

Lecture Notes in Computer Science 6189
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Boualem Benatallah Fabio Casati
Gerti Kappel Gustavo Rossi (Eds.)

Web Engineering

10th International Conference, ICWE 2010
Vienna, Austria, July 5-9, 2010
Proceedings

13

Volume Editors

Boualem Benatallah
CSE, University of New South Wales, Sydney, Australia
E-mail: boualem@cse.unsw.edu.au

Fabio Casati
University of Trento
Department of Information Engineering and Computer Science, Italy
E-mail: fabio.casati@unitn.it

Gerti Kappel
Vienna University of Technology, Business Informatics Group, Austria
E-mail: gerti@big.tuwien.ac.at

Gustavo Rossi
Universidad Nacional de La Plata. LIFIA, Facultad de Informática, Argentina
E-mail: gustavo@lifia.info.unlp.edu.ar

Library of Congress Control Number: 2010929193

CR Subject Classification (1998): H.3, H.4, I.2, C.2, H.5, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-13910-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13910-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Web engineering is now a well-established and mature field of research with
strong relationships with other disciplines such as software engineering,
human–computer interaction, and artificial intelligence. Web engineering has
also been recognized as a multidisciplinary field, which is growing fast together
with the growth of the World Wide Web. This evolution is manifested in the
richness of the Web Engineering Conferences which attract researchers, practi-
tioners, educators, and students from different countries.

This volume contains the proceedings of the 10th International Conference on
Web Engineering (ICWE 2010), which was held in Vienna, Austria, in July 2010.
The ICWE conferences are among the most essential events of the Web engi-
neering community. This fact is manifested both by the number of accomplished
researchers that support the conference series with their work and contributions
as well as by the continuing patronage of several international organizations
dedicated to promoting research and scientific progress in the field of Web engi-
neering.

ICWE 2010 followed conferences in San Sebastian, Spain; Yorktown Heights,
NY, USA; Como, Italy; Palo Alto, CA, USA; Sydney, Australia; Munich, Ger-
many; Oviedo, Spain; Santa Fe, Argentina; and Caceres, Spain.

This year’s call for research papers attracted a total of 120 submissions from
39 countries spanning all continents of the world with a good coverage of all
the different aspects of Web engineering. Topics addressed by the contributions
included areas ranging from more traditional fields such as model-driven Web en-
gineering, Web services, performance, search, Semantic Web, quality, and testing
to novel domains such as the Web 2.0, rich Internet applications, and mashups.
All submitted papers were reviewed in detail by at least three members of the
Program Committee, which was composed of experts in the field of Web engi-
neering from 23 countries. Based on their reviews, 26 submissions were accepted
as full papers, giving an acceptance rate of 22%. Additionally, we had six papers
in the Industry Track. The program was completed by 13 posters and demonstra-
tions that were selected from 26 submissions and presented in dedicated sessions
at the conference. Finally, the conference was also host to keynotes by Wendy
Hall (University of Southampton, UK) Serge Abiteboul (INRIA, France), and
Bredley P. Allen (Elsevier Labs, USA), as well as an outstanding collection of
tutorials and workshops.

We would like to express our gratitude to all the institutions and sponsors
that supported ICWE 2010, namely, the Vienna University of Technology, the
Business Informatics Group, the Austrian Computer Society, the Austrian Fed-
eral Ministry of Science and Research, the Austrian Federal Ministry for Trans-
port, Innovation and Technology, the Vienna Convention Bureau, SIEMENS AG,
Google, and Austrian Airlines. The conference would not have been

VI Preface

possible without the endorsement of the International World Wide Web Confer-
ence Committee (IW3C2), and the International Society for Web Engineering
(ISWE). In this context, we would especially like to thank Bebo White and Mar-
tin Gaedke for their work as our liaisons to these two organizations. Thanks also
to Geert-Jan Houben, who acted as liaison to the ICWE Steering Committee.

We are also indebted to the Chairs of the different tracks (Claudio Bar-
tolini, Heiko Ludwig, Florian Daniel, Federico M. Facca, Jaime Gomez, Daniel
Schwabe, Marco Brambilla, Sven Casteleyn, Cesare Pautasso, Takehiro Tokuda,
Hamid Motahari, Birgit Pröll, Manuel Wimmer and Schahram Dustdar), to the
members of the Program Committee, to the external reviewers, and to the local
organizers. All of them helped with their enthusiastic work to make ICWE 2010
a reality and success. Finally, a special thanks to all the researchers and students
who contributed with their work and participated in the conference, as well as
to Easychair for the great support.

July 2010 Boualem Benatallah
Fabio Casati
Gerti Kappel

Gustavo Rossi

Conference Organization

General Chair

Gerti Kappel Vienna University of Technology, Austria

Program Chairs

Boualem Benatallah University of New South Wales, Australia,
LIMOS, France

Fabio Casati University of Trento, Italy
Gustavo Rossi National University of La Plata, Argentina

Industrial Track Chairs

Claudio Bartolini HP Labs, USA
Heiko Ludwig IBM Research, USA

Workshop Chairs

Florian Daniel University of Trento, Italy
Federico M. Facca University of Innsbruck, Austria

Tutorial Chairs

Jaime Gomez University of Alicante, Spain
Daniel Schwabe PUC-RIO, Brazil

Demo and Poster Chairs

Marco Brambilla Politecnico di Milano, Italy
Sven Casteleyn Vrije University Brussels, Belgium

Doctoral Consortium Chairs

Cesare Pautasso University of Lugano, Switzerland
Takehiro Tokuda Tokyo Institute of Technology, Japan

VIII Organization

Publicity Chairs

Hamid Motahari HP Labs, USA
Birgit Pröll University of Linz, Austria

Conference Steering Committee Liaison

Geert-Jan Houben Delft University of Technology,
The Netherlands

ISWE Liaison

Martin Gaedke Chemnitz University of Technology, Germany

IW3C2 Liaison

Bebo White SLAC, USA

Local Community Liaison

Schahram Dustdar Vienna University of Technology, Austria

Local Organization Chair

Manuel Wimmer Vienna University of Technology, Austria

Program Committee

Silvia Abrahao
Ignacio Aedo
Helen Ashman
Marcos Baez
Luciano Baresi
Alistair Barros
Khalid Belhajjame
Maria Bielikova
Davide Bolchini
Matthias Book
Athman Bouguettaya
Chris Brooks
Jordi Cabot
Dan Chiorean
Christine Collet
Sara Comai

Florian Daniel
Davide Di Ruscio
Oscar Diaz
Damiano Distante
Peter Dolog
Marlon Dumas
Schahram Dustdar
Toumani Farouk
Rosta Farzan
Howard Foster
Flavius Frasincar
Piero Fraternali
Martin Gaedke
Irene Garrigos
Dragan Gasevic
Angela Goh

Jaime Gomez
Michael Grossniklaus
Kaj Granbak
Mohand-Said Hacid
Simon Harper
Birgit Hofreiter
Geert-Jan Houben
Arun Iyengar
Nora Koch
Jim Laredo
Frank Leymann
Xuemin Lin
An Liu
David Lowe
Maristella Matera
Hong Mei

Organization IX

Wolfgang Nejdl
Moira Norrie
Luis Olsina
Satoshi Oyama
Oscar Pastor Lopez
Cesare Pautasso
Vicente Pelechano
Michalis Petropoulos
Alfonso Pierantonio
Birgit Proell
I.V. Ramakrishnan
Werner Retschitzegger

Bernhard Rumpe
Fernando

Sanchez-Figueroa
Daniel Schwabe
Michael Sheng
Robert Steele
Bernhard Thalheim
Massimo Tisi
Giovanni

Toffetti Carughi
Takehiro Tokuda
Riccardo Torlone

Jean Vanderdonckt
Yannis Velegrakis
Eelco Visser
Petri Vuorimaa
Vincent Wade
Marco Winckler
Bin Xu
Yeliz Yesilada
Yanchun Zhang
Xiaofang Zhou

External Reviewers

Adrian Fernandez
Alessandro Bozzon
Alessio Gambi
Antonio Cicchetti
Armin Haller
Arne Haber
Asiful Islam
Axel Rauschmayer
Carlos Laufer
Christoph Dorn
Christoph Herrmann
Cristobal Arellano
David Schumm
Davide Di Ruscio
Dimka Karastoyanova
Dirk Reiss
Emmanuel Mulo
Fabrice Jouanot
Faisal Ahmed
Florian Skopik
Francisco Valverde
Ganna Monakova
Ge Li
Giacomo Inches
Giovanni Giachetti
Guangyan Huang
Huan Xia
Javier Espinosa
Jian Yu
Jiangang Ma

Jose Ignacio
Panach Navarrete

Jozef Tvarozek
Juan Carlos Preciado
Junfeng Zhao
Jan Suchal
Kreshnik Musaraj
Lukasz Jusczyk
Marco Brambilla
Marino Linaje
Mario Luca Bernardi
Marian Aimko
Mark Stein
Markus Look
Martin Schindler
Martin Treiber
Markus Schindler
Michael Reiter
Michal Tvarozek
Michal Barla
Minghui Zhou
Mohamed Abdallah
Nathalie Aquino
Noha Ibrahim
Oliver Kopp
Pau Giner
Peep Kangas
Peter Vojtek
Philip Lew
Puay-Siew Tan

Sai Zeng
Sam Guinea
Santiago Melia
Sen Luo
Shiping Chen
Song Feng
Stefan Wild
Steve Strauch
Steven Volkel
Surya Nepal
Taid Holmes
Thomas Kurpick
Vinicius Segura
Wanita Sherchan
William Van Woensel
Xia Zhao
Xiao Zhang
Xin Wang
Xuan Zhou
Yanan Hao
Yanzhen Zou
Yixin Yan
Zaki Malik
Gaoping Zhu
Haichuan Shang
Weiren Yu
Wenjie Zhang
Zhitao Shen

Table of Contents

Search

Searching Repositories of Web Application Models 1
Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

Toward Approximate GML Retrieval Based on Structural and Semantic
Characteristics . 16

Joe Tekli, Richard Chbeir, Fernando Ferri, and Patrizia Grifoni

Advancing Search Query Autocompletion Services with More and
Better Suggestions . 35

Dimitrios Kastrinakis and Yannis Tzitzikas

Designing Service Marts for Engineering Search Computing
Applications . 50

Alessandro Campi, Stefano Ceri, Andrea Maesani, and
Stefania Ronchi

Web Services

Engineering Autonomic Controllers For Virtualized Web
Applications . 66

Giovanni Toffetti, Alessio Gambi, Mauro Pezzè, and Cesare Pautasso

AWAIT: Efficient Overload Management for Busy Multi-tier Web
Services under Bursty Workloads . 81

Lei Lu, Ludmila Cherkasova, Vittoria de Nitto Personè,
Ningfang Mi, and Evgenia Smirni

Normative Management of Web Service Level Agreements 98
Caroline Herssens, Stéphane Faulkner, and Ivan J. Jureta

Combining Schema and Level-Based Matching for Web Service
Discovery . 114

Alsayed Algergawy, Richi Nayak, Norbert Siegmund,
Veit Köppen, and Gunter Saake

Web Messaging for Open and Scalable Distributed Sensing
Applications . 129

Vlad Trifa, Dominique Guinard, Vlatko Davidovski,
Andreas Kamilaris, and Ivan Delchev

On Actors and the REST . 144
Janne Kuuskeri and Tuomas Turto

XII Table of Contents

Development Process

Multi-level Tests for Model Driven Web Applications 158
Piero Fraternali and Massimo Tisi

Capture and Evolution of Web Requirements Using WebSpec 173
Esteban Robles Luna, Irene Garrigós, Julián Grigera, and
Marco Winckler

Re-engineering Legacy Web Applications into Rich Internet
Applications . 189

Roberto Rodŕıguez-Echeverŕıa, José Maŕıa Conejero,
Marino Linaje, Juan Carlos Preciado, and
Fernando Sánchez-Figueroa

Deriving Vocal Interfaces from Logical Descriptions in Multi-device
Authoring Environments . 204

Fabio Paternò and Christian Sisti

Quality, Quality in Use, Actual Usability and User Experience as Key
Drivers for Web Application Evaluation . 218

Philip Lew, Luis Olsina, and Li Zhang

Interfaces for Scripting: Making Greasemonkey Scripts Resilient to
Website Upgrades . 233

Oscar Dı́az, Cristóbal Arellano, and Jon Iturrioz

Web 2.0

Context-Aware Interaction Approach to Handle Users Local Contexts
in Web 2.0 . 248

Mohanad Al-Jabari, Michael Mrissa, and Philippe Thiran

Rethinking Microblogging: Open, Distributed, Semantic 263
Alexandre Passant, John G. Breslin, and Stefan Decker

A Web-Based Collaborative Metamodeling Environment with Secure
Remote Model Access . 278

Matthias Farwick, Berthold Agreiter, Jules White, Simon Forster,
Norbert Lanzanasto, and Ruth Breu

Carbon: Domain-Independent Automatic Web Form Filling 292
Samur Araujo, Qi Gao, Erwin Leonardi, and Geert-Jan Houben

Scalable and Mashable Location-Oriented Web Services 307
Yiming Liu and Erik Wilde

Table of Contents XIII

Linked Data

A Flexible Rule-Based Method for Interlinking, Integrating, and
Enriching User Data . 322

Erwin Leonardi, Fabian Abel, Dominikus Heckmann, Eelco Herder,
Jan Hidders, and Geert-Jan Houben

Ranking the Linked Data: The Case of DBpedia . 337
Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and
Eugenio Di Sciascio

Linkator: Enriching Web Pages by Automatically Adding
Dereferenceable Semantic Annotations . 355

Samur Araujo, Geert-Jan Houben, and Daniel Schwabe

Performance and Security

A Generic Proxy for Secure Smart Card-Enabled Web Applications 370
Guenther Starnberger, Lorenz Froihofer, and Karl M. Goeschka

Efficient Term Cloud Generation for Streaming Web Content 385
Odysseas Papapetrou, George Papadakis, Ekaterini Ioannou, and
Dimitrios Skoutas

Industry Papers

Experiences in Building a RESTful Mixed Reality Web Service
Platform . 400

Petri Selonen, Petros Belimpasakis, and Yu You

WebRatio BPM: A Tool for Designing and Deploying Business
Processes on the Web . 415

Marco Brambilla, Stefano Butti, and Piero Fraternali

A Visual Tool for Rapid Integration of Enterprise Software
Applications . 430

Inbal Tadeski, Eli Mordechai, Claudio Bartolini, Ruth Bergman,
Oren Ariel, and Christopher Peltz

Customization Realization in Multi-tenant Web Applications: Case
Studies from the Library Sector . 445

Slinger Jansen, Geert-Jan Houben, and Sjaak Brinkkemper

Challenges and Experiences in Deploying Enterprise Crowdsourcing
Service (Invited Talk) . 460

Maja Vukovic, Jim Laredo, and Sriram Rajagopal

XIV Table of Contents

Business Conversation Manager: Facilitating People Interactions in
Outsourcing Service Engagements (Invited Talk) . 468

Hamid R. Motahari-Nezhad, Sven Graupner, and Sharad Singhal

Demo and Poster Papers

Tools for Modeling and Generating Safe Interface Interactions in Web
Applications . 482

Marco Brambilla, Jordi Cabot, and Michael Grossniklaus

Linking Related Documents: Combining Tag Clouds and Search
Queries . 486

Christoph Trattner and Denis Helic

GAmera: A Tool for WS-BPEL Composition Testing Using Mutation
Analysis . 490

Juan-José Domı́nguez-Jiménez, Antonia Estero-Botaro,
Antonio Garćıa-Domı́nguez, and Inmaculada Medina-Bulo

Open, Distributed and Semantic Microblogging with SMOB 494
Alexandre Passant, John G. Breslin, and Stefan Decker

The ServFace Builder - A WYSIWYG Approach for Building
Service-Based Applications . 498

Tobias Nestler, Marius Feldmann, Gerald Hübsch,
André Preußner, and Uwe Jugel

Extracting Client-Side Web User Interface Controls 502
Josip Maras, Maja Štula, and Jan Carlson

Applying Semantic Web technology in a Mobile Setting: The Person
Matcher . 506

William Van Woensel, Sven Casteleyn, and Olga De Troyer

Syncro - Concurrent Editing Library for Google Wave 510
Michael Goderbauer, Markus Goetz, Alexander Grosskopf,
Andreas Meyer, and Mathias Weske

An Eclipse Plug-in for Model-Driven Development of Rich Internet
Applications . 514

Santiago Meliá, Jose-Javier Mart́ınez, Sergio Mira,
Juan Antonio Osuna, and Jaime Gómez

A Cross-Platform Software System to Create and Deploy Mobile
Mashups . 518

Sandra Kaltofen, Marcelo Milrad, and Arianit Kurti

Table of Contents XV

A Blog-centered IPTV Environment for Enhancing Contents Provision,
Consumption, and Evolution . 522

In-Young Ko, Sang-Ho Choi, and Han-Gyu Ko

Factic: Personalized Exploratory Search in the Semantic Web 527
Michal Tvarožek and Mária Bieliková

Takuan: A Tool for WS-BPEL Composition Testing Using Dynamic
Invariant Generation . 531

Manuel Palomo-Duarte, Antonio Garćıa-Domı́nguez,
Inmaculada Medina-Bulo, Alejandro Alvarez-Ayllón, and
Javier Santacruz

Author Index . 535

Searching Repositories
of Web Application Models

Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano, Italy

{alessandro.bozzon,marco.brambilla,piero.fraternali}@polimi.it

Abstract. Project repositories are a central asset in software develop-
ment, as they preserve the technical knowledge gathered in past develop-
ment activities. However, locating relevant information in a vast project
repository is problematic, because it requires manually tagging projects
with accurate metadata, an activity which is time consuming and prone
to errors and omissions. This paper investigates the use of classical Infor-
mation Retrieval techniques for easing the discovery of useful information
from past projects. Differently from approaches based on textual search
over the source code of applications or on querying structured meta-
data, we propose to index and search the models of applications, which
are available in companies applying Model-Driven Engineering practices.
We contrast alternative index structures and result presentations, and
evaluate a prototype implementation on real-world experimental data.

1 Introduction

Software repositories play a central role in the technical organization of a com-
pany, as they accumulate the knowledge and best practices evolved by skilled
developers over years. Besides serving the current needs of project development,
they have also an archival value that can be of extreme importance in fostering
reuse and the sharing of high quality design patterns. With the spreading of open
source software, project repositories have overcome the boundaries of individual
organizations and have assumed a social role in the diffusion of coding and design
solutions. They store billions of lines of code and are used daily by thousands
of developers. State-of-the-practice project repositories mostly support source
code or documentation search [4,10,14]. Several solutions are available, with dif-
ferent degrees of sophistication in the way in which queries are expressed, the
match between the query and the indexed knowledge is determined, and results
are presented. Source code search engines (e.g., Google code, Snipplr, Koders)
are helpful if the abstraction level at which development occurs is the imple-
mentation code. However, searching project repositories at the source code level
clashes with the goal of Model-Driven Engineering, which advocates the use of
models as the principal artefact to express solutions and design patterns. There-
fore, the question arises of what tools to use to leverage the knowledge implicitly

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Bozzon, M. Brambilla, and P. Fraternali

stored in repositories of models, to make them play the same role in dissemi-
nating modeling best practices and foster design with reuse as code repositories
had in fostering implementation-level best practices and code reuse. Approaches
to model-driven repository search have been recently explored in the fields of
business process discovery [3,5,12] and UML design [9,17].

The problem of searching model repositories can be viewed from several an-
gles: the language for expressing the user’s query (natural language, keywords,
structured expressions, design patterns); the granularity at which result should
be presented (full project, module or package, design diagram, design pattern,
individual construct); the criteria to use in computing the match between the
query and the model and for ranking results; the kind of metadata to collect and
incorporate in the index (manually provided or automatically extracted).

The goal of this paper is to investigate solutions for making project reposi-
tories searchable without requiring developers to annotate artifacts for the sole
purpose of search. The key idea is to exploit the structural knowledge embed-
ded within application models, which can be expressed at a variable degree of
abstraction (from Computation Independent, to Platform Independent, to Plat-
form Specific). We concentrate on Platform Independent Models, because they
describe the application, and not the problem, and are independent of the im-
plementation technology. The contribution of the paper can be summarized as
follows: 1) we introduce the notion of model-driven project information retrieval
system, as an application of the information retrieval (IR) techniques to project
repository search; 2) we identify the relevant design dimensions and respective
options: project segmentation, index structure, query language and processing,
and result presentation; 3) we implement an architecture for automatic model-
driven project segmentation, indexing and search, which does not require the
manual annotation of models; 4) we evaluate the approach using 48 industrial
projects provided by a company, encoded with a Domain Specific Language.

The paper is organized as follows: Section 2 discusses the related work; Section
3 introduces the architecture of the model-driven project information retrieval
system; Section 4 classifies the main design decisions; Section 5 illustrates the
implementation experience; Section 6 presents the results of a preliminary per-
formance assessment and user evaluation; finally, Section 7 draws the conclusions
and discusses the ongoing and future work.

2 Related Work

Before illustrating the proposed solution, we overview the state-of-the-art in
searchable project repositories, to better highlight the current limitations and
original contribution of the work.

Component Search. Retrieval of software components, intended as mere code
artifacts or as annotated pieces of software, is a well established discipline. The first
proposals date back to the ’90s. Agora [23] is a search engine based on JavaBeans
and CORBA technologies that automatically generates and indexes a worldwide
database of software artifacts, classified by component model. In the context of

Searching Repositories of Web Application Models 3

SOA, Dustdar et al. [22] propose a method for the discovery of Web services based
on a Vector Space Model characterization of their properties, indexed in a search
engine. The work in [15] proposes a graph-representation model of a software com-
ponent library, based on analyzing actual usage relations of the components and
propagating a significance score through such links. The approach proposed in [7]
combines formal and semi-formal specification to describe behaviour and structure
of components, so as to make the retrieval process more precise.

Source Code Search. Several communities and on-line tools exist for sharing
and retrieving code, e.g., Google code, Snipplr, Koders, and Codase1.

In the simplest case, keyword queries are directly matched to the code and the
results are the exact locations where the keyword(s) appear in the matched code
snippets. Several enhancements are possible: 1) using more expressive query
languages, e.g., regular expressions (in Google Codesearch) or wildcards (in
Codase); restricting search to specific syntactical categories, like class names,
method invocations, variable declarations, and so on (e.g., in Jexamples and
Codase); restricting keyword search using a fixed set of metadata (e.g., pro-
gramming language, license type, file and package names). Another dimension
concerns how the relevance of the match is computed and presented to the user;
the spectrum of solutions goes from the minimal approaches that simply return
a list of hits without a meaningful ranking, to classical IR-style ranking based on
term importance and frequency (e.g., TF/IDF), to composite scores taking into
account both inherent project properties, e.g., number of matches in the source
code, recency of the project, and social aspects, e.g., number of downloads, ac-
tivity rates, and so on; for example, in SourceForge, one can rank results based
on relevance of match, activity, date of registration, recency of last update, or on
a combination calculated from such partial scores, and the system can account
precisely for the rank value of each project over time.

Research works have applied IR techniques [10] and structural context tech-
niques [14] for improving productivity and reuse of software. For example, the
Sourcerer Project [4] provides an infrastructure for large-scale indexing and anal-
ysis of open source code that takes advantage of code structural information.

Model Search. Some approaches have addressed the problem of searching UML
models. Early works exploited the XML format for indexing seamlessly UML
models, text files, and other sources [11]. The work [13] stores UML artifacts in a
central knowledge base, classifies them with WordNet terms and extracts relevant
items exploiting WordNet classification and Case-Based Reasoning. The paper
[17] proposes a retrieval framework allowing designers to retrieve information
on UML models based on XMI representation through two query modalities:
inclusion and similarity. Schemr [9] implements a novel search algorithm, based
on a combination of text search and schema matching techniques, as well as a
structurally-aware scoring methods, for retrieving database conceptual models
with queries by example and keyword-based. Another branch of research applies

1 Sites: http://code.google.com, http://www.snipplr.com,
http://www.koders.com, http://www.codase.com

http://code.google.com
http://www.snipplr.com
http://www.koders.com
http://www.codase.com

4 A. Bozzon, M. Brambilla, and P. Fraternali

IR techniques to models and code together, for tracing the association between
requirements, design artifacts, and code [24] [2].

Business Process Model Search. Several proposals have attempted to fa-
cilitate the discovery of business process models. Most of the approaches only
apply graph-based comparison or XML-based querying on the business process
specifications: Eyal et al. [5] proposed BP-QL, a visual query language for query-
ing and discovering business processes modelled using BPEL. Lu and Sadiq [18]
propose a way for comparing and retrieving business process variants. WISE
[25] is a business process search engine that extracts workflow models based
on keyword matching. These proposals offer a query mechanism based on the
process model structure (i.e., the workflow topology) only. Other approaches
adopt semantic-based reasoning and discovery: Goderis et al. [12] developed a
framework for discovering workflows using similarity metrics that consider the
activities composing the workflows and their relationships, implementing a rank-
ing algorithm. [20] proposed a framework for flexible queries on BP models, for
providing better results when too few processes are extracted. [3] proposes the
BPMN-Q query language for visual semantic queries over BPMN models. Kiefer
et al. [16] proposed the use of semantic business processes to enable the integra-
tion and inter-operability of business processes across organizational boundaries.
They offer an imprecise query engine based on iSPARQL to perform the process
retrieval task and to find inter-organizational matching at the boundaries be-
tween partners. Zhuge et al. [26] proposes an inexact matching approach based
on SQL-like queries on ontology repositories. The focus is on reuse, based on a
multi-valued process specialization relationship. The similarity of two workflow
processes is determined by the matching degrees of their corresponding sub-
processes or activities, exploiting ontological distances. The work [6] proposes
a query by example approach that relies on ontological description of business
processes, activities, and their relationships, which can be automatically built
from the workflow models themselves.

Contribution. The approach described in this paper falls into the category of
model-based search solutions, where it brings several innovations: (i) it auto-
matically extracts the semantics from the searched conceptual models, without
requiring manual metadata annotation; (ii) it supports alternative index struc-
tures and ranking functions, based on the language concepts; (iii) it is based on
a model-independent framework, which can be customized to any DSL meta-
model; (iv) it has been subjected to a preliminary evaluation on the relative
performance and quality of alternative design dimensions.

3 IR Architecture Overview

Applying information retrieval techniques over model repositories requires an ar-
chitecture for processing content, building up the required search indexes, match-
ing the query to the indexed content, and presenting the results. Figure 1 shows
the reference architecture adopted in this paper and the two main information
flows: the content processing flow and the query flow.

Searching Repositories of Web Application Models 5

Fig. 1. Architecture of a content processing and search system

The Content Processing Flow extracts meaningful information from projects
and uses it to create the search engine index. First, the Content Processing com-
ponent analyzes each project by applying a sequence of steps: project analysis
captures project-level, global metadata (e.g., title, contributors, date, and so on)
useful for populating the search engine indexes; segmentation splits the project
into smaller units better amenable to analysis, such as sub-projects or diagrams
of different types; segment analysis mines from each segment the information
used to build the index (e.g., model elements’ names and types, model element
relationships, designers’s comments); linguistic normalization applies the text
normalization operations typical of search engines (e.g., stop-word removal, stem-
ming, etc. [19]) to optimize the retrieval performance. The information extracted
from each project or segment thereof is physically represented as a document,
which is fed to the Indexing component, for constructing the search engine in-
dexes. Note that the metamodel of the DSL used to express the projects is used
both in the Content Processing and in the Indexing components: in the former,
it drives the model segmentation granularity and the information mining from
the model elements; in the latter, it drives the definition of the index structure.
For instance, the search engine index might be composed of several sub-indexes
(called fields), each one devoted to a specific model element, so that a keyword
query can selectively match specific model concepts.

The query and result presentation flow deals with the queries submitted by
the user and with the production of the result set. Two main query modalities
can be used: Keyword Based, shown in Figure 1, which simply looks for textual
matches in the indexes, and Content Based (also known as Query by Example),
not shown in in Figure 1, whereby a designer submits a model fragment as query,
and the system extracts from it the relevant features (by applying the content
processing flow) and matches them to the index using a given similarity criteria
(e.g., text matching, semantic matching, graph matching).

6 A. Bozzon, M. Brambilla, and P. Fraternali

4 Design Dimensions of Model-Driven Project Retrieval

The design space of a Model Driven Project IR System is characterized by mul-
tiple dimensions: the transformations applied to the models before indexing, the
structure of the indexes, and the query and result presentation options.

Segmentation Granularity. An important design dimension is the granular-
ity of indexable documents, which determines the atomic unit of retrieval for
the user. An indexable document can correspond to:

– A whole design project: in this case, the result set of a query consists of a
ranked list of projects.

– A subproject: the result set consists of ranked subprojects and each subpro-
ject should reference the project it belongs to.

– A project concept: each concept should reference its project and the concepts
it relates to. The result set consists of ranked concepts, possibly of different
types, from which other related concepts can be accessed.

Index structure. The structure of the index constructed from the models repre-
sents a crucial design dimension. An index structure may consists of one or more
fields, and each field can be associated with an importance score (its weight).
The division of the index into fields allows the matching procedure used in query
processing to match in selected field, and the ranking algorithm to give different
importance to matches based on the field where they occur.

The options that can be applied are the following:

– Flat: A simple list of terms is extracted from the models, without taking into
account model concepts, relationships, and structure. The index structure is
single-fielded, and stores undifferentiated bags of words. This option can be
seen as a baseline, extracting the minimal amount of information from the
models and disregarding any structure and semantics associated with the
employed modeling language.

– Weighted: Terms are still extracted as flat lists, but model concepts are
used in order to modify the weight of terms in the result ranking, so to give
a significance boost to terms occurring in more important concepts. The
index is single-fielded and stores weighted bags of words.

– Multi-field: Terms belonging to different model concepts are collected into
separate index fields. The index is multi-fielded, and each field can be searched
separately. This can be combined with the weighted approach, so as to produce
a multi-field index containing weighted terms. The query language can express
queries targeted to selected fields (e.g., to selected types of concepts, diagrams,
etc).

– Structured: The model is translated into a representation that reflects
the hierarchies and associations among concepts. The index model can be
semi-structured (XML-based) or structured (e.g., the catalog of a relational
database). Query processing can use a structured query language (e.g., SQL),
coupled with functions for string matching into text data (e.g., indices for
text objects).

Searching Repositories of Web Application Models 7

Moving from flat to structured index structures augments the fidelity at which
the model structure is reflected into the index structure, at the price of a
more complex extraction and indexing phase and of a more articulated query
language.

Query Language and Result Presentation. An IR system can offer different
query and result visualization options. In the context of software model retrieval,
the modalities that can be envisioned are:

– Keyword-based search: The user provides a set of keywords. The system
returns results ranked according to their relevance to the input keywords.

– Document-based search: The user provides a document (e.g., a specifi-
cation of a new project). The system analyzes the document, extracts the
most significant words and submits them as a query. Results are returned as
before.

– Search by example: The user provides a model as a query. The model is
analyzed in the same way as the projects in the repository, which produces
a document to be used as a query2. The match is done between the query
and the project document and results are ranked by similarity.

– Faceted search: The user can explore the repository using facets (i.e.,
property-value pairs) extracted from the indexed documents, or he can pose
a query and then refine its results by applying restrictions based on the facets
present in the result set.

– Snippet visualization: Each item in the result set can be associated with
an informative visualization, where the matching points are highlighted in
graphical or textual form.

The abovementioned functionalities can compose a complex query process, in
which the user applies an initial query and subsequently navigates and/or refines
the results in an exploratory fashion.

Use Cases and Experiments. Although several combinations could be assem-
bled from the above dimensions, we evaluate two representative configurations,
compared to a baseline one. As reported in Section 6, the following scenarios
have been tested: Experiment A (baseline): keyword search on whole projects;
Experiment B: retrieval of subprojects and concepts with a flat index struc-
ture; Experiment C: retrieval of subprojects and concepts with a weighted index
structure. Experiment B and C represent two alternative ways of structuring the
index, both viable for responding to designer’s query targeted at relevant subpro-
ject retrieval and design pattern reuse. Table 1 summarizes the design options
and their coverage in the evaluated scenarios. In this work we focus on flat and
weighted index structures. Mulit-field and Structured indexes will addressed in
the future work.

2 Here the term document means by extension any representation of the model useful
for matching, which can be a bag of words, a feature vector, a graph, and so on.

8 A. Bozzon, M. Brambilla, and P. Fraternali

Table 1. Summary of the design options and their relevance in the experiments

Option Description A B C
Segmentation Granularity
Project entire project X
Subproject subproject X X
Single Concept arbitrary model concepts X X
Index structure
Flat flat lists of words X
Weighted words weighted by the model concepts they belong to X
Multi-field words belonging to each model concept in separate fields
Structured XML representation reflecting hierarchies and associations
Query language and result presentation
Keyword-based query by keywords X X X
Document-based query through a document
By example query through a model (content-based)
Faceted query refined through specific dimensions X X X
Snippets visualization and exploration of result previews X X X

5 Implementation Experience

To verify our approach we developed a prototype system that, given a meta-
model and a repository of models conforming to such meta-model: 1) configures
a general purpose search engine according to selected dimensions, 2) exploits
metamodel-aware extraction rules to analyze models and populate the index
with information extracted from them; 3) provides a visual interface to perform
queries and inspect results.

The experiments adopt WebML as a Domain Specific Language [8]. The
WebML metamodel [21] specifies the constructs for expressing of the data,
business logics, hypertext interface, and presentation of a Web application. In
WebML, content objects are modeled using Entity-Relationship or UML class
diagrams. Upon the same content model, it is possible to define different ap-
plication models (called site views), targeted to different user roles or access
devices. Figure 2 (a) depicts an excerpt of the WebML meta-model describing
the siteview construct. A site view is internally structured into areas, which in
turn may contain pages. Pages comprise content units, i.e., components for pub-
lishing content, and units are connected to each other through links, which carry
parameters and allow the user to navigate the hypertext. WebML also allows
specifying operations implementing arbitrary business logic (e.g., to manipulate
content instances), and Web service invocation and publishing. Finally, the lan-
guage comprises a notion of module, which denotes a reusable model pattern.
Figure 2 (b) presents a sample Web application that implements a product cata-
log, where users can see a list of product and select one for getting more details.
Figure 2 (c) shows the corresponding XML project file encoding the model.

