

1, where μ
˜t

is lower measurable.
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In terms of information, the negation of the fuzzy time moment ˜t can be inter-
preted as follows: it describes a measurement time medium, where the fuzzy time
moment˜t is excluded.

The relation between the time moment t and the time interval [0;τ) (and, accord-
ingly, [τ;+∞)) is one-to-one:

t ∈ [0;τ)⇐⇒ t /∈ [τ;+∞).

Therefore we may suppose that there exists a relation between the fuzzy time mo-
ment ˜t and the intervals [0;τ) and [τ;+∞). As indicated in [31], for the fuzzy time
moment ˜t its compatibility level μ

˜t(τ), τ ≥ 0, is understood as a level of belonging
of the fuzzy time moment ˜t to the time interval [0;τ) (a compatibility level). Our
interpretation is as follows: μ

˜t(τ) is a level of “measurement” imprecision, a level
of finding the fuzzy time moment ˜t in the time interval [0;τ). A high compatibility
level μ

˜t(τ) gives more plausibility that the fuzzy time moment ˜t “is measured” up
to the real moment τ in the time interval [0;τ). We call this interval the current time
interval. Formally, it can be written as ∀τ ≥ 0

μ
˜t(τ) := 〈an imprecise measure of (˜t ∈ [0;τ) := the current time interval)〉. (18)

Now let us consider the class of complements to fuzzy time moments ˜t. Since ˜t ∈
˜FM

∗
0(T ) ⊂B∗

1 , we denote this class by ˜FM0∗(T ) ⊂ ˜B1∗. We call ˜FM
∗
0(T ) the

class of upper fuzzy time moments, and ˜FM0∗(T ) the class of lower fuzzy time
moments.

Extending the above arguments to lower fuzzy time moments, we say that for
a fuzzy time moment ˜t its compatibility level μ

˜t(τ) is understood as a level of be-
longing of the fuzzy time moment ˜t to the interval [τ;+∞), i.e., μ

˜E
(τ) is an im-

precision level of measurement or, in other words, a level of finding a fuzzy time
moment ˜t in the time interval [τ;+∞). A high compatibility level μ

˜t(τ) makes it
more plausible that the fuzzy time moment ˜t will be “measured” after the real
moment τ in the time interval [τ;+∞), which we call the future time interval. If
˜t ∈ ˜FM0∗(T ), then ∀α ≥ 0, μ−1

˜t
([α;+∞)) = [0;τ] ∈B1∗, μ−1

˜t
([0;α]) = [τ;+∞),

i.e., μ
˜t is a B1∗ →B2∗, B∗

1 →B∗
2-measurable function.

We call the moment ˜t ∈ ˜FM0∗(T ) ⊂ ˜B1∗ a lower fuzzy time moment, while
˜t ∈ ˜FM0∗(T ) and ˜t ∈ ˜FM

∗
0(T ) extremal fuzzy time moments.

If ˜t ∈ ˜FM0∗(T ), then, formally, this can be written as follows:

μ
˜t(τ) := 〈 an imprecise measure of (˜t ∈ [τ;+∞)

:= is the future time interval)〉, τ ≥ 0. (19)

In the process of expert measurement with respect to time the values of the com-
patibility functions μ

˜t(τ) and μ
˜t
(τ), τ ≥ 0, are degrees of imprecision of finding

the fuzzy time moment ˜t in the future time interval ([τ;+∞)) and the current time
interval ([0;τ)), respectively.
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When we discuss fuzzy time moments in the process of time flow, we should spe-
cially mention the pair of extremal fuzzy time moments (t,˜t). By the measurement
of a fuzzy moment with respect to the real time τ we understand its measurement
in the current time interval [0;τ) and in the future time interval [τ;+∞) by (18) and

(19). The extremal classes of fuzzy time moments ˜FM0∗(T ) and ˜FM
∗
0(T ) are the

classes of complementary fuzzy time moments

˜t ∈ ˜FM0∗(T )⇔˜t ∈ ˜FM
∗
0(T ).

Let us consider the structures of current and future fuzzy time intervals. By Defini-
tion 3 (Example 2) we know that

B∗
2

Δ≡ {[0;τ), τ ≥ 0} and B2∗
Δ≡ {τ;+∞), τ ≥ 0}

are Borel σ∗- and σ∗-algebras of second kind. Clearly, the spaces of current and fu-
ture time intervals are measurable or, speaking more exactly, coincide with extremal
Borel spaces of second kind (R+

0 ,B2∗,B∗
2).

Further, we introduce the notion of extremal fuzzy time interval in terms of ex-
tension (R+

0 , ˜B2∗, ˜B∗
2).

Definition 18. a) Any fuzzy positive number r̃ ≡ [̃0,τ) ∈ ˜B∗
2 is called an extended

fuzzy current time interval.

b) Any fuzzy positive number r̃ ≡ ˜[τ;+∞) ∈ ˜B2∗ is called an extended fuzzy
future time interval.

Obviously, if r̃ ∈ ˜B∗
2 , then ∀α ≥ 0 we have μ−1

r̃ ([α;+∞)) ≡ [0, t) ∈ B∗
2,

μ−1
r̃ ([0;α])≡ [t;+∞)∈B2∗, i.e., μr̃ is the B2∗ →B1∗, B∗

2 →B∗
1-measurable func-

tion and if r̃ ∈ ˜B2∗, then ∀α ≥ 0 we have μ−1
r̃ ([α;+∞)) ≡ [t;+∞), μ−1

r̃ ([0;α)) ≡
[0;t) ∈B2∗, i.e., μr̃ is the B2∗ →B2∗, B∗

2 →B∗
2-measurable function. The fuzzy

intervals r̃ ∈ ˜B∗
2 and r̃ ∈B2∗ are called extremal.

Let us discuss the relation between fuzzy extremal time moments and intervals.

Let ˜t ∈ ˜FM
∗
0(T ) and r̃ ∈ ˜B∗

2 be respectively the fuzzy current time moment and
the future fuzzy time interval. As has been mentioned above, μ

˜t(τ) is a degree of
imprecision of finding the fuzzy moment ˜t in the current time interval [0;τ) in the
process of time flow. We think that the value μr̃(τ) defines the level of compatibility
that the current fuzzy time interval r̃ is not covered by the current time interval [0;τ).
Moreover, μr̃(τ) is a degree of uncertainty that r̃ �⊂ [0;τ). ∀τ ≥ 0:

μr̃(τ) := 〈 an uncertainty measure of (r̃ �⊂ [0;τ)
:= the current time interval)〉. (20)

Let ˜t ∈ ˜FM0∗(T ) and r̃ ∈ ˜B2∗ be the fuzzy future time moment and the fuzzy time
interval, respectively. As has been mentioned above, μ

˜t(τ) is a degree of imprecision
of finding the fuzzy moment ˜t in the future time interval [τ;+∞) in the process of
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time flow. We think that the value μr̃(τ) defines the level of compatibility that the
fuzzy future time interval r̃ is not covered by the future time interval [τ;+∞). More
exactly, μr̃(τ) is a degree of uncertainty that r̃ �⊂ [τ;+∞) and ∀τ ≥ 0

μr̃(τ) := 〈 an uncertainty measure of (r̃ �⊂ [τ;+∞) := the future time interval)〉.

Note that in the time flow process, the values of the compatibility function of ex-
tended extremal fuzzy time intervals r̃ ∈ ˜B∗

2 and r̃ ∈ ˜B2∗ are degrees of uncertainty
that these intervals do not belong to the respective current and future time intervals
[0;τ) and [τ;+∞). When speaking of the calculus of fuzzy time intervals, we will
mean the pair of extremal fuzzy time intervals (r̃, r̃), where r̃ is the current fuzzy
time interval (r̃ ∈ ˜B∗

2), and r̃ is the future fuzzy time interval (r̃ ∈ ˜B2∗).
In the sequel, we will make use of the following concrete subclass of extended

extremal fuzzy time intervals.

Definition 19. The class of fuzzy nonnegative numbers ˜F I
∗
(T ) with the properties

(r̃ ∈ ˜F I
∗
(T )):

(i) μr̃(0) = 1;
(ii) ∀τ0 ≥ 0, μr̃(τ0) = ∨

τ>τ0
μr̃(τ) (right continuity);

(iii) μr̃ is nonincreasing on T = R
+
0 ,

is called the class of current fuzzy time intervals r̃.

It is not difficult to verify that F I∗(T ) is a subclass of the space of extended fuzzy

current time intervals ˜F I
∗
(T )⊂ ˜B∗

2.

Analogously, we introduce the definition of the class ˜F I∗(T ), which is a com-

plement to ˜F I
∗
(T ), i.e.,

r̃ ∈ ˜F I∗(T )⊂ ˜B2∗ ⇔ r̃ ∈ ˜F I
∗
(T )⊂ ˜B∗

2 .

Now let us consider the algebraic structures of the classes of extremal fuzzy time
intervals 〈F I∗(T ),F I∗(T )〉.

First we will consider ˜F I
∗
(T ). We introduce a partial ordering in ˜F I

∗
(T ): If

r̃1, r̃2 ∈ ˜F I
∗
(T ), then

r̃1 � r̃2 ⇔∀τ ∈ T μr̃1
(τ) ≤ μr̃2

(τ). (21)

On the semilattice {˜F I
∗
(T ),�} we introduce the algebraic sum operation r̃1

∗⊕ r̃2

[28]:

μ
r̃1
∗⊕r̃2

(τ) Δ= ∧{μr̃1
(τ1)∨μr̃2

(τ2) | τ1,τ2 ∈ T, τ1 + τ2 = τ
}

. (22)

It is not difficult to verify that the structure {˜F I
∗
(T ),�,

∗⊕} is a partially ordered
commutative semigroup.

