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Foreword 

Optimisation and decision making has always been one of the main focuses of op-
erations research, decision theory, management science and economic theory. Un-
til the beginning of the 1970’s the mathematical tools used were predominantly 
“crisp” and the rationality of decisions in decision logic was defined on the basis 
of dual logic. If  uncertainty was included at all in decision calculi or optimisation 
algorithms, it was done by using probability theory, for instance, in stochastic lin-
ear programming. The basis for any kind of analysis in decision theory and opera-
tions research was the asymmetric choice model in which decision alternatives (or 
feasible solutions) were modelled either by enumeration or by constraints as an 
unordered solution space and in which an order in this space was generated by the 
objective function, utility function, or any other order generating tool.  

This had three major consequences:  
1. Models were rather unstable because a minimal violation of a single con-

straint led to infeasibility,  
2. All considerations of uncertainty had to be cast into probabilistic models, and  
3. If more than one objective function was to be considered the problem became 

complicated due to the several orders that were generated in the solution 
space.  

These limitations also often reduced the degree to which the model adequately 
modelled the real problem. 

It should probably also be mentioned that the “knowledge-based” systems (ex-
pert systems), that were emerging as an alternative to mathematical optimisation at 
the beginning of the 1970’s as a way to find not optimal but good heuristic solu-
tions, were also based on dual logic and were, therefore, not really “knowledge 
based” but rather symbol (truth values) processing systems. 

Many things have changed since then: The phenomenon  of uncertainty has 
drawn much more attention and several “uncertainty theories” have been devel-
oped. (There exist more than twenty by now). Fuzzy sets theory has grown tre-
mendously which led to more than 50 000 publications by now. Multi criteria de-
cision making (MCDM) has become a very large area with many different 
approaches to handle the problem of several objective functions. In addition to the 
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asymmetric choice model of classical decision logic the symmetrical decision 
model of fuzzy set theory and MCDM has been suggested. The rationality of deci-
sion making has been reconsidered on the basis of fuzzy logic. Several new “bio-
inspired” areas (such as artificial neural networks, evolutionary computation, 
swarm theory and others) have also been developed. Partly they have been pooled 
into “Computational Intelligence” or into “Soft Computing” and generated new 
hybrid models and theories. As one reaction to uncertainty in real applications the 
demand for “robust solutions” has appeared besides the request for optimal solu-
tions. Also one major change in the relationship between these theories has oc-
curred: to a large degree they are no longer considered as competitors but rather as 
complements which has even more strengthened the development of hybrid theo-
ries and techniques. 

Publications in these areas are distributed over a very wide range of journals 
and books, making it very difficult, even for a scientist, to stay up-to-date. It is 
even more difficult for a practitioner to oversee which new tools, models, and 
techniques are available to solve his or her optimisation problems as adequately as 
possible. It is, therefore, extremely valuable that a book appears that surveys as 
many of these new possibilities as one book can cover. It not only surveys these 
theories but it also investigates the relationships between these theories and a very 
important question: “Which theory should be applied, under which circumstances, 
to real problems?” 

The editors of this book have done an excellent job in inviting and getting the 
participation of top authors working in theory as well as in applications. In order 
to make this volume more readable it has been structured into a number of parts, 
which are not independent of each other but complement each other very well: 
Part 1 leads the reader from classical decision theory and optimisation into the 
area of fuzziness and fuzzy optimisation. Even though the main focus of this vol-
ume is fuzzy optimisation, other uncertainty theories, such as the Dempster- 
Shafer theory, possibility theory, etc. are also introduced and their interrelation-
ships discussed. Part 2 is devoted to a very central problem of optimisation, the 
aggregation of the different parts of optimisation models, i.e. constraints and ob-
jective functions. This, from the very beginning of fuzzy decision making theory, 
has been one of the most interesting areas. Part 3 then turns to developments in 
different areas of fuzzy optimisation. It is not surprising that a major part is de-
voted to variations of mathematical programming. While classical linear pro-
gramming, or even the different kinds of non-linear programming, are character-
ized by specific clear-cut models, this changes immediately when fuzzy set theory 
(or other similar uncertainty theories) are applied. Thus, while crisp linear pro-
gramming is well described by one typical model, fuzzy linear programming is a 
family of very different models, depending on the membership functions used, the 
type of aggregation operators introduced and the degrees to which a crisp linear 
programming model is “fuzzified”. Even the solvability of such a fuzzy linear 
programming model can vary from being easy to solve (as an equivalent crisp lin-
ear program) to unsolvable. In addition to those families of fuzzy mathematical 
programming models there are, of course, various other fuzzy optimisation mod-
els, which are also investigated in this part of the book. 
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One part of (linear) mathematical programming has gained particular impor-
tance during the last decade: combinatorial programming. It is, therefore, justified 
that the next part of the book is devoted to fuzzified versions of this type of linear 
programming. Three rather different models are presented, which indicate the 
wide and not yet well-developed area of these models. 

The final Part 5 of the volume is devoted to applications of theories considered 
in the first four parts to models of real problems. The seven examples cover a wide 
scope of areas from feature selection via investment and portfolio selection prob-
lems to biological circuit design and a real problem of the Spanish football league. 
These examples can certainly serve as an inspiration to numerous other applica-
tions in the real world. 

Altogether this book is an excellent piece of theoretical and applied literature. 
The editors and the authors have to be congratulated to their work. I am sure that 
this book will be of great benefit to scientists and practitioners and I can only hope 
that it will lead to many further developments in the area of fuzzy optimisation. 

Aachen  
February 2010 

Hans-Jürgen Zimmermann 



Preface 

Optimization is an extremely important area in science and technology which pro-
vides powerful and useful tools and techniques for the formulation and solution of 
a multitude of problems in which we wish, or need, to find a best possible option 
or solution. It has been an important area of research for more than half a century, 
and particularly since the advent of digital computers. Over those years great pro-
gress has been attained in the area with the development of powerful theoretical 
and algorithmic results. A multitude of academic and commercial software pack-
ages have been developed which have made it possible to solve virtually all kinds 
of optimization problems. Applications of optimization tools and techniques span 
practically the entire spectrum of science and technology. 

Real applications of optimization often contain information and data that is im-
perfect. Thus, attempts have been made since the early days to develop optimiza-
tion models for handling such cases. As the first, natural approaches in this respect 
one can mention value intervals and probability distributions as representations of 
uncertain data. They have led to the development of various interval and stochas-
tic optimization models. 

Fuzzy sets theory has provided conceptually powerful and constructive tools 
and techniques to handle another aspect of imperfect information related to 
vagueness and imprecision. This has resulted in the emergence – more or less in 
the mid-1970s––of a new field, called fuzzy optimization (and its related fuzzy 
mathematical programming), in which many powerful theoretical and algorithmic 
results have been proposed too. Many books and edited volumes, and a multitude 
of articles have been published. Moreover, numerous applications have been re-
ported too. 

Due to the importance and a constant growth of interest, both among theoreti-
cians and practitioners, we have decided to prepare this edited volume on fuzzy 
optimization. A substantial number of the most active researchers and practitio-
ners in the field have responded positively to our application, and therefore we 
have been able to present to the readers a comprehensive account of many new 
and relevant developments in fuzzy optimization, in its theoretical direction and 
also in real world applications. 

The volume is divided into a coupe of parts which present various aspects of 
fuzzy optimization, some related more general issues, and applications. 
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Part I, “Introductory Sections”, is concerned with a comprehensive survey of 
some basic issues related to broadly perceived choice, decision making, and opti-
mization. Aspects of utility, preferences, uncertain and imprecise information are 
discussed. Moreover, an account of how these aspects can be incorporated in op-
erational optimization models are surveyed. 

Kofi K. Dompere (“Fuzziness, Rationality, Optimality and Equilibrium in De-
cision and Economic Theories”) discusses some basic issues related to decision 
making and optimization, and puts them in a perspective of fuzziness. The paper is 
an essay which presents main categories of theories of optimization. It begins with 
the classical system leading to the establishment of a point of departure for fuzzy 
optimization from the point of view of classical optimization. The author distin-
guishes the  following four categories of optimization problems: the first two, i.e. 
exact (non-fuzzy) and non-stochastic, and exact (non-fuzzy) and stochastic follow 
somehow classical laws of thought and mathematics. On the other hand, the other 
two, i.e. fuzzy and non-stochastic, and fuzzy-stochastic problems are associated 
with laws of thought characteristic for fuzzy logic and mathematics. From these 
structures, similarities and differences in the problem structures and corresponding 
solutions are abstracted and discussed. They are attributed to properties of exact-
ness and completeness about information-knowledge structures underlying the op-
timization problems. The assumed degrees of exactness and completeness estab-
lish defective information-knowledge structure that generates uncertainties and 
produces inter-category differences in the optimization problem. The differences 
of intra-category algorithms are attributed to differences in the assumed functional 
relationships of the variables that occur in the objective and constraint sets. A tax-
onomy of solution structures is provided and a discussion on future research direc-
tions is given. 

W.A. Lodwick and E. Untiedt (“Introduction to Fuzzy and Possibilistic Optimi-
zation”) provide a comprehensive introduction to various aspects of broadly per-
ceived fuzzy and possibilistic optimization. However, as opposed to previous sur-
vey articles of that type, they go much deeper, providing insight into decision 
making, optimization and mathematical programming in general. First, they give 
an overview of various perspectives, points of view, on uncertain, imprecise, and 
incomplete, information and summarize various mathematical modeling attempts 
and algorithms. Differences between representations based on interval mathemat-
ics, probability theory, the Dempster-Shafer theory, fuzzy sets theory, possibility 
theory, and related issues are considered. Problems related to the choice of optimal 
(best) options or courses of action are mentioned. Finally, a review of rationale, 
fundamental features and solution techniques for basic classes of fuzzy optimiza-
tion and fuzzy mathematical programming are analyzed. 

Part II, “Basic Issues”, is concerned with some foundational issues that are 
relevant for fuzzy optimization, both in the theoretical and algorithmic sense. The 
main concern in this part is an omnipresent problem of aggregation of partial 
scores, pieces of evidence, preferences, etc. 

Vicenç Torra (“Aggregation Operators for Evaluating Alternatives”) reviews 
the use of aggregation functions and operators in the field of decision making, and 
hence in optimization as a consequence. The author first presents an overview of 
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main decision making problems, and then shows that aggregation operators are 
commonly employed for their solution. Then, a comprehensive review of various 
aggregation operators is provided, and their formal properties, features and differ-
ences are pointed out. 

Gleb Beliakov (“Optimization and Aggregation Functions”) looks at connec-
tions between aggregation functions and optimization from two main perspectives.  
The insight into the connections is that of aggregation functions which are used to 
transform a multiobjective optimization problem into a single objective problem 
by combining several criteria into one.  The second insight into connections of ag-
gregation functions and optimization is that the construction of aggregation func-
tions often involves an optimization problem. Aggregation functions, or operators, 
are functions that combine several input values into one output value which can be 
used to evaluate or rank the alternatives. The author concentrates on aggregation 
functions that take the inputs from a closed interval, like [0,1], and produce the 
output in the same interval; they are widely used, in virtually all areas. Since the 
choice of an aggregation function is application specific, and is frequently per-
formed in ad hoc manner, there are natural attempts to try to automate their 
choice, in particular when data are available from which information needed can 
be extracted. This can be exemplified by an analysis of customers' responses to 
recommendations which can provide suitable aggregation rules. It is possible to 
construct suitable application specific aggregation functions from the recorded 
data by solving a regression problem, which for the weighted mean operators boils 
down to a standard quadratic programming, though for other aggregation func-
tions, the solution may be much more difficult. In this contribution the author pre-
sents various alternative methods suitable for the construction of aggregation func-
tions. 

Pingke Li and Shu-Cherng Fang (“Chebyshev Approximation of Inconsistent 
Fuzzy Relational Equations with Max-T Composition”) consider an important 
problem associated with fuzzy relational equations which are a powerful tool for 
the formulation of many problems. The authors deal with resolving the inconsis-
tency of a system of fuzzy relational equations with the max-T composition by 
simultaneously modifying the coefficient matrix and the right hand side vector. 
They show that resolving the inconsistency of fuzzy relational equations with the 
max-T composition by means of the Chebyshev approximation is closely related 
to the generalized solvability of interval-valued fuzzy relational equations with the 
max-T composition. An efficient procedure is proposed to obtain a consistent sys-
tem with the smallest perturbation in the sense of the Chebyshev distance. 

Part III, “Various Types of Fuzzy Optimization and Fuzzy Mathematical Pro-
gramming Models”, is devoted to a comprehensive presentation of some important 
classes of fuzzy optimization and fuzzy mathematical programming problems that 
are relevant both from the theoretical and practical points of view. 

Ricardo C. Silva, Carlos Cruz, José L. Verdegay and Akebo Yamakami (“A 
Survey of Fuzzy Convex Programming Models”) consider some basic issues re-
lated to convex optimization which is characterized by a convex objective func-
tion and convex constraint functions over a convex set of the decision variables. 
This can be viewed, on the one hand, as a particular case of nonlinear  
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programming and, on the other hand, as a general case of linear programming. 
Since in many cases when we use convex optimization, we deal with data that 
cannot be formulated precisely, then it makes sense to apply fuzzy set theory as a 
way to mathematically describe this imperfect information. In this paper the au-
thors review the theory of fuzzy convex optimization and describe some flexible 
and possibilistic programming models to solve fuzzy convex programming prob-
lems. Flexible programming uses fuzzy sets to represent the imprecisely specified 
decision maker's aspirations and constraints, while possibilistic programming 
models handle imprecise or ambiguous data by possibility distributions. 

Masahiro Inuiguchi (“Approaches to Linear Programming Problems with Inter-
active Fuzzy Numbers”) considers the following crucial problem. Though most 
fuzzy mathematical programming models have been developed under the assump-
tion of non-interaction among fuzzy coefficients, this is not always, maybe rarely, 
the case in real world problems. Therefore, several approaches have been pro-
posed to deal with the interaction among fuzzy coefficients. The author provides a 
comprehensive and critical review of how the interaction among fuzzy coefficients 
in fuzzy linear programming problems can be dealt with. Using a necessity fractile 
model of a simple linear program with fuzzy coefficients, he shows differences 
between the non-interactive and interactive problems. Then, a review of five ap-
proaches to interactive fuzzy numbers, i.e., weak independent fuzzy numbers, 
fuzzy vector with a quadratic membership function, scenario decomposed fuzzy 
numbers, an oblique fuzzy vector, and a fuzzy polytope is provided. 

Alexander Yazenin and Ilia Soldatenko (“Possibilistic Optimization Tasks with 
Mutually T-related Parameters: Solution Methods and Comparative Analysis”) 
consider the problems of possibilistic linear programming. The T-norms are used 
to describe the interaction (relatedness) of fuzzy parameters. Solution methods are 
proposed, models of possibilistic optimization are compared for different T-
norms. Basically, in traditional works the relatedness of fuzzy parameters in pos-
sibilistic optimization problems was based generally on the  standard conjunction 
operation that is widely used in fuzzy logic which may often be not quite appro-
priate.  For example, using the standard conjuction operator leads to the linear 
growth of result's fuzziness, which is not always reasonable. The methods based 
on T-norms provide more flexibility in controlling fuzziness in decision-making. 
The authors follow this line of investigation with regard to possibilistic linear pro-
gramming tasks. For the case of TW-norm, they study two models of possibilistic 
linear programming problems, and propose methods which are combinations of 
the indirect method and genetic algorithms use for their solution. A comparison of 
models of possibilistic optimization for the TW-norm and TM-norm is given. 

Elizabeth Untiedt (“A Parametrized Model for Optimization with Mixed Fuzzy 
and Possibilistic Uncertainty”) considers the problem when fuzzy and possibilistic 
uncertainty, which very closely related, and sometimes coexist in optimization un-
der uncertainty problems.  Basically fuzzy uncertainty in mathematical program-
ming problems typically represents flexibility on the part of the decision make 
while possibilistic uncertainty generally expresses a lack of information about the 
values the parameters will assume. First, the author briefly surveys several exist-
ing models for mixed fuzzy and possibilistic programming problems and indicates 
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that the semantic interpretation of these models may be of questionable value.  
Namely, the mixed models in the literature find solutions in which the fuzzy un-
certainty (or flexibility) and the possibilistic uncertainty (or lack of confidence in 
the outcome) are held to the same levels. The author proposes a new mixed model 
which allows a trade-off between fuzzy and possibilistic uncertainty and this 
trade-off corresponds to a semantic interpretations consistent with human deci-
sion-making. The new model shares characteristics with multi-objective pro-
gramming and the Markowitz models, and its structure, semantic justification, and 
solution approaches are articulated. 

Włodzimierz Ogryczak and Tomasz liwi ski (“On Solving Optimization 
Problems with Ordered Average Criteria and Constraints”) discuss the problem of 
aggregating multiple numerical attributes to form an overall measure of broadly 
perceived performance or utility. The use of Yager’s ordered weighted averaging 
(OWA) aggregation, which use the weights assigned to the ordered values rather 
than to the specific attributes, makes it possible to model various aggregation 
preferences, preserving simultaneously the impartiality (neutrality) with respect to 
the individual attributes. However, the more general importance weighted averag-
ing is a central task in multiattribute decision problems of many kinds, and can be 
performed by the Weighted OWA (WOWA) aggregation though the importance 
weights make the WOWA concept much more complicated than the original 
OWA. The authors analyze some novel solution procedures for optimization prob-
lems with the ordered average objective functions or constraints, and show that the 
WOWA aggregation with monotonic preferential weights can be reformulated in a 
way that makes it possible to introduce linear programming models, similar to the 
optimization models developed earlier by the authors for the OWA aggregation. 
Numerical results justify the computational efficiency of the proposed models. 

Gia Sirbiladze (“Fuzzy Dynamic Programming Problem for Extremal Fuzzy 
Dynamic System”) deals some problem related to the so-called Extremal Fuzzy 
Continuous Dynamic System (EFCDS) optimization developed by the author. The 
basic properties of extended extremal fuzzy measure are considered and several 
variants of their representation are given. For extremal fuzzy measures several 
transformation theorems are represented for extended lower and upper Sugeno in-
tegrals. Values of extended extremal conditional fuzzy measures are defined as a 
levels of expert knowledge reflections of EFCDS states in the fuzzy time intervals. 
The notions of extremal fuzzy time moments and intervals are introduced and their 
monotone algebraic structures that form the most important part of the fuzzy in-
strument of modeling extremal fuzzy dynamic systems are discussed. Some new 
approaches in modeling of EFCDS are developed, and fuzzy processes with possi-
bilistic uncertainty, the source of which is extremal fuzzy time intervals, are con-
structed. Dynamics of EFCDS's is described, and the ergodicity of EFCDS's is 
considered. Fuzzy-integral representations of controllable  extremal fuzzy proc-
esses are given.  Sufficient and necessary conditions are presented for the exis-
tence of an extremal fuzzy optimal control processes using Bellman's optimality 
principle and taking into account the gain-loss fuzzy process. A separate consid-
eration is given to the case where an extremal fuzzy control process acting on the 
EFCDS does not depend on an EFCDS state. Applying Bellman's optimality  
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principle and assuming that the gain-loss process exists for the EFCDS, a variant 
of the fuzzy integral representation of an optimal control is given for the EFCDS. 
This variant employs the extended extremal fuzzy composition measures. An ex-
ample of how to construct the EFCDS  optimal control is presented. 

Milan Mareš (“Vaguely Motivated Cooperation”) considers the transferable 
utility cooperative games which are used as an effective mathematical representa-
tion of cooperation and coalitions forming. The author discusses a modified form 
of such games in which the expected pay-offs of coalitions are known only 
vaguely, where the vagueness is modeled by means of fuzzy quantities and some 
other fuzzy set theoretical concepts. Then, for such games the author discusses an 
extension of their cores and Shapley values, as well as some other properties, from 
the point of view of the motivation of players to cooperate in coalitions, as well as 
the relation between the willingness to cooperate and the ability to find the condi-
tions under that the cooperation can be perceived as fair. The usefulness of some 
fuzzy and possibilistic optimization type tools is indicated. 

Part IV, “Fuzzy Network and Combinatorial Optimization”, is mainly con-
cerned with broadly perceived fuzzy integer programming, or – more generally – 
broadly perceived fuzzy combinatorial optimization models, notably those related 
to network optimization. 

Adam Kasperski and Paweł Zieli ski (“Computing min-max Regret Solutions 
in Possibilistic Combinatorial Optimization Problems”) discuss a wide class of 
combinatorial optimization problems with a linear sum and a bottleneck cost func-
tion. First, the authors consider the case when the weights in the problem are mod-
eled as closed intervals, and show how the concept of optimality can be extended 
by using the concept of a deviation interval. For choosing a solution to the prob-
lem considered, the authors adopt a robust approach by seeking a solution that 
minimizes the maximal regret, that is, the maximal deviation from the optimum 
over all weight realizations, called scenarios, which may occur. Then, they explore 
the case in which the weights are specified as fuzzy intervals and show that under 
the fuzzy weights the problem has an interpretation which is consistent with pos-
sibility theory. Namely, the fuzzy weights induce a possibility distribution over 
the set of scenarios and the possibility and necessity measures can be used to ex-
tend the optimality evaluation and the min-max regret approach. 

Yue Ge and Hiroaki Ishii (“Stochastic Bottleneck Spanning Tree Problem on a 
Fuzzy Network”) consider a fuzzy network version of the stochastic bottleneck 
spanning tree problem. The existence of each edge is not necessary certain and it 
is given by a certain value between 0 and 1, with 1 standing for that it exists cer-
tainly and 0 for that it does not exist. For intermediate numbers, a higher value 
corresponds to a higher possibility of existence. Furthermore each edge has a ran-
dom cost independent to other edges. The probability that the maximum burden 
among these selected edges is not greater than the capacity should be not less than 
the fixed probability. In this setting, the authors look for a spanning tree minimiz-
ing the capacity and maximizing the minimal existence possibility among these 
selected edges. Since usually there is no spanning tree optimizing simultaneously 
these two objectives, the authors develop an efficient solution procedure to obtain 
a set of some non-dominated spanning trees. 
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Dorota Kuchta (“The Use of Fuzzy Numbers in Practical Project Planning and 
Control”) proposes how to use fuzzy numbers in project planning and control in 
such a way that it would meet requirements and expectations of practitioners. The 
method proposed is fairly general and is meant for all the projects, but especially 
for those where in the initial phase knowledge about the project is very incomplete 
and is made stepwise more precise during the project execution, and also for those 
in which initial assumptions about the project execution times are due to later 
changes. The method proposed requires the users to think while estimating project 
parameters in terms of trapezoidal fuzzy numbers, which in fact means only giv-
ing four parameters: an optimistic one, a pessimistic one and one or the two me-
dium ones, which may also be equal to each other. The approach requires in each 
control moment, not an automatic generation of numbers which do not take into 
account the really important information about the project history and its future, 
but a deeper insight into the development of the project, the influence of its envi-
ronment and the interdependencies between various project elements (activities, 
resources etc.).   

Part V, “Applications”, presents some examples of successful applications of 
broadly perceived fuzzy optimization and fuzzy mathematical programming in di-
verse areas, from economic and management, through technological to biological 
problems. 

Susana M. Vieira, João M. C. Sousa and Uzay Kaymak (“Ant Feature Selection 
Using Fuzzy Decision Functions”) consider feature selection, one of the most im-
portant stages in data preprocessing for data mining. Real-world data analysis, 
data mining, classification and modeling problems usually involve a large number 
of candidate inputs or features, and less relevant or highly correlated features de-
crease in general the classification accuracy, and enlarge the complexity of the 
classifier. Basically, feature selection is a multi-criteria optimization problem with 
contradictory objectives which are difficult to properly describe by conventional 
cost functions. The authors propose the use of fuzzy optimization to improve the 
performance of this type of system, since it allows for an easier and more trans-
parent description of the criteria used in the feature selection process. This paper is 
an extension of the authors’ previous work in which an ant colony optimization 
algorithm for feature selection was proposed which minimized two objectives: the 
number of features and classification error. Now, in this chapter, the authors pro-
pose a fuzzy objective function to cope with the difficulty of weighting the differ-
ent criteria involved in the optimization algorithm. They show an application of 
fuzzy feature selection to two benchmark problems that justify the usefulness of 
the proposed approach. 

Hiroshi Tsuda and Seiji Saito (“Application of Fuzzy Theory to the Investment 
Decision Process”) propose a new approach to portfolio optimization that allows 
portfolio managers to construct portfolios that reflect their views about risk assets 
by applying fuzzy sets theory. The proposed approach to the investment decision 
process is based on the mean-variance approach proposed by Markowitz and uses 
the concept of asset market equilibrium proposed by Sharpe. For portfolio manag-
ers, it is very meaningful to use the equilibrium expected excess returns associated 
with the capital market as a reference. The proposed approach enables a new 
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method for incorporating the views of portfolio managers to aid in the investment 
decision process. Moreover, in order to estimate the distribution of an unknown 
true membership function of the views of portfolio managers concerning risk as-
sets, the authors propose a fuzzy information criterion to evaluate the fitness of the 
distribution between an unknown true membership function and a hypothetical 
membership function. In particular, the proposed approach enables a group of 
portfolio managers of pension funds to obtain an important solution that realizes 
optimal expected excess returns of risky assets by specifying the vague views of 
portfolio managers as a fuzzy number. 

Anna M. Gil-Lafuente, José M. Merigó (“Decision Making Techniques in Po-
litical Management”) develop a new decision making model meant for selecting 
the best governmental policy of different types such as fiscal, monetary and com-
mercial, and the authors employ a framework based on the use of ideals in the de-
cision process and several similarity measures. For each similarity measure, dif-
ferent aggregation operators are applied exemplified by the simple and weighted 
average, the ordered weighted averaging (OWA) operator and its generalizations. 
Basically, the approach deals with multiple attributes and different scenarios for 
the selection of policies arising in various institutions. The authors develop differ-
ent techniques using as a starting point a selection process based on attributes un-
der the assumption that the requirements for each attribute is different depending 
on the environment of the economy. 

Takashi Hasuike and Hiroaki Ishii (“Mathematical Approaches for Fuzzy Port-
folio Selection Problems with Normal Mixture Distributions”) consider some ver-
satile portfolio selection models with general normal mixture distributions and 
fuzzy or interval numbers. They develop some fuzzy optimization models to ob-
tain an optimal portfolio. Basically, they formulate the proposed portfolio selec-
tion problems minimizing the total variance and maximizing the total future return 
with normal mixture distributions, respectively. They introduce uncertainty sets 
for the mean values, weights and probabilities as fuzzy numbers. Taking into ac-
count several portfolio selection problems including randomness and fuzziness, 
the authors construct a novel solution method. The results obtained are compared 
on numerical examples with standard approaches, and some advantages of the ap-
proach proposed are pointed out. 

Shuming Wang and  Junzo Watada (“Fuzzy Random Redundancy Allocation 
Problems”) consider some relevant problems in reliability related to the fuzzy ran-
dom parallel systems. Namely, due to subjective judgment, imprecise human 
knowledge and perception in capturing statistical data, the real data of lifetimes in 
many systems are  both random  and fuzzy in nature. Based on the fuzzy random 
variables that are used to characterize the lifetimes, the authors study the redun-
dancy allocation problems to a fuzzy random parallel-series system. Two fuzzy 
random redundancy allocation models (FR-RAM) are developed through reliabil-
ity maximization and cost minimization, respectively. Some properties of the FR-
RAM are obtained, where an analytical formula of reliability with convex life-
times is derived and the sensitivity of the reliability is discussed. To solve the FR-
RAMs, the authors first address the computation of reliability. A random simula-
tion method based on the derived analytical formula is proposed to compute the 
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reliability with convex lifetimes. As for the reliability with non-convex lifetimes, 
the technique of fuzzy random simulation together with the discretization method 
of fuzzy random variable is employed to compute the reliability, and a conver-
gence theorem of the fuzzy random simulation is proved. This fuzzy approach is 
then combined with the use of a  genetic algorithm (GA) to search for the ap-
proximately optimal redundancy allocation of the models. Numerical examples 
provided illustrate the performance of the solution algorithm. 

Eva Sciacca and Salvatore Spinella (“Reliable Biological Circuit Design In-
cluding Uncertain Kinetic Parameters”) deal with biological design problems 
which should be particularly important in the near future when it will be possible 
to produce biological entities and synthetic organisms for pharmacological and 
medical usage. The biological systems are considered in terms of performance or 
key features of the system. The idea adopted is that the set of parameters involved 
in the model can be classified into two different typologies: the uncertain kinetic 
parameters and the control design parameters. In order to design a robust and reli-
able biological system with respect to a target performance, the design parameter 
values are set up to balance the uncertainty of the kinetic parameters. To take into 
account these uncertainties arising from the estimations of the kinetic parameters, 
the function representing feedback is fuzzified and  a measure of failure of the de-
signed biological circuit is minimized to reach the required performance. For illus-
tration, a case study of an autonomously oscillatory system is provided, namely 
the Drosophila Period Protein which is a central component of the Drosophila cir-
cadian clocks. The results compared with a deterministic method and advantages 
are shown. 

Zach Richards (“Fuzzy Optimal Algorithms for Multiple Target Convergence”) 
proposes the use of fuzzy algorithms for a networked swarm of autonomous vehi-
cles, such as those used in planet exploration, and to be used in target location de-
termination and convergence. In particular, an algorithm of this type could be used 
in an Autonomous Stratospheric Aircraft (ASA), thus having the possibility of be-
ing used for the exploration of a planet as well as many other space, military and 
civil applications. Upon finding an unknown location of a specified target, the al-
gorithm would then swarm and eventually converge upon the location. The author 
proposes two similar, but fundamentally different algorithms which are capable of 
locating and converging upon multiple targeted locations simultaneously. This 
project is inspired by the current thought of NASA in the search of life on Mars 
with the targeted location to be a water source. The algorithms proposed by the 
author make use of combining a modified Particle Swarm Optimization algorithm 
combined with fuzzy variables for added intelligence. An analysis of them is pre-
sented and efficiency is discussed. 

J.M. Cadenas, V. Liern, R. Sala and J.L. Verdegay (“Fuzzy Linear Program-
ming in Practice: An Application to the Spanish Football League”) consider fuzzy 
linear programming problems as a hybridization of fuzzy sets theory and linear 
programming. In particular, they present a novel application of fuzzy linear pro-
gramming to the formulation and solution of some problems arising in the Spanish 
football (or soccer) league. Basically, the main motivation is that uncertainty in-
herently associated with the parameters related to soccer teams in the Spanish 
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league may best be handled using fuzzy tools and techniques. Fuzzy linear pro-
gramming models are developed which optimize the returns on investments made 
to maintain a high quality competition, which is finally given in an efficiency 
measure of the different teams that can be classified. Fuzzy data envelopment 
analysis models are used to provide team predictions as to their efficiency score.  
First, the author briefly present some basic elements of fuzzy sets theory and a 
brief review of the most typical problems and methods in fuzzy linear program-
ming. Next, they develop an application of some selected fuzzy linear program-
ming model to the problem considered. An example is solved using real data from 
the Spanish football in the season 2006/07. 

We wish to thank all the contributors for their excellent work. We hope that the 
volume will be interesting and useful to the fuzzy optimization research commu-
nity as well as other communities in which people may find fuzzy optimization 
tools and techniques useful to formulate and solve their specific problems. 

We also wish to thank Dr. Tom Ditzinger and Ms. Heather King from Springer 
for their multifaceted support and encouragement. 
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Denver and Warsaw 

Weldon A. Lodwick 
Janusz Kacprzyk 
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Approaches to Linear Programming Problems with
Interactive Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Masahiro Inuiguchi

Possibilistic Optimization Tasks with Mutually T-Related
Parameters: Solution Methods and Comparative Analysis . . . 163
Alexander Yazenin, Ilia Soldatenko



XX Contents

A Parametrized Model for Optimization with Mixed Fuzzy
and Possibilistic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Elizabeth Untiedt

On Solving Optimization Problems with Ordered Average
Criteria and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
W�lodzimierz Ogryczak, Tomasz Śliwiński
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Fuzziness, Rationality, Optimality and 
Equilibrium in Decision and Economic 
Theories 

Kofi Kissi Dompere* 

Abstract. This essay presents structural categories of theories of optimization. It 
begins with the classical system leading to the establishment of an entry point of 
fuzzy optimization from the logic of the classical optimization. Four categories of 
optimization problems are identified. They are exact (non-fuzzy) and non-
stochastic, exact (non-fuzzy) and stochastic categories that are associated with 
classical laws of thought and mathematics. The other categories are fuzzy and 
non-stochastic, and fuzzy-stochastic problems that are associated with fuzzy laws 
of thought and fuzzy mathematics. The canonical structures of the problems and 
their solutions are presented. 

From these structures, similarities and differences in the problem structures and 
corresponding solutions are abstracted and discussed. The similarities and 
differences in the problem-solution structures of different categories are attributed 
to properties of exactness and completeness about information-knowledge 
structures in which the optimization problems are formulated and solved. The 
assumed degrees of exactness and completeness establish defective information-
knowledge structure that generates uncertainties and produces inter-category 
differences in the optimization problem. The specific differences of intra-category 
algorithms are attributed to differences in the assumed functional relationships of 
the variables that establish the objective and constraint sets. The essay is concluded 
with taxonomy of solution structures and discussions on future research directions. 

1   Introduction 

In economic and decision theories about humanistic and non-humanistic systems, 
we speak of concepts of rationality, optimality, equilibrium and stability. These 
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concepts allow us to derive testable and analytical conclusions at the level of 
explanatory theories. The same concepts allow us to derive prescriptive rules at 
the level of prescriptive theories. The manner in which these concepts are used 
and interpreted depends on the nature of decision-choice problem, its 
environment, conditions of analysis and synthesis between results and the 
assumed initial conditions. In the classical decision-choice systems, the explicit 
relationships among optimality, rationality and equilibrium processes are more or 
less required for scientific understanding. In addition, there is a troublesomely 
associated concept of stability of  the analysis of the systems behavior in reference 
to these concepts in time and over time.  

The concept of fuzziness as it relates to scientific reasoning has no meaning in 
relations to these basic four concepts in the classical decision-choice system if 
they are not clearly defined. The clear definitions require explications of the 
concepts to provide them with scientific meaning, conditions of measurability and 
framework of their uses. In order to attach scientific meanings to, as well as 
extend conditions of measurability and uses to the concepts of fuzzy optimality, 
fuzzy rationality, fuzzy equilibrium and fuzzy stability, scientific reasoning 
demands us to clearly explicate optimality, rationality, equilibrium and stability 
first within the established classical paradigm and then extend them to areas of 
fuzziness. This explication seeks to provide an entry and departing points for the 
uses of these concepts in research and teaching within the fuzzy paradigm.  

At the entry point, we must have a clear understanding of the vision of the research 
and teaching programs on decision-choice behavior as these concepts are related to 
human action and knowledge construction. At the point of departure, we must make it 
explicit and clear the points of analytical difficulties that require cognitive change. 
This essay is more on explications of these concepts at the foundational level and how 
the fuzzy paradigm composed of its laws of thought and mathematics can assist in 
unraveling new frontiers of knowledge construction as well as designing a framework 
for constructing efficient rules of managing dynamics of social and natural forces 
through human action in penumbral regions of uncertainty and judgments thus 
showing points of analytical entry and cognitive departure. 

The initial postulate in this essay is that all human actions on social, natural and 
mechanical systems are induced and controlled by decision-choice processes that 
constitute complete action systems [16] [17][55]. The evaluations of the efficiency 
of decision-choice systems are cost-benefit based. Any of the decision-choice 
actions comes from a decision-choice space, D . The decision-choice action 

∈d D  has an objective w that belongs to a space of objectivesΩ . The decision-
choice action involves, given ∈Ωw  , assessments of alternatives which constitute 
a set, A  with a generic element, ∈a A in order to implement the decision-choice 
action in A . The elements in the set, A , relate to each other in terms of their 
degree of relative effectiveness in accomplishing the selected objective, ∈Ωw . 
We say that the elements in Aconstitute a relation,R or R is a relation in A . 
The degree of effectiveness presents itself as a net usefulness (benefit/ utility) or a 
net suffering (cost/ disutility) to the decision-choice agent relative to the objective 
in a particular decision-choice subsystem.  
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Whether a decision-choice action on alternatives is seen from utility or 

disutility viewpoint, an order relation ( )’ is assumed over the alternatives in A in 

either ascending or descending order of subjective or objective magnitude 

producing an ordered set, ( )A,’ . The symbol ( )’ may be interpreted in a 

general way as better than or indifferent to where the particular interpretation will 

depend on the specific decision-choice problem. The ordered set, ( )A,’ , is 

conceptually consistent with our linguistic value system as well as our number 

system, R that is ordered by a relation “greater than or equal to” ( )≥  with an 

ordered set, ( )≥,R in one-dimensional framework. In decision-choice systems, 

the partial ordering is induced by cost-benefit balances in such a way that the 
desired element may not be the largest. The concept and measure of cost-benefit 
balances present an important information set, I  that restricts the objective that 
may be pursued and the domain of the set of alternatives that may be opened for 

decision-choice action. In other words, the relation ( )’ in A  is not necessarily 

isomorphic to the order relation, ( )≥ in R even though they project the same idea 

to human thought.  

2 Preconditions to Concepts of Rationality, Optimality, 
Equilibrium and Stability 

To operationalize the order relation ( )’  through the concept of cost-benefit 

balances, two important concepts are introduced to close each decision-choice 
subspace. They are the set of objectives A that either presents benefit or cost 
characteristics  but not both; and there is a set of constraints B   that presents cost 
or benefit characteristics but not both in such a way that if A is benefit 
characteristic set then B is cost characteristic set. The constructions of A  and 
B are such that there are functions that link their elements to the set of 

alternatives in A  with order-preserving properties of ( )’ .The functional 

relations are defined with the information set I that is processed to abstract a 
parameter space Θ  that represents the knowledge space, K . On the basis of the 
knowledge space, decision-choice actions are undertaken. Operating the 
interactions between the set of alternatives Aand the information set I , the 
criterion space, Λ and constraint space,Γ  on which A and B acquire decision-
choice meanings are established. The criterion space, Λ and constraint 
space,Γ are linked to the elements of the set of alternatives that act as the space of 
variables, V that is partitioned into decision-choice variables and the state 
variables. The decision-choice agent has a set of personality characteristics,Φ  
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that allows judgment to be rendered in the decision-choice space according to or 
in support of the criterion used.  

Every decision-choice space is a complex and complicated interactions of all 
these subspaces. For the purpose of examining the meanings of rationality, 
optimality, equilibrium and stability in decision-choice processes and how they 
interrelate, we may represent the general decision-choice space D  in a canonical 
form as: 

{ }, , , , , |Λ Γ Ω Θ ΦVD= ’  (1)

Where,  

 the space of state and decision-choice variables, = criterion space

 = parameter space, = the constaint space,  = the objective space

= a set of personality characteristics,  represents order r

= Λ
Θ Γ Ω
Φ

V

’ elation

 

From the decision-choice space the benefit space B  and cost space A  may be 
specified as 

( ) ( ){ }

( ) ( ){ }

, , , | ,

, , , | ,

⎧ ⎫= ∈ Λ Θ Φ ∈Ω
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪= ∈ Γ Θ Φ ∈Ω⎪ ⎪⎩ ⎭

B V

A V

b, w

c, w

’ ’

’ ’

 (2)

Both A and B may be viewed individually as unconstrained decision-choice 
problems and together they constitute a constrained decision-choice problem. The 
problem is to select an element that yields the best benefit or cost value, and notice 
that the elements in both  and Λ Γ  that produce A and B are functions defined, 

under parametric restriction ofΘ , in ( ) ( ),  and ,Λ ΓV V respectively. The 

action of selecting the best as part of the characteristics of decision-choice 
behavior of decision-choice agents is an assumption that is abstracted as an 
element in the personality characteristic set, Φ .  

The task of the decision-choice agent is to develop cognitive algorithms that 
will allow the best to be located in the decision-choice space whether it is 
constrained or unconstrained problem. The concept of best fits into what has been 
characterized in [15], [16] as the Euler’s max-min principle that; Nothing happens 
in the universe that does not have a sense of either certain maximum or minimum 
[103]. The search for cognitive algorithms for finding the best has given rise to the 
concept and theory of optimization with related concepts and theories of 
rationality, equilibrium and stability. To abstract how these concepts and theories 
are related let us visit some aspects of the classical paradigm composed of its logic 
and mathematics for classical optimization theory. 
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3   The Concepts of Optimization, Rationality, Equilibrium and 
Stability in Decision-Choice Theories 

Every theory about decision-choice behavior in both humanistic and non-
humanistic behavior encounters the concept of the best act, path, design and many 
others. The concept of best is interpreted in terms of optimality, rationality and 
equilibrium and then examined relative to their stabilities. What are these concepts 
and how do they relate to each other. Let us provide explications to these concepts 
within the theories of decision-choice behavior which include control systems. 
Given these explications, we shall define the operating zones of the classical 
system that will provide a useful entry and point into the fuzzy logical system and 
departing point from classical logical system for optimization, rationality, 
equilibrium and stability. Since the analytical systems that carry these concepts are 
many, we shall provide general linguistic definitions for their explications that 
may have a universal coverage as well as lend themselves to symbolic 
mathematical representation and selected laws of thought. 

A this cognitive juncture, it may be useful to remind ourselves of the classical laws 
of thought and exact symbolic representation of propositions, criticisms levied against 
it and responses that may be abstracted from fuzzy paradigm. The classical laws of 
thought is that:‘All propositions are either true or false’ These laws of thought have 
been criticized by Russell and suggested that some substitute must be found, or all 
general accounts of deduction become impossible [94, 63-64]. Furthermore, the exact 
symbols representing propositions and ideas within the classical laws of thought are 
also criticized by both Russell [93] and Max Black as they view classical logic and its 
mathematics. A statement by Black is useful .“For(classical) mathematics is the study 
of all structures whose form can be expressed in symbols, it is the grammar of all 
symbolic systems and, as such, its methods are peculiarly appropriate to the 
investigation of its own internal structure” [ 1, p.4].  

These criticisms about the failure of the classical logic to account for vagueness 
in representation, ambiguities in interpretations and non-acceptance of 
contradiction in the classical laws of thought is met with the fuzzy paradigm 
where vagueness, ambiguities, and linguistic numbers are allowed in symbolic 
representation of propositions and ideas. This is supported by fuzzy laws of 
thought that has been stated in words as “every statement is a set of true-false 
characteristics in varying proportion and that the acceptance of a proposition to 
be true or false is done on the basis of subjective decision-choice action in 
reconciling the conflict in the true-false proportion” [15][16][17]. These fuzzy 
laws of thought replace the classical laws of thought. The importance of these 
classical-fuzzy analytics is seen in ordering and reasoning with items of sets. The 
process of replacing classical exact symbols with fuzzy symbols is basically 
referred to as fuzzification. The process of replacing the classical laws of thought 
with fuzzy laws of thought is basically refer to as defuzzification. This 
fuzzification-defuzzification process points to a propositional claim. 
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Proposition  3.1 

Every problem in the classical paradigm has a fuzzy a counterpart, however, not 
every problem in the fuzzy paradigm has a classical counterpart.  

Proposition 3.1 can be stated in terms of symbolic logic and mathematics and 
proven. The question of interest, at the moment, is: how does this fuzzification-
defuzzification process carry on to analytical processes that involve optimization, 
rationality, equilibrium and stability? Few definitions are needed at this point. 

Definition 3.1: Concept of Optimization 

Optimization is a process about ordering the decision-choice elements in the 
decision choice space given the information concerning the behavior of the 
decision-choice space in such a way that the ordering is consistent with our 
number system or system of our linguistic magnitudes. 

Definition 3.1.2: Concept of Rationality  

Decision-choice rationality is a behavioral action that allows a selection to be 
made on the basis of a criterion where such a selection must satisfy the 
information constraint as defined by resources in the decision-choice space given 
the ordered set of alternatives. 

Definition 3.1.3: Concept of Equilibrium 

Equilibrium is a state in static or dynamic decision-choice system where the forces 
of expectations, broadly defined, in the environment do not cause a change in the 
knowledge support of the ordering of the decision-choice elements by 
optimization and hence do not change the action of rationality. 

Definition 3.1.4: Concept of Stability 

Stability in decision-choice system is a set of conditions describing the behavioral 
responses of the system’s equilibrium such that expectation disturbances of the 
information set do not alter the ordered elements  by optimization and the 
decision-choice action by rationality for the given knowledge support. 

These four concepts are basically central organizing ideas that provide logical 
coherence for the understanding of decision-choice and control processes with 
given information-knowledge structures. The logical coherence imposes analytical 
conditions on the system such that decision-choice agents will not maintain their 
actions in states in which either preferred or better ones are available to them 
given the information-knowledge support. Because of various uses of the notion of 
rationality, it is analytically useful in the theories about decision-choice systems to 
use the term optimal rationality that is consistent with the conditions of logical 
coherence of decision-choice actions. The optimal rational actions are said to be in 
equilibrium states when the expectations relative to information signals flowing 
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from these states are such that the intentions of decision-choice agents are 
mutually consistent and can be implemented without a change of the intended 
action relative to the information-knowledge structure. 

The concepts of optimality, rationality and equilibrium are not the same in 
meaning and content. They coincide and, therefore, interchangeable under specific 
conditions in the behavior of the decision-choice system. Optimization involves 
finding the best way of doing things given the information-knowledge support of 
the environment. The best way of doing things involves every aspect of human 
action in knowledge production and its uses to bring about, economic production, 
city planning, path of negotiation and other decisions involving mechanical 
systems, medical treatment, automation and many others. The practice of 
optimization involves more than locating the best relative to the index  
of rationality. One important thing in the practice of optimization is the nurturing 
of subjective appreciation of the value of information needed to construct the 
knowledge support for decision-choice action.  

The knowledge abstracted from the information about the decision-choice system is 
essential in understanding the qualitative and quantitative nature of the decision-choice 
process or the control process. It allows a symbolic representation of the optimization 
problem in order to apply the available algorithms or to develop new ones to abstract 
the best in terms of solution. It, further, provides us with an appreciation of the role 
that subjective judgment interacts with the final result of the optimization leading to 
implementation. When the information-knowledge support about the decision-choice 
system, the measure of the rational criterion and the system’s constraints are known, 
their real costs and benefits are defined [18][19]. In this respect, optimization, 
rationality, equilibrium and stability are computationally decisive within the classical 
paradigm in that possible choices are basically reduced to the best one. Optimization, 
rationality, equilibrium and stability are useful after the decision-choice problem is 
well posed. The concept of stability is intimately connected with the concept of 
sensitivity analysis which has come to be known in decision analysis, particularly, in 
economics as comparative statics and dynamics. The analytical process encompasses 
the general sensitivity theory about equilibrium and stability in the system’s behavior 
in the parameter spaceΘ  relative to the behavior of information-knowledge 
space ( )-I K . 

4  Information-Knowledge Structure for the Development of 
Optimization  

The areas of development of classical optimization and fuzzy optimization are 
conceptually, logically and mathematically different. They, however, interact in a 
useful way. These areas are defined not by the nature of mathematical reasoning 
and the set of algorithms but by the nature of the information-knowledge structure 
that imposes conditions on the structures of the decision-choice problem, the logic 
of reasoning and the needed mathematical algorithms as well as the entry and 
departing points of analyses and syntheses. The information-knowledge space is 
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induced by two sets of certainty and uncertainty characteristics. The space of 
certainty characteristics is then partitioned into exact full-information space and 
fuzzy (vague) full-information space. The uncertainty space is divided into exact 
and incomplete information and fuzzy and incomplete information subspaces. The 
nature of the assumed information set and the logic of the information processing 
will determine the structure of the knowledge space that will be represented by the 
parametric space. The information-knowledge structure will determine the 
problem structure and the needed algorithm for optimization, rationality, 
equilibrium and stability. These information-knowledge subspaces partition the 
problem space into four cohorts that are diagrammatically illustrated in Figure 1. 

COMPLETE 
INFORMATION 

INCOMPLETE INFORMATION 

EXACTNESS 
(NON-
FUZZINESS) 

INEXACT/ 
FUZZINESS 

EXACT AND 
COMPLETE 
INFORMATION SPACE 
(UNCERTAINTY-FREE) 
       COHORT I 

EXACT AND INCOMPLETE 
INFORMATION SPACE 
(STOCHASTIC UNCERTAINTY) 
         COHORT II 

COMPLETE AND FUZZY 
INFOEMATION SPACE 
(FUZZY NON-STOCHASTIC 
UNCERTAINTY) 
 
    COHORT III 

INCOMPLETE AND FUZZY 
INFORMATION SPACE 
               COHORT IV 

COMPLETENESS 

EXAACTNESS 

FUZZY- 
STOCHASTIC 
UNCERTAINTY 
 
COHORT IVA 

STOCHASTIC-
FUZZY 
UNCERTAINTY 
 
COHORT IVB 

 

Fig. 1 Exactness-Completeness Partition of the Development of Optimization Problems and 
Required Algorithms  

5   Optimization, Rationality and Equilibrium in the Classical 
Paradigm 

There are two aspects of the classical paradigm that are of concern to us and for 
discussions about optimization, rationality and equilibrium. The first one is the 
classical laws of thought in developing cognitive algorithms. The second one is 
the assumption of exactness in the information-knowledge spaces leading to exact 
symbolic representation, exact reasoning, analysis, synthesis and results in 
deriving cognitive algorithms that relate to optimality, rationality, equilibrium and 
stability. The development of the classical theories of optimization with the 
corresponding rationality, equilibrium and stability are restricted to uncertainty-
free and exact stochastic uncertainty decision-choice sub-spaces. Corresponding to 
these two spaces are the classical exact topology that is free from stochastic 
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uncertainty, and classical exact topology with stochastic uncertainty. They are 
classical in the sense that the logic and algorithmic developments follow the 
classical laws of thought and the corresponding mathematics as well as satisfying 
the postulate of symbolic exactness.  

At the level of ordinal and cardinal analyses, the classical mathematical spaces 
for the framing and analyses of the decision-choice problems  for optimization are 

shown in Figure 2 where T= X,T  is a topological space that correspond to a 

world of exactness and certainty with  X  defined as nonempty set of classical 

exact points and   T is a family of  subsets of  X  such that   ∈X T  named as 

Cohort I. Similarly,  ( )P,= ΩP B, is a topological space that correspond to the 

world of exactness and stochastic uncertainty where, Ω  is a sample space;  B  is 
Borel field and P is a set of probability density functions defined over  B  and 
named as Cohort II.  

Cohort I may be referred to as classical exact and non-stochastic mathematical 
space where substantial portion of theories on decision-choice behavior have been 
formulated, solved and analyzed with the toolbox of classical optimization, 
mathematical programming and Aristotelian logic with principle of non-contradiction. 

Non-Stochastic                     Stochastic  

Non- 
Fuzzy 

COHORT I 
Non-Stochastic and 
Non-fuzzy 
Topological Space 

  T = X,TX,TX,TX,T
 

                COHORT II 
Non-Fuzzy and Stochastic Topological 
Space 

( )  P,= Ω B,B,B,B,P
 

Non-Stochastic 

 

Fig. 2 Various Topological Spaces and Categories of Classical Mathematical Environment 
for Classical  Optimization and Decision-Choice Theories  for Decision-Choice Rationality 

The classical optimization problems that correspond to Cohort I follow a 
canonical representation of the form: 

( ) ( )

{ }
{ }
{ }

opt

              

                   

                   

                   

| ,

s.t.

|

|

|

ψ∈
⎫λ ψ θ ∈Λ Ψ Θ
⎪
⎪≠ ∅
⎪⎪⊂ Ψ Θ ⎬
⎪⊂ Γ Θ ⎪
⎪Θ⊆ Φ ⎪⎭

∩

∩
A B

A B
A
B

I

 (3)
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where Λ  is the criterion space,  Ψ  , is the objective space, Γ  , the constraint 
space. The elements of these spaces are defined over the control (decision-choice) 
and state variables V . The I , is a full and exact information space from which an 

a parameter spaceΘ is abstracted to represent an exact and full knowledge 
structure, K  and Φ   is the space of personality characteristics of the decision-
choice agent. This is the exact and non-stochastic classical optimization problem 
whose solution appears in the form: 

( )( )* * |λ = λ ψ ∈ θ∈Θ ⊂∩A B I  (4)

The term ( )∩A B  defines the critical region of optimal decision-choice activity. 

It is the stationary value relative to Θ  as a parameter space. The structure of 
equations (3) and (4) includes all classes of deterministic optimization problems 
whose optimal solutions may be abstracted by techniques and methods of linear 
and nonlinear computational algorithms in addition to others that the classical 
logic and mathematics offer [20][44],[45][70]. This may also be called the perfect 
information-knowledge optimization problem. The information-knowledge 
structure is said to be perfect for a class of optimization problems if it is devoid of 
all uncertainties (that is vagueness and incompleteness). The optimization problem 
is said to be perfect if, additionally, its algorithms and analytics are derived from 
classical mathematics and the interpretation of the results follow the classical laws 
of thought. 

The optimization problems in the exact and incomplete information-knowledge 
structure of Cohort II introduce extra complication for the development of 
optimizing algorithms in Cohort I. It is classical in that the information-knowledge 
structure is exact but defective in terms of completeness. The defective 
information-knowledge structure introduces stochastic uncertainty that requires 
the inclusion of the degree of belief of knowledge certainty available in 
formulating the optimization problem and constructing the algorithms for the 
ranking of the alternative in either ascending or descending order of magnitude for 
the application of optimal rationality. The measure of degree of belief on 
knowledge certainty is specified around each of the optimizing variables that 
affect the ordering process.  

The process may be called stochastic ordering which is associated with the 
probability distribution. Given that the degrees of stochastic uncertainty are 
preordered by a probability distribution, the expected consequences are then 
ordered by preferences or some index of ranking. The preference ranking, or a 
criterion function, is induced by expected-value function on the basis of which 
optimization algorithms, that satisfy the goal-constraint configuration, are 
abstracted. An information-knowledge structure that is exact but incomplete is 
said to be defective with stochastic uncertainty and the variable for reasoning is 
called a random variable. 

The preordering of the degree of stochastic uncertainty by the probability 
distribution is conditional on the absence of vagueness and imprecision of concepts, 
measurement and reasoning. In general, the optimization problem is a logical 
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extension of the classical optimization problem with a perfect information-knowledge 
structure of Cohort I. The general canonical representation may be written as:  

( ) { }( )

{ }( )
{ }( )
( )

0opt

               

            

            , |

| , , , ,

ˆ, , |

ˆ, , |

ˆ

ψ∈

⎫λ ψ θ ∈Λ Ψ Θ ⎪
⎪

≠ ∅ ⎪
⎪⊂ Ψ Θ ⊂ ⎬
⎪
⎪⊂ Ψ Θ ⊂
⎪
⎪Θ ⊂ Φ ⎭

∩

∩
A B

P B P

A B
A B P I

         B B P I

I P

 (5)

The optimization process that allows the search for the best element  
*ψ = ψ ∈ ∩A B  conditional on a given set of parameters and probability 

distributions that are defined over both the sets of alternatives and constraints is 
called stochastic optimization which includes expected-value optimization. Again, 
notice that  ∩A B  equipped with probability distribution function is the critical 
region of decision-choice activity. Generally, the optimal elements appear as: 

( )( ) ( )p p opt* * *, | , | ,
ψ∈

λ ψ θ ⊂ Θ ∈ = λ ψ θ
∩A B

P P  (6)

The solution given in eqn. (6) defines a family of optimal decisions over the 
parameter and probability spaces.  The parameter variations specify the paths of 
informationally optimal values as a family of sensitivity functions that depend on 
the environment of optimization characterized by the relevant parameter space and 

the corresponding probability distribution functions. The symbol Î represents 

incomplete information with defective knowledge structure, K̂  with stochastic 
uncertainty and P  represents a probability space whose specific distribution is 
known. A typical class from the above canonical form of eqn. (5) may be written 
as: 

( ) ( ) { }( )
( ) ( )

0

1

opt d ,

             s.t. d

ˆ| f , |

| f

ψ∈ ⊂Ψ

ψ∈ ⊂Γ

⎫λ ψ Φ ψ ψ Ψ Θ⊂
⎪⎪
⎬

γ ψ Φ ψ ψ ≤ π ⎪
⎪⎭

∫

∫
A A

B

B P H
 (7)

where π  is a predetermined value, and ( ) ( )0 1 and f fi i  are probability density 

functions defined over spaces of alternatives goals and constraints respectively. 
This is the class of classical exact stochastic optimization problems. 
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6   Optimization, Rationality, Equilibrium and Stability in the 
Fuzzy Paradigm 

Let us now relate our understanding of the structure of the classical paradigm as it 
relates to optimization, rationality and equilibrium in theories about decision-
choice behavior to those of the fuzzy paradigm. Like the classical paradigm, there 
are two aspects of the fuzzy paradigm that are of concern to us and for discussions 
about optimization, rationality and equilibrium. The first one is the fuzzy laws of 
thought in developing cognitive algorithms. The second one is the assumption of 
inexactness or vagueness in the information-knowledge spaces leading to fuzzy or 
approximate  reasoning, analysis, synthesis and results in deriving cognitive 
algorithms that relate to optimality, rationality, equilibrium and stability in the 
decision-choice spaces. The development of the fuzzy theories of optimization 
with the corresponding fuzzy rationality, fuzzy equilibrium and fuzzy stability are 
restricted to fuzzy-non-stochastic uncertainty and fuzzy-stochastic uncertainty 
decision-choice sub-spaces. Corresponding to these two spaces are the non-
stochastic-fuzzy topology that is free from stochastic uncertainty, fuzzy-stochastic 
or stochastic-fuzzy topology with stochastic uncertainty. The uncertainties and 
topologies are said to be fuzzy in the sense that the logic and algorithmic 
developments follow the fuzzy laws of thought and the corresponding 
mathematics and symbolic representation of ideas that incorporate subjectivity, 
vagueness and ambiguities as part of reasoning. The relevant information-
knowledge subspaces are Cohorts III and IV in Figure 1. 

6.1   The Mathematical Spaces for the Development of Fuzzy 
Optimization  

The mathematical subspaces that correspond to Cohort III and IV may be obtained 
by fuzzification process of classical exact and non-stochastic topological 

space   T = X,T  to obtain fuzzy non-stochastic topological space, while the 

fuzzification process allows the cognitive transformation of  classical exact 

stochastic topological space, ( )P,= ΩP B,  to either fuzzy-stochastic or 

stochastic-fuzzy topological space respectively . These will form the mathematical 
spaces for stating the problems and the development of algorithms for fuzzy 
optimization, and analysis of fuzzy rationality, equilibrium and stability.  

The fuzzification process is such that the corresponding fuzzy non-stochastic 

topological space will appear as a triplet of the form  , ,= MA X T . 

Interestingly, it may be noted that  X  is nonempty set of fuzzy points where 

each fuzzy point is a set of the form  ∈D X and equipped with a membership 

function ( ) μ ∈iD M  where  M , is the set of membership functions that is a 

fuzzifier on the classical exact topological space. We note that  X is a family of 
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sets and ( )μ ∈iD M  specifies the degree to which each element of  D belongs 

to   D. The family is specified as 

( )( ) ( ){ }: x, x x x= μ ∈ μ ∈X D DD|D = D, M . The structure  T  defines a 

family of families, X of fuzzy sets as specified and DM  is a set of membership 

characteristic function relevant toD  where the fuzzy topology is constructed 
around fuzzy points through the fuzzification of classical exact points. The 
classical points will correspond to classical exact numbers while the fuzzy points 
will correspond to fuzzy numbers (see Figure 3). 

Non-Stochastic                     Stochastic 

FUZZY 

COHORT III
Fuzzy and Non-
Stochastic 
Topological 
Space 
  , , XA X T= MMMM

OR 

  , , TB X T= MMMM
  
(Fuzzy-non-
stochastic 
variable) 

            

A)Fuzzy-Stochastic 
Topological Space  
(fuzzy probability 
with 
Fuzzy-random  
variable 
    

( )P  P, Θ= ΘR B ,M ,B ,M ,B ,M ,B ,M ,

B) Stochastic-Fuzzy 
Topological Space  
(probability of 
fuzzy  
Variable defined on 
random-fuzzy 
variable 
  
  , , PMMMMM ,M ,M ,M ,

VVR V T=

Non-Separable Separable 

           A.
  ⊗R= A c
Reduced into 
fuzzy variable 
units for 
summability in 
the fuzzy and 
non-stochastic 
topological space

B. 
  ⊗Q= A c
Reduced into 
random variable 
units for 
summability in 
the non-fuzzy and 
stochastic 
topological space.

COHORT IV

 

Fig. 3 Fuzzy Topological Spaces and Categories of Mathematical Environment for Fuzzy 
Optimization Theories  for Decision-Choice Rationality 

The fuzzification of the classical exact stochastic topological space 
corresponding to Cohort II is complex as well as logically challenging. The 
complexity arises from the emergence of two different but interrelated variables of 
fuzzy-random variable and random-fuzzy variable. Corresponding to the fuzzy-
random variable we have fuzzy-stochastic topology where the stochastic topology 
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of Cohort II must be fuzzified. Similarly, corresponding to random-fuzzy variable 
we have stochastic-fuzzy topology where the fuzzy topology must be randomized. 
The logical challenge involves not only finding the right topologies but examining 
the nature of fuzzy-random interactions and determining the conditions of 
separability and non-separability of fuzziness and randomness associated with 
each of the two complex variables that will lead to a clear problem statement. The 
mathematical spaces for logical reasoning and development of system of 
optimizing algorithms are shown in Figure 3. 

The symbolic representations in Figure 3 have the following conceptual 
meanings: 

1.   T = X,T  is the classical exact non-stochastic topological space and the 

symbols are as have been explained in Figure 1 with  X  is defined as nonempty 

set of classical exact points and  T is a family of  subsets of   X  such 

that   ∈X T . 

2. ( )P,= Ω B,P  is a topological space that corresponds to the world of 

exactness and stochastic uncertainty where, Ω  is a sample space; B  is Borel 
field and P is probability density function defined over B  

3. , ,MXA X T=  is fuzzy non-stochastic topological space constructed 

around a set of fuzzy points   ∈D X   withT as a family of fuzzy subsets of  

X  where ∈X T and MX is a set of membership characteristic functions that 

define the degrees to which  fuzzy pointsD  belong to X . 

4. , ,MTB X T=  is an alternative construct of fuzzy non-stochastic 

topological space that is different from , ,MXA X T= in that the 

membership characteristic functionsMT  define the degree to which a subset of 

X  belongs to T  instead of an element of X belonging to X . 

5. ( )P P, Θ= ΘR B ,M , is fuzzy-stochastic topological space where Θ  is a 

fuzzy sample space, ΘB  is a fuzzy Borel set, P is a fuzzy set of probability 

values whose degrees of belonging are defines by a set of membership functions 

PM where any p P∈  is fuzzy (inexact) probability [ This is a fuzzification of 

Cohort II]. 

6. , , PMM ,
VVR V T= is the construct of stochastic-fuzzy topological space 

where V  is a set of fuzzy points and T  is a family of subsets of V  such that 

∈V T ,  MV is a set of membership functions defining the degrees to which the 

elements of V  belonging to it. The PMV
defines a set of probability values that are 
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attached to the elements in MV . [This is a randomization of Cohort III]. The two 

fuzzy topological spaces of ( )P P, Θ= Θ B ,M ,R and , , PMM ,
VVR V T=  

are constructed under the assumption that fuzziness and randomness are 
insepararable. When  they are separable, we then combine exact stochastic 
topological space of Cohort II with fuzzy non-stochastic topological space of 
Cohort III to obtain either ⊗R= A c or ⊗Q= A c . 

6.2   Different Structures of Fuzzy Optimization Problems for 
Rationality and Equilibrium: The Non-stochastic Case 

The optimization problem under full information and fuzzy environment where 

the symbol ( )∼  indicates fuzzy sets may be canonically represented as: 

( ) ( )

{ }
{ }
{ }

opt.

              

                   

                   

                   

| , ,

s.t.

| ,

| ,

| ,

ψ∈

⎫λ ψ θ μ ∈Λ Ψ Θ
⎪
⎪≠ ∅ ⎪
⎪⊂ Ψ Θ ⎬
⎪

⊂ Γ Θ ⎪
⎪
⎪Θ⊆ Φ ⎭

∩

∩
A B

A B
A M
B M

I M

 (8)

Under such a fuzzy specification of optimization problem, the algorithms are 
developed to abstract the optimal fuzzy element that appears as: 

( ) ( )  ,   * * * * * *| , , ,σ = δ ψ μ θ Φ σ ∈Δ = ψ ∈Ψ μ ∈∩A B M  (9)

The distinguishing characteristics of the fuzzy non-stochastic class of optimization 
are: 

1) All the relevant information about the optimization problem is full. 
2) However, the relevant full information is fuzzy in the sense that one or more of 

the components is fuzzy.   
3) The fuzzy information is processed into knowledge base and summarized by 

fuzzy structural parameters where errors and approximations are allowed.  

A typical case is to optimize a fuzzy goal ( )( ),μ ψAA
             

subject to a fuzzy 

constraint ( )( ),μ ψBB
              

  which is simply 
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( )

( ) ( )

opt

s.t 0

ψ∈ =Δ
⎫μ ψ
⎪
⎬

⎡ ⎤ ⎪μ ψ − μ ψ ≤⎣ ⎦ ⎭

∩
AA B

BA      
              

 (10)

As a fuzzy program where ( ) ( ) ( )Δμ ψ = μ ψ ∧μ ψBA  (see [18] [72] [19]). 

6.3   Different Structures of Fuzzy Optimization Problems for 
Rationality and Equilibrium: The Stochastic Case  

The optimization problems and the developments of relevant algorithms may 
proceed from a judicious extension of conditions of non-stochastic fuzzy 
optimization into the domain of classical stochastic optimization to obtain 
conditions of optimality that take into account the presence of both fuzzy and 
stochastic characteristics in the optimizing space. The variables in this space are of 
two types of fuzzy-random variable that is associated with the fuzzification of 
Cohort II, and random-fuzzy variable that is associated with randomization of 
Cohort III where the fuzziness and randomness may be separable or inseparable. 
The presence of these two variables in optimizing activities leads to fuzzy-
stochastic optimization and stochastic-fuzzy optimization. In the discussions that 
follow  , fuzziness and randomness  may be viewed in order of prior or posterior. 

6.3.1   Fuzzy-Stochastic Optimization 

An approach to fuzzy-stochastic optimization may proceed where stochastic 
uncertainty is taken to precede the fuzzy uncertainty. A problem example would 
be a case where the variable is random and the outcome acquires a linguistic 
variable such as large or small. The question, then, is how large or how small is 
small after the outcome? In this case, the uncertainty inherent in the optimizing 
variable is dichotomized.  As such, a randomization process is first introduced on 
the relevant optimizing variables where the problem is formulated to allow for 
stochastic optimization in order to obtain optimal stochastic certainty equivalences 
and optimal stochastic decision rules in a fuzzy environment. In the example given 
above the fuzzy environment is in relation to an outcome that is to be determined 
as large or small.  The stochastic-certainty-equivalent values are then considered 
as fuzzy variables to allow the establishment of effective fuzzification-
defuzzification process. The process of randomization and stochastic optimization 
is to account for information-knowledge deficiency due to stochastic uncertainty. 
The fuzzification process is to account for vagueness, ambiguities, inexactness and 
approximations that constrain concept formations, thought representations, 
interpretations of optimal stochastic values and subjective formation of probability 
distributions. In other words, to introduce fuzzy outcome and fuzzy logical 
reasoning into the optimization process where fuzzy optimization allows 
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defuzzification through the use of fuzzy laws of thought (logic of fuzzy 
mathematics). 

In general fuzzy-stochastic optimization leads to three optimal quantitative 

elements of exact certainty equivalent value of the optimizing variable *ψ , 

associated probability value, ( )*p ψ  as measure of stochastic uncertainty 

(probabilistic belief), and optimal degree of exactness ( )*μ ψ  as a measure of 

fuzzy uncertainty (possibilistic belief) associated with exactness of outcomes. The 
relative similarities and differences in probabiliatic and possibilistic beliefs in 
knowledge production and mathematics of uncertainties are discussed in [15] [16] 
[57] [61] [63] [64]. 

Essentially, the analytical process to formulate the optimization problem is such 

that we optimize the expected value of an objective function,  ( ) ( )λ ∈Λi i , 

among a set of objective functions, given the relevant information-knowledge 
structureΘ⊂ I  and probability structure. The probability structure is  a measure 
of degree of knowledge completeness that may be viewed as defining the state of 
knowledge in support of the optimizing system  subject to an expected value of the 
constraint. A representation of the fuzzy-stochastic optimization process may be 
represented in two steps as: 

( ) ( )

( ) ( )

opt  d

       s.t   d u

*

| f |

. | g |

ψ∈ ⊂Ψ

⊂Ψ

⎫λ ψ θ ψ θ ψ
⎪
= σ⎬

γ ψ θ ψ θ ψ ≤ ⎪
⎭

∫

∫
∩A B A

B

 
(11)

The stochastic optimal value is *σ  with corresponding probability ( )*p P= σ  

that value *σ  is now viewed in dual fuzzy sets as an objective set, A  with 

( )*μ σA  and constraint set, B  with ( )*μ σB  in determining the needed optimal 

crisp value by  fuzzy optimization to obtain ( )*μ σA  subject to ( )*μ σB . The 

problem is the same as finding 
*σ ∈ ∩A B  which reduces to: 

[ ]

( ) ( )
opt 0 1

   s.t     1

* **

* *

,

.

σ ∈Δ
⎫μ ∈
⎪ = σ⎬

⎡ ⎤μ σ − μ σ ≤ ⎪⎣ ⎦ ⎭

A

BA

 (12)

where u  is a predetermined value, ( ) ( ) and f | g |ψ θ ψ θ  are probability 

density functions defined over the objective and constraint spaces conditional on 
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parameter space respectively. The optimal solution **σ  in terms of  ψ  is of the 

form 

( ) ( )( ),** ** ** **, p , | , ,σ = ψ ψ μ ψ θ ΦP M  (13)

Alternatively, we may specify the present value of the goal and the present value 
of the constraint. We then induce a fuzzification process over them to obtain fuzzy 
present values of goals and constraints (We may note that the fuzzy present value 
is not the same as present fuzzy value). The problem is then formulated for fuzzy 
present value optimization to obtain exact present value equivalences and 
optimizing algorithms in support of fuzzy- stochastic optimality. Here, the optimal 
conditions are derived under further conditions that the probability distributions 
are given or known without vagueness. The vagueness is found in the stochastic 
optimal outcomes bringing into the optimization process another dimension of 
uncertainty that is to be modeled through the fuzzy process with membership 
functions or possibility distributions. The needed membership function or the 
possibility distribution is either selected from a set of membership functions or 
subjectively constructed to reflect expressed possibilistic belief on the expected 
values. 

The fuzzy optimization is then undertaken subject to the stochastic uncertainty 
through present-value equivalences of goals and constraints.  The general structure 
of the optimizing problem leading to fuzzy-stochastic optimality may be 
represented in a canonical form as: 

( ) ( )( ) ( )

( )
( )

opt

          s.t     

                  ,  

                    

                  

| , , p | , , p, ,

.

| , p,

| , , p,

ψ ψ
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ψ ψ

γ γ
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⎪≠ ∅ ⎪
⎪⊂ Ψ Θ ⎬
⎪

⊂ Γ Θ ⎪
⎪

Θ ⊂ ⎪⎭

∩
i i

∩
A B

M

A B
A M
B M
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B
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 (14)

where A  is a fuzzy present value goal with probability density function    

( ) , p f | ,= ψ ψ∈Ψi . Similarly B  is a fuzzy present value constraint also 

with probability density function, ( )  p g | ,= ψ γ∈Γi  , with B  as a general 

Borel set on decision space where M is a general set of membership functions for 

fuzziness and Ψ Γ ≠∅∩ .  If  ( ) ( )  and μ ψ μ ψBA  are the membership 

functions for the fuzzy present-value goal and fuzzy present-value constraint then 
the fuzzy logical process leads to the fuzzy decision that may be written as 
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Δ = ∩A B  with membership function  ( )Δμ ψ ,  and ψ = γ∈Ψ Γ∩ whose  

fuzzy optimization problem may be written as: 

( )

( ) ( )

opt 0

       s.t     0

*

ˆ

ˆ ˆ.

ψ∈Δ
⎫μ ψ ≥
⎪σ⎬

⎡ ⎤ ⎪μ ψ −μ ψ ≤⎣ ⎦ ⎭

A

BA

 (15)

where  ψ̂  is fuzzy present value variable.  The optimal values in support of fuzzy 

stochastic rationality may then be written as: 

( ) ( )( )* * * *, p , | , , ,σ = σ ψ ψ μ ψ θ Φ ∈ΔP M  (16)

There is another case of fuzzy-stochastic optimization where the conditions of 
fuzziness are found in the probability distribution of the random variable. This 
gives rise to fuzzy or inexact probabilities that are associated with the values of 
the random variable. In this case, probability values are fuzzy sets and the 
optimization structure is such that the membership function is expressed over the 
probabilities. The problem representation of  eqn. (14) becomes 

( ) ( )( ) ( )
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 (17) 

The optimization problem expressed by eqn. (17) reflects in part the problem of fuzzy 
(inexact) probability that has lead to the Ellsberg’s paradox [16]. The problem of 
inexact probabilities arises from the structure that the possibility space from which the 
probability space is constructed is unknown and hence generates vagueness or 
ambiguities when the two spaces are connected [13] [15] [16] [50] [62]. 

6.3.2   Stochastic-Fuzzy Optimization  

There is an alternative conceptual approach to the order of separability or non-
separability of the uncertainty space.  Instead of viewing outcomes as prior 
stochastic and posterior fuzzy, outcomes may be viewed as prior fuzzy and 
posterior stochastic.  Given prior fuzzy uncertainty, the probability distribution is 
established over estimates of degree of fuzziness as expressed by membership 
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function or possibility values.  Here the best outcome is a weighted average degree 

of fuzziness ( )*μ i  where the weights are the corresponding probabilities and 

corresponding to the average is a probability value ( )*p μ . Here, we obtain the 

Professor Zadeh’s specification of probability of random fuzzy set, F  as: 

( ) ( ) ( )    p dp ,
Ψ

= μ ψ ψ ⊂ Ψ∫ FF F  (18)

The  probability of random fuzzy variable is defined in terms of the expected 

value of its membership function, ( )μ iF  [57] [61] [119]. In this case, the fuzzy 

topological space is the subject of randomization. 
To obtain the conditions of stochastic-fuzzy optimality and the supporting set 

of optimal rules, let us consider a random fuzzy goal, A  whose membership 

function is ( )μ ψA  and probability density is ( )f ψ . The probability of the 

random fuzzy goal may be specified as either continuous or discrete process 
respectively as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

| E   

                             or

E

p f d

p | f

Ψ

ψ∈Ψ

⎫⎡ ⎤ψ = μ ψ ψ ψ = μ ψ⎣ ⎦ ⎪
⎪
⎬
⎪⎡ ⎤ψ = μ ψ ψ = μ ψ ⎪⎣ ⎦
⎭

∫

∑

A A

A A

A

A
 (19)

Furthermore, let a random fuzzy constraint be  B   with a membership function, 

( )μ ψB  and probability density function ( )g ψ . Here the optimizing variable is 

fuzzy, such as large or small, however, the outcome is random. For example, find 
an output level that will optimize expected large profit subject to a reasonable cost 
given the conditions of the factor markets. This example is different from raising 
the question whether the optimized profit outcome is large and the cost is 
reasonable. In the first case, the fuzziness is prior to randomness while in the 
second case the randomness is prior to fuzziness. The probability of the random-
fuzzy constraint may be written continuously and discretely as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

E   

                            or

E

p | g d

p | g

Γ

ψ∈Γ

⎫⎡ ⎤ψ = μ ψ ψ ψ = μ ψ⎣ ⎦ ⎪
⎪
⎬
⎪⎡ ⎤ψ = μ ψ ψ = μ ψ ⎪⎣ ⎦
⎭

∫

∑

B B

B B

B

B
 (20)
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Eqns. (19) and (20) may then be combined to specify the expected random-fuzzy 

optimizing problem, Δ = ∩A B  with membership function, 

( ) ( ) ( )Δμ ψ = μ ψ ∧μ ψBA      as: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )

E

          E E

f g d
Ψ Γ

Δ

⎫⎡ ⎤ ⎡ ⎤Δ = μ ψ ψ ∧ μ ψ ψ ψ⎣ ⎦⎣ ⎦ ⎪
⎬
⎪⎡ ⎤⎡ ⎤= μ ψ = μ ψ ∧μ ψ⎣ ⎦ ⎣ ⎦ ⎭

∫
∩

BA

BA

 (21)

The stochastic-fuzzy problem to be optimized is then abstracted from the 
probability of random-fuzzy variable as optimization of fuzzy integral objective 
function subject to a fuzzy integral constraint.  This may be presented as: 

( ) ( )

( ) ( )

0

1

opt E

        s.t     E    

                                      0

d

. d k ,

ψ∈Ψ Ψ

Ψ

⎫⎡ ⎤ϕ μ ψ ψ⎣ ⎦ ⎪
⎪⎪⎡ ⎤ϕ μ ψ ψ ≤ ⎬⎣ ⎦
⎪
⎪ψ ≥ ⎪⎭

∫

∫

A

B

A

B  (22)

where k  is a known constant ( )1ϕ i  is monotonically increasing concave 

function of constraint and ( )0ϕ i  is a monotonically increasing convex function 

of goal with , ( ) ( )0 10 0 0ϕ = ϕ =  , ( ) ( )0 1  and  ,ϕ = ϕ =A BA A A  is  an 

action set.  The optimal decision under prior fuzzy and posterior stochastic may be 
abstracted from eqn. (22) as 

( ) ( )( ) ( ) ( )( )opt* * * *| , , p | , , p
ψ∈Ψ

σ = σ ψ θ μ ψ ψ = σ ψ θ μ i i  (23)

and corresponding to *ψ  are  ( ) ( )( ) and * *pΔ Δμ ψ μ ψ  which together 

constitute the set of optimal decision rules under non-separable uncertainty with 
prior fuzzy and stochastic posterior. 

The supporting set of optimal decision-choice rules of stochastic-fuzzy 
optimality reveals itself in terms of three basic set of optimal values of decision-

choice element, *ψ , expected confidence index, ( )*
Δμ ψ  measuring the degree 

of exactness of the optimal values with ( )1 *
Δ

⎡ ⎤−μ ψ⎣ ⎦  measuring the degree of 

fuzzy uncertainty attached to the optimality conditions. The degree of known 
knowledge attached to the set of optimality conditions  is measured as the 
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probability ( )( )p Δμ i  and the random uncertainty due to ignorance attached to 

the stochastic-fuzzy optimality is ( )( )1 p Δ
⎡ ⎤− μ⎣ ⎦i . Here the probabilistic 

characterization of random uncertainty is known and the fuzzy membership 
function is subjectively selected or constructed. The structure presents us with a 
concept of fuzzy-random variable for the decision-choice process. The behavior of 
the fuzzy-random variable and the introduction to the mathematics to deal with it 
is also provided in [57] [61][84] [87] [105] [108].  

7   Similarities and Differences in the Optimizing  Structures 

Four different structures of optimization problems have been presented. The 
objective is to show the evolutionary process of optimality from the classical 
system with exact symbolism and classical laws of thought to the fuzzy system 
with vague symbolism and fuzzy laws of thought and their relationships to 
equilibrium, rationality and stability. The objective in this essay is a focus on the 
nature of fuzzy optimization, areas of success and areas of challenges for further 
scientific research on fuzzy phenomenon. The four sets of optimization problems 
are represented in table 1.  

The essential differences and similarities are better revealed by both problem 
structure with the needed algorithms and the solution structures. To illustrate with 
the case of the solution structure, let X  be a general set of variables with generic 
element  x∈X , P , a set of probabilities that is taken to be a set of  measures of 
degrees of knowledge completeness, with generic 

element ( ) ( ) [ ]  and 0 1p x p x ,∈ ∈P   and M , a set of membership functions 

that measure the degrees of exactness in the system’s behavior 

with ( ) ( ) [ ] and 0 1x x ,μ ∈ μ ∈M . Finally, let S  be a set of optimal solutions 

with generic elementσ ∈* S . With these values, we can provide a table of 
taxonomy of the optimal solution sets to all the four areas of optimization 
problems to illustrate their differences and similarities. 

Figures 4 and 5 provide us with some reflective conditions for comparative 
analyses of the differences and similarities between optimization in the classical 
system and optimization in the fuzzy system. These similarities and differences 
point to opportunities and challenges of research on development of problem 
definitions for fuzzy optimization and construction of algorithms and theorems for 
their solutions and analysis. There are two important conceptual elements and 
measurements in the whole development of optimization and its relationship to 
rationality, equilibrium and stability. The first one is information-knowledge 
incompleteness that generates stochastic uncertainty which then creates 

probabilistic belief that is measured by a probability value, ( ) [ ]0 1p x ,∈  

irrespective of how this probability value is constructed. The second one is the  
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CLASSICAL NON-FUZZY AND NON-
STOCHASTIC OPTIMIZATION 
 
Variable: classical exact non-stochastic 
                 Variable. 
Logic: Classical laws of thought 
 
Mathematics: Classical Mathematics 
 
Algorithms: Classical optimizing  
                    Algorithms 
Information-knowledge structure: Free 
of all uncertainties. 

CLASSICAL NON-FUZZY 
STOCHASTIC OPTIMIZATION 
 
Variable: Classical exact random  
                  Variable 
 
Logic: Classical laws of thought 
 
Mathematics: Classical  
                        Mathematics 
Algorithms: Classical Optimizing  
                   Algorithms 
Information-knowledge structure: 
Stochastic Uncertainty and free of Fuzzy 
Uncertainty  

FUZZY NON-STOCHASTIC OPTIMIZATION 
 
Variable: Fuzzy non-Stochastic Variable 
 
Logic: Fuzzy Laws of Thought 
 
Mathematics: Fuzzy Mathematics 
 
Algorithms: Fuzzy-optimizing Algorithms 
 
Information-knowledge Structure: Fuzzy 
Uncertainty and Free of Stochastic Uncertainty 

FUZZY-STOCHASTIC / 
STOCHASTIC-FUZZY 
OPTIMIZATION 
 
Variable: Fuzzy-Stochastic/ Stochastic-
fuzzy Variable 
 
Logic: Fuzzy Laws of Thought 
 
Mathematics: Fuzzy Mathematics 
 
Algorithms: Fuzzy-optimizing 
Algorithms 
 
Information-knowledge Structure: Both 
Stochastic and Fuzzy Uncertainties 

 

Fig. 4 Four Categories of Optimization Problems and Conditions of their Similarities and 
Differences 

information-knowledge inexactness that generates fuzzy uncertainty which then 

creates possibilistic belief and measured by membership value ( ) [ ]0 1x ,μ ∈  

irrespective of how this value is constructed. For the discussions on the 
differences in probabilistic and possibilistic belief systems see[13] [16] 
[17][50][57] [61] [62].  

The probability value is viewed as a measure of degree of knowledge 
associated with the optimization, while the membership value is the degree of 

exactness associated with knowledge. The probability value ( ) 1p x =  and 

membership value ( ) 1xμ =  imply perfect information-knowledge structure with 

the belief that the optimal value is accurate in that it is exact and true. The 

conditions, probability value ( ) ( )0 1p x ,∈  and membership value ( ) 1xμ =  

imply a deficient information-knowledge structure due to incompleteness and the 
belief that the value that has been obtained may be an inaccurate optimal value in  
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The CLASSICAL EXACT 
NON-STOCHASTIC  
OPTIMAL SOLUTION 
 

( ) ( ){ }1 1* * * *x ,p x , xσ = = μ =  

The CLASSICAL EXACT STOCHASTIC 
OPTIMAL SOLUTION 
 

( ) [ ] ( ){ }01 1* * * *x ,p x , , xσ = ∈ μ =  

 

The FUZZY NON-
STOCHASTIC OPTIMAL 
SOLUTION 
 

( ) ( ) [ ]{ }1 01* * * *x ,p x , x ,σ = = μ ∈
 
 

The FUZZY-STOCHASTIC / 
STOCHASTIC-FUZZY OPTIMAL 
SOLUTION 
 

a) ( ) [ ] ( ) [ ]{ }01 01* * * *x ,p x , , x ,σ = ∈ μ ∈  

b) ( ) [ ] ( )( ) [ ]{ }01 01* * * *x ,p x , , p x ,σ = ∈ μ ∈P  

  c) ( )( ) [ ] ( ) [ ]{ }X X01 01* * * *x ,p x , , x ,σ = μ ∈ μ ∈  

        NON-STOCHASTIC               STOCHASTIC 

I
N
E
X
A
C
T

 

E
X
A
C
T

 

Fig. 5 The Structures of Solution of Different Optimization Problems given their 
Information-knowledge Supports 

the sense that, even though it is exact, it may not be true value due to limited 

knowledge. The situation where ( ) 1p x =  and ( ) ( )0 1x ,μ ∈ , implies a 

defective information-knowledge structure due to inexactness and the belief in the 
value that has been obtained  as  optimal may be inaccurate in sense that even 
though it is information-knowledge complete  may not be true due to information-

knowledge ambiguities (inexactness). The conditions where ( ) ( )0 1p x ,∈  and 

( ) ( )0 1x ,μ ∈  imply a completely defective information-knowledge structure due 

to both information-knowledge incompleteness and inexactness (ambiguities) and 
hence the belief in the value that has been obtained may be inaccurate in that it is 
inexact and may not be true. 

The discussions that we have developed bring into focus the developments of 
optimization theories that have intra-category differences and inter-category 
differences. The differences in optimization algorithms within categories are 
category specific. Such intra-category differences of algorithms will depend on the 
assumptions imposed on the functional structures associated with the objective and 
constraint sets within the problem category. The inter-categorial differences in the 
optimization algorithms are due to the nature of information-knowledge structure 
imposed on the development of the optimization problem. It is the imposed 
assumption of information-knowledge structure that generates either exact-non-
stochastic optimization process with ordinary algebraic variable or exact-stochastic 
optimization process with algebraic random variable or fuzzy-non-stochastic 
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optimization process with algebraic fuzzy variable and fuzzy-stochastic 
optimization process with algebraic fuzzy-random and random-fuzzy variables for 
the development of algorithms for computable optimization systems. 

Substantial portion of research on fuzzy optimization has taken place with non-
stochastic fuzzy variable where the information deficiency is due to fuzzy 
uncertainty. Some of the algorithms developed in this environment have been 
applied to optimization problems in classical environment of exact and non-
stochastic information-knowledge structure. The research challenges facing the 
fuzzy research program on optimization is in Cohort IV where there are 
simultaneous existence of fuzziness and randomness giving rise to fuzzy and 
stochastic uncertainties with corresponding fuzzy-random and random-fuzzy 
variables for modeling optimal computable systems under conditions of fuzziness 
and randomness. The development may take two forms where a system of 
mathematics is created for problem formulation reasoning and a system of 
algorithms is created to abstract solutions. In other words, we are to create an 
effective fuzzification-defuzzification system for the general optimization under 
fuzzy and stochastic uncertainties. There are some works that are helping in these 
directions of research on  mathematical and decision-choice frameworks under the 
phenomena of fuzziness, randomness and their simultaneities [31] [37] [50], 
[57][61],[64] [84] [88] [89] [90] [91] [92], [108] [110].   

By the way of emphasis, let us note that the essential core of fuzzy paradigm is 
composed of changes in the two important principles: the principle of symbolic 
representation, and the principle of reasoning in the classical paradigm for  
information-knowledge production. 

1) There is the replacement of classical exact symbolic representation of ideas 
and propositions that show themselves as exact classical algebraic variables with 
fuzzy symbolic representation of ideas and propositions that show themselves as 
fuzzy variables. 

2) There is the replacement of classical laws of thought that:‘All propositions 
are either true or false’  with its principle of excluded middle, by fuzzy laws of 
thought that “every statement is a set of true-false characteristics in varying 
proportion and that the acceptance of a proposition to be true or false is done on 
the basis of subjective decision-choice action in reconciling the conflict in the 
true-false proportion”. with the acceptance principle of contradiction in true-false 
claims thus rejecting the principle of the excluded middle.  

The importance of these classical-fuzzy analytics as has been stated above is seen in 
ordering and reasoning with items of sets The process of replacing the classical exact 
symbols with fuzzy symbols is fuzzification. The process of replacing the classical laws 
of thought with fuzzy laws of thought is defuzzification. This fuzzification-
defuzzification technique must be revealed in the fuzzy optimization process in terms 
of problem formulation and solution abstracted for the selection of the best. The 
optimal solution,  in terms of rationality and equilibrium, is such that the fuzzy optimal 
rationality is a classical suboptimal rationality and provides a best mathematical 
approach for models of satisficing (bounded rationality) or reasonability or levels of 
aspirations that are common in psychological approaches to decision theory. 
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Introduction to Fuzzy and Possibilistic
Optimization

Weldon A. Lodwick and Elizabeth Untiedt

1 Introduction

Deterministic optimization is a normative process which extracts the best
from a set of options, usually under constraints. It is arguably true that op-
timization is one of the most used areas of mathematical applications. It
is the thesis of this book that applied mathematical programming problems
should be solved predominantly by using a fuzzy and possibilistic approaches.
Rommelfanger ([42], p. 295), states that the only operations research meth-
ods that is widely applied is linear programming. He goes on to state that
even though this is true, of the 167 production (linear) programming systems
investigated and surveyed by Fandel [18], only 13 of these were “purely”
(my interpretation) linear programming systems. Thus, Rommelfanger con-
cludes that even with this most highly used and applied operations research
method, there is a discrepancy between classical linear programming and
what is applied. Deterministic and stochastic optimization models require
well-defined input parameters (coefficients, right-hand side values), relation-
ships (inequalities, equalities), and preferences (real valued functions to max-
imize, minimize) either as real numbers or real valued distribution functions.
Any large scale model requires significant data gathering efforts. If the model
has projections of future values, it is clear that real numbers and real valued
distributions are inadequate representations of parameters, even assuming
that the model correctly captures the underlying system. It is also known
from mathematical programming theory that only a few of the variables and
constraints are necessary to describe an optimal solution (basic variables and
active constraints), assuming a correct deterministic normative criterion (ob-
jective function). The ratio of variables that are basic and constraints that
are active compared to the total becomes smaller, in general, as the model in-
creases in size since in general large-scale models tend to become more sparse.
Thus, only a few parameters need to be obtained precisely. Of course the
problem is that it is not known a priori which variables will be basic and
which constraints will be active.
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Moreover, a model of an actual problem is always an abbreviated view
of the underlying actual system. If a problem is able to be manipulated
in situ to obtain a solution without a symbolic representation, then there
would be no need for modeling the problem mathematically. Inherently, a
mathematical model is a symbolic representation of the problem. Bertrand
Russell ([44], p. 85, 86) states,

“The law of excluded middle is true when precise symbols are employed,
but it is not true when symbols are vague, as, in fact, all symbols are.”

At the heart of (deterministic) pure mathematics are theorems whose proofs
are mathematical statements that are either true or false, but not both (law
of the excluded middle). This concept is also stated as a property of classical
sets - either an element belongs to a set or does not, but not both. Fuzzy
set theory adds gradation to this Boolean notion of set belonging. Thus it
is the rare exception that a mathematical (optimization) model is a precise
representation of the underlying system even if the symbols represent real
numbers or real valued distributions. It is rare that an optimal solution from
an optimization model is in reality best. Herbert Simon in many places (in
particular see [46], p. 35, 36) states,

“Of course the decision that is optimal in the simplified model will
seldom be optimal in the real world. The decision maker has a choice
between optimal decisions for an imaginary simplified world or decisions
that are ‘good enough,’ that satisfice, for a world approximating the
complex real one more closely. ... What a person cannot do he will not
do, no matter how much he wants to do it. Normative economics has
shown that exact solutions to the larger optimization problems of the
real world are simply not within reach or sight. In the face of this
complexity the real-world business firm turns to procedures that find
good enough answer to questions whose best answers are unknowable.
Thus normative microeconomics, by showing real-world optimization to
be impossible, demonstrates that economic man is in fact a satisficer, a
person who accepts ‘good enough’ alternatives, not because he prefers
less to more but because he has no choice.”

From an email discussion, Rommelfanger [43] relates the following.

“In fact Herbert Simon develops a decision making approach which he
calls the Concept of BoundedRationality. He formulated the following two
theses. Thesis 1: In general a human being does not strive for optimal de-
cisions, buthe tends to choose a course of action thatmeetsminimumstan-
dards for satisfaction. The reason for this is that truly rational research
cannever be completed. Thesis 2: Courses of alternative actions and con-
sequences are in general not known a priori, but they must be found by
means of a search procedure.”
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The central tenet of this book is that most optimization is and should be a
satisficing process. To this end, fuzzy and possibilistic optimization play a
key, if not the most important, role. Why is fuzzy/possibilistic optimization
not an explicit part of every Operations Research and Optimization curricu-
lum? Why is it not in wide-spread practice yet? Is it that the practitioners
do not know these new theoretical instruments? Is it that too many uni-
versity professors do not understand the new concepts? Is it that clear and
compelling “industrial strength” models have yet to appear in a way to make
an impact? There are some “industrial strength” models (see the application
section of this volume and [31], [38]). This volume presents the compelling
reasons for including fuzzy and possibilistic optimization at the heart of nor-
mative decision theory.

We first define two terms that are frequently used in conjunction with
fuzzy set theory and possibility theory, “uncertainty” and “incomplete infor-
mation.” From [14], we have:

Definition 1. A piece of information is said to be incomplete in a given
context if it is not sufficient to allow the agent to answer a relevant question
in this context. A piece of information is uncertain for an agent when the
latter does not know whether this piece of information is true or false.

2 Fuzzy Set Theory and Possibility Theory in
Optimization

This section begins with an example “industrial strength” application which
shows the applicability and relevance of fuzzy and possibilistic optimization
in an actual application. This problem was reported in [31], [38].

Example 2. (Radiation Therapy of Tumors - [31]) The determination of
how to use particle beams to treat tumors is called the radiation therapy prob-
lem (RTP). Beams of particles, usually photons or electrons, are oriented
at various angles and with varying intensities to deposit dose (energy/unit
mass) to the tumor. The idea is to deposit just enough radiation to the tumor
to kill all the tumor cells while sparing normal tissue. The process begins
with the patient’s computed tomography (CT) scan. Each CT image is ex-
amined to identify and contour the tumor and normal structures. The image
subsequently is vectorized. Likewise, candidate beams are discretized into
beamlets, where each beamlet is the width of a CT pixel. A pixel is the math-
ematical entity or structure (a square in the two-dimensional case and a cube
in three dimensions) that is used to represent a unit area or volume of the
body at a particular location. For two-dimensional problems, about seventeen
CT scans (slices) are sequentially “stacked” (to form a three-dimensional im-
age that covers the tumor), and a variety of resolutions might be considered,
64 × 64, 128 × 128, 256 × 256, 512 × 512. One set of beams each at ten or
more equally spaced angles is not unusual. Since we constrain the dosage at
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each pixel, for ten equally spaced angles, the complexity of the problem ranges
from an order of 17 · 10 · 642 to 17 · 10 · 5122 potential constraints. How-
ever, since all pixels are not in the paths of the radiation beams that hit the
tumor, and some are outside the body, we a priori set the delivered dosages
at these pixels to zero and remove them from our analysis. This corresponds
to blocking the beam, which is always done in practice. The identification
of a set of beam angles and weights that provide a lethal dose to the tumor
cells, while sparing healthy tissue with a resulting dose distribution acceptable
and approved by the attendant radiation oncologist, is called a treatment plan.
The largest actual problem solved is on the order of 500, 000 constraints in
a fuzzy/possibilistic optimization problem. A dose transfer matrix AT (rep-
resenting how one unit of radiation intensity in each beamlet is deposited in
pixels - for historical reasons, we use a transpose to emphasize its origin as
the discrete version of the inverse Radon transform), called here the attenu-
ation matrix, specific to the patient’s geometry, is formed where columns of
AT correspond to the beamlets and rows represent pixels. A component of a
column of the matrix AT is non-zero if the corresponding beamlet intersects
a pixel, in which case the value is the positive fraction of the area of the in-
tersection of the pixels with the beamlet otherwise it is zero. The beams then
are attenuated according to a factor dependent on the distance from where
the beam enters the body to a pixel within the body and the type of tissue at
that pixel. The variables are vectors x that represent the beamlet intensities.
The mathematical programming problem is

z = min f(c, x)
AT x ≤ b.

For this problem, there are four places in which the data turn this problem into
a fuzzy/possibilistic optimization problem. First, the objective function can
be a probability function (upper/lower bounding), the probability that the ra-
diation intensity vector x will turn a health pixel into a cancerous one. Each
row of the left side, that is, each row of the constraint matrix AT , represents
each pixel in the path of the beam, the “beam’s eye view” of the tumor. Thus,
each row accumulates pixel by pixel total radiation deposited by the radiation
intensity vector x at that pixel. This will occur mathematically since the ith

row vector (the ith pixel) AT
i when dotted into the vector x is the sum of

radiation at the pixel, AT
i x. Since a pixel can be cancerous, or cancerous to

a degree (the boundaries between cancerous and non-cancerous are gradual,
transitional and thus fuzzy), the left side matrix AT matrix is composed of
fuzzy intervals. The right-hand side value is the maximum allowable dosage
(for critical organs in the path of the beam and maximal value representing
pre-burning for the tumor cells). Separately, for tumor cells, there is also an
associated minimal value, the smallest value a radiation oncologist does not
allow the radiation to go below (it is the minimal acceptable radiation that
will kill a cancer cell). These values may be considered to be possibilistic
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since these are values derived from research, expert knowledge (epistemic val-
ues), and experience with preferred values within the range. Therefore, the
right-hand side value may be considered either as a target (with preferred
ranges) or as purely as a possibilistic value.

A radiation oncologist is a satisficer. Any good treatment regime (identified
by the mathematical programming problem) will suffice. Of course the opti-
mal would be better, but given the variations in the data and model, “best”
is an illusive value and arguably unattainable. The above example prob-
lem illustrates fuzzy, probability, and possibility optimization in an applied
problem which has been solved (see [31], [38]).

Possibility theory as a mathematical theory is based on a set of axioms
or properties found below. It is used to model systems of entities or vari-
ables that are uncertain due to knowledge deficit (inherent or acquired) or
incomplete information. Fuzzy set theory deals with sets which are a gener-
alization of the classical notion of set. It is used to model systems of entities
or variables whose belonging (to a set) is gradual or transitional. Underlying
possibility theory is the principle of minimal specificity (see [16]). That is,
when the values of parameters or variables are not completely specified (for
whatever reason - by choice, by finances, by lack of the ability to obtain the
precise value, by the fact that inherently a precise value cannot be obtained),
is there still sufficient structure to the information that is available for mathe-
matical analysis? One of these mathematical structures is possibility theory.

The following simple example shows that probability alone is insufficient
to describe uncertainty of every type. Suppose all that is known is that

x ∈ [1, 4]. (1)

Clearly, x ∈ [1, 4] implies that the real value that x represents is not certain
(albeit bounded). If the uncertainty that x ∈ [1, 4] represents were probabilis-
tic (x is a random variable that lies in this interval), then every distribution
having support contained in [1, 4] would be equally valid given (1). Thus, if
one chooses the uniform probability density distribution on [1, 4],

p(x) =
{

1
3 1 ≤ x ≤ 4
0 otherwise,

which is the usual choice given no other indication other than the support, one
gives up information. The approach that keeps the entire uncertainty of (1)
considers it as all distributions whose support is [1, 4]. The pair of cumulative
distributions that bound all cumulative distributions with this given support
is depicted in Figure 1. The statement x ∈ [1, 4] not only represents a
random variable whose support is [1, 4], but it can be a mathematical entity,
an interval. When [x] = [1, 4] is a mathematical entity, an interval, the
statement x ∈ [1, 4] has no associated uncertainty. It is complete, precise,
and coherent in contradistinction with [1, 4] containing all probability density
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functions whose support is contained in this interval. It is true that the
same object, [1, 4], interpreted probabilistically and as an interval, has two
semantically distinct and analytically distinct meanings, they have a different
calculus, metric, convergence structure, and so on.
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Fig. 1 BOUNDING CUMULATIVE DISTRIBUTIONS - Possibility (blue), Ne-
cessity (red), Uniform (green)

The upper cumulative distribution depicted in Figure 1 is a possibility dis-
tribution (blue), and the lower cumulative distribution is a necessity distri-
bution (red). When the statement x ∈ [1, 4] represents an unknown random
variable whose support is the interval, to keep all the information about the
uncertainty not only requires a pair of bounding functions, but a different
arithmetic and mathematical analysis than “simply” functional analysis on
probability distributions. The uniform distribution is precisely the intuitive
solution to lack of information, “Choose the midpoint of the distribution pair
as the solution if one has to choose.” Of course, the case is made here that
x ∈ [1, 4] can also be tied to uncertainty which is purely non-probabilistic
information deficiency in addition to an uncountably infinite set of random
variables (whose support is contained in this interval).

2.1 Fuzzy Set Theory

Fuzzy sets are sets in which the Boolean property of belonging that charac-
terizes classical sets is generalized to allow degrees of belonging continuously
from zero (indicating not belonging for sure) to one (indicating belonging
for sure). A classical set is one in which every element in the universal set
has a degree of belonging that is described by the characteristic function
(zero/one), whereas a fuzzy set is one in which every element in the universal
set is described by a function, called a membership function, whose range is
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between zero and one. A fuzzy set A ∈ Ω (universal set) is uniquely described
by its membership function

μA(x) : Ω → [0, 1], x ∈ Ω. (2)

A classical set is one whose membership function is,

μA(x) =
{

1 x ∈ A

0 x /∈ A.
(3)

The general definition of a fuzzy set (2) does not impose any condition except
that the fuzzy membership be a function. In the context of optimization, we
will restrict ourselves to fuzzy numbers and fuzzy intervals, and the mem-
bership function must be upper/lower semi-continuous (or more practically
continuous), where at least one value of the domain has a membership value
of one. In contrast to probability for finite spaces (see discussion in [16]), for
an event x ∈ A, “... prob(A) is the probability that an ill-known single-valued
variable x ranging in Ω hits the fixed well-defined set A.” For example, sup-
pose we are rolling two die, and A = {4, 5}. The probability prob(A) = 7

36 .

Here x, which ranges in Ω = {2, 3, ..., 12}, is unknown (it is the outcome of
a throw of the dice), but the set A is precisely known. When we consider
μA(x), then x is “fixed”, known precisely, whereas the set A is ill-defined
(transitional).

[8] A fuzzy set (2) is an abstract mathematical notion. It presupposes
nothing about what it could be applied to the notion. It corresponds to
the ideal of non-Boolean predicates. The idea of gradualness or grade
(non-Boolean) is opposed to “all or nothing” (Boolean). Thus, fuzzy
means gradual and not vague or uncertain. So, consider a set. Some
sets are real entities, for example, the set of all salaried tenured pro-
fessors who are employed by the Mathematical and Statistical Sciences
Department at the University Colorado Denver during the 2008-2009
academic year or the set of older mathematicians. Some of these real
sets are fuzzy, for example, the set of older mathematicians, since the
concept of “older” is gradual, graded. These (fuzzy) sets are taken as
“lumped” entities (older is a “lumped” entity). They are a conjunctive
or linked set of elements having more or less weight.

Let us look again at our initial example. The interval [1, 4] considered as a
fuzzy set has membership function

μ[1,4](x) =
{

1 x ∈ [1, 4]
0 otherwise.

Considered as a fuzzy set, the elements of [1, 4] are “lumped” or linked into
one entity, an interval. This intertwined or conjunctive property charac-
terizing fuzzy sets is contrasted with the “mutually exclusive”, unlinked, or
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disjunctive property that characterizes possibility theory and probability the-
ory, as we shall discuss further below.

Mathematical analysis on fuzzy sets (here we are thinking of fuzzy sets
as abstract mathematical entities, that is, sets of membership functions (2))
require a measure, a fuzzy measure, which is used to define order, extent,
convergence, integrals (transformation of a function into a number), and so
on. Fuzzy measures and integrals are used in fuzzy logic to compare/order
and to “defuzzify” (turn a fuzzy set into a number and thus an action -
“shift into overdrive” for example). This is akin to determining the expected
value for continuous distributions in probability theory that transforms a
(probability distribution) function into a single real number (the mean).

Definition 3. [30] Given a universal set Ω and a nonempty family F of
subsets of Ω, a fuzzy measure on 〈Ω, F〉 is a function

g : F → [0, 1]

that satisfies the following properties:
1) g(∅) = 0, and g(Ω) = 1 (boundary conditions)
2) ∀A, B ∈ F , if A ⊂ B, then g(A) ≤ g(B) (monotonicity)

3) ∀ increasing sequence A1 ⊂ A2 ⊂ ... in F , if
∞⋃

i=1

Ai ∈ F , then

lim
i→∞

g(Ai) = g

( ∞⋃
i=1

Ai

)
(continuity from below)

4) ∀ decreasing sequence A1 ⊃ A2 ⊃ ... in F , if
∞⋂

i=1

Ai ∈ F , then

lim
i→∞

g(Ai) = g

( ∞⋂
i=1

Ai

)
(continuity from above).

In the above, 3) and 4) can be viewed as endowing consistency to fuzzy mea-
sures. Usually, the fuzzy measures are defined over a structured set of sets
such as a ring or a σ-algebra or the full power set P (Ω). Fuzzy measures may
be considered as generalizations of probability measures and, in the broader
sense, classical measures. The difference between the fuzzy measure and a
probability measure is that the additivity condition is replaced by a weaker
one of monotonicity and continuity.

Property 2) of Definition 3 implies that g(A ∪ B) ≥ max{g(A), g(B)} and
g(A∩B) ≤ min{g(A), g(B)}. A fuzzy measure is a real valued measure that
is used for mathematical analysis of fuzzy sets. The semantic associated
with fuzzy measure is that the assigned number g(A) to the set A ∈ F ⊂ Ω

indicates the degree to which the given element, set A of F , whose charac-
terization is transitional, belongs to F .
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2.2 Possibility Theory

The mathematical models of systems which are described by the knowledge
we as humans have (epistemic) about the system are often not probabilistic.
Deterministic models are (supposed to be) precise statements about proper-
ties of the real system, the thing itself. They refer to the real world. Possi-
bilistic models often refer to the knowledge humans have about the system.
The model exists or refers to what is in someone’s (or a group of people’s)
head, not the actual system. Possibility is a mathematical structure with
a set of operations that allow us to model some uncertainties that are not
probabilistic, uncertainties that are not random, frequencies, or chance. How-
ever, as in the interval example, they also provide a structure for probabilistic
bounds which themselves are derived from (cumulative) probabilities. Even
when the statement of the problem is clearly probabilistic (the probability
that radiation intensity x will turn a health cell into a cancerous cell), a
single probability distribution function is impossible to obtain for every cell,
and for every human body, and for every bodily condition (obesity, anorexia,
lean, and so on), and for every type of cancer, and every type of radiation
type (electron, proton, neutron), and must be approximated. To obtain one
single probability distribution function p(x) is an approximation at best. It
is perhaps more useful to find bounding functions and to do our analysis on
these rather than committing to a single probability at the start.

Some set representations are epistemic entities, the information possessed
by people about real entities. These set representations do not refer to the
real world, but to what people know about the real world. Dubois uses the
following example. I may “know” epistemically that the Prime Minister of
France is between 40 and 55 years of age. This is the extent of my knowledge
of the age of the prime minister of France, which may be wrong, and it may
differ from your knowledge. The interval [40,55] refers to an interval of real
ages. However, the age of Prime Minister Sarkozy, which exists, is a point, not
a set. The set [40, 55] is the set of possible ages of Prime Minister Sarkozy
according to my knowledge, where the actual age of the Prime minister is
a point. My interval of possible ages in this case is not a conjunction of
elements, it is a disjunction of elements (the set of distinct numbers in the
interval). A generalized characteristic function of this set is a possibility
distribution, despite the fact that there is only one age of Prime Minister
Sarkozy. If some values of ages in the interval [40, 55] are more plausible
than others, then this plausibility defines a preferential function on [40, 55]
which is a possibility distribution.

Possibility is also an abstract mathematical structure which is independent
of applications.

Definition 4. [55] Let P(Ω) denote the power set of the universal set Ω (al-
though a σ-algebra would also work). A possibility measure Pos:P(Ω) →
[0,1] has the following properties:
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1) Pos(∅)=0, Pos(Ω)=1
2) A ⊂ B ⇒ Pos(A) ≤ Pos(B), for A, B ∈ Ω.

3) Pos(
⋃
i∈I

Ai) = supi∈I Pos(Ai).

Possibility is a non-additive measure like fuzzy measures, but it differs from a
fuzzy measure since the two continuity conditions are replaced by the supre-
mum condition on the union. Moreover, property 3) of Definition 4 implies
that

Pos(A ∪ B) = max{Pos(A), Pos(B)}.

As an abstract structure, it also differs from a probability measure because
the additivity condition is replaced by the supremum condition. Besides
defining possibility via the three properties given above, possibility measures
also can be constructed beginning from probability in four different ways one
of which as was given by our first example [1, 4]. The other three ways are
presented in the sequel.

Any possibility measure is determined uniquely by a given possibility (dis-
tribution) function

π : Ω → [0, 1]

via the formula
Pos(A) = sup

x∈A
π(x), A ⊂ Ω. (4)

Also, given a possibility measure, we can define a possibility (distribution)
function π : Ω → [0, 1]

π(x) = Pos({x}). (5)

That is, we can go from a measure to a possibility distribution function in a
natural way. Moreover, possibility measures are distinct from fuzzy measures
(see [41]).

It turns out that Dempster-Shafer’s plausibility and belief functions (see
[6] and [45]) using an auxiliary probability assignment function with the re-
quirement that the focal elements (elements whose probability assignment
functions are non-zero) be nested. When this occurs, the resultant is a pos-
sibility measure. Thus, possibility theory can be considered as a particular
case of Dempster-Shafer theory. To see this, consider a finite universal set
Ω, for the sake of simplicity, and where P (Ω) denotes the power set of Ω.
We restate possibility and necessity in this context (finite universe) and call
a function Nec : P (Ω) → [0, 1] a necessity measure if and only if

Nec(∅) = 0
Nec(Ω) = 1

Nec(A ∩ B) = min{Nec(A), Nec(B)}, (6)
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for all A, B ∈ P (Ω). A function Pos : P (Ω) → [0, 1] is called a possibility
measure if and only if,

Pos(∅) = 0
Pos(Ω) = 1

Pos(A ∪ B) = max{Pos(A), Pos(B)}, (7)

for all A, B ∈ P (Ω). Note that (7) implies that if A ⊆ B, Pos(A) ≤ Pos(B).
Moreover,

Nec(A) = 1 − Pos(Ac).

The relationship between necessity and Dempster-Shafer theory is as follows.
Evidence theory is based on two non-additive measures on a universal set Ω,
a belief measure, Bel, and a plausibility measure, Pl, defined as (see [30])

Bel : P (Ω) → [0, 1] (8)
Bel(∅) = 0, Bel(Ω) = 1,

Bel(
n⋃

i=1

Ai) ≥
∑

i

Bel(Ai) −
∑
i<j

Bel(Ai ∩ Aj) + ...

+(−1)n+1Bel(
n⋂

i=1

Ai)

for all possible families of subsets of Ω. Belief is superadditive. The dual of
belief is plausibility which is defined

Pl(A) = 1 − Bel(AC). (9)

A function m : P (Ω) → [0, 1] is called a probability assignment function if
and only if

m(∅) = 0 (10)∑
A∈P (Ω)

m(A) = 1.

Lemma 5. [45] Given a probability assignment function, a Belief and Plau-
sibility measure on Ω can be defined

Bel(A) =
∑
B⊆A

m(B) (11)

for all A ∈ P (Ω), and
Pl(A) =

∑
A∩B �=∅

m(B). (12)
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Conversely, given a belief measure, a probability assignment function can be
defined by

m(A) =
∑
B⊆A

(−1)|A−B|Bel(B), (13)

where |A − B| denotes the cardinality of A − B, for all A, B ∈ P (Ω).

Essentially, starting from probability, we start from (10) where the proba-
bilities are known on sets of the space, not elements of the space, with no
particular assumed structure (they may be overlapping, for example) other
than that the sums of their probabilities add to one. From this partial infor-
mation, we can derive a mathematical structure which does not, in general,
have the additive property of probabilities which is called Belief and Plau-
sibility. On the other hand, we can start from the point of view that we
have a sub/super additive set functions called Belief and Plausibility (whose
properties are is defined by (8) and (9)) and derive a probability assignment
function from (13). If the assignment function is known on elements of the
space, then belief is equal to plausibility, and the resulting structure is prob-
ability (with additivity).

The subsets of Ω with positive values of a given probability assignment
function are called focal elements. Suppose all focal elements of the basic
assignment functions (13) can be ordered so that they are nested. That is,
suppose we have an order to the focal elements determined by (13) so that
the finite sequence

{A1, A2, ..., AK}
and m(Ai) > 0 has the property that Ai ⊆ Aj for i ≤ j. Then

Nec(A) =
∑
B⊆A

m(B) (14)

is a necessity measure. Moreover,

Pos(A) =
∑

A∩B �=∅
m(B) (15)

is a possibility measure. In other words, (10) can be given and Bel and
Pl constructed via (11) and (12). Or Bel (and Pl) can be given and the
probability assignment function be constructed via (13). Moreover, when
we have nested sets, we take the focal elements of the probability assignment
function on these nested sets and construct the possibility and necessity which
are precisely the belief and plausibility measures.

We can obtain a probability assignment function from a given necessity
measure by using (13) so that

m(A) =
∑
B⊆A

(−1)|A−B|Nec(B).
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Thus, necessity measures are belief measures when the focal elements are
nested. Fuzzy intervals are the collection of nested focal elements constructed
from the non-zero α − cuts. That is, for α > 0, in the discretized case, let

0 = α0 < α1 < ... < αj < αj+1 < ... < αN = 1,

m(Aαj ) = αj − αj−1,j = 1, ..., N

Aα = {x|μfuzint(x) ≥ α},

where μ is the membership function of the fuzzy interval. Hence, possibility
theory may be viewed as a special type of evidence theory. This allows
possibility theory to be considered from a generalized probabilistic point of
reference. Zadeh [55] defined only possibility measures/distributions. Dubois
and Prade [11] were the first to develop the dual to possibility, necessity.

The previous section outlined several ways that lead to possibility distri-
butions. There is a development (see [4]) which takes the possibility mea-
sure given above and develops the full mathematical structure such that the
mathematical analysis is well-defined. We are thinking of possibility theory
applied to mathematical analysis (optimization in particular). To this end,
we construct possibility and necessity distributions in one of the following
ways:

1. [37] Given a set of probabilities Ω = {pα(x), x ∈ R, α ∈ I, where I is an
index set},

Pos(x) = sup
α∈I

pα(x)

Nec(x) = inf
α∈I

pα(x).

2. [28] Given an unknown probability p(x) which is known to exist in-
side a bounding pair of functions p(x) ∈ [f(x), f(x)], construct neces-
sity/possibility distributions such that p(x) ∈ [Nec(x), Pos(x)].

3. [6], [45] Given a probability assignment function m whose focal elements
are nested, construct necessity/possibility distributions according (15) and
(14).

4. A fuzzy interval, defined below, generates a possibility and necessity pair.
Fuzzy intervals, as used here, are what is called in most of the literature
fuzzy numbers. The possibility and necessity functions are constructed as
was done from our initial example [1, 4] (also see Figure 3 below).

The most prevalent approach is to define the entities of interest in optimiza-
tion (the coefficients and/or the right-hand side values, for example) to be
fuzzy intervals in which case they will be able to capture both gradualness
or transition and lack of specificity/information as we specify below. Thus,
possibility distributions used in possibilistic optimization typically are asso-
ciated with the membership function of fuzzy numbers, whose generalization
is called a fuzzy interval. If the coefficients arise from probability-based
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possibility (as in items 1-3 listed above), then this generates upper and lower
possibilistic optimization (see [37]). A fuzzy number is a fuzzy set with
upper/lower semi-continuous membership function with one and only one
value, x∗, such that μ(x∗) = 1 (where x∗ is the “fuzzified” number). The
set of numbers for which the membership value are one is called the core.
So for example, a fuzzy number 2 would have μ(2) = 1, which is depicted in
Figure 2.

53.752.51.250

1

0.75

0.5

0.25

0

11

Fig. 2 A Fuzzy number two

A fuzzy interval M , depicted as a trapezoid in Figure 3, is a fuzzy number
except the core (which must also exist) does not have to be a singleton.
There are various views (applications) of fuzzy intervals. A fuzzy interval
can be used to enclose a set of probability distributions where the bounds
are constructed from the fuzzy interval (blue line being the possibility and
green line being the necessity in Figure 3). The core of the fuzzy interval is
the top, the horizontal line segment between 2 and 3 at height 1, indicated
in Figure 3. The possibility and necessity as indicated below enclose all
probabilities whose upper limit is the possibility (blue line) and lower limit
is the necessity (green line). Thus, according to [15],

“A fuzzy interval M can thus be viewed as encoding a family of proba-
bilities, a set of probability measures PM defined by

PM = {P |ΠM (A) = sup
a∈A

M(a) ≥ prob(A), A measurable}.

It is important to notice that there are actually three probabilistic views
of a fuzzy interval:
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Fig. 3 Fuzzy interval - Megenta

a) The imprecise probability view whereby M encodes a set of proba-
bility measures shown in Figure 3.
b) The pair of PDFs view whereby M is defined by two random vari-
ables x− and x+ with cumulative distributions in blue and green of
Figure 3 and M stands for the random interval [x−, x+].
c) The random set view whereby M encodes the one point coverage
function of a random interval, defined by the probability measure on
the unit interval (for instance the uniformly distributed one) and a fam-
ily of nested intervals (the α − cuts), via a multivalued mapping from
(0,1] to R, following Dempster [6].”

A reason that one might want to use probability-based possibility (interpre-
tations a), b) or c)) rather than probability is precisely in situations for which
real values or complete probability density functions for data are not avail-
able. For example: (1) we don’t know which of a given set of probabilities
to use, (2) all we know is that the probability is bounded by two functions,
or (3) we do not have the probability distribution on singletons, but on sets.
Whether an entity of interest inherently lacks specificity (the minimal radia-
tion that will kill a particular patient’s prostate tumor cell located at (x, y, z)
is Pos(x, y, z)), lacks sufficient research to determine its precise value or its
precise probability density function, its deterministic functional representa-
tion is not required, in the sense that one can get by with a more general
form than its deterministic equivalent - perfect information, for the use to
which it is put (the light wave reflection measured by a satellite sensor to im-
pute the depth of the ocean, low/medium/high might suffice), or complexity
reduction (low, medium, high speed for the automatic gear shifting mecha-
nism on a car), lack of information/specificity is a part of many if not most
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problems. Moreover, when we have models that are built from epistemic
knowledge (human ideas about the system rather than the system itself),
many of these linguistically derived models are possibilistic either in their
entirety or partially.

2.3 Fuzzy Set Theory and Possibility Theory -
Distinctions

The semantics of fuzzy sets and possibility are different. The difference be-
tween fuzzy set theory and possibility theory is that the semantics of fuzzy
are tied to gradualness whereas the semantics of possibility refers to incom-
plete (deficient) information about an existent entity. As we have mentioned
above, fuzzy is a non-Boolean set whose elements transitionally belong to a
given set. Possibility is tied to incomplete information. A fuzzy set member-
ship function uniquely describes the set and defines the degree to which an
element belongs to the set. The possibility distribution assigns the degree to
which the evidence supports the element’s belonging to the set in question.
In particular, consider the two statements

μA(x) = 1,

and
πA(x) = 1.

In the first instance, the membership function value of x is 1. In the second,
the possibility distribution at x is 1. In the first case, it is certain that x

belongs to the set A. In the second case, all that can be said is that the best
information at hand indicates that it is most plausible (or possible) that x

belongs to A. μA(x) = 0 means that x /∈ A for sure. πA(x) = 0 means that
all the given evidence at hand indicates that x does not belong to A (or x is
not A).

[16] “Limited specificity can be modelled in a natural way by possi-
bility theory. The mathematical structure of possibility theory equips
fuzzy sets with set functions, conditioning tools, notions of indepen-
dence/dependence, decision-making capabilities (lattices). Lack of in-
formation or lack of specificity means we do not have ’the negation of
a proposition is improbable if and only if the proposition is probable.’
In the setting of lack of specificity, ’the negation of a proposition is
impossible if and only if the proposition is necessarily true.’ Hence, in
possibility theory pairs of possibility and necessity are used to capture
the notions of plausibility and certainty. When pairs of functions are
used we may be able to capture or model lack of information. A mem-
bership function is a possibility only when the domain of a fuzzy set
is decomposable into mutually exclusive elements. A second difference
(between probability and possibility) lies in the underlying assumption
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regarding a probability distribution. Namely all values of positive prob-
ability are mutually exclusive. A fuzzy set is a conjunction of elements.
For instance, in image processing, imprecise regions are often modelled
by fuzzy sets. However, the pixels in the region are not mutually exclu-
sive (although they do not overlap). Namely the region contains several
pixels, not a single unknown one. When the assumption of mutual ex-
clusion of elements of a fuzzy set is explicitly made, then, and only then,
the membership function is interpreted as a possibility distribution; this
is the case of fuzzy numbers describing the ill-located unique value of a
parameter.” (my italicized emphases)

More recently, [14] state

“A set used for representing a piece of incomplete information is called a
disjunctive set. It contrasts with a conjunctive view of a set considered
as a collection of elements. A conjunctive set represents a precise piece
of information. For instance, consider the quantity v = sisters(Pierre)
whose range is the set of subsets of possible names for Pierre’s sis-
ters. The piece of information {Marie, Sylvie} is precise and means
that Pierre’s sisters are Marie and Sylvie. Indeed, the frame is then
S = 2NAMES , where NAMES is the set of all female first names. In
this setting, a piece of incomplete information would be encoded as a
disjunction of conjunctive subsets of NAMES.”

For example, an image could be segmented/classified into two sets, stomach
lining and stomach muscle. Every pixel in the image is given a value v where
0 ≤ v ≤ 1 with respect to being stomach lining or stomach muscle. This
is conjunctive and thus a fuzzy set. That is, each pixel is stomach lining
to specified degree (between 0 and 1), and (conjunction) each pixel is also
stomach muscle to a specified degree (between 0 and 1). On the other hand,
suppose we use the fuzzy trapezoid interval 59/59.9/60.1/61 to model the
possibilistic notion of a tumorcidal dose to each tumor pixel. This is an
incomplete set of information about each tumor pixel. That is, a tumor pixel
has an associated distribution, a fuzzy interval, a function. A tumor pixel is a
fuzzy interval 59/59.9/60.1/61. The pixel is not represented by a number (as
in the case of stomach lining or muscle - there are two numbers one for each
class), the pixel is represented by an entire distribution. Moreover, possibility
is always normalized since the semantics of possibility is tied to an existential
entity. Thus, not all fuzzy set membership functions can be transformed into
possibility distributions.

2.4 Fuzzy Set Theory and Possibility Theory in
Optimization

Gradualness characterizes many linguistic descriptions of what we know about
properties of entities and systems of these entities. Indeed, classification of
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reality, which often is the first step in mathematical modelling, may reflect the
inherent transitional nature of the class as well as objects in that class. Thus,
“tumor” is a classification which is “intertwined.” Each “tumor” pixel within
a CT scan may consist of fully cancerous cells in a pixel and (conjunctive) pre-
cancerous cells coexisting in the same pixel.

Mathematical modelling has two directions - one toward more specificity
(a real value being one “end point” of specificity) or more generality (the
universe being at the other end of specificity). Generality is often useful to
simplify analysis and reduce the complexity. The greatest use and application
of fuzzy set theory is fuzzy logic controllers. In mathematical analysis, it can
be argued that fuzzy optimization has been the most successful application.
Fuzzy optimization is an extension to flexible programming and allows for a
broader and more ample approach to flexible programming.

The appropriate classification of possibilistic optimization is optimization
under uncertainty, where some (or all) the input data (parameters) to the
optimization model lack specificity, and/or the information is insufficient to
yield a real valued number or a probability distribution. This is distinguished
from fuzzy optimization that appropriately belongs in the class of flexible pro-
gramming problems. The uncertain parameters that are possibilistic must
adhere to (7), which means that more information about the parameter can
never yield less certainty (if A ⊆ B, P (A) ≤ P (B)), and these sets must
be nested. This property (more information leading to greater certainty)
is not axiomatically present in fuzzy measures. For example, the fuzzy set
“older” remains transitionally “older,” regardless of how much more informa-
tion about older is obtained. However, the interval of the age of the prime
minister of France will narrow with more (correct) information.

Not all systems possess this property of more information not increasing
uncertainty. In competitive markets, (cold) wars, adversarial relationships
(such as political campaigns, trials, or propaganda), more information might
be worse given the propensity to disinformation, deceptive information, or
lying all mixed together with legitimate information. When the parameters
are defined as fuzzy intervals, they are also possibility distributions and au-
tomatically adhere to the axioms (definition) of possibility even if they are
fuzzy entities. When fuzzy intervals are used for the parameters, what must
be checked in terms of appropriate use is the semantics. The semantics as-
sociated with possibilistic uncertainty must be tied to information deficiency
(lack of specificity).