5.1 Content Processing

Content processing has been implemented according to the schema of Figure 1.
The segmentation and text-extraction steps are implemented in a generic and
model-independent way; they are configurable by means of model transformation

Searching Repositories of Web Application Models 9

Fig. 2. a) Excerpt of the WebML metamodel. b) Example of WebML model. c) XML
representation of the WebML model depicted in b).

rules encoded in XSLT, so to be adapted to the DSL of choice. These rules simply
match each metamodel concept and decide what information to extract for popu-
lating the index. An auxiliary Repository Analysis component has been added to
the architecture, which performs the offline analysis of the entire project collection
to compute statistics for fine-tuning the retrieval and ranking performance: 1) a
list of Stop Domain Concepts, i.e., words very common in the project repository
(e.g., the name of meta-model concepts or terms that are part of the organization
vocabulary and culture); 2) the Weight assigned to each model concept; presently,
concepts weights are computed automatically based on the relative frequency of
model concepts in the entire collection, but can be adjusted manually by the search
engine administrator to promote or demote individual concepts.

Content processing has been implemented by extending the text processing
and analysis components provided by Apache Lucene3, an open-source search
engine platform.

5.2 Index Structure and Ranking Function Design

Different index structures have been defined to cope with the evaluation scenar-
ios: Experiment A and B have a flat index structure; Scenario C instead employs
a weighed multi-field index structure, with the following fields: id | projectID
| projectName | documentType | text, where the documentType field can
have the values: DataModel, SiteView, Area, ServiceView, and Module, which
represent the fundamental modularization constructs of WebML.

The relevance of the match is also computed differently in the scenarios. Ex-
periment A uses the pure TF/IDF measure for textual match relevance [19],
ignoring model structure; experiment B also uses traditional TF/IDF relevance,
but due to segmentation the matching is performed separately on the different
model concepts; finally, Experiment C exploits the model concepts also in the
ranking function, which is defined as follows:

score(q, d) =
∑
t∈q

√
tf(t, d) · idf(t)2 · mtw(m, t) · dw(d) (1)

3 http://lucene.apache.org/java/docs/

http://lucene.apache.org/java/docs/

10 A. Bozzon, M. Brambilla, and P. Fraternali

where:

– tf(t, d) is the term frequency, i.e., the number of times the term t appears
in the document d;

– idf(t) is the inverse document frequency of t, i.e., a value calculated as 1 +
log |D|

freq(t,d)+1 that measures the informative potential carried by the term
in the collection;

– mtw(m, t) is the Model Term Weight of a term t, i.e., a metamodel-specific
boosting value that depends on the concepts m containing the term t. For
instance, in the running example, a designer can decide that the weight of
terms t in a module should be double than all the other constructs. Then he
will set mtw(module, t) to 2.0 and mtw of all the others concepts to 1.0;

– dw(d) is the Document Weight, i.e., a model-specific boosting value convey-
ing the importance of a given project segment (i.e., project, sub-project, or
concept, depending on the chosen segmentation policy) in the index.

The scoring function is implemented by extending the APIs of Lucene, which
support both the Boolean and the Vector Space IR Models, thus enabling com-
plex Boolean expressions on multiple fields.

5.3 Query and Result Presentation

Figure 3 shows the UI of the search system, implemented as a rich Web applica-
tion based on the YUI Javascript library. The interface lets users express Boolean
keyword queries, e.g., expressions like “validate AND credit AND NOT card”.
Upon query submission, the interface provides a paginated list of matching items
(A); each item is characterized by a a type (e.g., model elements like data model,
area, module, etc.) and by the associated project metadata (e.g. project name,
creation date, authors, etc.). The Inspect Match link opens a Snippet window (B)
that shows all the query matches in the current project/subproject/construct, al-
lowing users to determine which model fragments are useful to their information
need. Users can also drill down in the result list by applying faceted naviga-
tion. The available facets are shown in the left-hand side of Figure 3. Each facet
contains automatically extracted property values of the retrieved results. The
selection of a facet value triggers a refinement of the current result set, which is
restricted only to the entries associated to the facet value.

6 Evaluation

Evaluation has addressed the space and time efficiency of the system and the de-
signers’ perception of the results quality and of the usefulness of the proposed tool.

Experimental settings and dataset. A sample project repository has been
provided by Web Models [1], the company that develops WebRatio, an MDD
tool for WebML modeling and automatic generation of Web applications. The
repository contains 48 large-size, real-word projects spanning several applica-
tions domains (e.g., trouble ticketing, human resource management, multime-
dia search engines, Web portals, etc.). Projects have been developed both in

Searching Repositories of Web Application Models 11

Fig. 3. Project repository search UI: result list(A) and result exploration(B)

Italian and English, and comprise about 250 different modeling concepts (re-
sulting from WebML standard constructs and user-defined modeling elements),
3,800 data model entities (with about 35,000 attributes and 3,800 relation-
ships), 138 site views with about 10,000 pages and 470,000 units, and 20 Web
services. Each WebML project is encoded as an XML project file conforming
with the WebML DTD, and the overall repository takes around 85MB of disk
space. The experiments were conducted on a machine equipped with
a 2GHz Dual-Core AMD Opteron and 2GB of RAM. We used Apache Solr 1.4
(http://lucene.apache.org/solr/) as Lucene-based search engine framework.

Performance Evaluation. Performance experiments measured index size and
query response time, varying the number of indexed projects. Two scenarios
were used: the baseline, in which whole projects are indexed as documents with
no segmentation, and a segmentation scenario in which selected model concepts
are indexed as separate documents. For both scenarios, three alternative con-
figurations have been evaluated (keyword search, faceted search, and snippet
browsing) so to exercise all query language and result presentation options re-
ported in Table 1.

Figure 4 (a) shows the results of evaluating index size. For each of the six
system configurations, all project in the repository are progressively indexed,
disabling any compression mechanism in the search engine index. Size grows
almost linearly with the number of projects in all configurations, thus show-
ing good scalability. As expected, the basic keyword search scenario has the
least space requirements in both the non-segmented and segmented configura-
tions (about 10 times smaller than the repository size)4. The addition of Faceted
Search, doubles the index size, because the original text of facet properties must

4 Higher values at the beginning of the curves can be explained by low efficiency with
small index sizes.

http://lucene.apache.org/solr/

12 A. Bozzon, M. Brambilla, and P. Fraternali

0 10 20 30 40
Number of Indexed Projects

0

10

20

30

40

50

60

70

In
de

x
S

iz
e

(M
B

)

NoSeg, KS
NoSeg, KS, FS
NoSeg, KS, FS, Snip
Seg, KS
Seg, KS, FS
Seg, KS, FS, Snip

(a) Index Size (t) Query Time

Fig. 4. Index size (a) and response time (b) of six system configurations (NoSeg : No
Segmentation, Seg : Segmentation, KS : Keyword Search, FS : Faceted Search, Snip:
Snippet)

be stored in the index to enable its visualization in the UI. Snippet Visualization
is the most expensive option, especially when models are segmented and thus
the number of indexed documents grows.

Figure 4 (b) shows the query response time with a varying number of in-
dexed projects. We selected about 400 2-terms and 3-terms keyword queries,
randomly generated starting from the most informative terms indexed within
the repository. Each query has been executed 20 times and execution times have
been averaged. Under every configuration, query time is abundantly sub-second,
and curves indicate a sub-linear growth with the number of indexed projects,
thus showing good scalability. Notice that the addition of Faceted Search and
Snippet Visualization impacts on performances also for query latency time; dif-
ferently from the previous evaluation, though, the most affected scenario is the
one where no project segmentation is applied, thus introducing a penalty caused
by the greater amount of information that needs to be retrieved for each query
result item.

Preliminary User Evaluation. A preliminary user study has been conducted
with 5 expert WebML designers to assess 1) the perceived retrieval quality of
alternative configurations and 2) the usability and ease-of-use of the system.

The perceived retrieval quality has been tested with the three system config-
urations listed in Table 1, using a a set of ten queries manually crafted by the
company managers responsible of the Web applications present in the repository.
Designers could access the three system configurations and vote the appropri-
ateness of each one of the top-10 items in the result set; they were asked to
take into account both the element relevance with respect to the query and its
rank in the result set. Votes ranged from 1 (highly inappropriate) to 5 (highly
appropriate). Figure 5 shows the distribution of the 500 votes assigned to each
system configuration. Experiment B and C got more votes in high (4-5) range

Searching Repositories of Web Application Models 13

Fig. 5. Average vote distribution for the test queries

Table 2. User Evaluation: questionnaire items, average rates and variance

Item Avg. Var.
Features
Keyword Search 3.6 0.24
Search Result Ranking 3.2 0.16
Faceted Search 3.8 0.16
Match Highlighting 3.6 0.24
Application
Help reducing maintenance costs? 3.2 0.56
Help improving the quality of the delivered applications? 3.0 0.4
Help understanding the model assets in the company? 4.4 0.24
Help providing better estimates for future application costs? 2.8 0.56
Wrap-up
Overall evaluation of the system 4.0 0.4
Would you use the system in your activities? 3.0 1.2

of the scale with respect to the baseline. Also, results were considered better in
configuration C, which assigned weights to the terms based on the model concept
they belonged to. The penalty of Configuration A can be explained by the lower
number of the indexed documents (48), which may brings up in the top ten more
irrelevant projects, having a relatively low score match with the query.

The study also included a questionnaire to collect the user opinion on various
aspects of the system. Table 2 reports the questions and the collected results,
in a 1 to 5 range. The results show that the system, although very prototypical,
has been deemed quite useful for model maintenance and reuse, while its direct
role in improving the quality of the produced applications is not perceivable.
One could notice a certain distance between the overall judged quality and the
likelihood of adoption, which is possibly due to three aspects: 1) such a tool
would probably be more valuable in case of a very large corpus of projects; 2)
UI usability is greatly hampered by the impossibility at present of displaying
the matches in the WebRatio diagram editor; and 3) developers are not familiar
with search over a model repository and would probably need some experience
before accepting it in their everyday work life.

14 A. Bozzon, M. Brambilla, and P. Fraternali

While our evaluation is insufficient to entail statistical relevance, we believe
that the proposed user study suffices to support the motivations of our work and
provides useful feedbacks to drive future research efforts.

7 Conclusions

In this paper we presented an approach and a system prototype for searches over
model repositories. We analyzed the typical usage scenarios and requirements
and we validated our claims with an implementation over a repository of Web
application models specified in WebML. The experimental evidence show that
the system scales well both in size and query response time; a preliminary user
evaluation showed that the ranking of results based on a priori knowledge on the
metamodel elements is gives better results with respect to the baseline solution
of flat indexing of the text content of a project. Ongoing and future work in-
cludes the implementation of content-based search, the integration of the search
interface in the diagram editing GUI of WebRatio, for visually highlighting the
matches in the projects, the capture of the user feedback on the top-ranking
results, to automatically learn how to fine-tune the model weights and improve
precision and recall, a larger scale study on the scalability and effectiveness of
the retrieval system, not limited to WebML models but also to UML artifacts,
and the definition of benchmark criteria for model-driven repository search.

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: Webratio 5: An eclipse-based case
tool for engineering web applications. In: Baresi, L., Fraternali, P., Houben, G.-J.
(eds.) ICWE 2007. LNCS, vol. 4607, pp. 501–505. Springer, Heidelberg (2007)

2. Antoniol, G., Canfora, G., de Lucia, A., Casazza, G.: Information retrieval mod-
els for recovering traceability links between code and documentation. In: IEEE
International Conference on Software Maintenance, p. 40 (2000)

3. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: Enterprise Distributed Object Computing Conference (EDOC), pp. 85–94
(2008)

4. Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An internet-scale software repos-
itory. In: ICSE Workshop on Search-Driven Development-Users, Infrastructure,
Tools and Evaluation. SUITE ’09, pp. 1–4 (May 2009)

5. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
VLDB, pp. 343–354. ACM, New York (2006)

6. Belhajjame, K., Brambilla, M.: Ontology-based description and discovery of busi-
ness processes. In: Interval Mathematics. LNBIP, vol. 29. Springer, Heidelberg
(2009)

7. Ben Khalifa, H., Khayati, O., Ghezala, H.: A behavioral and structural components
retrieval technique for software reuse. In: Advanced Software Engineering and Its
Applications. ASEA 2008, pp. 134–137 (December 2008)

8. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: De-
signing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc.,
San Francisco (2002)

Searching Repositories of Web Application Models 15

9. Chen, K., Madhavan, J., Halevy, A.: Exploring schema repositories with schemr.
In: SIGMOD ’09: Proc. of the 35th SIGMOD Int. Conf. on Management of data,
New York, NY, USA, pp. 1095–1098. ACM, New York (2009)

10. Frakes, W.B., Nejmeh, B.A.: Software reuse through information retrieval. SIGIR
Forum 21(1-2), 30–36 (1987)

11. Gibb, F., McCartan, C., O’Donnell, R., Sweeney, N., Leon, R.: The integration of
information retrieval techniques within a software reuse environment. Journal of
Information Science 26(4), 211–226 (2000)

12. Goderis, A., Li, P., Goble, C.A.: Workflow discovery: the problem, a case study
from e-science and a graph-based solution. In: ICWS, pp. 312–319. IEEE Computer
Society, Los Alamitos (2006)

13. Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J.L., BentoI, C.:
Using wordnet for case-based retrieval of uml models. AI Communications 17(1),
13–23 (2004)

14. Holmes, R., Murphy, G.C.: Using structural context to recommend source code ex-
amples. In: ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pp. 117–125. ACM, New York (2005)

15. Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., Kusumoto, S.: Ranking
significance of software components based on use relations. IEEE Transactions on
Software Engineering 31(3), 213–225 (2005)

16. Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic process re-
trieval with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007.
LNCS, vol. 4519, pp. 609–623. Springer, Heidelberg (2007)

17. Llorens, J., Fuentes, J.M., Morato, J.: Uml retrieval and reuse using xmi. In:
IASTED Software Engineering. Acta Press (2004)

18. Lu, R., Sadiq, S.: Managing process variants as an information resource. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
426–431. Springer, Heidelberg (2006)

19. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (July 2008)

20. Markovic, I., Pereira, A.C., Stojanovic, N.: A framework for querying in business
process modelling. In: Multikonferenz Wirtschaftsinformatik (February 2008)

21. Moreno, N., Fraternali, P., Vallecillo, A.: Webml modelling in uml. IET Soft-
ware 1(3), 67–80 (2007)

22. Platzer, C., Dustdar, S.: A vector space search engine forweb services. In: ECOWS
’05: Proceedings of the Third European Conference on Web Services, Washington,
DC, USA, pp. 62–71. IEEE Computer Society, Los Alamitos (2005)

23. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: Agora: A search engine for software
components. IEEE Internet Computing 2(6), 62–70 (1998)

24. Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J., Lukasik, W., DePalma,
C.: Supporting software evolution through dynamically retrieving traces to uml
artifacts. In: Proceedings of 7th International Workshop on Principles of Software
Evolution, pp. 49–54 (2004)

25. Shao, Q., Sun, P., Chen, Y.: Wise: A workflow information search engine.
In: IEEE 25th International Conference on Data Engineering. ICDE ’09, pp.
1491–1494 (2009)

26. Zhuge, H.: A process matching approach for flexible workflow process reuse. Infor-
mation & Software Technology 44(8), 445–450 (2002)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 16–34, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Toward Approximate GML Retrieval Based on
Structural and Semantic Characteristics

Joe Tekli1, Richard Chbeir1, Fernando Ferri2, and Patrizia Grifoni2

1 LE2I Laboratory UMR-CNRS, University of Bourgogne
21078 Dijon Cedex France

{joe.tekli,richard.chbeir}@u-bourgogne.fr
2 IRPPS-CNR, via Nizza 128, 00198 Roma, Italy

{fernando.ferri,patrizia.grifoni}@irpps.cnr.it

Abstract. GML is emerging as the new standard for representing geographic
information in GISs on the Web, allowing the encoding of structurally and
semantically rich geographic data in self describing XML-based geographic
entities. In this study, we address the problem of approximate querying and
ranked results for GML data and provide a method for GML query evaluation.
Our method consists of two main contributions. First, we propose a tree model
for representing GML queries and data collections. Then, we introduce a GML
retrieval method based on the concept of tree edit distance as an efficient means
for comparing semi-structured data. Our approach allows the evaluation of both
structural and semantic similarities in GML data, enabling the user to tune the
querying process according to her needs. The user can also choose to perform
either template querying, taking into account all elements in the query and data
trees, or minimal constraint querying, considering only those elements required
by the query (disregarding additional data elements), in the similarity evaluation
process. An experimental prototype was implemented to test and validate our
method. Results are promising.

Keywords: GML Search, Ranked Retrieval, Structural & Semantic Similarity,
GIS.

1 Introduction

In recent times, the amount of spatial data, available in standalone as well as web-
based Geographic Information Systems (GISs), is becoming huge and accessible to
users who are generally non-experts. Most of the time, such users query data without
a deep knowledge about the spatial domain they want to query, or they may not know
how to formulate meaningful queries, resulting in a reduction of the quality of the
query results. In order to overcome such limitations, the introduction of some query
relaxation mechanisms, by which approximate and ranked answers are returned to the
user, represents a possible solution. The need of answers that approximately match the
query specified by the user requires the evaluation of similarity.

Another important new trend in GISs is the adoption of XML-based formats,
particularly GML (Geography Mark-up Language) [18] as the main standard for

 Toward Approximate GML Retrieval Based on Structural 17

exchanging geographic data and making them available on the Web. This language is
based on W3C’s XML (eXtensible Mark-up Language) encoding, as an efficient and
widely accepted means for (semi-structured) data representation and exchange. In
fact, a geographic entity in GML, consists of a hierarchically structured self-
describing piece of geographic information, made of atomic and complex features
(i.e., containing other features) as well as atomic attributes, thus incorporating
structure and semantically rich data in one entity. Hence, the problem of evaluating
GML similarity in order to perform approximate querying, can be reduced to that of
performing XML-based search and retrieval, considering the nature and properties of
geographic data and data requests.

A wide range of algorithms for comparing semi-structured data, e.g., XML-based
documents, have been proposed in the literature. These vary w.r.t. the kinds of XML
data they consider, as well as the kinds of applications they perform. On one hand,
most of them make use of techniques for finding the edit distance between tree
structures [3, 17, 26], XML documents being modeled as Ordered Labeled Trees
(OLT). On the other hand, some works have focused on extending conventional
information retrieval methods, e.g., [1, 6, 8], so as to provide efficient XML similarity
assessment. In this study, we focus on the former group of methods, i.e., edit distance
based approaches, since they target rigorously structured XML documents (i.e.,
documents made of strictly tagged information, which is the case of GML data, cf.
Section 3) and are usually more fine-grained (exploited in XML structural querying
[23], in comparison with content-only querying in conventional IR [22]). Note that
information retrieval based methods target loosely structured XML data (i.e.,
including lots of free text) and are usually coarse-grained (useful for fast simple XML
querying, e.g., keyword-based retrieval [8]).

Nonetheless, in addition to quantifying the structural similarities of GML features,
semantic similarity evaluation is becoming increasingly relevant in geospatial data
retrieval as it supports the identification of entities that are conceptually close, but not
exactly identical. Identifying semantic similarity becomes crucial in settings such as
(geospatial) heterogeneous databases, particularly on the Web where users have
different backgrounds and no precise definitions about the matter of discourse [21].
Thus, finding semantically related GML modeled items, and given a set of items,
effectively ranking them according to their semantic similarity (as with Web
document retrieval [13]), would help improve GML search results.

In this study, we present the building blocks for a GML retrieval framework,
evaluating both structural and semantic similarities in GML data, so as to produce
approximate and ranked results. Our query formalism is based on approximate tree
matching as a simple and efficient technique to query GML objects. It allows the
formulation of structure-and-content queries with only partial knowledge of the data
collection structure and semantics. In addition, our method allows both template and
minimum constraint querying. According to the latter interpretation, the GML answer
entity could contain additional elements w.r.t. those required by the query, such
elements being disregarded in similarity evaluation. Yet, following the former
strategy, all query and data elements are equally considered. The user can also tune
the GML similarity evaluation process, by assigning more importance to either
structural or semantic similarity, using an input structural/semantic parameter.

18 J. Tekli et al.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
state of the art in GML search methods and related XML similarity issues. Section 3
discusses the background and motivations of our study. In Section 4, we develop our
GML approximate query evaluation approach. Section 5 presents our preliminary
experimental tests. Section 6 concludes the paper and outlines future research
directions.

2 State of the Art in GML and XML Retrieval, and Related Issues

Conventional geographic information science and retrieval have been concerned with
managing and searching digital maps where geometry plays a major role (e.g., spatial
browsing, exact querying based on geographic coordinates, …) [11]. Nonetheless,
little support has been provided for managing geographic information based on text,
in which references to locations are primarily by means of place names and textual
descriptions, in addition to the geospatial data itself [10]. In this context, very few
approaches have been proposed for GML-based geographic data search and retrieval
in particular.

The few existing methods for managing and querying GML-based geographic
information have tried to map GML data to classic spatial DBMS (e.g., Oracle
Spatial, DB2 Spatial, PostGIS, …), e.g., [19, 27, 31]. This is connected with the
genesis of GML, which was born as an interchange format for heterogeneous
geographic database systems. Such methods usually underline the semi-automatic
mapping of the GML application schema (describing the geographic data) to a bunch
of object/relational schemas. They extend XML data storage in traditional DBMS to
consider geospatial properties of GML (e.g., adding dedicated structures for storing
geographic coordinates). Having mapped the GML data into object/relational DB
structures, corresponding geographic data can be hence processed for classic DB
querying. While such techniques might be efficient w.r.t. storage and indexing, they
are limited to exact querying and retrieval functions, and do not allow approximate
and ranked search results.

On the other hand, approximate querying methods developed for XML, e.g., [1, 6,
7, 14], cannot be straightforwardly applied to GML. First, such methods would have
to consider the semantic richness of text-based geographic data in order to perform
relevant GML querying. Second, most of these methods are based on underlying IR-
concepts (most address the INEX evaluation campaigns) and target loosely structured
XML (including lots of free text). They can be generally criticized for not sufficiently
considering the structural properties of XML [20] (and consequently GML, which
usually underlines rigorously structured data, due to the structured nature of
geographic information).

Some methods have tackled the problem of searching rigorously structured XML
data, by exploiting the concept of approximate tree matching [9, 23, 24]. In [23], the
author propose an approach based on tree edit distance for evaluating the similarity
between XML query and data trees. Similarity is evaluated in terms of the total cost
needed to transform the query tree into one embedded in the data tree, and is used to
rank the results. In a subsequent study [24], the authors propose to combine
approximate tree embedding with TF-IDF ranking in evaluating query and data tree

 Toward Approximate GML Retrieval Based on Structural 19

similarity. The classical notion of term (as a piece of text) is extended to structural
term (as a sub-tree). Methods in [23, 24] only focus on the structural features of XML,
disregarding semantic similarity. A method based on a similar approximate tree
embedding technique is provided in [9] for querying MPEG-7 XML documents. Here,
the authors introduce semantic similarity assessment between query and data tree
labels, based on a dedicated knowledge base describing MPEG-7 concepts. Yet, the
approach does not produce ranked results (it returns a Boolean value indicating
whether the query tree is embedded or not in the data tree).

3 Background and Motivation

3.1 A Glimpse on GML

The Geography Markup Language (GML) [18] is an XML encoding for the transport
and storage of geographic information, where real world entities can be represented as
sets of GML features. Geometric features are those with properties that may be valued
geometrically (e.g., types Point, Line, Polygon…, with geometric coordinates
designating their positions, extents and coverage). Remaining non-geometric features
provide textual descriptions of the geographic entity at hand. For instance, to model a
Hotel in GML, one would define non-geometric features, such as Name (Text), Rank
(Number), Address (Text), … and geometric ones, e.g., Location (Point), Area
(Polygon), …

Features/attributes and corresponding types, in a given GML modeled entity, are
defined via the GML application schema to which the document, containing the GML
entity model, conforms. The GML schema defines the features and attributes of the
GML documents they describe, as well as their structural dispositions and the rules
they adhere to in the documents. Similarly to schemas in traditional DBMS, GML
schemas are valuable for the protection, indexing, retrieval and exchange of
corresponding documents [18]. Figure 1 shows a sample GML document and part of
its corresponding GML schema.

<?xml version=“1.0”>
<xmlns:gml=“http://www.opengis.net/gml” City.xsd …>
<City name= “Rome”>

<ArtisticGuide>
<Monuments>

<Cathedral name= “St Peter”>
<Style>Renaissance</Style>
<Location>

<Point>
<Coordinates>

<Latitude>
<Degrees>41</Degrees>
<Minutes>52</Minutes>

</Latitude>
 …
</Coordinates>

</Point>
</Location>
…

</Cathedral>
</Monuments>

 </ArtisticGuide>
</City>

<?xml version=“1.0”>
<xs:schema xmlns:gml="http://www.opengis.net/gml" …>

<element name="City" type=="CityType"/>
<complexType name="CityType">

 <sequence> <element name = "ArtisticGuide" type ="ArtisticGuideType"/>…
 </sequence>
 <attribute name=”Name” type=”String”>
 </complexType>
<complexType name="ArtisticGuideType">
 <sequence> <element name = "Monuments" type=="MonumentsType"/>

</sequence>
</complexType>
<complexType name="MonumentsType">
 <sequence> <element name="Cathedral" type="CathedralType"/> …
 </sequence>
</complexType>
<complexType name="CathedralType">
 <sequence>
 <element name=”Style” type=”String”>
 <element name=”Location” type=”LocationType”> …
 </sequence>
 <attribute name="Name" type="string"/>
</complexType> …

Fig. 1. Sample GML document and part of the corresponding GML application schema

20 J. Tekli et al.

3.2 Querying GML Data

In order to allow efficient approximate and ranked GML querying on the Web, we
underline the need for a technique to search GML data where users can express queries
in the simplest form possible, taking into account the structured nature of GML, in a
way that less control is given to the user and more of the logic is put in the ranking
mechanism to best match the user’s needs. In other words, we aim to simplify, as much
as possible, the query model and predicates (developed in the following section)
without however undermining query expressiveness. In this context, we distinguish
between two different kinds of GML queries, i) template where the user specifies a
sample snapshot of the GML data she is searching for (e.g., a piece of map, providing a
somewhat complete description of the requested data), or ii) minimal constraint where
the user only identifies the minimal requirements the data should meet in order to
belong to the query answer set (e.g., providing a small description, or an approximate
location to pinpoint a given geographic object). For instance:

− Q1: “Find Churches built prior to 1600”.
− Q2: “Find Cities containing gothic churches”.
− Q3: “Pinpoint Locations of churches in the city of Rome”.
− Q4: “Find all restaurants situated at latitude 41 degrees 55 minutes North, and longitude 12

degrees 28 minutes East”.

While queries Q1-3 are solely user-based, queries combining minimal constraint user
preferences and geo-coordinates could be equally relevant. Consider for instance
query Q4 where the user searches, via her mobile GPS device, for restaurants in the
vicinity of her current location. Such queries could also be viewed as of partial
Template style, due to the presence of rather detailed geographic information provided
by the GPS device.

Note that in this study, we do not aim to define a GML querying language (i.e., a
formal syntax following which a GML query should be written), but rather the
underlying querying framework. The user could formulate the query using plain text
(guided by a dedicated GUI), or via some predefined syntax (e.g., a GML document
fragment, or a pictorial representation converted into GML [5]) to be represented in
our query model.

In addition, we emphasize on the need to consider the semantic meaning of GML
entity descriptions and corresponding textual values, as a crucial requirement to
perform approximate GML querying. For instance, a user searching for cities with
cathedrals of Gothic style (query Q1), would naturally expect to get as answers cities,
counties or towns containing either basilicas, cathedrals, churches or temples which
are of either Gothic, Medieval or Pre-renaissance styles, ranked following their
degrees of semantic relevance to the original user request. The impact of semantic
similarity on approximate GML querying is further discussed in the following section.

4 Proposal

4.1 GML Data and Query Models

As shown above, geographic entities in GML represent hierarchically structured
(XML-based) information and can be modeled as Ordered Labeled Trees (OLTs)

 Toward Approximate GML Retrieval Based on Structural 21

[28]. In our study, each GML document is represented as an OLT with nodes
corresponding to each subsumed feature and attribute. Feature nodes are labeled with
corresponding element tag names. Feature values (contents) are mapped to leaf nodes
(which parent nodes are those corresponding to their features’ tag names) labeled with
the respective values. To simplify our model, attributes are simply modeled as atomic
features, corresponding nodes appearing as children of their encompassing feature
nodes, sorted by attribute name, and appearing before all sub-element siblings. [30]

Values could be of different types (text, number…), and user derived types could
also be defined [18]. In the following, and for simplicity of presentation, we consider
the basic text, number and date types in our discussion (from which derive most data-
types, including geometric ones, e.g., point, polygon…). Note that our GML tree
model itself, and the GML querying approach as a whole, are not bound to the types
above, and could consider any other data-type, as we will show subsequently.

Definition 1 - GML Tree: Formally, we represent a GML document as a rooted
ordered labeled tree G = (NG, EG, LG, TG, gG) where NG is the set of nodes in G, EG ⊆
NG × NG is the set of edges (feature/attribute containment relations), LG is the set of
labels corresponding to the nodes of G (LG = FlG U FvG U AlG U AvG such as FlG
(AlG) and FvG (AvG) designate respectively the labels and values of the features
(attributes) of G), TG is the set of data-types associated to the feature and attribute
nodes of G (TG= {GeoEntity} U FT U AT, having FT = AT = {Text, Number, Date}),
and gG is a function gG : NG → LG, TG that associates a label l∈LG and a data-type
t∈TG to each node n∈NG. We denote by R(G) the root node of G, and by G’ G a
sub-tree of G ●

Definition 2 - GML Tree Node: A node n of GML tree G = (NG, EG, LG, TG, gG) is
represented by a doublet n = (l, t) where l∈LG and t∈TG are respectively its label and
node data-type. The constituents of node n are referred to as n.l and n.t respectively
(Figure 2) ●

n.l n.t

Fig. 2. Graphical representation of GML tree node n

Value data-types in our GML tree model are extracted from the corresponding GML
schema. In other words, in GML tree construction time, the GML document and
corresponding schema are assessed simultaneously so as to build the GML tree.
Textual values are treated for stemming and stop word removal, and are mapped to
leaf nodes of type Text in the GML tree. Numerical and date values are mapped to
leaf nodes of types Number and Date respectively. As for the GML feature/attribute
nodes themselves, they are assigned the data-type GeoEntity, their labels
corresponding to the geographical entity names defined in the corresponding GML
schema. To model the GML data repository, we connect all GML trees to a single
root node, with a unique label (e.g., ‘Root’).

Consider for instance the GML data repository in Figure 3. It is made of two GML
document trees describing City geographic entities (cf. extracts of GML document
and schema in Figure 1). Geometric coordinates are depicted for the geographic entity

22 J. Tekli et al.

Root

City Geo

Name

Rome Text Monuments

ArtisticGuide

Cathedral Tag

StyleName

St Peter Text Renaiss. Text

Church

StyleName

Text St Mary Gothic

Name

Dijon

County

Monuments

ArtisticGuide

Cathedral

StyleName

St Benigne Text Medieval Text

Location

Coverage ...

Foundation
T1 T2

T3

S1 S2

1370

Foundation

1350 Date Date

Geo Geo

Geo

Geo

Geo

Geo

Geo Geo Geo Geo

Geo

Geo Geo

Geo

Geo

Geo

Location

Coordinates Geo

Point

Geo

Text

Geo

Geo

Geo Geo Geo

...

Latitude Geo Longitude Geo

Degrees Geo Minutes Geo Degrees Geo Minutes Geo

41 Num 52 Num 12 Num 27 Num

Geo Dir

North Text East Text

Geo Dir

Fig. 3. Extract of a sample GML data repository (Geo stands for GeoEntity)

describing St Peter cathedral in Rome (latitude and longitude coordinates), and are
omitted for remaining GML entities for clarity of presentation. Recall that most
geographic data-types can be expressed in terms of basic types Text, Number and
Date, which is the case of element Point (of derived GML PointType).

On the other hand, our definition of a GML query is simple and consists of a GML
tree, similarly to GML documents, with special leaf nodes to represent query
predicates. A query with an Or logical operator is decomposed into a disjunctive
normal form [23], and is thus represented as a set of GML trees, corresponding to the
set of conjunctive queries.

Definition 3 - GML Query: It is expressed as a GML tree, Q = (NQ, EQ, LQ, TQ, gQ,
nd) (cf. Definition 1) encompassing a distinguished node nd underlining the matches in
the data tree that are required as answers to the query (i.e., the query’s return clause).
The query’s root node R(Q) designates its search scope/context. Its set TQ
encompasses the GeoEntity type for distinguishing GML geographic entities, and
predicate types P_ti corresponding to every GML value data-type ti considered in the
GML data model (e.g., TQ = {GeoEntity} U {P_Text, P_Number, P_Date}) ●

Definition 4 - GML Query Node: It is a GML tree node (cf. Definition 2) with
additional properties to represent predicates. With n.t = P_ti (predicate corresponding
to GML data-type ti), the node’s label n.l underlines a composite content made of the
predicate operator n.l.op and value n.l.val (e.g., leaf node Q1[2] of query Q1 in Figure
4 is of Q1[2].l.op = ‘<’ and Q1[2].l.val = ‘1600’, having Q1[2].t = P_Date, which
underlines that the predicate value ‘1600’ is of type Date) ●

Note that each data-type has its own set of operators (e.g., {=, <, ≤, >, ≥}1 for numbers
and dates, and {=, like, …} for text). GML query trees, corresponding to the sample
queries provided in Section 3.2, are depicted in Figure 4. Recall that query trees can
be constructed via a dedicated GUI, which would suggest, on-the-fly, the list of
possible query nodes following the context of the query at hand.

1 The difference operator (≠) is omitted due to its particular processing (to be addressed in an

future study).

 Toward Approximate GML Retrieval Based on Structural 23

Church GeoEntity

Foundation

P_Date< 1600

City

Church

= Gothic P_Text

Q1 Q2

Query distinguished node

Q21

GeoEntity

GeoEntity

GeoEntity Coordinate Geo

Latitude Geo Longitude Geo

Degrees Geo Minutes Geo

= 41 P_Num = 52 P_Num = 12 P_Num = 27 P_Num

Restaurant GeoEntity

Degrees Geo Minutes Geo

Q4

= Rome

City

Church

Location

Q3

GeoEntity

P_Text GeoEntity

GeoEntity

Geo-coordinates would be generated via a GPS
device, as supplement to user preferences

Fig. 4. Sample GML query trees

To the exception of the containment topological operator implicitly encoded in the
GML hierarchy itself (cf. queries Q2 and Q3), we do not consider explicit spatial and
temporal operators (e.g., far, near, adjacent to, …) in our current approach. These
underline composite computational operations (e.g., a location point is near another
location point if their distance, computed based on their coordinates, is below a
certain threshold) and would induce more complex GML document and query graph
structures instead of simple trees (introducing different kinds of cross links
connecting GML entities). Recall that our current study sets the foundations toward
approximate GML querying, to be consequently extended in addressing spatio-
temporal relations.