Let us construct, in ˜F I
∗
(T ), a monotonically increasing recurrent sequence of

fuzzy time intervals
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r̃n = r̃n−1
∗⊕Δ r̃, n≥ 1, (23)

where r̃0, Δ r̃ ∈ F I∗(T ) are respectively the initial and the stepwise fuzzy time
interval. (Here r̃0 ≡ ˜∅). We obtain

r̃1 � r̃2 � ·· · .

The partial ordering � in ˜F I
∗
(T ) induces in ˜F I∗(T ) another partial ordering �

(conjugate to �).
If r̃1, r̃2 ∈ ˜F I∗(T ), then

r̃1 � r̃2 ⇔ r̃1 � r̃2 ⇔∀τ ∈ T : μr̃1
(τ)≥ μr̃2

(τ). (24)

The algebraic sum operation
∗⊕ in ˜F I

∗
(T ) induces in ˜F I∗(T ) another operation

(conjugate to
∗⊕) ⊕

∗
:

∀r̃1, r̃2 ∈ ˜F I∗(T ) : r̃1⊕∗ r̃2 = r̃1
∗⊕ r̃2 (25)

or, ∀τ ∈ T ,

μr̃1⊕∗ r̃2(τ) = 1− μ
r̃
∗⊕r̃

(τ) = ∨{μr̃1(τ1)∧μr̃2(τ2) | τ1,τ2 ∈ T, τ1 + τ2 = τ
}

(26)

Then the monotonically increasing sequence of current fuzzy intervals from the
class ˜F I

∗
(T )

r̃1 � r̃2 � ·· ·
induces, in ˜F I∗(T ), a monotonically decreasing sequence of future fuzzy intervals

r̃1 � r̃2 � ·· ·

defined recurrently as

r̃n = r̃n−1
∗⊕˜Δr,

where r̃0 = 1T and ˜Δr ∈ ˜F I∗(T ) are respectively the initial fuzzy interval and the
stepwise fuzzy time interval.

On ˜F I∗(T ), the induced structure {F I∗(T ),�,⊕
∗
} is a partially ordered com-

mutative semigroup.
We call the pair of structures

〈{˜F I
∗
(T ),�,

∗⊕},{˜F I∗(T ),�,⊕
∗
}〉 (27)

an extremal partially ordered commutative semigroup.
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To conclude the subsection, we would like to note that
1) the extremal structure (27) of current and future fuzzy time intervals is the

subject which will be used in next sections.
2) In the time flow process information (data) obtained by expert measurements

is incomplete. The polar characteristics of such information are imprecision and un-
certainty. The imprecision degree of the obtained information defines extremal fuzzy
time moments, while the uncertainty degree defines algebraic structures represented
in form (27).

2.4 Examples of Construction of Extremal Fuzzy Time Intervals

Example 1. Consider the extremal measurable Borel space of second kind (T,B2∗,
B∗

2). Let f : T → T be some monotonically nondecreasing, left continuous function
such that f (0) = 0, f (+∞) = +∞. It is not difficult to verify that ∀τ ≥ 0

g∗T ([0; t)) Δ=
f (t)

1 + f (t)
(28)

is the upper fuzzy measure on B∗
2, and its extremal fuzzy measure on B2∗ is the

lower fuzzy measure

gT∗([t;+∞)) =
1

1 + f (t)
. (29)

Now, for the current fuzzy time interval we consider the extension g̃∗T ∀r̃∈ ˜F I
∗
(T )⊂

˜B∗
2:

g̃∗T (r̃) = �

∫ ∗

T

μr̃(t)◦ g∗T (·) = ∧
0≤α≤1

[α ∨g∗T ([r̃]α)]

= ∧
0≤α≤1

[α ∨g∗T ([0; tα))] = ∧
0≤α≤1

[

α ∨ f (tα )
1 + f (tα)

]

,

where
tα = ∨{t ≥ 0 | μr̃(t)≤ α ≤ μr̃(t+)

}

,

and calculate the extension g̃T∗ ∀r̃ ∈ ˜F I∗(T )⊂ ˜B2∗ as follows:

g̃T∗(r̃) = �

∫

∗
T

μr̃(t)◦ gT∗(·) = ∨
0≤α≤1

[α ∧gT∗([tα ;+∞))] = ∨
0≤α≤1

[

α ∧ 1
1 + f (tα)

]

,

where
tα = ∧{t ≥ 0 | μr̃(t−)≤ α ≤ μr̃(t)} .

Thus we have constructed the space of extended extremal fuzzy measures (T, ˜B2∗,
˜B∗

2 , g̃T∗, g̃∗T ).



Fuzzy Dynamic Programming Problem for Extremal Fuzzy Dynamic System 247

Now, let us consider the problem of construction of extremal fuzzy time intervals.
If r̃ ∈ ˜F I

∗
(T ), then, by virtue of formula (20), g∗T is assumed to be a fuzzy measure

on B∗
1, while the fuzzy interval (r̃ ∈ ˜B∗

1) is assumed to be known:

μr̃(t) = �

∫ ∗

[0;t]

μ
˜t(s)◦ g∗T , ∀t ≥ 0.

Then

μr̃(t) = �

∫ ∗

T

I(t;+∞)(s)∨μ
˜t(s)◦ g∗T (·)

= ∧
0≤α≤1

[α ∨g∗T ((t;+∞)∪ (tα ;+∞))]= ∧
0≤α≤1

[α ∨g∗T (st,α ;+∞)] ,

where
st,α = t ∧ tα , tα = ∧{t ≥ 0 | μ

˜t(t)≤ α ≤ μ
˜t(t

+)
}

.

If in the role of g∗T we take ∀t ≥ 0

g∗ (t;+∞)) =
1

1 + f (t)
,

where f (t) is a monotonically nondecreasing, left continuous function f : T → T ,
f (0) = 0, f (+∞) = +∞, then

μr̃(t) = ∧
0<α≤1

[

α ∨ 1
1 + f (st,α)

]

.

If r̃ ∈ ˜F I∗(T ), then, analogously, we construct

μr̃(t) = �

∫

∗
(t;+∞)

μ
˜t(s)◦ gT∗(·).

In that case
μr̃(t) = ∨

0<α≤1
[α ∧gT∗([0;st,α ])] ,

where
st,α = t ∧ tα , tα = ∨{t ≥ 0 | μ

˜t(t)≤ α ≤ μ
˜t(t

+)
}

or

μr̃(t) = 1− μr̃(t) = ∨
0≤α≤1

[

α ∧ f (st,α )
1 + f (st,α)

]

.

Example 2. Let g∗T be an upper possibilistic measure on B∗
2, i.e., ∃ f ∗ : T → [0;1] is a

left continuous, monotonically nondecreasing function such that f (0) = 0, f (+∞) =
1, and ∀[0; t) ∈B∗

2
g∗T ([0; t)) = ∨

0<s<t
f (s) = f (t).
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Then ∀r̃ ∈ ˜F I
∗
(T )

μr̃(t) = ∧
0<α≤1

[α ∨ f ∗(st,α )] ,

where
st,α = t ∧ tα , tα = ∧{t ≥ 0 | μ

˜t(t)≤ α ≤ μt(t+)
}

.

Example 3. Let g∗T be an upper λ -fuzzy measure [44] on B∗
2 (g∗T ≡ g∗λ ,−1≤λ ≤ 0),

i.e., ∀[0;t) ∈B∗
2

g∗λ ([0; t)) =
1− f ∗(t)

1 + λ f ∗(t)
,

where f ∗ is a distribution function of the measure g∗λ , f ∗ : T → [0;1] is a left con-
tinuous, monotonically nondecreasing function, f ∗(0) = 0, f ∗(+∞) = 1. Then

gT∗([t;+∞)) = gλ∗([t;+∞)) =
f ∗(t)(1−λ )
1 + λ f ∗(t)

and ∀r̃ ∈ ˜F I∗(T )

μr̃(t) = ∨
0≤α≤1

[

α ∧ f ∗(st,α )(1−λ )
1 + λ f ∗(st,α )

]

,

while ∀r̃ ∈ ˜F I
∗
(T )

μr̃(t) = ∧
0≤α≤1

[

α ∨ 1− f ∗(st,α )
1 + λ f ∗(st,α )

]

,

where st,α is defined from Example 2.

Example 4. It is natural to introduce a fuzzy time interval r̃ ∈B∗
2 such that the kernel

of r̃ would coincide with the interval [0;τ].

Let us define the upper fuzzy time interval as follows. For ∀τ ≥ 0, r̃τ ∈B∗
2:

μr̃τ (t) =

{

1, 0≤ t ≤ τ,

gT∗([t;+∞))∨g∗T ([0;τ)), t ≥ τ.

If g∗T : B∗
1 → [0;1]:

g∗T ([0;t)) =
f (t)

1 + f (t)
,

as in Example 1, then

μr̃τ (t) =

{

1, 0≤ t ≤ τ,
(

f (t)
1+ f (t)

)

∧
(

f (τ)
1+ f (τ)

)

, t > τ.
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If 0≤ α ≤ 1, then the solution of the equation

α =
1

1 + f (t)
∨ f (τ)

1 + f (τ)

with respect to t is denoted by tτ,α . If tτ,1 = τ , tτ,0 = ∞, then

g∗T (r̃τ ) = �

∫ ∗

T

μr̃τ (t)◦ g∗T (·) = ∧
0<α≤1

[

α ∨ tτ,α
1 + tτ,α

]

.