The next set of paragraphs are taken from [35] both directly and in mod-
ified form. By fuzzy and possibilistic optimization, as used here, we mean
optimization when at least one element of the input data is a real valued
interval, a real valued random variable, a real valued fuzzy number, or a real
valued number described by a possibility/necessity distribution. The use of
necessity distributions are done similarly to possibility except that the neces-
sity sematic is a pessimistic one, while the possibility semantic is optimistic.
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We consider the following general programming problem:

z = min f(x, c)
subject to gi (x, a) ≤ b i = 1, ..., M1 (16)

hj (x, d) = e j = 1, ..., M2.

The constraint set is denoted Ω = {x | gi (x, a) ≤ b i = 1, ..., M1, hj (x, d) = e

j = 1, ..., M2}. It is assumed that Ω �= ∅. The values of a, b, c, d, and e are in-
puts (data, coefficients, parameters) of the programming problem. These val-
ues are subject to uncertainty for a variety of reasons. Depending on the nature
of the uncertainty, they may be probability distributions, intervals, fuzzy sets
or possibilistic distributions. Moreover, the operator min and relationships =
and ≤ can take on a flexible or fuzzy meaning becoming a soft relationship or
constraint. For example, the equality and inequality relationships may be as-
pirations, that is, they may take on the meaning, “Come as close as possible to
satisfying the relationships with some degree of violation being permissible.”
On the other hand, the value of a, b, c, d, or e may be described by a probabil-
ity, interval, fuzzy or possibilistic distribution. In either case, the meaning of
the relationships must be specified. When the objective function and/or con-
straints are defined by functions other than real valued convex functions, the
optimization problem may not be (undoubted is not) convex so that typical so-
lution methods are local. In very simple cases where the constraint is of the
form Ax ≤ b, and the coefficients of the matrix and right-hand side values are
intervals, the solution set can be a star-shaped region (see [20]). Recall that an
interval is a fuzzy number. Moreover, when the components of the matrix A

are other than real valued, this means that the underlying model as specified
by linear relationships is not known exactly or that the model is precise, but
knowledge of what the value of the data are incomplete. We use a tilde, ˜, to
denote a fuzzy set, and a “hat”, ˆ, to denote a possibility distribution.

2.4.1 Fuzzy and Possibilistic Optimization Semantics

Next what is meant by decision-making in the presence of fuzzy and possi-
bilistic entities is defined. These definitions are central to the semantics and
methods. In their book (Chapter 5) Dubois and Prade [9] give clear defini-
tions and distinctions of fuzzy measures, possibility and probabilities often
forgotten and ignored by researchers (see also Chapters 1 and 7 of [13]).

1. Fuzzy Decision Making: Given the set of real valued (crisp) decisions, Ω,

and fuzzy sets, {F̃i | i = 1 to n}, find the optimal decision in the set Ω.

That is,
sup
x∈Ω

h
(
F̃1(x), ..., F̃n(x)

)
, (17)

where h : [0, 1]n → [0, 1] is an aggregation operator [30], often taken to
be the min operator, and F̃i(x) ∈ [0, 1] is the fuzzy membership of x in
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fuzzy set F̃i. The decision space Ω is a set of real numbers (crisp set), and
the optimal decision satisfies a mutual membership condition defined by
the aggregation operator h. This is the method of Bellman and Zadeh [1],
Tanaka, Okuda and Asai [48], [49], and Zimmermann [56], who were the
first to develop fuzzy mathematical programming. While the aggregation
operator h historically has been the min operator, it can be, for example,
any t − norm that is consistent with the context of the problem and/or
decision methods (see [29]).

2. Possibilistic Decision Making: Given the set of real valued (crisp) deci-
sions, Ω, and the set of possibility distributions representing the uncertain
outcomes from selecting decision x = (x1, ..., xn)T denoted Ψx = {F̂ i

x, i =
1, . . . , n}, find the optimal decision that produces the best set of possible
outcomes with respect to an ordering U of the outcomes. That is,

sup
Ψx∈Ψ

U(Ψx), (18)

where U(Ψx) represents a “utility” of the set of distributions of possible
outcomes Ψ = {Ψx|x ∈ Ω}. The decision space Ψ is a set of possibility
distributions Ψx : Ω → [0, 1] resulting from taking decision x ∈ Ω. This
is the semantic taken in the possibilistic optimization of Inuiguchi [22],
[23], [24] and Jamison and Lodwick [27]. If F̂x = 2̂x1 + 3̂x2, then each
x = (x1, x2)T generates the possibility distribution F̂x = 2̂x1 + 3̂x2.

Remark 6. Let us summarize what we have just presented. For fuzzy sets
F̃i, i = 1, ..., n, given x, [F̃1(x), ..., F̃n(x)]T is a real valued vector. Thus,
we need a way to aggregate the components of the vectors into a single real
value. This is done by a t-norm, min for example. For possibility, given x,

Ψx = {F̂ i
x, i = 1, . . . , n} is a set of distributions, so we need a way to turn

this set of distributions into a single real value. This is done by the utility
function, a generalized expectation, for example.

Very simply, fuzzy decision-making selects from a set of real valued, crisp,
elements ordered by an aggregation operator on corresponding membership
functions, while possibilistic decision making selects from a set of distribu-
tions measured by a utility operator that orders the corresponding distribu-
tions. These two different approaches have two different ordering operators
(an aggregation operation for fuzzy sets such as min and a utility function in
the case of possibility such as a generalized expectation) and lead to two dif-
ferent optimization methods (see [35]). The underlying sets associated with
fuzzy decision-making are fuzzy, where one forms the decision space of real
valued elements from operations (“min” and “and”, for example, in the case
of optimization of [1], [49] and [56]) on these fuzzy sets. The underlying sets
associated with possibilistic decision making are real value sets, where one
forms the decision space of (possibility) distributions from operations on real
valued sets.
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The construction of an appropriate utility function is a challenge. The
axioms of utility theory as developed by Von Neumann and Morgenstern [52]
are usually required. The type of utility function that is used is a challenge
and decision maker dependent. For example, if one is radiating a tumor that
is quite aggressive, one’s utility might have higher risk (the first derivative
is large and positive over the domain) than if one were radiating a tumor
that was growing very slowly (the first derivative is small and positive over
the domain). For this presentation, we put aside the question of how to
obtain an appropriate utility function noting that it is a key to the successful
implementation of the methods contained herein. The key point is that in
possibilistic optimization, one is using a utility such as a generalization of the
expectation to transform distributions into one real valued function (which is
then optimized), whereas in fuzzy optimization, one is using an aggregation
operator such as a min or t-norm to transform vectors into one real valued
function (which is then optimized).

The idea of the use of utility for decision making under uncertainty prob-
lems is discussed in [17] who show how to use two qualitative counterparts
to the expected utility criterion, one type of utility, U, that can be used in
(18), to express uncertainty and preferences in decision making under un-
certainty. Thus, what is called here possibilistic decision making, (18), is
related to what [17] develop. However, optimization as articulated here are
quantitative methods (the mapping U : Ψ → R), whereas the focus of [17] is
more qualitative.

2.4.2 Fuzzy Decision Making Using Fuzzy Optimization

Fuzzy decision making using fuzzy optimization was first operationalized by
Tanaka, Okuda, and Asai (see [48], [49]) and Zimmermann (see [56]). This
approach, based on the landmark theoretical paper by Bellman and Zadeh
[1], relaxes systems of inequalities Ax ≤ b to denote aspirations. The results
are soft constraints, where the number b to the right of the soft inequality
is a target such that, if the constraint is less than or equal to b, the mem-
bership value is one (the constraint is satisfied with certainty), and, if the
constraint is greater than b + d, (for an a priori given d > 0), the member-
ship is zero (the constraint is not satisfied with certainty). In between, the
membership function is interpolated so that it is consistent with the defini-
tion of a fuzzy number membership function in the context of the problem.
Linear interpolation was the original form (see [56]). This models a fuzzy
meaning of inequality that is translated into a fuzzy membership function
and is the source of our use of the designation of flexible programming for
these classes of problems. The α − level represents the degree of feasibility
of the constraints, consistent with the aspiration that the inequality be less
than b but definitely not more than b + d. Thus, the objective (according to
[56]) is to simultaneously satisfy all constraints at the highest possible level
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of feasibility as measured by the α− levels of the membership functions (that
is “and” all membership functions).

The approach of Tanaka, Okuda, and Asai (see [48], [49]) and Zimmermann
(see [56]) deals with one way to minimize constraint violations. However,
their operationalization is not always Pareto optimal [8]. Their approach
must be iterated - fix the constraints at bounds and re-optimize. Their
method falls within a goal satisfaction approach in optimization in which the
highest degree of goal attainment is sought. They do this by minimizing the
violation of the most stringent constraint. Thus, for example, this approach
may guarantee that every constraint is satisfied to a 0.65 degree or more,
and it may be the case that every constraint is satisfied to the 0.65 level.
However, it may also be that if one of the constraints were relaxed to a 0.6
constraint violation level, all others may be satisfied at a 0.95 level. That
is, this approach does not look at the aggregate satisfaction, only the most
constraining one. It is minimizing the maximum constraint violation.

An aggregate goal attainment tries to maximize an overall measure of
aggregate goal satisfaction. The aggregate sum of goal attainment focuses on
maximizing the cumulative satisfaction of the goals. The surprise function
(see [38], [40]) is one such measure for an aggregate set of (fuzzy) goals. In
particular, when the right-hand side values are interpreted as goals rather
than rigid constraints, the problem may be translated into one of optimizing
the aggregate goal satisfaction. Thus, for soft constraints derived as,

hard yi = (Ax)i ≤ bi ⇒ soft yi = (Ax)i ≤ b̃i, (19)

where the right-hand side values of the soft constraint are fuzzy numbers,
the transformation into a set of aggregate goal satisfaction problem using
the surprise function as the measure for the cumulative goal satisfaction is
attained as follows. A (soft) fuzzy inequality (19) is translated into a fuzzy
membership function, μi (x) , which is the possibility pos(b̃i ≥ x). Each
membership function is translated into a surprise by

si(x) = (
1

μi (x)
− 1)2. (20)

These functions are added to obtain a total surprise

S(x) =
∑

i

si(yi) =
∑

i

si(yi) =
∑

i

si((Ax)i). (21)

Note that (21) is an aggregation operator. A best compromise solution based
on the surprise function is given by the nonlinear optimization problem

min z =
∑

i

si((Ax)i)

subject to x ∈ Ω (possible hard constraints).
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That is, a real valued inequality constraint whose right-hand side value is a
fuzzy number is translated into a fuzzy set. This fuzzy set then is trans-
formed into a real valued set, one for each α − level, via a surprise function
whose domain, of course, is the α − level of the fuzzy sets. The objective is
to minimize the sum of all surprise function values. Unlike Tanaka and Zim-
mermann, the constraints are not restricted such that all satisfy a minimal
level. The surprise function approach effectively sums each of the α − levels

for each of the constraints, then maximizes this sum with respect to α. Since
the optimization is over sets of crisp values coming from fuzzy sets, the sur-
prise approach is a fuzzy optimization method. The salient feature is that
surprise uses a dynamic penalty for falling outside distribution/membership
values of one. The advantage is that the individual penalties are convex
functions, which become infinite as the values approach the endpoints of the
support. Moreover, this approach is computationally tractable.

Again, the surprise approach may be used to handle soft constraints of
Tanaka, Okuda, and Asai (see [49]) and Zimmermann (see [56]), since these
soft constraints can be considered to be fuzzy numbers. However, if soft
constraints are handled using surprise functions, the sum of the failure to
meet the constraints is minimized rather than forcing each constraint to meet
a minimal (fuzzy) feasibility level.

Another historically significant interpretation of fuzzy optimization comes
from Verdegay [51], who proposes a method for obtaining a fuzzy solution
to a fuzzy problem. This is a deviation from the solutions examined so far,
which have been real valued, crisp solutions. Verdegay considers a problem
with fuzzy constraints,

z = f(x) (22)
x ⊆ C̃,

where the set of constraints have a membership function μC , with α − cut

C̃α.
Verdegay defines xα as the set of solutions that satisfy constraints C̃α.

Then a fuzzy solution to the fuzzy mathematical programming problem is

max
x∈C̃α

z = f(x) (23)

∀ α ∈ [0, 1].

Verdegay proposes solving (23) parametrically for α ∈ [0, 1] to obtain a fuzzy
solution χ̃, with α− cut χα, which yields fuzzy objective value z̃, with α-cut zα.

2.4.3 Possibilistic Decision Making Using Possibilistic
Optimization

One approach to possibility distributions of parameters ([27] and [32]) allows
all constraint violations at an established cost or penalty and minimizes the
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expected average, a generalization of expected value ([10], [26], [27], [53], and
[54]). This approach considers all possible outcomes as a weighted expected
average penalty. The expected average is a type of utility. Another utility
is minimizing regret, from Kasperski’s article in this volume. This particular
utility takes violations as penalties on all outcomes of the constraints. It opti-
mizes over sets of possibility distributions, so it is possibilistic optimization.

Another approach that optimizes over possibility distributions [23] and
[24]also optimize over distributions considers constraint feasibility as pos-
sibilistic generalizations of chance constraint methods. The approach used
in [27] and [32] is a possibilistic generalization of the recourse models in
stochastic optimization (see for example [2]), where violations of constraints
are considered as allowable up to a maximum but at a cost. The recourse
model in the context of non-probabilistic uncertainty has been studied by
[25] where interval parameters/coefficients are treated.

Possibilistic optimization historically was introduced by Buckley [3] as an
off-shoot of fuzzy optimization. Because this is a possibilistic linear program,
the objective function is governed by a possibilistic distribution. To derive
the possibilistic objective function value for a particular solution x, Buckley
first specifies the possibility that x satisfies each constraint, and takes the
minimum to indicate the possibility that x satisfies all constraints. Buckley
next constructs Poss[Z = z|x], which is the conditional possibility that the
objective function Z obtains a particular value z, given values for x. This
definition of the possibility distribution motivates Buckley’s solution method.
Recall that because we are dealing with a possibilistic problem, the solution
is governed by a possibilistic distribution. Buckley’s method depends upon a
static α, chosen a priori. The decision maker defines an acceptable level of
uncertainty in the objective outcome, 0 < α ≤ 1. For a given α, we define
the left and right end-points of the α-cut of a fuzzy number x̃ as x−(α) and
x+(α), respectively. Using these, Buckley defines a new objective function:

Z(α) = c−(α)x (24)
A+(α)x ≥ b−(α).

This linear program is constrained upon the best-case scenario. That is, for
a given α-level, each variable is multiplied by the largest possible coefficient
a+

ij(α), and is required to be greater than the smallest possible right-hand
side b−i (α). We should interpret Z(α) accordingly. If the solution to the linear
program is implemented, the possibility that the objective function will attain
the level Z(α) is given by α. Stated another way, the best-case scenario is
that the objective function attains a value of Z(α), and the possibility of the
best case scenario occurring is α.

In the mid 1980s, Tanaka and Asai [47] and Tanaka, Ichahashi, and Asai
[50] proposed a technique for dealing with ambiguous coefficients and right-
hand sides based upon a possibilistic definition of “greater than zero.” First,
the objective function is viewed as a goal. As in flexible programming, the goal
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becomes a constraint, with the aspiration level for the objective function on
the right-hand-side of the inequality. The right-hand sides of the constraints
are subtracted so that all the numeric information is contained in a single
matrix, which is feasible when it is greater than zero. A fuzzy measure of
non-negativity is introduced to gauge optimality of a potential solution x.

Luhanjula’s [39] formulation of the possibilistic mathematical program de-
pends upon his concept of “more possible” values. He first defines a possibility
distribution ΠX with respect to constraint F as

ΠX = μF (u),

where μF (u) is the degree to which the constraint F is satisfied when u is
the value assigned to the solution X . Then the set of more possible values
for X , denoted by Vp(X), is given by

Vp(X) = Π−1
X (max

u
ΠX(u)).

In other words, Vp(X) contains elements of U which are most compatible with
the restrictions defined by ΠX . It follows from intuition and from Luhanjula’s
formal proof [39] that when ΠX is convex, Vp(X) is a real valued interval,
and when ΠX is strongly convex, Vp(X) is a single real number. This formu-
lation varies significantly from the other approaches considered thus far. The
possibility of each possibilistic component is maximized individually. Other
formulations have required that each possibilistic component c̃j , Ãij , and b̃i

achieve the same possibility level defined by α. This formulation also has a
distinct disadvantage over the others presented here. The authors know of no
proposed computational method for determining the “more possible” values,
Vp, so there appears to be no way to solve the deterministic the problem.

2.4.4 Mixed Fuzzy and Possibilistic Decision Making Using
Mixed Possibilistic and Fuzzy Optimization Methods

An optimization problem containing both fuzzy and possibilistic variables
is called a mixed problem in this chapter. Problems in which one or more
possibilistic parameters occurs with one or more fuzzy parameters (or fuzzy
inequalities) have been studied (see [24], [36]). Within a quantitative setting,
there are two cases for the mixed problem. The first case is a problem that
contains both fuzzy and possibilistic parameters (or soft inequalities), but in
which each constraint contains exclusively fuzzy or possibilistic parameters.
In this case, the fuzzy constraints can be optimized by α − levels (according
to [40] or [56]) and the possibilistic constraints by penalized expected aver-
ages (according to [27]). For the more complex case in which both fuzzy and
possibilistic parameters appear in the same constraint, one approach is to
compute the possibilistic distributions of the aggregation of the fuzzy mem-
bership functions and optimize over the penalized expected average. The



58 W.A. Lodwick and E. Untiedt

fuzzy parameter(s) mixed with possibilistic parameter(s) generate a possi-
bilistic distribution that depends on the aggregation operator of the fuzzy
membership functions. Another approach is described in Untiedt’s chapter
in this volume.

3 A Taxonomy of Fuzzy and Possibilistic Optimization
for Our Generic Problem

The structure of the generic optimization problem (16) when it is a lin-
ear programming problem may be considered to be formed by (i) the rim
f(x, c) = cT x, and b, e, (ii) the body f(x, a), h(x, d) = Ax, and (iii) the
relationship, ≤, = ([21]). For the generic form of the mathematical pro-
gramming problem (16), we consider a taxonomy based on (i) rim objective
function parameters, c, (ii) rim right-hand side parameters, b and e, (iii)
body parameters a and d, and (iv) relationship ≤, = . For this exposition, a
fuzzy/possibilistic optimization problem is considered to be (16) in the pres-
ence of data {a, b, c, d, e,≤, =} that is either all or a mixture of real, interval,
probabilistic, fuzzy, possibilistic with at least one parameter being fuzzy or
possibilistic where soft constraints are assumed to have been translated into
fuzzy intervals. If we have a probabilistic optimization problem whose values
are known over each x ∈ R, we would consider it under possibilistic opti-
mization where the upper bound and lower bound (possibility/plausibility
and necessity/belief) would be equal. If the probability were known only
over sets, then we would have an upper possibility bound and a lower ne-
cessity bound as in Figure 3 and do our bound interval-valued possibilistic
optimization which is transformed into utility optimization. A right-hand
side value that is fuzzy may be interpreted in two ways depending on the
context of the problem. First, a fuzzy right-hand side may indicate flexibil-
ity. Second, it may indicate (true) decomposable transition modelled by a
fuzzy interval. For the former, the constraint becomes a flexible constraint.
For the latter, it becomes a possibility.

Note that in the context of interval, fuzzy, possibility, r ≤ s and s ≤ r

does not imply r = s as can be seen in the following.

Example 7. Let

[2, 3]x ≤ [3, 6] and (25)
[2, 3]x ≥ [3, 6]. (26)

The solution of (25) is
x = (−∞, 1].

The solution of (26) is
x = [3, ∞).
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Thus (25) and (26) imply that x = ∅. However,

[2, 3][x, x] = [3, 6]

means that [x, x] = [32 , 2].

This example shows that for the constraint fuzzy/possibilistic linear system,
Ax ≤ b and Ax ≥ b are not equivalent to Ax = b.

The types of optimization in the presence of interval, fuzzy interval, pos-
sibilistic coefficients, and soft constraints are as follows:

1. Flexible Programming

a. Soft constraints relationships ≤ and/or = that take on a flexible mean-
ing (come as close as possible or come as close as possible without
violation some hard constraints).

b. The objective function expresses a target desired (come as close as pos-
sible to staying under a budgetary value, or attain at least as much
profit as was obtained last year).

c. The right-hand-side value of a constraint is a fuzzy interval which is
semantically a target (deliver as close to zero radiation as possible to
healthy cells but absolutely to not exceed a critical threshold value).

2. Utility Programming

a. Interval, fuzzy interval, possibilistic cost coefficients of the objective
function rim parameter c with real valued coefficient constraint coeffi-
cient a, b, d, e ∈ R.

b. The objective function rim parameter c ∈ R with interval, probability,
possibility, fuzzy interval, and one or two of the following - body pa-
rameters interval, fuzzy interval, possibilistic a, d and/or rim right-hand
values b, e are possibilistic.

c. Interval-Valued Probability Measure (IVPM) Programming - any of the
coefficients a, b, c, d, e may be interval, fuzzy, possibilistic where there
may be a mixture of types within one constraint statement.

3. Random Set - any of the coefficients a, b, c, d, e may be interval, fuzzy,
possibilistic where there may be a mixture of types within one constraint
statement.

One also might classify fuzzy and possibilistic programming according to
whether or not the solution is a real valued fuzzy interval vector or a real
valued vector. Possibilistic programming methods of Buckley [3] and his
colleagues and Delgado [5] and his colleagues have considered fuzzy interval-
valued solutions. The methods to obtain fuzzy interval solutions are differ-
ent than those that obtain a real valued solution. Nevertheless, they fall
under possibilistic programming or random set programming of the above
taxonomy.
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Aggregation Operators for Evaluating
Alternatives

Vicenç Torra

Abstract. This chapter reviews the use of aggregation functions and operators in
the field of decision making. We first present an overview of main decision mak-
ing problems, and, then, we show that aggregation operators are in common use for
solving them. Once having presented their interest, we describe the major aggrega-
tion operators, their properties and their major differences.

1 Introduction

Decision making [8] is a broad field that encompasses a few slightly different prob-
lems. In general, all of them are concerned about the process of selecting an alter-
native among a set of them. Differences on the problems correspond to differences
on the settings around the alternatives.

In this paper we will discuss the use of aggregation operators [18] in the field of
decision making. Although these operators have been used for different purposes in
this framework, we will focus on their application in multicriteria decision making.
In particular, we will discuss their application to the case of a finite set of alter-
natives, each of them evaluated using numerical utility functions. In this setting,
aggregation operators can be used to aggregate the different values of the utility
functions, so that an aggregated value (an aggregated criteria) is constructed.

The structure of the paper is as follows. In Section 2 we will describe with some
detail decision making problems and explain where aggregation operators can be
applied in this setting. Then, in Section 3 we will give an overview of some of the
aggregation operators. The paper finishes with a summary.
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2 Decision Making and Aggregation Operators

Basically, all decision making problems concern a set of alternatives A = {a1,a2, . . .}
(either finite or infinite), a set of criteria C = {c1, . . . ,cn} that permit us to evaluate
in which degree the alternatives satisfy the requirements for their selection, and a
group of people G = {e1, . . . ,eg} (e for expert).

Different approaches in decision making correspond to different interactions
among these previous elements: alternatives, criteria, and experts. These different
approaches have originated a set of different names. A few of them are described
below.

Two common terms are multicriteria decision making (MCDM) and multicriteria
decision aid (MCDA). MCDA usually focus on the tools that help a user to capture,
understand, and analyze the differences between the alternatives. So, this follows
a constructivist approach. In contrast, MCDM pressumes that the decision making
process can be formalized, and focuses on tools to describe this process. So, MCDM
follows a descriptive approach. The French and the American school are focused,
respectively, on the MCDA and MCDM approaches. The French school is after
ELECTRE and Roy and Vanderpooten [3, 9, 10]. For a discussion of the two schools
see e.g. [5]. See also [1, 20].

Within MCDA and MCDM two main areas can be distinguished. One of them
is Multiobjective decision making (MODM) [12], which corresponds to the case
that there is an infinite number of alternatives. That is, the space of alternatives is
a continuum. In contrast, Multiattribute decision making (MADM) corresponds to
the case of a finite number of alternatives. It is usual to use MCDM as synonymous
of MADM. MODM problems are usually expressed in terms of a function to be
maximized with some constraints to be satisfied, and these problems are usually
solved using optimization tools (as e.g., the SIMPLEX algorithm).

In both MCDM and MADM, the decision making process follows the formal-
ization given above with a predefined set of alternatives A = {a1,a2, . . .}, which is
usually finite, and a set of criteria C = {c1, . . . ,cn}. Each criterion is assumed to de-
fine a preference over the alternatives. Different approaches have been considered
in the literature for expressing the preferences for each criteria. The most used ones
are the following:

• Utility functions. They are functions over alternatives into a certain range. Then,
the larger the value attached to an alternative, the more we prefer it.

• Preference relations. They are binary relations that are satisfied for a pair of
alternatives (e.g., (al1,al2)) when the first one is preferred to the second one.

We illustrate these two alternatives with an example.

Example 1. Let us consider the problem of buying a car with the following set of al-
ternatives A = {Peugeot206,FordT., . . .} and criteria c = {price,quality,com f ort}.
Then, we can consider representing our preference on the alternatives by means of
utility functions (e.g., functions Uprice,Uquality,Ucom f ort ) or by means of preference
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relations (e.g., Rprice,Rquality,Rcom f ort ). For illustration, we use the following
definitions:

• Utility functions

– Ford T: Uprice = 0.2, Uquality = 0.8, Ucom f ort = 0.3
– Peugeot206: Uprice = 0.7, Uquality = 0.7, Ucom f ort = 0.8

• Preference relations

– Price: Rprice(P206,FordT), ¬Rprice(FordT,P206)
– Quality: ¬Rquality(P206,FordT), Rquality(FordT,P206)
– Comfort: Rcom f ort(P206,FordT), ¬Rcom f ort(FordT,P206)

Here, we understand Rc(a,b) as that we prefer a to b with respect to c.
Decision making problems as the one described in Example 1 can be solved con-

structing an aggregate preference that synthesizes the ones of the different criteria.
In the case of considering a set of criteria C = {c1, . . . ,cn} represented in terms

of preference relations R = {R1, . . . ,Rn} this problem consists of constructing a new
relation RC as a combination of the ones in R = {R1, . . . ,Rn}. Note that once this
relation RC is built, the selection of the best alternative corresponds to selecting the
alternative (or the set of alternatives) that is preferable with respect to RC.

Similarly, if the set of criteria is represented in terms of the utility functions
U = {U1, . . . ,Un}, we have that one way to solve the problem is to build a utility
function UC as a combination of the ones in the set U . As before, this aggregated
utility can be used to select the best alternative.

It has to be said that alternative approaches exist for each of the possible repre-
sentations for the criteria. E.g., in the case of the utility functions, we can use them
to define preference relations (i.e., for each Ui we define Ri(a,b) := (Ui(a) >Ui(b)))
and, then, aggregate the preference relations.

The functions to combine the utility functions and the functions to combine the
preference relations are aggregation functions (or aggregation operators). The for-
mer typically are aggregation operators for numerical data [19] and the latter aggre-
gation operators for preferences (see e.g. [4]). Other aggregation operators are of
interest here, as utilities can be expressed in domains other than numerical. E.g., we
can express them using ordered sets of categories (ordered sets of linguistic labels,
or ordinal scales), partial orders, or fuzzy sets. In Section 3 of this paper, we will
describe some of the existing functions to aggregate these preferences.

A topic not discussed so far is when a group of people is involved in the decision
problem. Group decision making (GDM) and social choice correspond to this type
of problems. So, in this case, there is more than one e in G = {e1, . . . ,eg}.

3 Aggregation Operators

At present, a large number of aggregation functions have been defined. They are
functions that combine N different data into a single datum. Let us express these
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functions by C (from Consensus), then, the aggregation of a1, . . . ,aN in a given
domain D is C(a1, . . . ,aN), also in this domain D.

Differences on the functions are due to the type of data they aggregate (different
domains D) and the properties these functions satisfy. In general, an aggregation
operator is a function that satisfies monotonicity and unanimity (at least for the
values at the boundaries). That is, they are functions satisfying:

• Unanimity or idempotency: C(a, . . . ,a) = a for all a in D
• Monotonicity: C(a1, . . . ,aN) ≥ C(a′

1, . . . ,a
′
N) when ai ≥ a′

i

Some variations exist in the literature on what an aggregation operator is. First,
naturally, the monotonicity condition can only be satisfied in those domains D where
≥ is defined. In addition, some call aggregation operators those functions satisfying
monotonicity and idempotency in the boundary of D. E.g., if D = [0,1], idempotency
is only required for 0 and 1. That is, it is required C(0, . . . ,0) = 0 and C(1, . . . ,1) =
1. Under this definition, some functions for numerical data as t-norms and t-conorms
are aggregation functions. In this case, mean operators correspond to the ones that
satisfy unanimity for all a in D.

In addition to the two conditions above, it is not uncommon to require symmetry
with respect to the inputs. That is,

• Symmetry: For any permutation π on {1, . . . ,N} it holds that

C(a1, . . . ,aN) = C(aπ(1), . . . ,aπ(N))

3.1 Aggregation Operators for Numerical Data

The two simplest and most well known aggregation operators are the arithmetic
mean and the weighted mean. While the former combines the data without requiring
any parameter, the latter uses a weighting vector p. This weighting vector permits
us to take into account in the aggregation process some a prior information about
the information sources. Formally, these operators, as well as the weighting vector,
are defined as follows:

Definition 1. Let A = (a1, . . . ,aN) be N data in R. Then, we define a weighting
vector, the arithmetic mean (AM : RN → R) of A, and the weighted mean (WM) of
A with respect to a weighting vector as follows:

• A vector v = (v1 . . .vN) is a weighting vector of dimension N if and only if vi ∈
[0,1] and ∑i vi = 1.

• AM is an arithmetic mean, if AM(a1, ...,aN) = (1/N)∑N
i=1 ai.

• WM is the weighted mean with respect to a weighting vector p, if WMp(a1, ...,aN)
= ∑N

i=1 piai.

The OWA (Ordered Weighting Averaging) operator is a similar function that com-
bines N values with respect to a weighting vector. Its definition is as follows:
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Definition 2. [21] (see also [22]) Let w be a weighting vector of dimension N; then,
a mapping OWA: RN → R is an Ordered Weighting Averaging (OWA) operator of
dimension N if

OWAw(a1, ...,aN) =
N

∑
i=1

wiaσ(i),

where {σ(1), ...,σ(N)} is a permutation of {1, ...,N} such that aσ(i−1) ≥ aσ(i) for
all i = {2, ...,N} (i.e., aσ(i) is the ith largest element in the collection a1, ...,aN).

Although the definition of the weighted mean and the one of the OWA are similar,
both are a linear combination of the values with respect to the weights, there is a
fundamental difference due to the permutation σ included in the definition of the
OWA. While the ith weight is assigned to the ith data in the weighted mean, this is
not so in the OWA. In this latter operator, the weight is assigned to the position. Due
to this, in a multicriteria decision making application weights in the weighted mean
are assigned to the criteria, while in the OWA they are assigned to the value itself,
or to the relative position of one value with respect to the other values. This permits
the decision maker to represent different types of prior knowledge or different types
of information in the aggregation process.

For example, when in a decision process we have the set of criteriaC= {c1,c2, . . .}
and we know that the criteria c1 is more important than the criteria c2, then, we will
assign a weight p1 larger than the one of p2, and latter apply the weigthed mean as
the proper aggregation operator. The larger the importance of c1, the larger its weight
with respect to the others. In this case, the OWA operator is not appropriate.

In contrast, when we have a decision making process where we need to represent
some compromise between the different criteria, the OWA operator can be used.
For example, let us consider the case of having four criteria c1,c2,c3, and c4, and
let us require for an alternative being acceptable that three of the criteria are good
and, in this case, the fourth does not matter. This situation can be modeled using
the OWA operator with e.g. a weighting vector (0,0,1,0). Note that in this case, the
evaluation of an alternative will be equal to the evaluation of the third worst criteria.
That is, the worst criteria will be ignored (no matter its value), and the evaluation of
the alternative will be equal to the criteria with the third worst value. If this value
is very good, it naturally means that the other two are also very good, and, thus, the
alternative will have a large evaluation.

As OWA operates in this way, it is said that this operator permits us to represent
certain compensation between the criteria. No compensation corresponds to give a
large importance to low values (i.e., a very low value can damage the good values
of the other criteria). Instead, maximum compensation is achived giving a large
importance to high values (i.e., any high value can cause the ignorance of all the
other, possibly bad, values).

Due to the significance of the compensation degree in the OWA, a measure has
been defined to evaluate in what extent a certain weighting vector allows for com-
pensation. This measure is known as orness. The larger the orness, the larger the
compensation. The lower the orness, the lower the compensation. It is formally
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defined below. Its definition is valid for all aggregation operators C and for all pa-
rameterizations P. For some of the operators, the orness does not depend on the
particular parameterization selected, while for others the orness depends on the par-
ticular parameterization used. The weighted mean is an example of the former (i.e.,
the orness of the weighted mean is independent of the parameter used), and the
OWA is an example of the latter (i.e., different parameters give different orness for
the OWA).

Definition 3. Let C be an aggregation operator with parameters P; then, the orness
of CP is defined by

orness(CP) :=
AV (CP)−AV(min)

AV (max)−AV(min)
. (1)

The orness of the aggregation operators reviewed above is as follows:

• orness (AM) = 1/2
• orness(WMp) = 1/2
• orness(OWAw) = 1

N−1 ∑
N
i=1(N − i)wi

As stated above, we have that the orness of the weighted mean does not depend
on the weighting vector p while in the case of the OWA the orness depends on the
weighting vector. Note that in the case of the OWA, the maximum orness is 1 when
w1 = 1 and wi = 0 for all i �= 1 (in this case the OWA corresponds to the maximum),
and the minimum ornes is 0 when wN = 1 and wi = 0 for all i �= N (in this case the
WM corresponds to the minimum).

3.1.1 The WOWA Operator

In the previous section we have seen that both weighted mean and OWA have a
similar form as both are a linear combination of the values a1, . . . ,aN with respect
to weights. Nevertheless, we have discussed that due to the ordering step σ , the
meaning of the weights are different and that they permit to represent different as-
pects. That is, the weighting vector p in the weighted mean permits us to represent
the importance of the criteria, while the weighting vector w in the OWA permits to
represent the compensation degree (which can be quantified by means of the orness
measure). Note that although we use here different letters w and p, both weighting
vectors have the same mathematical properties. For the sake of clearity, we will use
in the rest of this section w and p to represent, respectively, the weights from the
OWA and weighted mean, respectively.

In certain multicriteria decision making problems it is relevant to consider at the
same time weights for the different criteria, and a certain degree of compensation. To
this end, we can use the WOWA (Weighted OWA) operator. This operator permits
us to include in a single application both types of weights. Its definition is given
below.
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Definition 4. [13] Let p and w be two weighting vectors of dimension N; then, a
mapping WOWA: RN → R is a Weighted Ordered Weighted Averaging (WOWA)
operator of dimension N if

WOWAp,w(a1, ...,aN) =
N

∑
i=1

ωiaσ(i),

where σ is defined as in the case of OWA (i.e., aσ(i) is the ith largest element in the
collection a1, ...,aN), and the weight ωi is defined as

ωi = w∗(∑
j≤i

pσ( j))−w∗(∑
j<i

pσ( j)),

with w∗ being a nondecreasing function that interpolates the points

{(i/N,∑
j≤i

w j)}i=1,...,N ∪{(0,0)}.

The function w∗ is required to be a straight line when the points can be interpolated
in this way.

This definition requires an interpolation method for all the points in the set
{(i/N,∑ j≤i w j)}i=1,...,N ∪ {(0,0)}. The original definition used the interpolation
method described in [14] although other interpolation methods, as e.g., linear inter-
polation, have been used. [16] compares different interpolation methods. See also
[18, 19] for details on the WOWA operator and its interpolation function.

3.1.2 The Choquet Integral

The weighted mean, the OWA operator, and the WOWA operator are all operators
from the same family. They are all particular cases of the Choquet integral. This is an
operator that permits us to aggregate a set of data taking into account the interactions
between the criteria. In this section we review its definition.

Its definition is based on considering that the importance is not only a function
of a single criteria but of a set of them. That is, while in the weighted mean, given
the criteria C = {c1,c2, . . . ,c|C|} we have weights p1, . . . , p|C|, we have now weights
for sets of criteria. Formally, in the weighted mean we have weights p : C → [0,1]
such that ∑c∈C p(c) = 1, and we use the notation pi = p(ci). Thus, pi = p(ci) is the
importance of criteria ci.

In contrast, in the Choquet integral, as well as in other fuzzy integrals, we can
consider the importance of a set of criteria ψ ⊂ C. To do so, we need a function
μ such that μ(ψ) corresponds to the importance of the set ψ . As in the case of
the weighting vectors, μ(ψ) ∈ [0,1]. That is, μ is a set function μ :℘(C) → [0,1].
Formally, the function μ has to satisfy some constraints, and such set functions are
known as fuzzy measures. We review their definition below.
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Definition 5. A fuzzy measure μ on a set C is a set function μ :℘(C) → [0,1] satis-
fying the following axioms:

(i) μ( /0) = 0, μ(C) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

As stated above, μ is a set function into [0,1]. In addition, μ satisfies monotonicity.
That is, the larger the set, the larger the measure, or, equivalently, the larger the set
of criteria, the larger their importance. In addition, the maximum importance (equal
to 1) is achieved for the whole set of criteria, and the minimum importance (equal
to 0) is achived for the empty set.

Then, given a fuzzy measure, it is of relevance to consider the aggregation of the
criteria taking into account the importance of these criteria. The Choquet integral
permits us to do so. Nevertheless, the Choquet integral, as all the integrals, integrate
functions. To permit to use them in aggregation we need a last transformation. This
corresponds to consider the input data ai as a function of the criteria. That is, let as
above be C the set of criteria, then f : C → R is the function that assigns a value to
each criteria. In other words, if ai is the value for the alternative to criteria ci, then
f (ci) = ai.

Using this function f , the evaluation of an alternative with respect to μ can be de-
fined as the Choquet integral of f with respect to μ . We review below the definition
of this integral.

Definition 6. Let μ be a fuzzy measure on X; then, the Choquet integral of a function
f : X → R+ with respect to the fuzzy measure μ is defined by

(C)
∫

f dμ =
N

∑
i=1

[ f (xs(i))− f (xs(i−1))]μ(As(i)), (2)

where f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1)) ≤
·· · ≤ f (xs(N)) ≤ 1, and where f (xs(0)) = 0 and As(i) = {xs(i), . . . ,xs(N)}.

When no confusion exists, we can use CIμ(a1, . . . ,aN) = (C)
∫

f dμ , where,
f (xi) = ai, as before. There are alternative expressions for the Choquet integral that
are equivalent to the one given above. The next proposition presents one of them.

Proposition 1. Let μ be a fuzzy measure on X; then, the Choquet integral of a func-
tion f : X → R+ with respect to μ can be expressed as

(C)
∫

f dμ =
N

∑
i=1

f (xσ(i))[μ(Aσ(i))− μ(Aσ(i−1))], (3)

where {σ(1), . . . ,σ(N)} is a permutation of {1, . . . ,N} such that f (xσ(1))≥ f (xσ(2))
≥ ·· · ≥ f (xσ(N)), where Aσ(k) = {xσ( j)| j ≤ k} (or, equivalently, Aσ(k) = {xσ(1), . . . ,

xσ(k)} when k ≥ 1 and Aσ(0) = /0).
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3.1.3 Other Fuzzy Integrals

The Choquet integral is not the only function that permits us to combine a set of
values with respect to a fuzzy measure. There are other functions that permit us to
do the same. One of them is the Sugeno integral. Although there are differences on
the properties of the two integrals, there is a basic difference on the type of data they
can aggregate. While the Choquet integral relies on addition, multiplication, and dif-
ference, and, thus, it is required the values to be numerical, the Sugeno integral only
relies on maximum and minimum. Therefore, the Sugeno integral can be applied in
any scale where maximum and minimum is meaningful. So, it is appropriate when
the values are given in an ordinal scale.

From a formal point of view, the Sugeno integral integrates a function with re-
spect to a fuzzy measure. Thus, it is similar to the Choquet integral.

From the point of view of their interpretation, the Choquet integral has a proba-
bilistic flavor while the Sugeno integral has a possibilistic flavor. This is so, because
the Choquet integral can be seen as a generalization of the expectation, and then
the fuzzy measure is a generalization of a probability. This interpretation is also
supported by the result which establishes that the Choquet integral with respect to
an additive fuzzy measure (a fuzzy measure satisfying μ(A ∪ B) = μ(A) + μ(B)
for A∩B = /0) is equivalent to a weighted mean with respect to this measure. Note
that in this case, μ is a probability and μ({ci}) = p(ci) is a probability distribu-
tion. In contrast, similar results apply to Sugeno integrals with respect to possibility
distributions.

The definition of the Sugeno integral is given below. We include also below an
equivalent expression in terms of the permutation σ .

For details on the meaning of the Sugeno integral, and about its interpretation,
see [17] and [18].

Definition 7. [11] Let μ be a fuzzy measure on X; then, the Sugeno integral of a
function f : X → [0,1] with respect to μ is defined by

(S)
∫

f dμ = max
i=1,N

min( f (xs(i)),μ(As(i))), (4)

where f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1)) ≤
... ≤ f (xs(N)) ≤ 1 and As(i) = {xs(i), ...,xs(N)}.

Proposition 2. The Sugeno integral of a function f : X → [0,1] with respect to a
fuzzy measure μ can be equivalently expressed by

(S)
∫

f dμ = max
i

min( f (xσ(i)),μ(Aσ(i))),

where Aσ(k) = {xσ( j)| j ≤ k} (or, equivalently, Aσ(k) = {xσ(1), . . . ,xσ(k)} when k ≥ 1
and Aσ(0) = /0), and where σ is a permutation such that f (xσ(i)) ≥ f (xσ(i+1)) for
i ≥ 1.
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A few generalizations have been defined for Choquet and Sugeno integrals. One
of them is the t-conorm integral and another one is the twofold integral. The def-
inition of the latter is given below. The twofold integral integrates a function with
respect to two fuzzy measures μS and μC corresponding, respectively, to the fuzzy
measures of the Sugeno integral and the Choquet integral. Somehow, the twofold
integral generalizes the two fuzzy integrals in the same way as WOWA generalizes
both weighted mean and OWA. That is, the generalization considers two parame-
ters: p and w in the case of the WOWA, and μS and μC in the case of the twofold
integral. Also as in the case of the WOWA, both parameters (i.e., both measures μS

and μC) have the same form/structure but have a different meaning.

Definition 8. [15, 6] Let μC and μS be two fuzzy measures on X; then, the twofold
integral of a function f : X → [0,1] with respect to the fuzzy measures μS and μC is
defined by

T IμS,μC( f ) =
n

∑
i=1

(( i∨
j=1

f (xs( j))∧μS(As( j))
)(
μC(As(i))− μC(As(i+1))

))
,

where f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1)) ≤
·· · ≤ f (xs(n)) ≤ 1, and where As(i) = {xs(i), · · · ,xs(n)} and As(n+1) = /0.

For details and properties of this integral see [6]. [7] presents a graphical interpreta-
tion of the integral.

4 Conclusions

In this paper we have reviewed the use of aggregation operators in the field of multi-
criteria decision making. We have seen that they can be used to aggregate the values
of the different criteria for each alternative. We have reviewed the main aggregation
operators for numerical data. In particular, the arithmetic mean, the weighted mean,
the OWA and the WOWA operator. We have underlined their differences and shown
that the WOWA operator permits the user to combine the criteria taking into account
the importance of each of the criteria (as the weighted mean does) and also the de-
gree of compensation between the different criteria (as the OWA operator does).

In addition, we have also reviewed some fuzzy integrals. We have argued that
fuzzy measures are suitable for representing the importance of sets of information
sources, and then described both Choquet and Sugeno integrals as a way to aggre-
gate the evaluation of the alternatives with respect to the fuzzy measures. We have
underlined that the Sugeno integral permits us to use it when data is not represented
using numerical scales but ordinal scales. We have reviewed the twofold integral,
which generalizes both the Sugeno and the Choquet intregral. The way the gen-
eralization is done is somehow similar to the one of the WOWA in the sense that
the generalization permits us to use the parameters of both Choquet and Sugeno
integrals.
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Optimization and Aggregation Functions

Gleb Beliakov

1 Introduction

In this work we will look at connections between aggregation functions and op-
timization. There are two such connections: 1) aggregation functions are used to
transform a multiobjective optimization problem into a single objective problem by
aggregating several criteria into one, and 2) construction of aggregation functions
often involves an optimization problem.

Aggregation of several inputs into one value arises in combining preferences
given by several individuals of a group, aggregation of criteria in multicriteria
decision problems, or fusion of possibly uncertain evidence provided by several
sources. Aggregation functions, or operators, are functions that combine several
input values into one output value, which can be used to rank the alternatives,
among other purposes. Weighted arithmetic mean is one example of a commonly
used aggregation function, but there are many alternative ways of combining the in-
puts. The overviews of many different types of aggregation functions are presented
in [1, 30, 10, 16, 21]. We concentrate on aggregation functions that take the inputs
from a closed interval, for convenience [0,1], and produce the output in the same
interval. Such aggregation functions are widely used in decision theory (cf. mul-
tiattribute utility functions), fuzzy logic, engineering, expert and decision support
systems, and management science.

The choice of an aggregation function is application specific, and is frequently
performed in ad hoc manner. One problem here is that the domain experts can
rarely specify how they perform aggregation by means of an algebraic formula.
For instance, decision support systems in medical domain rely on aggregation of
evidence given as various symptoms, but doctors would not specify the exact for-
mula. With today’s automatic collection of vast amounts of data, it is possible to
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extract many aggregation rules from databases. An example here is the use of pref-
erences of e-commerce customers in recommender systems. Such systems recom-
mend customers a number of products that match their preferences, and the strength
of recommendation is based on aggregating the degrees to which the preferences
are matched by individual products. An analysis of customers’ responses to recom-
mendations can provide suitable aggregation rules.

It is possible to construct suitable application-specific aggregation functions from
the recorded data by solving, essentially, a regression problem. In the case of
weighted mean operators, it boils down to a standard quadratic programming prob-
lem, but for other aggregation functions the situation is different. The issue is preser-
vation of semantically important properties of aggregation functions, without which
they would provide inconsistent, and even erroneous output. This is the reason why
many off-the-shelf nonlinear regression methods, such as neural networks, do not
work, as they fail to account for such properties. In this contribution we outline
various alternative methods suitable for construction of aggregation functions.

2 Aggregation Functions

The purpose of aggregation functions is to combine inputs that are typically in-
terpreted as degrees of membership in fuzzy sets, degrees of preference, strength
of evidence, or support of a hypothesis, and so on. Consider these prototypical
examples.

Example 1 (A multicriteria decision making problem)

There are two (or more) alternatives, and n criteria to evaluate each alternative
(or rather a preference for each alternative). Denote the scores (preferences) by
x1,x2, . . . ,xn and y1,y2, . . . ,yn for the alternatives x and y respectively. The goal is
to combine these scores using some aggregation function f , and to compare the values
f (x1,x2, . . . ,xn) and f (y1,y2, . . . ,yn) to decide the best alternative.

Example 2 (Connectives in fuzzy logic)

An object d has partial degrees of membership to n fuzzy sets, denoted μ1,μ2, . . . ,μn.
The goal is to obtain the overall membership value in the combined fuzzy set μ =
f (μ1,μ2, . . . ,μn). The combination can be the set operation of union, intersection, or
a more complicated (e.g., composite) operation.

Example 3 (A rule based system)

The system contains rules of the form

If t1 is A1 AND t2 is A2 AND . . . tn is An THEN ...

x1,x2, . . . ,xn denote the degrees of satisfaction of the rule predicates t1 is A1, t2 is A2,
etc. The goal is to calculate the overall degree of satisfaction of the combined predicate
of the rule antecedent f (x1,x2, . . . ,xn).
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We will consider aggregation functions defined on the unit interval with f : [0,1]n →
[0,1], however other choices are possible. The input value 0 is interpreted as no
membership, no preference, no evidence, no satisfaction, etc., and naturally, an ag-
gregation of n 0s should yield 0. Similarly, the value 1 is interpreted as full mem-
bership (strongest preference, evidence), and an aggregation of 1s should naturally
yield 1. Aggregation functions also require monotonicity in each argument, where
an increase to any input cannot result in a decrease in the overall score.

Definition 1 (Aggregation function). An aggregation function is a function of
n > 1 arguments that maps the (n-dimensional) unit cube onto the unit interval
f : [0,1]n → [0,1], with the properties
(i) f (0,0, . . . ,0︸ ︷︷ ︸

n−times

) = 0 and f (1,1, . . . ,1︸ ︷︷ ︸
n−times

) = 1.

(ii) x ≤ y implies f (x) ≤ f (y) for all x,y ∈ [0,1]n.

For some applications, the inputs may have a varying number of components (for
instance, some values can be missing). Particularly in the case of automated systems,
it may be desirable to utilize functions defined for n = 2,3, . . . arguments with the
same underlying property in order to give consistent aggregation results. Functions
satisfying the following definition may then be worth considering.

Definition 2 (Extended aggregation function). An extended aggregation function
is a mapping

F :
⋃

n∈{1,2,...}
[0,1]n → [0,1],

such that the restriction of this mapping to the domain [0,1]n for a fixed n is an n-ary
aggregation function f , with the convention F(x) = x for n = 1.

2.1 Main Types

Aggregation functions are classed depending on their overall behavior in relation to
the inputs. In some cases we require high inputs to compensate for low inputs, or
that inputs may average each other. In other situations, it may make more sense that
high scores reinforce each other and low inputs are essentially discarded. The four
main classes of aggregation functions are Averaging, Conjunctive, Disjunctive, and
Mixed [16, 20, 21]. We provide the mathematical definitions for each below.

Definition 3. An aggregation function f is said to be

• Averaging if for every x it is bounded by

min(x) ≤ f (x) ≤ max(x).

• Conjunctive if for every x it is bounded by

f (x) ≤ min(x) = min(x1,x2, . . . ,xn).
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• Disjunctive if for every x it is bounded by

f (x) ≥ max(x) = max(x1,x2, . . . ,xn).

• Mixed if it does not belong to any of the above classes, i.e., it exhibits different
types of behavior on different parts of the domain.

The use of averaging functions is very prominent. Weighted means (arithmetic, ge-
ometric, power means) are typical examples, but there are many other averaging
functions, such as medians, ordered weighted averaging (OWA), discrete Choquet
and Sugeno integrals and many others [15]. The semantics of some mixed aggre-
gation functions makes their use appealing, for instance, when we want inputs of
only high scores to reinforce each other while scores all below a given threshold are
penalized. MYCIN [14] is a classical expert system used to diagnose and treat rare
blood diseases and utilizies precisely this type of aggregation.

There is also wide potential for the use of conjunctive or disjunctive functions
in fuzzy rule-based recommender systems. Conjunctive and disjunctive aggregation
functions are often studied in parallel, as they can satisfy very similar properties,
just viewed from a different angle. The properties of conjunctive functions can be
studied and then mapped to their disjunctive equivalents by using the concept of a
dual aggregation function. There are also aggregation functions that are self-dual, in
particular many averaging functions and uninorms. Before giving these definitions,
we need first to define the concept a strong negation.

Definition 4 (Strong negation). A univariate function N defined on [0,1] is called
a strong negation, if it is strictly decreasing and involutive (i.e., N(N(t)) = t for all
t ∈ [0,1]).

The most commonly used strong negation is the standard negation

N(t) = 1− t.

Definition 5 (Dual aggregation function). Let N : [0,1] → [0,1] be a strong nega-
tion and f : [0,1]n → [0,1] an aggregation function. Then the aggregation function
fd given by

fd(x1, . . . ,xn) = N( f (N(x1),N(x2), . . . ,N(xn)))

is called the dual of f with respect to N, or, for short, the N-dual of f . When using
the standard negation, fd is given by

fd(x1, . . . ,xn) = 1− f (1− x1, . . . ,1− xn)

and we will simply say that fd is the dual of f .

The dual of a conjunctive aggregation function is disjunctive, and vice versa. Aver-
aging functions, uninorms and nullnorms are closed under duality. Some functions
are self-dual.
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Definition 6 (Self-dual aggregation function). Given a strong negation N, an ag-
gregation function f is self-dual with respect to N (for short, N-self-dual or N-
invariant), if

f (x) = N( f (N(x))),

where N(x) = (N(x1), . . . ,N(xn)). For the standard negation we have

f (x) = 1− f (1−x),

and it is simply said that f is self-dual.

2.2 Main Properties

There are several studied properties that can be satisfied by aggregation functions,
making them useful in certain situations. We provide definitions for those that are
frequently referred to in the literature.

Definition 7 (Idempotency). An aggregation function f is called idempotent if for
every input x = (t,t, . . . ,t),t ∈ [0,1] the output is f (t, t . . . ,t) = t.

Definition 8 (Symmetry/Anonymity). An aggregation function f is called sym-
metric, if its value does not depend on the permutation of the arguments, i.e.,

f (x1,x2, . . . ,xn) = f (xP(1),xP(2), . . . ,xP(n)),

for every x and every permutation P = (P(1),P(2), . . . ,P(n)) of (1,2 . . . ,n).

Definition 9 (Neutral element). An aggregation function f has a neutral element
e ∈ [0,1], if for every t ∈ [0,1] in any position it holds

f (e, . . . ,e, t,e, . . . ,e) = t.

Definition 10 (Absorbing element (annihilator)). An aggregation function f has
an absorbing element a ∈ [0,1] if

f (x1, . . . ,xi−1,a,xi+1, . . . ,xn) = a,

for every x such that xi = a with a in any position.

Definition 11 (Associativity). A two-argument function f is associative if
f ( f (x1,x2),x3) = f (x1, f (x2,x3)) holds for all x1,x2,x3 in its domain.

Associative functions are convenient when working with high or varying dimen-
sions, as computation of any number of arguments can be automatically calculated
from the two variate case. The triangular norms and triangular conorms, uninorms
and nullnorms (presented in Sect. 2.3) are examples of aggregation functions which
have this property.
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Another property that is useful for aggregation functions is continuity, which
ensures stability in the outputs. In particular, the Lipschitz condition ensures that the
change in the aggregated value of the function is bounded. We present the following
definitions:

Definition 12 (Lipschitz continuity). An aggregation function f is called Lipschitz
continuous if there is a positive number M, such that for any two vectors x,y in the
domain of definition of f :

| f (x)− f (y)| ≤ Md(x,y), (1)

where d(x,y) is a distance between x and y The smallest such number M is called
the Lipschitz constant of f (in the distance d).

Typically the distance is the Euclidean distance between vectors, but it can be cho-
sen as any norm d(x,y) = ||x − y||. Typically it is chosen as a p-norm, p ≥ 1:

||x||p =
(

n
∑

i=1
|xi|p

)1/p

, for finite p, and ||x||∞ = max
i=1...,n

|xi|. We will denote the class

of functions with the Lipschitz constant at most M in the norm || · || by Lip(M, || · ||).
We pay attention to the rate of change of a function because of the ever present

input inaccuracies. If the aggregation function receives an inaccurate input x̃ =
(x1 + δ1, . . . ,xn + δn), contaminated with some error (δ1, . . . ,δn), we do not expect
the output f (x̃) to be substantially different from f (x). The Lipschitz constant M
bounds the factor by which the error is magnified.

Definition 13. An aggregation function f is called 1-Lipschitz if it is p-stable with
p = 1, i.e., for all x,y:

| f (x)− f (y)| ≤ |x1 − y1|+ |x2 − y2|+ . . .+ |xn − yn|.

An aggregation function f is called kernel if it is p-stable with p = ∞, i.e., for all
x,y:

| f (x)− f (y)| ≤ max
i=1,...,n

|xi − yi|.

2.3 Examples

2.3.1 Averaging

Means
Means are averaging aggregation functions. Formally, a mean is simply a function
f with the property [15] min(x) ≤ f (x) ≤ max(x). Still there are other properties
that define one or another family of means. The following definition of a weighting
vector will assist us in defining some of these families.
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Definition 14 (Weighting vector). A vector w = (w1, . . . ,wn) is called a weighting

vector if wi ∈ [0,1] and
n
∑

i=1
wi = 1.

We provide here the weighted definitions for some of the families of means. Where
the weights are equal, the standard function will be returned and satisfy the symme-
try property. Usually the weight allocated to a particular input is indicative of the
importance of that particular input.

Definition 15 (Weighted arithmetic mean). Given a weighting vector w, the
weighted arithmetic mean is the function

Mw(x) = w1x1 + w2x2 + . . .+ wnxn =
n

∑
i=1

wixi.

Definition 16 (Weighted geometric mean). Given a weighting vector w, the
weighted geometric mean is the function

Gw(x) =
n

∏
i=1

xwi
i .

Definition 17 (Weighted power mean). Given a weighting vector wand r ∈ℜ, the
weighted power mean is the function

Mw,[r](x) =

(
n

∑
i=1

wix
r
i

)1/r

,

if r �= 0, and Mw,[0](x) = Gw(x).

Definition 18 (Weighted quasi-arithmetic mean). For a given strictly monotone
and continuous function g : [0,1] → [−∞,+∞], called a generating function or gen-
erator, and a weighting vector w, the weighted quasi-arithmetic mean is the function

Mw,g(x) = g−1

(
n

∑
i=1

wig(xi)

)
. (2)

The weighted quasi-arithmetic mean is an example of a generated function, de-
fined by use of a generator g and its inverse g−1. Other generated functions include
Archimedean triangular norms and representable uninorms, which will be discussed
further on.

Medians
Medians are often used where the aggregation may be skewed by outliers. A com-
mon example is in median housing prices, where it is desired that the aggregated
value not be altered significantly by only a few very expensive houses.
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Definition 19 (Weighted median). Let w be a weighting vector, and let u denote
the vector obtained from w by arranging its components in the order induced by the
components of the input vector x, such that uk = wi if xi = x(k) is the k-th largest
component of x. The lower weighted median is the function

Medw(x) = x(k), (3)

where k is the index obtained from the condition

k−1

∑
j=1

u j <
1
2

and
k

∑
j=1

u j ≥ 1
2
. (4)

The upper weighted median is the function in Eq. (3) where k is the index obtained
from the condition

k−1

∑
j=1

u j ≤ 1
2

and
k

∑
j=1

u j >
1
2
.

Ordered Weighted Averaging
Ordered weighted averaging functions (OWA) are also averaging aggregation func-
tions, which associate a weight not with a particular input, but rather with its relative
value or order compared to others. They have been introduced by Yager [43] and
have become very popular in the fuzzy sets community.

Definition 20 (OWA). Given a weighting vector w, the OWA function is

OWAw(x) =
n

∑
i=1

wix(i),

where the (.) notation denotes the components of x being arranged in non-increasing
order x(1) ≥ x(2) ≥ . . . ≥ x(n).

Special cases of the OWA operator, depending on the weighting vector w include:

• The arithmetic mean where all the weights are equal, i.e. all wi = 1
n .

• The maximum function for w = (1,0, ...,0) and the minimum for w = (0, ...,0,1).
• The median function for wi = 0 for all i �= k, wk = 1 if n = 2k + 1 is odd, and

wi = 0 for all i �= k,k + 1, wk = wk+1 = 0.5 if n = 2k is even.

Choquet and Sugeno Integrals
These are two classes of averaging aggregation functions defined with respect to a
fuzzy measure. They are useful to model interactions between the variables xi.

Definition 21 (Fuzzy measure). Let N = {1,2, . . . ,n}. A discrete fuzzy measure is
a set function v : 2N → [0,1] which is monotonic (i.e. v(A) ≤ v(B) whenever A ⊆ B)
and satisfies v( /0) = 0,v(N ) = 1.
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Definition 22 (Choquet integral). The discrete Choquet integral with respect to a
fuzzy measure v is given by

Cv(x) =
n

∑
i=1

x(i)[v({ j|x j ≥ x(i)})− v({ j|x j ≥ x(i+1)})], (5)

where (.) in this case denotes the components of x being arranged in non-decreasing
order such that (x(1) ≤ x(2) ≤ ·· · ≤ x(n)) (note that this is opposite to OWA).

By rearranging the terms of the sum, Eq. (5) can also be written as

Cv(x) =
n

∑
i=1

[
x(i) − x(i−1)

]
v(Hi). (6)

where x(0) = 0 by convention, and Hi = {(i), . . . ,(n)} is the subset of indices of
n− i+ 1 largest components of x.

The class of Choquet integrals includes weighted arithmetic means and OWA
functions as special cases. The Choquet integral is a piecewise linear idempotent
function, uniquely defined by its values at the vertices of the unit cube [0,1]n. Note
that there are 2n such points, the same as the number of values that determine the
fuzzy measure v.

The fuzzy measure used to define the Choquet integral can be interpreted as a
weight allocation, not merely to individual inputs but rather to each subset of in-
puts. It may be that there are redundancies among the inputs, or that certain inputs
complement each other. The following properties of fuzzy measures are useful for
identifying special cases of the Choquet integral and certain behavior.

Certain indices have been introduced in order to better understand the behavior
of the Choquet integral. In particular, the Shapley value gives an indication of the
overall importance of a given input, while the interaction index between two inputs
shows to what extent they are redundant or complimentary.

Definition 23 (Shapley value)
Let v be a fuzzy measure. The Shapley index for every i ∈ N is

φ(i) = ∑
A⊆N \{i}

(n−|A|−1)!|A|!
n!

[v(A∪{i})− v(A)].

The Shapley value is the vector φ(v) = (φ(1), . . . ,φ(n)).

Definition 24 (Interaction index). Let v be a fuzzy measure. The interaction index
for every pair i, j ∈ N is

Ii j = ∑
A⊆N \{i, j}

(n−|A|−2)!|A|!
(n−1)!

[v(A∪{i, j})− v(A∪{i})− v(A∪{ j})+ v(A)].
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Where the interaction index is negative, there is some redundancy between the two
inputs. Where it is positive, the inputs complement each other to some degree and
their weight together is worth more than their combined individual weights.

The Choquet integral has been predominantly used for numerical inputs, the
Sugeno integral defined below is useful where the inputs are ordinal. It also uses
fuzzy measures for its definition.

Definition 25 (Sugeno integral). The Sugeno integral with respect to a fuzzy mea-
sure v is given by

Sv(x) = max
i=1,...,n

min{x(i),v(Hi)}, (7)

where (.) denotes a non-decreasing permutation of the inputs such that (x(1) ≤
x(2) ≤ ·· · ≤ x(n)) (the same as with the Choquet integral), and Hi = {(i), . . . ,(n)}.

In the special case of a symmetric fuzzy measure (i.e., when v(Hi) = v(|Hi|) depends
only on the cardinality of the set Hi), Sugeno integral becomes the median Sv(x) =
Med(x1, . . . ,xn,1,v(n−1),v(n−2), . . .,v(1)).

2.3.2 Conjunctive and Disjunctive Functions

The prototypical examples of conjunctive and disjunctive aggregation functions are
so-called triangular norms and conorms respectively (t-norms and t-conorms) [30].
T-conorms are dual to t-norms in the sense of Def. 5. Triangular norms are asso-
ciative, symmetric with the neutral element e = 1, whereas trinagular conorms are
associative, symmetric and have the neutral element e = 0.

Definition 26. The four basic t-norms, Tmin,TP,TL and TD are given by

Tmin(x1,x2) = min(x1,x2), (minimum)
TP(x1,x2) = x1x2, (product)
TL(x1,x2) = max(x1 + x2 −1,0), (Łukasiewicz t −norm)

TD(x1,x2) =

{
0, if (x1,x2) ∈ [0,1[2,
min(x1,x2) otherwise.

(drastic product)

Definition 27 (The four basic t-conorms). The four basic t-conorms, Smax,SP,SL

and SD are given by

Smax(x1,x2) = max(x1,x2), (maximum)
SP(x1,x2) = x1 + x2 − x1x2, (probabilisticsum)
SL(x1,x2) = min(x1 + x2,1), (Łukasiewicz t − conorm)

SD(x1,x2) =

{
1, if (x1,x2) ∈]0,1]2,
max(x1,x2) otherwise.

(drastic sum)
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There are families of parameterized t-norms and t-conorms that include the above
as special or limiting cases. These families are defined with respect to generating
functions and are known as Archimedean t-norms.

Definition 28 (Archimedean t-norm). A t-norm is called Archimedean if for each

(a,b) ∈]0,1[2 there is an n = {1,2, ...} with T (
n−times︷ ︸︸ ︷
a, ...,a) < b.

For t-conorms, the inequality is reversed, i.e. the t-conorm S > b. Continuous
Archimedean t-norms can be expressed by use of their generators as

T (x1, ...,xn) = g(−1)(g(x1)+ ...+ g(xn))

Where g : [0,1] → [0,∞] with g(1) = 0 is a continuous, strictly decreasing function
and g(−1) is the pseudo inverse of g, i.e.,

g(−1)(x) = g−1(min(g(1),max(g(0),x)))

Archimedean families include Schweizer-Sklar, Hamacher, Frank, Yager, Dombi,
Aczel-Alsina, Mayor-Torrens and Weber-Sugeno t-norms and t-conorms. The Ein-
stein sum given below in its bivariate case belongs to the Hamacher family

f (x1,x2) =
x1 + x2

1 + x1x2
.

There do, of course, exist other conjunctive and disjunctive functions that are not
t-norms or t-conorms. For instance, the function

f (x1,x2) = x1x2
2

is a conjunctive (x1x2
2 ≤ x1x2 ≤ min(x1,x2)), asymmetric aggregation function. It is

not a t-norm.

2.3.3 Mixed Aggregation

In some situations, it may be required that high input values reinforce each other
whereas low values pull the overall output down. In other words, the aggregation
function has to be disjunctive for high values, conjunctive for low values, and per-
haps averaging if some values are high and some are low. This is typically the case
when high values are interpreted as “positive” information, and low values as “neg-
ative” information. Uninorms and nullnorms are typical examples of such aggrega-
tion functions, but there are many others.

Definition 29 (Nullnorm). A nullnorm is a bivariate aggregation function V :
[0,1]2 → [0,1] which is associative, symmetric, such that there exists an element
a belonging to the open interval ]0,1[ verifying
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∀t ∈ [0,a], V (t,0) = t,

∀t ∈ [a,1], V (t,1) = t.

Definition 30 (Uninorm). A uninorm is a bivariate aggregation function U : [0,1]2

→ [0,1] which is associative, symmetric and has a neutral element e belonging to
the open interval [0, 1].

Some uninorms can be built from generating functions in a similar way to quasi-
arithmetic means and Archimedean t-norms. These are called representable
uninorms.

Definition 31 (Representable uninorm). Let u : [0,1] → [−∞,+∞] be a strictly in-
creasing bijection verifying g(0) = −∞,g(1) = +∞ such that g(e) = 0 for some
e ∈]0,1[.

• The function given by

U(x,y) =
{

g−1(g(x)+ g(y)), if (x,y) ∈ [0,1]2\{(0,1),(1,0)},
0, otherwise.

is a conjunctive uninorm with the neutral element e, known as a conjunctive
representable uninorm.

• The function given by

U(x,y) =
{

g−1(g(x)+ g(y)), if (x,y) ∈ [0,1]2\{(0,1),(1,0)},
1, otherwise.

is a disjunctive uninorm with the neutral element e, known as a disjunctive rep-
resentable uninorm.

The 3−Π function is an example of a representable uninorm [44]. It uses a gener-
ating function g(x) = ln( x

1−x ) and is used by the expert system PROSPECTOR [22]
for combining uncertainty factors.

f (x) =

n
∏
i=1

xi

n
∏
i=1

xi +
n
∏
i=1

(1− xi)
,

with the convention 0
0 = 0. It is conjunctive on [0, 1

2 ]n, disjunctive on [ 1
2 ,1]n and

averaging elsewhere. It is associative, with the neutral element e = 1
2 , and discon-

tinuous on the boundaries of [0,1]n.
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3 Aggregation Functions in Optimization Problems

A typical multiobjective optimization problem looks like this [36]:

minimize {F1(x),F2(x), . . .Fn(x)}
subject to: linear or nonlinear constraints on x.

One way of solving such problems is to transform the multiojective problem to a
single aggregate objective problem

minimize f (F1(x),F2(x), . . .Fn(x))

subject to: linear or nonlinear constraints on x,

where f is an aggregation function. Notice the importance of monotonicity of f .
The aggregation function used most widely is the weighted arithmetic mean.

We note that this approach is subjective, as the solution depends on the weights
chosen by the decision maker. Further, it cannot identify all non-dominant solutions.
However its simplicity, and the fact that off-the-shelf single objective optimization
methods can be used, provide it with a strong advantage.

Clearly, the use of weighted mean is warranted only if the objectives are inde-
pendent, which is not always true in practice. For objectives which are mutually
dependent, the use of Choquet integral is justified. Here one can account not only
for importance of individual criteria, but also for importance of groups of criteria
(coalitions).

Another application of aggregation functions is in constrained optimization prob-
lems

minimize F(x)

subject to: g(x) ≤ 0.

Penalty function approach transforms this problem into

minimize F(x)+ a1g1(x)+ . . .amgm(x).

Clearly we can use any other aggregation function f to combine the objective and
the constraints

minimize f (F(x),g1(x), . . . ,gm(x)).
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4 Optimization Methods for Construction of Aggregation
Functions

In this section we review methods of construction of aggregation functions based on
optimization. In applications one faces a difficult task of choosing the most appro-
priate aggregation function for a specific problem. One has to discriminate among
different aggregation functions based on some criteria. The criteria may relate to
the mathematical properties of an aggregation function, or to some data, such as the
desired or observed values of an aggregation function at some points.

4.1 Determination of Weighting Vectors

One important class of aggregation functions are OWA functions (Definition 20).
There are two quantities associated with OWA weighting vectors, the orness value
and the entropy. The orness value specifies how far is the OWA function from the
max function.

Definition 32. The orness value of an OWA function is

orness(OWAw) =
n

∑
i=1

wi
n− i
n−1

= OWAw(1,
n−2
n−1

, . . . ,
1

n−1
,0). (8)

Clearly orness(max) = 1, orness(min) = 0, and for the arithmetic mean
orness(M) = 1

2 . If the weighting vector is non-decreasing, i.e., wi ≤ wi+1, i =
1, . . . ,n−1, then orness(OWAw) ∈ [ 1

2 ,1]. If the weighting vector is non-increasing,
then orness(OWAw) ∈ [0, 1

2 ].

Definition 33. The weights dispersion (entropy) of an OWA function is

Disp(w) = −
n

∑
i=1

wi logwi.

It measures the degree to which all the information (i.e., all the inputs) is used in the
aggregation process.

• If the orness is not specified, the maximum of Disp is achieved at wi = 1
n , i.e.,

the arithmetic mean, and Disp( 1
n , . . . , 1

n ) = logn.
• The minimum value of Disp, 0, is achieved if and only if wi = 0, i �= k, and

wk = 1, i.e., the order statistic.
• The entropy of an OWA and its dual (reverse OWA) coincide, Disp(w) =

Disp(wd).
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4.1.1 Maximum Entropy OWA

One approach to choosing OWA weights was proposed in [37] and followed in [23].
It uses various measures of weight entropy or dispersion. The idea is to choose for
a given n such a vector of weights that maximizes the dispersion Disp(w).

It is formulated as an optimization problem

min
n
∑

i=1
wi logwi (9)

s.t.
n
∑

i=1
wi = 1,

n
∑

i=1
wi

n−i
n−1 = α,

wi ≥ 0, i = 1, . . . ,n.

The solution is provided in [23] and is called Maximum Entropy OWA (MEOWA).
Using the method of Lagrange multipliers, the authors obtain the following expres-
sions for wi:

wi = (wn−i
1 wi−1

n )
1

n−1 , i = 2, . . . ,n−1, (10)

wn =
((n−1)α−n)w1 + 1
(n−1)α+ 1−nw1

,

and w1 being the unique solution to the equation

w1[(n−1)α+ 1−nw1]n = ((n−1)α)n−1[((n−1)α−n)w1 + 1] (11)

on the interval (0, 1
n ). For n = 3, we obtain w2 =

√
w1w3 independently of the value

of α .
A different representation of the same solution was given in [19]. Let t be the

(unique) positive solution to the equation

dtn−1 +(d + 1)tn−2 + . . .+(d + n−2)t +(d + n−1) = 0, (12)

with d = −α(n−1). Then the MEOWA weights are identified from

wi =
ti

T
, i = 1, . . . ,n, where T =

n

∑
j=1

t j. (13)

It is not difficult to check that both (10) and (13) represent the same set of weights,

noting that t = n−1
√

wn
w1

= − 1−d−nw1
d , or w1 = 1+td−d

n , and that substituting w1 into

(11) yields

1− tn =
n(1− t)

1−d(1− t)
,
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which translates into
1− tn

1− t
−d(1− tn)−n = 0,

and then into
dtn + tn−1 + tn−2 + . . .+ t +(1−d −n) = 0.

After factoring out (t −1) we obtain (12).

4.1.2 Minimum Variance OWA

Another popular characteristic of weighting vector is weights variance [24]

D2(w) =
1
n

n

∑
i=1

(wi −M(w))2 =
1
n

n

∑
i=1

w2
i − 1

n2 , (14)

where M(w) is the arithmetic mean of w.
Here one minimizes D2(w) subject to given orness value. The resulting OWA

function is called Minumum Variance OWA (MVOWA). Since adding a constant
to the objective function does not change the minimizer, this is equivalent to the
problem

min
n
∑

i=1
w2

i (15)

s.t.
n
∑

i=1
wi

n−i
n−1 = α,

n
∑

i=1
wi = 1,wi ≥ 0, i = 1, . . . ,n.

For α = 1
2 the optimal solution is always wj = 1

n , j = 1, . . . ,n. It is also worth noting
that the optimal solution to (15) for α > 1

2 , w∗, is related to the optimal solution for
α < 1

2 , w, by w∗
i = wn−i+1, i.e., it gives the reverse OWA. Thus it is sufficient to

establish the optimal solution in the case α < 1
2 .

The optimal solution [24,32] for α < 1
2 is given as the vector w = (0,0, . . . ,0,wr,

. . . ,wn), i.e., wj = 0 if j < r, and

wr =
6(n−1)α−2(n− r−1)
(n− r + 1)(n− r + 2)

,

wn =
2(2n−2r + 1)−6(n−1)α)

(n− r + 1)(n− r + 2)
,

and

wj = wr +
j − r
n− r

(wn −wr), r < j < n.
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The index r depends on the value of α , and is found from the inequalities

n−3(n−1)α−1 < r ≤ n−3(n−1)α.

Recently it was established [32] that the solution to the minimum variance OWA
weights problem is equivalent to that of minimax disparity [42], i.e., the solution to

min

{
max

i=1,...,n−1
|wi −wi−1|

}
(16)

s.t.
n
∑

i=1
wi

n−i
n−1 = α,

n
∑

i=1
wi = 1,wi ≥ 0, i = 1, . . . ,n.

The weights of OWA functions obtained as solutions to maximum entropy or mini-
mum variance problems are fixed for any given n and orness value, and can be pre-
computed. However, both criteria are also useful for data driven weights identifica-
tion, if there are multiple optimal solutions. Then the solution maximizing Disp(w)
or minimizing D(w) is chosen. Torra [39] proposes to solve an auxiliary univariate
optimization problem to maximize weights dispersion, subject to a given value of
entropy. On the other hand, one can fit the orness value α of MEOWA or MVOWA
to empirical data, using a univariate nonlinear optimization method, in which at
each iteration the vector w is computed using analytical solutions to problems (9)
and (15).

4.2 Construction of Aggregation Functions from Data

In this section we assume that there is a set of data D = {(xk,yk)}K
k=1, with xk ∈

[0,1]n,yk ∈ [0,1] for all k = 1, . . . ,K, and that our goal is to construct an aggregation
function (general, or from a given class), that fits the data best. There could however,
be variations: a) some components of vectors xk may be missing, b) vectors xk may
have varying dimension by construction, and c) the outputs yk could be specified as
a range of values (i.e., the interval [y

k
,yk]).

The selection of an aggregation function can be stated formally as follows:

Let us have a number of mathematical properties P1,P2, . . . and the data D . Choose
an aggregation function f consistent with P1,P2, . . ., and satisfying f (xk) ≈ yk,k =
1, . . . ,K.

We can also vary the problem to accommodate a fitting to intervals, i.e. we require
f (xk) ∈ [y

k
,yk]. How these values are specified will depend on the application. In

some cases it may be possible to fit the function exactly without violating any of the
desired properties, however most of the time we merely want to minimize the error
of approximation.
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Mathematically, the satisfaction of approximate equalities f (xk) ≈ yk can be
translated into the following minimization problem.

minimize ||r|| (17)

subject to f satisfies P1,P2, . . . ,

where ||r|| is the norm of the residuals, i.e., r ∈ RK is the vector of the differences
between the predicted and observed values rk = f (xk)− yk. There are many ways
to choose the norm, and the most popular are the least squares norm, the least ab-
solute deviation norm, the Chebyshev norm or their weighted analogues. Another
possibility is to use Huber-type functions which appear in M-estimates to increase
robustness with respect to outliers.

Example 4 (Fitting a weighted arithmetic mean)

Suppose that we have a data set D and we want to define a weighted arithmetic mean
using the least squares approach. So we have

minimize
K
∑

k=1

(
n
∑

i=1
wixik −yk

)2

subject to
n
∑

i=1
wi = 1,

w1, . . . ,wn ≥ 0.

This is a quadratic programming problem, which is solved by a number of standard
methods.

It may be that the actual numerical value of the output f (xk) is not so much im-
portant, but rather the ranking of the outputs [29]. That is, if yk ≤ yl , then we want
the application to return f (xk) ≤ f (xl). In providing the data, an individual may
give more reliable information by providing ranked alternatives, or specifying their
preference for one item over another, than by estimating overall scores. In order to
preserve the ranking of the outputs, constraints f (xk) ≤ f (xl) if yk ≤ yl for all pairs
k, l can be imposed.

The approximation problem thus far described may turn out to be a general non-
linear optimization problem, or a problem from a special class. Clearly, the com-
plexity of the problem depends on the properties of the chosen norm ||r|| and on
the properties Pi. Certain optimization problems have well researched solution tech-
niques and proven algorithms, so it is important to recognize the possibility for this
where it exists.

Some optimization problems utilize a convex objective function or variant of
this, in which case the difficulty is not so much in this step, but rather in defining
the constraints. Fitting the Choquet integral, for instance has an exponential number
of constraints which need to be defined. Many problems, however can be specified
as linear or quadratic programming problems, which have been extensively studied
with many solution techniques available.



Optimization and Aggregation Functions 95

4.2.1 Learning Weights from Data

We exemplify the process of learning weights of weighted aggregation functions
from data using the least absolute deviation (LAD) criterion. This criterion leads to
linear programming formulation of regression problems. If we use the least squares
criterion, we would obtain corresponding quadratic programming problems.

We remind LAD problem (17) is converted to an LP problem by using the aux-
iliary variables r−k ,r+

k ≥ 0 : r+
k − r−k = f (xk;w) − yk, in which case r+

k + r−k =
| f (xk;w)− yk|. Then problem (17) converts to an LP problem [12]

minimize
K
∑

k=1
r+

k + r−k (18)

subject to r+
k − r−k − f (xk;w) = −yk, k = 1, . . . ,K

other linear constraints on w

r−k ,r+
k ≥ 0.

Weighted Arithmetic Means
The problem of weights identification (18) takes the special form

minimize
K
∑

k=1
r+

k + r−k (19)

subject to r+
k − r−k −

n
∑

i=1
wixki = −yk, k = 1, . . . ,K

n
∑

i=1
wi = 1

r−k ,r+
k ≥ 0,wi ≥ 0.

OWA Functions

The problem of weights identification (18) takes the form

minimize
K
∑

k=1
r+

k + r−k (20)

subject to r+
k − r−k −

n
∑

i=1
wixk(i) = −yk, k = 1, . . . ,K

n
∑

i=1
wi = 1, 1

n−1

n
∑

i=1
wi(n− i) = α

r−k ,r+
k ≥ 0,wi ≥ 0.

The second constraint involving w is optional, its aim is to obtain a specified orness
value α .

Choquet Integrals
Discrete Choquet integrals are conveniently written in terms of the Möbius trans-
form of the corresponding fuzzy measure μ as (see [27, 26]).
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f (x;w) = ∑
A ⊆N

wA min
i∈A

xi,

where w is an array of size 2n −1 encoding the values of the Möbius representation
of μ , and wA is the element corresponding to the subset A ⊆ N = {1,2, . . . ,n}.
The problem (18) takes the form (see [10], p.115)

minimize
K
∑

k=1
r+

k + r−k (21)

subject to r+
k − r−k − ∑

A ⊆N
wA min

i∈A
xi = −yk, k = 1, . . . ,K

∑
B⊆A |i∈B

wB ≥ 0, for all A ⊆ N , |A | > 1 and all i ∈ A ,

∑
A ⊆N

wA = 1,

r−k ,r+
k ≥ 0,w{i} ≥ 0, other wA unrestricted.

The linear constraints express the conditions of monotonicity fuzzy measures and
the bound μN = 1. If desired, other conditions (bounds on Shapley values, inter-
action indices or orness level) can be added as additional linear constraints (see
[26, 10]). Furthermore, conditions of k-additivity can also be imposed as linear
constraints wA = 0 for all A | |A | > k, or even by eliminating the corresponding
variables.

Quasi-Arithmetic Means and Generalized OWA
Consider the situation where the generating function g is fixed (by the decision
maker), and the task is to identify w. The problem is solved by linearization [10], by
solving the problem

minimize
K
∑

k=1
r+

k + r−k (22)

subject to r+
k − r−k −

n
∑

i=1
wig(xki) = −g(yk), k = 1, . . . ,K

n
∑

i=1
wi = 1

r−k ,r+
k ≥ 0,wi ≥ 0,

and similarly for generalized OWA (by replacing xki with xk(i)).

4.2.2 Learning Generators from Data

Quasi-Arithmetic Means
In this case we assume that the weights w are fixed, and the task is to identify the
generating function g. We use a linear spline as the generating function, written as a
linear combination of some basis functions B j, j = 1, . . . ,J, related to B-splines [3]
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g(x) =
J

∑
j=1

c jB j(x).

Since the generating function is defined up to an arbitrary linear transformation, we
add the constraints g(0) = 0,g(1) = 1 which fix a specific g, if its range is finite. If
it is semiinfinite, then its asymptotic behavior is modeled as in [4, 9].

The goal is to identify the coefficients c j, which satisfy c j ≥ 0 in order for g to
be monotone increasing [3, 4]. Then we have

n

∑
i=1

wig(xki)−g(yk) =
J

∑
j=1

c j

(
n

∑
i=1

wiB j(xki)−B j(yk)

)
.

Hence the LAD fitting problem translates into

minimize
K
∑

k=1
r+

k + r−k (23)

subject to r+
k − r−k −

J
∑
j=1

c j

(
n
∑

i=1
wiB j(xki)−B j(yk)

)
= 0,

k = 1, . . . ,K,

J
∑
j=1

c jB j(0) = 0,
J
∑
j=1

c jB j(1) = 1,

r−k ,r+
k ≥ 0,c j ≥ 0, wi fixed.

When both w and c are variables, it is possible to set the problem as a bi-level
optimization problem, for details see [4, 9].

Triangular Norms and Conorms
We consider only t-norms, as equivalent results for t-conorms are obtained by
duality. Continuous Archimedean t-norms are dense in the set of all continuous
t-norms. They also possess additive generators, monotone decreasing continuous
functions g : [0,1] → [0,∞],g(1) = 0, and can be either strict (g(0) =∞) or nilpotent
(g(0) <∞).

By using a very similar method to that we used for quasi-arithmetic means, ap-
proximating an additive generator using a linear spline, we have the LAD problem
written in the form (in case of nilpotent t-norms)
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minimize
K
∑

k=1
r+

k + r−k (24)

subject to r+
k − r−k −

J
∑
j=1

c j

(
n
∑

i=1
B j(xki)−B j(yk)

)
= 0,

k = 1, . . . ,K,

J
∑
j=1

c jB j(1) = 0,
J
∑
j=1

c jB j(1) = 1,

r−k ,r+
k ≥ 0,c j ≤ 0.

Note that c j ≤ 0 because g is monotone decreasing. In case of strict t-norms, the
asymptotic behavior is modeled as in [4, 9].

Uninorms and Other Generated Functions
Representable uninorms possess additive generators g which satisfy g(e) = 0, e be-
ing the neutral element, and g(0) = −∞, g(1) =∞. In contrast, continuous generated
functions with a neutral element [31, 17, 10] have generators that are finite at either
or both ends of [0,1]. They are not associative.

The LAD problem is dealt with very similarly to the case of t-norms, with slightly

different constraints on c, namely c j ≥ 0 and
J
∑
j=1

c jB j(e) = 0, plus the constraints

resulting from the values g(0) and g(1) (the asymptotes, if needed, are modeled as
in [4, 9]).

T-S Functions
A T-S function [38] is composed from a t-norm T , a t-conorm S and a weighted
quasi-arithmetic mean Mw (with the weighting vector w = (1 − γ,γ),γ ∈ [0,1]) by
means of

f (x;w) = Mw(T (x),S(x)).

Special cases are linear convex (Mw is a weighted arithmetic mean) and exponential
convex (Mw is a weighted geometric mean) T-S functions. γ-operators [46] are a
special case of exponential convex T-S functions with T being the product and S the
dual product.

For fixed T , S and Mw and variable parameter γ , the LAD problem is

minimize
K
∑

k=1
r+

k + r−k (25)

subject to r+
k − r−k −w1g(T (xk))−w2g(S(xk)) = −g(yk),

k = 1, . . . ,K,

w1 + w2 = 1,

r−k ,r+
k ≥ 0,w1,w2 ≥ 0,

where g is the generating function of Mw and w = (1− γ,γ).
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If the data are interval-valued, or there is a requirement to preserve the ordering of
the outputs, there are methods analogous to those mentioned in this section, which
also convert the problem to a linear programming problem [7].

4.2.3 Method of Optimal Interpolation

The method of monotone optimal Lipschitz interpolation was proposed in [5] and
applied to aggregation functions in [8, 6]. Denote by Mon the set of monotone non-
decreasing functions on [0,1]n. Then the set of general Lipschitz n-ary aggregation
functions with Lipschitz constant M is characterized as

AM,||·|| = { f ∈ Lip(M, || · ||)∩Mon : f (0) = 0, f (1) = 1}.

We assume that the data set is consistent with the class AM,||·||. If not, there are ways
of smoothing the data, discussed in [5]. Our goal is to determine the best element
of AM,||·|| which interpolates the data. The best is understood in the sense of optimal
interpolation [41]: it is the function which minimizes the worst case error, i.e., solves
the following Problem.

Optimal Interpolation Problem

min
f∈AM,||·||

max
g∈AM,||·||

max
x∈[0,1]n

| f (x)−g(x)|

s.t. f (xk) = yk,k = 1, . . . ,K.

The solution to this problem will be an aggregation function f which is the “center”
of the set of all possible aggregation functions in this class consistent with the data.
The method of computing f is based on the following result [5].

Theorem 1. Let D be a data set compatible with the conditions f ∈ Lip(M, || · ||)∩
Mon. Then for any x ∈ [0,1]n, the values f (x) are bounded by σl(x) ≤ f (x) ≤σu(x),
with

σu(x) = min
k

{yk + M||(x−xk)+||},
σl(x) = max

k
{yk −M||(xk −x)+||}, (26)

where z+ denotes the positive part of vector z: z+ = (z̄1, . . . , z̄n), with

z̄i = max{zi,0}.

The optimal interpolant is given by

f (x) =
1
2
(σl(x)+σu(x)). (27)

Computation of the function f is straightforward, it requires computation of both
bounds, and all the functions, σl , σu and f belong to Lip(M, || · ||)∩Mon. Thus, in
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addition to the optimal function f , one obtains as a by-product the strongest and the
weakest aggregation functions from the mentioned class.

It is also useful to consider infinite data sets

D = {(t,v(t)) : t ∈Ω ⊂ [0,1]n,v : Ω → [0,1]]}

in which case the bounds translate into

Bu(x) = inf
t∈Ω

{v(t)+ M||(x− t)+||},
Bl(x) = sup

t∈Ω
{v(t)−M||(t−x)+||}. (28)

We can make use of these bounds when considering special properties of aggrega-
tion functions, such as idempotency or neutral element.

The function f given in Theorem 1 is not yet an aggregation function, because
we did not take into account the conditions f (0) = 0, f (1) = 1. By adding these
conditions, we obtain the following generic construction of Lipschitz aggregation
functions

f (x) =
1
2
(A(x)+ A(x)). (29)

A(x) = max{σl(x),Bl(x)}, A(x) = min{σu(x),Bu(x)}), (30)

where the additional bounds Bl and Bu are due to specific properties of aggregation
functions, considered in the next section. At the very least we have (because of
f (0) = 0, f (1) = 1)

Bu(x) = min{M||x||,1}, (31)

Bl(x) = max{0,1−M||1−x||},

but other conditions will tighten these bounds.
We note that as a special case of Equations (26)-(31) we obtain p-stable aggrega-

tion functions, which have Lipschitz constant M = 1 in the norm || · ||p. In this case
the bounds (31) become Yager t–norm and t–conorm respectively.

4.3 Penalty Based Aggregation

Penalty based aggregation functions have been studied by several authors [45, 18,
34, 28, 2, 25, 11, 33, 35]. The results on the arithmetic means and the median (tt
is known that the weighted arithmetic and geometric means, the median and the
mode are functions that minimize some simple penalty functions), were already
known to Laplace (quoted from [40], p.15), see also [25]. The main motivation is
the following. Let x be the inputs and y the output. If all the inputs coincide x = x1 =
. . . = xn, then the output is y = x, and we have a unanimous vote. If some input xi �= y,
then we impose a “penalty” for this disagreement. The larger the disagreement, and
the more inputs disagree with the output, the larger (in general) is the penalty. We
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look for an aggregated value which minimizes the penalty; we look for a consensus
which minimizes the disagreement.

We start with a very broad definition of penalties, and then particularize it and
obtain many known aggregation functions as special cases. Let us consider a vector
of inputs x and the vector y = (y,y, . . . ,y).

Definition 34. The function P : Xn+1 → ℜ̄+ = [0,∞] is a penalty function if and only
if it satisfies:

i) P(x,y) ≥ 0 for all x,y;
ii) P(x,y) = 0 if x = y;
iii)For every fixed x, the set of minimizers of P(x,y) is either a singleton or an

interval.

The penalty based function is

f (x) = argmin
y

P(x,y),

if y is the unique minimizer, and y = a+b
2 if the set of minimizers is the interval (a,b)

(open or closed).

The first two conditions have useful interpretations: no penalty is imposed if there
is full agreement, and no negative penalties are allowed. However, since adding a
constant to P does not change its minimizers, technically they can be relaxed: P
just needs to reach its absolute minimum when x = y. Condition iii) ensures that the
function f is well defined. If P is quasiconvex in y, then iii) is automatically satisfied.
We should also note that a penalty based function is necessarily idempotent, but it
is not always monotone.

Definition 35. A penalty based function f , which is monotone increasing in all com-
ponents of x is called penalty based aggregation function.

Next we establish a few general results.

Proposition 1. Let f be a penalty based aggregation function on Xn, such that y∗
is the unique minimizer of P(x,y). Let h be a continuous strictly monotone function
Y → X. Then fh(x) = h−1( f (h(x))) is also a penalty based aggregation function on
Y n, with Ph(x,y) = P(h(x),h(y)).

Theorem 2. Let f : Xn → X be an idempotent function. Then there exists a penalty
function P : Xn+1 → ℜ̄+, such that

f (x) = argmin
y

P(x,y).

Proof. The function P(x,y) = ( f (x)− y)2 is one such penalty function. In fact, any
strictly convex (or quasi-convex) univariate function of t = f (x)− y can serve as
such a penalty function.
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Corollary 1. Any averaging aggregation function f can be expressed as a penalty
based aggregation function.

Not every penalty based function is monotone. But for some types of penalty based
functions we can establish when monotonicity holds.

A special class of penalty functions was considered in [18]. Let P be given as

P(x,y) =
n

∑
i=1

wi p(xi,y), (32)

where p : X2 → ℜ+ is a dissimilarity function with the properties

1) p(t,s) = 0 if and only if t = s, and
2) p(t1,s) ≥ p(t2,s) whenever t1 ≥ t2 ≥ s or t1 ≤ t2 ≤ s,

and w is a weighting vector. Note that the condition 2) is weaker than that in [45],
which is p(t1,s) ≥ p(t2,s) if |t1 − s| > |t2 − s|.

The resulting penalty based function, if it exists, is idempotent, but it need not be
monotone. To ensure that y∗ is unique, and f is an aggregation function, the authors
in [18] use the so called “faithful” penalty function.

Definition 36. The function p : X2 → ℜ+ is called faithful penalty function, if it
satisfies 1) and can be represented as p(t,s) = K(h(t),h(s)), where h : X → ℜ is
some continuous monotone function (scaling function) and K : ℜ2 →ℜ+ is convex.

Definition 37. Let the penalty function P be given by (32), where p : X2 → ℜ+ is a
faithful penalty function. The function

f (x) = y∗ = argmin
y

P(x,y)

is a faithful penalty based aggregation function.

A special class of faithful penalty based functions was considered in [33, 35] (dis-
similarity functions). The (faithful) penalties p are expressed as

p(t,s) = K(h(t)−h(s)), (33)

where K : ℜ2 →ℜ is convex (shape function) with the unique minimum K(0) = 0,
and h is the scaling function.

Theorem 3. [33] The penalty based function with the penalty expressed in (32) and
(33) is an aggregation function.

Example 5. There are several well known aggregation functions that are faithful
penalty based aggregation functions.

1. Weighted arithmetic mean with p(t,s) = (t − s)2.
2. Weighted median with p(t,s) = |t − s|.
3. Weighted quasi-arithmetic means with the generator h: p(t,s) = (h(t)−h(s))2.
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4. Weighted quasi-median with the generator h, f (x) = h−1(Medw(h(x))): p(t,s) =
|h(t)−h(s)|.

5. Let P(x,y) = ∑n
i=1 wi p(x(i),y) , where x(i) is the i-th largest component of x. We

obtain the ordered weighted counterparts of the means in the previous examples,
namely the OWA, ordered weighted median and generalized OWA.

Example 6. Let p(t,s) = 1,t �= s and p(t, t) = 0. p is not a faithful penalty function,
but it does satisfy conditions 1) and 2). Then the minimizer of (32) is the mode. The
mode is not monotone non-decreasing, hence mode is not an aggregation function.

Definition 38 (Deviation mean). (see [15], p.316) Let d : X → ℜ be a continu-
ous function strictly increasing with respect to the second argument, and satisfying
d(t,t) = 0 for all t ∈ X. The equation

n

∑
i=1

wid(xi,y) = 0 (34)

has the unique solution y∗, which is the value of the function f (x) called the devia-
tion mean.

If d(t,s) = h(s)−h(t) for some continuous strictly monotone function h, one recov-
ers the class of weighted quasi-arithmetic means with the generator h.

Theorem 4. Let the penalty function P be defined as

P(x,y) =
n

∑
i=1

wid(xi,y)2,

where d is a deviation function. Then the penalty based aggregation function is the
deviation mean.

Proof: Of course, the equation (34) is the necessary condition of a minimum, which
is unique since d2 is strictly quasiconvex with respect to y.

Hence all deviation means can be represented as penalty based functions but
not vice versa (because P needs not be differentiable with respect to y, nor strictly
convex in y). They form a subclass of penalty based functions.

Definition 39 (Entropic mean). [11] Let φ : ℜ+ → ℜ be a strictly convex differ-
entiable function with (0,1] ⊂ dom φ and such that φ(1) = φ ′(1) = 0, and w is a
weighting vector. The penalty dφ is defined as

dφ (x,y) = xφ(y/x).

The entropic mean is the function

f (x) = y∗ = arg min
y∈ℜ+

n

∑
i=1

widφ (xi,y).
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It turns out that dφ (α, ·) is strictly convex for any α > 0, and dφ (α,β ) ≥ 0
with equality if and only if α = β . The differentiability assumption can be relaxed,
see [11]. However entropic means are not a subset of faithful penalty based aggrega-
tion functions. On the other hand, all entropic means are homogeneous aggregation
functions [11].

Definition 40. [13] Let ψ :ℜ→ℜ be a strictly convex differentiable function. Then
the Bregman loss function Dψ : ℜ×ℜn →ℜ is defined as

Dψ(x,y) = ψ(x)−ψ(y)− (x− y)ψ ′(y). (35)

Definition 41. Let ψ : ℜ → ℜ be a strictly convex differentiable function. Then
Bregman penalty based aggregation function is

f (x) = y∗ = arg min
y∈ℜ+

n

∑
i=1

wiDψ (y,xi).

Taking the partial derivative of Dψ [11]:

∂Dψ (x,y)
∂x

= ψ ′(x)−ψ ′(y),

from which it follows that y∗ satisfies

ψ ′(y∗) =
n

∑
i=1

wiψ ′(xi).

Because ψ is strictly convex, the minimum is unique, ψ ′ is strictly increasing, and
f (x) = y∗ is a weighted quasi-arithmetic mean with the generator h(t) = ψ ′(t).

Example 7. Penalties based on Bregman loss function [11]:

1. ψ(t) = (t −1)2, then Dψ (x,y) = (x− y)2 and f is WAM;
2. ψ(t) = t logt, then Dψ(x,y) = y logx/y, and f = Mg is WGM;

3. ψ(t) = t log t − (1 + t) log(1 + t), then h(t) = ψ ′(t) = log( t
1+t ), h−1(t) = et

1+et ,
and

f (x) =
∏xwi

i

∏(1 + xi)wi −∏xwi
i

.

Let us now consider more general penalties, based on the formula

P(x,y) =
n

∑
i=1

pi(xi,y). (36)

Here, in addition to the weights, we can vary the contribution of the i-th input based
on the functional form of the corresponding penalty pi(xi,y). This is useful in the
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following context. Consider the inputs of different sensors, which need to be av-
eraged (e.g., temperature sensors). The inputs from sensors are random variables
with different distributions (e.g., normal, Laplace or another member of exponential
family). Then taking the weighted arithmetic mean or median is not appropriate,
because sensors are heterogeneous. We can take into account the diversity of inputs
errors distributions by means of different penalty functions. The following example
presents the penalty suitable when the first distribution is Laplace, and the second is
normal.

Example 8. [34, 33] Let n = 2 and the penalty be

P(x,y) = |x1 − y|+(x2 − y)2.

Solving the equation of the necessary condition for a minimum, and taking into
account that P is convex, we obtain

f (x1,x2) = Med(x1,x2 − 1
2
,x2 +

1
2
).

Extending Example 8 we have

Example 9

P(x,y) =
n

∑
i=1

wi|xi − y|i.

We cannot provide a closed form solution in this case, but note that P is convex with
respect to y, and a numerical solution is easily obtained using the method of golden
section.

Example 10. Let P(x,y) = max(0,y− x(1))+ max(0,y− x(2))+∑n
i=3 |x(i) − y|, and

x(i) is the i-th largest component of x. The first two terms penalize solutions y ex-
ceeding the largest and the second largest inputs. As the result, we discard the two
largest values of x. The solution is equivalent to a weighted median with the weight-
ing vector w = (0,0, 1

n−2 , . . . , 1
n−2). By changing the absolute value to the squared

differences, we obtain an OWA function with the same weighting vector.

Example 11. Let P(x,y) = ∑n−1
i=1 wi(xi − y)2 + wn max(0,y − xn)2. The meaning of

the last term is the following. Suppose the n-th input (e.g., the n-th expert) usu-
ally underestimates the result y. Then we wish to penalize y > xn but not y < xn.
So the n-th input is discarded only if y < xn. The resulting penalty P is a piece-
wise quadratic function whose minimum is easily found: it is the minimum of
the weighted arithmetic means of the first n − 1 and of all components of x,
f (x) = min(A(x1, . . . ,xn−1),A(x1, . . . ,xn)).
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5 Conclusion

Aggregation functions are widely used in decision and management sciences, ex-
pert and decision support systems, recommender systems, internet search engines
and many other areas, in which consistent combinations of several inputs into one
output value are needed. We discussed various method of construction of aggrega-
tion functions based on optimization problems. The construction methods include
weights determination based on dispersion or entropy, learning weights from data,
learning generating functions, pointwise construction based on optimal interpola-
tion, as well as penalty based aggregation functions. We also looked at how ag-
gregation functions can be used in the context of multiobjective and constrained
optimization. We see that there are multiple connections between the areas of opti-
mization and aggregation functions, and there may be interesting new connections
worth exploring.
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Chebyshev Approximation of
Inconsistent Fuzzy Relational
Equations with Max-T Composition�

Pingke Li and Shu-Cherng Fang

Abstract. This paper considers resolving the inconsistency of a system of
fuzzy relational equations with max-T composition by simultaneously mod-
ifying the coefficient matrix and the right hand side vector. We show that
resolving the inconsistency of fuzzy relational equations with max-T compo-
sition by means of Chebyshev approximation is closely related to the gen-
eralized solvability of interval-valued fuzzy relational equations with max-T
composition. An efficient procedure is proposed to obtain a consistent system
with the smallest perturbation in the sense of Chebyshev distance.

Keywords: Fuzzy optimization, fuzzy relational equations, Chebyshev ap-
proximation.

1 Introduction

A system of fuzzy relational equations with max-T composition is of the form

max
j∈N

T (aij , xj) = bi, ∀ i ∈ M, (1)

where M = {1, 2, · · · , m} and N = {1, 2, · · · , n} are two index sets, A =
(aij)m×n ∈ [0, 1]mn, b = (b1, b2, · · · , bm)T ∈ [0, 1]m, x = (x1, x2, · · · , xn)T ∈
[0, 1]n and T : [0, 1]2 → [0, 1] is a triangular norm (t-norm for short). A
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system of the above form in (1) is also called a system of max-T equations
for short and denoted as A◦T x = b in the matrix form where “◦T ” stands
for the max-T composition. Typically, the t-norm T involved in a system
A◦T x = b is required to be continuous, i.e., continuous as a function of two
arguments.

The resolution of a system of max-T equations is to determine the unknown
vector x for a given coefficient matrix A and a right hand side vector b such
that A◦T x = b. The set of all solutions to a system of max-T equations
A◦T x = b is denoted by S(A, b), i.e., S(A, b) = {x ∈ [0, 1]n | A◦T x = b}.
A system A◦T x = b is called consistent if S(A, b) �= ∅, otherwise, it is
inconsistent.

Fuzzy relational equations were first investigated by Sanchez [26, 27]
under the max-TM composition where TM is the minimum operator, i.e.,
TM (x, y) = min(x, y). Since then, solving various types of fuzzy relational
equations has become one of the most appealing issues in fuzzy set theory.
It has been pointed out that fuzzy relational equations play an important
role as a uniform platform in many applications of fuzzy sets and fuzzy sys-
tems. See, e.g., Pedrycz [22, 24], Mordeson and Malik [18] and Peeva and
Kyosev [25].

The resolution of a system of max-T equations has been investigated by
Pedrycz [20, 21], Miyakoshi and Shimbo [17], Di Nola et al. [6, 7, 8], Klir and
Yuan [12], De Baets [5], etc. It is well known that the consistency of a system
of max-T equations can be verified in polynomial time by constructing and
checking a potential maximum solution. The set of all solutions, when it is
nonempty, is a finitely generated root system which can be fully determined
by a unique maximum solution and a finite number of minimal solutions.
However, the detection of all minimal solutions is an NP-hard problem. Sim-
ilar conclusions can be drawn for a system of max-T inequalities. The reader
may refer to Li and Fang [14, 15] and references therein for more details.

Although the consistency of a system of max-T equations can be readily
verified and its solution set can be well characterized, related investigations
are meaningful only when the system under consideration is consistent. How-
ever, due to the inaccuracy and deficiency in data or the inappropriate choice
of the t-norm, it happens quite often that the system of max-T equations ob-
tained in modeling a real situation turns out to be inconsistent. Moreover,
the consistency of a system of max-T equations could be very sensitive to the
data, i.e., small perturbations in the data could lead a consistent system to
become inconsistent.

To deal with the impreciseness of the data and resolve the inconsistency of
the system, one possible approach is to consider the interval-valued max-T
equations, i.e., each entry in the matrix A and the vector b is replaced by a
closed interval of possible values in [0, 1]. A system of interval-valued max-T
equations can be represented in the form Ã◦T x = b̃ where Ã = (ãij)m×n

is an interval-valued matrix with ãij = [aij , aij ] ⊆ [0, 1] and b̃ = (b̃i)m×1 is
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an interval-valued vector with b̃i = [bi, bi] ⊆ [0, 1]. Denote A = (aij)m×n,
A = (aij)m×n and similarly, b = (bi)m×1, b = (bi)m×1. By extending the
natural order in a componentwise manner, Ã and b̃ induce the sets [A, A] �
{A | A ≤ A ≤ A} and [b, b] � {b | b ≤ b ≤ b}, respectively. The matrices A

and A are referred to as the lower and upper bounds of Ã, respectively, and
similarly, the vectors b and b the lower and upper bounds of b̃, respectively.
A system of interval-valued max-T equations Ã◦T x = b̃ is understood as
the family of all systems of max-T equations A◦T x = b with A ∈ [A, A] and
b ∈ [b, b]. Without loss of generality, we may always assume that A ≤ A and
b ≤ b such that the system Ã◦x = b̃ is properly defined. Interval-valued max-
T equations have been investigated by Wagenknecht and Hartmann [28, 29],
Wang and Chang [30], Li and Fang [13], Wang et al. [31] and Li and Fang [16].

Another approach to resolving the inconsistency of a system of max-T
equations is to perturb as slightly as possible either the coefficient matrix,
the right hand side vector or both to reach a consistent system. Based on
the notion of “minimal distortions”, Pedrycz [23] proposed a procedure to
modify the right hand side vector of an inconsistent system of max-TM equa-
tions. However, as indicated by Cuninghame-Green and Cechlárová [3], the
procedure is not given in a precise algorithmic form and hence would be dif-
ficult to implement in a computer. Cuninghame-Green and Cechlárová [3]
presented an algorithm to obtain a consistent system of max-TM equations
with the smallest perturbation of the right hand side vector in the sense of
Chebyshev distance, whereas Cechlárová [2] proposed an analogous algorithm
to resolve the inconsistency of a system of max-TM equations by modifying
the coefficient matrix. Both algorithms are essentially based on the idempo-
tency property of TM , i.e., TM (x, x) = min(x, x) = x, ∀ x ∈ [0, 1]. Hence,
neither of them can be generalized for general max-T equations since TM

has been proved to be the unique t-norm which possesses the idempotency
property. Moreover, no algorithm is known that resolves the inconsistency of
a system of max-TM equations by simultaneously modifying the coefficient
matrix and the right hand side vector. To the best of our knowledge, resolv-
ing the inconsistency of a system of max-T equations by means of Chebyshev
approximation remains to be an open problem.

In this paper, we show that resolving the inconsistency of a system of
max-T equations by means of Chebyshev approximation is closely related to
the generalized solvability of interval-valued max-T equations. A bisection
method is proposed for an inconsistent system of max-T equations to ob-
tain the smallest perturbation bound of both the coefficient matrix and the
right hand side vector. The construction of a Chebyshev approximation is
introduced thereafter and illustrated by numerical examples. The proposed
procedure remains valid with necessary modifications if only the coefficient
matrix or the right hand side vector, but not both, can be perturbed.
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2 Preliminaries

In this section, we recall some basic concepts and results associated with
fuzzy relational equations, which are indispensable for the introduction of the
Chebyshev approximation approach in this context. All proofs in this section
are omitted to make the paper succinct and readable. The reader may refer
to the monograph of Klement et al. [11] for a comprehensive discussion on
triangular norms, and Li and Fang [15, 16] and reference therein for a detailed
discussion on max-T equations and interval-valued max-T equations.

2.1 Triangular Norms

Although originally introduced in the framework of probabilistic metric
spaces, t-norms have been proposed as natural generalizations of the logical
conjunction in fuzzy logic and played an important role in the construction
of fuzzy systems which may be described by fuzzy relational equations.

Definition 2.1. A t-norm is a binary operator T : [0, 1]2 → [0, 1] such that
for all x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) T (x, y) = T (y, x). (commutativity)
(T2) T (x, T (y, z)) = T (T (x, y), z). (associativity)
(T3) T (x, y) ≤ T (x, z), whenever y ≤ z. (monotonicity)
(T4) T (x, 1) = x. (boundary condition)

A t-norm is said to be continuous if it is continuous as a function of two ar-
guments. Due to its commutativity and monotonicity properties, a t-norm is
continuous if and only if it is continuous in one of its arguments. Analogously,
a t-norm is said to be left- or right-continuous if it is left- or right-continuous,
respectively, in one of its arguments.

The most frequently used continuous t-norm is the minimum operator
TM (x, y) = min(x, y). Other important continuous t-norms include the prod-
uct operator TP (x, y) = xy and the bounded difference operator TL(x, y) =
max(x + y − 1, 0), a.k.a., �Lukasiewicz t-norm. Note that TM is the largest
t-norm while TP and TL are prototypical examples of two important classes
of continuous t-norms, i.e., strict t-norms and nilpotent t-norms, respectively.

Definition 2.2. Let T : [0, 1]2 → [0, 1] be a left-continuous t-norm. The
associated residual implicator is a binary operator IT : [0, 1]2 → [0, 1] such
that

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}, ∀ (x, y) ∈ [0, 1]2. (2)

Residual implicators are also known as ϕ-operators which were introduced
by Pedrycz [19, 20] in a different approach. The connection between a ϕ-
operator and its corresponding t-norm has been investigated in full generality
by Gottwald [9, 10], Miyakoshi and Shimbo [17] and Di Nola et al. [8].
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The residual implicators with respect to the minimum operator TM , the
product operator TP and the �Lukasiewicz t-norm TL are, respectively,

ITM (x, y) =

{
1, if x ≤ y

y, otherwise,
(Gödel implicator)

ITP (x, y) =

{
1, if x ≤ y

y/x, otherwise,
(Goguen implicator)

ITL(x, y) = min(1 − x + y, 1). (�Lukasiewicz implicator)

Lemma 2.3. The residual implicator IT with respect to a left-continuous t-
norm T is left-continuous and decreasing in its first argument as well as
right-continuous and increasing in its second argument.

Lemma 2.4. Let T be a left-continuous t-norm and IT its residual impli-
cator. The inequality T (a, IT (a, b)) ≤ b holds for all a, b ∈ [0, 1]. Moreover,
T (a, x) ≤ b if and only if x ≤ IT (a, b).

Lemma 2.4 plays a crucial role in the resolution of max-T equations, which
is actually a special scenario of the general theory of Galois connections [1].

2.2 Fuzzy Relational Equations

Let A◦T x = b be a system of max-T equations with T being a continuous
t-norm. Due to the monotonicity of the t-norm T , we have A◦T x1 ≤ A◦T x2

whenever x1 ≤ x2. Hence, x ∈ S(A, b) if x1, x2 ∈ S(A, b) and x1 ≤ x ≤ x2.
Therefore, we may focus on the extremal solutions as defined below.

Definition 2.5. A solution x̌ ∈ S(A, b) is called a minimal solution if for
any x ∈ S(A, b), the relation x ≤ x̌ implies x = x̌. A solution x̂ ∈ S(A, b)
is called a maximum solution if x ≤ x̂, ∀ x ∈ S(A, b).

Lemma 2.6 Let T be a left-continuous t-norm and IT its residual implicator.
For any A ∈ [0, 1]mn and b ∈ [0, 1]m, it holds that A◦T (AT ◦ϕ b) ≤ b where
“◦ϕ” stands for the min-IT composition and AT ◦ϕ b ∈ [0, 1]n is the vector
with its components being defined by

(AT ◦ϕ b)j = min{IT (aij , bi) | i ∈ M}, ∀ j ∈ N. (3)

Moreover, A◦T x ≤ b if and only if x ≤ AT ◦ϕ b.

Theorem 2.7 Let A◦T x = b be a system of max-T equations with T being
a left-continuous t-norm. The system is consistent if and only if AT ◦ϕ b is
a solution to A◦T x = b. Moreover, if T is also right-continuous and hence
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continuous, the solution set S(A, b), when it is nonempty, can be fully deter-
mined by one maximum solution and a finite number of minimal solutions,
i.e.,

S(A, b) =
⋃

x̌∈Š(A,b)

{
x ∈ [0, 1]n | x̌ ≤ x ≤ x̂

}
, (4)

where Š(A, b) is the set of all minimal solutions of A◦T x = b and x̂ = AT◦ϕb
is the maximum solution.

Lemma 2.6 is a direct result of Lemma 2.4. The solvability criteria of max-T
equations were investigated by Sanchez [26], Pedrycz [20, 21] and Miyakoshi
and Shimbo [17] while the structure of the solution set was characterized
by Sanchez [27] and Di Nola et al. [6, 7, 8]. The particular structure of
S(A, b) is called a finitely generated root system by De Baets [4, 5]. Note that
the intersection of two finitely generated root systems, when it is nonempty,
remains to be a finitely generated root system.

According to Theorem 2.7, the consistency of a system of max-T equa-
tions A◦T x = b can be verified by constructing and checking the potential
maximum solution x̂ = AT ◦ϕ b in a time complexity of O(mn). However,
the detection of all minimal solutions is a complicated and challenging issue
for investigation. The reader may refer to Li and Fang [15] and references
therein for more detailed discussion.

2.3 Interval-Valued Fuzzy Relational Equations

Let Ã be an interval-valued matrix with the lower bound A ∈ [0, 1]mn and
the upper bound A ∈ [0, 1]mn, and b̃ an interval-valued vector with the lower
bound b ∈ [0, 1]m and the upper bound b ∈ [0, 1]m. We now consider a system
of interval-valued max-T equations Ã◦T x = b̃ with T being a continuous
t-norm. The following two lemmas are crucial in dealing with the system
Ã◦T x = b̃, both of which simply rely on the monotonicity and continuity
properties of the t-norm T .

Lemma 2.8. Let Ã be an interval-valued matrix and T a continuous t-norm.
Given a vector x ∈ [0, 1]n, then for each vector b ∈ [A◦T x, A◦T x] there exists
A ∈ [A, A] such that A◦T x = b.

Lemma 2.9. Let Ã be an interval-valued matrix and T a continuous t-norm.
For any vector x ∈ [0, 1]n, we have

{A◦T x | A ∈ [A, A]} = [A◦T x, A◦T x]. (5)

Definition 2.10. Let Ã◦T x = b̃ be a system of interval-valued max-T equa-
tions with T being a continuous t-norm. A vector x ∈ [0, 1]n is called a
united solution of Ã◦T x = b̃ if there exist A ∈ [A, A] and b ∈ [b, b] such that
A◦T x = b.
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Denote Su(Ã, b̃) the set of united solutions for a system of interval-valued
max-T equations Ã◦T x = b̃. By Lemma 2.9, we immediately have

Su(Ã, b̃) = {x ∈ [0, 1]n | [A◦T x, A◦T x] ∩ [b, b] �= ∅} (6)
= {x ∈ [0, 1]n | A◦T x ≤ b, A◦T x ≥ b} (7)

and hence, by Lemma 2.6, the following straightforward result.

Theorem 2.11. Let Ã ◦T x = b̃ be a system of interval-valued max-T
equations with T being a continuous t-norm. The set of united solutions
Su(Ã, b̃) �= ∅ if and only if A◦T (AT ◦ϕ b) ≥ b.

Definition 2.12. Let Ã◦T x = b̃ be a system of interval-valued max-T equa-
tions with T being a continuous t-norm. A vector x ∈ [0, 1]n is called a
tolerable solution of Ã◦T x = b̃ if for each A ∈ [A, A] there exists b ∈ [b, b]
such that A◦T x = b. Similarly, a vector x ∈ [0, 1]n is called a controllable
solution of Ã◦T x = b̃ if for each b ∈ [b, b] there exists A ∈ [A, A] such that
A◦T x = b.

Denote St(Ã, b̃) and Sc(Ã, b̃) the sets of tolerable solutions and controllable
solutions, respectively, for a system of interval-valued max-T equations Ã◦T

x = b̃. By Lemma 2.9, we have

St(Ã, b̃) = {x ∈ [0, 1]n | [A◦T x, A◦T x] ⊆ [b, b]} (8)
= {x ∈ [0, 1]n | A◦T x ≤ b, A◦T x ≥ b} (9)

and

Sc(Ã, b̃) = {x ∈ [0, 1]n | [A◦T x, A◦T x] ⊇ [b, b]} (10)
= {x ∈ [0, 1]n | A◦T x ≤ b, A◦T x ≥ b}. (11)

Theorem 2.13. Let Ã ◦T x = b̃ be a system of interval-valued max-T
equations with T being a continuous t-norm. The set of tolerable solutions
St(Ã, b̃) �= ∅ if and only if A◦T (A

T ◦ϕ b) ≥ b while the set of controllable
solutions Sc(Ã, b̃) �= ∅ if and only if A◦T (AT ◦ϕ b) ≥ b.

It is clear that St(Ã, b̃) ⊆ Su(Ã, b̃) and Sc(Ã, b̃) ⊆ Su(Ã, b̃). Moreover,
St(Ã, b̃) ∩ Sc(Ã, b̃) = {x ∈ [0, 1]n |A◦T x = b, A◦T x = b}.

By Theorems 2.11 and 2.13, the existence of a united solution can be ver-
ified in a time complexity of O(mn) as well as the existence of a tolerable
solution and controllable solution, respectively. Furthermore, as will be shown
in Section 3, the notion of united solutions bridges the gap between an in-
consistent system of max-T equations and a system of interval-valued max-T
equations. The notions of tolerable solutions and controllable solutions are
the key to the construction of a Chebyshev approximation of an inconsistent
system of max-T equations.
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3 The Chebyshev Approximation

In this section, we consider an inconsistent system of max-T equations
A◦T x = b with T being a continuous t-norm and resolve its inconsistency
by means of Chebyshev approximation. Without loss of generality, we may
always assume that the system A◦T x = b is in its normal form, i.e., the
equations are arranged in the way such that b1 ≥ b2 ≥ · · · ≥ bm ≥ 0. Note
that the equations corresponding to the index set M0 = {i ∈ M | bi = 0}
should be taken into consideration whenever S(A, b) = ∅ while they can be
discarded with necessary modifications on the remaining equations in case of
consistency.

For notational convenience, the infix notations “∧” and “∨” are used to
denote the minimum and maximum operators, respectively, i.e., x ∧ y =
min(x, y) and x ∨ y = max(x, y). Analogously, we denote A1 ∧ A2 = (a1

ij ∧
a2

ij)m×n and A1∨A2 = (a1
ij ∨a2

ij)m×n for any A1, A2 ∈ [0, 1]mn, and b1∧b2 =
(b1

i ∧ b2
i )m×1 and b1 ∨ b2 = (b1

i ∨ b2
i )m×1 for any b1, b2 ∈ [0, 1]m.

Denote C the set of all pairs of a coefficient matrix A′ ∈ [0, 1]mn and a right
hand side vector b′ ∈ [0, 1]m such that the corresponding system of max-T
equations A′◦T x = b′ is consistent, i.e., C = {(A′, b′) | S(A′, b′) �= ∅}. It is
clear that (A, b) /∈ C for the inconsistent system A◦T x = b. The Chebyshev
distance between the pair (A, b) and a pair (A′, b′) ∈ C is defined as

ρ((A, b), (A′, b′)) = max
(

max
i,j

|aij − a′
ij |, max

i
|bi − b′i|

)
. (12)

Definition 3.1. A system of max-T equations A′ ◦T x = b′ is said to be
a δ-approximation of the system A◦T x = b if (A′, b′) ∈ C and ρ((A, b),
(A′, b′)) ≤ δ.

Definition 3.2. A system of max-T equations A†◦T x = b† is said to be a
Chebyshev approximation of the system A◦T x = b if (A†, b†) ∈ C and

ρ((A, b), (A†, b†)) = inf
(A′,b′)∈C

ρ((A, b), (A′, b′)). (13)

Clearly, it suffices to consider δ-approximations with δ ∈ [0, 1] for the system
A◦T x = b. A 1-approximation of the system A◦T x = b always exists, while
a Chebyshev approximation is a δ-approximation with the smallest possible
value of δ. For a given δ ∈ [0, 1], denote Ã(δ) the interval-valued matrix with
the lower bound A(δ) and the upper bound A(δ) where

A(δ) = ((aij − δ) ∨ 0)m×n and A(δ) = ((aij + δ) ∧ 1)m×n, (14)

respectively. Similarly, denote b̃(δ) the interval-valued vector with the lower
bound b(δ) and the upper bound b(δ) where

b(δ) = ((bi − δ) ∨ 0)m×1 and b(δ) = ((bi + δ) ∧ 1)m×1, (15)
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respectively. Consequently, we obtain a properly defined system of interval-
valued max-T equations Ã(δ)◦T x = b̃(δ). It is clear that a matrix A′ ∈
[A(δ), A(δ)] if and only if A′ = (a′

ij)m×n ∈ [0, 1]mn and maxi,j |aij − a′
ij | ≤ δ.

Similarly, a vector b′ ∈ [b(δ), b(δ)] if and only if b′ = (b′i)m×1 ∈ [0, 1]m and
maxi |bi − b′i| ≤ δ.

Theorem 3.3 The system of max-T equations A ◦T x = b has a δ-
approximation if and only if the system of interval-valued max-T equations
Ã(δ)◦T x = b̃(δ) has a united solution.

Proof: If the system A◦T x = b has a δ-approximation A′ ◦T x = b′ such
that S(A′, b′) �= ∅, it is clear that maxi,j |aij −a′

ij | ≤ δ and maxi |bi − b′i| ≤ δ,
respectively. Hence, A′ ∈ [A(δ), A(δ)], b′ ∈ [b(δ), b(δ)] and consequently,
Su(Ã(δ), b̃(δ)) �= ∅.

Conversely, if Su(Ã(δ), b̃(δ)) �= ∅, there exist A′ ∈ [A(δ), A(δ)] and b′ ∈
[b(δ), b(δ)] such that the system A′ ◦T x = b′ is consistent. It is clear that
ρ((A, b), (A′, b′)) ≤ δ and hence A′ ◦T x = b′ is a δ-approximation of the
system A◦T x = b. ��
Theorem 3.4 If the system of interval-valued max-T equations Ã(δ)◦T x =
b̃(δ) has a united solution for some δ ∈ [0, 1], then the system Ã(δ′)◦T x =
b̃(δ′) has a united solution for any δ′ ∈ [δ, 1].

Proof: It is straightforward from the observation of [A(δ), A(δ)] ⊆ [A(δ′),
A(δ′)] and [b(δ), b(δ)] ⊆ [b(δ′), b(δ′)] for δ ≤ δ′. ��
Theorem 3.5 If the system of interval-valued max-T equations Ã(δ)◦T x =
b̃(δ) has a united solution for all δ ∈ (δ′, 1], then the system Ã(δ′)◦T x = b̃(δ′)
also has a united solution.

Proof: By Theorem 2.11, the system Ã(δ)◦T x = b̃(δ) has a united solution
if and only if A(δ)◦T (AT (δ)◦ϕ b(δ)) ≥ b(δ). Notice that each component
of the vector A(δ)◦T (AT (δ)◦ϕ b(δ)) − b(δ) is right-continuous with respect
to δ since all involved operations are continuous except that the residual
implicator IT is left-continuous in its first argument and right-continuous
in its second argument. Hence, the system Ã(δ′)◦T x = b̃(δ′) has a united
solution as long as the system Ã(δ)◦T x = b̃(δ) has a united solution for all
δ ∈ (δ′, 1]. ��
Theorem 3.3 indicates that the existence of a δ-approximation of a system of
max-T equations is equivalent to the existence of a united solution of a corre-
sponding system of interval-valued max-T equations which, by Theorem 2.11,
can be verified in polynomial time. Theorems 3.4 and 3.5 guarantee that a
Chebyshev approximation does exist for a system of max-T equations and
also suggest a bisection method to obtain the smallest perturbation bound
δ∗ with the existence of a δ∗-approximation.
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Algorithm
Step 1. Specify ε as the required level of precision.
Step 2. Set δ = 0, δ = 1 and δ = (δ + δ)/2.
Step 3. Verify A(δ) ◦T (AT (δ) ◦ϕ b(δ)) ≥ b(δ). If it holds, set δ = δ,

otherwise, set δ = δ. Set δ = (δ + δ)/2.
Step 4. If δ − δ ≤ ε, output δ∗ = δ and stop. Otherwise, go to Step 3.

The above algorithm offers an ε-optimal value for δ∗ in a time complexity
of O(mn log(1/ε)) where ε is the predetermined level of precision. Once we
obtain the value of δ∗, the remaining problem is to construct a Chebyshev
approximation, i.e., a δ∗-approximation for the system A◦T x = b.