Definition 5 – Predicate Satisfaction: Given a predicate GML query node qi, and a
data node sj, sj satisfies qi (sj |= qi) if:

− The data node type corresponds to that of the query (si.t ≈

qi.t, i.e., ∀ tr ∈{Text,
Number, Date}, qi.t = P_tr ∧ sj.t = tr),

− The data node label sj.l verifies the logical condition defined by qi.l ●

For instance, leaf node T2[6] of data tree T2 in Figure 3, having T2[6].l = ‘1350’ and
T2[6].t = ‘Date’, satisfies predicate node Q1[2] of query Q1 in Figure 4, with Q1[2].l
= ‘<1600’ and Q1[2].t = ‘P_Date’.

Definition 6 - GML Query Scope: Given a GML query Q, the scope of Q is
identified by its root node R(Q), and corresponds to the GML data sub-trees, in the
data repository, having identical or semantically similar enough root nodes as that of
the query. ●

We assume that the user defines, with the query, the kind of GML data she is looking
for, i.e. the scope/context of her query. If for instance the root of the query is labeled
Restaurant, then GML data in the context of GML data entity Restaurant, or
semantically similar entities such as Pizzeria, Bar, … would naturally interest the
user.

Definition 7 - Template and Minimal constraint querying: A GML query Q could
be either evaluated as a i) template of the GML data the user is searching for, ii) or
could represent the minimal constraints the data should meet to belong to the query
answer set. In the former case, all GML query and data nodes would be considered in

24 J. Tekli et al.

query/data similarity evaluation. Following the latter strategy, only elements required
by the query tree are taken into account in query/data similarity evaluation, additional
elements in the data tree being disregarded in the evaluation process. ●

Note that geographic queries most likely follow the minimal constraint style, the user
usually specifying her information needs in the simplest form possible (cf. queries Q1,
Q2 and Q3 in Figure 4). Nonetheless, template querying could be particularly useful in
search-by-document and search-by-image systems for instance, where the query could
be a whole geographic document or a piece of map the user is searching for in the
geographic repository. A template style query could be any of the sub-trees S1, S2,
T1… in Figure 3.

4.2 GML Query Evaluation

The goal of this work is to develop a method for searching a GML data repository in
order to identify portions of data that exactly or approximately match user requests.
Having modeled both GML data and queries as trees, GML query evaluation can be
reduced to the problem of searching the various data sub-trees, in the data repository,
corresponding to the query’s search scope (i.e., with matching root nodes), identifying
those that share structural and semantic similarities with the query tree. The result of
the query would be a set of data nodes matching the query’s distinguished node,
ranked by the similarity degree between the query tree and corresponding data
candidate answer sub-tree. Thus, we propose a GML querying framework based on
the concept of tree edit distance as a widely known and efficient means for comparing
XML-based tree structures [3, 4, 17]. In addition to evaluating GML data structure,
our method also integrates semantic similarity assessment [12, 13], so as to capture
the semantic meaning of GML element labels/values.

A simple motivating example, underlining the need to consider semantic similarity
in GML querying, is that of evaluating query Q2 of Figure 4, against the GML data
repository G in Figure 3. Using structural-only similarity evaluation, one can realize
that the only GML data tree to (actually) fulfill the data request of Q2 (searching for
Cities containing Cathedrals of Gothic Style) is S1 (describing the City of Rome,
containing data tree T2 describing the St. Mary Church which is of Gothic style). That
is due to the structural similarity between sub-tree Q21 and T2. However, one can
recognize that data tree S1 (describing the County of Dijon) also fulfills the data
request of query Q2, since it contains tree T3 (describing the St. Benigne Cathedral
which is of Medieval style). This answer goes undetected using structure-only
similarity evaluation, since the semantic similarity between City/County,
Church/Cathedral and Gothic/Medieval are missed.

In summary, our GML querying method consists of three main components: i) CAT
Identification component for identifying GML data Candidate Answer Trees
(following the query’s scope), ii) GML Tree Comparison component for evaluating
the structural and semantic similarity between the query tree and each of the candidate
answer trees, iii) and the Query Answer Identification component for recognizing the
GML data elements, in each data candidate answer tree, to be returned to the user
(following the query’s distinguished node). The overall system architecture is
depicted in Figure 5.

 Toward Approximate GML Retrieval Based on Structural 25

Approximate
and ranked

answers

GML query tree Q

GML data
Repository

CAT
Identification

Struct-CBS

e-TED

Sem-RBS

GML Tree Comparison

Query Answer
Identification

Set of CATs
corresponding to query Q

Query tree Q

GML Querying
Framework

Parameter

Weighted {SN}

Parameter QType

Fig. 5. Simplified activity diagram of our GML querying approach

4.2.1 GML Candidate Data Tree Identification
The first step in assessing a query is to identify its search scope. Following the
traditional IR logic, whole physical files are considered as candidate answers.
Nonetheless, GML documents differ in their granularity: some documents may contain
information about monuments, others about cities containing hundreds of monuments
(cf. Figure 3).

Obviously, it is not relevant to retrieve the entire city when the user is searching for
certain monuments. Hence, the GML query search scope should be identified
dynamically, w.r.t. the query at hand.

Following our GML data and query model, the query scope (cf. Definition 6) can
be identified as the set of GML data sub-trees (which we identify as Candidate
Answer Trees, CATs), in the data repository, having identical, or semantically similar
enough, root nodes as that of the query (i.e., same/similar label, with the same data-
type). Consider for instance query Q1, searching for churches that have certain
characteristics. When considering root node identity, query Q1’s CATs would be all
data sub-trees having root node label Church, i.e., data tree T2. When taking into
account semantic similarity, Q1’s CATs would also encompass T1 and T3 of root nodes
Cathedral. With queries Q2 and Q3, answer candidates would be data sub-tree S1 (of
root node City) when considering node identity, and would include S2 (of root node
County) when considering semantic similarity.

Definition 8. Candidate Answer Tree: Given a GML node similarity measure
SimGML, reference semantic networks {SN} = {SNGeo, SNText} for evaluating the
semantic similarity between GML GeoEntity and Text node labels, and a semantic
similarity threshold α, the set of candidate answer trees QCAT, for a given query Q, in a
GML data repository G, QCAT = {S / S G ∧ ((R(Q) = R(S) if α =1) ∨
SimGML(R(Q), R(S), {SN}) ≥ α otherwise)} ●

Our semantic similarity threshold also serves as a structural/semantic similarity
parameter, underlying the extent of structural/semantic similarity considered while
identifying candidate answers. It allows the user to assign more importance to the
structural or semantic characteristics of GML data in answering the query at hand.

− For α = 1, only CATs with root nodes identical to that of the query are the
only ones considered. This corresponds to purely structural querying.

26 J. Tekli et al.

− For 0 < α <1, CATs with root nodes of semantic similarity higher than α are
considered. As α decreases, the size of the answer set QCAT will increase,
following the semantic similarities between query and CAT root nodes.

− For α = 0, all data sub-trees in the GML data repository are considered as
CATs.

Parameter α is exploited throughout the querying framework to determine the amount
of structural/semantic similarity considered in query/CAT comparison (cf. Section
4.2.2).

As for GML node similarity SimGML, it is evaluated w.r.t. the nodes’ constituents,
i.e. their labels and types and is developed subsequently.

4.2.2 GML Tree Comparison
Having identified the set of CATs corresponding to the query at hand, the GML tree
comparison component evaluates the structural and semantic similarity between the
query tree and each of the CATs, so as to provide the user with approximate and
ranked results.

Our GML query/CAT tree comparison component combines and extends two recent
approaches that target XML structure and semantic similarity respectively [25, 26]. It
consists of four main modules for: i) identifying the Structural Commonality Between
two XML Sub-trees (Struct-CBS) [26], ii) quantifying the Semantic Resemblance
Between two XML Sub-trees (Sem-RBS) [25], and iii) computing Tree Edit Distance
(TED). In short, the TOC algorithm makes use of Struct-CBS [26] and Sem-RBS [25] to
structurally and semantically compare all sub-trees in the GML query tree and data tree
(CAT) being compared. The produced sub-tree similarity results are consequently
exploited as edit operations costs (node update, node insertion, tree insertion…) in an
extension of Nierman and Jagadish [17]’s main edit distance algorithm. Here, e-TED
identifies our extended edit distance algorithm (Figure 5).

Hence, the inputs to the GML tree comparison component are as follows:

− The GML query tree and data tree (CAT) to be compared,
− Parameter α ∈ [0, 1] enabling the user to assign more importance to the

structural or semantic aspects of the GML query and data trees (CAT),
− Parameter QType enabling the user to chose between template or minimal

constraint querying.
− Reference semantic networks {SN}={SNGeo, SNText} to be utilized for

semantic similarity evaluation.

The GML tree comparison component outputs the similarity (edit distance) value
between the pair of query tree and data tree (CAT) being compared, based on the sum
of corresponding edit operations costs. Hereunder, we first i) develop the GML node
semantic similarity measure SimGML exploited in computing edit operations costs, and
then ii) show how the main tree edit distance algorithm e-TED exploits edit operations
costs, and considers both template and minimal constraint querying in the GML
query/data comparison process. Note that we skip the details concerning the inner-
workings algorithms Struct-CBS and Sem-RBS mentioned above, since they have been
thouroughly described in [25, 26].

 Toward Approximate GML Retrieval Based on Structural 27

4.2.2.1 GML Node Similarity Measure
As shown in Section 4.1, GML data (query) node labels either consist of geographic
entity names, i.e., nodes of type GeoEntity, or geographic feature/attribute values
(predicates), mainly Text, Number and Date (cf. Definitions 2 and 5). Obviously, it is
meaningless to compare nodes encompassing different types of data (e.g., GeoEntity
names with nodes bearing information of type Date or Number). Hence, we compute
GML node similarity between corresponding node labels, given that the concerned
nodes are of matching data-types, making use of similarity measures dedicated to the
data-types at hand. We particularly focus on the semantic similarity SimSem between
nodes bearing conceptual information, i.e., nodes of types GeoEntity and Text, where
information can be described via groups of concepts, organized in knowledge bases or
semantic networks. Here, exsiting semantic similarity measures (e.g. Lin [12], Wu
and Palmer [29]…) could be exploited, taking into account the concerned reference
semantic network:

− We define SNGeo as a semanitc network describing the semantic relations
between the different geographical entities defined in the GML
application schema (describing the data at hand), and exploit it in
evaluating semantic similarity between GeoEntity node labels,

− We also exploit SNText as a more generic semantic network describing
concepts found in everyday language (e.g., WordNet [15]), to compare
GML element/attribute textual values.

As for Number and Date labels, they bear non-conceptual information, i.e.,
information that cannot be described with concepts, organized in knowledge bases.
Various methods for comparing such non-conceptual information has been addressed
in classic database systems [16], e.g.:

() 1 2
1 2

1 2

1
| . . |

. , .
| . | | . |Number

n l n l
Sim n l n l

n l n l
−

−=
+

A similar (yet more intricate) variation could be exploited for comparing dates.
Formally, given a GML query node qi and a data node sj, and considering the basic
data-types mentioned above (GeoEntity, Text, Number and Date):

SimGML(qi, sj,{SN})=

 1 if sj qi
 SimSem(qi.l, sj.l, SNGeo) else if qi.t = sj.t = ‘GeoEntity’
 SimSem(qi.l.val, sj.l, SNText) else if qi.t = P_tr sj.t = ‘Text’
 SimNumber(qi.l.val, sj.l) else if qi.t = P_tr sj.t = ‘Number’
 SimDate(qi.l.val, sj.l) else if qi.t = P_tr sj.t = ‘Date’
 0 otherwise

 (1)

Recall that si |= qi underlines predicate satisfaction (Definition 5), i.e., query and data

nodes are of corresponding types qi.t ≈ sj.t, such as the data node satisfies the logical
condition specified by the query. Similarity is obviously maximal (=1) when the data
node satisfies the query’s predicate node. If both query and data nodes underline the
same data-type, similarity is evaluated following the corresponding similarity
measure. Yet, if data-types are different, similarity is minimal (=0). Note that
additional data-types could be considered in the same manner, by exploiting
corresponding similarity measures.

28 J. Tekli et al.

4.2.2.2 Edit Operations Costs
Here, we provide the cost scheme for the update operation, as an example on how
GML node similarity is exploited in computing edit operations costs. Remaing tree
edit operations costs (i.e., node insertion/deletion, and tree insertion/deletion) follow
similar costs schemes, integrating structural and semantic similarity scores
accordingly. Given a GML query node q∈Q (Definition 4) and GML data tree node s
∈ S (Definition 2), the cost of the update operation Upd(q, s) applied to q and
resulting in GML query node q’ such as (s=q’ if q.t=‘GeoEntity’) ∨ (s q’
otherwise) (i.e., if q is of type predicate, P_ti), would vary as:

CostUpd(q, s, α, {SN}) = GML |=1 (1) Sim (q, s, {SN}) if ((q s) (s q))
 0 otherwise

α− − × ≠ ∧⎡ ⎤
⎢ ⎥⎣ ⎦

Parameter α is the structural/semantic parameter utilized in the CAT Identification
component to assign more importance to either structural or semantic similarities:

− For α = 1, only label equality/difference is considered in computing edit
operations costs. Consequrently, e-TED will be considering the structural
similarity between the query sub-tree QSb (rooted at node q) and the CAT
tree.

− For α = 0, label semantic similarity is considered between corresponding
GML node and CAT node labels. Hence, e-TED will evaluate the structural
and semantic similarity between the sub-tree QSb (rooted at q) and the CAT
tree.

4.2.2.3 TED Algorithm Extended to Template/Minimal Constraint Comparisons
In short, e-TED starts by computing the cost of updating the root nodes of the trees
being compared (Figure 6, line 4). Then, it computes the costs of deleting every first
level sub-tree in the query tree (lines 5-10), and those of inserting every first level
sub-tree in the CAT data tree (lines 10-16). Here, both structural and semantic
similarity evaluation are considered when assigning edit operations costs (as briefly
described above, [25, 26]).

On one hand, all (structurally and/or semantically weighted) operations are
considered when performing template querying (i.e., all query/data tree elements are
considered, which comes down to the classic TED formulation [17]). On the other
hand, to allow minimal constraint querying, our e-TED disregards node and tree
insertion operations in the computation process (Figure 6, lines 9 and 17). In other
words, all additional elements in the CAT data tree will be disregarded in computing
similarity, only considering those required by the query. Consequently, the algorithm
recursively computes all combination of insertion, deletion and update operations to
identify those yielding the minimum edit distance, i.e., the minimum cost edit script
(lines 11-20). For instance, the result of comparing query Q3 with data sub-tree S1,
following the minimal constraint strategy, is depicted in Figure 7. Here, only nodes
required by the query are considered in the computation process, additional data
nodes being disregarded (cf., edit distance mappings and mapping scores,

 Toward Approximate GML Retrieval Based on Structural 29

Algorithm e-TED()
Input: Query Tree Q and data tree S, parameter for structural/semantic weighting, QType

parameter, weighted semantic networks {SN}
Output: Edit distance between Q and S

Begin
M = Degree(Q) // The number of first level sub-trees in Q. 1
N = Degree(S) // The number of first level sub-trees in S. 2

Dist [][] = new [0...M][0…N] 3
Dist[0][0] = CostUpd(R(Q), R(S), , {SN}) //Update operation 4

For (i = 1 ; i M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Qi) } 5

For (j = 1 ; j N ; j++) 6
{ 7

If (QType=’Template’) {Dist[0][j] = Dist[0][j-1] + CostInsTree(Sj) } 8
Else {Dist[0][j] = Dist[0][j-1]} // QType = ‘Minimal Constraint’ 9

 } 10
For (i = 1 ; i M ; i++) { 11

For (j = 1 ; j N ; j++) { 12
 Dist[i][j] = min{ 13

Dist[i-1][j-1] + TED(Qi, Sj), //Dynamic programming 14
Dist[i-1][j] + CostDelTree(Qi), 15
If (QType=’Template’) { Dist[i][j-1] + CostInsTree(Sj) } 16
 Else { Dist[i][j-1] } // QType=‘Minimal Constraint’ 17

 } 18
 } 19

} 20
Return Dist[M][N] // Sim =1 / (1 + Dist)) 21

End

Fig. 6. Edit distance algorithm TED

City GeoEntity

Name Tag

Rome Text Monuments Tag

Artistic guide Tag

Cathedral Tag

Type TagName Tag

St Peter Text Renaissance Text

Church Tag

Style TagName Tag

Text St Mary Text Gothic

City guide Tag

Restaurant Tag ...

1370

Foundation Tag

Date

1

0.5
0.5 T1

Location

Coordinates Geo

Point

Geo

Geo

T2

= Rome

City

Cathedral

Location

Q3

GeoEntity

P_Text GeoEntity

GeoEntity

0.5

Dist(Q3, S1) = CostES(Q3, S1= 1.5
Sim(Q3, S1) = 0.4

QType = ‘Minimal Constraint’
 = 1 (structural similarity only)

ES(Q3, S1) = {Upd(Q3[0], S1[0]), Upd(Q3[1], S1[1]),
 Upd(Q3[2], S1[3]), Upd(Q3[3], S1[4])

S1

…

Fig. 7. GML query/CAT tree mappings

computational details being omitted due to space limitations). Note that with QType=
‘Template’, all additional nodes in S1 (i.e., S1[6], S1[7], ...), would have to be
considered in the similarity evaluation process, which would drastically decrease the
similarity value.

Recall that similarity is computed based on the sum of the minimum cost edit
operations corresponding to the query and CAT trees, i.e., inverse of edit distance (cf.
Figure 6 line 21, and Figure 7 for computation example).

30 J. Tekli et al.

4.2.3 GML Query Answer Identification Component
The GML Query Answer Identification component underlines the elements in the data
tree (CAT) which are to be returned to the user. These correspond to the nodes (along
with their sub-trees), in the data tree, that match the GML query’s distinguished node
(cf. Definition 3). Such matches could be identified following a post-processing of the
results (i.e., edit operations and mappings) produced by the GML Tree Comparison
component.

In fact, one of the main advantages of using tree edit distance is that along the
similarity (distance) value, a mapping between the nodes in the compared trees is
provided in terms of the edit script, allowing the identification of correspondences
between elements of the query tree and data tree (CAT) being compared. Consider for
instance the edit distance mappings between GML query tree Q3 and data CAT S2,
depicted in Figure 7. The number next to each mapping link designates its mapping
score, which is inversely proportional to the cost of the corresponding edit operation.
Consequently, mappings reveal the data node matching the distinguished query node,
in our case S1[10]=(‘Location’, GeoEntity). Hence data node S1[10] is returned to the
user, along with its sub-tree (i.e., the geographic coordinates of the St Peter cathedral
in Rome).

In the case where multiple data nodes match the query’s distinguished node, we
simply identify those with the highest mapping scores, i.e., those corresponding to the
most relevant mappings. Note that a dedicated threshold, specifying the minimum
acceptable mapping score for a node to be considered as a relevant match to the
query’s distinguished node, can be considered. In addition, when the query’s
distinguished node is the same as its root node (e.g., queries Q1 and Q2), its matching
node in the data CAT would be none other than the data tree’s root node itself. Thus,
the whole data tree would be returned to the user.

5 Experimental Evaluation and Validation Tests

We have implemented our GML query evaluation approach in the XS3 prototype
system2.Hereunder, we provide preliminary precision and recall results w.r.t. a select
collection of GML queries (including Q1, Q2, Q3 and Q4 of Figure 4) applied on a
GML data repository constructed based on geographic data sampled from Wikipedia
(Figure 3). The current data repository includes geographic information concerning 40
major historical and artistic monuments in the cities of Rome, Dijon and Sao Paolo.
Ten queries were considered, distributed equally between minimal constraint (Q1-3

and Q5-6) and partial template (Q4 and Q7-10) styles. Queries were first manually
evaluated, identifying the set of relevant answers for each query, ranked following
their order of relevance w.r.t. to the user (three different test subjects, one doctoral
student and two post-doctoral researchers, were involved in the experiment). Manual
answers were mapped to system generated ones so as to compute precision (PR),
recall (R) and F-measure values (F-value) accordingly.

Results in Figure 8 depict overall PR, R and F-value results for each query. These
underline our approach’s applicability and potential in identifying relevant answers to

2 Available online at http://www.u-bourgogne.fr/DbConf/XS3

 Toward Approximate GML Retrieval Based on Structural 31

simple GML queries. Note that in our evaluation, we adopted the range query
formalism without however utilizing a predefined similarity threshold in identifying
answers. We rather selected the whole set of ranked system generated answers
(CATs) bound by the least similar relevant one, i.e., the last answer (CAT) to actually
correspond to a user defined answer (which similarity value was considered as the
range query threshold). This allowed us to verify the performance of our method in
selecting relevant answers (achieving high recall, crucial for any method to be
admissible in search applications [22]), and most importantly its effectiveness in
filtering out non-relevant ones (precision).

a. Precision b. Recall c. F-value

Fig. 8. Precision (PR), Recall (R) and F-measue (F-Value) results

High recall was particularly achieved when integrating semantic similarity
evaluation, whereas quite a few relevant answers were missed when disregarding
semantics (Figure 8.b). Semantic similarity evaluation also seemed crucial in
amending precision (Figure 8.a). Queries Q5, Q7 and Q8 are typical examples, where
all relevant answers were missed by the system, when disregarding semantics
(PR=R=F-value=0). However, the impact of semantic similarity evaluation seemed to
decrease when searching geographic data based on their geometric attributes (e.g.,
coordinates) rather than textual descriptions, which was expected.

On the other hand, a major difference between the results achived with and without
semantic similarity evaluation is relevance ranking. While single answers were
usually obtained (for each query) when disregarding semantics and relying solely on
GML data structure, the integration of semantic similarity resulted in the generation
of a ranked set of answers, underlining their semantic similarities w.r.t. the geo-
concepts in the query at hand. Ranking results are depicted in the PR/R graphs of
Figure 9. Figures 9.a and 9.b show rather regular PR/R curves (precision decreasing
gradually with the increase of recall), with queries Q1 and Q3 (Figure 9.a) clearly
reflecting higher retrieval quality than their counterparts in Figure 9.b. Nontheless,
some queries (e.g., Q5, Q7 and Q9 of Figure 9.c) underlined relatively poor ranking
capabilities, the system identifying and ranking non relevant answers (CATs) prior to
relevant ones (precision starting at zero, and then increasing gradually w.r.t. recall, as
relevant answers are added to the answer set). Further experiments are being
conducted to analyze this effect, making use of dedicated relevance ranking metrics
such as Kendall’s tau and Spearman’s footrule [2].

In addition, we have conducted timing experiments to verify the time complexity
of the query evaluation process. Results show that the approach is linear in the size of

32 J. Tekli et al.

Fig. 9. PR/R graphs, obtained with semantic similarity evaluation

each of the query/data trees, as well as the size of the reference semantic network,
when semantics comes to play, i.e., O(|Q|×|CAT|×max(|SNGeo|, |SNText|)). Compexity
graphs were omitted due to lack of space. Details concerning all experimental results
are available online3.

6 Conclusion

GML has been gaining growing attention as an effective means for geographic data
representation and exchange in GISs on the Web. In this paper, we introduce the
building blocks for an approximate GML retrieval method, considering both structural
and semantic features of GML data, in the query evaluation process. Our query
formalism is based on approximate tree matching as a simple and efficient technique
to query GML. It allows the formulation of structure-and-content queries with only
partial knowledge of the data collection structure and semantics, and enables both
template and minimum constraint querying.

Preliminary experiments are promising, and underline the impact of semantic
similarity on the query evaluation process. We are currently expanding our data testbed,
in order to conduct more extensive experiments, also testing the ranking capabilities of
the proposed methods using dedicated relevance ranking metrics such as Kendall’s tau
and Spearman’s footrule [2]. We are also developing a web-based GUI to support the
user in formulating queries, dynamically suggesting, following the corresponding input
GML schema, the list of possible query nodes following the context of the query at
hand. Considering spatio-temporal relations and predicates remains an obvious
upcoming step. In this context, it might be interesting to extend our tree model to a more
generic graph model, encompassing spatio-temporal links between geographic features,
and thus try to adapt our tree edit distance algorithm accordingly.

References

[1] Amer-Yahia, S., Lakshmanan, L., Pandit, S.: FleXPath: Flexible Structure and Full-Text
Querying for XML. In: Proc. of the ACM Inter. Conf. on Management of Data
(SIGMOD), pp. 83–94 (2004)

[2] Bar-Ilan, J.: Comparing rankings of search results on the Web. Information Processessing
and Management (41), 1511–1519 (2005)

3 At http://www.u-bourgogne.fr/DbConf/GMLSearch

 Toward Approximate GML Retrieval Based on Structural 33

[3] Chawathe, S.: Comparing Hierarchical Data in External Memory. In: Proceedings of
VLDB, pp. 90–101 (1999)

[4] Dalamagas, T., et al.: A Methodology for Clustering XML Documents by Structure.
Information Systems 31(3), 187–228 (2006)

[5] Ferri, F., Grifoni, P., Rafanelli, M.: The Management of Spatial and Temporal
Constraints in GIS using Pictorial Interaction on the Web. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 92–105. Springer, Heidelberg (2004)

[6] Fuhr, N., Großjohann, K.: XIRQL: A Query Language for Information Retrieval. In:
Proc. of the ACM-SIGIR Conference, pp. 172–180 (2001)

[7] Grabs, T., Schek, H.-J.: Generating Vector Spaces On-the-fly for Flexible XML
Retrieval. In: Proc. of ACM SIGIR Workshop on XML and Information Retrieval, pp.
4–13 (2002)

[8] Guo, L., et al.: XRANK: ranked keyword search over XML documents. ACM SIGMOD,
16–27 (2003)

[9] Hammiche, S., et al.: Semantic Retrieval of Multimedia Data. In: ACM MMDB
Workshop, pp. 36–44 (2004)

[10] Jones, C., Purves, R.: Geographic Information Retrieval. J. of Geo. Info. Science 22(3),
219–228 (2008)

[11] Larson, R.: Geographic Information Retrieval and Spatial Browsing. In: GIS and
Libraries: Patrons Maps and Spatial Information, pp. 81–124 (1996)

[12] Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. of the ICML
Conference, pp. 296–304 (1998)

[13] Maguitman, A., et al.: Algorithmic Detection of Semantic Similarity. In: WWW
Conference, pp. 107–116 (2005)

[14] Marian, A., et al.: Adaptive Processing of Top-k Queries in XML. In: ICDE Conference,
pp. 162–173 (2005)

[15] Miller, G.: WordNet: An On-Line Lexical Database. International Journal of
Lexicography 3(4) (1990)

[16] Motro, A.: Vague: A User Interface to Relational Databases that Permits Vague Queries.
ACM Transactions on Office Information Systems 6(3), 187–214 (1988)

[17] Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In:
Proc. of the ACM WebDB Workshop, pp. 61–66 (2002)

[18] Open Geospatial Consortium. Geography Mark-up Language,
http://www.opengeospatial.org/standards/gml

[19] Paul, M., Gosh, S.K.: An Approach for Geospatial Data Management for Efficient Web
Retrieval. In: Proc. of the 6th IEEE International Conference on Computer and
Information Technology (2006)

[20] Pokorny, J., Rejlek, V.: Databases and Info. Systems, Frontiers in Artificial Intelligence
and Applications. In: Barzdins, J., Caplinskas, A. (eds.) A Matrix Model for XML Data,
pp. 53–64. IOS Press, Amsterdam (2005)

[21] Rodriguez, M.A., Egenhofer, M.J.: Comparing Geospatial Entity Classes: an Asymmetric
and Content-Dependent Similarity Measure. Journal of Geographical Information
Science 18(3), 229–256 (2004)

[22] Salton, G.: The SMART Retrieval System. Prentice Hall, New Jersey (1971)
[23] Schlieder, T.: Similarity Search in XML Data Using Cost-based Query Transformations.

In: Proc. of the International ACM WebDB Workshop, pp. 19–24 (2001)
[24] Schlieder, T., Meuss, H.: Querying and Ranking XML Documents. Journal of the

American Society for Information Science, Special Topic XML/IR 53(6), 489–503
(2002)

34 J. Tekli et al.

[25] Tekli, J., Chbeir, R., Yetongnon, K.: Extensible User-based Grammar Matching. In: ER
Conf., pp. 294–314 (2009)

[26] Tekli, J., Chbeir, R., Yetongnon, K.: Efficient XML Structural Similarity Detection using
Sub-tree Commonalities. In: Brazilian Symposium on Databases (SBBD) and SIGMOD
DiSC, pp. 116–130 (2007)

[27] Torres, M., et al.: Retrieving Geospatial Information into a Web-Mapping Application
using Geospatial Ontologies. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C.
(eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 267–277. Springer, Heidelberg
(2007)

[28] World Wide Web Consortium. The Document Object Model (DOM) (May 2009),
http://www.w3.org/DOM

[29] Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: Proc. of the 32nd Annual
Meeting of the Associations of Computational Linguistics, pp. 133–138 (1994)

[30] Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity Metric in XML Documents. In: Knowledge
Management and Experience Management Workshop (2003)

[31] Zhu, F., Guan, J., Zhou, J., Zhou, S.: Storing and Querying GML in Object-Relational
Databases. In: Proc. of the 14th Annual ACM Inter. Symp. on Advances in Geographic
Information Systems, pp. 107–114 (2006)

Advancing Search Query Autocompletion
Services with More and Better Suggestions

Dimitrios Kastrinakis1 and Yannis Tzitzikas1,2

1 Computer Science Department, University of Crete, Greece
2 Institute of Computer Science, FORTH-ICS, Greece

{kastrin,tzitzik}@csd.uoc.gr

Abstract. Autocompletion services help users in formulating queries by
exploiting past queries. In this paper we propose methods for improv-
ing such services; specifically methods for increasing the number and
the quality of the suggested “completions”. In particular, we propose a
novel method for partitioning the internal data structure that keeps the
suggestions, making autocompletion services more scalable and faster.
In addition we introduce a ranking method which promotes a suggestion
that can lead to many other suggestions. The experimental and empirical
results are promising.

1 Introduction

Search query autocompletion is the process of computing in real time and sug-
gesting to the user words or phrases which can complete the query that the user
has already typed, on the basis of user queries which have been submitted in
the past. This feature is very useful and popular in several domains and systems
[6,15,16,5,1]. Initially it was used in the Amazon web site [15], providing sugges-
tions for products related to the product a user is searching for. It has also been
applied to provide thesaurus based suggestions [3]. Nowadays, web browsers (e.g.
Mozilla Firefox) use this feature when the user is typing a URL in the address
bar or completing forms, according to recent history. The same applies for the
“Tab” key when using a command line interpreter (i.e. sh or bash shell in Unix).
Autocompletion has been proposed also for assisting the formulation of faceted-
search queries [5] and underspecified SQL Queries [14]. Semantic autocompletion
[11] interfaces have recently become prevalent in semantic search and annota-
tion applications. Other fields where autocompletion is involved include e-mail
clients, source code editors, word processors, etc. Another notable application of
autocompletion is in the field of mashups [1]. However, the most common and
widely known use of autocompletion is the autosuggest feature used by Google,
Yahoo!, Bing or Ask search engines. In this case, a user can see the most popular
searches starting with the string currently being typed.

In the context of a WSE (Web Search Engine), the suggested completions are
useful because in many cases the user does not know what words to use or how
to describe his information need. Apart from that, this feature allows the user

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 35–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 D. Kastrinakis and Y. Tzitzikas

to find out, without any additional effort from his side, what is popular among
the internet users given the current input string, as well as the number of hits
that he will get if he submits each of the suggested queries. Our objective is to
increase the number and the quality of suggested completions.

To increase the number of possible suggestions we need scalable data struc-
tures. Current techniques require loading in main memory a data structure based
on the contents of the entire query log. However, for very large log files, this ap-
proach would occupy too much main memory space (or may not fit in main
memory at all) and loading it would require much time. To tackle this problem,
we propose a novel method for partitioning this data structure which allows
loading only the fragment that is suitable for providing suggestions on the cur-
rent input entered by a user. This approach is more scalable and it is faster since
loading a fragment of the data structure requires less time.

Another key aspect for the success of autocompletion services is how the
suggestions are ranked, since only a small number of the possible completions
(usually less than 10) are prompted. In this paper we propose a ranking method
which promotes those queries which are popular and are prefixes of other popular
queries. We justify the advantages of this method by measurements over the
query log of a real WSE.

In a nutshell, the key contribution of our work lies in: (a) showing how parti-
tioning can enhance the scalability of autocompletion services and (b) proposing
a new ranking method which promotes a query which is a prefix of other queries
and if submitted, a relatively large number of results is retrieved. The rest of this
paper is organized as follows. Section 2 discusses background. Section 3 elabo-
rates on partitioning while Section 4 elaborates on ranking. Finally, Section 5
concludes and summarizes the advantages of the proposed methods.

2 Background and Related Work

Typically a WSE maintains a log file consisting of tuples of the form:
[ip addr, date, query, res num], where ip addr is the IP address of the user who
submitted the query, date is the date when the query was submitted, query is the
query string submitted and res num is the number of results this query yields.
Of course, not every single query should be loaded from the log file. There are
two main conditions that are usually adopted as filters for the queries (see Figure
1): (a) a query must not be more than D days old (e.g. a week) and (b) a query
must not yield a null query result.

The queries (as well as their popularity scores) that satisfy the above condi-
tions have to be inserted in a data structure with low complexity of retrieval,
specifically O(n) for a string of n characters. The most appropriate data struc-
ture is a tree where every node contains a character. A query of n characters
requires n nodes for insertion, one node in each level of the tree. This type of tree
is called trie. An example of inserting queries in a trie is depicted at Figure 3a.