Note that if τ1 < τ2, then r̃τ1 � r̃τ2 .
This example makes it possible to construct parametrically some sequence of

extremal fuzzy intervals.

3 Description of a General Model of an Extremal Fuzzy
Continuous Dynamic System (EFCDS)

Following the system approach of modeling complex systems [20] we propose the
following: the time structure of fuzzy dynamic systems is represented by some space
of extended extremal fuzzy measures

〈T, ˜F I∗(T ), ˜F I
∗
(T ), g̃T∗, g̃∗T 〉, T = R

∗
0, (30)

and structure (1), where g̃T∗ and g̃∗T are some extremal fuzzy measures on ˜BT∗ ≡
˜B2∗ and ˜B∗

T ≡ ˜B∗
2 , respectively (see Subsection 2.1).

Let us start describing objects of a fuzzy dynamic system. Let X (X �= ∅) be the
set of states of some system to be investigated. Let (X ,B,g) be the space of a fuzzy
measure on the measurable space (X ,B), where B is a σ -algebra in X .

Let U (U �= ∅) be the set of all admissible controls (of external factors) acting
on the system. Assume that controls are subjected to restrictions of uncertain char-
acter in the form of some space of a fuzzy measure (U,BU ,gU), where BU is the
measurable space of controls, while the fuzzy measure gU describes the restrictions
imposed on controls.

Let Y (Y �= ∅) be the set of output states of the system under consideration, and
(Y,BY ,gY ) be the space of a fuzzy measure, which describes a fuzzy distribution of
output values of the system. Note that as usual Y is some transformation of the set
of states of X .

Now let us consider the Cartesian product X×T and the space of extended com-
position extremal fuzzy measures (Subsection 2.2 and [32])

(

X×T,B̃⊗BT∗,B̃⊗B∗
T , g̃⊗gT∗, g̃⊗g∗T

)

,

which is induced by the spaces (X ,B,B,g,g) and (T,BT∗,B∗
T ,gT∗,g∗T ).
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Definition 20. a) A lower measurable binary fuzzy relation ˜Q∗ ∈B̃⊗BT∗ is called
a future fuzzy process on the measurable states of the system (i.e., μ

˜Q∗(x, t) is a
lower measurable function).

b) An upper measurable binary fuzzy relation ˜Q∗ ∈ B̃⊗B∗
T is called a current

fuzzy process on the measurable states of the system (i.e., μ
˜Q∗(x, t) is an upper

measurable function).
c) A pair ( ˜Q∗, ˜Q∗) of lower and upper measurable binary fuzzy relations is called

an extremal fuzzy process on the measurable states of the system (i.e., Q∗ ∈ B̃⊗B∗
T

and Q∗ ∈ B̃⊗BT∗).
d) An extremal fuzzy process (EFP) is said to be ergodic if there exist the limits

∀x ∈ X , lim
t→∞

μ
˜Q∗(x,t) ≡ μ

˜A∗(x), lim
t→∞

μ
˜Q∗(x, t) ≡ μ

˜A∗(x), and the limit fuzzy sets ˜A∗

and ˜A∗ are measurable ˜A∗, ˜A∗ ∈ ˜B.

Note that (see Subsection 2.2) ∀τ ∈ T , ∀x ∈ X
E
˜Q∗(x, ·) ∈ ˜BT∗ is a future fuzzy time interval,

E
˜Q∗(x, ·) ∈ ˜B∗

T is a current fuzzy time interval,

E
˜Q∗(·,τ) ∈ ˜B is a fuzzy state of the system, which is “measurable” in the future

fuzzy time interval ˜[τ,+∞),
E
˜Q∗(·,τ) ∈ ˜B is a fuzzy state of the system, which is “measurable” in the current

fuzzy time interval [̃0,τ).
It is obvious that model “measurements” of the states of the system at a real time

moment τ > 0 are understood as defining pairs of measurable fuzzy sets E
˜Q∗(·,τ),

E
˜Q∗(·,τ) ∈ ˜B.
For all x ∈ X , E

˜Q∗(x, ·) and E
˜Q∗(x, ·) are a current fuzzy and a future fuzzy time

intervals, respectively, in which the state x ∈ X of the system is measured.
The family of fuzzy sets {E

˜Q∗(·,τ)}τ≥0 from ˜B is called the trajectory of

a future fuzzy process, and the family of fuzzy sets {E
˜Q∗(·,τ)}τ≥0 from ˜B is

called the trajectory of a current fuzzy process. The family of pairs of fuzzy
sets {E

˜Q∗(·,τ),E
˜Q∗(·,τ)}τ≥0 is called the trajectory of an extremal fuzzy process

( ˜Q∗, ˜Q∗).
Let ˜R∗ ⊂ X×T ×Y be some lower measurable fuzzy relation (˜R∗ ∈ B̃⊗BT∗⊗

˜BY ) describing expert knowledge reflections of fuzzy states of the system on the
output values of the system in future fuzzy time intervals, and ˜R∗ ⊂ X × T ×Y

be some upper measurable fuzzy relation (˜R∗ ∈ B̃⊗B∗
T ⊗ ˜BY ) describing expert

knowledge reflections of fuzzy states of the system on the output values of the sys-
tem in current fuzzy time intervals.

Definition 21. a) A lower measurable relation ˜R∗ ∈ B̃⊗BT∗ ⊗ ˜BY is called a fu-
ture fuzzy process of expert knowledge reflection of states of the system in future
fuzzy time intervals.
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b) An upper measurable relation (˜R∗ ∈ B̃⊗B∗
T ⊗ ˜BY ) is called a current fuzzy

process of expert knowledge reflection of states of the system in current fuzzy time
intervals.

c) A pair (˜R∗, ˜R∗) is called an extremal fuzzy process of expert knowledge re-
flection of states of the system in extremal fuzzy time intervals.

Let ρ̃∗ ∈ ˜(B⊗BT∗)⊗ ˜(BU ⊗BT∗)⊗ ˜B be some lower measurable fuzzy relation
in the Cartesian product (X×T )× (U×T)×X , which describes system state trans-
formations in time with control taken into account:

(X×T )× (U×T)→ X .

This relation is a future fuzzy transition operator describing the dynamics of the sys-
tem or, in other words, system state transformations in future fuzzy time intervals.

Let ρ̃∗ ∈ ˜(B⊗B∗
T )⊗ ˜(BU ⊗BT∗)⊗ ˜B be some upper measurable fuzzy rela-

tion in the Cartesian product (X ×T )× (U ×T )×X , which describes system state
transformations in time with control taken into account:

(X×T )× (U×T)→ X .

This relation is a current fuzzy transition operator describing the dynamics of
the system or, in other words, system state transformations in current fuzzy time
intervals.

We call ρ̃∗ the fuzzy lower transition operator describing the system state dynam-
ics, and ρ̃∗ the fuzzy upper transition operator describing the system state dynamics.
The pair (ρ̃∗, ρ̃∗) is called the transition operator describing the system state dynam-
ics in extremal fuzzy time intervals.

Let ũ∗ ⊂U×T be some upper measurable fuzzy binary relation from ˜BU ⊗B∗
T ,

which describes the action of external factors (controls) on the system in future
fuzzy time intervals, and ũ∗ ⊂U×T be some lower measurable fuzzy binary rela-

tion from ˜BU ⊗B∗
T , which describes the action of external factors (controls) on the

system in current fuzzy time intervals.

Definition 22. a) A fuzzy binary relation ũ∗ ∈ B̃⊗B∗
T is called a current fuzzy

control process.

b) A fuzzy binary relation ũ∗ ∈ B̃⊗BT∗ is called a future fuzzy control process.
c) A pair (ũ∗, ũ∗) is called an extremal fuzzy control process.

Definition 23. a) The train
{

X ,U,T,Y, ρ̃∗, ˜Q∗, ˜R∗
}

(31)

is called the future fuzzy dynamic system describing the dynamics of the system
state in future fuzzy time intervals.
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b) The train
{

X ,U,T,Y, ρ̃∗, ˜Q∗, ˜R∗
}

(32)

is called the current fuzzy dynamic system describing the state dynamics of the
system in current fuzzy time intervals.

c) The train
{

X ,U,T,Y,(ρ̃∗, ρ̃∗),( ˜Q∗, ˜Q∗),(˜R∗, ˜R∗)
}

(33)

is called the extremal fuzzy consitnuous dynamic system (EFCDS) describing the
state dynamics of the system in extremal fuzzy time intervals.

In the sequel we will consider the case with Y ≡ X .
It is obvious that the EFCDS (33) describes the state dynamics of the system un-

dergoing transformation with fuzzy uncertainty produced by observations at fuzzy
time, while the extremality is due to the “measurement” of fuzzy states of the system
in current and future fuzzy time intervals.

Definition 24. The system of composition equations

{

˜R∗ = ρ̃∗ •∗ ˜Q∗,
˜R
∗ = ρ̃∗ ∗• ˜Q∗

(34)

is called the system describing the state dynamics of the extremal fuzzy continu-

ous dynamic system, where •∗ and
∗• are some composition operations over fuzzy

relations.

Given (˜R∗, ˜R∗), (ρ̃∗, ρ̃∗) and the initial fuzzy states of the system ˜A0∗, ˜A∗0 ∈ B
(μ
˜A0∗(x) = μ

˜Q∗(x,0), μ
˜A∗0

(x) = μ
˜Q∗(x,0), ∀x ∈ X), it is important to find a solution

( ˜Q∗, ˜Q∗) of (34), which we call an extremal fuzzy process of system state transfor-
mation on measurable states of the system.