Denote x(δ∗) = AT (δ∗)◦ϕ b(δ∗). By Theorem 2.11, x(δ∗) is a united so-
lution of the system Ã(δ∗)◦T x = b̃(δ∗) and hence [A(δ∗)◦T x(δ∗), A(δ∗)◦T

x(δ∗)] ∩ [b(δ∗), b(δ∗)] �= ∅. Denote b̃
†
(δ∗) the interval-valued vector with the

lower bound b†(δ∗) and the upper bound b
†
(δ∗) where

b†(δ∗) = A(δ∗)◦T x(δ∗) ∨ b(δ∗) and b
†
(δ∗) = A(δ∗)◦T x(δ∗) ∧ b(δ∗), (16)

respectively. Notice that [b†(δ∗), b
†
(δ∗)] ⊆ [A(δ∗)◦T x(δ∗), A(δ∗)◦T x(δ∗)] and

hence x(δ∗) is also a controllable solution of the system Ã(δ∗)◦T x = b̃
†
(δ∗)

which means that for each b′ ∈ [b†(δ∗), b
†
(δ∗)] there exists A′ ∈ [A(δ∗), A(δ∗)]

such that A′◦T x(δ∗) = b′.
Therefore, denote Ã†(δ∗) the interval-valued matrix with the lower bound

A†(δ∗) and the upper bound A
†
(δ∗) where

A†(δ∗) = (x(δ∗)◦ϕ (b†(δ∗))T )T ∧ A(δ∗) and A
†
(δ∗) = (x(δ∗)◦ϕ (b

†
(δ∗))T )T ∧ A(δ∗),(17)

respectively. Since x(δ∗) is a controllable solution of the system Ã(δ∗)◦T x =
b̃
†
(δ∗), by Lemma 2.6 and Theorem 2.7, we have A†(δ∗)◦T x(δ∗) = b†(δ∗)

and A
†
(δ∗)◦T x(δ∗) = b

†
(δ∗), respectively. Therefore, x(δ∗) is simultaneously

a tolerable and controllable solution of the system Ã†(δ∗)◦T x = b̃
†
(δ∗).

Moreover, since [A†(δ∗), A
†
(δ∗)] ⊆ [A(δ∗), A(δ∗)] and [b†(δ∗), b

†
(δ∗)] ⊆

[b(δ∗), b(δ∗)], any pair of A† ∈ [A†(δ∗), A
†
(δ∗)] and b† = A† ◦T x(δ∗) ∈

[b†(δ∗), b
†
(δ∗)] defines a Chebyshev approximation A†◦T x = b† of the sys-

tem A◦T x = b.
The proposed procedure remains valid with necessary modifications if we

are allowed to perturb the coefficient matrix only or the right hand side vector
only. In the algorithm for determining the smallest perturbation bound, we
can simply keep the matrix A unchanged, i.e., A(δ) = A(δ) = A for any
δ ∈ [0, 1], if only b can be modified. Once the smallest perturbation bound
δ∗1 is obtained for b, the system A◦T x = b† with b† = A◦T (AT ◦ϕ b(δ∗1)) is a
Chebyshev approximation of the inconsistent system A◦T x = b. The situation
is analogous if only A can be modified. We can keep the vector b unchanged,
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i.e., b(δ) = b(δ) = b for any δ ∈ [0, 1], to obtain the smallest perturbation
bound δ∗2 for A. Thereafter, the system A†◦T x = b with A† = ((AT (δ∗2)◦ϕb)◦ϕ

bT )T∧A(δ∗2) is a Chebyshev approximation of the inconsistent system A◦T x =
b. Besides, it is obvious that δ∗ ≤ min(δ∗1 , δ∗2) for an inconsistent system
of max-T equations. Deeper relations among these perturbation bounds are
subject to further investigation.

4 Numerical Examples

In this section, we provide a few numerical examples to illustrate the proposed
procedure and compare with the known results in Cuninghame-Green and
Cechlárová [3] and Cechlárová [2].
Example 1. Consider the system of max-TM equations A◦TM x = b with

A =

⎛⎜⎜⎜⎜⎝
0.7 0.5 0.3 0.5

1 0.4 0.5 0.7

0.2 1 1 0.6

0.4 0.5 0.5 0.8

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝
1

0.4

0.2

0

⎞⎟⎟⎟⎟⎠ .

This example was originally presented by Pedrycz [23] and also investigated
by Cuninghame-Green and Cechlárová [3].

The system is inconsistent since the potential maximum solution x̂ =
(0, 0, 0, 0)T is clearly not a solution. By perturbing A and b simultaneously,
our algorithm obtains δ∗ = 0.3 and hence

Ã(δ∗) =

⎛⎜⎜⎜⎜⎝
[0.4, 1] [0.2, 0.8] [0, 0.6] [0.2, 0.8]

[0.7, 1] [0.1, 0.7] [0.2, 0.8] [0.4, 1]

[0, 0.5] [0.7, 1] [0.7, 1] [0.3, 0.9]

[0.1, 0.7] [0.2, 0.8] [0.2, 0.8] [0.5, 1]

⎞⎟⎟⎟⎟⎠ , b(δ∗) =

⎛⎜⎜⎜⎜⎝
[0.7, 1]

[0.1, 0.7]

[0, 0.5]

[0, 0.3]

⎞⎟⎟⎟⎟⎠ .

Moreover, we have x(δ∗) = (1, 0.5, 0.5, 0.3)T . Consequently,

b̃
†
(δ∗) =

⎛⎜⎜⎜⎜⎝
[0.4, 1]

[0.7, 1]

[0.5, 0.5]

[0.3, 0.7]

⎞⎟⎟⎟⎟⎠
⋂
⎛⎜⎜⎜⎜⎝

[0.7, 1]

[0.1, 0.7]

[0, 0.5]

[0, 0.3]

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
[0.7, 1]

0.7

0.5

0.3

⎞⎟⎟⎟⎟⎠ ,



120 P. Li and S.-C. Fang

A†(δ∗) =

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1

0.5

0.5

0.3

⎞⎟⎟⎟⎟⎟⎠◦ϕ (0.7, 0.7, 0.5, 0.3)

⎞⎟⎟⎟⎟⎟⎠

T

∧
⎛⎜⎜⎜⎜⎜⎝

1 0.8 0.6 0.8

1 0.7 0.8 1

0.5 1 1 0.9

0.7 0.8 0.8 1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0.7 0.8 0.6 0.8

0.7 0.7 0.8 1

0.5 1 1 0.9

0.3 0.3 0.3 1

⎞⎟⎟⎟⎟⎟⎠
and

A
†
(δ∗) =

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1

0.5

0.5

0.3

⎞⎟⎟⎟⎟⎟⎠◦ϕ (1, 0.7, 0.5, 0.3)

⎞⎟⎟⎟⎟⎟⎠

T

∧
⎛⎜⎜⎜⎜⎜⎝

1 0.8 0.6 0.8

1 0.7 0.8 1

0.5 1 1 0.9

0.7 0.8 0.8 1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 0.8 0.6 0.8

0.7 0.7 0.8 1

0.5 1 1 0.9

0.3 0.3 0.3 1

⎞⎟⎟⎟⎟⎟⎠ .

Hence, any A† ∈ [A†(δ∗), A
†
(δ∗)] and b† = A†◦TM x(δ∗) define a Chebyshev

approximation A†◦TM x = b†, for instance,

A† =

⎛⎜⎜⎜⎜⎝
0.8 0.8 0.6 0.8

0.7 0.7 0.8 1

0.5 1 1 0.9

0.3 0.3 0.3 1

⎞⎟⎟⎟⎟⎠ , b† =

⎛⎜⎜⎜⎜⎝
0.8

0.7

0.5

0.3

⎞⎟⎟⎟⎟⎠ .

If we want to resolve the inconsistency by modifying the right hand side vector
only, the corresponding smallest perturbation bound becomes δ∗1 = 0.4. Hence
we have

b̃(δ∗1) =

⎛⎜⎜⎜⎜⎝
[0.6, 1]

[0, 0.8]

[0, 0.6]

[0, 0.4]

⎞⎟⎟⎟⎟⎠ , b† = A◦TM (AT ◦ϕ b(δ∗1)) =

⎛⎜⎜⎜⎜⎝
0.7

0.8

0.4

0.4

⎞⎟⎟⎟⎟⎠ .

Consequently, the system A◦TM x = b† is a Chebyshev approximation of A◦TM

x = b in this case, which is exactly the same as that given by Cuninghame-
Green and Cechlárová [3]. Note that A◦TM x = b† has a maximum solution
(0.8, 0.4, 0.4, 0.4)T .

On the other hand, the smallest perturbation bound for A becomes δ∗2 =
0.6, if we keep b unchanged. Hence we have

Ã(δ∗2) =

⎛⎜⎜⎜⎜⎝
[0.1, 1] [0, 1] [0, 0.9] [0, 1]

[0.4, 1] [0, 1] [0, 1] [0.1, 1]

[0, 0.8] [0.4, 1] [0.4, 1] [0, 1]

[0, 1] [0, 1] [0, 1] [0.2, 1]

⎞⎟⎟⎟⎟⎠ ,
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A† = ((AT (δ∗2)◦ϕ b)◦ϕ bT )T ∧ A(δ∗2) =

⎛⎜⎜⎜⎜⎝
1 1 0.9 1

0.4 1 1 1

0.2 1 1 1

0 0 0 1

⎞⎟⎟⎟⎟⎠ .

Consequently, the system A† ◦TM x = b is a Chebyshev approximation of
A◦TM x = b in this case. Note that A†◦TM x = b has a maximum solution
(1, 0.2, 0.2, 0)T .

Example 2. Consider the system of max-TM equations A◦TM x = b with

A =

⎛⎜⎜⎜⎜⎝
0.6 0.2 0.9 0.1 0.6

0.5 0.7 0.3 0.8 0.7

0.3 0.6 0.7 0.4 0.2

0.3 0.8 0.5 0.4 0.2

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝
0.9

0.5

0.4

0.3

⎞⎟⎟⎟⎟⎠ .

This example was originally presented by Cechlárová [2].
The system is inconsistent since the potential maximum solution x̂ =

(1, 0.3, 0.3, 0.3, 0.5)T is not a solution. The smallest perturbation bound for
A is δ∗2 = 0.3, if we are required to resolve the inconsistency by modifying A

only. Hence we have

Ã(δ∗2) =

⎛⎜⎜⎜⎜⎝
[0.3, 0.9] [0, 0.5] [0.6, 1] [0, 0.4] [0.3, 0.9]]

[0.2, 0.8] [0.4, 1] [0, 0.6] [0.5, 1] [0.4, 1]

[0, 0.6] [0.5, 1] [0.2, 0.8] [0.1, 0.7] [0, 0.5]

[0, 0.6] [0.3, 0.9] [0.4, 1] [0.1, 0.7] [0, 0.5]

⎞⎟⎟⎟⎟⎠ ,

A† = ((AT (δ∗2)◦ϕ b)◦ϕ bT )T ∧ A(δ∗2) =

⎛⎜⎜⎜⎜⎝
0.9 0.5 0.9 0.4 0.9

0.5 1 0.5 0.5 0.5

0.4 0.9 0.4 0.4 0.4

0.3 1 0.3 0.3 0.3

⎞⎟⎟⎟⎟⎠ .

Consequently, the system A† ◦TM x = b is a Chebyshev approximation of
A◦TM x = b in this case. Note that A†◦TM x = b has a maximum solution
(1, 0.3, 1, 1, 1)T . Since a different method is used to construct a Chebyshev ap-
proximation, the matrix A† offered by our procedure is slightly different from
that given by Cechlárová [2], but both matrices share the same Chebyshev
distance.

Now we present an example to illustrate that the proposed procedure works
for general max-T equations with T being a continuous t-norm.
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Example 3. Consider the system of max-TL equations A◦TL x = b with

A =

⎛⎜⎝0.2 0.9 0.8 0.4

0.8 0.3 0.4 0.8

0.5 0.7 0.1 0.6

⎞⎟⎠ , b =

⎛⎜⎝ 0.8

0.6

0.2

⎞⎟⎠ .

The potential maximum solution is x̂ = (0.7, 0.5, 1, 0.6)T and⎛⎜⎝ 0.2 0.9 0.8 0.4

0.8 0.3 0.4 0.8

0.5 0.7 0.1 0.6

⎞⎟⎠◦TL

⎛⎜⎜⎝
0.7
0.5
0.1
0.6

⎞⎟⎟⎠ =

⎛⎜⎝ 0.8

0.5

0.2

⎞⎟⎠ �=

⎛⎜⎝ 0.8

0.6

0.2

⎞⎟⎠ .

Therefore, the system is inconsistent. By perturbing A and b simultaneously,
our algorithm obtains x(δ∗) = (0.7500, 0.5500, 1.0000, 0.6500)T with δ∗ =
0.0250, and consequently,

b†(δ∗) =

⎛⎜⎝0.7750

0.5750

0.2250

⎞⎟⎠ , b
†
(δ∗) =

⎛⎜⎝ 0.8250

0.5750

0.2250

⎞⎟⎠
and

A†(δ∗) =

⎛⎜⎜⎝
0.2250 0.9250 0.7750 0.4250

0.8250 0.3250 0.4250 0.8250

0.4750 0.6750 0.1250 0.5750

⎞⎟⎟⎠ , A
†
(δ∗) =

⎛⎜⎜⎝
0.2250 0.9250 0.8250 0.4250

0.8250 0.3250 0.4250 0.8250

0.4750 0.6750 0.1250 0.5750

⎞⎟⎟⎠ .

Hence, any A† ∈ [A†(δ∗), A
†
(δ∗)] and b† = A†◦TL x(δ∗) define a Chebyshev

approximation A†◦TL x = b†, for instance,

A† =

⎛⎜⎝0.2250 0.9250 0.8000 0.4250

0.8250 0.3250 0.4250 0.8250

0.4750 0.6750 0.1250 0.5750

⎞⎟⎠ , b† =

⎛⎜⎝0.8000

0.5750

0.2250

⎞⎟⎠ .

5 Concluding Remarks

We have shown that the existence of a δ-approximation of a system of max-T
equations is equivalent to the existence of a united solution of a correspond-
ing system of interval-valued max-T equations. Consequently, the smallest
perturbation bound can be obtained by repeatedly constructing a system
of interval-valued max-T equations and verifying its solvability condition.
As illustrated by our numerical examples, a Chebyshev approximation can
be constructed readily once the smallest perturbation bound is obtained. It
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is clear that the Chebyshev approximation may not necessarily be unique.
In this case, we may be interested in obtaining a Chebyshev approximation
of some special quality, for instance, the one with the smallest number of
modifications in the coefficient matrix and the right hand side vector. This
new challenge goes beyond the scope of this paper and subject to further
investigation.
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and Fuzzy Mathematical Programming
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A Survey of Fuzzy Convex Programming
Models

Ricardo C. Silva, Carlos Cruz, José L. Verdegay, and Akebo Yamakami

Abstract. Optimization is a procedure of finding and comparing feasible
solutions until no better solution can be found. It can be divided into sev-
eral fields, one of which is the Convex Optimization. It is characterized by
a convex objective function and convex constraint functions over a convex
set which is the set of the decision variables. This can be viewed, on the one
hand, as a particular case of nonlinear programming and, on the other hand,
as a general case of linear programming. Convex optimization has applica-
tions in a wide range of real-world applications, whose data often cannot be
formulate precisely. Hence it makes perfect sense to apply fuzzy set theory
as a way to mathematically describe this vagueness. In this paper we re-
view the theory about this topic and describe some flexible and possibilistic
programming models to solve fuzzy convex programming problems. Flexi-
ble programming uses fuzzy sets to represent the vagueness of the decision
maker’s aspirations and constraints, while possibilistic programming models
imprecise or ambiguous data by possibility distributions.

1 Introduction

Mathematical programming is used to solve problems, achieving the best
outcome of the objective function in a function domain that can be con-
strained or not. This kind of problem is called an optimization problem or
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a mathematical programming problem, in which the aim is to find the best
of all possible solutions. More formally, find a solution in the feasible region
which has the minimum (or maximum) value of the objective function. If
all the functions are linear, we obviously have a linear program. Otherwise,
the problem is called a nonlinear program. However, many realistic problems
cannot be adequately represented or approximated as a linear program ow-
ing to the nature of the non-linearity of the objective function and/or the
non-linearity of any of the constraints. As it is well known Convex Program-
ming represents a special class of mathematical programming in which the
objective function is convex and the set of constraints are formed by convex
functions over a convex decision space.

Thus, on the one hand, it is clear that convex programming encompasses
all linear programming problems, including applications in scheduling, plan-
ning and flow computations, and they may be used to solve some interesting
combinatorial optimization problems. On the other hand, it can be viewed
as a particular case of nonlinear programming and it is more general than
quadratic programming. Nowadays we can use highly efficient and robust al-
gorithms and software for convex programming which are important tools
for solving problems in diverse fields. However in many real practical appli-
cations one lacks of exact knowledge [14], and only approximate, vague and
imprecise values are known. Experience shows that the best way of modeling
these kinds of problems is using Soft Computing methodologies [33].

In recent years, Soft Computing, and Fuzzy Logic in particular, has shown
great potential for modeling systems which are non-linear, complex, ill-
defined and not well understood. Fuzzy Logic has found numerous and dif-
ferent applications due to its easy implementation, flexibility, tolerant nature
to imprecise data, low cost implementations and ability to model non-linear
behavior of arbitrary complexity because of its basis in terms of natural
language.

In the fuzzy environment, as it happens in the case of linear program-
ming problems, a variety of fuzzy convex programming problems can be de-
fined: Convex programming problems with a fuzzy objective, i.e., with fuzzy
numbers defining the costs of the objective function, convex programming
problems with a fuzzy goal, i.e., with some fuzzy value to be attained in the
objective, convex programming problems with fuzzy numbers defining the
coefficients of the technological matrix and, finally, with a fuzzy constraint
set, i.e., with a feasible set defined by fuzzy constraints.

Thus, fuzzy convex programming is applied in a wide range of disci-
plines, such as: control systems problems [13, 21, 29], production planning
and scheduling problems in the complex industrial systems [26, 27], model-
ing multi-product aggregate production planning (APP) problems with fuzzy
demands and fuzzy capacities [28], regression models [8, 25, 7], portfolio selec-
tion problem [1, 12, 16, 24, 31, 35, 34]. Some others interesting papers where
various authors apply soft computing methodologies to convex programming
are [2, 15, 17, 23, 26, 36].
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With this in mind, the objective of this paper is to review the theory
about this topic and to describe some flexible and possibilistic approaches
to solve fuzzy convex programming problems remarking some limitations in
their formulations.

The paper is organized as follows: Section 2 shows how is formulated a con-
vex programming problem and what problems belong to it; Section 3 presents
the formulation of a convex programming problem under fuzzy environment
and describes some known flexible and possibilistic methods that were devel-
oped to solve fuzzy convex programming problems with uncertainties in the
relationships or coefficients. In Section 4 is described a approach that solves
convex programming problems with uncertainties in the relationships and an
numerical example is solved by using this appraoch. Finally, conclusions are
presented in Section 5.

2 Convex Programming

Some real-world problems can be formulated as mathematical programming
problems that find to obtain the best solution according to the situation
to be solved. This problems can have one or several objectives over a set of
constraints or not, but only the problems with one objective will be described
in this work. Then, these mathematical programming problems can be written
as

min f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

x ∈Ω .

(1)

where x is a decision variables vector, Ω is the feasible solutions convex set
in �n, f0 :�n →� is the objective or cost function, and fi :�n →�, for each
i = 1, . . . ,m, are constraint functions.

Nevertheless, a convex optimization problem is one in which the objective
function, f0, is convex, and the feasible solution set formed by the constraints,
fi(i = 1, . . . ,m), if any, form a convex set [5, 4]; i.e. the function satisfies the
following equation:

f (αx +(1−α)y) ≤ α f (x)+ (1−α) f (y)

for all x,y ∈�n and all α ∈ [0,1].
According to the definition of convex optimization, it is easy to see that the

linear programming problems belong to this kind of problems. There are many
other problems that belong to the set of convex programming problems but we
can highlight the quadratic programming problems that are most important
in a great field of real-world problems and defined how a quadratic problem
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if the objective function is quadratic and constraint functions are linear. Thus,
Problem (1) can be rewritten as a quadratic programming problem in the
following way:

min z = f0(c,x) = ctx+ 1
2 xtQx

s.t. f(A,x) = Ax ≤ b
x ≤ 0

(2)

where c is the n-dimensional vector and Q is the n×n-dimensional matrix of
profit coefficients of the objective function, b is the m-dimensional vector of
total resources available, A is the matrix of technical coefficients, and x is the
n-dimensional vector of decision variables (or alternatives).

If an optimization problem can be formulated as a convex optimization
problem, then it is solved efficiently.

3 Fuzzy Convex Programming

Similar as the case of fuzzy linear programming problems [15], a large number
of fuzzy convex programming problems can be defined. The uncertainties can
be found in the relationships, constants, decision variables or in all parameters
of the problem. In contrast to fuzzy linear programming problems where
much research has been conducted, unfortunately, little has been done with
this important class of problems.

A conventional programming problem (1) can be transformed into a fuzzy
convex formulation with vagueness in all their parameters as:

m̃in f0(c̃; x̃)

s.t. fi(ã; x̃) � 0̃ i = 1, . . . ,m

x̃ ∈ Ω̃ .

(3)

where x̃ is the fuzzy variables decision vector, Ω̃ is the fuzzy feasible solutions
set, c̃ is the fuzzy cost vector, ã is the fuzzy coefficients vector of the constraint
functions, and � is the fuzzy relation.

Each fuzzy parameter in Problem (3) can be defined by membership func-
tions such as: μi :�→ [0,1], i = 1, . . . ,m.

According to a general classification of fuzzy mathematical programming
into flexible programming [12, 37] and possibilistic programming [10, 11, 22]
several methods to solve convex programming will be presented in next sub-
sections. The distinction between flexible (fuzzy) programming and possi-
bilistic programming is developed in . Flexible programming uses fuzzy sets
to represent the vagueness of the decision maker’s aspirations and constraints
and possibilistic programming models imprecise or ambiguous data by possi-
bility distributions.
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3.1 Flexible Convex Programming

In this subsection we will describe some approaches that use flexible optimiza-
tion to solve fuzzy convex programming problems. The uncertainties can be
found in the costs of the objective function and/or constants of the constraint
functions of the problem.

3.1.1 Tang and Wang Approach

Tang and Wang [26, 27] proposed two methods to solve the quadratic pro-
gramming problems. They study quadratic programming problems with a
type of fuzzy objective and resource constraints and its solution method: an
interactive approach. Also, they focus on a non-symmetric model for fuzzy
nonlinear programming problems with penalty coefficients and attempts to
develop a systematic approach to solve them. It uses a kind of nonlinear
membership function to describe the fuzzy available resources and fuzzy
constraints.

Hence, quadratic programming problems with uncertainty in the vector of
the independent coefficients b̃ is defined by Tang and Wang in the following
way:

m̃in ctx+ 1
2 xtQx

s.t. Ax ≤ b̃

x ∈Ω .

(4)

A membership function for each fuzzy component of vector b̃ is needed to
solve this problem:

μi(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 y ≤ bi

1− y−bi

di
bi ≤ y ≤ bi + di

0 y > bi + di

where di,(i = 1, . . . ,m) is the allowed maximum tolerance in each restriction.
Similar as extended Zimmermann’s approach [2] the membership function
can be transformed as:

max α

s.t. μ0(x) ≤ α

μi(x) ≤ α, i = 1, . . . ,m

x ∈Ω , α ∈ [0,1].

(5)
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or

max Target

s.t. μ0(x) ≤ α0

μi(x) ≤ α0, i = 1, . . . ,m

x ∈Ω , α0 ∈ [0,1].

(6)

where α0 is a satisfaction degree that is in the interval [0,1]. This degree is
an acceptable value chosen by the decision maker. Target can be an objective
function, restrictions or another goal given by the decision maker.

According to described idea in [26, 27] an optimal solution can be defined
as:

Definition 1. A fuzzy optimal solution of Problem (4) is a fuzzy set S̃ defined
by

S̃ = {(x,μS̃(x))|x ∈Ω}
with

μS̃(x) = min{μ0(x),μ1(x), . . . ,μm(x)}.
If

Sα = {x ∈Ω |μS̃(x) ≥ α},
where α ∈ [0,1]. Then Sα is a set with cutting level ≥ α of S̃.

Definition 2. α∗ is the best satisfaction level if there exists an α ∈ [0,1],
such that ∀ 0 ≤ α < α∗, Sα is non-empty and, ∀ α ≥ α∗, Sα is empty.

This approach uses a classic inequality concept to compare kind of different
numbers. Thus, it is limited because this approach formulates a comparison
of fuzzy numbers, vector of right-hand sides, with a crisp matrix of constraint
coefficients.

3.1.2 Liu Approach

An approach to solve quadratic programming problems with fuzzy costs and
fuzzy coefficients in the restrictions set was proposed by Liu [17, 18]. Vector
constants c and b, and the matrix A are uncertainties. Thus, Problem (2)
can be transformed into fuzzy programming problem in the following form:

min c̃x + 1
2 xtQx

s.t. Ãx ≤ b̃

x ∈Ω .

(7)
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where c̃ = {(c j,μc̃ j (c j)), j = 1, . . . ,n|c j ∈ supp(c̃ j)}, Ã = {(ai j,μãi j (ai j)), i =
1, . . . ,m y j = 1, . . . ,n|ai j ∈ supp(ãi j)} and b̃ = {(bi,μb̃i

(bi)), i = 1, . . . ,m|bi ∈
supp(b̃i)}.

The authors derive the membership function of the fuzzy goal, and then
they apply Zadeh’s extension principle to transform the fuzzy quadratic prob-
lem into a pair of two-level mathematical programs to calculate the upper and
lower bounds of the objective value at possibility level. These programs can
be solved by conventional optimization techniques. Thus, the membership
function of the objective function can be defined as

μZ̃(z) = sup
c,A,b

min{μc̃ j (c j),μãi j (ai j),μb̃i
(bi), ∀i, j|z = Z(c,A,b)} (8)

where Z(c,A,b) is the function of the conventional quadratic problem (3).
Membership function μZ̃ can be computed by finding the functions that de-
scribe the shape of the left and right sides of the fuzzy numbers. Then, it is
possible to obtain the upper bound of the objective value ZU

α and the lower
bound ZL

α to each value α. Thus, ZU
α is the maximum and ZL

α is the minimum
of Z(c,A,b), respectively, that can be described as:

ZU
α = max{Z(c,A,b)} (9)

ZL
α = min{Z(c,A,b)} (10)

where each component j of the vector c belong to the interval [(c j)L
α ,(c j)U

α ],
each components i j of the matrix A belong to the interval [(ai j)L

α ,(ai j)U
α ], and

each component i of the vector b belong to the interval [(bi)L
α ,(bi)U

α ], for all
i = 1, . . . ,m and j = 1, . . . ,n.

Different values of fuzzy parameters produce different objective values,
then equations (9) and (10) can transform the fuzzy quadratic problem into
two levels.

Using equation (9) the fuzzy problem can be transformed as:

ZU
α =

max
(c j)L

α ≤ c j ≤ (c j)U
α

(ai j)L
α ≤ ai j ≤ (ai j)U

α
(bi)L

α ≤ bi ≤ (bi)α

⎧⎨⎩
minx ∑n

j=1 c jx j + 1
2 ∑

n
j=1∑

n
l=1 q jlx jxl

s.t. ∑n
j=1 ai jx j ≤ bi, i = 1, . . . ,m

x ∈Ω
(11)

where goal value ZU
α is the upper bound of the classical quadratic program-

ming problem.
Using equation (10) the fuzzy problem can be transformed as:

ZL
α =

min
(c j)L

α ≤ c j ≤ (c j)U
α

(ai j)L
α ≤ ai j ≤ (ai j)U

α
(bi)L

α ≤ bi ≤ (bi)α

⎧⎨⎩
minx ∑n

j=1 c jx j + 1
2 ∑

n
j=1∑

n
k=1 q jkx jxk

s.t. ∑n
j=1 ai jx j ≤ bi, i = 1, . . . ,m

x ∈Ω
(12)



134 R.C. Silva et al.

where goal value ZL
α is the lower bound of the classical quadratic programming

problem.
These two formulations above need two programs to solve them called

outer-level and inner-level programs. Outer-level program obtains the values
c j, ai j and bi that are used with parameters by inner-level program. Inner-
level program solves a classical quadratic programming problem with the
data obtained by outer-level program. The authors state that the formula-
tion of two-level quadratic problems is a generalization of the conventional
parametric quadratic programming problem.

Thus, firstly, the two-level mathematical program is transformed into the
following quadratic problem by dual formulation:

max − 1
2 ∑

n
i=1∑

n
j=1 hi jxix j −∑m

i=1(bi)U
αλi

s.t. ∑n
i=1 hi jxi +∑m

i=1 ai jλi − δ j = −c j, j = 1,2, . . . ,n
(c j)L

α ≤ c j ≤ (c j)U
α , j = 1,2, . . . ,n

(ai j)L
α ≤ ai j ≤ (ai j)U

α , i = 1,2, . . . ,m, j = 1,2, . . . ,n
λi,δ j ≥ 0, i = 1,2, . . . ,m and j = 1,2, . . . ,n.

(13)

Since both the inner-level program and outer-level of the second program
have the same minimization operation, they can be combined into a conven-
tional one-level program with the constraints of the two programs considered
simultaneously. Consequently, some points must be analyzed which are shown
in [17, 18]. The second program can be described as:

max ∑n
j=1(c j)L

α + 1
2 ∑

n
i=1∑

n
j=1 hi jxix j

s.t. ∑n
i=1(ai j)L

αxi ≤ (bi)U
α , i = 1,2, . . . ,m

x j ≥ 0, j = 1,2, . . . ,n
(14)

This approach is limited because it uses in their formulation a crisp inequality
to compare fuzzy numbers, vector of right-hand sides, with a fuzzy matrix of
constraint coefficients.

3.1.3 Ammar and Khalifa Approach

An approach to solve quadratic programming problem with fuzzy costs Q̃,
fuzzy matrix coefficients Ã and the restrictions set vector b̃ was proposed in
[1]. Thus, Problem (2) can be defined in the following form:

min xtQ̃x

s.t. Ãx ≤ b̃

x ∈Ω .

(15)

where all decision variables are non-negative
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Problem (15), can be defined in α-cut intervals as:

(Pα) : min xt[QL
α ,QU

α ]x

s.t. [AL
α ,AU

α ]x ≤ [bL
α ,bU

α ]

x ∈Ω .

(16)

where all decision variables are non-negative and α ∈ (0,1].
Problem (16) can be divided into two classic problems. Using the lower

bound of the interval of α-cuts for the first problem and using the upper
bound for the second we can transform this problem as:

(PL
α ) : min xtQL

αx

s.t. AL
αx ≤ bL

α

x ∈Ω .

(17)

(PU
α ) : min xtQU

αx

s.t. AU
αx ≤ bU

α

x ∈Ω .

(18)

where all decision variables are non-negative and α ∈ (0,1].

These problems can be solved by Karush-Kuhn-Tucker´s conditions. The
optimal solution of original problem (16), (Pα), is inside the solution interval
formed by each value of α ∈ [0,1], and where bounds are obtained by some
convex optimization technique in the problems (PL

α) and (PU
α ).

This approach, similar as above approach, is limited because it formulates
a crisp inequality to compare fuzzy numbers, vector of right-hand sides, with
a fuzzy matrix of constraint coefficients. In addition, there is other limitation
because it divides the cost matrix with fuzzy elements in two parts which
form two quadratic programming problems. One of this problems is formed
with the inferior boundaries while the other is formed with the superior ones.
However, there not exists a proof that these problems obtain the inferior and
superior boundaries of the optimal solution, respectively.

3.2 Possibilistic Convex Programming

Some approaches that use possibilistic optimization to solve uncertain convex
programming problems will be showed in this subsection. The uncertainties
of problems will be described by the possibility theory. Possibilistic program-
ming uses real-valued entities that exist, but the evidence associated with
whether or not a particular element belongs to the set is incomplete or hard
to obtain.



136 R.C. Silva et al.

3.2.1 Canestrelli, Giove and Fullér Approach

Possibilistic quadratic problems with classic variables and imprecise coeffi-
cients can be well-posed with small change on possibilistic distribution of
objective function when a small change of membership function is provoked.
This happens if all α-level sets of two vagueness numbers are close to each
other then there can be only a small difference between their membership
degrees. The application of this approach described in [6] is used in a possi-
bilistic quadratic problem that is defined as:

min Z = ctx+ xtQx

s.t. Ax ≤ b

x ∈Ω .

(19)

where Q̃ y Ã are matrixes with imprecise numbers, c̃ and b̃ are vectors with
imprecise numbers, and Ω is a decision variables set in �n. Each imprecise
value is associated to a possibilistic distribution.

Poss[Z = z] is defined as possibilistic distribution of the objective function
Z as developed in the following paragraphs. However, first it is necessary to
determine the possibility that x satisfy the i-th constraint which is described
as:

Poss[x ∈ Fi] = sup
(A)i,bi

{Π((A)i,bi)|(Ax)i ≤ bi}

where Π((A)i,bi) = min{ãi1(ai1), . . . , ãin(ain), b̃i(bi)}, (A)i is the marginal pos-
sibilistic distribution of (Ã)i, and bi is the marginal possibilistic distribution
of (b̃)i, for all i = 1, . . . ,m. Then, for x ∈Ω ,

Poss[x ∈ F ] = min
i=1,...,m

Poss[x ∈ Fi].

A conditional possibility, Poss[Z = z|x], is defined in the second phase. Then,
the degree of possibility of objective function is formulated as:

Poss[Z = z|x] = sup
c,Q

{Π(c,Q)|ctx + xtQx = z}

where Π(c,Q) = mini, j{c̃ j(c j), q̃i j(qi j)}.
Therefore, applying the decision method of Bellman and Zadeh [3], the

problem distribution possibilistic is defined as:

Poss[Z = z] = sup
x∈Ω

min{Poss[Z = z|x],Poss[x ∈ F ]}.

Also, this approach formulates a crisp inequality to compare fuzzy numbers,
vector of right-hand sides, with a fuzzy matrix of constraint coefficients.
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3.2.2 Tonon and Bernardini Approach

An approach to solve fuzzy convex programming with fuzzy costs and fuzzy
coefficients in restrictions set is described in [30]. Problem (1) can be formu-
lated as a fuzzy convex problem in the following form:

min f0(u0;x)

s.t. fi(ui;x) ≤ 0 i = 1, . . . ,m

x ∈Ω .

(20)

where x is a decision variables vector in the feasible solutions set Ω , f is
the objective function, gi are restrictions set functions for each i = 1, . . . ,m,
and up are fuzzy parameters vectors for each p = 0,1, . . . ,m in the objective
function and restrictions.

Vectors u j can be ordered as:

u j = {ui,1, . . . ,ui,ki ,ui,ki+1,...,ui,ki+li
}.

Non-interactive parameters are in the first ki positions and interactive pa-
rameters are in the next li vector positions [30]. The allowed values of
ui, j, j = 1, . . . ,ki are restricted by the possibility distribution function Fi, j.
Each dependent parameters vector, ui, j, j = ki + 1, . . . ,ki + li, is restricted by
a fuzzy relation Fi, j.

A level αi, j ∈ [0,1], which is chosen by decision maker, for each vector ui

is selected for i = 0, . . . ,m and j = 1, . . . ,ki + li, and each vector varies in a Ψi

set:
Ψi = {Fi,1(αi,1)× . . .×Fi,ki+li(αi,ki+li)}

where Fi, j(αi, j) marks a cut in the level αi, j of fuzzy set Fi, j. Thus, Problem
(20) can be transformed as:

minx,y y

s.t.

⎧⎨⎩ fi(ui;x) ≤ 0 ∀ ui ∈Ψ − i, i = 1, . . . ,m

f0(u0;x)− y ≤ 0 ∀ u0 ∈Ψ0
x ∈Ω .

(21)

4 Extended Verdegay’s Linear Approach ([32])

As in [9], the constraints of a problem are defined as having a fuzzy nature,
that is, some violations in the accomplishment of such restrictions are permit-
ted. In this way, this approach tries to solve the limitations of formulations of
the almost last approaches. Therefore if we denote each constraint ∑ j∈J ai jx j,
by (Ax)i, Problem (2) can be addressed as follows:
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min ctx+ 1
2 xtQx

s.t. (Ax)i � bi, i ∈ I

x ∈Ω

(22)

where the membership functions:

μi :�n → (0,1], i ∈ I

of the fuzzy constraints are to be determined by decision maker. It is clear
that each membership function will give the membership (satisfaction) degree
such that any x ∈�n accomplishes the corresponding fuzzy constraint upon
which it is defined. This degree is equal to 1 when the constraint is perfectly
accomplished (no violation), and decreases to zero for greater violations. For
non-admissible violations the accomplishment degree will equal zero in all
cases. In the linear case, these membership functions can be formulated as
follows:

μi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (Ax)i ≤ bi

1− (Ax)i −bi

di
bi ≤ (Ax)i ≤ bi + di

0 (Ax)i > bi + di

In order to solve this problem in a two-phase method, as it was shown in [23],
first let us define for each fuzzy constraint, i ∈ I

Xi = {x ∈�n/(Ax)i � bi,x ∈Ω} .

If X =
⋂

i∈I Xi then last fuzzy quadratic problem can be described as:

min

{
ctx+

1
2

xtQx/x ∈ X
}

It is clear that ∀α ∈ (0,1] an α-cut of the fuzzy constraint set will be the
classical set

X(α) = {x ∈�n/μX(x) ≥ α}
where ∀x ∈�n,

μX(x) = minμi(x), i ∈ I

in which the inf function is used because the fuzzy number can be non-closed
set but the I set is finite.

Hence an α-cut of the i-th constraint will be denoted by Xi(α). Therefore,
if ∀α ∈ (0,1],

S(α) =
{

x ∈�n/ctx+
1
2

xtQx = min cty+
1
2

ytQy,y ∈ X(α)
}
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where the change of the variable is used to find the best solution in the set
X(α) formed by x ∈�n. The fuzzy solution to the problem will be the fuzzy
set defined by the following membership function

S(α) =
{

sup{α : x ∈ S(α)}, x ∈⋃α S(α)
0, otherwise.

Provided that ∀α ∈ (0,1],

X(α) =
⋂
i∈I

{x ∈�n/(Ax)i ≤ ri(α),x ∈Ω}

with ri(α) = bi +di(1−α). The operative solution to the former problem can
be found, α-cut by α-cut, by means of the following auxiliary parametric
classic programming model,

min ctx+ 1
2 xtQx

s.t. (Ax)i ≤ bi + di(1−α), i ∈ I
x ∈Ω ,α ∈ (0,1].

(23)

It is easy to see that the first phase ends when the fuzzy convex programming
problem is transformed into several classic convex programming problems.
Each one of this problems depends on a parameter which represents the
satisfaction level defined by decision maker.

In the second phase the parametric quadratic programming problem is
solved for each of the different α values using conventional quadratic pro-
gramming techniques. We must find solutions to Problem (23) for each α
that satisfies Karush-Kuhn-Tucker´s necessary and sufficient optimality con-
ditions. One of the conventional techniques is to decide the Lagrange function
that is a transformation of Problem (23) in a unconstrained mathematical
problem:

L(x,μ ,ν) = ctx+ 1
2 xtQx+ μ t(Ax−b+ d(1−α))+νt(0−x) (24)

where μ and ν are the Lagrange multipliers for the inequality and non-
negativity constraints respectively.

Each α is associated to a optimal solution of the parametric convex pro-
gramming problem and this solutions are called satisfactory solution which
generate a set of solutions. Then the Representation Theorem can be used to
integrate all these specific α-solutions.

Example 1. In order to show the performance of our method, we used the set
of historical data shown in Table 1 introduced by Markowitz. The columns
2-10 represent American Tobacco, A.T.&T., United States Steel, General Mo-
tors, Atcheson&Topeka&Santa Fe, Coca-Cola, Borden, Firestone and Sharon
Steel securities data, respectively. The returns on the nine securities, during
the years 1937-54, are presented in Table 1.
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Table 1 Fuzzy portfolio selection problem

#1 #2 #3 #4 #5 #6 #7 #8 #9

Year Am.T A.T&T. U.S.S. G.M. A.T.&S. C.C. Bdm. Frstn. S.S.

1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.4 -0.435

1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.336 0.238

1939 0.055 0.2 -0.047 0.165 -0.424 -0.078 0.381 -0.093 -0.295

1940 -0.126 0.03 0.104 -0.043 -0.189 -0.077 -0.051 -0.09 -0.036

1941 -0.28 -0.183 -0.171 -0.277 0.637 -0.187 0.087 -0.194 -0.24

1942 -0.003 0.067 -0.039 0.476 0.865 0.156 0.262 1.113 0.126

1943 0.428 0.300 0.149 0.255 0.313 0.351 0.341 0.580 0.639

1944 0.192 0.103 0.260 0.290 0.637 0.233 0.227 0.473 0.282

1945 0.446 0.216 0.419 0.216 0.373 0.349 0.352 0.229 0.578

1946 -0.088 -0.046 -0.078 -0.272 -0.037 -0.209 0.153 -0.126 0.289

1947 -0.127 -0.071 0.169 0.144 0.026 0.355 -0.099 0.009 0.184

1948 -0.015 0.056 -0.035 0.107 0.153 -0.231 0.038 0 0.114

1949 0.305 0.030 0.133 0.321 0.067 0.246 0.273 0.223 -0.222

1950 -0.096 0.089 0.732 0.305 0.579 -0.248 0.091 0.650 0.327

1951 0.016 0.090 0.021 0.195 0.040 -0.064 0.054 -0.131 0.333

1952 0.128 0.083 0.131 0.390 0.434 0.079 0.109 0.175 0.062

1953 -0.010 0.035 0.006 -0.072 -0.027 0.067 0.21 -0.084 -0.048

1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.756 0.185

This example will consider performances of portfolios with respect to “re-
turn”thus defined. This assumes that a dollar of realized or unrealized capital
gains is exactly equivalent to a dollar of dividends, no better and no worse.
This assumption is appropriate for certain investors, for example, some types
of tax-free institutions. Other ways of handling capital gains and dividends,
which are appropriate for other investors, can be viewed in [20].

Here we show the results obtained for the porfolio selection problem, de-
scribed by Table 1, by the fuzzy quadratic programming methods introduced
in this section and its solution is shown in Table 2. By computing the aver-
age value of all the years of each column of random variables of Table 1, we
obtained the expected values of each return of the securities.
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Table 2 Results of the first phase of the portfolio selection problem

α x Solution Time

0.0 [ -0.0000 ; 0.1236 ; 0.1374 ; 0.0000 ; 0.0910 ; 0.0641 ; 0.5838 ; 0.0000 ; 0.0000 ] 0.0235 1.0313
0.1 [ 0.0000 ; 0.0698 ; 0.1509 ; 0.0000 ; 0.0924 ; 0.0610 ; 0.6259 ; 0.0000 ; -0.0000 ] 0.0247 0.1563
0.2 [ 0.0000 ; 0.0303 ; 0.1713 ; 0.0000 ; 0.0936 ; 0.0465 ; 0.6584 ; 0.0000 ; -0.0000 ] 0.0259 0.1250
0.3 [ 0.0000 ; -0.0000 ; 0.1768 ; 0.0056 ; 0.0967 ; 0.0251 ; 0.6958 ; 0.0000 ; -0.0000 ] 0.0272 0.1563
0.4 [ 0.0000 ; -0.0000 ; 0.1627 ; 0.0306 ; 0.1168 ; -0.0000 ; 0.6899 ; -0.0000 ; 0.0000 ] 0.0287 0.1406
0.5 [ 0.0000 ; -0.0000 ; 0.1323 ; 0.0736 ; 0.1553 ; -0.0000 ; 0.6388 ; -0.0000 ; 0.0000 ] 0.0307 0.1563
0.6 [ -0.0000 ; -0.0000 ; 0.0975 ; 0.1224 ; 0.1912 ; 0.0000 ; 0.5889 ; 0.0000 ; 0.0000 ] 0.0332 0.1250
0.7 [ -0.0000 ; -0.0000 ; 0.0703 ; 0.1554 ; 0.2354 ; 0.0000 ; 0.5389 ; -0.0000 ; 0.0000 ] 0.0364 0.1250
0.8 [ 0.0000 ; 0.0000 ; 0.0368 ; 0.2002 ; 0.2735 ; 0.0000 ; 0.4894 ; 0.0000 ; -0.0000 ] 0.0402 0.1250
0.9 [ 0.0000 ; -0.0000 ; 0.0048 ; 0.2422 ; 0.3131 ; 0.0000 ; 0.4399 ; 0.0000 ; -0.0000 ] 0.0445 0.1250
1.0 [ -0.0000 ; -0.0000 ; -0.0000 ; 0.2717 ; 0.3537 ; 0.0000 ; 0.3746 ; -0.0000 ; 0.0000 ] 0.0495 0.1250

5 Conclusions

Fuzzy Convex Programming problems are of utmost importance in an in-
creasing variety of practical fields, but unfortunately little study has been
done with this important class of problems.

This paper shows a general view about fuzzy convex mathematical pro-
gramming and some known methods that were developed to solve convex
problems with vagueness in different parts are described. Tang and Wang’s
approach can transform a flexible programming problem into two classical
problems. The transformed problems have different constraints where are lim-
ited by α-levels which may be defined by decision maker or used as objective
function of the classical problem. However this approach is limited because
it formulates a comparison of fuzzy numbers, vector right-hand sides, with
a crisp matrix of constraint coefficients. Liu’s and, Ammar and Khalifa’s
approaches transform flexible programming problem into two classical pro-
gramming problems that determine the superior and inferior boundaries to
each α-level chosen by decision maker. Thus, this interval is a solution set to
the original flexible programming problem but there is not a proof that these
problems obtain the inferior and superior boundaries of the optimal solution,
respectively.

The limitations of formulations of the presented approaches are solved
with the extension of Verdegay’s linear approach because our approach is not
necessary to choose α-level. Therefore, this approach can be used as a general
method to solve convex programming problems with uncertainties in the set
of constraints.

In addition, there are other approaches that deal with the uncertain data
in optimization problems. For example, we showed two approaches that use
the possibilistic programming which represents imprecise data by possibility
distributions. In this case, the real-valued exist, but it may be or not to belong
to the set is incomplete or hard to obtain. However, we cannot take a match
of these approaches because they model the uncertainties of different way.
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4. Bertsekas, D.P., Nedié, A., Azdaglar, A.E.: Convex analysis and optimization.
Athena Scientific, Belmont (2003)

5. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press,
Cambridge (2004)

6. Canestrelli, E., Giove, S., Fullér, R.: Stability in possibilistic quadratic pro-
gramming. Fuzzy Sets and Systems 82, 51–56 (1996)

7. Chen, Y.S.: Fuzzy ranking and quadratic fuzzy regression. Computers and
Mathematics with Applications 38, 265–279 (1999)
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Approaches to Linear Programming
Problems with Interactive Fuzzy
Numbers

Masahiro Inuiguchi

Abstract. Fuzzy programming has been developed mainly under the as-
sumption of non-interaction among fuzzy coefficients. However, this assump-
tion is not always suitable in the treatment of real world problems. Several
approaches have been proposed to treat the interaction among fuzzy coeffi-
cients. In this paper, we review treatments of interaction among fuzzy coeffi-
cients in fuzzy linear programming problems. Using a necessity fractile model
of a simple linear programming with fuzzy coefficients, we will see the dif-
ferences among non-interactive case and five approaches to the treatment of
interaction by showing the reduced problems. The five approaches are weak
independent fuzzy numbers, a fuzzy vector with a quadratic membership
function, scenario decomposed fuzzy numbers, an oblique fuzzy vector and a
fuzzy polytope.

1 Introduction

Fuzzy programming approach [4, 11, 14] is useful and efficient to treat a
programming problem under uncertainty. While classical and stochastic pro-
gramming approaches may require a lot of cost to obtain the exact coeffi-
cient value or distribution, fuzzy programming approach does not (see Rom-
melfanger [12]). From this fact, fuzzy programming approach will be very
advantageous when the coefficients are not known exactly but vaguely by
human expertise.

Fuzzy programming [4, 11, 14] has been developed under an implicit as-
sumption that all uncertain coefficients are non-interactive one another, with
few exceptions. The non-interaction is a similar concept to the independence
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which means that the possible range of an uncertain coefficient is unchanged
even if we know the exact value of any other uncertain coefficient. The non-
interaction is a little weaker mathematical concept than the independence
(see Hisdal [1]) but, in practice, the independence rather than non-interaction
would be assumed because of its simple meaning.

The assumption of non-interaction makes the reduced problem very
tractable. The tractability can be seen as one of advantages of fuzzy pro-
gramming approaches (see Inuiguchi et al. [4]). However, it is observed that
in a simple problem, such as a portfolio selection problem, solutions of mod-
els are often intuitively unacceptable because of the implicit assumption (see
Inuiguchi and Tanino [7]). As is known in the stock market, share prices of
companies are not totally independent but somehow dependent (interactive).
Such interaction can occur in parameters of fuzzy mathematical programming
problems. Therefore, we may conclude that the non-interaction assumption
is not sufficient to model all real world problems.

While dependencies among uncertain coefficients can be treated rather
easily by covariances, or almost equivalently, correlations in stochastic pro-
gramming, generally speaking, interaction among uncertain coefficients can-
not be treated easily in fuzzy programming because the reduced problems
often become non-convex problems. However, recently, it is shown that some
special types of interaction among uncertain coefficients can be treated with-
out great loss of tractability in fuzzy linear programming. In this paper, we
review several approaches to treat interaction among uncertain coefficients.

2 Problem Statement

In order to show the difference among treatments of the interaction, we con-
sider a linear programming with uncertain parameters. In this paper, we
consider the following linear programming with a single fuzzy objective func-
tion:

minimize γTx,

subject to Ax ≤ b,
(1)

where A is a constant m × n matrix and b = (b1, b2, . . . , bm)T is a constant
m-dimensional vector. x = (x1, x2, . . . , xn)T is a decision variable vector.
γ = (γ1, γ2, . . . , γn)T is an uncertain vector which is often called a fuzzy
vector or a possibilistic vector. We assume that γ is not totally uncertain
but its possible range is known as a fuzzy set C by some way, e.g., by the
knowledge/experience of the experts/decision maker or by data showing the
partial information. C is an n-dimensional fuzzy set and its membership
function is denoted by μC . Note that Problem (1) does not always have the
non-negativity condition for x.

In order to treat the uncertainty in Problem (1), we apply a necessity
fractile model [4]. Given fuzzy information about conceivable values as a
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fuzzy set D, we define a necessity measure as a function of a fuzzy event E

by
ND(E) = inf

r
max (1 − μD(r), μE(r)) , (2)

where μD and μE are membership functions of D and E, respectively. Value
ND(E) shows the necessity (certainty) degree of a fuzzy event E. We have
the following property for ND(E):

ND(E) ≥ h if and only if (D)1−h ⊆ [E]h, (3)

where (D)1−h and [E]h are strong (1− h)-level set of D and h-level set of E,
i.e., (D)1−h = {r | μD(r) > 1−h} and [E]h = {r | μE(r) ≥ h}. This property
implies that ND(E) ≥ h means for all r having a membership grade to fuzzy
set D more than 1 − h the condition of fuzzy event E is satisfied to not less
than degree h. Therefore, when the variation of r is specified by fuzzy set D,
ND(E) may indicate to what extent fuzzy event E occurs.

Then, based on a necessity fractile model, Problem (1) is formulated as

minimize z,

subject to NC({γTx ≤ z}) ≥ h0,

Ax ≤ b,

(4)

where h0 ∈ [0, 1] is a constant necessity level specified by the decision maker.
Define a fuzzy set Y (x) by a membership function

μY (x)(y) = sup
{
μC(c) | cTx = y

}
, (5)

based on the extension principle [17]. We note that we have

NC({γTx ≤ z}) = NY (x)((−∞, z]). (6)

In what follows, we review the reduced problems under different assumptions
about fuzzy set C.

For reference, we describe the necessity measure optimization model cor-
responding to Problem 1. The model is formulated as

minimize NC({γTx ≤ z0}),
subject to Ax ≤ b,

(7)

or equivalently, by using an auxiliary variable h ∈ [0, 1],

minimize h,

subject to NC({γTx ≤ z0}) ≥ h,

Ax ≤ b,

(8)

where z0 is a constant target value specified by the decision maker. Com-
paring Problems (4) and (8), we observe that the constant and variable are
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c1

c2

(a) 3D image (b) Level curves

Fig. 1 The membership function of a vector of non-interactive fuzzy numbers

replaced. While the necessity level is a constant but the target value is a
variable in Problem (4), the necessity level is a variable but the target value
is a constant in Problem (8).

From property (3), necessity measure constraint NC({γTx ≤ z}) ≥ h0

represents the safety aspect of the uncertain objective function value. It guar-
antees that the objective function value is at least z for all possible coefficient
vectors c having the membership degree more than 1 − h0.

3 Non-interactive Fuzzy Numbers

The information about uncertain vector γ is often given in a component-wise
way. Namely, we may know a possible range of γj as a fuzzy number Cj .
In the conventional fuzzy mathematical programming, we assume the non-
interaction among uncertain coefficients and model the membership function
of C by

μC(c) = min (μC1(c1), μC2(c2), . . . , μCn(cn)) , (9)

where c = (c1, c2, . . . , cn)T and μCj is a membership function of Cj . An
example of the membership function of C with n = 2 is depicted in Figure 1.
In Figure 1, Cj , j = 1, 2 are triangular fuzzy numbers. As shown in Figure 1,
the level curves are rectangles parallel to coordinate axes. This property does
not depend on the fact Cj , j = 1, 2 are triangular fuzzy numbers but on the
non-interaction between uncertain parameters γ1 and γ2.

We further assume that Cj satisfies the following condition:

(A1) [Cj ]h = {r | μCj (r) ≥ h} is a bounded closed interval.
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In other words, assumption (A1) means that μCi satisfies (a1) upper semi-
continuity, (a2) quasi-concavity and (a3) limr→+∞ μCi(r) = limr→−∞
μCi(r) = 0.

Under the assumption above, we obtain

[Y (x)]h =
n∑

j=1

[Cj ]hxj =
n∑

j=1

[
CL

j (h), CR
j (h)
]
xj , (10)

where we write a bounded closed interval [Cj ]h as [CL
j (h), CR

j (h)].
Then Problem (4) is reduced to the following linear programming problem:

minimize
n∑

j=1

yj ,

subject to C̄L
j (1 − h0)xj ≤ yj, j = 1, 2, . . . , n,

C̄R
j (1 − h0)xj ≤ yj , j = 1, 2, . . . , n,

Ax ≤ b,

(11)

where we define cl(Cj)h = [C̄L
j (h), C̄R

j (h)] (“cl” stands for “closure”).
When Ax ≤ b includes non-negativity condition x ≥ 0, the problem be-

comes the following simpler problem:

minimize
n∑

j=1

C̄R
j (1 − h0)xj ,

subject to Ax ≤ b.

(12)

Therefore, the necessity fractile model can be solved easily. It is known that
the necessity measure optimization model can be solved by a linear fractional
programming technique (see Inuiguchi and Ramı́k [4]).

4 Weak Independent Fuzzy Numbers

In fuzzy sets and systems, the minimum operation is often replaced with a
t-norm [10]. Then we may consider

μC(c) = T (μC1(c1), μC2(c2), . . . , μCn(cn)) , (13)

where T : [0, 1] × [0, 1] → [0, 1] is a t-norm, a two place function satisfy-
ing (T1) T (a, 1) = T (1, a) = a for all a ∈ [0, 1] (boundary condition), (T2)
T (a, b) = T (b, a) for all a, b ∈ [0, 1] (commutativity), (T3) T (a, T (b, c)) =
T (T (a, b), c) for all a, b, c ∈ [0, 1] (associativity), and (T4) T (a, b) ≤ T (c, d)
for all a, b, c, d ∈ [0, 1] such that a ≤ c and b ≤ d. When the joint fuzzy
set C of marginal fuzzy sets Cj , j = 1, 2, . . . , n has a membership function
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Fig. 2 The membership functions of weak independent fuzzy numbers

represented by (13), Cj , j = 1, 2, . . . , n are called weak independent fuzzy
numbers.

Rommelfanger and Kresztfalvi [13] proposed to use Yager’s parameterized
t-norm in order to control the spreads of fuzzy linear function values. The
interaction among uncertain parameters is treated indirectly in this approach.

Rommelfanger and Kresztfalvi [13] treated a fuzzy vector C whose mem-
bership function μC is defined by

μC(c) = Tp (μC1(c1), μC2(c2), . . . , μCn(cn)) , (14)

where μCj is a membership function of a fuzzy number Cj representing a
possible range of the coefficient of xj . Tp is defined by

Tp(r1, r2, . . . , rn) = max

⎡⎢⎣0, 1 −
⎛⎝ n∑

j=1

(1 − r1)p

⎞⎠1/p
⎤⎥⎦ , (15)

and p ≥ 1. Tp is an extension of Yager’s t-norm. The level curves of μC defined
by (14) with different p values when n = 2 are shown in Figure 2. In other
words, Rommelfanger and Kresztfalvi treated a kind of weak independent
fuzzy numbers in the setting of fuzzy programming problems.

Let us assume Cj is a trapezoidal fuzzy number (cL
j , cR

j , αL
j , αR

j ), i.e.,

μCj (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cL
j − r

αL
j

, if cL
j − αL

j ≤ r < cL
j ,

1 if cL
j ≤ r ≤ cR

j ,

r − cR
j

αR
j

, if cR
j < r ≤ cR

j − αR
j ,

0, otherwise,

(16)
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where we have cL
j ≤ cR

j and αL
j , αR

j > 0. Then, Rommelfanger and Kreszt-
falvi [13] proved that Y (x) defined by (5) becomes a trapezoidal fuzzy number
(yL(x), yR(x), αL(p, x), αR(p, x)) when Ax ≤ b includes the non-negativity
condition x ≥ 0. Here we define

yL(x) =
n∑

j=1

cL
j xj , (17)

yR(x) =
n∑

j=1

cR
j xj , (18)

αL(p, x) =

⎛⎝ n∑
j=1

(αL
j xj)q

⎞⎠1/q

, (19)

αR(p, x) =

⎛⎝ n∑
j=1

(αR
j xj)q

⎞⎠1/q

, (20)

where q ≥ 1 is defined from p so as to fulfill

1
p

+
1
q

= 1. (21)

(21) shows that the larger p is, the larger 1/q is. From (19) and (20), this
fact implies that the spreads of Y (x) enlarges as p increases. Therefore,
we can control the uncertainty propagation from C to Y (x) by selecting a
suitable p.

Applying this result, Problem (4) is reduced to the following programming
problem:

minimize yR(x) + (1 − h)αR(p, x),
subject to Ax ≤ b.

(22)

This problem is non-linear except q = 1 (p = ∞, i.e., p is sufficiently large)
and p = 1 (q = ∞, i.e., q is sufficiently large and we can approximate
αR(p, x) = max{αR

j xj | 1 ≤ j ≤ n}). Because q ≥ 1, this problem is a
convex programming problem so that it can be solved by a gradient method.

As shown in Figure 2, p changes the interaction among uncertain coeffi-
cients γj , j = 1, 2, . . . , n. It is difficult to understand the meaning of p other
than we can control the spread of Y (x) by p. Therefore, the selection of the
parameter p would be a difficult task.

The necessity measure optimization model can be formulated as a frac-
tional programming problem which is not always linear due to αR(p, x).
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5 Fuzzy Vector with a Quadratic Membership Function

Inuiguchi and Sakawa [6] treated a fuzzy linear programming with a quadratic
membership function. A quadratic membership function can be considered
as a counterpart of a multivariate normal distribution. It is defined by cen-
ter values (corresponding to mean values) and a symmetrical positive def-
inite matrix (corresponding to variance matrix). Therefore, by a quadratic
membership function, we may express correlations of all pairs of uncertain
parameters γj , j = 1, 2, . . . , n. Because of the similarity to a multivariate
normal distribution, Inuiguchi and Sakawa [6] succeeded to show the equiva-
lence between special models of stochastic linear programming problem and
fuzzy linear programming problem.

In this approach, fuzzy set C is defined by the following membership func-
tion:

μC(c) = L((c − d)TU−1(c − d)), (23)

where d = (d1, . . . , dn)T is a constant vector, U is an n × n symmetrical
positive definite matrix representing the interactions among objective coef-
ficients. U−1 is the inverse matrix of U . L : [0, +∞) �→ [0, 1] is a reference
function which is an upper semi-continuous and non-increasing function such
that L(0) = 1 and limr→+∞ L(r) = 0.

The level curves of a quadratic membership function with n = 2 are de-
picted in Figure 3. The level curves of quadratic membership functions are
ellipsoids as those of multivariate normal distributions are.

Extending Tanaka and Ishibuchi’s result [16], we obtain the membership
function of Y (x) as

μY (x)(y) = L

(
(y − dtx)2

xTUx

)
. (24)
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From (24), we obtain

NY (x)((−∞, z]) ≥ h0 ⇔ dTx +
√

L∗(1 − h0)xtUx ≤ z, (25)

where L∗ : [0, 1] → [0, +∞) ∪ {−∞} is defined by

L∗(h) =
{

sup{r | L(r) > h, r ≥ 0}, if h < 1,

−∞, if h = 1,
(26)

Thus, when h0 > 0, Problem (4) is reduced to the following nonlinear pro-
gramming problem:

minimize dTx +
√

L∗(1 − h0)xtUx,

subject to Ax ≤ b.
(27)

This problem is a convex programming problem and can be solved by a
method developed in stochastic programming problem [15].

The necessity measure optimization models for problems with quadratic
membership functions are reduced to fractional programming problems as
minimum-risk models in stochastic programming problems with multivariate
normal distributions are (see Stancu-Minasian [15]). The solution procedures
for the minimum-risk models can be applied to the necessity measure opti-
mization models.

6 Scenario Decomposed Fuzzy Numbers

Inuiguchi and Tanino [8] proposed scenario decomposed fuzzy numbers. In
their approach, the interaction between uncertain parameters are expressed
by fuzzy if-then rules.

We may have a vague knowledge about the range of γ as the following k

fuzzy if-then rules:

if s = sk then γ ∈ Ck, k = 1, 2, . . . , u, (28)

where s is a variable taking a value from {s1, s2, . . . , su}. s is called a sce-
nario variable. Ck = (Ck

1 , Ck
2 , . . . , Ck

n)T is a vector of non-interactive fuzzy
numbers. Namely, Ck has a membership function,

μCk(c) = min
(
μCk

1
(c1), μCk

2
(c2), . . . , μCk

n
(cn)
)

, (29)

and Ck
j is a fuzzy number such that [Ck

j ]h = {r | μCk
j
(r) ≥ h} is a bounded

closed interval, where μCk
j

is a membership function of a fuzzy number Ck
j .
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Fig. 4 Lever curves of the membership functions of scenario decomposed fuzzy
numbers

For example, we may have knowledge,

– if economy s is good then share prices γ ∈ C1,
– if economy s is normal then share prices γ ∈ C2,
– if economy s is bad then share prices γ ∈ C3.

The body of rules (28) shows a fuzzy relation between scenario sk and possible
range of uncertain vector γ.

When we obtain our estimation or information about scenario variable by
a fuzzy set S showing a possible realizations of s under if-then knowledge
(28), based on the fuzzy set induction from S through R [17], the estimated
fuzzy set C is obtained as

μC(c) = max
k=1,2,...,u

min (μS(sk), μCk(c), ) (30)

where μS is a membership function of S.
Level curves of the membership function of a scenario decomposed fuzzy

numbers C defined by (30) with n = 2 is depicted in Figure 4(a). In (28), we
consider a discrete scenario variable s but Inuiguchi and Tanino [8] consid-
ered a continuous scenario variable. In the continuous scenario variable case,
the knowledge can be represented by a set of fuzzy rules. Level curves of the
membership function of scenario decomposed fuzzy numbers C with a con-
tinuous scenario variable when n = 2 is illustrated in Figure 4(b). However,
in this paper, we concentrate on the discrete scenario variable case because
of its simplicity. However, even in the continuous scenario variable case, we
obtained similar results as shown in Inuiguchi and Tanino [8].

The pair (S, knowledge(28)) can be called a scenario decomposed fuzzy
numbers.
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Let Y k(x) be a fuzzy number defined by the following membership
function:

μY k(x)(y) = sup
{
μCk(c) | cTx = y

}
. (31)

Then we obtain Y (x) by the following membership function:

μY (x)(y) = max
k=1,2,...,u

min
(
μS(sk), μY k(x)(y).

)
(32)

Since we have

NY (x)((−∞, z]) ≥ h0 ⇔ cl(Y (x))1−h0 ⊆ (−∞, z]

⇔ cl(Y k(x))1−h0 ⊆ (−∞, z], ∀k such that μS(sk) > 1 − h0. (33)

Problem (4) is reduced to the following linear programming problem:

minimize z,

subject to C̄L
jk(1 − h0)xj ≤ yk

j , j = 1, 2, . . . , n,

C̄R
jk(1 − h0)xj ≤ yk

j , j = 1, 2, . . . , n,
n∑

j=1

yk
j ≤ z, ∀k such that μS(sk) > 1 − h0,

Ax ≤ b,

(34)

where we define cl(Ck
j )h = [C̄L

jk(h), C̄R
jk(h)].

When Ax ≤ b includes non-negativity condition x ≥ 0, the problem be-
comes the following simpler problem:

minimize z,

subject to
n∑

j=1

C̄R
jk(1 − h0)xj ≤ z, ∀k such that μS(sk) > 1 − h0,

Ax ≤ b.

(35)

The necessity measure optimization model for problems with scenario decom-
posed fuzzy numbers can be formulated similarly and solved by a bisection
method together with a simplex method.

7 Oblique Fuzzy Vector

In the real world, we may have vague knowledge about the sums of uncertain
values and/or the differences of two uncertain values, e.g., the sum of γ1, γ2 and
γ3 is about 5, the difference between γ4 and γ5 is approximately 3, and so on.

Inuiguchi, Ramı́k and Tanino [5] proposed oblique fuzzy vectors. An oblique
fuzzy vector can express n independent pieces of vague knowledge about the
linear function values of uncertain values. A non-singular matrix shows the in-
teraction among uncertain parameters in an oblique fuzzy vector as a
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Fig. 5 The membership function of an oblique fuzzy vector

covariance matrix shows in a multivariate normal distribution. It is shown that
linear function values of oblique fuzzy vectors can be calculated easily.

An oblique fuzzy vector C is defined by the following membership function,

μC(c) = min
j=1,2,...,n

μBj (d
T
j c), (36)

where μBj is a membership function of an L-L fuzzy number Bj = (bL
j , bR

j , βL
j ,

βR
j )LL and dj , j = 1, 2, . . . , n are vectors such that D = (d1, d2, . . . , dn)T

be a non-singular real-valued n × n matrix. An L-L fuzzy number Bj =
(bL

j , bR
j , βL

j , βR
j )LL can be characterized by the following membership function:

μBj (r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
L

(
bL
j − r

βL
j

)
if r < bL

j ,

1 if bL
j ≤ r ≤ bR

j ,

L

(
r − bR

j

βR
j

)
if r > bR

j ,

(37)

where we assume bL
j ≤ bR

j , βL
j > 0 and βR

j > 0. L : [0, +∞) → [0, 1] is
a reference function which is an upper semi-continuous and non-increasing
function such that L(0) = 1 and limr→+∞ L(r) = 0.

Namely, an oblique fuzzy vector can be obtained from n pieces of knowl-
edge ‘dT

j c takes a value in a fuzzy number Bj ’, j = 1, 2, . . . , n, where dj ,
j = 1, 2, . . . , n should be linearly independent.

An example of an oblique fuzzy vector when n = 2 is given in Figure 5.
Unlike non-interactive fuzzy numbers, the level curves of an oblique fuzzy
vector are neither always rectangle nor parallel to coordinate axes.
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Utilizing the result by Inuiguchi et al. [5], we obtain

cl(Y (x))h =

[ ∑
j:kj(x)≥0

b̄L
j (h)kj(x) +

∑
j:kj(x)<0

b̄R
j (h)kj(x),

∑
j:kj(x)≥0

b̄R
j (h)kj(x) +

∑
j:kj(x)<0

b̄L
j (h)kj(x)

]
, (38)

where kj(x), j = 1, 2, . . . , n are defined as follows with d∗ij , the (i, j) compo-
nent of D−1;

kj(x) =
n∑

i=1

d∗ijxi. (39)

b̄L
j (h) and b̄R

j (h) are defined by

b̄L
j (h) = bL

j − βL
j L∗(h), (40)

b̄R
j (h) = bR

j − βR
j L∗(h), (41)

where L∗ is defined by (26).
This result implies that the linear function values of an oblique fuzzy vector

is an L-L fuzzy number (see Inuiguchi et al [5]).
Applying the result above and the first line of (33), Problem (4) can be

reduced to the following problem:

minimize
∑

j:kj(x)≥0

b̄R
j (1 − h0)kj(x) +

∑
j:kj(x)<0

b̄L
j (1 − h0)kj(x),

subject to Ax ≤ b,

kj(x) =
n∑

i=1

d∗ijxi.

(42)

We have
k(x) = (k1(x), k2(x), . . . , kn(x))T = D−Tx, (43)

where D−T = D−1T = DT−1. From this fact, we introduce variable vectors
y+ = (y+

1 , y+
2 , . . . , y+

n )T and y− = (y−
1 , y−

2 , . . . , y−
n )T such that

D−Tx = y+ − y−, y+T
y− = 0, y+ ≥ 0, y− ≥ 0. (44)

From (43) and (44), we have kj(x) = y+
j if kj(x) ≥ 0 and kj(x) = −y−

j if
kj(x) < 0. Moreover, from the first equation of (44), we have x = DT(y+ −
y−). Introducing those, we can prove Problem (42) is reduced to the following
linear programming problem:
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minimize
n∑

j=1

b̄R
j (1 − h0)y+

j −
n∑

j=1

b̄L
j (1 − h0)y−

j ,

subject to Ax ≤ b,

x = DT(y+ − y−), y+ ≥ 0, y− ≥ 0.

(45)

Note that a complementary condition (y+)Ty− = 0 can be omitted in Prob-
lem (45) because we obtain a solution satisfying this condition easily from any
optimal solution of Problem (45) without change of x. It is shown that Ben-
der’s decomposition method can be applied to Problem (45) (see Inuiguchi
et al. [5]).

The necessity measure optimization model for a problem with an oblique
fuzzy vector is studied by Inuiguchi [2]. The model can be also reduced to a
linear fractional programming problem and solved by Bender’s decomposition
method.

8 Fuzzy Polytope

By oblique fuzzy vector, we can express n independent pieces of vague knowl-
edge about linear function values of uncertain parameters. However, in the
real world, we may have more than n pieces of vague knowledge including
vague knowledge about the ratio between two uncertain parameters. The ra-
tio between two uncertain parameters cannot be expressed as a linear function
of uncertain parameters. Therefore such a body of vague knowledge cannot
be expressed well by an oblique fuzzy vector.

Inuiguchi and Tanino [9] introduced a fuzzy polytope to fuzzy linear pro-
gramming problems. A fuzzy polytope can express more than n pieces of
vague knowledge about linear fractional function values of uncertain param-
eters. Then the oblique fuzzy vector is a special case of the fuzzy polytope.

When C is a fuzzy polytope, its membership function is expressed as

μC(c) = min
k=1,2,...,v

Lk

⎛⎜⎜⎜⎝
wT

k c + w0k

dT
k c + d0k

− q̄k

αk

⎞⎟⎟⎟⎠ , (46)

where Lk : R → [0, 1], k = 1, 2, . . . , v are reference functions, i.e., up-
per semi-continuous non-increasing functions such that Lk(0) = 1 and
limr→+∞ Lk(r) = 0. q̄k are the most plausible value for the k-th linear frac-
tional function value (wT

k γ + w0k)/(dT
k γ + d0k). αk shows the spread, i.e.,

to what extent the linear fractional function value (wT
k γ +w0k)/(dT

k γ + d0k)
possibly exceeds q̄k. When we know the maximum possible shortage of
(wT

k γ+w0k)/(dT
k γ+d0k) from q̄k, by multiplying wk, w0k and q̄k by (−1), we
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Fig. 6 The membership function of a fuzzy polytope

can treat it as we know the maximum possible excess of (−wT
k γ−w0k)/(dT

k γ+
d0k) from −q̄k. The fuzzy set C is assumed to be bounded, i.e., h-level sets
[C]h = {c | μC(c) ≥ h} for all h ∈ (0, 1] are bounded. Moreover, without
loss of generality, we assume that dT

k c + dk0 > 0 for all possible c. Let
L∗

k(h) = sup{r | Lk(r) > h} for h ∈ [0, 1) and L∗
k(h) = −∞ for h = 1.

Since a linear fractional function includes a sum, a difference a linear func-
tion, a ratio, a fuzzy polytope is useful when we know possible ranges of a
sum of uncertain variables, a difference between two uncertain variables, a
linear function values of uncertain variables and a ratio between two uncer-
tain variables. The membership function of a fuzzy polytope when n = 2 is
depicted in Figure 6.

Because of (46), we have

cl(C)h = {c | wT
k c + w0k ≤ (q̄k + αkL∗

k(h))(dT
k c + d0k), k = 1, 2, . . . , v}

= {c | wd∗
k(h)Tc ≤ −wd∗0k(h), k = 1, 2, . . . , v},

(47)
where wd∗

k(h) = wk − (q̄k + αkL∗
k(h))dk and wd∗0k(h) = w0k − (q̄k +

αkL∗
k(h))d0k. Since [C]h ⊆ Rn is bounded, from (47), we know that v > n

and that [C]h and cl(C)h are polytopes for all h ∈ [0, 1).
From the first line of (33), Problem (4) is reduced to the following semi-

infinite programming problem:

minimize z,

subject to cTx ≤ z, ∀c ∈ cl(C)1−h0 ,

Ax ≤ b.

(48)

Together with (47), Problem (48) can be solved by the following relaxation
procedure.

Solution Algorithm for Problem (48)
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Step 1. Select x0 satisfying Ax0 ≤ b. Let z0 = −∞ and l = 0.
Step 2. Solve a linear programming problem

maximize x0T
c,

subject to wd∗
k(h)Tc ≤ −wd∗0k(h), k = 1, 2, . . . , v.

(49)

Let ĉ be an obtained optimal solution to Problem (49).
Step 3. If ĉTx0 > z0 then update l = l + 1 and let cl = ĉ. Otherwise, we

terminate the algorithm and obtain an optimal solution x0 to Problem
(48).

Step 4. Solve a linear programming problem,

minimize z,

subject to cT
wx ≤ z, w = 1, 2, . . . , l,

Ax ≤ b.

(50)

Let (x0T
, z0)T be an obtained optimal solution. Return to Step 2.

In the algorithm described above, we solve two kinds of linear programming
problems. Therefore, we can solve Problem (48) using linear programming
techniques only.

The necessity measure optimization model for a problem with a fuzzy
polytope is investigated by Inuiguchi [3]. Different from the necessity fractile
model, the necessity measure optimization model cannot be solved only by a
relaxation procedure. A solution algorithm based on a bisection method and
a relaxation procedure is proposed by Inuiguchi [3].

9 Concluding Remarks

We have described five kinds of treatments of interaction among fuzzy pa-
rameters. The first two approaches cannot preserve the linearity. However,
the reduced problems are convex programming problems so that they can
be solved rather easily by nonlinear programming techniques. On the other
hand, the last three approaches preserve the linearity at least to some extent
so that reduced problems can be solved by linear programming techniques.

Those five approaches treat special cases of general interaction. However,
general interaction would not be easily treated. This is the same in stochastic
programming.

While many of the five approaches have been applied to more general linear
programming problems with fuzzy coefficients, the interaction among fuzzy
parameters has not yet investigated thoroughly. Other treatments of interac-
tion, identification of tractable interaction from given data and applications
of the tractable interactions described in this paper would be future topics.
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Possibilistic Optimization Tasks with Mutually
T-Related Parameters: Solution Methods and
Comparative Analysis

Alexander Yazenin and Ilia Soldatenko

Abstract. The problems of possibilistic linear programming are studied in the ar-
ticle. Unlike in other known related publications, t-norms are used to describe the
interaction (relatedness) of fuzzy parameters. Solution methods are proposed, mod-
els of possibilistic optimization are compared for different t-norms.

Introduction

It seems to us that systematic research of fuzzy programming problems in the con-
text of possibility theory axiomatics was initiated in [5, 6, 7, 24]. The article by
Stephen Nahmias [21] which offered the most common at that time possibilistic
model of uncertainty acted like an incitement for the authors of these researches. In
particular the above mentioned article contained the concept of fuzzy (possibilistic)
variable. Later using fuzzy variables and corresponding calculus of possibilities, as
it seems to us now, became the most appropriate instrument for modelling fuzzy
parameters of optimization tasks.

One should mention that relatedness of fuzzy parameters in possibilistic opti-
mization problems in those works was based generally on standard conjunction
operation that was widely-spread in fuzzy logic. However this way of fuzzy in-
formation aggregation and modelling of fuzzy parameters relatedness is not quite
appropriate in the series of cases. For example, performing of additive operations
with this way of information aggregation leads to linear growth of result’s fuzzi-
ness, which is not always reasonable.
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At present, methods of aggregating possibilistic information based on the tech-
nique of triangular norms (t-norms) are being developed. They provide more flex-
ibility in controlling fuzziness in decision-making. Such approach seems to be
presently most general. In particular, the operation of conjunction (minimum) acts
as one of the types of t-norms.

In this work, we develop this scientific line of investigation with regard to pos-
sibilistic linear programming tasks. For the case of TW -norm, we study two mod-
els of possibilistic linear programming problems, which were first introduced in
[5, 6, 7, 24]. We propose methods, which are combinations of the indirect method
and genetic algorithm of optimization, to solve it. Afterwards we compare models
of possibilistic optimization for TW - and TM-norms.

The article has the following structure.
In the first section necessary definitions and mathematical apparatus from the pos-

sibility theory are introduced. In the second section notion of mutual T -relatedness
of possibilistic parameters based on t-norms is defined. It generalizes the notion of
fuzzy parameters unrelatedness introduced by Stephen Nahmias in [21] and defined
more accurately as min-relatedness by Rao [23].

In the third section behaviour of weighted sum of possibilistic variables in which
summands’ interaction is based in weak t-norm TW is investigated. Possibility dis-
tribution of weighted sum in case when fuzzy operands are modelled with the help
of (L,R)-type distributions is proposed.

In the fourth section of the article two models of possibilistic linear optimiza-
tion problems are considered: maximax models, known as optimistic model of deci-
sion making, and model of mamimization of possibility of fuzzy goal achievement
[5, 6, 7, 24]. In this section theorems that allow to build equivalent deterministic
analogs of posiibilistic programming tasks with mutually TW -related parameters are
proved. The acquired equivalent deterministic analogues in the case of possibility
measure correspond to tasks of non-convex mathematical programming, as opposed
to equivalent deterministic analogues in the case of necessity measure. In order to
solve these deterministic analogs in the fifth section genetic optimization algorithm
is specified.

In the sixth section of the article comparative analysis of fuzzy optimization tasks
subject to different trinagular norms is made. It is shown that feasible region of TW

model is a subset of feasible region of TM model. In this section numerical imple-
mentation of modelled problems with different t-norms, that describe relatedness of
the tasks’ parameters, is also given.

Discussion of acquired results and directions of further investigations form the
conclusion of the article.

1 Necessary Mathematical Apparatus

Let us introduce some necessary definitions and concepts from the theory of possi-
bility [1, 4, 21, 22, 23, 26, 27].
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Suppose Γ is the model space, γ ∈ Γ are its elements, P(Γ ) is the set of all
subsets of the set Γ , and E1 is the number scale.

Definition 1. A possibilistic measure π : Γ → E1 is a set function such that:

1. π{�} = 0, π{Γ} = 1,

2. π

{⋃
i∈I

Ai

}
= sup

i∈I
π{Ai}, ∀Ai ∈ P(Γ ), ∀I.

Definition 2. The triple (Γ ,P(Γ ),π) forms the possibilistic space.

Definition 3. A necessity measure ν : Γ → E1 is a set function such that:

1. ν{�} = 0, ν{Γ } = 1,

2. ν

{⋂
i∈I

Ai

}
= inf

i∈I
ν{Ai}, ∀Ai ∈ P(Γ ), ∀I.

Let us note some important properties of possibility and necessity measures.

1. π and ν are special cases of uncertainty measure and thus possess all its charac-
teristics (boundedness, monotonicity).

2. ν{A} = 1 − π{AC}, where AC — complement of set A. This property shows
duality of the measures.

3. max{π{A},π{AC}} = 1, min{ν{A},ν{AC}} = 0.
4. π{A}+π{AC} ≥ 1, ν{A}+ν{AC} ≤ 1.
5. π{A} ≥ ν{A} : ν{A} > 0 ⇒ π{A} = 1,π{A} < 1 ⇒ ν{A} = 0.
6. Possibility measure is lower continuous, necessity measure is upper continuous.

Definition 4. A possibilistic (fuzzy) variable is a real function

A(·) : Γ → E1,

with the values characterized by a distribution of possibilities μA(x):

μA(x) = π{γ ∈ Γ : A(γ) = x}, ∀x ∈ E1.

μA(x) is the possibility that A takes the value x.
We can define ”necessity” variable right the same way [26].

Definition 5. A necessity variable is a real function

N(·) : Γ → E1,

with the values characterized by a distribution of possibilities μν
N(x):

μν
N(x) = ν{γ ∈ Γ : N(γ) = x} =

= 1−π{γ ∈ Γ : X(γ) �= x} = 1− sup
u �=x

μX (u), ∀x ∈ E1.
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It is quite obviuos that ”necessity” variable defined above will be nearly always
equal to zero. Its straight application is insensible. But necessity measure itself
can be used in modelling possibilistic optimization problems in dual context of
possibility-necessity.

Definition 6. The crisp subset

supp(A) = {x |μA(x) > 0}, x ∈ E1.

is the support of the possibilistic variable A .

Definition 7. For any possibilistic variable A and any α ∈ [0,1], Aα is called the
α-level set if

• Aα = {x ∈ E1 |μA(x) ≥ α}, for α ∈ (0,1],
• Aα = cl(supp(A)), for α = 0,

where cl(supp(A)) is the closure of the support of the possibilistic variable A.

Definition 8. The possibilistic variable A is convex if its distribution function is
quasiconcave:

μA(λx1 +(1−λ )x2) ≥ min{μA(x1),μA(x2)}, λ ∈ [0,1], x1,x2 ∈ E1.

Generally, possibilistic variables that take values in E1 and are characterized by
strictly unimodular, quasiconcave and upper semicontinuous distribution functions
and bounded supports are called fuzzy numbers. If, in this case, the member-
ship function is not strictly unimodular, the possibilistic variable is called a fuzzy
interval.

In order to model fuzzy numbers and fuzzy intervals, distributions of (L,R)-type
are often used [1, 9, 10, 11].

Definition 9. We call (L,R)-functions, or shape representation functions (or just
shapes), the non-increasing and upper semicontinuous functions given on the non-
negative part of the number scale such that

1. L(0) = R(0) = 1,
2. L(t),R(t) < 1, ∀t > 0,
3. lim

t→∞
L(t) = lim

t→∞
R(t) = 0.

Definition 10. A possibilistic variable A is the possibilistic variable of (L,R)-type if
its distribution has the form

μA(x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L

(
a− x
α

)
, x < a,

1, a ≤ x ≤ b,

R

(
x−b
β

)
, x > b.
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Here, [a,b] is the tolerance interval of A, a and b are the lower and upper modal
values respectively, α and β are the fuzziness coefficients that allow controlling
fuzziness of the possibilistic variable. We denote fuzzy intervals by the tuple A =
(a,b,α,β )LR. If a = b, the fuzzy interval is reduced to the A = (a,α,β )LR.

Example 1. If we take a piecewise linear functions L(x) = R(x) = max{1− x,0} as
left and right shape functions, then in case of fuzzy numbers we get a so-called trian-
gular fuzzy variables, and in case of fuzzy intervals — trapezoidal fuzzy variables.

Possibilistic variable of (L,R)-type is a convenient mathematical object in the sense
that its distribution is parametrized and for calculus of possibilities based on ap-
propriate t-norms (for example, on a well-known TM(x,y) = min{x,y}) when per-
forming arithmetic operations on these possibilistic variables we actually need to
perform these operations on their parameters. And in case when corresponding left
(right) shape functions of operands are identical then result of an operation has the
same left (right) shape — this property belongs to a series of t-norms and is called
shape preserving property [19].

2 Aggregation of Fuzzy Information and Definition of Fuzzy
Variables Relatedness Based on t-Norms

Aggregation of fuzzy information is based on t-norms and t-conorms, that are ex-
tensions of min and max functions, which are used in operations on fuzzy sets and
possibilistic variables (calculus of possibilities) [13, 14, 15].

Definition 11. A triangular norm (briefly t-norm) is a binary operation T on the
unit interval [0,1] which is commutative, associative, monotone and has 1 as neutral
element, i.e., it is a function T : [0,1]× [0,1] → [0,1] such that for all x,y,z ∈ [0,1]:

1. T (1,x) = x, boundedness,
2. T (x,y) = T (y,x), symmetry,
3. T (x,T (y,z)) = T (T (x,y),z), associativity,
4. T (w,y) ≤ T (x,z), w ≤ x,y ≤ z, monotonicity.

Example 2. Here are some examples of well-known t-norms.

1. TW (x,y)=
{

min{x,y}, if max{x,y} = 1,
0, otherwise,

2. the Lukasiewicz t-norm TL(x,y) = max{x + y−1,0},
3. the algebraic product TP(x,y) = xy,
4. minimization operation TM(x,y) = min{x,y}.

It is easy to prove the following theorem [13].

Theorem 1. If T is a t-, then ∀x,y ∈ [0,1]:

TW (x,y) ≤ T (x,y) ≤ TM(x,y).
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Triangular norms TW and TM are extreme ones, where TM is called the largest
(strongest) and TW — the smallest (weakest) t-norm respectively (largest and small-
est with respect to the pointwise order).

Following after [12], we introduce the notion of mutual t-relatedness of fuzzy
sets and possibilistic variables, that generalizes the corresponding notion of unrelat-
edness given in [21].

Definition 12. Let (Γ ,P(Γ ),π) is a possibilistic space and T is an arbitrary t-norm.
Sets X1, . . . ,Xn ∈ P(Γ ) are called mutually T-related if for any subset {i1, . . . , ik} of
the set {1, . . . ,n}, 1 ≤ k ≤ n the following equation holds:

π
(

Xi1 ∩ . . .∩Xik

)
= T
(
π(Xi1), . . . ,π(Xik)

)
,

where

T
(
π(Xi1), . . . ,π(Xik)

)
=T (T (. . .T (T (π(Xi1),π(Xi2)),π(Xi3)), . . .π(Xik−1)),π(Xik)).

Let A1, . . . ,An be possibilistic variables defined on possibilistic space (Γ ,P(Γ ),π).

Definition 13. Possibilistic variables A1, . . . ,An are called mutually T-related if for
any subset {i1, . . . , ik} of the set {1, . . . ,n}, 1 ≤ k ≤ n:

μAi1 ,...,Aik
(xi1 , . . . ,xik) = π(γ ∈ Γ |Ai1(γ) = xi1 , . . . ,Aik(γ) = xik) =

π(A−1
i1

{xi1}∩ . . .∩A−1
ik

{xik}) =
T (π(A−1

i1
{xi1}), . . . ,π(A−1

ik
{xik})),xi j ∈ E1.

One of the main properties of t-norms is their ability to control uncertainty (”fuzzi-
ness”) growth, which is very likely to appear when performing arithmetic operations
on fuzzy numbers. For example, when adding two fuzzy numbers of (L,R)-type us-
ing the strongest t-norm TM corresponding coefficients of fuzziness are summed:

(a,α1,β1)LR ⊕M (b,α2,β2)LR = (a + b,α1 +α2,β1 +β2)LR,

i.e. result’s coefficient of fuzziness is a sum of operands’ coefficients of fuzziness.
Therefore uncertainty is growing. Intensive computations under this conditions can
lead to uncontrollable growth of fuzziness and thus practical interpretation of final
results can be dubious.

With the help of t-norms other than TM we can have slower growth of fuzziness.

3 Weighted Sum of Possibilistic Variables Based on the Weak
t-Norm TW

If we want to solve a possibilistic optimization problem we must be able to iden-
tify possibility distribution functions of those fuzzy variables which form the task’s
criterion and constraints models. Depending on t-norm that lies in the basis of opti-
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mization model we need corresponding calculus of possibilities, which will be used
in the process of construction of equivalent crisp analogue.

Elements of such calculus based on the weak t-norm TW were proposed in [8, 9,
10, 17, 18, 20]. Main result that we will need later on is the following.

Consider n fuzzy intervals: Ai = (ai,bi,αi,βi)LR, i = 1 . . .n. Their TW -sum⊕n
TWi=1

Ai is defined on the level of their distribution parameters as

n⊕
TWi=1

Ai =

(
n

∑
i=1

ai,
n

∑
i=1

bi,
n

max
i=1

αi,
n

max
i=1

βi

)
LR

(8)

Thus when summation process is based on the weak t-norm TW sum’s coefficients
of fuzziness are calculated as maximums of corresponding coefficients of fuzziness
of operands. Note that left and right shapes of operands are identical.

In [3] this result was extended on the case of weighted t-sums. According to [3]
we have the following proposition.

Proposition 1. Let we have n fuzzy intervals: Ai = (ai,bi,αi,βi)LR, i = 1 . . .n. Then
their weighted TW -sum

⊕n
TWi=1

λiAi, where λi ≥ 0 is defined as

n⊕
TWi=1

λiAi =

(
n

∑
i=1

λiai,
n

∑
i=1

λibi,
n

max
i=1

λiαi,
n

max
i=1

λiβi

)
LR

(9)

4 Statements of the Possibilistic Optimization Problems and
Their Solution Methods in Case of Mutually TW -Related
Parameters

In this section we investigate two of the most important models [4, 5, 6, 7, 24, 25, 26]
of possibilistic programming.

k → max, (1)

τ { f0(x,γ)R0 k} ≥ α0, (2)

{
τ{ fi(x,γ)Ri 0} ≥ αi, i = 1, . . . ,m,

x ∈ EN
+.

(3)

and
τ { f0(x,γ)R0 0} → max, (4)

{
τ{ fi(x,γ)Ri 0} ≥ αi, i = 1,m,

x ∈ En
+.

(5)

Here f0(x,γ) = ∑n
j=1 a0 j(γ)x j in case of model (1)-(3), and f0(x,γ) = ∑n

j=1 a0 j(γ)
x j −b0(γ) in model (4)-(5), fi(x,γ) =∑n

j=1 ai j(γ)x j −bi(γ), i = 1, . . . ,m, EN
+ is non-

negative subset of n-dimensional Euclidean space, τ ∈ {π ,ν}, R0,Ri ∈ {=,≤,≥}.
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These tasks, first of which is known in the context of interval analysis as a so-
called optimistic model of decision making and the second one known as fuzzy goal
achievement optimization problem, were well studied in the case of the strongest
triangular norm TM that models min-relatedness of its parameters and τ = π in [5, 7,
24] in the class of normal (in Nahmias sense) possibilistic variables. And in general
case of possibility and necessity measures these tasks were investigated in [4, 25,
26].

As it was merntioned all these problems were considered in the corresponding
works in the case of the strongest triangular norm TM. We study them for the case
of the weak triangular norm TW .

4.1 Level Optimization Model in the Possibility Context

First, we analyze model (1)-(3) for τ = π and R0,Ri = ” = ”. Consider at first the
system (3). Let us construct an equivalent crisp analogue. There holds the following
theorem.

Theorem 2. Let in the system of possibilistic inequalities (3) ai j(γ) and bi(γ) be
mutually TW -related fuzzy variables of (L,R)-type:

ai j(γ) = (a′
i j,a

′′
i j,ηi j,βi j)LR, i = 1, . . . ,m, j = 1, . . . ,n,

bi(γ) = (b′
i,b

′′
i ,ηi,βi)LR, i = 1, . . . ,m,

with identical left and right shapes L and R. If L and R have inverse functions than
equivalent crisp analogue of (3) is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n

∑
j=1

a′
i jx j − max

j=1,...,n
{x jηi j}L−1(αi) ≤ b′′

i +βiR
−1(αi), i = 1, . . . ,m,

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(αi) ≥ b′

i −ηiL
−1(αi), i = 1, . . . ,m,

x ∈ EN
+.

(6)

Proof. The function fi(x,γ) is described by

fi(x,γ) =
n

∑
j=1

ai j(γ)x j −bi(γ).

We move the absolute term bi(γ) into the right-hand side of the equation to obtain
the constraint of the following form{

π{ f ′
i (x,γ) = bi(γ)} ≥ αi, i = 1, . . . ,m,

x ∈ EN
+.
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The function f ′
i (x,γ) is the weighted TW -sum of fuzzy variables of the (L,R)-type

with the same left and right shapes. By proposition 1 on the weighted TW -sum of
fuzzy variables of (L,R)-type, the possibility distribution f ′i (x,γ) has the form

μ f ′i (x,γ) = (l∗i ,r∗i ,η
∗
i ,β ∗

i )LR,

where:

l∗i =
n

∑
j=1

a′
i jx j,

r∗i =
n

∑
j=1

a′′
i jx j,

η∗
i = max{x1ηi1, . . . ,xnηin} = max

j=1...n
{x jηi j},

β ∗
i = max{x1βi1, . . . ,xnβin} = max

j=1...n
{x jβi j}.

Thus, for f ′
i (x,γ), the left and right shapes Lf ′(x) and R f ′(x), respectively, are ex-

pressed by

Lf ′(x) = L

(
l∗i − x
η∗

i

)
, R f ′(x) = R

(
x− r∗i
β ∗

i

)
.

For the absolute term, the possibility distribution function has the form given in the
hypothesis of the theorem – bi(γ) = (b′

i,b
′′
i ,ηi,βi)LR, with the left and right shapes

expressed by

Lb(x) = L

(
b′

i − x
ηi

)
, Rb(x) = R

(
x−b′′

i

βi

)
.

It is obvious that the possibilistic inequality π{ f ′i (x,γ) = bi(γ)} ≥ αi is equivalent
to the following system of deterministic inequalities{

l f ′
i ≤ rb

i ,

r f ′
i ≥ lb

i ,
(7)

where l f ′
i and r f ′

i — are values of arguments of functions Lf ′ and R f ′ , respectively,

such that these functions take values αi: Lf ′(l f ′
i ) = R f ′(r f ′

i ) = αi, and lb
i rb

i are the
values of arguments of functions Lb and Rb, for which they are αi: Lb(lb

i ) = Rb(rb
i ) =

αi.
Let us find l and r

L

(
l∗i − l f ′

i

η∗
i

)
= αi =⇒ l∗i − l f ′

i

η∗
i

= L−1(αi) =⇒ l f ′
i = l∗i −η∗

i L−1(αi),

R

(
r f ′

i − r∗i
β ∗

i

)
= αi =⇒ r f ′

i − r∗i
β ∗

i
= R−1(αi) =⇒ r f ′

i = r∗i +β ∗
i R−1(αi).
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And now we find lb
i and rb

i :

L

(
b′

i − lb
i

ηi

)
= αi =⇒ b′

i − lb
i

ηi
= L−1(αi) =⇒ lb

i = b′
i −ηiL

−1(αi),

R

(
rb

i −b′′
i

βi

)
= αi =⇒ rb

i −b′′
i

βi
= R−1(αi) =⇒ rb

i = b′′
i +βiR

−1(αi).

We rewrite (7) in the form{
l∗i −η∗

i L−1(αi) ≤ b′′
i +βiR

−1(αi),
r∗i +β ∗

i R−1
i (αi) ≥ b′

i −ηiL
−1(αi).

Expanding l∗i ,r∗i ,η∗
i and β ∗

i , we have the theorem hypothesis. The theorem is
proved.

Equivalent deterministic analogue of criterion model (1)-(2) is given by the fol-
lowing theorem.

Theorem 3. Let a0 j(γ) — be mutually TW -related fuzzy variables of (L,R)-type:

a0 j(γ) = (a′
0 j,a

′′
0 j,η0 j,β0 j)LR, j = 1, . . . ,n,

with identical left and right shapes L and R. If L and R have inverse functions than
equivalent crisp analogue of (1)-(2) is

k → max, (8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

∑
j=1

a′
0 jx j − max

j=1,...,n
{x jη0 j}L−1(α0) ≤ k,

n

∑
j=1

a′′
0 jx j + max

j=1,...,n
{x jβ0 j}R−1(α0) ≥ k.

(9)

Proof. The function f0(x,γ) is described by the expression

f0(x,γ) =
n

∑
j=1

a0 j(γ)x j.

We have the following form of the criterion{
π{ f0(x,γ) = k} ≥ α0,

x ∈ En
+.

The function f0(x,γ) is a weighted TW -sum of fuzzy variables of the (L,R)-type
with the same left and right shapes. Similar to the proof of Theorem 2, we find the
possibility distribution f0(x,γ) and the left and right boundaries of its α0-level set

l f
0 = l∗0 −η∗

0 L−1(α0),
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r f
0 = r∗0 +β ∗

0 R−1(α0),

where:

l∗0 =
n

∑
j=1

a′
0 jx j, r∗0 =

n

∑
j=1

a′′
0 jx j,

η∗
0 = max

j=1...n
{x jη0 j}, β ∗

0 = max
j=1...n

{x jβ0 j}.

The possibilistic inequality π{ f0(x,γ) = k} ≥ α0 is equivalent to the following sys-
tem of deterministic inequalities {

l f
0 ≤ k,

r f
0 ≥ k.

(10)

We rewrite (10) in the form {
l∗0 −η∗

0 L−1(α0) ≤ k,
r∗0 +β ∗

0 R−1(α0) ≥ k.
(11)

Expanding l∗0 ,r∗0 ,η∗
0 and β ∗

0 (11), we have the theorem hypothesis. The theorem is
proved.

Let us simplify deterministic analogue (8)-(9) of the model of the criterion. We
denote

f ′(x) =
n

∑
j=1

a′
0 jx j − max

j=1,...,n
{x jη0 j}L−1(α0),

f ′′(x) =
n

∑
j=1

a′′
0 jx j + max

j=1,...,n
{x jβ0 j}R−1(α0).

Then, we can rewrite model (8)-(9) as

k → max,

f ′(x) ≤ k ≤ f ′′(x). (12)

In turn, model (12) is reduced to the equivalent model with no additional (level)
variable k

f ′′(x) → max,

f ′′(x)− f ′(x) ≥ 0.

As a result, we can reduce problem (8),(9),(6) to the form

f ′′(x) → max, (13)
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f ′′(x)− f ′(x) ≥ 0,
n

∑
j=1

a′
i jx j − max

j=1,...,n
{x jηi j}L−1(αi) ≤ b′′

i +βiR
−1(αi), i = 1, . . . ,m,

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(αi) ≥ b′

i −ηiL
−1(αi), i = 1, . . . ,m,

x ∈ EN
+.

(14)

In the general case, (13)-(14) is the problem of nonconvex and nonsmooth optimiza-
tion. Therefore we use genetic algorithm method to solve it.

4.2 Level Optimization Model in the Necessity Context

Let us consider now t model (1)-(3) in the case of τ = ν , R0 = ” ≥ ” and Ri = ” ≤ ”.
The corresponding model takes the following form

k → max, (15)

ν { f0(x,γ) ≥ k} ≥ α0, (16)

{
ν{ fi(x,γ) ≤ 0} ≥ αi, i = 1,m,

x ∈ En
+.

(17)

At first we consider constraints model (17). We construct an equivalent deterministic
system for it.

Theorem 4. Let in the constraints model (17) ai j(γ) and bi(γ) are mutually TW -
related fuzzy variables of (L,R)-type:

ai j(γ) = (a′
i j,a

′′
i j,ηi j,βi j)LR, i = 1,m, j = 1,n,

bi(γ) = (b′
i,b

′′
i ,ηi,βi)LR, i = 1,m

with identical left and right shapes L and R. If L and R have inverse functions than
equivalent deterministic analogue of (17) is⎧⎨⎩

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(1−αi) ≤ b′

i −ηiL
−1(1−αi), i = 1,m,

x ∈ En
+.

(18)

Proof. The function fi(x,γ) is described by

fi(x,γ) =
n

∑
j=1

ai j(γ)x j −bi(γ)

therefore the constraints model (17) can be rewritten in the form
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ν{ f ′

i (x,γ) ≤ bi(γ)} ≥ αi, i = 1,m,

x ∈ EN
+.

(19)

The function f ′i (x,γ) = ∑n
j=1 ai j(γ)x j in the constraints model (19) is weighted TW -

sum of fuzzy variables of the (L,R)-type with the same left and right shapes. By
proposition 1 on the weighted TW -sum of fuzzy variables of (L,R)-type, the possi-
bility distribution f ′

i (x,γ) has the form

μ f ′i (x,γ) = (l∗i ,r∗i ,η
∗
i ,β ∗

i )LR,

where

l∗i =
n

∑
j=1

a′
i jx j, r∗i =

n

∑
j=1

a′′
i jx j,

η∗
i = max{x1ηi1, . . . ,xnηin} = max

j=1,...,n
{x jηi j},

β ∗
i = max{x1βi1, . . . ,xnβin} = max

j=1,...,n
{x jβi j}.

As a result we have that f ′
i (x,γ) has the following shape function R f ′i (x):

R f ′i (x) = R

(
x− r∗i
β ∗

i

)
.

It is obvious that for the absolute term, the possibility distribution function has the
form given in the hypothesis of the theorem – bi(γ) = (b′

i,b
′′
i ,ηi,βi)LR, with the left

and right shapes expressed by

Lbi(x) = L

(
b′

i − x
ηi

)
.

Because of duality of possibility and necessity measures we have

ν{ f ′
i (x,γ) ≤ bi(γ)} ≥ αi ⇒ π{ f ′

i (x,γ) > bi(γ)} ≤ 1−αi.

According to [26] possibilistic inequality π{ f ′
i (x,γ) > bi(γ)} ≤ 1−αi is equivalent

to the following system of deterministic inequalities

r
f ′i
i ≤ lbi

i , (20)

where r
f ′i
i is the value of argument of function R f ′i , such that this function reaches

extremum 1 −αi: R f ′i (r f ′i
i ) = αi, and lbi is the value of argument of function Lbi ,

such that this function also reaches the same extremum 1−αi Lbi(lbi
i ) = αi. Let us

find r
f ′i
i :

R

(
r

f ′i
i − r∗i
β ∗

i

)
= 1−αi =⇒ r

f ′i
i − r∗i
β ∗

i
= R−1(1−αi) =⇒ r

f ′i
i = r∗i +β ∗

i R−1(1−αi).
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And now let us find lbi
i . We have:

L

(
b′

i − lbi
i

ηi

)
= 1−αi =⇒ b′

i − lbi
i

ηi
= L−1(1−αi) =⇒ lbi

i = b′
i −ηiL

−1(1−αi).

Than inequality (20) can be rewritten in the form

r∗i +β ∗
i R−1

i (1−αi) ≤ b′
i −ηiL

−1(1−αi).

Putting l∗i , r∗i , η∗
i and β ∗

i in their explicit form, we have the theorem hypothesis. The
theorem is proved.

Remark 1. In the hypotheses of Theorem 4 constraints model (18) defines convex
set of optimization task (1)-(3) feasible region.

Indeed, it is easy to see that for any i = 1,n function

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(1−αi)

is convex because it is a sum of linear and convex functions. Thus i-th constraint is
a convex set. Intersection of convex sets is also a convex set.

4.3 Fuzzy Goal Achievement Maximization Model in the
Possibility Context

We now move to investigating the model (4)-(5) with τ = π , R0,Ri = ” = ”.
Let us consider the following possibilistion programming problem

π { f0(x,γ) = 0} → max (21)

{
π{ fi(x,γ) = 0} ≥ αi, i = 1, . . . ,m
x ∈ X

(22)

Here f0(x,γ) = ∑n
j=1 a0 j(γ)x j − b0(γ), and fi(x,γ) = ∑n

j=1 ai j(γ)x j − bi(γ), i =
1, . . . ,m.

At first, we study the system (22). We construct an equivalent deterministic sys-
tem for it. We have the following theorem.

Theorem 5. Let in the system of possibilistic inequalities (22) ai j(γ) and bi(γ) are
mutually TW -related fuzzy variables of (L,R)-type:

ai j(γ) = (a′
i j,a

′′
i j,ηi j,βi j)LR, i = 1,m, j = 1,n,

bi(γ) = (b′
i,b

′′
i ,ηi,βi)LR, i = 1,m,

with identical left and right shapes L and R. If L and R have inverse functions than
equivalent crisp analogue of (22) is
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n

∑
j=1

a′
i jx j − max

j=1,...,n
{x jηi j}L−1(αi) ≤ b′′

i +βiR
−1(αi), i = 1,m,

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(αi) ≥ b′

i −ηiL
−1(αi), i = 1,m,

x ∈ En
+.

(23)

Proof. Proof of this theorem is the same as in the Theorem 2.

The following theorem gives us an equivalent deterministic analogue of criterion
model (21).

Theorem 6. Let in the criterion model (21) a0 j(γ) — be mutually TW -related fuzzy
variables of (L,R)-type:

a0 j(γ) = (a′
0 j,a

′′
0 j,η0 j,β0 j)LR, j = 1,n,

b0(γ) = (b′
0,b

′′
0 ,η0,β0)LR

with identical left and right shapes L and R. If L and R have inverse functions than
equivalent crisp analogue of (21) is

α → max,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
j=1

a′
0 jx j − max

j=1,...,n
{x jη0 j}L−1(α) ≤ b′′

0 +β0R−1(α),

n

∑
j=1

a′′
0 jx j + max

j=1,...,n
{x jβ0 j}R−1(α) ≥ b′

0 −η0L−1(α),

α ∈ [0,1],
x ∈ En

+.

(24)

Proof. The function f0(x,γ) is described by the following expression

f0(x,γ) =
n

∑
j=1

a0 j(γ)x j −b0(γ).

We move the absolute term b0(γ) into the right-hand side of the equation to obtain
the constraint of the following form

π{ f ′
0(x,γ) = b0(γ)} → max,

x ∈ EN
+.

The function f ′
0(x,γ) is the weighted TW of fuzzy variables of the (L,R)-type with

the same representation functions of the form. By proposition 1 on the weighted
TW -sum of fuzzy variables of (L,R)-type, the possibility distribution of f ′

0(x,γ) has
the form

μ f ′0(x,γ) = (l∗0 ,r∗0,η
∗
0 ,β ∗

0 )LR,
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where

l∗0 =
n

∑
j=1

a′
0 jx j,

r∗0 =
n

∑
j=1

a′′
0 jx j,

η∗
0 = max{x1η01, . . . ,xnη0n} = max

j=1...n
{x jη0 j},

β ∗
0 = max{x1β01, . . . ,xnβ0n} = max

j=1...n
{x jβ0 j}.

Thus, for f ′
0(x,γ), the left and right shapes Lf ′0(x) and R f ′0(x), respectively, are ex-

pressed by

Lf ′0(x) = L

(
l∗0 − x
η∗

0

)
, R f ′0(x) = R

(
x− r∗0
β ∗

0

)
.

For the absolute term, the possibility distribution function has the form given in the
hypothesis of the theorem – b0(γ) = (b′

0,b
′′
0 ,η0,β0)LR, with the left and right shapes

expressed by

Lb0(x) = L

(
b′

0 − x
η0

)
, Rb0(x) = R

(
x−b′′

0

β0

)
.

Let us consider some arbitrary α ∈ [0,1] and find deterministic analog of the fol-
lowing possibilistic equality

π{ f ′
0(x,γ) = b0(γ)} ≥ α. (25)

Puttingα → max after that, we obtain necessary deterministic analog of the criterion
model.

As in the proof of the Theorem 3 we have that possibilistic inequality (25) is
equivalent to the following system of deterministic inequalitities{

l
f ′0
0 ≤ rb0

0 ,

r
f ′0
0 ≥ lb0

0 ,
(26)

where l
f ′0
0 and r

f ′0
0 are values of arguments of functions L and R, respectively, such

that these functions take valuesα: L(l f ′0
0 )= R(r f ′0

0 ) =α , and lb0
0 and rb0

0 are the values

of arguments of functions L and R, for which they are α: L(lb0
0 ) = R(rb0

i ) = α .

Let us find l
f ′0
0 and r

f ′0
0 :

L

(
l∗0 − l

f ′0
0

η∗
0

)
= α =⇒ l∗0 − l

f ′0
0

η∗
0

= L−1(α) =⇒ l
f ′0
0 = l∗0 −η∗

0 L−1(α0),

R

(
r

f ′0
0 − r∗0
β ∗

0

)
= α =⇒ r

f ′0
0 − r∗0
β ∗

0
= R−1(α) =⇒ r

f ′0
0 = r∗0 +β ∗

0 R−1(α).
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And now we find lb0
0 and rb0

0 :

L

(
b′

0 − lb0
0

η0

)
= α =⇒ b′

0 − lb0
0

η0
= L−1(α) =⇒ lb0

0 = b′
0 −η0L−1(α),

R

(
rb0

0 −b′′
0

β0

)
= α =⇒ rb0

0 −b′′
0

β0
= R−1(α) =⇒ rb0

0 = b′′
0 +β0R−1(α).

Expanding variables in the system (26) and putting α → max, we obtain the theorem
hypothesis. The theorem is proved.

5 Genetic Algorithm for Solving the Problems

We can represent the general scheme of a genetic algorithm as the following se-
quence of steps [16].

1. Initializing the algorithm parameters, in particular, popsize, a, Pc, and Pm, where

• popsize is the number of chromosomes in each population;
• a is the constant that influences the algorithm of chromosome selection;
• Pc is the crossover probability (about Pc× popsize chromosomes generate new

chromosomes);
• Pm is the mutation probability (about Pm × popsize chromosomes mutate).

2. Initializing the initial population by popsize chromosomes.
3. Modifying the current set of chromosomes by crossover and mutation operations.
4. Calculating the criterial function for each chromosome.
5. Calculating the fitness function for each chromosome, using the criterial

function.
6. Selecting chromosomes by the roulette algorithm and forming a new population.
7. Repeating steps 3–6 necessary number of times.
8. Output the best chromosome as the optimal solution to the problem.

Since the best chromosome of the i-th population does not necessarily move to the
(i + 1)-th population, we store the value of the best chromosome obtained at the
previous stages of the algorithm. If we find a better chromosome, we store it rather
than the previous one. We consider all steps of the algorithm in more detail.

5.1 Chromosomes

In genetic algorithms, chromosomes are used to encode solutions to the stated opti-
mization problem. There are at least two ways to represent chromosomes, binary and
real. In the first case, all components of the vector of unknowns x = (x1,x2, . . . ,xn)
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are transformed into the binary form and concatenated. Then, all crossover and mu-
tation operation are performed over sequences of zeros and ones. In the second case,
the genetic algorithm operates directly with the very vector x that is not anyhow en-
coded. Both methods have their own advantages and drawbacks.

We consider the second method for the algorithm not to become more compli-
cated with encoding and decoding binary rows and for the sake of visualization of
the genetic process.

5.2 Initializing the Algorithm Parameters

Using parameters, we can control the way the genetic algorithm operates and, in
general case, determine its efficiency. The software implementation of the algorithm
allows us experimentally choose the values of parameters that provide the most
efficient way to solve the stated problem. Initially, we choose parameters depending
on the estimates of experts in the subject field of the problem to be solved or at
random.

The size of the population is one of the most important parameters. If it is too
small, steps of the algorithm are performed rapidly; however, the general algorithm
convergence to the optimal solution becomes slow and the risk of sticking in the area
of the local optimum increases. When the size of population is too big, performing
one step of the algorithm to construct a new population takes much time; however,
operation spectrum of such algorithm is very wide and the probability of finding the
global extremum for a smaller number of iterations is greater than in the first case.
However, since it takes long to perform each iteration, the very algorithm operates
for a long time, similar to the first case.

5.3 Initializing the Initial Population

To initialize the initial population, in the general case, we assign arbitrary values,
which nevertheless stay within the region of admissible solutions to the stated prob-
lem, to all popsize chromosomes.

5.4 Performing the Crossover Operations

To perform the crossover operation, we select Pc× popsize chromosomes at random.
For all i = 1, . . . , popsize chromosomes, we generate a random number r ∈ [0,1]
uniformly distributed on this intervall. If r ≤ Pc, we select the ith chromosome for
the crossover operation.
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As a result, we have the set of Pc × popsize chromosomes – V1,V2,V3, . . . ,Vc, c ≈
Pc × popsize. Since pairs of chromosomes take part in the crossover operation, we
can eliminate one of the chromosomes if their number is odd. We form pairs of
chromosomes (V ′

1,V
′
2),(V

′
3,V

′
4), . . ., etc. at random. Consider the pair (V ′

1,V
′
2). We

generate the random number c ∈ (0,1). Then, we perform the crossover operation
for (V ′

1,V
′
2)

X = c×V ′
1 +(1− c)×V ′

2, Y = (1− c)×V ′
1 + c×V ′

2.

Values X and Y are descendants of two initial chromosomes. If the region of ad-
missible solutions were convex, this crossover operation would ensure that X and Y
belong to the region of admissible solutions as well. However, this is not true in our
case. Therefore, having obtained X and Y , we need to check if they still stay within
this region. If one of new chromosomes is outside the region, we save the second
chromosome and perform another crossover operation. We repeat until we either
get two admissible but different chromosomes or exceed the admissible number of
iterations. Then, we replace the initial chromosomes V ′

1 and V ′
2 by the new X Y (if

any).

5.5 Performing the Mutation Operation

Similar to Section 6.4, we select, at random, about Pm × popsize chromosomes to
be acted upon by the mutation operation. For all i = 1, . . . , popsize, we generate
the number r ∈ [0,1] at random. If r ≤ Pm, we select the ith chromosome for the
mutation operation.

Then, for each selected chromosome V ′′
i , we perform the mutation operation as

follows. At random, we assign a sufficiently big number M (the range is also deter-
mined at step 1 of the algorithm). Then, at random, we generate the vector d ∈ Rn.
We form the mutated chromosome by the formula

Z = V ′′
i + M ×d.

If Z is outside the region of admissible solutions to the problem, we obtain the
number M′ ∈ (0,M) at random and repeat the operation once again. We repeat until
we either get a new admissible chromosome or exceed the given number of iterations
of the mutation operation. Then, we replace the initial chromosome V ′′

i by the found
one.

5.6 The Criterial Function and the Fitness Function

In our case, the criterion of the optimization problem to be solved is the criterial
function. We use the suitability function to range chromosomes of the population,
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assigning the survivability probabilities to them so that the more suitable chromo-
some has the greater probability to move to the next population. We give one of the
ways to construct this function.

We arrange all chromosomes in the decreasing order of their ”fitness” (for our
maximization problem, in the decreasing order of the value of the criterial function).
Then, we choose the parameter a ∈ (0,1) at random and write the fitness formula

eval(Vi) = a× (1−a)i−1, i = 1, . . . , popsize. (27)

As can be seen from (27), the real values of the criterial function are of no impor-
tance here, what counts is the order of chromosomes. In what follows, this function
is used in the chromosome selection algorithm.

5.7 Chromosome Selection Algorithm

Chromosome selection is based on the so-called roulette algorithm, which can be
visually imagined as follows. Suppose we have a round disk that can revolve on
its axis and is put on a rod. An meter pointing to the circumference of the disk
is attached to the rod rigidly. We divide the disk into popsize sectors and put one
chromosome from the current population into each sector. The area of the sector
with the i chromosome is

eval(Vi)

∑popsize
j=1 eval(Vj)

which is some portion of the total disk area. We spin the roulette, and when it stops,
we choose the chromosome in the sector pointed to by the meter. We duplicate this
chromosome and place the duplicate to the resulting set. We perform this operation
popsize times. Formally, we can describe this algorithm as follows.

• Calculate the cumulative ”probability” of selection qi for each chromosome Vi⎧⎪⎨⎪⎩
q0 = 0,

qi =
i

∑
j=1

eval(Vj), i = 1, . . . , popsize.

• Repeat the next two steps popsize times to obtain popsize duplicates of chromo-
somes. To do this, generate the number r ∈ (0,qpopsize], choose the chromosome
Vi, where i is determined by the rule qi−1 < r ≤ qi, and place it to the resulting
set.

It is worth noting that the selection results in the population with a number of dupli-
cating chromosomes. The more suitable the chromosome was in the initial popula-
tion, the more duplicates it will have in the new population.
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6 Model Example and Comparative Study

6.1 Comparative Study

By the model example, we study the behavior of the problem of possibilistic
optimization, depending on the t-norm that describes the interaction of fuzzy
parameters.

6.1.1 Example of Solving the Problem of Level Optimization with Mutually
TW -Related Parameters

We consider problem of level optimization with mutually TW -related parameters for
n = m = 2 and α0 = 0.5, α1 = 0.5 and α2 = 0.5

k → max, (28)

π {a01(γ)x1 + a02(γ)x2 = k} ≥ 0.5, (29)

⎧⎨⎩
π {a11(γ)x1 + a12(γ)x2 −b1(γ) = 0} ≥ 0.5,

π {a21(γ)x1 + a22(γ)x2 −b2(γ) = 0} ≥ 0.5,

x ∈ E2
+.

(30)

Here a01(γ), a02(γ), a11(γ), a12(γ), a21(γ), a22(γ), b1(γ) b2(γ) are triangular mu-
tually TW -related fuzzy variables with (L,R)-type distributions

a01(γ) = (3,3,4.5,4)LR, a02(γ) = (−2,−2,5,7)LR ,

a11(γ) = (−6,−6,3,3)LR , a12(γ) = (8,8,0.5,0.6)LR ,

a21(γ) = (4,4,3,3)LR, a22(γ) = (10,10,4.3,4.2)LR,

b1(γ) = (3,3,1.5,1.5)LR , b2(γ) = (10,10,6,6)LR ,

where

L(t) = R(t) = max{0,1− t}, t ∈ E1
+.

We construct the deterministic equivalent analogue of the problem (28)-(30). By
theorems 2 and 3, we have

3x1 −2x2 + 0.5max{4x1,7x2} → max, (31)
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max{4x1,7x2}+ max{4.5x1,5x2} ≥ 0,

−6x1 + 8x2 −0.5max

{
3x1,

1
2

x2

}
≤ 3.75,

−6x1 + 8x2 + 0.5max{3x1,0.6x2} ≥ 2.25,

4x1 + 10x2 −0.5max{3x1,4.3x2} ≤ 13,

4x1 + 10x2 + 0.5max{3x1,4.2x2} ≥ 7,

x ∈ E2
+.

(32)

We use the following constants to initialize the genetic algorithm of solving the
obtained problem

1) the population size popsize = 50;
2) the probability of mutation Pm = 0.2;
3) the probability of crossover Pc = 0.8;
4) the constant taking part in selection of chromosomes a = 0.05.

Figure 1 illustrates the operation of the genetic algorithm. We can see that the ge-
netic algorithm converges to the optimum as early as at the 80th iteration up to the
accuracy of three decimal digits. The ordinate axis shows the values of the best chro-
mosome up to the accuracy of three decimal digits, while the abscissa axis shows
the number of iterations of the genetic algorithm.

Fig. 1 Operation of the genetic algorithm

The solution to the problem (31)-(32) obtained by the genetic algorithm is

x1 ≈ 1.2824, x2 ≈ 1.0026, FW (x1,x2) ≈ 5.3511.

6.1.2 An Example of Solving the Problem of Level Optimization with
Minrelated (Unrelated) Parameters and Crisp Parameters

For the sake of comparison, we solve the stated problem (28)-(30) with mutually
TM-related (minrelated) fuzzy parameters and when there is no fuzziness. The cor-
responding crisp problem has the form
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3x1 −2x2 → max,⎧⎨⎩
−6x1 + 8x2 −3 = 0,

4x1 + 10x2 −10 = 0,

x ∈ E2
+,

There exists a unique solution

x1 ≈ 0.5435, x2 ≈ 0.7826, FC(x1,x2) ≈ 0.0653.

According to [25], the equivalent deterministic analogue of the model example (28)-
(30) with mutually TM-related fuzzy parameters is represented by the linear pro-
gramming problem

5x1 + 1.5x2 → max,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−7.5x1 + 7.75x2 ≤ 3.75,

−4.5x1 + 8.3x2 ≥ 2.25,

2.5x1 + 7.85x2 ≤ 13,

5.5x1 + 12.1x2 ≥ 7,

x ∈ E2
+.

We write its solution as

x1 ≈ 1.6092, x2 ≈ 1.1436, FM(x1,x2) ≈ 9.7615.

The table represents solutions of the model problem for all three cases. Figure 2
illustrates feasible regions of the tasks from the corresponding examples.

Table 1

parameters x1 x2 FT (x1,x2)
crisp 0.5435 0.7826 0.0653

mutually TW -related 1.2824 1.0026 5.3511
mutually minrelated 1.6092 1.1436 9.7615

6.2 Theorem of Feasible Regions Subsethood

As one can see from the comparative study feasible region in the case of mutually
TW -related parameters turns out to be more compact and corresponding solutions
are less ”fuzzy” than in the case of minrelated parameters of initial task. We can
prove this strictly mathematically.

Consider the task of maximization of fuzzy goal achievement level in possibility
context.

k → max, (33)
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Fig. 2 Feasible regions of equivalent deterministic analogues of the problem (28)-(30) for the
case of mutually TW -related (the intersection of highlighted regions), minrelated (the region
bounded by four solid lines) and crisp (the point of intersection of two dash-and-dot lines)
parameters; W , M, and C are the points of optimum for the corresponding cases. For the sake
of obviousness region E2

+ and region spcified by the first inequality of the system (32) are
omitted.

π { f0(x,γ) = k} ≥ α0, (34)

{
π{ fi(x,γ) = 0} ≥ αi, i = 1,m,

x ∈ En
+.

(35)

We use Xαi
M to denote the set of solutions x corresponding to the ith constraint of

model (35) that satisfies

Xαi
M =
{

x : π { fi(x,γ) = 0} ≥ αi

}
,

ai j(γ), j = 1,n and bi(γ) are minrelated,

and Xαi
W denote the set given by conditions

Xαi
W =
{

x : π { fi(x,γ) = 0} ≥ αi

}
,

ai j(γ), j = 1,n and bi(γ) are mutually TW -related.
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The following theorem holds.

Theorem 7
m⋂

i=1

Xαi
W ⊆

m⋂
i=1

Xαi
M .

Proof. Consider the ith constraint of model (35) π { fi(x,γ) = 0}≥ αi. We construct
its corresponding sets Xαi

W and Xαi
M . Let all ai j(γ), j = 1,n and bi(γ) be minrelated.

Then, by [25], we have the equivalent deterministic analogue of the given constraint⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n

∑
j=1

a−
i j(αi)x j ≤ b+

i (αi),

n

∑
j=1

a+
i j(αi)x j ≥ b−

i (αi),

x ∈ En
+,

(36)

where a−
i j(αi), j = 1,n and b−

i (αi) are left boundaries, and a+
i j(αi), j = 1,n and

b+
i (αi) are right boundaries of αi-level sets of fuzzy variables ai j(γ), j = 1,n and

bi(γ), respectively.
Now, we assume that ai j(γ), j = 1,n and bi(γ) are mutually TW -related. Then, by

Theorem 2, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n

∑
j=1

a′
i jx j − max

j=1,...,n
{x jηi j}L−1(αi) ≤ b′′

i +βiR
−1(αi),

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(αi) ≥ b′

i −ηiL
−1(αi),

x ∈ En
+.

(37)

as the equivalent deterministic analogue of the given constraint of model (35).
We prove that Xαi

W ⊆ Xαi
M . We take x̃ = (x̃1, x̃2, . . . , x̃n) ∈ Xαi

W . Since x̃ belongs to
Xαi

W , both inequalities (37) hold for this value of x̃. We show that both inequalities
(36) hold simultaneously for x̃ as well. Thus, we prove that x̃ ∈ Xαi

M . If this is true
for any x ∈ Xαi

W , the necessary condition for Xαi
W to be included in Xαi

M is met.
For the fixed x̃, the function max

j=1,...,n
{x̃ jηi j} takes the particular value x̃sηis. We

consider the left-hand side of the first inequality of system of equations (37) for this
x̃

n

∑
j=1

a′
i j x̃ j − x̃sηisL

−1(αi) =

= a′
i1x̃1 + a′

i2x̃2 + . . .+ a′
isx̃s + . . .+ a′

inx̃n − x̃sηisL
−1(αi) =

= a′
i1x̃1 + a′

i2x̃2 + . . .+ x̃s(a′
is −ηisL

−1(αi))+ . . .+ a′
inx̃n.

It is not difficult to see what the expression in parentheses means

a′
is −ηisL

−1(αi) = t ⇒
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⇒ a′
is − t
ηis

= L−1(αi) ⇒ L

(
a′

is − t
ηis

)
= αi =⇒ t = a−

is (αi).

In other words, t is the left boundary of the αi-level set of the fuzzy variable ais(γ).
Similarly, we can illustrate what the value in the right-hand side of the first inequal-
ity of system (37) means

b′′
i +βiR

−1(αi) = p ⇒

⇒ p−b′′
i

βi
= R−1(αi) ⇒ R

(
p−b′′

i

βi

)
= αi =⇒ p = b+

i (αi).

Taking into account that a−
i j(αi) ≤ a′

i j and a+
i j(αi) ≥ a′′

i j (the left boundary of the
α-level set of the fuzzy number does not exceed its left modal value, and the right
boundary of the α-level set of the fuzzy number is not less than its right modal
value) and x ∈ EN

+, we obtain

b+
i (αi) = b′′

i +βiR
−1(αi) ≥

≥ a′
i1x̃1︸︷︷︸

≥a−
i1(αi)x̃1

+ a′
i2x̃2︸︷︷︸

≥a−
i2(αi)x̃2

+ . . .+ x̃s(a′
is −ηisL

−1(αi))︸ ︷︷ ︸
=a−

is (αi)x̃s

+ . . .+ a′
inx̃n︸︷︷︸

≥a−
in(αi)x̃n

≥

≥
n

∑
j=1

a−
i j(αi)x j.