Let’s now describe the on-line process. Consider a user who through a browser
is typing a query in the query text box of a WSE which is equipped with an

Advancing Search Query Autocompletion Services 37

Fig. 1. Loading queries from the log file

autocompletion mechanism. Below we describe the chain of events that will
occur. At first, the user types an input string str in the appropriate field (see
Figure 2). The autocompletion client reads that string whenever a new keystroke
occurs. Then, it is sent to the server that deploys the server side autocompletion
component of the search engine, using asynchronous methods like AJAX [7].
Next, str is given as input for the trie, descending to the node containing its
last character. A Depth First Search (see Figure 3b) is then applied below that
node, collecting all past queries starting with str. The collected suggestions are
ranked by their popularity score. Lastly, the server sends the top-k suggestions
to the user.

Fig. 2. Chain of events when auto completing a search query

3 Trie Partitioning

If the log file is very large, the trie containing the logged queries could be too
big to fit in main memory. Even if the trie does fit in main memory, we may still
want to reduce its main memory requirements in order to exploit the saved mem-
ory space for other reasons, e.g. for result caching [9] or inverted list caching [13].

38 D. Kastrinakis and Y. Tzitzikas

(a) Insertion of “cocoa”, “coffee”, “jam”
and “juice” in a trie

(b) Retrieving suggestions “jam” and
“juice” from current input“j”

Fig. 3. An example of inserting and retrieving data from a trie for autocompletion
purposes

Except for space requirements, loading a huge trie can take a significant amount
of time. This is a major issue when dealing with autocompletion because a user
wants to see suggestions during typing. This means that the total time interval
between a keystroke and the visualization of suggestions must be short (less than
1 sec). Besides, we have to take into account that loading a trie from the disc
(if we have not already loaded it) is only one of the steps required (we have to
be aware of the delays during packet transfer, server load, etc.). Therefore we
should be able to keep the trie at a convenient size based on our space and time
constraints.

3.1 The Proposed Solution

Instead of keeping suggestions in one trie, we propose partitioning it into two or
more subtries. Eventually, the autocompletion mechanism will be using a forest
of tries, each time loading the proper one based on the user input. The rising
question is how should we partition the trie. At this point we should note that
tree partitioning methods [12] have been applied mainly to indexing structures
of database applications [2,10,8]. For instance, space-partitioning trees have been
implemented and realized inside PostgreSQL [8], resulting in performance gains.

Partitioning by Starting Characters: Here we propose a partitioning
method that is based on the starting characters (see Figure 4). Each subtrie
contains queries whose starting characters belong to a specified set of charac-
ters assigned to this trie. For example, if we assume that the query log contains
queries starting with latin characters only, then we can divide a trie into two
subtries: one containing all queries str where str[0] ∈ {a, b, . . . , m} and another
containing all strings str where str[0] ∈ {n, o, . . . , z}. Let A = {a1, . . . , an} be
the set of the first characters of queries loaded from the log file, so the maximum
number of tries is |A|. We can partition A to m (m ≤ |A|) subsets p1, . . . , pm,
where pi ∩ pj = ∅, i �= j. Each pi is used for determining which strings are to be

Advancing Search Query Autocompletion Services 39

inserted in a specific subtrie. Specifically, each pi is associated with a trie that we
will denote by tri. This association can be maintained by an index file that maps
each partition pi to a subtrie tri. Let P = {p1, . . . , pm} be the set that contains
these subsets and let T = {tr1, . . . , trm} be the set of all such tries. In section 3.2
we will propose a generalization of this method for the first k characters, which
provides additional advantages. We should mention at this point that related
works on trie partitioning, such as those proposed in [4], are not applicable for
autocompletion because the length of the query string is progressively increasing
(it is not fixed or a priori-known as it is assumed in [4]).

Fig. 4. Partitioning a trie based on the starting characters of inserted strings

3.2 Distributing the Starting Characters

The question that now arises is how we should form the partition P . We should
not do this arbitrarily; imagine having 2 subtries and assigning: {a, b, . . . , k} to
tr1 and {l, m, . . . , z} to tr2. Assume that the majority of queries in the log file
start from the letters: ’m’, ’n’, ’s’, ’t’, ’o’. This means that tr2 will be significantly
larger than tr1. This case is not better than keeping a single trie (because the
size of tr2 could be almost the size of the entire trie, and tr2 could also be too big
to host in main memory). In fact it is worse, because we may have to load the
correct trie for a certain query, further delaying the appearance of suggestions to
the user. Ultimately, a distribution of characters must be as smooth as possible,
so that the tries eventually become of similar size.

Firstly, we analyze the query log file by counting the number of appearances
of every starting character of each query. Specifically for every starting character
c we compute its frequency freq(c). Let NTries be the number of subtries that
we have decided to create, and |Q| be the number of queries in the log file. To
obtain a uniform distribution we would like avg = |Q|

NTries queries to be inserted
to each subtrie. One simple approach would be to assign n starting characters
to a partition pi until

n∑
i=1

(freq(ci)) ≥ avg .

40 D. Kastrinakis and Y. Tzitzikas

Fig. 5. Creating the partitions

(a) Distribution of first letters in English (b) Distribution of first letters in Greek

Fig. 6. Distributions of first letters in English and Greek

Figure 5 shows a simple example, where Q = {”blue”, ”bulb”, ”grape”, ”vial”},
|Q| = 4 and NTries = 2, so avg = 4/2 = 2. Partitions will be created as follows:
p1 = {b} and p2 = {g, v}. So tr1 = {blue, bulb} and tr2 = {grape, vial}.

However the above method is effective if the number of queries that start
from a certain character are less than avg. Moreover the distribution of the first
letters greatly affect the uniformity of the subtrie-sizes that we can achieve. To
clarify this aspect we used natural language dictionaries to count the distribu-
tion of the first characters. For instance, Fig. 6a shows the distribution of the
first characters for the English language. The letter ’s’ is the first in 16,104 out
of 150,843 words contained in the dictionary, therefore 10.68% of English words
start with ’s’. Figure 6b shows the distribution of Greek words. There are 102,201
words starting with α out of 574,737 words contained in the dictionary, there-
fore 17.78% of Greek words start with α. Fig. 7 shows the distribution of starting

Advancing Search Query Autocompletion Services 41

Fig. 7. Distributing queries by first characters, having used a query log from the Excite
search engine

characters in queries stored in a log file1. Again, ’s’ is the most frequent first
letter, appearing in 8.2% of all the queries.

The above facts motivate an alternative method for partitioning: instead of
distributing queries by their first characters only, we distribute them based on
their first k characters. This allows achieving smoothness even if we have a
character c such that frec(c) > avg. For example, instead of creating a sin-
gle partition for ’s’, multiple partitions of ’s’ are created based on the next
letter (if k = 2). Since each subtrie now corresponds to a prefix of k char-
acters, no suggestions are computed for the first k − 1 characters of the user
input.

The exact algorithm for partitioning is shown in Fig. 8. At first it collects all
possible prefixes of k characters from the query log and counts their frequency.
Then it creates a partition and keeps populating it until the total frequency
becomes greater than the desired partition capacity. After that, a new partition
is created and so on. Notice that A is sorted lexicographically and each pi ∈ P
is characterized by the range of prefixes that have been associated to it. For
example, suppose that k = 2 and pi has been associated to ”sa”, ”se” and ”so”.
In this case only ”sa” and ”so” are kept, meaning that the queries that will be
assigned to subtrie tri are those whose prefix is in the range [”sa”, . . . , ”so”].
Also notice that the algorithm does not require building and keeping the entire
trie in main memory. After collecting the k-prefixes it reads the queries from the
1 The log contained queries submitted to the Excite (March 13, 1997) search engine.

URL: www.excite.com

42 D. Kastrinakis and Y. Tzitzikas

Alg. Distribute k F irst Characters to Partitions
Input: k, Capacity // the desired partition capacity in queries,
QL // log file with all submitted queries.
Output: P = {p1, . . . , pm}.
(1) A = ∅;
(2) for each query q ∈ QL do
(3) a = q[1 . . . k]; // a holds the first k chars of q
(4) if a ∈ A then a.frequency = a.frequency + 1;
(5) else
(6) a.frequency = 1;
(7) A = A ∪ {a};
(8) end if;
(9) end for;
(10) sort(A); // lexicographically
(11) i = j = 0;
(12) while i < |A|
(13) j + +;
(14) while pj .size < Capacity
(15) i + +;
(16) pj = pj ∪ {ai};
(17) pj .size = pj .size + ai.frequency;
(18) end while;
(19) pj .min = minlex(pj); // the minimum lexicographically
(20) pj .max = maxlex(pj); // the maximum lexicographically
(21) pj .clear(); // we keep min and max only
(22) end while;
(23) return P ;

Fig. 8. Algorithm for distributing the k first characters of the logged queries to each
pi. Complexity: O(nk + mk log m) where n = |QL|, m = |A|, and obviously m ≤ n.

log file and distributes them to the appropriate partition. The above method of
partitioning has to be repeated periodically.

3.3 Measurements

In this section we report experimental measurements2. We used the query log
from the Excite search engine which contained ∼ 25, 500 distinct queries. For
this data set we created various possible partitionings with k = 1 comprising 2, 3,
4, . . . , 10 and 66 subtries (with k = 1 there are 66 distinct first characters in the
log, i.e |A| = 66). Let LT be the time required to determine which trie to load,
load that trie, and return the top 10 suggestions. For each case we computed the
average LT of the generated tries as follows:

avg LTTn =

∑
tr∈Tn

LTtr(c)
|Tn|

,

2 Programming Language: Java, Platform: CPU: Intel Core 2 Duo E6750 @ 2.66GHz,
4GB RAM, 2x 10,000RPM RAID0 disks, OS: Windows 7 x64.

Advancing Search Query Autocompletion Services 43

Fig. 9. Average LT for 1, 2, . . . , 10 and 66 partitions and k = 1

where c is a single character given as input for the trie tr in order to get sugges-
tions, Tn = {tr1, . . . , trn}, n ∈ {2, . . . , 10, 66}. The measured times are shown in
Fig. 9. Compared to non-partitioning, with 66 subtries and k = 1 we achieve a
Speedup = avg LTT0

avg LTT66
= 4000

233 	 17.1 meaning that the partitioning is 17 times
faster.

Fig. 10a shows how characters were distributed when partitioning was based
on the first character only (k = 1), the first two characters (k = 2), and the
first three characters (k = 3). The desired number of queries per partition
was avg = |Q|

NTries = 25,500
66 	 386, so the ideal distribution would have 386

queries per partition. Fig. 10b shows how ”close” we are to the ideal distribu-
tion for k = 1, . . . , 5, by plotting the standard deviation for each distribution,

(σ =
√

1
N

∑N
i=1(xi − μ)2, where N = NTries, each xi represents the number of

queries in partition i, and μ is the mean value of these numbers). It is obvious
from the plots, with k ≥ 2, the distribution is dramatically smoother (closer to
the ideal) than in the case of k = 1.

Synopsizing, we have seen that partitioning by the starting k-characters can
lead to uniform in size subtries, which is crucial for respecting main memory
constraints and reducing load times. The bigger k is, the smoother the distri-
bution of queries to subtries becomes. The only drawback of a high k value is
that we may not be able to compute suggestions for user inputs of size less
than k − 1 characters. For example, suppose that k = 2 and assume that
P = {[ab − az], [ba − bi], [bl − bz], ...}. If the user types “b” we cannot com-
pute suggestions using one subtrie because b is distributed to the second and
third trie, so we have to wait until the user types another character. Notice how-
ever, that if the user types “a” then we can compute suggestions since “a” is
covered entirely by the first subtrie.

44 D. Kastrinakis and Y. Tzitzikas

(a) Distributing queries to each partition for
k = 1, 2, 3

(b) Standard deviation of distributions for
k = 1, . . . , 5

Fig. 10. Distributing queries to partitions

4 Ranking Suggestions

Another key aspect for the success of an autocompletion service is how the
suggestions are ranked, since only a small number of the possible completions
are prompted. One might think of several criteria that could be used (in isolation
or in aggregation) for ranking suggestions, e.g. popularity, number of results, etc.
In this section we propose ranking methods that are based on both popularity
and number of results and also promote those queries which are popular and are
prefixes of other popular queries.

The computation of popularity is based on the contents of the query log file.
However note that just counting the submissions of a certain query from the
log file is not sufficient; imagine a user of a search engine entering a certain
query 1,000 times. For this reason we count only those submissions coming from
distinct sources only, specifically distinct IP addresses3, therefore the query log
contains IP addresses.

Let q � q′ denote that q is a prefix of q′. Let qu denote the query the user has
typed. We want to assign a score to each candidate completion q (where qu � q).
First we introduce a metric that takes into account popularity and answer size:

PopSize(q) =
freq(q)

MAX freq
· res num(q)
MAX res num

(1)

where

– freq(q) is the number of distinct IP addresses that have submitted q,
– MAX freq is the maximum frequency of the queries in the log,

3 Distinct IP addresses do not necessarily imply distinct users. It is just a simple mean
of approaching the number of distinct users that entered a certain query.

Advancing Search Query Autocompletion Services 45

– res num(q) is the number of results the query q yields,
– MAX res num is the maximum number of results of the queries.

The above formula assumes that all queries are independent. However some
queries are prefixes of other queries and this observation should be taken into ac-
count. For example, consider the queries q1 = ”music” q2 = ”music composers”,
q3 = ”mammals”, q4 = ”mammals from Africa”, and assume that all of them
have the same popularity. Now suppose that we have to compute the top-2 sug-
gestions. The queries q1 and q3 are good candidates since each is a prefix of
another popular query (of q2 and q4 respectively).

Let Reach(q) be the set of all queries that have q as a prefix, i.e. Reach(q) =
{ q′ | q � q′}. To exploit the above observation, here we propose another ranking
formula, PopSizeReach defined as:

PSR(q) = a ∗ PopSize(q) + b ∗ 1
|Reach(q)|

∑
q′∈Reach(q)

PopSize(q′) , (2)

where a and b are constants that range in (0,1) and a + b = 1. The second part
of the formula is the average PopSize of the queries that have q as prefix.

An alternative approach is to increase the score gained for queries having large
Reach(q) by removing 1

|Reach(q)| :

PSR2(q) = a ∗ PopSize(q) + b ∗
∑

q′∈Reach(q)

PopSize(q′) , (3)

A probabilistic approach is also possible. Here we want to assign a score to each
q (where qu � q) that reflects the probability that the user will select q if he
has typed qu. The estimation of the probability is again based on the log file.
Specifically, we define

Score(q) =
DeepFreq(q)∑

qu�q′ DeepFreq(q′)
(4)

where DeepFreq(q) = freq(q) +
∑

q�q′ freq(q′).
Table 1 and 2 show the suggestions produced by the first two formulas when

typing the query ”books” and ”news” respectively using the Excite query log.
In this case, the computation of popularity ignored the number of results of
each query because this information was not available in the query log. Because
of this, (3) and (4) behave the same, producing identical suggestion rankings.
Therefore only (4) is included in the tables. In Table 1, a notable change in
ranking is ”bookstore”, which is 7th using (1) and first using (2). Similarly,
in Table 2 ”news” is 4th using (1), 3rd using (2) and 1st using (4). On the
other hand, a long query has less probability of having many other queries that
contain it as prefix. This fact is depicted in Table 2, where ”newspaper vancouver
washington” is 3rd using (1) but only 6th using (2).

However, the above examples are just indicative and they do now allow us to
draw safe conclusions regarding these formulas. To evaluate a ranking method

46 D. Kastrinakis and Y. Tzitzikas

Table 1. Actual suggestion rankings for query “books” using formulae (1), (2) and (4)

(1) (2), a = 0.5, b = 0.5 (4)

bookstores and catalogue
and 1-800

bookstore books

books bookstores and catalogue
and 1-800

bookstore

books a million books bookstores and catalogue
and 1-800

books and titles books a million books a million
books on tape books and titles books and titles
books: crime and punish-
ment

books on tape books on tape

bookstore books: crime and punish-
ment

books: crime and punish-
ment

Table 2. Actual suggestion rankings for query ”news” using (1), (2) and (4)

(1) (2), a = 0.5, b = 0.5 (4)

newspaper clark county
washington

newspaper clark county
washington

news

newspapers newspapers newspaper
newspaper vancouver wash-
ington

news newspaper clark county
washington

news newspaper newspapers
news and server newsgroups newsgroups
news group newspaper vancouver wash-

ington
newspaper vancouver wash-
ington

newsgroups news and server news and server
newspaper book reviews news group news group

through a user study is a laborious and expensive task and often yields results
which are not repeatable. In general we can say that there is not yet any formal
methodology and method for evaluating ranking methods for query completions.
For instance [3] mentions a user study but does no report any concrete results,
while the majority of works on autocompletion (e.g. [5]) focus on efficiency and
the quality of suggestions is by no means evaluated. For this reason, we introduce
a metric that can measure the predictive power of a ranking method. The key
point is that it requires as input only a query log. The main idea is the following:
we use a prefix of a submitted query and then measure the rank of the whole
query in the list of completions suggested (and ranked) by the ranking formula
under evaluation. It follows that a ranking formula f is better than a ranking
formula f́ if the ranks yielded by f are lower than those of f́ .

Advancing Search Query Autocompletion Services 47

Fig. 11. Comparing the ranking methods using the difference of Goodness for each
ranking method

Let q[k] denote the k-char prefix of a query q of the log file. We shall use
Rank(1)(q, q[k]) to denote the position of q in the suggestions produced by for-
mula (1) if we sort them in descending order. For example, if q = ”company”,
q[2] = ”co” and the suggestions produced by formula (1) are
〈core, computer, company, car〉 then Rank(1)(”company”, ”co”) = 3. The less
Rankf (q, q[k]) is, the better formula f behaves assuming the given log file. To
take into account all queries of a query log, we define the ”goodness” of a scoring
formula f over a query log Q as follows:

Goodness(Q, f) =
∑
q∈Q

Rankf (q, q[k])

As our objective is to comparatively evaluate scoring functions, it is not necessary
to make any kind of normalization. A formula f is better than a formula f́ if
Goodness(Q, f) < Goodness(Q, f́). Of course, one could generalize and consider
all prefixes of q, not only one (i.e. the k-char prefix).

Returning to the problem at hand, we applied the above metric on formulas
(1), (2), (3) and (4) for k = 1, . . . , 10, using the Excite query log. Here, Q was ac-
cessed as a set that contained the distinct submitted queries, so duplicate queries
were not included in ranking. Fig. 11 shows the plot of Goodness(Q, (1)) −
Goodness(Q, (2)) and the plot of Goodness(Q, (1)) − Goodness(Q, (4)). Since
the latter plot is higher than the first, it follows that (4) is better than (2), and
this holds for all values of k = 1, . . . , 10 (since both plots are positive, both (4)
and (2) are better than (1)). The reason we did not include Goodness(Q, (1))−
Goodness(Q, (3)) in the plot was the unavailability of the number of results
each query yields in the Excite log. Therefore (3) and (4) behave the same and
produce the same Goodness results.

Another aspect of a ranking method is the amount of time required for com-
puting the scores. Table 3 reports the times required for each ranking method
using the Excite log (which contained ∼ 25, 500 distinct queries). Since we want
to return suggestions to the end user in real time (otherwise the autocompletion

48 D. Kastrinakis and Y. Tzitzikas

Table 3. Time consumed while computing scores for every ranking formula

PopSize (1) PopSizeReach (2) PopSizeReach2(3) DeepFreq (4)

∼ 0.35s ∼ 60s ∼ 60s ∼ 54s

feature would be useless), we pre-compute the scores for every query stored in
the log and this is done off-line by the autocompletion server as shown in Fig. 1.
In this way the computation of query completions is almost instant.

5 Concluding Remarks

To make autocompletion services more scalable, we proposed a method for parti-
tioning the trie of logged queries. This partitioning allows increasing the number
of suggestions that can be hosted, and speeding up their computation at real
time. As an example, consider an amount of main memory sufficient for hosting
25,500 different suggestions. By partitioning the trie with respect to the first
character (i.e. k = 1), the same amount of memory can host 1,659,027 more sug-
gestions, i.e. almost two orders of magnitude more, and the loading time is 17.1
times shorter. Since the first characters are not uniformly distributed in natural
languages, we proposed a partitioning that is based on the first k characters
which can be used for yielding uniform in size subtries.

Finally, we proposed a novel method for ranking suggestions, where the score
of each suggestion depends on (a) its popularity (distinct submissions), (b) the
number of results it yields if submitted, and (c) the suggestions that contain the
current suggestion as prefix. To comparatively evaluate such ranking functions
we introduced a metric measuring the predictive power of a ranking method
and we identified the ranking method that prevails over a query log file of a
real WSE. To the best of our knowledge no other work has elaborated on index
partitioning or structure-aware ranking. We believe that these techniques can
enhance autocompletion services in various applications.

References

1. Abiteboul, S., Greenshpan, O., Milo, T., Polyzotis, N.: Matchup: Autocompletion
for mashups. In: IEEE International Conference on Data Engineering, Shanghai,
China, pp. 1479–1482 (2009)

2. Aref, W.G., Ilyas, I.F.: Sp-gist: An extensible database index for supporting space
partitioning trees. Journal of Intelligent Information Systems 17(2-3) (December
2001)

3. Arias, M., Cantera, J.M., Vegas, J.: Context based personalization for mobile web
search. In: VLDB ’08 (August 2008)

4. Baberwal, S., Choi, B.: Speeding up keyword search for search engines. In: 3rd
IASTED International Conference on Communications, Internet, and Information
Technology, St. Thomas, US Virgin Islands, pp. 255–260 (November 2004)

Advancing Search Query Autocompletion Services 49

5. Bast, H., Weber, I.: When you ’re lost for words: Faceted search with autocom-
pletion. In: SIGIR ’06 Workshop on Faceted Search, Seattle, Washington, USA
(August 2006)

6. Bowman, D.E., Ortega, R.E., Hamrick, M.L., Spiegel, J.R., Kohn, T.R.: Refining
search queries by the suggestion of correlated terms from prior searches. Patent
Number: 6,006,225 (December 1999)

7. Draganova, C.: Asynchronous javascript technology and xml (ajax),
http://www.myacrobatpdf.com/6319/asynchronous-javascript-

technology-and-xml-ajax.html

8. Eltabakh, M.Y., Eltarras, R., Aref, W.G.: To trie or not to trie? realizing space-
partitioning trees inside postgresql: Challenges, experiences and performance. In:
Procs. of the 31st VLDB Conference, Trondheim, Norway (2005)

9. Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of web
search engines Caching and prefetching query results by exploiting historical usage
data. ACM Transactions on Information Systems (TOIS), 51–78 (2006)

10. Ghanem, T.M., Shah, R., Mokbel, M.F., Aref, W.G., Vitter, J.S.: Bulk operations
for space-partitioning trees. In: 20th International Conference on Data Engineering
(March 2004)

11. Hyvonen, E., Makela, E.: Semantic autocompletion. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 739–751. Springer,
Heidelberg (2006)

12. Jacquet, P., Regnier, M.: Trie partitioning process: Limiting distributions, vol. 214.
Springer, Heidelberg (1986)

13. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proceedings of the 17th international conference on World Wide
Web, Beijing, China (April 2008)

14. Mason, T., Lawrence, R.: Auto-completion of Underspecified SQL Queries.
Springer, Heidelberg (2006)

15. Ortega, R.E., Avery, J.W., Frederick, R.: Search query autocompletion. Patent
Number: US 6,564,213 B1 (May 2003)

16. Whitman, R.M., Scofield, C.L.: Search query refinement using related search
phrases. Patent Number: US 6,772,150 B1 (August. 2004)

http://www.myacrobatpdf.com/6319/asynchronous-javascript-technology-and-xml-ajax.html
http://www.myacrobatpdf.com/6319/asynchronous-javascript-technology-and-xml-ajax.html

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 50–65, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Designing Service Marts for Engineering Search
Computing Applications

Alessandro Campi, Stefano Ceri, Andrea Maesani, and Stefania Ronchi

Politecnico di Milano, Italy
{campi,ceri,maesani,ronchi}@elet.polimi.it

Abstract. The use of patterns in data management is not new: in data
warehousing, data marts are simple conceptual schemas with exactly one core
entity, describing facts, surrounded by multiple entities, describing data analysis
dimensions; data marts support special analysis operations, such as roll up, drill
down, and cube. Similarly, Service Marts are simple schemas which match
"Web objects" by hiding the underlying data source structures and presenting a
simple interface, consisting of input, output, and rank attributes; attributes may
have multiple values and be clustered within repeating groups. Service Marts
support Search Computing operations, such as ranked access and service
compositions. When objects are accessed through Service Marts, responses are
ranked lists of objects, which are presented subdivided in chunks, so as to avoid
receiving too many irrelevant objects – cutting results and showing only the
best ones is typical of search services. This paper gives a formal definition of
Service Marts and shows how Service Marts can be implemented and used for
building Search Computing applications.

1 Introduction

Search Computing is a new paradigm for composing search services [7]. While state-
of-art search systems answer generic or domain-specific queries, Search Computing
enables answering questions via a constellation of cooperating search services, which
are correlated by means of join operations. Search Computing aims at responding to
queries over multiple semantic fields of interest; thus, Search Computing fills the gap
between generalized search systems, which are unable to find information spanning
multiple topics, and domain-specific search systems, which cannot go beyond their
domain limits. Paradigmatic examples of Search Computing queries are: “Where can
I attend an interesting scientific conference in my field and at the same time relax on a
beautiful beach nearby?”, “Where is the cinema closest to my hotel, offering a high
rank action movie and a near-by pizzeria?”, “Who is the best doctor who can cure
insomnia in a nearby public hospital?”, “Which are the highest risk factors associated
with the most prevalent diseases among the young population?” These queries cannot
be answered without capturing some of their semantics, which at minimum consists in
understanding their underlying domains, in routing appropriate query subsets to each
domain-expert search engine, and in combining answers from each engine to build a
complete answer that is meaningful for the user.

 Designing Service Marts for Engineering Search Computing Applications 51

A prerequisite for setting such goal is the availability of a large number of valuable
search services. We could just wait for SOA (Service Oriented Architecture) to
become widespread. However, few software services are currently designed to
support search, and moreover a huge number of valuable data sources (the so called
“long tail” of Web information) are not provided with a service interface. In this
paper, we therefore focus on the important issue of publishing service interfaces
suitable for Search Computing so as to facilitate the widespread use of data sources
on the Web and to simplify their integration in Search Computing applications. At
the basis of our work, we observe the pervasive role of software services and SOA1.
While the SOA principles are becoming widespread, however, we observe distinct
standards, languages, and programming styles. Thus, the SOA vision is developed in
a variety of directions, and we emphasize the relevance of supporting ordered queries
upon data sources, by means of a new pattern.

In the framework of Search Computing, we define a Service Mart as the data
abstraction for data source publication and composition. The goal of a Service Mart is
to ease the publication of a special class of software services, called search services,
whose responses are ranked lists of objects. Every Service Mart is mapped to one
“Web object” available on Internet; therefore, we may have Service Marts for
“hotels”, “flights”, “doctors”, and so on. Thus, Service Marts are consistent with a
view of the “internet of objects” which is gaining popularity as a new way to
reinterpret concept organization in the Web and go beyond the unstructured
organization of Web pages. Moreover, pairs of Service Marts are augmented with
“connections”, so as to support their linking; Service Marts and their connections
constitute a resource network that can be used as a high-level interface for expressing
search queries.

This paper is organized as follows. A general overview of the state of the art is
presented in Section 2. Section 3 introduces Service Marts by illustrating their three
levels of description (conceptual, logical, and physical). Section 4 illustrates the
Search Computing framework so as to position Service Marts within the global
reference architecture, and Section 5 illustrates mechanisms for service registration
and adaptation. Finally, an example of usage of Service Marts is briefly described in
Section 6, and Section 7 provides some conclusions.

2 Related Work

Current service description languages and protocols, such as WSDL and SOAP,
provides limited support in mechanizing service recognition, combination, and
automated negotiation. Several proposals, such as WSFL [19] or DAML-S [1],
extend these languages and protocol in a semantic direction. OWL-S [20] is an
attempt at formalizing the semantics of Web services using ontology technology.
COSMO [22] provides concepts for reasoning about services, and for supporting
operations, such as composition and discovery, which are performed on them at
design and run-time. The framework facilitates the use of different service description

1 Consider the prominent role given to Software and Services in Call 5 of the EU-funded

Seventh Framework Programme (FP7), whose goal is to achieve an “Internet of the Future,
where organizations and individuals can find software as services on the Internet, combine
them, and easily adapt them to their specific context [10]”.

52 A. Campi et al.

languages tailored to different service aspects. Web Service Modeling Framework
(WSMF) [13,14] is a fully-fledged modeling framework for describing the various
aspects related to Web services using four main elements: ontologies providing the
terminology, Web services providing access to resources, goals representing user
desires, and mediators dealing with interoperability problems. Other ongoing efforts
aim at creating a conceptual framework for service modeling; a prominent example is
the W3C’s Web Services Architecture [27]. In [9] authors propose a conceptual
model that describes actors, activities and entities involved in a service-oriented
scenario and the relationships between them. This work extends the W3C’s Web
Services Architecture, but the authors do not specify the semantics of the concepts
described; their conceptual model is a glossary of terms.

Previous approaches to Web service combination is described by the SOA
scientific community with two different flavors: orchestration and choreography. The
distributed approach of choreographed services (e.g., using WS-CDL [25] or WSCI
[24]) deals with service compatibility and compliance to predefined behavior
descriptions but has limited relevance in the Search Computing context. The
centralized approach of orchestrated services (e.g., using BPEL [21]) suits better the
research problem addressed in this paper, as orchestrations are executable service
compositions and services need not be aware of being the object of query execution.
The research on composition and integration of data sources is very rich, some
interesting results are in [2,11,12,26,28].

The work described in this paper is the result of a research stream starting with
[23], in which the authors propose a Web service management system that enables
querying multiple Web services in a transparent and integrated fashion and propose
an algorithm for arranging a query's Web service calls into a pipelined execution plan
that exploits parallelism among Web services. Subsequent work [5] established the
theoretical framework for stating the problem of joining heterogeneous search
engines; while [6] presented an overall framework for multi-domain queries on the
Web. These works are the predecessors of the current research project named “Search
Computing”, whose preliminary results are described in [7].

Service Marts are specific “data patterns”; their regular organization helps
structuring Search Computing applications. The search of patterns for easing data
modeling for specific contexts is not new; the most well known data modeling pattern
is the so called “data mart”, used in data warehousing as conceptual schemas for
driving data analysis. Data marts [3] are simple schemas having one core entity,
describing facts, surrounded by multiple entities, describing the dimensions of data
analysis. Such subschema allows a number of interesting operations for data selection
and aggregation (e.g. data cubes, rollup, drilldown) whose semantic definition is
much simplified by data characterization as either fact or dimension and by the
regular structure of the schema. Analogously, a “Web mart” [8] is a pattern
introduced in the Web design community to characterize the role played by data items
in data-intensive Web applications. Web marts have a central entity, the core concept,
which describes a collection of core objects, surrounded by other entities which are
classified as “access entities”, enabling selection of core objects through navigation,
and “detail entities”, describing core objects in greater detail. Thus it is possible to
drive a design process that produces first-cut standard Web applications (e.g. sales,
inventories, travels, and so on).

 Designing Service Marts for Engineering Search Computing Applications 53

3 Service Marts

Service Marts are abstractions; publishing a Service Mart entails bridging an abstract
description to several concrete implementations of services. Indeed, implementing a
Service Mart may require the mapping to several data sources, each one configured
either as Web services or as an API, or as a materialized data collection. Thus, the
Service Mart concept offers an abstraction for giving a “regular” view of the world,
together with a method and associated technology for building such a regular view out
of concrete data sources. This section gives a top-down view of the definition of
Service Marts, from the conceptual level through the logical to the physical level. It
also describes composition patterns (at the conceptual and logical level) and introduce
the service registration (at the physical level).

3.1 Conceptual Level

A Service Mart is an abstraction describing a class of Web objects. Thus, every
Service Mart definition includes a name and a set of exposed attributes. Service Marts
have atomic attributes and repeating groups consisting of a non-empty set of sub-
attributes that collectively define a property. Atomic attributes are single-valued,
while repeating groups are multi-valued. For example, a “Movie” Service Mart has
single-value attributes (“Title”, “Director”, “Score, “Year”, “Language”) and
repeating groups (“Genres”, “Openings”, “Actor”), each with sub-attributes. The
schema of a repeating group is introduced by one level of parentheses:

Movie(Title, Director, Score, Year, Genres(Genre), Language,
 Openings(Country, Date), Actors(Name))

Other Service Marts used in this paper describe cinemas and restaurants:

Cinema(Name, Address, City, Country, Phone, Movies(Title, StartTimes))
Restaurant(Name, Address, City, Country, Phone, Url, Rating, Category(Name))

Attributes and sub-attributes are typed and semantically tagged when they are
defined. Repeating groups model many-valued properties (such as the “actors”)
within the object instances of the Service Mart (the “movie”). In this way, besides
adding expressive power to Service Mart properties, they also model 1:M or M:N
relationships, i.e. conceptual elements whose purpose is bridging real world objects.
Concepts such as “acts-in” between “actor” and “movie” are modeled by repeating
groups, by placing actors as a repeating group of movie or movies as a repeating
group of actor (or both). This goal is consistent with keeping the Search Computing
infrastructure as simple as possible, and also with keeping the connection between the
two Service Marts as simple as possible. Of course, such a pattern introduces a
limitation upon the ways of describing reality, which seems rather coercive if one
considers the richness of data modeling choices offered by top-down design. But in
our framework we do not use a top-down process; rather, we model data sources
bottom-up, and then we look for their integration; moreover, most data sources have a
simple schema, which can be well represented by a one-level nesting. Therefore, the
expressive power of Service Marts seems to be appropriate for its purpose.

54 A. Campi et al.

3.2 Logical Level

At the logical level each Service Mart is associated with one or more specific access
patterns. An access pattern describe the way in which one can access the Service
Mart. It is a specific signature of the Service Mart with the characterization of each
attribute or sub-attribute as either input (I) or output (O), depending on the role that
the attribute plays in the service call. In the context of logical databases, an
assignment of labels I/O to the attributes of a predicate is called adornment, and thus
access patterns can be considered as adorned Service Marts. Moreover, an output
attribute is designed as ranked (R) if the service produces its results in an order which
depends on the value of that attribute. To ease service composition, we assume that all
ranked attributes return a normalized value within the interval [0..1]2. For example,
for the Service Mart “Movie” we can have the following access patterns:

Movie1(TitleO, DirectorO, ScoreR, YearO, Genres.GenreI, LanguageO, Openings.CountryI,

Openings.DateI, Actor.NameO)
Movie2(TitleI, DirectorO, ScoreR, YearO, Genres.GenreO, LanguageO, Openings.CountryI,

Openings.DateI, Actor.NameO)

In all cases, “Score” is an output attribute (ranging in [0..1]) used for ranking movies,
which are presented in descending order of their score, i.e. with highest score movies
first. The openings “Country” and “Date” are input parameters, which are used to
extract movies shown in a specific country after a specific opening date (enabling the
extraction of recent movies for that country). In the first access pattern, movies are
retrieved by providing as input also one of their genres (thus modeling the request
“search recent movies by genre”). In the second access pattern, movies are retrieved
by providing as input also the title (thus modeling request “search recent movies by
title”). Other access patterns could be used for accessing movies by providing the
director or one actor. The choice of access patterns is a limitation on the way in which
one can obtain data, typically imposed by existing service interfaces. Therefore,
defining access patterns requires both a top-down process (from query requirements)
and a bottom-up process (from service implementations). In general, this tension
between top-down and bottom-up processes is typical of service design.