Below we will consider a concrete controllable fuzzy system of form (34) for
the continuous case. It is obvious that in concrete EFCDS’s formulas (33) and (34)
model concrete complex objects with fuzzy dynamics. The finding of a system state
transformation process ( ˜Q∗, ˜Q∗) is important when we deal with problems pertain-
ing to optimization problem (optimal control).

In recent years, the investigation of complex dynamic systems with fuzzy uncer-
tainty by means of the theory of fuzzy sets has been developing mainly along the
following two lines:

I. Lower dynamic systems are described by composition equations in the metric
or normed spaces of system states, which can be formally written in terms of fuzzy
integral equations if a fuzzy measure is assumed to be a possibilistic one ([9], [10],
[24], [46], [47] and so on).

II. Quite a number of studies have been devoted to the development of fuzzy
integro-differential calculus with an aim of describing fuzzy dynamic systems and
their control. The main feature these approaches have in common is the assumption
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that the compatibility function is differentiable or integrable ([4]–[7], [10], [12],
[17], [19], [23], [26], [27], [29], [30], [43] and so on), which to a certain extent
facilitates the investigation of the definite class of fuzzy dynamic systems.

The instrument of extended composition fuzzy measures developed in [31] and
[32], where some important properties of Sugeno lower and upper integrals and their
extensions are investigated, makes it possible to study the so-called extremal fuzzy
continuous dynamic systems for which:

1) a system of compositional equations for fuzzy dynamic systems is generalized
in the form of system (34), where the extended Sugeno upper and lower integrals

(see [31]) are used in the role of composition operations •∗ and
∗• (as a aggregation

instrument for the EFCDS) describing the dynamics of the state of an EFCDS [33].
As known from the earlier sources of investigation of fuzzy statistics ([8], [13],

[18], [22], [45] and so on) and also from our works ([31]–[36], [40]–[42]), the
Sugeno integral most frequently estimates the most typical levels of compatibility
of an integrable function. This is the reason for which we have chosen the Sugeno
integral for the construction of extended fuzzy measures.

Systems of composition type equations [24] are a particular case of system (34),
where equations are written with respect to possibility measure. The case we con-
sider in this paper is more general since the equations are written in for any extremal
fuzzy measure.

2) As different from the approach mentioned in Item II (where some processes
are not integro-differentiable), in our proposed systems of equations any measurable
compatibility function is integrable. However our consideration is not limited to this
only class of dynamic systems.

To conclude the section, note that the compatibility functions, for which systems
of equations can be written in form (34), are lower or upper measurable:

μ
˜Q∗(x,t) : X×T → [0;1] is B⊗B∗

T -upper measurable;

μ
˜Q∗(x,t) : X×T → [0;1] is B⊗BT∗-lower measurable;

μ
˜R∗(x,t,y) : X×T ×Y → [0;1] is B⊗B∗

T ⊗B-upper measurable;

μ
˜R∗(x,t,y) : X×T ×Y → [0;1] isB⊗BT∗ ⊗B-lower measurable;

μ
˜ρ∗(x0,t0,u,t,x) : (X×T )× (U×T )×X → [0;1] is

(B⊗B∗
T )⊗ (BU ⊗B∗

T )⊗B-upper measurable;

μ
˜ρ∗(x0,t0,u,t,x) : (X×T )× (U×T )×X → [0;1] is

(B⊗BT∗)⊗ (BU ⊗BT∗)⊗B-lower measurable.

(35)

4 Continuous Extremal Controllable Fuzzy Process

As has been mentioned above (Subsection 2.2), in [31] we have constructed mono-

tone structures of current fuzzy time intervals {˜F I
∗
(T ),�,

∗⊗} and future fuzzy
time intervals {˜F I∗(T ),�,⊗

∗
}. It is obvious that the flow process of a real time
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moment τ induces, in these structures, monotonically increasing and monotonically
decreasing processes of current and future time intervals, respectively.

Definition 25. a) A family {r̃∗τ}τ≥0, r̃∗τ ∈ ˜B∗
T , τ ≥ 0, of monotonically increasing

sequences of upper fuzzy time intervals, i.e.,

∀τ2 > τ1 ≥ 0, r̃∗τ1
� r̃∗τ2

is called a process of current fuzzy time intervals.
b) A family {r̃τ∗}τ≥0, r̃τ∗ ∈ ˜BT∗, τ ≥ 0, of monotonically decreasing sequences

of upper fuzzy time intervals, i.e.,

∀τ2 > τ1 ≥ 0, r̃τ1∗ � r̃τ2∗

is called a process of future fuzzy time intervals.
c) A pair of processes of future and current fuzzy time intervals {r̃τ∗, r̃∗τ}τ≥0 is

called a process of extremal fuzzy time intervals.

It obviously follows that
μr̃τ∗(t) : T → [0;1] is BT∗-lower measurable,
μr̃∗τ (t) : T → [0;1] is B∗

T -upper measurable.
Note that a change of a real time moment τ > 0 reflects model “measurements”

of an extremal fuzzy process of system state transformation ( ˜Q∗, ˜Q∗) in extremal
fuzzy time intervals (r̃τ∗, r̃∗τ ).

Definition 26. A process of extremal fuzzy time intervals (r̃τ∗, r̃∗τ ) is called ergodic
if there exist the limits

lim
τ→+∞

r̃τ∗ = r̃∞∗ ∈ ˜BT∗
(

∀t ≥ 0, lim
τ→+∞

μr̃τ∗(t) = μr̃∞∗(t)
)

,

lim
τ→+∞

r̃∗τ = r̃∗∞ ∈ ˜B∗
T

(

∀t ≥ 0, lim
τ→+∞

μr̃∗τ (t) = μr̃∗∞(t)
)

.

In what follows it will be assumed that there exists a relation between the measurable
space of time (T,BT∗,B∗

T ) and the measurable space of system states (X ,B) in the
form of conditional extremal fuzzy measures defined in [31]. In the considered case
it is assumed that there exist conditional lower and upper fuzzy measures gt∗(· | x)
and g∗t (· | x), respectively, i.e., ∀x ∈ X

gt∗(· | x) : BT∗ → [0;1] is a lower fuzzy measure,

g∗t (· | x) : B∗
T → [0;1] is an upper fuzzy measure.

gt∗(· | x) and g∗t (· | x) are extremal measures, while for a future fuzzy time interval
r ∈BT∗

gt∗(r | ·) : X → [0;1] is a B-measurable function,

and for a current time interval r ∈B∗
T
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g∗t (r | ·) : X → [0;1] is a B-measurable function.

These properties also apply to extended conditional fuzzy measures g̃t∗(· | x) and
g̃∗t (· | x), i.e., ∀x ∈ X , r̃∗ ∈ ˜BT∗, r̃∗ ∈ ˜B∗

T

g̃t∗(· | x) : ˜BT∗ → [0;1] is a lower fuzzy measure,

g̃∗t (· | x) : ˜B∗
T → [0;1] is an upper fuzzy measure,

g̃t∗(r̃∗ | ·) : X → [0;1] is a B-measurable function,

g̃∗t (r̃
∗ | ·) : X → [0;1] is a B-measurable function.

A relation between the spaces (X ,B,g) and (T,BT∗,B∗
T ,gT∗,g∗T ) and their ex-

tensions through conditional measures can be represented as follows: ∀r∗ ∈ BT∗,
r∗ ∈B∗

T , r̃∗ ∈ ˜BT∗, r̃∗ ∈ ˜B∗
T

gT∗(r∗) = �

∫

X

gt∗(r∗ | x)◦ g(·), g∗T (r∗) = �

∫

X

g∗t (r
∗ | x)◦ g(·),

g̃T∗(r̃∗) = �

∫

X

g̃t∗(r̃∗ | x)◦ g(·), g̃∗T (r̃∗) = �

∫

X

g̃∗t (r̃
∗ | x)◦ g(·),

(36)

Applying results from [31], we can write ∀x ∈ X , r̃∗ ∈ ˜BT∗, r̃∗ ∈ ˜B∗
T :

g̃t∗(r̃∗ | x) = �

∫

∗
T

μr̃∗(t)◦ gt∗(· | x),

g̃∗t (r̃
∗ | x) = �

∫ ∗

T

μr̃∗(t)◦ g∗t (· | x).
(37)

By the definition of g̃t∗(· | x) and g̃∗t (· | x), for any lower and upper fuzzy time
intervals r̃∗ ∈ ˜BT∗ and r̃∗ ∈ ˜B∗

T there exist B-measurable sets ˜Ar̃∗ ∈ ˜B, ˜Ar̃∗ ∈ ˜B
such that ∀x ∈ X

μ
˜Ar̃∗

(x) = g̃t∗(r̃∗ | x), μ
˜Ar̃∗

(x) = g̃∗t (r̃
∗ | x). (38)

Definition 27. The fuzzy sets ˜Ar̃∗ and ˜Ar̃∗ ∈ ˜B from the extended measurable space
of system states are called the expert reflections of an extremal fuzzy dynamic sys-
tems states in the extremal fuzzy time intervals (r̃∗, r̃∗) with respect to extended
extremal conditional fuzzy measures g̃t∗(· | x) and g̃∗t (· | x).
Let us formulate a theorem that describes the ergodicity of an expert reflection pro-
cess in an ergodic process of extremal fuzzy time intervals.

Theorem 4. An ergodic process (r̃τ∗, r̃∗τ )τ≥0 of extremal fuzzy time intervals on the
measurable space of states of the system (X , ˜B) induces an ergodic expert reflection
process (˜R∗, ˜R∗)≡ (˜Ar̃τ∗ ,

˜Ar̃∗τ )τ≥0.
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In this section, we consider problems of modeling EFCDS’s when the control
factor acts on the system or, speaking more exactly, on controllable extremal fuzzy
processes.