We prove the similar for the second inequality of system (37)

b−
i (αi) = b′

i −ηiL
−1(αi) ≤

≤ a′′
i1x̃1︸︷︷︸

≤a+
i1(αi)x̃1

+ a′′
i2x̃2︸︷︷︸

≤a+
i2(αi)x̃2

+ . . .+ x̃s(a′′
is +βisR

−1(αi))︸ ︷︷ ︸
=a+

is (αi)x̃s

+ . . .+ a′′
inx̃n︸︷︷︸

≤a+
in(αi)x̃n

≤

≤
n

∑
j=1

a+
i j(αi)x j.

Thus, any vector x̃ that satisfies the first inequality of system (37) meets the first
inequality of system (36) as well, and any vector x̃ for which the second inequality
of system (37) holds also meets the second inequality of system (36). Hence, Xαi

W ⊆
Xαi

M . It is obvious that

Xαi
W ⊆ Xαi

M , i = 1,m =⇒
m⋂
1

Xαi
W ⊆

m⋂
1

Xαi
M .

This proves the theorem.

We can prove a similar theorem for the model of criterion as well. We use Fα0
M (x)

to denote the range of the criterion, for which (34) holds, given the fact that all
a0 j(γ), j = 1,n,, are minrelated, and Fα0

W (x) to denote the range of the criterion that
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satisfies model (34), given the fact that all a0 j(γ), j = 1,n, are mutually TW -related.
We can prove the following theorem.

Theorem 8. Fα0
W (x) ⊆ Fα0

M (x).

Proof. By [25], the equivalent deterministic analogue of model (34) for inter-
miniconnected parameters a0 j(γ), j = 1,n, has the form

n

∑
j=1

a−
0 j(α0)x j ≤ k ≤

n

∑
j=1

a+
0 j(α0)x j, (38)

and by Theorem 3, the equivalent deterministic analogue of model (34) for mutually
TW -related parameters a0 j(γ), j = 1,n has the form

n

∑
j=1

a′
0 jx j − max

j=1,...,n
{x jη0 j}L−1(α0) ≤ k ≤

n

∑
j=1

a′′
0 jx j + max

j=1,...,n
{x jβ0 j}R−1(α0). (39)

Following the line of reasoning similar to Theorem 7, we can show that any vector
x that satisfies system (39) satisfies system (38) as well. In other words, the system
of inequalities holds⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

∑
j=1

a−
0 j(α0)x j ≤

n

∑
j=1

a′
0 jx j − max

j=1,...,n
{x jη0 j}L−1(α0) ≤ k,

n

∑
j=1

a+
0 j(α0)x j ≥

n

∑
j=1

a′′
0 jx j + max

j=1,...,n
{x jβ0 j}R−1(α0) ≥ k.

This proves the theorem.

Let F̃α0
M and F̃α0

W be the optimal values of problem (33)–(35) for minrelated pa-
rameters and TW -related parameters, respectively. We have the following corollary
from Theorem 8.

Corollary 1. F̃α0
W ≤ F̃α0

M .

6.3 Study of Possibilistic Optimization Tasks in the Context of
Possibility/Necessity

Feasible region of deterministic equivalent analogue of the optimization task (1)-(3)
in the hypotheses of Theorem 4 is defined by corresponding constraints model as a
convex set.

Indeed, it is easy to see that for any i = 1,m function

n

∑
j=1

a′′
i jx j + max

j=1,...,n
{x jβi j}R−1(1−αi)

is convex, because it is represented by sum of linear and convex functions. Thus ith
constraint defines a convex set. Intersection of convex sets is also a convex set.
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This result is important from the point of view of comparative study of equivalent
deterministic analogues of the task (1)-(3) in the cases of possibility and necessity
measures. As it was shown in the previous section when σ = π the corresponding
constraints model forms a non-convex set.

We use Xα
W (ν) to denote the feasible region defined by the following constrints

model {
ν{ fi(x,γ) ≤ 0} ≥ αi, i = 1,m,

x ∈ En
+.

We use Xα
W (π) to denote the feasible region defined by{

π{ fi(x,γ) ≤ 0} ≥ αi, i = 1,m,

x ∈ En
+.

With the assumptions being made the following theorem holds.

Theorem 9. Let αi = 0.5, i = 1,m. Then

Xα
W (ν) ⊆ Xα

W (π).

Proof. Let x̄ ∈ Xα
W (ν). We show that x̄ ∈ Xα

W (π). Indeed, because of x̄ ∈ Xα
W (ν), we

have that, when switching to equivalent deterministic analogue from the Theorem
4, it turns out that ∀i = 1,m:

n

∑
j=1

a′′
i j x̄ j + max

j=1,...,n
{x̄ jβi j}R−1(0.5) ≤ b′

i −ηiL
−1(0.5).

But then ∀i = 1,m the following inequality holds:

n

∑
j=1

a′
i jx̄ j − max

j=1,...,n
{x̄ jβi j}L−1(0.5) ≤ b′′

i +ηiR
−1(0.5).

It is obvious that because L−1(0.5) = R−1(0.5), x̄ belongs to intersection of re-
gions defined by later inequalitites. This intersection forms the region Xα

W (π) as it
was shown in the Theorem 7, i.e. x̄ ∈ Xα

W (π). The theorem is proved.

Remark 2. Threshold level 0.5 accepted in the tasks of stochastic programming [2],
as well as in the tasks of possibilistic programming.

7 Conclusion

We performed a comparative study of the models of possibilistic optimization, de-
pending on t-norm that describes interaction (relatedness) of fuzzy parameters. In
the long run, it helps ”control fuzziness” in optimization and decision-making,
which counts for practice. Speaking of further development of this issue, we find
it interesting to find methods that will allow choosing appropriate t-norm for mod-
elling fuzzy parameters interaction.
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A Parametrized Model for
Optimization with Mixed Fuzzy and
Possibilistic Uncertainty

Elizabeth Untiedt

Abstract. Fuzzy and possibilistic uncertainty are very closely related, and
sometimes coexist in optimization under uncertainty problems. Fuzzy uncer-
tainty in mathematical programming problems typically represents flexibility
on the part of the decision maker. On the other hand, possibilistic uncertainty
generally expresses a lack of information about the values the parameters will
assume.

Several models for mixed fuzzy and possibilistic programming problems
have previously been published. The semantic interpretation of these models,
however, is of questionable value. The mixed models in the literature find
solutions in which the fuzzy uncertainty (or flexibility) and the possibilistic
uncertainty (or lack of confidence in the outcome) are held to the same levels.

This chapter proposes a new mixed model which allows a trade-off between
fuzzy and possibilistic uncertainty. This trade-off corresponds to a seman-
tic interpretations consistent with human decision-making. The new model
shares characteristics with multi-objective programming and Markowitz mod-
els. Model structure, semantic justification, and solution approaches are
covered.

1 Introduction

In the application of optimization theory, parameters are often not known
with certainty. Fuzzy and possibilistic uncertainty are very closely related,
and sometimes coexist in optimization under uncertainty problems. Fuzzy
uncertainty in mathematical programming problems typically represents flex-
ibility on the part of the decision maker. On the other hand, possibilistic
uncertainty generally expresses a lack of information about the value a pa-
rameter will assume.

Several models for mixed fuzzy and possibilistic programming problems
have been previously published. The semantic interpretation of these models,

W.A. Lodwick & J. Kacprzyk (Eds.): Fuzzy Optimization, STUDFUZZ 254, pp. 193–208.
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however, is of questionable value. This chapter proposes a semantic interpre-
tation of the mixed fuzzy and possibilistic linear programming problem that
is not fully addressed by any of the existing models. The newe parameterized
model shares characteristics with multi-objective problems and programming
and Markowitz models.

In Section two of this chapter, we will provide background definitions,
define the problem, and review the current state of the literature on fuzzy
and possibilistic programming problems. Chepter 3 presents tha model, along
with its derivation and justification. Chapter 4 examines problem structure,
solution methods, and an industrial strength application.

2 Background

Fuzzy uncertainty describes vagueness, or a softening of the concept of be-
longing to a set. A fuzzy set X̃ is defined by its membership function, μX̃ .
An element s has its degree of membership in X̃ described by μX̃(s), with 1
indicating full membership, 0 indicating full non-membership, and numbers
between 0 and 1 indicating partial membership. In decision making appli-
cations, a fuzzy set may be used to indicate flexibility on the part of the
decision maker. A goal or constraint may be softened via a fuzzy inequality.

Possibilistic uncertainty, on the other hand, describes ambiguity. A possi-
bilistic variable is not random– its value is pre-determined, but is not known
with certainty. The likelihood that the value of a possibilistic variable lies
in a particular interval is described by a possibility distribution. Klir relates
possibility distributions to fuzzy sets as follows [4].

Given a universe Y , let y be a variable which takes on values in Y . Now
let F be a fuzzy set on Y , then let F (x) describe the extent to which x

is a member of F . Then if we say, “y is F”, F (x) for each x in Y is the
possibility that x is F .

Though they are related, possibilistic uncertainty and fuzzy sets are used to
represent very different things. In optimization problems, a possibilistic vari-
able is used to indicate a parameter whose value is fixed, but is not known
with certainty, (for example: a measurement with a margin of error). A possi-
bility distribution might also be used to reflect a decision maker’s estimation
of the distribution of a random variable when the exact distribution is too
costly or impossible to determine.

2.1 Semantics of the Mixed Fuzzy and Possibilistic
Linear Programming Problem

Occasionally, fuzzy and possibilistic uncertainty occur in the same optimiza-
tion problem. Consider the linear program (LP):
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max cTx (1)
subject to Ax ≤ b

x ≥ 0.

Possibilistic uncertainty (denoted in this chapter with a “hat”) can occur in
the parameters represented by ĉ, b̂, and/or Â. (This happens when the value
of the parameters is fixed, but the decision maker has incomplete information
about its value.)

On the other hand, fuzzy uncertainty (denoted in this chapter with a
“tilde”) can occur in any of the parameters, Ã, b̃, and/or c̃. This happens
when the values of the parameters are not sharp. Consider ci, which represents
the cost or value of xi, in the problem. When there is a fuzzy interval of values
which, to varying degrees, represent the cost, c̃i is fuzzy. Fuzzy parameters
appear in optimization problems on occasion, but most fuzzy uncertainty
occurs in the inequality. A fuzzy less than constraint (≤̃) can be interpreted as
“approximately less than.” When this uncertainty represents a willingness on
the part of the decision-maker to bend the constraints, optimization problem
with fuzzy inequalities are sometimes called “flexible programs,” and the
constraints are called “soft constraints.”

A common mixed fuzzy and possibilistic linear program, then, might as-
sume the following form:

max ĉTx (2)

subject to Âx ≤̃ b̂

x ≥ 0.

An element’s membership in a fuzzy set (or the degree to which a fuzzy inequal-
ity is satisfied) is quantified by the membership function, and represented by
α ∈ [0, 1]. The likelihood that an interval contains a possibilistic variable is
quantifiedby thepossibilitydistribution, but is also representedbyanα ∈ [0, 1].
The fuzzy α and the possibilistic α, however, mean very different things. The
fuzzy α represents the level at which the decision-maker’s requirements are sat-
isfied. The possibilistic α, on the other hand, represents the likelihood that the
parameterswill take onvalueswhichwill result in that level of satisfaction.With
that in mind, let us examine some previously published approaches for mixed
fuzzy and possibilistic linear programming problems.

2.2 Existing Models for Mixed Fuzzy and Possibilistic
Programming

Delgado, Verdegay, and Villa [5] propose the following formulation for dealing
with ambiguity in the constraint coefficients and right-hand sides, as well as
vagueness in the inequality relationship:
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maximize cTx (3)

subject to Âx ≤̃ b̂

x ≥ 0.

In addition to (3), membership functions πaij are defined for the possible
values of each possibilistic element of Â, membership functions πbi are defined
for the possible values of each possibilistic element of b̂, and membership
function μi gives the degree to which the fuzzy constraint i is satisfied. Stated
another way, μi is the membership function of the fuzzy inequality. Recall
that the uncertainty in the ãijs and the b̃is is due to ambiguity concerning
the actual value of the parameter, while the uncertainty in the ≤̃is is due
to the decision maker’s flexibility regarding the necessity of satisfying the
constraints in full.

Delgado, et al. solve the problem parametrically on α. For each α ∈ [0, 1]
(or practically speaking, for a finite subset of α ∈ [0, 1]), a set of constraints
and objective function are produced. The resut is a fuzzy solution to the
fuzzy problem. Since a fuzzy solution cannot be implemented, the decision
maker must select an α and implement the corresponding solution. This
implementation has a likelihood α of satisfying the constraints of the problem
at a level α. The likelihood that the constraints will be satisfied and the level
at which they are satisfied are two completely separate concepts, but this
model holds both to the same α level.

Another mixed formulation is what Inuiguchi [3] refers to as the “fuzzy
robust programming” problem [1, 8]. This is a mathematical program with
possibilistic constraint coefficients âij that satisfy fuzzy constraints, b̃i as
follows:

max cTx (4)
subject to â′

ix
′ ⊆ b̃i (5)

x′ = (1, xt)t ≥ 0.

Zadeh [9] defines the set-inclusion relation M̃ ⊆ Ñ as μM̃ (r) ≤ μÑ (r) for all
r. Robust programming interprets the set-inclusive constraint to mean that
the region in which ã′

ix
′ can possibly occur is restricted to b̃i, a region which is

tolerable to the decision maker. Therefore, the left side of (5) is possibilistic,
and the right side is fuzzy.

Negoita [8] defines the fuzzy right hand side as follows:

b̃i = {r ∈ R|r ≥ bi}. (6)

As a result, we can interpret â′
ix

′ ⊆ b̃i as an extension of an inequality
constraint. The set-inclusive constraint (5) is reduced to

a+
i (α)x ≤ b+

i (α) (7)
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a−
i (α)x ≥ b−i (α)

for all α ∈ (0, 1].

If the membership functions are linear, it suffices to satisfy the constraints
for α = 1 and for α = ε, where ε is close to zero, since all α ∈ (ε, 1) will be
satisfied by interpolation. If the membership functions are not linear, however,
we have an infinitely constrained problem. If we abide by Negoita’s definition
of b̃ (6), b+

i = ∞ for all values of α, so we can drop the first constraint
in (7). Nonetheless, we still have an infinitely constrained program, with a
constraint for each value of α ∈ (0, 1].

Consider the semantics of the second inequality in [6]. It requires that the
α level of a possibilistic âi multiplied by x be greater than the α level of
a fuzzy b̃i. In other words, there is a likelihood greater than or equal to α

that ai has a value which leads to constraint satisfaction at a level α. Like
Delgado’s model, the fuzzy robust model holds two very different types of
uncertainty to the same α level. That is to say, the optimal implementaion
will have a likelihood α of satisfying the constraints at a level α. The decision
maker might want to allow a lower level of constraint satisfaction in order to
have a greater guarantee of his/her result, or vice versa.

This leads us to ask the following questions. What is it that makes this
model “robust”? And how can robust optimization theory inform a more
practical approach to solving the mixed optimization under uncertainty
problem?

2.3 Robust Optimization

The goal of robust optimization, which has its roots in stochastic optimiza-
tion, is to produce a solution whose quality will withstand a wide variety of
parameter realizations. Robust optimization seeks to mitigate the effects of
uncertainty rather than merely anticipating it. Hence, robustness reflects a
tendency to hedge against uncertainty, sacrificing some performance in order
to avoid excessive volatility [7]. Robust formulations are designed to yield
solutions that are less sensitive to model data than classical mathematical
programming formulations. Robust programs fall into two broad categories–
solution robust programs seek to minimize variance in solution optimality,
while model robust programs aim to decrease variance in feasibility.

The robust fuzzy optimization model in [7] is called “robust” (in the model
robust sense) because it seeks a solution which guarantees compliance with
constraints at every possibility level (every α level). Unfortunately, at lower
possibility levels, it is held to lower standards of constraint compliance, bring-
ing into question its “robust” designation. To shed light on this possible mis-
nomer, let us examine a classic robust model– the Markowitz model, which
is robust in the solution robust sense.
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2.4 Markowitz Model

In 1952, Markowitz [6] proposed a novel approach to financial portfolio opti-
mization. He makes the case that a traditional linear programming approach
to portfolio optimization will never prefer a diversified portfolio to an un-
diversified portfolio. He observes that simply diversifying among top return
solutions will not result in a reliable portfolio, since the returns are too inter-
related for the law of large numbers to apply. He proposes that both maximiz-
ing the expected value of the return and minimizing the historical variance
(risk) are valid objectives. An efficient combination, then, is one which has
the minimum risk for a return greater than or equal to a given level; or one
which has the maximum return for a risk less than or equal to a given level.
The decision maker can move among these efficient combinations, or along
the efficient frontier, according to hisor her degree of risk aversion.

3 Main Results

3.1 Model Concept

In the spirit of the Markowitz model, we wish to allow a trade-off between the
potential reward of the outcome and the reliability of the outcome, with the
weights of the two competing objectives determined by the decision maker’s
risk aversion. The desire is to obtain an objective function like the following:

maximize : reward + (λ × reliability), (8)

where λ is a parameter indicating risk aversion.
The reward variable is the α-level associated with the fuzzy constraints

and goal(s). It tells the decision maker how satisfactory the solution is. The
reliability variable is the α-level associated with the possibilistic parameters.
It tells the decision maker how likely it is that the solution will actually be
satisfactory. To avoid confusion, let us refer to the fuzzy constraint member-
ship level as α and the possibilistic parameter membership level as β.

In addition, let λ ∈ [0, 1] be an indicator of the decision maker’s valuation
of reward and risk-avoidance, with 0 indicating that the decision maker cares
exclusively about the reward, and 1 indicating that only risk avoidance is
important. Using this notation, the desired objective is

max (1 − λ)α + λβ. (9)

There is a frontier, which we call the efficient frontier in accordance with the
literature, along which a trade-off occurs. The choice of λ determines which
solution along the frontier is chosen.
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3.2 Model Implementation

Suppose we begin with the mixed problem:

max ĉTx (10)
subject to Âx ≤̃ b

x ≥ 0.

Let us for the moment ignore the possibilistic parameters and deal with
the fuzzy constraints according to Bellman and Zadeh. We first introduce
a goal, g, for the objective function value and state the objective function
and a fuzzy goal, ĉTx ≥̃ g. Now together the goal and the constraints form
the decision space, and we wish to maximize the α-level at which the least
satisfied constraint or goal is met. Allow (as a slight abuse of notation) ≤̃α

to denote the α-level at which a constraint or goal is met from a pessimistic
point of view. The problem is now,

max α (11)
subject to −ĉTx ≤̃α − g

Âx ≤̃α b

x, α ≥ 0. (12)

Now let ĉβ denote the right end-point of the (1 − β)-cut of −ĉ, and âijβ

denote the right end-point of the (1− β)-cut of âij as illustrated in Figure 1.

0

1

1−beta

mu(x)

xbeta

Fig. 1 The right end-point on the 1 − β-cut of the ĉ
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We can now complete our formulation as follows:

max (1 − λ)α + λβ (13)
subject to −ĉT

β x ≤̃α − g

Âβx ≤̃α b

x ≥ 0
α, β ∈ [0, 1].

The constraints are functions of x, α, and β, and although the objective func-
tion is linear (it does not have to be– some aggregation other than addition
could have been chosen for the α and β terms), we shall soon see that the
variables are quite entangled in the constraints, resulting in a non-linear
formulation.

Let us suppose, for the sake of simplicity, that the possibility distribution
for each aij (and bi) is trapezoidal, with support (wij , zij) (or (wi, zi)), and
core (uij , vij) (or (xi, yi)), as illustrated in Figure 2.

0

1
mu(x)

al
ph

a

w u v z

Fig. 2 Trapezoidal fuzzy number

Also, suppose that we have a single goal, and that the membership func-
tions for the fuzzy constraint and goal are trapezoidal, with d0 denoting the
maximum acceptable deviation from the goal, and di denoting the maximum
acceptable deviation from constraint i, as illustrated in Figure 3.
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Fig. 3 Trapezoidal fuzzy goal

Then, incorporating fuzziness in the tradition of Zimmerman [10], we get

max (1 − λ)α + λβ (14)

subject to α ≤ − g

d0
+
∑

j

cj,β

d0
xj

α ≤ bi

di
−
∑

j

aij,β

di
xj , ∀i

x ≥ 0
α, β ∈ [0, 1].

And incorporating a pessimistic view of possibility (if the problem has no
solution, we return again with an optimistic point of view), we get

max (1 − λ)α + λβ (15)

subject to α ≤ − g

d0
+
∑

j

uj

d0
xj +
∑

j

uj − wj

d0
xjβ

α ≤ bi

di
−
∑

j

vij

di
xj −
∑

j

zij − vij

di
xjβ

x ≥ 0
α, β ∈ [0, 1].
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3.3 A Simple Example

Let us examine a simple, two-variable toy problem as an example. For the
sake of comparison, consider the numerical example treated by Delgado,
et al.[5]:

maximize z = 5x1 + 6x2 (16)
subject to 3̂x1 + 4̂x2≤̃1̂8,

2̂x1 + 1̂x2≤̃7̂
x1, x2 ≥ 0,

where

3̂ = (3, 2, 4), 4̂ = (4, 2.5, 5.5), 1̂8 = (18, 16, 19) (17)
2̂ = (2, 1, 3), 1̂ = (1, 0.5, 2), 7̂ = (7, 6, 9),

and the maximum violation of the first constraint (our d1) is 3, while the
maimum allowable violation of the second constraint (our d2) is 1.

Our parametrized model is not yet developed to handle possibilistic right-
hand sides, so let us modify Delgado, et al’s problem by making the right-
hand sides crisp. Also, the parametrized mixed formulation requires that the
objective function be reformulated as a goal. The solution to the associated
crisp problem yields an objective function value of 28, so let the goal be 23,
with maximum violation (d0) of 5. Finally, introduce possibilistic uncertainty
in the objective function coefficients.

The toy problem to solve is then:

maximize z = 5̂x1 + 6̂x2 (18)
subject to 3̂x1 + 4̂x2≤̃18,

2̂x1 + 1̂x2≤̃7
x1, x2 ≥ 0,

where

5̂ = (5, 4, 6), 6̂ = (6, 5, 7)3̂ = (3, 2, 4), 4̂ = (4, 2.5, 5.5),
2̂ = (2, 1, 3), 1̂ = (1, 0.5, 2),

d1 = 3, d2 = 1
g = 28, d0 = 5.
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Reformulating (19) according to (15) yields:

max (1 − λ)α + λβ (19)

subject to α ≤ −23
5

+ x1 +
6
5
x2 +

1
5
x1β +

1
5
x2β

α ≤ 18
3

− x1 − 4
3
x2 − 1

3
x1β − 1

6
x2β

α ≤ 7 − 2x1 − 1x2 − 1x1β − 1x2β

x ≥ 0
α, β ∈ [0, 1].

This toy problem was formulated in GAMS for λ = 0, λ = .5 and λ = 1 and
solved with the non-linear programming solver. The results are summarized
in Table 1.

Table 1 GAMS results for toy problem. Risk aversion is represented by λ, the
reformulated objective by z = (1 − λ)α + λβ, and the original (crisp) objective by
o. Reliability, represented by β ranges between 0 and 1, and reward, represented by
α also ranges between 0 and 1.

λ z o α β x1 x2

1 1 19.0 0 1 .2 3.1
0.5 0.6 22.2 0.49 0.7 0 3.8
0 0.5 25.6 0.52 0 1.9 2.7

It is clear, from the results, that as risk aversion decreases, the objective
function level that can possibly be attained (represented by o) increases.
However, the certainty of attaining that level, represented by β, decreases.
This is the desired and expected result for the model. In fact, in order for
the model to make sense, we need to know that α and β are always inversely
related. This is in contrast to other mixed models, in which α and β are
equal.

4 Problem Structure and Its Relation to Solution
Methods

Many optimization problems have special structures which are exploited by
efficient solution algorithms. In the search for practical solution methods to
(15), we first evaluate the structure of the problem.

The last terms in each of the constraints in (15) contain βx, so the con-
straints are bi-linear. If the possibility distributions were non-linear (i.e. not
trapezoidal or triangular), the system would be non-linear rather than bi-
linear. Most optimization models for fuzzy or possibilistic uncertainty (that



204 E. Untiedt

have linear possibility distributions or membership functions, as we assume
here) are linear programs. The fact that the fuzzy robust model results in a
bi-linear program is a distinct disadvantage.

On the bright side, there are some simplicities to the model that may
result in a specialized solution method. The objective function is linear. Also,
the non-linearity in the constraints results from the product of a function
of β taken independently with each component of x. There are no mixed
terms, which would lead to quadratic constraints. Unfortunately, the bi-linear
constraints (in the simplest case) form a non-convex feasible region, which
makes for a very hard optimization problem.

One possibility is to try to convert the fuzzy robust model into a bi-linear
program by adding the constraints to the objective function with penalties.
The disadvantages of this approach are two-fold. First, the introduction of
an auxiliary penalty does not really make sense in the scope of the problem,
since our objective in the first place in to minimize a kind of penalty (un-
certainty). Second, the problem with penalized constraint violations in the
objective function would require sequential solutions, which may result in
greater complexity than other non-linear programming methods. For these
reasons the sequential solution of the fuzzy robust problem with penalties
was not pursued, but may be an avenue for further research.

Convex Programming

We’ve observed that the fuzzy robust problem is particularly difficult be-
cause the βx term results in a non-convex feasible region. The shape of the
feasible region is directly related to the trapezoidal shape of the possibility
distribution for the possibilistic parameters in the constraint matrix.

However, if the left and right-hand sides of the possibility distributions
were not linear, but were defined by sufficiently convex functions, the feasi-
ble region would be convex. Specifically, consider the special case in which the
left- and right-hand sides of the possibility distributions are each bounded
above by

c

x
for some constant c. Then the constraints will be concave func-

tions bounded above by the linear function cx.
For example, let the right hand side of the possibility function for a param-

eter a be defined as av +( 2
β+1 −1)(az −av) (see figure 4). Then aβ (the right

end-point of the (1−β)-cut defined in section 3.2) will be v+∗(−2
β −1)(z−v).

This leads a problem with constraints of the form

V x + (
−2

β + 1
− 1)(Z − V )x ≤ b + (α − 1)d,

which are concave. In this situation, convex programming algorithms may be
used to solve the problem.
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Fig. 4 The right end-point on the 1 − β-cut of the ĉ when the right-hand-side of
the possibility distribution is defined as av + ( 2

β+1
− 1)(az − av)

Since membership functions are not typically determined empirically, but
are chosen to represent the opinion of the decision maker, and often, the
convenience of the modeler, this is a significant observation. Modelers often
arbitrarily define linear membership functions for their models, but for the
fuzzy robust model they could arbitrarily define sufficiently convex member-
ship functions.

4.1 Testing the Model: The Radiation Therapy
Problem

The fuzzy robust model with both non-convex and convex feasible regions was
tested on the radiation therapy planning problem, using the MATLAB Opti-
mization Toolbox function fmincon which minimizes non-linear constrained
problems.

The use of particle beams to treat tumors is called the radiation therapy
planning (RTP) problem [2]. Beams of particles are oriented at a variety of
angles and with varying intensities to deposit radiation dose (measured as
energy/unit mass) to the tumor. The goal is to deposit a tumorcidal dose to
the tumor while minimizing damage to surrounding non-tumor tissue.

A treatment plan is the identification of a set of beam angles and weights
that provides a lethal dose to the tumor cells while sparing healthy tissue,
with a resulting dose distribution acceptable to the radiation oncologist. A
dose transfer matrix A, specific to the patient’s geometry, represents how a
unit of radiation in beamlet j is deposited in body pixel i. The components of
A are determined by the fraction of pixel i which intersects with beamlet j,
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attenuated by the distance of the pixel from the place where the beam enters
the body. The dose transfer matrix A can be divided into the following:
a matrix T which contains dose transfer information to tumor pixels only,
matrices C1 through CK which contain does transfer information to pixel in
critical organs 1 though K, and body matrix B which contains dose transfer
information for all non-tumor and non-critical-organ pixels in the body. The
variable vector x represents the beamlet intensities, and the right hand side
vector b represents the dosage requirements.

The constraints for the crisp (non-fuzzy) formulation of the RTP is

subject to B ≤ bbody

C1 ≤ bC1

...

CK ≤ bCK

T ≤ btumor

−T ≤ −btumor. (20)

To test the fuzzy robust model, we interpret the radiation therapy problem in
which the radiation oncologist is flexible regarding the dose limits (fuzziness
in the inequality) and the components of the attenuation matrix are based
on incomplete information (possibilistic parameters), as below.

max (1 − λ)α + λβ (21)
subject to (1 − β)Vbodyx + βZbodyx ≤ bbody + (α − 1)dbody

(1 − β)VC1x + βZC1x ≤ bC1 + (α − 1)dC1

... (22)
(1 − β)VCk

x + βZCk
x ≤ bCk

+ (α − 1)dCk

(1 − β)Vtumorx + βZtumorx ≤ btumor + (α − 1)dtumor

(β − 1)Vtumorx − βZtumorx ≤ −btumor + (1 − α)dtumor

x ≥ 0
α, β ∈ [0, 1].

The fuzzy robust model for the radiation therapy planning problem was
solved in MATLAB. The starting point was found by solving a non-fuzzy
version of the radiation therapy planning problem using linear programming.
The code was tested on an image of one tumor and two critical organs with
64 × 64 pixel resolution the radiation beam discretized into 10 beamlets. In
addition, the model was tested with concave constraints as in (20).
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4.2 Testing the Model: Results

MATLAB found a feasible, acceptable solution to the Radiation Therapy
problem for all values of λ between 0 and 1. The problem had 72 variables and
997 constraints, which made it a medium-to-large-scale problem. MATLAB
prefers to use trust region methods for large scale problem, but because of
the non-convex feasible region, it had to use a line-search method. MATLAB
required over 20,000 function evaluations to converge to a solution, even
though it was close after 2,000. The time taken to solve the fuzzy robust
model was an order of magnitude larger than the time taken to solve other
mixed fuzzy and possibilistic programming models, all of which had linear
programming formulations. With concave constraints, MATLAB still used
line-search methods to solve the problem, but required only 6,000 function
evaluations to converge to a solution. The solutions found by the concave
and non-concave formulations were not identical– but the resultant doses
were equally satisfactory.

5 Conclusion

This chapter introduces a model for problems with both fuzzy and possibilis-
tic variables. The model is semantically meaningful, and puts an additional
fine-tuning parameter in the hands of the decision maker.

In addition, it introduces the idea of selecting a membership function that
will facilitate the solution of the problem. The fact that a slight perturbation
in the shape of the distribution of the possibilistic parameters improved model
performance appears to be a novel observation.

Avenues for further research include:

• How can the possibilistic right hand side be incorporated into the mixed
robust model? Is there a way to simultaneously represent constraint flexi-
bility with α and right-hand-side imprecision with β?

• Both fuzzy and possibilistic intervals are upper-semi-continuous, so vary-
ing α-levels imply moving up or down either the left slope (or profile), or
the right slope (or profile), but not over the entire interval. Because the
decision maker is seeking to minimize risk, the current formulation selects
whichever profile represents the pessimistic point of view. Is there a way to
appropriately parametrize movement over the entire fuzzy or possibilistic
interval so that an optimistic point of view can also be represented?
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On Solving Optimization Problems with
Ordered Average Criteria and Constraints

Włodzimierz Ogryczak and Tomasz Śliwiński

Abstract. The problem of aggregating multiple numerical attributes to form overall
measure is of considerable importance in many disciplines. The ordered weighted
averaging (OWA) aggregation, introduced by Yager, uses the weights assigned to the
ordered values rather than to the specific attributes. This allows one to model vari-
ous aggregation preferences, preserving simultaneously the impartiality (neutrality)
with respect to the individual attributes. However, importance weighted averaging is
a central task in multiattribute decision problems of many kinds. It can be achieved
with the Weighted OWA (WOWA) aggregation though the importance weights make
the WOWA concept much more complicated than the original OWA. In this paper
we analyze solution procedures for optimization problems with the ordered aver-
age objective functions or constraints. We show that the WOWA aggregation with
monotonic preferential weights can be reformulated in a way allowing to introduce
linear programming optimization models, similar to the optimization models we de-
veloped earlier for the OWA aggregation. Computational efficiency of the proposed
models is demonstrated.

Keywords: OWA, WOWA, Optimization, Linear Programming.

1 Introduction

Consider a decision problem defined characterized by m attribute functions fi(x).
That means there is given a feasible set F ⊂ Rq of decision vectors x (vectors of
decision variables). The feasible set is usually defined by some constraints on the
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decision variables. Further f(x) = ( f1(x), f2(x), . . . , fm(x)) is a vector function that
maps the feasible set F into the outcome attribute space Rm. In order to make the
multiple attribute model operational for the decision support process, one needs
to assume some aggregation function for multiple attributes: a : Rm → R. The
aggregated attribute values can be either bounded or optimized (maximized or
minimized).

The most commonly used aggregation is based on the weighted mean where
positive importance weights pi (i = 1, . . . ,m) are allocated to several attributes

Ap(y) =
m

∑
i=1

yi pi (1)

The weights are typically normalized to the total 1 (∑m
i=1 pi = 1). However, the

weighted mean allowing to define the importance of attributes does not allow to
model the decision maker’s preferences regarding distribution of outcomes. The lat-
ter is crucial when aggregating (normalized) uniform achievement criteria like those
used in the fuzzy optimization methodologies [29] as well as in the goal program-
ming and the reference point approaches to the multiple criteria decision support
[13]. In the stochastic problems uniform objectives may represent various possible
values of the same (uncertain) outcome under several scenarios [14].

The preference weights can be effectively introduced with the so-called Ordered
Weighted Averaging (OWA) aggregation developed by Yager [25]. In the OWA ag-
gregation the weights are assigned to the ordered values (i.e. to the smallest value,
the second smallest and so on) rather than to the specific attributes. Since its in-
troduction, the OWA aggregation has been successfully applied to many fields of
decision making [29, 30, 2]. When applying the OWA aggregation to optimization
problems with attributes modeled by variables the weighting of the ordered outcome
values causes that the OWA operator is nonlinear even for linear programming (LP)
formulation of the original constraints and criteria. Yager [26] has shown that the
nature of the nonlinearity introduced by the ordering operations allows one to con-
vert the OWA optimization into a mixed integer programming problem. We have
shown [18] that the OWA optimization with monotonic weights can be formed as a
standard linear program of higher dimension.

The OWA operator allows to model various aggregation functions from the max-
imum through the arithmetic mean to the minimum. Thus, it enables modeling
of various preferences from the optimistic to the pessimistic one. On the other
hand, the OWA does not allow to allocate any importance weights to specific at-
tributes. Actually, the weighted mean (1) cannot be expressed in terms of the OWA
aggregations.

Importance weighted averaging is a central task in multicriteria decision
problems of many kinds, such as selection, classification, object recognition, and
information retrieval. Therefore, several attempts have been made to incorporate im-
portance weighting into the OWA operator [28, 6]. Finally, Torra [22] has introduced
the Weighted OWA (WOWA) aggregation as a particular case of Choquet integral
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using a distorted probability as the measure. The WOWA averaging is defined by
two weighting vectors: the preferential weights w and the importance weights p. It
covers both the weighted means (defined with p) and the OWA averages (defined
with w) as special cases. Actually, the WOWA average is reduced to the weighted
mean in the case of equal all the preference weights and it becomes the standard
OWA average in the case of equal all the importance weights. Since its introduc-
tion, the WOWA operator has been successfully applied to many fields of decision
making [24, 15, 19, 20] including metadata aggregation problems [1, 10].

In this paper we analyze solution procedures for optimization problems with the
ordered average objective functions or constraints. Exactly we consider optimization
problems

max {a(y) : y = f(x), x ∈ F} (2)

or
max{g(y) : a(y) ≤ ρ , y = f(x), x ∈ F} (3)

As an aggregation we consider both OWA and WOWA, both with possible some
generalization due to possible arbitrary density of grid of the preference weights.
We show that the concepts of the LP formulations for the OWA optimization with
monotonic preferential weights [18] can easily be extended to cover optimization
problems with the WOWA bounds and objectives with arbitrary importance weights
and arbitrary density of the preferential weights. A special attention will be paid to
problems with linear attribute functions fi(x) = cix and polyhedral feasible sets:

y = f(x) = Cx and F = {x ∈ Rq : Ax = b, x >= 0} (4)

where C is an m × q matrix (consisting of rows ci), A is a given r × q matrix and
b = (b1, . . . ,br)T is a given RHS vector.

The paper is organized as follows. In the next section we introduce formally
the WOWA operator and its generalization on arbitrary density grids of the pref-
erential weights. We derive some alternative computational formula based on the
Lorenz curves and analyze the orness/andness properties of the WOWA operator
with monotonic preferential weights. In Section 3 we introduce the LP formulations
for bounds or minimization of the WOWA aggregations with decreasing preferential
weights. Similarly in Section 4, the LP formulations for bounds or maximization of
the WOWA aggregations with increasing weights are given. Finally, in Section 5 we
demonstrate computational efficiency of the introduced models.

2 The Ordered Weighted Averages

2.1 OWA and WOWA Aggregations

Let w = (w1, . . . ,wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . ,m and ∑m

i=1 wi = 1. The corresponding OWA aggregation of at-
tributes y = (y1, . . . ,ym) can be mathematically formalized as follows [25]. First, we
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introduce the ordering mapΘ : Rm → Rm such thatΘ(y)= (θ1(y),θ2(y), . . . ,θm(y)),
where θ1(y) ≥ θ2(y) ≥ ·· · ≥ θm(y) and there exists a permutation τ of set I such
that θi(y) = yτ(i) for i = 1, . . . ,m. Further, we apply the weighted sum aggregation
to ordered achievement vectors Θ(y), i.e. the OWA aggregation has the following
form:

Aw(y) =
m

∑
i=1

wiθi(y) (5)

The OWA aggregation (5) allows to model various aggregation functions from the
maximum (w1 = 1, wi = 0 for i = 2, . . . ,m) through the arithmetic mean (wi = 1/m
for i = 1, . . . ,m) to the minimum (wm = 1, wi = 0 for i = 1, . . . ,m − 1). However,
the weighted mean (1) cannot be expressed as an OWA aggregation. Actually, the
OWA aggregations are symmetric (impartial, neutral) with respect to the individual
attributes and it does not allow to represent any importance weights allocated to
specific attributes.

Further, let w = (w1, . . . ,wm) and p = (p1, . . . , pm) be weighting vectors of di-
mension m such that wi ≥ 0 and pi ≥ 0 for i = 1, . . . ,m as well as ∑m

i=1 wi = 1
and ∑m

i=1 pi = 1. The corresponding Weighted OWA aggregation of outcomes
y = (y1, . . . ,ym) is defined as follows [22]:

Aw,p(y) =
m

∑
i=1

ωiθi(y) (6)

where the weights ωi are defined as

ωi = w∗(∑
k≤i

pτ(k))−w∗(∑
k<i

pτ(k)) (7)

with w∗ a monotone increasing function that interpolates points ( i
m ,∑k≤i wk) to-

gether with the point (0.0) and τ representing the ordering permutation for y (i.e.
yτ(i) = θi(y)). Function w∗ is required to be a straight line whenever the points can
be interpolated in this way. Due to this requirement, the WOWA aggregation covers
the standard weighted mean (1) with weights pi as a special case of equal preference
weights (wi = 1/m for i = 1, . . . ,m). Actually, the WOWA operator is a particular
case of Choquet integral using a distorted probability as the measure [4].

Note that function w∗ can be expressed as w∗(α) =
∫ α

0 g(ξ ) dξ where g is a
generation function. Let us introduce breakpoints βi = ∑k≤i pτ(k) and β0 = 0. This
allows one to express weights ωi as

ωi =
∫ βi

0
g(ξ ) dξ −

∫ βi−1

0
g(ξ ) dξ =

∫ βi

βi−1

g(ξ ) dξ

and the entire WOWA aggregation as

Aw,p(y) =
m

∑
i=1

θi(y)
∫ βi

βi−1

g(ξ ) dξ =
∫ 1

0
g(ξ )F (−1)

y (ξ ) dξ (8)
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where F (−1)
y is the stepwise function F (−1)

y (ξ ) = θi(y) for βi−1 < ξ ≤ βi. It can also
be mathematically formalized as follows. First, we introduce the left-continuous
right tail cumulative distribution function (cdf):

Fy(d) =∑
i∈I

piδi(d) where δi(d) =
{

1 if yi ≥ d
0 otherwise

(9)

which for any real (outcome) value d provides the measure of outcomes greater or

equal to d. Next, we introduce the quantile function F (−1)
y as the right-continuous

inverse of the cumulative distribution function Fy:

F (−1)
y (ξ ) = sup {η : Fy(η) ≥ ξ} for 0 < ξ ≤ 1.

Formula (8) provides the most general expression of the WOWA aggregation allow-
ing for expansion to continuous case. The original definition of WOWA allows one
to build various interpolation functions w∗ [23] thus to use different generation func-
tions g in formula (8). We focus our analysis on the simplest case of linear interpo-
lation leading to the piecewise linear function w∗. Note, however, that the piecewise
linear functions may be built with various number of breakpoints, not necessarily m.
Thus, any nonlinear function can be well approximated by a piecewise linear func-
tion with appropriate number of breakpoints. Therefore, we will consider weights
vectors w of dimension n not necessarily equal to m. Any such piecewise linear
interpolation function w∗ can be expressed with the stepwise generation function

g(ξ ) = nwk for (k−1)/n < ξ ≤ k/n, k = 1, . . . ,n (10)

This leads us to the following specification of formula (8):

Aw,p(y) =
∫ 1

0
g(ξ )F(−1)

y (ξ ) dξ =
n

∑
k=1

wkn
∫ k/n

(k−1)/n
F (−1)

y (ξ ) dξ (11)

We will treat formula (11) as a formal definition of the WOWA aggregation of
m-dimensional outcomes y defined by m-dimensional importance weights p and

n-dimensional preferential weights w. Note that quantities n
∫ k/n
(k−1)/n F (−1)

y (ξ ) dξ
express the conditional means within the corresponding quantiles (k−1)/n and k/n.
In the case of n = m and equal importance weights pi = 1/n, formula (11) repre-

sents the standard definition of the OWA aggregation (5), since F (−1)
y (ξ ) = θk(y) for

(k−1)/n ≤ ξ < k/n. Although formula (11) allows one to express general WOWA

aggregations by using the preferential weights to redefine F (−1)
y (ξ ) = θk(y) accord-

ingly. Moreover, various values of n possibly different from the number of attributes
m allows one to generalize both the WOWA aggregation as well as the OWA aggre-
gation (with equal importance weights pi = 1/n).
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When in (8) using the integrals from the left end rather than those on intervals
one gets

Aw,p(y) =
n

∑
k=1

nwk(L(y,p,
k
n
)−L(y,p,

k−1
n

)) (12)

where L(y,p,β ) is defined by left-tail integrating F(−1)
y , i.e.

L(y,p,0) = 0 and L(y,p,β ) =
∫ β

0
F(−1)

y (α)dα for 0 < β ≤ 1 (13)

In particular, L(y,p,1) =
∫ 1

0 F (−1)
y (α)dα = Ap(y). Graphs of functions L(y,p,β )

(with respect to β ) take the form of concave curves, the so-called (upper) abso-
lute Lorenz curves. In the case of n = m and equal importance weights pi = 1/n
thus representing the standard OWA aggregation, one gets L(y,p, k

n) = 1
n ∑

k
i=1 θi(y)

and formula (12) reduces to (5). Although, for n �= m one gets more complicated
formula for L(y,p, k

n) even in the case of equal importance weights pi = 1/n thus
representing the generalized OWA aggregation.

Alternatively, one may refer in formula (11) to the integrals from the right end
instead of intervals thus getting

Aw,p(y) =
n

∑
k=1

nwk(L(y,p,1− k−1
n

)−L(y,p,1− k
n
)) (14)

where L(y,p,β ) is defined by right tail integrating F (−1)
y , i.e.

L(y,p,0) = 0 and L(y,p,β ) =
∫ 1−β

0
F (−1)

y (1−α)dα for 0 < β ≤ 1 (15)

One may easily notice that for any 0 ≤ β ≤ 1

L(y,p,β )+ L(y,p,1−β ) =
∫ 1

0
F (−1)

y (α)dα = Ap(y)

Hence, L(y,p,1) = Ap(y). Graphs of functions L(y,p,β ) (with respect to β ) take
the form of convex curves, the (lower) absolute Lorenz curves. In the case of the
standard OWA aggregation represented by n = m and equal importance weights
pi = 1/n, one gets L(y,p,1− k

n ) = 1
n ∑

n
i=k θi(y) thus reducing formula (12) to (5).

2.2 The Orness and Andness Properties

The OWA aggregation may model various preferences from the optimistic (max) to
the pessimistic (min). Yager [25] introduced a well appealing concept of the orness
measure to characterize the OWA operators. The degree of orness associated with
the OWA operator Aw(y) is defined as
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orness(w) =
m

∑
i=1

m− i
m−1

wi (16)

For the max aggregation representing the fuzzy ‘or’ operator with weights w =
(1,0, . . . ,0) one gets orness(w) = 1 while for the min aggregation representing the
fuzzy ‘and’ operator with weights w = (0, . . . ,0,1) one has orness(w) = 0. For the
average (arithmetic mean) one gets orness((1/m,1/m, . . . ,1/m)) = 1/2. Actually,
one may consider a complementary measure of andness defined as andness(w) =
1 − orness(w). OWA aggregations with orness greater or equal 1/2 are considered
or-like whereas the aggregations with orness smaller or equal 1/2 are treated as
and-like. The former correspond to rather optimistic preferences while the latter
represents rather pessimistic preferences.

The OWA aggregations with monotonic weights are either or-like or and-like. Ex-
actly, decreasing weights w1 ≥ w2 ≥ . . . ≥ wm define an or-like OWA operator, while
increasing weights w1 ≤ w2 ≤ . . . ≤ wm define an and-like OWA operator. Actually,
the orness and the andness properties of the OWA operators with monotonic weights
are total in the sense that they remain valid for any subaggregations defined by sub-
sequences of their weights. Namely, for any 2 ≤ k ≤ m and any k-dimensional nor-
malized weights subvector wk = 1

w̄k (wi1 ,wi2 , . . . ,wik ) with 1 ≤ i1 < i2 < .. . < ik ≤ m

and w̄k = ∑k
j=1 wij , one gets orness(wk) ≥ 1/2 for the OWA operators with de-

creasing or orness(wk) ≤ 1/2 for the OWA operators with increasing weights, re-
spectively. Moreover, appropriate weights monotonicity is necessary to achieve the
above total orness or andness properties. Therefore, we will refer to the OWA ag-
gregation with decreasing weights as the totally or-like OWA operator, and to the
OWA aggregation with increasing weights as the totally and-like OWA operator.

Yager [27] proposed to define the OWA weighting vectors via the regular increas-
ing monotone (RIM) quantifiers, which provide a dimension independent descrip-
tion of the aggregation. A fuzzy subset Q of the real line is called a RIM quantifier
if Q is (weakly) increasing with Q(0) = 0 and Q(1) = 1. The OWA weights can
be defined with a RIM quantifier Q as wi = Q(i/m)−Q((i−1)/m) and the orness
measure can be extended to a RIM quantifier (according to m → ∞) as follows [27]

orness(Q) =
∫ 1

0
Q(α) dα (17)

Thus, the orness of a RIM quantifier is equal to the area under it. The measure
takes the values between 0 (achieved for Q(1) = 1 and Q(α) = 0 for all other
α) and 1 (achieved for Q(0) = 1 and Q(α) = 0 for all other α). In particular,
orness(Q) = 1/2 for Q(α) = α which is generated by equal weights wk = 1/n. For-
mula (17) allows one to define the orness of the WOWA aggregation (6) which can
be viewed with the RIM quantifier Q(α) = w∗(α) [7]. Let us consider piecewise lin-
ear function Q = w∗ defined by weights vectors w of dimension n according to the
stepwise generation function (10). One may easily notice that decreasing weights
w1 ≥ w2 ≥ . . . ≥ wn generate a strictly increasing concave curve Q(α) ≥ α thus
guaranteeing the or-likeness of the WOWA operator. Similarly, increasing weights
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w1 ≤ w2 ≤ . . . ≤ wn generate a strictly increasing convex curve Q(α) ≤α thus guar-
anteeing the and-likeness of the WOWA operator. Actually, the monotonic weights
generate the totally or-like and and-like operators, respectively, in the sense that
that they remain valid for any subaggregations defined with respect to subintervals
of the interval [0,1]. Namely, for any interval [a,b], where 0 ≤ a < b ≤ 1, and the
corresponding part of Q renormalized to represent a RIM quantifier

Qb
a(α) =

Q(a +α(b−a))−Q(a)
Q(b)−Q(a)

one gets orness(Qb
a) ≥ 1/2 for the OWA operators with decreasing or orness(Qb

a) ≤
1/2 for the OWA operators with increasing weights wi, respectively. Moreover, in
the case of piecewise linear function Q = w∗ defined by weights vectors w of dimen-
sion n according to the stepwise generation function (10), we consider, appropriate
weights monotonicity is necessary to achieve the total orness or andness properties.
Therefore, we will refer to the WOWA aggregation with decreasing preferential
weights as the totally or-like WOWA operator, and to the WOWA aggregation with
increasing preferential weights as the totally and-like WOWA operator.

3 Totally Or-Like Ordered Weighted Aggregations

Consider a totally or-like WOWA aggregation defined by decreasing weights w1 ≥
w2 ≥ . . . ≥ wn. Following formula (12) the WOWA aggregation may be expressed
as

Aw,p(y) =
n

∑
k=1

nwk(L(y,p,
k
n
)−L(y,p,

k−1
n

)) =
n

∑
k=1

w′
kL(y,p,

k
n
) (18)

where w′
n = nwn, w′

k = n(wk − wk+1). Due to formula (13), values of function
L(y,p,α) for any 0 ≤ α ≤ 1 can be found by optimization:

L(y,p,α) = max
ui

{
m

∑
i=1

yiui :
m

∑
i=1

ui = α, 0 ≤ ui ≤ pi ∀ i } (19)

The above problem is an LP for a given outcome vector y while it becomes non-
linear for y being a vector of variables. This difficulty can be overcome by taking
advantages of the LP dual to (19). Introducing dual variable t corresponding to the
equation ∑m

i=1 ui = α and variables di corresponding to upper bounds on ui one gets
the following LP dual of problem (19):

L(y,p,α) = min
t,di

{αt +
m

∑
i=1

pidi : t + di ≥ yi, di ≥ 0 ∀ i} (20)

Due the LP duality theory, the following assertion is valid.
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Lemma 1. For any value ρ , vector y fulfills inequality L(y,p,ξ ) ≤ ρ if and only if
there exist t and di (i = 1, . . . ,m) such that

ξ t +
m

∑
i=1

pidi ≤ ρ and t + di ≥ yi, di ≥ 0 ∀ i

Note that following (18) the WOWA with increasing weights wk takes the form

Aw,p(y) =
n

∑
k=1

w′
kL(y,p,

k
n
)

with positive weights w′
k. Therefore, the following assertions can be proven.

Theorem 1. Any totally or-like WOWA aggregation Aw,p defined by decreasing
weights w1 ≥ w2 ≥ . . . ≥ wn is a piecewise linear convex function of y.

Proof. Note that for any given p and ξ , due to formula (20), L(y,p,ξ ) is a piecewise
linear convex function of y. Hence, due to decreasing preferential weights, following
formula (37) the entire WOWA aggregation is a piecewise linear convex function of
y as a linear combination of functions L(y,p,ξ ) for ξ = k/n, k = 1,2, . . . ,n with
nonnegative weights w′

k.

Theorem 2. For any totally or-like WOWA aggregation Aw,p defined by decreasing
weights w1 ≥ w2 ≥ . . . ≥ wn and any constant ρ inequality Aw,p(y) ≤ ρ is valid if
and only if there exist tk and dik (i = 1, . . . ,m;k = 1,2, . . . ,n) such that

n

∑
k=1

w′
k[

k
n

tk +
m

∑
i=1

pidik] ≤ ρ

tk + dik ≥ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
(21)

Proof. Assume that there exist t0
k and d0

ik (i = 1, . . . ,m;k = 1,2, . . . ,n) satisfying the
requirements (21). Then, according to Lemma 1,

L(y,p,
k
n
) ≤ k

n
t0
k +

m

∑
i=1

pid
0
ik ∀ k

Hence, due to nonnegative weights w′
k,

Aw,p(y) =
n

∑
k=1

w′
kL(y,p,

k
n
) ≤

n

∑
k=1

w′
k[

k
n

t0
k +

m

∑
i=1

pid
0
ik] ≤ ρ

which proves the required inequality.
Assume now that the inequality Aw,p(y) ≤ ρ holds. Define t0

k and d0
ik (i =

1, . . . ,m;k = 1,2, . . . ,n) as optimal solutions to problems (20) for ξ = k/n (k =
1, . . . ,n), respectively. They obviously fulfill conditions (21).

Consider an optimization problem with an upper bound on a totally or-like WOWA
aggregation



218 W. Ogryczak and T. Śliwiński

max{g(y) : Aw,p(y) ≤ ρ , y = f(x), x ∈ F} (22)

Following Theorem 2 it can be reformulated as

max
tk,dik,yi,x j

g(y)

s.t.
n

∑
k=1

w′
k[

k
n

tk +
m

∑
i=1

pidik] ≤ ρ

tk + dik ≥ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
y ≤ f(x), x ∈ F

In the case of model (4) with linear function g(y) = ∑m
i=1 giyi this leads us to the

following LP formulation of the optimization problem (22):

max
m

∑
i=1

giyi (23)

s.t. Ax = b (24)

y−Cx = 0 (25)
n

∑
k=1

k
n

w′
ktk +

n

∑
k=1

m

∑
i=1

w′
k pidik ≤ ρ (26)

dik ≥ yi − tk for i = 1, . . . ,m; k = 1, . . . ,n (27)

dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n; x j ≥ 0 ∀ j (28)

Model (23)–(28) is an LP problem with mn + m + n + q variables and mn + m +
r + 1 constraints. In the case of multiple WOWA constraints one gets additional
mn + m variables and mn + 1 inequalities per each constraint. Thus, for problems
with not too large number of attributes (m) and preferential weights (n) it can be
solved directly.

Consider now minimization of a totally or-like WOWA aggregation

min{Aw,p(y) : y = f(x), x ∈ F} (29)

Taking advantages of Theorem 2, minimization of the WOWA criterion may be
expressed as the following problem with auxiliary linear inequalities:

min
ζ ,tk ,dik,yi,x j

ζ

s.t.
n

∑
k=1

w′
k[

k
n

tk +
m

∑
i=1

pidik] ≤ ζ

tk + dik ≥ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
y ≤ f(x), x ∈ F

While eliminating the ζ variable this leads us to the following LP formulation of
the WOWA problem:
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min
tk,dik,yi,x j

n

∑
k=1

w′
k[

k
n

tk +
m

∑
i=1

pidik]

s.t. tk + dik ≥ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
y ≤ f(x), x ∈ F

When taking into account the linear attributes and constraints (4) we get the follow-
ing LP formulation of the WOWA optimization problem (29):

min
n

∑
k=1

k
n

w′
ktk +

n

∑
k=1

m

∑
i=1

w′
k pidik (30)

s.t. Ax = b (31)

y−Cx = 0 (32)

dik ≥ yi − tk for i = 1, . . . ,m; k = 1, . . . ,n (33)

dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n; x j ≥ 0 ∀ j (34)

This LP problem contains mn + m + n + q variables and mn + m + r constraints.
Thus, for not too large values of m and n it can be solved directly. Actually, the
LP model is quite similar to that introduced in [18] for the OWA optimization (c.f.,
model (30)–(34)).

The number of constraints in problem (30)–(34) is similar to the number of vari-
ables. However, the crucial number of variables (mn variables dik) is associated with
singleton columns. Therefore, it may be better to deal with the dual of (30)–(34)
where the corresponding rows become simple upper bounds, thus reducing dramat-
ically the LP problem size. While introducing the dual variables: u = (u1, . . . ,ur),
v = (v1, . . . ,vm) and z = (zik)i=1,...,m; k=1,...,n corresponding to the constraints (31),
(32) and (33), respectively, we get the following dual:

max ub
s.t. uA−vC <= 0

vi −
n

∑
k=1

zik = 0 for i = 1, . . . ,m

m

∑
i=1

zik =
k
n

w′
k for k = 1, . . . ,n

0 ≤ zik ≤ piw′
k for i = 1, . . . ,m; k = 1, . . . ,n

(35)

The dual problem (35) is consisted of only m + n + q structural constraints on
mn + r + m variables. Since the average complexity of the simplex method depends
on the number of constraints, the dual model (35) can be directly solved for quite
large values of m and n. Moreover, the columns corresponding to mn variables zik

form the network (node-link incidence) matrix thus allowing one to employ special
techniques of the network embedded simplex algorithm [3].

Similar to the case of minimization of the totally or-like WOWA, it may be
also introduced the dual of (23)–(28) representing the WOWA constraints. In-
deed, while introducing the dual variables: u = (u1, . . . ,ur), v = (v1, . . . ,vm), ξ and
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z = (zik)i=1,...,m; k=1,...,n corresponding to the constraints (24), (25), (26) and (27),
respectively, we get the following dual:

min ub+ρξ
s.t. uA−vC >= 0

vi +
n

∑
k=1

zik = gi for i = 1, . . . ,m

m

∑
i=1

zik − k
n

w′
kξ = 0 for k = 1, . . . ,n

zik ≤ w′
k piξ for i = 1, . . . ,m; k = 1, . . . ,n

ξ ≥ 0, zik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n

(36)

However, the mn rows corresponding to variables dik represent variable upper
bounds ([21, 11]) instead of simple upper bounds. Thus the model simplification
is not so dramatic.

4 Totally And-Like Ordered Weighted Aggregations

Consider a totally and-like WOWA aggregation defined by increasing weights w1 ≤
w2 ≤ . . . ≤ wn. By consideration of −y instead of y such an aggregation may be
viewed as a negative to the totally or-like WOWA aggregation defined by decreasing
weights

Aw,p(y) = −Aw̄,p(y) where w̄k = wn−k+1 for k = 1, . . . ,n

Alternatively, taking advantages of formula (14) the WOWA aggregation may be
expressed as

Aw,p(y) =
n

∑
k=1

nwk(L(y,p,1− k−1
n

)−L(y,p,1− k
n
)) =

n

∑
k=1

w′′
k L(y,p,

k
n
) (37)

with weights w′′
k = −w′

n−k = n(wn−k+1 − wn−k) for k = 1, . . . ,n − 1 and w′′
n = nw1

while values of function L(y,p,ξ ) for any 0 ≤ ξ ≤ 1 are given by optimization:

L(y,p,ξ ) = min
ui

{
m

∑
i=1

yiui :
m

∑
i=1

u j = ξ , 0 ≤ ui ≤ pi ∀ i } (38)

Introducing dual variable t corresponding to the equation ∑m
i=1 ui = ξ and variables

di corresponding to upper bounds on ui one gets the following LP dual expression
of L(y,p,ξ )

L(y,p,ξ ) = max
t,di

{ξ t −
m

∑
i=1

pidi : t −di ≤ yi, di ≥ 0 ∀ i} (39)
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Due the duality theory, for any given vector y the cumulated ordered coefficient
L(y,p,ξ ) can be found as the optimal value of the above LP problem. Actually,
relation (39) can be expressed as the following assertion.

Lemma 2. For any value ρ , vector y fulfills inequality L(y,p,ξ ) ≥ ρ if and only if
there exist t and di (i = 1, . . . ,m) such that

ξ t −
m

∑
i=1

pidi ≥ ρ and t −di ≤ yi, di ≥ 0 ∀ i

Note that following (37) the WOWA with increasing weights wk takes the form

Aw,p(y) =
n

∑
k=1

w′′
k L(y,p,

k
n
)

with positive weights w′′
k . This enables the following statements.

Theorem 3. Any totally and-like WOWA aggregation Aw,p(y) defined by increasing
preferential weights w1 ≤ w2 ≤ . . . ≤ wn is a piecewise linear concave function
of y.

Proof. Note that for any given p and ξ , due to formula (39), L(y,p,ξ ) is a piecewise
linear concave function of y. Hence, due to increasing preferential weights, follow-
ing formula (37) the entire WOWA aggregation is a piecewise linear concave func-
tion of y as a linear combination of functions L(y,p,ξ ) for ξ = k/n, k = 1,2, . . . ,n
with nonnegative weights w′

k.

Theorem 4. For any totally and-like WOWA aggregation Aw,p defined by increasing
weights w1 ≤ w2 ≤ . . . ≤ wn and any constant ρ inequality Aw,p(y) ≥ ρ is valid if
and only if there exist tk and dik (i = 1, . . . ,m;k = 1,2, . . . ,n) such that

n

∑
k=1

w′′
k [

k
n

tk −
m

∑
i=1

pidik] ≥ ρ

tk −dik ≤ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
(40)

Proof. Assume that there exist t0
k and d0

ik (i = 1, . . . ,m;k = 1,2, . . . ,n) satisfying the
requirements (40). Then, according to Lemma 2,

L(y,p,
k
n
) ≥ k

n
t0
k −

m

∑
i=1

pid
0
ik ∀ k

Hence, due to nonnegative weights w′′
k ,

Aw,p(y) =
n

∑
k=1

w′′
k L(y,p,

k
n
) ≥

n

∑
k=1

w′′
k [

k
n

t0
k −

m

∑
i=1

pid
0
ik] ≥ ρ

which proves the required inequality.
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Assume now that the inequality Aw,p(y) ≥ ρ holds. Define t0
k and d0

ik (i =
1, . . . ,m;k = 1,2, . . . ,n) as optimal solutions to problems (39) for ξ = k/n (k =
1, . . . ,n), respectively. They obviously fulfill conditions (40).

Consider an optimization problem with a lower bound on a totally and-like WOWA
aggregation

max{g(y) : Aw,p(y) ≥ ρ , y = f(x), x ∈ F} (41)

Following Theorem 4 it can be reformulated as

max
tk,dik,yi,x j

g(y)

s.t.
n

∑
k=1

w′′
k [

k
n

tk −
m

∑
i=1

pidik] ≥ ρ

tk −dik ≤ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
y ≤ f(x), x ∈ F

For model (4) with linear function g(y) = ∑m
i=1 giyi this leads us to the following

LP formulation of the optimization problem (41):

max
m

∑
i=1

giyi (42)

s.t. Ax = b (43)

y−Cx = 0 (44)

n

∑
k=1

k
n

w′′
k tk −

n

∑
k=1

m

∑
i=1

w′′
k pidik ≥ ρ (45)

dik ≥ tk − yi for i = 1, . . . ,m; k = 1, . . . ,n (46)

dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n; x j ≥ 0 ∀ j (47)

Model (42)–(47) is an LP problem with mn + m + n + q variables and mn + m +
r + 1 constraints. In the case of multiple WOWA constraints one gets additional
mn + m variables and mn + 1 inequalities per each constraint. Thus, for problems
with not too large number of attributes (m) and preferential weights (n) it can be
solved directly.

Consider now maximization of a totally and-like WOWA aggregation

max{Aw,p(y) : y = f(x), x ∈ F} (48)

Maximization of the WOWA aggregation (48) can be expressed as follows
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max
ζ ,tk ,dik,yi,x j

ζ

s.t. ζ ≤
n

∑
k=1

w′′
k [

k
n

tk −
m

∑
i=1

pidik]

tk −dik ≤ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
y ≤ f(x), x ∈ F

While eliminating the ζ variable this leads us to the following LP formulation of
the WOWA problem:

max
tk,dik,yi,x j

n

∑
k=1

w′′
k [

k
n

tk −
m

∑
i=1

pidik]

s.t. tk −dik ≤ yi, dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n
y ≤ f(x), x ∈ F

In the case of model (4) this leads us to the following LP formulation of the WOWA
maximization problem (48):

max
n

∑
k=1

k
n

w′′
k tk −

n

∑
k=1

m

∑
i=1

w′′
k pidik (49)

s.t. Ax = b (50)

y−Cx = 0 (51)

dik ≥ tk − yi for i = 1, . . . ,m; k = 1, . . . ,n (52)

dik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n; x j ≥ 0 ∀ j (53)

The problem has the identical structure as that of (30)–(34) differing only with
some negative signs in the objective function (49) and the deviation variable defini-
tion (52). While in (30)–(34) variables dik represent the upperside deviations from
the corresponding targets tk, here they represent the downside deviations for those
targets. Note that WOWA model (49)–(53) differs from the analogous deviational
model for the OWA optimization [18] only due to coefficients within the objective
function (49) and the possibility of different values of m and n. In other words, the
OWA deviational model [18] can easily be expanded to accommodate the impor-
tance weighting of WOWA.

Model (49)–(53) is an LP problem with mn+m+n+q variables and mn+m+ r
constraints. Thus, for problems with not too large number of criteria (m) and pref-
erential weights (n) it can be solved directly. However, similar to the case of mini-
mization of the or-like WOWA, it may be better to deal with the dual of (49)–(53)
where mn rows corresponding to variables dik represent only simple upper bounds.
Indeed, while introducing the dual variables: u = (u1, . . . ,ur), v = (v1, . . . ,vm) and
z = (zik)i=1,...,m; k=1,...,n corresponding to the constraints (50), (51) and (52), respec-
tively, we get the following dual:
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min ub
s.t. uA−vC >= 0

vi −
n

∑
k=1

zik = 0 for i = 1, . . . ,m

m

∑
i=1

zik =
k
n

w′′
k for k = 1, . . . ,n

0 ≤ zik ≤ w′′
k pi for i = 1, . . . ,m; k = 1, . . . ,n

(54)

The dual problem (54), similar to (35), contains mn+ r +m variables and m+n+q
structural constraints. Therefore, it can be directly solved for quite large values of m
and n.

Similar to the case of maximization of the totally and-like WOWA, it may
be also introduced the dual of (42)–(47) representing the WOWA constraints. In-
deed, while introducing the dual variables: u = (u1, . . . ,ur), v = (v1, . . . ,vm), ξ and
z = (zik)i=1,...,m; k=1,...,n corresponding to the constraints (43), (44), (45) and (46),
respectively, we get the following dual:

min ub−ρξ
s.t. uA−vC >= 0

vi −
n

∑
k=1

zik = gi for i = 1, . . . ,m

m

∑
i=1

zik − k
n

w′′
kξ = 0 for k = 1, . . . ,n

zik ≤ w′′
k piξ for i = 1, . . . ,m; k = 1, . . . ,n

ξ ≥ 0, zik ≥ 0 for i = 1, . . . ,m; k = 1, . . . ,n

(55)

However, the mn rows corresponding to variables dik represent variable upper
bounds ([21, 11]) instead of simple upper bounds. Thus the model simplification
is not so dramatic.

5 Computational Tests

In order to examine computational performances of the LP models for the WOWA
optimization we have solved randomly generated problems with varying number q
of decision variables and number m of attributes. The core LP feasible set has been
defined by a single knapsack-type constraint

A{y = f(x) :
q

∑
j=1

x j = 1, x j ≥ 0 for j = 1, . . . ,q} (56)

where fi(x) = cix = ∑q
j=1 ci jx j. Such problems may be interpreted as resource allo-

cation decisions [17] as well as relocation ones [5] or portfolio selection
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Table 1 WOWA criterion optimization times [s]: primal model (49)–(53)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
50 0.8 1.0 1.4 1.6 1.4 1.4 1.4 1.6

100 22.6 27.2 35.6 37.8 48.8 71.6 71.2 111.6
150 196.8 259.2 359.8 355.8 387.6 484.4 446.0 3558.4

problem [12] when several attributes represent the unique scenario realizations un-
der various scenarios. Assuming the attributes represent some desired quantities we
have considered totally and-like WOWA aggregation defined by increasing weights
w1 ≤ w2 ≤ . . . ≤ wn. We have analyzed both the WOWA maximization problem

max {Aw,p(y) : y ∈ A} (57)

as well as the WOWA lower bounded problem of the weighted mean maximization

max {Ap(y) : Aw,p(y) ≥ ρ , y ∈ A} (58)

The former correspond to the multiple conditional value-at-risk performance mea-
sure maximization [9] while the latter represents more traditional approach to the
portfolio optimization where the expected return is maximized with some risk mea-
sure bound [8].

For our computational tests we have randomly generated problems (57) and (58).
Coefficients ci j were generated as follows. First, for each j the upper bound r j was
generated as a random number uniformly distributed in the interval [0.05,0.15].
Next, individual coefficients ci j were generated as uniformly distributed in the in-
terval [−0.75r j,r j]. In order to generate strictly increasing and positive preference
weights wk, we generated randomly the corresponding increments δk = wk −wk−1.
The latter were generated as uniformly distributed random values in the range of 1.0
to 2.0, except from a few (5 on average) possibly larger increments ranged from 1.0
to n/3. Importance weights pi were generated according to the exponential smooth-
ing scheme, pi = α(1−α)i−1 for i = 1,2, . . . ,m and the parameter α is chosen for
each test problem size separately to keep the smallest weight pm around 0.001. The
ρ value in (58) was always set to 90% of the objective of the corresponding problem
(57).

For each number of decision variables q and number of attributes m we solved 5
randomly generated problems (57) and (58). All computations were performed on a
PC with the Pentium 4 2.4GHz processor employing the CPLEX 9.1 package with
standard settings and with the time limit of 600 seconds.

In Tables 1 and 2 we show the solution times for the primal (49)–(53) and the
dual (54) forms of the computational model, being the averages of 5 randomly gen-
erated problems. Upper index in front of the time value indicates the number of tests
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Table 2 WOWA criterion optimization times [s]: dual model (54)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.2 0.2 0.4 0.2 0.4 0.4 0.4

100 0.4 0.6 1.0 7.0 8.2 9.8 10.6 15.4
150 1.4 2.2 3.2 25.2 50.6 53.4 62.0 71.0
200 3.8 5.2 8.8 65.4 156.4 217.8 291.6 253.2
300 10.2 18.0 30.6 132.8 2486.6 – – –
400 29.6 38.8 88.2 – – – – –

Table 3 WOWA bound optimization times [s]: primal model (42)–(47)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0
50 1.0 1.6 1.8 2.4 2.4 2.4 2.8 3.0
100 30.0 52.2 111.4 97.6 88.0 81.4 76.4 82.2
150 189.6 309.8 1539.6 1513.8 1499.6 2528.0 1532.6 4234.6

among 5 that exceeded the time limit. The empty cell (minus sign) shows that this
has occurred for all 5 instances. As one can see, the dual form of the model performs
much better in each tested problem size. It behaves very well with increasing num-
ber of variables if the number of attributes does not exceed 150, and satisfactory if
the number of attributes equals 200. Similarly, the model performs very well with
increasing number of attributes if only the number of variables does not exceed 50.

Tables 3 and 4 contain solution times for the primal (42)–(47) and the dual (55)
form of the model of the weighted mean maximization with the WOWA lower
boundary.

As one can see the primal approach requires similar computation effort for the
WOWA problem as well as for the weighted mean with the WOWA lower bound.
The dual approach, however, is much better suited for the standard WOWA problem
then for the weighted mean with the WOWA lower bound. The reason for that is the
change of singleton columns to the doubleton ones resulting from the introduction
of the WOWA constraint. But still, for the weighted mean with the WOWA lower
bound the dual model is a better choice.

In order to examine how much importance weighting of the WOWA compli-
cates our optimization models we have rerun all the tests assuming equal importance
weights thus restricting the models to the standard OWA optimization according to
[18]. Tables 5 to 8 show the solution times for the primal (49)–(53) and the dual (54)
OWA models as well as for the primal (42)–(47) and the dual (55) OWA bounded
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Table 4 WOWA bound optimization times [s]: dual model (55)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 1.2 1.0 0.4 0.6 0.8 0.8 0.8 1.0

100 20.4 42.2 41.2 26.4 20.8 22.0 22.4 23.8
150 138.8 186.4 319.6 149.6 171.8 175.4 178.6 1221.2
200 422.2 3529.4 – 4578.2 3554.6 3589.4 – –

Table 5 OWA criterion optimization times [s]: primal model (49)–(53)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
50 0.6 0.8 1.0 1.2 1.2 1.2 1.2 1.4

100 18.6 26.4 37.2 40.6 40.2 50.6 49.4 72.4
150 170.8 246.4 355.8 305.0 330.2 365.2 380.0 387.8
200 2537.4 – – – – – – –

Table 6 OWA criterion optimization times [s]: dual model

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.2 0.0 0.4 0.2 0.4 0.4 0.6 0.8

100 0.4 0.8 2.4 7.2 7.8 12.2 13.4 18.4
150 1.4 2.2 5.8 26.8 44.6 48.8 73.6 102.2
200 3.4 4.8 9.8 62.6 107.2 179.2 246.0 197.6
300 8.6 15.8 29.2 223.0 2503.0 4592.4 – –
400 21.6 35.6 67.4 2315.0 – – – –

weighted mean optimization models, respectively, with equal importance weights
while all the other parameters remain the same.

One may notice that in the case of the primal model the WOWA optimization times
(Table 1 and Table 3) are 10–30% longer than the corresponding OWA optimization
times (Table 5 and Table 7). On the other hand, in the case of the dual model the
WOWA optimization times (Table 2 and Table 4) turn out to be shorter than the cor-
responding OWA times (Table 6 and Table 8), and frequently even shorter.

The optimization times were analyzed for various size parameters m and q. The
basic tests were performed for the standard WOWA model with n = m. However, we
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Table 7 OWA bound optimization times [s]: primal model (42)–(47)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.8 1.2 1.6 2.0 1.8 1.8 2.0 2.2

100 29.4 51.0 85.6 70.2 73.4 58.4 64.6 59.2
150 162.4 303.0 1508.0 440.4 393.0 365.2 380.0 414.0
200 2321.0 – – – – – – –

Table 8 OWA bound optimization times [s]: dual model (55)

Number of Number of variables (q)
attributes (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 1.2 1.2 0.6 1.0 1.0 1.0 1.4 1.4

100 23.2 40.0 50.2 27.6 25.0 26.0 48.4 64.2
150 131.4 244.6 411.0 236.6 1213.6 132.0 145.2 170.4
200 437.2 – – – – 3535.6 – –

Table 9 WOWA optimization times [s]: varying number of preferential weights (m = 100,
q = 50)

Model Number of preferential weights (n)
3 5 10 20 50 100 150 200 300 400

WOWA criterion 0.0 0.0 0.0 0.2 1.0 1.0 1.4 2.2 3.2 4.8
WOWA bound 0.2 0.0 0.2 0.8 7.8 42.2 259.8 185.6 2500.2 –

also analyzed the case of larger n for more detailed preferences modeling, as well
as the case of smaller n thus representing a rough preferences model.

Table 9 presents solution times for the dual model with different numbers of the
preferential weights for problems with 100 attributes and 50 variables. One may
notice that the computational efficiency can be improved by reducing the number
of preferential weights which can be reasonable in non-automated decision making
support systems. On the other hand, in case of the WOWA optimization (but not
WOWA bounded weighted mean optimization) increasing the number of preferen-
tial weights and thus the number of breakpoints in the interpolation function does
not induce the massive increase in the computational complexity.
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6 Concluding Remarks

The problem of aggregating multiple attributes to form overall functions is of con-
siderable importance in many disciplines. The WOWA aggregation [22] represents
a universal tool allowing to take into account both the preferential weights allo-
cated to ordered attribute values and the importance weights allocated to several
attributes. The ordered aggregation operators are generally hard to implement when
applied to variables. We have shown that the WOWA aggregations with the mono-
tonic weights can be modeled by introducing auxiliary linear constraints. Exactly,
the OWA LP-solvable models introduced in [18] can be expanded to accommodate
the importance weighting of the WOWA aggregation used within the inequalities or
objective functions.

Our computational experiments have shown that the formulations enable to solve
effectively medium size problems. While taking advantages of the dual model the
WOWA problems with up to 100 attributes have been solved directly by general
purpose LP code within less than half a minute. Although the problems with the
WOWA constraints have required typically more time than similar problems with
the WOWA objective function. Further research on efficient algorithm for LP prob-
lems with the WOWA bounds seems to be promising.
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18. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted av-
eraging objective. Eur. J. Opnl. Res. 148, 80–91 (2003)
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In considering extremal fuzzy measures, several transformation theorems are repre-
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1 Introduction

In recent years, both the dynamics of fuzzy system and the modeling issue
received an increased attention. Dynamics is an obvious problem in control; more-
over, its interest goes far beyond control applications. Applications of the dynam-
ics of fuzzy systems and of the modeling of dynamic systems by fuzzy systems
range from physics to biology to economics to pattern recognition and to time series
prediction.

Evidence exists that fuzzy models can explain cooperative processes, such as in
biology, chemistry, material sciences, or in economy. Relationships between dynam-
ics of fuzzy systems and the performance of decision support systems were found,
and chaotic processes in various classes of fuzzy systems were shown as a power-
ful tool in analyzing complex, weakly structurable systems, as anomal and extremal
processes.

To make the decision-making effective in the framework of computer systems
supporting this process, we must solve analytic problems of optimization, state eval-
uation, model identification, complex dynamic system control, optimal control, fil-
tering and so on.

It is well recognized that optimization and other decision support technologies
have been playing an important role in improving almost every aspect of human so-
ciety. Intensive study over the past several years has resulted in significant progress
in both the theory and applications of optimization and decision science.

Optimization and decision-making problems are traditionally handled by either
the deterministic or probabilistic approaches. The former provides an approximate
solution, completely ignoring uncertainty, while the latter assumes that any uncer-
tainty can be represented as a probability distribution. Of course, both approaches
only partially capture reality uncertainty (such as stock price, commodity, cost, nat-
ural resource availability and so on) that indeed exist but not in the form of known
probability distributions.

In the Preface of the Journal of Fuzzy Optimization and Decision Making (vol. I,
2002, pp. 11–12) Professor L. A. Zadeh had said: “My 1970 paper with R.E. Bell-
man, “Decision-Making in a Fuzzy Environment” was intended to suggest a frame-
work based on the theory of fuzzy sets for dealing with imprecision and partial truth
in optimization and decision analysis. In the intervening years, a voluminous litera-
ture on applications of fuzzy logic to decision analysis has come into existence.”

In alternative classical approaches to modeling and when working with complex
systems the main accent is placed on the assumption of fuzziness. As the complexity
of systems increases, our ability to define exactly their behaviour drops to a certain
level, below which such characteristics of information as exactness and uncertainty
become mutually excluding. In such situations an exact quantitative analysis of real
complex systems is apt to be not quite plausible. Hence, a conclusion comes to
mind that problems of this kind should be solved by means of analytic-fundamental
methods of fuzzy mathematics, while the system approach to constructing models
of complex systems with fuzzy uncertainty guarantees the creation of computer-
aided systems forming the instrumental basis of intelligent technology solutions of
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expert-analytic problems. It is obvious that the source of fuzzy-statistical samples is
the population of fuzzy characteristics of expert knowledge. Fuzziness arises from
observations of time moments as well as from other expert measurements.

Problems of making an optimal solution for systems with fuzzy uncertainty are
difficult because it frequently happens that the controllable object possesses con-
flicting properties which might include:

1) imperfection of a control process due to information uncertainty;
2) unreliable elements of a control system;
3) nonuniqueness and the applicability of many criteria encountered in a control

process;
4) restriction of possibilities (resources) of a control system;
5) loss of the ability of a control system to solve arising control problems.

Fuzzy programming problems have been discussed widely in literature ([1]–[3], [5],
[7], [10], [11], [23], [25], [26], [35], [37], [39], [45]–[47] and so on) and applied in
such various disciplines as operations research, economic management, business
administration, engineering and so on. B. Liu [25] presents a brief review on fuzzy
programming models, and classifies them into three broad classes: expected value
models, chance-constrained programming and chance-dependent programming.

Our further study belongs to the first class, where we use the instrument of fuzzy
measures and integrals ([8], [14]–[16], [31]–[33], [38], [40]–[42], [44] and so on) or,
speaking more exactly, extremal fuzzy measures and Sugeno’s type integrals along
with extremal fuzzy expected values.

Therefore in the paper the new approach to the study of weakly structurable fuzzy
dynamic systems optimization is presented (Extremal Fuzzy Continuous Dynamic
System). This approach is based on the six papers published in the Int. Journal of
General Systems (by G. Sirbiladze, ”Modeling of Extremal Fuzzy Dynamic Sys-
tems”. Parts I-VI: 34,2, 2005, 107-138; 139-167; 169-198; 35, 4, 2006, 435-459;
35, 5, 2006, 529-554; 36,1 2007, 19-58). Different from other approaches where the
source of fuzzy uncertainty in dynamic systems is expert, this approach considers
time as long as an expert to be the source of fuzzy uncertainty. This notably widens
the area of studied problems. All these is connected to the incomplete, imprecise,
anomal and extremal processes in nature and society, where connections between
the system’s objects are of subjective (expert) nature, which is caused by lack of
objective information about the evolution of studied system, for example in 1) eco-
nomics and business of developing countries, conflictology, sociology, medical di-
agnosis etc; 2) management of evacuation processes in catastrophe areas, estimation
of disease spreading in epidemical regions; 3) research of complex systems of ap-
plied physics, etc. One of our purposes is to create scenarios describing possible
evolution of EFCDS using methods of optimization developed in this paper by the
framework of expert-possibilistic theory. This includes construction of algorithms
of logical-possibilistic simulations of anomal and extremal process analysis.

Our attention is focused on the rapidly developing theory of fuzzy measures
and integrals ([8], [14]–[16], [31]–[33], [38], [40]–[42], [44] and so on). The ap-
plication of fuzzy measures and integrals as an instrument of constructing the
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intelligent decision-making systems is not a novel idea ([8], [13]–[16], [18], [20],
[22], [25], [29], [30], [33]–[37], [39]–[42], [44], [46] and so on). We employ the
part of the theory of fuzzy measures which concerns extremal fuzzy measures ([31]–
[33], [38]) and which, in our opinion, is rather seldom used. We have constructed
a new instrument of a fuzzy measure, the extension of which is based on Sugeno
lower and upper integrals.

In the framework of this theory a new apparatus of extended fuzzy measures was
constructed on the basis of Sugeno’s upper and lower integrals ([31]–[33], [38]).
Using this apparatus new fuzzy extremal models of weakly structurable dynamic
system control were created, where fuzziness is represented in time. Here the struc-
ture of time is represented by monotone extremal classes of measurable sets. On
such structures uncertainty is described by extremal fuzzy measures and problems
of fuzzy analysis of extremal fuzzy processes: 1. Fuzzy Optimization, 2. Fuzzy Iden-
tification, 3. Fuzzy Filtration and so on. We will deal with the fuzzy control prob-
lems of fuzzy dynamic systems (EFCDS) ([33]–[36], [39]), where fuzzy uncertainty
arises with time and time structures are monotone classes of measurable sets.

As known (Subsection 2.2 and [31]), in fuzzy dynamic processes where fuzzi-
ness participates as a time factor, an important role is assigned to the structures of

extremal fuzzy time intervals {F̃ I∗(T ),� ⊗
∗
}〉), (〈{F̃ I

∗
(T )," ∗⊗}. As the fuzzy

time flows, the process of expert knowledge measurement on the system states
with respect to time is affected by the incompleteness of the obtained information.
The polar characteristics of this information manifest themselves as imprecision
and uncertainty. A degree of information imprecision is defined by current fuzzy
time moments (̃t ∈ B̃∗

1) and future fuzzy time moments (̃t ∈ B̃1∗), while an uncer-
tainty degree is defined by current fuzzy time intervals (r̃ ∈ B̃∗

2) and future fuzzy
time intervals (r̃ ∈ B̃2∗). We have constructed the corresponding fuzzy monotone
structures

{F̃ I∗(T ),�,⊕
∗
} and {F̃ I

∗
(T ),",

∗⊕}, (1)

in which sequential extremal fuzzy time intervals are calculated recurrently.
Here only note that when expert describes the dynamics of complex objects and

“measure” system states, where the source of uncertainty is fuzzy measurements
with respect to time, it is necessary to carry out “extremal” “dual” measurements,
namely, measurements in extended current and compressed future fuzzy time inter-
vals [31].

In the present paper, we represent the controllable extremal fuzzy processes de-
fined in [35]–[37], [39]. The subject/matter of our investigation is the existence of
an optimal control for EFCDS’s. Section 2 contains some necessary preliminary
concepts presented in [31]–[33], [38]. Sections 3 and 4 describe models of extremal
fuzzy continuous dynamic system. Section 5 deals with problems of EFCDS opti-
mization when the control parameter does not depend on a state in which an EFCDS
is. Questions of the existence of an optimal control are studied, and variants of their
fuzzy integral representation are proposed. Section 6 contains an example in which
the EFCDS fuzzy optimal control process is constructed.
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2 Preliminary Concepts

All definitions and results see in [31]–[33], [38].

2.1 On the Space of Extended Extremal Fuzzy Measures

Definition 1. Let X be some nonempty set.
a) We call some class B∗ ⊂ 2X of subsets of X an upper σ∗-monotone class

if (i) ∅,X ∈ B∗; (ii) ∀A,B ∈ B∗ ⇒ A ∪ B ∈ B∗; (iii) ∀{An} ∈ B∗, n = 1,2, . . . ,
An ↑ A ⇒ A ∈ B∗.

b) We call some class B∗ ⊂ 2X of subsets of X a lower σ∗-monotone class if
(i) ∅,X ∈ B∗; (ii) ∀A,B ∈ B∗ ⇒ A∩B ∈ B∗; (iii) ∀{An} ∈ B∗, n = 1,2, . . . , An ↓
A ⇒ A ∈ B∗.

Definition 2. We call the classes B∗ and B∗ extremal if and only if

∀A ∈ B∗ ⇔ A ∈ B∗.

Remark 1. Let B ⊆ 2X be some σ -algebra. Then B is both a σ∗-monotone class and
a σ∗-monotone class.

Definition 3. 1) (X ,B∗) is called an upper measurable space;
2) (X ,B∗) is called a lower measurable space;
3) If B∗ and B∗ are extremal σ∗- and σ∗-monotone classes, then (X ,B∗,B∗) is

called an extremal measurable space.

Example 1

B∗
1

Δ=
{

A ⊂ R+
0 | A=(α;+∞), α ∈ R+

0

}∪{∅}∪{R+
0 } is a σ∗-monotone class,

B1∗
Δ=
{

A ⊂ R+
0 | A = [0;α], α ∈ R+

0

}∪{∅}∪{R+
0 } is a σ∗-monotone class.

B∗
1 and B1∗ are respectively called a Borel σ∗-monotone class and a Borel σ∗-

monotone class of first kind. Clearly, B∗
1 and B1∗ are extremal.

Example 2

B∗
2

Δ=
{

A ⊂ R+
0 | A = [0;α), α ∈ R+

0

}∪{∅}∪{R+
0 } is a σ∗-monotone class,

B2∗
Δ=
{

A ⊂ R+
0 | A=[α;+∞), α ∈ R+

0

}∪{∅}∪{R+
0 } is a σ∗-monotone class.

B∗
2 and B2∗ are respectively called a Borel σ∗- and a Borel σ∗-monotone class of

second kind. It is obvious that B∗
2 and B2∗ are extremal.

Definition 4. Let (X ,B∗) be some upper measurable space. A function g∗ : B∗ →
[0;1] is called an upper fuzzy measure if: (i) g∗(∅) = 0, g∗(X) = 1; (ii) ∀A,B ∈ B∗,
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A ⊂ B ⇒ g∗(A) ≤ g∗(B); (iii) ∀{An} ∈ B∗, n = 1,2, . . . , An ↑ A ⇒ g∗(A) =
lim
n→∞

g∗(An).

Definition 5. Let (X ,B∗) be some lower measurable space. A function g∗ : B∗ →
[0;1] is called a lower fuzzy measure if: (i) g∗(∅) = 0, g∗(X) = 1; (ii) ∀A,B ∈
B∗, A ⊂ B ⇒ g∗(A) ≤ g∗(B); (iii) ∀{An} ∈ B∗, n = 1,2, . . . , An ↓ A ⇒ g∗(A) =
lim
n→∞

g∗(An).

Definition 6. Let (X ,B∗,B∗) be some extremal measurable space, g∗ be a lower
and g∗ an upper fuzzy measure.

Then:
a) g∗ : B∗ → [0;1] and g∗ : B∗ → [0;1] is called extremal if and only if

∀A ∈ B∗ : g∗(A) = 1−g∗(A).

b) (X ,B∗,B∗,g∗,g∗) is called a space of extremal fuzzy measures.

Definition 7. Let (X1,B
′∗,B′∗) and (X2,B

′′∗ ,B′′∗) be some extremal measurable
spaces; h : X1 → X2 is called measurable if

∀A ∈ B′′∗, B ∈ B′′
∗ : h−1(A) ∈ B′∗, h−1(B) ∈ B′

∗.

Definition 8. Let (X ,B∗,B∗) be some extremal measurable space. Then:
a) The function h : X → R∗

0 is called upper measurable if and only if h is measur-
able with respect to the spaces (X ,B∗,B∗) and (R+

0 ,B1∗,B∗
1). Then

∀α ≥ 0 h−1 ((α;+∞)) ∈ B∗, h−1 ([0;α]) ∈ B∗.

b) The function h : X → R+
0 is called lower measurable if and only if h is mea-

surable with respect to the spaces (X ,B∗,B∗) and (R+
0 ,B2∗,B∗

2). Then

∀α ≥ 0 h−1 ([0;α)) ∈ B∗, h−1 ([α;+∞)) ∈ B∗.

Definition 9. Let (X ,B∗,B∗) be some extremal measurable space.
a) The class of fuzzy subsets Ã ⊂ X with lower measurable compatibility func-

tions

B̃∗ =
{

Ã ⊂ X | μÃ is lower measurable
}

=
{

Ã ∈ X | ∀ 0 ≤ α ≤ 1, μ−1
Ã

([0;α)) ∈ B∗, μ−1
Ã

([α;+∞)) ∈ B∗
}

is called an extension of the σ∗-monotone class B∗.
b) The class of fuzzy subsets Ã ⊂ X with upper measurable compatibility

functions
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B̃∗ =
{

Ã ⊂ X | μÃ is upper measurable
}

=
{

Ã ∈ X | ∀ 0 ≤ α ≤ 1, μ−1
Ã

([0;α]) ∈ B∗, μ−1
Ã

((α;+∞)) ∈ B∗
}

is called an extension of the σ∗-monotone class B∗.

Definition 10. An extremal measurable space (X ,B̃∗,B̃∗) is called an extension of
an extremal measurable space (X ,B∗,B∗).

Using the Sugeno integral, we next introduce the notion of extension of fuzzy ex-
tremal measures.

Definition 11. Let (X ,B∗,B∗,g∗,g∗) be some space of extremal fuzzy measures,
and (X ,B̃∗,B̃∗) be an extension of the extremal measurable space (X ,B∗,B∗).
Then:

a) the function

g̃∗(Ã) ≡ �
∫
∗

X

μÃ(x)◦ g∗(·) Δ= ∨
0<α≤1

[
α ∧g∗([Ã]ᾱ)

]
, ∀Ã ∈ B̃∗; (2)

is called an extension of the fuzzy measure g∗ on B̃∗;
b) the function

g̃∗(Ã) ≡ �
∫ ∗

X

μÃ(x)◦ g∗(·) Δ= ∧
0<α≤1

[
α ∨g∗([Ã]α)

]
, ∀Ã ∈ B̃∗, (3)

is called an extension of the fuzzy measure g∗ on B̃∗.
Here [Ã]α = {x ∈ X | μÃ(x) > α}, [Ã]ᾱ = {x ∈ X | μÃ(x) ≥ α}, 0 < α ≤ 1.

Definition 12. A space of extremal fuzzy measures (X ,B̃∗,B̃∗, g̃∗, g̃∗) is called an
extension of the space (X ,B∗,B∗,g∗,g∗).

Let (X ,B∗,B∗,g∗,g∗) be some space of extremal fuzzy measures and (X ,B̃∗,
B̃∗, g̃∗, g̃∗) be its extension.

Definition 13. a) Let Ã, B̃ ∈ B̃∗ be any fuzzy sets. Then the lower fuzzy Sugeno
integral of the compatibility function μB̃ on the fuzzy set Ã is defined with respect
to a lower fuzzy measure g̃∗ by the formula

�
∫
∗

Ã

μB̃(x)◦ g̃∗(·) Δ≡ ∨
0<α≤1

[
α ∧ g̃∗(Ã∩ [B̃]ᾱ)

]
. (4)

b) Let Ã, B̃ ∈ B̃∗ be any fuzzy sets. Then the upper fuzzy Sugeno integral of the
compatibility function μB̃ on the fuzzy set Ã is defined with respect to a upper fuzzy
measure g̃∗ by the formula
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�
∫ ∗

Ã

μB̃(x)◦ g̃∗(·) Δ≡ ∧
0<α≤1

[
α ∨ g̃∗(Ã∪ [B̃]α)

]
. (5)

Definition 14. Let (X ,B∗,B∗,g∗,g∗) be some space of extremal fuzzy measures.
a) Let h ∈ B̃∗ be some fuzzy set. The measure

∀A ∈ B̃∗ : g̃h∗(Ã) Δ= �
∫
∗

Ã

μh(x)◦ g̃∗(·) = �
∫
∗

h

μÃ(x)◦ g̃∗(·) = �
∫
∗

X

μh∩Ã(x)◦ g̃∗(·) (6)

is called the lower extension of g∗ on B̃∗ with respect to h.
b) Let h ∈ B̃∗ be some fuzzy set. The measure

∀A ∈ B̃∗ : g̃∗
h(Ã) Δ= �

∫ ∗

Ã

μh(x)◦ g̃∗(·) = �
∫ ∗

h

μÃ(x)◦ g̃∗(·) = �
∫ ∗

X

μh∪Ã(x)◦ g̃∗(·) (7)

is called the upper extension of g∗ on B̃∗ with respect to h.

2.2 On the Composition Products of Spaces of Extremal Fuzzy
Measures

Let (X1,B
′∗,B′∗,g′∗,g′∗) and (X2,B

′′∗ ,B′′∗,g′′∗ ,g′′∗) be any two spaces of extremal
fuzzy measures.

Definition 15. Let some subset H ⊂ X1 ×X2 be a binary relation. We introduce the
following mappings ∀x0 ∈ X1 and ∀y0 ∈ X2:

EH(x0, ·) Δ= {y ∈ X2 | (x0,y) ∈ H} ,

EH(·,y0)
Δ= {x ∈ X1 | (x,y0) ∈ H} .

(8)

a) A binary relation H ⊂ X1 × X2 is called lower measurable if ∀A ∈ B′′∗ and
∀B ∈ B′∗ there exist sequences {xn}n∈N ⊂ B, {yn}n∈N ⊂ A such that EH(xn, ·) ⊃
EH(xn+1), EH(·,yn) ⊃ EH(·,yn+1), n = 1,2, . . . . We have

ΓH∗(A) Δ= {x ∈ X1 | ∀y ∈ A : (x,y) ∈ H} ≡
⋂
y∈A

EH(·,y) =
∞⋂

n=1

EH(·,yn) ∈ B′
∗ (9)

and

Γ ′
H∗(B) Δ= {y ∈ X2 | ∀x ∈ B : (x,y) ∈ H} ≡

⋂
x∈B

EH(x, ·) =
∞⋂

n=1

EH(xn, ·) ∈ B′′
∗ . (10)
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b) Denote by B′∗ ⊗ B′′∗ the set of all binary lower measurable relations from
X1 ×X2 and call it the composition product of measurable spaces B′∗ and B′′∗ .

a′) A binary relation H ⊂ X1 × X2 is called upper measurable if ∀A ∈ B′′∗ and
∀B ∈ B′∗ there exist sequences {xn}n∈N ⊂ B, {yn}n∈N ⊂ A such that EH(xn, ·) ⊂
EH(xn+1), EH(·,yn) ⊂ EH(·,yn+1), n = 1,2, . . . . We have

Γ ∗
H (A) Δ= {x ∈ X1 | ∃y ∈ A : (x,y) ∈ H} ≡

⋃
y∈A

EH(·,y) =
∞⋃

n=1

EH(·,yn) ∈ B′∗ (11)

and

Γ ′∗
H (B) Δ= {y ∈ X2 | ∃x ∈ B : (x,y) ∈ H}

≡
⋃
x∈B

EH(x, ·) =
∞⋃

n=1

EH(xn, ·) ∈ B′′∗. (12)

b′) Denote by B′∗ ⊗B′′∗ the set of all binary upper measurable relations from
X1 ×X2 and call it the composition product of measurable spaces B′∗ and B′′∗.

It is not difficult to verify that B′∗⊗B′′∗ is a lower σ∗-monotone class and B′∗⊗B′′∗
is a upper σ∗-monotone class.

Theorem 1. Let (X1,B
′∗,g′∗) and (X2,B

′′∗ ,g′′∗) be two spaces of lower fuzzy mea-
sures. Then on the composition lower measurable space (X1 × X2,B

′∗ ⊗ B′′∗ ) the
measure g∗ : ∀H ∈ B′∗ ⊗B′∗ defined by

g∗(H) ≡ g′
∗ ⊗g′′

∗(H) Δ= ∨
E∈B′∗

{
g′
∗(E)∧g′′

∗(Γ
′

H∗(E))
}

≡ ∨
F∈B′′∗

{
g′
∗(ΓH∗(F))∧g′′

∗(F)
}

(13)

is a lower fuzzy measure.

Theorem 2. Let (X1,B
′∗,g′∗) and (X2,B

′′∗,g′′∗) be two spaces of upper fuzzy mea-
sures. Then, on the composition upper measurable space (X1 ×X2,B

′∗ ⊗B′′∗), the
measure g∗ : ∀H ∈ B′∗ ⊗B′′∗ defined by

g∗(H) ≡ g′∗ ⊗g′′∗(H) Δ= ∧
E∈B′∗

{
g′∗(E)∨g′′∗(Γ ′∗

H (E))
}

= ∧
F∈B′′∗

{
g′∗(Γ ∗

H (F))∨g′′∗(F)
}

(14)

is an upper fuzzy measure.

Theorem 3. a) Let H ∈ B′∗ ⊗B′′∗ be some binary lower measurable relation (H ⊂
X1 ×X2). Then the value of the measure g′∗ ⊗g′′∗ on H is represented through g′∗ and
g′′∗ as the following composition:

g′
∗ ⊗g′′

∗(H) = �
∫
∗

X2

g′
∗(EH(·,y))◦ g′′

∗(·) = �
∫
∗

X1

g′′
∗(EH(x, ·))◦ g′

∗(·); (15)
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b) Let H ∈ B′∗ ⊗B′′∗ be some binary upper measurable relation. Then the value
of the measure g′∗ ⊗ g′′∗ on H is represented through g′∗ and g′′∗ as the following
composition:

g′∗ ⊗g′′∗(H) = �
∫ ∗

X2

g′∗(EH(·,y))◦ g′′∗(·) = �
∫ ∗

X1

g′′∗(EH(x, ·))◦ g′∗(·). (16)

Now let us proceed to defining fuzzy binary relations on X1 ×X2.

Definition 16. a) A fuzzy set H̃ ⊂ X1 ×X2 is called a lower fuzzy binary relation if
the compatibility function μH̃ : X1 ×X2 → [0;1] is lower measurable;

b) A fuzzy set H̃ ⊂ X1 × X2 is called an upper fuzzy binary relation if the com-
patibility function μH̃ is upper measurable.

We have constructed the compositional space of extremal extended fuzzy measures
(X1 ×X2,B̃

′∗ ⊗ B̃′′∗ ,B̃∗′ ⊗ B̃∗′′, g̃′∗ ⊗ g̃′′∗, g̃∗′ ⊗ g̃∗′′).

2.3 Extremal Fuzzy Time Moments and Intervals, and Their
Structures

The questions investigated in the preceding paragraphs enable us to consider some
extremal interval structures, in particular, extremal fuzzy time moments and
intervals.

We would like to say just a few words about the origination of these structures
and their importance in studying dynamic processes.

A person who makes a decision always gives an “incomplete” prognosis about a
time moment for extremal, crisis, anomalous and other situations that may occur in
the future. The person (expert) who makes a decision connects all such situations
with future fuzzy time moments and intervals. Clearly, his/her prognosis is of fuzzy
nature and the corresponding decisions should be obtained by possibilistic-statistical
analysis or, speaking more exactly, by analysis of fuzzy time intervals, for which we
need to construct a new mathematical fuzzy instrument.

When we make decisions on the basis of our past knowledge, we recall certain
facts, reference data and the like. When doing so, we perform certain “expert mea-
surements” (“expert reflections”) of our knowledge. These measurements are con-
nected with past time moments, which as a rule are fuzzy. Hence the results of such
“measurements” may frequently be also fuzzy and these results of recollections are
in the end reflected in experimental data (samples). It is understood that the source
of such samples is the population of fuzzy characteristics of our knowledge. This
can be explained mainly by the following two reasons: first, in terms of dynam-
ics, moments of recollections of facts and moments of “expert measurements” are
fuzzy moments; second, on frequent occasions the results of “measurements” are
fuzzy. Let us illustrate this viewpoint by examples. Suppose that prior to diagnos-
ing the disease the examining physician (expert) asked the patient to present data
on his temperature distribution in time. If the patient measured his temperature but
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for various reasons did not record the time of measurements, then his replies would
sound like this: “In the morning my temperature varied approximately from 38◦C
to 38.5◦C, at noon it dropped to something like 37◦ and in the evening it was not
higher than 39◦”. Clearly, the results of such “measurements” are fuzzy both in time
and in numerical values. It might happen that the patient made measurements of
his temperature during the whole day (measurement results are objective data with
uncertainty of probabilistic-statistical nature), but he did not record the time mo-
ments at which his temperature was measured. Therefore, when asking the patient
to present this information in dynamics, we deal with fuzzy time moments. In such
situations objective data are characterized by possibilistic uncertainty.

It is clear that decisions (prognoses) made about a future state of the object (prog-
noses) on the basis of such data by means of the classical statistical methods are less
plausible for one reason: the source from which data of this kind originate is the
person. The nature of data uncertainty is dual. It is only statistical-and-possibilistic
methods that can give us more or less plausible estimates and prognoses.

With this aim in view, we begin our study of fuzzy time moments and intervals
and their structures. For convenience, the observation time is identified with the set

of nonnegative real numbers: T
Δ= R+

0 . Any time moment t ∈ T = R+
0 is assumed to

be a nonnegative number.
Our notion of a fuzzy time moment is based on the definition presented in [8].

Definition 17. A fuzzy nonnegative real number t̃ with the compatibility function

μt̃ : R+
0 → [0;1] (17)

with the following properties:
(i) μt̃(0) = 0;
(ii) ∨

τ≥0
μt̃(τ) = 1 (normed);

(iii) ∀τ0 ∈ R+
0 , μt̃(τ0) = ∨

τ<τ0
μt̃(τ) (left continuity);

(iv) μt̃(τ) is a nonincreasing function on R+
0 ≡ T ,

is called a fuzzy time moment.
The set of all fuzzy time moments is denoted by F̃M0(R+

0 )≡F̃M
∗
0(T ).

Now, let us consider the extremal measurable Borel space of first kind (R+
0 ,B1∗,

B∗
1) and its extension (R+

0 ,B̃1∗,B̃∗
1). If ã ∈ B̃∗

1 is a fuzzy number, then ∀α ≥ 0,
μ−1

ã ((α;+∞)) ≡ (τ;+∞) ∈ B∗
1 and μ−1

ã ([0;α]) ≡ [0,τ] ∈ B1∗, i.e., μã is an upper
measurable function (or μã : B∗

1 →B∗
1 , B1∗ →B1∗ is measurable). It is not difficult

to verify that the compatibility function of the fuzzy moment t̃ is upper measurable,
i.e., the fuzzy time moment t̃ is an upper fuzzy number on T = R+

0 . We obtain

F̃M0(R+
0 ) ⊂ B̃∗

1.

Let us consider the negation of the fuzzy moment t̃. It clearly follows that t̃ ∈ B̃1∗
or ∀α ≥ 0, μ−1

t̃
([α;+∞)) ≡ [0,τ] ∈ B1∗ and μ

t̃
([0;α)) ≡ (τ;+∞) ∈ B∗

1, where μ
t̃

is lower measurable.
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In terms of information, the negation of the fuzzy time moment t̃ can be inter-
preted as follows: it describes a measurement time medium, where the fuzzy time
moment t̃ is excluded.

The relation between the time moment t and the time interval [0;τ) (and, accord-
ingly, [τ;+∞)) is one-to-one:

t ∈ [0;τ) ⇐⇒ t /∈ [τ;+∞).

Therefore we may suppose that there exists a relation between the fuzzy time mo-
ment t̃ and the intervals [0;τ) and [τ;+∞). As indicated in [31], for the fuzzy time
moment t̃ its compatibility level μt̃(τ), τ ≥ 0, is understood as a level of belonging
of the fuzzy time moment t̃ to the time interval [0;τ) (a compatibility level). Our
interpretation is as follows: μt̃(τ) is a level of “measurement” imprecision, a level
of finding the fuzzy time moment t̃ in the time interval [0;τ). A high compatibility
level μt̃(τ) gives more plausibility that the fuzzy time moment t̃ “is measured” up
to the real moment τ in the time interval [0;τ). We call this interval the current time
interval. Formally, it can be written as ∀τ ≥ 0

μt̃(τ) := 〈an imprecise measure of (̃t ∈ [0;τ) := the current time interval)〉. (18)

Now let us consider the class of complements to fuzzy time moments t̃. Since t̃ ∈
F̃M

∗
0(T ) ⊂ B∗

1 , we denote this class by F̃M0∗(T ) ⊂ B̃1∗. We call F̃M
∗
0(T ) the

class of upper fuzzy time moments, and F̃M0∗(T ) the class of lower fuzzy time
moments.

Extending the above arguments to lower fuzzy time moments, we say that for
a fuzzy time moment t̃ its compatibility level μt̃(τ) is understood as a level of be-
longing of the fuzzy time moment t̃ to the interval [τ;+∞), i.e., μ

Ẽ
(τ) is an im-

precision level of measurement or, in other words, a level of finding a fuzzy time
moment t̃ in the time interval [τ;+∞). A high compatibility level μt̃(τ) makes it
more plausible that the fuzzy time moment t̃ will be “measured” after the real
moment τ in the time interval [τ;+∞), which we call the future time interval. If
t̃ ∈ F̃M0∗(T ), then ∀α ≥ 0, μ−1

t̃
([α;+∞)) = [0;τ] ∈ B1∗, μ−1

t̃
([0;α]) = [τ;+∞),

i.e., μt̃ is a B1∗ → B2∗, B∗
1 → B∗

2-measurable function.

We call the moment t̃ ∈ F̃M0∗(T ) ⊂ B̃1∗ a lower fuzzy time moment, while

t̃ ∈ F̃M0∗(T ) and t̃ ∈ F̃M
∗
0(T ) extremal fuzzy time moments.

If t̃ ∈ F̃M0∗(T ), then, formally, this can be written as follows:

μt̃(τ) := 〈 an imprecise measure of (̃t ∈ [τ;+∞)
:= is the future time interval)〉, τ ≥ 0. (19)

In the process of expert measurement with respect to time the values of the com-
patibility functions μt̃(τ) and μ

t̃
(τ), τ ≥ 0, are degrees of imprecision of finding

the fuzzy time moment t̃ in the future time interval ([τ;+∞)) and the current time
interval ([0;τ)), respectively.
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When we discuss fuzzy time moments in the process of time flow, we should spe-
cially mention the pair of extremal fuzzy time moments (t, t̃). By the measurement
of a fuzzy moment with respect to the real time τ we understand its measurement
in the current time interval [0;τ) and in the future time interval [τ;+∞) by (18) and

(19). The extremal classes of fuzzy time moments F̃M0∗(T ) and F̃M
∗
0(T ) are the

classes of complementary fuzzy time moments

t̃ ∈ F̃M0∗(T ) ⇔ t̃ ∈ F̃M
∗
0(T ).

Let us consider the structures of current and future fuzzy time intervals. By Defini-
tion 3 (Example 2) we know that

B∗
2

Δ≡ {[0;τ), τ ≥ 0} and B2∗
Δ≡ {τ;+∞), τ ≥ 0}

are Borel σ∗- and σ∗-algebras of second kind. Clearly, the spaces of current and fu-
ture time intervals are measurable or, speaking more exactly, coincide with extremal
Borel spaces of second kind (R+

0 ,B2∗,B∗
2).

Further, we introduce the notion of extremal fuzzy time interval in terms of ex-
tension (R+

0 ,B̃2∗,B̃∗
2).

Definition 18. a) Any fuzzy positive number r̃ ≡ [̃0,τ) ∈ B̃∗
2 is called an extended

fuzzy current time interval.

b) Any fuzzy positive number r̃ ≡ ˜[τ;+∞) ∈ B̃2∗ is called an extended fuzzy
future time interval.

Obviously, if r̃ ∈ B̃∗
2 , then ∀α ≥ 0 we have μ−1

r̃ ([α;+∞)) ≡ [0, t) ∈ B∗
2,

μ−1
r̃ ([0;α])≡ [t;+∞)∈B2∗, i.e., μr̃ is the B2∗ →B1∗, B∗

2 →B∗
1-measurable func-

tion and if r̃ ∈ B̃2∗, then ∀α ≥ 0 we have μ−1
r̃ ([α;+∞)) ≡ [t;+∞), μ−1

r̃ ([0;α)) ≡
[0;t) ∈ B2∗, i.e., μr̃ is the B2∗ → B2∗, B∗

2 → B∗
2-measurable function. The fuzzy

intervals r̃ ∈ B̃∗
2 and r̃ ∈ B2∗ are called extremal.

Let us discuss the relation between fuzzy extremal time moments and intervals.

Let t̃ ∈ F̃M
∗
0(T ) and r̃ ∈ B̃∗

2 be respectively the fuzzy current time moment and
the future fuzzy time interval. As has been mentioned above, μt̃(τ) is a degree of
imprecision of finding the fuzzy moment t̃ in the current time interval [0;τ) in the
process of time flow. We think that the value μr̃(τ) defines the level of compatibility
that the current fuzzy time interval r̃ is not covered by the current time interval [0;τ).
Moreover, μr̃(τ) is a degree of uncertainty that r̃ �⊂ [0;τ). ∀τ ≥ 0:

μr̃(τ) := 〈 an uncertainty measure of (r̃ �⊂ [0;τ)
:= the current time interval)〉. (20)

Let t̃ ∈ F̃M0∗(T ) and r̃ ∈ B̃2∗ be the fuzzy future time moment and the fuzzy time
interval, respectively. As has been mentioned above, μt̃(τ) is a degree of imprecision
of finding the fuzzy moment t̃ in the future time interval [τ;+∞) in the process of
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time flow. We think that the value μr̃(τ) defines the level of compatibility that the
fuzzy future time interval r̃ is not covered by the future time interval [τ;+∞). More
exactly, μr̃(τ) is a degree of uncertainty that r̃ �⊂ [τ;+∞) and ∀τ ≥ 0

μr̃(τ) := 〈 an uncertainty measure of (r̃ �⊂ [τ;+∞) := the future time interval)〉.

Note that in the time flow process, the values of the compatibility function of ex-
tended extremal fuzzy time intervals r̃ ∈ B̃∗

2 and r̃ ∈ B̃2∗ are degrees of uncertainty
that these intervals do not belong to the respective current and future time intervals
[0;τ) and [τ;+∞). When speaking of the calculus of fuzzy time intervals, we will
mean the pair of extremal fuzzy time intervals (r̃, r̃), where r̃ is the current fuzzy
time interval (r̃ ∈ B̃∗

2), and r̃ is the future fuzzy time interval (r̃ ∈ B̃2∗).
In the sequel, we will make use of the following concrete subclass of extended

extremal fuzzy time intervals.

Definition 19. The class of fuzzy nonnegative numbers F̃ I
∗
(T ) with the properties

(r̃ ∈ F̃ I
∗
(T )):

(i) μr̃(0) = 1;
(ii) ∀τ0 ≥ 0, μr̃(τ0) = ∨

τ>τ0
μr̃(τ) (right continuity);

(iii) μr̃ is nonincreasing on T = R+
0 ,

is called the class of current fuzzy time intervals r̃.

It is not difficult to verify that F I∗(T ) is a subclass of the space of extended fuzzy

current time intervals F̃ I
∗
(T ) ⊂ B̃∗

2.

Analogously, we introduce the definition of the class F̃ I∗(T ), which is a com-

plement to F̃ I
∗
(T ), i.e.,

r̃ ∈ F̃ I∗(T ) ⊂ B̃2∗ ⇔ r̃ ∈ F̃ I
∗
(T ) ⊂ B̃∗

2 .

Now let us consider the algebraic structures of the classes of extremal fuzzy time
intervals 〈F I∗(T ),F I∗(T )〉.

First we will consider F̃ I
∗
(T ). We introduce a partial ordering in F̃ I

∗
(T ): If

r̃1, r̃2 ∈ F̃ I
∗
(T ), then

r̃1 " r̃2 ⇔ ∀τ ∈ T μr̃1
(τ) ≤ μr̃2

(τ). (21)

On the semilattice {F̃ I
∗
(T ),"} we introduce the algebraic sum operation r̃1

∗⊕ r̃2

[28]:

μ
r̃1

∗⊕r̃2
(τ) Δ= ∧{μr̃1

(τ1)∨μr̃2
(τ2) | τ1,τ2 ∈ T, τ1 + τ2 = τ

}
. (22)

It is not difficult to verify that the structure {F̃ I
∗
(T ),",

∗⊕} is a partially ordered
commutative semigroup.

Let us construct, in F̃ I
∗
(T ), a monotonically increasing recurrent sequence of

fuzzy time intervals
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r̃n = r̃n−1
∗⊕Δ r̃, n ≥ 1, (23)

where r̃0, Δ r̃ ∈ F I∗(T ) are respectively the initial and the stepwise fuzzy time
interval. (Here r̃0 ≡ ∅̃). We obtain

r̃1 " r̃2 " ·· · .

The partial ordering " in F̃ I
∗
(T ) induces in F̃ I∗(T ) another partial ordering �

(conjugate to ").
If r̃1, r̃2 ∈ F̃ I∗(T ), then

r̃1 � r̃2 ⇔ r̃1 " r̃2 ⇔ ∀τ ∈ T : μr̃1
(τ) ≥ μr̃2

(τ). (24)

The algebraic sum operation
∗⊕ in F̃ I

∗
(T ) induces in F̃ I∗(T ) another operation

(conjugate to
∗⊕) ⊕

∗
:

∀r̃1, r̃2 ∈ F̃ I∗(T ) : r̃1 ⊕
∗

r̃2 = r̃1
∗⊕ r̃2 (25)

or, ∀τ ∈ T ,

μr̃1⊕∗ r̃2(τ) = 1− μ
r̃
∗⊕r̃

(τ) = ∨{μr̃1(τ1)∧μr̃2(τ2) | τ1,τ2 ∈ T, τ1 + τ2 = τ
}

(26)

Then the monotonically increasing sequence of current fuzzy intervals from the
class F̃ I

∗
(T )

r̃1 " r̃2 " ·· ·
induces, in F̃ I∗(T ), a monotonically decreasing sequence of future fuzzy intervals

r̃1 � r̃2 � ·· ·

defined recurrently as

r̃n = r̃n−1
∗⊕ Δ̃r,

where r̃0 = 1T and Δ̃r ∈ F̃ I∗(T ) are respectively the initial fuzzy interval and the
stepwise fuzzy time interval.

On F̃ I∗(T ), the induced structure {F I∗(T ),�,⊕
∗
} is a partially ordered com-

mutative semigroup.
We call the pair of structures

〈{F̃ I
∗
(T ),",

∗⊕},{F̃ I∗(T ),�,⊕
∗
}〉 (27)

an extremal partially ordered commutative semigroup.
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To conclude the subsection, we would like to note that
1) the extremal structure (27) of current and future fuzzy time intervals is the

subject which will be used in next sections.
2) In the time flow process information (data) obtained by expert measurements

is incomplete. The polar characteristics of such information are imprecision and un-
certainty. The imprecision degree of the obtained information defines extremal fuzzy
time moments, while the uncertainty degree defines algebraic structures represented
in form (27).

2.4 Examples of Construction of Extremal Fuzzy Time Intervals

Example 1. Consider the extremal measurable Borel space of second kind (T,B2∗,
B∗

2). Let f : T → T be some monotonically nondecreasing, left continuous function
such that f (0) = 0, f (+∞) = +∞. It is not difficult to verify that ∀τ ≥ 0

g∗
T ([0; t)) Δ=

f (t)
1 + f (t)

(28)

is the upper fuzzy measure on B∗
2, and its extremal fuzzy measure on B2∗ is the

lower fuzzy measure

gT∗([t;+∞)) =
1

1 + f (t)
. (29)

Now, for the current fuzzy time interval we consider the extension g̃∗
T ∀r̃ ∈ F̃ I

∗
(T )⊂

B̃∗
2:

g̃∗
T (r̃) = �

∫ ∗

T

μr̃(t)◦ g∗
T (·) = ∧

0≤α≤1
[α ∨g∗

T ([r̃]α)]

= ∧
0≤α≤1

[α ∨g∗
T ([0; tα))] = ∧

0≤α≤1

[
α ∨ f (tα )

1 + f (tα)

]
,

where
tα = ∨{t ≥ 0 | μr̃(t) ≤ α ≤ μr̃(t+)

}
,

and calculate the extension g̃T∗ ∀r̃ ∈ F̃ I∗(T ) ⊂ B̃2∗ as follows:

g̃T∗(r̃) = �
∫
∗

T

μr̃(t)◦ gT∗(·) = ∨
0≤α≤1

[α ∧gT∗([tα ;+∞))] = ∨
0≤α≤1

[
α ∧ 1

1 + f (tα)

]
,

where
tα = ∧{t ≥ 0 | μr̃(t−) ≤ α ≤ μr̃(t)} .

Thus we have constructed the space of extended extremal fuzzy measures (T,B̃2∗,
B̃∗

2 , g̃T∗, g̃∗
T ).
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Now, let us consider the problem of construction of extremal fuzzy time intervals.
If r̃ ∈ F̃ I

∗
(T ), then, by virtue of formula (20), g∗

T is assumed to be a fuzzy measure
on B∗

1, while the fuzzy interval (r̃ ∈ B̃∗
1) is assumed to be known:

μr̃(t) = �
∫ ∗

[0;t]

μt̃(s)◦ g∗
T , ∀t ≥ 0.

Then

μr̃(t) = �
∫ ∗

T

I(t;+∞)(s)∨μt̃(s)◦ g∗
T (·)

= ∧
0≤α≤1

[α ∨g∗
T ((t;+∞)∪ (tα ;+∞))]= ∧

0≤α≤1
[α ∨g∗

T (st,α ;+∞)] ,

where
st,α = t ∧ tα , tα = ∧{t ≥ 0 | μt̃(t) ≤ α ≤ μt̃(t

+)
}

.

If in the role of g∗
T we take ∀t ≥ 0

g∗ (t;+∞)) =
1

1 + f (t)
,

where f (t) is a monotonically nondecreasing, left continuous function f : T → T ,
f (0) = 0, f (+∞) = +∞, then

μr̃(t) = ∧
0<α≤1

[
α ∨ 1

1 + f (st,α)

]
.

If r̃ ∈ F̃ I∗(T ), then, analogously, we construct

μr̃(t) = �
∫
∗

(t;+∞)

μt̃(s)◦ gT∗(·).

In that case
μr̃(t) = ∨

0<α≤1
[α ∧gT∗([0;st,α ])] ,

where
st,α = t ∧ tα , tα = ∨{t ≥ 0 | μt̃(t) ≤ α ≤ μt̃(t

+)
}

or

μr̃(t) = 1− μr̃(t) = ∨
0≤α≤1

[
α ∧ f (st,α )

1 + f (st,α)

]
.

Example 2. Let g∗
T be an upper possibilistic measure on B∗

2, i.e., ∃ f ∗ : T → [0;1] is a
left continuous, monotonically nondecreasing function such that f (0) = 0, f (+∞) =
1, and ∀[0; t) ∈ B∗

2
g∗

T ([0; t)) = ∨
0<s<t

f (s) = f (t).



248 G. Sirbiladze

Then ∀r̃ ∈ F̃ I
∗
(T )

μr̃(t) = ∧
0<α≤1

[α ∨ f ∗(st,α )] ,

where
st,α = t ∧ tα , tα = ∧{t ≥ 0 | μt̃(t) ≤ α ≤ μt(t+)

}
.

Example 3. Let g∗
T be an upper λ -fuzzy measure [44] on B∗

2 (g∗
T ≡ g∗

λ , −1 ≤λ ≤ 0),
i.e., ∀[0;t) ∈ B∗

2

g∗
λ ([0; t)) =

1− f ∗(t)
1 +λ f ∗(t)

,

where f ∗ is a distribution function of the measure g∗
λ , f ∗ : T → [0;1] is a left con-

tinuous, monotonically nondecreasing function, f ∗(0) = 0, f ∗(+∞) = 1. Then

gT∗([t;+∞)) = gλ∗([t;+∞)) =
f ∗(t)(1−λ )
1 +λ f ∗(t)

and ∀r̃ ∈ F̃ I∗(T )

μr̃(t) = ∨
0≤α≤1

[
α ∧ f ∗(st,α )(1−λ )

1 +λ f ∗(st,α )

]
,

while ∀r̃ ∈ F̃ I
∗
(T )

μr̃(t) = ∧
0≤α≤1

[
α ∨ 1− f ∗(st,α )

1 +λ f ∗(st,α )

]
,

where st,α is defined from Example 2.

Example 4. It is natural to introduce a fuzzy time interval r̃ ∈B∗
2 such that the kernel

of r̃ would coincide with the interval [0;τ].

Let us define the upper fuzzy time interval as follows. For ∀τ ≥ 0, r̃τ ∈ B∗
2:

μr̃τ (t) =

{
1, 0 ≤ t ≤ τ,
gT∗([t;+∞))∨g∗

T ([0;τ)), t ≥ τ.

If g∗
T : B∗

1 → [0;1]:

g∗
T ([0;t)) =

f (t)
1 + f (t)

,

as in Example 1, then

μr̃τ (t) =

{
1, 0 ≤ t ≤ τ,(

f (t)
1+ f (t)

)
∧
(

f (τ)
1+ f (τ)

)
, t > τ.
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If 0 ≤ α ≤ 1, then the solution of the equation

α =
1

1 + f (t)
∨ f (τ)

1 + f (τ)

with respect to t is denoted by tτ,α . If tτ,1 = τ , tτ,0 = ∞, then

g∗
T (r̃τ ) = �

∫ ∗

T

μr̃τ (t)◦ g∗
T (·) = ∧

0<α≤1

[
α ∨ tτ,α

1 + tτ,α

]
.

Note that if τ1 < τ2, then r̃τ1 � r̃τ2 .
This example makes it possible to construct parametrically some sequence of

extremal fuzzy intervals.

3 Description of a General Model of an Extremal Fuzzy
Continuous Dynamic System (EFCDS)

Following the system approach of modeling complex systems [20] we propose the
following: the time structure of fuzzy dynamic systems is represented by some space
of extended extremal fuzzy measures

〈T,F̃ I∗(T ),F̃ I
∗
(T ), g̃T∗, g̃∗

T 〉, T = R∗
0, (30)

and structure (1), where g̃T∗ and g̃∗
T are some extremal fuzzy measures on B̃T∗ ≡

B̃2∗ and B̃∗
T ≡ B̃∗

2 , respectively (see Subsection 2.1).
Let us start describing objects of a fuzzy dynamic system. Let X (X �= ∅) be the

set of states of some system to be investigated. Let (X ,B,g) be the space of a fuzzy
measure on the measurable space (X ,B), where B is a σ -algebra in X .

Let U (U �= ∅) be the set of all admissible controls (of external factors) acting
on the system. Assume that controls are subjected to restrictions of uncertain char-
acter in the form of some space of a fuzzy measure (U,BU ,gU), where BU is the
measurable space of controls, while the fuzzy measure gU describes the restrictions
imposed on controls.

Let Y (Y �= ∅) be the set of output states of the system under consideration, and
(Y,BY ,gY ) be the space of a fuzzy measure, which describes a fuzzy distribution of
output values of the system. Note that as usual Y is some transformation of the set
of states of X .

Now let us consider the Cartesian product X ×T and the space of extended com-
position extremal fuzzy measures (Subsection 2.2 and [32])(

X ×T,B̃⊗BT∗,B̃ ⊗B∗
T , g̃⊗gT∗, g̃⊗g∗

T

)
,

which is induced by the spaces (X ,B,B,g,g) and (T,BT∗,B∗
T ,gT∗,g∗

T ).
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Definition 20. a) A lower measurable binary fuzzy relation Q̃∗ ∈B̃⊗BT∗ is called
a future fuzzy process on the measurable states of the system (i.e., μQ̃∗(x, t) is a
lower measurable function).

b) An upper measurable binary fuzzy relation Q̃∗ ∈ B̃⊗B∗
T is called a current

fuzzy process on the measurable states of the system (i.e., μQ̃∗(x, t) is an upper
measurable function).

c) A pair (Q̃∗,Q̃∗) of lower and upper measurable binary fuzzy relations is called

an extremal fuzzy process on the measurable states of the system (i.e., Q∗ ∈ B̃⊗B∗
T

and Q∗ ∈ B̃⊗BT∗).
d) An extremal fuzzy process (EFP) is said to be ergodic if there exist the limits

∀x ∈ X , lim
t→∞

μQ̃∗(x,t) ≡ μÃ∗(x), lim
t→∞

μQ̃∗(x, t) ≡ μÃ∗(x), and the limit fuzzy sets Ã∗

and Ã∗ are measurable Ã∗, Ã∗ ∈ B̃.