Sometimes access patterns have more attributes than the original Service Mart.
Consider cinemas and restaurants: their address is a characteristic of the underlying
object, but users searching for cinemas and addresses typically provide to the service
and input address (e.g. their home or current location) and search by proximity. Thus,
U versions of attributes “Address”, “City” and “Country” denote the user’s location,
and T/R versions of the same attributes that represent the cinema/restaurant location;

Cinema1(NameO, UAddressI, UCityI, UCountryI, TAddressO, TCityO,TCountryO,
 TPhoneO, DistanceR, Movie.TitleO, Movie.StartTimesO)

2 We also consider the possibility of service interfaces providing two or more ranking

attributes, in such case the service definition includes an aggregation function which indicates
how to obtain a score in the [0..1] interval as a function of the ranking attributes.

 Designing Service Marts for Engineering Search Computing Applications 55

3.3 Connection Patterns

Connection patterns introduce a pair-wise coupling of Service Marts. Every pattern
has a conceptual name and then a logical specification, consisting of a sequence of
simple comparison predicates between pairs of attributes or sub-attributes of the two
services, which are interpreted as a conjunctive Boolean expression, and therefore can
be implemented by joining the results returned by calling service implementations.
Connection patterns can be directed or undirected.

For example, Movies and Cinemas are connected via the undirected connection
pattern “Shows”, which uses a join on titles:

Shows(Movie,Cinema): [(Title=Title)]

The interpretation of joins within connection patterns is existential: if the movie’s title
is equal to the title of any movie shown in the cinema, then the predicate is satisfied,
and the two instances of movie and cinema are composed to form an instance of the
result; the two instances are composed without performing any selection on sub-
attributes (in the example, if one title of cinema satisfies the join, then all movies
shown at the cinema are selected). Using the existential interpretation of equality
predicates in selection and joins involving sub-attributes as operands yields to a
simple semantics and an efficient implementation of these operations.

Consider next a directed connection between cinemas and restaurants; a directed
pattern can be used “from” the first “to” the second (the query search first for cinemas
and next for nearby restaurants). The connections is specified as a conjunction of
predicate expressions, relating the cinema address to the input location of a restaurant
service, so that after determining a cinema (close to the user’s address) the service
will be invoked by using the cinema’s location as input for the restaurant search:

DinnerPlace(Cinema, Restaurant): [(TAddress=UAddress),
 (TCity=UCity), (TCountry=UCountry)]

Logically, connection patterns are expressed among pairs of orderly type compatible
attributes. A connection pattern must be supported by a pair of access patterns. All the
attributes of both selected access patterns must have the same labels, either I or O, and
they should not both be labeled I. If both the right and left operand have an O label,
then the pattern is undirected, else if the left operand is labeled O and the right
operand is labeled I then the pattern is directed from left to right.

Visually, Service Marts and logical connection patterns can be presented as
resource graphs, where nodes represent marts and arcs represents logical connection
patterns; directed connections include an edge. Thus, the Search Computing model of
the Web presents a simplification of reality, seen through potentially very large
resource graphs. Such representation enables the selection of interconnected concepts
that support the creation and dynamic extension of multi-domain queries.

3.4 Physical Level

At the physical level of Service Marts we model service interfaces, where each
service interface is mapped to a concrete data source. A service interface may not

56 A. Campi et al.

support some of the attributes of the Service Mart, e.g., because one source could
miss a property; moreover, sources may be provided with type coercion facilities so
as to adapt to a single type description. These provisions allow for a minimal amount
of inconsistency between service interfaces and Service Marts.

A service interface is a unit of invocation and as such must be described not only
by its conceptual schema or logical adornment, but also by its physical properties.
There are a huge number of options for characterizing data-intensive services, both in
terms of performance and quality. Service interfaces are described by four kinds of
parameters:

• Ranking descriptors classify the service interface as a search service (i.e., one
producing ranked result) or an exact service (i.e., services producing objects
which are not ranked). Exact services are associated with a selectivity, which is a
positive number expressing the average number of tuples produced by each call.
When a search service is associated with an access pattern having one or more
output attributes tagged as R, then the ranking is said explicit, else it is said
opaque. Explicit ranking over a single attribute can be denoted as ascending or
descending. Note that search services may not be present a result with ranked
attributes; e.g., most commercial search engines can be characterized as Service
Marts accepting input keywords and producing semi-structured output
information which is mapped to a schematic representation, but they normally do
not expose rankings.

• Chunk descriptors deal with output production by a service interface. The
service is chunked when it can be repeatedly invoked and at each invocation a
new set of objects is returned, typically in a fixed number, so as to enable the
progressive retrieval of all the objects in the result; in such case, it exposes a
chunk size (number of tuples in the chunk). Search Computing is focused on the
efficient data-intensive computation and therefore most service interfaces are
chunked. Of course, if the service is ranked, then the first chunk contains the
objects with highest ranking, and subsequent chunks yields the next objects in the
ranking; normally, with exact services a query should examine all chunks, while
with search services a query can examine just the top chunks.

• Cache descriptors deal with repeated invocations of the service. A very efficient
way to speed up service invocations consists in caching at the requester side the
responses returned for given inputs, and then use such stored answers instead of
invoking the service. But such policy is not acceptable with many services, e.g.
those offering real-time answers. Hence, parameters indicate if a service interface
is cacheable and in such case what is the cache decay, i.e. the elapsed time
between two calls at the source that make the use of stored answers tolerable.

• Cost descriptors deal with associating each service call with a cost
characterization; this in turn can be expressed as the response time (time required
in order to complete a request-response cycle), and/or as the monetary cost
associated with making a specific query (for those systems who charge their
answers).

Every access pattern may have several service interfaces. For instance, the first access
pattern of the Service Mart “movie” requires a physical service capable of filtering
movies by time (e.g., whose opening date in US is recent enough) and genre (e.g.

 Designing Service Marts for Engineering Search Computing Applications 57

action movies) and then extracting them ranked by their quality score. For this
purpose we use the IMDB archive (http://www.imdb.com), which stores information
about thousands of movies and enriches their description with a “score” attribute
computed as the average of the scores assigned by worldwide user communities. We
extract data by building an ad-hoc wrapper and using it to materialize all movie
descriptions; this requires periodic downloads to maintain such data materialization
up-to-date. Tools for data materialization and refreshments are described in Section 5.
Similarly, for the Service Mart “cinema” we use “Movie Showtimes - Google Search”

(http://www.google.com/movies), a service allowing the retrieval of all the cinemas
nearby an input location that is expressed as a complete address (address, city,
country) or as a city. The service returns results sorted by cinema distance from the
input location, but it does not return the actual distance (therefore, ranking is opaque,
and the implementation does not expose “Distance”). Finally, for the Service Mart
“restaurant” we use the Yahoo Local source (http://local.yahoo.com/), a service that
allow the users to find Businesses & Commercial Services (e.g. restaurants) that are in
or nearby a requested address, city and state, or a specific zip code. These service
interfaces support the connection patterns “shows” and “dinner place” described in
the previous section.

4 The Search Computing Framework

Search Computing applications are built by exploiting a configurable software
framework approach, illustrated in Figure 1. The Service Mart Framework provides
the scaffolding for wrapping and registering data sources; the Service Invocation
Framework masks the technical issues involved in the interaction with the registered
Service Mart, e.g., the Web service protocol and data caching issues. Their features
are discussed in the next section.

The User Framework provides functionality and storage for registering users, with
different roles and capabilities, as discussed in Section 4.1. The Query Framework
supports the management and storage of queries, which can be executed, saved,
modified, and published for other users to see. The Query Processing Framework is
the central component of the architecture, which provides service for executing multi-
domain queries. The Query Manager takes care of splitting the query into sub-queries
and binding them to the respective relevant data sources; the Query Planner produces
an optimized query execution plan, which dictates the sequence of steps for executing
the query. Finally, the Execution Engine actually executes the query plan, by
submitting the service calls to designated services through the Service Invocation
Framework, building the query results by combining the outputs produced by service
calls, computing the global ranking of query results, and producing the query result
outputs in an order that reflects their global relevance. These components are not the
target of this paper, but are investigated in the Search Computing project. The very
first results of this research stream are described in [5,6,7].

To obtain a specific Search Computing application, the general-purpose
architecture of Figure 1 is customized with the help of tools targeted to programmers,
expert users, and end users.

58 A. Campi et al.

Query Manager

Application
Configuration

Tool

Service
Repository

Query
Repository

Liquid Queries
UIService

Registration
Tool

User data
repository

Query Planner

Execution Engine

Service Invocation
Framework .

Service Mart Framework

Query Framework

Query Plan
Refinement

Tool

Expert
user

Service
publisher

End
user

SeCo
expert

Control dependencies (uses)

Data flows (queries, results)
Services

Queries

Execution plans

Query
results

Orchestration

Se
rv

ic
e

m
gm

t.

Q
ue

ry
 m

gm
t.

D
at

a
re

tr
ie

va
l

Service calls

Service call results

Queries & results

Read &
write

Read &
write

Cache

Cache

Cache

Cache

Cache

Client
application

Queries & results

Cache

Internal API

User Framework
Cache

Read &
write

External API (REST) Application
Repository

Read &
write

U
se

r m
gm

t.

Legend

Fig. 1. Overview of the Search Computing framework

• Service Publishers register Service Mart definitions within the service repository,
and declare the connection patterns usable to join them. The registration process is
realized through a Service Registration Tool that: 1) helps the publisher in the
specification of the SM, AP and SI attributes and parameters respectively and 2) it
hides to the user the Internal API, that allow the communication between the
services and the engine levels. The service publishers are in charge of
implementing mediators, wrappers, or data materialization components, so as to
make data sources compatible with the Service Mart standard interface and
expected behavior.

• Expert Users configure Search Computing applications, by selecting the Service
Marts of interest, by choosing a data source supporting the Service Mart, and by
connecting them through connection patterns. They also configure the complexity
of the user interface, in terms of controls and configurability choices to be left to
the end user.

• End Users use Search Computing applications configured by expert users. They
interact by submitting queries, inspecting results, and refining/evolving their
information need according to an exploratory information seeking approach,
which we call Liquid Query [4].

Search Computing aims at building two new communities of users: Content
providers, who want to organize their content (now in the format of data collections,
databases, Web pages) in order to make it available for search access by third parties,
and expert users, who want to offer new services built by composing domain-specific
content in order to go "beyond" general-purpose search engines such as Google and
the other main players. The service registration framework aims at facilitating content
providers in their task of publishing data sources.

 Designing Service Marts for Engineering Search Computing Applications 59

Fig. 2. Development process for SeCo applications (SPEM notation)

5 Web Service Registration and Adaptation

The trend towards supporting users in publishing data sources on the Web is a general
one. Google, Yahoo and Microsoft are building environments and tools (Fusion Tables
[15], Yahoo! BOSS [29]) for helping Web users to publish their data, with the goal of
capturing the so-called “long tail” of data sources. In Search Computing, data sources
should produce ranked output and data extraction should be performed incrementally,
by “chunks”; users can suspend a search and then resume it, possibly guiding the way in
which data sources should be inspected. We are building tools and/or providing best
practices, applicable to data sources of various kinds, for enabling data providers to
build “search” service adapters. We distinguish three different scenarios:

• Data can be queried by means of a Web service or combining the results of
different Web services.

• Data are available on the Web but must be extracted from Web sites through
wrappers.

• Data are not directly accessible and must first be materialized.

Results returned by a call to a service interface expose an interchange format written
in JSON (JavaScript Object Notation) [17], a lightweight data-interchange format
easy to read and write by humans and easy to parse and generate by machines. The
format descends directly from the conceptual description of the Service Mart,
therefore all instances of a Service Mart share the same interchange format, regardless
of the service interface which produces them. Below is a JSON “movie” instance:

60 A. Campi et al.

 {"title": "Highlander",
 "director": "Russell Mulcahy",
 "score": "0.7",
 "year": "1986",
 "genres": [{"genre": "action”}],
 "openings": [{"country": "US", "date": "31-10-1986"}],
 "actors": [{"name": "Christopher Lambert"},
 {"name": "Sean Connery"}]}

5.1 Web Services

The typical service implementation is a real Web service registered in the platform.
Web services return their output in arbitrary format, including but not limited to
HTML, XML and JSON. Given that the Service Mart interchange format is a well-
defined JSON structure, the service implementation developer must define a series of
transformations on the results, and bundle them into a remote service implementation
that hides the peculiar features of each remote source.

To tackle the need to combine the results of different Web services we built a
Service Mart Framework containing some predefined software modules useful to
manipulate data. The very first of them is the invocation module which invokes a
service and returns a list of tuples; next, tuples are read by a tuple reader and possibly
copied by a tuple cloner. Other modules perform projections, string replacements,
computations of regular expressions, data conversions and splitting or concatenation
of attributes. Once the services are transformed to return JSON, another step can be
necessary in order to adapt the cardinality of the results returned in each service,
which can be not appropriate (a search service could return too many results with
each call, or even all the results together). In this case, a chunker module supports
changing the chunk size: every call to the actual service is translated into the
appropriate number of calls to the service implementation, which buffers results and
produces chunks of the desired size.

5.2 Web Pages

The second types of sources we want to use are HTML pages. The Web is rich of
good quality information stored in HTML Web sites. Wrappers are particular
programs that can make available data published in the Web. In the context of Service
Marts, wrappers can be used to capture data which is published by Web servers in
HTML format, because in such case a data conversion is needed in order to support
data source integration – data must be rearranged according to the Service Mart
normalized schema. Another typical use of wrappers in Search Computing occurs
when services respond with HTML documents which must be translated in the normal
schema and encoded in JSON. For building wrappers, several systems are available;
in particular we use Lixto [16]. By marking a region of an example Web document
displayed on screen the user helps the tool to build a set of rules describing the
structure of the pages of the Web site. These rules are used to generate a wrapper that
"query" Web site in real time. Fig. 3 shows the relationships between data extracted
on the Web and a tabular view on these data.

 Designing Service Marts for Engineering Search Computing Applications 61

Fig. 3. Data extraction from query results published in HTML

5.3 Materialized Databases

Even if most service implementations require a call to a remote service, in some cases
summarized and materialized data may need to be stored at the engine site. Data
materialization is a general process, which can be applied to sources in order to
transform their format, to eliminate redundancy, to improve their quality, and so on;
data materialization moves data preparation from query execution to source
registration time, together with a data materialization schedules setting the times
when materialization should be repeated; therefore, data materialization is very useful
for supporting efficient query execution. Intrinsic to the normalization process,
however, is the capturing of a given snapshot of the data, which is not current;
therefore the approach can be used only with data which rarely changes.

We developed a materializer specifically for use in Search Computing. The
materializer is a software component whose objective is to read arbitrary data sources
and organize data in a normalized format, suitable for data export according to a
Service Mart definition. The materializer is organized with two logical layers: the data
extraction layer operates directly upon the data sources, that can be of arbitrary
formats (e.g., tables, XSL files, XML trees, and so on); its purpose is to transform the
input data into relational tables of arbitrary format, called primary materialization;
such tables are temporary, used only in the materializer, and invisible to the outside
environment. A series of SQL procedures are applied to the primary materialization in
order to produce a normalized schema. Such schema has maps every Service Mart to
a primary table and every repeating group to an auxiliary table; the primary table has
a system-generated unique identifier, while the auxiliary table has a composite
identifier built with the primary table’s identifier and a progressive number.

A materializer uses the modules described in Section 5.1 to combine results
returned by different Web services and contains some new units that operate together
with the unit previously defined. For example, Tuple writer unit writes data items as
rows in a database table. Figure 4 shows an example of materialization process. When
data materializations are stored according to the normalized schema, the service
implementation is automatically built by using SQL queries whose code depends only
on the service interface description. Note that data providers need not use the
materializer, as long as they build tables according to the normalized schema.

62 A. Campi et al.

Fig. 4. Process description within the Materializer

Specifically, queries over stored tables perform selection based upon input and
ranking using the ORDER BY clause. While selection, ranking and nesting are
supported by standard SQL, chunking requires returning at each call the “top k”
tuples; unfortunately, “top k” queries are not supported in standard SQL, but all
commercial DBMS support them in a specific SQL dialect; some of them offer as
well “interval” queries, enabling the extraction of the “next k” (defined as the tuples
within the interval [k+1..2k+). MySQL offers “interval” queries through a LIMIT
clause which returns at each query evaluation an ordered table with the tuples whose
ranking falls between the first and second parameter. If we use such feature, a simple
query pattern for extracting tuples from rank h to k (where k-h is the chunk size) is:

SELECT *
FROM Table
WHERE condition
ORDER BY rank DESC
LIMIT h,k

6 Applications and Use Cases

This section describes typical user interaction scenarios based on the running example
presented in the previous sections. We describe a search interaction concerning close-
by movies, cinemas, and restaurants, and the refinement and exploration of results
through application of additional local filters. Suppose the user submit a query asking
for a cinema with a high rated movie of a given kind next to a good vegetarian
restaurant. Once the user submits the search parameters, the query is performed and
results are calculated and displayed in the result table, as illustrated in Fig. 5. The
result page is enriched with interaction options that the user can choose.

 Designing Service Marts for Engineering Search Computing Applications 63

i
Cinema

Fig. 5. Result interface

Once the results are shown, the user can interact with them through the available
commands. Some operations (i.e., visualization options and expansion to new
services) require the user to select a subset of result instances; selection is performed
by means of checkboxes. When needed, a popup window asks for additional
parameters or details on the operation to be performed.

Local filters on column values can be applied by clicking the “F” button on the
column header of interest (e.g. the user may want to select only the restaurants having
rating higher than three stars). Additional search dimensions (e.g. public transportation
schedules, or other shows nearby for after dinner) can be added in order to augment a
given solution set. Data summarization and visualization methods can also be used.
The user interface and HCI aspects of Search Computing are further discussed in [4].

7 Conclusions

This paper has provided the definition of Service Marts as an interoperability concept
for building Search Computing applications, with associated technologies for
registering and adapting Web services. The Web world is described as a resource
graph with Service Marts linked by and connection patterns, and then Service Marts
are associated with service interfaces and implementations. Tool associated with
Service Marts help the publication of arbitrary content (e.g., extracted from data
sources or Web pages) in a standard format. Formats and extraction rules enable the
execution of queries and the composition of query results.

Future work in this direction of research within the Search Computing project will
address extending connection patterns so as to express semantically rich concepts in
the context of search (“nearness” interpreted in the context of terminological, spatial,
and temporal distance), so as to support richer corms of service compositions.

64 A. Campi et al.

References

[1] Ankolenkar, A., et al.: DAML-S,
http://www.daml.org/services/daml-s/2001/10/daml-s.html

[2] Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web. Scientific American (May
2001)

[3] Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for
data warehouses. ACM Trans. Software Engineering Methodology 10(4), 452–483
(2001)

[4] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query: multi-domain
exploratory search on the Web. In: Proc. WWW-2010 Conference (2010, to appear)

[5] Braga, D., Campi, A., Ceri, S., Raffio, A.: Joining the results of heterogeneous search
engines. Information Systems 33(7-8), 658–680 (2008)

[6] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multi-domain queries on
the Web. In: Proc. VLDB, vol. 1(1), pp. 562–573 (August 2008)

[7] Ceri, S., Brambilla, M. (eds.): Search Computing - Challenges and Directions. LNCS,
vol. 5950. Springer, Heidelberg (to appear, March 2010)

[8] Ceri, S., Matera, M., Rizzo, F., Demaldè, V.: Designing data-intensive Web applications
for content accessibility using Web marts. Commun. ACM 50(4), 55–61 (2007)

[9] Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a common
language: A conceptual model for describing service-oriented systems. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer,
Heidelberg (2005)

[10] CORDIS (September 17, 2009), http://cordis.europa.eu/fp7/ict/ssai/
[11] De Witt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsiao, H.-I.,

Rasmussen, R.: The Gamma Database Machine Project. IEEE TKDE 2(1), 44–62 (1990)
[12] Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources: A

machine-learning approach. In: SIGMOD (2001)
[13] Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic

Commerce Research and Applications 1(2), 113–137
[14] Fensel, D., Musen, M.: Special Issue on Semantic Web Technology. IEEE Intelligent

Systems (IEEE IS) 16 (2)
[15] Fusion Tables, http://tables.googlelabs.com/
[16] Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data extraction

project: back and forth between theory and practice. In: PODS ’04 (2004)
[17] JSON, http://JSON.org/
[18] Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information Sources

Using Source Descriptions. In: VLDB (1996)
[19] Leymann, F.: WSFL,

http://www-4.ibm.com/software/solutions/
Webservices/pdf/WSFL.pdf

[20] Martin, D., Burstein, et al.: Bringing Semantics to Web Services with OWL-S. In: World
Wide Web, vol. 10(3), pp. 243–277 (2007)

[21] OASIS. Web Services Business Process Execution Language. Technical report (2007),
http://www.oasis-open.org/committees/wsbpel/

[22] Quartel, D.S., Steen, M.W., Pokraev, S., Sinderen, M.J.: COSMO: A conceptual
framework for service modeling and refinement. Information Systems Frontiers 9(2-3),
225–244 (2007)

 Designing Service Marts for Engineering Search Computing Applications 65

[23] Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over Web
services. In: VLDB ’06, VLDB Endowment, pp. 355–366 (2006)

[24] W3C. Web Service Choreography Interface (WSCI) 1.0. W3C Note (August 2002)
[25] W3C. Web Services Choreography Description Language Version 1.0 (December 2004)
[26] Wang, J., Wen, J.R., Lochovsky, F., Ma, W.Y.: Instance-based schema matching for Web

databases by domainspecific query probing. In: VLDB (2004)
[27] Web Services Architecture (2004), http://www.w3.org/TR/ws-arch/
[28] Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach to

integrating source query interfaces on the Deep Web. In: SIGMOD (2004)
[29] Yahoo! Search Boss, http://developer.yahoo.com/search/boss/

Engineering Autonomic Controllers for
Virtualized Web Applications

Giovanni Toffetti1, Alessio Gambi1,
Mauro Pezzè1,2, and Cesare Pautasso1

1 University of Lugano
6904, Lugano, Switzerland

2 University of Milano Bicocca
20126, Milan, Italy

Abstract. Modern Web applications are often hosted in a virtualized
cloud computing infrastructure, and can dynamically scale in response
to unpredictable changes in the workload to guarantee a given service
level agreement. In this paper we propose to use Kriging surrogate mod-
els to approximate the performance profile of virtualized, multi-tier Web
applications. The model is first built through a set of automated and
controlled experiments at staging time, and can be later updated and
refined by monitoring the Web application deployed in production. We
claim that surrogate modeling makes a very good candidate for a model-
driven approach to the engineering of an autonomic controller. Our ex-
perimental evaluation shows that the model predictions are faithful to the
observed system’s performance, they improve with an increasing amount
of samples and they can be computed quickly. We also provide evidence
that the model can be effectively used to synthetize an aggregated ob-
jective function, a critical component of the autonomic controller. The
approach is evaluated in the context of a RESTful Web service compo-
sition case study deployed on the RESERVOIR cloud.

1 Introduction

More and more Web applications are hosted in Cloud computing environments
to reduce their operational and maintenance costs. Cloud infrastructures build
upon virtualization technology to simplify the deployment of Web applications
and to enable application resources to be controlled dynamically [12]. Clouds
offer the necessary flexibility to scale Web applications in order to support a
variable number of clients during the runtime. These capabilities need to be
balanced against increasing performance overhead and architecture complexity.
Whereas the performance overhead may be acceptable for many applications
[16], the problem of finding suitable deployment configurations of virtualized
Web applications facing unpredictable client demand changes remains open.

In this paper we focus on multi-tier Web applications that are executed within
virtualized infrastructures, and propose a method for automatically reconfiguring
these applications in response to sudden and unpredictable changes in client
workload that may derive for example from flash crowd or periodic peaks [2].

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 66–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Engineering Autonomic Controllers for Virtualized Web Applications 67

Introducing resource virtualization technology in infrastructures that host
Web applications requires both to determine how many replicas of the Web
application components to instantiate, and to address many details that in-
clude: how to assign each virtualized component to the physical resources, how
to size the resources (CPU and memory) allocated to each virtual machine, how
to bind service replicas with one another, and how to optimally distribute the
client workload over a heterogeneous set of resources. Thus, the layer of abstrac-
tion introduced by virtualization in the Web application architecture augments
the set of possible configuration decisions, and makes it very difficult to predict
the effects of reconfiguration actions on the overall system performance.

To address these problems, we propose a model-driven approach to engineer
an effective autonomic controller. Our models capture the relationship between
many tunable configuration parameters and the expected performance of the
Web application. In particular, we show how to apply multi-dimensional sur-
rogate models [19] to study and predict the performance of virtualized Web
applications. As more samples are observed, the prediction error of the models
is reduced. We use the model to construct a utility function that can drive the
controller self-configuration decisions. As opposed to other modeling approaches,
the advantages of using surrogate models in this context are manifold. First, sur-
rogate models are independent from the actual system complexity. As such, they
can quickly predict the expected system behaviour [19]. They provide confidence
measures that indicate the possible directions to follow when searching for opti-
mal configurations. They effectively deal with highly-dimensional configuration
spaces, and can be quickly updated at runtime. Thus, they support a continuous
learning and prediction improving process. We use surrogate models to bridge
the gap between measured non-functional system properties, like responsiveness,
availability, and throughput, and the system configuration, to approximate the
complex and unknown relation between them.

The rest of this paper is structured as follows. Section 2 defines the context and
the architecture of the autonomic controller. Section 3 describes the case study
use in this paper. Section 4 validates the approach experimentally by discussing
the main research questions, the experimental methodology, the experimental
results and their effective adoption for control. Section 5 outlines the related
work. Finally, Section 6 summarizes the main contribution of this paper and
delineates future research directions.

2 Architecture

Figure 1 shows the key elements of a virtualized Web application, and sketches
a high-level representation of the controller architecture. The controlled system
is composed of the virtualized Web application that runs on top of the physical
hardware and network infrastructure. The system is designed with a public ser-
vice interface and an internal management interface. The public service interface
is used by the clients of the Web application, while the management interface en-
ables both the monitoring of the system configuration (SC) and its performance
(P) and the application of reconfiguration control actions (A).

68 G. Toffetti et al.

VLAN

Service Interface

Monitor Interface

LAN

W

SC

Control
Interface

P

Workload
Predictor

DECISI
ON SURROGATE

MODEL

*P

A

*W

Fig. 1. Logical architecture of an autonomic, virtualized Web application

In production, the system is subject to a varying client workload (W) that can
be characterized according to different dimensions (for instance, average inter-
arrival times of request per request type, average request size, workload mix).
We assume that the controller does not limit admission to the services and thus
the workload cannot be altered by the controller. However, the controller could
be fed both with information about the current workload (W) and the predicted
future workload (W*). In control-theoretical terms, the workload is generally
represented as a disturbance, that is a non-controllable system input [22]. The
controller internal representation of the system is kept up-to-date by monitoring
both layers of the controlled system. Monitoring data (the system output) com-
ing from both the virtualized Web application components and the underlying
physical infrastructure include the current system configuration, environmental
information, as well as key performance indicators (KPIs) such as workload and
performance measurements (for example, response times, throughputs and SLA
violations). The KPIs are commonly used to express the goals (or service-level
objectives, SLOs) of the controller. The controller aims to determine the optimal
system configuration (control input) that meets the goals required to ensure that
the performance of the Web application is acceptable.

Autonomic control approaches are characterized by the so-called MAPE-K
closed-loop model, named after the basic activities that comprise the loop: Mon-
itor, Analise, Plan and Execute with Knowledge [3,8]. Autonomic controllers
are driven by control policies that express their main goals. For instance a con-
trol policy may give highest priority to preventing SLA violations, and, once
SLAs are guaranteed, it may minimize the operational costs. Controllers moni-
tor the systems key performance indicators that characterize the service quality.
They analyse the collected data to diagnose for instance (potential) SLA vio-
lations. They plan a strategy to meet the control goals using knowledge about the

Engineering Autonomic Controllers for Virtualized Web Applications 69

expected system behaviour, usually expressed as models. They execute the con-
trol actions that implement the strategy. Finally, they evaluate the effects of the
control actions updating their knowledge.

In a Cloud computing scenario, the possible control actions are amenable to
virtual machine instantiation, de-instantiation, and placement, as well as setting
the system to a specific point of its configuration space. In this paper, we focus
on the critical Knowledge component of a controller. This component provides
the configuration analyzer with the essential information to self-configure the
virtualized Web application, as it contains the representation of the system used
to find the appropriate configuration for a specific goal.

We capture the essential information of the knowledge component with surro-
gate models, that are mathematical approximations of unknown complex func-
tions built from sampling [19]. Surrogate models provide both a predicted value
and an accuracy measure of the actual function. They are widely used in engi-
neering, when the sampling process is expensive, the exploration of the complete
design space is not feasible, and an upper-bounded approximation is tolerable.
For example, surrogate models are often used to reduce the highly expensive
computer simulations or controlled experiments when exploring a vast design or
configuration space.

Among many possible surrogate models, we use Kriging models [18] that inter-
polate the space with Gaussian processes to approximate the system behavior
sampled through controlled experiments. Kriging models fit well our problem
domain for several reasons. Modern Kriging provides an exact sample interpo-
lation, i.e., the predicted outputs for the inputs that correspond to the samples
match the measured outputs. Having a model that matches the samples exactly
is important for the reliability of the predictions, and is often required in com-
puter aided engineering. Kriging models cover the whole parameter space (the
experimental area), thus they often produce better predictions than regression
analysis [18]. Also, thanks to their excellent performance properties, Kriging
models can be efficiently used to build controllers for run-time adaptation of the
Web application configurations. As we show in this paper, Kriging models can
be computed quickly, also in presence of many samples, and thus can deal with
frequent updates.

3 Case Study

In our investigations we consider a composite RESTful Web service called Doo-
dle Restaurant Map (DoReMap) [13]. DoReMap manages voting polls that are
mashed up with a well-known map widget and facilitate agreements on nearby
restaurants.

Users query the service for restaurants in the vicinity of a particular location.
The service identifies a set of restaurants, and uses it to automatically create a
voting poll so that users can cast their vote for a particular restaurant. To ease
the choice, the voting poll is augmented with a map that shows the location of
each restaurant.

70 G. Toffetti et al.

Description :

City :

Max participants :

Title :

Doodle-Restaurant-Map

Initiator :

1

2
3

Fig. 2. The Doodle Restaurant Map (DoReMap) Web Application

Figure 2 visualizes the three main steps comprising the use of this service:
(1) A user playing the role of initiator submits a poll creation form; (2) the
system creates the poll and sends back to the initiator a participation link; (3) the
initiator communicates the participation link to the other participant users that
contact the poll, look at the restaurant locations on the map, and cast their
votes. Once enough participants express their choices the poll is closed and no
more votes can be submitted. The result of the poll might be inspected through
the original participation link until the initiator deletes the poll from the system.
We assume that DoReMap should comply with a simple SLA that specifies the
maximum response time for each of the application requests, such as creation of
the poll resource and vote.

3.1 Service Composition Model

The DoReMap service composes two atomic RESTful Web services: a restaurant
search service, inspired by Yahoo! Local search engine API 1, used to query for
restaurants near a given location, and a voting poll service inspired by the Doodle
REST API2, used to create, update and close polls.

The composition is modeled using the JOpera visual composition language [14],
and is executed on the JOpera Engine version 2.4.93. Figure 3 shows the control
flow view of the JOpera composition model, limited to the creation of the poll
and the handling of the client vote requests. The composition receives the in-
put parameters from the initiator’s form and then invokes the restaurant search
service. Once the search is complete, the composition uses the data about the
restaurants to create both the map that shows their location and the poll by
invoking the voting poll service. When both steps have completed, the page
hosting the poll mashup for the participants is generated and stored at a unique
URI. This URI is then embedded as the participation link into the notification
page that is sent back to the initiator.
1 http://local.yahoo.com
2 http://www.doodle.com
3 http://www.jopera.org

http://local.yahoo.com
http://www.doodle.com
http://www.jopera.org

Engineering Autonomic Controllers for Virtualized Web Applications 71

Query Restaurant

Parse Results

Parse Results

Generate
Mash Up

Create the Poll

Wait For
Client Votes

Vote

Close the Poll

[Max votes ?] [Y]

[N]

PUT

POST

POST

GET

Refresh Mash Up

GET

Restaurant
Service

Doodle
Service

Initiator

Participants

Poll
Params

Notification
page

Preferences

Poll page

POST

POST3

1

Fig. 3. Control flow model of the DoReMap service composition

Having completed the initialization stage, the composite service enters the
main loop stage to collect the votes of the participants. At each vote, the com-
position checks the status of the poll service and updates it accordingly. When
the status of the poll changes, the composition updates the poll page. The com-
posite service continues executing until the number of votes reaches a threshold
given by the initiator. At this point, the DoReMap service closes the poll, and
keeps its final state published until explicitly deleted by a client.

3.2 System Architecture and Deployment

The architecture of DoReMap includes several components that are deployed
inside four virtual servers interacting through a virtual network. As Figure 4
shows, the JOpera engine is deployed on its own virtual server (JOperaAS) to
separate the logic implementing the composition from the component atomic
services. Both sets of atomic services are designed as standard two-tier Web ser-
vices and are composed of a REST front-end and a database back-end. They
are deployed following different policies: the restaurant lookup service compo-
nents are packaged into a single server, called RestaurantAS, because they are
used only to read data, and because they should optimize the access to the data
during the search; the voting services instead are deployed inside two separated
servers, called respectively DoodleAS and DoodleDB, to separate the data access
logic from the database tier.