As defined in Section 3, let U be the space of all admissible controls acting on
an EFCDS in the course of its evolution. It is assumed that the restrictions on the
space of control elements are of fuzzy nature: these restrictions exist in the form of
a fuzzy measure on the measurable space BU (the σ -algebra of subsets of U). Let
(U,BU ,gU) be some space of the fuzzy measure.

Let ũ∗ ⊂U×T be some upper measurable binary fuzzy relation from ˜BU ⊗B∗
T

that describes an external fuzzy action on the EFCDS in the course of current fuzzy
time intervals, and ũ∗ ⊂U×T be some lower measurable binary fuzzy relation from

˜BU ⊗BT∗ that describes an external fuzzy action on the EFCDS in the course of
future fuzzy time intervals. A pair (ũ∗, ũ∗) is called an extremal fuzzy control (an
extremal fuzzy control process), while ũ∗ and ũ∗ are respectively called a current
fuzzy control and a future fuzzy control.

Let ρ̃∗ ∈ B̃⊗B⊗ ˜BU ⊗BT∗ and ρ̃∗ ∈ B̃⊗B⊗ ˜BU ⊗B∗
T , and (ρ̃∗, ρ̃∗) be the

operator of the EFCDS state change dynamics.

Definition 28. If (r̃τ∗, r̃∗τ )τ≥0 is some process of extremal fuzzy time intervals,
(U,BU ,gU) is a space of a fuzzy measure (a space of fuzzy restrictions on con-
trols), then a pair ( ˜Q′∗, ˜Q′∗) of lower and upper measurable binary fuzzy relations

( ˜Q′∗ ∈ ˜B⊗ B̃⊗BT∗, ˜Q′∗ ∈ ˜B⊗ B̃⊗B∗
T ) is called an extremal fuzzy process of

measurable states of an EFCDS in the process (r̃τ∗, r̃∗τ )τ≥0, taking into account the
fuzzy restrictions on controls (U,BU ,gU): ∀x ∈ X , u ∈U , τ ∈ T ,

μ
˜Q′∗(x,u,τ) Δ= �

∫

∗
r̃τ∗

[

�

∫

˜A0∗

μ
˜ρ∗(x,x

′,u, t)◦ g(·)
]

◦ g̃T∗(·)≡�

∫

∗
r̃τ∗

μ
˜ρ ′∗(x,u, t)◦ g̃T∗(·),

μ
˜Q′∗(x,u,τ) Δ= �

∫ ∗

r̃∗τ

[

�

∫

˜A∗0

μ
˜ρ∗(x,x

′,u, t)◦ g(·)
]

◦ g̃∗T (·)≡�

∫ ∗

r̃∗τ

μ
˜ρ ′∗(x,u, t)◦ g̃T∗(·).

(39)

Definition 29. In the conditions of the action of an extremal fuzzy control process

(ũ∗, ũ∗) on an EFCDS, a pair ( ˜Q∗, ˜Q∗) ( ˜Q∗ ∈ B̃⊗BT∗, ˜Q∗ ∈ B̃⊗B∗
T ) defined as

follows: ∀(x,τ) ∈ X×T

μ
˜Q∗(x,τ) Δ= �

∫

Eũ∗(·,τ)

μ
˜Q′∗(x,u,τ)◦ gU(·),

μ
˜Q∗(x,τ) Δ= �

∫

Eũ∗ (·,τ)

μ
˜Q′∗(x,u,τ)◦ gU(·)

(40)

is called an extremal fuzzy process describing the system state dynamics.

Let us present the integral representation of the process ( ˜Q∗, ˜Q∗) [33].
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Theorem 5. In the conditions of the action of an extremal fuzzy control process
(ũ∗, ũ∗) on an EFCDS with the initial extremal fuzzy state 〈˜A0∗ ≡ E

˜Q∗(·,τ0), ˜A∗0 ≡
E
˜Q∗(·,τ0)〉, the system state change dynamics is described by the extremal fuzzy

process ( ˜Q∗, ˜Q∗), the integral representation of which is as follows: ∀x ∈ X, τ ∈ T

a) μ
˜Q∗(x,τ) = �

∫

∗
U×T

[

μEũ∗ (·,τ)(u)∧μEρ̃′∗(x,·,·)
(u, t)

]

◦ gU ⊗gE
˜R∗(·,τ)(·), (41)

where g̃U⊗ g̃E
˜R∗(·,τ)

is an extended composition lower fuzzy measure of the measures

gU and gE
˜R∗(·,τ).

b) μ
˜Q∗(x,τ) = �

∫ ∗

U×T

[

μEũ∗(·,τ)(u)∨μEρ̃′∗(x,·,·)(u, t)
]

◦ gU ⊗gE
˜R∗(·,τ)(·), (42)

where g̃U⊗ ˜gE
˜R∗(·,τ) is an extended composition upper fuzzy measure of the measures

gU and gE
˜R∗(·,τ).

Theorem 6. Let (r̃τ∗, r̃∗τ )τ≥0 be some ergodic process of extremal fuzzy time in-
tervals, (˜R∗, ˜R∗) be an extremal fuzzy reflection process induced by the process
(r̃τ∗, r̃∗τ )τ≥0, ( ˜Q∗, ˜Q∗) be an extremal fuzzy process describing the EFCDS state dy-
namics, and (ũ∗, ũ∗) be an extremal ergodic fuzzy control process acting on the
EFCDS. Then the extremal fuzzy process ( ˜Q∗, ˜Q∗) is ergodic.

Recalling the notion of lower and upper convergence of sequences of lower and
upper measurable functions, respectively (see Subsection 2.1), and also the notion of
lower and upper self-continuity of extremal fuzzy measures, we make the following
statements on the ergodicity of extremal fuzzy processes.

Definition 30 (gT -Ergodicity). We say that the fuzzy process of extremal fuzzy
time intervals (r̃τ∗, r̃∗τ )τ≥0 is gT -ergodic on some extremal fuzzy time intervals r̃∗ ∈
˜BT∗ and r̃∗ ∈ ˜B∗

T , if ∃r̃∗∞ ∈ ˜BT∗ and r̃∗∞ ∈ ˜B∗
T extremal fuzzy time intervals such

that ∀ε > 0

lim
τ→+∞

g̃T∗
(

r̃∗ ∩
{

t ∈ T | |μr̃τ∗(t)− μr̃∗∞(t)| ≥ ε
})

= 0,

lim
τ→+∞

g̃∗T
(

r̃∗ ∪{t ∈ T | |μr̃∗τ (t)− μr̃∗∞(t)|< ε
})

= 1.
(43)

Definition 31 (gU -Ergodicity). We say that the extremal fuzzy control process
(ũ∗ũ∗) is gU -ergodic on some fuzzy control ũ ∈ ˜BU if there exist extremal fuzzy
controls ũ∞ and ũ∞ ∈ ˜BU such that ∀ε > 0 and ∀t ∈ T

lim
τ→+∞

g̃U

(

ũ∩
{

u ∈U | |μEũ∗(·,τ)(u)− μũ∞(u)| ≥ ε
})

= 0,

lim
τ→+∞

g̃U
(

ũ∪{u ∈U | |μEũ∗ (·,τ)(u)− μũ∞(u)|< ε
})

= 1.
(44)
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Analogously to Theorem 6, we formulate the statement that the extremal fuzzy
process ( ˜Q∗, ˜Q∗) of describing the EFCDS state change dynamics is ergodic, where
the ergodicity of the processes (r̃τ∗, r̃∗τ )τ≥0 and (ũ∗, ũ∗) is replaced by the
g-ergodicity.

Theorem 7. Let the process (r̃τ∗, r̃∗τ )τ≥0 be gT -ergodic on T with limit extremal
fuzzy time intervals (r̃∗∞, r̃∗∞), and (ũ∗, ũ∗) be gU-ergodic on U with limit fuzzy con-
trols (ũ∞, ũ∞) so that the extended fuzzy measures g̃T∗, g̃∗T be self-continuous. Then
the extremal fuzzy process ( ˜Q∗, ˜Q∗) of describing the EFCDS state change dynamics
is ergodic.

To conclude the section, we say that under the action of the extremal fuzzy control
process (ũ∗, ũ∗) on the EFCDS, the extremal fuzzy process ( ˜Q∗, ˜Q∗) of describing
the EFCDS state change dynamics is ergodic if

a) the processes (r̃τ∗, r̃∗τ )τ≥0 and (ũ∗, ũ∗) are ergodic on T and U , respectively, or
b) the processes (r̃τ∗, r̃∗τ )τ≥0 and (ũ∗, ũ∗) are g-ergodic on T and U , respectively,

the extended extremal fuzzy measures g̃T∗ and g̃∗T are respectively lower self-conti-
nuous and upper self-continuous, and the extended measure g̃U is self-continuous
on ˜BU .