Note that (see Subsection 2.2) ∀τ ∈ T , ∀x ∈ X
EQ̃∗(x, ·) ∈ B̃T∗ is a future fuzzy time interval,

EQ̃∗(x, ·) ∈ B̃∗
T is a current fuzzy time interval,

EQ̃∗(·,τ) ∈ B̃ is a fuzzy state of the system, which is “measurable” in the future

fuzzy time interval ˜[τ,+∞),
EQ̃∗(·,τ) ∈ B̃ is a fuzzy state of the system, which is “measurable” in the current

fuzzy time interval [̃0,τ).
It is obvious that model “measurements” of the states of the system at a real time

moment τ > 0 are understood as defining pairs of measurable fuzzy sets EQ̃∗(·,τ),
EQ̃∗(·,τ) ∈ B̃.

For all x ∈ X , EQ̃∗(x, ·) and EQ̃∗(x, ·) are a current fuzzy and a future fuzzy time
intervals, respectively, in which the state x ∈ X of the system is measured.

The family of fuzzy sets {EQ̃∗(·,τ)}τ≥0 from B̃ is called the trajectory of

a future fuzzy process, and the family of fuzzy sets {EQ̃∗(·,τ)}τ≥0 from B̃ is
called the trajectory of a current fuzzy process. The family of pairs of fuzzy
sets {EQ̃∗(·,τ),EQ̃∗(·,τ)}τ≥0 is called the trajectory of an extremal fuzzy process

(Q̃∗,Q̃∗).
Let R̃∗ ⊂ X ×T ×Y be some lower measurable fuzzy relation (R̃∗ ∈ B̃ ⊗BT∗ ⊗

B̃Y ) describing expert knowledge reflections of fuzzy states of the system on the
output values of the system in future fuzzy time intervals, and R̃∗ ⊂ X × T ×Y

be some upper measurable fuzzy relation (R̃∗ ∈ B̃⊗B∗
T ⊗ B̃Y ) describing expert

knowledge reflections of fuzzy states of the system on the output values of the sys-
tem in current fuzzy time intervals.

Definition 21. a) A lower measurable relation R̃∗ ∈ B̃⊗BT∗ ⊗ B̃Y is called a fu-
ture fuzzy process of expert knowledge reflection of states of the system in future
fuzzy time intervals.
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b) An upper measurable relation (R̃∗ ∈ B̃⊗B∗
T ⊗ B̃Y ) is called a current fuzzy

process of expert knowledge reflection of states of the system in current fuzzy time
intervals.

c) A pair (R̃∗,R̃∗) is called an extremal fuzzy process of expert knowledge re-
flection of states of the system in extremal fuzzy time intervals.

Let ρ̃∗ ∈ ˜(B⊗BT∗)⊗ ˜(BU ⊗BT∗)⊗ B̃ be some lower measurable fuzzy relation
in the Cartesian product (X ×T )× (U ×T)×X , which describes system state trans-
formations in time with control taken into account:

(X ×T )× (U ×T) → X .

This relation is a future fuzzy transition operator describing the dynamics of the sys-
tem or, in other words, system state transformations in future fuzzy time intervals.

Let ρ̃∗ ∈ ˜(B ⊗B∗
T )⊗ ˜(BU ⊗BT∗)⊗ B̃ be some upper measurable fuzzy rela-

tion in the Cartesian product (X ×T )× (U ×T )×X , which describes system state
transformations in time with control taken into account:

(X ×T )× (U ×T) → X .

This relation is a current fuzzy transition operator describing the dynamics of
the system or, in other words, system state transformations in current fuzzy time
intervals.

We call ρ̃∗ the fuzzy lower transition operator describing the system state dynam-
ics, and ρ̃∗ the fuzzy upper transition operator describing the system state dynamics.
The pair (ρ̃∗, ρ̃∗) is called the transition operator describing the system state dynam-
ics in extremal fuzzy time intervals.

Let ũ∗ ⊂ U ×T be some upper measurable fuzzy binary relation from ˜BU ⊗B∗
T ,

which describes the action of external factors (controls) on the system in future
fuzzy time intervals, and ũ∗ ⊂ U ×T be some lower measurable fuzzy binary rela-

tion from ˜BU ⊗B∗
T , which describes the action of external factors (controls) on the

system in current fuzzy time intervals.

Definition 22. a) A fuzzy binary relation ũ∗ ∈ B̃ ⊗B∗
T is called a current fuzzy

control process.

b) A fuzzy binary relation ũ∗ ∈ B̃⊗BT∗ is called a future fuzzy control process.
c) A pair (ũ∗, ũ∗) is called an extremal fuzzy control process.

Definition 23. a) The train {
X ,U,T,Y, ρ̃∗,Q̃∗,R̃∗

}
(31)

is called the future fuzzy dynamic system describing the dynamics of the system
state in future fuzzy time intervals.
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b) The train {
X ,U,T,Y, ρ̃∗,Q̃∗,R̃∗

}
(32)

is called the current fuzzy dynamic system describing the state dynamics of the
system in current fuzzy time intervals.

c) The train {
X ,U,T,Y,(ρ̃∗, ρ̃∗),(Q̃∗,Q̃∗),(R̃∗,R̃∗)

}
(33)

is called the extremal fuzzy consitnuous dynamic system (EFCDS) describing the
state dynamics of the system in extremal fuzzy time intervals.

In the sequel we will consider the case with Y ≡ X .
It is obvious that the EFCDS (33) describes the state dynamics of the system un-

dergoing transformation with fuzzy uncertainty produced by observations at fuzzy
time, while the extremality is due to the “measurement” of fuzzy states of the system
in current and future fuzzy time intervals.

Definition 24. The system of composition equations{
R̃∗ = ρ̃∗ •∗ Q̃∗,

R̃∗ = ρ̃∗ ∗• Q̃∗ (34)

is called the system describing the state dynamics of the extremal fuzzy continu-

ous dynamic system, where •∗ and
∗• are some composition operations over fuzzy

relations.

Given (R̃∗,R̃∗), (ρ̃∗, ρ̃∗) and the initial fuzzy states of the system Ã0∗, Ã∗
0 ∈ B

(μÃ0∗(x) = μQ̃∗(x,0), μÃ∗
0
(x) = μQ̃∗(x,0), ∀x ∈ X), it is important to find a solution

(Q̃∗,Q̃∗) of (34), which we call an extremal fuzzy process of system state transfor-
mation on measurable states of the system.

Below we will consider a concrete controllable fuzzy system of form (34) for
the continuous case. It is obvious that in concrete EFCDS’s formulas (33) and (34)
model concrete complex objects with fuzzy dynamics. The finding of a system state
transformation process (Q̃∗,Q̃∗) is important when we deal with problems pertain-
ing to optimization problem (optimal control).

In recent years, the investigation of complex dynamic systems with fuzzy uncer-
tainty by means of the theory of fuzzy sets has been developing mainly along the
following two lines:

I. Lower dynamic systems are described by composition equations in the metric
or normed spaces of system states, which can be formally written in terms of fuzzy
integral equations if a fuzzy measure is assumed to be a possibilistic one ([9], [10],
[24], [46], [47] and so on).

II. Quite a number of studies have been devoted to the development of fuzzy
integro-differential calculus with an aim of describing fuzzy dynamic systems and
their control. The main feature these approaches have in common is the assumption
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that the compatibility function is differentiable or integrable ([4]–[7], [10], [12],
[17], [19], [23], [26], [27], [29], [30], [43] and so on), which to a certain extent
facilitates the investigation of the definite class of fuzzy dynamic systems.

The instrument of extended composition fuzzy measures developed in [31] and
[32], where some important properties of Sugeno lower and upper integrals and their
extensions are investigated, makes it possible to study the so-called extremal fuzzy
continuous dynamic systems for which:

1) a system of compositional equations for fuzzy dynamic systems is generalized
in the form of system (34), where the extended Sugeno upper and lower integrals

(see [31]) are used in the role of composition operations •∗ and
∗• (as a aggregation

instrument for the EFCDS) describing the dynamics of the state of an EFCDS [33].
As known from the earlier sources of investigation of fuzzy statistics ([8], [13],

[18], [22], [45] and so on) and also from our works ([31]–[36], [40]–[42]), the
Sugeno integral most frequently estimates the most typical levels of compatibility
of an integrable function. This is the reason for which we have chosen the Sugeno
integral for the construction of extended fuzzy measures.

Systems of composition type equations [24] are a particular case of system (34),
where equations are written with respect to possibility measure. The case we con-
sider in this paper is more general since the equations are written in for any extremal
fuzzy measure.

2) As different from the approach mentioned in Item II (where some processes
are not integro-differentiable), in our proposed systems of equations any measurable
compatibility function is integrable. However our consideration is not limited to this
only class of dynamic systems.

To conclude the section, note that the compatibility functions, for which systems
of equations can be written in form (34), are lower or upper measurable:

μQ̃∗(x,t) : X ×T → [0;1] is B⊗B∗
T -upper measurable;

μQ̃∗(x,t) : X ×T → [0;1] is B⊗BT∗-lower measurable;

μR̃∗(x,t,y) : X ×T ×Y → [0;1] is B⊗B∗
T ⊗B-upper measurable;

μR̃∗(x,t,y) : X ×T ×Y → [0;1] isB ⊗BT∗ ⊗B-lower measurable;

μρ̃∗(x0,t0,u,t,x) : (X ×T )× (U ×T )×X → [0;1] is

(B⊗B∗
T )⊗ (BU ⊗B∗

T )⊗B-upper measurable;

μρ̃∗(x0,t0,u,t,x) : (X ×T )× (U ×T )×X → [0;1] is

(B⊗BT∗)⊗ (BU ⊗BT∗)⊗B-lower measurable.

(35)

4 Continuous Extremal Controllable Fuzzy Process

As has been mentioned above (Subsection 2.2), in [31] we have constructed mono-

tone structures of current fuzzy time intervals {F̃ I
∗
(T ),",

∗⊗} and future fuzzy
time intervals {F̃ I∗(T ),�,⊗

∗
}. It is obvious that the flow process of a real time
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moment τ induces, in these structures, monotonically increasing and monotonically
decreasing processes of current and future time intervals, respectively.

Definition 25. a) A family {r̃∗τ}τ≥0, r̃∗τ ∈ B̃∗
T , τ ≥ 0, of monotonically increasing

sequences of upper fuzzy time intervals, i.e.,

∀τ2 > τ1 ≥ 0, r̃∗τ1
" r̃∗τ2

is called a process of current fuzzy time intervals.
b) A family {r̃τ∗}τ≥0, r̃τ∗ ∈ B̃T∗, τ ≥ 0, of monotonically decreasing sequences

of upper fuzzy time intervals, i.e.,

∀τ2 > τ1 ≥ 0, r̃τ1∗ � r̃τ2∗

is called a process of future fuzzy time intervals.
c) A pair of processes of future and current fuzzy time intervals {r̃τ∗, r̃∗τ}τ≥0 is

called a process of extremal fuzzy time intervals.

It obviously follows that
μr̃τ∗(t) : T → [0;1] is BT∗-lower measurable,
μr̃∗τ (t) : T → [0;1] is B∗

T -upper measurable.
Note that a change of a real time moment τ > 0 reflects model “measurements”

of an extremal fuzzy process of system state transformation (Q̃∗,Q̃∗) in extremal
fuzzy time intervals (r̃τ∗, r̃∗τ ).

Definition 26. A process of extremal fuzzy time intervals (r̃τ∗, r̃∗τ ) is called ergodic
if there exist the limits

lim
τ→+∞

r̃τ∗ = r̃∞∗ ∈ B̃T∗
(
∀t ≥ 0, lim

τ→+∞
μr̃τ∗(t) = μr̃∞∗(t)

)
,

lim
τ→+∞

r̃∗τ = r̃∗∞ ∈ B̃∗
T

(
∀t ≥ 0, lim

τ→+∞
μr̃∗τ (t) = μr̃∗∞(t)

)
.

In what follows it will be assumed that there exists a relation between the measurable
space of time (T,BT∗,B∗

T ) and the measurable space of system states (X ,B) in the
form of conditional extremal fuzzy measures defined in [31]. In the considered case
it is assumed that there exist conditional lower and upper fuzzy measures gt∗(· | x)
and g∗

t (· | x), respectively, i.e., ∀x ∈ X

gt∗(· | x) : BT∗ → [0;1] is a lower fuzzy measure,

g∗
t (· | x) : B∗

T → [0;1] is an upper fuzzy measure.

gt∗(· | x) and g∗
t (· | x) are extremal measures, while for a future fuzzy time interval

r ∈ BT∗
gt∗(r | ·) : X → [0;1] is a B-measurable function,

and for a current time interval r ∈ B∗
T
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g∗
t (r | ·) : X → [0;1] is a B-measurable function.

These properties also apply to extended conditional fuzzy measures g̃t∗(· | x) and
g̃∗

t (· | x), i.e., ∀x ∈ X , r̃∗ ∈ B̃T∗, r̃∗ ∈ B̃∗
T

g̃t∗(· | x) : B̃T∗ → [0;1] is a lower fuzzy measure,

g̃∗
t (· | x) : B̃∗

T → [0;1] is an upper fuzzy measure,

g̃t∗(r̃∗ | ·) : X → [0;1] is a B-measurable function,

g̃∗
t (r̃

∗ | ·) : X → [0;1] is a B-measurable function.

A relation between the spaces (X ,B,g) and (T,BT∗,B∗
T ,gT∗,g∗

T ) and their ex-
tensions through conditional measures can be represented as follows: ∀r∗ ∈ BT∗,
r∗ ∈ B∗

T , r̃∗ ∈ B̃T∗, r̃∗ ∈ B̃∗
T

gT∗(r∗) = �
∫
X

gt∗(r∗ | x)◦ g(·), g∗
T (r∗) = �

∫
X

g∗
t (r

∗ | x)◦ g(·),

g̃T∗(r̃∗) = �
∫
X

g̃t∗(r̃∗ | x)◦ g(·), g̃∗
T (r̃∗) = �

∫
X

g̃∗
t (r̃

∗ | x)◦ g(·),
(36)

Applying results from [31], we can write ∀x ∈ X , r̃∗ ∈ B̃T∗, r̃∗ ∈ B̃∗
T :

g̃t∗(r̃∗ | x) = �
∫
∗

T

μr̃∗(t)◦ gt∗(· | x),

g̃∗
t (r̃

∗ | x) = �
∫ ∗

T

μr̃∗(t)◦ g∗
t (· | x).

(37)

By the definition of g̃t∗(· | x) and g̃∗
t (· | x), for any lower and upper fuzzy time

intervals r̃∗ ∈ B̃T∗ and r̃∗ ∈ B̃∗
T there exist B-measurable sets Ãr̃∗ ∈ B̃, Ãr̃∗ ∈ B̃

such that ∀x ∈ X

μÃr̃∗
(x) = g̃t∗(r̃∗ | x), μÃr̃∗

(x) = g̃∗
t (r̃

∗ | x). (38)

Definition 27. The fuzzy sets Ãr̃∗ and Ãr̃∗ ∈ B̃ from the extended measurable space
of system states are called the expert reflections of an extremal fuzzy dynamic sys-
tems states in the extremal fuzzy time intervals (r̃∗, r̃∗) with respect to extended
extremal conditional fuzzy measures g̃t∗(· | x) and g̃∗

t (· | x).

Let us formulate a theorem that describes the ergodicity of an expert reflection pro-
cess in an ergodic process of extremal fuzzy time intervals.

Theorem 4. An ergodic process (r̃τ∗, r̃∗τ )τ≥0 of extremal fuzzy time intervals on the
measurable space of states of the system (X ,B̃) induces an ergodic expert reflection
process (R̃∗,R̃∗) ≡ (Ãr̃τ∗ , Ãr̃∗τ )τ≥0.
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In this section, we consider problems of modeling EFCDS’s when the control
factor acts on the system or, speaking more exactly, on controllable extremal fuzzy
processes.

As defined in Section 3, let U be the space of all admissible controls acting on
an EFCDS in the course of its evolution. It is assumed that the restrictions on the
space of control elements are of fuzzy nature: these restrictions exist in the form of
a fuzzy measure on the measurable space BU (the σ -algebra of subsets of U). Let
(U,BU ,gU) be some space of the fuzzy measure.

Let ũ∗ ⊂ U ×T be some upper measurable binary fuzzy relation from ˜BU ⊗B∗
T

that describes an external fuzzy action on the EFCDS in the course of current fuzzy
time intervals, and ũ∗ ⊂U ×T be some lower measurable binary fuzzy relation from

˜BU ⊗BT∗ that describes an external fuzzy action on the EFCDS in the course of
future fuzzy time intervals. A pair (ũ∗, ũ∗) is called an extremal fuzzy control (an
extremal fuzzy control process), while ũ∗ and ũ∗ are respectively called a current
fuzzy control and a future fuzzy control.

Let ρ̃∗ ∈ B̃⊗B⊗ ˜BU ⊗BT∗ and ρ̃∗ ∈ B̃⊗B⊗ ˜BU ⊗B∗
T , and (ρ̃∗, ρ̃∗) be the

operator of the EFCDS state change dynamics.

Definition 28. If (r̃τ∗, r̃∗τ )τ≥0 is some process of extremal fuzzy time intervals,
(U,BU ,gU) is a space of a fuzzy measure (a space of fuzzy restrictions on con-
trols), then a pair (Q̃′∗,Q̃′∗) of lower and upper measurable binary fuzzy relations

(Q̃′∗ ∈ B̃ ⊗ B̃⊗BT∗,Q̃′∗ ∈ B̃ ⊗ B̃⊗B∗
T ) is called an extremal fuzzy process of

measurable states of an EFCDS in the process (r̃τ∗, r̃∗τ )τ≥0, taking into account the
fuzzy restrictions on controls (U,BU ,gU): ∀x ∈ X , u ∈ U , τ ∈ T ,

μQ̃′∗(x,u,τ) Δ= �
∫
∗

r̃τ∗

[
�
∫

Ã0∗

μρ̃∗(x,x
′,u, t)◦ g(·)

]
◦ g̃T∗(·) ≡ �

∫
∗

r̃τ∗

μρ̃ ′∗(x,u, t)◦ g̃T∗(·),

μQ̃′∗(x,u,τ) Δ= �
∫ ∗

r̃∗τ

[
�
∫

Ã∗
0

μρ̃∗(x,x′,u, t)◦ g(·)
]
◦ g̃∗

T (·) ≡ �
∫ ∗

r̃∗τ

μρ̃ ′∗(x,u, t)◦ g̃T∗(·).
(39)

Definition 29. In the conditions of the action of an extremal fuzzy control process

(ũ∗, ũ∗) on an EFCDS, a pair (Q̃∗,Q̃∗) (Q̃∗ ∈ B̃⊗BT∗, Q̃∗ ∈ B̃⊗B∗
T ) defined as

follows: ∀(x,τ) ∈ X ×T

μQ̃∗(x,τ)
Δ= �
∫

Eũ∗(·,τ)
μQ̃′∗(x,u,τ)◦ gU(·),

μQ̃∗(x,τ)
Δ= �
∫

Eũ∗ (·,τ)
μQ̃′∗(x,u,τ)◦ gU(·)

(40)

is called an extremal fuzzy process describing the system state dynamics.

Let us present the integral representation of the process (Q̃∗,Q̃∗) [33].
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Theorem 5. In the conditions of the action of an extremal fuzzy control process
(ũ∗, ũ∗) on an EFCDS with the initial extremal fuzzy state 〈Ã0∗ ≡ EQ̃∗(·,τ0), Ã∗

0 ≡
EQ̃∗(·,τ0)〉, the system state change dynamics is described by the extremal fuzzy

process (Q̃∗,Q̃∗), the integral representation of which is as follows: ∀x ∈ X, τ ∈ T

a) μQ̃∗(x,τ) = �
∫
∗

U×T

[
μEũ∗ (·,τ)(u)∧μEρ̃′∗(x,·,·)(u, t)

]
◦ gU ⊗gE

R̃∗(·,τ)(·), (41)

where g̃U ⊗ g̃E
R̃∗(·,τ) is an extended composition lower fuzzy measure of the measures

gU and gE
R̃∗(·,τ).

b) μQ̃∗(x,τ) = �
∫ ∗

U×T

[
μEũ∗(·,τ)(u)∨μEρ̃′∗(x,·,·)(u, t)

]
◦ gU ⊗gE

R̃∗(·,τ)(·), (42)

where g̃U ⊗ ˜gE
R̃∗(·,τ) is an extended composition upper fuzzy measure of the measures

gU and gE
R̃∗(·,τ).

Theorem 6. Let (r̃τ∗, r̃∗τ )τ≥0 be some ergodic process of extremal fuzzy time in-
tervals, (R̃∗,R̃∗) be an extremal fuzzy reflection process induced by the process
(r̃τ∗, r̃∗τ )τ≥0, (Q̃∗,Q̃∗) be an extremal fuzzy process describing the EFCDS state dy-
namics, and (ũ∗, ũ∗) be an extremal ergodic fuzzy control process acting on the
EFCDS. Then the extremal fuzzy process (Q̃∗,Q̃∗) is ergodic.

Recalling the notion of lower and upper convergence of sequences of lower and
upper measurable functions, respectively (see Subsection 2.1), and also the notion of
lower and upper self-continuity of extremal fuzzy measures, we make the following
statements on the ergodicity of extremal fuzzy processes.

Definition 30 (gT -Ergodicity). We say that the fuzzy process of extremal fuzzy
time intervals (r̃τ∗, r̃∗τ )τ≥0 is gT -ergodic on some extremal fuzzy time intervals r̃∗ ∈
B̃T∗ and r̃∗ ∈ B̃∗

T , if ∃r̃∗∞ ∈ B̃T∗ and r̃∗∞ ∈ B̃∗
T extremal fuzzy time intervals such

that ∀ε > 0

lim
τ→+∞

g̃T∗
(
r̃∗ ∩{t ∈ T | |μr̃τ∗(t)− μr̃∗∞(t)| ≥ ε

})
= 0,

lim
τ→+∞

g̃∗
T

(
r̃∗ ∪{t ∈ T | |μr̃∗τ (t)− μr̃∗∞(t)| < ε

})
= 1.

(43)

Definition 31 (gU -Ergodicity). We say that the extremal fuzzy control process
(ũ∗ũ∗) is gU -ergodic on some fuzzy control ũ ∈ B̃U if there exist extremal fuzzy
controls ũ∞ and ũ∞ ∈ B̃U such that ∀ε > 0 and ∀t ∈ T

lim
τ→+∞

g̃U

(
ũ∩
{

u ∈ U | |μEũ∗(·,τ)(u)− μũ∞(u)| ≥ ε
})

= 0,

lim
τ→+∞

g̃U
(
ũ∪{u ∈ U | |μEũ∗ (·,τ)(u)− μũ∞(u)| < ε

})
= 1.

(44)
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Analogously to Theorem 6, we formulate the statement that the extremal fuzzy
process (Q̃∗,Q̃∗) of describing the EFCDS state change dynamics is ergodic, where
the ergodicity of the processes (r̃τ∗, r̃∗τ )τ≥0 and (ũ∗, ũ∗) is replaced by the
g-ergodicity.

Theorem 7. Let the process (r̃τ∗, r̃∗τ )τ≥0 be gT -ergodic on T with limit extremal
fuzzy time intervals (r̃∗∞, r̃∗∞), and (ũ∗, ũ∗) be gU-ergodic on U with limit fuzzy con-
trols (ũ∞, ũ∞) so that the extended fuzzy measures g̃T∗, g̃∗

T be self-continuous. Then
the extremal fuzzy process (Q̃∗,Q̃∗) of describing the EFCDS state change dynamics
is ergodic.

To conclude the section, we say that under the action of the extremal fuzzy control
process (ũ∗, ũ∗) on the EFCDS, the extremal fuzzy process (Q̃∗,Q̃∗) of describing
the EFCDS state change dynamics is ergodic if

a) the processes (r̃τ∗, r̃∗τ )τ≥0 and (ũ∗, ũ∗) are ergodic on T and U , respectively, or
b) the processes (r̃τ∗, r̃∗τ )τ≥0 and (ũ∗, ũ∗) are g-ergodic on T and U , respectively,

the extended extremal fuzzy measures g̃T∗ and g̃∗
T are respectively lower self-conti-

nuous and upper self-continuous, and the extended measure g̃U is self-continuous
on B̃U .

Conclusions. Using the results obtained in [31]–[33] of this study, we have consid-
ered questions of fuzzy mathematical modeling of extremal fuzzy processes, where

a) we introduce the notion of an EFCDS with fuzzy uncertainty, the source of
which is expert reflections on the states of EFCSD (“expert measurement”) in the
so-called current and future fuzzy time intervals. The general EFCDS model is
described;

b) the notion of processes of expert reflection and description of the EFCDS
state change dynamics are introduced. With the aid of the conditional extremal
fuzzy measures gt∗(· | x) and g∗

t (·, | x), the extremal fuzzy expert reflection pro-
cess (R̃∗,R̃∗) connects the fuzzy time interval measurement process (r̃τ∗, r̃∗τ )τ≥0

with the space of measurable states of the system with fuzzy distribution (X ,B,g),
while the EFCDS state description process (Q̃∗,Q̃∗) is defined through the extremal
fuzzy expert reflection process (R̃∗,R̃∗), using the extended upper and lower Sugeno
integrals that are considered as extremal operators describing the EFCDS state
dynamics;

c) questions of the ergodicity of extremal fuzzy processes are studied. The notion
of g-ergodicity is introduced, which allows one to obtain a sufficient condition for
the process (Q̃∗,Q̃∗) to be ergodic;

d) the notion of an extremal fuzzy control process (ũ∗, ũ∗) is introduced in
the case of the action of control with fuzzy restrictions in the form of the space
(U,BU ,gU). Models of continuous extremal controllable fuzzy processes are con-
structed. Questions of the ergodicity of controllable extremal fuzzy processes are
studied.
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5 The Fuzzy Dynamic Programming Problem

All definitions and results see in [35], [37], [39].
In alternative classical approaches to modeling and when working with the

EFCDS the main accent is often placed on the assumption of fuzzyness. We will
deal with fuzzy dynamic systems, where fuzzy uncertainty arises with time and
time structures are monotone classes of measurable sets.

We start describing objects of a fuzzy dynamic system. Let X (X �= ∅) be the set
of states of some system (EFCDS) to be investigated. Let (X ,B,g) be the space of a
fuzzy measure on the measurable space (X ,B), where B is a σ -algebra in X (fuzzy
restrictions on states).

Let the time structure of fuzzy dynamic system (EFCDS) be represented by (27)
and some space of extended extremal fuzzy measures

(T,B̃T∗,B̃∗
T , g̃T∗, g̃∗

T ), T = R∗
0,

where g̃T∗ and g̃∗
T are some extremal fuzzy measures on B̃T∗ ≡ B̃2∗ and B̃∗

T ≡ B̃∗
2,

respectively.
Let U (U �= ∅) be the set of all admissible controls (of external factors) acting

on the EFCDS. Assume that controls are subjected to restrictions of uncertain char-
acter in the form of some space of a fuzzy measure (U,BU ,gU), where BU is the
measurable space of controls, while the fuzzy measure gU describes the restrictions
imposed on controls.

We consider the optimization problems of EFCDS when the model of the contin-
uous extremal controllable fuzzy process is described by the system of fuzzy integral
equations ([33] and Section 4):⎧⎪⎪⎪⎨⎪⎪⎪⎩

μQ̃∗(x,τ)= �
∫
∗

U×T

{
μEũ∗ (·,τ)(u)∧μEρ̃′∗ (x,·,·)(u, t)

}
◦ g̃U ⊗ ˜gE

R̃∗(·,τ)(·),

μQ̃∗(x,τ)=�
∫ ∗

U×T

{
μEũ∗ (·,τ)(u)∨μEρ̃′∗(x,·,·)(u, t)

}
◦ g̃∗

U ⊗ ˜gE
R̃∗(·,τ)(·),

(45)

where (Q̃∗,Q̃∗) is a fuzzy extremal process describing the system state dynamics;
(R̃∗,R̃∗) is an extremal fuzzy process of expert knowledge reflections in extremal
fuzzy time intervals (the expert reflections on the states of EFCDS in the extremal
fuzzy time intervals); (ρ̃∗, ρ̃∗) is the transition operator of the EFCDS states; on
right-hand sides of Sugeno extended lower and upper integrals the integration mea-
sures are the extremal compositional fuzzy measures extended with respect to the
process (R̃∗,R̃∗); μ is a symbol of a compatibility function of a fuzzy set; E is a
symbol of projector of Galois indexing mapping.

We say that the effectiveness of EFCDS control is defined by some set of Criteria
K, on which fuzzy restrictions are given for measurable subsets of K, i.e. the fuzzy
measure space (K,BK ,gK) (fuzzy restriction on the criteria) is defined on K [35].
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Let L̃ ∈ ˜BK ⊗BU be some fuzzy binary relation of “losses” with respect to each
of the criteria v ∈ K in the choice of control u ∈ U . Note that μL̃ is a BK ⊗BU -
measurable compatibility function

μL̃(v,u) : K ×U → [0,1]. (46)

Then the complement L̃ is called the fuzzy relation of EFCDS “gain” and the values

μ
L̃
(v,u) = 1− μL̃(v,u) (47)

define the measure of gain in the choice of control u ∈ U for a criterion v ∈ K.

Definition 32. a) Given all criteria, a BU ⊗B∗
T -measurable function: ∀(u,t)∈U ×T

PK
ũ∗(u,t) Δ= �

∫
K

{
μEũ∗ (·,t)(u)∨μ∗

0 (u)∨μ
L̃
(v,u)
}

◦ g̃∗
K(·), (48)

where the extended fuzzy measure g̃∗
K : BK → [0,1] is the dual fuzzy measure of

g̃K (∀S̃ ∈ B̃K : g̃∗
K(S̃) = 1 − g̃K(S̃)), is called a gain with respect to a current (up-

per) fuzzy control process ũ∗ ∈ ˜BU ⊗B∗
T with respect to the initial fuzzy control

μEũ∗ (·,τ0)(u) ≡ μ∗
0 (u).

b) Given all criteria, a BU ⊗BT∗-measurable function: ∀(u, t) ∈ U ×T

qK
ũ∗(u,t) Δ= �

∫
K

{
μEũ∗ (·,t)(u)∧μ0∗(u)∧μL̃(v,u)

}
◦ g̃K(·) (49)

is called a loss with respect to a future (lower) fuzzy control process ũ∗ ∈ ˜BU ⊗BT∗
with respect to the initial fuzzy control μEũ∗ (·,τ0)(u) ≡ μ0∗(u).

Definition 33. a) A B⊗B∗
T -measurable function: ∀(u,τ) ∈ U ×T

Iũ∗(u,τ) Δ= �
∫ ∗

T

PK
ũ∗(u, t)◦ g̃E

R̃∗(·,τ)(·) (50)

is called an integral current gain with respect to a current (upper) fuzzy control

process ũ∗ ∈ ˜BU ⊗B∗
T on a current fuzzy time interval r̃∗τ ∈ B̃∗

T .
b) A BU ⊗BT∗-measurable function: ∀(u,τ) ∈ U ×T

Jũ∗(u,τ) Δ= �
∫
∗

T

qK
ũ∗(u,t)◦ g̃E

R̃∗(·,τ)(·) (51)

is called an integral future loss with respect to a future (upper) fuzzy control process

ũ∗ ∈ ˜BU ⊗BT∗ on a future fuzzy time interval r̃τ∗ ∈ B̃T∗.

We have thus defined, on U , an extremal fuzzy “gain-loss” process (Iu∗ , J̇u∗).
Further, for model (45) we will consider, in terms of (50) and (51), the problem of
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formation of an optimal control (in the sense of minimization of the future loss and
maximization of the current gain) of an extremal process: ∀(u,t) ∈ U ×T

�
∫ ∗

T

PK
ũ∗(u, t)◦ g̃E

R̃∗(·,τ)(·) ⇒ max
ũ∗ ,

�
∫
∗

T

qK
ũ∗(u, t)◦ g̃E

R̃∗(·,τ)(·) ⇒ min
ũ∗

.

(52)

Functional equations by means of which we can define an extremal fuzzy optimal
control in the sense of extremalization of criteria (52) can be written in the following
form, ∀(u,τ ′) ∈ U × [τ0,τ]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J̇◦̃
u∗

(u,τ ′) = ∧
ũ∗∈ ˜BU⊗BT∗

J̇ũ∗(u,τ ′) = ∧
ũ∗∈ ˜BU⊗BT∗

�
∫
∗

T

qK
ũ∗(u, t)◦ g̃E

R̃∗(·,τ ′)(·),

I◦̃
u∗(u,τ ′) = ∨

ũ∗∈ ˜BU⊗B∗
T

Iũ∗(u,τ ′) = ∨
ũ∗∈ ˜BU⊗B∗

T

�
∫ ∗

T

PK
ũ∗(u,t)◦ g̃E

R̃∗(·,τ ′)(·),
(53)

with the initial control conditions

E◦̃
u∗

(·,τ0) ≡ ũ0∗ ∈ BU , E◦̃
u∗(·,τ0) ≡ ũ∗

0 ∈ BU (54)

and the EFCDS initial states EQ̃∗(·,τ0) and EQ̃∗(·,τ0).

Definition 34. An extremal fuzzy control process (
◦̃
u∗,

◦̃
u∗), τ0 ≤ τ ′ ≤ τ , with the

initial conditions (54) is called an optimal for EFCDS (45) in the sense of Bellman’s
optimality principle if criterion (53) is satisfied.

The following theorem which gives the optimality condition (an analogue of Bell-
man’s equation [1]) is valid.

Theorem 8. Let a EFCDS be described by system (45). Then an extremal fuzzy

control process (
◦̃
u∗,

◦̃
u∗), τ0 ≤ τ ′ ≤ τ , is optimal in the sense of criterion (53) if and

only if the following inequalities are fulfilled: ∀(u,τ ′) ∈ U × [τ0,τ]⎧⎪⎪⎪⎨⎪⎪⎪⎩
J̇◦̃

u∗
(u,τ ′)≤

(
�
∫

K

μL̃(v,u)◦ g̃K(·)
)

∧μE◦̃
u∗

(·,τ0)(u),

I◦̃
u∗(u,τ ′)≥

(
�
∫

K

μ
L̃
(v,u)◦ g̃∗

K(·)
)

∨μE◦̃
u∗

(·,τ0)(u);
(55)

Theorem 9. An extremal fuzzy optimal control process (
◦̃
u∗,

◦̃
u∗) for the EFCDS (45)

in the sense of criterion (53) not depending on a EFCDS state can be defined by the
following system of fuzzy-integral equations: ∀(u,τ ′) ∈ U × [τ0,τ]
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ◦̃

u∗
(u,τ ′)=μ◦̃

u∗
(u,τ0)∧

(
�
∫

K

μL̃(v,u)◦ g̃K(·)
)

∧ g̃E
R̃∗ (·,Δ (τ0,τ ′))(T ),

μ◦̃
u∗(u,τ ′)=μ◦̃

u∗(u,τ0)∨
(

�
∫

K

μ
L̃
(v,u)◦ g̃∗

K(·)
)

∨ g̃E
R̃∗ (·,Δ (τ0,τ ′))(T ).

(56)

Remark 2. Expressions in (56) of an extremal optimal fuzzy control process (
◦̃
u∗,

◦̃
u∗),

τ0 ≤ τ ′ ≤ τ , are a variant of the solution of inequalities (55), but this fuzzy-integral
representation of an optimal control gives a good analogue of the solution of the
problem of stochastic dynamic programming, where the expression of an optimal
control contains “direct” analogues to (56): �

∫
K

μL̃(v,u) ◦ gK(·) is the Bellman func-

tional which is an analogue of the kernel in the representation of a stochastic optimal
control or, more exactly, an analogue of the signal of a stochastic model or its de-
terministic part, while the values of the extended fuzzy measures g̃E

R̃∗ (·,Δ (τ0,τ ′))(T )
and g̃E

R̃∗(·,Δ (τ0,τ ′))(T ) are analogues of stochastic measure in the representation of
stochastic optimal controls.

The case where a fuzzy control of EFCDS depends not only on time τ ′ ∈ [0,τ] but
also on a EFCDS state x ∈ X is also studied but is omitted here.

5.1 Example

Let the set of EFCDS states be finite, X = {1,2,3,4}; g∗ : 2X → [0,1] be the possi-
bility measure with the possibility distribution on X

Π(i) Δ=
i
4

, i = 1,2,3,4
(
∀B ∈ 2X : g∗(A) = ∨

i∈A
π(i)
)
.

Let the EFCDS be subjected to the influence of an external control factor with

the finite set U = {u1,u2} (for example, u1
Δ=“+1”, u2

Δ=“−1”). Let the uniform
probability distribution play the role of the fuzzy measure gU : 2U → [0,1], i.e.
gU({u1}) = gU({u2}) = 1

2 . The two-element set K = {v1,v2} is taken as the set of
chosen criteria, while the uniform probability distribution gK({v1}) = gK({v2}) = 1

2
is considered as playing the role of the fuzzy measure gK : 2K → [0,1]. Thus we have
the fuzzy measure spaces (X ,2X ,g), (K,2K ,gK) and (U,2U ,gU). The dual measure
g∗ on 2X is the necessity measure g(A) = 1− ∨

i/∈A
π(i). Since the fuzzy measures gU

and gK are the probability ones, we know they are autodual and

g∗
U = gU , g∗

K = gK .

It is assumed that the initial moment of EFCDS observation is τ0 ≡ 0. Let the initial
extremal fuzzy distributions of an optimal control be
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μ◦̃
u∗

(u1,0) =
1
2

= μ◦̃
u∗(u1,0); μ◦̃

u∗
(u2,0) =

1
4

= μ◦̃
u∗(u2,0).

Let the binary fuzzy loss relation L̃ on U ×K be defined as follows:

μL̃(u1,v1) = μL̃(u2,v2)=
1
2
, μL̃(u1,v2) = μL̃(u2,v1)=

1
4
.

The distributions of extremal fuzzy time intervals are given as

μr̃τ∗(t) =

{
0, 0 ≤ t ≤ τ,
1− τ

t , t > τ,
μr̃∗τ (t)=

{
1, 0 ≤ t < τ,
τ
t , t ≥ τ.

(57)

Let the initial distribution (τ0 ≡ 0) of the EFCDS state description process look like

Ã0∗ ∼
(

1 2 3 4
1
4

1
4

1
2

1
2

)
, Ã∗

0 ∼
(

1 2 3 4
1
2

1
2

1
2

1
2

)
. (58)

We consider the example of the space (T,B̃T∗,B̃∗
T , g̃∗

T , g̃∗
T ) where

gT∗([t,+∞)) Δ=
1

1 + t
, [t,+∞) ∈ BT∗,

g∗
T ([0,t)) Δ=

t
1 + t

, [0,t) ∈ B∗
T , t > 0.

(59)

Further, we introduce the conditional fuzzy measures on BT∗ and B∗
T with respect

to the set X = {1,2,3,4}:

gt∗(rτ∗ | i) =
1

1 + iτ
, where i ∈ X , rτ∗ ∈ BT∗,

g∗
t (r

∗
τ | i) =

iτ
1 + iτ

, where i ∈ X , r∗τ ∈ B∗
T .

(60)

Thus the EFCDS state description process can be represented as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μQ̃∗(x,τ)= �

∫
∗

U×T

{
μEũ∗ (·,τ)(u)∧μEρ̃′∗(x,·,·)(u, t)

}
◦ g̃U⊗ ˜gE

R̃∗ (·,τ)(·),

μQ̃∗(x,τ)=�
∫ ∗

U×T

{
μEũ∗ (·,τ)(u)∨μEρ̃′∗(x,·,·)(u, t)

}
◦ g̃U⊗ ˜gE

R̃∗ (·,τ)(·),
(61)

where Ã0∗ ≡ EQ̃∗(·,0), Ã∗
0 ≡ EQ̃∗(·,0), (R̃∗,R̃∗) is the extremal fuzzy reflection pro-

cess, ∀(x,τ) ∈ X ×T , ∀(x,t) ∈ U ×T :⎧⎨⎩μR̃∗(x,τ)
Δ= g̃t∗(r̃τ∗ | x) = μÃτ∗(x),

μR̃∗(x,τ)
Δ= g̃∗

t (r̃
∗
τ | x) = μÃ∗

τ
(x),

(62)
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μρ̃ ′∗(x,u, t) Δ= �

∫
Ã0∗

μρ̃∗(x,u,x′,t)◦ g̃(·),

μρ̃ ′∗(x,u, t) Δ= �
∫

Ã∗
0

μρ̃∗(x,u,x′,t)◦ g̃∗(·),
(63)

where Ãτ∗ ∈ B̃ and Ã∗
τ ∈ B are expert reflections on the EFCDS states in the fuzzy

extremal intervals r̃τ∗ ∈ B̃T∗ and r̃∗τ ∈ B̃∗
T , respectively; (ρ̃∗, ρ̃∗) is the EFCDS

transition operator (see [34]). As known the operator (ρ̃ ′∗, ρ̃ ′∗) is restored from
the experimental-expert knowledge base on the EFCDS so that if we fix some
admissible extremal control process (ũ∗, ũ∗) (including an optimal control too),
then, using the calculation procedure for Sugeno extremal integrals [34], we can
write expressions for the process (Q̃∗,Q̃∗). However we pursue a different aim
here: using EFCDS data, we are to construct the extremal optimal control process

(
◦̃
u∗,

◦̃
u∗).

Since the sets X , U , K are finite, it is not difficult to check that the conditions
(55) of existence of an optimal extremal control process are satisfied. By virtue of
the results of Theorems 8 and 9, we can write one of the variants for an extremal
optimal fuzzy control process as follows: ∀(u,τ) ∈ (X ,T )⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ◦̃
u∗

(u,τ) = μ◦̃
u∗

(u,0)∧
(

�
∫

K

μL̃(u,v)◦ g̃K(·)
)

∧ g̃E
R̃∗(·,τ)(T ),

μ◦̃
u∗(u,τ) = μ◦̃

u∗(u,0)∨
(

�
∫

K

μ
L̃
(u,v)◦ g̃∗

K(·)
)

∨ g̃E
R̃∗(·,τ)(T ),

(64)

where u ∈ {“+1”, “−1”}, v ∈ {v1,v2}; μ◦̃
u∗

(u,0) and μ◦̃
u∗(u,0) are already defined,

while the extended extremal fuzzy measures are defined in the form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g̃E

R̃∗ (·,τ)(T ) = �
∫
∗

T

μr̃τ∗(t)◦ g̃T∗(·) Δ= �
∫
∗

T

μr̃τ∗(t)◦�
∫

X

gt∗(· | x)◦ g(·),

g̃E
R̃∗ (·,τ)(T ) = �

∫ ∗

T

μr̃∗τ (t)◦ g̃∗
T (·) Δ= �

∫ ∗

T

μr̃∗τ (t)◦�
∫

X

g∗
t (· | x)◦ g∗(·).

(65)

Now we are to calculate the Sugeno integrals in formulas (64) and the values of
extremal fuzzy measures (65).
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Let us calculate the values of �
∫

K
μL̃(u,v)◦ g̃K(·):

1) u = u1 ≡“+1”:

�
∫

K

μL̃(u1,v)◦ g̃K(·) = ∧
0<α≤1

{
α ∨gK(v ∈ K | μL̃(u1,v) ≥ α

}
=
[

∧
0≤α≤ 1

4

(α ∨gK(K))
]
∧
[

∧
1
4 ≤α≤ 1

2

(α ∨gK({v2}))
]

∧
[

∧
1
2 <α≤1

(α ∨gK(∅))
]

= 1∧ 1
2
∧ 1

2
=

1
2
.

2) u = u2 =“−1”:

�
∫

K

μL̃(u2,v)◦ g̃K(·) = ∧
0<α≤1

{
α ∨gK(v ∈ K | μL̃(u2,v) ≥ α

}
=
[

∧
0≤α≤ 1

4

(α ∨gK(K))
]
∧
[

∧
1
4 ≤α≤ 1

2

(α ∨gK({v1}))
]
∧
[

∧
1
2 <α≤1

(α ∨gK(∅))
]

= 1∧
[

∧
1
4 ≤α≤ 1

2

(
α ∨ 1

2

)]
∧
[

∧
1
2 ≤α<1

(α)
]

= 1∧ 1
2
∧ 1

2
=

1
2
.

Since
�
∫

K

μ
L̃
(u,v)◦ g̃∗

K(·) = 1−�
∫

K

μL̃(u,v)◦ g̃K(·),

we have

�
∫

K

μ
L̃
(u1,v)◦ g̃∗

K(·) = �
∫
K

μ
L̃
(u2,v)◦ g̃K(·) =

1
2

.

Therefore ∀τ > 0

μ◦̃
u∗

(u1,τ) =
1
2
∧ 1

2
∧ g̃E

R̃∗(·,τ)(T ) =
1
2
∧ g̃E

R̃∗(·,τ)(T ),

μ◦̃
u∗

(u2,τ) =
1
4
∧ 1

2
∧ g̃E

R̃∗(·,τ)(T ) =
1
4
∧ g̃E

R̃∗(·,τ)(T ),

μ◦̃
u∗(u1,τ) =

1
2
∨ 1

2
∨ g̃E

R̃∗(·,τ)(T ) =
1
2
∨ g̃E

R̃∗(·,τ)(T ),

μ◦̃
u∗(u2,τ) =

1
4
∨ 1

2
∨ g̃E

R̃∗(·,τ)(T ) =
1
2
∨ g̃E

R̃∗(·,τ)(T ).

Now we are to calculate the values of the so-called extremal fuzzy “white noise” (65):

g̃E
R̃∗(·,τ)(T ) = �

∫
∗

T

μr̃τ∗(t)◦�
∫

X

gt∗(· | x)◦ g(·)

= ∨
0<α≤1

{α ∧ g̃T∗([r̃τ∗]α)} = ∨
0<α≤1

{
α ∧�
∫

X

g̃t∗([r̃τ∗]α | x)◦ g(·)
}

.
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From (57) we obtain the expression for an α-cut for r̃τ∗:

[r̃τ∗]α =

⎧⎪⎨⎪⎩
T if α = 0,[ τ

1−α ,+∞
)

if 0 < α < 1,

∅ if α = 1,

⎫⎪⎬⎪⎭ ∈ BT∗.

Now (60) implies

g̃t∗([r̃τ∗]α | i) =

⎧⎪⎨⎪⎩
1 if α = 0,

1
1+i τ

1−α
if 0 < α < 1,

∅ if α = 1,

∀i ∈ X .

and

�
∫
X

g̃t([r̃τ∗]α | i)◦ g(·) = ∨
0<β≤1

{
β ∧g

({
i ∈ X | 1

1 + i τ
1−α

≥ β
})}

.

It is not difficult to verify that (0 < α < 1, τ > 0)

{
i ∈ X | 1

1 + i τ
1−α

≥ β

}
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if 1 ≥ β > 1−α
1−α+τ ,

{1} if 1−α
1−α+τ ≥ β > 1−α

1−α+2τ ,

{1,2} if 1−α
1−α+2τ ≥ β > 1−α

1−α+3τ ,

{1,2,3} if 1−α
1−α+3τ ≥ β > 1−α

1−α+4τ ,

X if 1−α
1−α+4τ ≥ β > 0.

Denote B0 ≡ ( 1−α
1−α+τ ;1

]
, B1 ≡ ( 1−α

1−α+2τ ; 1−α
1−α+τ

]
, B2 ≡ ( 1−α

1−α+3τ ; 1−α
1−α+2τ

]
, B3 ≡( 1−α

1−α+4τ ; 1−α
1−α+3τ

]
, B4 ≡ (0; 1−α

1−α+4τ
]
.

Then

�
∫
X

g̃t∗([r̃τ∗]α | x)◦ g(·) =
[

∨
β∈B0

(β ∧g(∅))
]
∨
[

∨
β∈B1

(β ∧g({1})
]

∨
[

∨
β∈B2

(β ∨g({1,2}))
]
∨
[

∨
β∈B3

(β ∨g({1,2,3}))
]
∨
[

∨
β∈B4

(β ∧g(X))
]

=0∨
[

∨
β∈B1

(β ∧0)
]
∨
[

∨
β∈B2

(β ∧0)
]
∨
[

∨
β∈B3

(β ∧0)
]

∨
[

∨
β∈B4

(β ∧1)
]

= ∨
β∈B4

β =
1−α

1−α+4τ
.

We finally obtain

g̃E
R̃∗(·,τ)(T ) = ∨

0<α<1

{
α ∧�
∫

X

g̃t∗([r̃τ∗]α | x)◦ g(·)
}

= ∨
0<α<1

{
α ∧ 1−α

1−α+ 4τ

}
.
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After studying the function in the braces with respect to α , we can continue
calculations:

g̃E
R̃∗ (·,τ)(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∨

0<α<1
{α} = 1 if 0 < τ ≤ 1,

∨
α∈[1;2τ−1−2

√
τ(τ−1)]

{α}

= 2τ−1−2
√
τ(τ −1) if τ>1.

Since g̃E
R̃∗(·,τ)(·) and g̃E

R̃∗ (·,τ)(·) are extended extremal measures, we have

g̃E
R̃∗ (·,τ)(T ) =

{
0 if 0 < τ ≤ 1,

2 + 2
√
τ(τ−1) if τ > 1.

For an optimal control we obtain the following expressions:

μ◦̃
u∗

(u1,τ) =

{
1
2 , 0 < τ ≤ 1,
1
2 ∧ (2τ−1−2

√
τ(τ −1)), τ > 1,

μ◦̃
u∗

(u2,τ) =

{
1
4 , 0 < τ ≤ 1,
1
4 ∧ (2τ−1−2

√
τ(τ −1)), τ > 1,

μ◦̃
u∗(u1,τ) =

{
1
2 , 0 < τ ≤ 1,
1
2 ∨ (2 + 2

√
τ(τ−1)−2τ), τ > 1

= μ◦̃
u∗(u2,τ).

Note that when τ →+∞ a current description process of fuzzy time intervals extends
unlimitedly, while a future description process of fuzzy time intervals vanishes. The
latter fact is reflected in the expressions for the fuzzy optimal extremal controls:⎧⎨⎩ lim

τ→∞
μ◦̃

u∗(u,τ) → 1, u ∈ U = {u1,u2},
lim
τ→∞

μ◦̃
u∗

(u,τ) → 0, u ∈ U = {u1,u2}.

i.e. the uncertainty for a current fuzzy control process vanishes, while a future fuzzy
optimal control process is not considered.

We have thereby finished the consideration of the example.

6 Conclusion

Using the results presented in the papers [31]–[39], we have considered questions
of the fuzzy optimization of extremal processes, where:

a) the basic properties of Sugeno’s type extremal fuzzy measure and several vari-
ants of its representations are considered;

b) the notions of extremal fuzzy time moments and intervals are introduced and
their monotone algebraic structures are defined. The dualization of a time structure
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forms the most important part of the fuzzy instrument of modeling and optimization
of extremal fuzzy continuous dynamic systems;

c) we introduce the notion of an EFCDS with fuzzy uncertainty, the source of
which is “fuzzy measurement” (“expert reflections” on the states of EFCDS) of the
system state in the so-called current and future fuzzy time intervals. The general
EFCDS model is described;

d) the notion of processes of expert reflection and description of the EFCDS state
change dynamics are introduced. With the aid of the conditional extremal expert
reflection measures gt∗(· | x) and g∗

t (·, | x), the extremal fuzzy reflection process
(R̃∗,R̃∗) connects the fuzzy time interval measurement process (r̃τ∗, r̃∗τ )τ≥0 with
the space of measurable states of the system with fuzzy distribution (X ,B,g), while
the EFCDS state description process (Q̃∗,Q̃∗) is defined through the extremal fuzzy
reflection process (R̃∗,R̃∗), using the extended upper and lower Sugeno integrals
that are considered as extremal operators describing the EFCDS state dynamics;

e) consideration is given to the continuous case of extremal fuzzy processes.
Questions of the ergodicity of extremal fuzzy processes are studied. The notion of
g-ergodicity is introduced, which allows one to obtain a sufficient condition for the
process (Q̃∗,Q̃∗) to be ergodic;

f) the notion of an extremal fuzzy control process (ũ∗, ũ∗) is introduced in the case
of the action of control with fuzzy restrictions in the form of the space (U,BU ,gU).
Models of continuous extremal controllable fuzzy processes are constructed. Ques-
tions of the ergodicity of controllable extremal fuzzy processes are studied;

g) problems of optimization of a continuous controllable extremal fuzzy process
are considered using R. Bellman’s optimality principle. An extremal fuzzy “gain-
loss” process is defined, which plays the role of Bellman’s function in the classical
variant of the dynamic programming problem. Theorems 8 and 9 allow one to write
variants of an optimal control for the EFCDS;

h) a practical example is given to illustrate the results obtained.
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Vaguely Motivated Cooperation

Milan Mareš

Abstract. The transferable utility (TU) cooperative games are used as an
effective mathematical representation of cooperation and coalitions forming.
This contribution deals with a modified form of such games in which the
expected pay-offs of coalitions are known only vaguely, where the vagueness
is modelled by means of fuzzy quantities and some other fuzzy set theoretical
concepts. Such games were investigated in [8] and in some other papers. Their
cores and Shapley values were analyzed and some of their basic properties
were shown. This contribution is to extend that analysis, namely from the
point of view of the motivation of players to cooperate in coalitions, as well
as the relation between the willingness to cooperate and the ability to find
the conditions under that the cooperation can be percepted as fair.

Keywords: Cooperative game, TU-game, Fuzzy characteristic function,
Fuzzy Shapley value, Willingness for cooperation.

1 Introduction

The concepts of coalition and bargaining, introducing the cooperative be-
haviour of players into games of strategy, appear in the game theory since
its very beginning [14] and they form its significant component in many fun-
damental works (see, e. g., [7] or [15]). The coalition forming is, essentially,
based on the expectations of further development of the game. It regards both
– the structure of realized coalitions, as well as their presumed incomes. The
expectations are mostly rather vague than stochastic, where the vagueness
follows mostly from the subjectivity existing in the estimations and evalu-
ations of the acceptability of particular potential results of bargaining. The
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theory of fuzzy set (where the seminal work is [17]) offered the game theory
effective tools for mathematical processing of vagueness, mentioned above.

First, the attention was focused on the coalitions forming and its modifi-
cations influenced by the vagueness. Fuzzy coalitions defined as fuzzy subsets
of the all-players set, allow the parallel participation of some player in sev-
eral coalitions (see, e. g. [1, 2, 3]) and this model is investigated till now
(e. g., [5, 11, 12, 13]). Other demonstration of vagueness in the cooperative
games, i. e., the uncertainty regarding the expected incomes of coalitions and
its distribution among their members, was investigated rather later. It was
briefly mentioned in [8], and more thoroughly analyzed in [9], and recently
this model is developed in several other papers.

The aim of this paper is to contribute to the understanding of methodical
tools used in [9], and to interpret the conclusions derived there. Our main
attention is oriented to the phenomenon of forming cooperation from the
point of view of the players’ motivation under uncertainty on the expected
pay-offs.

The process of negotiation on the eventual cooperation includes two prin-
cipal periods. Each of them is connected with specific level of motivation,
and also its aim reflects different tightness of the accepted agreement.

— The first period covers the stage of a non-cooperative game of strategy,
in which the players recognize the advantages of the cooperative actions
coordinated with other players. The external attribute of this period is
the forming of coalitions based on the knowledge of their expected gains.
The classical deterministic game theory has developed the concept of core
whose non-emptiness indicates the convenience of the universal coalition
of all players.

— The second period includes rather more empathy among all players. The
core, following from (in some sense given) expected incomes of coalitions,
is very rarely a one-element set. If it is not empty then it offers many po-
tential distributions of the total income of coalition among its members.
The choice of the very distribution is the second period of the coopera-
tive negotiations. In distinction from the first period, this choice does not
immediately follow from the formal properties of the coalitional pay-offs.
It is necessary to combine their values with some, more or less subjec-
tive, idea of rightful rates of particular players on the total profit of the
coalition. As every player has, in too many cases, his own idea of such
justice, there has to be an external authority, either some “judge” not be-
longing among the players, or some general, commonly acceptable rule,
re-distributing the profit. The classical theory of cooperative games with
transferable utility offers the Shapley value (see [16, 15, 7]) as such rule
possessing acceptable and rational properties of the individual pay-offs.

The periods of negotiation mentioned above are, in the deterministic game
model, solved for a long time, already. The theory of fuzzy cooperative games
in the form with fuzzy characteristic function analyses these concepts and
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methods especially in [9]. Nevertheless, some problems regarding the mutual
relation between fuzzy core and fuzzy Shapley value were passed or, at most,
only registered without more thorough discussion. In this paper, we aim to
contribute to their analysis by methodological comments and several general
results dealing with the two periods of negotiation, mentioned above.

The following sections are organized as follows. The next Section 2 sum-
marizes the basic concepts which are dealt in the rest of this contribution,
and including the notions of fuzzy core and fuzzy Shapley value. The gen-
eral conclusions following from this analysis and regarding the motivation
of player to the cooperation are presented in Section 3. The last Section 4
includes a conclusive remark.

2 The Models

The basic elements of both models of cooperative game with transferable
utility analyzed in this paper – the deterministic one and its fuzzy exten-
sion – are briefly recollected in this section. The deterministic case is well
known from the classical literature (see, e. g., [7] or [15]), meanwhile its fuzzi-
fication was suggested in [9]. The subsection dealing with the deterministic
model is completed by the concepts of core and Shapley value. Their fuzzified
counterparts are analyzed in the last subsection of this section.

2.1 TU Cooperative Game – Deterministic Case

Let us recollect, first, the fundamental definitions of the model of cooperative
game with transferable utility (TU-game).

In the whole paper, we denote by R the set of all real numbers.
If M is a set, then we denote in the following sections by P(M) the set

of all subsets of M (the potential set of M).
The TU-game is defined as a pair (I, v), where I = {1, 2, . . . , n} is a non-

empty and finite set of players and v : P(I) → R such that v(∅) = 0 is called
characteristic function of the game.

Every real-valued vector (xi)i∈I ∈ Rn such that x1 + x2 + · · · + xn ≤ v(I)
is called an imputation in the TU-game (I, v). The basic solution concept in
such game is the set of imputations C ⊂ Rn called the core of the game and
such that

C =

{
x ∈ Rn :

∑
i∈I

xi ≤ v(I) and for all K ∈ P(I),
∑
i∈K

xi ≥ v(K)

}
. (1)

It is evident that the coalition I of all players can be effectively formed in
a TU-game, only if its core C is non-empty. Moreover, the non-emptiness of
core is the single information which the players need to recognize that the
coalitional cooperation over complete set I is desirable.
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Comment 1. The players need not any exogenous authority to conclude if
the cooperation covering complete set I is possible, i. e., if it can be useful
for all of them. The non-emptiness of the core follows from the definitoric
elements of the game, I and v, and it does demand any other assumption or
rule.

Anyhow, the construction of the core C itself does not mean that the negotia-
tions are finished. If C �= ∅ then it usually contains more than one imputation
and each of the players can have his own idea of the core imputations which
is the most righteous one. The structure of the given game itself, i. e., the
pair (I, v) and its knowledge, does not guarantee the objective choice of a
distribution of the value v(I) among the players, respected and accepted by
all of them.

Comment 2. The critical moment of the negotiation is the step from the
retrieval of the core and its reduction on one single imputation. In other
words, the players themselves are able to recognize the necessity of coopera-
tion but they are not able to agree spontaneously with one single imputation
distributing the common profit among them.

Hence, it is inevitable to include an additional element of the game, an arbiter,
who decides which distribution of the profit is righteous.

In the practical negotiation, the arbiter can be a person whose authority
is confirmed by all agents (players). But it can be an abstract scheme, too,
accepted by all players even before the negotiations process. The game theo-
retical models usually do with a set of principles respected and accepted by
the players. These principles were formulated in [16] and the distribution of
profits forms a real-valued vector t = (ti)i∈I called a vector of Shapley values
(see, e. g., [15, 7, 9]). The principles mentioned above are as follows.

– The values ti, i ∈ I, do not depend on the ordering of players.
– Vector of Shapley values (ti)i∈I is to be an imputation, such that

n∑
i=1

ti = v(I).

– If (I, v1), (I, v2) are two TU-games over the set of players I and (ti(v1))i∈I ,
(ti(v2))i∈I are vector of Shapley values, respectively, if (I, v1 + v2) is a TU -
game such that for each K ∈ P(I),

(v1 + v2) (K) = v1(K) + v2(K),

and if (ti(v1 + v2))i∈I is the vector of Shapley values for (I, v1 + v2) then

ti(v1 + v2) = ti(v1) + ti(v2) for all i ∈ I.
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Note that the non-emptiness of Core is not demanded. Shapley (see, [16]) has
constructed an effective formula for the evaluation of ti, i = 1, . . . , n, namely,
if for every K ∈ P(I), k is the number of players in K, then

ti =
∑

K∈P(I)

(n − k)!(k − 1)!
n!

(v(K) − v(K − {i})), i ∈ I. (2)

Let us note that formula (2) defines a vector of Shapley values (ti)i∈I fulfilling
the above conditions even if the core C of the game (I, v) is empty, under
the assumption that for any K, L ⊂ I such that K ∩ L = ∅, the inequality

v(K ∪ L) ≥ v(K) + v(L) (3)

holds. Of course, in such case (ti)i∈I /∈ C. If C �= ∅ then (ti)i∈I ∈ C,

2.2 Fuzzy Quantities

The above deterministic TU-game model is well know, relatively simple, but
its correspondence with real cooperative behaviour is rather limited by the la-
tent assumption that the values v(K), K ⊂ I, are deterministic real numbers.
Such precise knowledge preceding the proper realization of the game appears
too optimistic. This discrepancy can be avoided by using the concepts of
fuzzy quantities theory.

In the rest of this paper, if M is a set then we denote by F (M) the class
of all fuzzy subsets of M (cf. [17]).

If A ∈ F (M) then μA : M → [0, 1] is the membership function of A. Any
a ∈ F (R) with μaR → [0, 1] such that

μa(xa) = 1 for at least one xa ∈ R, (4)
there exist x1, x2 ∈ R such that x1 ≤ xa ≤ x2 (5)

and μa(x) = 0 for all x /∈ [x1, x2],

is called a fuzzy quantity. Each real number xa fulfilling (4) is called a modal
value of a. The set of all fuzzy quantities will be denoted by F ∗. As shown,
e. g., in [4, 8] and many other works, it is possible to define algebraic opera-
tions over F ∗, using so called extension principle. In this paper, we use two
of algebraic operations over fuzzy quantities. Let us consider a, b ∈ F ∗ and
r ∈ R, then the sum a ⊕ b and crisp product r · a are fuzzy quantities, too.
Their membership functions are

μa⊕b(x) = sup
y∈R

[min (μa(y), μb(x − y))] , for x ∈ R, (6)

μr·a(x) = μa(x/r) if r �= 0, and (7)
μ0·a(0) = 1, μ0·a(x) = 0 for x �= 0.
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There exist numerous approaches to the ordering relation between fuzzy
quantities (see, e. g., [6]). Here we use the one of them which is defined as a
fuzzy relation ≥ with membership function ν≥ : F ∗ ×F ∗ → [0, 1], where for
a, b ∈ F ∗

ν≥(a, b) = sup [min (μa(x), μb(y)) : x, y ∈ R, x ≥ y] (8)

is the possibility that a ≥ b.

2.3 Fuzzy Extension of a TU-Game

As we have mentioned above, we consider here the fuzzification of the char-
acteristic function v. If for every coalition K ∈ P(I) there exists a fuzzy
quantity w(K) ∈ F ∗ such that v(K) is a modal value of w(K), then we say
that the pair (I, w) is a fuzzy extension of the TU-game (I, v), and we call w

the fuzzy characteristic function of (I, w).
It is not difficult to define the set of fuzzy imputations in (I, w) as a fuzzy

subset V of Rn with membership function μV : Rn → [0, 1], where

μV ((x1, . . . , xn)) = ν≥

(
w(I),

n∑
i=1

xi

)
, (x1, . . . , xn) ∈ Rn, (9)

where (8) was used.
Similarly, the fuzzy core of (I, w) is a fuzzy subset of Rn (see [9]) denoted

by Cw and with membership function μC : Rm → [0, 1], where for any x =
(x1, . . . , xn) ∈ Rn

μC(x) = min

[
μV (x), min

(
μ≥

(∑
i∈K

xi, w(K)

)
: K ∈ P(I)

)
.

]
(10)

Remark 1. Previous definition, together with (8) immediately mean that if
V is a fuzzy imputation and Cw is a core of a fuzzy extension (I, w) of some
TU -game (I, v), and if α ≥ β, α, β ∈ [0, 1] then

{x ∈ Rn : μV (x) = α} ⊂ {x ∈ Rn : μV (x) = β} ,

and
{x ∈ Rn : μC(x) = α} ⊂ {x ∈ Rn : μC(x) = β} .

Comment 3. Analogously to the deterministic concept of imputation as
an accessible distribution of profit among all players, the fuzzy imputation
represents the accessibility of profit distribution structured by uncertainty
connected with particular incomes expected by the coalition of all players I.
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Comment 4. Similarly, the fuzzy core represents the distributions of global
profit among all players, which cannot be effectively protested by any coali-
tion, and which is structured by uncertainty connected with particular in-
comes expected by the coalition of all players.

There exists one concept, more, whose deterministic form we know and which
turns into its fuzzy counterpart if a fuzzy extension of a TU-game is consid-
ered. Namely, the Shapley value (2). Its fuzzification can be constructed in
two ways.

The first way consists in the passive application of formula (2) where fuzzy
quantities w(K), K ∈ P(I) are used instead of the crisp values v(K). This
method was analyzed in [9] and it is evident that it results into fuzzy quan-
tities for every Shapley value. More precisely, let i ∈ I and let us numerate
the coalitions from P(I) as

{K0, K1, K2, . . . , KN} , where K0 = ∅ and N = 2n − 1. (11)

Then the fuzzy quantity si ∈ F ∗ with μs(i), defined by

si =
(n − k1)!(k1 − 1)!

n!
(w(K1) ⊕ (−1 · w(K1 − {i}))) ⊕ · · · (12)

· · · ⊕ (n − kN )!(kN − 1)!
n!

(w(KN ) + (−1 · w(KN − {i})))

can be considered for the i-th component of the vector of fuzzy Shapley
values. Here, kj is the number of members of the coalition Kj and all kj ,
j = 1, . . . , N , are crisp numbers. It means that operations used in (12) are
fully characterized by (6) and (7) and their properties are analyzed, e. g., in
[8] and [4] and recollected also in [9]. This method, however lucid it is, dis-
plays one significant discrepancy. Namely, if i /∈ K for some K ∈ P(I)
then in the deterministic case v(K) − v(K − {i}) = 0, and formula (2)
deals with coalitions including i, only. As shown in [8], this conclusion is
not correct in the case of fuzzy extension (I, w) of (I, v). If i /∈ K then
w(K) ⊕ (−1 · w(K − {i})) = w(K) ⊕ (−1 · w(K)) = a(i, K), where a(i, K) is
a fuzzy quantity from F ∗ with at least one modal value equal to 0,

μa(i,K)(0) = 1,

and with symmetric membership function where

μa(i,K)(x) = μa(i,K)(−x) for all x ∈ R.

Usually, except very special cases with degenerated fuzziness, a(i, K) used in
(12) extends the uncertainty of the resulting fuzzy value si ∈ F ∗ and in this
sense it influences the stability of eventually achieved results of negotiation.
Namely, it symmetrically increases the extent of uncertainty connected with si.
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This, in certain sense formal, discrepancy can be avoided if we limit the
summation in (12) on the coalitions from P(I) for which i ∈ K. More for-
mally, we may define a fuzzy quantity qi ∈ F ∗ with membership function
μq(i) : R → [0, 1] by means of modified (12)

qi =
(n − k1)!(k1 − 1)!

n!
· σ(i, k1) · (w(K1) ⊕ (−1 · w(K1 − {i}))) ⊕ · · · (13)

· · · ⊕ (n − k1N)!(kN − 1)!
n!

· σ(i, kN ) · (w(KN ) ⊕ (−1 · w(KN − {i}))) ,

where

σ(i, Kj) = 1 iff i ∈ Kj, σ(i, Kj) = 0 iff i /∈ Kj, j = 1, . . . , N

and where the notations used in (12) are preserved.
The second way of constructing fuzzy Shapley value is based on the general

extension principle, as well. For every i ∈ I and for every Kj, j = 0, 1, . . . , N ,
we denote μj : R → [0, 1] the membership function of fuzzy quantity w(Kj).
Then we define fuzzy quantity ui ∈ F ∗ with membership function μu(i) :
R → [0, 1] by means of

μu(i)(x) = sup
[
min (μ1(y1), μ2(y2), . . . , μn(yN )) : (14)

y1, . . . , yN ∈ R, x =
∑

j=1,...,N

(n − kj)!(kj − 1)!
n!

(
yj − y�j

) ]
,

where n and kj are interpreted in agreement with (12) and for every j =
1, . . . , N , K�j − {i}.

The fuzzy number ui is the i-th component of fuzzy Shapley value of (I, w).

Remark 2. It is easy to see that for Kj ∈ P(I) and i ∈ I such that
i /∈ K then yj − y�j and, consequently, the relevant element of the sum in
(13) vanishes.

Lemma 1. Let (I, w) be fuzzy extension of a TU-game (I, v), let for any
i ∈ I, si ∈ F ∗ be defined by (12), qi ∈ F ∗ be defined by (13), and let
ui ∈ F ∗ be defined by (14). Then

μu(i)(x) = μq(i)(x) for all i ∈ I, x ∈ R

and there exist b, d ∈ F ∗, such that

μb(0) = μd(0) = 1, μb(x) = μb(−x), μd(x) = μd(−x), x ∈ R,

and
ui ⊕ b = si ⊕ d.
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Proof. The first statement,

μu(i)(x) = μq(i)(x)

for all i ∈ I and x ∈ R follows from (13) and (14), immediately, as for any
Kj ∈ P(I) such that i /∈ Kj , σ(Kj , i) = 0 and μj(0) = 1. In this sense, the
values of μj do not influence the value of μui(x).

The second statement, namely the additive equivalence of ui and si in the
sense of [8], follows from (13) and (12). Namely, si = qi ⊕ b, where b ∈ F ∗,
and b is the sum of fuzzy quantities

(n − kj)!(kj − 1)!
n!

(w(Kj) ⊕ (−1 · w(Kj)))

for those Kj for which i /∈ Kj. Then each of such fuzzy quantities is sym-
metric, i. e., they fulfil the properties formulated in the proved statement.
It means that their sum b is symmetric, as well (see [8]), and the second
statement is proven. �

If (I, v) is a TU-game and (I, w) its fuzzy extension, then the fundamental
fuzzy solution concepts of (I, w) are fuzzy extensions of their crisp counter-
parts in (I, v). It is not difficult to formulate this conclusion by means of the
following statements.

Theorem 1. Let (I, v) be a TU-game and (I, w) its fuzzy extension. If C

and Cw are the core of (I, v) and fuzzy core of (I, w), respectively, then Cw

is fuzzy extension of C. It means that for any x ∈ Rn

μC(x) = 1 iff x ∈ C.

Proof. Let x = (x1, x2, . . . , xn) ∈ C. Then

ν≥

(∑
i∈K

xi, w(K)

)
= 1 for all K ∈ P(I),

and ν≥

(
w(I),

n∑
i=1

xi

)
= 1

(15)

as follows from (8) and from the fact that each fuzzy imputation is a fuzzy
extension from some crisp imputation. Consequently, μC(x) = 1.

Let, on the other hand, μC(x) = 1. Then, due to (10), all membership
values in (15) are necessarily equal to 1, which immediately implies that
x ∈ C. �
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Theorem 2. Let (I, v) be a TU-game and (I, w) its fuzzy extension. Let
t = (t1, t2, . . . , tn) ∈ Rn be (crisp) Shapley value of (I, v) defined by (2).
Then the vector of fuzzy quantities s = (si)i∈I defined by (12), vector of
fuzzy numbers u = (ui)i∈I defined by (14), and vector of fuzzy quantities
q = (qi)i∈I defined by (15) are vectors of fuzzy extensions of ti, i = 1, 2, . . . , n,
respectively.

Proof. Formulas (2) and (14) immediately imply that ui(ti) = 1 for all
i ∈ I and, consequently, fuzzy quantity ui is a fuzzy extension of ti for all
i = 1, 2, . . . , n. The first statements of Lemma 1 means that the above result
is true for fuzzy quantities qi and crisp Shapley values ti, i ∈ I, as well.
Moreover, formula

ui ⊕ b = si ⊕ d

where μb(0) = μd(0) = 1, used in the second statement of Lemma 1, implies
that if some x ∈ R is a modal value of ui then it is a modal value of si, as
well (see (6)). Hence, ti is a modal value of si for all i ∈ I, and the statement
of the theorem is true. �

Remark 3. The relevant definitions immediately imply that if for all j =
0, 1, . . . , N

μj(v(kj)) = 1, μj(x) = 0 for all x �= v(Kj),

then Cw is identical with the crisp core C of (I, v), and all fuzzy Shapley
values (ui)i∈I , (qj)i∈I and (si)i∈I are equal and identical with crisp Shapley
values (ti)i∈I of (I, v).

3 Vague Willingness to Cooperation

After introducing or remembering the main concepts of interest, i. e., the
fuzzy extensions of cooperative game with transferable utility, its core and
Shapley value, we aim to transfer the ideas of crisp cooperation model
into their fuzzy counterparts. Let us summarize the fundamental knowledge
achieved in the deterministic theory:

– The non-emptiness of the core suffices to the recognition that rational
cooperation is the optimal behaviour of players.

– But it does not suffice to identify which cooperation (partition of the
common profit of I) is the rational one. Identification of this rationality
demands the acceptance of an additional rule, the value (Shapley value)
of the game.

The general properties of the value are summarized in subsection 2.1.
The main purpose of this section is to discuss the validity of the previous,

rather methodological, consequences for the case of the fuzzy extension of a
TU-game.
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The vagueness of the expected pay-offs, i. e., the substitution of the crisp
numbers v(K) by fuzzy quantities w(K) for all K ∈ P(I), may appear like
a degradation of the conditions under which the players form the coalitions –
our traditional thinking percepts the uncertainty as a discrepancy, in general.
In fact, the existence of vagueness in the expectation of coalitional profits,
enriches the analysis of the game and its structure. The fuzzy extension (I, w)
of (I, v), with many levels of possibilities regarding the players’ expectations,
is not only much more realistic but also much more effective in the process
of forming the most rational cooperative behaviour.

The fuzzy core is a lucid demonstration of the above rule. If (I, v) and (I, w)
are a deterministic TU-game and its fuzzy extension, respectively, then the
core C and fuzzy core Cw respect analogous relation. The fuzzy core Cw does
not grind the crisp willingness for cooperation based on the deterministic
expectations of profit but, on the contrary, it enlarges the potential possibil-
ities of agreement by the (usually quite wide) class of not completely sure
but possible variants. If we consider the fact that the “fully deterministic”
expectations of profit made before the realization of the game cannot be as
doubtless as they appear to be the fuzzy extension of the cooperation model
is more realistic (and more precise) than the crisp one.

More formally, let us consider the fuzzy core Cw of a fuzzy extension (I, w)
of TU-game (I, v). Then we may define the number

mC = sup (μC(x) : x ∈ Rn) , (1)

which we call the cooperative potential of (I, w).

Remark 4. Evidently, 0 ≤ mC ≤ 1, and if (I, w), (I, w′) are two fuzzy
extensions of (I, v) such that μw(x) ≥ μw′(x) for all x ∈ Rn and if mC , m′

C

are their cooperative potentials, respectively, then mC ≥ m′
C .

The cooperative potential can be accepted for the measure of ability of the
players in I to accept the global all-players’ coalition. The previous remark
stresses the obvious fact that the more the fuzzy extension of (I, w) differs
from its crisp base, the higher is the possibility that the players find a common
agreement.

The question to be answered about the fuzzy Shapley value is rather differ-
ent. Namely, it is important to know if, and in which way, the fuzzy Shapley
value respects the general demands on values, formulated in subsection 2.1.

Here, we focus our attention on the fuzzy Shapley values defined by (14)
and denoted by ui ∈ F ∗. Due to Lemma 1, we know that its properties are
identical with the properties of qi ∈ F ∗ (defined by (13)) and in some sense
equivalent with the properties of si ∈ F ∗. This is valid for all i ∈ I.

Remark 5. As follows from (14), immediately, the membership functions
μu(i) for i = 1, 2, . . . , n, are independent on the ordering of their computation.
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Lemma 2. The modal values t1, t2, . . . , tn, v(I) of the fuzzy quantities
u1, u2, . . . , un, w(I) fulfil the equality∑

i∈I

ti = v(I).

Proof. The statement follows from (14) and (2), immediately. �

Lemma 3. Let (I, v1) and (I, v2) be TU-games and (I, w1), (I, w2) be their
fuzzy extensions, respectively. Let (I, w1 ⊕ w2) be a fuzzy cooperative game
such that for every K ∈ P(I)

(w1 ⊕ w2) (K) = w1(K) ⊕ w2(K),

and, finally, let (I, v1 + v2) be a TU-game such that for every K ∈ P(K)

(v1 + v2) (K) = v1(K) + v2(K).

Then (I, w1 + w2) is a fuzzy extension of (I, w1 ⊕ w2), modal values
(v1 + v2) (K) of (w1 ⊕ w2) (K), K ∈ P(I).

Proof. The statement follows from the definition of fuzzy extension of TU-
game, and from the assumptions of this lemma. �

Lemma 4. Under the assumptions of Lemma 3 let us denote by ti, i =
1, 2, . . . , n, the Shapley values of (I, v). Then for every i ∈ I, ti is a modal
value of ui ∈ F ∗.

Proof. The statement follows from (13) and (2), immediately. For every
K ∈ P(I), μw(v(K)) = 1 and, consequently, μu(i)(ti) = 1, i = 1, 2, . . . , n. �

Note that the validity of the general properties of fuzzy Shapley values is in
more detailed way investigated in [9], Chapter 9.

Comment 5. The vagueness included in the concept of fuzzy extension of a
TU-game influences also the validity of the general principles connected with
the concept of the value, especially of the Shapley value. Relative generality
of the fuzzy characteristic function implies also rather free formal structure
of fuzzy Shapley value, and the guaranteed fulfillment of the basic properties
of value for the modal values of its fuzzified form, only.

4 Conclusive Remark

The previous brief analysis of the fuzzified TU -games where the fuzzification
regards the characteristic function and concepts derived from it, allows to
formulate the following heuristic conclusion.
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The vagueness of expected pay-offs, which is natural, rather influences the
formal properties of the core and Shapley value, but it does not violate their
very important functions – namely, to indicate the motivation of player for
cooperation, and to show an acceptable distribution of the common profit
among cooperating players. Or course, the vagueness of expectations causes
certain vagueness of the concepts of core and Shapley value, but this vague-
ness does not limit the information hidden in the core, and it rather modifies
than limits similar information in the Shapley value.

In other words the fuzzification of pay-offs, in principle, does not signifi-
cantly influence the ability and willingness of the players to cooperate.
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10. Mareš, M.: Fuzzy components of cooperative market. In: Batyrshin, I.,
Kacprzyk, J. (eds.) Perception Based Data Mining and Decision Making in
Economics and Finance, pp. 209–239. Springer, Heidelberg (2007)
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Computing Min-Max Regret Solutions in
Possibilistic Combinatorial Optimization
Problems

Adam Kasperski and Paweł Zieliński

Abstract. In this chapter we discuss a wide class of combinatorial optimization
problems with a linear sum and a bottleneck cost function. We first investigate the
case when the weights in the problem are modeled as closed intervals. We show how
the notion of optimality can be extended by using a concept of a deviation interval.
In order to choose a solution we adopt a robust approach. We seek a solution that
minimizes the maximal regret, that is the maximal deviation from optimum over all
weight realizations, called scenarios, which may occur. We then explore the case in
which the weights are specified as fuzzy intervals. We show that under fuzzy weights
the problem has an interpretation consistent with possibility theory. Namely, fuzzy
weights induce a possibility distribution over the scenario set and the possibility and
necessity measures can be used to extend the optimality evaluation and the min-max
regret approach.

1 Introduction

In many optimization problems we seek an object composed of elements of a given
set to achieve some goal. For instance, in a wide class of network problems the
element set consists of all edges of a given graph and we seek an optimal path, span-
ning tree, cut, matching etc. in this graph. A comprehensive review of various prob-
lems of this type can be found in [1, 30, 35]. While describing a particular system
we often meet some parameters associated with the elements whose values are not
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precisely known. For instance, in a traffic network the traveling times between dis-
tinct points are rarely known in advance and this uncertainty must be taken into
account while choosing a path in this network. In order to model the risk connected
with imprecise parameters a stochastic approach can be adopted (see. e.g. [21]). For
every parameter a probability distribution for its values is specified and, typically,
the expected cost of a solution is minimized. The stochastic approach has several
drawbacks. Namely, it may be hard or expensive to estimate the probability distri-
bution for an unknown parameter. Also, the obtained solution may be not reasonable
if it is used only once because it may be poor under the worst parameter realization
which may occur.

An approach which has received an increasing attention in the recent years is
the one of robust optimization. The idea of robust approach is to find a solution
that hedges against the worst realizations of parameters which may occur. A good
introduction to robust optimization can be found in a book [29]. For this class of
problems a part of the input is a scenario set, which contains all realizations of the
parameters, called scenarios, which may occur. No probability distribution over the
scenario set is specified. Then a solution is computed, which minimizes a given cri-
terion under the worst scenario. One of the most popular methods of defining the
scenario set is to specify for every parameter a closed interval, which contains all its
possible values. The scenario set is then the Cartesian product of all the uncertainty
intervals. In order to choose a solution a maximal regret criterion can be used. The
maximal regret is the maximal difference between the cost of a solution and the op-
timum over all scenarios. It was first suggested as a criterion for choosing a decision
under uncertainty by Savage [39]. A deep discussion on the maximal regret can also
be found in a book [31].

The min-max regret approach to combinatorial optimization problems with in-
terval data has attracted a considerable attention recently. A recent survey of the
known results in this area can be found in [2, 22]. It turns out that the complexity of
the min-max regret problem strongly depends on the choice of the cost function in its
deterministic version. Under a bottleneck cost the min-max regret problem is poly-
nomially solvable if only the deterministic problem is polynomially solvable [7].
However, under a more popular linear sum cost, the min-max regret versions of the
shortest path [7, 24, 42], the minimum spanning tree [6, 7], the minimum assign-
ment [3] and the minimum s − t cut [4] turned out to be NP-hard. A polynomial
algorithm is known for the min-max regret selecting items problem [8, 12], which is
a special case of the 0-1 Knapsack with unit capacities of all items. Some approxi-
mation algorithms for the class of min-max regret problems with the linear sum cost
can be found in [23, 26].

In this chapter we show how the known min-max regret approach can be ex-
tended. The key idea is to model the imprecision using fuzzy intervals. A fuzzy
interval can be seen as a monotone, under inclusion, family of closed intervals
parametrized by the value of λ ∈ [0,1]. It is also a fuzzy set in the space of re-
als, whose membership function is a possibility distribution for the values of an
unknown quantity. A description of possibility theory can be found in a book [14],
where one can also find some methods of obtaining possibility distributions from
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the possessed knowledge. Fuzzy intervals allow us to define a possibility distribu-
tion over the scenario set. So now, for every scenario we can assign a real number
from the interval [0,1], which says us what is the possibility that this scenario will
occur. In order to choose a solution we can adopt an elegant concept proposed for
fuzzy linear programming in [19, 20]. It turns out that this solution method can be
viewed as a direct extension of the min-max regret approach to the fuzzy case, which
additionally has a clear possibilistic interpretation. Furthermore, the fuzzy combi-
natorial optimization problems are easier to solve than fuzzy linear programming
described in [20].

This chapter is organized as follows. First, in Section 2, we recall a formulation of
a combinatorial optimization problem with deterministic weights. We describe the
problems with two types of cost functions, namely the bottleneck and the linear sum
ones. We also introduce the concept of a deviation, which is a distance of a solution
(element) from optimality. The concept of deviation will play a central role in our
analysis. In Section 3, we discuss the combinatorial optimization problems with
interval weights. By extending the concept of deviation we show how the optimality
of solutions and elements can be characterized and how to choose a solution. We
seek a solution that minimizes the maximal regret, that is the largest deviation which
may occur for this solution. We present all known complexity results for the interval
problems. In Section 4, we investigate the combinatorial optimization problems with
fuzzy weights. We first recall some basic notions of possibility theory. We then show
how the concept of scenario set can be extended by defining a possibility distribution
over all scenarios. We also introduce the concept of a fuzzy deviation and show
how to characterize the optimality of solutions and elements, using possibility and
necessity measures. Finally, we adopt a method of choosing a solution under fuzzy
weights and we construct several methods of computing this solution.

2 Deterministic Combinatorial Optimization Problems

In this section we briefly recall a formulation of a general combinatorial optimiza-
tion problem. Let E = {e1, . . . ,en} be a finite set of elements and let Φ ⊆ 2E be a set
of subsets of E called a set of feasible solutions. For every element e ∈ E there is a
nonnegative weight we, which expresses a single parameter associated with e such
as cost, time, length etc. We will use F(X) to denote a cost of solution X ∈Φ . Two
types of the cost function are widely used, namely a linear sum cost F(X)=∑e∈X we

and a bottleneck cost F(X) = maxe∈X we. The deterministic combinatorial optimiza-
tion problem P is the following one:

P: min
X∈Φ

F(X), (1)

where F(X) is either the linear sum or the bottleneck cost. So, an instance of the
problem is specified by a triple (E,Φ,w), where w is a vector of element weights.

The formulation (1) encompasses a large variety of problems. In the important
class of network problems, E is a set of edges of a given directed or undirected
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graph G = (V,E) and Φ consists of all subsets of the edges that form some objects
in G such as paths, spanning trees, matchings, cuts etc. In general (1) includes the
problems, which can be formulated as 0-1 programming ones. To see this, we need
to associate a binary variable xi ∈ {0,1} with every element ei ∈ E and describe Φ
using a system of constraints involving the binary variables. Notice that some of the
problems are polynomially solvable while the other ones are NP-hard. In this chapter
we will assume that P is polynomially solvable. A description of such problems with
both linear sum and bottleneck cost can be found for instance in books [30, 35] and
in papers [10, 17, 36, 37].

In theory and practice the class of matroidal problems is of great importance. Re-
call that a matroid is a pair (E,I ), where E is a nonempty element set
and I is a set of subsets of E such that I is closed under inclusion (if A ∈ I
and B ⊆ A then B ∈ I ) and fulfills the so-called growth property (if A,B ∈ I and
|A|< |B| then there is e ∈ B\A such that A∪{e}∈I ). The maximal under inclusion
elements in I are called bases. In a matroidal problem the set of feasible solutions
Φ consists of all bases of a given matroid. Perhaps, the best known example of a ma-
troidal problem is the minimum spanning tree, where E is a set of edges of a given
undirected graph and I consists of all subsets of the edges that form acyclic sub-
graphs of G. Then (E,I ) is called a graphic matroid and its base is a spanning tree
of G, so Φ contains all spanning trees of G. Another important example is the mini-
mum selecting items problem. In this problem, E is a set of items and I consists of
all subsets of E , whose cardinalities are less than or equal to a given number p. The
system (E,I ) is the so-called uniform matroid and X is a base of this matroid if
and only if |X | = p. In this case Φ contains all subsets of E , whose cardinalities are
precisely p. We will see in the next sections that the particular structure of matroidal
problems sometimes allows us to design efficient algorithms under uncertainty.

In the approach presented in this chapter a central role will be played by the
concept of a deviation. A deviation of solution X ∈Φ is defined as follows:

δX = F(X)− min
Y∈Φ

F(Y ).

Hence deviation δX expresses a “distance” of X from optimum. Obviously X is
optimal if and only if δX = 0. A similar concept can be introduced for elements. Let
Φ f ⊆Φ be the set of all feasible solutions that contain element f . Then a deviation
of element f ∈ E is defined as follows:

δ f = min
Y∈Φ f

F(Y )− min
Y∈Φ

F(Y ).

We call element f optimal if δ f = 0. In other words, f is optimal if and only if it is a
part of an optimal solution. The solution (element) deviation gives us an information
how far from optimality a solution (element) is.
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3 Combinatorial Optimization Problems with Interval Weights

In practice, precise values of the element weights in a combinatorial optimization
problem may be unknown. In this section we discuss perhaps the simplest uncer-
tainty representation, where for every unknown weight a closed interval containing
all its possible values is specified. We extend the concept of deviation and we show
how the optimality of a given solution or element can be characterized and how to
choose a solution under interval weights.

3.1 Scenario Set

Assume that we only know that the value of the weight we of element e ∈ E will
fall within a closed interval We = [we,we]. Notice that a precise weight we can be
modeled as a degenerate interval such that we = we. We assume that there is no
probability distribution in We, e ∈ E , and all weights are unrelated, that is the value
of every weight does not depend on the values of the remaining weights. A vector
S = (se)e∈E such that se ∈ We for all e ∈ E is called a scenario and it represents the
state of the world in which we = se for all e ∈ E . A scenario set Γ is formed by
the Cartesian product of all the uncertainty intervals, namely Γ = ×e∈EWe. Notice
that our assumptions imply that for any two scenarios S1 and S2 it is not possible
to say which one is more likely to happen. In other words, there is no probability
distribution in scenario set Γ .

Among the scenarios an important role is played by the extreme ones, where
all weights take the lower or upper bounds in their uncertainty intervals, i.e. the
scenarios from the set ×e∈E{we,we}. Let A ⊆ E be a subset of the elements. In
scenario S+

A all elements e ∈ A have weights we and all the remaining elements have
weights we. In the symmetric scenario S−

A all elements e ∈ A have weights we and
all the remaining elements have weights we.

Under the interval uncertainty representation the cost of solution X depends on
scenario S ∈Γ an we will denote it as F(X ,S). Of course, F(X ,S) is either the linear
sum cost ∑e∈X se or the bottleneck cost maxe∈X se. We will use F∗(S) to denote the
cost of an optimal solution under scenario S. In order to obtain F∗(S) we must solve
the deterministic problem (1) under the weight realization specified by scenario S.
Now the solution and element deviations also depend on scenario S and we will
denote them as δX(S) and δ f (S), respectively.

3.2 Deviation Interval and Optimality Evaluation

Recall that in the deterministic case a deviation gives a full characterization of op-
timality. In the interval case the optimality can be fully characterized by the so-
called deviation interval. For a given solution X ∈ Φ we define ΔX = [δX ,δX ],
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where δX = minS∈Γ δX(S) and δX = maxS∈Γ δX(S). The quantity δX is called in
literature the maximal regret of X [29] and it expresses the largest distance of X
from optimality. Similarly, for a given element f ∈ E we have Δ f = [δ f ,δ f ], where
δ f = minS∈Γ δ f (S) and δ f = maxS∈Γ δ f (S).

The intervals ΔX and Δ f contain all values of solution and element deviations
which may occur and allow us to give the following optimality characterization. We
say that a solution X is possibly optimal if δX = 0 and it is necessarily optimal if
δX = 0. Obviously, solution X is possibly optimal if and only if it is optimal under
some scenario S ∈Γ and it is necessarily optimal if and only if it is optimal under all
scenarios S ∈ Γ . Exactly the same optimality characterization can be given for the
elements. So, we can also introduce the possibly and necessarily optimal elements
using deviation intervals of elements. It is easy to check that every possibly (nec-
essarily) optimal solution is composed of possibly (necessarily) optimal elements.
However, the converse statement is not true since it is not difficult to give an exam-
ple of a solution composed of possibly (necessarily) optimal elements, which is not
possibly (necessarily) optimal (see [25]).

3.3 Choosing a Solution under Interval Weights

Now an important question arises which solution should be chosen under inter-
val weights. One can simply choose a possibly optimal one. This can be done by
computing an optimal solution under any particular scenario S ∈ Γ . This choice is
optimistic because we need to assume that a good scenario will occur. However,
the quality of the solution may be very poor if a bad scenario will realize. One can
also try to compute a necessarily optimal solution. Indeed, such a solution is an
ideal choice but, contrary to the possibly optimal solutions, it rarely exists. In other
words, the necessary optimality is too strong criterion. We thus can see that in order
to choose a solution, a compromise between the possible and necessary optimality
is required. This compromise is achieved by computing a solution that minimizes
the maximal regret δX , that is the largest deviation (a distance to optimality) over
all scenarios. So, under the interval uncertainty representation we focus on the fol-
lowing optimization problem:

min
X∈Φ

δX . (2)

An optimal solution to (2) is called an optimal min-max regret solution. We get
immediately that every necessarily optimal solution is an optimal min-max regret
one (but the converse statement is not true). In the next two sections we will show
that every optimal min-max regret solution is possibly optimal. Hence it fulfills the
minimum requirement of being optimal under some scenario. In consequence, the
deviation interval of an optimal min-max regret solution is of the form [0,δX ], where
δX is the smallest among all X ∈Φ .
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3.4 Computational Properties of the Interval-Valued Problem

In this section we focus on the computational properties of problem P with interval
weights. We will show that the complexity of computing deviation intervals and
min-max regret solutions strongly depends on the choice of the cost function.

3.4.1 Problems with Linear Sum Cost

In this section we discuss the case when F(X ,S) = ∑e∈X se, so we consider a prob-
lem with the linear sum cost function. The following proposition results directly
from the definition of the cost function:

Proposition 1. For any solution X ∈Φ it holds δX = δX (S−
X ) and δX = δX (S+

X ).

If the deterministic problem P is polynomially solvable, then the deviation interval
ΔX for a given solution X can be computed in polynomial time. Hence we can also
characterize efficiently the optimality of X and compute its maximal regret. This
is very important property of this class of problems. It is worth pointing out that
for the linear programming problem with interval objective function coefficients,
computing the maximal regret of a given solution is NP-hard [9]. Proposition 1
implies the following result:

Proposition 2. Every optimal min-max regret solution X is possibly optimal and it
is composed of possibly optimal elements.

Proof. Suppose, by contradiction, that an optimal min-max regret solution X is not
possibly optimal. Then, by Proposition 1, δX = δX(S−

X ) = F(X ,S−
X )−F∗(S−

X ) > 0.
Let Y ∈Φ be an optimal solution under S−

X . Hence F(Y,S−
X ) < F(X ,S−

X ). Using the
definition of the linear sum cost function we can see that F(Y,S) < F(X ,S) for all
scenarios S ∈ Γ , so δY (S) < δX(S) for all S ∈ Γ . Finally, using again Proposition 1,
we get δY = δY (S+

Y ) < δX(S+
Y ) ≤ δX , which contradicts the assumption that X is an

optimal min-max regret solution. Since X is possibly optimal it must be composed
of possibly optimal elements. ��
We know that a necessarily optimal solution X , i.e. such that δX = 0, is an optimal
min-max regret one. Sometimes such a solution may exist and it can be detected by
using the following result:

Theorem 1 ([23]). Let Y be an optimal solution under scenario S such that se =
1
2 (we + we) for all e ∈ E. Then there is a necessarily optimal solution if and only if
Y is necessarily optimal.

So, if problem P is polynomially solvable, then we can detect in polynomial time a
necessarily optimal solution if it exists. There is also a general link between neces-
sarily optimal elements and optimal min-max regret solutions.

Theorem 2 ([28]). If all weight intervals are nondegenerate, then there is an opti-
mal min-max regret solution which contains all necessarily optimal elements.
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The assumption that all weight intervals are nondegenerate is crucial. To see this,
consider the minimum spanning tree problem in a connected graph G = (V,E). As-
sume that We = [1,1] for all e ∈ E . Of course, every element (edge) e ∈ E is necessar-
ily optimal but all elements do not even form a feasible solution. If there are some
degenerate weights, then it can only be shown that for every necessarily optimal
element f there is an optimal min-max regret solution that contains f [28].

Let us now focus on computing the deviation interval Δ f for a given element
f ∈ E . Unfortunately, this problem is much harder than computing a solution devi-
ation interval. It is not difficult to show that δ f (S) attains minimum and maximum
in some extreme scenarios [22]. However, computing these scenarios is not trivial
and algorithms for performing this task are known only for some special cases of
problem P. A general result can be proven for matroidal problems:

Theorem 3 ([25]). If P is a matroidal problem, then for any element f ∈ E it holds
δ f = δ f (S−

{ f}) and δ f = δ f (S+
{ f}).

If P is not a matroidal problem, then computing Δ f may be NP-hard. Specifically, if
P is the shortest path, the minimum assignment or the minimum s-t cut, then com-
puting δ f for a given element f is NP-hard [28]. Furthermore, for these problems
even deciding whether δ f ≤ 0 is NP-complete, so the problem of asserting the pos-
sible optimality of a given element is computationally intractable. This result also
means that the lower bound of an element deviation interval is hard to approximate.
Interestingly, no polynomially solvable deterministic problem is known for which
computing the upper bound δ f under interval weights is NP-hard. Apart from ma-
troidal problems, δ f can be efficiently computed in the shortest path problem pro-
vided that the input graph is directed and acyclic [16].

Finally, let us focus on solving the min-max regret problem (2). Unfortunately, it
turns out to be NP-hard if P is shortest path [7, 24, 42], minimum spanning tree [7,
6], minimum assignment [3] and minimum s− t cut [4]. It is polynomially solvable
for the minimum selecting items problem, which has a very simple combinatorial
structure [7, 12]. In literature there are two general methods of solving (2). One
can design a mixed integer programming model and solve it by using one of many
available packages [22, 32, 40]. Alternatively, a branch and bound algorithm can be
used to solve the problem [5, 33, 34]. Both techniques have appeared to be quite
efficient for some problems and for a description of the results of computational
tests we refer the reader to [22, 33, 34, 40].

Notice that Proposition 2 and Theorem 2 suggest a method of preprocessing a
problem before solving it. Suppose that we are able to partition the set of elements
into three sets, namely E = A ∪ B ∪C, where A contains nonpossibly optimal el-
ements, B contains necessarily optimal elements and C contains all the remaining
elements (the set C contains possibly optimal elements and elements whose status
is unknown). According to Proposition 2, we can remove all elements in A from E
without violating optimal min-max regret solutions. Similarly, according to Theo-
rem 2, under nondegenerate weights we can automatically add all elements from B
to the constructed solution (if there are some degenerate weights, then we can add
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a single element from B to the constructed solution). This may significantly reduce
the problem size and speed up determining of an optimal min-max regret solution.

3.4.2 Problems with Bottleneck Cost

In this section we discuss a problem with the bottleneck cost F(X ,S) = maxe∈X se.
The following theorem suggests a method of computing the deviation interval of a
specified solution:

Theorem 4. For any solution X it holds

δX = max{0,max
e∈X

we −F∗(S+
E )}, (3)

δX = max
e∈X

max{0,we −F∗(S+
{e})}. (4)

Proof. The proof of equality (4) can be found in [7]. We prove equality (3). Let S ∈
Γ be a scenario that minimizes the deviation, that is δX = δX (S) = F(X ,S)−F∗(S).
Since maxe∈X we ≤ F(X ,S), F∗(S+

E ) ≥ F∗(S) and δX ≥ 0 it follows immediately
that

δX ≥ max{0,max
e∈X

we −F∗(S+
E )}. (5)

It remains to show that the inequality ≤ also holds in (5). Let Y be an optimal solu-
tion under S+

E and let g = argmaxe∈Y we. We consider two cases. (i) maxe∈X we > wg.
Denote h = argmaxe∈X we. Consider scenario S such that se = min{wh,we} for all
e ∈ X and se = we for all e ∈ E \X . Since wh ≥ we for all e ∈ X , S ∈ Γ . It is easy to
check that F(X ,S) = wh and F∗(S) = F(S+

E ). Hence δX ≤ δX(S) = maxe∈X we −
F∗(S+

E ) ≤ max{0,maxe∈X we − F∗(S+
E )}, which together with (5) yield (3). (ii)

maxe∈X we ≤ wg. Consider scenario S such that under this scenario all elements
e ∈ E \ X have weights we and all the elements e ∈ X have weights min{we,wg}.
Since we ≤ wg for all e ∈ X , S ∈ Γ . One can easily verify that X is optimal under S,
which means that δX = 0 ≤ max{0,maxe∈X we −F∗(S+

E )}. This, together with (5),
give (3). ��
We thus can see that it is not difficult to compute the deviation interval for a given
solution and to characterize its optimality, provided that the deterministic problem
P is polynomially solvable. Similarly to the problems with linear sum cost function,
the following proposition holds:

Proposition 3. Every optimal min-max regret solution X is possibly optimal and it
is composed of possibly optimal elements.

Proof. If X is not possibly optimal, then by Theorem 4, we have maxe∈X we >

F∗(S+
E ). Let Y be an optimal solution under S+

E . It is easy to verify that F(X ,S) >

F(Y,S) under all scenarios S ∈ Γ . The same argument as in the proof of Propo-
sition 1 yields δX > δY , so X cannot be an optimal min-max regret solution.
Of course, a possibly optimal solution is entirely composed of possibly optimal
elements. ��
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Let us now focus on the elements. The following theorem allows us to compute
a lower bound on the deviation interval of a given element. Its proof is very similar
to the proof of Theorem 2.

Theorem 5. For any element f ∈ E it holds

δ f = max{0, min
X∈Φ f

F(X ,S−
E )−F∗(S+

E )}. (6)

Using Theorem 5 we can design an efficient method of computing the quantity δ f
for every particular problem, which is polynomially solvable. In order to compute
minX∈Φ f F(X ,S−

E ) a slight modification of the algorithm for solving P is only re-
quired. Therefore, contrary to the problems with the linear sum cost, we can also
characterize efficiently the possible optimality of a given element. However, a gen-
eral characterization of the quantity δ f is unknown and it is an interesting subject
of further research. Both bounds of Δ f can be efficiently computed if P is matroidal
problem. It is not difficult to prove the following result:

Proposition 4. If P is a matroidal problem then δ f = max{0,wf − F∗(S+
E )} and

δ f = max{0,wf −F∗(S+
{ f})}.

Equality (4) allows us to solve efficiently the min-max regret problem (2), provided
that P is polynomially solvable. To see this let us define weights ŵe = max{0,we −
F∗(S+

{e})} for all e ∈ E . Then

min
X∈Φ

δX = min
X∈Φ

max
e∈X

ŵe

and the min-max regret problem reduces to solving the deterministic problem P with
nonnegative real weights ŵe, e ∈ E . We thus get the following theorem:

Theorem 6 ([7]). If the deterministic problem P can be solved in f (n) time, then its
min-max regret version can be solved in O(n f (n)) time.

The running time O(n f (n)) follows from the fact that we need to solve n times the
deterministic problem P to obtain weights ŵe for all e ∈ E . The computations can
be additionally refined and for details we refer the reader to [7]. The most important
consequence of Theorem 6 is that the min-max regret version of problem P is poly-
nomially solvable if only the deterministic problem P is polynomially solvable. So,
the situation is quite different from the problems with the linear sum cost.

4 Combinatorial Optimization Problems with Fuzzy Weights

In the previous section we have described the class of problems with interval
weights. It turns out that all the introduced concepts can be naturally extended with-
out significant increasement of the problem complexity. The key idea is to use fuzzy
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intervals to model the uncertain element weights and apply possibility theory to
extend the concept of deviation. This section is devoted to the class of combinatorial
problems with fuzzy weighs.

4.1 Basic Notions of Possibility Theory

Possibility theory offers us a framework of dealing with imprecision. A detailed
description of this theory can be found in a book [14]. We now recall some of its
notions, which will be used later in this section. A fuzzy interval Ã is a fuzzy set
in the space of reals whose membership function μÃ : IR → [0,1] is normal, quasi
concave, upper semicontinuous and has a compact support. The main property of a
fuzzy interval is that all its λ -cuts, that is the sets Ãλ = {x : μÃ(x)≥ λ} for λ ∈ (0,1],
are closed intervals. We will also denote by Ã0 the smallest closed set containing the
support of Ã. So, we can represent a fuzzy interval Ã as a family of closed intervals
Ãλ = [aλ ,aλ ] parametrized by the value of λ ∈ [0,1]. It is easy to see that this
family is monotone, that is Ãλ1 ⊆ Ãλ

2 if λ1 ≥ λ2. Having the family of λ -cuts of Ã,
the membership function μÃ can be computed as follows:

μÃ(x) = sup{λ ∈ [0,1] : x ∈ Ãλ} (7)

and μÃ(x) = 0 if x /∈ Ã0.
In practice the class of trapezoidal fuzzy intervals is commonly used (see Fig-

ure 1). Every trapezoidal fuzzy interval can be described as a quadruple (a,a,α,β )
and can be represented by the following family of λ -cuts:

Ãλ = [a−α(1−λ ),a+β (1−λ )], λ ∈ [0,1]. (8)

1 1

a−α a a a+β a a

Fig. 1 Trapezoidal fuzzy interval (a,a,α,β ) and closed interval [a,a] = (a,a,0,0).

Notice that this representation also contains closed intervals (if α = β = 0) and
real numbers (if additionally a = a). We will use shorter notation (a,α,β ) if a =
a = a and we will call (a,α,β ) a triangular fuzzy interval. We also define (a,β ) =
(0,a,0,β ). In order to simplify notations and discussion we will only use trapezoidal
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fuzzy intervals. However, it is not difficult to extend all the introduced notions to a
more general class of fuzzy intervals of the L-R type with compact support (see [14]
for a descriptions of this class of fuzzy intervals).

W now give an interpretation of a fuzzy interval. Let a be a real quantity whose
value is not precisely known. We associate with a a fuzzy interval Ã, whose mem-
bership function μÃ is a possibility distribution for the values of a, that is

Π(a = x) = μÃ(x),

where Π(a = x) is the possibility of the event that a will take the value of x. There
are several methods of obtaining possibility distribution for an unknown quantity
and their description can be found in [14]. Observe that Ãλ contains all values of
a whose possibility of occurrence is not less than λ . In consequence, Ã0 should
contain all possible values of a and Ã1 should contain the most plausible ones.

Let G̃ be a fuzzy set in the space of reals. Then a ∈ G̃ is a fuzzy event and the
possibility and necessity of a ∈ G̃ are defined as follows [13]:

Π(a ∈ G̃) = sup
x∈IR

min{μÃ(x),μG̃(x)}. (9)

N(a ∈ G̃) = 1−Π(a /∈ G̃) = 1− sup
x∈IR

min{μÃ(x),1− μG̃(x)}. (10)

where 1− μG̃(x) is the membership function of the complement of the fuzzy set G̃.
It is not difficult to show that if G̃ = (0,g,0,β ) = (g,β ), then the following equality
is true:

N(a ∈ G̃) = 1− inf{λ ∈ [0,1] : aλ ≤ g1−λ} (11)

and N(a ∈ G̃) = 0 if a1 > g0. Equality (11) is illustrated in Figure 2.

1
μÃ(x)μG̃(x) 1−μG̃(x)

λ ∗

x

Fig. 2 N(a ∈ G̃) = 1−λ ∗

In the next section we will show how possibility theory allows us to extend the
concept of scenario set.
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4.2 Fuzzy Scenario Set

Assume that the element weights in a combinatorial optimization problem are
unknown real quantities we, e ∈ E . We associate with every weight we a fuzzy in-
terval W̃e. According to the interpretation given in the previous section, the mem-
bership function μW̃e

is a possibility distribution for the values of the weight we. Let
S = (se)e∈E ∈ IRn be a vector representing the state of the world in which we = se

for all e ∈ E . As in Section 3, we will call S a scenario. The possibility distributions
associated with element weights induce the following possibility distribution over
all scenarios S ∈ IRn:

π(S) = Π

(∧
e∈E

[we = se]

)
= min

e∈E
Π(we = se) = min

e∈E
μW̃e

(se). (12)

Observe that π(S) may be regarded as a membership function of a fuzzy set in IRn.
We will call this fuzzy set a fuzzy scenario set and π(S) is the possibility of the event
that scenario S ∈ IRn will occur. Notice that we generalize in this way scenario set Γ
defined in Section 3. Indeed, under interval uncertainty representation π(S) = 1 if
S ∈ Γ and π(S) = 0 otherwise, so π(S) is then a characteristic function of the set
Γ . Under fuzzy weights, π(S) may take any value in the interval [0,1]. Hence fuzzy
weights provide us more information about the state of the world which may occur.
In particular, scenario S is impossible if π(S) = 0 and we have π(S) = 1 for the
most plausible scenarios. Notice that the definition of a fuzzy interval assures that
π(S) = 1 for at least one scenario S.

Using (12) and the definition of λ -cut it is easily seen that for every λ ∈ [0,1] the
following equality holds:

{S : π(S) ≥ λ} = ×e∈E [wλ
e ,wλ

e ]. (13)

So, the set of all scenarios whose possibility of occurrence is not less than λ is
the Cartesian product of the interval weights being the λ -cuts of the fuzzy weights.
Hence it forms a scenario set, which we will denote as Γ λ . This property allows us
to decompose the fuzzy problem into a family of interval problems. We will make
use of this fact in the next sections.

4.3 Fuzzy Deviations

As for the problems with deterministic and interval weights, we can use the concept
of deviation to characterize the optimality of solutions and elements. Recall that un-
der interval weights deviations δX and δ f fall within closed intervals ΔX and Δ f .
Under fuzzy weights, the solution and element deviations are unknown quantities,
which fall within fuzzy intervals Δ̃X and Δ̃ f . The membership functions μΔ̃X

and μΔ̃ f
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are possibility distributions for the values of δX and δ f and, according to possibility
theory, they are defined as follows:

μΔ̃X
(y) = Π(δX = y) = sup

{S: δX (S)=y}
π(S),

μΔ̃ f
(y) = Π(δ f = y) = sup

{S: δ f (S)=y}
π(S).

Consider fuzzy deviation interval Δ̃X of a given solution X ∈ Φ . A λ -cut of Δ̃X

contains all values of the deviation of X whose possibility of occurrence is not less
than λ . Hence

Δ̃ λ
X = {y : μΔ̃X

(y) ≥ λ} = {δX(S) : π(S) ≥ λ ,S ∈ IRn}.

But (13) implies Δ̃ λ
X = {δX(S) : S ∈ Γ λ} = [δλ

X ,δ
λ
X ], where δλ

X minimizes and δ
λ
X

maximizes δX(S) over all S ∈ Γ λ . We can now use the results from Sections 3.4.1
and 3.4.2 to compute the bounds of Δ̃ λ

X . For a problem with the linear sum cost,
Proposition 1 gives

δλ
X = δX (S−λ

X ) = F(X ,S−λ
X )−F∗(S−λ

X ) = ∑
e∈X

wλ
e −F∗(S−λ

X ), (14)

δ
λ
X = δX (S+λ

X ) = F(X ,S+λ
X )−F∗(S+λ

X ) = ∑
e∈X

wλ
e −F∗(S+λ

X ), (15)

where S−λ
X and S+λ

X are the corresponding extreme scenarios in Γ λ .
Now our aim is to compute the family of cuts Δ̃ λ

X for λ ∈ [0,1]. The possibil-
ity distribution for the deviation of X can be then obtain by formula (7). Observe
that it remains to compute functions F∗(S−λ

X ) and F∗(S+λ
X ) of λ ∈ [0,1]. This task

can be performed by applying a parametric technique. Namely, we wish to compute
sequences 0 = λ0 < λ1 < ... < λk = 1 and X0, . . . ,Xk−1 such that Xi is an optimal
solution under S+λ

X or S−λ
X for λ ∈ [λi,λi+1]. Having these sequences it is easy to

describe analytically functions F∗(S−λ
X ) or F∗(S+λ

X ) for λ ∈ [0,1]. It turns out that
if wλ

e and wλ
e are linear functions of λ for each e ∈ E , then for some particular

problems such as shortest path or minimum spanning tree their parametric coun-
terparts can be efficiently solved (see e.g. [15, 38, 41]). In consequence, the family
of intervals Δ̃ λ

X , λ ∈ [0,1], can be efficiently computed if the uncertain weights are
modeled as trapezoidal fuzzy intervals. A similar reasoning applies to the problems
with the bottleneck cost function. One should only use Theorem 4 to obtain the cor-
responding parametric problems. We now illustrate the computation of Δ̃X by an
example.

Example 1. Consider a shortest path problem shown in Figure 3a. We are given a
directed graph composed of 5 arcs and we wish to find a shortest path between nodes
s and t.
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1− (1−λ )

6+(1−λ )
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(2,2,2)

(2,1,4)

(1,1,1)

(6,2,1)

(2,1,4)

b) c)

a)

a1

a1a1

a2

a2a2

a3

a3a3

a4

a4a4

a5

a5a5

Fig. 3 a) A sample shortest path problem with fuzzy weights. b) The extreme scenario
S−λ
{a1,a3}. c) The extreme scenario S+λ

{a1 ,a3}.

For every arc weight wa, a ∈ A, a triangular fuzzy interval W̃a = (wa,αa,βa)
is given. Let us examine path X = {a1,a3}. In Figures 3b and 3c the extreme
scenarios S−λ

X and S+λ
X are shown. Notice that these scenarios are linear func-

tions of λ ∈ [0,1] obtained by formula (8). It holds F(X ,S−λ
X ) = 8 − 4(1 −λ ) and

F(X ,S+λ
X ) = 8 + 3(1 − λ ) for λ ∈ [0,1]. Applying a parametric technique to the

problem shown in Figure 3b, we get a sequence of λ ’s 0 < 4
7 < 4

5 < 1 that cor-
responds to the sequence of optimal solutions {a1,a3},{a1,a5,a4},{a2,a4}. That
is, solution {a1,a3} is optimal for λ ∈ [0, 4

7 ], solution {a1,a5,a4} is optimal for

λ ∈ [ 4
7 , 4

5 ] and solution {a2,a4} is optimal for λ ∈ [ 4
5 ,1]. Hence F∗(S−λ

X ) is a piece-
wise linear function, whose value is 8 − 4(1 −λ ) for λ ∈ [0, 4

7 ], 5 + 3(1 − λ ) for

λ ∈ [ 4
7 , 4

5 ] and 4 + 8(1 − λ ) for λ ∈ [ 4
5 ,1]. Subtracting F∗(S−λ

X ) from F(X ,S−λ
X )

yields δλ
X . Similarly, the function δλ

X is obtained by applying the parametric tech-

nique to the problem shown in Figure 3c. The resulting functions δλ
X and δλ

X are

presented in Figure 4. Having the bounds δλ
X and δ

λ
X for λ ∈ [0,1] we can construct

the possibility distribution μΔ̃X
for the deviations of X by applying formula (7). This

possibility distribution is shown in Figure 4. ��

Computing fuzzy deviation of a given element is more complex. It is a direct con-
sequence of the fact that the corresponding interval problem may be hard to solve.
In other words, it may be hard to identify extreme scenarios that minimize or max-
imize an element deviation. We can compute the fuzzy interval Δ̃ f only for some
particular problems such as matroidal ones (see e.g. [27]).
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Fig. 4 Bounds δλX and δλX and the possibility distribution μΔ̃X
(y) =Π(δX = y)

4.4 Degrees of Possible and Necessary Optimality

The fuzzy deviations allow us to characterize possible and necessary optimality of
solutions and elements. Recall that the statement “X is optimal” is equivalent to the
assertion δX = 0. So, we can define the degrees of possible and necessary optimality
of solution X in the following way:

Π(X is optimal) = Π(δX = 0) = μΔ̃X
(0), (16)

N(X is optimal) = 1−Π(δX > 0) = 1− sup
y>0

μΔ̃X
(y). (17)

In the same way we can define the degrees of optimality of the elements. It is enough
to replace X with f in (16) and (17). The following relations hold between the
optimality degrees of solutions and elements:

Π(X is optimal) ≤ max
e∈X

Π(e is optimal).

N(X is optimal) ≤ max
e∈X

N(e is optimal).

Having possibility distributions μΔ̃X
and μΔ̃ f

we can immediately compute the de-
grees of optimality of X and f . However, if one wishes to obtain only the opti-
mality degrees, then the computations can be significantly simplified. Equalities (7)
and (16) imply

Π(X is optimal) = sup{λ ∈ [0,1] : 0 ∈ Δ̃ λ
X } = sup{λ ∈ [0,1] : δλ

X = 0} (18)

and Π(X is optimal) = 0 if δ 0
X > 0. So, in order to compute the degree of possible

optimality of X , we need to find the largest value of λ such that X is possibly optimal
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under scenario set Γ λ (which is equivalent to the condition δλ
X = 0). Since δλ

X is
nondecreasing function of λ , the standard binary search technique can be applied to
perform this task. Also, the following equality is easy to establish:

N(X is optimal) = 1− inf{λ ∈ [0,1] : δ
λ
X = 0} (19)

and N(X is optimal) = 0 if δ 1
X > 0. So, we need to find the smallest value of λ

such that X is necessarily optimal under scenario set Γ λ (which is equivalent to the

condition δ
λ
X = 0). Because δ

λ
X is nonincreasing function of λ , the binary search

technique also solves this problem. If f (n) is the time required to assert whether
a given solution is possibly (necessarily) optimal in the interval problem, then its
degree of possible (necessary) optimality can be computed in O( f (n) logε−1) time,
where ε ∈ (0,1) is an assumed precision of calculations.

Exactly the same reasoning can be applied to the elements (we only need to re-
place X with f in (18) and (19)). Note, however, that the complexity of computations
for an element strongly depends on the combinatorial structure of problem P.

4.5 Choosing a Solution under Fuzzy Weights

We now address the problem of choosing a solution under fuzzy weights. The de-
grees of optimality, introduced in the previous section, suggest us a solution method.
We can choose a solution, which maximizes the degree of possible or necessary op-
timality. Maximizing the degree of possible optimality is trivial. There is always at
least one solution X ∈Φ for which the degree of possible optimality attains its max-
imal value equal to 1. It can be obtained by computing an optimal solution under
scenario S such that π(S) = 1. On the other hand, the degree of necessary optimality
of every feasible solution may be very small or even equal to 0. We thus meet the
same problem as in the interval uncertainty representation - the possible optimal-
ity is too weak criterion of choosing a solution and the necessary optimality is too
strong.

Now the idea is to replace the strong optimality requirement with a weaker one.
Suppose that a decision maker knows his/her preference about solution deviation
and expresses it using a fuzzy goal G̃ = (g,βg). So, the values of deviation in [0,g]
are completely accepted, the values in [g + βg,∞) are not at all accepted and the
degree of acceptance decreases linearly in the interval [g,g + βg] (the assumption
that it decreases linearly is not restrictive and any decreasing function can be used to
model the decision maker preferences). We can now replace the strong requirement
δX = 0 with a weaker one, namely δX ∈ G̃. Recall that δX is an unknown quantity
characterized by possibility distribution μΔ̃X

. So, δX ∈ G̃ is a fuzzy event and we
can compute the necessity that it holds, N(δX ∈ G̃), using (10):

N(δX ∈ G̃) = 1− sup
y∈IR

min{μΔ̃X
(y),1− μG̃(y)}.
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Consider again the shortest path problem from Example 1. The function μΔ̃X
is

a possibility distribution for deviation δX of path X . This possibility distribution
is shown in Figure 5. The part of μΔ̃X

representing the largest deviation of X is

shown in bold. In Figure 5 a fuzzy goal G̃ and its complement G̃d are also shown.
The complement G̃d expresses a degree of dissatisfaction of the values of solution
deviation.

μΔ̃X
(y)

μΔ̃X
(y)

μΔ̃X
(y)

1−μG̃(y)

1−μG̃(y)1−μG̃(y)

μG̃(y)

μG̃(y)μG̃(y)

y

yy

a) b)

c)

λ ∗

Fig. 5 Three different situations depending on the choice of fuzzy goal G̃: a) N(δX ∈ G̃) = 0,
b) N(δX ∈ G̃) = 1−λ ∗ , c) N(δX ∈ G̃) = 1

Consider the case illustrated in Figure 5a. The goal G̃ is chosen so that the largest
deviation of X is fully contained in its complement G̃d . So, Π(δX ∈ G̃d) = 1 and
N(δX ∈ G̃d) = 0. In other words, with possibility equal to 1 a scenario may occur
for which the deviation of X is not at all accepted. Figure 5c shows an opposite
case. The goal G̃ is chosen so that the largest deviation of X is completely not in
G̃d . So, Π(δX ∈ G̃d) = 0 and N(δX ∈ G̃d) = 1. In this case for every scenario S such
that π(S) > 0 the deviation δX(S) is completely accepted. Clearly, this is an ideal
situation. In Figure 5b a third case is shown, where the largest deviation of X is only
partially contained in G̃d . So, Π(δX ∈ G̃d) = λ ∗ and N(δX ∈ G̃d) = 1 − λ ∗. This
means that for all scenarios S such that π(S) ≥ λ ∗ the degree of dissatisfaction is
not greater than λ ∗ or, equivalently, the degree of satisfaction is not less than 1−λ ∗.

Now it is reasonable to choose a solution whose deviation belongs to G̃ with the
highest confidence. This leads to the following optimization problem:

max
X∈Φ

N(δX ∈ G̃). (20)
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An optimal solution to (20) is called a most necessarily soft optimal solution and it
was first proposed as a solution under fuzzy weights in [20]. If we choose G̃ = (0,0),
then we get the following special case of (20):

max
X∈Φ

N(δX = 0) = max
X∈Φ

N(X is optimal). (21)

So, in (21) we seek a most necessarily optimal solution. As we will see in the next
section, the problem (21) may be easier to solve than (20). Using (11) we can express
the problem (20) as the following mathematical programming one:

minλ
δ
λ
X ≤ g1−λ

X ∈Φ
λ ∈ [0,1]

(22)

If λ ∗ is the optimal objective value of (22) and X∗ is an optimal solution, then
N(δX∗ ∈ G̃) = 1 − λ ∗. If (22) is infeasible, then N(δX ∈ G̃) = 0 for all feasible
solutions X .

It is easy to check that problem (22) is a generalization of the min-max regret
approach. If all W̃e, e ∈ E , are closed intervals and G̃ = (0,M) for a sufficiently
large number M, then (22) is equivalent to (2). In the next two sections we will
focus on some methods of solving (22).

4.5.1 Binary Search Technique

Observe that δλ
X is nonincreasing and g1−λ is nondecreasing function of λ ∈ [0,1].

Therefore (22) can be solved by applying the standard binary search technique
shown in Figure 6. The algorithm simply seeks a minimal value of λ in the interval

[0,1], for which there is a solution X ∈ Φ that satisfies inequality δλ
X ≤ g1−λ . The

quantity δλ
X is the maximal regret of solution X under scenario set Γ λ . Therefore,

the inequality δ
λ
X ≤ g1−λ is satisfied for some X ∈Φ if and only if it is satisfied by

an optimal min-max regret solution under Γ λ . So, if we are able to solve the min-
max regret problem with interval data in f (n) time, then the binary search solves
the fuzzy problem in O( f (n) logε−1) time with a given precision ε ∈ (0,1).

We can see now that if the min-max regret problem is polynomially solvable,
then its fuzzy generalization is polynomially solvable up to a given precision ε .
Notice that for the class of problems with the bottleneck cost function, it is enough
that the deterministic problem is polynomially solvable (see Theorem 4). For the
problems with the linear sum cost the situation is more complex since the min-
max regret problem is mostly NP-hard. However, if the deterministic problem is
polynomially solvable, then we can solve efficiently the special case (21), that is we
can find efficiently a most necessarily optimal solution with a given precision ε . If

G̃ = (0,0), then gλ = 0 for all λ ∈ [0,1]. The condition δλ
X ≤ 0 can be efficiently
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1: Find an optimal min-max regret solution X under Γ 1

2: if δ 1
X > g0 then return /0

3: λ1 ← 0.5, k ← 1, λ2 ← 0
4: while |λ1 −λ2| < ε do
5: λ2 ← λ1
6: Find an optimal min-max regret solution Y under Γ λ1

7: if δλ1

Y ≤ g1−λ1 then λ1 ← λ1 −1/2k+1, X ← Y else λ1 ← λ1 +1/2k+1

8: k ← k +1
9: end while

10: return X

Fig. 6 Computing a most necessarily soft optimal solution with a given precision ε ∈ (0,1).
Algorithm returns /0 if N(δX ∈ G̃) = 0 for all X ∈ Φ .

verified for a fixed λ by using Theorem 1 because δ
λ
X ≤ 0 if and only if there is a

necessarily optimal solution under scenario set Γ λ .
The binary search is the most general method of solving the fuzzy problem. How-

ever, it gives only an approximate solution. Furthermore, it may be not efficient for
the problems with the linear sum cost function because solving O(logε−1) times
an NP-hard problem may be time consuming. In the next sections we show some
alternative methods of finding a most necessarily soft optimal solution.