Architecting the Web application as a loosely coupled composition of services
deployed on separate virtual servers increases flexibility when it comes to de-
ploying the composite service in the cloud. Each virtual server is packaged as a

72 G. Toffetti et al.

GET POST

JOpera Engine

REST Engine

Database

JOperaAS
(JO)

DoodleAS

(AS) DoodleDB
(DB)

RestaurantAS
(RS)

Fig. 4. Logical Architecture of the DoReMap Composite Service

disk image that can be seamlessly instantiated as virtual machine in the Cloud.
To serve a demanding workload, multiple instances of critical services can be
dynamically created without replicating the entire Web application [21]. For ex-
ample, a growing number of concurrent clients might increase the number of
requests at the composition layer. To prevent service saturation, new instances
of JOpera components can be added to serve all requests without violating the
SLA. Similarly, the system can respond to a changing workload mix by adding
new DoodleAS and RestaurantAS server instances, thus scaling horizontally.

3.3 The RESERVOIR Cloud Computing Testbed

We executed the virtualized version of the DoReMap component services on an
infrastructure developed within the FP7 RESERVOIR Project4.

We executed the service on a partition of the RESERVOIR testbed cloud com-
posed of six Blades IBM LS21 biprocessor dual-core Opteron 2218 at 2.6GHz
with 8GB RAM DDR2 at 667MHz divided into two separated sites of three ma-
chines each, and linked by a dedicated high speed network. One of the machines
was devoted to infrastructure services such as deployment and monitoring, while
the remaining ones were used as raw resource pools, running the Web application
virtual servers.

The RESERVOIR cloud infrastructure is designed to support run time de-
ployment and live migration of virtual machines. This enables virtualized Web
applications to be dynamically reconfigured and scaled to control the service
behavior and performance by acting on the number (and the deployment) of
virtual machines.

Combining this capability to quickly change the number of active virtual
servers with the flexibility of a composite Web application, service providers can
adapt the system to the actual load providing responsive services at reduced
costs, as we show in the next Section.

4 Experimental Validation

In this section, we report the results of our experiments in building Kriging mod-
els to represent the behaviour of the DoReMap virtualized Web application. The
4 http://www.reservoir-fp7.eu/

http://www.reservoir-fp7.eu/

Engineering Autonomic Controllers for Virtualized Web Applications 73

experiments aim to verify whether Kriging models can be used as an approxima-
tion of the behaviour of a realistic composed system, what kind of SLA-related
metrics can be predicted accurately, and how they can be used to choose an opti-
mal system configuration. In more details, the experiments address the following
research questions:

Q1 How accurate is the prediction outside the training set?
Q2 How does the quality of the prediction increase with the number of samples?
Q3 How quickly can the model be computed/updated?
Q4 Can surrogate models be used to choose an optimal system configuration?

To answer Q1 we first build surrogate models using a regular sample set in the
feature space, and then we compare their predictions with respect to the system
response measured at randomly chosen samples. We address Q2 by measuring
the prediction error of models generated with different sparse and small sample
sets with respect to the model computed starting from the full sample set. We
evaluate the cost of generating models (Q3) by benchmarking our algorithm
with increasingly large samples. The speed of the fitting of Kriging models is
a critical aspect to determine whether models can be kept up-to-date at run
time and thus used to drive the adaptation decisions of an autonomic controller.
We use the models to compute the objective function needed for the controller
self-configuration functionality (Q4).

4.1 Experimental Setup

Our experiments aim to construct surrogate models that represent how different
configurations (model input) impact on the system behaviour measured consid-
ering different KPIs (model output). As system configurations we consider the
set of controllable system parameters (i.e., the number of VMs instantiated per
each tier of the Web application) as well as the intensity of the workload (under
our control at staging time, but not controllable in production). We measure the
workload intensity in terms of number of clients that concurrently access the
Web application.

The size of the system configuration space is limited by the available resources
on which VMs can be allocated. In our case we deployed our experimental sys-
tem on 20 physical CPU cores. We allocated the cores as follows: up to 8 cores
to run the JOpera (JO) engines, up to 16 cores to run the Doodle Application
Servers (AS), one core for the Restaurant Application Server (RS) and one core
for the Database Server (DB). The allocation is constrained to at most 20 cores
used simultaneously, and to each core dedicated to a single component to avoid
contention that would complicate the interpretation of the results. The smallest
working configuration thus requires each tier (JO+AS+RS+DB) to be instanti-
ated, for a total of 5 cores, considering that each JOpera engine instance requires
2 cores. The largest configurations that we could test used 4 JOpera instances
(consuming 8 cores) with 10 AS instances, and 16 AS instances with one instance
of the JOpera engine. We used these configurations to determine the saturation

74 G. Toffetti et al.

point of the system (where the throughput stops increasing), and we observed
that this occurs with about 100 concurrent clients. Thus, we need to explore 52
possible system configurations for each client workload (from 1 to 100 clients).

Create
Poll

POLL_CREATE_WAIT

Get
Poll

Vote

VOTE_WAIT

GET_WAIT

N_VOTERS Thread Pool

N_ACTORS

Fig. 5. Workload Model and Workload Generation Parameters

We sampled the parameter space through a batch of controlled experiments
executed with Weevil [20]. To minimize undesired randomness, we repeated the
experimental runs 5 times per sample, and we measured the output results for a
given sample as the average over the run averages. To avoid measuring transient
behaviours at component start-up or shut-down, each run lasted 5 minutes, and
we discarded the first and last 10 seconds of observation. To stress the system,
we used a synthetic client workload generated as a set of Poisson processes
with different rates for each request type (POLL CREATE WAIT = 5 s, GET WAIT
= 2 s, VOTE WAIT = 1 s, as shown in Figure 5). We controlled the workload
intensity by selecting the number of concurrent client processes (N ACTORS). Due
to the specific nature of the Web application, in which the clients must follow a
predefined navigation path by following hyperlinks (for instance get request only
after poll creation with post, vote request after getting the available options),
the effect of adding client processes to the workload is not reflected linearly in
the measured system throughput. Rather, an undersized system configuration
would result in a slower workload execution.

After collecting system response averages through reproduceable experimental
scripts, we computed the Kriging model with the octgpr5 Octave package. We
set the parameters of the model training to high error tolerance to smoothly
approximate the whole configuration space even with few samples, as shown in
the results presented in the next section.

4.2 Results

We sampled and modeled the throughput (Figure 6.a) and the response time
(Figure 6.b) that are the most critical KPIs. In both cases we show a projection
of the 4-dimensional models by setting the workload intensity to 20, 40, and 60
concurrent clients. The x-y axes show the system configuration in terms of the
number of VM instances running the JOpera engine and the Doodle Application
5 http://octave.sourceforge.net/octgpr/index.html

http://octave.sourceforge.net/octgpr/index.html

Engineering Autonomic Controllers for Virtualized Web Applications 75

20 Clients

1
2

3
4

JO4
8

12
16

AS

20

30

40

50

60

70

80

T
h

r.
 (

R
e
s/

se
c
)

40 Clients

1
2

3
4

JO4
8

12
16

AS

20

30

40

50

60

70

80

T
h

r.
 (

R
e
s/

se
c
)

60 Clients

1
2

3
4

JO4
8

12
16

AS

20

30

40

50

60

70

80

T
h

r.
 (

R
e
s/

se
c
)

 30
 40
 50
 60
 70

(a) Throughput

20 Clients

1

2

3

4

JO

4
8

12
16

AS

0
0.5

1
1.5

2
2.5

3
3.5

4

R
T

 (
s)

40 Clients

1

2

3

4

JO

4
8

12
16

AS

0
0.5

1
1.5

2
2.5

3
3.5

4

R
T

 (
s)

60 Clients

1

2

3

4

JO

4
8

12
16

AS

0
0.5

1
1.5

2
2.5

3
3.5

4

R
T

 (
s)

 0.5
 1
 1.5
 2
 2.5
 3
 3.5

(b) Response time of vote request

Fig. 6. Surrogate model as a function of the number of JOpera VMs (# JO), Applica-
tion Servers VMs (# AS), and Workload (# Clients) built from a regular 100-samples
mesh

Server. The z axis shows the predicted throughput (in requests/second) or the
response time (seconds).

The model reflects the scalablity of the system, as adding additional resources
decreases the response time and increases the throughput. Also, the model pre-
dicts that for smaller workloads, the best performance (in terms of response time)
is obtained with 7 replicas of the AS tier, while for a larger number of clients,
the highest throughput is achieved with 4 JOpera engines and 10 instances of
the application server.

Another feature of surrogate models concerns their ability to improve their
predictions as more samples are fed into them. To study how the quality of
the prediction increases with the number of samples, we built surrogate models
using regular sampling patterns of 50, 75, 100 samples, and measured the pre-
diction error with respect to a randomly generated validation set. Table 1 shows
that the quality of the prediction increases with the coverage of the parameter
space: the mean square error, the root mean square error and the average abso-
lute error significantly decrease as the number of samples used to build the model

76 G. Toffetti et al.

Table 1. System throughput: mean square error (MSE), root mean square error
(RMSE), average absolute error (ME) and time needed to build the model (Time)
with respect to sample sets of increasing size

Training set size MSE RMSE ME Time

50 117.47 10.838 7.4827 0.0241971 s
75 87.273 9.3420 6.1642 0.048146 s
100 71.402 8.4500 5.2788 0.087447 s

20 Clients

1

2

3

4

JO

4
8

12
16

AS

0

0.2

0.4

0.6

0.8

1S
c
o

re

40 Clients

1

2

3

4

JO

4
8

12
16

AS

0

0.2

0.4

0.6

0.8

1S
c
o

re
60 Clients

1

2

3

4

JO

4
8

12
16

AS

0

0.2

0.4

0.6

0.8

1S
c
o

re

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Fig. 7. Aggregated Objective Function (AOF)

increases. The last column of the table shows that the model can be computed
in a small amount of time even when using the full set of samples. Thus, these
models can be used within the closed control loop envisaged in the architecture
of our controller, since they do not introduce a significant delay compared, for
example, to the time required to start or shut down a new VM instance.

4.3 Objective Function

Finding a suitable configuration for a system using a set of models like the
ones presented in the previous section becomes a multi-objective optimization
problem. Several techniques are available to solve the problem, for instance, by
ranking objectives (minimize SLA violations, then maximize throughput, and
minimize operating costs), or with a single aggregated objective function (AOF),
or with Pareto optimization methods.

To show that the surrogate models can be used as suitable input to analyze and
optimize configurations, we define an objective function that aggregates them.
In this proof of concept, we aggregate the response times for vote requests (R),
system throughput (T), and VM operating costs (C) per hour6 in the following
form:

AOF (R, T, C) = α ∗ (2s − R) + β ∗ T − γ ∗ C (1)
6 As cost indication, we used Amazon EC2 Ireland prices mapping AS, DB, and RS

to Small machines at $0.095 per hour and JO to Large at $0.38 per hour.

Engineering Autonomic Controllers for Virtualized Web Applications 77

The AOF translates our service level objectives by giving a negative score for
response times above 2 seconds. The second term gives a positive score to high
throughputs. This is compensated by subtracting the operating costs of allo-
cating more resources to the system. Parameters α, β, γ let the service designer
provide a relative weight for each criterion.

Figure 7 shows the normalized AOF for varying client workloads using values
[α = 10, β = 200, γ = 5000]. We observe that the optimal configuration pre-
dicted by aggregating the surrogated models into this objective function varies
with the number of expected clients respectively to 1 JO and 3 AS for 20 con-
current clients; 2 JO and 5 AS for 40 clients; 3 JO and 6 AS for 60 clients. This
results indicates that our approach to modeling the system configuration and its
performance can lead to a useful objective function that can be embedded into
an autonomic controller.

Additional criteria built from surrogate models can be considered in the AOF
(for instance response times for other requests, predicted percentage of SLA
violations), as well as other more business-related metrics (for example the dif-
ference between the revenue in terms of successfully served requests versus the
cost of violations).

5 Related Work

The study and design of controllers for virtualized Web applications is a lively
research area. We can give a rough classification of different approaches according
to the type of the control technology they adopt (e.g., rule based, control theory)
and the knowledge representation that they use (i.e., white-box vs. black-box).

Rule based approaches do not have an explicit representation of the system:
domain experts embed their knowledge in event-condition-action rules (ECA)
that are evaluated at run time to trigger system adaptation. These controllers
have limited capabilities as their effectiveness is bound to the domain experts’
ability to define rules, and they do not have built-in learning mechanisms [9].

Control theoretic approaches apply classic control theory and describe sys-
tem behaviour by means of first principle models or transfer functions. These
approaches rely on mathematically-sound control techniques: well known re-
sults guarantee the stability of the control under the strong hypothesis of linear
system behavior. However, for real systems, model identification (e.g., estimat-
ing the transfer function) becomes a difficult and time consuming activity [22].
Basic control theory approaches do not have learning capabilities. Still, more
advanced controllers, such as self-tuning regulators (STR), can adapt to the ac-
tual system behaviour using different techniques for on-line model parameters
estimation [10].

White box feedback loop approaches for controlling virtualized Web appli-
cations leverage knowledge of system internals to construct analytical repre-
sentations in form of Queue Network models: simple product form versions of
QN that can be analytically solved on-line [1]. Very specialized versions of QNs
have been proposed for particular domains, such as multi-tier virtualized Web

78 G. Toffetti et al.

applications [4]. Other forms, such as Layered Queue Networks (LQNs), can ex-
press more details on system resource contentions and end-to-end behavior [15,5].
Queue networks give reliable system performance predictions and do not require
any training of the model. However each change of system configuration requires
the entire computation of the model and potentially the re-estimation of all its
parameters [17,7].

Black box approaches trade model identification and parameter estimation
with feature identification and model training, either in an experimental setting
at staging time or through continuous learning while the system is in production.
For example, artificial neural networks (ANN) are defined in terms of number
of neurons and layers and must be extensively trained before deployment. Once
deployed they may need to be retrained if the quality of their predictions de-
creases [11]. In the cited work, the authors use a ANN to predict if a compos-
ite service violates its SLA while continuously retraining the network through
monitoring data. A different kind of black box model is employed in [6]. These
authors exploits Bayesian Networks (BNs) to predict SLA violations caused by
performance problems in a three-tiered application. In the approach, BNs are
periodically updated from monitoring data, and the controller can query the
model to obtain a probabilistic measure of SLA violation in the near future
given the actual working conditions. In general, approaches based on ANNs and
BNs are more demanding in terms of samples and training time required to build
a reliable model than Kriging [18], hence we deem our solution more appropriate
for autonomic controllers for virtualized Web applications where the parameter
configuration space is very large and continuous learning is required.

6 Conclusion and Future Work

In this paper we propose to apply Kriging surrogate models to approximate the
behavior of a virtualized Web application. This helps systems to automatically
and dynamically control how the application is deployed on a cloud infrastruc-
ture based on its incoming client workload. We discussed how the main features
of Kriging models closely match the requirements of such controllers by providing
complete, precise, and quickly update-able representations of the complex mul-
tidimensional functions tying system configurations with different performance
metrics. We presented our experience in applying our approach to a case study
application deployed on a research cloud testbed showing the viability of the
approach.

Our current research work concentrates on completing the development and
study of a fully functional controller. As a first step, we plan to automate the
experiments by actively using the surrogate model error prediction to drive
the sampling phase. The second step will be catering for runtime monitoring
of the relevant system KPIs and updating the surrogate model accordingly. The
final step will be to define suitable optimization policies to make reconfigura-
tion decisions based on aggregated objective functions such as the one presented
in this paper. In the long term, we plan to automatically leverage additional

Engineering Autonomic Controllers for Virtualized Web Applications 79

knowledge about the system. For instance, we used the model of the service com-
position to identify an effective configuration space sampling strategy. That same
knowledge can be combined at runtime with surrogate model prediction adopt-
ing different strategies to provide the autonomic controller with an improved
representation of the system internals.

Acknowledgments

We wish to thank Antonio Carzaniga for the insigtful comments and discussions on
the paper. This work is partially supported by the European Community under the
IST programme of the 7th FP for RTD - project RESERVOIR contract IST-215605,
by the S-Cube NoE and by the Swiss National Science Foundation SOSOA project
(SINERGIA grant nr. CRSI22 127386).

References

1. Abrahao, B.D., Almeida, V., Almeida, J.M., Zhang, A., Beyer, D., Safai, F.:
Self-adaptive SLA-driven capacity management for internet services. In: Proc.
of IFIP/IEEE International Symposium on Integrated Network Management, pp.
557–568 (2006)

2. Almeida, V.A., Menascé, D.A.: Capacity planning: An essential tool for managing
web services. IT Professional 4, 33–38 (2002)

3. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H.M., Litoiu, M.,
Müller, H.A., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70.
Springer, Heidelberg (2009)

4. Cunha, I., Almeida, J.M., Almeida, V., Santos, M.: Self-adaptive capacity manage-
ment for multi-tier virtualized environments. In: Proc. of IFIP/IEEE International
Symposium on Integrated Network Management, pp. 129–138 (2007)

5. D’Ambrogio, A., Bocciarelli, P.: A model-driven approach to describe and predict
the performance of composite services. In: Proc. of the 6th International Workshop
on Software and Performance, pp. 78–89 (2007)

6. Duan, S., Babu, S.: Proactive identification of performance problems. In: Proc.
of ACM SIGMOD international conference on Management of data, pp. 766–768
(2006)

7. Ghezzi, C., Tamburrelli, G.: Predicting performance properties for open systems
with KAMI. In: Proc. of the International Conference on the Quality of Software
Architectures, pp. 70–85 (2009)

8. IBM. An Architectural Blueprint for Autonomic Computing. Technical report, IBM
(2003)

9. Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: Generating adaptation
policies for multi-tier applications in consolidated server environments. In: Proc.
of International Conference on Autonomic Computing, pp. 23–32 (2008)

10. Karlsson, M., Covell, M.: Dynamic black-box performance model estimation for
self-tuning regulators. In: Proc. of the International Conference on Autonomic
Computing, pp. 172–182 (2005)

80 G. Toffetti et al.

11. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.:
Runtime prediction of service level agreement violations for composite services. In:
Proc. of the Workshop on Non-Functional Properties and SLA Management in
Service-Oriented Computing (2009)

12. Lenk, A., Klems, M., Nimis, J., Tai, S., Sandholm, T.: What’s inside the cloud? an
architectural map of the cloud landscape. In: Proc. of the Workshop on Software
Engineering Challenges of Cloud Computing, pp. 23–31 (2009)

13. Pautasso, C.: Composing RESTful services with JOpera. In: Bergel, A., Fabry, J.
(eds.) Software Composition. LNCS, vol. 5634, pp. 142–159. Springer, Heidelberg
(2009)

14. Pautasso, C., Alonso, G.: The jopera visual composition language. Journal of Visual
Languages and Computing 16, 119–152 (2005)

15. Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S., Kraft, S.: Predictive mod-
elling of SAP ERP applications: Challenges and solutions. In: Proc. of the Interna-
tional Workshop on Run-time mOdels for Self-managing Systems and Applications,
pp. 2–10 (2009)

16. Sotomayor, B., Keahey, K., Foster, I.: Overhead matters: A model for virtual re-
source management. In: Proc. of International Workshop on Virtualization Tech-
nology in Distributed Computing, pp. 35–42 (2006)

17. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: Analytic mod-
eling of multitier internet applications. ACM Transactions on the Web 1(1), 2–37
(2007)

18. van Beers, W., Kleijnen, J.: Kriging interpolation in simulation: a survey. In: Proc.
of Conference on Winter Simulation, pp. 113–121 (2004)

19. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineer-
ing design optimization. Mechanical Design 129(4), 370–380 (2007)

20. Wang, Y., Rutherford, M.J., Carzaniga, A., Wolf, A.L.: Automating experimenta-
tion on distributed testbeds. In: Proc. of International Conference on Automated
Software Engineering, pp. 164–173 (2005)

21. Wei, Z., Dejun, J., Pierre, G., Chi, C.-H., van Steen, M.: Service-oriented data
denormalization for scalable web applications. In: Proc. of the International Con-
ference on World Wide Web, pp. 267–276 (2008)

22. Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., Shin, K.: What
does control theory bring to systems research? SIGOPS Oper. Syst. Rev. 43(1),
62–69 (2009)

AWAIT: Efficient Overload Management for Busy
Multi-tier Web Services under Bursty Workloads�

Lei Lu1, Ludmila Cherkasova2, Vittoria de Nitto Personè3,
Ningfang Mi4, and Evgenia Smirni1

1 College of William and Mary, Williamsburg, VA 23187, USA
{llu,esmirni}@cs.wm.edu

2 Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA
lucy.cherkasova@hp.com

3 Universitá degli Studi di Roma “Tor Vergata”, Rome, Italy
denitto@info.uniroma2.it

4 Electrical and Computer Engineering, Northeastern University, Boston, MA
ningfang@ece.neu.edu

Abstract. The problem of service differentiation and admission control in web
services that utilize a multi-tier architecture is more challenging than in a single-
tiered one, especially in the presence of bursty conditions, i.e., when arrivals of
user web sessions to the system are characterized by temporal surges in their
arrival intensities and demands. We demonstrate that classic techniques for a ses-
sion based admission control that are triggered by threshold violations are inef-
fective under bursty workload conditions, as user-perceived performance metrics
rapidly and dramatically deteriorate, inadvertently leading the system to reject
requests from already accepted user sessions, resulting in business loss. Here,
as a solution for service differentiation of accepted user sessions we promote a
methodology that is based on blocking, i.e., when the system operates in over-
load, requests from accepted sessions are not rejected but are instead stored in a
blocking queue that effectively acts as a waiting room. The requests in the block-
ing queue implicitly become of higher priority and are served immediately after
load subsides. Residence in the blocking queue comes with a performance cost
as blocking time adds to the perceived end-to-end user response time. We present
a novel autonomic session based admission control policy, called AWAIT, that
adaptively adjusts the capacity of the blocking queue as a function of workload
burstiness in order to meet predefined user service level objectives while keeping
the portion of aborted accepted sessions to a minimum. Detailed simulations il-
lustrate the effectiveness of AWAIT under different workload burstiness profiles
and therefore strongly argue for its effectiveness.

1 Introduction

One of the most challenging problems for public Internet and e-commerce sites is the
delivery of performance targets to users given the unpredictability of Web accesses. As
Internet services become indispensable both for businesses and personal productivity,

� This work was partially supported by the National Science Foundation under grants CNS-
0720699, CCF-0811417, and CCF-0937925.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 81–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 L. Lu et al.

the efficient management of Internet services under periods where the system is over-
loaded or simply highly variable, is of critical importance. There is a host of solutions
to maintain user-perceived performance levels in the form of service-level objectives
(SLOs) that focus mainly on admission control and/or techniques for service differen-
tiation that are threshold based [13,6,7,19] but their effectiveness can be compromised
if the workload is bursty, i.e., it is characterized by sudden temporal “surges” in the
intensity of user arrivals [23] and user demands [22]. While capacity planning of sys-
tems under bursty workload conditions has been recently demonstrated as critical for
business success [22,23], the problem of efficient admission control and service differ-
entiation under temporal workload bursts remains largely unexplored.

To get the intuition why threshold, usage-based techniques may not be effective if the
system is subject to bursty conditions, let us consider a system that provides web ser-
vices and which is built according to the widely used multi-tiered paradigm. Typically,
access to a web service occurs in the form of a session consisting of many individual
requests. For a customer trying to place an order, or a retailer trying to make a sale, the
real measure of a web server performance is its ability to process the entire sequence of
requests needed to complete a transaction. Session-based admission control (SBAC) has
been proposed as a solution to the above problem [13] and its gist can be summarized
as follows: the system accepts a new session only when the system has enough capacity
to process all future requests related to the session, i.e., the system can guarantee that
the session completes successfully. If the system is functioning near its capacity, a new
session will be rejected (or redirected to another server if one is available).

The original session-based admission control (SBAC) [13] is proposed for a single-
tier web server, and its implementation is usage-based. SBAC accepts a new session
only when the server CPU utilization is below a certain threshold. However, burstiness
in the user arrival flows results in sudden, nearly simultaneous arrivals of requests in
the system. The experiments presented in [23] show that under bursty arrivals SBAC is
ineffective in maintaining a low ratio of aborted sessions due to a slow reaction to bursts.

Conventional wisdom suggests that the original session-based admission control can
be extended for a multi-tiered system in a straightforward way: it should simply be
employed at the bottleneck tier. Yet, if burstiness exists in the flows of a multi-tiered
system (irrespective of its source, in the arrivals or service) then burstiness triggers the
phenomenon of persistent bottleneck switch, i.e., the bottleneck continuously shifts to
another tier [22], making control at the bottleneck tier an elusive task.

In this paper, we depart from threshold usage-based policies, and instead we dynam-
ically control the number and the type of user requests admitted for processing into the
multi-tier system. When the system enters the overload state, we advocate request buffer-
ing from the already accepted sessions in a so-called “blocking” queue, that effectively
acts as a waiting room. This blocking queue differentiates among the requests of already
accepted sessions to those of new sessions, and implicitly gives them higher priority. To
this end, we borrow ideas from the theory of queueing networks with blocking [5,25].

Blocking of accepted sessions during workload surges may be very effective in dif-
ferentiating accepted sessions from new sessions, but the performance of accepted ses-
sions is still directly bounded by the time the requests spent in the blocking queue. That
is, if the time spent is so long that results in SLO violations, it is desirable to limit the

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 83

capacity of the blocking queue in order to bound the user end-to-end time. We perform
a sensitivity study to explore the different fixed blocking queue limits under a variety
of burstiness profiles and conclude that the effectiveness of blocking is strongly related
to the workload burstiness. To address this issue, we propose a parameter-free, auto-
nomic session-based admission control policy called AWAIT that adjusts the blocking
queue capacity in response to workload burstiness. We perform detailed simulations
using the parameterized TPC-W benchmark with extended functionality for generating
bursty session arrivals [23] to demonstrate the effectiveness and robustness of the new
strategy. AWAIT supports a simple and inexpensive implementation. It does not require
significant changes or modifications to the existing Internet infrastructure, and at the
same time, it significantly improves the performance of overloaded multi-tier web sites.

This paper is organized as follows. Section 2 presents results that motivate this work.
Section 3 presents the admission control algorithm and illustrates its robustness un-
der different burstiness profiles by showing that it consistently meets the sought after
performance goals while optimizing its performance targets. Section 4 positions this
contribution within the context of related work. Section 5 summarizes the paper.

2 Capacity Planning and Admission Control

In this section, we present a short case study that illustrates how burstiness may im-
pact in an unexpected way the performance of admission control. The basic model of
an e-commerce site that we use in this paper is based on the TPC-W benchmark that is
implemented as a typical multi-tier application which consists of a web server, an appli-
cation server, and a back-end database. The web server and the application server reside
usually within the same physical server, which is called front server. After a new session
connection is generated, client requests circulate among the front and database server
before they are sent back to the client. After a request is sent back, the client spends
an average think time E[Z] before sending the following request. A session completes
after the client has generated a series of requests.

Overload management is a critical business requirement for today’s Internet services.
A common approach to handle overload is to apply specific resource limits that typi-
cally bound the number of simultaneous socket connections or threads. For example, in
traditional web servers that employ thread-per-connection implementation, the server
configuration specifies the number of processes (and connections) that are allocated for
admitting the user requests. As an example, in the Apache web server [4], when all the
server threads are busy, the system stops accepting new connections. The same princi-
ple applies for providing the basic overload protection in multi-tier applications. The
system administrators may set limits on the number of simultaneous client sessions (we
call them active requests) in the system. Limiting the active requests is critical for qual-
ity of service: setting this limit too low results in achieving a good response time but
at a price of lower system throughput (and a high number of dropped user sessions).
Setting this limit too high may lead to a better throughput and reduced drop rates at a
price of a much higher response time.

Capacity planning is routinely used to determine the base number of active requests
in order to strike a balance among the expected customer response times and dropped

84 L. Lu et al.

 0.06

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

R
at

io

Active Requests (Maximum)

(b) Aborted (Existing Session) Ratio

 0.08
 0.1

 0.12
 0.14
 0.16

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

R
at

io

Active Requests (Maximum)

(c) New Session Drop Ratio

 6
 8

 10
 12
 14
 16
 18

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

T
im

e
(s

ec
on

ds
)

Active Requests (Maximum)

(a) 95th Percentile Response Time

 0
 2
 4

 0
 0.02
 0.04

 0

Fig. 1. Capacity Planning study for SBAC under exponential (i.e., not bursty) new session arrivals.
Performance measures are presented as a function of the maximum number of active requests in
the system.

����

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� �
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���

�
�
�
�

��
�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

������

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

No Burst
Level 1 Level 2 Level 3

R
at

io

Burst Level

(c) New Session Drop Ratio

baseAC
SBAC85
SBAC95

 1

 2

 3

 4

 5

 6

No Burst
Level 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

No Burst
Level 1 Level 2 Level 3

R
at

io

Burst Level

(b) Aborted (Existing Session) Ratio

baseAC
SBAC85
SBAC95

Level 2 Level 3

T
im

e
(s

ec
on

ds
)

Burst Level

(a) 95th Percentile Response Time

SBAC85
SBAC95

baseAC

 0

Fig. 2. Three different burstiness profiles. The capacity planning results and SLO targets are now
violated. It appears that a queue size of 256 (i.e., maximum active requests for the baseAC con-
figuration) is not sufficient to meet SLO requirements.

sessions. Figure 1 illustrates the results of a capacity planning study that models a
typical TPC-W 2-tier implementation (i.e., a front server and a database server). The
TPC-W defines 14 transactions, each of which can be generally classified as “brows-
ing” or “ordering”. Here, we assume that we use the ordering mix, that consists of
50% browsing and 50% ordering transactions. Request service times in the front and
database servers are derived using the models presented in [22] that have been shown to
capture very accurately the performance and behavior of multi-tier applications. Con-
sistent with the specifications of the TPC-W benchmark, the average user think time
is equal to 7 seconds, exponentially distributed. Inter-arrival times of new sessions are
assumed to be exponentially distributed, i.e., there is no burstiness in the arrival stream
of new sessions.

Each session consists of a sequence of requests (i.e., essentially visit “rounds” to the
front and database server that define the a session length) that is uniformly distributed
with parameters 5 and 35, that is with expected mean equal to 20.

It is a typical situation when after a certain waiting time an impatient client might
“click again” and reissue the original request. Client request timeouts and retries can
be added to our model to reflect a more complex and realistic scenario but according to
a sensitivity analysis in [13] this will just decrease the useful system throughput (due
to the processing overhead of these additional requests) but does not fundamentally
change the results of our study. In this paper, we use a simplified model without request
timeouts and retries in order to focus on the effects of burstiness.

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 85

Figure 1(a) illustrates the 95th percentile of user end-to-end response time as a func-
tion of the predefined value of the maximum active requests in the system. Figures 1(b)
and 1(c) present the aborted rate of existing sessions and the drop rate of new ses-
sions, respectively, as a function of the allowed active requests. The figure suggests
that given this TPC-W mix, one may use 256 as the recommended limit on active re-
quests, since this value strikes a good balance among all desired measures. In all ex-
periments in the remaining of this paper we set the limit on active requests equal to
256.

Session-based admission control (SBAC) [13] is a very effective policy for web
servers and is based on monitoring the CPU utilization of the web server. SBAC ac-
cepts a new session only when the system utilization is below a certain threshold, to
guarantee a successful session completion. If the observed utilization is above a spec-
ified threshold, then for the next time interval, the admission controller rejects all new
sessions and only serves requests from already admitted sessions. Once the observed
utilization drops below the given threshold, the admission controller changes its policy
for the next time interval and begins admitting and processing new sessions again. A
web server employs a configurable size “listen queue” for buffering the incoming re-
quests. If requests from sessions that are already accepted arrive when the queue is full,
then they are aborted. The useful throughput of the system is measured as a function of
the number of completed sessions. Aborted requests of already accepted sessions are
highly undesirable because they compromise the server’s ability to process all requests
needed to complete a transaction and result in wasted system resources.

We have implemented the SBAC mechanism in a simulation model of a client-server
system that is built according to the TPC-W specifications. The SBAC mechanism uses
a front server utilization threshold for admitting new sessions.1 Figure 2 illustrates the
ineffectiveness of the threshold-based techniques in presence of bursty arrivals. We
compare the results of two different admission control strategies. A first strategy (called
baseAC) employs a traditional overload control based on admitting a fixed, predefined
number of active requests for processing. Here, we set ActiveRequests = 256 as sug-
gested by capacity planning (see Figure 1). The second strategy is SBAC where the
front server utilization threshold is set to 85% and 95% respectively. The three bursti-
ness profiles that we used here are further discussed and described in Section 3.2.

Figure 2(a) illustrates the 95th percentile of user response time. SBAC is effective
in maintaining good response times under bursty arrivals but at the expense of a rela-
tively high ratio of aborted sessions as well as a high ratio of rejected new sessions, see
Figure2(b) and 2(c). The baseAC strategy does not differentiate between the requests
from new and existing sessions and this leads to a very high ratio of aborted sessions.
While both of these threshold-based strategies might be a reasonable choice under
non-bursty traffic, they clearly exhibit their deficiencies under bursty traffic conditions.
This simple experiment shows that the admission control mechanism has to take traffic
burstiness into account and adapt the system configuration and/or thresholds in order

1 For the TPC-W testbed used in our experiments of the ordering mix, SBAC uses the CPU
utilization of the front server because the front server is the system bottleneck for this particular
mix. In general, admission should be based on the utilization of the bottleneck resource, e.g.,
if the DB tier is a bottleneck then its CPU utilization should be used for SBAC decisions.

86 L. Lu et al.

to effectively deal with bursty traffic conditions. In the next section, we present a new
algorithm that effectively deals with the above problem.

3 AWAIT Algorithm

In this section, we describe AWAIT, a novel session-based admission control algorithm
that aims to provide an additional support for dealing with bursty session arrivals.
AWAIT has two different mechanisms to regulate request acceptance for processing. The
first mechanism uses a counter of ActiveRequests that is defined according to capacity
planning for achieving a given SLO for response time. Until this counter reaches its
maximum any incoming request is accepted, this request may represent a new session
or it may belong to an already accepted session. The second mechanism uses a special
queue, called blocking queue, which is created to store the requests from already ac-
cepted sessions after the number of ActiveRequests reaches its maximum capacity. Via
this mechanism, the AWAIT controller rejects new session requests if ActiveRequests
reached its capacity but the system still admits requests from earlier accepted sessions.
When the blocking queue becomes full, then incoming requests from accepted sessions
are unavoidably aborted. This is undesirable because it leads to business loss.