Conclusions. Using the results obtained in [31]–[33] of this study, we have consid-
ered questions of fuzzy mathematical modeling of extremal fuzzy processes, where

a) we introduce the notion of an EFCDS with fuzzy uncertainty, the source of
which is expert reflections on the states of EFCSD (“expert measurement”) in the
so-called current and future fuzzy time intervals. The general EFCDS model is
described;

b) the notion of processes of expert reflection and description of the EFCDS
state change dynamics are introduced. With the aid of the conditional extremal
fuzzy measures gt∗(· | x) and g∗t (·, | x), the extremal fuzzy expert reflection pro-
cess (˜R∗, ˜R∗) connects the fuzzy time interval measurement process (r̃τ∗, r̃∗τ )τ≥0

with the space of measurable states of the system with fuzzy distribution (X ,B,g),
while the EFCDS state description process ( ˜Q∗, ˜Q∗) is defined through the extremal
fuzzy expert reflection process (˜R∗, ˜R∗), using the extended upper and lower Sugeno
integrals that are considered as extremal operators describing the EFCDS state
dynamics;

c) questions of the ergodicity of extremal fuzzy processes are studied. The notion
of g-ergodicity is introduced, which allows one to obtain a sufficient condition for
the process ( ˜Q∗, ˜Q∗) to be ergodic;

d) the notion of an extremal fuzzy control process (ũ∗, ũ∗) is introduced in
the case of the action of control with fuzzy restrictions in the form of the space
(U,BU ,gU). Models of continuous extremal controllable fuzzy processes are con-
structed. Questions of the ergodicity of controllable extremal fuzzy processes are
studied.
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5 The Fuzzy Dynamic Programming Problem

All definitions and results see in [35], [37], [39].
In alternative classical approaches to modeling and when working with the

EFCDS the main accent is often placed on the assumption of fuzzyness. We will
deal with fuzzy dynamic systems, where fuzzy uncertainty arises with time and
time structures are monotone classes of measurable sets.

We start describing objects of a fuzzy dynamic system. Let X (X �= ∅) be the set
of states of some system (EFCDS) to be investigated. Let (X ,B,g) be the space of a
fuzzy measure on the measurable space (X ,B), where B is a σ -algebra in X (fuzzy
restrictions on states).

Let the time structure of fuzzy dynamic system (EFCDS) be represented by (27)
and some space of extended extremal fuzzy measures

(T, ˜BT∗, ˜B∗
T , g̃T∗, g̃∗T ), T = R

∗
0,

where g̃T∗ and g̃∗T are some extremal fuzzy measures on ˜BT∗ ≡ ˜B2∗ and ˜B∗
T ≡ ˜B∗

2,
respectively.

Let U (U �= ∅) be the set of all admissible controls (of external factors) acting
on the EFCDS. Assume that controls are subjected to restrictions of uncertain char-
acter in the form of some space of a fuzzy measure (U,BU ,gU), where BU is the
measurable space of controls, while the fuzzy measure gU describes the restrictions
imposed on controls.

We consider the optimization problems of EFCDS when the model of the contin-
uous extremal controllable fuzzy process is described by the system of fuzzy integral
equations ([33] and Section 4):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ
˜Q∗(x,τ)= �

∫

∗
U×T

{

μEũ∗ (·,τ)(u)∧μEρ̃′∗ (x,·,·)
(u, t)

}

◦ g̃U ⊗ ˜gE
˜R∗(·,τ)(·),

μ
˜Q∗(x,τ)=�

∫ ∗

U×T

{

μEũ∗ (·,τ)(u)∨μEρ̃′∗(x,·,·)(u, t)
}

◦˜g∗U ⊗ ˜gE
˜R∗(·,τ)(·),

(45)

where ( ˜Q∗, ˜Q∗) is a fuzzy extremal process describing the system state dynamics;
(˜R∗, ˜R∗) is an extremal fuzzy process of expert knowledge reflections in extremal
fuzzy time intervals (the expert reflections on the states of EFCDS in the extremal
fuzzy time intervals); (ρ̃∗, ρ̃∗) is the transition operator of the EFCDS states; on
right-hand sides of Sugeno extended lower and upper integrals the integration mea-
sures are the extremal compositional fuzzy measures extended with respect to the
process (˜R∗, ˜R∗); μ is a symbol of a compatibility function of a fuzzy set; E is a
symbol of projector of Galois indexing mapping.

We say that the effectiveness of EFCDS control is defined by some set of Criteria
K, on which fuzzy restrictions are given for measurable subsets of K, i.e. the fuzzy
measure space (K,BK ,gK) (fuzzy restriction on the criteria) is defined on K [35].
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Let ˜L ∈ ˜BK ⊗BU be some fuzzy binary relation of “losses” with respect to each
of the criteria v ∈ K in the choice of control u ∈ U . Note that μ

˜L is a BK ⊗BU -
measurable compatibility function

μ
˜L(v,u) : K×U → [0,1]. (46)

Then the complement ˜L is called the fuzzy relation of EFCDS “gain” and the values

μ
˜L
(v,u) = 1− μ

˜L(v,u) (47)

define the measure of gain in the choice of control u ∈U for a criterion v ∈ K.

Definition 32. a) Given all criteria, a BU⊗B∗
T -measurable function: ∀(u,t)∈U ×T

PK
ũ∗(u,t) Δ= �

∫

K

{

μEũ∗ (·,t)(u)∨μ∗0 (u)∨μ
˜L
(v,u)

}

◦ g̃∗K(·), (48)

where the extended fuzzy measure g̃∗K : BK → [0,1] is the dual fuzzy measure of

g̃K (∀˜S ∈ ˜BK : g̃∗K(˜S) = 1− g̃K(˜S)), is called a gain with respect to a current (up-

per) fuzzy control process ũ∗ ∈ ˜BU ⊗B∗
T with respect to the initial fuzzy control

μEũ∗ (·,τ0)(u)≡ μ∗0 (u).
b) Given all criteria, a BU ⊗BT∗-measurable function: ∀(u, t) ∈U×T

qK
ũ∗(u,t) Δ= �

∫

K

{

μEũ∗ (·,t)(u)∧μ0∗(u)∧μ
˜L(v,u)

}

◦ g̃K(·) (49)

is called a loss with respect to a future (lower) fuzzy control process ũ∗ ∈ ˜BU ⊗BT∗
with respect to the initial fuzzy control μEũ∗ (·,τ0)(u)≡ μ0∗(u).

Definition 33. a) A B⊗B∗
T -measurable function: ∀(u,τ) ∈U×T

Iũ∗(u,τ) Δ= �

∫ ∗

T

PK
ũ∗(u, t)◦ g̃E

˜R∗(·,τ)(·) (50)

is called an integral current gain with respect to a current (upper) fuzzy control

process ũ∗ ∈ ˜BU ⊗B∗
T on a current fuzzy time interval r̃∗τ ∈ ˜B∗

T .
b) A BU ⊗BT∗-measurable function: ∀(u,τ) ∈U×T

Jũ∗(u,τ) Δ= �

∫

∗
T

qK
ũ∗(u,t)◦ g̃E

˜R∗(·,τ)(·) (51)

is called an integral future loss with respect to a future (upper) fuzzy control process

ũ∗ ∈ ˜BU ⊗BT∗ on a future fuzzy time interval r̃τ∗ ∈ ˜BT∗.

We have thus defined, on U , an extremal fuzzy “gain-loss” process (Iu∗ , J̇u∗).
Further, for model (45) we will consider, in terms of (50) and (51), the problem of



Fuzzy Dynamic Programming Problem for Extremal Fuzzy Dynamic System 261

formation of an optimal control (in the sense of minimization of the future loss and
maximization of the current gain) of an extremal process: ∀(u,t) ∈U×T

�

∫ ∗

T

PK
ũ∗(u, t)◦ g̃E

˜R∗(·,τ)(·)⇒max
ũ∗

,

�

∫

∗
T

qK
ũ∗(u, t)◦ g̃E

˜R∗(·,τ)(·)⇒min
ũ∗

.

(52)

Functional equations by means of which we can define an extremal fuzzy optimal
control in the sense of extremalization of criteria (52) can be written in the following
form, ∀(u,τ ′) ∈U× [τ0,τ]:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

J̇◦̃
u∗

(u,τ ′) = ∧
ũ∗∈ ˜BU⊗BT∗

J̇ũ∗(u,τ ′) = ∧
ũ∗∈ ˜BU⊗BT∗

�

∫

∗
T

qK
ũ∗(u, t)◦ g̃E

˜R∗(·,τ ′)(·),

I◦̃
u∗

(u,τ ′) = ∨
ũ∗∈ ˜BU⊗B∗

T

Iũ∗(u,τ ′) = ∨
ũ∗∈ ˜BU⊗B∗

T

�

∫ ∗

T

PK
ũ∗(u,t)◦ g̃E

˜R∗(·,τ ′)(·),
(53)

with the initial control conditions

E◦̃
u∗

(·,τ0)≡ ũ0∗ ∈BU , E◦̃
u∗

(·,τ0)≡ ũ∗0 ∈BU (54)

and the EFCDS initial states E
˜Q∗(·,τ0) and E

˜Q∗(·,τ0).

Definition 34. An extremal fuzzy control process (
◦̃
u∗,

◦̃
u∗), τ0 ≤ τ ′ ≤ τ , with the

initial conditions (54) is called an optimal for EFCDS (45) in the sense of Bellman’s
optimality principle if criterion (53) is satisfied.

The following theorem which gives the optimality condition (an analogue of Bell-
man’s equation [1]) is valid.