4.5.2 Parametric Technique of the Problems with Bottleneck Cost

Consider the class of problems with the bottleneck cost function. Using (4) and (11)
we can express the fuzzy problem in the following way:

inf

{
λ ∈ [0,1] : min

X∈Φ
max
e∈X

ŵλ
e ≤ g1−λ

}
. (23)

where ŵλ
e = max{0,wλ

e −F∗(S+λ
{e})}. We can obtain weights ŵλ

e for all e ∈ E using
a parametric technique (see e.g. [11]). As the result we obtain another parametric
bottleneck problem with weights ŵλ

e , e ∈ E , that is

δ
λ

= min
X∈Φ

max
e∈X

ŵλ
e . (24)

Solving (24) we obtain sequences 0 ≤ λ0 ≤ λ1 ≤ ·· · ≤ λk = 1 and X0, . . . ,Xk−1 such
that Xi is an optimal solution for λ ∈ [λi,λi+1]. Having these sequences it is easy to

describe analytically function δ
λ

for λ ∈ [0,1]. The function δ
λ

is nonincreasing,
hence from (23) we can see that in order to obtain a most necessarily soft optimal

solution we must find the intersection point λ ∗ of δλ
with g1−λ . Then, if λ ∗ ∈

[λi,λi+1], then Xi is a necessarily soft optimal solution. If such an intersection point

does not exist, then two cases are possible - either δ
1
> g0 or δ

0
< g1. In the former
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case N(δX ∈ G̃) = 0 for all feasible solutions X and in the latter one N(δX0 ∈ G̃) = 1
and X0 is a necessarily soft optimal solution.

The solution procedure based on a parametric technique is more time consuming
than the binary search shown in the previous section. It has, however, two important
advantages. First of all, it gives an exact necessarily soft optimal solution. Further-
more, it provides a lot of additional information in the fuzzy problem. Observe that,
regardless of fuzzy goal, a most necessarily soft optimal solution is always among
X0, . . . ,Xk−1. We can thus treat the set of solutions {X0, . . . ,Xk−1} as a solution of
the fuzzy problem. Introducing fuzzy goal G̃ allows us to chose one of these solu-
tions. One can also check easily how the solution changes when the fuzzy goal G̃ is
changed. So, we can perform a sensitivity analysis of the obtained solution.

4.5.3 MIP Formulation for the Problems with Linear Sum Cost

In this section we show an exact method of solving (20) for the problems with
the linear sum cost. Under some additional assumptions we design a mixed inte-
ger linear programming (MIP) model, which can be then solved by some avail-
able software. Let us assign a binary variable xi ∈ {0,1} to every element ei ∈ E .
This variable will indicate whether element ei is contained in a constructed solu-
tion. Every feasible solution X ∈ Φ can be represented as a vector of binary vari-
ables xxx = [x1, . . . ,xn], where xi = 1 if and only if ei ∈ X . We assume that the set
of feasible solutions can be described by a system of linear constraints of the form
{xxx ∈ {0,1}n : A xxxT = bbb}, where A is a matrix and bbb is a vector of fixed coefficients.
We allow also inequalities ≤ and ≥ in the constraints since they can easily be con-
verted to equalities by adding a number of additional slack variables. In order to
simplify notations we will use W̃i to denote the fuzzy interval associated with the
weight of element ei.

We will assume that the matrix A is totally unimodular. Recall that in a totally
unimodular matrix the determinants of all its nonsingular square submatrices are
equal to -1 or 1 (see e.g. [18]). This assumption restricts the class of considered
problems. However, if the deterministic problem P is polynomially solvable, then
it can often be formulated as a 0-1 linear programming problem with a totally uni-
modular constraints matrix. This is, for instance, the case for a wide class of network
flow problems such as shortest path, minimum spanning tree, minimum assignment
or minimum cut [1, 18].

Recall (see (15)) that δλ
X = δX(S+λ

X ) = F(X ,S+λ
X )− F∗(S+λ

X ). Using the vector
of binary variables xxx representing X , we can see that F(X ,S+λ

X ) =∑n
i=1 wλ

i xi. Under
scenario S+λ

X the weight of element ei is wλ
i xi + wλ

i (1 − xi). So, F∗(S+λ
X ) can be

expressed as follows:

min
n

∑
i=1

[wλ
i xi + wλ

i (1− xi)]yi

A yyyT = bbb
yi ∈ {0,1} i = 1, . . . ,n

(25)
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We now use the assumption that matrix A is totally unimodular. Under this as-
sumption (see e.g. [18]) we can replace constraints yi ∈ {0,1} in (25) with 0 ≤ yi ≤ 1
without changing the cost of an optimal solution to (25). As the result we get the
following problem:

min
n

∑
i=1

[wλ
i xi + wλ

i (1− xi)]yi

A yyyT = bbb
0 ≤ yi ≤ 1 i = 1, . . . ,n

(26)

We can now construct a dual model to (26). This dual model has a vector of dual
variables uuu associated with the constraints of (26). Denote by φ(uuu) the objective
of the dual and by Dλ (xxx) the set of feasible dual vectors. So, the dual model is
maxuuu∈Dλ (xxx) φ(uuu) and it is linear with respect to both uuu and xxx if λ is fixed. Now the
strong duality theorem implies:

F∗(S+λ
X ) = max

uuu∈Dλ (xxx)
φ(uuu).

Hence

δ
λ
X =

n

∑
i=1

wλ
i xi − max

uuu∈Dλ (xxx)
φ(uuu),

which together with (22) give

minλ
n

∑
i=1

wλ
i xi − max

uuu∈Dλ (xxx)
φ(uuu) ≤ g1−λ

A xxxT = bbb
xi ∈ {0,1} i = 1, . . . ,n
λ ∈ [0,1]

(27)

We can omit the maximum operator in (27) obtaining the following equivalent
model:

minλ
n

∑
i=1

wλ
i xi −φ(uuu) ≤ g1−λ

A xxxT = bbb
uuu ∈ Dλ (xxx)
xi ∈ {0,1} i = 1, . . . ,n
λ ∈ [0,1]

(28)

Assuming that the element weights are trapezoidal fuzzy intervalsW̃i = (wi,wi,αi,βi)
for all ei ∈ E , we can substitute wλ

i = wi +βi(1−λ ) and wλ
i = wi −αi(1−λ ) in (28).

The resulting model will be still not linear because some expressions of the form
λxi may appear. However, we can make (28) linear by replacing all such expres-
sions with additional variables and adding some additional linear constraints. After



Computing Min-Max Regret Solutions 309

this modification, problem (28) will be a mixed integer linear programming one. We
will illustrate this method by an example.

Example 2. Consider the following minimum selecting items problem. Let E =
{e1, . . . ,en} be a set of items. The solution set Φ consists of all subsets X of E
such that |X | = p, where p is a given integer. So, we wish to choose exactly p
items among E . Assume that fuzzy interval W̃i = (wi,wi,αi,βi) is given for every
ei ∈ E . We also fix a fuzzy goal G̃ = (g,βg). The binary variable xi ∈ {0,1} indicates
whether item ei is chosen or not. The solution set Φ in this problem can be described
by the single constraint x1 + x2 + · · ·+ xn = p. Obviously, matrix A = [1,1, . . . ,1]
is totally unimodular. The subproblem (26) takes the following form:

min
n

∑
i=1

[wλ
i xi + wλ

i (1− xi)]yi

y1 + y2 + · · ·+ yn = p
0 ≤ yi ≤ 1 i = 1, . . . ,n

Assigning dual variable u0 to the equality constraint and dual variables u1, . . . ,un to
constraints yi ≤ 1, i = 1, . . . ,n, we get the following dual model:

max pu0 −u1 −·· ·−un

u0 −ui ≤ wλ
i xi + wλ

i (1− xi)
ui ≥ 0 i = 1, . . . ,n

Consequently, φ(uuu) = pu0 − u1 − ·· · − un and set Dλ (xxx) is described by the con-
straints of the dual model. We are now ready to design the model using formula-
tion (28). We also substitute wλ

i = wi +βi(1 −λ ) and wλ
i = wi −αi(1 −λ ). After

easy computations we get

minλ
n

∑
i=1

(wi +βi)xi −
n

∑
i=1

βiλxi − pu0 +
n

∑
i=1

ui ≤ g+βgλ
n

∑
i=1

xi = p

u0 −ui ≤ (wi −wi +αi +βi)xi − (αi +βi)λxi −αi(1−λ )+ wi i = 1, . . . ,n
ui ≥ 0 i = 1, . . . ,n
λ ∈ [0,1]
xi ∈ {0,1} i = 1, . . . ,n

The obtained model is still not linear. We can, however, substitute ti = λxi and add
additional linear constraints ti − xi ≤ 0, λ − ti + xi ≤ 1, −λ + ti ≤ 0, ti ≥ 0 for all
i = 1, . . . ,n. This assures that ti = λ if xi = 1 and ti = 0 if xi = 0. The resulting final
model will be a mixed integer linear programming one and can be solved by using a
standard software. Of course, the same technique can be applied to other problems
with totally unimodular constraints matrix. ��
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5 Conclusions

In this chapter we have discussed a general class of combinatorial optimization
problems with fuzzy weights. We have provided an interpretation of such problems
in the setting of possibility theory. The possibility and necessity measures allow
us to characterize the optimality of solutions and elements and to define a solution
concept. This solution concept is an adaptation of the necessary soft optimality first
proposed for fuzzy linear programming. In general, every fuzzy problem boils down
to solving a small number of interval problems. Every algorithm for computing a de-
viation interval and a min-max regret solution under interval weights can be easily
adopted to solve a more general fuzzy problem. It is enough to apply a standard
binary search technique. The complexity of an interval problem depends on the type
of the cost function in its deterministic counterpart. In general, the problems with
bottleneck cost function are easier to solve than the ones with linear sum cost.

There are some open questions concerning the approach described in this chapter.
Most of them refer to the interval uncertainty representation. For instance, the prob-
lem of evaluating the necessary optimality of elements is open (its complexity is
known only for some particular problems). Also, designing fast algorithms for com-
puting optimal min-max regret solutions is an important subject of further research.
For fuzzy problems, the efficiency of the MIP formulation should be investigated.
Also, the parametric techniques, which allow us to compute fuzzy deviation inter-
vals and solve the bottleneck problems should be explored more deeply. Finally, if
the interval problem is NP-hard, then some heuristics and approximation algorithms
for its fuzzy generalization should be designed.
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Scientific Research, grant N N111 1464 33.
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Stochastic Bottleneck Spanning Tree 
Problem on a Fuzzy Network 

Yue Ge and Hiroaki Ishii* 

Abstract. This paper considers a fuzzy network version of the stochastic bottle-
neck spanning tree problem. Existence of each edge is not necessary certain and it 
is given by a certain value between 0 and 1. 1 means that it exists certainly and 0 
means it does not exist. For intermediate numbers, a higher value corresponds to a 
higher possibility of existence. Furthermore each edge has a random cost inde-
pendent to other edges. The probability that the maximum burden among these  
selected edges is not greater than the capacity should be not less than the fixed 
probability. Under the above setting, we seek a spanning tree minimizing the ca-
pacity and maximizing the minimal existence possibility among these selected 
edges. Since usually there is no spanning tree optimizing two objectives at a time, 
we derive an efficient solution procedure to obtain a set of some non-dominated 
spanning tree after defining non-domination of spanning trees. Finally we discuss 
the further research problems. 

Keywords: Fuzzy network, Spanning tree problem, Random variable, Non-
domination, Efficient algorithm. 

1   Introduction 

The minimum spanning tree problem has been well studied and until now many 
efficient algorithms such as [1, 2, 4, 14, 17] have been proposed. Stochastic ver-
sions of them, i.e., spanning tree problems with random edge costs are also con-
sidered [5, 6, 7, 8, 9]. The stochastic bottleneck spanning tree problem is one of 
them and it has been studied [7]. This paper further generalizes it towards a fuzzy 
network version. Though fuzzy versions of the spanning tree problem are  
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considered [10, 12], and bottleneck spanning tree problems with fuzzy random 
edge costs are also considered [11, 13], fuzzy network version with random edge 
costs have not previously been considered. 

Section 2 formulates our problem and transforms it into an equivalent determi-
nistic problem. Based on the results in Section 2, Section 3 proposes a solution 
procedure for the problem. Finally Section 4 concludes this paper and discusses 
further research problems. 

2   Problem Formulation 

Let ( , )N V E= denote a fuzzy network consisting of vertex set 

1 2{ , , , }nV v v v=  and edge set 1 2{ , , , }mE e e e V V= ⊂ × . Each edge je  

has random cost jc  and existence possibility jμ . 

Spanning tree ( , )T V S=  is a partial network of N  satisfying the following 

conditions (see [3] for example). 

(1) T  has the same vertex set as N ; 
(2) S E⊆ , | | 1S n= − where | |S  denotes the cardinality of the set S ; 

(3) T  is connected. 

Furthermore, T  can be denoted with 0-1 variables 1 2,  ,  ,  mx x x  as follows. 

:   1,   

       0,   

j j

j j

T x e S

x e S

= ∈

= ∉
 

Conversely, if a set of edges such as { | 1,  1, 2, , }j je x j m= =  forms a spanning 

tree of N  with vertex set V , then 1 2( , , , )mX x x x=  is also called a spanning 

tree of N  hereafter in this paper. 

For convenience sake we assume that each edge cost jc  is a random variable 

according to the normal distribution 2( , )j jN m σ  with mean jm  and variance 2
jσ  

and they are mutually independent. Under above setting we consider the following 
bi-criteria problem P . 

:    Minimize    

        Maximize  min{ | }

        subject to  Pr[max{ | } ]

                          :  spanning tree

j j

j j

P f

e T

c e T f

T

μ
α

∈

∈ ≤ ≥
 

The above problem reflects on the construction of a communication network that 
connects some cities directly or indirectly. If each communication quantity per  
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unit time between one city and another usually fluctuates randomly, minimizing 
the maximal capacity necessary for handling these quantities becomes a chance  
constraint Pr[max{ | } ]j jc e T f α∈ ≤ ≥ requiring the probability that the network 

does not overload should be not less than α  (α  is constant and assumed to be 
1 2 1α< < ). While jμ  denotes a preference using a line je  as a communication 

network and this preference is determined judging from the various factors (con-
struction cost, security, etc.) other than its capacity. 

The chance constraint Pr[max{ | } ]j jc e T f α∈ ≤ ≥  is transformed into the fol-

lowing deterministic equivalent condition according to [7]. 

1

    Pr[max{ | } ]

Pr[ { }] Pr{ }

( ) log ( ) log

log ( ) log

jj

jj

j j

j j
e Te T

j j

e Te T j j

m
j

j
j j

c e T f

c f c f

f m f m
F F

f m
F x

α

α α

α α
σ σ

α
σ

∈∈

∈∈

=

∈ ≤ ≥

⇔ ≤ ≥ ⇔ ≤ ≥

− −
⇔ ≥ ⇔ ≥

−
⇔ ≥

∏

∑∏

∑

∩

 

where F  is the probability distribution of the standard normal distribution (0,1)N  

and 1 2( , , , )mX x x x=  is the spanning tree corresponding to T . 

Since min{ | }  j je Tμ μ∈ ≥ ⇔  ,   j je Tμ μ≥ ∈ ⇔ ,  0 or 1j j j jx x xμ μ≥ = , 

therefore objective Maximize min{ | }j je Tμ ∈  is equivalent to 

Maximize   

subject to   ,  0 or 1,  1, 2, , .

                  :  spanning tree

j j j jx x x j m

X

μ
μ μ≥ = =  

Thus P  is equivalent to the following deterministic problem P . 

1

:    Minimize    

        Maximize   

        subject to   log ( ) log

                          ,  0 or 1,  1, 2, , .

                          :  spanning tree

m
j

j
j j

j j j j

P f

f m
F x

x x x j m

X

μ

α
σ

μ μ
=

−
≥

≥ = =

∑  

If we fix a decision variable μ , we restrict edges that we can select, i.e., only 

edges whose existence possibilities are over μ  are candidates to select as those of 
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a spanning tree. First we define sub-network ( , )N V Eμ μ= as a crisp network 

consisting of vertex set V and edge set { | , }j j jE e e Eμ μ μ= ≥ ∈ . This re-

stricted version of problem P  on a network ( , )N V Eμ μ=  is now denoted by Pμ . 

Then Pμ  is the deterministic equivalent problem of stochastic bottleneck spanning 

tree problem treated in [7]. But in order to make Pμ  meaningful, we must find the 

upper bound of μ . This bound Uμ  is the optimal value of the bottleneck span-

ning tree problem when we consider 1 2,  ,  ,  mμ μ μ
 
as edge costs, i.e.,  

max[min{ | },   is a spanning tree of ]U
j je T T Nμ μ= ∈ . 

The next section shows the solution procedure for problem Pμ  by assuming 

Uμ μ≤  and that for our bi-criteria problem. 

3   Solution Procedure 

For different fixed μ , in order to solve Pμ  , we consider the following sub-

problem qPμ  
with parameter q ( 0)q > ’ when we fix f q= . 

:   Maximize log ( )

         subject to    0 or 1,  { | }

                            :  spanning tree corresponding to 

j

jq
j

e E j

j j

q m
P F x

x j j e E

X N

μ

μ

μ

μ μ

σ∈

−

= ∈ ∈

∑

 

For the convenience sake we assume 1 2{ , , , }tE e e eμ =  and | |t Eμ=  by renum-

bering indices of edges if necessary, accordingly we denote 

1 2 tX x x xμ μ μ μ=（ , , , ）. 
qPμ  is the ordinary maximum spanning tree problem and can be solved by al-

gorithms such as [1, 2, 4, 14, 16, 17]. 

Let qXμ  denote an optimal solution of qPμ  and qZμ  its value. Then we have the 

following property due to [7] and E Eμ μ′⊆  for μ μ′≥ . 

Property 1. qZμ  is an increasing function of q  and decreasing function of μ . 
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Further let * *( , )X fμ μ  denote an optimal solution of Pμ . The following theorem 

shows a relation between Pμ  and qPμ . 

Theorem 1 

(1) logqZ f qμ μα ∗> ⇔ < ; 

(2) logqZ f qμ μα ∗= ⇔ = ; 

(3) logqZ f qμ μα ∗< ⇔ > . 

Proof.  Due to Theorem 1 in [7]. 

Each algorithm for an optimal spanning tree is determined by the order of edge 

costs, and the order of edge costs log ( )j

j

q m
F

σ
−

 is same as the order of 

( ) ( )j j jc q q m σ− , since F  is non-decreasing function. Define 

{ }( ) max ( ) | ( , )j j k lkg q c q e v v Eμ
μ= ∈  

{ }( ) max ( ) | ( , )k j j k lg q c q e v v E= ∈  

for each vertex kv V∈ . 

Then each ( )kg qμ  and ( )kg q are piecewise linear functions of q  because each 

( )jc q  is linear function of q . Merging these breakpoints of ( )kg qμ  and those of 

( )kg q , let the results be 

0 1 ( ) ( ) 1s sq q q qμ μ μ μ
μ μ +−∞ = < < < < = +∞  

0 1 1s sq q q q +−∞ = < < < < = +∞  

where ( )s μ  and s  are the numbers of different points for ( )kg qμ  and ( )kg q ,  

respectively. 

Note that 1 ( ),  ,  sq qμ μ
μ  is a subsequence of 1 ,  ,  sq q . From above results, 

we have the following Algorithm 1 for Pμ . The algorithm is based on Sollin’s al-

gorithm [1, p.179] for the minimum spanning tree problem. qZμ  is calculated by 

using algorithms of [2] or [17] and all the breakpoints are calculated by Megiddo’s 
method [15, Appendix]. In the algorithm, Lμ  and Uμ  denote the lower and the 

upper bound of fμ
∗ . 
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Algorithm 1 

Step 1. Find the first h  such that loghqZ
μ

μ α>  and set 1,  h hL q U qμ μ
μ μ−← ← . 

Go to Step 2. 

Step 2. From all je Eμ∈ giving ( )kg qμ  for each kv V∈  on the interval 

[ , ]L Uμ μ , construct spanning forest 1 2( , , , )aT T T  of N , where iT  is a 

subtree and a  is their number. Go to Step 3. 

Step 3. If 1a = , construct optimal spanning tree Xμ
∗  as follows.  

1

1

:   1,  

          0,  

j j

j j

X x e T

x e T

μ μ

μ

∗ ∗

∗

= ∈

= ∉
 

Then the corresponding optimal value fμ
∗  is obtained. 

1

{ | log ( ) log }
t

j
j

j j

f m
f f F x

μ
μ μ μ α

σ

∗
∗ ∗ ∗

=

−
= =∑ . 

          If 1a ≠ , then go to Step 4. 

Step 4. For each iT , calculate 

( ) max{ ( ) |  connect  with other subtree, }j j i jih q c q e T e Eμ
μ= ∈  

and find all breakpoints of 1 ( ),  ,  ( )ah q h qμ μ  on the interval [ , ]L Uμ μ . 

Merge them and let the result be 

0 1 rL q q q Uμ μ= < < < = . 

Go to Step 5. 

Step 5. Find the first bq  such that logbqZμ α>  and set 1bL qμ −← , bU qμ ← . 

Next update the forest 1 2( , , , )aT T T  by adding edges giving ( )ih qμ  for 

[ , ]q L Uμ μ∈  to the current forest. Return to Step 3. 

Theorem 2. The above Algorithm finds an optimal solution * *( , )X fμ μ  in at most 

2( log log log )O t n n  computational time if we can solve the following equation in 

less than 2( log log log )O t n n  computational time. 

1

log ( ) log
t

j
j

j j

f m
F x

μ
μ α

σ

∗
∗

=

−
=∑ . 
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Proof.  Due to Theorem 2 in [7]. 

Now we turn to solve the original bi-criteria spanning tree problem. Usually  
there is no spanning tree optimizing both objectives at a time and so we propose 
an algorithm to find some non-dominated spanning trees. First we define  
non-domination. 

Definition 1 (Non-Dominated Spanning Tree) 

For ,  μ μ′  such that μ μ′> , if * *f fμ μ′= , we say spanning tree *X μ  dominates 

spanning tree *X μ′ . If there does not exist a spanning tree dominating *X μ , *X μ  is 

called a non-dominated spanning tree (NDS for short). 

Next we sort 1 2,  ,  ,  mμ μ μ  not greater than Uμ and let the result be 
1 2 dμ μ μ< < < , where d  is the number of different values of μ . 

We are now ready to describe our algorithm for problem P . 

Algorithm 2 

Step 1. Set 1μ μ= , NDS φ=  and 1l = . Go to Step 2. 

Step 2. Solve Pμ  using ALGORITHM 1 and find the optimal solution * *( , )X fμ μ . 

If *Xμ  dominates some spanning trees in NDS, then update NDS by de-

leting them and adding *X μ . Otherwise update it by adding *X μ . Go to 

Step 3. 
Step 3. Set 1l l= + , If 1l d= + , then terminate and NDS is the set of some non-

dominated spanning trees. Otherwise set lμ μ=  and return to Step 2. 

Note that Lμ  increases as l  increases and so we need check each breakpoint at 

most once. 

Theorem 3. Algorithm 2 finds some non-dominated spanning trees for our prob-

lem in at most 2 2( log log log )O m n n  computational time. 

Proof. Validity is clear from the fact that it check all possibilities of μ  and the 

validity of Algorithm 1 [7, Theorem 2]. So we only consider the computational 
complexity of Algorithm 2. Sorting 1 2,  ,  ,  mμ μ μ  takes ( log )O m n  computa-

tional time, calculating Uμ  takes ( log log log )O m n n  computational time. So 

preprocessing does not dominate computational time. Since d  is ( )O m , basically 

Algorithm 2 solves ( )O m  number of Pμ  by using Algorithm 1. Therefore Algo-

rithm 2 takes 2 2( log log log )O m n n  computational time since each execution of 
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Algorithm 1 takes 2( log log log )O m n n  computational time. But usually each 

spanning tree problem need not be solved from scratch. So at most 
2 2( log log log )O m n n  computational time is needed. 

4   Conclusion 

This paper has investigated the stochastic bottleneck spanning tree problem on a 
fuzzy network and proposed an efficient algorithm for seeking non-dominated 
spanning trees. Refinement of the algorithm is necessary. In particular we need not 
solve Pμ  from scratch except the first one 1Pμ  in ALGORITHM 2. We are cur-

rently working on fuzzy network version of many other combinatorial optimiza-
tion problems such as shortest path problems since in many actual situations, these 
problems should be considered on fuzzy network structures. 
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The Use of Fuzzy Numbers  
in Practical Project Planning and Control 

Dorota Kuchta* 

Abstract. The paper proposes how to use fuzzy numbers in project planning and 
control in such a way that it would have a chance to be used in practice. The 
method is destined for all the projects, but especially for those where in the initial 
phase the knowledge about the project is very incomplete and is made stepwise 
more precise during the project execution, also for those in which initial assump-
tions about the project execution are due to later changes.  

 

Keywords: fuzzy number, earned value, project scheduling, project control. 

1   Introduction 

It is generally agreed upon the fact that each project is by its very nature and defi-
nition to some degree unique, and that today the project environment is so unsta-
ble, that project planning is biased by a large degree of uncertainty. Thus, it is 
essential to take this into account both in project planning and control, and to do 
this in a way that comprises all the projects, also those where the degree of uncer-
tainty is very high, like some IT as well as research and development projects. It is 
generally accepted that fuzzy numbers are a good tool to express uncertainty, 
limited knowledge. Thus, their use in project management has been frequently 
proposed in the literature, however, it seems that the practical implementation of 
those proposals is almost non-existent. In this paper we want to propose such an 
application of fuzzy numbers to project management which is on one hand simple 
enough to be actually used, and on the other hand is comprehensive enough to be 
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useful for most project, also those innovative, very unique, with a high degree of 
risk and uncertainty 

2   State of the Art of Project Control Versus Project Planning 

We start by presenting what has already been done in the project management 
research which can be taken as the basis of our method. We will present both 
some elements of the use of fuzzy numbers in project management and the crisp 
approaches, which we want to modify applying fuzzy numbers to them.   

2.1   Project Planning 

We will not talk here about project planning based on crisp numbers, because we 
claim that such planning is in may projects simply impossible or deceiving. Many 
projects (examples will be presented later on) are in the planning phase unknown 
to such a degree, that each crisp estimate of duration and cost is not realistic and 
does not allow a good project management, especially risk management. In our 
opinion at least some projects require taking in the planning phase non-crisp in-
formation into account.  

Fuzzy numbers have been extensively applied to the project planning (e.g. 
[2,11]). Most proposals are based on fuzzy optimization, where the objective is to 
minimize the project execution time, and the activities duration are given in the 
form of fuzzy numbers. The problem is that if the activities duration times are 
fuzzy, the notions like critical path, activities floats etc. are not unequivocally 
defined, and new notions like “the possibility degree to which this or that project 
path will be critical” have to be introduced, which seem to have little chance to be 
applied in practice. In this paper we propose not to consider them and to restrict 
ourselves to this part of the application of fuzzy optimization to project planning 
which is the simplest possible and yet useful from the practical point of view. 
What has to be retained of the vast spectrum of proposals of the application to 
fuzzy numbers to project planning is, in the author’s opinion, the simplest and 
most appealing practical possibility: the possibility to model project activities 
planned duration and planned cost in the form of fuzzy numbers and to obtain all 
the spectrum of possible planned project durations and cost values. 

Let n be thus the number of project activities. Let us assume that all the con-
straints imposed on the activities (like precedence relation, resource limits etc.) are 
known and are taken into account whenever the optimal makespan of the project is 
determined, let us denote the set of constraints known in the moment of planning 

as 0ℜ . Let ( )niDi ,...,1
~ =  be the fuzzy planned duration of each activity and 

( )niCi ,...,1
~ =  the fuzzy planned cost. To facilitate the application, we propose to 

use only trapezoidal fuzzy numbers, represented unequivocally by four parame-

ters. Thus, each fuzzy number A
~

 will be unequivocally represented  
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by four numbers ( )4321 ,,, aaaa , where 4321 aaaa ≤≤≤ such that each inter-

val ( ) ( )[ ]3, 43122 aataaataPt −+−−=  represents possible values of the 

magnitude represented by A
~

 for the uncertainty level [ ]1,0∈t . If we assume the 

highest level of uncertainty, i.e. t=1, we have  [ ]411 , aaP = , thus we admit a 

large spectrum of possible values, one of each the magnitude represented by A
~

 
will eventually take. If we assume the lowest uncertainty value, i.e. t=0, we take 
into account the narrow interval (which may be reduced to one single point) 

[ ]410 , aaP =  as the set of possible values of the magnitude represented by A
~

.  

Addition of trapezoidal fuzzy numbers can be defined as  

BA
~~ + = ( )4321 ,,, aaaa + ( )4321 ,,, bbbb = ( )44332211 ,,, babababa ++++  

With such representation, we can do calculation which would be easy to imple-
ment in the practice and will lead to information important to project managers. 

We can calculate the planned project fuzzy cost simply as ∑
=

=
n

i
iCCP

1

~~
 and also 

the planned project duration. As far as the latter is concerned, the summation of 

( )niDi ,...,1
~ =  is done over those activities which belong to the critical path (or 

one of critical paths) and the set of activities forming the critical path may change 
according to the crisp values of activities duration. That is why the easiest ap-
proach from the practical point of view is to choose a view values of the uncer-
tainty level [ ]1,0∈t , let us say an increasing sequence 

T={ }1,,...,,0 121 == − mm tttt , and for each j=1,…,m calculate the optimistic and 

pessimistic project duration ( ( )jtOPD  and ( )jtPPD , respectively for the given 

uncertainty level, using optimisation methods for determining the shortest project 
makespan under the given constraints. ( )jtOPD  will be calculated by assuming 

for the project activities indexed by i=1,…,n crisp durations ( )122
iiji ddtd −− , 

and ( )jtPPD  with crisp durations ( )343
iiji ddtd −+ , taking into account 0ℜ . 

The set of couples ( ) ( )( ){ }m

jjj tPPDtOPD
1

,
=

 gives the project manager an ap-

proximation of possible project durations. We will called this set of couples fuzzy 

project duration DP
~

. Of course, in special cases where the critical path will be 
the same independently of which crisp values from the ranges predicted in the 
activities fuzzy duration values occur (an example will be presented further on), 
we can do a simple summation of the corresponding trapezoidal fuzzy numbers 

and get a “normal” trapezoidal fuzzy number as DP
~

. 
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2.2   Project Control 

The problem of project control is treated in literature almost exclusively for crisp 
planned duration and cost values. The use of fuzzy numbers in project control, 
described in [6] and [8], refers to crisp planned values and fuzzy numbers are used 
to judge to which degree the actual values can be treated as planned or as “good” o 
“bad”. The only project control approach for fuzzy activities duration values, 
presented in [5], is very general, it has to be made more specific to order to have a 
chance of being applied in practice. 

The method of controlling a project which has been planned (in terms of activi-
ties duration and cost) in terms of fuzzy numbers, which will be presented in this 
paper, will inevitably be based on the crisp approach to project control, thus a 
short critical review of this approach will be presented.  

The basic approach for the control of project cost, but also time and scope, is 
called Earned Value Method. The method is presented, in its recently modified 
versions, among other in [1,7,9]. Its idea is as follows: We have a project with n 
activities and a set of constraints 0ℜ  imposed on the activities, for each activity 

ni ,...1=  there is defined the corresponding work to be done iW  expressed in 

some physical units like meters, tons or hours, the planned cost of each unit iUC  

and the planned duration of the activity iD . Of course, the ratio 
i

i
D

W is the 

planned work efficiency for the i-th activity (it will be denoted as iE ), and the 

planned cost of the activity, denoted as iC , will be equal to ii UCW ⋅ . iW  

( ni ,...1= ) is treated as fixed, changes in this parameter mean changes in the 
scope of the project and is explicitly not taken into account in the Earned Value 
Method. Applying the normal optimisation methods which allow to find a sched-
ule, taking into account 0ℜ , which gives the shortest possible project duration, 

we know the project planned duration PD, and adding up the iC  of all the activi-

ties we know the project planned cost PC. Now, the idea of the method is that we 
do not treat PD and PC as fixed values. On the contrary, we acknowledge that in 
the planning phase we will almost certainly be wrong in their estimation and that 
we will be the better in estimating those two values the more the project is ad-
vanced. This is because of various reasons, linked to the newness and uncertainty 
inherent in each project, to human factors, communication problems, changing 
environment etc. 

This is why once the project realisation is started, at fixed time intervals during 
the project execution, let us number them Ll ,...,1= , where L is unknown till the 
actual end of the project and is the number of the last control moment, the planned 
duration PD and the planned cost PC of the whole project will be reestimated, 
recalculated.  Let us use 0PD  and 0PC  as alternative symbols for  PD and PC, 

they express the result of time and cost estimation in the planning phase. lPD  and 

lPC , Ll ,...,1= , will be the same magnitudes reestimated al the consecutive 
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control moments, when our knowledge about the project is usually higher than at 
the beginning, let it be only because of the fact that the project has already be 
executed to some extent which always gives some insight into the project and its 
environment. Normally, the greater l, the closer the values lPD  and lPC  should 

be to the actual project duration and cost, AD and AC respectively, known only 
once the project is finished - although there may be cases where because of some 
unexpected event near the end of the project this will not be true.  

As far as the consecutive values of lPD  and lPC , Ll ,...,1= , are concerned, 

we can write the following obvious formulae:  

lll RDADBPD +=                (1) 

lll RCACBPC +=               (2) 

where lADB  stands for actual duration of the project before the control moment 

l, thus in fact for the time that has elapsed from the actual beginning of the project 
till moment l, lRD  stands for the remaining duration, thus the time after moment l 

which we think, according to our knowledge at moment l, is needed to terminate 
the project, lACB  is the actual cost of the project incurred before moment l, and 

lRC  is the remaining cost, thus the cost that we think, again according to our 

knowledge at moment l, is still needed to be incurred after moment l in order to 
terminate the project.  

Formulae (1) and (2) help to structure the problem, but do not facilitate the so-
lution: although lADB  and lACB  at control moment l  are known exactly, lRD  

and lRC  are not and must be the subject of replanning and reestimation on the 

basis of the knowledge we possess at control moment l.  
The various approaches to estimate lRD  and lRC  proposed in the literature 

([7,9]) have the following common feature: they are based on the project “behav-
iour” up to moment l, trying to express this behaviour, the history of the past pro-
ject realisation, in the form of synthetic indicators referring to the whole project, 
not to individual activities or even group  of activities. Now we will present the 
idea of those indicators.  

The Earned Value indicators whose aim is to show how the project has been 
performed up to control moment l, are calculated on the basis of the following 
values: 

• BCWS(l) (Budgeted Cost of Work Scheduled up to moment l), 

equal to ( )∑
=

⋅⋅
n

i
iii CUWlpp

1

, where ( )lppi  is the portion of 

work iW  (expressed as positive fraction not greater than 1) that was 

planned to be finished before control moment l; 
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• BCWP(l) (Budgeted Cost of Work Performed up to moment l), 

equal to ( )∑
=

⋅⋅
n

i
iii CUWlap

1

, where ( )lapi  is the portion of work 

iW   that has actually been done before control moment l; 

• ACWP(l) (Actual Cost of Work Performed up to moment l) – the actual 
cost incurred in the project till the control moment l, which is taken 
from actual accounting documents but can be expressed in an analo-

gous way: ( )∑
=

⋅⋅
n

i
iii ACUWlap

1

, where iACU  is the average ac-

tual cost of performing one unit of iW  before control moment l. 

Of course, we can also calculate BCWS(l,i), BCWP(l,i), ACWP(l,i) for individual 
activities (the corresponding formulae are then identical to the above listed ones, but 
with the summation symbol), but usually, for simplicity and because of lack of time 
synthetic values for the whole project are calculated. It should be mentioned that 
BCWP(l) is called earned value in control moment l and is interpreted in two ways: 

• The cost we should have incurred according to plan for the work actually 
performed so far in the project. 

• The amount of work that has been actually performed so far in the project 
(measured not in physical units, but in planned unitary cost, which is not 
an obvious measurement of work performed and is used to facilitate 
things, but causes some problems, which will be illustrated later on). 

At the same time BCWS(l) is interpreted as the amount of work that according to 
plan should have been accomplished up to moment l. Again, the amount of work 
is measured here in monetary units, in planned unitary cost, which may be a prob-
lematic matter. 

Lipke [7] introduced the notion of earned schedule at control moment l, ES(l), 
equal to the moment corresponding to s-th control point1, when 
BCWS(s)=BCWP(l), thus to the moment when we should or should have accom-
plished the work we have accomplished up to moment l. Then, according to our 
notation, ES(l)= sADB .  

Then the history of the project up to control moment l is estimated, using the 
following indicators: 

• Cost Performance Index in control moment l: ( ) ( )
( )lACWP

lBCWP
lCPI =  

• Schedule Performance Index in control moment l: ( ) ( )
( )lBCWS

lBCWP
lSPI =  

                                                           
1 For simplicity reason we assume that such an s from the set of control points exists, oth-

erwise some insignificant modifications would have been necessary, because the moment 
we are interested in might fall between two control points. 
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• Modified Schedule Performance Index in control moment l:  

( ) ( )
lADB

lES
lMSPI = . 

The interpretation of the indices is generally such that if they are smaller than 
1, something is wrong with the project, if they are greater than 1, something is 
good with the project, value 1 means that something is as it was planned. This 
something is project cost in case of CPI(l) and the pace of project work ac-
complishment in case of SPI(l) and MSPI(l).  

As far as formulae (1) and (2) are concerned, they are used by applying for lRD  

and  

lRC  the following general formulae 

  ( ) lll DIADBPDRD ⋅−=      (3) 

( ) lll CIACBPCRC ⋅−=                   (4) 

where lDI  and lCI  are, respectively, some duration/cost indicators equal to or 

based on SPI(l) and MSPI(l) (in case of lDI ) and CPI(l) and SPI(l) (in case of 

lCI ). The underlying philosophy is as follows: for formula (4), if so far for the 

work accomplished we paid twice as much as we had planned (which is expressed 
by CPI(l)), we can assume that we will pay twice as much as we have planned for 
the rest of the project (in this case lCI  would be equal to CPI(l)) , and maybe if 

we additionally have some delay in the amount of work accomplished, expressed 
by SPI(l), this will have some (unfortunately, unspecified more clearly)  influence 
on the total cots of the project (that is why sometimes lCI  is based both on CPI(l) 

and SPI(l)). Similarly for the project duration (formula (3)): if so far we have 
accomplished half of the work that has been planned (which will be shown by 
SPI(l)), or we have done so far the work which should have been ready two 
months ago (expressed by MSPI(l)), we can assume that the same degree of late-
ness will apply to the rest of the project.  

The problem with such a philosophy is that it works only sometimes. This is 
said clearly in the corresponding papers, especially in [9], where the authors sum-
marize various variants of formula (4). They equip each variant with an assump-
tion of the type: “if the rest of the project follows the SPI (CPI, SPI*CPI etc.) 
pattern”. Well, how should we know and what this means? There may be projects 
where we can say that we will probably continue to work at the same pace and at 
the same cost as before, but there is certainly a large class of project where such a 
statement would be completely impossible, and in most project at least some of 
yet non-started activities will certainly behave in a manner not at all connected to 
the behaviour of the already accomplished ones. What is more, the indicators 
SPI(l), CPI(l) and MSPI(l) may be deceiving, for at least four reasons: 



330 D. Kuchta
 

 

• They are based on the information about the amount of work expressed in 
planned cost, thus 2 physical units planned to be made by higher paid 
workers mean more work than then the same 2 units planned to be made 
by lower paid workers, whereas in both cases the actual amount of work 
is the same. If we simply change the order of the two activities versus the 
planned order, we will get the information that we have done more (or 
less) work than planned, which will not be true; 

• They try to combine the information concerning all the activities into one 
indicator, if one activity is very late (or much more expensive) versus the 
plan, but another one very early (or much cheaper) versus the plan, we 
may get the information that everything has been going on exactly as 
planned, because the two variances may compensate each other. The 
worst thing will happen if the activity with problems (late, more expen-
sive), hidden by the situation of other activities,  is the one which will in-
fluence the behaviour of the future activities (e.g. because some of the 
non-started activities will be performed by the same subcontractor). In 
such a case the information delivered by the Earned Value Method will 
be completely deceiving; 

• They are based entirely on the project history and do not take into ac-
count any new pieces of information about the project future which 
where not available in the planning phase (like new prices, a different 
subcontractor than the one which was planned etc.) 

• The Earned Value Method is considered in a complete detachment from 
the reactive scheduling problem – i.e. rescheduling in reaction to what 
has happened in the project so far, treated in many papers (e.g.[10]). It is 
as if rescheduling was considered as something to be avoided, because it 
is difficult? Not possible in practice? In our opinion the project manage-
ment supporting systems offer the possibility to find a new optimal or 
sub-optimal schedule in each control model l (with lPD  as the objective 

function, whose possible values will be of interest to us) taking into ac-
count the available information about the project history up to control 
moment l, and each project control without reactive scheduling does not 
make much sense. To justify this statement, let us start with the following 
example: 

Example 1. The project consists of three activities. They have the following character-

istics: 2;1 321 === DDD , 20;10 321 === WWW , 1321 === CUCUCU . 

It has been planned that the 3. activity will be executed in the 1. and 2. time unit, 
activity 1 in the first time unit and activity 2 in the 2. time unit, thus PD=2. The 
first control moment (l=1) is the end of the first time unit. It is then stated that in 
the first time unit we have executed and finished the 1. and 2. activity, activity 3 
has not been started, the unitary cost has been as planned. It is easy to check than 
we have BCWS(1)=BCWP(1)=ACWP(1)=20, all the indices discussed above will 
be equal to 1, formula (1) will give 201 == PDPD , and in reality simple re-

scheduling (determining the optimal project duration under the new conditions) 
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would show that the shortest possible project duration according to the knowledge 
in the 1st control moment is 3 (the 3. activity has still to be executed entirely and 
its planned duration is 2 time units).  

Another example justifying the statement comes from [4], where it is described in 
detail. The project goal is to introduce a new product into the market. The project 
comprises the following activities: specifying the product on the basis of the mar-
ket’s functional requirements, designing the product, building the prototype, test-
ing the prototype, manufacturing the product, marketing the product to potential 
customers. Hardie [4] gives a good justification of the fact that the initial schedule, 
made at the planning moment, is bound to be changed in this type of project, and 
what is more, not just changed because the duration and cost of each activity may 
change, but also the scope (the work to be done) is very difficult to estimate at the 
beginning. And what is even more, Hardie [4] justifies that some activities may 
have to be repeated, and in the planning phase we even cannot say which of them, 
when, how often and to which extent. If in the testing phase an error in the design 
is detected, the designing activity has to be repeated, the same may happen if once 
the product is on the market, the customers are not satisfied with its functions, and 
also in the manufacturing phase, if some technical problems are detected – then 
the product will have to be redesigned and nobody is able to tell exactly in the 
planning phase whether it will be necessary and how much time and cost this will 
require. A very similar situation exists in most IT projects, where it is only during 
the project execution that the final functionality of the project product takes shape, 
in cooperation with the customer. 

2.3   Complex Project Management – Planning and Control 

In our opinion the Earned Value Method in its classical (presented in this section) 
form, combined with planning based on crisp activities cost and duration planned 
values and detached from reactive scheduling, may be useful only for a rather 
narrow class of projects, it what is more, it may sometimes be difficult to decide 
whether our project belongs to this class. For such projects as described in the 
previous section, we claim that: 

• Planning using crisp values does not make sense, because we 
know that almost no value in the planning phase is known ex-
actly, that almost each project parameter in the planning phase 
might be much more truthfully described in the form of  
fuzzy numbers. Using crisp planning values together with the 
classical form of Earned Value Method may to situation like the  
following one: 

Example 2. The 1. activity has the planned cost equal to the trapezoidal fuzzy 
number (9,10,10,11), the 2. activity – to the trapezoidal fuzzy number 
(1,10,10,20). Thus, the knowledge about the cost of the 2. activity is much less 
precise than it is for the 1. activity. If we use crisp planning, we take for both 
activities the planned cost 10. The activities should be executed one after  
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another. If the execution of the 1. activity costs in reality 13 and the control 
moment falls after its termination, we will – according to the Earned Value prin-
ciples – conclude that also the second activity will cost 13 (as the first one was 
30% more expensive in the crisp approach, the same is assumed for the foll-
woingone). In the crisp approach this will give the information: cost overrun in 
case of both activities. In fact, a cost negative variance with respect to the plan 
has occurred only for the 1. activity, because value 13 falls outside the interval 
of our prevision for this activity. In case of activity 2, on the other hand, value 
13 does not mean a negative cost variance – it was known that such a value 
might occur for this activity. Treating in the control moment after the termina-
tion of the 1. activity value 13 as an important information about the future, i.e. 
about the second activity, may be very deceiving, because first of all 13 is not a 
new information, we knew before the cost of the 2. activity might be 13, and 
what is more, we may lose from our sight another piece of information, possibly 
essential: if we were completely wrong in estimating the cost of the 1. activity, 
we may have been wrong in estimation the cost of the 2. activity, which might 
also fall outs the range predicted by us and be equal e.g. to 22. Everything de-
pends of course on the specific situation, but it seems that project planning and 
control based on crisp estimations 20,10 021 === PCCC and 261 =PC are 

of limited use in view of the actual information available in the planning phase: 

( ) ( ) ( )31,20,20,10
~

,20,10,10,1
~

,11,10,10,9
~

021 === CPCC . 

• The method of project control should also be based on non-crisp 

values, thus we should calculate in each control moment l lDP
~

 and 

lCP
~

, equal respectively to ( )4321 ,,, llll pdpdpdpd  and 

( )4321 ,,, llll pcpcpcpc , although in most cases he “degree of fuzzi-

ness”, i.e. the differences 14
ll pdpd −  and 14

ll pcpc − , should get 

smaller the greater l. However, sometimes it will not be the case: 
sometimes, like in the product design, manufacturing and marketing 
project described in the previous section, we may only later during 
the project execution discover how little we know about a certain 

activity. In such a case, the lDP
~

 and lCP
~

 should reflect the pre-

sent state of knowledge, even if it is “more fuzzy” than in previous 
control moments. The project manager should be in each stage of 
the project aware of the state of knowledge about the future of the 
project and the degree of its crispness, which is essential for a good 
project risk management. 

• The method of project control should take into account not only the 
knowledge about the past of the project, but also each piece of  new 
information about its future which is available (such an approach is 
presented in [3], however, it is based on crisp values). The informa-
tion about the past should of course be used as well, but it should 
not be blindly aggregated without looking at dependencies between 



The Use of Fuzzy Numbers in Practical Project Planning and Control 333
 

 

activities. Also, the amount of work accomplished should not be 
expressed in monetary units. Additionally, the method should use 
reactive scheduling in order to determine in each moment the opti-
mal fuzzy planned makespan of the project.   

A proposal of a method fulfilling these conditions will be presented in the next 
section. 

3   Fuzzy Project Planning and Control Method 

In the method proposed we assume the following approach: 
In the planning phase we propose to estimate the cost and duration of each ac-

tivity as trapezoidal fuzzy numbers, respectively as ( )niCi ,...,1
~ =  

and ( )niDi ,...,1
~ = . We treat n, ( )niDi ,...,1

~ = , ( )niCi ,...,1
~ =  as synonyms of  

0n , ( )00, ,...,1
~

niDi = , ( )00, ,...,1
~

niCi = , as these parameters will be re-

evaluated in the subsequent control moment (in each control moment l=1,2..,L we 

will new estimations ( )lli niD ,...,1
~

, = , ( )lli niC ,...,1
~

, = , except for the activities 

for which actual values will already be known. The number of activities may 
change in the course of the project, let it be only for the above mentioned possibil-
ity of having to repeat an activity already executed earlier. Of course, we also 
define the constraints according to the knowledge in the planning phase, denoted 
as 0ℜ , which may also change in the course of the project. Additionally, in the 

planning phase we define additional dependencies of activities, which may be of 
the following types: 

• Activities executed by the same subcontractor or the same group of peo-
ple or which will use the same type of material resource 

• Activities which probably will have a similar length, but this length can-
not be determined exactly yet (e.g. time necessary to get an official per-
mission from a state office or to get the ordered parts from a company 
with which we have not cooperated so far) 

• Activities linked by a learning process, i.e. once one of the activities is 
executed, the following one will be executed in a shorter time and maybe 
at a lower cost, because the project team has gained some experience 

Also other groups of activities can be defined, between which there are some de-
pendencies in the sense that once one of them is executed and we know its actual 
duration and actual cost, we can better estimate the duration and cost of another 
activity still to be executed.  

In the planning phase we estimate DP
~

 and CP
~

defined in the previous section, 

which will be alternatively denoted as 0
~
DP  and 0

~
CP . Of course, these values 

have to be compared with the available project budget and with requirement as to 
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the project completion time, to evaluate the risk of not meeting the dead line 
and/or the budget requirements.   

Then at control moments l=1,2,..,L, where L is unknown until the project is fin-
ished (we only have chose the intervals between each control moment, like one 
month or one week, it depends on the degree of uncertainty and risk linked to the 
project) , we will re-estimate the project planned cost and duration, calculating 

lDP
~

 and lCP
~

. We will do it using the following algorithm (for each l=1,2,..,L): 

1. For the activities which have been finished (the set of their indices will 
be denoted as lFI , ) we will find out their actual duration and actual cost, 

iAD  and iAC  respectively.  

2. For the activities which have been started but not finished (the set of their 
indices will be denoted as lSI , ) find out how much they have taken so 

far ( liAD , ) and how much they have cost co far ( liAC , ), and also ask 

the persons responsible for each of these activities to  

a. Either estimate the percentage of work that has been accom-
plished at those activities liap , . In this case the position of 

liAD ,  and liAC , with respect to 1,,
~

−lili Dap , 1,,
~

−lili Cap will 

be presented to the decision maker and the position of  

li

li
ap

AD
,

,  and 
li

li
ap

AC
,

,  with respect to 1,
~

−liD , 1,
~

−liC For 

example, the trapezoidal fuzzy number 1,,
~

−lili Dap represents 

the planned duration of the accomplishment of  liap , of the 

whole work to be done in the i-th activity. The actual time of 
executing this work ( liAD , ), as well as both values divided by 

liap , ( 1,
~

−liD and 
li

li
ap

AD
,

, ), referring to the total planned 

time of the activity estimated before and the same time esti-
mated in moment l on the basis of the time that has elapsed exe-
cuting this activity so far, should give the user and indication as 

to a new estimate liD ,
~

It may based on 
li

li
ap

AD
,

,  (i.e. it may 

a fuzzy number ( )4
,

3
,

2
,

1
, ,,, lililili dddd  such that 

li

li
ap

AD
,

, be-

longs to the interval ( )4
,

1
, , lili dd  or even ( )3

,
2
, , lili dd ), or it may 

based on a “combination” of 1,
~

−liD and 
li

li
ap

AD
,

,  
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( 1,
~

−liD shifted to the direction of  
li

li
ap

AD
,

,  or maybe made 

“slimmer” in the sense that if e.g  3
1,

,

,
−> li

il

li dp
AD

, than val-

ues 2
,

1
, , lili dd  will be higher than 2

1,
1

1, , −− lili dd . A similar kind of 

reasoning might be conducted for 1,
~

−liC and 
il

li
p

AC
,

, . We do 

no think any more precise indication should be given, as the user 
should be open not only to the information about the past of the 
activity, abut also to any other information concerning its future; 

b. Or give a direct estimation of liD ,
~

, liC ,
~

, without using the 

percentage of work accomplished so far, which is meaningless 
or difficult to measure in some cases.  

3. For all the yet unstarted activities find those which were identified as re-
lated in some way to those already finished ones or those started. Show 
the decision maker the actual values for the related activities ( iAD  and 

iAC  for lFIi ,∈  and liap ,  (if available) liAD ,  , liAC ,  for lSIi ,∈ ) and 

ask to give the new estimations liD ,
~

, liC ,
~

for those 

{ } ( )lSlFl IIni ,,\,...,2,1 ∪∈  for which the information about the fin-

ished or started activities was important. It may happen that some 

liD ,
~

and liC ,
~

will become crisp or “almost crisp” in this moment, even 

if they concern the not yet started activities. This will be the case of ac-
tivities very similar to those already finished.  

4. Identify all new information about resources, subcontractors, prices, 

scope concerning the future of the project, update the liD ,
~

and 

liC ,
~

( { } ( )lSlFl IIni ,,\,...,2,1 ∪∈ ) concerned.  

5. Identify all the unplanned activities which will have to be additionally 
executed, also those which will have to be repeated for some reasons, es-

timate liD ,
~

and liC ,
~

for them, update ln  and lℜ  (taking into account 

the constraints or rather relations that have actually occurred (especially, 
the order in which activities have been accomplished so far) and any new 
information about them concerning the yet unstarted activities); 

With the updated information we will calculate ∑
=

=
ln

i
lil CCP

1
,

~~
 and lDP

~
= 

( ) ( )( ){ }m

jjljl tPPDtOPD
1

,
=

 , where ( ),jl tOPD will be calculated on the basis 

crisp durations ( )1
,

2
,

2
, lilijli ddtd −−  ( lni ,...,1= ) and ( )jl tPPD  with crisp  
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durations ( )3
,

4
,

3
, lilijli ddtd −+ , using of course rescheduling, taking into account 

lℜ . In those cases where the estimates will not be fuzzy any more but crisp, we 

treat the crisp number identically as a fuzzy triangular one with all the four pa-

rameters equal. The we will compare the fuzzy estimates lCP
~

 and lDP
~

 with the 

available budget and the deadline, taking if necessary some steps to prevent in 
time problems with budget or time overrun which we are able to predict now, in 
the control moment l, but, let us emphasize it, which will come into light only 

once the project is finished. The estimates lCP
~

 and lDP
~

are previsions about the 

future whose role is – if they are for some reasons unacceptable - to give us time 
to react before they (or rather some unsatisfactory crisp values from their domain) 
actually do occur.  

4   Example 

Let us consider the following example, based on [4]. Let the project consist of five 
activities:  

• Activity 1: identifying market needs 
• Activity 2: designing a new product 
• Activity 3: testing the prototype 
• Activity 4: manufacturing the first series of the product 
• Activity 5: Marketing and selling the manufactured product 

The goal of the project is to successfully introduce the product into the  
market, thus sell at least 90% of he first series of the product, within two years 
from the project start. 0ℜ  is such that all the five activities should be  

executed in a sequence – the ith activity after the (i-1)th is finished  
(i=2,..,5). The initial duration estimates are as follows (in months): 

( ) ( ) ( ) ( ) ( )3,2,2,1,7,6,5,3,7,6,6,4,6,5,4,2,3,2,2,1 0,50,40,30,20,1 ===== DDDDD

, we will not consider cost in our example. As here we have only one path in the 

project network, and this will be the critical path, we can calculate DP
~

, in this 
special case, directly as the sum of all the fuzzy durations. We have thus 

DP
~

=(11,19,21,26). We see that the deadline two years is in danger – it is possi-
ble that, the project will last up to 26 months, but let us assume that the overrun 
and the degree of its possibility seems for the moment acceptable. 

Let us now suppose the first control moment (l=1) is at the end of the 3. time 
unit. It stated that: 

• Activity 1 has not been finished, we think it will still need about 
1 month (not less that 0,75 month, but not more than 1,5 month) 
to be finished. It has already been executed for 3 months 
( 31,1 =AD )  
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• Although Activity 1 still goes on, we have already started Activ-
ity 2 one month ago ( 11,2 =AD ) and we think we have done 

10% of the work 
• The other activities are not started 
• We know that marketing and selling will be overtaken by a sub-

contractor, who will do the marketing campaign (he says it will 
take 2 months and the corresponding contract has been signed) 
and buy from us the whole first series, taking care of selling it on 
the market, although offering us a slightly lower price than we 
expected on the market. However, he requires us, and we admit 
it might be useful, to do a redesigning of the product after its 
testing, as it seems that testing is bound to indicate some prob-
lems which will have to be improved in the design of the project. 

The above information will lead to the following reestimations: 

• We will now have 6 activities in the project ( 61 =n ), Activity 6 – redes-

igning the product – should be executed after Activity 3 is finished and 
before Activity 4 is started. This defines the new set of constraints 1ℜ , 

together with the fact that Activity 2 has actually overlapped Activity 1, 
they are both being executed in the control moment 1. 

• ( ) ( )5.4,4,4,75.35.1,1,1,75.03
~

1,1 =+=D  

• We have ( ) ( )6.0,5.0,4.0,2.06,5,4,21.01,0 0,2 =⋅=⋅ D  - this is how 

much time we thought executing 10% of Activity 2 would take. Actually 
it has take one month, which is outside our previsions. Calculating 

1.0/1,1AD  we get 10 months, which gives us the time the activity would 

be finished if we worked at the same pace as before. Confronting our 

prevision ( )6,5,4,2
~

0,2 =D  with the estimate 10 and taking into account 

some information from the team executing the activity, we give the fol-

lowing new estimate of its duration: ( )9,8,8,7
~

1,2 =D .  

• The recently added Activity 6 will be carried out by the same team as Ac-
tivity 2 and between the two activities there is also the link of learning: 
redesigning the product will probably be easier and shorter that designing 
it from the beginning. Thus, basing ourselves on the information we get 

from the team and on ( )9,8,8,7
~

1,2 =D , we estimate ( )3,2,2,1
~

1,6 =D  

• The information from the subcontractor allows us to “defuzzyfy” the es-

timate of Activity 5 ( ( )2,2,2,2
~

1,5 =D ), under the assumption that the 

subcontractor is reliable and keeps to the contracts he has signed. But if it 
is so, we do not have to worry about selling our product, as it will him 
who will buy it and it will be his problem to sell it. The information about 
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the lower price would influence our cost estimate, which are not taken 
into account in the illustrative example.  

• The other estimates ( ( ) ( )7,6,5,3,7,6,6,4 1,41,3 == DD ) are taken form 

the previous stage, as no new information concerning those two activities 
is available.  

From the control moment on Activity 1 and Activity 2 will executed simultane-
ously, but as the estimated remaining time of Activity 1 is ( )5.1,1,1,75.0  and the 

estimated remaining time of Activity 2 is (6,7,7,8), it is clear that Activity 1 will 
not be on the critical path for any value from the range (0.75,1.5). Thus, we calcu-
late 1PD  summing up the estimates for all the other activities (including Activity 

6) and the time that has elapsed to the control moment, and we get 

1PD =(19,25,26,30). Thus, the deadline of 24 months is in high danger. However, 

we have to remember that we are only after the 3. month of the execution of the 
project, we still have 21 months till the deadline and we have time, knowing al-
ready now that there is a high risk of not keeping the deadline, to undertake ade-
quate steps, negotiating, seeking for additional resources etc.  

5   Conclusions 

We have presented a method of planning and controlling projects characterised by 
a high degree of uncertainty, innovativeness and due to much changes during the 
project execution, which cannot be foreseen in the planning phase. The method 
requires the users to think while estimating project parameters in terms of trape-
zoidal fuzzy numbers, which in fact means only giving four parameters: an opti-
mistic one, a pessimistic one and one or two medium ones, which may also be 
equal to each other. It seems that such an approach would be acceptable in prac-
tice. The approach requires in each control moment not an automatic generation of 
numbers which do not take into account the really important information about the 
project history and its future, but a deeper insight into the development of the 
project, the influence of its environment and the interdependencies between vari-
ous project elements (activities, resources etc.). This will mean a stronger effort in 
planning and controlling projects, but will give as a reward a more reliable  
information about the project and the risk connected to it, and, what is the most 
important thing, this information will usually be available early enough to take 
adequate actions.   
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Functions
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Abstract. One of the most important stages in data preprocessing for data mining
is feature selection. Real-world data analysis, data mining, classification and mod-
eling problems usually involve a large number of candidate inputs or features. Less
relevant or highly correlated features decrease in general the classification accuracy,
and enlarge the complexity of the classifier. Feature selection is a multi-criteria op-
timization problem with contradictory objectives, which are difficult to properly
describe by conventional cost functions. This chapter proposes the use of fuzzy op-
timization to improve the performance of this type of system, since it allows for
an easier and more transparent description of the criteria used in the feature selec-
tion process. In our previous work, an ant colony optimization algorithm for feature
selection was proposed, which minimized two objectives: number of features and
classification error. In this chapter, a fuzzy objective function is proposed to cope
with the difficulty of weighting the different criteria involved in the optimization
algorithm. The application of fuzzy feature selection to two benchmark problems
show the usefulness of the proposed approach.
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1 Introduction

Feature selection has been an active research area in data mining, pattern recogni-
tion and statistics communities. The main idea of feature selection is to choose a
subset of available features, by eliminating features with little or no predictive in-
formation, and also redundant features that are strongly correlated. Many practical
pattern classification tasks (as e.g., medical diagnosis) require learning of an appro-
priate classification function that assigns a given input pattern (typically represented
by using a vector of feature values) to one of a set of classes. The choice of features
used for classification has an impact on the accuracy of the classifier and on the
time required for classification. The challenge is selecting the minimum subset of
features with little or no loss of classification accuracy. The feature subset selec-
tion problem consists of identifying and selecting a useful subset of features from
a larger set of often mutually redundant, possibly irrelevant, features with different
associated importance [10].

Like many design problems, the feature selection problem is characterized by
multiple goals, where a trade-off amongst various objectives must be made. Further,
some of the objectives may be known only approximately. Fuzzy set theory provides
ways of representing and dealing with flexible or soft goals and constraints. This
flexibility can be exploited to obtain better solutions of the optimization problem.
Various fuzzy optimization methods have been proposed in the literature to deal
with different aspects of soft goals and constraints. In one formulation of fuzzy
optimization due to Zimmermann [33], concepts from the Bellman and Zadeh [2]
model of fuzzy decision making are used for formulating the fuzzy optimization
problem. Recently, a method was proposed for satisfying the problem goals, where
preference for different goals can be specified by the decision maker [13]. Fuzzy
optimization admits the introduction of weight factors that represent the importance
of the objectives for the optimization problem. Fuzzy optimization is used to handle
feature selection problems in this chapter, where a weighted fuzzy objective function
is proposed.

In this chapter, we present a feature selection algorithm based on an ant colony
optimization algorithm, as proposed in [27, 28]. This algorithm uses two cooperative
ant colonies, which cope with two different objectives. The two objectives we con-
sider are minimizing the number of features and minimizing the error classification.
Two pheromone matrices and two different heuristics are used for each objective.

The outline of this chapter is as follows. Section 2 gives a brief overview of the
feature selection problem and its inherent difficulties. Model based feature selection
is briefly described, as well as fuzzy modeling, which is used to evaluate the per-
formance of the selected subsets. Further, feature selection is formulated as an op-
timization problem. A fuzzy optimization approach using fuzzy criteria is proposed
for the feature selection problem in Section 3. The problem is defined, and member-
ship functions to define the fuzzy goals are proposed. Additionally, fuzzy weighted
optimization is presented, where the aggregation of fuzzy criteria for feature selec-
tion is also discussed. Section 4 presents the ant colony optimization algorithm used
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to solve the feature selection problem. Section 5 presents some applications of the
proposed approach, and finally, Section 6 presents some concluding remarks.

2 Feature Selection

Feature selection, or variable subset selection, is the technique commonly used in
selecting a subset of relevant features for building robust learning models. By re-
moving most irrelevant and redundant features from data, feature selection helps
improve the performance of learning models, by alleviating to some extent the ef-
fect of the curse of dimensionality, enhancing generalization capability, speeding
up the learning process and even improving model interpretability. Feature selec-
tion also helps to better understand the data by discovering which are the important
features and how they are related with each other.

From a theoretical perspective, it can be shown that optimal feature selection for
supervised learning problems requires an exhaustive search of all possible subsets
of features of the chosen cardinality. If large numbers of features are available, this
is impractical. For practical supervised learning algorithms, the search is made for
a satisfactory set of features, instead of for an optimal set [9].

Feature selection algorithms typically fall into two categories; feature ranking
and subset selection. Feature ranking typically ranks the features by a metric and
eliminates all features that do not achieve an adequate score. Subset selection usu-
ally entails the search for the optimal subset of possible features [11].

Subset selection evaluates a subset of features as a group, and the group of fea-
tures that produces the most accurate model is selected. Subset selection algorithms
can be broken into wrappers and filters. Wrappers use a search algorithm to search
through the space of possible features and evaluate each subset by running a model
on the subset. Wrappers can be computationally expensive and have a risk of over-
fitting the model. Filters are similar to wrappers in the search approach, but instead
of evaluating against a model, the features are selected by evaluating a performance
measure that does not require building a model.

Many popular search approaches use greedy hill climbing, which iteratively
evaluates a candidate subset of features, then modifies the subset and determines
whether or not if the new subset is an improvement over the old. Evaluation of
the subsets requires a scoring metric that grades a subset of features. In the case
of wrapper methods, the feature subsets are evaluated by the accuracy of the pro-
duced model. Exhaustive search is generally impractical, so at some defined stop-
ping point, the subset of features with the highest score discovered up to that point
is selected as the satisfactory feature subset. The stopping criterion varies by al-
gorithm. Possible criteria include: a subset score exceeds a threshold, a program’s
maximum allowed run time has been surpassed, etc.

In this work, the feature selection problem is approached in the subset selection
wrapper perspective. Thus, the output of a feature selection optimization problem
is the reduced feature subset chosen to model the process with sufficient or neces-
sary accuracy. Therefore, one of the main issues in model based feature selection



346 S.M. Vieira, J.M.C. Sousa, and U. Kaymak

(MBFS) is the optimization technique applied to derive the reduced feature subset.
The decision criteria of the optimization problem are the translation of the complex-
ity (or cardinality) and accuracy of the final model. The number of selected features
(cardinality) is often used as a measure of complexity in feature selection.

One of the main issues in MBFS is the type of model used to describe the process
under study. Fuzzy models are rule-based systems that can be interpreted by human
experts. For these reasons, fuzzy modeling is often called a “gray-box” modeling
approach. This chapter uses fuzzy modeling, which is briefly presented in the fol-
lowing section.

2.1 Fuzzy Modeling

Rule-based expert systems are often applied to classification problems in fault de-
tection, biology, medicine, etc. Fuzzy logic improves classification and decision
support systems by allowing the use of overlapping antecedents definitions and im-
proves the interpretability of the results by providing more insight into the classifier
structure and the decision making process [18, 24].

In general, fuzzy models can provide a more transparent model and can also give
a linguistic interpretation in the form of rules, which is appealing when dealing with
classification systems. Fuzzy models use rules and logical connectives to establish
relations between the features defined to derive the model.

The automatic determination of fuzzy classification rules from data has been ap-
proached by several different techniques: neuro–fuzzy methods, genetic–algorithm
based rule selection and fuzzy clustering in combination with GA–optimization
[20]. An approach that addresses simplicity and accuracy issues is used. Inter-
pretable fuzzy rule-based classifiers are obtained from observation data following
the steps described below.

In this work, we use Takagi-Sugeno (TS) fuzzy models [26], which consist of
fuzzy rules where each rule describes a local input-output relation, typically in an
affine form. The rules in the affine TS model are given by:

Ri : If x1 is Ai1and . . . and xn is Ainthen yCi = ai1x1 + . . . + ainxn + bi , (1)

where i = 1, . . . , K , K denotes the number of rules in the rule base, Ri is the
ith rule, x = [x1, . . . , xn]T is the antecedent vector, n is the number of features,
Ai1, . . . , Ain are fuzzy sets defined in the antecedent space, yCi is the output vari-
able for rule i, ai is a parameter vector and bi is a scalar offset for rule i. The conse-
quents of the affine TS model are hyperplanes in the product space of the inputs and
the output. The model output, yC , is computed by aggregating the individual rules
contribution:

yC =
∑K

i=1 βiyCi∑K
i=1 βi

, (2)

where βi is the degree of activation of the ith rule:
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βi =
n∏

j=1

μAij (xj), (3)

and μAij (xj) : R → [0, 1] is the membership function of the fuzzy set Aij in the
antecedent of Ri. Each class is considered an output of the model. A model has C

classes. The output of the classifier is given by the following classification decision:

max
C

yC (4)

Given N available input–output data pairs (xk,yk), the n–dimensional pattern
matrix X = [x1, . . . ,xN ]T , and the corresponding C–dimensional class vector
y = [y1, . . . , yN ]T are constructed.

The number of rules K , the antecedent fuzzy sets Aij , and the consequent pa-
rameters bi are determined by means of fuzzy clustering in the product space of the
input and output variables [24]. Hence, the data set Z to be clustered is composed
by X and y:

Z = [X,y]T . (5)

Given the data Z and the number of clusters K , several fuzzy clustering algorithms
can be used. This paper uses the Gustafson-Kessel (GK) [8] clustering algorithm to
compute the fuzzy partition matrix U. The matrix Z provides a description of the
system in terms of its local characteristic behavior in regions of the data identified by
the clustering algorithm, and each cluster defines a rule. The GK algorithm applies
an adaptive distance measure, finding hyper-ellipsoid regions in the data that can be
efficiently approximated by the hyper-planes described by the consequents in the
TS model.

The fuzzy sets in the antecedent of the rules are obtained from the partition matrix
U, whose ikth element μik ∈ [0, 1] is the membership degree of the data object zk in
cluster i. One-dimensional fuzzy sets Aij are obtained from the multidimensional
fuzzy sets defined point-wise in the ith row of the partition matrix by projections
onto the space of the input variables xj :

μAij (xjk) = projN n+1
j (μik), (6)

where proj is the point-wise projection operator [15]. The point-wise defined fuzzy
sets Aij are approximated by suitable parametric functions in order to compute
μAij (xj) for any value of xj . This is schematically represented in Fig. 1.

The consequent parameters for each rule are obtained as a weighted ordinary
least-square estimate. Let θT

i = [ai, bi], let Xe denote the matrix [X;1] and let
Wi denote a diagonal matrix in having the degree of activation, βi(xk), as its kth
diagonal element. Assuming that the columns of Xe are linearly independent and
βi(xk) > 0 for 1 ≤ k ≤ N , the weighted least-squares solution of y = Xeθ + ε

becomes
θi =
[
XT

e WiXe

]−1
XT

e Wiy . (7)



348 S.M. Vieira, J.M.C. Sousa, and U. Kaymak

Fig. 1 Projection of multidimensional fuzzy sets onto the space of the input variables xj

Rule bases constructed from clusters can be redundant due to the fact that the rules
defined using the multidimensional antecedents are overlapping in one or more di-
mensions. A possible approach to solve this problem is to reduce the number of
features n of the model, as addressed in this chapter.

2.2 Formulation of the Feature Selection Problem

When a classification system is designed, performance criteria must be specified.
These criteria are usually defined in terms of a desired minimum error between the
real classification and the model output, model complexity, number of used fea-
tures, etc., representing the goals of the classification system. In MBFS, these goals
must be translated as criteria into an objective function. This function normally is
minimized (or maximized) over a given number of iterations.

Conventional MBFS mainly uses classification accuracy as the objective func-
tion [12]. In model based feature selection, besides classification accuracy, model
complexity reduction is also desired. The model complexitiy is directly related to
the number of features used for modeling.

Let the overall MBFS goals be stated as achieving good performance while re-
ducing the features subset size, and implicitly the model complexity. The perfor-
mance criterion used to evaluate the fuzzy model is the classification accuracy γ,
given by:

γ =
(Nn − Ne)

Nn
. (8)

where Ne is the number of errors in test samples and Nn is the number of used
samples.

Let F be the n-dimensional set of features. The vector z = (z1, z2, . . . , zNf
),

is a subset of F , and Nf is the features cardinality (number of used features). It is
desirable that Nf << n. The goals can be represented by the following objective
function
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J = w1(1 − γ) + w2
Nf

n
, (9)

where γ is the percentage of correct classifications in test samples and {w1, w2}
represent weight factors to help setting priorities of the optimization problem. The
first term of (9) represents the score of the features subset in terms of model perfor-
mance. The objective function of this optimization problem aggregate both criteria:
the minimization of the classification error and the minimization of the features car-
dinality. These are contradictory objectives, and are difficult to properly describe by
this conventional cost function, once the weights are difficult to settle although the
terms are normalized.

The use of fuzzy objective functions can improve the performance of this type
of optimization problem, since it allows for an easier and transparent description of
the different criteria used in the feature selection process. In next section, a fuzzy
optimization problem is presented for MBFS to cope with the difficulty of weighting
the different criteria involved in the optimization algorithm.

3 Fuzzy Optimization in Feature Selection

The objective function for feature selection can be seen as the simultaneous satisfac-
tion of different criteria. These fuzzy criteria must be defined for different objectives
inherent to the feature selection problem. When fuzzy criteria is used in the objec-
tive function, fuzzy optimization is the most obvious technique to deal with the
optimization problem in MBFS.

3.1 Formulation of the Feature Selection Problem Using Fuzzy
Goals

Feature selection using fuzzy goals can be defined as follows. Let G�, with � =
1, . . . , q, be a fuzzy goal (or criterion) characterized by its membership function
μG�

, which is a mapping from the space of the goal G� to the interval [0, 1]. The
goals are defined on relevant optimization criteria. Each goal is defined in the do-
main Φj , j = 1, . . . , q, which can be any of the various domains used in feature
selection. This optimization problem has a discrete search space with a finite and
countable set Ω of subset solutions. The fuzzy criteria must be aggregated in the
subset selection environment. The membership value μz for the subset solution z is
obtained using the aggregation operator ∗© to combine the fuzzy goals (criteria),

μz = μG1 ∗© . . . ∗©μGq . (10)

Various types of aggregation operations can be used as decision functions for ex-
pressing different decision strategies using the well-known properties of these op-
erators [24]. Parametric triangular norms can generalize a large number of t-norms,
and can control the degree of compensation between the different criteria. The de-
cision criteria in (10) (e.g. small number of features and high accuracy) should be
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satisfied as much as possible, which corresponds to the maximal value of the overall
decision. The optimal subset z∗ is found by the maximization of μz:

z∗ = arg max
z

μz. (11)

Because the membership functions for the fuzzy criteria can have an arbitrary shape,
and because of the nonlinearity of the decision function, the optimization problem
(11) is usually non-convex. This problem is discussed in Section 4. However, we
just say at this point that given that (10) is a non-convex nonlinear optimization
problem, a heuristic method such as ant colony is useful to use.

3.2 Fuzzy Criteria in Feature Selection

Fuzzy goals must be a translation of the (fuzzy) performance criteria defined for the
system. The definition of these criteria in terms of model performance has shown to
be quite powerful in the model based feature selection framework [9].

Additional flexibility can be introduced in MBFS, when fuzzy multicriteria is ap-
plied to determine the objective function. This flexibility provides additional control
to the model builder to have control over the optimization problem. Each goal G�

is described by a fuzzy set. Fuzzy criteria can be described in different ways. The
most straightforward and easy way is just to adapt the classical criteria in MBFS, as
defined in (9).

Figure 2 shows examples of general membership functions that can be used for
the error Ne and for the features cardinality Nf . In this example, the minimization
of the classification error is represented by an exponential membership function,
given by (see Fig. 2a):
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Fig. 2 Membership functions for the feature selection goals
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μe = exp−(Ne
2σ )2

(12)

This well-known function has the nice property of never reaching the zero value, and
the membership value is still quite considerable for an error of 10%. This property is
very useful, once the desirable solution should have the smaller error possible. The
σ parameter can be defined as a small percentage of the number of data samples or
as a percentage of error that is admissible for the problem.

The features cardinality Nf can be represented, for example, by a trapezoidal
membership function, as shown in Fig. 2b. A reduced number of features is con-
sidered to be a desired outcome of the optimization algorithm. The membership
function is defined so that for a low number of features the membership degree is
one and linearly decreases to zero. The membership degree should be zero outside
the maximum number of available features. This is because we are trying to get
the number of features to be as close as possible to the minimum desired. The pa-
rameters defining the range of the trapezoidal membership function are application
dependent. Sometimes it is convenient to make the upper limit of the membership
function significantly lower than the maximum number of allowed features, espe-
cially if a very large number of features is being tested.

In general, the parameters of the different membership functions are application
dependent. However, it is possible to derive some tuning guidelines, as described in
the following. The membership functions quantify how much the system satisfies the
criteria given a particular feature subset, bringing various quantities into a unified
domain.

The use of the membership functions introduces additional flexibility in the goals,
and it leads to increased transparency as it becomes possible to specify explicitly what
kind of solution is preferred. For instance, it becomes easier to penalize more severely
a subset of features that have bigger classification errors. Alternatively, if we prefer
a solution with less features, a higher number of features can be penalized instead.

After the membership functions have been defined, they are combined by using
a decision function, such as a parametric aggregation operator from the fuzzy sets
theory, as e.g. the Yager t-norm [31]. The formulation in (10) does not use weights
for the criteria. However, a general formulation that takes into account different
importance of different goals must consider weights, as in the conventional objective
function (9). The generalization of the fuzzy objective function (10) in order to use
weighted criteria is used here, and is presented in the next section.

3.3 Weighted Fuzzy Optimization

Fuzzy objective functions using weighted criteria have been used quite extensively,
especially in fuzzy decision making, where the weights are used to represent the rel-
ative importance that the decision maker attaches to different decision criteria. An
averaging operator is normally used for the weighted aggregation, such as general-
ized means [6], fuzzy integrals [7] or the ordered weighted average (OWA) opera-
tors [32]. Consequently, weighted aggregation of fuzzy sets has been studied with
averaging type of operators. The generalized means extend naturally to weighted
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equivalents. The weighted generalized mean operator has been used in many fields,
and it has been studied in the context of fuzzy set aggregation in [6, 14]. The OWA
operators and the fuzzy integrals are inherently weighted operators, which do not
need a separate extension to the weighted case. Applications of these operators have
also been reported in the literature, see e.g. [7, 19].

In the fuzzy feature selection approach, the goal is to satisfy simultaneously the
model accuracy and the feature subset reduction. The averaging operators are suit-
able for modeling compensatory aggregation. In compensatory aggregation, one cri-
terion can compensate for another one. However, they are not suitable for modeling
simultaneous satisfaction of aggregated contradictory criteria, where the aggregated
value should never be larger then the least satisfied criterion. In this case, t-norms
must be used to model the conjunctive aggregation [25]. Therefore, weighted ag-
gregation using t-norms must be considered. Note that the most common axiomatic
definition of t-norms does not allow for weighted aggregation. Hence, the commu-
tativity and the associativity properties must be dropped, since weighted operators
are by definition not commutative.

Weighted aggregation of fuzzy sets by using t-norms has been considered first by
Yager in [29], where the membership functions are modified by associated weight
factors before the fuzzy aggregation. The application of a generalized form of this
idea, introduced in [30], is given by

μz(w) = t[I(μG1 , w1), . . . , I(μGi , wq)], (13)

where w is a vector of weight factors wl ∈ [0, 1], t is a t-norm and I is a function
that transforms the membership functions. Note that the fuzzy objective function
for feature selection in this chapter has two goals (q = 2), where G1 translates the
classification accuracy and G2 the features cardinality reduction. The most common
fuzzy aggregation operator uses the power-raising method for the transformation
and the minimum operator for the t-norm.

μz(w) =
q∧

l=1

[μGl
]wl . (14)

This aggregation function has been used in many publications regarding the ap-
plication of fuzzy weighted aggregation, especially in multicriteria decision mak-
ing. Weighted aggregation of fuzzy sets has been investigated in more detail in
a generalized framework [13, 14], where weighted counterparts of fuzzy t-norms
have also been proposed based on a sensitivity analysis of weighted fuzzy aggrega-
tion. This analysis provides a general mechanism for introducing weight factors into
Archimedean t-norms and t-conorms by considering several requirements that can
be imposed on a weighted aggregation operator. In this work, weighted counterparts
of Archimedean t-norms are used, namely, the weighted extension of the product
t-norm

μz(w) =
q∏

l=1

[μGl
]wl , (15)



Ant Feature Selection Using Fuzzy Decision Functions 353

the extension of the Hamacher t-norm

μz(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1+
q∑

l=1

wl
1−μGl

μGl

if ∀l, μGl
>0

0 if ∃l, μGl
=0

(16)

and the extension of the Yager t-norm

μz(w) = max

⎛⎝0, 1 − s

√√√√ q∑
l=1

wl(1 − μGl
)s

⎞⎠ , s > 0 . (17)

Note that the extension of the product t-norm in (15), according to the sensitivity based
analysis, is the same as the application of (13) using the product operator as t, with
power raising method as I . However, the extensions (16) and (17) cannot be obtained
from (13). Applications of weighted fuzzy optimization can be found in [13, 17].

After combining the objectives, the resulting optimization is non-convex. Fur-
thermore, gradient descent methods may not be suitable for the maximization due
to possible and likely discontinuity in the first derivative of the final aggregated
function. Derivative-free search and optimization algorithms such as simulated an-
nealing, evolutionary algorithms or other bio-inspired algorithms, such as ant colony
optimization, can be used to solve this type of optimization problems. In this work,
an ant colony optimization approach is used to solve the MBFS optimization prob-
lem, as proposed in [27, 28]. This approach is described in the next section.

4 Ant Feature Selection

Ant algorithms were first proposed by Dorigo [3] as a multi-agent approach to dif-
ficult combinatorial optimization problems, such as traveling salesman problem,
quadratic assignment problem or supply chain management [21, 22, 23]. The ant
colony optimization (ACO) methodology is an optimization method suited to find
minimum cost paths in optimization problems described by graphs [4].

This chapter presents an implementation of ACO applied to feature selection,
where the best number of features is determined automatically [27, 28]. In this ap-
proach, two objectives are considered: minimizing the number of features and min-
imizing the classification error. Two cooperative ant colonies are considered, one
for each objective. The first colony determines the number (cardinality) of features
and the second selects the features based on the cardinality given by the first colony.
Thus, two pheromone matrices and two different heuristics are used. The heuristic
value is computed using the Fisher discriminant criterion for feature selection [5],
which ranks the features by giving them a relative importance.

The determination of the features cardinality Nf is addressed in the first colony
sharing the same minimization cost function with the second colony, which in
this case aggregates both the maximization of the classification accuracy and the
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Table 1 Variables definition

Variable Description

General
n Number of features
N Number of samples
Nn Number of samples used for validation
I Number of iterations
K Number of rules/clusters of the fuzzy model
C Number of existing classes in database
g Number of ants
x Set with all the features
w Subset of features selected to build classifiers
Jk Cost of the solution for each ant k
Jq Cost of the winner ant q

Ant colony for cardinality of features
Nf Features cardinality (number of selected features)

Nf (k) Features cardinality of ant k
In Number of iterations with same feature cardinality
αn Pheromone weight of features cardinality
βn Heuristic weight of features cardinality
τn Pheromone trails for features cardinality
ηn Heuristic of features cardinality
ρn Evaporation of features cardinality
Γ k

n Feasible neighborhood of ant k
(features cardinality availability)

Qi Amount of pheromone laid in the features
cardinality of the best solution

Ant colony for selecting subset of features
Lk

f (t) Feature subset for ant k at tour t
αf Pheromone weight of features
βf Heuristic weight of features
τf Pheromone trails for feature selection
ηf Heuristic of features
ρf Evaporation of features
Γ k

f Feasible neighborhood of ant k
(features availability)

Qj Amount of pheromone laid in the features
of the best solution

minimization of the features cardinality. Hence, the first colony determines the size
of the subsets of the ants in the second colony, and the second colony selects the
features that will be part of the subsets.

The algorithm used in this study deals with the feature selection problem as a
multi–criteria problem with a single objective function. Therefore, a pheromone
matrix is computed for each criterion, and different heuristics are used. Table 1
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describes the variables used in the algorithm. To evaluate the classification error, a
fuzzy classifier is built for each solution using the procedure described in Section 2.

4.1 Probabilistic Rule

Consider a problem with Nf nodes and two colonies of g ants. First, g ants of the
first colony randomly select the number of nodes Nf to be used by the g ants of the
second colony. Following the original ACO [3], the probability that an ant k chooses
the features cardinality Nf(k) is given by

pk
i (t) =

[τni ]αn · [ηni ]βn∑
l∈Γ k

n
[τnl

]αn · [ηnl
]βn

(18)

where τni is the pheromone concentration matrix and ηni is the heuristic func-
tion matrix, for path (i). The values of the pheromone matrix are limited to
[τnmin , τnmax ], with τnmin = 0 and τnmax = 1. Γ k

n is the feasible neighborhood
of ant k (available number of features to be selected), which acts as the memory of
the ants, and contains all the trails that the ants have not passed and can be chosen,
here the trails represent the features. The parameters αn and βn measure the relative
importance of trail pheromone and heuristic knowledge, respectively.

After all the g ants from the first colony have chosen the features cardinality
Nf (k), each ant k from the second colony selects Nf (k) features (nodes). The
probability that an ant k chooses feature j as the next feature to visit is given by

pk
j (t) =

[τfj (t)]αf · [ηfj ]βf∑
l∈Γ k

f
[τfl

(t)]αf · [ηfl
]βf

(19)

where τfj is the pheromone concentration matrix and ηfj is the heuristic func-
tion matrix for the path (j). Again, the pheromone matrix values are limited to
[τfmin , τfmax ], with τfmin = 0 and τfmax = 1. Γf is the feasible neighborhood of
ant k (available features), which contains all the features that the ants have not se-
lected and can be chosen. Again, the parameters αf and βf measure the relative
importance of trail pheromone and heuristic knowledge, respectively.

4.2 Updating Rule

After a complete tour, when all the g ants have visited all the Nf (k) nodes, both
pheromone concentration in the trails are updated by

τni(t + 1) = τni(t) × (1 − ρn) + Δτni(t) (20)

τfj (t + 1) = τfj (t) × (1 − ρf ) + Δτfj (t) (21)
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where ρn ∈ [0, 1] is the pheromone evaporation of the features cardinality ,
ρf ∈ [0, 1] is the pheromone evaporation of the features and Δτni and Δτfj are
the pheromone deposited on the trails (i) and (j), respectively, by the ant q that
found the best solution Jq for this tour:

Δτq
ni

=
{Qi if node (i) is used by the ant q

0 otherwise
(22)

Δτ
q
fj

=
{Qj if node (j) is used by the ant q

0 otherwise
(23)

The number of nodes Nf (k) that each ant k has to visit on each tour t is only updated
every In tours (iterations), in order to allow the search for the best features for
each Nf . The algorithm runs I times. Both colonies share the same cost functions.
Classical and fuzzy cost functions, given respectively by (9) and (10) are both tested
in this chapter.

4.3 Heuristics

The heuristic value used for the second ant colony is computed as

ηfj = 1/Nej (24)

for j = 1, . . . , n. For the features cardinality (first colony), the heuristic value is
computed using the Fisher discriminant criterion for feature selection [5]. Consider-
ing a classification problem with two possible classes, class 1 and class 2, the Fisher
discriminant criterion is described as

F (i) =
|μ1(i) − μ2(i)|2

σ2
1 + σ2

2

(25)

where μ1(i) and μ2(i) are the mean values of feature i for the samples in class
1 and class 2, respectively, and σ2

1 and σ2
2 are the variances of feature i for the

samples in classes 1 and 2. The score aims to maximize the between-class difference
and minimize the within-class spread. Other currently proposed rank-based criteria
generally come from similar considerations and show similar performance [5]. Since
our goal is to work with several classification problems, which can contain two or
more possible classes, a one versus-all strategy is used to rank the features. Thus,
for a C-class prediction problem, a particular class is compared with the other C−1
classes that are considered together. The features are weighted according to the total
score summed over all C comparisons:

C∑
j=1

Fj(i), (26)
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Algorithm 1. Ant Feature Selection
/*Initialization*/
set the parameters ρf , ρn, αf , αn, βf , βn, I , In, g.
for t = 1 to I do

for k = 1 to g do
Choose the subset size Nf (k) of each ant k using (18)

end for
for l = 1 to In do

for k = 1 to g do
Build feature set Lk

f (t) by choosing Nf (k) features using (19)
Compute the fuzzy model using the Lk

f (t) path selected by ant k

Compute the cost function Jk(t)
Update Jq

end for
Update pheromone trails τni(t + 1) and τfj (t + 1), as defined in (20) and (21).

end for
end for

where Fj(i) denotes the Fisher discriminant score for the ith feature at the jth com-
parison. Algorithm 1 presents the description of the ant feature selection algorithm.

5 Application Examples

5.1 Data Sets

The effectiveness of the proposed approach is tested using data sets taken from some
well known benchmarks in the UCI repository [1]. Two real data sets, Wine and Wis-
consin Breast Cancer were used to test the presented approach. The characteristics
of the data are presented in Table 2.

Table 2 Description of the used data sets

Data sets used # features # classes # samples
Wine 13 3 178
Breast Cancer 9 2 699

Wine. The wine data set is widely used in the literature. The classification data is
available online in the repository of the University of California [1], and contains the
chemical analysis of 178 wines grown in the same region in Italy, derived from three
different cultivars. Thirteen continuous attributes are available for classification: al-
cohol, malic acid, ash, alkalinity of ash, magnesium, total phenols, flavanoids, non-
flavanoids phenols, proanthocyanism, color intensity, hue, the ratio OD280/OD315
of dilluted wines and proline.
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Breast Cancer. The Wisconsin breast cancer data is also widely used to test the
effectiveness of classification algorithms. The aim of the classification is to dis-
tinguish between benign and malignant cancers based on the available nine mea-
surements (attributes): clump thickness, uniformity of cell size, uniformity of cell
shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chro-
matin, Normal Nucleoli and Mitoses. The attributes have integer value in the range
[1,10]. The original database contains 699 instances, however 16 samples are omit-
ted because they are incomplete. The class distribution is 65.5% benign and 34.5%
malignant. The breast cancer data set is also available in the repository of the Uni-
versity of California [1] and it was obtained from the University of Wisconsin Hos-
pitals, Madison from Dr. William H. Wolberg.

5.2 Performance Evaluation

This chapter uses two types of performance evaluation. First, the data sets are di-
vided in training and test instances (50% for training and 50% for test). As is com-
mon, the test data set contains data points different from the ones used to train the
model. The models are constructed using the procedure described in Section 2.1. As
these results are excellent for the considered data sets, more demanding validation
tests were necessary. Thus, we used the well-known cross validation method, which
is briefly described next.

Cross-validation. In cross validation, the data set with Nn samples is divided into
N mutually exclusive sets of approximately equal size, with each subset consisting
of approximately the same proportions of labels as the original data set, known as
stratified cross validation [16]. The classifier is trained N times, with a different
subset left out as the test set and the other samples used to train the classifier at each
time. During the training phase, the classifier is trained on N − 1 out of N folds in
which classification accuracy is used, as defined in (8). The prediction performance
of the classifier is estimated by considering the average classification accuracy of
the 10 cross-validation experiments, described as

ECV =

(
1

Nn

N∑
i=1

Ci

)
× 100% (27)

where Ci is the number of correctly classified samples:

Ci = Nn − Ne.

The classification error rates of the final subset solutions are obtained by performing
N -fold cross validation, with N = 10 in our case (CV10). The experimental results
are presented as the best, the worst and the mean value of the classification accuracy
γ, as defined in (8).
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5.3 Results

5.3.1 Train-Test Results

First the data sets were divided into training and test data, and 10 trials are simulated.
The fuzzy goals were aggregated using the Yager t-norm. The maximum, mean
and minimum classification accuracies of these 10 trials are shown in Table 3. The
results are compared with the ant feature selection (AFS) approach in [28]. Table 3
shows clearly that using a fuzzy objective function the algorithm always converges
to the optimal solution. Further, the algorithm converges always to the same number
of features, which was not the case with AFS. Clearly, more demanding tests were
necessary to test the fuzzy approach. Therefore, 10-fold cross validation was applied
to the data.

Table 3 Classification rates for train/test data sets

Data set Methods Reduced Classification
Subset accuracy (%)

Max. Mean Min.
Wine AFS 4-8 100.0 99.8 98.9

Fuzzy AFS 4 100.0 100.0 100.0
Breast Cancer AFS 2-5 100.0 96.4 91.3

Fuzzy AFS 3 100.0 100.0 100.0

5.3.2 Cross Validation Results

Ten–fold cross validation was applied to both data sets. Different aggregation opera-
tors were used to test the fuzzy optimization, namely: product, Yager and Hamacher
t-norms. The results for the data sets are presented next.

Wine Results. The results obtained for the wine data set are presented in Table 4.
The t-norm that constantly achieves the smaller number of features is the Yager
t-norm. The best results in terms of accuracy are obtained with the Hamacher t-
norm, using however a much larger number of features. The product t-norm does
not converge to the same number of features, achieving results similar to the ones
without the fuzzy approach, i.e. using the AFS algorithm.

Table 4 Cross validation results for the Wine data set

t-norm Number of Classification
features accuracy (%)

Max. Mean Min.
Product 4-8 100 91.1 72.2
Yager 4 100 92.0 75.0
Hamacher 11 100 93.9 88.9
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Figure 3 presents an example of the values obtained for the fuzzy objective func-
tion in (17), when the Yager t-norm is used. The convergence of the fuzzy opti-
mization algorithm using again the Yager t-norm is depicted in Fig. 4, where the
convergence to a constant number of features is clearly shown. Note that a 10-fold
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Table 5 Cross validation results for the Wisconsin Breast Cancer data set

t-norm Number of Classification
features accuracy (%)

Max. Mean Min.
Product 3-5 100 96.1 91.4
Yager 3-4 100 96.0 94.3
Hamacher 9 98.6 94.9 90.0

cross validation in the wine data set is clearly a very demanding test for the classifi-
cation model, as the data set has very few instances.

Breast Cancer results. Table 5 presents the results obtained for this data set using
several aggregation t-norms. Depending on the t-norm used, is not always possible
to minimize the number of features. Again, the t-norm that constantly achieves the
smaller number of features is the Yager t-norm. Further, the product t-norm does
not converge to the same number of features, as happened with the Wine data set.
In terms of accuracy, the best results are now obtained with the Yager t-norm (al-
though the product has similar results), and the worst results are obtained with the
Hamacher t-norm.

Figure 5 presents the convergence of the fuzzy optimization algorithm using the
Yager t-norm. This t-norm converges to a small number of features (four in this
case).
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5.4 Discussion

By observing Tables 4 and 5 it becomes clear that the Yager t-norm is the one obtain-
ing the smaller number of features. The accuracy is also very good, but not always
the best. In the Wine data set the best accuracy was obtained with the Hamacher
t-norm.

Ant feature selection using the conventional objective function in (9) has some
difficulties to satisfy both optimization criteria, even when weight factors are used.
In general, the use of fuzzy optimization results in a better convergence, especially
when the Yager t-norm is utilized. In summary, it is possible to conclude from the
results that the performance of the optimization algorithm has improved using a
fuzzy objective function.

6 Conclusions

A fuzzy objective function for ant feature selection is proposed in this chapter.
The problem is divided into two objectives: minimizing the features cardinality and
selecting the most relevant features. The feature selection algorithm uses fuzzy clas-
sifiers to evaluate the selected subsets of features. The proposed algorithm was ap-
plied to two well known classification databases that are considered benchmarks.
Different fuzzy aggregation t-norms were tested. The results show that the proposed
approach leaded to better results than ant feature selection using a classical objective
function.

A systematic procedure to choose the weighting factors was not used in this study.
Thus, further work is necessary to evaluate the weighting effect on the aggregation
methods. This study should also test changing the weights during the evolution of
the optimization algorithm. Finally, data sets with a larger number of features must
be tested to confirm the obtained results.
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Application of Fuzzy Theory to the 
Investment Decision Process 

Hiroshi Tsuda and Seiji Saito* 

Abstract. In the present paper, we propose a new approach to portfolio optimiza-
tion that allows portfolio managers to construct portfolios that reflect their views 
about risk assets by applying fuzzy theory. The proposed approach to the invest-
ment decision process is based on the mean-variance approach proposed by 
Markowitz (1952,1959) and uses the concept of asset market equilibrium proposed 
by Sharpe (1964). For portfolio managers, it is very meaningful to use the equilib-
rium expected excess returns associated with the capital market as a reference. The 
proposed approach enables a new method for incorporating the views of portfolio 
managers to aid in the investment decision process. Moreover, in order to estimate 
the distribution of an unknown true membership function of the views of portfolio 
managers concerning risk assets, we propose a fuzzy information criterion to 
evaluate the fitness of the distribution between an unknown true membership 
function and a hypothetical membership function. In particular, the proposed ap-
proach enables a group of portfolio managers of pension funds to obtain an im-
portant solution that realizes optimal expected excess returns of risk assets by 
specifying the vague views of portfolio managers as a fuzzy number. 

1   Introduction 

In the present paper, we propose a new approach to portfolio optimization that 
allows portfolio managers to construct portfolios that reflect their views concerning 
risk assets by applying fuzzy theory. The portfolio theory of the mean-variance 
approach proposed by Markowitz (1952,1959) has provided a valuable framework 
for the investment decision process. In this approach, the return rate of an asset is 
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treated as a random variable. Stochastic programming is applied to obtain the  
optimal solution of the portfolio. Instead of stochastic programming, fuzzy mathe-
matical programming approaches, such as possibilistic programming, have been 
proposed to solve portfolio selection problems. These fuzzy mathematical pro-
gramming approaches are referred to Watada (1997), Inuiguchi and Tanino (2000), 
and Inuiguchi and Ramik (2000). Hasuike, Katagiri, and Ishii (2009) proposed 
methods by which to solve portfolio selection problems, including probabilistic 
future returns with random fuzzy variables. However, these approaches do not 
consider the concept of the asset market equilibrium. Moreover, when portfolio 
managers directly apply the Markowitz mean-variance approach to asset man-
agement in practice, they must specify expected returns of risk assets and their 
standard deviations, which are defined as risk. In practical portfolio management, it 
is impossible to know the expected returns of random variables, fuzzy variables, or 
random fuzzy variables. This critical problem occurs in portfolio selection when 
using the fuzzy mathematical programming mentioned in Watada (1997), Inuiguchi 
and Tanino (2000), and Inuiguchi and Ramik (2000). 

As a practical matter, portfolio managers have vague views about relative returns 
for different assets. There have been no reports of an approach for incorporating 
these vague views about the expected returns of risk assets into portfolio  
approaches. 

The remainder of the present paper is organized as follows. In Section 2, we in-
troduce a portfolio selection problem. In Section 3, we describe the equilibrium 
expected excess returns of risk assets. In Section 4, we propose a new approach of 
portfolio optimization, which allows portfolio managers to construct portfolios that 
reflect their views concerning risk assets by applying fuzzy theory. The proposed 
approach makes possible a new method for incorporating the views of portfolio 
managers that facilitates the investment decision process. In Section 5, the proposed 
approach is described in detail through a number of case studies. In addition, we 
propose a fuzzy information criterion (FIC) by which to evaluate the fitness of the 
distribution between an unknown true membership function generating data and a 
hypothetical membership function. Finally, our conclusions are presented in  
Section 6. 

2   Portfolio Theory 

Markowitz (1952,1959) proposed the portfolio theory of the mean-variance ap-
proach, in which a portfolio is considered in its entirety, rather than as a collection 
of individual securities. It is not sufficient to consider the characteristics of indi-
vidual assets when putting together a portfolio. The co-movement between assets is 
a very important consideration when attempting to construct an optimal portfolio. A 
portfolio that generates higher expected returns at the same level of risk or the same 
level of expected returns at the lower level of risk can be constructed by considering 
the co-movements between assets. 
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We assume that there are M risk assets in a certain capital market. Let us denote 

the return rate of the j th asset by jR  and its portfolio weight by jw . Then, the 

expected return rate corresponds to the return, while the variance of the return 
corresponds to the risk. The portfolio selection problem is formulated as the fol-
lowing mathematical programming problem: 

Maximize ( )
1 1

M M

j j j j
j j

E w R w E R
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑                                                          (1) 

Minimize 
1 1

,
M M

j k jk
j k

w w
= =

σ∑∑                                                                                   (2) 

where σjk is the covariance between the j-th and k-th assets, 

subject to 
1

1, 0, 1,2, , .
M

j j
j

w w j M
=

= ≥ =∑                                            (3) 

The curve of the expected returns and risk (standard deviations) of optimal solu-
tions in Figure 1 is referred to as the efficient frontier. Portfolios on the efficient 
frontier generate higher expected returns at the same level of risk or the same level 
of expected returns at the lower level of risk .  

Standard deviation of return 

Expected 
return 

 

Fig. 1 Efficient frontier 
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Although the portfolio theory of the mean-variance approach proposed by 
Markowitz might seem appealing and reasonable from a theoretical standpoint, 
portfolio managers confront several problems when applying this theory in practice. 
One such problem is that the portfolio managers must specify the expected returns 
of risk assets and their standard deviations. Portfolio managers often use the sample 
mean of historical return rate data as the expected return. However, the sample 
mean is not a future expected return.  

Basically, the Markowitz mean-variance approach overweights assets with high 
expected returns and underweights assets with low expected returns. The Marko-
witz approach almost always provides results that include large negative weights 
for several assets. Since pension portfolio managers are often not permitted to take 
short positions, a shorting constraint is added to portfolio construction.When op-
timizing a portfolio with short constraints, a solution is apt to take zero weights in 
many of assets and large weights in only a few of the assets.  

Although there exist several problems when using the Markowitz approach in 
practice, the concept of optimizing the tradeoff relationship between the expected 
return and the risk is very important. Therefore, we herein propose a new approach 
that avoids the practical problems associated with the use of the Markowitz  
approach.  

3   Equilibrium Expected Excess Returns of Risk Assets 

As described above, when portfolio managers attempt to apply the mean-variance 
approach to asset management in practice, they are confronted with the problem of 
specifying the expected returns of risk assets. One of the solutions is to use the 
equilibrium expected returns of the Capital Asset Pricing Model (CAPM) proposed 
by Sharpe (1964) as expected returns of reference. This idea to use the expected 
returns associated with asset market equilibrium  was proposed by Black and Lit-
terman(1991). Our approach also uses the concept of asset market equilibrium. 

In the following, we briefly explain the concept of asset market equilibrium. We 

assume that the number of investors is N  and that the i th { }( )1, ,i N∈  in-

vestor has wealth iW . The investors invest M  risk assets and one riskless asset. 

Here, 0j =  and 1, ,j M=  denote one riskless asset and M  risk assets, 

respectively. The weight of the portfolio held in the j th asset of the i th investor is 

denoted as ( )i jw . The return ( )iR  of the portfolio of the i th investor becomes 

( ) ( ) ( ) ( )0 0
0 1

M M

j ji i j i j
j j

R w R R w R R
= =

= = + −∑ ∑ ,                            (4) 

where 0R  and jR  denote the returns of the riskless asset and the j th risk asset, 

respectively. From Eq. (4), we obtain  
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( ) ( ) ( ) ( )

( )

( )

11 0

0

0

, ,

j

i i i i

M j M

wR R

R R R

R R w

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟′− = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

w R R w . 

Here, ( )iR  denotes the excess return of the portfolio of the i th investor. The wealth 

of the i th investor after one year becomes ( ) ( )( )01 iiW R R+ + . 

We then consider the utility function ( )( )iU R  that expresses the utility of the 

i th investor. We assume that the optimal portfolio of the i th investor is to  
maximize  

( )( ) ( ) ( ) ( ) ( )
1

, 0,
2

i i ii iU R E R Var Rλ λ⎡ ⎤ ⎡ ⎤= − >⎣ ⎦ ⎣ ⎦                   (6) 

where ( )iλ denotes the measure of the risk aversion of the i th investor. As the value 

of ( )iλ  increases, the i th investor considers the risks more carefully. We define 

( )( ),E E
⎡ ⎤′⎡ ⎤ − −⎢ ⎥⎣ ⎦ ⎣ ⎦

α R Ω R α R α .                         (7) 

Then, the expected return ( )iE R⎡ ⎤⎣ ⎦  of ( )iR  and the variance ( )iVar R⎡ ⎤⎣ ⎦  become 

( ) ( ) ( ) ( ) ( ), Vari ii i iE R R⎡ ⎤ ⎡ ⎤′ ′= =⎣ ⎦ ⎣ ⎦w α w Ωw . 

Hence, the optimal portfolio selection problem becomes a quadratic programming 
problem, as follows: 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1

, 0
2

i i i i i i iU R U λ λ′ ′ ′= = − Ω >w R w α w w .      (8) 

The optimal weight of the i th investor becomes 

( )
( )

* 11
i

iλ
−= Ωw α .                                               (9) 

This weight is the optimal solution of the Markowitz mean-variance approach, 
which is obtained by maximizing the expected utility of an investor. 
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Next, we describe the concept of asset market equilibrium. Let us denote the 
market value of the j th asset at the initial time by jV . Then, the equilibrium con-

ditions of the capital market are given by 

( ) ( )
*

0
1 1

1 0
N M

i j i
i j

V w W
= =

⎛ ⎞
= − =∑ ∑⎜ ⎟

⎝ ⎠
                                       (10) 

( ) ( ) { }*

1
, 1, ,

N

j i j i
i

V w W j M
=

= ∈∑ .                                   (11) 

Equation (10) indicates that the total sum of debit and credit in the money market is 
equal to zero. Equation (11) indicates that the market capitalization of stock is equal 
to the sum of the wealth of all investors. From the equilibrium conditions of Eqs. 
(10) and (11), we obtain 

( )
1 1

M N

j i
j i

V W
= =

=∑ ∑ .                                                 (12) 

Then, from Eqs. (11) and (12) we have 

( ) ( ) ( )
( )

( )

{ } { }*

1

1 1

, , , 1, , , 1, ,
N ij

j ji i j iM N
i

j i
j i

WV
v w v i N j M

V W
δ δ

=

= =

= = = ∈ ∈∑
∑ ∑

.  (13) 

Next, we define v  as follows: 

( ) ( )

( ) ( )

( )

( )

( )

( ) ( )
( )

( )

( )

( )

* *
1 111

* 1 1

1 1 1
**

1

1

1

1
,

.

N

i i ii
N N N i

i i i
i i i iN

N i M
i i M

i

N i

i i

w wv

v ww

δ
δ

δ δ
λ λ

δ

δ
λ

λ

=
− −

= = =

=

−

=

⎛ ⎞∑ ⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= = = = =∑ ∑ ∑⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟∑ ⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= ∑
⎜ ⎟
⎝ ⎠

v w Ω α Ω α

. (14) 

Then, from Eq. (14), we obtain 

* λ=α Ω v ,                                               (15) 

where *α  denotes the equilibrium expected excess returns of risk assets. Satchell 
and Scowcroft (2000) derived the value of the risk aversion factor λ  from Eq. (16), 
as follows: 
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( )
( )
( ) ( )

1 *

1* * * 1 * 1 *

1 12 * * 1 1 * 1 * 1

2

p

p p

p

p

−

− − −

− − − − − −

= λ

′′α = = λ = λ

′ ′′σ = = λ λ = λ λ = λ α

α
∴ λ =

σ

v Ω α

v α α Ω α α Ω α

v Ωv α Ω Ω Ω α α Ω αi  (16) 

We can obtain *α  from the market values v  of risk assets and can obtain the co-

variance matrix Ω  of the risk assets and the risk aversion factor λ  from pα  and 

2
pσ  of the market portfolio.    

If an investor believes firmly that the equilibrium expected excess returns of risk 

assets exist in the market, the investor may use *α  as the expected excess returns of 

risk assets. However, practically speaking, *α  is never used directly in the decision 
process of asset management. Instead, investors use their views about the expected 
excess returns of risk assets.  

4   Application of Fuzzy Theory to the Investment Decision 

Process  

4.1   Views of Risk Assets Held by Portfolio Managers 

In general, portfolio managers select individual securities and decide their weights 
in a portfolio based on their views under a council system. Portfolio managers have 
vague views about the excess returns of risk assets. The proposed approach allows 
such vague views to be expressed in either absolute or relative terms among port-
folio managers. We present two sample views as follows: 

View No. 1: When the equilibrium expected excess return of the stock market 
index is 3.5%, a portfolio manager anticipates an absolute excess 
return of 3.0% . 

View No. 2: A portfolio manager anticipates that the stock market index will 
outperform  the bond market index by 5%. 

View No. 2, which is a relative view, is often used practically to express the feelings 
of investors. In order to gauge whether View No. 2 will have a positive or negative  
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effect on stock market index relative to the bond market index, we need evaluate the 
respective equilibrium expected excess returns of the two assets in the view.  

4.2   Applying Fuzzy Theory to the Views of Portfolio Managers 

In this section, we explain through an example how to express the vague views of 
portfolio managers. We assume that the equilibrium expected excess returns 

( )* * * *, ,
t

A B Cα α α=α  of three risk assets A, B, and C are as follows: 

 

*

* *

*

5

4

3

A

B

C

α

α

α

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

α                                                 (17) 

Next, the views of five portfolio managers with respect to the expected excess 
returns of the three risk assets, A, B, and C, are as follows: 

View No. 1  
The first portfolio manager predicts that the excess return of asset A will be 2% 
larger than asset B and that the excess return of asset B will be 4%. 

View No. 2  
The second portfolio manager predicts that the excess return of asset A will be 3% 
smaller than asset B and that the excess return of asset C will be 5%.  

 

View No. 5 
The fifth portfolio manager predicts that the excess return of asset A will be 1% and 
that the excess return of asset C will be 4%.   

Let us denote the expected excess returns of risk assets A, B, and C by 

( )t

A B Cα α α=α  and the views of investors by η . The relationship among the 

relative or absolute views of portfolio managers with respect to risk assets A, B, and 

C is expressed as follows by 5K  equations: 

                              =Aα η ,                                                      (18) 

where A  is a 5 3K ×  matrix. The expected excess returns α  are fuzzy variables. 

Portfolio managers need not state their views about every asset in their investment 

universe. The equilibrium expected excess returns 
*α  play a role as the constraint 

conditions of the reference points. Hence, we can combine Eqs. (17) and (18) as 
follows: 
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*

5 1 0 0

4 0 1 0

3 0 0 1

2 1 1 0

4 0 1 0

3 1 1 0

5 0 0 1

1 1 0 0

4 0 0 1

A

B

C

α
α
α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

α
η

α

                                    (19) 

Generally speaking, in the case of N  portfolio managers and M  risk assets, Eq. 
(18) becomes 

                        =Aα η ,                                                    (20) 

where A  is a NK M×  matrix. The relationship among the views of N  portfolio 

managers of M risk assets is expressed by NK  equations. Hence, we obtain    

*⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Iα
Y α xα

Aη
,                                       (21) 

where we assume that the expected excess return jα  of the j th risk asset is a 

fuzzy variable that reflects the views of portfolio managers and is given as follows: 

( ), 1, ,j j j L
b c j Mα = = , 

where jb  is a center value because jb  takes the highest grade of the membership 

function, which expresses the fuzzy variable jα , and jc  is the spread of the fuzzy 

variable jα . We can assume various membership functions to express a fuzzy 

variable jα . For example, we assume the membership function of x , which is a 

symmetric triangular distribution, as follows:               

( ) max 0,1
j jj j

j
j j

bb
L

c c

αα
μ α

⎛ ⎞−⎛ ⎞−
⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

.                   (22) 
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Here, we define h  as follows:  

j j

j

b
h

c

α −
=                                                      (23) 

and ( )L h  denotes the grade of the membership function. As ( )L h  increases, the 

vagueness decreases. 
Thus, we can obtain fuzzy variable Y  in Eq. (21), as follows: 

( ),
L

=Y bx c x                                                (24) 

( ) ( ) ( )1 1 1, , , , , , , ,
t

M M Mb b c c x x= = =b c x . 

We can also assume that the equilibrium expected excess returns 
*α  are random 

variables. In the present paper, we assume that 
*α  is a fuzzy number as the con-

straint conditions of reference points. 
Then, we consider the following problem to obtain the optimal solution of 

( ),
L

=α b c   

Minimize   ( ) { }
1

M

m
m

J
=

=∑c c x                                                                          (25) 

subject to 

( )
( )

( )

1

1

1

1,2, ,

1, 2, ,

1

0 1, ,

m m m

m m m

m

L h y m M

L h y m M

L h h

c m M

−

−

−

− ≤ =

+ ≥ =

= −

≥ =

bx c x

bx c x
                 (26) 

where ( )J c  denotes the vagueness level of a fuzzy linear regression model, and 

mc x  expresses the aggregate of the width of fuzzy vector mbx . 

Using the expected excess return ( )h h
j j j j j jb c b cα α− ≤ ≤ +  of the j th risk 

asset corresponding to grade ( )L h  of the membership function, we can obtain the 

optimal weight *w  from Eq. (9) when we assign a risk aversion. In addition to the 
value of the center jb , which is the expected excess return of the j th risk asset, we 

can compare the cases of minimum 0.3 0.3j j jb cα = −  and maximum 
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0.3 0.3j j jb cα = +  of the expected excess return in the case of 0.3h = . Since the 

covariance matrix Ω  between the j th and k th assets is relatively stable compared 

with their expected excess returns, we use the values of Ω  obtained by the his-
torical data for the j th and k th assets. In practice, we must carefully consider the 

expected excess returns of risk assets, which greatly affect the performance of asset 
management. 

5   Case Studies 

5.1   Estimation of the Membership Function 

In this section, the proposed approach is described in detail through a number of 
case studies. Generally speaking, it is difficult to obtain practical data on the views 
of portfolio managers. Moreover, the data shown in the following are virtual  

data. As such, we can obtain optimal values of ( ),
L

=α b c : ( )1, , ,Mb b=b  

( )1, , Mc c=c  in Eqs. (25) and (26) by numerical nonlinear optimization (a 

quasi-Newton-Raphson method). In addition, we assume three risk assets, namely, 
A, B, and C, and assume that the values of their equilibrium expected excess returns 

( )* * * *, ,A B Cα α α ′=α  are the same as those given by Eq. (17) for the previous 

sample. 

Case No. 1 
We assume that 10 portfolio managers (Nos. 1 though 10) have various views with 
respect to the expected excess returns of each risk assets, as shown in Table 1. The 
expected excess returns of each risk assets increase by 1 (%) from Portfolio Man-
ager Nos. 1 through 10. 

Table 1 Views and equilibrium expected excess returns of A, B, and C for 10 portfolio 
managers 

 
Asset 

 
Portfolio manager’ view of expected excess returns   (%) 
 
  No1  No2  No3  No4  No5  No6  No7  No8  No9  No10 

Equilibrium 
expected excess 
returns  (%) 
A      B    C  

A 
B 
C 

    0.0    1.0    2.0   3.0    4.0    6.0    7.0    8.0    9.0    10.0  
－1.0    0.0    1.0   2.0    3.0    5.0    6.0    7.0    8.0      9.0 
－2.0 －1.0    0.0   1.0   2.0    4.0    5.0    6.0    7.0      8.0 

5.0   4.0   3.0 
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Here, we assume the membership function of a symmetric triangular distribution 
for the view of the portfolio manager with regard to expected excess returns. The 
results for the case in which 0.0h =  in Eqs. (25) and (26) are shown in Table 2. 
For example, the center value Ab  of the expected excess return of risk asset A is 5.0 

(%) and the spread Ac  is 5.0 (%). 

Table 2 Values of ,j jb c  

  Asset 

(%) 

jb  

jc  

     A       B      C 

     5.0     4.0    3.0 

     5.0     5.0    5.0 

 

Case No. 2  
Table 3 shows the results for the case in which 0.0h = , excluding the views of 
Portfolio Manager Nos. 1 and 10. 

Table 3  Values of ,j jb c  

 Asset  

(%) 

jb  

jc  

A       B      C 

 5.0    4.0    3.0 

 4.0    4.0    4.0 

 

Case No. 3  
Table 4 shows the results for the case in which 0.0h = , excluding the views of 
Portfolio Manager Nos. 1, 2, 9, and 10. 

Table 4   Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A     B     C 

5.0    4.0    3.0 

3.0    3.0    3.0 
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As an example, the membership functions of the expected excess return of risk 
asset A in Tables 2 through 4 are shown in Figure 2. In all cases, the center values 

Ab  of the expected excess returns of risk asset A are identical, i.e., 5 (%). However, 

these spread values become smaller by 1 (%). The spread values depend on the 
maximum value and the minimum value among the views of the portfolio managers.  

Practically speaking, portfolio managers do not have views of the expected ex-
cess returns by same interval. Therefore, let us show the results for the case in which 
the differences between the expected excess returns of each portfolio managers are 
different. We assume that 10 portfolio managers have views concerning the ex-
pected excess returns of each risk asset, as shown in Table 5. 

0

0.2

0.4

0.6

0.8

1

1.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

μ

 

Fig. 2 Membership functions of risk asset A in Tables 2 through 4 

Table 5 Views and equilibrium expected excess returns of A, B, and C for 10 portfolio 
managers 

 
Asset 

 
Portfolio manager’ view of expected excess returns   (%) 
 
   No1  No2  No3  No4  No5  No6  No7  No8  No9  No10 

Equilibrium 
expected excess 
returns  (%) 
A     B    C  

A 
B 
C 

    0.0    2.6    3.6    4.6    4.8    5.2   5.4    6.4    7.4    10.0  
－1.0    1.6    2.6    3.6    3.8    4.2   4.4    5.4    6.4      9.0 
－2.0    0.6    1.6    2.6    2.8    3.2   3.4    4.4    5.4      8.0 

5.0  4.0  3.0 
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Case No. 4 
Table 6 shows the results for the case in which 0.0h =  in Eqs. (25) and (26). 

Table 6  Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A      B      C 

5.0    4.0    3.0 

5.0    5.0    5.0 

 

Case No. 5  
Table 7 shows the results for the case in which 0.0h = , excluding the views of 
Portfolio Manager Nos. 1 and 10. 

Table 7   Values of ,j jb c   

  Asset  

(%) 

jb  

jc  

A      B      C 

5.0    4.0    3.0 

2.4    2.4    2.4 

 

Case No. 6  
Table 8 shows the results for the case in which 0.0h = , excluding the views of 
Portfolio Manager Nos. 1, 2, 9, and 10. 

Table 8   Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A      B      C 

5.0    4.0    3.0 

1.4    1.4    1.4 

 
As an example, the membership functions of expected excess returns of risk asset 

A in Tables 6 through 8 are shown in Figure 3. In all cases, the center values Ab  of 

the expected excess return of risk asset A are 5 (%). However, since the spread 
values depend on the maximum value and the minimum value among the views of 
the portfolio managers, the spread values decrease by different intervals.  



Application of Fuzzy Theory to the Investment Decision Process 379
 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

μ

 

Fig. 3 Membership functions of risk asset A in Tables 6 through 8 

Next, let us consider the cases of the relative views between assets of portfolio 
managers as shown in Table 9.   

Table 9 Views and equilibrium expected excess returns of A, B, and C for 10 portfolio 
managers 

 
Asset 

 
Portfolio manager’ relative view of expected excess returns   

(%) 
No1  No2  No3  No4  No5  No6  No7  No8  No9  No10 

Equilibrium 
expected excess 
returns (%) 
A      B   C  

A－B 
A－C 
B－C 

 1.0    1.0    1.0    1.0   1.0 
 2.0    2.0    2.0    2.0   2.0     2.0    2.0    2.0   2.0     2.0 
                                              1.0    1.0    1.0   1.0     1.0 

5.0  4.0  3.0 
 
 

 
Case No. 7 
We assume the membership function of a symmetric triangular distribution with 
respect to the expected excess returns of risk assets A, B, and C. The results for the 
case in which 0.0h =  in Eqs. (25) and (26) are shown in Table 10.  

Table 10 Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A      B      C 

5.0    4.0    3.0 

0.0    0.0    0.0 
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Next, let us consider the case shown in Table 11. 

Table 11  Views and equilibrium expected excess returns of A, B, and C for 10 portfolio 
managers 

 
Asset 

 
Portfolio manager’ relative view of expected excess returns   

(%) 
  No1   No2  No3  No4  No5    No6   No7  No8  No9  No10 

Equilibrium 
expected excess 
returns  (%) 
A      B    C  

A－B 
A－C 
B－C 

－2.0 －1.0   0.0     1.0   2.0 
－2.0 －1.0   0.0     1.0   2.0  －2.0 －1.0   0.0    1.0      2.0 
                                               －2.0 －1.0   0.0    1.0      2.0 

5.0  4.0  3.0 
 
 

 
Case No. 8 
Table 12 shows the results for the case in which 0.0h = . The center values jb  of 

the expected excess return of all risk assets are 4.0 (%) and the spreads jc are 1.0 (%). 

Table 12  Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A      B      C 

4.0    4.0    4.0 

1.0    1.0    1.0 

 
Finally, we show the results for the case in which 10 portfolio managers have a 

mixture of absolute and relative views about the expected excess returns of each 
risk asset, as shown in Table 13. Table 14 shows the results for the case in which 

0.0h = . The centers jb and spreads jc  of the expected excess returns of risk for 

assets A, B, and C are not the same. Moreover, the center Cb  of the expected excess 

returns of risk for asset C is different from the equilibrium expected excess return. 

Table 13 Views and equilibrium expected excess returns of A, B, and C for 10 portfolio 
managers 

 
Asset 

 
Portfolio manager s’ absolute and relative views (%) 
 
  No1   No2  No3  No4   No5  No6   No7  No8  No9  No10 

Equilibrium 
Expected excess 
returns 
A   B   C  

A－B 
A－C 
A 
B 
C 

－2.0 －1.0    0.0    1.0    2.0  
                                              －2.0 －1.0    0.0    1.0     2.0 
    3.0     4.0    6.0    7.0 
                                         3.0    4.0     5.0 
                                                                     2.0   3.0      4.0 

5.0  4.0  3.0 
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Case No. 9 

Table 14   Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A      B      C 

5.0    4.0    3.5 

2.0    1.0    1.5 

5.2   A Fuzzy Information Criterion 

By the way, it is not clear whether the membership function of a symmetric trian-
gular distribution expresses the true membership function of portfolio managers’ 
views. Some portfolio managers may have views that are off the mark. Such outliers 
distort the distribution of the membership function. It is difficult to estimate the 
distribution of the membership function by the fuzzy linear regression model given 
by Eqs. (25) and (26).   

Therefore, we propose a fuzzy information criterion (FIC) to select the mem-
bership function that properly expresses the distribution of the observed fuzzy data. 
Let us denote an unknown true membership function by G  and a hypothetical 

membership function by F . The observed data { }1 2, , ,n nx x x=x  are gener-

ated from an unknown true membership function G . The criteria of goodness with 
respect to the hypothetical membership function F is to evaluate the fitness for the 
distribution of an unknown true membership function G . Therefore, we standard-
ize each membership function as follows: 

( ) ( ),j j
j j

N G x M F x= =∑ ∑  

( ) ( ) ( ) ( )
,

j j
j j

G x F x
g x f x

N M
= =                            (27) 

We use Kullback-Leibler information (K-L information) (1951) as a measure of the 

fitness between membership functions as follows: 

( ) ( )
( ) ( ) ( )

( )
; log logg

g x g x
I g f dg x E

f x f x

⎧ ⎫ ⎡ ⎤⎪ ⎪= =∫ ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦

                  (28) 

where gE  is the weighted average by the standardized grades of an unknown true 

membership function g .  
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The K-L information has the following characteristics: 

(i) ( ); 0I g f ≥                                                                                                  (29) 

(ii) ( ) ( ) ( ); 0I g f g x f x= ⇔ =                                                                (30) 

Based on these characteristics, as the value of the K-L information becomes 
smaller, the distribution of the hypothetical membership function f becomes more 

similar to an unknown true membership function g . In other words, we can evalu-

ate the fitness of the hypothetical membership function f  based on the value of the 

K-L information. However, generally, it is limited to use K-L information values. 
Since the K-L information involves an unknown true distribution of the member-
ship function g , it is impossible to calculate the value directly.  

Then, the K-L information is divided as follows; 

( ) ( )
( ) ( ) ( ); log log logg g g

g X
I g f E E g X E f X

f X

⎡ ⎤
= = −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦
.           (31) 

Since the first term is a constant that depends on unknown true membership func-
tion g , it is sufficient to consider only the second term when evaluating the hypo-

thetical membership function f . As the second term increases, the K-L information 

value becomes smaller.  

Then, since the value of ( )loggE f X⎡ ⎤⎣ ⎦  depends on the unknown true mem-

bership function g , we cannot calculate it directly. However, if we can obtain a 

meaningful estimate of unknown true membership function g from the data, we can 
use this estimate as an estimated criteria of the membership function. Therefore, we 

assume the membership function ( ) ( )1
1,2, ,g x n

nτ τ= = , which has the same 

grade 
1

n
 for all of the observed data { }1 2, , ,n nx x x=x . We refer to this as an 

empirical membership function. Substituting the empirical membership function g  

for an unknown true membership function g , we obtain 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1
log log log log

n n

g
E f X f x d g x g x f x f x

nτ τ τ
τ τ= =

= = =⎡ ⎤ ∑ ∑∫⎣ ⎦ .   (32) 

Here, we define  

( ) ( ) ( )
1

log log
n

n f x d g x f xτ
τ =

= ∑∫ .                                 (33) 
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We then assume the membership function ( ) ( )| pf x Rθ ∈Θ ⊂θ , which has 

an unknown p-dimension parameter ( )1 2, , , pθ θ θ ′=θ . Next, we define  

( ) ( )
1

lo g |
n

l f xτ
τ =

= ∑θ θ .                                      (34) 

We can obtain an estimate of ∈Θθ  by maximizing ( )l θ  as follows: 

( ) ( )maxl l
θ∈Θ

=θ θ .                                                (35) 

We can evaluate the fitness of the membership function ( )|f x θ  by comparing to 

the value of ( )l θ . In general, ( )l θ  has a bias as an estimation value of 

( )log | jg jnE f z⎡ ⎤
⎣ ⎦θ , and the size of its bias changes depending on the dimension 

of the parameter θ .   
Finally, we propose a fuzzy information criterion (FIC) considering the revision 

of the bias between ( )log | jg jnE f z⎡ ⎤
⎣ ⎦θ  and ( )

1
log |

n
f xτ

τ =
∑ θ  as follows: 

( )
1

2 log | 2
n

FIC f x pτ
τ =

= − +∑ θ .                                     (36) 

Basically, this concept of FIC is similar to the Akaike information criterion used in 
statistics. The FIC is based on the assumption that ( ) ( )0|g x f x= θ  for 0 ∈Θθ , 

and the law of large numbers functions in the same manner as in statistics. In the 
present paper, we omit the process of the guidance of the FIC. 