The capacity of the blocking queue is a critical parameter for the performance of
the accepted sessions since the time spent there contributes to the user end-to-end time,
thus may violate the target SLOs. The larger the capacity of the blocking queue, the
longer the contribution of the time waiting there to the user end-to-end time. Similarly,
the larger the capacity of the blocking queue, the smaller the expected aborted ratio of
accepted requests. Striking a good balance between these two conflicting measures is
the purpose of AWAIT.

To ease the presentation of AWAIT, we first present a static version that considers
a fixed blocking queue size. In the adaptive version of AWAIT, the size of this block-
ing queue is autonomically adjusted according to the burstiness of the workload while
ensuring that the response time SLOs are met.

3.1 Static AWAIT

To formally describe the AWAIT algorithm, we introduce the following notions:

– New session request – a request that is generated by a new client (i.e., it is a first
request in a new session);

– Accepted session request – a request that is issued by a client within an already
accepted session;

– ActiveRequests – a counter that reflects the number of accepted requests which are
currently in processing by the system. These active requests could be either of new
sessions or of already accepted sessions. The maximum value for this counter is set
to a value defined by capacity planning (see Section 2). Let us denote this value as
A;

– BlockedRequests – a counter that reflects the number of blocked requests which
are received from the clients of already accepted sessions and which are stored in
the BlockingQueue. Note this difference: the blocking queue stores requests from

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 87

already accepted sessions only. Let B denote the maximum value of this counter
that also defines the capacity of this queue;

– AdmitNew – a boolean variable that defines whether a new session can be accepted
by the system. If AdmitNew = 1 then a new session can be accepted by the
system. If AdmitNew = 0 then all the new sessions are rejected by the system;

Now, we describe the iteration steps of the algorithm. Let a new request req arrive for
processing. The system can be in one of the following states.

– AdmitNew = 1 and ActiveRequests < A.
This state corresponds to normal system processing when there is enough system
capacity for processing requests from new sessions as well as requests from already
accepted sessions. Therefore, independent on the request type req is accepted for
processing and the counter ActiveRequests increases by one. When this counter
reaches its maximum value A, then AdmitNew = 0, and this corresponds to a
new system state when any requests from new sessions are rejected.

– AdmitNew = 0 and BlockedRequests < B.
In this state the incoming requests are treated differently depending on their type.
If the incoming request is from a new session then it is rejected. If it is part to an
already accepted session, then it is stored in the BlockingQueue and the queue’s
counter is updated.

– AdmitNew = 0 and BlockedRequests = B.
This state reflects to the situation when BlockedRequests has reached its maxi-
mum value B. Any incoming request, independent on its type, is rejected. If the
request comes from an already accepted session, then its entire session is aborted.

Now, we describe how the system counters ActiveRequests and BlockedRequests
are updated when a processed request leaves the system, i.e., the reply is sent to the
client. The system can be in one of the following states (similar to the states described
above).

– If ActiveRequests < A,
then ActiveRequests ← ActiveRequests− 1.

– If AdmitNew = 0, ActiveRequests = A, and BlockedRequests = 0,
then ActiveRequests ← ActiveRequests − 1 and AdmitNew = 1, i.e., the
admission control status changes and the system again starts accepting both types
of requests: from new sessions and already accepted sessions.

– If AdmitNew = 0, ActiveRequests = A, and 0 < BlockedRequests ≤ B,
then one of the blocked requests is accepted for processing in the system and
only the counter BlockedRequests is updated: BlockedRequests ← Blocked
Requests− 1.

We call this version of algorithm the conservative AWAIT. Under this algorithm the
differentiation of requests from new and accepted sessions starts when the counter
ActiveRequests reaches its maximum value A. Then new sessions are rejected and re-
quests from accepted sessions have extra buffering facility in the blocking queue. Once
the ActiveRequests counter gets below A, then the admission restriction is lifted and
new session requests are again accepted.

88 L. Lu et al.

We also introduce a different version of the algorithm, called aggressive AWAIT,
which at a first glance is only slightly different from the conservative AWAIT above.
However, the performance evaluation of these two versions shows a surprising differ-
ence in behavior and in the numbers of aborted and rejected sessions. As we see later,
the aggressive AWAIT decreases forcefully the number of aborted sessions while sup-
porting the same useful system throughput as the conservative AWAIT.

For the aggressive AWAIT strategy we introduce the additional variable Overload:

– Overload is a boolean variable that defines whether the system is under severe over-
load. Typically, Overload = 0 while the system can process all the requests from
the already accepted sessions. Overload = 1 when system observes an aborted
request from the accepted session. This may happen when ActiveRequests = A
and BlockedRequests = B, and the incoming request is from an accepted session.
The aborted session triggers an “emergency situation” that is treated aggressively.
New session requests are not accepted during overload until all the queues in the
system are flushed. This helps in providing a prolonged preferential treatment of
requests from the accepted sessions to rapidly overcome the overload state.

When the overload condition is triggered, i.e., Overload = 1, there are slightly differ-
ent rules for updating the system state when a processed request leaves the system:

– If AdmitNew = 0, Overload = 1, ActiveRequests = A, and Blocked
Requests = 0,
then ActiveRequests ← ActiveRequests − 1, but the system is considered to
be still under severe overload and its admission control status does not change: the
system still rejects requests from new sessions and only processes requests from
the already accepted sessions.

– If Overload = 1 and ActiveRequests = 0, then the operation of the system goes
back to normal: Overload = 0 and AdmitNew = 1.

The pseudo-code shown in Figure 3 summarizes both versions of the AWAIT algorithm:
conservative and aggressive. To unify the description, in the conservative version of the
algorithm the state of variable Overload does not change, i.e., Overload = 0.

In sum, the rationale for the conservative versus the aggressive version of the algo-
rithm is the following. If the system operates under a burst, then queues tend to build up
fast. An accepted session that is aborted signals the system about insufficient resource
capacity for processing requests from already accepted sessions. To mitigate the perfor-
mance effects of this, it is more effective to completely dedicate system resources for
processing only the accepted session requests by flushing the system queues at the ex-
pense of a higher ratio of rejected new sessions. This strategy benefits accepted sessions
by implicitly giving them priority and “reserving” the system for exclusive processing
of accepted session requests (until overload subsides). In the following subsection, we
present experimental evidence that shows the relative performance of the conservative
versus the aggressive version of the algorithm.

3.2 Performance Evaluation of AWAIT

We evaluate the performance of AWAIT via trace driven simulation. Because our pur-
pose is to evaluate the different proposed algorithms under varying burstiness levels,

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 89

For every request req that arrives for processing
if (AdmitNew AND ActiveRequests < A)

accept req
ActiveRequests = ActiveRequests + 1
if (ActiveRequests == A)

AdmitNew = 0
else if (!AdmitNew AND BlockedRequests < B)

if (type(req) == NewSession)
reject req

if (type(req) == AcceptedSession)
accept req into BlockingQueue
BlockedRequests = BlockedRequests +1

else if (!AdmitNew AND BlockedRequests == B)
reject req //Reject all requests
if (type(req)==AcceptedSession) //Accepted session is aborted

Overload=1 //Aggressive version: trigger overload state

For every request req that leaves the system
if (ActiveRequests < A)

ActiveRequests = ActiveRequests -1
else if (ActiveRequests==A AND 0<BlockedRequests≤B

move one request from blocking queue to queue
BlockedRequests = BlockedRequests -1

else if (ActiveRequests == A AND BlockedRequests == 0)
ActiveRequests = ActiveRequests -1
if (!Overload)

AdmitNew = 1
if (ActiveRequests==0) //Aggressive version: queues flushed

Overload = 0 //Restore overload state to normal
AdmitNew = 1 //Start admitting new sessions

Fig. 3. AWAIT: Admission control algorithm, aggressive version. The conservative AWAIT is ob-
tained by removing the statements labeled Aggressive version.

(c) Burst Level 3

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

time (s)

(a) Burst Level 1

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

time (s)

(b) Burst Level 2

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

nu
m

be
r

of
 a

ct
iv

e
cl

ie
nt

s

time (s)

 0

Fig. 4. The burstiness profiles of the three arrival MAPs

we conducted experiments assuming that arrivals of new sessions are bursty. We use
a Markovian Arrival Process (MAP) to generate three arrival processes with the same
mean and variance but with distinctive burstiness profiles. For details on the generation
of the three MAP processes as well as on their effectiveness in mimicing bursty arrivals
such those reported in the 1998 World Cup web server we direct the reader to [23]. The
burstiness profiles (i.e., the number of arrivals as a function of time) for the three MAPs
that we use for the arrival process are illustrated in Figure 4.

The service processes at the front server and the database server are also modeled via
MAPs (see [22]) that accurate capture the service demands of TPC-W’s ordering mix.2

Each session consists of a sequence of requests that defines a session length. MAPs have

2 Experiments with TPC-W’s ordering and browsing mixes were also conducted. Results are
qualitatively the same as with the ordering mix and are not reported here due to lack of space.

90 L. Lu et al.

������������

Burst Level 2 Burst Level 3Burst Level 1
SBAC85Base Admission ControlAggressive AWAIT Conservative AWAIT

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

8 16 32 64 128 256

R
at

io

Blocking Queue Capacity (B)

(b) Aborted (Existing Session) Ratio

 0

 1

 2

 3

 4

 5

 6

 7

8 16 32 64 128 256 sbac85

T
im

e
(s

ec
on

ds
)

Blocking Queue Capacity (B)

(a) 95th Percentile Response Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

8 16 32 64 128 256 sbac85

R
at

io

Blocking Queue Capacity (B)

(c) New Session Drop Ratio

baseAC

sbac85
baseAC

baseAC

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256 sbac85

R
at

io

Blocking Queue Capacity (B)

(d) Completed Session Ratio

baseAC 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

8 16 32 64 128 256 sbac85

R
at

io

Blocking Queue Capacity (B)

(h) Completed Session Ratio

baseAC

sbac85

sbac85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

8 16 32 64 128 256 sbac85

Blocking Queue Capacity (B)

baseAC

R
at

io

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

8 16 32 64 128 256 sbac85

T
im

e
(s

ec
on

ds
)

Blocking Queue Capacity (B)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

8 16 32 64 128 256

R
at

io

Blocking Queue Capacity (B)

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

8 16 32 64 128 256

R
at

io

Blocking Queue Capacity (B)

baseAC

baseAC

baseAC

(i) 95th Percentile Response Time

(j) Aborted (Existing Session) Ratio

(k) New Session Drop Ratio

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 32 64 128 256 sbac85

T
im

e
(s

ec
on

ds
)

Blocking Queue Capacity (B)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

8 16 32 64 128 256 sbac85

R
at

io

Blocking Queue Capacity (B)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

8 16 32 64 128 256 sbac85

R
at

io

Blocking Queue Capacity (B)

baseAC

baseAC

baseAC

(e) 95th Percentile Response Time

(f) Aborted (Existing Session) Ratio

(g) New Session Drop Ratio

(l) Completed Session Ratio

Fig. 5. AWAIT with fixed size of the blocking queue. The graphs illustrate performance values
for the aggressive and conservative versions (see white and shaded bars, respectively) for various
fixed sizes of the blocking queue B. In all experiments, the limit of accepted requests A is set to
256, based on capacity planning.

been shown to be surprisingly compact yet very effective models of the service process
in multi-tiered systems, modeling implicitly conditions such as caching or database
locks (see [22]). Session lengths are uniformly distributed between parameters 5 and
35, that is with expected mean equal to 20.

Figure 5 illustrates the performance of the two versions of AWAIT as a function of
the capacity of the blocking queue B. For reference, we also report on the performance
of the system with simple admission control based on the number of ActiveRequests
only (labeled: “baseAC”) as well as the performance of SBAC with CPU utilization
threshold set to 85%. Note that for all experiments, we set the ActiveRequests counter
to 256, as suggested by the capacity planning study of Section 2.

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 91

The figure presents results for the three burstiness profiles in the arrivals of new ses-
sions. First, one can easily see that the effect of the degree of burstiness in the arrivals
dramatically impacts the user perceived performance, see the 95th percentiles of user re-
sponse times for the various policies, first row of graphs. Looking just at the percentiles,
it is clear that the addition of the blocking queue deteriorates the user end-to-end times
but the real benefit of blocking can be seen in the decrease of the aborted session ratio,
see the second row of graphs, as well as in the decrease of new session drop ratio, see
the third row of graphs. The useful throughput of the system (measured in successfully
completed sessions) is shown in the last row of graph that demonstrate the improved
metric for both versions of AWAIT strategy compared to SBAC and baseAC.

Under low burstiness conditions, see first column of graphs, it is apparent that SBAC
remains a good choice, at the expense of a very high percentage (nearly as high as
30%) of new session rejections. The aggressive and conservative versions of AWAIT
result in longer response times but in significantly lower drop ratios, see Figures 5(b)
and 5(c). With higher burstiness levels, the aggressive version results in better response
time percentiles, see Figures 5(e) and 5(i).

The effectiveness of the aggressive version to keep the aborted session ratio low is
apparent across all burstiness levels, see Figures 5(b), 5(f), and 5(j) (second row of
graphs). These figures show that the aggressive version very effectively differentiates
between existing and new sessions, and treats existing sessions preferentially.

Naturally, because of the limited system capacity, if the number of accepted sessions
that are aborted is low, then the ratio of rejected new sessions is bound to increase. This
effect is shown for the aggressive policy in the third row of graphs in Figure 5, but this
is unavoidable since our purpose is to bias the system for processing the requests of
already accepted sessions against admitting new sessions, especially under periods of
bursty traffic.

However, intuitively, there is an additional concern on the effectiveness of the aggres-
sive AWAIT strategy compared to its conservative version: “flushing” the system queues
might result in a less efficient resource usage and potentially may lead to a lower useful
throughput. The last row of graphs in Figure 5 answers this question. It shows that the
useful throughput of the system measured in successfully completed sessions is very
similar for both conservative and aggressive versions of AWAIT and also significantly
higher than under earlier proposed SBAC strategy or the simple baseAC policy.

In summary, the Figures 5 shows that the aggressive AWAIT minimizes the number
of aborted sessions while meeting service SLOs. Yet, its performance is sensitive to the
capacity of the blocking queue B. In the following section we present an adaptive algo-
rithm that changes the blocking queue capacity as a function of the workload burstiness
in order to adaptively meet SLO targets.

3.3 Adaptive AWAIT Strategy

Here, we show how we can adjust on-the-fly the size of the blocking queue B in order to
achieve a certain predefined SLO. Larger blocking queues result in longer user response
times but have less aborted sessions.

To dynamically adjust the blocking queue size, we use historical information of
the achieved 95th percentiles of all requests served by the system (irrespective of the

92 L. Lu et al.

blocking queue capacity used – this value should reflect the target system SLO as the
size of the blocking queue is transparent to the user) but also response time percentiles
that correspond to every other blocking queue capacity B used since the inception of the
system. We use this information to decide whether the current blocking queue capacity
is sufficient or not. Changing the blocking queue capacity B throughout the lifetime of
the system is critical as during workload surges smaller B’s result in better performance
rather than large B’s.3 To make readily available the values of the 95th percentiles of
the user response times, we maintain for each blocking capacity B a corresponding his-
togram of the user response times for that B. Therefore, for each completed request, two
response time histograms are updated: the histogram of all requests in the system (irre-
spective of the blocking capacity B) and the histogram that corresponds to the current
block capacity B used.

We decide whether to change the capacity of the blocking queue for every group
of K = 10, 000 requests served.4 The adaptive algorithm then compares the achieved
response time percentiles of all jobs in the system and the response times percentiles of
the current configuration B with the target SLOs. If both percentiles are less than the
SLO and there are aborted sessions, then it is clear that we can reduce the aborted ratio
because there is room to increase B (since response times percentiles do not violate
the SLO). If both percentiles are greater than the SLO, then the blocking queue should
be reduced in an effort to meet the SLO target. If none of the above two conditions
are met, we opt to leave the blocking queue capacity in its current level, otherwise the
system may suffer from thrashing. For example, if the response time percentile of all
requests is violated, but the percentile of the current B is not, the algorithm still stays
with the current blocking queue size B, since the system is on a positive state and its
accumulated statistics eventually will correct the percentile of all requests.

The steps of increase/decrease of the blocking queue capacity can be arbitrary. In the
experiments presented in this section, the capacity of the blocking queue B can have
sizes as small as 1 and as large as 120. The increase/decrease step is equal to 5 for
values of B less than 10 and equal to 20 for values of B greater than 20. We stress that
other step values could also work, their selection may affect though how quickly the
algorithm converges to a desirable B range. Figure 6 summarizes the algorithm.

The effectiveness of the adaptive AWAIT strategy is illustrated in Figure 7. Here,
we experimented with the three different burst levels but also using different target
SLOs. The figure illustrates how the blocking queue size changes as a function of the
number of requests that are processed by the system for the various experiments. In
each graph we also report on the achieved 95th percentile of the round-trip time, as
well as on the aborted and new session drop ratios. The figure shows that the adaptive
AWAIT is remarkably robust: it reaches the target SLOs exceptionally well for all cases,

3 This may initially seem counter-intuitive as workload surges would result in large numbers of
requests that are simultaneously in the system. However, in order to maintain the target SLOs
during a surge it is necessary to limit the blocking queue capacity, otherwise the time spent
there dominates user response times and SLOs are violated.

4 We selected K = 10, 000 to be able to collect meaningful statistics for a group of requests.
K should be large enough for accumulating meaningful statistics, but different values, e.g.,
K = 5, 000 or K = 15, 000 will work too.

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 93

For every aborted session
AbortedSessions++

For every finished request
counter++
update total RT histogram (all requests, irrespective of B)
update current B RT histogram (with current blocking queue B)
if (counter == K)

if (total RT percentile < SLO AND current B RT percentile < SLO
AND AbortedSessions > 0)

increase current blocking capacity B // Reduce aborted ratio
if (total RT percentile > SLO AND current B RT percentile > SLO)

reduce current blocking capacity B // Meet SLO target
counter = 0
AbortedSessions = 0

Fig. 6. Policy for adapting the blocking queue size B in the enhanced, adaptive AWAIT strategy

95th percen RT =4.0106
Aborted Ratio =0.0093
New Drop Ratio =0.1145

Completed Sesn Ratio =0.8759

Burst Level 1 Burst Level 2 Burst Level 3

Aborted Ratio =0.0037
New Drop Ratio =0.3907

Aborted Ratio =0.0468
New Drop Ratio =0.4939

Aborted Ratio =0.0514
New Drop Ratio =0.5122

Aborted Ratio =0.0519
New Drop Ratio =0.4962

95th percen RT =4.0358 95th percen RT =4.0382

95th percen RT =4.5155

95th percen RT =4.5041

95th percen RT =5.0044

95th percen RT =4.4548
Aborted Ratio =0.0081
New Drop Ratio =0.1112

Completed Sesn Ratio =0.8788

95th percen RT =5.0218
Aborted Ratio =0.0069
New Drop Ratio =0.1209

Aborted Ratio =0.0355
New Drop Ratio =0.3639

Completed Sesn Ratio =0.8721

Completed Sesn Ratio =0.6108

Completed Sesn Ratio =0.5840

Completed Sesn Ratio =0.6019
New Drop Ratio =0.3783

95th percen RT =5.0183
Aborted Ratio =0.0314

Completed Sesn Ratio =0.4749

Completed Sesn Ratio =0.4607

Completed Sesn Ratio =0.4793

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 4.0

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 4.5

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 5.0

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 20 40 60 80 100 120 140 160

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 4.0

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 4.5

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 5.0

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 4.5

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 50 100 150 200 250 300

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 5.0

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

B
lo

ck
in

g
Q

ue
ue

 S
iz

e

Number of Requests (x 10K)

Target SLO = 4.0

 300

Fig. 7. Adaptive AWAIT: illustration of how the capacity of the blocking queue B changes as a
function of the workload

while maintaining very low aborted rates. For each burst level, as the target SLO in-
creases, the algorithm effectively increases the blocking queue capacity while reducing
the aborted ratio. If we maintain the same SLO but change the burstiness of arrivals,
the algorithm decreases the capacity of the blocking queue B. In all experiments, re-
quests from existing sessions are preferentially treated as low aborted ratios across all
experiments are reported, and the ratio of successfully completed sessions is higher

94 L. Lu et al.

under the adaptive AWAIT policy compared to the aggressive static AWAIT strategy in-
troduced in Section 3.1. These results demonstrate the effectiveness and robustness of
the proposed autonomic mechanism of the aggressive AWAIT policy.

Note that the target SLO can be achieved with a fixed blocking size queue, but the
size of the blocking queue needs to differ depending on the degree of burstiness (e.g.,
SLO = 4 sec can be achieved with a blocking queue size set to 8 for the burst levels
2 and 3, but if the system operates under burst level 1, then the blocking queue size
should be set to 32, see Figure 5). Note that any fixed configuration does not adapt
to a changing traffic pattern. The proposed adaptive strategy is specially designed to
“auto-tune” the blocking queue size for achieving and supporting a given SLO.

4 Related Work

There has been a lot of research in the areas of overload control, service differentiation,
request scheduling, and request distribution for Web servers and web server clusters.
Due to space limitations, we provide a very brief overview here.

The use of admission control for an overload management has been proposed and
explored in several systems. Iyer et al. [18] employ a simple admission control mech-
anism based on bounding the length of the Web server listen queue. The authors try
minimizing the work spent on a request which is eventually not serviced due to over-
load. They analyze different queue management approaches and use multiple thresh-
olds, though they do not specify how these thresholds should be set to meet a given
performance target. Cherkasova and Phaal [13] introduce session-based admission con-
trol, driven by a CPU utilization threshold, which performs an admission decision based
on user sessions rather than individual requests, and during the overload rejects new
sessions while serving requests from already accepted sessions. Carlstrom and Rom [9]
proposed a performance model for scheduling client requests and session-level admis-
sion control using generalized processor scheduling discipline. To improve the effi-
ciency of session-based admission-control mechanisms and reduce its overhead, Voigt
et al. [28,29] present several kernel-level mechanisms for overload protection and ser-
vice differentiation. The earlier works consider a single tier web server, and the pro-
posed techniques do not directly provide a solution for a multi-tier system.

Many of the proposed techniques are based on fixed policies, such as bounding the
maximum request rate of requests to some constant value. For example, PACERS [11]
limits the number of admitted requests based on estimated web server capacity. The au-
thors use a very simple simulated service where request processing time is linear function
of the requested Web page size. Similar ideas (and similar problems with fixed thresh-
old settings) are pursued in [8]. Web2K presents a mechanism prioritizing requests into
two classes: premium and basic. Connection requests are forwarded into two different
request queues, and admission control is performed using two metrics: the accept queue
length and measurement-based predictions of arrival and service rates from that class.
Bartolini et al., in their recent work [6,7], introduce a quite elaborate session admission
algorithm, called AACA, that self-configures a dynamic constraint on the rate of incom-
ing new sessions to satisfy guarantees of the Service Level Agreements (SLA). However,
the rate limitation for the next iteration interval is based on a relatively straightforward
prediction of the session arrival rate from the previous interval measurements.

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 95

Many earlier papers combine differentiated service with admission control
[3,15,19,20,28]. Kanodia and Knightly [19] develop an admission control and service
differentiation mechanism which is based on a general framework of request and service
envelopes. Such envelopes statistically describe the server’s request load and service
capacity as a function of interval length.The proposed mechanism integrates latency
targets with admission control and improves the percentage of requests that meet their
QoS delay requirements. The approach is evaluated via a trace-driven simulation.

A number of systems have explored a controlled content adaptation [1,10,17] for
scaling web site performance, i.e., degrading the quality of static Web content by re-
ducing the resolution and the number of images delivered to clients.

Several research papers have examined how control theory can be applied in the
context of Web servers [2,21,24]. Lu et al. [21] present a control-theoretic approach to
provide guaranteed relative delays between different service classes. Main challenge in
such works is that good models of system behavior are difficult to derive. Web applica-
tions are subject to widely varying traffic patterns and resource demands. The consid-
ered papers make use of linear models, which may be inaccurate in describing systems
with bursty loads and resource requirements.

Many earlier papers study request and connection scheduling for improving Web
server performance [12,14,16]. While shortest job first scheduling for static content
Web sites can improve performance of a web server, it can not prevent it from overload
though. Elnikety et al. [16] present an elegant solution for admission control and re-
quest scheduling for multi-tier e-commerce sites,. Their method is based on measuring
the execution costs of requests online, distinguishing different request types, and per-
forming both overload protection and preferential scheduling using a straightforward
control mechanism. They implement their admission control using proxy, called Gate-
keeper, with standard software components on the Linux operating system. There were
a few other works close to Gatekeeper in spirit, SEDA [31] is a prime example of such
work. In SEDA, applications consist of a network of event-driven stages connected by
explicit queues. SEDA makes use of a set of dynamic resource controllers by prevent-
ing resources from being over-committed when demand exceeds service capacity. It
keeps stages within their operating regime despite large fluctuations in load and allows
services to be well-conditioned to load, i.e., preventing their performance degradation
under severe overload. The authors describe several control mechanisms for automatic
tuning and load conditioning, including thread pool sizing, event batching, and adaptive
load shedding.

5 Conclusions

We presented an autonomic policy for service differentiation and admission control dur-
ing overload for multi-tiered system management that offer web services. We focused
on the pitfalls of existing policies under bursty conditions and remedy the problem
by proposing the concept of a blocking queue where requests from already accepted
sessions are stored if the system operates in overload. This blocking queue benefits
performance by minimizing the dropped requests of already accepted sessions but also
contributes to the end-to-end user perceived system response time. We proposed a novel

96 L. Lu et al.

autonomic algorithm, called AWAIT, that can limit the increase of the end-to-end re-
sponse times within predefined SLO targets while dynamically adjusting the capacity
of the blocking queue to the workload burstiness. Detailed simulations with the widely
used TPC-W e-commerce benchmark under a variety of workload burstiness levels sup-
port the effectiveness and robustness of AWAIT.

The current algorithm adapts the blocking queue capacity to shield the offered web
service from bursty arrivals, to provide service differentiation, and to prevent the sys-
tem from overload. It complements the basic overload mechanism that sets a limit on
the number of active client requests that are simultaneously processed by the system.
Currently, this limit is defined by capacity planning. In our future work, we plan to
automate the capacity planning step as well, i.e., to adjusts the value of this basic pa-
rameter on-the-fly when the workload profile experiences significant changes. We are
also working on theoretically determining the ideal blocking queue capacity given a
level of workload burstiness.

References

1. Abdelzaher, T., Bhatti, N.: Web content adaptation to improve server overload behavior.
Computer Networks 31(11-16) (1999)

2. Abdelzaher, T., Shin, K.G., Bhatti, N.: Performance guarantees for Web server end-systems:
A control-theoretical approach. IEEE Transactions on Parallel and Distributed Systems 13(1)
(2002)

3. Almeida, J., Dabu, M., Manikutty, A., Cao, P.: Providing differentiated levels of service
in Web content hosting. In: Workshop on Internet Server Performance, Madison, WI (June
1998)

4. Apache Software Foundation. The Apache Web server, http://www.apache.org
5. Balsamo, S., de Nitto Personè, V., Onvural, R.: Analysis of Queueing Networks with Block-

ing. Kluwer Academic Publishers, Dordrecht (2001)
6. Bartolini, N., Bongiovanni, G., Silvestri, S.: An autonomic admission control policy for dis-

tributed web systems. In: Proc. of the Intl. Symp. on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, MASCOTS ’07 (2007)

7. Bartolini, N., Bongiovanni, G., Silvestri, S.: Self-* overload control for distributed web sys-
tems. In: Proc. of the Intl. Workshop on Quality of Service, IWQoS (2008)

8. Bhoj, P., Ramanathan, S., Singhal, S.: Web2K: Bringing QoS to Web servers. Technical Re-
port HPL-2000-61, HP Labs (May 2000)

9. Carlstrom, J., Rom, R.: Application aware admission control and scheduling in web servers.
In: Proc. of INFOCOM (2002)

10. Chandra, S., Ellis, C., Vahdat, A.: Differentiated multimedia Web services using quality
aware transcoding. In: Proc. of INFOCOM (2000)

11. Chen, X., Mohapatra, P., Chen, H.: An admission control scheme for predictable server re-
sponse time for Web accesses. In: Proc. of the 10th World Wide Web Conference (WWW),
Hong Kong (2001)

12. Cherkasova, L.: Scheduling strategy to improve response time for Web applications. In:
Bubak, M., Hertzberger, B., Sloot, P.M.A. (eds.) HPCN-Europe 1998. LNCS, vol. 1401.
Springer, Heidelberg (1998)

13. Cherkasova, L., Phaal, P.: Session-based admission control: A mechanism for peak load man-
agement of commercial Web sites. IEEE Transactions on Computers 51(6) (June 2002)

http://www.apache.org

AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 97

14. Crovella, M., Frangioso, R., Harchol-Balter, M.: Connection scheduling in Web servers. In:
Proc. of the USENIX Symposium on Internet Technologies and Systems, USITS (1999)

15. Eggert, L., Heidemann, J.: Application-level differentiated services for Web servers. World-
Wide Web Journal 2(3) (August 1999)

16. Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A method for transparent admission
control and request scheduling in e-commerce web sites. In: Proc. of the World Wide Web
Conference, WWW (2004)

17. Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P.: Cluster-based scalable net-
work services. In: Proc. of the 16th ACM Symposium on Operating Systems Principles,
SOSP (1997)

18. Iyer, R., Tewari, V., Kant, K.: Overload control mechanisms for Web servers. In: Workshop
on Performance and QoS of Next Generation Networks, Nagoya, Japan (November 2000)

19. Kanodia, V., Knightly, E.W.: Ensuring latency targets in multiclass Web servers. IEEE Trans-
actions on Parallel and Distributed Systems 13(10) (October 2002)

20. Li, K., Jamin, S.: A measurement-based admission-controlled Web server. In: Proc of
INFOCOM (2000)

21. Lu, C., Abdelzaher, T.F., Stankovic, J.A., Son, S.H.: A feedback control approach for guar-
anteeing relative delays in Web servers. In: IEEE Real-Time Technology and Applications
Symposium (2001)

22. Mi, N., Casale, G., Cherkasova, L., Smirni, E.: Burstiness in multi-tier applications: Symp-
toms, causes, and new models. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS,
vol. 5346, pp. 265–286. Springer, Heidelberg (2008)

23. Mi, N., Casale, G., Cherkasova, L., Smirni, E.: Injecting realistic burstiness to a traditional
client-server benchmark. In: Proc. of the 6th Intl. Conference on Autonomic Computing,
ICAC (2009)

24. Parekh, S., Gandhi, N., Hellerstein, J.L., Tilbury, D., Jayram, T., Bigus, J.: Using control
theory to achieve service level objectives in performance management. In: Proc. of the
IFIP/IEEE International Symposium on Integrated Network Management (2001)

25. Perros, H.G.: Queueing networks with blocking. Oxford University Press, Oxford (1994)
26. Shen, K., Tang, H., Yang, T., Chu, L.: Integrated resource management for cluster-based

Internet services. In: Proc.of Operating Systems Design and Implementation, OSDI (2002)
27. TPC-W Benchmark, http://www.tpc.org
28. Voigt, T., Tewari, R., Freimuth, D., Mehra, A.: Kernel mechanisms for service differentiation

in overloaded Web servers. In: Proc. of the USENIX Annual Technical Conference (2001)
29. Voigt, T.: Overload Behaviour and Protection of Event-driven Web Servers. In: Proc. of In-

ternational Workshop on Web Engineering (2002)
30. Welsh, M., Culler, D.: Adaptive Overload Control for Busy Internet Servers. In: Proc. of the

USENIX Symposium on Internet Technologies and Systems (USITS) (2003)
31. Welsh, M., Culler, D., Brewer, E.: SEDA: An architecture for well-conditioned, scalable

Internet services. In: Proc. of the 18th Symposium on Operating Systems Principles, SOSP
(2001)

http://www.tpc.org

Normative Management of Web Service Level
Agreements

Caroline Herssens1, Stéphane Faulkner2, and Ivan J. Jureta2

1 PRECISE, LSM, Université catholique de Louvain, Belgium
2 PRECISE, LSM, University of Namur, Belgium

caroline.herssens@uclouvain.be,
{stephane.faulkner,ivan.jureta}@fundp.ac.be

Abstract. Service Level Agreements (SLAs) are used in Service-
Oriented Computing to define the obligations of the parties involved in
a transaction. SLAs define these obligations, including for instance the
expected service levels to be delivered by the provider, and the payment
expected from the client. The obligations of the parties must be made
explicit prior to the transaction, and a mechanism should be available
to control the interaction, in order to ensure that the obligations are
met. We outline a norm-oriented multiagent system (NoMAS) architec-
ture that is combined with the service-oriented architecture in order to
support the definition, management, and control of SLAs between the
service clients and service providers.

Keywords: SLA, management, mutual obligations, supervision, norm
oriented multi-agent systems.

1 Introduction

We focus in this paper on the critical task of ensuring that the contractual
obligations of the parties – the service providers and the service clients – involved
in a transaction are respected by these parties within a service-oriented system.
Their obligations are typically outlined in a service-level agreement (SLA). An
SLA is a contract between the said parties, who specify the quality-of-service
(QoS) levels that should be met [17]. QoS is a combination of several quality
properties, e.g., availability, reliability, cost, response time [21]. A provider can
propose the same service at different quality QoS levels. When a service client
requests the execution of a given functionality, it advertises its QoS expectations.
The service selected for the service execution will be the one that best satisfy
client expectations about QoS properties. Prior to the transaction, the client and
the provider enter into a contract by signing an SLA, and thereby specify quality
levels to be observed during the service execution [17]. SLAs are used in the QoS
management context in order to know what clients requirements to meet, how to
manage clients expectations, how to regulate resources and to control costs [26].

The use of SLAs in managing the transaction between a provider and a
client requires appropriate conceptual foundations and associated computational
mechanisms. SLAs require an architecture if they are to enable the interactions

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 98–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Normative Management of Web Service Level Agreements 99

between stakeholders. This architecture must support a specification language
used by the stakeholders to communicate their expectations and capabilities.
Similarly, a specification language to define the elements of the SLA is needed.
Beside the architecture, the SLA management needs an incentive mechanism.
To stimulate the correct behavior of stakeholders, these must have mutual obli-
gations. E.g., the provider has the obligation to meet a given QoS level and the
client has the obligation to pay according to that quality level. However, the
client pays for the service after its execution by the provider. It follows that
the client’s payment can be adapted to the QoS level delivered by the provider.
Finally, stakeholders can behave in an opportunistic manner, i.e., the client can
underevaluate the QoS level perceived and the provider can exaggerate the QoS
level offered. To prevent such situations, the architecture must introduce a third-
party controller to monitor the SLA execution.