Theorem 8. Let a EFCDS be described by system (45). Then an extremal fuzzy

control process (
◦̃
u∗,

◦̃
u∗), τ0 ≤ τ ′ ≤ τ , is optimal in the sense of criterion (53) if and

only if the following inequalities are fulfilled: ∀(u,τ ′) ∈U× [τ0,τ]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

J̇◦̃
u∗

(u,τ ′)≤
(

�

∫

K

μ
˜L(v,u)◦ g̃K(·)

)

∧μE◦̃
u∗

(·,τ0)(u),

I◦̃
u∗

(u,τ ′)≥
(

�

∫

K

μ
˜L
(v,u)◦ g̃∗K(·)

)

∨μE◦̃
u∗

(·,τ0)(u);
(55)

Theorem 9. An extremal fuzzy optimal control process (
◦̃
u∗,

◦̃
u∗) for the EFCDS (45)

in the sense of criterion (53) not depending on a EFCDS state can be defined by the
following system of fuzzy-integral equations: ∀(u,τ ′) ∈U× [τ0,τ]
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ◦̃
u∗

(u,τ ′)=μ◦̃
u∗

(u,τ0)∧
(

�

∫

K

μ
˜L(v,u)◦ g̃K(·)

)

∧ g̃E
˜R∗ (·,Δ (τ0,τ ′))(T ),

μ◦̃
u∗

(u,τ ′)=μ◦̃
u∗

(u,τ0)∨
(

�

∫

K

μ
˜L
(v,u)◦ g̃∗K(·)

)

∨ g̃E
˜R∗ (·,Δ (τ0,τ ′))(T ).

(56)

Remark 2. Expressions in (56) of an extremal optimal fuzzy control process (
◦̃
u∗,

◦̃
u∗),

τ0 ≤ τ ′ ≤ τ , are a variant of the solution of inequalities (55), but this fuzzy-integral
representation of an optimal control gives a good analogue of the solution of the
problem of stochastic dynamic programming, where the expression of an optimal
control contains “direct” analogues to (56): �

∫

K
μ
˜L(v,u) ◦ gK(·) is the Bellman func-

tional which is an analogue of the kernel in the representation of a stochastic optimal
control or, more exactly, an analogue of the signal of a stochastic model or its de-
terministic part, while the values of the extended fuzzy measures g̃E

˜R∗ (·,Δ (τ0,τ ′))(T )
and g̃E

˜R∗(·,Δ (τ0,τ ′))(T ) are analogues of stochastic measure in the representation of
stochastic optimal controls.

The case where a fuzzy control of EFCDS depends not only on time τ ′ ∈ [0,τ] but
also on a EFCDS state x ∈ X is also studied but is omitted here.

5.1 Example

Let the set of EFCDS states be finite, X = {1,2,3,4}; g∗ : 2X → [0,1] be the possi-
bility measure with the possibility distribution on X

Π(i) Δ=
i
4

, i = 1,2,3,4
(

∀B ∈ 2X : g∗(A) = ∨
i∈A

π(i)
)

.

Let the EFCDS be subjected to the influence of an external control factor with

the finite set U = {u1,u2} (for example, u1
Δ=“+1”, u2

Δ=“−1”). Let the uniform
probability distribution play the role of the fuzzy measure gU : 2U → [0,1], i.e.
gU({u1}) = gU({u2}) = 1

2 . The two-element set K = {v1,v2} is taken as the set of
chosen criteria, while the uniform probability distribution gK({v1}) = gK({v2}) = 1

2
is considered as playing the role of the fuzzy measure gK : 2K → [0,1]. Thus we have
the fuzzy measure spaces (X ,2X ,g), (K,2K ,gK) and (U,2U ,gU). The dual measure
g∗ on 2X is the necessity measure g(A) = 1− ∨

i/∈A
π(i). Since the fuzzy measures gU

and gK are the probability ones, we know they are autodual and

g∗U = gU , g∗K = gK .

It is assumed that the initial moment of EFCDS observation is τ0 ≡ 0. Let the initial
extremal fuzzy distributions of an optimal control be
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μ◦̃
u∗

(u1,0) =
1
2

= μ◦̃
u∗

(u1,0); μ◦̃
u∗

(u2,0) =
1
4

= μ◦̃
u∗

(u2,0).

Let the binary fuzzy loss relation ˜L on U×K be defined as follows:

μ
˜L(u1,v1) = μ

˜L(u2,v2)=
1
2
, μ

˜L(u1,v2) = μ
˜L(u2,v1)=

1
4
.

The distributions of extremal fuzzy time intervals are given as

μr̃τ∗(t) =

{

0, 0≤ t ≤ τ,

1− τ
t , t > τ,

μr̃∗τ (t)=

{

1, 0≤ t < τ,
τ
t , t ≥ τ.

(57)

Let the initial distribution (τ0 ≡ 0) of the EFCDS state description process look like

˜A0∗ ∼
(

1 2 3 4
1
4

1
4

1
2

1
2

)

, ˜A∗0 ∼
(

1 2 3 4
1
2

1
2

1
2

1
2

)

. (58)

We consider the example of the space (T, ˜BT∗, ˜B∗
T , g̃∗T , g̃∗T ) where

gT∗([t,+∞)) Δ=
1

1 + t
, [t,+∞) ∈BT∗,

g∗T ([0,t)) Δ=
t

1 + t
, [0,t) ∈B∗

T , t > 0.
(59)

Further, we introduce the conditional fuzzy measures on BT∗ and B∗
T with respect

to the set X = {1,2,3,4}:

gt∗(rτ∗ | i) =
1

1 + iτ
, where i ∈ X , rτ∗ ∈BT∗,

g∗t (r
∗
τ | i) =

iτ
1 + iτ

, where i ∈ X , r∗τ ∈B∗
T .

(60)

Thus the EFCDS state description process can be represented as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ
˜Q∗(x,τ)= �

∫

∗
U×T

{

μEũ∗ (·,τ)(u)∧μEρ̃′∗(x,·,·)
(u, t)

}

◦ g̃U⊗ ˜gE
˜R∗ (·,τ)(·),

μ
˜Q∗(x,τ)=�

∫ ∗

U×T

{

μEũ∗ (·,τ)(u)∨μEρ̃′∗(x,·,·)(u, t)
}

◦ g̃U⊗ ˜gE
˜R∗ (·,τ)(·),

(61)

where ˜A0∗ ≡E
˜Q∗(·,0), ˜A∗0 ≡E

˜Q∗(·,0), (˜R∗, ˜R∗) is the extremal fuzzy reflection pro-
cess, ∀(x,τ) ∈ X×T , ∀(x,t) ∈U×T :

⎧

⎨

⎩

μ
˜R∗(x,τ) Δ= g̃t∗(r̃τ∗ | x) = μ

˜Aτ∗(x),

μ
˜R∗(x,τ) Δ= g̃∗t (r̃

∗
τ | x) = μ

˜A∗τ
(x),

(62)
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and
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

μ
˜ρ ′∗(x,u, t) Δ= �

∫

˜A0∗

μ
˜ρ∗(x,u,x′,t)◦ g̃(·),

μ
˜ρ ′∗(x,u, t) Δ= �

∫

˜A∗0

μ
˜ρ∗(x,u,x′,t)◦ g̃∗(·),

(63)

where ˜Aτ∗ ∈ ˜B and ˜A∗τ ∈B are expert reflections on the EFCDS states in the fuzzy
extremal intervals r̃τ∗ ∈ ˜BT∗ and r̃∗τ ∈ ˜B∗

T , respectively; (ρ̃∗, ρ̃∗) is the EFCDS
transition operator (see [34]). As known the operator (ρ̃ ′∗, ρ̃ ′∗) is restored from
the experimental-expert knowledge base on the EFCDS so that if we fix some
admissible extremal control process (ũ∗, ũ∗) (including an optimal control too),
then, using the calculation procedure for Sugeno extremal integrals [34], we can
write expressions for the process ( ˜Q∗, ˜Q∗). However we pursue a different aim
here: using EFCDS data, we are to construct the extremal optimal control process

(
◦̃
u∗,

◦̃
u∗).

Since the sets X , U , K are finite, it is not difficult to check that the conditions
(55) of existence of an optimal extremal control process are satisfied. By virtue of
the results of Theorems 8 and 9, we can write one of the variants for an extremal
optimal fuzzy control process as follows: ∀(u,τ) ∈ (X ,T )

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ◦̃
u∗

(u,τ) = μ◦̃
u∗

(u,0)∧
(

�

∫

K

μ
˜L(u,v)◦ g̃K(·)

)

∧ g̃E
˜R∗(·,τ)(T ),

μ◦̃
u∗

(u,τ) = μ◦̃
u∗

(u,0)∨
(

�

∫

K

μ
˜L
(u,v)◦ g̃∗K(·)

)

∨ g̃E
˜R∗(·,τ)(T ),

(64)

where u ∈ {“+1”, “−1”}, v ∈ {v1,v2}; μ◦̃
u∗

(u,0) and μ◦̃
u∗

(u,0) are already defined,

while the extended extremal fuzzy measures are defined in the form:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

g̃E
˜R∗ (·,τ)(T ) = �

∫

∗
T

μr̃τ∗(t)◦ g̃T∗(·) Δ= �

∫

∗
T

μr̃τ∗(t)◦�

∫

X

gt∗(· | x)◦ g(·),

g̃E
˜R∗ (·,τ)(T ) = �

∫ ∗

T

μr̃∗τ (t)◦ g̃∗T (·) Δ= �

∫ ∗

T

μr̃∗τ (t)◦�

∫

X

g∗t (· | x)◦ g∗(·).
(65)

Now we are to calculate the Sugeno integrals in formulas (64) and the values of
extremal fuzzy measures (65).
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Let us calculate the values of �

∫

K
μ
˜L(u,v)◦ g̃K(·):

1) u = u1 ≡“+1”:

�

∫

K

μ
˜L(u1,v)◦ g̃K(·) = ∧

0<α≤1

{

α ∨gK(v ∈ K | μ
˜L(u1,v)≥ α

}

=
[

∧
0≤α≤ 1

4

(α ∨gK(K))
]

∧
[

∧
1
4≤α≤ 1

2

(α ∨gK({v2}))
]

∧
[

∧
1
2 <α≤1

(α ∨gK(∅))
]

= 1∧ 1
2
∧ 1

2
=

1
2
.