We then show the values of FIC for some different membership functions based 
on the views of the 10 portfolio managers shown in Table 5. The results obtained by 
a fuzzy linear regression model assuming ( )1 0.1 0.9L− =  in Eqs. (25) and (26) are 

shown in Table 15 and Figure 4. The grade of the maximum and the minimum value 
among the views of portfolio managers become 0.1. 

Table 15 Values of ,j jb c   

 Asset  

(%) 

jb  

jc  

A      B      C 

5.0    4.0    3.0 

5.6    5.6    5.6 
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Fig. 4  Membership function of risk asset A in Table 5 
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Fig. 5 Membership function of risk asset A 
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Concerning the membership function of Table 15, the value of ( )l θ  in Eq. (35) 

is 86.6−  and the value of FIC is 179.24. If we assume the membership function 

shown in Figure 5, then the value of ( )l θ  is –98.3 and the value of FIC is 202.6. 

Hence we can select the membership function shown in Figure 4 in which the value 
of FIC is smaller .  

Moreover, we can assume a normal fuzzy variable with the membership function 
defined by 

( ) ( )2

2
exp

j j

j
j

b

c

α
μ α

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

.                                  (37) 

For example, in Fig. 6, we show the membership function corresponding to a 
normal distribution for the case in which ( ) ( )5 % , 5.6 %A Ab c= =  in Table 15. 

The value of ( )l θ  is –80.4 and the value of FIC is 166.71. Comparing the values of 

( )l θ  and FIC, the normal distribution in Figure 6 is judged to be the best among the 

distributions of the membership function shown in Figures 4 through 6. 
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Fig. 6 Membership function corresponding to the normal distribution of risk asset A 
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6   Conclusion 

Black and Litterman (1991) proposed an approach to combine the equilibrium 
expected excess returns of risk assets and the views of portfolio managers using a 
regression model. When each view is incorporated, their approach requires an 
intuitive level of confidence of the investor. Practical speaking, it is difficult to 
input an intuitive level of confidence of an investor.  

On the other hand, the proposed fuzzy approach to obtain the expected excess 
returns of risk assets is an improvement over the traditional mean-variance ap-
proach in that we incorporate the vague views of an investor concerning absolute or 
relative excess returns on different assets. Although the proposed approach brings 
several new features to the traditional asset allocation problem, the main contribu-
tion of the proposed approach is that investors are able to compare and combine 
their vague outlooks for risk assets with equilibrium expected excess returns. The 
use of the equilibrium expected excess returns associated with the capital market as 
a reference point is very meaningful for portfolio managers. The proposed approach 
enables a group of portfolio managers of pension funds to obtain an important 
solution that realizes optimal expected excess returns of risk assets by specifying 
the vague views of portfolio managers as a fuzzy number. 
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Decision Making Techniques in Political 
Management 

Anna M. Gil-Lafuente and José M. Merigó* 

Abstract. In this paper, we develop a new decision making model and apply it in 
political management. We use a framework based on the use of ideals in the deci-
sion process and several similarity measures such as the Hamming distance, the 
adequacy coefficient and the index of maximum and minimum level. For each 
similarity measure, we use different types of aggregation operators such as the 
simple average, the weighted average, the ordered weighted averaging (OWA) op-
erator and the generalized OWA (GOWA) operator. This new approach considers 
several attributes and different scenarios that may occur in the uncertain environ-
ment. We see that depending on the particular type of aggregation operator used 
the results may lead to different decisions. 

Keywords: Decision making, OWA operator, Hamming distance, Political  
management. 

1   Introduction 

Decision making problems are very common in the literature (Figueira et al., 
2005; Gil-Aluja, 1999; Kaufmann and Gil-Aluja, 1986; Merigó, 2008) and can be 
applied in a lot of fields. For example, we can use them for the selection of poli-
cies in a government, in a company, etc. Selecting the best policy in a government 
is one of the key problems to be solved in order for a good development of a coun-
try. There are a lot of different types of policies such as fiscal policies, monetary 
policies and commercial policies. In order to select the optimal policy, the gov-
ernment has to develop a selection process because they have to choose the best 
policy in each moment. Among the great variety of studies existing in selection, 

                                                           
*Anna M. Gil-Lafuente . José M. Merigó 
Department of Business Administration, University of Barcelona, 
Av. Diagonal 690, 08034 Barcelona, Spain 
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this work will follow those models that develop the decision process using ideals 
(Gil-Aluja, 1998; 1999; A.M. Gil-Lafuente, 2005; A.M. Gil-Lafuente and Merigó, 
2006; J. Gil-Lafuente, 2001; 2002; Merigó, 2008; Merigó and A.M. Gil-Lafuente, 
2006; 2007a; 2008a; 2008b; 2008c; 2008d; 2010). 

Sometimes, depending on the situation that happens in the future, the gov-
ernment has to adapt to different necessities according to the environment of the 
economy and this also affects their needs regarding policy management. The 
aim of this paper is to develop different techniques to solve this problem.  
Our starting point is a selection process based on attributes where we assume 
that the requirements for each attribute is different depending on the environ-
ment of the economy. This methodology follows A.M. Gil-Lafuente and Merigó 
(2006) with the difference that now instead of considering a selection process of 
financial products we analyze the selection of policies. Note that we may con-
sider a wide range of policies such as fiscal policies, monetary policies and 
commercial policies. 

This selection process is based on the use of ideals. Thus, we use several simi-
larity measures for analyzing the information. Particularly, we consider the Ham-
ming distance (Hamming, 1950), the adequacy coefficient (Kaufmann and  
Gil-Aluja, 1986; 1987) and the index of maximum and minimum level (J.  
Gil-Lafuente, 2001; 2002). Moreover, we also use several aggregation operators in 
the analysis. We use the average, the weighted average (WA), the ordered 
weighted average (OWA) (Yager, 1988) and the generalized OWA (GOWA) 
(Karayiannis, 2000; Merigó, 2008; Yager, 2004). By using OWAs (Beliakov et 
al., 2007; Fodor et al., 1995; Merigó, 2008; Merigó and A.M. Gil-Lafuente, 
2009a; 2009b; Yager, 1993; Yager and Kacprzyk, 1997), we are able to provide a 
parameterized family of aggregation operators that range from the minimum to the 
maximum. 

This paper is organized as follows. In Section 2 we briefly revise some basic 
preliminaries. Section 3 presents the new decision making approach by using vari-
ous types of aggregation operators. Section 4 develops a numerical example of the 
new decision model and Section 5 summarizes the main conclusions of the paper.  

2   Preliminares 

In this Section, we briefly describe some basic concepts to be used throughout the 
paper such as the Hamming distance, the adequacy coefficient, the index of 
maximum and minimum level and their extensions with the OWA operator. 

2.1   The Hamming Distance 

The Hamming distance (Hamming, 1950) is a useful technique for calculating the 
differences between two elements, two sets, etc. For two sets A and B, the 
weighted Hamming distance can be defined as follows. 
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Definition 1. A weighted Hamming distance of dimension n is a mapping WHD: 

Rn → R that has an associated weighting vector W of dimension n with ∑ =
n
j jw1  = 

1 and wj ∈ [0, 1], such that: 
 

  WHD  (A, B) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ −
=

n

i
iii baw

1
||                                                     (1) 

 
where ai and bi are the ith arguments of the sets A and B respectively.  

Note that the formulations shown above are the general expressions. For the 
formulation used in fuzzy set theory see for example (Kaufmann, 1975; Szmidt 
and Kacprzyk, 2000). Note also that if wi = 1/n, for all i, then, the weighted Ham-
ming distance becomes the normalized Hamming distance. 

2.2   The Adequacy Coefficient 

The adequacy coefficient (Gil-Aluja, 1998; A.M. Gil-Lafuente, 2005; J. Gil-
Lafuente, 2002; Kaufmann and Gil-Aluja, 1986; 1987) is an index used for calcu-
lating the differences between two elements, two sets, etc. It is very similar to the 
Hamming distance with the difference that it neutralizes the result when the com-
parison shows that the real element is higher than the ideal one. For two sets A and 
B, the weighted adequacy coefficient can be defined as follows. 

 
Definition 2. A weighted adequacy coefficient of dimension n is a mapping K: Rn 

→ R that has an associated weighting vector W of dimension n with ∑ =
n
j jw1  = 1 

and wj ∈ [0, 1], such that: 
 

           K (A, B) = ∑ +−∧
=

n

i

k
iiiw

1

)( ]1(1[ μμ                                   (2) 

 
where ai and bi are the ith arguments of the sets A and B respectively.  

Note that if wi = 1/n, for all i, then, the weighted adequacy coefficient becomes 
the normalized adequacy coefficient. 

2.3   The Index of Maximum and Minimum Level 

The index of maximum and minimum level is an index that unifies the Hamming 
distance and the adequacy coefficient in the same formulation (J. Gil-Lafuente, 
2001; 2002). In fuzzy set theory, it can be useful, for example, for the calculation 
of distances between fuzzy sets, interval-valued fuzzy sets or intuitionistic fuzzy 
sets. For two sets A and B, the weighted index of maximum and minimum level 
can be defined as follows. 
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Definition 3. A WIMAM of dimension n is a mapping K: Rn → R that has an as-

sociated weighting vector W of dimension n with ∑ =
n
j jw1  = 1 and wj ∈ [0, 1], 

such that: 

η (A, B) = [ ]∑ −∨×+∑ −×
v

j
iii

u

j
iii vvvZuuuZ ))()((0)()()()( )()( μμμμ         (3) 

where ai and bi are the ith arguments of the sets A and B respectively.  
Note that if wi = 1/n, for all i, then, the weighted index of maximum and mini-

mum level becomes the normalized index of maximum and minimum level. 

2.4   The OWA Operator 

The OWA operator (Yager, 1988) provides a parameterized family of aggregation 
operators which have been used in many applications (Beliakov et al., 2007; 
Karayiannis, 2000; Merigó, 2008; Xu, 2005; Yager, 1993; 2004; Yager and 
Kacprzyk, 1997). It can be defined as follows. 
 
Definition 4. An OWA operator of dimension n is a mapping OWA: Rn → R that 
has an associated weighting vector W of dimension n having the properties: 
 

1) wj ∈ [0, 1] 

2) ∑ =
n
j jw1  = 1 

 
and such that 

OWA (a1, a2,…, an) = ∑
=

n

j
jjbw

1
                                                  (4) 

where bj is the jth largest of the ai.  
From a generalized perspective of the reordering step we can distinguish be-

tween the descending OWA (DOWA) operator and the ascending OWA (AOWA) 
operator. Note that the weights of these two operators are related by wj = w*n−j+1, 
where wj is the jth weight of the DOWA and w*n−j+1 the jth weight of the AOWA 
operator. 

Note that the OWA operator can be generalized by using generalized means, 
obtaining the generalized OWA (GOWA) operator. It can be defined as follows. 
 
Definition 5. A GOWA operator of dimension n is a mapping GOWA: Rn → R 
that has an associated weighting vector W of dimension n having the properties: 
 

1) wj ∈ [0, 1] 

2) ∑ =
n
j jw1  = 1 
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and such that 

GOWA (a1, a2,…, an) = 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jjbw                                     (5) 

where bj is the jth largest of the ai and λ is a parameter such that λ ∈ (−∞, ∞). 

3   Decision Making in Political Management 

In this section, we describe the decision making process to follow in political 
management. First, we present the decision making approach and then present 
some aggregation operators that can be used in the process.  

3.1   Decision Making Approach 

We introduce a new type of decision making approach. This type of selection is 
very similar to the traditional methods based on different attributes with the differ-
ence that here it can occur different scenarios in the future. Thus, the selection of 
policies needs to consider this aspect and search for the policy that better adapts to 
the different situations that could occur. The mathematical process will be equal 
with the difference that here we will have more than one ideal fuzzy subset. With 
this additional information, the fuzzy subsets of each product will be compared 
with all the ideal fuzzy subsets that we have. Therefore, the process to follow will 
consist in the following steps (Gil-Aluja, 1998; A.M. Gil-Lafuente and Merigó, 
2006; J. Gil-Lafuente, 2002): 

Step 1: Analysis and determination of the significant characteristics of the in-
teresting policies for the government. Theoretically, it will be represented as: C = 
{C1, C2,…, Ci, …, Cn}, where Ci is the ith characteristic to consider in each policy 
and we suppose a limited number n of required characteristics. 

Step 2: Identification of the different possible scenarios that could occur in the 
future where we should need different ideal fuzzy subsets. These z fuzzy subsets 
will be considered as: h = 1, 2,…, z; where each fuzzy subset would represent the 
necessities of the government in each situation h.  

Step 3: Fixation of the ideal levels of each significant characteristic in order to 
form the different ideal policies for all the possible situations that could occur. 
Mathematically, it will be represented as: 

 

 C1 C2 … Ci … Cn 

Ph = μ1
h μ2

h … μi
h … μn

h 
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where Ph is the hth ideal policy expressed by a fuzzy subset, Ci is the ith character-
istic to consider and μi

h
 ∈ [0, 1]; i = 1, 2, …, n, is the valuation between 0 and 1 

for the ith characteristic of the hth ideal policy. 
Step 4: Grouping of all the different ideal policies in one fuzzy subset.  

 C1 … Cn … C1 … Cn 

P1,…,z = μ1
1 … μn

1 … μ1
z … μn

z 

where P1,2,…,z refers to the grouping of the hth ideal policy expressed by a fuzzy 
subset, Ci is the ith characteristic to consider and μi

h
 ∈ [0, 1]; i = 1, 2, …, n, is the 

valuation between 0 and 1 for the ith characteristic of the hth ideal policy. 
Step 5: Fixation of the real valuation of each characteristic for all the different 

policies considered. Theoretically, it is represented as: 

 C1 C2 … Ci … Cn 

Pj = μ1
(k) μ2

(k) … μi
(k) … μn

(k) 

with k = 1, 2, …, m; where Pk is the kth policy expressed by a fuzzy subset, Ci is 
the ith characteristic to consider and μi ∈ [0, 1]; i = 1, 2, …, n, is the valuation be-
tween 0 and 1 for the ith characteristic of the kth policy. 

Step 6: Construction of a fuzzy subset for each policy that is adapted to the 
ideal policy with different situations. It consists in creating a fuzzy subset with the 
subset of the policy k repeated z times.   

 C1 … Cn … C1 … Cn 

Pj
(p) = μ1

(j) … μn
(j) … μ1

(j) … μn
(j) 

  1  …  z  

Step 7: Comparison between the ideal policy and the different policies and  
determination of the level of removal.  

In this step, we have to express numerically the approximation between the 
ideal policy and the different policies considered. To solve this problem, we have 
a lot of different selection indexes that can be used. In this paper, we will use the 
Hamming distance, the adequacy coefficient and the index of maximum and 
minimum level. In these three cases, we will consider the situation that the charac-
teristics have the same level of importance, the situation with different degrees of 
importance, the situation found with the OWA operator and the general situation 
found with the GOWA operator. In the next sections, we will consider in more de-
tail the use of these indexes in the selection of policies. 

Step 8: Adoption of decisions according to the results found in the previous 
steps. 
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3.2   The Hamming Distance in Political Management 

A first index that can be used in the selection process is the Hamming distance. 
Here we consider four cases where the Hamming distance could be used. First, we 
could consider the case where the characteristics have the same level of impor-
tance. Thus, we could define the Hamming distance as:            

δ(P1,2,…z, Pk
(p)) =  ∑∑

= =
−

z

h

n

i

k
i

h
izn 1 1

)(1 μμ                                          (6) 

with:  i = 1,2,…,n;  and  ∀ (P1,2,…,z, Pk
(p))  ∈  μi

h
, μi

(k) ∈ [0, 1].  
Analysing the results, we see that they refer to the removal of each policy to the 

ideal one for all the different situations that could occur. The result will be be-
tween 0 and 1. Values near 0 imply that the policy is interesting because it has 
similar valuations than the ideal one. Values near 1 will mean that the policy is not 
interesting for the company. 

A second case that we could consider is the case where the characteristics have 
different degrees of importance. In order to use different degrees of importance, 
we can use a convex weighting so the result is still in [0, 1]: 

Vi
h  =  

∑ ∑= =
z
h

n
i

h
i

h
i

w

w

1 1

                                          (7) 

where Vi
h refers to the degree of importance of the characteristic Ci

h, wi
h is the 

valuation done for the characteristic Ci
h and ∑ ∑= =

z
h

n
i

h
iw1 1  is the sum of all the 

valuations done for all the characteristics of each policy. 

From this convex weighting, we could obtain the Hamming distance as: 

π(P1,2,…,z, Pk
(p)) = ∑∑
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with: i = 1,2,…,n; k = 1,2,…,m; and  ∀ (P1,2,…,z, Pk
(p))  ∈  μi

h
, μi

(k) ∈ [0, 1].  
A third case could be the introduction of the OWA operator in the selection 

process in order to introduce the attitudinal character of the decision maker in the 
decision. The OWA operator (Yager, 1988) is an aggregation operator that pro-
vides a parameterized family of aggregation operators between the maximum and 
the minimum that has been applied in a lot of fields (Merigó, 2008; Yager and 
Kacprzyk, 1997). In this case, using the same methodology as A.M. Gil-Lafuente 
and Merigó (2006), the formulation is: 

β(P1,2,…,z, Pk
(p)) = ∑

=

zn

j
jj Dw

1
                                           (9) 



396 A.M. Gil-Lafuente and J.M. Merigó
 

where Dj represents the jth smallest of the |μi
h – μi

(k)|, because in distances, the best 

alternative is the one with the smallest distance to the ideal, and k = 1,2,…,m.  

As we can see, it has been introduced an ascending OWA (AOWA) operator in 
the Hamming distance because the reordering step is ascendant. And wj represents 

a weighting vector W with wj ∈ [0, 1]  and  ∑ =

zn

j
jw

1
 = 1. 

With this weighting vector, we can calculate the attitudinal character (Yager, 
1993) as:  

α(W) = ∑
=
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⎤
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−
−zn

j
jw

zn

jzn

1 1                                        (10) 

As we can see: α ∈ [0, 1]. Values near 1, show that the selection process has been 
developed with a high level of optimism, while values near 0, show that the selec-
tion process has been developed with a low level of optimism or with a high level 
of pessimism.  

This instrument can be very useful when the result obtained is not clear and the 
decision maker wants to reconsider the decision changing his degree of optimism. 
Note that by choosing a different manifestation of the weighting vector, we are 
able to obtain different types of aggregation operators (Merigó, 2008; Yager, 
1993; Yager and Kacprzyk, 1997).  

A fourth case could be the introduction of the GOWA operator in the selection 
process in order to introduce a generalized version of the OWA operator. The 
GOWA operator (Karayiannis, 2000; Yager, 2004) includes a wide range of OWA 
operators such as the geometric OWA, the quadratic OWA and the harmonic 
OWA operator. Following Merigó (2008) we could formulate this situation as:  

β (P1,2,…,z, Pk
(p)) = 

λ
λ
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where Dj represents the jth smallest of the |μi
h – μi

(k)|, because in distances, the best 
alternative is the one with the smallest distance to the ideal, and k =1,2,…,m, and 
λ is a parameter such that λ ∈ (−∞, ∞). 

As it can be seen, it has been introduced an ascending GOWA (AGOWA) op-
erator (Merigó, 2008; Merigó and A.M. Gil-Lafuente, 2008b) in the Hamming dis-
tance because the reordering step is ascendant. It is important to note that we will 
not include in the aggregation the Dj = 0; ∀j. Here, wj represents a weighting vec-

tor with wj ∈ [0, 1]  and  ∑ =

zn

j
jw

1
 = 1. 

By choosing a different manifestation of the weighting vector, we are able to 
obtain different types of aggregation operators (Merigó, 2008; Yager, 1993). 
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3.3   The Adequacy Coefficient in Political Management 

Another index that could be used in the selection process is the adequacy coeffi-
cient. Here, we also consider four cases where the adequacy coefficient could be 
used. First, we could consider the case where the characteristics have the same 
level of importance. In this case, the adequacy coefficient is as follows:  

K (Pk
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)( )1(1
1 μμ                                (12) 

with: k = 1,2,…,m.  

Concerning the results obtained, we should note that they refer to the approxi-
mation of the policies to the ideal. Thus, our preference relation will be con-
structed in a decreasing order being the highest value the best result.  

Analogously to this index, we could calculate its equivalent removal index. Its 
formulation for the case of policies is: 

Q (Pk
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In this case, the preference relation will be ascendant. That is, we will select the 
lowest result. Obviously, we see that the adequacy coefficient and the removal in-
dex are inversely related:   

K(Pk
(p) → P1,2,…,z) = 1 −  Q(Pk

(p) → P1,2,…,z)                       (14) 

A second case that we could consider is the case where the characteristics have 
different degrees of importance. In order to use different degrees of importance, 
we could use a convex weighting so the result is still in [0, 1].  

For this case, we will use the same convex weighting as in Eq. (2). Thus, the 
adequacy coefficient is: 
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And for the removal index: 

Q(Pk
(p)→P1,2,…,z) = [ ]∑∑
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A third case that could be used, would be the introduction of the OWA operators 
in the adequacy coefficient. Using the same methodology as in Merigó and A.M. 
Gil-Lafuente (2008c; 2008d; 2010), the formulation is: 
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K(Pk
(p) → P1,2,…,z) = ∑

=

zn

j
jj Kw

1
                                  (17) 

where Kj represents the jth largest of the [1 ∧ (1 - μi
h + μi

(k))], and k = 1,2,…,m.  
In this case, the reordering step is done in a decreasing way as the best result is 

the largest number. Therefore, the type of OWA operator used is the descending 
OWA (DOWA) operator: K1 ≥ K2 ≥… ≥ Kzn. The final result will be a number be-
tween [0, 1], being the maximum possible result 1. And wj represents a weighting 

vector W, with wj ∈ [0, 1]  and  ∑ =

zn

j
jw

1
 = 1. Note that in this case, we could 

also calculate the attitudinal character α(W) and different particular cases (Merigó, 
2008; Yager, 1993). Note also that it is possible to calculate the removal index in a 
similar way as in Eq. (13) and (14). 

Finally, a fourth case that could be used with the adequacy coefficient would be 
the introduction of the GOWA operator in the index in order to use the attitudinal 
character of the decision maker in the selection process. Here, the formulation 
would be: 

K(Pk
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where Kj represents the jth largest of the [1∧ (1 - μi
h + μi

(k))], and k = 1,2,…,m.  
In this case, the reordering step is developed in a decreasing order as the best 

result is the largest number. Thus, the type of GOWA operator used is the de-
scending GOWA (DGOWA) operator: K1 ≥ K2 ≥… ≥ Kzn. The final result will be a 
number between [0 ,1], being the maximum possible result 1. And wj represents a 

weighting vector with wj ∈ [0,1]  and  ∑ =

zn

j
jw

1
 = 1. 

3.4   The Index of Maximum and Minimum Level in Political 
Management 

The third index that we consider in the selection of polyvalent policies is the index 
of maximum and minimum level (J. Gil-Lafuente, 2001; 2002). A first case that 
we could consider is the case where all the characteristics have the same degree of 
importance. The formulation is as follows: 
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where u refers to the characteristics to be considered with the Hamming distance 
and v refers to the characteristics to be considered with the adequacy coefficient.  

We should note that u + v = zn. That is, the sum of both groups of characteris-
tics is equal to the total number of characteristics.   

As in the previous indexes, we could consider the case where the characteristics 
have different levels of importance. To solve this problem, we should introduce a 
version of Eq. (2) in Eq. (19). Thus, the formulation is:  

  η(Pk
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with Zi
h = wi

h / ∑ ∑= =
z
h

n
i

h
iw1 1 ; which represents the level of importance of the 

characteristic Ci
h.    

Analogously to this removal index, we could calculate the approximation index 
as: 

υ ( Pk
(p) → P1,2,…,z) = 1 - η (Pk

(p) → P1,2,…,z)                                     (21) 

A third case that we could consider is the introduction of the OWA operator in the 
index of maximum and minimum level in order to modify the neutrality of the in-
dex. Using the same methodology as Merigó (2008) and Merigó and A.M. Gil-
Lafuente (2006), the formulation is: 

S (Pk
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where Sj represents the jth smallest of all the |μi
h – μi

(k)| and the [0 ∨ (μi
h - μi

(k))]; 
with k = 1,2,…,m.  

In this case, an AOWA operator is used in the reordering step (S1 ≤ S2 ≤… ≤ Szn) 
with the particularity that it always selects the jth smallest of all the possible values, 
independently if it is a result coming from the Hamming distance or from the re-
moval index of the adequacy coefficient. Here, wj represents a weighting vector W, 

with  wj ∈ [0, 1]  and  ∑ =

zn

j
jw

1
 = 1, and we could also calculate the attitudinal 

character α(W) and different particular cases (Merigó, 2008; Yager, 1988; 1993). 
Finally, the last case we will consider in this paper is the introduction of the 

GOWA operator in the index of maximum and minimum level in order to change 
the neutrality of the selection process. Here, the formulation will be: 
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where Sj represents the jth smallest of all the |μi
h – μi

(k)| and the [0 ∨ (μi
h - μi

(k))]; 
with k = 1,2,…,m.  



400 A.M. Gil-Lafuente and J.M. Merigó
 

In this case, an AGOWA operator is used in the reordering step (S1 ≤ S2 ≤… ≤ 
Szn) with the particularity that it always selects the jth smallest of all the possible 
values, independently if it is a result coming from the Hamming distance or from 
the removal index of the adequacy coefficient. It is important to note that we will 
not include in the aggregation the Sj = 0; ∀j. For this case, wj represents a weight-

ing vector, with wj ∈ [0, 1]  and  ∑ =

zn

j
jw

1
 = 1. 

4   Numerical Example 

In this Section, we present a simple numerical example where it is possible to see 
the applicability of the new approach in a decision making problem regarding the 
selection of policies. We focus on the selection of monetary policies where a  
government is looking for their optimal policy the next year. We will use the simi-
larity measures commented above. That is, the Hamming distance, the adequacy 
coefficient and the index of maximum and minimum level. We also use several 
aggregation operators in the similarity measures such as the simple average, the 
weighted average, the OWA operator and various particular cases.  

Step 1: Assume a government is looking for its general strategy the next year 
concerning monetary political management. In order to analyze the information, 
the government uses a group of experts to assess the information. After careful 
evaluation of the information, the group of experts of the government considers 
the following monetary policies that could be developed according to the necessi-
ties of the country. 

• A1 = Develop a strong contractive monetary policy. 
• A2 = Develop a contractive monetary policy. 
• A3 = No not develop any change in the monetary policy. 
• A4 = Develop an expansive monetary policy. 
• A5 = Develop a strong expansive monetary policy. 

The economic evaluation of carrying out the previous monetary policies can be 
described considering the following characteristics C. 

• C1 = Benefits. 
• C2 = Risk of the strategy. 
• C3 = Other variables. 

 
Step 2: With this information, the group of experts of the government estab-

lishes the ideal results that the ideal policy should have. They consider three dif-
ferent ideals depending on the economic situation the next period. In summary, 
they consider that the economic situation for the next year can be bad, regular or 
good. These results are represented in Table 1. Note that we give valuations to 
each characteristic depending on the economic situation found the next period. 
Thus, we have Cih where i is the ith characteristic and h is the hth scenario. 
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Table 1 Ideal monetary policy 

 C11 C21 C31 C12 C22 C32 C13 C23 C33 

P = 0.8 0.9 0.8 0.9 0.8 0.8 1 0.7 0.9 
 

 
Step 3: Fixation of the real level of each characteristic for all the different poli-

cies considered. For each of these characteristics depending on the scenario found 
the next period, we get the following information presented in Table 2: 

Table 2 Available monetary policies 

 C11 C21 C31 C12 C22 C32 C13 C23 C33 

A1 0.6 0.8 0.4 0.7 0.7 0.7 0.6 0.7 0.6 
A2 0.7 0.7 0.4 0.6 0.8 0.6 0.7 0.7 0.5 
A3 0.8 0.6 0.5 0.5 0.8 0.7 0.7 0.8 0.4 
A4 0.6 0.7 0.6 0.6 0.8 0.7 0.8 0.6 0.5 
A5 0.8 0.4 0.6 0.9 0.7 0.6 0.9 0.6 0.4 

 

Step 4: Comparison between the ideal policy and the different monetary poli-
cies considered, and determination of the level of removal using the different 
types of aggregation operators considered. By using the Hamming distance, we 
consider the normalized Hamming distance (NHD), the weighted Hamming dis-
tance (WHD), the OWA distance (OWAD), the ascending OWA distance 
(AOWAD) and the median-OWAD operator. In this example, we assume that the 
company decides to use the following weighting vector: W = (0.1, 0.1, 0.1 0.1, 0.1, 
0.1, 0.1, 0.1, 0.2). Note that we have to calculate the individual distances of each 
characteristic to the ideal value of the corresponding characteristic forming the 
fuzzy subset of individual distances for each policy. Once, we have the individual 
distances, we aggregate them with the appropriate aggregation operator. The re-
sults are shown in Table 3. 

Table 3 Aggregated results with the Hamming distance 

 NHD WHD OWAD AOWAD Median 

A1 0.2 0.21 0.18 0.22 0.2 
A2 0.211 0.23 0.19 0.23 0.2 
A3 0.222 0.25 0.2 0.25 0.3 
A4 0.188 0.21 0.17 0.21 0.2 
A5 0.188 0.22 0.17 0.22 0.1 
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If we develop the selection process with the adequacy coefficient, we get the 
following. First, we have to calculate how close the characteristics are to the ideal 
policy. Once we have calculated all the different individual values, we construct 
the aggregation. In this case, we consider the normalized adequacy coefficient 
(NAC), the weighted adequacy coefficient (WAC), the OWA adequacy coefficient 
(OWAAC), the ascending OWA adequacy coefficient (AOWAAC) and the me-
dian-OWAAC operator. The results are shown in Table 4. 

Table 4 Aggregated results with the adequacy coefficient 

 NAC WAC OWAAC AOWAAC Median 

A1 0.8 0.79 0.78 0.82 0.8 
A2 0.788 0.77 0.77 0.81 0.8 
A3 0.788 0.76 0.76 0.81 0.7 
A4 0.811 0.79 0.79 0.83 0.8 
A5 0.811 0.78 0.78 0.83 0.9 

 

Finally, if we use the index of maximum and minimum level in the selection 
process as a combination of the normalized Hamming distance and the normalized 
adequacy coefficient, we will get the following. In this example, we assume that 
the characteristics C1 and C2 have to be treated with the adequacy coefficient and 
the third one with the Hamming distance. In this case, we do the following. First, 
we calculate the individual removal of each characteristic to the ideal, independ-
ently that the instrument used is the Hamming distance or the adequacy index. 
Once calculated all the values for the individual removal, we will construct the 
aggregation using the framework explained in section 3.4. Here, we note that in 
the reordering step, it will be only considered the individual value obtained for 
each characteristic, independently that the value has been obtained with the ade-
quacy coefficient or with the Hamming distance. We consider the normalized in-
dex of maximum and minimum level (NIMAM), the weighted index of maximum 
and minimum level (WIMAM), the OWA index of maximum and minimum level 
(OWAIMAM), the ascending OWAIMAM (AOWAIMAM) and the median-
OWAIMAM operator. The results are shown in Table 5. 

Table 5 Aggregated results with the index of maximum and minimum level 

 NIMAM WIMAM OWAIMAM AOWAIMAM Median 

A1 0.2 0.21 0.18 0.22 0.2 
A2 0.211 0.23 0.19 0.23 0.2 
A3 0.222 0.25 0.2 0.25 0.3 
A4 0.188 0.21 0.17 0.21 0.2 
A5 0.188 0.22 0.17 0.22 0.1 
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As we can see, the results obtained with the index of maximum and minimum 
level are the same than the ones obtained with the Hamming distance. The reason 
for this is that we are in a situation of unification point between both similarity 
measures (Merigó and A.M. Gil-Lafuente, 2007b). 

In order to analyze the optimal monetary policies depending on the particular 
types of similarity measure used, we establish the following table with the order-
ing of the monetary policies. Note that this analysis is very useful when the deci-
sion maker wants to consider more than one alternative in the selection process. 
The results are shown in Table 6. 

Table 6 Ordering of the monetary policies 

 Ordering  Ordering 
NHD A4=A5⎬A1⎬A2⎬A3 AOWAAC A4=A5⎬A1⎬A2=A3 
WHD A1=A4⎬A5⎬A2⎬A3 Median-OWAAC A5⎬A1=A2=A4⎬A3 

OWAD A4=A5⎬A1⎬A2⎬A3 NIMAM A4=A5⎬A1⎬A2⎬A3 
AOWAD A4⎬A1=A5⎬A2⎬A3 WIMAM A1=A4⎬A5⎬A2⎬A3 

Median-OWAD A5⎬A1⎬A2⎬A4⎬A3 OWAIMAM A4=A5⎬A1⎬A2⎬A3 
NAC A4=A5⎬A1⎬A2=A3 AOWAIMAM A4⎬A1=A5⎬A2⎬A3 
WAC A1=A4⎬A5⎬A2⎬A3 Median A5⎬A1⎬A2⎬A4⎬A3 

OWAAC A4⎬A1=A5⎬A2⎬A3   

 
 
As we can see, we get different orderings depending on the aggregation opera-

tor used. The main advantage of this analysis is that the decision maker gets a 
more complete view of the different scenarios that could happen in the future de-
pending on the method used. Although he will select the alternative that it is in ac-
cordance with his interests, he will be concerned on other potential results that 
could happen in the uncertain environment. 

6   Conclusions 

We have presented a new approach for decision making in an uncertain environ-
ment where we need to consider different attributes and scenarios. We have stud-
ied this new approach in a political management problem. Particularly, we have 
focussed on the selection of monetary policies. Thus, we have studied the selec-
tion of polyvalent monetary policies. We have seen that this new approach pro-
vides a more complete and flexible representation of the decision process. We 
have used several types of similarity measures for developing the analysis. We 
have considered the use of the Hamming distance, the adequacy coefficient and 
the index of maximum and minimum level. In each method we have used a wide 
range of aggregation operators such as the simple average, the weighted average, 
the OWA operator and the GOWA operator. We have seen that the use of a wide 
range of aggregation operators provides a more robust formulation of the new  
approach.  
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We have presented a numerical example where we have seen the implementa-
tion of the new approach in a real world problem. We have used a wide range of 
aggregation operators based on the Hamming distance, the adequacy coefficient 
and the index of maximum and minimum level. Each aggregation operator pro-
vides a different result leading to a different decision. 

In future research we expect to develop further developments by considering 
other aggregation operators such as those recently presented by Merigó (2008) and 
considering other applications such as strategic management or production  
management. 
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Mathematical Approaches for Fuzzy 
Portfolio Selection Problems with Normal 
Mixture Distributions 

Takashi Hasuike and Hiroaki Ishii* 

Abstract. This chapter considers some versatile portfolio selection models with 
general normal mixture distributions and fuzzy or interval numbers. Then, these 
mathematical approaches to obtain the optimal portfolio are developed. Further-
more, in order to compare our proposed models with standard models and repre-
sent the advantage of our proposed models, a numerical example is provided. 

1   Introduction 

In recent rapid expansions of investment and financial instability such as the ex-
treme ups and downs to future markets of stocks and commodities, the role of in-
vestment theory becomes more and more important. Furthermore, in current  
investment environment, with information science and computers, not only big 
companies and institutional investors but also individual investors perform in-
vestment in stock, currency, land and property. Therefore, it is time to review in-
vestment theory, particularly portfolio theory. Practical financial markets are  
affected by a lot of uncertainty to which has a great influence on the future returns 
such as randomness derived from statistical analysis of historical data and ambigu-
ity such as the psychological aspect of investors and lack of received efficient in-
formation. Under such uncertain conditions, the investor needs to consider  
how to reduce risk, and receive the greatest future profit. Such a finance assets se-
lection problem is generally called a portfolio selection problem, and various stud-
ies have been done. Markowitz [20] first proposed Mean-Variance model in the  
sense of the mathematical programming. Then, it has been central to research  
 

                                                           
*Takashi Hasuike . Hiroaki Ishii  
Graduate School of Information Science and Technology, Osaka University, Japan 
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan 
e-mail: thasuike@ist.osaka-u.ac.jp 



408 T. Hasuike and H. Ishii
 

 

activity in the real financial field and numerous researchers have contributed to the 
development of the modern portfolio theory (for instance, Luenberger [19],  
Steinbach [23]). On the other hand, many researchers have proposed models of 
portfolio selection problems which extended Markowitz model; Mean-Absolute-
Deviation model (Konno [16], Konno, et al. [17]), Semi-Variance model (Bawa 
and Lindenberg [1]), Safety-First model (Elton and Gruber [5]), and Value at Risk 
and conditional Value at Risk model (Rockafellar and Uryasev [22]). 

In many previous studies in mathematical programming for investment, future 
returns are assumed to be continuous random variables according to normal distri-
butions. By this assumption, they obtained useful mathematical knowledge and 
formulas for the portfolio theory. However, from recent experimental studies of 
investment markets, it is often shown that future returns do not occur according to 
normal distribution, but fat or heavy-tail distribution source. Then, in the case that 
investors predict future returns, since they need to consider much information de-
rived from investment markets and some predictions of future returns based on 
subjectivity of veteran investors simultaneously, they usually assume not only one 
scenario but also several possibility scenarios of future returns. Therefore, in order 
to deal with these situations, we need to consider portfolio selection problems with 
more general random distribution with the heavy-tail. 

Furthermore, we need to consider flexibly and ambiguously defined statistical 
distributions for the following cases that occur in practice: (1) financial informa-
tion is incomplete, (2) expert investors are not estimating from historical data, (3) 
the need to mathematically deal with several marginal distributions considering 
higher or lower future returns simultaneously. In this paper, we propose a more 
extensional portfolio selection models including fuzzy factors. Until now, there is 
a body of research under various uncertainty conditions with respect to portfolio 
selection problems (Bilbao-Terol and Perez-Gladish [2], Carlsson et al. [3], Guo 
and Tanaka [6], Huang [10, 11], Inuiguchi et al. [12, 13], Katagiri et al. [14, 15], 
Tanaka et al. [24, 25], Watada [26]). We also proposed some portfolio models 
with both randomness and fuzziness [7, 8, 9]. However, there are few models con-
sidering both normal mixture distribution and ambiguity, simultaneously. Fur-
thermore, there are no studies which are analytically extended and solved these 
types of portfolio selection problems. In this chapter, we propose more extensional 
portfolio selection models including the general random distribution with fuzzy 
factors and develop the efficient solution method. 

On the other hand, in the sense of mathematical programming, these portfolio 
selection models with randomness and fuzziness are formulated as stochastic and 
fuzzy programming problems. Then, in order to solve them analytically, we need 
to use the stochastic and fuzzy optimization approaches. The stochastic optimiza-
tion approach has been treated as a basic solution tool for portfolio selection  
problems. Recently, as well as the stochastic optimization approach, the fuzzy  
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optimization approach has been used as one of useful tools in financial and  
investment fields because these approaches are dealt with the investor’s subjec-
tivity and the investment case under ineffective and linguistic received informa-
tion. Considering recent complex investment markets involving investor’s 
speculation and the mixture of reliable on unreliable information, it is obvious 
that fuzzy optimization approaches play an important role in the investment re-
search field. Various types of fuzzy optimization models have been proposed; 
fuzzy max ranking method, possibility and necessity programming, etc.. How-
ever, there are not many studies to compare these fuzzy optimization models for 
portfolio selection problems under each case such as favorable, poor, or erratic 
ups and downs economic conditions, investor’s subjectivities; optimistic, pessi-
mistic or neutral. Furthermore, there are also few studies that analyze the suit-
ability of various approaches for the differing market conditions (for example, 
favorable conditions, unfavorable conditions, erratic fluctuations) by comparing 
fuzzy, stochastic and fuzzy-stochastic optimization models for portfolio selec-
tion problems. 

Thus, in order to represent some uncertain social conditions and compare vari-
ous models for portfolio selection problems, it is important to construct the ana-
lytical solution method using the fuzzy and stochastic optimization method as well 
as to develop a versatile model for portfolio selection problems. Therefore, in this 
chapter, we consider some models based on the fuzzy optimization models for our 
proposed portfolio models including the general random distribution with fuzzy 
factors. 

This paper is organized as follows. In Section 2, we introduce notations of pa-
rameters in this paper and introduce the basic Mean-Variance model proposed 
by Markowitz. Then, in Section 3, we formulate the proposed portfolio selection 
problems minimizing the total variance and maximizing the total future return 
with normal mixture distributions, respectively. Furthermore, we introduce the 
uncertainty sets for mean values, weights and probabilities as fuzzy numbers. 
With respect to several portfolio selection problems including randomness  
and fuzziness, we construct the solution method. In Section 4, in order to com-
pare our proposed models with standard models, we provide a numerical exam-
ple. Finally, in Section 5, we conclude this paper and discuss future research 
problems. 

2   Basic Mean-Variance Model 

Notations of parameters in this paper are as follows: 

ir : random column vector ith scenario 

im : mean value column vector of random variable ir  
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iV : variance-covariance matrix of random variable ir  

Gr : target value of the total future return 

Gσ : target value of the total variance 

jb : Upper limited value of purchasing rate 

x : Purchasing volume (Decision variable) 

In this chapter, we mainly deal with the standard Markowitz model for portfolio 
selection problem involving normal mixture distributions with respect to future re-
turns. First, we introduce the following Markowitz model minimizing the total 
variance: 

( )
1

Minimize

subject to

                  1,  0 ,  1, 2,...,

t

t
G

n

j j j
j

r

X x x b j n
=

≥

⎧ ⎫⎪ ⎪⎪ ⎪∈ = ≤ ≤ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑

Vx x

m x

x x

 

(1) 

This model has been the centre of investment fields until now, and so there are 
many studies by academic and practical researchers. 

In the case that we obtain the strict value of parameters m  and V , problem (1) 
is equivalent to a quadratic programming problem in the mathematical program-
ming and we find an optimal portfolio using standard convex programming ap-
proaches. Furthermore, while problem (1) considers minimizing the total variance, 
the case maximizing the total future return is formulated as the following form: 

Maximize

subject to ,  

t

t
G Xσ≤ ∈V

m x

x x x
 (2) 

This problem is also a quadratic programming problem and so we obtain an opti-
mal portfolio using the basic convex programming approach. 

3   Our Proposed Model with Normal Mixture Distributions 

However, since it often happens that future returns occur according to the normal 
distribution in practical investment fields, we need to consider that future returns 
occur according to heavier tailed distributions than normal. Therefore, in this pa-

per, we consider that each random variable ijr  occurs according to the following 

normal mixture distribution with a heavier tail than general normal distributions 
based on the study [21]: 
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( )
1

,
m

i i i
i

w N
=
∑ V∼r m  (3) 

where each parameter iw  is the non-negative scalar random variable. If parameter 

vector W  of scalar random variable iw  is fixed, random variable vector r  oc-

curs according to the following normal distribution: 

( )
1 1

1 2
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, ,..., , : fixed value

m m

i i i i
i i

m i

N w w

w w w w

= =
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=

∑ ∑W V∼r w r

w

 (4) 

where we assume that random variable vector W  is independent on each matrix 

iV . In case (4), since random variables ijr  are basic normal distributions, we ana-

lytically obtain an optimal portfolio of problems (1) and (2). However, iw  is also 

a random variable, and so random variables ijr  are not normal random distribu-

tions. In this paper, to simplify the discussion, we assume that W  occurs accord-

ing to the following discrete distribution introducing probabilities sp : 
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where S  is the total number of discrete random variables and each 
( )s
iw  is the 

fixed weight. Using this discrete distribution, the expected value and covariance of 
random variable column vector to future return r  are as follows: 

( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )1 2
1

cov cov cov

,  , ,...,

E i

E i

S
sE E E E

i s i E m
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w p w w w w
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= =

= + =
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r r w m

r r r w

w

 
(6) 

Therefore, using this expression (6), the expected return and covariance of total 

profit tr x  are as follows: 
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tt t
E i

t t t

t
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E W E W

= =

= +

= V

r x r x w m x

r x r x r x

x w x

 (7) 

3.1   Formulation of Our Proposed Model 

Then, we equivalently transform main problems (1) and (2) into the following 
problems: 

( )

( )

Minimize

subject to ,  

t
E i

t

E i Gr X≥ ∈

Vx w x

w m x x
 (8) 

( )
( )

Maximize

subject to ,  

t

E i

t
E i G Xσ≤ ∈V

w m x

x w x x
 (9) 

With respect to problems (8) and (9), if random distribution of parameter W  is 
obtained and each parameter is constant, we may solve these problems analytically 
using similar methods to problems (1) and (2). However, considering ambiguity 
conditions such as subjectivity of the decision maker and the lack of received reli-
able information, it is natural that each parameter such as the mean value and ran-

dom variable W  include fuzziness. Therefore, we consider the following cases 
where problems (8) and (9) include fuzziness. 

3.2   Fuzzy Extension for Mean Values 

First, we consider the case where each expected value m  includes fuzziness and 
is assumed to be a fuzzy number. This case is considered that the decision maker 
is a veteran investor and performs the more aggressive or passive prediction than 
the statistical analysis derived from historical data. 

In this subsection, since the random distribution of parameter W  is obtained 

and discrete value 
( )s
iw  and its probability sp  are constant, expected value vec-

tor E
iw  is also a constant. Then, the membership function of fuzzy numbers m  

is assumed to be a triangle fuzzy number and introduced by the following  
function: 
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where ijγ  and ijδ  are spreads of left and right side, respectively. In this paper, we 

assume that provided all fuzzy numbers are initially determined by the decision 

maker. Using these fuzzy numbers, the total future expected return t
iR = m x  is 

also a fuzzy numbers characterized by the following membership function: 
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(11) 

Due to these fuzzy numbers, problems (8) and (9) are not well-defined problem in 
the sense of deterministic mathematical programming. Therefore, in order to solve 
the main problem analytically, we need to set some criterion for fuzzy variables. 
In this paper, we consider the case where the decision maker usually has a goal to 
earn the total profit more than the target value. Furthermore, taking account of the 
vagueness of human judgment and flexibility for the execution of a plan in many 
real decision cases, we give a fuzzy goal to the target future return as the fuzzy set 
characterized by a membership function. In this subsection, we consider the fuzzy 

goal of probability ( )G
μ ω  which is represented by, 

( )

0

1

L
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L UG

U L
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f

f
f f

f f

f

ω
ω

μ ω ω

ω
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 (12) 

Furthermore, using the concept of possibility measure and considering maximiz-
ing both membership functions, we introduce the degree of possibility as follows: 
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R GR

f

G f fμ μ=∏  (13) 

Therefore, introducing this degree of possibility, we consider the following portfo-
lio selection problems based on problems (8) and (9): 
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(15) 

In this problem, each constraint ( )
i iP

G hΠ ≥  is transformed into the following 

inequality: 
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(16) 

Therefore, problems (14) and (15) are equivalently transformed into the following 
problems: 
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Problem (17) is equivalent to problem (8), and so we analytically solve problem 
(17) using the same solution method to problem (8). Then, problem (18) is a stan-
dard fractional programming problem and the numerator and denominator of ob-
jective function are linear functions. Therefore, by performing the equivalent 
transformation using the fractional programming approach, problem (18) is a simi-
lar problem to problem (9), and so we also solve problem (18) analytically using 
the same solution method to problem (9). 

3.3   Fuzzy Extension Model for Each Weight or Probability 

In the previous subsection, we considered the case where each expected value is 
assumed to be a fuzzy number. However, in real-world decision cases, it is diffi-
cult to set not only the expected value but also the possible value of random 

variable iw  or the occurrence probability ip  strictly due to the ambiguity of 

decision maker’s subjectivity. Therefore, in this subsection, we consider the 
case where random variable W  also includes flexibility and is assumed to be a 
fuzzy number.  

First, we assume that the possible value iw  includes the ambiguity and repre-

sents a fuzzy number. Then, the membership function of each value iw  is intro-

duced by the following functions: 
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(19) 

Using these membership functions and the extension principle of fuzzy theory, 

expected value of E
iw  is obtained as the following form: 
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Therefore, we obtain the following membership function of the total variance: 
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In this case, we assume that each weight 
( )s
iw  is represented as the h -cut set of 

the fuzzy number 
( ) ( ) ( ) ( ) ( ),s s s
i i iw w h w h⎡ ⎤= ⎢ ⎥⎣ ⎦ . Furthermore, in a way similar to 

subsection 3.2, using the concept of possibility measure to the total variance, we 
introduce the degree of possibility as follows: 
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Therefore, from this degree of possibility, problems (8) and (9) are equivalently 
transformed into the following problems performing the method similar to (18): 
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and 
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(24) 

Problem (23) is similar to problem (17), but it is a semi-infinite programming prob-
lem since it includes interval values ( ) ( ) ( ) ( ) ( ),s s s

i i iw w h w h⎡ ⎤∈ ⎢ ⎥⎣ ⎦
 and constraint 

( )

1

1
m

s
i

i

w
=

=∑ . Therefore, it is hard to solve it as the original form using the standard 

approaches. However, since these problems are equivalently transformed into the 
linear programming problems using the solution approach proposed by Lai and Wu 
[18] and Hasuike [7], we analytically and efficiently solve it. Then, with respect to 
problem (23), the numerator and denominator of objective function are convex 
functions. Therefore, we analytically solve it using the solution method proposed 
by Dinkelbach [4] and the semi-infinite solution approaches [7] and [18]. 
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On the other hand, we also consider the case where each occurrence probability 
includes an ambiguity and is assumed to be the following membership function in 
a way similar to (19): 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

( )

( )
( )

( )
( )

( )

1 1
1

2 2
2

Pr

Pr

Pr

0  ,

s

S S
S

s s
s s s

s

p s s
s s s

s

s s s s

p

p

p

p
p p

p
p p

p p

ω ξ
ξ ω

ξ

μ ω ζ ω
ω ζ

ζ
ω ξ ζ ω

⎧⎪ = =⎪⎪⎪⎪⎪ = =⎪⎪=⎨⎪⎪⎪⎪⎪⎪ = =⎪⎪⎩
⎧ − −⎪⎪ − ≤ ≤⎪⎪⎪⎪⎪⎪= + −⎨⎪ < ≤ +⎪⎪⎪⎪⎪ < − + <⎪⎪⎩

w w w

w w w
w

w w w
 

(25) 

In this case, we assume that each possible occurrence probability ip  includes the 

h -cut set of the fuzzy number ip . Then, we also apply similar transformations 

and degree of possibility to this case, and we equivalently transform problems (8) 
and (9) into the following problems: 
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and 
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Consequently, problems (26) and (27) are similar to problems (23) and (24), re-
spectively. Therefore, we obtain the optimal portfolio with respect to the various 
types of fuzzy portfolio selection problems with normal mixture random distribu-
tions. Furthermore, with respect to problems (23), (24), (26) and (27), these  
problems consider several weights and possible occurrence probability as their  
interval values, and so these problems are more versatile and robust portfolio 
models. 



Mathematical Approaches for Fuzzy Portfolio Selection Problems 419
 

 

4   Numerical Example 

In order to compare our proposed models and standard Markowitz models and to 
show the usefulness of our proposed model more clearly, we provide a brief nu-
merical example based on historical data derived from Tokyo Stock Exchange. Let 
us consider four securities shown in Table 1, whose mean values and variances are 
based on historical data in the decade between 1995 and 2004.  

Table 1 Sample data from Tokyo Exchange Market 

 x1 x2 x3 x4 

Mean 0.046 0.043 0.087 0.090 

Variance 0.0836 0.0638 0.1507 0.1010 

 
Subsequently, we introduce the asset allocation rate xj to each security, and its 

upper value is assumed to be 0.4. Then, we consider the case where the fixed tar-
get profit and total variance for Markowitz model are 0.07 and 0.025, respectively. 
In this case, the optimal portfolio of Markowitz model minimizing the total vari-
ance is obtained as follows: 

Table 2 Optimal portfolio of Markowitz model 

 x1 x2 x3 x4 

Problem (1) 0.192 0.231 0.226 0.351 

 
Furthermore, we consider the more practical case where investors predict not 

only single scenario but also multi-scenario with respect to each future return. In 
this numerical example, based on the historical data of Tokyo Exchange Market, 
we consider three scenarios as the following Table 3. 

Table 3 Mean values and variances for three scenarios with respect to future returns 

  x1 x2 x3 x4 

Mean 0.046 0.043 0.087 0.090 
Scenario 1 

Variance 0.0836 0.0638 0.1507 0.1010 

Mean 0.068 0.114 0.130 0.236 
Scenario 2 

Variance 0.0936 0.0488 0.1007 0.1510 

Mean 0.023 0.015 0.012 0.032 
Scenario 3 

Variance 0.0736 0.0788 0.1807 0.0910 
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This example means that scenarios 1, 2 and 3 are neutral, positive and passive 
for the investor’s subjectivity. Then, each weight of the scenario is provided as the 
following three forms: 

Table 4 Weights and probabilities for scenarios 

 w1 w2 w3 Prob. 

Case 1 0.5 0.25 0.25 1/3 

Case 2 0.5 0.4 0.1 1/3 

Case 3 0.5 0.1 0.4 1/3 

 
 
Using Table 3 and each weight, we solve Case 1 of the weighted portfolio 

model and obtain the following optimal portfolio: 

Table 5 Optimal portfolio for Case 1 of each weighted portfolio model 

 x1 x2 x3 x4 

Min. Var. 0.270 0.367 0.162 0.201 

 
 

On the other hand, in order to consider our proposed models in Section 3, we 
set the fuzzy numbers and fuzzy goals. First, we assume mean values in all scenar-
ios to be the following symmetric triangle fuzzy numbers: 

Table 6 Triangle fuzzy numbers of mean values in all scenarios 

 x1 x2 x3 x4 

Scenario 1 <0.046,0.02> <0.043,0.01> <0.087,0.03> <0.090,0.05> 

Scenario 2 <0.068,0.03> <0.114,0.04> <0.130,0.08> <0.236,0.03> 

Scenario 3 <0.023,0.01> <0.015,0.005> <0.012,0.005> <0.032,0.02> 

 
 
Then, fuzzy numbers of weights and probabilities are assumed to be the follow-

ing symmetric trapezoidal fuzzy numbers: 
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Table 7 Symmetric trapezoidal fuzzy numbers of weights and probabilities 

 w1 w2 w3 Prob. 

Case 1 (0.42,0.58,0.1) (0.21,0.29,0.05) (0.21,0.29,0.05) (0.3,0.35,0.1) 

Case 2 (0.42,0.58,0.1) (0.32,0.48,0.1) (0.02,0.18,0.1) (0.3,0.35.0.1) 

Case 3 (0.42,0.58,0.1) (0.02,0.18,0.1) (0.32,0.48,0.1) (0.3,0.35.0.1) 

 
 
Furthermore, fuzzy goals for the total return and variance are provided as the 

following forms: 
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Using these parameters and fuzzy goals, we solve our proposed models (17), (23) 
and (26) minimizing the total variance, and obtain each optimal portfolio: 

Table 8 Optimal portfolios for our proposed models 

 x1 x2 x3 x4 
Fuzzy mean (17) 0.270 0.367 0.162 0.201 

Fuzzy weight (23): Case 1 0.064 0.394 0.188 0.354 
Fuzzy weight (23): Case 2 0.041 0.400 0.227 0.332 
Fuzzy weight (23): Case 3 0.039 0.400 0.187 0.374 

Fuzzy probability (26) 0.051 0.400 0.216 0.333 

Subsequently, we consider the case where an investor purchases securities at 
the end of 2004 according to each portfolio shown in Tables 2 and 8. Then, the to-
tal return of three models at term ends of 2005 and 2007 become the following 
values shown in Table 3.9, respectively. 

Table 9 Total profit for the basic and our proposed models 

 Term end of 2005 Term end of 2007 
Markowitz model (1) 0.2042 0.2094 

Fuzzy mean (17) 0.2329 0.3008 
Fuzzy weight (23): Case 1 0.2489 0.2114 
Fuzzy weight (23): Case 2 0.2465 0.2108 
Fuzzy weight (23): Case 3 0.2519 0.2007 

Fuzzy probability (26) 0.2473 0.2135 
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From the result in Table 9, we find that our proposed models earn more total 
profit than the basic Markowitz model. Particularly, we find that fuzzy weight and 
fuzzy probability models earns more profit in a semi-long term investment, and 
the fuzzy mean models earns more profit in a long-term investment. Surely, this 
numerical example is based on a little data, and so this conclusion may not hold 
true for the stock market in all conditions. However, this results show that it is 
possible to earn more profits by performing suitable investments according to sub-
jectivity. Therefore, investors can deal with our model usefully according to their 
investment stiles. 

5   Conclusion 

In this paper, we have considered several portfolio selection models with normal 
mixture random distributions involving ambiguous factors extending Mean-
Variance model. Since our proposed models are not well-defined problems due to 
randomness and fuzziness, we have set some criterion such as mean value and 
variance to stochastic aspect and possibility measure to fuzzy aspect. Then, by 
performing the equivalent transformations, we have constructed the efficient solu-
tion methods based on the standard mean-variance approaches. Therefore, we 
have developed more versatile portfolio models with randomness and fuzziness 
than previous standard portfolio models, and we may obtain more beneficial 
knowledge for the investment theory. 

As the future studies, we are going to consider the case where random distribu-
tions are more general patterns not only based on the normal distribution but also 
ellipsoidal distributions including almost all statistical distributions. Then, we also 
need to consider the case that the optimal solutions are restricted to be integers. 
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Fuzzy Random Redundancy Allocation
Problems

Shuming Wang and Junzo Watada

Abstract. Due to subjective judgement, imprecise human knowledge and
perception in capturing statistical data, the real data of lifetimes in many
systems are both random and fuzzy in nature. Based on the fuzzy random
variables that are used to characterize the lifetimes, this paper studies the
redundancy allocation problems to a fuzzy random parallel-series system.

Two fuzzy random redundancy allocation models (FR-RAM) are devel-
oped through reliability maximization and cost minimization, respectively.
Some properties of the FR-RAM are obtained, where an analytical formula
of reliability with convex lifetimes is derived and the sensitivity of the relia-
bility is discussed. To solve the FR-RAMs, we first address the computation
of reliability. A random simulation method based on the derived analytical
formula is proposed to compute the reliability with convex lifetimes. As for
the reliability with nonconvex lifetimes, the technique of fuzzy random sim-
ulation together with the discretization method of fuzzy random variable is
employed to compute the reliability, and a convergence theorem of the fuzzy
random simulation is proved. Subsequently, we integrate the computation
approaches of the reliability and genetic algorithm (GA) to search for the
approximately optimal redundancy allocation of the models. Finally, some
numerical examples are provided to illustrate the feasibility of the solution
algorithm and quantify its effectiveness.

Keywords: Reliability, Redundancy allocation, Parallel-series system, Fuzzy
random variable, Sensitivity, Convergence, Genetic algorithm.

1 Introduction

Reliability engineering has attracted a lot of researchers owing to its criti-
cal importance in various kinds of systems. The primary goal of reliability
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engineering is to improve the reliability of a system. Redundancy allocation is
a direct way of enhancing the system reliability, which involves the selection
of the optimal combination of components and a system-level design con-
figuration so as to maximize the reliability under the given cost and weight
constraints, or alternatively, to meet reliability and weight constraints at a
minimum cost.

In conventional reliability models, an underlying assumption is that all the
lifetimes of the components are characterized by random variables. Various
kinds of reliability models have been proposed for different optimization pur-
poses, and a number of methods have been proposed to solve those classical
reliability optimization models. For instance, Elegbede et al. [5] studied the
allocation of reliability and redundancy to parallel-series systems with an ob-
jective of cost minimization, and proposed an ECAY algorithm approach to
solve the model. Prasad and Raghavachari [30] developed an approximate lin-
ear programming model for the optimal allocation problem in a series-parallel
system, and designed a heuristic solution method. Yu et al. [41] studied the
design of a redundant system with the consideration of the redundant de-
pendency, and introduced a dependency function to quantify the redundant
dependency. There are more various studies that examined the stochastic
reliability optimization problems [1, 13, 14, 33].

To enhance the reliability of the systems in which the lifetimes are im-
precise or vague, some fuzzy reliability optimization problems were studied
using the fuzzy set theory [28, 29, 42, 43]. Li et al. [17] proposed a fuzzy
linear regression based fuzzy stress-random interference model to evaluate
the fuzzy reliability of the mechanical structure. Mahapatra and Roy [25]
discussed a fuzzy multi-objective optimization method for a multi-objective
system reliability problem which involves several mutually conflicting objec-
tives. Zhao and Liu [47] considered a standby redundancy system with fuzzy
lifetimes, and built three kinds of standby redundancy optimization models
with different optimization criteria.

Nevertheless, in real-world applications, statistic data for the lifetime dis-
tributions are never precise or completely vague. Due to the subjective judge-
ment, and imprecise human knowledge and perception in capturing such
statistic data, the randomness and fuzziness are often mixed up in the lifetime
data of systems. There are only a few researches that consider reliability opti-
mization problems with such hybrid uncertainty. Zhao and Liu [46] modeled
three types of system performance based on random fuzzy lifetime param-
eters. In their study [46], the lifetimes of the components were treated as
random fuzzy variables [18], which are some “fuzzy” variables taking on ran-
dom values (or more precisely, functions from possibility space to a collection
of random variables). Differing from the random fuzzy variable, fuzzy random
variable was introduced by Kwakernaak [15, 16] in 1978 and was defined as
a measurable function from probability space to a collection of fuzzy vari-
ables. Fuzzy random variable copes with the hybrid uncertainty where the
vagueness is embedded into the random variables, or in other words, the case
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when “random” variables take on the fuzzy values. For example, owing to
the imprecise measurement, the real distribution of the lifetime X of a com-
ponent can be given in the following form: about 6 (hours) with probability
0.05, about 8 (hours) with probability 0.1, about 10 (hours) with probability
0.15, and so on. In the above distribution, the realizations of the “random”
variable X are not crisp values but fuzzy numbers, say “about 8 (hours)”. In
the above distribution, the realizations of the “random” variable X are not
crisp values but fuzzy numbers, say “about 8 (hours)”. In such a case, X be-
comes a fuzzy random variable, and none of random variable, fuzzy variable,
and even random fuzzy variable is applicable to studying such uncertainty.
Following the ideas of Kwakernaak, several variants as well as extensions of
fuzzy random variable were presented subsequently by other researchers such
as Kruse and Meyer [12], Liu and Liu [22], and López-Diaz and Gil [24].
Fuzzy random variable has been a basic tool in constructing the framework
of decision making models under fuzzy random environment, and a number
of practical optimization problems have been studied based on fuzzy random
variables, such as inventory (see [2, 3, 4, 40]), risk management (see [10, 23]),
portfolio selection (see [9, 32]), renewal process (see [37, 48]), and regression
analysis (see [38, 39]). Nevertheless, the reliability and redundancy optimiza-
tion models under fuzzy random environment have not been well established
in the literature.

Making use of fuzzy random variable as a tool to characterize the lifetimes
of components, this paper aims to study the redundancy allocation problems
to a fuzzy random parallel-series system. In this work, two fuzzy random re-
dundancy allocation models (FR-RAM) are developed, and some properties
of the FR-RAM, the computation of fuzzy random reliability function, as well
as the solution of FR-RAM are discussed. In Section 2 of this paper, some
basic concepts on fuzzy variables and fuzzy random variables are recalled.
Section 3 formulates the FR-RAM and discusses its properties. The compu-
tation of the reliability is discussed in Section 4, while Section 5 focuses on
the solution algorithm. Two numerical examples are provided in Section 6,
and Section 7 presents the conclusions.

2 Preliminaries

In this section, we recall some basic concepts on fuzzy variable and fuzzy
random variable which make it easier to follow further discussions on the
models. Assume that (Γ,P(Γ ), Pos) is a possibility space, where P(Γ ) is
the power set of Γ , X is a fuzzy variable defined on (Γ,P(Γ ), Pos) with
membership function μX , and r is a real number. As a well-known fuzzy
measure, possibility measure of a fuzzy event X ≤ r is defined as

Pos{X ≤ r} = sup
t≤r

μX(t). (1)
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Lacking the self-duality, the possibility measure is not always the optimal
approach to characterizing the fuzziness or vagueness in decision making
problems. As a simple example, we consider an event X > 3 induced by
a triangular fuzzy variable X = (1, 2, 10). Through possibility, we can cal-
culate the confidence level of X > 3 is 0.875. However, this event with such
“high” confidence level is not justifiable. Because, the possibility of the op-
posite event, i.e., X ≤ 3, is 1. This fact makes decision-makers confused.
To overcome the above drawback, a self-dual set function, named credibility
measure, is formed by [20] as follows

Cr{X ≤ r} =
1
2

(
1 + sup

t≤r
μX(t) − sup

t>r
μX(t)

)
. (2)

In the above example, we can calculate by credibility the confidence of X > 3
is 0.4345, and the confidence level of X ≤ 3 based on credibility is 1 −
0.4345 = 0.5655. The readers who are interested in credibility measure may
refer to [19, 20].

A fuzzy variable X is said to be positive if the credibility of X ≤ 0 is zero,
i.e., Cr{X ≤ 0} = 0. Furthermore, fuzzy variable X is said to be convex if
all the α-cut sets of X are convex sets on +. In addition, for an n-ary fuzzy
vector X = (X1, X2, · · · , Xn), where each individual coordinate Xk is a fuzzy
variable for k = 1, 2, · · · , n, the membership function of X is given by taking
the minimum of the individual coordinates as follows

μX (t) =
n∧

i=1

μXi(ti), (3)

where t = (t1, · · · , tn) ∈ +n.
Next, we introduce the concepts on fuzzy random variable. Roughly speak-

ing, a fuzzy random variable is a random variable taking on fuzzy val-
ues(see [15]). Based on Kwakernaak’s pioneering work [15, 16], Kruse and
Meyer [12] formalized the mathematical concept of the fuzzy random vari-
able by defining it as a fuzzy observation of a classical real-valued random
variable under different measurability conditions from [15]. López-Diaz and
Gil [24] discussed constructive definitions of fuzzy random variables and inte-
grably bounded fuzzy random variables based on Hausdorff convergence. For
the purpose of fuzzy random optimization, a modified fuzzy random variable
was given by Liu and Liu [22], and a mean chance was defined in [23] for
measuring events in fuzzy random decision-making systems. For more de-
tailed theoretical foundation as well as detailed discussions on fuzzy random
variable, one may refer to [19, 35, 36, 44, 45].

Definition 1 ([22]). Suppose that (Ω, Σ, Pr) is a probability space, Fv is
a collection of fuzzy variables defined on possibility space (Γ,P(Γ ), Pos). A
fuzzy random variable is a map ξ : Ω → Fv such that for any Borel subset B

of +, Pos{ξ(ω) ∈ B} is a measurable function of ω.
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Example 1. Let X be a random variable defined on probability space
(Ω, Σ, Pr). We call ξ a triangular fuzzy random variable, if for every ω ∈
Ω, ξ(ω) is a triangular fuzzy variable defined on some possibility space
(Γ,P(Γ ), Pos), e.g.,

ξ(ω) =
(
X(ω) − 1, X(ω), X(ω) + 1

)
.

We say ξ is a normal fuzzy random variable, denoted by NF (X, b), b > 0, if
for every ω ∈ Ω, the membership function of ξ(ω) is

μξ(ω)(r) = exp
(−(r − X(ω))2

b

)
.

In addition, a fuzzy random variable ξ is said to be positive if for almost
every ω ∈ Ω, ξ(ω) is a positive fuzzy variable. For example, we can construct
a positive normal fuzzy random variable ξ as

μξ(ω)(r) =
{

exp
(−(r − X(ω))2/b

)
, r ≥ 0

0, r < 0.
(4)

In this paper, the above positive normal fuzzy random variable ξ is denoted
by N+

F (X, b).
In order to measure an event ξ ∈ B induced by fuzzy random variable

ξ, where B is any Borel subset of +, the mean chance measure (see [23]) is
defined as

Ch {ξ ∈ B} =
∫

Ω

Cr {ξ(ω) ∈ B}Pr(dω). (5)

Example 2. Consider a triangular fuzzy random variable ξ with ξ(ω) =
(X(ω)+2, X(ω)+3, X(ω)+4), where X is a discrete random variable, which
takes on values X1 = 2 with probability 0.4, and X2 = 4 with probability
0.6. Now we calculate the mean chance of event ξ ≤ 7.

Note that fuzzy random variable ξ takes on fuzzy variables ξ(X1) = (4, 5, 6)
with probability 0.4, and ξ(X2) = (6, 7, 8) with probability 0.6, by the defi-
nition, we can work out Cr{ξ(X1) ≤ 7} = 1, and Cr{ξ(X2) ≤ 7} = 0.5. From
(5), we have Ch{ξ ≤ 7} =

∫
Ω Cr {ξ(ω) ≤ 7}Pr(dω) = 1×0.4+0.5×0.6 = 0.7.

3 Fuzzy Random Redundancy Allocation Models

3.1 Problem Formulation

This paper considers a parallel-series system composed of s subsystems
(Figure 1). Each subsystem i (1 ≤ i ≤ s) is made up of actively redundant
components in parallel. The lifetimes of the components are characterized by
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Fig. 1 An s-stage parallel-series system

fuzzy random variables. Our problem is to find the optimal redundancy allo-
cations to this fuzzy random parallel-series system so as to maximize system
reliability, or to minimize the total cost of the system. Based on those two
different objectives, two fuzzy random redundancy allocation models (FR-
RAM) will be built in this section, respectively.

Notation

s number of subsystems
i index of subsystems, 1 ≤ i ≤ s

ni number of different component types available for subsystem i

li, ui lower, and upper bounds on the number of redundant components
insubsystem i, 1 ≤ i ≤ s

xi,j number of components of type j in subsystem i, 1 ≤ j ≤ ni

x decision vector (x1,1, · · · , x1,n1 , · · · , xs,1, · · · , xs,ns)
ξi,j,k the fuzzy random lifetime of component k of type j in the

subsystem i 1 ≤ k ≤ xij , 1 ≤ j ≤ ni, 1 ≤ i ≤ s

T 0 preselected threshold system lifetime
RT 0(x) system reliability for a decision x at the threshold lifetime T 0

cij the cost of each component of type j in subsystem i, 1 ≤ j ≤ ni,

1 ≤ i ≤ s

c0 the maximum capital available
R0 the target overall reliability of system

Assumptions
1. All the lifetimes of the components are treated as fuzzy random

variables.
2. The redundancy level of subsystem i is bounded below by li and above

by ui.
3. The components of the same type have independent and identically

distributed (i.i.d.) lifetimes.



Fuzzy Random Redundancy Allocation Problems 431

Mathematical modeling
Based on the above assumptions and notations, in this s-stage fuzzy random
parallel-series system, if we use a fuzzy random vector

ξ =
(
ξ1,1,1, · · · , ξ1,1,x1,1 , · · · , ξ1,n1,1, · · · , ξ1,n1,x1,n1

, · · · , ξs,1,1, · · · , ξs,1,xs,1 ,

· · · , ξs,ns,1, · · · , ξs,ns,xs,ns

)
to characterize the fuzzy random lifetimes of the components, the system
lifetime at allocation x can be expressed as

T (x, ξ) =
s∨

i=1

⎡⎣ ni∧
j=1

(
xi,j∑
k=1

ξi,j,k

)⎤⎦ . (6)

Using the mean chance measure, the reliability of the fuzzy random parallel-
series system can be characterized as follows

RT 0(x)=Ch{T (x, ξ) ≥ T 0}, (7)

=
∫
Ω

Cr

⎧⎨⎩
s∨

i=1

⎡⎣ ni∧
j=1

(
xi,j∑
k=1

ξi,j,k(ω)

)⎤⎦ ≥ T 0

⎫⎬⎭Pr(dω),

which is the chance that the system lifetime exceeds the threshold duration
T 0.

Remark 1. If the fuzzy random vector ξ reduces to a random vector, therefore
T (x, ξ(ω)) is a crisp number for any ω ∈ Ω. By the definition of the mean
chance, we have

RT 0(x)= Ch{T (x, ξ) ≥ T 0},
=
∫

Ω

Cr{T (x, ξ(ω)) ≥ T 0}Pr(dω),

=
∫

Ω

I{ω|T (x,ξ(ω))≥T 0}(ω) Pr(dω),

= Pr{T (x, ξ) ≥ T 0},

where IA is the indicator function of set A. Hence, the fuzzy random reliability
(7) degenerates to the reliability in the stochastic reliability theory.

Remark 2. If the fuzzy random vector ξ reduces to a fuzzy vector, then clearly
the reliability (7) degenerates to RT 0(x) = Cr{T (x, ξ) ≥ T 0} which is the
reliability in the fuzzy system reliability model [47].

Maximizing the overall system reliability under the given cost c0 and redun-
dancy level constraints, we obtain the first model.
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[FR-RAM I]

max RT 0(x) = Ch{T (x, ξ) ≥ T 0}
subject to

s∑
i=1

ni∑
j=1

cijxi,j ≤ c0,

li ≤
ni∑

j=1

xi,j ≤ ui, for i = 1, · · · , s,

xi,j ∈ �, for j = 1, · · · , ni, i = 1, · · · , s.

(8)

Alternatively, if we minimize the total cost meeting the overall system target
reliability R0 and the redundancy level constraints, the second model can be
built as follows.

[FR-RAM II]

min
s∑

i=1

ni∑
j=1

cijxi,j

subject to
RT 0(x) = Ch{T (x, ξ) ≥ T 0} ≥ R0,

li ≤
ni∑

j=1

xi,j ≤ ui, for i = 1, · · · , s,

xi,j ∈ �, for j = 1, · · · , ni, i = 1, · · · , s.

(9)

3.2 Some Properties of FR-RAM

This subsection focus on the properties of FR-RAM. In Theorem 1, we derive
an analytical formula for the overall reliability RT 0(x) of the system, provided
all the lifetimes of components have convex distributions. This formula is
helpful to the computation of reliability with convex lifetimes,(which will be
discussed in Section 4). Theorems 2-4 discuss the sensitivity of reliability
RT 0(x) in FR-RAM with respect to (w.r.t.) the threshold lifetime T 0.

Theorem 1. Assume that in the FR-RAM, the lifetimes ξi,j,k of compo-
nents for i = 1, 2, · · · , s, j = 1, 2, · · · , ni, k = 1, 2, · · · , xij are fuzzy ran-
dom variables on probability space (Ω, Σ, Pr). Suppose for almost every
ω ∈ Ω, ξi,j,k(ω) is a convex fuzzy variable with membership function μω

i,j,
and μω

i,1(v
ω
i,1) = μω

i,2(v
ω
i,2) = · · · = μω

i,ni
(vω

i,ni
) = 1 with xi,1v

ω
i,1 ≤ xi,2v

ω
i,2 ≤

· · · ≤ xi,niv
ω
i,ni

. If we denote μω
T the membership function of fuzzy variable

T (x, ξ(ω)) for any ω ∈ Ω, then given any allocation x, the system reliability
is

RT 0(x)=
∫
{ω|T 0≤xs,1vω

s,1}
1−μω

T (T 0)
2

Pr(dω)+
∫
{ω|T 0>xs,1vω

s,1}

μω
T (T 0)

2
Pr(dω)

(10)
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where for almost every ω ∈ Ω, μω
T (t) is given by

μω
T (t) =

⎧⎪⎪⎨⎪⎪⎩
∧s

i=1 μω
i (t), t < x1,1v

ω
1,1∧s

i=l+1 μω
i (t), xl,1v

ω
l,1 ≤ t < xl+1,1v

ω
l+1,1, 1 ≤ l ≤ s − 1∨s

i=1 μω
i (t), t ≥ xs,1v

ω
s,1,

(11)

here we assume that x1,1v
ω
1,1 ≤ x2,1v

ω
2,1 ≤ · · · ≤ xs,1v

ω
s,1 without losing any

generality, and μω
i (t) is calculated by

μω
i (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∨ni

j=1 μω
i,j

(
t

xi,j

)
, t < xi,1v

ω
i,1∧l

j=1 μω
i,j

(
t

xi,j

)
, xi,lv

ω
i,l ≤ t < xi,l+1v

ω
i,l+1, 1 ≤ l ≤ ni − 1∧ni

j=1 μω
i,j

(
t

xi,j

)
, t ≥ xi,niv

ω
i,ni

.

(12)

Proof. First of all, recalling that all lifetimes are convex and the lifetimes of
the same type of components are identically distributed, given any i, j, and
t > 0 we have

Pos

{xi,j∑
k=1

ξi,j,k(ω) = t

}
= Pos

{
ξi,j,1(ω) =

t

xi,j

}
= μω

i,j

(
t

xi,j

)
for almost every ω ∈ Ω, which also is a convex fuzzy number. Furthermore,

Pos

{xi,j∑
k=1

ξi,j,k(ω) = xi,jv
ω
i,j

}
= μω

i,j

(
vω

i,j

)
= 1

for i = 1, 2, · · · , s; j = 1, 2, · · · , ni and xi,1v
ω
i,1 ≤ xi,2v

ω
i,2 ≤ · · · ≤ xi,niv

ω
i,ni

.
Therefore, by the minimum t-norm operation of convex fuzzy numbers [11,
Theorem 1], we obtain the membership function μω

i (t) of
∧ni

j=1

∑xi,j

k=1 ξi,j,k(ω)
is

μω
i (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∨ni

j=1 μω
i,j

(
t

xi,j

)
, t < xi,1v

ω
i,1∧l

j=1 μω
i,j

(
t

xi,j

)
, xi,lv

ω
i,l ≤ t < xi,l+1v

ω
i,l+1, 1 ≤ l ≤ ni − 1∧ni

j=1 μω
i,j

(
t

xi,j

)
, t ≥ xi,niv

ω
i,ni

,

for i = 1, 2, · · · , s. Note that μω
i (t) is also a convex fuzzy number, which

is nondecreasing in [−∞, xi,1vi,1] and nonincreasing in [xi,1v
ω
i,1,∞] for all i,

and x1,1v
ω
1,1 ≤ x2,1v

ω
2,1 ≤ · · · ≤ xs,1v

ω
s,1, making use of the maximum t-norm

operation of convex fuzzy numbers [11, Theorem 1], the membership function
μω

T (t) of the system lifetime
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T
(
x, ξ(ω)

)
=

s∨
i=1

⎡⎣ ni∧
j=1

(xi,j∑
k=1

ξi,j,k(ω)

)⎤⎦
can be given in the following form

μω
T (t) =

⎧⎪⎪⎨⎪⎪⎩
∧s

i=1 μω
i (t), t < x1,1v

ω
1,1∧s

i=l+1 μω
i (t), xl,1v

ω
l,1 ≤ t < xl,1v

ω
l+1,1, 1 ≤ l ≤ s − 1∨s

i=1 μω
i (t), t ≥ xs,1v

ω
s,1.

Since μω
T (t) is nondecreasing in [−∞, xs,1v

ω
s,1] and nonincreasing in

[−∞, xs,1v
ω
s,1], by the definition, we can calculate

Cr
{
T
(
x, ξ(ω)

)
≥ T 0

}
=

1
2

[
1 + sup

t≥T 0
μω

T (t) − sup
t<T 0

μω
T (t)

]
,

which implies

Cr
{

T
(
x, ξ(ω)

)
≥ T 0

}
=

{
1 − μω

T (T 0)
2 , T 0 ≤ xs,1v

ω
s,1

μω
T (T 0)

2 , otherwise.

That is

Cr
{

T
(
x, ξ(ω)

)
≥ T 0

}
= I{ω|T 0≤xs,1vω

s,1}(ω)
(
1 − μω

T (T 0)
2

)
+ I{ω|T 0>xs,1vω

s,1}

(ω)
(

μω
T (T 0)

2

)
,

for almost every ω ∈ Ω, where IA is the indicator function of set A. Inte-
grating w.r.t. ω on the both sides of the above equation deduces the required
result (10). The proof of the theorem is complete.

Example 3. Let us consider a 2-stage parallel-series system with 2 types com-
ponent in the first subsystem and 1 type in the second, and the redundancy
allocation is x = (x1,1, x1,2, x2,1) = (2, 1, 1). Suppose that the fuzzy ran-
dom lifetimes ξ1,1,1, ξ1,2,1 and ξ2,1,1 are characterized by a discrete random
variable which takes on values ω = ω1 with probability 0.4 and ω = ω2 with
probability 0.6, and they have the distributions in Table 1. Selecting T 0 = 10,
we calculate the reliability R10(x) = Ch{T (x, ξ) ≥ 10} of the system.

Since the lifetime of the system T (x, ξ) = [(ξ1,1,1 + ξ1,1,2)∧ ξ1,2,1]∨ ξ2,1,1, we
have

T
(
x, ξ(ωk)

)
=
[(

ξ1,1,1(ωk) + ξ1,1,2(ωk)
)

∧ ξ1,2,1(ωk)
]
∨ ξ2,1,1(ωk)

for k = 1, 2. That is T (x0, ξ) takes on the fuzzy values [(4, 6, 8) ∧ (3, 5, 8)] ∨
(6, 7, 8) with probability 0.4, and [(6, 8, 12) ∧ (5, 8, 10)] ∨ (6, 8, 10) with
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Table 1 Lifetime of each component in Example 3

ω = ω1 (Probability=0.4) ω = ω2 (Probability=0.6)
ξ1,1(ω1) = (2, 3, 4) ξ1,1(ω2) = (3, 4, 6)
ξ1,2(ω1) = (3, 5, 8) ξ1,2(ω1) = (5, 8, 10)
ξ2,1(ω1) = (6, 7, 8) ξ2,1(ω2) = (6, 8, 10)

probability 0.6. For ω = ω1, from (12) in Theorem 1, we can calculate that
(4, 6, 8) ∧ (3, 5, 8) = (3, 5, 8). Furthermore, making use of (11), we obtain
T (x, ξ(ω1)) = (3, 5, 8) ∨ (6, 7, 8) = (6, 7, 8) and

μω1
T (t) =

⎧⎨⎩
t − 6, 6 ≤ t < 7
8 − t, 7 ≤ t < 8
0, otherwise.

We note that x2,1 = 1 and T 0 = 7 = x2,1v
ω1
2,1, therefore,

Cr
{

T
(
x, ξ(ω1)

)
≥ T 0

}
= 1 − μω1

T (7)
2

= 0.5.

Similarly, we obtain

μω2
T (t) =

⎧⎨⎩
(t − 6)/2, 6 ≤ t < 8
(10 − t)/2, 8 ≤ t < 10
0, otherwise.

Since T 0 = 7 < x2,1v
ω2
2,1 = 8, we have

Cr
{

T
(
x, ξ(ω2)

)
≥ T 0

}
= 1 − μω2

T (7)
2

= 0.75.

Consequently, from (10), we have

R7(x)=
∫

Ω

Cr
{
T
(
x, ξ(ω)

)
≥ 7
}

Pr(dω)

=
∫
{ω|7≤xs,1vω

s,1}
1 − μω

T (7)
2

Pr(dω)

=
∫

Ω

1 − μω
T (7)
2

Pr(dω) = 0.5 × 0.4 + 0.75 × 0.6 = 0.65.

In the FR-RAMs I and II, we note that the reliability RT 0(x) is predetermined
by the decision-maker, and any changes of the threshold lifetime T 0 may influ-
ence the objective value of FR-RAM I and the reliability constraint of FR-RAM
II, and finally influence the allocation decision. Therefore, it is necessary to an-
alyze the sensitivity of RT 0(x) w.r.t. the threshold lifetime T 0.
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Theorem 2. Let the lifetimes ξi,j,k of components in the FR-RAM for i =
1, 2, · · · , s, j = 1, 2, · · · , ni, k = 1, 2, · · · , xi,j be fuzzy random variables on a
probability space (Ω, Σ, Pr) such that for almost every ω ∈ Ω, ξi,j,k(ω) is
a convex fuzzy variable. If ξi,j,k(ω) for each i, j, k areis left continuous or
upper semicontinuous, then the reliability RT 0(x) is left continuous w.r.t. the
threshold lifetime T 0 ∈ +.

Proof. First of all, we deal with the case that ξi,j,k(ω) is left continuous.
Denote μω

i,j the membership function of ξi,j,k(ω) for any ω ∈ Ω, and i =
1, 2, · · · , s, j = 1, 2, · · · , ni, k = 1, 2, · · · , xi,j . In the following, we prove that
the membership function of fuzzy variable

∧ni

j=1

∑xi,j

k=1 ξi,j,k(ω) denoted by
μω

i is left continuous for almost every ω ∈ Ω.
Without losing any generality, we assume that x1,1v

ω
1,1 ≤ x2,1v

ω
2,1 ≤ · · · ≤

xs,1v
ω
s,1, recall that fuzzy variable ξi,j,k(ω) is convex for almost every ω ∈ Ω,

then from Theorem 1, we have

μω
i (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∨ni

j=1 μω
i,j

(
t

xi,j

)
, t < xi,1v

ω
i,1∧l

j=1 μω
i,j

(
t

xi,j

)
, xi,lv

ω
i,l ≤ t < xi,l+1v

ω
i,l+1, 1 ≤ l ≤ ni − 1∧ni

j=1 μω
i,j

(
t

xi,j

)
, t ≥ xi,niv

ω
i,ni

.

(13)

For almost every ω ∈ Ω, from the assumption that fuzzy variable ξi,j,k(ω)
is left continuous, that is, the membership function μω

i,j is a left continuous
real-valued function for i = 1, 2, · · · , s, j = 1, 2, · · · , ni, therefore, for any
t0 ∈ +,

lim
t→t0−0

μω
i,1(t)

∨
μω

i,2(t) = lim
t→t0−0

μω
i,1(t)

∨
lim

t→t0−0
μω

i,2(t) = μω
i,1(t0)

∨
μω

i,2(t0),

and

lim
t→t0−0

μω
i,1(t)

∧
μω

i,2(t) = lim
t→t0−0

μω
i,1(t)

∧
lim

t→t0−0
μω

i,2(t) = μω
i,1(t0)

∧
μω

i,2(t0).

Hence, μω
i,1

∨
μω

i,2 and μω
i,1

∧
μω

i,2 are left continuous. By the method of in-
duction, we can obtain that

∨n
j=1 μω

i,j and
∧n

j=1 μω
i,j are left continuous real-

valued functions for any finite positive integer n. Therefore, from (13), we
have μω

i (t) is left continuous in (−∞, xi,1v
ω
i,1),
[
xi,lv

ω
i,l, xi,l+1v

ω
i,l+1

)
for 1 ≤

l ≤ ni −1, and
[
xi,niv

ω
i,ni

,∞), respectively. Thus, to prove the left-continuity
of μω

i , it suffices to prove μω
i is left continuous at xi,1v

ω
i,1, xi,2v

ω
i,2, · · · , xi,niv

ω
i,ni

for i = 1, 2, · · · , s. Given each i, for xi,1v
ω
i,1, we have

lim
t→xi,1vω

i,1−0
μω

i (t) = lim
t→xi,1vω

i,1−0

ni∨
j=1

μω
i,j

(
t

xi,j

)
= 1 = μω

i (xi,1v
ω
i,1), (14)
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which implies that μω
i is left continuous at xi,1v

ω
i,1. Next, for xi,lv

ω
i,l, 2 ≤ l ≤

ni, we have

lim
t→xi,lvω

i,l−0
μω

i (t) = lim
t→xi,lvω

i,l−0

l−1∧
j=1

μω
i,j

(
t

xi,j

)
=

l−1∧
j=1

μω
i,j

(
vω

i,l

)
= μω

i (xi,lv
ω
i,l).

(15)
That is, μω

i is left continuous at xi,lv
ω
i,l for 2 ≤ l ≤ ni. As a consequence,

we have proved that μω
i is left continuous for any i = 1, 2, · · · , s and almost

every ω ∈ Ω. Furthermore, by the same reasoning, from the expression (11)
of the membership function μω

T of T
(
x, ξ(ω)

)
, we can prove that μω

T is also
left continuous for almost every ω ∈ Ω.

In the following, we prove μω
T is upper semicontinuous provided ξi,j,k(ω)

is upper semicontinuous. Before this, we shall prove that given i,
∨n

j=1 μω
i,j

and
∧n

j=1 μω
i,j are upper semicontinuous real-valued functions for any finite

positive integer n provided μω
i,j for j = 1, 2, · · · , n are upper semicontinuous.

In fact, when n = 2, by the upper semicontinuity of μω
i,1 and μω

i,2, we have
for any ε > 0, there exists a δ > 0 such that

μω
i,1(t)

∨
μω

i,2(t) <
(
μω

i,1(t
0) + ε

)∨(
μω

i,2(t
0) + ε

)
=
(
μω

i,1(t
0)
∨

μω
i,2(t

0)
)

+ ε,

and

μω
i,1(t)

∧
μω

i,2(t) <
(
μω

i,1(t
0) + ε

)∧(
μω

i,2(t
0) + ε

)
=
(
μω

i,1(t
0)
∧

μω
i,2(t

0)
)

+ ε,

for any t0 ∈ +. That is μω
i,1∨μω

i,2 and μω
i,1∧μω

i,2 are upper semicontinuous. By
the method of induction, it is not difficult to show

∨n
j=1 μω

i,j and
∧n

j=1 μω
i,j

are upper semicontinuous real-valued functions for any finite positive integer
n. Furthermore, similarly as in the case that ξi,j,k(ω) is left continuous, to
prove the upper semicontinuity of μω

i , from (13), it suffices to prove that μω
i

is upper semicontinuous at xi,1v
ω
i,1, xi,2v

ω
i,2, · · · , xi,niv

ω
i,ni

for i = 1, 2, · · · , s.

Given i = 1, 2, · · · , s, for xi,1v
ω
i,1, we have

lim sup
t→xi,1vω

i,1

μω
i (t) ≤ 1 = μω

i (xi,1v
ω
i,1),

which implies μω
i is upper semicontinuous at xi,1v

ω
i,1 for each i. As to xi,lv

ω
i,l,

2 ≤ l ≤ ni, we note from the proof of Theorem 1 that μω
i is nonincreasing in

[xi,1v
ω
i,1,∞] for all i, hence we have

lim sup
t→xi,lvω

i,l

μω
i (t) ≤ lim sup

t→xi,lvω
i,l−0

μω
i (t) = lim sup

t→xi,lvω
i,l−0

l−1∧
j=1

μω
i,j

(
t

xi,j

)
. (16)
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It follows from the upper semicontinuity of
∧l−1

j=1 μω
i,j that

lim sup
t→xi,lvω

i,l−0

l−1∧
j=1

μω
i,j

(
t

xi,j

)
≤

l−1∧
j=1

μω
i,j

(
vω

i,l

)
= μω

i (xi,lv
ω
i,l). (17)

Combining (16) and (17) implies that μω
i is upper semicontinuous at xi,lv

ω
i,l,

for 2 ≤ l ≤ ni. So far, we have proved that μω
i is upper semicontinuous for

any i = 1, 2, · · · , s and almost every ω ∈ Ω. Based on this fact, by the same
reasoning, we can prove that μω

T is also upper semicontinuous for almost every
ω ∈ Ω.

Therefore, we have μω
T is left continuous or upper semicontinuous according

that ξi,j,k(ω) for each i, j, k is left continuous or upper semicontinuous. Thus,
by the left-continuity condition for the distribution functions of fuzzy random
variable (see [36, Corollary 3.3]), we have

lim
T→T 0−0

Ch
{
T (x, ξ) ≥ T

}
= Ch

{
T (x, ξ) ≥ T 0

}
for any T 0 ∈ +. That is the reliability RT 0(x) is a left continuous function
of the threshold lifetime T 0 ∈ +.

Example 4. Consider a 2-stage parallel-series system with redundancy alloca-
tion x = (x1,1, x1,2, x2,1) = (1, 1, 2). The components have the distributions
as follows: fuzzy random lifetimes ξ1,1, ξ1,2 and ξ2,1 are characterized by a
discrete random variable which takes on values ω = ω1 with probability 0.8
and ω = ω2 with probability 0.2, and the membership functions are left
continuous and upper semicontinuous which are given as below:

μξ1,1(ω1)(t) =

⎧⎨⎩
t − 2, 2 ≤ t ≤ 3
(4 − t)/2, 3 < t ≤ 4
0, otherwise,

μξ1,1(ω2)(t) =

⎧⎨⎩
t − 3, 3 ≤ t ≤ 4
(5 − t)/2, 4 < t ≤ 5
0, otherwise;

μξ1,2(ω1)(t) =

⎧⎨⎩
(t − 3)/2, 3 ≤ t ≤ 5
(7 − t)/4, 5 < t ≤ 7
0, otherwise,

μξ1,2(ω2)(t) =

⎧⎨⎩
t − 5, 5 ≤ t ≤ 6
(7 − t)/2, 6 < t ≤ 7
0, otherwise;

and

μξ2,1(ω1)(t) =

⎧⎨⎩
t − 6, 6 ≤ t ≤ 7
(8 − t)/2, 7 < t ≤ 8
0, otherwise,
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μξ2,1(ω2)(t) =

⎧⎨⎩
t − 7, 7 ≤ t ≤ 8
(9 − t)/2, 8 < t ≤ 9
0, otherwise.

Now, we verify the left continuity of RT (x) w.r.t. T .

First of all, from Theorem 1, we have the membership function μω1
T (t) of

T
(
x, ξ(ω1)

)
=
(
ξ1,1,1(ω1) ∧ ξ1,2,1(ω1)

)∨(
ξ2,1,1(ω1) + ξ2,1,2(ω1)

)
is

μω1
T (t) =

⎧⎨⎩
(t − 12)/2, 12 < t ≤ 14
(16 − t)/4, 14 < t ≤ 16
0, otherwise.

Furthermore, we have

Cr
{
T
(
x, ξ(ω1)

)
≥ T
}

=

⎧⎪⎪⎨⎪⎪⎩
1, T ≤ 12
(16 − T ) /4, 12 < T ≤ 14
(16 − T ) /8, 14 < T ≤ 16
0, otherwise.

Similarly, we can obtain

μω2
T (t) =

⎧⎨⎩
(t − 14)/2, 14 < t ≤ 16
(18 − t)/4, 16 < t ≤ 18
0, otherwise,

and

Cr
{
T
(
x, ξ(ω2)

)
≥ T
}

=

⎧⎪⎪⎨⎪⎪⎩
1, T ≤ 14
(18 − T ) /4, 14 < T ≤ 16
(18 − T ) /8, 16 < T ≤ 18
0, otherwise.

As a consequence, by the definition, we have

Ch
{
T (x, ξ) ≥ T

}
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, T ≤ 12
(17 − T )/5, 12 < T ≤ 14
(50 − 3T )/20, 14 < T ≤ 16
(18 − T )/20, 16 < T ≤ 18
0, otherwise,

which is a left continuous function of T ∈ +. This result coincides with that
of Theorem 2.

Theorem 3. Suppose that the lifetimes ξi,j,k of components in the FR-
RAM for i = 1, 2, · · · , s, j = 1, 2, · · · , ni, k = 1, 2, · · · , xi,j are fuzzy ran-
dom variables on probability space (Ω, Σ, Pr) such that for almost every
ω ∈ Ω, ξi,j,k(ω) is a convex fuzzy variable. If ξi,j,k(ω) for each i, j, k is right
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continuous and lower semicontinuous, then the reliability RT 0(x) is right
continuous w.r.t. the threshold lifetime T 0 ∈ +.

Proof. Under the assumption that for almost every ω ∈ Ω, ξi,j,k(ω) for each
i, j, k is right continuous and lower semicontinuous, by the same proof as in
Theorem 2, we can prove μω

i is also right continuous and lower semicontinuous
for i = 1, 2, · · · , s. Furthermore, we can similarly prove that μω

T is right
continuous and lower semicontinuous for i = 1, 2, · · · , s for almost every
ω ∈ Ω. Thus from the right-continuity condition for the distribution functions
of fuzzy random variable (see [36, Theorem 3.7]), we have

lim
T→T 0+0

Ch
{
T (x, ξ) ≥ T

}
= Ch

{
T (x, ξ) ≥ T 0

}
for any T 0 ∈ +. That is the reliability RT 0(x) is right continuous of T 0 ∈ +.

Theorem 4. Assume that the lifetimes ξi,j,k of components in the FR-RAM
for i = 1, 2, · · · , s, j = 1, 2, · · · , ni, k = 1, 2, · · · , xi,j are fuzzy random vari-
ables on probability space (Ω, Σ, Pr) such that for almost every ω ∈ Ω,

ξi,j,k(ω) is a convex fuzzy variable. If ξi,j,k(ω) for each i, j, k is continuous,
then we have the reliability RT 0(x) is continuous w.r.t. the threshold lifetime
T 0 ∈ +.

Proof. Similarly as in Theorem 3, we can prove that for almost every ω ∈ Ω,
μω

i is continuous for all i provided that ξi,j,k(ω) for each i, j, k is continuous.
Furthermore, μω

T is also continuous for almost every ω ∈ Ω. Therefore, by the
continuity condition for the distribution functions of fuzzy random variable
(see [36, Theorem 3.10]), we have

lim
T→T 0

Ch
{
T (x, ξ) ≥ T

}
= Ch

{
T (x, ξ) ≥ T 0

}
for any T 0 ∈ +. That is the reliability RT 0(x) is a right continuous function
of T 0 ∈ +.

4 Computation of Reliability

Containing fuzzy random parameters, the reliability function RT 0(x) in gen-
eral cannot be calculated directly. Furthermore, we note from the FR-RAMs
I and II that the reliability function RT 0(x) is the objective of FR-RAM I and
a constraint of FR-RAM II, therefore, in order to solve the FR-RAMs, we at
first have to deal with the computation of the system reliability RT 0(x).

Let ξ =
(
ξ1,1,1, · · · , ξ1,1,x1,1 , · · · , ξs,ns,1, · · · , ξs,ns,xs,ns

)
be the fuzzy ran-

dom vector involved in the fuzzy random parallel-series system, where lifetime
ξi,j,k can be any fuzzy random variable for i = 1, 2, · · · , s; j = 1, 2, · · · , ni; k =
1, 2, · · · , xi,j . The discussion of computing the reliability in this section is
divided into three cases: reliability with discrete lifetimes, reliability with
convex lifetimes, and reliability with nonconvex (continuous) lifetimes.
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4.1 Reliability with Discrete Lifetimes

ξ is a fuzzy random vector whose randomness is characterized by a dis-
crete random vector ω assuming finite number of values ωk, k = 1, 2, · · · , N,

with probability pk, k = 1, 2, · · · , N, respectively; and for each k, ξ(ωk) =(
ξ1,1,1(ωk), · · · , ξ1,1,x1,1(ωk), · · · , ξs,ns,1(ωk), · · · , ξs,ns,xs,ns

(ωk)
)

is a discrete
fuzzy vector taking on Mk values

ξ̂
k,j

=
(
ξ̂

k,j
1,1,1, · · · , ξ̂

k,j
1,1,x11

, · · · , ξ̂
k,j
s,ns,1, · · · , ξ̂k,j

s,ns,xs,ns

)
with possibility μ

j
k > 0, k = 1, 2, · · · , N, j = 1, 2, · · · , Mk, and max1≤j≤Mk

μ
j
k = 1. In this case, the support of ξ, Ξ =

{
ξ̂

k,j | k = 1, 2, · · · , N, j = 1, 2,

· · · , Mk}, is a finite set. Hence from the definition, we have

RT 0(x) =
N∑

k=1

pkQk(x) (18)

where Qk = Cr{T (x, ξ(ωk)) ≥ T 0} is calculated by

Qk(x)=
1
2

[
max
{

μ
j
k |T
(
x, ξ̂

k,j
)
≥T 0
}

+1−max
{
μ

j
k |T
(
x, ξ̂

k,j
)

< T 0
}]

. (19)

For the simplicity, we abbreviate the formula (18)-(19) of the reliability with
discrete lifetimes to RDL.

4.2 Reliability with Convex Lifetimes

In Subsection 3.2, we have proved Theorem 1 which supplies us with an an-
alytical expression (10)-(12) of the reliability when all the lifetimes of com-
ponents have convex distributions. By using Theorem 1, we can compute the
reliability with convex lifetimes by the following random simulation method.

First of all, given a decision x, for any ω ∈ Ω, we calculate μω
T (T 0) by for-

mula (11)-(12). Furthermore, we note that formula (10) for reliability RT 0(x)
with convex lifetimes can be rewritten as

RT0 (x)=E

[
I{ω|T0≤xs,1vω

s,1}(ω)
(

1 − μω
T (T 0)

2

)
+ I{ω|T0>xs,1vω

s,1}(ω)
(

μω
T (T 0)

2

)]
,

where E[·] is the expected value operator of random variable, IA is the in-
dicator function of set A. Therefore, making using of random simulation, we
can compute the reliability by

RT 0(x) ← 1
M

M∑
i=1

RT 0(x, ωi), (M → ∞) (20)
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where

RT0(x, ωi)=I{ω|T0≤xs,1vω
s,1}(ωi)

(
1 − μωi

T (T 0)
2

)
+I{ω|T0>xs,1vω

s,1}(ωi)
(

μωi
T (T 0)

2

)
.

(21)

Here, ωi for i = 1, 2, · · · , n are the random samples generated from the distri-
bution of the random parameter involved in the fuzzy random vector ξ. It is
well known that the random simulation (20) is characterized by convergence
with probability 1 as M → ∞, which is ensured by the strong law of large
numbers. The above computation procedure is summarized as the following
algorithm.

Algorithm 1

Step 1. Set R = 0.
Step 2. Randomly generate a sample point ω̂ from the distribution of the

random vector involved in ξ.
Step 3. Compute the RT 0(x, ω̂) through (21).
Step 4. R ← R + RT 0(x, ω̂).
Step 5. Repeat the Steps 2-4 M times.
Step 6. Return the value of RT 0(x) = R/M .

4.3 Reliability with Nonconvex Lifetimes

In order to compute the system reliability with nonconvex lifetimes, in this
subsection, we apply a fuzzy random simulation approach [23] to computing
the reliability. Moreover, in order to attain the convergence, a discretiza-
tion method [21] of continuous fuzzy random variable is embedded into the
fuzzy random simulation. The convergence of the simulation approach for the
RT 0(x) with nonconvex lifetimes is discussed to end this subsection.

Suppose the randomness of ξ is characterized by a continuous random
vector, and for any random realization ω ∈ Ω, ξ(ω) is a nonconvex continuous
fuzzy vector with infinite support denoted by

Ξ =
K∏

k=1

[ai, bi] (22)

where K =
∑s

i=1

∑ni

j=1 xi,j , [ak, bk] is the support of ξk for k = 1, 2, · · · , K.
First of all, we employ the discretization method [21] to generate a se-

quence {ζl} of discrete fuzzy random vectors which converges to the orig-
inal continuous ξ. For the simplicity, we denote the fuzzy random vector
ξ = (ξ1, ξ2 · · · , ξK). For each integer l = 1, 2, · · · , ζl = (ζl,1, ζl,2, · · · , ζl,K) is
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constructed by the following method: define ζl,i = gl,i(ξi) for i = 1, 2, · · · , K,

where the functions gl,i’s are given by

gl,i(vi) =
{

ai, vi ∈ [ai, ai + 1
l )

sup
{

ki

l | ki ∈ Z, s.t. ki

l ≤ vi

}
, vi ∈ [ai + 1

l , bi]
(23)

and Z is the set of integers. In what follows, the sequence {ζl} of discrete
fuzzy random vectors generated by (23) is referred to as the discretization of
ξ. It has been proved by [21] that

‖ζl(ω)(γ) − ξ(ω)(γ)‖ =

√√√√ K∑
j=1

[ζl,i(ω)(γ) − ξi(ω)(γ)]2 ≤
√

K

l
, (24)

for all (ω, γ) ∈ Ω ×Γ, which implies that the discretization {ζl} converges to
ξ uniformly.

Next, the fuzzy random simulation [23] is utilized to compute the RT 0(x).
Noting that lifetime T (x, ξ) is a positive fuzzy random variable, the reliability
function RT 0(x) can be rewritten as

RT 0(x)=Ch{T (x, ξ) ≥ T 0}

=
∫ 1

0

Pr{ω ∈ Ω | Cr{T (x, ξ(ω)) ≥ T 0} ≥ α}dα.

For any ω ∈ Ω, we first replace the ξ with its discretization {ζl} generated
by (23), and estimate Cr{T (x, ξ(ω)) ≥ T 0} by Cr{T (x, ζl(ω)) ≥ T 0} which
can be calculated by (19). Furthermore, the value of

G(x, Ui) = Pr
{

ω ∈ Ω | Cr
{
T
(
x, ζl(ω)

)
≥ T 0

}
≥ Ui

}
, (25)

can be estimated with probability 1 by

G(x, Ui) ← 1
n

n∑
j=1

I{ω|Cr{T (x,ζl(ω))≥T 0}≥Ui}(ωj), (n → ∞), (26)

where Ui ∼ U(0, 1), i = 1, 2, · · · are random variables with uniform distribu-
tions, and IA is the indicator function of set A. Finally, the reliability RT 0(x)
can be estimated by

RT 0(x) ← 1
n

n∑
i=1

G(x, Ui), (n → ∞) (27)

with probability 1.
The fuzzy random simulation procedure for the RT 0(x) with nonconvex

lifetimes is summarized as follows:
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Algorithm 2 [Fuzzy Random Simulation]

Step 1. Generate ζl(ω) from the support Ξ of ξ(ω) through (23), for any ω ∈ Ω.
Step 2. Calculate Cr{T (x, ζ l(ω)) ≥ T 0} through formula (19) for any ω ∈ Ω.
Step 3. Compute G(x, Ui) in (25) through random simulation (26) for each

Ui, i = 1, 2, · · · , n.
Step 4. Return the value of RT0(x) by random simulation (27).

The following Theorem 5 shows that RT 0,ζl
(x) converges to RT 0(x) for al-

most every T 0 > 0, as l → ∞. As a consequence, the original reliability func-
tion RT 0(x) can be well approximated by RT 0,ζl

(x) through Algorithm 2,
provided l is sufficiently large.

Theorem 5. Consider FR-RAMs I and II for a parallel-series system. Let
ξ be the continuous fuzzy random lifetime vector of the components in the
system, which has the compact interval support (22), {ζl} be the discretization
of ξ, and T 0 the preselected threshold system lifetime. Then, for any feasible
decision x, the approximating system reliability function RT 0,ζl

(x) converges
to the original system reliability function, i.e.,

lim
l→∞

RT 0,ζl
(x) = RT 0(x),

provided RT (x) is continuous at T = T 0.

Proof. Recall that the lifetime of the parallel-series system is T (x, ξ) =∨s
i=1

[∧ni

j=1

(∑xi,j

k=1 ξi,j,k

)]
, which is a continuous function w.r.t. ξ, for any

given x = (x1,1, · · · , x1,n1 , · · · , xs,1, · · · , xs,ns). Since the support Ξ =∏K
i=1[ai, bi] of ξ is a compact set in +K , where K =

∑s
i=1

∑ni

j=1 xi,j , T (x, ξ)
is uniformly continuous on Ξ. Hence, given a feasible x, for any ε > 0, there
is a δ > 0 such that ∣∣∣T (x, ξ̂

′
) − T (x, ξ̂′′)

∣∣∣ < ε (28)

whenever ξ̂
′
, ξ̂′′ ∈ Ξ, and

∥∥∥ξ̂′ − ξ̂′′
∥∥∥ =

√√√√ s∑
i=1

ni∑
j=1

xi,j∑
k=1

(
ξ̂′i,j,k − ξ̂

′′
i,j,k

)2
< δ.

Noting that the discretization {ζl} is a sequence of fuzzy random vectors
which converges uniformly to ξ on Ω × Γ , for the above δ, there exists a
positive integer L such that for all (ω, γ) ∈ Ω × Γ ,

‖ζl(ω)(γ) − ξ(ω)(γ)‖ =

√√√√ s∑
i=1

ni∑
j=1

xi,j∑
k=1

(
ζl
i,j,k(ω)(γ) − ξi,j,k(ω)(γ)

)2
< δ

provided l ≥ L. Combining (28), for all (ω, γ) ∈ Ω × Γ ,



Fuzzy Random Redundancy Allocation Problems 445∣∣∣T(x, ζl(ω)(γ)
)

− T
(
x, ξ(ω)(γ)

)∣∣∣ < ε

whenever l ≥ L. That is, the sequence {T (x, ζl)} of fuzzy random variables
converges uniformly to T (x, ξ) on Ω × Γ . As a consequence, for any ε > 0,
we have

lim
l→∞

Ch
{∣∣T (x, ζl) − T (x, ξ)

∣∣ ≥ ε
}

= 0.

Since convergence in chance implies convergence in distribution, we obtain

lim
l→∞

Ch
{
T (x, ζl) ≥ T 0

}
= Ch

{
T (x, ξ) ≥ T 0

}
(29)

provided Ch{T (x, ξ) ≥ T } is continuous at T = T 0. The proof of the theorem
is complete.

5 The Algorithm

It is easy to see that the FR-RAMs I and II are tasks of fuzzy random inte-
ger programming problems. In this section, the three computation methods
(formula RDL, Algorithm 1 and Algorithm 2) of the reliability RT 0(x) in
different cases will be incorporated into the mechanism of genetic algorithm
(GA) (see [7, 8, 18, 26]) to search for the approximately optimal solution
the FR-RAMs I and II. In this hybrid algorithm, the GA is used to search
for the best redundancy allocation and the computation methods is used to
calculate the objective value of the FR-RAM I, and to check the feasibility
of each chromosome in the FR-RAM II.

5.1 Solution Representation

A positive integer vector C = (C1, C2, · · · , CN ) is used as a chromosome to
represent a solution x = (x1,1, · · · , x1,n1 , · · ·xs,1, · · · , xs,ns) of the FR-RAMs
I and II, where N = n1 + n2 + · · · + ns.

5.2 Initialization Process

We first generate randomly an integer vector C = (C1, C2, · · · , CN ) from a
positive integer set {1, 2, · · · , K}N , where K is a sufficiently large integer. If
C is feasible, it is taken as an initial chromosome, otherwise, regenerate the
vector C from {1, 2, · · · , K}N until the C is proved to be feasible.

Here, for the FR-RAM I, the feasibility of the chromosome C = (C1, C2,

· · · , CN ) is checked by
s∑

i=1

ni∑
j=1

cijCij ≤ c0 (30)
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li ≤
ni∑

j=1

Cij ≤ ui, for i = 1, · · · , s. (31)

While in the FR-RAM II, to check the feasibility of the chromosome C, we
should compute the reliability RT 0(C) by the formula RDL, Algorithm 2, or
Algorithm 3, according to the different distributions of lifetimes. Then, the
following constraints are checked

RT 0(C) = Ch{T (C, ξ) ≥ T 0} ≥ R0 (32)

li ≤
ni∑

j=1

Cij ≤ ui, for i = 1, · · · , s. (33)

Repeating the above process pop size times, we get pop size initial chromo-
somes C1, C2, · · · , Cpop size.

5.3 Selection Process

The selection process is done based on elitist strategy and spinning roulette
wheel. Before spinning the roulette wheel, we first calculate the objective
function for each chromosome, i.e.,

RT 0(C) for FR-RAM I,

and
s∑

i=1

ni∑
j=1

cijCij for FR-RAM II,

respectively, and the pop size chromosomes are rearranged from good to bad
based on the values of their objective functions. Here, the objective of the FR-
RAM I is computed by using the formula RDL, Algorithm 1, or Algorithm 2
for the different cases of lifetimes, respectively.

In order to ensure that the best chromosome C1 of current population can
always be selected successfully as an offspring, that is to move C1 directly into
the next generation (elitist strategy). Then, we operate the selection process
to the rest pop size − 1 chromosomes as follows: Employing the evaluation
function, we assign a probability of reproduction to each chromosome Ck, k =
2, 3, · · · , pop size, so that the chromosome with the higher fitness will have
more chance to be reproduced. There are several kinds of evaluation functions,
here we adopt a popular one, rank-based evaluation function, which is defined
as below:

eval(Ck) = a(1 − a)k−2, k = 2, 3, · · · , pop size,

where a ∈ (0, 1) is a system parameter, and k = 1 means the best indi-
vidual, while k = pop size the worst one. Next, we calculate the cumulative
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probability pk for each chromosome Ck, k = 2, 3, · · · , pop size as follows p1 =
0, pk = eval(C2)+eval(C3)+ · · ·+eval(Ck), then normalize all p′ks dividing
each pk, k = 2, 3, · · · , pop size by ppop size such that ppop size = 1. After that,
generate a random number r ∈ (0, 1], the probability of pk−1 < r ≤ pk is the
probability that the kth chromosome will be selected for the new population
for k = 2, 3, · · · , pop size. Repeating the following process pop size−1 times,
we can select pop size−1 copies of chromosomes: generate a random number
r ∈ (0, 1], and select the kth chromosome Ck for 2 ≤ k ≤ pop size if pk−1 <

r ≤ pk. Combining the previous C1, we obtain pop size offspring.

5.4 Crossover Operation

In this process, a system parameter pc ∈ (0, 1) is predetermined as the prob-
ability of crossover. We repeat the following process pop size times to deter-
mine the parents for the crossover operation: generate a random number r

from interval (0, 1], the chromosome Ck is selected as a parent for crossover
provided r < pc, where k = 1, 2, · · · , pop size. Denote C ′

1, C
′
2, C

′
3, · · · the se-

lected parents. They are divided into pairs: (C ′
1, C

′
2), (C

′
3, C

′
4), (C

′
5, C

′
6), · · · .

The crossover operation on each pair (C ′
1, C

′
2) is done in the following way:

Let

C ′
1 =
(
C

(1)
1 , C

(1)
2 , · · · , C

(1)
N

)
, C ′

2 =
(
C

(2)
1 , C

(2)
2 , · · · , C

(2)
N

)
.

We randomly choose an integer Nc between 1 and N as the crossover point.
Then, exchange the genes of the chromosomes C ′

1 and C′
2 and produce two

children as follows:

C′′
1 =
(
C

(2)
1 , C

(2)
2 , · · · , C

(2)
Nc−1, C

(2)
Nc

, C
(1)
Nc+1, · · · , C

(1)
N

)
C ′′

2 =
(
C

(1)
1 , C

(1)
2 , · · · , C

(1)
Nc−1, C

(1)
Nc

, C
(2)
Nc+1, · · · , C

(2)
N

)
.

If both children are feasible, then the parents are replaced by them. Other-
wise, keep the feasible one if exists, and then repeat the crossover process by
generating a new crossover points until two feasible children are obtained.

5.5 Mutation Operation

Similar to the crossover operation, a parameter pm ∈ (0, 1) is predetermined
as the probability of mutation. We repeat the following process pop size times:
randomly generate a real number r from (0, 1], the chromosome Ck is selected
as parents for mutation provided r < pm, where k = 1, 2, · · · , pop size. On
each selected parent, denoted C = (C1, C2, · · · , CN ), the mutation is done in
the following way. We first randomly choose a mutation position Nm between 1



448 S. Wang and J. Watada

andN .Then, initializeC′
1, C

′
2, · · · , C′

Nm−1, C
′
Nm

from integer set{1, 2, · · · , K},
and produce a new chromosome

C ′ =
(
C′

1, C
′
2, · · · , C′

Nm−1, C
′
Nm

, CNm+1, · · · , CN

)
.

If C ′ is feasible for the constraints, then replace C with it. Otherwise, repeat
this process until a feasible child is obtained.

5.6 Algorithm Procedure

A new population is produced after selection, crossover and mutation op-
eration. The new cycles of evolution will continue until a given number of
cyclic repetitions is met. The algorithm for solving the FR-RAMs I and II is
summarized as follows.

Algorithm 3

Step 1. Input the parameters: pop size, pc, pm, and a.
Step 2. Initialize pop size chromosomes from the positive integer set

{1, 2, · · · , K}N . Here, the feasibility of the chromosomes in FR-RAM II is
checked by the formula RDL, Algorithm 1, or Algorithm 2.

Step 3. Compute the objective values of all chromosomes. Here, for FR-
RAM I, the objective values are computed by formula RDL, Algorithm 1,
or Algorithm 2.

Step 4. Calculate the rank-based evaluation function for all the chromo-
somes according to their objective values.

Step 5. Select the chromosomes by spinning the roulette wheel with elitist
strategy.

Step 6. Update the chromosomes by crossover and mutation operations.
Again, for FR-RAM II, the feasibility of the chromosomes is checked by
the formula RDL, Algorithm 1, or Algorithm 2.

Step 7. Repeat Step 3 to Step 6 for a given number of cycles;
Step 8. Return the best chromosome as the optimal solution.

6 Numerical Examples

Two numerical examples are covered in this section to illustrate the mod-
elling ideas of the FR-RAMs I and II, and the effectiveness of the designed
solution algorithm. The numerical experiments are all performed on a per-
sonal computer, Intel(R) Core(TM) 2 Duo CPU 2.00 GHz, 1.0 GB memory.
The parameters of GA include the population size pop size, the probability
of crossover pc, the probability of mutation pm, and the parameter a in the
rank-based evaluation function.
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Table 2 Lifetime and cost of each component in Example 4

Component ij Cost cij Lifetime ξij Random parameter Yij

11 10 (2 + Y11, 3 + Y11, 5 + Y11) Y11 ∼ U(2, 3)
12 12 (3 + Y12, 4 + Y12, 6 + Y12) Y12 ∼ U(3, 5)
13 14 (4 + Y13, 5 + Y13, 6 + Y13) Y13 ∼ U(1, 3)

21 10 (1 + Y21, 3 + Y21, 4 + Y21) Y21 ∼ U(2, 4)
22 12 (2 + Y22, 4 + Y22, 5 + Y22) Y22 ∼ U(1, 3)

31 16 (4 + Y31, 6 + Y31, 8 + Y31) Y31 ∼ U(0, 2)
32 11 (3 + Y32, 4 + Y32, 5 + Y32) Y32 ∼ U(1, 3)
33 14 (4 + Y33, 5 + Y33, 6 + Y33) Y33 ∼ U(2, 3)

Example 5. Consider a 3-stage parallel-series system, where there are 3 types
of components in the first subsystem, 2 types in the second and 3 types in
the third. The redundancy allocation decision vector is

x = (x1,1, x1,2, x1,3, x2,1, x2,2, x3,1, x3,2, x3,3),

the vector of fuzzy random lifetimes is

ξ = (ξ1,1,1, · · · , ξ1,1,x1,1 , · · · , ξ2,1,1, · · · , ξ2,1,x2,1 , · · · , ξ3,3,1, · · · , ξ3,3,x3,3)

in which fuzzy random lifetimes together with the cost of each component
is given in Table 2 (we use ξi,j and cij to represent the distribution and
the cost of all lifetimes ξi,j,k for k = 1, 2, · · · , xi,j , since they are the same
type of components). The threshold system lifetime is T 0 = 6. The total
available capital is c0 = 300. For each subsystem i, i = 1, 2, 3, the lower
and upper bounds of the number of the redundant components are given as
l1 = 3, u1 = 9; l2 = 2, u2 = 6; l3 = 4, u3 = 11, respectively. Maximizing the
reliability and making use of FR-RAM I, we can build a redundancy alloca-
tion model for this system as follows:

max R6(x) = Ch {T (x, ξ) ≥ 6}

subject to

11x1,1 + 12x1,2 + 14x1,3 + 10x2,1 + 12x2,2 + 16x3,1 + 11x3,2 + 14x3,3 ≤ 300,

3 ≤ x1,1 + x1,2 + x1,3 ≤ 9,

2 ≤ x2,1 + x2,2 ≤ 6,

4 ≤ x3,1 + x3,2 + x3,3 ≤ 11,

xi,j ∈ �, for j = 1, · · · , ni, i = 1, · · · , 3,

(34)
where the system lifetime
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T (x, ξ) =
3∨

i=1

⎡⎣ ni∧
j=1

(xi,j∑
k=1

ξi,j,k

)⎤⎦ . (35)

Noting that all the lifetimes of components have the convex distributions,
therefore, at each given allocation decision x = (x1,1, x1,2, x1,3, x2,1, x2,2, x3,1,

x3,2, x3,3), the system reliability

R6(x) = Ch {T (x, ξ) ≥ 6} , (36)

can be calculated by the Algorithm 1. Incorporating the Algorithm 1 into the
GA, we use Algorithm 3 to search for the optimal solution of problem (34).

Table 3 The parameters and comparison solutions of Example 6

pop size pc pm a Gen Optimal solution Objective value Error(%)

20 0.2 0.2 0.05 400 (2,2,4,2,2,2,1,3) 0.8598 1.54
20 0.3 0.2 0.10 400 (2,2,2,2,2,2,2,3) 0.8588 1.66
20 0.3 0.2 0.05 400 (2,2,4,2,1,3,3,2) 0.8575 1.80
20 0.3 0.1 0.10 400 (2,2,2,1,1,2,3,3) 0.8627 1.17
20 0.3 0.1 0.05 400 (2,2,5,2,1,3,2,3) 0.8571 1.85
30 0.2 0.2 0.05 400 (2,2,5,1,1,2,2,2) 0.8675 0.66
30 0.3 0.2 0.10 400 (2,2,3,2,2,2,2,2) 0.8618 1.31
30 0.3 0.2 0.05 400 (1,1,1,3,3,1,1,2) 0.8733 0.00
30 0.3 0.1 0.10 400 (2,2,2,2,1,2,2,2) 0.8665 0.78
30 0.3 0.1 0.05 400 (2,2,5,1,1,3,3,2) 0.8607 1.44

The Algorithm 3 has been run with 400 generations in GA and 6,000 times
of random simulation (20) in Algorithm 1, and in Table 3 we compare so-
lutions by careful variations of parameters of GA with the same stopping
rule. The parameters are given in Table 3 from the first to the fourth col-
umn, and the computational results are provided in fifth and sixth columns.
In addition, the relative error is given in the last column, which is defined
by (objective value-optimal value)/optimal value × 100%. It follows from
Table 3 that the relative error does not exceed 1.85% when different param-
eters of GA are selected. In addition, the convergence of the objective value
(system reliability) is shown in Figure 2. The performance implies the solu-
tion algorithm is robust to the parameter settings and effective to solve the
FR-RAM I.

Example 6. For the fuzzy random parallel-series system in Example 6, if the
decision-maker intends to minimize the total cost to meet some reliability
constraint, i.e., RT 0(x) ≥ α0, then we can model this problem by FR-RAM
II. Here, we suppose the lifetimes of components have the same costs with
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Fig. 2 The convergence of the objective value of Example 4

Table 4 Lifetime and cost of each component in Example 5

Component ij Cost cij Lifetime ξij Random parameter Yij

11 10 (2 + Y11, 3 + Y11, 5 + Y11) Y11 ∼ U(2, 3)
12 12 N+

F (Y12, 4) Y12 ∼ U(2, 4)
13 14 ⊥(4 + Y13, 5 + Y13, 6 + Y13) Y13 ∼ U(1, 3)

21 10 ⊥(1 + Y21, 3 + Y21, 4 + Y21) Y21 ∼ U(1, 2)
22 12 (2 + Y22, 4 + Y22, 5 + Y22) Y22 ∼ U(1, 3)

31 16 N+
F (Y12, 6) Y31 ∼ U(1, 3)

32 11 ⊥(3 + Y32, 4 + Y32, 5 + Y32) Y32 ∼ U(2, 4)
33 14 (4 + Y33, 5 + Y33, 6 + Y33) Y33 ∼ U(2, 3)

that in Example 6 but different distributions partly as listed in Table 4,
where N+

F (Y12, 4) is a positive normal fuzzy random variable defined in (4),
and ⊥(4+Y13, 5+Y13, 6+Y13) is an inverse triangular fuzzy random variable,
in which the membership function of ⊥(a, b, c) is given by

μ⊥(a,b,c)(r) =

⎧⎨⎩
(b − r)/(b − a), a ≤ r < b

(x − b)/(c − b), b ≤ r ≤ c

0, otherwise.

Taking the target reliability R0 = 0.8 and the threshold lifetime T 0 = 6, and
the same lower and upper bounds of numbers of the redundant components
as in Example 6, a cost minimization based FR-RAM can be formed by
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min 11x1,1 + 12x1,2 + 14x1,3 + 10x2,1 + 12x2,2 + 16x3,1 + 11x3,2 + 14x3,3

subject to
R6(x) = Ch {T (x, ξ) ≥ 6} ≥ 0.8,

3 ≤ x1,1 + x1,2 + x1,3 ≤ 9,

2 ≤ x2,1 + x2,2 ≤ 6,

4 ≤ x3,1 + x3,2 + x3,3 ≤ 11,

xi,j ∈ �, for j = 1, · · · , ni, i = 1, · · · , 3.

(37)

When using the Algorithm 3 (for FR-RAM II) to solve the problem (37),
in the processes of initialization, crossover and mutation, we need to check
the feasibility of each chromosome, which means to compute R6(x) =
Ch {T (x, ξ) ≥ 6} in each checking.