2) u = u2 =“−1”:

�

∫

K

μ
˜L(u2,v)◦ g̃K(·) = ∧

0<α≤1

{

α ∨gK(v ∈ K | μ
˜L(u2,v)≥ α

}

=
[

∧
0≤α≤ 1

4

(α ∨gK(K))
]

∧
[

∧
1
4≤α≤ 1

2

(α ∨gK({v1}))
]

∧
[

∧
1
2 <α≤1

(α ∨gK(∅))
]

= 1∧
[

∧
1
4≤α≤ 1

2

(

α ∨ 1
2

)]

∧
[

∧
1
2≤α<1

(α)
]

= 1∧ 1
2
∧ 1

2
=

1
2
.

Since
�

∫

K

μ
˜L
(u,v)◦ g̃∗K(·) = 1−�

∫

K

μ
˜L(u,v)◦ g̃K(·),

we have

�

∫

K

μ
˜L
(u1,v)◦ g̃∗K(·) = �

∫

K

μ
˜L
(u2,v)◦ g̃K(·) =

1
2

.

Therefore ∀τ > 0

μ◦̃
u∗

(u1,τ) =
1
2
∧ 1

2
∧ g̃E

˜R∗(·,τ)(T ) =
1
2
∧ g̃E

˜R∗(·,τ)(T ),

μ◦̃
u∗

(u2,τ) =
1
4
∧ 1

2
∧ g̃E

˜R∗(·,τ)(T ) =
1
4
∧ g̃E

˜R∗(·,τ)(T ),

μ◦̃
u∗

(u1,τ) =
1
2
∨ 1

2
∨ g̃E

˜R∗(·,τ)(T ) =
1
2
∨ g̃E

˜R∗(·,τ)(T ),

μ◦̃
u∗

(u2,τ) =
1
4
∨ 1

2
∨ g̃E

˜R∗(·,τ)(T ) =
1
2
∨ g̃E

˜R∗(·,τ)(T ).

Now we are to calculate the values of the so-called extremal fuzzy “white noise” (65):

g̃E
˜R∗(·,τ)(T ) = �

∫

∗
T

μr̃τ∗(t)◦�

∫

X

gt∗(· | x)◦ g(·)

= ∨
0<α≤1

{α ∧ g̃T∗([r̃τ∗]α)}= ∨
0<α≤1

{

α ∧�

∫

X

g̃t∗([r̃τ∗]α | x)◦ g(·)
}

.
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From (57) we obtain the expression for an α-cut for r̃τ∗:

[r̃τ∗]α =

⎧

⎪

⎨

⎪

⎩

T if α = 0,
[ τ

1−α ,+∞
)

if 0 < α < 1,

∅ if α = 1,

⎫

⎪

⎬

⎪

⎭

∈BT∗.

Now (60) implies

g̃t∗([r̃τ∗]α | i) =

⎧

⎪

⎨

⎪

⎩

1 if α = 0,
1

1+i τ
1−α

if 0 < α < 1,

∅ if α = 1,

∀i ∈ X .

and

�

∫

X

g̃t([r̃τ∗]α | i)◦ g(·) = ∨
0<β≤1

{

β ∧g

({

i ∈ X | 1
1 + i τ

1−α
≥ β
})}

.

It is not difficult to verify that (0 < α < 1, τ > 0)

{

i ∈ X | 1
1 + i τ

1−α
≥ β

}

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∅ if 1≥ β > 1−α
1−α+τ ,

{1} if 1−α
1−α+τ ≥ β > 1−α

1−α+2τ ,

{1,2} if 1−α
1−α+2τ ≥ β > 1−α

1−α+3τ ,

{1,2,3} if 1−α
1−α+3τ ≥ β > 1−α

1−α+4τ ,

X if 1−α
1−α+4τ ≥ β > 0.

Denote B0 ≡
( 1−α

1−α+τ ;1
]

, B1 ≡
( 1−α

1−α+2τ ; 1−α
1−α+τ

]

, B2 ≡
( 1−α

1−α+3τ ; 1−α
1−α+2τ

]

, B3 ≡
( 1−α

1−α+4τ ; 1−α
1−α+3τ

]

, B4 ≡
(

0; 1−α
1−α+4τ

]

.
Then

�

∫

X

g̃t∗([r̃τ∗]α | x)◦ g(·) =
[

∨
β∈B0

(β ∧g(∅))
]

∨
[

∨
β∈B1

(β ∧g({1})
]

∨
[

∨
β∈B2

(β ∨g({1,2}))
]

∨
[

∨
β∈B3

(β ∨g({1,2,3}))
]

∨
[

∨
β∈B4

(β ∧g(X))
]

=0∨
[

∨
β∈B1

(β ∧0)
]

∨
[

∨
β∈B2

(β ∧0)
]

∨
[

∨
β∈B3

(β ∧0)
]

∨
[

∨
β∈B4

(β ∧1)
]

= ∨
β∈B4

β =
1−α

1−α+4τ
.

We finally obtain

g̃E
˜R∗(·,τ)(T ) = ∨

0<α<1

{

α ∧�

∫

X

g̃t∗([r̃τ∗]α | x)◦ g(·)
}

= ∨
0<α<1

{

α ∧ 1−α
1−α + 4τ

}

.
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After studying the function in the braces with respect to α , we can continue
calculations:

g̃E
˜R∗ (·,τ)(T ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∨
0<α<1

{α}= 1 if 0 < τ ≤ 1,

∨
α∈[1;2τ−1−2

√
τ(τ−1)]

{α}

= 2τ−1−2
√

τ(τ −1) if τ >1.

Since g̃E
˜R∗(·,τ)(·) and g̃E

˜R∗ (·,τ)(·) are extended extremal measures, we have

g̃E
˜R∗ (·,τ)(T ) =

{

0 if 0 < τ ≤ 1,

2 + 2
√

τ(τ−1) if τ > 1.

For an optimal control we obtain the following expressions:

μ◦̃
u∗

(u1,τ) =

{

1
2 , 0 < τ ≤ 1,
1
2 ∧ (2τ−1−2

√

τ(τ −1)), τ > 1,

μ◦̃
u∗

(u2,τ) =

{

1
4 , 0 < τ ≤ 1,
1
4 ∧ (2τ−1−2

√

τ(τ −1)), τ > 1,

μ◦̃
u∗

(u1,τ) =

{

1
2 , 0 < τ ≤ 1,
1
2 ∨ (2 + 2

√

τ(τ−1)−2τ), τ > 1
= μ◦̃

u∗
(u2,τ).

Note that when τ→+∞ a current description process of fuzzy time intervals extends
unlimitedly, while a future description process of fuzzy time intervals vanishes. The
latter fact is reflected in the expressions for the fuzzy optimal extremal controls:

⎧

⎨

⎩

lim
τ→∞

μ◦̃
u∗

(u,τ)→ 1, u ∈U = {u1,u2},
lim
τ→∞

μ◦̃
u∗

(u,τ)→ 0, u ∈U = {u1,u2}.

i.e. the uncertainty for a current fuzzy control process vanishes, while a future fuzzy
optimal control process is not considered.

We have thereby finished the consideration of the example.

6 Conclusion

Using the results presented in the papers [31]–[39], we have considered questions
of the fuzzy optimization of extremal processes, where:

a) the basic properties of Sugeno’s type extremal fuzzy measure and several vari-
ants of its representations are considered;

b) the notions of extremal fuzzy time moments and intervals are introduced and
their monotone algebraic structures are defined. The dualization of a time structure
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forms the most important part of the fuzzy instrument of modeling and optimization
of extremal fuzzy continuous dynamic systems;

c) we introduce the notion of an EFCDS with fuzzy uncertainty, the source of
which is “fuzzy measurement” (“expert reflections” on the states of EFCDS) of the
system state in the so-called current and future fuzzy time intervals. The general
EFCDS model is described;

d) the notion of processes of expert reflection and description of the EFCDS state
change dynamics are introduced. With the aid of the conditional extremal expert
reflection measures gt∗(· | x) and g∗t (·, | x), the extremal fuzzy reflection process
(˜R∗, ˜R∗) connects the fuzzy time interval measurement process (r̃τ∗, r̃∗τ )τ≥0 with
the space of measurable states of the system with fuzzy distribution (X ,B,g), while
the EFCDS state description process ( ˜Q∗, ˜Q∗) is defined through the extremal fuzzy
reflection process (˜R∗, ˜R∗), using the extended upper and lower Sugeno integrals
that are considered as extremal operators describing the EFCDS state dynamics;

e) consideration is given to the continuous case of extremal fuzzy processes.
Questions of the ergodicity of extremal fuzzy processes are studied. The notion of
g-ergodicity is introduced, which allows one to obtain a sufficient condition for the
process ( ˜Q∗, ˜Q∗) to be ergodic;

f) the notion of an extremal fuzzy control process (ũ∗, ũ∗) is introduced in the case
of the action of control with fuzzy restrictions in the form of the space (U,BU ,gU).
Models of continuous extremal controllable fuzzy processes are constructed. Ques-
tions of the ergodicity of controllable extremal fuzzy processes are studied;

g) problems of optimization of a continuous controllable extremal fuzzy process
are considered using R. Bellman’s optimality principle. An extremal fuzzy “gain-
loss” process is defined, which plays the role of Bellman’s function in the classical
variant of the dynamic programming problem. Theorems 8 and 9 allow one to write
variants of an optimal control for the EFCDS;

h) a practical example is given to illustrate the results obtained.
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