We note from Table 4 that the lifetimes ⊥(4+Y13, 5+Y13, 6+Y13) in subsys-
tem 1, ⊥(1+Y21, 3+Y21, 4+Y21) in subsystem 2 and ⊥(3+Y32, 4+Y32, 5+Y32)
in subsystem 3 are nonconvex fuzzy random variables, the Algorithm 1 there-
fore is not suitable for computing the system reliability R6(x). As a con-
sequence, we use the fuzzy random simulation (Algorithm 2) to compute
R6(x). That is, for any realization Ŷ =

(
Ŷ11, Ŷ12, Ŷ13, Ŷ21, Ŷ22, Ŷ31, Ŷ32, Ŷ33

)
of random vector Y = (Y11, Y12, Y13, Y21, Y22, Y31, Y32, Y33), we generate the
discretization ζl =

(
ζl
1,1,1, · · · , ζl

1,3,x1,3
, · · · , ζ3

3,3,x3,3

)
of ξ by (23), where l is

taken as 5,000. Noting from (37) that

x1,1 + x1,2 + x1,3 ≤ 9, x2,1 + x2,2 ≤ 6, x3,1 + x3,2 + x3,3 ≤ 11,

hence, by (24) the discretization error E therefore can be controlled and

E ≤
√√√√ 3∑

j=1

x1,j +
2∑

j=1

x2,j +
3∑

j=1

x3,j

/
5, 000 ≤

√
26

5, 000
≈ 0.001.

After that, we calculate

Cr

⎧⎨⎩
3∨

i=1

⎡⎣ ni∧
j=1

( xij∑
k=1

ζl
i,j,k

(
Ŷij

))⎤⎦ ≥ 6

⎫⎬⎭
through formula (19) for all Ŷij , and can obtain R6(x) by the random simu-
lation (26)-(27).

The above computation (Algorithm 2) is embedded into GA to search for
the best solution of the problem (37). We run the Algorithm 3 with 6,000
times of random simulation (26)-(27) in Algorithm 2, and 400 generations in
GA, the comparison of solutions with different parameters are collected in
Table 5, and the convergence of the objective value (total cost) is shown in
Figure 3. We see from Table 5 that the relative error dose not exceed 4.43%
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Table 5 The parameters and comparison solutions of Example 5

pop size pc pm a Gen Optimal solution Objective value Error(%)

20 0.2 0.2 0.05 400 (1,2,2,1,1,2,3,3) 163 3.16
20 0.3 0.2 0.10 400 (1,3,1,2,1,2,2,2) 160 1.27
20 0.3 0.2 0.05 400 (1,3,1,1,1,2,2,2) 164 3.80
20 0.3 0.1 0.10 400 (1,1,2,1,1,2,3,2) 165 4.43
20 0.3 0.1 0.05 400 (1,1,1,1,1,2,4,2) 162 2.53
30 0.2 0.2 0.05 400 (1,1,1,1,2,2,3,2) 163 3.16
30 0.3 0.2 0.10 400 (1,1,2,1,1,1,5,1) 158 0.00
30 0.3 0.2 0.05 400 (1,1,1,1,2,2,4,1) 160 1.27
30 0.3 0.1 0.10 400 (2,1,1,1,1,1,3,3) 161 1.90
30 0.3 0.1 0.05 400 (1,2,2,1,2,2,2,1) 164 3.80
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Fig. 3 The convergence of the objective value of Example 5

which shows that Algorithm 3 is also robust to the parameter settings and
effective to solve the FR-RAM II.

7 Concluding Remarks

In this work, by considering a parallel-series system with fuzzy random life-
times, we developed two redundancy allocation models (FR-RAMs I and II)
through reliability maximization and cost minimization, respectively. Some
properties on FR-RAM were discussed, where an analytical formula of re-
liability with convex lifetimes was derived (Theorem 1), and the sensitivity
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of the reliability with respect to the threshold lifetime was studied (Theo-
rems 2-4).

The FR-RAMs are fuzzy random integer programming tasks, where the
objective function of the FR-RAM I and the constraints of FR-RAM II con-
tain a fuzzy random reliability function, respectively. Since the reliability with
fuzzy random parameters in general cannot be calculated directly, the classi-
cal mathematical programming methods are not applicable to the FR-RAMs.
Thus, to solve the FR-RAMs, we dealt with the following two issues.

• The computation of reliability: Based on the analytical formulation (The-
orem 1), we proposed a random simulation method (Algorithm 1) to compute
the reliability with convex lifetimes. Furthermore, we computed the reliabil-
ity with nonconvex lifetimes by combining the fuzzy random simulation with
the discretization method (Algorithm 2), and the convergence of the fuzzy
random simulation was proved (Theorem 5).

• The solution algorithm: By incorporating three different computation
methods for reliability into GA, a hybrid solution algorithm (Algorithm 3)
was produced to solve the FR-RAMs. Two numerical experiments were pro-
vided to illustrate the performance of the solution algorithm.

Nevertheless, there is much room for further development of our research.
For instance, although the convergence of the fuzzy random simulation for
the reliability with nonconvex lifetimes was proved in this paper, such a bi-
fold simulation is a time consuming process, since it requires the generation
of a sufficiently large number of discrete fuzzy random variables to ensure
the precision of the simulation. Therefore, a method to speed up the compu-
tation for this case is a significant topic for future studies. In addition, this
paper only modeled single-objective redundancy allocation problems under
fuzzy random environment, while multi-objective FR-RAMs have not been
considered, which should be another interesting topic that needs further in-
vestigation.
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Reliable Biological Circuit Design Including
Uncertain Kinetic Parameters

Eva Sciacca and Salvatore Spinella

Abstract. In the context of possibilistic decision making, this work deals with bi-
ological design problems particularly important in the near future when it will be
possible to produce biological entities and synthetic organisms for pharmacological
and medical usage. The biological systems is investigated in terms of performances
or main key features of the system. The analysis of the biological system is based
on the idea that the set of parameters involved in the model can be classified into
two different typologies: the uncertain kinetic parameters and the control design pa-
rameters. In order to design a robust and reliable biological system with respect to a
target performance, the design parameter values are set up to balance the uncertainty
of the kinetic parameters. To take into account these uncertainties arising from the
estimations of the kinetic parameters, the function representing the feedback of the
system is fuzzified and a measure of failure of the designed biological circuit is
minimized to reach the required performance. An application of this methodology
is illustrated on a case study of an autonomously oscillatory system: the Drosophila
Period Protein which is a central component of the Drosophila circadian clocks.
Finally, the results of the fuzzy methodology are compared with a deterministic
method.

1 Introduction

In the context of possibilistic decision making, this work deals with biological de-
sign problems particularly important in the near future when it will be possible to
produce biological entities and synthetic organisms for pharmacological and medi-
cal usage. Generally, the design frameworks that support Research & Development
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technologies must face with uncertainty modelling. In this field the uncertainty arise
from different sources related to:

• behavioral models, that connect uncertain model parameters to observed evolu-
tion of system state;

• equivalent models, that connect uncertain model parameters to system feedbacks;
• approximated models, that approximate various aspects of a system in a compu-

tational tractable manner.

One possible way to model biological networks is to employ Ordinary Differen-
tial Equations (ODE) systems. These models involve several parameters such as
reaction rate constants or protein concentrations. A precise measurement of these
parameters is difficult to experimentally estimate and their values are quite uncer-
tain because they vary from one cell to another or throughout the lifetime of any
individual.

The aim of this work is to set up a methodology to perform a reliable target
satisfaction in the framework of biological systems design that include uncertain
parameters. Biological pathways modeled by mass action reactions include uncer-
tain parameters that are usually related to the equilibrium of the system; feedback
loops between tumor suppressors and oncogene agents are some examples of these
kinds of systems.

This chapter includes the following sections. A general survey of optimization in
biological design is outlined in Sect. 2. In Sect. 3 the design optimization problem
under uncertainty is formulated. The biological system was investigated in terms
of performances or main key features of the model. The analysis of the biological
system is based on the idea that the set of parameters involved in the model can be
classified into different typologies, two different classes of parameters were identi-
fied: the uncertain kinetic parameters and the control design parameters. In order to
design a robust and reliable biological system with respect to a target performance,
the design parameter values were set up to balance the uncertainty of the kinetic
parameters. To take into account these uncertainties arising from the estimations of
the kinetic parameters, the function representing the feedback of the system was
fuzzified as described in Sect. 4. One way to deal with design specifications is to
compare the fuzzified performance with a crisp number representing a reasonable
threshold and give a measure of satisfaction of these constraints. For this purpose
the possibility measures of failure with respect to the specification constraints can
give a useful information to improve the design. The measures of failure are then
minimized using an appropriate optimization algorithm to reach the required bio-
logical design. Sect. 5 gives a description of the main concepts of the possibility
theory. A summary of the whole methodology and a clear diagram of the numeri-
cal algorithms and components involved in the design simulation are illustrated in
Sect. 6. Among all the possible biological circuit designs, autonomously oscillating
systems are the most investigated because they provide invaluable resources for con-
trolling and orchestrating the main biological functions. These kinds of systems are
introduced in Sect. 7 where also a summary of the typical biochemical rate func-
tions involved in biological mathematical modelling is given. The particular case
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study of the Drosophila Period Protein (PER) and the involved model parameters
are described in Sect. 8. Some results of the application of the methodology and the
comparison with a deterministic method on the case study are illustrated in Sect. 9.
Finally, the conclusions on this study and some perspectives for future research are
outlined in Sect. 10.

2 Biological Design Optimization

The concept of optimization is certainly not new in biology [Banga, 2008]. Model-
based optimization is a key methodology in engineering, helping in the design,
analysis, construction and operation of all kind of devices. Optimization methods
have been applied in both metabolic control analysis [Heinrich and Schuster, 1998]
and biochemical systems theory [Torres and Voit, 2002]. Further, optimization (in
particular, linear programming) has been the engine behind metabolic flux balance
analysis, where the optimal flux distributions are calculated using linear optimiza-
tion, and are used to represent the metabolic phenotype for certain conditions. This
flux balance methodology provides a guide to metabolic engineering and a method
for bio-process optimization [Banga, 2008].

Coupling constraint-based analysis with optimization has been used to gener-
ate a consistent framework for the generation of hypotheses and the testing of
functions of microbial cells using genome-scale models. Extensions and modifi-
cations of flux balance analysis continue to use optimization methods extensively
[Segre et al., 2002]. Constrained evolutionary optimization has been used to un-
derstand optimal circuit design. Moreover, optimization principles have also been
used to explain the complexity and robustness found in biochemical networks
[Stelling et al., 2004]. Reverse engineering in systems biology aims to reconstruct
the biochemical interactions from data sets of a particular biological system. Op-
timization has been used for inferring important biomolecular networks, such as
transcriptional regulatory networks [Wang et al., 2007], gene regulatory networks,
signaling pathways and protein interaction networks.

System identification is a methodology widely used in engineering for building
mathematical models of dynamical systems based on measured data. This method-
ology involves the selection of the model structure and the parameter estimation for
the model from the available experimental data. The parameter estimation problem
in biochemical pathways is formulated as a nonlinear programming problem sub-
ject to the pathway model acting as constraints. Since these problems are frequently
multi-modal, global optimization methods are needed in order to avoid local solu-
tions. A local solution can be very misleading when calibrating models: it would
indicate a bad fit even for a model which could potentially match perfectly a set of
experimental data [Banga, 2008].

In general, for biological design optimization, it is assumed that the mathematical
model and the involved species are already chosen by the biologist and are fixed.
Let r be the number of specifications of the biological system to be optimized, the
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desired response R∗ ∈ Rr is expressed in terms of design specifications or design
goals. The problem of biological model design then can be formulated as:

x∗ = argmin
x∈X

U(R(x)) (1)

where x∗ is the optimal design, X is the feasible region, U is a suitable objective
function, and hopefully R(x∗) = R∗. In general, the above problem corresponds to a
constrained nonlinear programming problem. The objective function U is typically
a combination of multiple objectives with conflicting criteria.

Generally, ”classical methods to solve equation 1 include Line Search and Trust
Region strategies, based on methods such as Conjugate Gradient, Newton and
Quasi-Newton methods. Usually methods that use only function evaluations are
more suitable for problems that are very nonlinear or have many discontinuities
(Search Methods) while methods that use derivative information are more effec-
tive when the function is continuous in the first and second derivatives (Gradient
Methods).

For nominal design it is assumed that the design parameters are not subject to
statistical fluctuations. When uncertain parameters are considered, one of the most
common deterministic design methodology, used also in microelectronic industry,
is named “Nominal Over-Design”. The Nominal Over-Design fixes every objec-
tive to a secure value with regard to the nominal target specifications. The design
specifications are increased of a certain percentage in the case of minimum thresh-
olds, while in cases of maximum thresholds they are decreased. The main drawback
of this scheme is often to point deterministically at unfeasible over-designs which
could have the opposite effect blocking the optimization process at initial stages.

The methodology introduced in this study allows to combine optimization and
uncertainty analysis for target satisfaction design problem. The treatment of uncer-
tainty is an unavoidable step because the lack of precision in the model and among
its parameter values can invalidate the results. The target satisfaction under uncer-
tainty gives a robust framework to use optimization in a design context.

3 Biological Design Optimization under Uncertainty

In this work a methodology was formulated to perform a target satisfaction in the
framework of biological systems design that incorporates reliable feedback. The
proposed methodology is based on the scheme described in [Sciacca et al., 2007]
which was applied to a sizing problem of an electronic circuit. The biological sys-
tem was investigated in terms of performances or main key features of the system.
For example, in autonomously oscillating biochemical systems, the key features of
oscillatory trajectories of the species concentrations can be taken into consideration.
Once the performances of the system are chosen, the system can be designed in a
reliable manner with respect to the uncertainties related to the estimation of the pa-
rameters. Our methodology combines an analysis of the system parameters and their
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relationships with the uncertainties arising from the model describing the biological
system.

The analysis of the biological system is based on the idea that the set of param-
eters involved in the model can be classified into different typologies. Referring
for instance to the case study of the circadian oscillations of the PER gene prod-
uct in Drosophila (introduced in Sect. 8) two different classes of parameters were
identified:

• The uncertain kinetic parameters KU , that are known in terms of confidence in-
tervals. Those parameters are for example the Michaelis constants or the constant
rates for the kinases and the phosphatases.

• The control design parameters KCD, that can be defined in a reliable way and
determine the behavior of the biological system. Those are for example the max-
imum rate of degradation of an enzyme or the first order transportation rate
parameters.

Since this biological design problem includes elements of the input data in a real-
valued confidence interval, we deal with an optimization problem under uncertainty
[Lodwick and Jamison, 2007]. In particular, the following programming constraint
satisfaction problem is considered:

gi(KCD,KU ) ≤ ti i = 1, . . . ,n (2)

The constraint set is denoted as Ω = {KCD|gi(KCD,KU) ≤ ti i = 1, . . . ,n,KCD ∈ X}.
The values of KU are input parameters of the programming problem and are subject
to uncertainty arising from different sources. Depending on the nature of the un-
certainty, they may be probability distributions, intervals, fuzzy sets, or possibilistic
distributions. In our case, these parameters are intervals which are particular cases
of fuzzy numbers. The values ti are the maximum or minimum thresholds for the
constraints and can also be considered as uncertain.

In order to design a robust and reliable biological system with respect to a tar-
get performance, the design parameters were set up to balance the uncertainty of
the kinetic parameters. To take into account these uncertainties arising from the es-
timations of the kinetic parameters, the function representing the feedback of the
system was fuzzified. Finally, a measure of failure of the designed biological circuit
to reach the required performance was analyzed by means of the possibility theory.
The possibility measure is a consistent alternative to the statistical and probabilistic
hypothesis. In fact, especially in fields such as the biological one, statistic and prob-
abilistic assumptions are difficult to justify and moreover they could not include all
the possible phenomena involved in biological processes. For such problems, lit-
tle information regarding the uncertainty is known, and the uncertainty is typically
modelled depending on expert opinions and assumptions made by the biologist.
Fuzzy set theory is able to compensate the fact that uncertainty is modelled based
on subjective opinions and assumptions. In contrast, probabilistic methods require
large amount of data and the results obtained are, in same cases, sensitive to both
the accuracy of the data as well as the assumptions made during the design process.
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The interpretation of the possibility failure stands for a measure for the worst
case design in the uncertainty context of the system. An optimization methodology
adopted to minimize the possibility failure leads to a reliable configuration which
guarantee the desired design.

4 Fuzzification of the Objective Function Representing the
Performance

Fuzzy sets have been introduced by [Zadeh, 1965] as an extension of the classical
notion of set. In classical set theory, the membership of elements in a set is assessed
in binary terms according to a bivalent condition in which an element either belongs
or does not belong to the set. By contrast, fuzzy set theory permits the gradual
assessment of the membership of elements in a set; this is described with the aid of
a membership function valued in the real unit interval [0,1].

A fuzzy set is a pair (F,m) where F is a set and m : F → [0,1]. For each x ∈ F ,
m(x) is the grade of membership of x. An element mapping to the value 0 means that
the member is not included in the fuzzy set while the mapping value 1 describes a
fully included member in the fuzzy set. Values strictly between 0 and 1 characterize
the fuzzy members. The set {x ∈ F | m(x) > 0} is called the support of the fuzzy set
(F,m) and the set {x ∈ A | m(x) = 1} is called the Core [Klir and Yuan, 1995] of the
fuzzy set (F,m).

A fuzzy number is a convex, normalized fuzzy set F̃ ⊆ R whose membership
function is at least segmentally continuous and has the functional value μF(x) = 1
at precisely one element [Klir and Yuan, 1995].

In order to model with fuzzy numbers [Zadeh, 1968] the uncertainty arising from
simulation design, a response surface of the function representing the feedback of
the system was used as suitable approximation. The response surface was fitted with
respect to the uncertain parameters sampled using a Latin Hypercube methodology.

Designing for uncertainty is computationally intensive and typically requires at
least an order of magnitude more computational cost as compared to a correspond-
ing deterministic design. Response surface approximations reduce the high com-
putational cost associated with designing for uncertainty by using approximations
that are accurate over the entire design space [Venter and Haftka, 1999] to replace
costly stiff ODE system integrations. In the present work, the scheme to generate
the response surface [Gavin and Yau, 2008] approximates the function with an ap-
proximate polynomial response surface of arbitrary order:

g̃(X) = a +
n

∑
i=1

hi

∑
j=1

(bi jX
j

i )+
m

∑
q=1

cq

n

∏
i=1

X
piq
i (3)

where the coefficients bi j correspond to terms involving only one random variable,
and the coefficients cq correspond to mixed terms, involving the product of two or
more random variables. The polynomial order, hi, the total number of mixed terms,
m, and the order of a random variable in a mixed term, piq, are determined in the
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algorithm described below. The algorithm used in this methodology, makes use of
the last three stages of the High Order Stochastic Response Surface Method (HO-
SRSM) [Gavin and Yau, 2008]. In the first stage, the number and types of mixed
terms are determined. This stage results in the formulation of the higher order poly-
nomial to be used for the response surface. After the formulation of the higher or-
der polynomial, the coefficients of the higher order response surface polynomial
are estimated in the second stage, using singular value decomposition to perform
least squares on Latin Hypercube samples in the uncertain parameters space. Fi-
nally, from a Monte Carlo Simulation, the fuzzification of the performances are
carried out with an acceptable approximation of the objective function given by the
response surface.

The fuzzy representation of the performance is constructed enveloping the fit-
ted data by intervals. The fuzzy map is built by α-level considering the mini-
mum median interval which envelopes a fraction (1−α) of the performance values
[Spinella and Anile, 2004]. In formal terms:

Definition 1 (Median Interval Iα ). Given n samples X1, . . . ,Xn, and a reorder of
them Xi1 , . . . ,Xin , then the median interval at level α is:

Iα = [Xij ,Xik ] (4)

where j = .α2 /+ 1 and k = n−.α2 /.

The pseudocode in Algorithm 1 describes the procedure to fuzzify the performances.
The method RespSur f Build generates the response surface using equation 3 and re-
turn the coefficients C. Then, a set of samples s of uncertain parameters KU is gen-
erated using a Latin Hypercube technique. Finally, the response surface is evaluated
on the set s and its output, the performance approximation, is fuzzified.

Algorithm 1. Fuzzi f y(KCD, infu,supu,syssim)
C := RespSur f Build(KCD, infu,supu,modelsim)
s := LatinHypercube(infu,supu,Nsamples) {random variables between inf and sup gener-
ated using a Latin Hypercube sampling}
Fs = RespSur f Eval(s,C);
F̃ := Fuzzy f yFun(Fs)

5 Possibility of Failure

One way to deal with design specifications is to compare the fuzzy numbers repre-
senting the performances with the crisp numbers representing a reasonable threshold
and give a measure of satisfaction of these constraints. For this purpose the possibil-
ity measure of failure with respect to the specification constraint can give a useful
information to improve the design . Note that a fuzzy number may also be consid-
ered as the trace of a possibility measure Π on the singletons (single elements) x of
the universal set X [Zadeh, 1978].
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Fig. 1 Possibility distribution of F̃ ≥ x for the nonlinear membership function F(x), with
support in (xL,xR) and graphical description for the event of possibility measure of failure
when F > Tf

When a possibility measure is considered, its possibility distribution π is then
interpreted as the membership function of a fuzzy number F̃ describing the event
that Π focuses on, as follows:

Π({x}) = π(x) = F̃(x), ∀x ∈ X (5)

The possibility measure of a crisp number being smaller or equal to a fuzzy number
F̃ is then defined [Dubois and Prade, 1988] as follows:

ΠF̃([x,+∞)) = sup
y≥x

F̃(y), ∀x (6)

The possibility distribution function ΠF̃ of the possibility measure πF̃ can be seen
in Fig. 1 for the general case of a nonlinear membership function.

Based on equations 5 and 6, given a representation of the function F and a max-
imal failure threshold Tf then the possibility measure of failure of this function is a
measure for the event F > Tf , hence

ΠF̃−Tf
([0,+∞)) = sup

y≥0
(F̃ −Tf )(y), ∀x (7)
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Fig. 1 provides a graphical description of the event for the possibility measure of
failure in the case when F > Tf . From each possibility measure related to the speci-
fication performances, it is possible to deduce a vector of measures (p1, . . . , pn) for
a given design. A suitable metric that summarizes all can be used as objective for an
optimization process. In this work the chosen function to optimize was:

Σi∈IΠF̃i−Tfi
([0,+∞]) (8)

where I is the set of performance F̃i to guarantee and Tfi are the respective speci-
fication failures. This formulation of the function to optimize allows one to define
the design goals through a single function that summarize all of them. Moreover,
the sum of possibilities of failure avoids a conventional ideal design often based on
unfeasible attainments while it identifies a more realistic design keeping the events
of failure at a reasonable distance. From the mathematical point of view, the sum
of possibilities is the L1 norm inside the space of the problem objectives possibili-
ties. This choice allows the characterization of convex regions of the multi-objective
problem with a suitable merit function.

6 Methodology

Our methodology can be schematized in the diagram in Fig. 2. The two main
interacting components are identified as Analyzer and Optimizer. The Analyzer

Fig. 2 Schema of the methodology
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component contains the model describing the biological system, the Fuzzifier mod-
ule and the Possibilistic Worst Case Distance (PWCD) module. This component can
be seen as a black box taking as inputs the control design parameters kCD and the
chosen targets of the performances TF of the biological system.

The Fuzzifier module samples the space of the uncertain kinetic parameters kU

through a Latin Hypercube methodology and approximates the performances F of
the system using a response surface approximation. From this approximation, the
fuzzification is carried out using the sampled uncertain kinetic parameters kU while
the control design parameters kCD are considered as crisp numbers.

The PWCD module takes as input the fuzzified functions of the performances F̃
and the target of the performances TF and gives as output the measure of failure of
the biological system with respect to the given targets; this possibility measure of
failure are estimated with the equation 7.

The Optimizer component searches for a set of control design parameters kCD

that minimizes the objective function (see equation 8) sum of all possibilities of
failure for the biological system. The kCD parameters will be given as new input for
the Analyzer component. The optimization will run until a stop criterion is fulfilled
(the sum of all possibilities of failure equals to zero), or alternatively until the unsat-
isfiability for the target is detected. Generally, the satisfiability of this stop criterion
is not guaranteed for all the problems and a compromise between the targets should
be chosen by the designer.

7 Biochemical Modeling

7.1 Oscillatory Biological Networks

Among the numerous biological networks models, autonomously oscillating sys-
tems are the most investigated. Such systems underly many of the periodic phe-
nomena which have been identified in biology such as in processes describing
glycolytic oscillations, the cell cycle, circadian rhythms, periodic neuronal signals
[Goldbeter, 1996].

A first attempt at providing a mathematical model of the mechanism underly-
ing these oscillations was presented by [Goldbeter, 1995] describing the circadian
oscillations of the PER gene product in Drosophila. The PER gene was shown to
play a role in circadian rhythms. This model was built in the absence of detailed
molecular descriptions of the reactions involved, and was proposed as a minimal
model which was able to reproduce experimental observations of wild type and
mutant behavior. This model suffices for investigations of the core behavior of the
system, and its simplicity recommends it for an illustrative example. Further anal-
ysis on how the kinetic parameters influence the extreme and the period of the
oscillations can be found in [Ingalls, 2004, Bagheri et al., 2007] where a detailed
sensitivity analysis was presented. In comparison with the methods described in
[Ingalls, 2004, Bagheri et al., 2007], our methodology allows us to find a set of pa-
rameters that satisfy a fixed target without making use of an analytical approach.
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Quantitative mechanism-based models could allow researchers to predict the
comprehensive behavior of the specified system over time and to track its dynamics
for each set of fixed system parameters [van Riel, 2006, Zi et al., 2005]. However,
all of the parameters including rate constants and initial component concentrations
in the mathematical models must be experimentally measured or inferred to spec-
ify the model. Even for those models with experimentally estimated parameters, it
is still uncertain whether the particular set of parameters closely approximates the
corresponding biological system because some of the kinetic parameters are usu-
ally taken or estimated from measurements reported by different laboratories using
different in vitro models and conditions.

7.2 Kinetic of Biochemical Systems

A typical chemical or biochemical rate function relates the temporal change in a
chemical compound to the concentration itself. In a simple first order degradation
reaction which does not involve any enzyme, the change in concentration of the
substrate over time is directly proportional to its concentration. This rate function
can be mathematically formulated as follows:

dX
dt

= −kX (9)

where k (which is positive by definition) is the turnover per time unit and X denotes
the concentration of the metabolite X . The negative sign indicates that material X
is actually lost from existing pool. This mathematical form of the equation results
from considerations of statistical thermodynamics.

When two substrates, say X1 and X2, go in to reaction to yield product X3, the
change of concentration of X3 with respect to time can be written as:

dX3

dt
= kX1X2

dX1

dt
= −kX1X2

dX2

dt
= −kX1X2 (10)

These formulas are written as the product of the concentrations of the species X1 and
X2. This product form of the rate law is partly due to thermodynamics and partly due
to the fact that the two metabolites have to come to the physical contact which is a
matter of probability. That implies the simplest formulation as a product.

Michaelis-Menten rate equations describe the kinetics of many enzymes. This
kinetic model is relevant in situations where very simple kinetics can be assumed.
A substrate S and its catalyzing enzyme E form an intermediate complex (ES) in
a reversible reaction. This complex can either break apart and return into substrate
and enzyme or generate product P while releasing enzyme E unchanged.

E + S �k1
k−1

ES →k2 E + P (11)

In order to obtain the Michaelis-Menten rate equations, some assumptions about
the system should be made. The first assumption states that the total enzyme
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Fig. 3 Michaelis-Menten
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concentration can be divided into free enzyme and enzyme bound in the intermedi-
ate complex. The second assumption indicates that the total substrate concentration
is much larger than the total enzyme concentration. The last assumption, which is
called quasi-steady-state assumption, states that no enzyme is formed or lost during
the reaction and the concentration of the intermediate complex is constant. Then the
Michaelis-Menten rate is defined with the following equation:

dP
dt

=
VmaxS
Km + S

(12)

where the value of Michaelis-Menten rate constant is Km = k−1+k2
k1

and the maximum
velocity Vmax = k2ET occurs when the enzyme is saturated, i.e., when all enzyme
molecules are tied up with S, or (ES) = ET . Fig. 3 displays the variation of the
product with respect to the concentration of the substrate.

The binding of a ligand to a macromolecule is often enhanced if there are already
other ligands present on the same macromolecule. The Hill rate equation, provides a
way to quantify this effect. It describes the fraction of the macromolecule saturated
by ligand as a function of the ligand concentration; it is used in determining the
degree of cooperativity of the ligand binding to the enzyme or receptor.

θ =
Ln

Kd + Ln =
Ln

Kn
A + Ln , (13)

where θ is the fraction of ligand binding sites filled, L denotes ligand concentra-
tion, Kd is the apparent dissociation constant derived from the law of mass action
(equilibrium constant for dissociation), KA is the ligand concentration producing
half occupation (ligand concentration occupying half of the binding sites), that is
also the microscopic dissociation constant and finally n is called the Hill coeffi-
cient and it describes the cooperativity. A coefficient n = 1 indicates completely
independent binding, regardless of how many additional ligands are already bound.
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Numbers greater than one indicate positive cooperativity, while numbers less than
one indicate negative cooperativity.

8 Drosophila Circadian Rhythm Case Study

8.1 The Period Protein Model

Drosophila melanogaster is a two-winged fly and it is also one of the most com-
monly used model organisms in biology, especially in genetics and physiology.
Some reasons for the choice of Drosophila as the most studied organism in bio-
logical research are: the simplicity of its morphology, the short generation time and
the high fecundity. Period proteins are central components of the Drosophila cir-
cadian clock. Circadian clock generates circadian rhythms that are 24-hour activity
cycles exhibited by the organisms during their life time. The model structure intro-
duced in [Goldbeter, 1995] for the Period Protein (PER) of Drosophila is depicted
in Fig. 4.

Fig. 4 Model of the period protein (PER) of Drosophila

The mechanism can be described as follows: the protein PER (P0) is produced
in the cytosol at a rate determined by the concentration of PER mRNA (M). It is
then reversibly phosphorylated at two sites (producing species P1 and P2). The fully
phosphorylated protein can then be degraded or can migrate across the nuclear mem-
brane. The variable PN describes the concentration of nuclear PER, which inhibits
transcription of PER mRNA. This mRNA is subsequently degraded.

The quantities involved in this model are the following:

M is the PER mRNA,
P0 unphosphorylated PER form,
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P1 monophosphorylated PER form,
P2 bisphosphorylated PER form,
PN is the nuclear bisphosphorylated form of PER,
vs is the rate of mRNA production,
vm is the rate of mRNA degradation,
n is the Hill constant which describes the cooperativity of ligand binding,
KI is mRNA repression constant,
Km is the Michaelis constant for the mRNA, degradation,
ks is the rate of PER production,
Vi is the constant for the kinase,
Ki is the constant for the phosphatase,
vd is the rate of degradation of the bisphosphorylated PER form,
k1 is the transportation rate of the bisphosphorylated PER form in the nucleus,
k2 is the transportation rate of bisphosphorylated nuclear PER form in the cytosol,
Kd is the Michaelis constant for the degradation of bisphosphorylated PER form

The time evolution of the specie concentrations is governed by the following kinetic
equations:

dM
dt

= vs
Kn

I

Kn
I + Pn

N
− vm

M
Km + M

dP0

dt
= ksM −V1

P0

K1 + P0
+V2

P1

K2 + P1

dP1

dt
= V1

P0

K1 + P0
−V2

P1

K2 + P1
−V3

P1

K3 + P1
+V4

P2

K4 + P2

dP2

dt
= V3

P1

K3 + P1
−V4

P2

K4 + P2
− k1P2 + k2PN − vd

P2

Kd + P2

dPN

dt
= k1P2 − k2PN

The PER mRNA is synthesized in the nucleus and transfers to the cytosol where
it accumulates at a maximum rate vs and it is degraded by an enzyme of maxi-
mum rate vm and Michaelis constant Km. The rate of synthesis of the PER protein
is proportional to the concentration of the PER mRNA and is characterized by a
first order rate constant ks. The reversible phosphorylation of P0 into P1 and P1 into
P2 involves the parameters Vi and Ki that denote the maximum rates and Michaelis
constants of the kinases and the phosphatases. The bisphosphorylated PER form P2

is degraded by an enzyme of maximum rate vd and Michaelis constant Kd and it is
transported into the nucleus at a rate characterized by the first order rate constant k1.
The transportation of the nuclear bisphosphorylated form of PER into the cytosol is
characterized by the first order rate constant k2. The negative feedback exerted by
PN on the trascription of the PER protein is described by an equation of the Hill type
where KI is the threshold constant for repression.
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8.2 The Use of Optimization: Parameters and Target
Performances

The nominal values of the parameters are given in [Goldbeter, 1995] and were cho-
sen so as to yield a period of oscillations close to 24 hours. A value of n=4 was
chosen because the model can produce sustained oscillation in a larger parameter
domain. But in this case, it was instead chosen a value of n = 1 to explore unsta-
ble configurations for the system. The new calibrated system leads to the parameter
values showed in Table 1 with respect to reference concentrations of the species
given in [Goldbeter, 1995]. Table 1 also shows the classification of the uncertain
and control parameters.

Table 1 Estimated values
and classification of the pa-
rameters in the PER model

Parameter Estimated Value Type
vs 3.84 Control
vm 3.381 Control
ks 0.383 Control
k1 1.747 Control
k2 1.194 Control
vd 0.934 Control
KI 4.599 Uncertain
Km 0.05 Uncertain
Kd 0.184 Uncertain
K1 1.109 Uncertain
K2 0.541 Uncertain
K3 1.267 Uncertain
K4 0.781 Uncertain
V1 2.887 Uncertain
V2 1.239 Uncertain
V3 4.24 Uncertain
V4 1.825 Uncertain

In this case study, the target performances of the required design problem are:

• the period (measured in hours), and
• the amplitude (measured in μmol)

of the concentration of the total quantity of the PER protein (Pt) which is given by:

Pt = P0 + P1 + P2 + PN (14)

These performances are optimized by the methodology and they are expressed in
terms of possibility of failure. In this particular test case, the minimum threshold
for the period of the PER protein oscillations is fixed to 24 hours while the mini-
mum threshold of the amplitude is fixed to a rather large value in order to guarantee
significant oscillations. The optimization algorithm searches for the set of control
design parameters that minimizes the objective function represented by the sum of
these two possibilities of failure for the PER protein model.
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An example of the sustained oscillations of the concentration of Pt generated by
the model are depicted in Fig. 5.

Fig. 5 Characteristics (pe-
riod and amplitude) of the
oscillations of the tempo-
ral variations of the total
amount of PER protein
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The initial conditions to solve the ODE system in this example are {M =
2.81,P0 = 1.44,P1 = 0.72,P2 = 0.48,PN = 0.63} and the parameters are taken from
Table 1. Starting from this set of initial conditions the system reaches a unique,
closed curve, in the (M,Pt) plane, characterized by a period and amplitude that are
fixed for the given set of parameter values (see Fig. 6).

Fig. 6 The sustained oscil-
lations of the temporal vari-
ations of the total amount of
PER protein and of the per
mRNA correspond to a sys-
tem that reaches a unique,
closed curve, in the (M,Pt)
plane
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9 Results

The fuzzified performances were approximated using 50 samples computed by
means of a response surface of the second order. An example to explain the ap-
plication of the methodology on the PER protein model can be seen in Fig. 7 and 8,
where an uncertainty of a 10% in the kinetic parameters kU was considered.

The starting point of the parameters (in Table 1) of the PER model led to a period
of 23.7 hours and to an amplitude of 3.45μmol and the initial fuzzy numbers are
shown in Fig. 7. The two graphs in Fig. 8 display the fuzzy numbers of the period
and the amplitude of the oscillations of the PER protein concentration after the
optimization process fixing the failure threshold of the period to the value of 24
hours (figure on the left) and the failure threshold of the amplitude to the value of
5μmol (figure on the right).

21 22 23 24 25 26 27
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period [hour]

α−
le

ve
l

2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amplitude [μM]

α−
le

ve
l

Fig. 7 Fuzzy numbers representing the period and the amplitude of the oscillations of the
PER protein concentration before the optimization process
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Fig. 8 Fuzzy numbers representing the period and the amplitude of the oscillations of the
PER protein concentration after the optimization process
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Fig. 9 Comparison between Nominal Over-Design and the Possibilistic methodology in
terms of acceptable circuit varying the uncertainty of the kinetic parameters of 10%,15%,20%
and 25% with regard to their nominal default value

The histogram in Fig. 9 describes in detail the comparison between the presented
methodology and the “Nominal Over-Design”, one of the most used deterministic
design methodology. For the Nominal Over-Design, every objective was fixed to a
given factor of safety with regard to the nominal target specifications. In this test
case the target of the period and the amplitude were increased of a 10%, 15% and
20% in regard to the minimum threshold of 24 hours and 5μmol respectively, in
order to counterbalance the uncertainty of the kinetic parameters.

Both methodologies used the Nelder and Mead Simplex [Nelder and Mead, 1965]
optimization algorithm. Even thought the convergence of the algorithm is not always
guaranteed, in this case the shrink steps were rare and when the Nelder-Mead iter-
ation stagnated, a restart with the same best point and a different set of directions
helped the convergence. The choice of this algorithm is due to the fact that it re-
quires only function evaluations without derivatives estimation and it turns out to be
the most appropriate in this application where the merit function is well shaped.

After the optimization process, an estimation of the percentage of “acceptable”
biological circuits value was computed by means of Montecarlo simulations. The
biological circuit is classified as “acceptable” if the performance specification is met
i.e. if the resulting period is at least 24 hours and the amplitude of the oscillations
was at least 5μmol. Three independent tests were carried out considering a statistical
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distribution of the uncertain kinetic parameters of 10%,15% and 20% with regard to
the nominal default value. Every test performed 200 simulations.

This comparison points out that the possibilistic methodology always guarantees
a better outcome of performance with respect to the Nominal Over-Design method-
ology. In fact, with regards to the Nominal Over-Design, it turns out to be difficult
to set a suitable over-achievement which identify the best parametrization towards
the uncertainty of the kinetic parameters. Note that there exist a fundamental dif-
ference between the deterministic approach and the fuzzy set based approach. The
deterministic approach tends to equalize the failure load of each failure criterion,
while the fuzzy set based design tends to equalize the possibility of failure of each
failure criterion.

10 Conclusions

This study proposes the use of fuzzy numbers and possibility theory to perform a
target satisfaction in the framework of future biological systems design that will
demand reliable feedback. In order to assure a certain performance of a given bi-
ological circuit the presented methodology set the values of the design parameters
of the model to balance the uncertainty of the kinetic parameters. The feedbacks of
the system are represented as fuzzy numbers. By means of the possibility theory a
failure value, which represents the worst case design of the system in the uncertainty
context, was measured. This possibilistic failure value finally was minimized using
an optimization methodology.

The proposed methodology was tested on the model describing the circadian
oscillations of the PER gene product in Drosophila. The application over the oscil-
latory circuit of the PER gene has shown that the proposed methodology guarantees
always a reliable outcome of the period and the amplitude of the oscillations of
the PER gene. Moreover, a comparison of the methodology with a more diffused
methodology named “Nominal Over-Design”, demonstrated an higher percentage
of acceptable biological circuit in the possibilistic methodology.

Future works will apply this methodology on more then two performances of a bi-
ological system including also the phase [Bagheri et al., 2007] for example. In fact,
usually, a biological system is characterize by multiple features that can also be in
conflict with each other. The methodology could allow to design the biological sys-
tem to assure the defined performance including the uncertainty of the parameters
into the model. To further improve the proposed methodology other optimization
algorithms will be tested in the framework, such as genetic algorithms or simulated
annealing. Finally, more biological systems, even non oscillatory networks, will be
tested and analyzed.
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Fuzzy Optimal Algorithms for
Multiple Target Convergence

Zach Richards

Abstract. The proposed fuzzy application is the use of fuzzy algorithms for
a networked swarm of autonomous vehicles, such as those used in planet ex-
ploration, and to be used in target location determination and convergence.
In particular, an algorithm of this type could be used in an Autonomous
Stratospheric Aircraft (ASA), thus having the possibility of being used for
the exploration of a planet as well as many other applications. Upon finding
an unknown location of a specified target, the algorithm would then swarm
and eventually converge upon the location. There are two similar, but funda-
mentally different algorithms proposed in this presentation. These algorithms
are capable of locating and converging upon multiple targeted locations si-
multaneously. This project is inspired by the current thought of NASA in the
search of life on Mars, which is “Follow the Water” [17], where the targeted
location would be a water source. These algorithms make use of combin-
ing a modified Particle Swarm Optimization algorithm combined with fuzzy
variables for added intelligence.

1 Introduction

Target location has been a very important subject in military and scientific
study. Radar is used to range and altitude of an object. Sonar is used to locate
the range and depth of an object in the water. Global Positioning System
is used to keep precise measurements of a target on the ground once it has
been located. National Aeronautics and Space Administration (NASA) has
flown a variety of missions to Mars to determine if water can be located, as it
was confirmed with the Phoenix Lander[16]. The satellites and landers that
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were flown from Earth to Mars were large, heavy, and bulky; while creative
engineering solutions and recent advancement in technology give birth to
other possible missions.

With the creation of nano-technology and the use of optimization in the
design process, it may be possible to make a much smaller, lighter and more
compact system to search for a target. Nano-technology has made it possi-
ble for many target searching tools to be launched simultaneously. The tar-
get searching tools are autonomous aircraft and/or ground vehicle launched
for target location. This chapter investigates multiple newly developed algo-
rithms that could be used for a task such as target location and convergence
using multiple target searching tools. The notion of swarm intelligence is de-
veloped as well as new methodologies for convergence upon multiple targets
by method of a swarm.

2 Problem Statement

Assume there is some space in R2, where there exists multiple physical lo-
cations, such as water, however their locations are unknown. In order to de-
termine the location of these targets as quickly as possible, it would be best
if the targets were located simultaneously, thus requiring multiple agents to
perform the search. Is it possible to control multiple agents or a swarm of
autonomous vehicles simultaneously? Is it possible to control the swarm to
converge upon multiple locations simultaneously? Is it possible to control the
swarm with a single equation? We will be introducing two new algorithms to
answer these questions as well new methodology in swarm search methods.

3 Particle Swarm Theory

Particle Swarm Optimization (PSO) is an evolutionary algorithm developed
by R. Eberhart and J. Kennedy in 1995 [3]. Many variations of the Particle
Swarm have been proposed since, but they all tend to have the same for-
mulation, presented below. The varied algorithms consist of the difference
between a particles personal best location and current location, in addition
to the difference between the global or neighborhood best and a particles
current location. This is further discussed below.

The PSO algorithm is similar to the Genetic Algorithm (GA)[5], but has
one very distinct difference. Both algorithms use a randomization to initialize
the algorithms populations. The distinct difference between PSO and GA
lies in the movement of the populations, upon the initial positions being
established. PSO uses a randomized velocity function of the current position
to determine the next position of all particles, whereas the Genetic Algorithm
calls for a reproduction of the best possible positions.

The PSO algorithm is widely sought for a variety of economic and engi-
neering problems, because its reliability and simplicity to implement[19]. The
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PSO algorithm is reliable, because it performs a thorough search of the design
space and the communication between the particles allows the particles to
converge upon an optimal solution. However, there is no proof demonstrating
that it will always locate the global optimal solution. The simplicity lies in
the lack of parameters to initialize and manipulate at each iteration of algo-
rithm. There are two main parameters, position, xid, and velocity, vid. The
xid parameter gives the current position of the particle, and then the particles
are “flown” through the problem space at velocity, vid, for one time incre-
ment per iteration. In contrast, a GA must recompute the whole “genetic”
structure.

The following general PSO algorithm, consisting of two equations, effec-
tively demonstrates the simplicity of the optimization technique [10].

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ Rand() ∗ (pgd − xid) (1)

xid = xid + vid (2)

Equations (1) and (2) describe the updating behavior of the PSO algorithm.
If there are n variables in xid, then xid is a n × 1 vector, and as a result
there are n elements in vid, which, also is a n× 1 vector. The PSO algorithm
requires that the particles remember their personal best, pid, as well as the
local best, pld, or “global” best, pgd. The local best may also be referred
to as the neighborhood best. A particle’s personal best is the best position
determined thus far by each individual particle. The swarm best is the best
position determined thus far by the overall swarm.

The PSO algorithm uses a randomized population. In Equation (1), rand()
denotes a randomized number for multiplication by a particle’s personal per-
formance, whereas Rand() denotes a randomized number for multiplication
by the performance of the best in the local or global swarm. The current po-
sition and personal best values change with each variable, for each particle,
and for each iteration. For example, if the design space was of 5 variables,
then the vector for the position of each individual particle would consist of
5 elements. Each element in the vector would denote a position with respect
one control variable.

The two coefficients c1 and c2 are used to weight the importance of the
personal versus the swarm best. These coefficients can drastically effect the
performance and reliability of the algorithm as shown by [19], who suggest
the values of c1 = 2.0 and c2 = 1.0 or c1 = 2.5 and c2 = .5. If c1 >> c2 then
the result is slower converging algorithm, and runs the risk of not converging.
However, if c1 << c2, then this produces a much faster converging algorithm,
because the velocity will stay large even if the difference between the swarm
best and current position is not very large. There is a risk that a true non-
robust global minima may be over shot, and a more robust local minima is
found. A robust solution is a solution that is stable, where if any one or more
variables in the solution was to be slightly perturbed, the solution would still
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only be slightly different. Another words, a robust solution is not sensitive to
one or more variables, becoming slightly perturbed. This is very important
in applying optimization to engineering applications. These two cases both
have benefits and downfalls, and for further discussion refer to [19].

The last parameter is the inertia weight, w, which was not in the original
particle swarm paper, [3]. The addition of the inertia weight parameters has
shown an increase in the performance for a variety of applications. According
to [4], w was originally developed and is often decreased linearly as a function
of iterations from 0.9 to 0.4. Many other methods of using w have been
proposed, and are thoroughly discussed by Ruben Perez of the University of
Toronto and Kamran Behdinan of Ryerson Polytechnic Institute in [19].

4 Fuzzy Variables

Fuzzy variables are used when traditional two-valued logic standards do not
suffice and what is being modeled is inherently transitional in its nature.
Traditional logic has to be either true or false, but not both, and is commonly
viewed as black and white with no grey area. The power of fuzzy variables is
that it introduces a calculable grey area [18].

For example, when asked, “Is the car on or off?” The car must be on or
off, where “on” is represented by the value 1 and “off” is represented by the
value 0. We know the car must be in one of these states, because no other
logical states exists.

However, in another example, if asked, “Is the car temperature hot?” there
are many possible answers, because there has to be a pre-understanding to
what hot is. It may be hot when compared to ice, but cold when compared
to the temperature of the sun. However, it is possible for the temperature to
be in an in between state of hot and cold, such as warm or cool. Therefore
the value is not 0 nor 1, but it is in between 1 and 0. Therefore the variable,
temperature, is a fuzzy variable in this example.

The value for fuzzy variables is usually determined by taking a measurable
value such as temperature and evaluating on a predetermined curve, known as
a membership function, to find the corresponding value of the fuzzy variable.
In context of the proposed problem with the ASA’s searching for multiple
targets simultaneously, A, B, and C are fuzzy, because their value is repre-
sentative of the physical size of the target, being area. Let targets A, B, and
C have a surface area value of 120ft2, 70ft2, and 170ft2, respectively. By
using following membership function denoting “larger target area” depicted
in 1 we are able to determine the value for the fuzzy value for the size of
each target. The values for targets A, B, and C are .5, .25 and .75, respec-
tively. By prioritizing targets by size we are able to develop a relationship of
importance that allows similar size targets to be valued as nearly the same.
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Fig. 1 Linear Membership Function

5 Methodology

By using a decrease of w, the weight coefficient, the PSO algorithm uses a very
primitive form of intelligence, because it causes the the effect of the previous
iteration velocity vector to decrease with increasing iterations. For example,
a particle may begin searching by making large sporadic steps, because the
information for the current step is so heavily dependent upon the ratio of the
previous step and current information. As the algorithm iterates the ratio of
previous step to current information decreases. Thus, causing the particles
to take more direct step in the direction of the swarm best solution, which
demonstrates that the decrease of w to be a primitive form of intelligence.

There are a few different methods that have been proposed on how to ef-
ficiently use w. The first method is a fixed weight method, where w is not
increased or decreased. Thus, removing the primitive form of intelligence.
The second method is a linear decrease of w to allow the particles to more
thoroughly search without large velocity steps as the search progresses. The
third method is a dynamic decrease that takes into account the current pro-
jection, like the linear method it allows a more though search as the search



484 Z. Richards

progresses. Each of these approaches have been studied by Ruben Perez and
Kamran Behdinan in [19]. They empirically found that a dynamic decrease
was the most efficient approach, however using a linear decrease did not cause
much, if any, noticeable change in the time to determine an “optimal” so-
lution. A linear decrease will be used in the following algorithms, because
it is the most common approach used in particle swarm optimization. By
using the most common approach it is easier to understand the effect of
fuzzy variables to the algorithm. The linear modification of w is a primitive
form of intelligence, because the modification, increase or decrease, of w is
predetermined prior to performing the algorithm.

By introducing fuzzy variables a higher level of algorithm intelligence can
be reached. Fuzzy variables are dependent upon membership functions to
determine the fuzzy value. Membership functions can be adaptive and non-
adaptive. A non-adaptive fuzzy membership function uses a fixed membership
function for the determination of their fuzzy values. An adaptive membership
function will modify the shape of the membership function based on the ex-
perience of the system and what the system has learned. Generally adaptive
membership functions are chosen for systems that are highly dynamic as well
as have a pattern that can become recognized by the system. The problem
being proposed is not dynamic, because the targets are to remain stationary
both in position and size over the course of the search. A dynamic problem
would consist of moving or non-stationary targets. In addition, we are as-
suming that there is no pattern to finding the targets. To continue with the
working example of the target being water, this assumption isn’t valid, be-
cause there is a pattern to finding the target. Typically a lake is surrounded
by heavier vegetation than the surrounding area. However, we are making
the assumption of no fixed pattern to be found, to increase the usability of
the developed algorithms.

The proposed problem raises multiple questions which need to be evaluated
prior to developing the fuzzy membership functions or the fuzzy velocity
algorithm. Some of those questions are as follows: Is the overall time of the
system being optimized or is the efficiency to search the given space in a
given time being optimized? How does the effectiveness of an algorithm get
measured?

Given this system is being designed for a space application or predomi-
nately a time sensitive application, the efficiency of the swarm algorithm for
this application measures optimal time, in iterations, to locate all targets in
a given space. The reason this is predominately a time sensitive application
is driven by the power needed for the exploration. A solar panel would not
be sufficient, because there lack to efficiency to effectively collect power and
the search area of the aircraft would be limited by keeping the sun in po-
sition of the solar panels. We would like the aircraft’s search space to not
be limited by the optimal solar panel position, therefore a different power
source would be needed. The aircrafts would then need to be powered by
Lithium-Ion batteries, nuclear power, and/or a paper battery, [13].
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It would be best allow the swarm to locate multiple targets simultaneously
to ensure that all aircrafts are being used to their maximal potential as well as
to optimize efficiency for a given fixed time of battery life. When we allow the
swarm to investigate multiple targets simultaneously, therefore the following
search methodologies were newly developed as part of the research for the
problem stated above.

1. There is the Sectioning Method, which is explained as follows. Upon a
target being located the n-closest aircrafts (particles) to a target converge
upon that target with minimal search for other targets. Meanwhile, all
other particles continue to search without knowledge of a target being
located. The drawback of a system with this method is that the target may
be over/under populated. The over/under population of the individual
targets would result from the preset value of the n-closest particles to a
target. The benefit of a system like this is that all possible targets would
be located unless there were an under-population of particles to targets.

2. There is the Search and Converge Method, which is explained as fol-
lows. When a target is located all particles would use an algorithm to
continue to search while moving in the direction of the determined target
as effectively and efficiently as possible. If another target is located, the
particles would choose by some means which target they were to converge
upon. In conclusion, each and every located target would be converged
upon. This is much like the Particle Swarm Optimization algorithm, be-
cause all particles are converging upon the global best, while trying to im-
prove upon their own position and determine a new personal best and/or
global best. The drawback of a method such as this is also a benefit and
that is defined in the terms, effectively and efficiently, because they are
user defined. The drawback is that this may not have the capability to
converge as quickly as the user may choose. The benefit of this method is
that it would be a mixture of efficiency and effectiveness, and that mixture
is defined or developed by the user.

3. There is the Random Selection Method, which is explained as follows.
Upon a target being located n particles in the swarm would be randomly
selected to converge upon the targeted location using an algorithm. If one
of those particles was to locate another target in route to converge upon
the targeted location, then this would activate another random selection
of n particles that were not previously chosen, to converge upon the new
location. Meanwhile, the previously selected particles in the swarm would
continue to converge upon their target with no knowledge of where the new
target was located. This process would continue to repeat and would most
likely conclude in two different scenarios. If an under-population existed,
then all particles would have converged upon a target without knowledge of
all targets being found. If an over-population existed, then some particles
would continue to search the region although all targets to be found have
been found. The drawback of this method is either being ineffective or too
effective. To resolve this drawback knowledge of the feasible region would
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need to be known, however this is against the assumption of characteristics
about the feasible region. The effectiveness of this method is a large benefit.

The Search and Converge Method provides the most opportunity given the
assumptions and the need to have the method work independently of the
number of particles in the swarm and possible targets. Primarily, the as-
sumption of not knowing how many targets exists. The Sectioning Method
and Random Selection Method have the risk of too many or too little
particles.

6 Initialization of Swarm

Particle Swarm theory requires the particles to be initialized to a particular
position. There are two possible methods on how to initialize these particles.
The first method is randomly generated positions, where the particles will be
initialized by a computer, therefore, the random appearance of grouping may
occur. In context of the proposed problem for planet exploration, we are not
concerned with how the type of initialization is accomplished.
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Fig. 3 Example of Regularly Spaced Grid

The second method is an evenly Regularly Spaced Grid or human random,
where the particles are evenly spaced and distributed across some region.
According to Summer Ann Armstrong in [2], humans automatically associate
pattern with being non-random, and a grouping of particles or numbers listed
from 0 to 100 is thought to not be random. However, humans automatically
inject a pattern by spacing numbers imprecisely evenly if they were asked to
list 20 numbers from 0 to 100. A visual example of this phenomenon is seen
below.

Both methods are valid for the initialization of the particles, but Particle
Swarm Theory tends to use computer randomization to initialize the particles
within the swarm. However, there have been no results to demonstrate that
one initialization method is better than the other. The particle initialization
in the project will be by the computer randomization method. In a real
application the mission designer would need to account for how to place the
particles on the surface to be the primary reason for the type of initialization
to be used.
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7 Introduction of Algorithms

An algorithm is be used, because an algorithm has the capability to control
a collection of points or swarm of particles by using a few general rules that
apply to all particles. Otherwise, each individual particle would need to have a
collection of rules that specifically applied to its individual situation. Because
the complexity of the proposed problem, each individual situation would
be very difficult to account for, therefore an algorithm can account for all
situations with a general set of rules or guiding principles.

The first algorithm to efficiently and effectively control the convergence of
the population to one or multiple targets, is to be referred to as the Single
Fuzzy Parameter Method (SFPM). It consist of a single fuzzy parameter,
tn, where n is the number assigned to the located target. The fuzzy size pa-
rameter, tn, denotes the value determined from a fuzzy membership function
based upon the size of the target. The size is only determined upon a particle
determining the location of the target.

The second algorithm, referred to as the Double Fuzzy Parameter Method
(DFPM), consists of two fuzzy parameters, tn and did. Here tn, again, de-
notes the size of the target, and the second fuzzy parameter, did, denotes
the fuzzy distance parameter. The fuzzy distance parameter is calculated by
a comparison to the average distance from all other particles to a targeted
location.

A third algorithm exist as a baseline to compare the first two algorithms,
to be referred to as the Baseline Algorithm. It will contain no fuzzy variables
and will consists of the general equation that causes the first two algorithms
to search and converge upon a target being located.

8 Single Fuzzy Parameter Method (SFPM)

The velocity vector equation for the Single Fuzzy Parameter Method is pre-
sented below. The equation is used to calculate vid. Every time a previously
unlocated target is located, n of tn is incremented by one. This allows the
algorithm to identify the size of the target to the order in which the tar-
gets were determined. It is assumed that the particle or autonomous aircraft
would be able to determine the size of the target upon locating the target.

vid = w ∗ vid + c1 ∗ rand ∗ (Gid − xid) ∗ tn (3)

Note: If (Gid − xid) = 0, then vid = 0. This implies that when a particle has
located a target, the velocity is set to 0, therefore causing the particle to be
stationary, and is used in both the SFPM and the DFPM.

The size of the target controls how fast or slow the particles converge on
the located target. For example, if an aircraft is near a targeted location,
A, but the A is small, then the Fuzzy Size Variable, tn, would be small.
Therefore the calculated velocity, vid, would be small, and the convergence of



Fuzzy Optimal Algorithms for Multiple Target Convergence 489

the aircrafts upon the targeted location would be slow. The opposite is also
true if the located targets size is large.

In the velocity equation, Equation 3, the size of the target is multiplied by
the difference of the current position and the best swarm position. The best
swarm position is the position of the first particle that located the target. The
center of the target is not used, because I am assuming that the particle or
aircraft is unable to search the whole target and determine where the center
is located. As a result of the Fuzzy Size being multiplied and not added, the
velocity vector can be positive or negative. A calculation that resulted in a
negative velocity would be a step in the negative direction with respect to
a predetermined positive step. For example, if a calculation was positive it
would result in movement to North, as a negative calculation would result in
movement to the South or vice versa and the same is for East and West.

The following equation is used to determine the proper velocity vector, if
no target has been located.

vid = −1 + 2 ∗ rand() (4)

This velocity vector is a random distribution of [-1,1], and as a result the
velocity vector can have a positive or negative direction.

When a particle has located a target, all particles begin to swarm to the
location of the locating particle. If another target is located, then each particle
selects the closest targeted location as its swarm best. This repeats every time
a new target is discovered or until all particles are at the location of a target.
The above concept is important, because it does cause the all particle to
converge to a targeted location as quickly as possible by the particles selecting
the closest target. The downfall is that there is no limit on the number of
particles allowed at a target, and as a result the algorithm may or may not
find all possible targets.

Upon the first target being found, all particles begin to swarm to the tar-
get using the SFPM for the calculation of the velocity vector. As a result of
all particles swarming to the targeted location, the act of any other targets
being located is an act of randomness of chance. The following figures demon-
strate the initial positions of the particles denoted Ppos, where the target
boundaries are denoted by T lim in the x and y direction and the center of a
targets are denoted by Tpos.

The algorithm terminates upon all particles effectively converging upon a
targeted location. The particles are given a viewable radius of .25 from their
current location. This implies that particle can only view a target or a target
boundary, T lim, if that boundary is less then or equal to the .25 viewable
radius.

In hindsight, from the above example, we see that there are two particles
randomly initialized to the location of a target, because the allowed view-
able range of a particle. The target approximately centered at (6.25, 5.75) is
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Fig. 4 Example of the Initial Positions prior to performing the Single Fuzzy Pa-
rameter Method

located by a particle located approximately at (6.5, 4.75) and a second par-
ticle located approximately at (6.75, 7.25).

It can also be seen that the largest target had the most particles swarm
to that location, whereas there was one target which was not located and
observed. However, by random chance a second target was located and two
of the twenty particles swarmed to its location.

9 Double Fuzzy Parameter Method (DFPM)

The velocity vector equation for the Double Fuzzy Parameter Method is pre-
sented below. The equation is used to calculate vid. Every time a previously
unlocated target is located tn is incremented to tn+1, which is the same
methodology that was used in the SFPM. As a result the algorithm is ca-
pable of determining the size of the target to the order in which the targets
were determined.
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Fig. 5 Example Continued of Final Positioning for Single Fuzzy Parameter Method

vid = w ∗ vid + c1 ∗ rand ∗ (Gid − xid) ∗ tn ∗ did (5)

The benefit of this method is that the velocity can more easily be controlled
by the use of the “correct” membership function for did, without limiting the
intelligence of the system, because there is no hard rules implemented. Where,
the intelligence of the system is a non-measurable concept denoting how well
the system is capable of adapting to new scenarios and demonstrating scien-
tific reasoning. In addition, hard rules are rules which have no flexibility and
always give the same result. There are no hard rules implemented in DFPM,
because the DFPM makes use of an adaptive membership function. For ex-
ample, if did has a triangular membership function, shown below, where the
peak is the average of distances between all particles and a particular target,
then the search velocity will be refined at distances much greater than and
much less than the average distance. The fuzzy distance value is determined
by fuzzy logic rules, which remain the same, but the definitions within the
rules changes. This implies an adaptive fuzzy membership function. Fuzzy
logic rules are used to build the membership function, and the fuzzy logic
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Fig. 6 Triangular Membership Function

rules presented below build the previously described triangular membership
function.

The fuzzy logic rules applying to did are as follows:

1. If the distance to the target is much larger than the average, then
the velocity is low for a refined search.

2. If the distance to the target is average, then the velocity is highest
for a non-refined search.

3. If the distance to the target is much lower then the average, then
the velocity is low for a refined search.

The benefit of using an adaptive membership function for the fuzzy distance
parameter, did, is that it allows the DFPM to have increased swarm intelli-
gence, to be discussed later in Section 11. The adaptive membership function
for the fuzzy distance parameter, makes use of a Triangular Membership
Function as seen in Figure 6.

Like the SFPM, if no target has been located the velocity function is
defined by the following equation to guide a random search. The velocity
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Fig. 7 Example of the Initial Positions prior to performing the Double Fuzzy
Parameter Method

function presented below uses a uniform distribution for the random number
generator.

vid = −1 + 2 ∗ rand() (6)

As in the SFPM simulation, Tpos is the center location of the target, where
T lim is the boundaries of the target in the x and y direction. In the following
simulation example, it is easily seen that there are two particles located within
the boundary of the target approximately located at (4.9, 8.25). Then there
is another particle located along the boundary of the target approximately
located at (4.5, 3.0).

The current example demonstrates that all particles have effectively
swarmed to a target location. Again, the particles are given a viewable radius
of .25 from there current location. Thus, implying a particle can only view
a target or a target boundary, T lim, if that boundary is less then or equal
to the .25 viewable radius. The smallest target centered approximately at
(7.5, 6.1) had three particles locate and converge upon it, which exemplifies
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Fig. 8 Example Continued of Final Positioning for Double Fuzzy Parameter
Method

that all targets were located. From the initial plot, it was known from the
particles initializations that the other two targets would be located and con-
verged upon, because particles were initialized within the boundary of the
targets. It is seen that four particles converged upon the target located ap-
proximately at (4.5, 3.0), and the remainder of the particles converged upon
the target approximately located at (4.9, 8.25).

To optimize the efficiency of the algorithm it would be best if each particle
did not view ground area which was seen in the previous iteration. From
analysis of (5) it can be seen that if a particle further away or closer then one
standard deviation the value for did becomes ε, which = .1. The value for ε is
developed to demonstrate a minimum value of outside one standard deviation
and not derived by any method and could change as needed per application
of the DFPM algorithm. This may allow the velocity vector calculation to
become very small and as a result the particle would view much of the same
area that was previously seen. As a result, a correction to the DFPM was
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prompted and is corrected by (7), below. This corrected measure we call,
Double Fuzzy Correction (DFC).

if vid < .5 ∀x ∈ X then vid = .5 (7)

10 Double Fuzzy Corrected (DFC)

The fuzzy logic rules allow vid+1 to be very small, because the fuzzy distance
variable, did may be ε, thus allowing particles to possibly view the same
region as seen in the previous iteration. The objective of this study is to
determine an optimal algorithm for efficiency and effectivity to be used in
target determination and convergence. Since we are trying to obtain efficiency
in algorithmic time each particle should converge as quickly as possible and
this is accomplish by not allowing a particle to view any of the region as
seen in the previous iteration. Therefore DFVM is modified with the above
equation, (7). Each particle has a viewable radius of .25, hence each particle
must move a minimum of .5 to remove the possibility of viewing any of the
region which was previously seen. Therefore, (7) exists to make DFPM more
efficient.

11 Swarm Intelligence

The above problem statement has also produced a better understanding of
swarm intelligence. New to the development of swarm theory is the following
understanding of swarm intelligence. Swarm intelligence refers to the over-
all intelligence of the swarm to compute an optimal solution, as opposed
to particle intelligence. Particle intelligence is intelligence of the individual
particles to determine a solution. It is based upon how efficiently an algo-
rithm guides the particles to a solution. In swarm intelligence each individual
particle is working for the swarm towards the swarm determining the best
solution the swarm, by sharing and relating information. Whereas, particle
intelligence the individual particles working towards a solution individually
without knowledge of other particles.

An increased intelligence of the swarm does provide many advantages,
because it allows an increase in adaptability as well as efficiency. The rea-
son for an increase in adaptability extends from the swarm being more di-
verse to gather information learned by the swarm as opposed to information
learned by the singular swarm best particle. The efficiency is increased be-
cause the swarm capable simultaneously seeking, determining and converging
upon multiple targets.

According to John Nash, [12], the best result of a group is not accom-
plished by each individual particle in the group doing what is best for them,
but making a compromises and doing what is best for the group, [8]. This
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is very similar to the behavior of the fuzzy distance parameter, did, because
one particle will take a small step in order for the majority of particles to
take a large step, which does benefit the swarm as a whole. The benefit is
the majority of the particle in the swarm will be taking a large step, and
the few that do take a small step by comparison of did will be attempting
to locate other targets. The drawback of this method is that not all parti-
cles are attempting to converge as quickly as they could. The small step is
accomplished by the value of ε, in conjunction with (7).

The traditional PSO algorithm proposed by Eberhart and Kennedy demon-
strates more particle intelligence than swarm intelligence, because each par-
ticle is only concerned about its current position in comparison with the
best global position. The lack of swarm intelligence works sufficiently well,
because there exists one global optimal solution for mono-objective optimiza-
tion problem/model. The importance of the information preset by the swarm
in c1 and c2, the cognitive and social parameters respectively, as a method of
relating the importance of information by itself and the swarm best particle.
This is a primitive form of intelligence, because it is preset. The problem
proposed in the problem statement requires the swarm to be more aware
of the surrounding particles, because each particle has multiple distances to
target, because there may be more than one located target. To minimize the
number of iterations for a solution to be found, it would be ideal for each
particle to move in the direction of the closest target(s) and only the closest
target(s). In conclusion, efficient and effective convergence for multiple tar-
gets simultaneously can only be accomplished if there is an increase in swarm
intelligence by comparison to the traditional PSO algorithm by Eberhart and
Kennedy, [3].

12 Results

The preset parameters: w, c2, size of swarm population, and size of target
population, remained constant throughout each of the three methods tested:
Baseline, SFPM and DFPM. Each method was simulated ten times with a
swarm population of 20, and a target population of 3. The weight coefficient,
w, was set to .9 and linearly decreased by .1 with a minimum value of .3 after
each iteration upon finding a target. The social parameter, c2, was set to 2.
The population of the swarm is 20, and the target population is set at 3 for
every test in each of the three methods. From analysis of implementing (3)
and (5), we know the larger c2 is, the faster the convergence, and the smaller
c2, the slower the convergence. However a slower convergence would allow
more locations to be search, therefore leading to an increase in possibility to
locate a target. As seen in the figures for the SFPM and DFPM examples,
the searchable region is a ten by ten region.
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12.1 Baseline Method

The results for the Baseline Method demonstrate the average number of
iterations until convergence was 8.5 iterations and the average number of
targets found was 1.9 targets per simulation.

Table 1 Results of Baseline Method simulations, with Human Random

Target Size(Particles at Target)
Run Targets Located 1 2 3 Iteration Count
1 2 .4480(11) .4788(9) .8794 14
2 2 .9535(15) .1676(5) .7767 10
3 3 .3413(3) .4866(12) .3311(5) 9
4 1 .4588(20) .3541 .5596 10
5 2 .7015(18) .2751 .1990(2) 12
6 1 .0493 .7599(20) .0352 8
7 2 .3839(7) .4033 .7125(13) 11
8 2 .5706(9) .0886 .7255(11) 7
9 1 .1101 .9805(20) .2835 8
10 2 .1993(6) .7696(14) .4034 7

Bold target size denotes the target was located.

12.2 SFPM

The results for the SFPM demonstrate convergence was achieved in 7.4 iter-
ations and an average of 1.7 targets were located.

Table 2 Results of SFPM simulations, with Human Random

Target Size(Particles at Target)
Run Targets Located 1 2 3 Iteration Count
1 3 .9650(6) .9794(6) .5891(8) 7
2 1 .0590 .7823(20) .0187 14
3 3 .8070(7) .3174(2) .2988(11) 9
4 2 .0023 .2385(5) .6473(15) 9
5 1 .3971 .3774 .7225(20) 8
6 3 .5006(3) .9223(8) .9228(9) 6
7 1 .2384 .0019 .0748(20) 18
8 1 .3413 .9252(20) .0748 10
9 2 .1443 .4932(18) .1210(2) 13
10 2 .5899(7) .4497(13) .0951 10

Bold target size denotes the target was located.
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12.3 DFPM

The DFPM was performed with the Double Fuzzy Correction, DFC.

Table 3 Results of DFPM simulations, with Human Random

Target Size(Particles at Target)
Run Targets Located 1 2 3 Iterations
1 2 .4293(2) .2081 .6283(18) 21
2 3 .9425(9) .6612(6) .5663(5) 7
3 3 .2496(5) .4293(3) .4529(12) 15
4 2 .1167 .9646(13) .2057(7) 21
5 1 .9344(20) .0998 .2539 8
6 3 .6739(4) .7979(10) .4550(6) 10
7 1 .7995(20) .7168 .0690 11
8 2 .4683 .3091(11) .3539(9) 13
9 2 .4561(12) .7930(8) .1394 11
10 2 .6745(8) .5890(12) .0379 13

Bold target size denotes the target was located.

The results for the DFPM demonstrate the average number of iterations
to convergence was 13.0, and the average number of targets located was 2.1.

13 Comparison

From the results, shown above, it is easily seen that the DFPM has the
highest occurrence rate of determining more targets per simulation than the
SFPM and Baseline Method algorithms. The higher occurrence rate is due to
the slower convergence of the particles throughout the swarm. Hence, particle
will have slow convergence if it is not approximately the median distance to
the target as the other particles in the swarm. Many of the particles were
outside of the membership function, and therefore those particles were moving
the minimum allowed due to the Double Fuzzy Correction (DFC). Thus, by
allowing the particles to search the region more precisely more targets were
located. The drawback of this method is that the convergence rate was more
than double that of the SFPM, and over one and half times that of the
Baseline Method.

In the DFPM, the velocity step calculation is approximately equivalent
to the velocity step calculation used by all particles in the SFPM, when the
particles are near the median of the fuzzy distance parameter. The random
value in the velocity function is thought to not effect the convergence of the
particles, because it is uniformly random, meaning there is no preference for a
higher or lower value. When comparing the two algorithms, it can be thought
of as null or non-influential. Therefore, the particle’s personal position with
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respect to the median distance will change, being the only difference factors
between the SFPM and DFPM algorithms.

14 Conclusion

In conclusion, it is shown on average that the DFPM did take the most
iterations to converge, however it did show that it did locate more targets.
Therefore each algorithm could be used dependent upon which objective
was of higher priority. If convergence time was of more importance then the
SFPM should be used and vice versa for number of targets with the DFPM.
When comparing the SFPM with the Baseline Method it can be seen that
the addition of a fuzzy variable did increase the iteration time, with little
change to the number of targets located. In the SFPM velocity function the
fuzzy size parameter is used, thus making the convergence to located target
more dynamic and the likelihood of determining another target was not high
therefore a faster convergence could be accepted with minimal loss to the
number of located targets upon convergence.

We feel that a large-scale real-world problem could be solved using this
methodology. However, further studying and enhancements would be needed
to understand the algorithms’s advantages and drawbacks. The concept of
swarm intelligence is an important aspect of this research problem, because
it builds upon the idea of a collection of particles being agents working toward
a common goal with the possibility of independent goals.
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Fuzzy Linear Programming in Practice: An
Application to the Spanish Football League

J.M. Cadenas, V. Liern, R. Sala, and J.L. Verdegay

Abstract. FLP problems are perhaps one of the most and best studied topics of
Soft Computing, and are among the most fruitful in applications and in theoretical
and practical results. Areas of application of FLP problems are many and varied and
in fact suppose an extraordinary example of technology transfer in action. In this
paper, Fuzzy Linear Programming models are applied to the European football game
in which the inherent uncertainty of the parameters relating to the football teams
in the Spanish Football League serve to establish these models and so optimize
the returns of the investments made to maintain a high quality competition. In this
context, fuzzy DEA models are established which provide teams predictions as to
their efficiency score. At the end of the study we offer some experiments using data
from the Spanish Football League 2006/07.

1 Introducction

The broad area of Soft Computing rests on two large scientific fields: Approx-
imate Reasoning and Functional Approximation/Randomized Search, which are
directly related to the two most important activities associated with Intelligent
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Systems - decision making and search processes (classification/optimization). Both
areas also give rise to the four basic constituents of Soft Computing: Probabilistic
Models, Fuzzy Sets and Systems, Neural Networks and Metaheuristics [45], the lat-
ter being understood as the set of optimization/search methods which can solve real
world problems. It is in this context that we find Fuzzy Linear Programming (FLP)
problems, which are the fruit of the hybridizing of models and techniques hail-
ing from Fuzzy Sets and Systems and optimization methods. FLP problems (along
with the fuzzy control) are perhaps one of the most and best studied topics of Soft
Computing, and are among the most fruitful in applications and in theoretical and
practical results. Areas of application of FLP problems are many and varied and in
fact suppose an extraordinary example of technology transfer in action.

Yet despite the many applications, the relevance of the results (theoretical and
applied) and the wide number of related fields, to the best of our knowledge FLP
models have never been applied to the sphere of the European football (or soccer)
game. This is done here, where the uncertainty inherently associated to the parame-
ters relating to soccer teams in the Spanish league finds the best possible theoretical
context from the concepts pertaining to Fuzzy Sets and Systems. These serve to
establish FLP models which optimize the returns on investments made to maintain
a high quality competition, which is finally given in an efficiency measure of the
different teams, which can be classified. With this aim, initially we tackle the ba-
sic theoretical elements necessary to this article. While not descending to the trivial
level, we present the most elementary ideas on fuzzy sets and numbers. Below, we
put forward (within the fuzzy context) the most typical problems and methods in
FLP. Next, we show an application of FLP in a specific domain - the problem of the
Spanish professional football league. We give the model for that problem and many
ways of solving it Finally, we show the most important conclusions of the study.

2 Basic Concepts of Fuzzy Sets

One basic concept is that of the fuzzy number. From the point of view of a fuzzy
number’s being a fuzzy set in R, it can be stated that the notion of a fuzzy number
appears in 1965 with the appearance of L.A. Zadeh’s famous paper [47].

Nevertheless, fuzzy numbers really appear on the scene around 1978, with the
papers by S. Nahmias on fuzzy variables, and D. Dubois and H. Prade on handling
imprecise quantities. Since then, the study of possible definitions of fuzzy numbers
and, in particular, how to manage and compare them, has aroused a lot of interest
within the field of fuzzy sets, [46].

This section introduces the elementary notions and operations of fuzzy sets lead-
ing to the concept of fuzzy number. Once these have been established, the remain-
ing part of this section is devoted to the comparison of two fuzzy numbers. This is
a complex problem since, given the imprecise nature of the quantities considered,
e.g. A and B, it cannot be guaranteed a priori that A ≤ B or that B ≤ A. Instead,
these properties will be verified simultaneously and with certain degrees of fulfil-
ment. This means that there are many ways of comparing two fuzzy numbers, which
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in the specialist literature has been developed through the so-called comparison
indices.

2.1 Introduction to the Fuzzy Set Concept

Let X be a set, whose elements are we will denote by x, and A a subset of X . The
membership of one element x of X to the subset A is given by the characteristic
function:

μA(x) =
{

1 iff x ∈ A
0 iff x /∈ A

where {0,1} is the so-called valuation set.
If the valuation set is the real interval [0,1], A is called a fuzzy set ([47]) and μA

measures the degree of membership of element x in A. A is characterised by the the
set of pairs {(x,μA(x)), x ∈ X}.

Two fuzzy sets, A and B are considered equal iff: ∀x ∈ X , μA(x) = μB(x).

Definition 1. ([47]) Given a fuzzy set A = {(x,μA(x))}, its support is defined as the
ordinary set Supp(A) = {x ∈ X / μA(x) > 0}. �

Definition 2. ([47]) Given a fuzzy set A, we give the name α-cut of that set to the
ordinary set Aα = {x ∈ X / μA(x) ≥ α} con α ∈ [0,1]. �

It is clearly seen that the sets Aα , α ∈ [0,1] constitute a decreasing succession. If
α1 ≥ α2 ⇔ Aα1 ⊆ Aα2 , α1,α2 ∈ [0,1].

Theorem 1. (Representation Theorem) If A is a fuzzy set and Aα its α-cuts, α ∈
[0,1], it is verified that

A =
⋃

α∈[0,1]

αAα

taking this formal notational as the equality between the membership functions of
both sets. If μAα (x) denote the characteristic function of A, a particular case of the
membership function:

μAα (x) =
{

1 iff x ∈ Aα
0 otherwise

membership function of the fuzzy set A can be expressed in terms of the character-
istic functions of its α-cuts, according to the formula

μA(x) = sup
α∈[0,1]

min(α,μAα (x)) �

Definition 3. ([47]) A fuzzy set is convex iff its α-cuts are convex. �

A definition equivalent to convexity is that A is convex iff ∀x1,x2 ∈ X , ∀λ ∈ [0,1],
μA(λx1 +(1−λ )x2) ≥ min(μA(x1),μA(x2)).

Definition 4. The height of a fuzzy set hgt(A) = supx∈X μA(x). �

Definition 5. A fuzzy set is said to be normalized iff ∃x ∈ X in which μA(x) = 1. �
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2.2 Fuzzy numbers

Definition 6. [18] A fuzzy number A is a μA set of the real straight, it is convex and
normalized such that

a) ∃x0 ∈ Ri / μA(x0) = 1, which is generally called mode, and
b) μA is in parts continuous. �

Any fuzzy number is therefore characterised by a membership function μA : R →
[0,1] and any function like the above gives a fuzzy number where ∀x ∈ R, μA(x) is
the degree of membership of x to the fuzzy number A.

We will denote by F(R) the set of membership functions on R. Thus, when
talking about the fuzzy number we can refer both to the element A ∈ F(R) and
to μA ∈ F(R).

A fuzzy number A is said to be of the type L −R, if and only if its membership
function μA is of the form

μA(x) =

⎧⎪⎪⎨⎪⎪⎩
L
[

(m−x)
α

]
for x ≤ m, α > 0

R
[

(x−m)
β

]
for x ≥ m, β > 0

where m is the mode of A and α (β ) is the width on the left (right), L and R
represent a function on the left or right of m, L is non decreasing and R is not
increasing. We will abbreviate the fuzzy number A by A = (m−α,m,m+β )L R.

Definition 7. [19] A plane fuzzy number is an A fuzzy number such that

∃(m1,m2) ∈ Ri, m1 < m2 and μA(x) = 1, ∀x ∈ [m1,m2] �

A plane fuzzy number can model a fuzzy interval. An A plane fuzzy number of type
L −R is defined as

μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
[

(m1−x)
α

]
for ≤ m1, α > 0

R
[

(x−m2)
β

]
for x ≥ m2, β > 0

1 for m1 ≤ x ≤ m2

0 otherwise

(1)

This will be more briefly denoted by (m1 −α,m1,m2,m2 +β )L R.
It is clear that depending on the L and R functions, we will obtain different

types of fuzzy numbers.
We will consider numbers as fuzzy, plane, linear and normalised, those whose

analytical membership function is as follows.
A plane fuzzy number, which we will denote by ũ j = (r j,u j,u j,R j) will have the

membership function
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∀v ∈ R, μũ j(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v−r j)
(uj−r j)

if r j ≤ v ≤ uj

(R j−v)
(R j−uj)

if uj ≤ v ≤ R j

1 if uj ≤ v ≤ uj

0 otherwise

(2)

From now on we will frequently use fuzzy numbers expressed as linear combina-
tions ỹ =∑ j ũ jx j with x j ∈ R, j = 1, . . . ,n.

In [42] we find the membership function of those numbers, which we express
below.

Proposition 1. If ỹ = ∑ j ũ jx j = ũx is a linear expression in which the ũ j, j =
1, . . . ,n, are fuzzy numbers linear membership functions given by ũ j = (r j,u j,u j,R j)
and x j ≥ 0, j = 1, . . . ,n, then the membership function of ỹ is

μ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(z−rx)
(ux−rx) if x > 0 and rx ≤ z ≤ ux

(Rx−z)
(Rx−ux) if x > 0 and ux ≤ z ≤ Rx

1 if ux ≤ z ≤ ux
0 otherwise

where r = (r1, . . . ,rn), u = (u1, . . . ,un), u = (u1, . . . ,un) and R = (R1, . . . ,Rn). �

2.3 Methods for Comparing Fuzzy Numbers

A constant problem over the last years has been that of the distribution of imprecise
quantities, and hence the comparison of fuzzy numbers. The many and varied ap-
proaches to the problem mean that a wide range of methods exist to make the com-
parison in question. An excellent collection of techniques, methods and approaches
can be found in [46, 51].

We will use the ways of comparing fuzzy numbers exclusively to analyse the
repercussion of using various methods of comparison in a Fuzzy Linear Program-
ming problem. Thus, it is not our aim here to review all the possible ways of
comparing.

The solution to the problem can be shortened in either of the following ways,
depending on whether the method used is based on the definition of an ordering
function or on the comparison of alternatives.

2.3.1 Methods Based on the Definition of an Ordering Function

We will consider A, B ∈ F(R). A simple method to compare these lies in the defini-
tion of a function g : F(R) → R. If the function g(·) is known, then
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g(A) < g(B) ⇔ A is less than B
g(A) > g(B) ⇔ A is greater than B

g(A) = g(B) ⇔ A is equal to B

g is usually called a linear ordering function if

1) ∀A,B ∈ F(R), g(A + B) = g(A)+ g(B)
2) ∀r ∈ R, r > 0, g(rA) = rg(A), ∀A ∈ F(R)

In this case, the indices can be classified according to whether the ordering function
is linear or not.

2.3.2 Methods Based on the Comparison of Alternatives

These methods consist of obtaining the fuzzy set of the optimal alternatives:

Õ = {i,μÕ(i)}, μÕ(i) = μÕ(Ai), Ai ∈ F(Ri)

where μÕ(i) represents the degree to which the ith alternative can be considered the
best.

Finally, we underline in spite of the huge wealth of methods for comparing fuzzy
numbers, as yet few indices have been studied since it is perfectly justifiable for each
human decision taker to use their own method of comparison independently of any
method described in the literature. A detailed study in this respect can be found in
[32] where an artificial neuronal network is used which learns the ordering criteria
of each decision taker considered.

3 Methods and Models of Fuzzy Linear Programming

An LP problem is generally set out as Max {z = cx/Ax ≤ b,x ≥ 0} where A is matrix
m×n of real numbers, b ∈ Rm and c ∈ Rn.

Obviously, it is assumed here that the decision taker has exact information on
the elements intervening in the problem. Even were this the case, the decision taker
usually finds it more convenient to express his knowledge in linguistic terms, i.e.
through conventional linguistic labels [48], rather than by using high precision nu-
merical data. Thus, it makes perfect sense to talk about optimization problems from
a vague predicate approach as it is understood that this vagueness arises from the
way we use to express the decision taker’s knowledge and not from any random
event. In short, it is supposed that the imprecision of the data defining the problem
is fuzzy.

The first case of optimization problems with fuzzy approach appeared in the lit-
erature more almost four decades ago [2], in an article which put forward the now
classical key concepts of constraint, objective and fuzzy optimal decision.

As with LP in conventional optimization, so have FLP methods been the subject
of most study in the fuzzy context. While not exhaustive, there are three main types
of FLP problems, depending on the imprecision established in the constraints, on the
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coefficients of the technological matrix or on the costs which define the objective
function. Models and methods to solve these problems abound in the literature [4,
5, 6, 16, 17, 23, 28]. In some cases precise solutions are obtained, while in others
these are fuzzy and more in line with the approach to the problem. The latter offer
a set of good alternatives and encompass the more precise solutions obtained using
other methods. Finally, it is the decision maker who must choose.

3.1 Several Types of Fuzzy Linear Programming Problems

3.1.1 Fuzzy Constraint

We consider the case in which the decision maker assumes that there is a certain
tolerance in the fulfilment of the constraints. The associated problem is represented
as follows

Max {z = cx / Ax � b, x ≥ 0} (3)

where c ∈ Rn, b ∈ Rm, A is a matrix m×n of real numbers, and each constraint can
be modelled using a membership function

μi : R → [0,1] / μi(aix) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if aix ≤ bi

fi(aix) if bi ≤ aix ≤ bi + ti

0 if aix ≥ bi + ti

This problem was addressed and solved in [41, 50], and later it was generalized in
[44] to obtain a fuzzy solution involving the particular point-solutions provided by
the methods shown in [41, 50].

3.1.2 Fuzzy Costs

In this case, the decision taker does not know the exact values of the coefficients c.
The situation is represented by the following FLP problem.

Max {z = c̃x / Ax ≤ b, x ≥ 0} (4)

with c̃ ∈ (F(R))n a vector of fuzzy numbers and supposing membership functions
defined for each cost. There are various approaches [16, 33, 42] to solve (4). The
method proposed in [16] gives a formal context to find the solution of (4) and en-
compasses the methods proposed in [33, 42, 28].

3.1.3 Fuzzy Numbers in the Technological Matrix

Now we consider that the coefficients in the technological matrix and the coeffi-
cients of the right hand size are represented by fuzzy numbers, with the costs that
define the objective function being real.
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This type of FLP problem is set out in the following terms

Max {z = cx / ãix � b̃i, x ≥ 0, i ∈ M} (5)

where for each i ∈ M, ãi = (ãi1, . . . , ãin), ãi j ∈ F(R), j ∈ N, b̃i ∈ F(R), x ∈ X =
{x ∈ Rn / ãix � b̃i, i ∈ M, x ≥ 0} and c ∈ Rn.

The first version of this problem appeared in [42]. In order to find (5) a fuzzy
solution, in [17] a method is presented which supposes first that violations in the
accomplishment of its constraints are permitted up to a maximum amplitude of a
fuzzy value, and second that in order to compare the left hand side to the right hand
one a fuzzy comparison relation between fuzzy numbers is to be considered.

3.1.4 A General Model

A general FLP model, [4], which encompasses all the above cases, is a problem of
the type:

Max {z = c̃x / ãix � b̃i, x ≥ 0, i ∈ M} (6)

where c̃ ∈ (F(R))n, and for each i ∈ M, ãi ∈ (F(R))n, b̃i ∈ F(R).
One method [4] for solving this general model 6 consists of substituting the con-

straints set by a convex fuzzy set, in the same way as described above.

4 An Application to the Spanish Football League

Experts and managers of professional Football League are conscious that the statis-
tical data of the results, referee decisions, etc. are insufficient. They need to know
if the teams use their inputs properly and how increase their outputs. Taking into
account this requirement, we present an analysis of the technical efficiency of the
Spanish Football League teams (season 2006/07). Actually, we consider the follow-
ing objectives:

a) Knowing the offensive and defensive (at home, away and general) of each team.
b) Obtaining the weights of the optimal combination of inputs that would make

efficient to a given team.
c) Knowing, for each non-efficient team, which teams we should compare with.
d) Ranking the teams by its efficiency.

For our proposal, the use of linear fuzzy programming is useful because the models
show uncertainty for several reasons: the data are not precise because they are col-
lected by non-professional evaluators, sometimes there are plays that are recorded
to one team which should be recorded to the other (own goal shot, for example),
referee decisions, etc. Besides, the efficiency analysis is used to rank the teams and
make future decisions.

In the next sections we describe the characteristics of the problem, the procedure
of modeling the situation and some ways of solving them.
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4.1 Spanish Football League

Football is a competitive sport with two teams of 11 players. The winning team must
score more goals than the other team during the game. While there are various styles
of competition, the national leagues involve each of the teams (20 in Spain) playing
each other during the season. Each team plays every other team twice; once in its
own “home” ground, and once “away” in the opponent’s ground. Victories are re-
warded with three points, draws receive one point, and defeats do not receive any
pointstherefore it is a non-zero sum game. The team with the most points wins the
league and any ties at the end of the season are broken in various ways in each league.

There are incentives for occupying the highest possible position in the league at
the end of the season. Of course, if being first were the only criteria then teams
would lose their incentive to win when they realise that first place had become un-
achievable. Therefore, the best-positioned teams are rewarded with the opportunity
to play in European competitions in the following season, and the lowest teams are
relegated to the league below.

The basic characteristics of football mean that it can be analysed just like any
productive activity. Consequently, it is possible to use the idea of a “sports pro-
duction function”, as first proposed by Rottenberg [34] when discussing baseball.
Later, Scully [37] offered an initial empirical estimation of production functions for
the same sport. These pioneering works were followed by others centred in other
sports, such Zak et al. [49], or Scott et al. [36] in basketball, Schofield [35] in league
cricket, and Sloane [39, 40] in football. More recent papers, such as Carmichael and
Thomas [8], or Carmichael et al. [9], or Dawson et al. [15], have been focussed
on the production function and efficiency analysis applied to rugby and the English
Premier football league.

The productive process in football can be modelled formally using the following
production function:

Yi = Yi(Xi), i = 1,2, . . . ,n,

where Yi is the football output measured for team i (usually the percentage of points
or victories obtained out of the possible total, or the difference between goals scored
and conceded) and Xi is a vector of inputs. Usually, the inputs in the production func-
tion are variables that measure the technical abilities of the players. Many different
methods of measurement of outputs and inputs can be found in the literature, de-
pending on the object being studied. It is possible to consider each league game as
a reference unit (see [9]), where output is measured as goal difference, and input is
measured as the difference between the two teams in a series of game statistics (for
example, the difference between shots-on-goal, the number of balls controlled with
the first touch, etc.).

Another approach consists in considering aggregated output for a team during one,
or various leagues (see [15]). In this case, output is normally measured as the percent-
age of points or victories obtained; the inputs are the various indicators of each teams
footballing ability (for example, the amount of possession, number of centres, etc.).

These studies share two common denominators, regardless of the economet-
ric techniques used in each case (OLS, fixed effects, random effects, maximum
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likelihood, etc.). Firstly, they attempt to quantify the relative importance of each
of the inputs in the production of the output and this enables conclusions to be made
about which technical aspects of play are most important. Secondly, they attempt
to explain why, once the various productive factors have been controlled for, the
productivity of each team apparently differs1.

In the economic literature, the issue is often tackled by assuming that some firms
have access to an advanced technology that enables them to obtain higher levels of
output from a given volume of resources. Therefore, the standard practice consists
in estimating production functions usually with parametric techniques, that allow
the recovery of homogeneous output elasticities for all firms, and to control for
the presence of level effects for each firm, which are interpreted as indicators of
the level of technological development in each firm (for example, estimating fixed
effects models).

However, two firms with the same technology may have differing productivi-
ties because the quality of their management varies, or because the efficiency of
their organisation differs (meaning the efficiency of their productive processes).
This second possibility offers a more realistic explanation for productivity differ-
ences between companies in homogeneous sectors, or when the technology used is
well-known and established.

In this paper, we will assume that clubs have access to the same level of tech-
nology, but differ in their levels of efficiency, and that this may explain differences
in productivity2. It seems reasonable to assume that the technology used in foot-
ball (tactics, plans, physical training, etc.) is homogeneous and basically wellknown
among industry professionals. For this reason, non-parametric optimisation tech-
niques, specifically DEA3 models, are used. Non-parametric methodology offers
great flexibility and an absence of specification errors because it is not necessary to
choose any particular functional form. However, it suffers the disadvantage of being
technically deterministicand so atypical observations may bias the efficiency results
and attribute any random shocks to inefficiency.

Additionally, our analysis of efficiency will take into account other important
characteristics of the productive process in football. One of the most important prob-
lems in the interpretation of results derived from parametric estimations of the pro-
duction functions of football is the following: the measurements of output combine
offensive productivity (goal-scoring) with defensive efficiency (preventing goals).
As a consequence, the inputs used in the measurements are a combination of indi-
cators of each club’s offensive and defensive ability, and so the signs expected in
the regressions for some inputs will be positive, while others will be negative, or
indeterminate. For this reason, the calculations of the frontier of efficient produc-
tion presented in the following pages will explicitly distinguish between offensive

1 In other words, they try to explain why one team obtains more points or victories than
anothereven if it has a team with identical abilities (identical inputs).

2 An interesting discussion about the advantages and disadvantages of parametric and non-
parametric techniques when studying efficiency and productivity can be found in [31].

3 An introduction to Data envelopment analysis (DEA) models can be found in [14].
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and defensive production and, thus, will enable to calculate separately offensive and
defensive efficiency indicators.

4.2 DEA Models

Data Envelopment Analysis (DEA) is a methodology that has been widely used to
evaluate the relative efficiency of a set of decision-making units (DMUs) involved
in a production process. DEA models provide efficiency scores that assess the per-
formance of the different DMUs in terms of either the use of several inputs or the
production of certain outputs (or even simultaneously). Most of DEA efficiency
scores vary in (0,1], the unity value being reserved to efficient units. In the particu-
lar case of the radial models, the CCR (Charnes, Cooper and Rhodes [11]) and the
BCC (Banker, Charnes and Cooper [1]) models yield efficiency scores both in input
and in output orientation, although nonoriented DEA efficiency scores can also be
defined (see [21] for hyperbolic measures and [3, 10] for directional measures). The
radial efficiency scores represent either equiproportionate input reductions or output
expansions (or both simultaneously in the nonoriented case). Nevertheless, nonra-
dial efficiency measures are also available (see e.g., [22] for the Russell measures).

Traditionally, the coefficients of DEA models, i.e., the data of inputs and outputs
of the different DMUs, are assumed to be measured with precision. However, as
some authors point out (see, e.g., [26]), this is not always possible. In these cases
it may be more appropriate to interpret the experts understanding of the parameters
as fuzzy numerical data which can be represented by means of fuzzy numbers or
fuzzy intervals. Fuzzy mathematical programming provides us a tool to deal with
the natural uncertainty inherent to some production processes.

We can find several fuzzy approaches to the assessment of efficiency in the DEA
literature. Sengupta [38] considers fuzzy both objective and constraints and analyzes
the resulting fuzzy DEA model by using Zimmermann’s method [50]. Triantis and
Girod [43] use Carlsson and Korhonen method [7] in an application developed in the
context of a preprint and packaging line which inserts commercial pamphlets into
newspapers. Kao and Liu [29] develop a method to find the membership functions of
the fuzzy efficiency scores when some observations are fuzzy numbers. The idea is
based on the α-cuts and Zadeh’s extension principle [47]. Hougaard’s approach [27]
allows the decision makers to use scores of technical efficiency in combination with
other sources of information as expert opinions for instance. Entani et al. propose
in [20] a DEA model with an interval efficiency consisting of efficiencies obtained
from the pessimistic and the optimistic viewpoints. Their model, which is able to
deal with fuzzy data, also consider inefficiency intervals. Here, we are particularly
interested in the approach by Guo and Tanaka [26], which uses the possibilistic
programming. In a similar manner, in the present paper we also utilize possibilistic
programming techniques to approach the problem of the measurement of efficiency,
but exploiting the use of the primal envelopment formulation of the DEA models
instead of the dual multiplier one. Some gains are obtained with respect to both
computational and interpretative aspects.
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Consider that we are interested in evaluating the relative efficiency of n DMUs
which use m inputs to produce s outputs. Suppose that the data of inputs and
outputs cannot be precisely measured and, also, that they can be expressed as
LR-fuzzy numbers with bounded support x̃i j = (xL

i j −αL
i j,x

L
i j,x

R
i j,x

R
i j +αR

i j)Li j ,Ri j ,
i = 1, . . . ,m, j = 1, . . . ,n, ỹr j = (yL

r j −β L
r j,y

L
r j,y

R
r j,y

R
r j +βR

r j)L′
r j ,R

′
r j

, r = 1, . . . ,s, j =
1, . . . ,n satisfying

Li1 = . . . = Lin := Li, i = 1, . . . ,m,

L′
r1 = . . . = L′

rn := L′
r, r = 1, . . . ,s,

Ri1 = . . . = Rin := Ri, i = 1, . . . ,m,

R′
r1 = . . . = R′

rn := R′
r, r = 1, . . . ,s.

(7)

Note that (7) is not too restrictive, as we are simply requiring that, for any variable
(both inputs and outputs), the corresponding n data can be described by means of
LR-fuzzy numbers of the same type. For instance, if these are trapezoid or triangular
fuzzy numbers then (7) holds.

In both cases of offensive and defensive production, the analysis of efficiency
is obtained by means n DEA models4 with input orientation. For the DMU0 the
program is the following:

(E0) Min θ
s.t. :

n

∑
j=1

λ j x̃i j � θ x̃i0, i = 1, . . . ,m

n

∑
j=1

λ j ỹr j � ỹr0, r = 1, . . . ,s

λ j ≥ 0, j = 1, . . . ,n

(8)

Since inputs and outputs are LR numbers, the constraints in (8) can be regarded as
inequalities between LR numbers.

If we assume that the flexibility in the constraints are described by means the
fuzzy number t̃, model (8) can be expressed as follows (see subsection 3.1.3):

(Eaux
0 ) Min θ

s.t. :
n

∑
j=1

λ jx̃i j ≤g θ x̃i0 − t̃(1−β ), i = 1, . . . ,m

n

∑
j=1

λ jỹr j ≥g ỹr0 + t̃(1−β ), r = 1, . . . ,s

λ j ≥ 0, j = 1, . . . ,n

(9)

4 The proposed DEA models assume constant returns to scale. The reason is that we will
analyse the league total. If the unit of analysis were each match, it would be also reasonable
to use variable or non-increasing returns to scale, given that the bigger incidence of inputs
may increase (in an increasing or decreasing form) the attainment of more outputs in a
given match. In the league total (at home and away) this effect will be diluted by the total
of games played. This is confirmed by the fact that our results are not appreciably affected
when assuming returns that are non-constant.
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where x̃i j and ỹr j represent inputs and output, respectively, for the team j ( j =
1,2, . . . ,n), x̃i0 is the input level of the team being analysed, ỹr0 the output of the
same team, and λ j the weights of the optimal combination. Finally, θ is the relative
efficiency of team j using the weights associated with the team being evaluated, and
g is a ordering function.

To describe the uncertainty of inputs and outputs, we use triangular fuzzy
numbers,

x̃i j = (xi j −αL
i j, xi j, xi j +αR

i j) ỹr j = (yr j −β L
r j, yr j,yr j +βR

r j),

then, model (9) can be expressed, for each α-cut, as the following linear program-
ming problem:

(Eα
0 ) Min θ

s.t. :
n

∑
j=1

λ jxi j − (1−α)
n

∑
j=1

λ jαL
i j ≤ θxi0 − (1−α)θαL

i0, i = 1, ...,m

n

∑
j=1

λ jxi j − (1−α)
n

∑
j=1

λ jαR
i j ≤ θxi0 − (1−α)θαR

i0, i = 1, ...,m

n

∑
j=1

λ jxi j +(1−α)
n

∑
j=1

λ jαL
i j ≤ θxi0 +(1−α)θαL

i0, i = 1, ...,m

n

∑
j=1

λ jxi j +(1−α)
n

∑
j=1

λ jαR
i j ≤ θxi0 +(1−α)θαR

i0, i = 1, ...,m

n

∑
j=1

λ jyr j − (1−α)
n

∑
j=1

λ jβ L
r j ≥ yr0 − (1−α)β L

r0, r = 1, ...,s

n

∑
j=1

λ jyr j − (1−α)
n

∑
j=1

λ jβR
r j ≥ yr0 − (1−α)βR

r0, r = 1, ...,s

n

∑
j=1

λ jyr j +(1−α)
n

∑
j=1

λ jβ L
r j ≥ yr0 +(1−α)β L

r0, r = 1, ...,s

n

∑
j=1

λ jyr j +(1−α)
n

∑
j=1

λ jβR
r j ≥ yr0 +(1−α)βR

r0, r = 1, ...,s

λ j ≥ 0, j = 1, ...,n

(10)

Thus, the efficiency score of a given DMU0 is a fuzzy set whose membership func-
tion is defined as follows [30]:

μ0(θ ) = sup{α : θ is an optimal value of (Eα
0 )}. (11)

As the exact computation of μ0(θ ) requires to obtain a supremum, if we show the
decision maker a table displaying for values of α from 0 to 1 by 0.1 for each DMU,
we can only compute approximately. In case that more precision is required only a
few extra computational effort is necessary.
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4.2.1 Other Approaches

The membership functions of the efficiency fuzzy set can be obtained by means a
family of intervals. The main idea is, for each α-cut, firstly to place each DMU in
the most favourable situation, EL

k (α), secondly in the most unfavourable scenario,
EL

k (α), and then to obtain an interval Ek(α) = [EL
k (α),ER

k (α)] as efficiency score.
For instance, Kao and Liu [29] start from the α-cuts for the inputs and the outputs,

xi j(α) = [xL
i j(α),xR

i j(α)], yr j(β ) = [yL
r j(β ),yR

r j(β )], ∀i, j,r, α,β ∈ [0,1],

and they calculate the bounds of the interval Ek(α) making use of two mathematical
programming models:5

EL
j0
(α) = Minθ

s.t.
n

∑
j=1, j �= j0

λ jx
L
i j(α)+λ j0xR

i j0(α) ≤ θxio,∀i

n

∑
j=1, j �= j0

λ jy
R
r j(α)+λ j0yL

r j0(α) ≥ yro,∀r

λ j ≥ 0,∀ j

(12)

ER
j0
(α) = Minθ

s.t.
n

∑
j=1, j �= j0

λ jx
R
i j(α)+λ j0xL

i j0(α) ≤ θxio,∀i

n

∑
j=1, j �= j0

λ jy
L
r j(α)+λ j0yR

r j0(α) ≥ yro,∀r

λ j ≥ 0,∀ j

(13)

These models are used to ascertain the efficiency for different values of α , for in-
stance, if we take αk = k/10, 0 ≤ k ≤ 10, we obtain a family of interval valued
scores of efficiency, i. e.

{[E j(k/10)L,E j(k/10)R]}10
k=0.

4.2.2 Choosing a Right Model for the Teams

Clearly, the choice of the model depends on the necessities of the clubs. If the man-
agers of the teams just want to know the efficiency and obtain a ranking based on
it, we could use models that calculate interval-valued scores of efficiency (models
(12), 13), and models that give us a crisp score for each α-cut (model (10). How-
ever, in practice they prefer model (10) because models based on intervals provides
intervals whose amplitude is excessive to the necessity of the clubs.

5 In reality, Kao and Liu [29] employ the dual programmes such as those presented in this
research.
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The problem is more difficult if we want to know the set of teams that should be
compared with a given team. For each α ∈ [0,1], the solution of models (12), (13)
provides intervals to the weights λ j,

[λ L
j (α),λR

j (α)], j = 1,2, · · · ,n.

With this approach, the number of reference teams (the one we are comparing with),
strongly depends on the analysed scenario. This could create an economic difficulty
to the managers of the clubs. For these reasons, in our calculations we have used
model (10).

4.3 Ranking Fuzzy Efficiencies

Owing to the fuzzy data incorporated into DEA problem, the final efficiency ratio
of DMU is no longer a crisp number; it is a fuzzy number. Since a fuzzy number
represents many possible real numbers that have different membership values, it is
not easy to determine which DMU is preferred by comparing the efficiency ratio.
To solve the problem, a great deal of fuzzy ranking methods have been proposed,
based on the classification by Chen and Hwang [13], these ranking method include
using degree of optimality, Hamming distance, α-cut, comparison function, fuzzy
mean and spread, proportion to the ideal, left and right scores, centroid index, area
measurement, linguistic method etc.

Usually, the problem that we deal with DEA approach includes many evaluated
DMUs, it is necessary to employ an efficient fuzzy ranking method which can handle
a large quantity of fuzzy numbers. Here we cite Chen and Klein’s method, based on
area measurement, which use the area of the rectangle obtained by multiplying the
height of the membership function by the distance between two crisp maximizing
and minimizing barriers as a referential rectangle (or compare background) for each
fuzzy number, and then calculates the ranking index by their difference.

The referential rectangle is used as a normalization condition and is based on the
concept of more is better. That is, generally whenever fuzzy number is compared
the one with more area to the right is considered better. The referential rectangle is
another approach to help measure this. The Chen and Klein’s ranking index is based
on the difference between the compared fuzzy number and the referential rectangle.

Fortunately, in the fuzzy DEA problem, the efficiency ratio is always in the in-
terval [0,1] and the height of the membership function is 1, which forms a closed
and normalized rectangle with the horizontal-axe interval being [0,1]. It is denoted
as fuzzy number R. Hence, it is easy to transform the original membership function
into a new one by subtraction from R.

In Figure 1, for the k-th DMU to say, uCk−R(x) is the membership function of
Ck − R, A+ is the positive area of Ck − R, A− is the negative area of Ck − R. We
favor A+ with a larger value and A− with a smaller value. Thus an index Ik = A+

A++A−
is defined to determine the ranking order of the k-th DMU. The subtraction be-
tween fuzzy numbers Ck and R shift to left, since the subtracted interval at α1-cut is
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Fig. 1 Illustration of Chen and Klein’s fuzzy ranking index, [25]

[E f f αi,L,E f f αi,R]− [0,1] = [E f f αi ,L −1,E f f αi,R]. Therefore, the ranking index is
represented for k-th DMU as:

Ik = ∑n
i=1 E f f αi ,R

∑n
i=1 E f f αi,R −∑n

i=1(E f f αi,L −1)
, n → ∞

This is a much simpler form for computing Ik, where n is the number of α-cuts and
as n approaches ∞. A+ is ∑n

i=1 E f f αi,R and A− is ∑n
i=0(E f f al phai,L − 1). The k-th

DMU with a higher index Ik is considered more efficient than the DMU with a lower
index. The value scope of Ik is between 0 and 1, which is consistent with the scope
of efficiency ratio in crisp DEA model.

According to the discussion by Chen and Klein [12], the proposed ranking
method for m fuzzy numbers uses only m comparisons to the same referential rect-
angle as opposed to the m(m−1)

2 comparisons needed by existing ranking methods.
Hence it is an efficient, accurate and effective fuzzy ranking method, especially
when a large quantity of fuzzy numbers are evaluated. In addition, Chen and Klein’s
method requires only three of four α-cuts and uses the summation of each α-level
interval which does not require normality to measure the summation for the rank-
ing order of the fuzzy numbers. This increases efficiency as well and allows for
applicability to a wider range of fuzzy numbers.

4.3.1 A Suitable Ranking

If we choose the Kao and Liu approach, or any other based on interval-valued scores
of efficiency for eachα-cut, for values ofα evenly spaced,α� = �/N, � = 0, · · · ,N,
it is useful to apply the Chen and Klein index for obtaining a rank of DMUs.

Definition 8. The jth-DMU is more efficient than the kth-DMU if and only if I j > Ik,
i. e.

Ẽ j > Ẽk iff I j > Ik. (14)

However, model (10), for some values of α , provides an interval for each team.
Then, it is easier to introduce a ranking for the intervals.
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Definition 9. Given the intervals A = [a1,a2],B = [b1,b2] ⊂ R, we will say that A is
bigger than B if and only if

A > B ⇔
⎧⎨⎩

k1a1 + k2a2 > k1b1 + k2b2, k1a1 + k2a2 �= k1b1 + k2b2

a1 > b1, k1a1 + k2a2 = k1b1 + k2b2

where k1,k2 are two pre-established positive constants.

We use a rank method proposed, ad hoc, by Govan et al. [24] to crisp problems. They
obtain a ratio of efficiency as the product6 of the offensive efficiencies, {eof j}n

j=1,
and defensive ones, {edef j}n

j=1:

r j = eof j · edef j , j = 1,2, · · · ,n. (15)

For extending this result to interval-valued scores of efficiency, {[EL
of j

,ER
of j

]}n
j=1,

{[EL
def j

,ER
def j

]}n
j=1, firstly we need multiply both kinds of efficiencies:

[EL
j ,E

R
j ] =
[
EL

of j
,ER

of j

]× [EL
def j

,ER
def j

]
, j = 1,2, · · · ,n.

According to Definition 9, we rank the intervals {[EL
j ,E

R
j ]}n

j=1 and, by (15), we can
rank the teams of the League:

Definition 10. The jth-DMU is more efficient than the kth-DMU if and only if
[EL

j ,E
R
j ] > [EL

k ,ER
k ].

4.4 Experiments

In every experiments we work with data of the Spanish Football League 2006/07.
We present results of offensive and defensive efficiencies in general, without dis-
tinguish between home and away because this provides a global idea and permits
simplify the results. Besides, in all the tables, the teams are ranged according to their
classification in the League.

4.4.1 The Data of the Model

We begin by defining football offensive and defensive outputs, and then justify our
choice of inputs for the resolution of the DEA models. Our calculations of the fron-
tiers of offensive production assume that teams in Spanish League are trying to
maximise the most straightforward measure of football production, i.e. the number
of goals scored over the course of the season (Oo). The reason to choose the number

6 Govan et al. define the ratio of efficiency as a quotient between efficiencies, but our defi-
nition is equivalent because in [24] the model for determine the defensive efficiency have
output orientation and, besides, the defensive inputs and outputs are the inverse of ours,
1/Ii y 1/O.
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of goals instead of the total number of points in the classification, for instance, is
that in this way we take into account implicitly the show aspect of football. The
corresponding output measure to compute the frontiers of defensive production will
be the inverse7 of the number of goals conceded (Od = 1/Oo) by a team.

For the sake of simplicity and comparability we want always to use the same
inputs to compute the different defensive and offensive frontiers of production. We
have chosen the following four offensive inputs:

- Balls kicked into the opposing teams centres area (Io
1 ),

- attacking plays made by the team (Io
2 ),

- minutes of possession (Io
3 ),

- shots-on-goal (Io
4 ).

And we will consider four defensive inputs defined as the inverse of the above men-
tioned, i. e. Id

i = 1/Io
i , i = 1,2,3,4.

With respect to the attacking inputs, the four chosen measures approach the ef-
fort, the time or the abilities a team has employed in offensive tasks. Hence, con-
ceivably these four proxies capture reasonably well the amount of offensive inputs
employed by each team. With respect to the defending inputs, the idea is similar,
although we need to make some qualifications. In this case, we are taking as proxies
of the defending inputs, the inverse of game events that are performed by the op-
posing team, rather than actions of the team whose defending abilities we wish to
capture. The data of the League 2005/07 are shown in table 1.

Table 1 Values of crisp inputs and outputs

TEAM O1 I1 I2 I3 I4 TEAM O1 I1 I2 I3 I4

Real Madrid 84 555 165 813 1008 Athletic C. Bil-
bao

40 448 96 1038 765

Villarreal 63 450 133 799 940 Espanyol 43 428 125 1119 880
F.C. Barcelona 76 566 333 981 1191 Real Betis 45 444 99 1033 843
Atl. de Madrid 66 516 154 814 905 Getafe 44 522 137 1142 919
Sevilla F.C. 75 568 151 1197 912 Real Valladolid 42 478 108 1288 914
Racing San-
tander

42 469 110 996 816 Recreativo
Huelva

40 456 139 1084 793

R.C.D. Mallorca 69 477 161 1063 883 Osasuna 37 479 113 1081 859
Almerı́a 42 450 134 1072 876 Real Zaragoza 50 519 159 1040 941
Dep. A Coruña 46 476 124 1127 911 Murcia 36 417 102 1048 803
Valencia C.F 48 394 141 998 956 Levante 33 413 120 1023 819

On attempting to include the uncertainty of the data, we have encountered non-
uniform situations in all teams that should be illustrated by different variation per-
centages. A cluster analysis of the last 10 football seasons has been carried out and

7 Using the inverse of goals conceded as the output measure means that the team with the
best defensive performance displays the highest output.
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clubs have been grouped under two criteria: annual income and sporting history in
the Spanish League since they were founded. This did not make it possible to group
the teams into five categories so that variation percentages were homogeneous within
each, but little difference is appreciated among the groups themselves. Assuming
this criterion, the percentages obtained for each team is expressed in Table 2.

Note that if one same variation percentage were applied to all the teams, we
would not be able to compare the two indexes. Table 2 includes the tolerances (as
percentages) applied to each team and the group to which it belongs.

Table 2 Percentage of tolerances for each input and output

TEAM O1 I1 I2 I3 I4 TEAM O1 I1 I2 I3 I4

Real Madrid 6 3 12 4 3 Athletic C. Bilbao 10 4 13 3 3
Villarreal 12 4 13 6 4 Espanyol 10 4 13 3 3
F.C. Barcelona 6 3 12 4 3 Real Betis 12 4 13 6 4
Atl. de Madrid 12 4 13 6 4 Getafe 10 5 12 5 4
Sevilla F.C. 8 5 13 5 4 Real Valladolid 10 5 12 5 4
Racing Santander 10 5 12 5 4 Recreativo

Huelva
10 5 12 5 4

R.C.D. Mallorca 10 5 12 5 4 Osasuna 10 4 13 3 3
Almerı́a 10 5 12 5 4 Real Zaragoza 12 4 13 6 4
Dep. A Coruña 8 5 13 5 4 Murcia 10 5 12 5 4
Valencia C.F. 8 5 13 5 4 Levante 10 5 12 5 4

To sum up, our model have the following inputs and outputs:

x̃o
i j =
(

Io
i j −αoL

i j , Io
i j, Io

i j +αoR
i j

)
, ỹo

j =
(

Oo −β oL
j , Oo

j , Oo
j +β oR

j

)
,

x̃d
i j =
(

Id
i j −αdL

i j , Id
i j, Id

i j +αdR
i j

)
, ỹd

j =
(

Od −β dL
j , Od

j , Od
j +β dR

j

)
,

(16)

where

αoL
i j = αoR

i j = Io
i j pi j, β oL

j = β oR
j = Oo

j p j

αdL
i j =

(Id
i j)

2 pi j

1+Id
i j pi j

, αdR
i j =

(Id
i j)

2 pi j

1−Id
i j pi j

, β dL
j =

(Oo
j )

2 pi j

1+Od
j pi j

, β dR
j =

(Oo
j )

2 pi j

1−Od
j pi j

(17)

and i = 1, ...,4, j = 1, ...,20.

4.4.2 Analizing the Efficiency

In this subsection we present the result of general offensive efficiency (Table 3)
and defensive efficiency (Table 4) obtained with model (10) for some values of α .
In these tables, the last column show the interval where we can find the scores of
efficiency of each team.
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Table 3 Scores of offensive efficiency

Teams Score of efficiency for some values of α Interval
0 0.1 0.3 0.5 0.7 0.9 1

Real Madrid 1 1 1 1 1 1 1 [1. 1]
Villarreal 0.9576 0.9562 0.9529 0.9487 0.9432 0.9355 0.9305 [0.9305. 0.9576]
F.C. Barcelona 0.8872 0.8872 0.8872 0.8872 0.8872 0.8872 0.8872 [0.8872. 0.8872]
Atl. de Madrid 0.9006 0.8993 0.8962 0.8923 0.8871 0.8799 0.8751 [0.8751. 0.9006]
Sevilla F.C. 0.9964 0.9959 0.9948 0.9933 0.9913 0.9886 0.9868 [0.9868. 0.9964]
Rac. Santander 0.7646 0.7638 0.7621 0.7598 0.7568 0.7527 0.75 [0.7500. 0.7646]
R.C.D. Mallorca 0.9743 0.9734 0.9711 0.9682 0.9645 0.9592 0.9558 [0.9558. 0.9743]
Almerı́a 0.6286 0.628 0.6266 0.6247 0.6223 0.6189 0.6167 [0.6167. 0.6286]
Dep. A Coruña 0.7358 0.7354 0.7345 0.7334 0.732 0.73 0.7287 [0.7287. 0.7358]
Valencia C.F. 0.8127 0.8123 0.8114 0.8102 0.8086 0.8064 0.8049 [0.8049. 0.8127]
Ath. C. Bilbao 0.8343 0.8335 0.8316 0.8292 0.8259 0.8214 0.8185 [0.8185. 0.8343]
Espanyol 0.6888 0.6882 0.6866 0.6845 0.6819 0.6782 0.6757 [0.6757. 0.6888]
Real Betis 0.9189 0.9175 0.9144 0.9104 0.9051 0.8977 0.8929 [0.8929. 0.9189]
Getafe 0.6431 0.6425 0.641 0.6391 0.6366 0.6331 0.6309 [0.6309. 0.6431]
Real Valladolid 0.7787 0.778 0.7762 0.7739 0.7708 0.7667 0.7639 [0.7639. 0.7787]
Rec. Huelva 0.617 0.6164 0.615 0.6132 0.6108 0.6075 0.6053 [0.6053. 0.6170]
Osasuna 0.6557 0.655 0.6535 0.6516 0.649 0.6455 0.6432 [0.6432. 0.6557]
Real Zaragoza 0.6562 0.6552 0.653 0.6501 0.6463 0.6411 0.6376 [0.6562. 0.6376]
Murcia 0.7067 0.7061 0.7044 0.7023 0.6996 0.6958 0.6933 [0.6933. 0.7067]
Levante 0.5507 0.5501 0.5489 0.5472 0.5451 0.5421 0.5402 [0.5402. 0.5507]

Table 4 Scores of defensive efficiency

Teams Score of efficiency for some values of α Interval
0 0.1 0.3 0.5 0.7 0.9 1

Real Madrid 1 1 1 1 1 1 1 [1, 1]
Villarreal 0.9574 0.9561 0.9528 0.9486 0.9431 0.9354 0.9303 [0.9303, 0.9574]
F.C. Barcelona 0.7841 0.7841 0.7841 0.7841 0.7841 0.7841 0.7841 [0.7841, 0.7841]
Atl. de Madrid 0.7883 0.7871 0.7844 0.781 0.7764 0.7701 0.766 [0.7660 0.7883]
Sevilla F.C. 0.7177 0.7173 0.7165 0.7154 0.714 0.7121 0.7108 [0.7108, 0.7177]
Rac. Santander 0.995 0.994 0.9918 0.9888 0.985 0.9796 0.9761 [0.9761. 0.9950]
R.C.D. Mallorca 0.7658 0.765 0.7632 0.761 0.758 0.7539 0.7512 [0.7512, 0.7658]
Almerı́a 0.8089 0.8081 0.8062 0.8039 0.8007 0.7964 0.7935 [0.7935, 0.8089]
Dep. A Coruña 0.8534 0.853 0.852 0.8507 0.8491 0.8468 0.8452 [0.8452, 0.8534]
Valencia C.F. 0.604 0.6037 0.603 0.6021 0.6009 0.5993 0.5982 [0.5982, 0.6040]
Ath. C. Bilbao 1 0.8675 0.8655 0.8629 0.8596 0.8549 0.8518 [0.8518, 1]
Espanyol 0.8875 0.8866 0.8846 0.882 0.8785 0.8737 0.8706 [0.8706, 0.8875]
Real Betis 0.8498 0.8485 0.8456 0.8419 0.837 0.8302 0.8257 [0.8257, 0.8498]
Getafe 0.7948 0.794 0.7922 0.7898 0.7867 0.7825 0.7797 [0.7797, 0.7948]
Real Valladolid 0.6393 0.6387 0.6372 0.6353 0.6328 0.6294 0.6271 [0.6271, 0.6393]
Rec. Huelva 0.6586 0.6579 0.6564 0.6545 0.6519 0.6484 0.646 [0.6460, 0.6586]
Osasuna 0.9969 0.9154 0.9133 0.9106 0.907 0.9021 0.8988 [0.8988, 0.9969]
Real Zaragoza 0.6886 0.6876 0.6853 0.6822 0.6783 0.6728 0.6691 [0.6691, 0.6886]
Murcia 0.6046 0.6041 0.6027 0.6009 0.5985 0.5953 0.5931 [0.5931, 0.6046]
Levante 0.572 0.5715 0.5701 0.5685 0.5662 0.5632 0.5611 [0.5611, 0.5720]
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Real Madrid Villarreal F.C. Barcelona Atl. de Madrid Sevilla F.C.
Racing de Santander R.C.D. Mallorca Almer’a Dep. A Coru—a Valencia C.F.
Athletic Club Espanyol Real Betis Getafe Real Valladolid
Recreativo de Huelva Osasuna Real Zaragoza Murcia Levante
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Fig. 2 Defensive efficiency for some values of α in model (10)

Table 5 Ranking of the teams

TEAM Ratio Position TEAM Ratio Position

Real Madrid 1 1 Athletic C. Bilbao 0.752038 4
Villarreal 0.886108 2 Espanyol 0.597482 12
F.C. Barcelona 0.695653 8 Real Betis 0.754713 3
Atl. de Madrid 0.686173 9 Getafe 0.499602 13
Sevilla F.C. 0.706896 7 Real Valladolid 0.486554 15
Racing Santander 0.743556 5 Recreativo Huelva 0.397156 19
R.C.D. Mallorca 0.729245 6 Osasuna 0.609144 11
Almerı́a 0.497001 14 Real Zaragoza 0.439058 17
Dep. A Coruña 0.620711 10 Murcia 0.4176261 18
Valencia C.F 0.485243 16 Levante 0.307863 20

Figure 4 shows how the defensive score of efficiency of some teams (for instance,
Espanyol and Athletic Club Bilbao) strongly depends on the values of α .

4.4.3 Ranking the Teams According to their Efficiency

From the obtained intervals in sections above, by using Definition 10 we can rank
the teams (see Table 5).
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Fig. 3 Illustration of the ranking for some values of α

This information can be completed analyzing the stability of position of each
team in the ranking. For this, it is useful to provide to the managers different sce-
narios for some values of α ∈ [0,1]. For instance, Figure 3 illustrates as slight mod-
ifications of the value of α produce modifications in the defensive efficiency score.

4.4.4 Which Teams Should Be Compared to a Club

The managers find valuable to know the teams they should compare with to increase
its efficiency, specially if the league is not finished and they still have possibilities
to change the use of their inputs.

As an example, we will only comment that the Osasuna team for the defensive
efficiency compares to Real Madrid and Athletic Club de Bilbao with percentages
65% and 21.6%, respectively (λ1 = 0.65,λ11 = 0.216).

In order to give better advices to sports managers, sometimes it is convenient to
include in model (10) a convexity constraint

n

∑
j=1

λ j = 1. (18)

In this way, the efficient frontier is closer to data set. For instance, if we consider
defensive efficiency and take α = 0, the comparison among the different teams can
be found in Table 6.
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Table 6 Defensive efficiency. Optimal values of the weights λ j (for α = 0) adding in the
model (E0) the convexity constraint

Teams 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 .42 0 0 0 0 .51 0 0 0 0 0 0 .08 0 0 0 0 0 0 0
3 .49 0 0 0 0 0 0 0 0 0 0 .51 0 0 0 0 0 0 0 0
4 .46 0 0 0 0 0 0 0 0 0 0 0 .27 0 0 0 0 0 0 .27
5 0 0 0 0 0 .17 0 0 0 0 0 .83 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 .68 .23 0 0 0 0 0 0 .09
8 .35 0 0 0 0 0 0 0 0 0 0 .21 .43 0 0 0 0 0 0 0
9 0 0 0 0 0 .35 0 0 0 0 0 .65 0 0 0 0 0 0 0 0
10 .66 0 0 0 0 0 0 0 0 0 0 .34 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
14 .15 0 0 0 0 0 0 0 0 0 0 0 .85 0 0 0 0 0 0 0
15 .44 0 0 0 0 0 0 0 0 0 0 0 .28 0 0 0 0 0 0 .28
16 0 0 0 0 0 0 0 0 0 0 0 0 .65 0 0 0 0 0 0 .35
17 .45 0 0 0 0 0 0 0 0 0 0 .48 .07 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 .8 .2 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 .5 0 0 0 0 0 0 .5
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

a The teams 1,2, · · · ,20 are ranged according to their classification in the League.

5 Conclusions

The clubs which make up the professional Spanish Football League officially pre-
sented income and expenses of over 1,200 million euros for the season 2004/05.
The direct and indirect impact of the league on the Spanish economy may account
for over 0.25% of the GDP. Similar figures can be deduced for the all the major
European Leagues, e.g. the Italian and English Leagues. In these countries football
has become the main leisure activity, apart from its huge social and economic im-
portance, and yet a large part of the mathematical techniques used in the economics
and finances of other companies have not been applied to football.

In this paper we show some methods to combine two necessities: the handling
of data which present inherent uncertainty and the need of the clubs (our firms)
to know whether they are managing their inputs efficiently. There is no doubt that
modelling the League through fuzzy sets has caused some scenarios to appear that
would have passed unnoticed in a crisp context, the FLP has provided very useful
tools for decision making in the context of the League. For example, a crisp analysis
of efficiency usually leads to inefficient clubs being compared with very few effi-
cient ones. Fuzzy treatment, however, means that for some values of theα-cuts there
are more efficient teams, thus increasing the number of teams to be compared. We
have shown objective ways or ordering the teams in the League on the basis of their
technical/sporting efficiency. This classification, which does not have to coincide
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with necessarily with that of the league, allows managers of clubs to know the aspi-
rations of their teams and so adjust their strategies to achieve a better classification.
Moreover, although the calculation of efficiency with DEA models is not conceived
for application as prediction, but to perform analyses at the end of a period, working
with fuzzy DEA models gives teams predictions as to their efficiency score. This
result is without doubt of high value for the clubs because if they can be informed
before the end of the league, they can maintain their capacity to modify how they
use the inputs.
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