The architecture must support the adaptation of SLA during the service ex-
ecution. This architecture needs to be responsive and flexible. Norm-oriented
Multi-Agent Systems (NoMAS) provide these characteristics. Normative agents
refer to agents conforming to norms. The core idea of this paper is to adapt
the analogy of norms and agents to the issue of SLA and stakeholders. An SLA
will be described as a set of norms to be fulfilled by the different agents of the
system. The stakeholders of the service execution will be represented by nor-
mative agents complying to norms that restrict their behavior. The architecture
supports a language enabling the communication between stakeholders. This
language allows to express norms to be followed by the normative agents of the
MAS. The elements constitutive of the SLA are defined by obligations norms
regulating the stakeholders.

Contributions. We propose an architecture based on normative agents in order
to: (i) enable the communication between stakeholders involved in the SLA with
a common language; (ii) define SLAs that meet provider capabilities and client
requirements; (iii) manage the service execution and check the conformance of
the quality level expected and observed; (iv) ensure the execution of the mutual
obligations according to the SLA contract. We propose to achieve the SLA com-
pliance through two particular mechanisms: mutual obligations, which motivate
the fulfillment of respective obligations of the involved stakeholders; and a super-
vised interaction with a third-party controller, which monitors and evaluates the
SLA execution and penalizes the agents that does not fulfill their obligations.

Organization. Section 2 presents the conceptual foundations of the approach.
Section 3 outlines the management architecture and the management of SLA.
Section 4 proposes an evaluation of the proposed approach. Section 5 summarizes
the related work and the Section 6 concludes this paper.

2 Case Study and Conceptual Foundations

This Section covers the conceptual foundations of our SLA management ap-
proach. We first describe the case study used to illustrate the approach proposed

100 C. Herssens, S. Faulkner, and I.J. Jureta

in this paper. We briefly introduce the Service Level Agreement concept. We also
outline the mutual obligations and the supervised interaction used throughout
the approach.

2.1 Case Study

We refer in this paper to a case study coming from the European Space Agency
(ESA) program on Earth observation. This program allows researchers to access
and use the infrastructure operated and the data collected by the agency1. The
data and infrastructure of the ESA are accessed through web services. In order
to facilitate the discussion and delimit our example, we focus on one part of the
overall system. The MERIS/MGVI service is a service able to use the MERIS
instrument data provided by the Envisat satellite of the ESA to compute the
vegetation indexes for a given period of time and region of the world. A veg-
etation index measures the amount of vegetation on the Earth’s surface. The
data on the vegetation index can be obtained for any time range and it is possi-
ble to delimit the region of the world that is of interest. This service is subject
to one particular QoS characteristic: the latency is initially situated between 4
and 6 hours by day of the selected period. E.g.: if the time range selected is
from October 24th 2009 to October 26th 2009, the execution time needed to
compute the vegetation index is set between 12 to 18 hours. The length of the
selected period impacts then strongly the time needed to fulfill the request. The
SLA specification between stakeholders of this service must clearly constrain
the execution time prior to all remaining QoS properties. The different concepts
presented in this paper will be illustrated with the MERIS/MGVI service and,
specially about the execution time of this service.

2.2 Service Level Agreement

A Service Level Agreement is a contract between the service provider and the
service client specifying mutually agreed obligations of the provision of a ser-
vice [6,30]. The SLA concerns the non-functional properties of the service [17],
i.e., quality properties. When clients can choose among a set of functionally
equivalent web services, Quality of Service (QoS) considerations become the key
criteria for service selection. As a consequence, SLA about nonfunctional prop-
erties must be defined and managed between service clients and providers [17].

The specification of QoS obligations of a SLA starts from a set of Service Level
Objective (SLOs) [26]. A Service Level Objective is a guarantee of a particular
state of the SLA parameters in a given time period [13]. All quality properties
advertised by the provider are associated to an SLO as illustrated in Example 1.
Each SLO has a functional part that refers to the QoS concerned and a guar-
antee part (italicized in Example 1) applied on the functional part. With SLOs,
the SLA covers all quality properties defined in the QoS request of the service
client.

1 http://gpod.eo.esa.int

http://gpod.eo.esa.int

Normative Management of Web Service Level Agreements 101

Example 1. The provider of the MERIS/MGVI service shall execute the service within

5 hours by day of the selected period.

Example 1 is the SLO stating the maximum execution time of the agreement
defined between the provider and the client. As referred in Section 2, the ex-
ecution time of the MERIS/MGVI service is very important and needs to be
clearly defined in the SLA. The SLA definition is communicated between the
different stakeholders of the service execution. To assure the interoperability of
SLA definitions, their specifications need to be written in a language common to
providers and clients. The Web Service Level Agreement (WSLA) language [13]
is one of the main standard for specifying SLAs. The Example 2 illustrates how
the SLO agreement of the Example 1 is specified with WSLA.

Example 2.

<ServiceLevelObjective name=’’exectime’’>

<Obliged>provider</Obliged>

<Validity>

<Start>2009-10-25T08:00:00.000-05:00</Start>

<End>2009-10-30T08:00:00.000-05:00</End>

</Validity>

<Expression>

<Predicate xsi:type=’’wsla:Less’’>

<SLAParameter>ExecutionTime</SLAParameter>

<Value>ExecutionTimeThreshold</Value>

</Predicate>

</Expression>

<EvaluationEvent>NewValue</EvaluationEvent>

<ServiceLevelObjective>

The ExecutionTimeThreshold used in Example 1 is a constant that assigns
a name to a simple value that can be referred in other definitions [13]. This
threshold corresponds to the maximal execution time expected by the client,
i.e., 5 hours by day of the selected period to compute.

2.3 Mutual Obligations

Delivering the service at the quality level specified in the SLA is an obligation
for the service provider. However, the service client has an obligation to pro-
vide all the information needed for the service execution (i.e.: inputs needed
for web service execution), but also to pay for the service execution. Interac-
tions between the provider and the client involve mutual obligations [20]. Such
bilateral obligations motivate the SLA conformance. Indeed, breaches to some
obligations of one party can compromise the fulfillment of obligations of the
other party. Both parts have interest in achieving their obligations to meet the
contract. Goodin [10] outlines the possible structures of mutual obligations. The
SLA of web services can be defined as mutually conditional obligations. With
mutual conditional obligations, each party is obliged to discharge his obliga-
tions if and only if the other party discharges his obligations. E.g., if the service
provided does not meet the contracted execution time, the client has not to pay

102 C. Herssens, S. Faulkner, and I.J. Jureta

the amount initially set. The SLA defines mutual obligations compelling the
respective behavior of stakeholders.

The service execution is made of bilateral obligations, i.e., unilateral obliga-
tions from the provider about the service level execution and unilateral obliga-
tions of the client about payment or rating [16,22]. We consider in the remainder
of this paper that the client obligation is only about payment. However, other
contractual obligations can be used as feedback rating as requests frequency.

The execution of obligations occurs sequentially: obligations of one of the
stakeholders are executed before the obligations of the other. E.g., the provider’s
obligations are executed before the client’s and the level of payment can conse-
quently be adapted to the degree, to which the provider conforms to the obli-
gations. Adaptations of the client obligations according to the observed quality
level must be specified in the initial SLA. In the classification of mutual obliga-
tions [10], SLA contracts are diachronic mutual obligations, because one party is
supposed to discharge its obligations before the other party does the same. The
consequence is that initial contract must specifies the expected penalties if the
defined quality level is not met [16]. The SLA contract implies that the penalty
is initially accepted by the provider. Clearly, the efficiency of the relationship ex-
isting between the client and the provider improves if specifications of penalties
for cases of contract breaches are present.

2.4 Supervised Interaction

Stakeholders of the service execution must achieve their respective obligations
to conform to the initial SLA. If they are not supervised, they can adopt an
opportunistic behavior, i.e., not fulfill their obligations or fulfilling them at a
level lower than expected. E.g., the service client can reduce the payment even
if the quality level provided meets is expectation. To prevent such situations,
we propose to monitor the service execution with a third-party. This third-party
will act as a controlling authority and allows to ensure the correct execution of
the SLA. It is a witness of the service execution and stimulates the conformance
to SLA for both involved parts. The third-party allows deterrence-based trust,
i.e., you trust the other party because there is a very strict rule normative or
legal system of rules, and the agent is punished for any violation of rules [7]. The
third-party is the controller that controls the compliance of both parts to rules
defined in the SLA, it measures the efficiency of the stakeholders transactions
and computes their respective reputations [23]. An analogy of the third-party
controller is the ebay online auction website2. The evaluation system of ebay
prevents the opportunistic behavior of the stakeholders of the transaction.

This authority has an additional role in managing the SLA. Namely, it is
in charge of collecting and computing metrics. It collects and stores metrics
defined in the SLA and computes them to compare observed and expected re-
sults. Such metrics are used to establish the trust value of stakeholders involved
in transactions. The measurement of quality values is allowed by existing metrics

2 http://www.ebay.com

http://www.ebay.com

Normative Management of Web Service Level Agreements 103

such as those discussed in [8]. If an SLA is breached, the third-party controller
sends notifications to the involved stakeholders. The third-party is independent
of the parties involved in the actual transaction, given that its aim is to prevent
opportunistic behavior.

3 The Architecture and the Process for SLA Management

To solve the issues of SLA definition and its management during the service
execution, we propose to use a normative MAS. Our proposed system will allow
the SLA management and stimulates the SLA compliance through the respect
of mutual obligations and the supervision of an authority. We first introduce our
agent architecture that monitors the SLA through the service stakeholders in
Subsection 3.1. We then explain how SLAs are managed with this architecture
through the definition of norms associated to the stakeholders in Subsection 3.2.

3.1 SLA Management Architecture

We chose to use a normative multi-agent system to monitor the execution of
SLA. A normative multiagent system (MAS) involves normative mechanisms,
which allow agents to adopt norms and specify how agents can modify these
norms [4]. Norms can increase the efficiency of agent reasoning while their ex-
plicit representation supports reasoning about a wide range of behaviour types
in a single framework [9]. Agent norms describe the obligations, permissions and
prohibitions of a norm addressee to pursue certain activities, either to achieve a
state of affairs or to perform an action [18]. The behaviour of an agent is mon-
itored by its norms defining its permissions and obligations. Such a normative
system allows deterrence based trust, the agent is punished for any violation of
rules of the normative system [7].

The stakeholders of the service execution and the third-party controller are
managed by normative agents. Norms condition the behavior of agents, the SLA
is defined by obligations and prohibitions restraining the set of possible actions.
We manage SLAs with normative agents coordinated within a suitable archi-
tecture. Three kinds of normative agents step in this architecture: the provider
agents, the client agents, and the cluster agents. These are illustrated in Figure 1.

A cluster agent (AClus) is dedicated to each existing cluster of web services. A
cluster of web services gathers functionally equivalent web services by providing
several web services inside a unique wrapper. This wrapper is used by service
clients as a standard web service. Services in a same cluster can be offered by
different providers. The cluster selects the service that best satisfies the QoS ex-
pectations of the client in the cluster with an appropriate selection method [12].
This method relies on QoS advertisements of the provider and QoS expectations
of the service client. These advertisements and expectations can have be made
with WSLA [13] or another common appropriate language.

A service provider agent (AP) is dedicated to each existing provider in the
service cluster. A provider can offer several services in the cluster, i.e., the same

104 C. Herssens, S. Faulkner, and I.J. Jureta

Client

Cluster of services
AClus

AP1 AP2

AP3

ACli

Service

Agent

Services fulfilled
by Provider 3

Services fulfilled
by Provider 1

Service fulfilled
by Provider 2

Fig. 1. SLA management architecture

functionality at different quality levels. This is illustrated in Figure 1 with the
provider 1 and 3 each offering services with the same functionality and different
quality characteristics. Providers can also offer services into different clusters,
as they provide different functionalities. Provider agents advertise their QoS
possibilities to the cluster agent.

A client agent (ACli) is assigned to each client requesting a service. The
service request includes particular QoS expectations of the service client about
the service execution.

Once the SLA has been negotiated [30] between stakeholders of the service
execution it can be defined with an appropriate language. The cluster agent
is responsible of the stakeholders conformance to the SLA defined. The cluster
agent is also in charge of the collection and evaluation of metrics of the service
execution. It collects information about QoS observed at each service transac-
tion. It is able to compute statistical data on the service and able to determine
if the service execution met the defined SLA. It is the third-party controller
of the service execution, it controls the SLA compliance of the provider and
the client agent. Agents of the SLA architecture are normative agents, con-
forming to norms derived from the SLA initially defined between the client and
the provider. This architecture can be easily supported by existing normative
MAS frameworks [9,18]. In the remainder, we focus on how normative agents
can support the management of SLA. The normative MAS infrastructure and
communication is out of scope of this paper.

In the context of our case study, an agent is dedicated to each provider able
to propose a service functionally equivalent to the MERIS/MGVI service intro-
duced in the case study. A client agent is dedicated to the requester of the
MERIS/MGVI service. A cluster agent is responsible for the supervision of
interactions occurring between the client agent and the providers offering the
functionality.

Normative Management of Web Service Level Agreements 105

3.2 SLA Management Process

The management of SLAs with the proposed architecture covers several steps:
(1) the definition of the SLA between the client and the provider; (2) the control
of provider obligations, i.e., the service execution; (3) the penalties to apply to
the provider if the SLA is not met, and; (4) the control of the client obligations,
i.e., payment or evaluation. To fulfill these steps, the agents of the architecture
introduced in Subsection 3.1 will take on different roles.

Step 1: Definition of the SLA. The SLA is defined between the service client
and the service provider from WSLA specification advertised by the provider.
The WSLA specification is extended to include the mutual obligations of stake-
holders. The defined SLA must cover expectations about the quality level of the
service execution but also the penalties associated to breaches of SLA. These
penalties are defined according to the importance of quality properties involved
and according to the importance of breaches. Moreover, initial SLA specifications
can also be enriched with complex rules, dependent rules or normative rules [24].
Such extensions allow the definition of enriched contracts, e.g., graduated rules
are rules sets which specify graduated range for certain parameters so that it can
be evaluated whether the measured values exceed, meet or fall below the defined
service levels. To define these extended SLAs and include mutual obligations of
service providers and clients, usual languages as WSLA [17] or WSOL [28] need
to be enriched. To this aim, we choose to express the different SLOs of the initial
SLA with obligation norms associated to involved agents of the architecture to
benefit from the information added by more complex rules. To express SLO with
normative obligations, we refer to the work of Kollingbaum [18,19] about super-
vised interaction. Each SLO of the SLA contracted between the provider and
the client is expressed with the NoA language [18] interpretable by all agents of
the architecture. Moreover, complex conditions and penalties associated to SLO
failures are also expressed with this language in further steps. The Example 3
illustrates the conversion of the SLO specified with WSLA in Example 2 into an
obligation norm of the service provider agent specified with the NoA language.

Example 3.

obligation(

ServiceProvider,

achieve ServiceExecutionUnderTimeThreshold (ServiceProvider, Service,

ExecutionTimeThreshold),

ServiceExecuted (ServiceProvider, Service) and

ExecutionTime (Service) <= ExecutionTimeThreshold

ServiceExecutionUnderTimeThreshold (ServiceProvider, Service,

ExecutionTimeThreshold))

This obligation states that the provider must achieve the execution of the MERIS/
MGVI service under the time limit (ServiceExecutionUnderTimeThreshold)
specified in the initial WSLA specification (ExecutionTimeThreshold). The

106 C. Herssens, S. Faulkner, and I.J. Jureta

AP1
addressee

addressee counterparty

counterparty

service
ACli

AClus

control

Service ClientService Cluster

QoS evaluation
control+

payment, ...

Fig. 2. Roles fulfilled by normative agents

normative agents of the architecture monitor the execution of services through
their norms. However, these agents can make a choice whether to obey the norms
in specific cases. If the service provider is not able to achieve all SLOs of its
contract, it can violate some of them to assure the fulfillment of remaining norms.
This situation arises due to unexpected events (i.e.: additional requests, hardware
failures) or because the provider amplified its capabilities to be selected. Among
all SLOs defined with obligations norms between the client and the provider,
some can be met and some can not.

Step 2: Control of provider obligations. Control is enabled through mech-
anisms of normative agents. Each agent of the architecture fulfills one or several
roles in the contract management. The SLA contract is then monitored through
these different roles: the addressee commits an obligation defined in the contract;
the counter-party is the recipient of the obligation fulfilled, and; the authority
is a witness of the contract. The authority is in charge of the correct execution
of the contract and imposes sanctions in case of defective behavior of the ad-
dressee. The different roles of client, provider and cluster agents are illustrated
in Figure 2. The provider illustrated in the service cluster of this example is the
provider 1 among those proposed in Figure 1.

The interactions between the service provider and the service client (i.e., the
service execution and its payment) are restrained by obligation norms associated
to these roles. The SLOs specifying the expected QoS level of the MERIS/MGVI
service appear as norms. The provider agent is the addressee in these norms,
while the client is the counter-party in the transaction. To control the achieve-
ment of this contract, the cluster agent acts as an authority. As stated in Sub-
section 3.1, the cluster agent is responsible for collecting and computing the
metrics in order to control the SLA execution. It is then able to determine if the
service provider meets the SLOs defined through obligation norms. The clus-
ter agent will impose sanctions when the quality level provided does not meet
the level contracted in the SLA. Such sanctions appear as penalties applied to
the provider. As stated before, these penalties are part of the initial SLA. In the

Normative Management of Web Service Level Agreements 107

MERIS/MGVI instance, the decreasing of payment is proportional to the re-
duction of quality level provided. Sanctions are expressed by obligations norms
to be followed by the cluster agent. When the provider chooses or is forced
to breach a norm specifying one of its SLO, the cluster agent captures it and
activates a specific penalty. There can be several norms specifying different penal-
ties corresponding to the spreading of the breach. The Example 4 illustrates a
specification of one such penalty.

Example 4.

sanction(

ServiceCluster,

perform EvaluationTime (ServiceProvider, Service, ExecutionTimeThreshold,

ExecutionTimeThreshold 2, AmountPenalty),

ServiceExecuted (ServiceProvider, Service) and

ExecutionTime (Service) > ExecutionTimeThreshold and

ExecutionTime (Service) <= ExecutionTimeThreshold2

TimePenalty(ServiceProvider, AmountPenalty))

When one of the SLOs of the MERIS/MGVI service is not met, a sanction
is applied by the cluster agent according to the importance of the breach. As
stated in Section 2, the execution time is a critical issue for the MERIS/MGVI
service, sanctions to apply must penalize all provider weaknesses about delays.
The Example 4 illustrates one sanction: if the execution time observed is above
the SLA time limit (ExecutionTimeThreshold) but is under the second time
limit of the breach scale (ExecutionTimeThreshold2), the decreasing of pay-
ment (AmountPenalty) applied is proportional to the observed level on the
breach scale. The cluster agent independently estimates the equality of the qual-
ity level provided and the amount to pay. Moreover, according to characteristics
of mutual obligations in SLAs, the user must discharge its obligations only if the
provider has discharged its owns obligations.

Step 3: Penalties to apply. When the cluster agent observes that the SLA
is not fulfilled by the provider agent, it notifies the service client through the
application of a sanction. The client agent will then reflect this sanction on its
own behavior. The mutual obligations of SLAs are diachronic; the client obli-
gations are adapted to the provider fulfillment of its owns obligations. In the
Example 5, the TimePenalty is a constant defining the payment reduction of
the MERIS/MGVI service initiated by the sanction of the Example 4. There
can be several payment reduction to apply, corresponding to different level of
breach or to different QoS properties involved in the SLA. According to the
importance of the breach, the client agent follows the norm defining the corre-
sponding penalty. The obligation of the Example 5 is the client obligation to pay
for the MERIS/MGVI service execution, i.e., the contractual obligation of the
client. However, the initial payment amount (Amount) is reduced by the penalty
(AmountPenalty) induced by the time sanction illustrated in Example 4. The
payment of the service is an obligation norm in which the client agent is the
addressee and the provider agent is the counter-party as illustrated in Figure 2.

108 C. Herssens, S. Faulkner, and I.J. Jureta

Example 5.

obligation(

ServiceClient,

achieve ServicePayment (ServiceClient, ServiceProvider,

Amount - AmountPenalty),

ServiceExecutionUnderExecutionTimeThreshold (ServiceProvider, Service,

ExecutionTimeThreshold)) and

TimePenalty(ServiceProvider, AmountPenalty)

achieve ServicePayment (ServiceClient, ServiceProvider,

Amount - AmountPenalty))

Step 4: Control of client obligations. The third-party controller checks the
execution of the unilateral obligations of the service provider as detailed in Step
2. Similarly, the third-party controller must verify the obligations of the service
client, the client can be subject to different categories of obligations i.e.: its pay-
ment to the provider after the service execution. To control the right execution
of the payment obligation illustrated in Example 5, the cluster agent acts as
the third-party controller. It is the authority of the payment transaction as il-
lustrated in Figure 2. It must check that the right amount has been deposited
to the provider. If the client fails to pay or deposits a bad amount, the cluster
agent must apply a penalty. The Example 6 illustrates the sanction applied by
the cluster agent to the client of the MERIS/MGVI service when the payment
obligation is not met. With such sanctions, the cluster agent avoids the non
payment of the service client. Indeed, if the payment is not made or if it is insuf-
ficient, the client is labeled as a bad payer (PaymentPenalty(ServiceClient))
by the third-party controller. The cluster agent can then reject future requests
of bad payers on its cluster.

Example 6.

sanction(

ServiceCluster,

perform CheckPayment ServiceClient, ServiceProvider, Amount, AmountPenalty),

not ServicePayment (ServiceClient, ServiceProvider, Amount - AmountPenalty)

PaymentPenalty(ServiceClient))

4 Evaluation

Supervised interaction and mutual obligations ensure that delivery of services is
better managed. We conduct some experiments in order to evaluate the effect
of these mechanisms. These experiments simulate services transactions between
users and providers and measure their utility with and without the utilization
of such mechanisms. The utility denotes the abstract quality whereby an object
serves our purposes, and becomes entitled to rank as a commodity [15]. We
suppose here that the utility increasing is constant for each new transaction
initiated. Each transaction initiated by a client involves a cost decreasing of
its cumulated utility while each successful transaction increases its cumulated
utility. The ratio over the increasing induced by the success of the transaction

Normative Management of Web Service Level Agreements 109

and the decreasing due to the cost of the transaction must be positive. E.g.: in
our simulations, the increasing of utility is set to 1 while the service execution
succeeds and the utility decreasing of the service payment is 0.8. The net utility
of a service transaction is then 0.2. We generate 200000 transactions from 10000
different providers to 100 different users. Each service is executed 20 times by
each service client. To simulate the opportunistic behavior of providers, we define
30% of opportunistic providers that do not fulfill their transactions 70% of time.
Without mutual obligations and supervised interaction, the decreasing of client
utility involved by the service payment occurs even while services executions fail.

To simulate the supervised interaction effect, we introduce a simple trust
model. The trustworthiness of each provider is collected by the third-party con-
troller. The third-party controller monitors all services executions and dismisses
providers that fail 10 services executions previously supervised. While services
executions occur without supervised interaction, the clients collect themselves
information about past executions and dismiss providers that failed 3 of their
own previous transactions.

To simulate the interest of mutual obligations, we introduce a variable payment
model. The service client can reduce the initial payment while the provider obliga-
tions are not met. The utility decreasing of the service client can be less important
when the service execution fails. E.g.: in our simulations, the utility decreasing in-
volved by the payment is 0.8 when the service execution succeeds and is reduced
to 0.2 while the service execution fails. Without mutual obligations, the payment
has to be done and the decreasing of the client utility is fixed to 0.8.

However, the third-party controller offering such monitoring mechanisms has
to be payed. We designed two different scenarios to simulate the payment of
the third-party controller: a variable and a fixed remuneration. The variable
remuneration implies a decreasing of the client utility at each service execution.
This variable cost must be proportional to benefit of a transaction. E.g.: if the
net utility before the remuneration of the third-party controller is 0.2, the third-
party fee of each transaction can be 0.02. The fixed cost allows clients to benefit
from third-party mechanisms after a single payment. It implies an important
decreasing of the client utility. E.g.: in our simulations, we set the initial utility
of the client to -1000 while the third-party controller relies on a fixed cost.

To evaluate benefits from supervised interaction and mutual obligations, we
observe the mean cumulated utility of users during 200000 services executions. To
highlight the benefits of third-party mechanisms, we design 7 models: (1) services
executions without supervised interaction (s.i.) and without mutual obligations
(m.o.); (2) services executions without s.i. and with m.o. at a variable cost;
(3) services executions without s.i. and with m.o. at a fixed cost; (4) services
executions with s.i. and without m.o. at a variable cost; (5) services executions
with s.i. and without m.o. at a fixed cost; (6) services executions with s.i. and
m.o. at a fixed cost, and; (7) services executions with s.i. and m.o. at a variable
cost. We then measure the difference between the optimal cumulated utility and
the cumulated utility of our different models (i.e., the optimal client utility is
get while the service client never pays for the services executions that fail).

110 C. Herssens, S. Faulkner, and I.J. Jureta

0 25000 50000 75000 100000 125000 150000 200000175000
0

1000

2000

3000

4000

5000

6000

7000

transactions

D
iff

er
en

ce
 w

ith
 u

se
r

op
tim

al
 u

til
ity

(1) Difference with user optimal utility without supervised interaction
and without mutual obligations
(2) Difference with user optimal utility without supervised interaction
and with mutual obligations at a variable cost

(3) Difference with user optimal utility without supervised interaction
and with mutual obligations at a fixed cost

(4) Difference with user optimal utility with supervised interaction
and without mutual obligations at a variable cost

(5) Difference with user optimal utility with supervised interaction
and without mutual obligations at a fixed cost

(6) Difference with user optimal utility with supervised interaction
and with mutual obligations at a variable cost
(7) Difference with user optimal utility with supervised interaction
and with mutual obligations at a fixed cost

Fig. 3. Simulation Results

The results of our experiments are highlighted in Figure 3. The model nearest
to the optimal client utility is the model (7) that provides both supervised in-
teraction and mutual obligations with an initial fixed cost. However, this model
becomes the best only when the initial cost is balanced by its profitability (after
approximatively 64500 services executions) while at the beginning the most prof-
itable model is the model (6) that provides both supervised interaction and mu-
tual obligations at a variable cost. The profitability of each model is dependent
from the third-party controller payment scenario but the utilization of third-
party mechanisms always improve the client utility. The less profitable model
is the (1) that provides neither supervised interaction nor mutual obligations.
Models offering only mutual obligations ((2) and (3)) improve lightly the client
utility while models providing only supervised interaction ((4) and (5)) amelio-
rate strongly the client utility. The combination of both mechanisms (models
(6) and (7)) outperforms other models and highlight the interest of normative
agents to control SLA of stakeholders transactions. The experiments conducted
here to evaluate the client utility can be transposed to the provider utility. We
can also simulate opportunistic client that do not fulfill their obligations and
evaluate the mean utility of providers.

5 Related Work

QoS properties and SLA management need appropriate architectures to be han-
dled during the service execution. Campbell et al. [5] propose the Quality of

Normative Management of Web Service Level Agreements 111

Service Architecture (QoS-A) incorporating the notion of flow, service contract
and flow management through QoS properties. Barbosa et al. outline in [3] dif-
ferent architectural configurations to enable the auditing of SLA and to evaluate
their efficiencies. The WSLA framework [17] introduces a runtime architecture
comprising several SLA monitoring services. Some services may be outsourced
to third parties to increase the objectivity in the evaluation of the services. The
QoS Mission-Action-Resource (Q-MAR) model [14] and the Grid Quality of Ser-
vice Management (G-QoSM) framework [2] also propose to distribute the SLA
monitoring to the different components of the system. Paschke et al. [24] intro-
duce a Rule-Based Service Level Management (RBSLM) architecture in which
SLAs are represented with declarative rules and managed through logical con-
cepts and rule languages. Although all these architectures allow one to observe
when a contract is violated, most of them do not prevent such violations and
do not clearly define corrective actions to take. In our proposal, the third-party
monitors stakeholders behaviors and the mutual obligations of the stakeholders
define penalties to apply while the contract is not fulfilled. The BREIN project3

offers an architecture enabling the management of SLAs through their whole life-
cycle [1]. The SLA management is enabled by taking into account the policies of
the parties and their respective business goals. The BREIN SLA management
offers preventive monitoring to react to upcoming violations and a prioritization
of SLAs. Our normative management of SLAs adapt contracts at runtime in re-
sponse to unexpected violations in order to maximize stakeholders satisfaction.

Agents systems are well fitted to monitor activities requiring negotiation be-
tween stakeholders as SLA management or e-commerce mediation [11,27]. Other
existing SLA architectures relies on multi agent systems [29]. Yan et al. [30] in-
troduces a MAS architecture supporting the negotiation of services involved in
a composition. In comparison with existing MAS architectures, our proposal is
supported by normative agents. Normative agents allow to constrain the stake-
holders behavior with norms defining the SLA to be achieved. They are partic-
ularly relevant to the SLA management issue. Normative agents are also used
by Pitt et al. [25]. They propose a framework for QoS management which com-
bines events, metrics and parameters with organizational intelligence offered by
norm-governed multi-agent systems. Although their proposal monitors QoS in-
formation, they did not tackle the SLA conformance issue. One of the strongest
point of our work is that the agreements between clients and providers are defined
and monitored through norms associated to roles of agents and not to agents or
components of the architecture. These roles allow the architecture to offer more
flexibility, e.g., the provider can be easily substituted when unexpected failures
occurs.

6 Conclusions and Future Work

We propose in this paper an architecture enabling the management of SLA.
This architecture relies on a MAS and supports a normative definition of SLA.
3 http://www.eu-brein.com

http://www.eu-brein.com

112 C. Herssens, S. Faulkner, and I.J. Jureta

The MAS enables the communication between stakeholders involved in the
SLA. Each party of the SLA is defined with an obligation norm that constrains
stakeholders behaviors. The architecture checks the conformance of the stake-
holders to the SLA. To stimulate the proper execution of the SLA, its execution
is driven by mutual obligations and supervised by a third-party controller. The
architecture benefits from the potential autonomy assured by normative agents.
The normative architecture enables the interactions between provider and client
and also the evaluation of the quality level of such interactions.

Future work will concern the implementation and the extension of the ar-
chitecture to support actions to take while an SLA is breached. Rather than
penalize the provider or the client, the architecture will propose corrective ac-
tions. To ensure the SLA conformance, the architecture will take advantage of
the multiple services providing the same functionality inside the cluster.

References

1. Final brein architecture d4.1.3 v2 - wp 4.1 architectural design. Technical report,
BREIN project (2009)

2. Al-Ali, R.J., Rana, O.F., Walker, D.W., Jha, S., Sohail, S.: G- qosm: Grid service
discovery using qos properties. J. of Computing and Informatics 21(4), 363–382
(2002)

3. Barbosa, A.C., Sauvé, J., Cirne, W., Carelli, M.: Evaluating architectures for inde-
pendently auditing service level agreements. Future Gener. Comput. Syst. 22(7),
721–731 (2006)

4. Boella, G., Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
Comput. Math. Organ. Theory 12(2-3), 71–79 (2006)

5. Campbell, A., Coulson, G., Hutchison, D.: A quality of service architecture.
SIGCOMM Comput. Commun. Rev. 24(2), 6–27 (1994)

6. Cappiello, C., Comuzzi, M., Plebani, P.: On automated generation of web service
level agreements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 264–278. Springer, Heidelberg (2007)

7. Castelfranchi, C., Tan, Y.-H. (eds.): Trust and deception in virtual societies. Kluwer
Academic Publishers, Norwell (2001)

8. Cherkasova, L., Fu, Y., Tang, W., Vahdat, A.: Measuring and characterizing end-
to-end internet service performance. ACM Trans. Internet Technol. 3(4), 347–391
(2003)

9. Dignum, F., Morley, D.: Towards socially sophisticated bdi agents. In: Proc. of
ICMAS ’00, p. 111. IEEE Computer Society, Los Alamitos (2000)

10. Goodin, R.: Structures of mutual obligations. J. of Soc. Pol. 31(4), 579–596 (2002)
11. He, M., Jennings, N.R., Leung, H.-F.: On agent-mediated electronic commerce.

IEEE Trans. on Know. and D. Eng. 15(4), 985–1003 (2003)
12. Herssens, C., Jureta, I., Faulkner, S.: Capturing and using qos relationships to im-

prove service selection. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 312–327. Springer, Heidelberg (2008)

13. International Business Machines (IBM). Web service level agreement (wsla) lan-
guage specification (2003)

14. In, H.P., Kim, C., Yau, S.S.: Q-mar: An adaptive qos management model for
situation-aware middleware. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.)
EUC 2004. LNCS, vol. 3207, pp. 972–981. Springer, Heidelberg (2004)

Normative Management of Web Service Level Agreements 113

15. Jevons, W.S.: Theory of Utility. In: The Theory of Political Economy (1965)
16. Kaminski, H., Perry, M.: Employing Intelligent Agents to Automate SLA Creation.

In: Emerging Web Services Technology, pp. 33–46. Springer, Heidelberg (2007)
17. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service

level agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)
18. Kollingbaum, M.: Norm-governed Practical Reasoning Agents. PhD thesis (2005)
19. Kollingbaum, M.J., Norman, T.J.: Supervised interaction - a form of contract man-

agement to create trust between agents. In: Falcone, R., Barber, S.K., Korba, L.,
Singh, M.P. (eds.) AAMAS 2002. LNCS (LNAI), vol. 2631, pp. 108–122. Springer,
Heidelberg (2003)

20. Lockemann, P., Nimis, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Architectural
Design. In: Multiagent Engineering, pp. 405–429. Springer, Heidelberg (2006)

21. Menascé, D.A.: Qos issues in web services. IEEE Intern. Comp. 6(6), 72–75 (2002)
22. Morgan, G., Parkin, S., Molina-Jimenez, C., Skene, J.: Monitoring Middleware

for Service Level Agreements in Heterogeneous Environments. In: Challenges of
Expanding Internet: E-Commerce, E-Business, and E-Government, pp. 79–93.
Springer, Heidelberg (2005)

23. Mui, L., Mohtashemi, M., Halberstadt, A.: Notions of reputation in multi-agents
systems: a review. In: AAMAS ’02, pp. 280–287 (2002)

24. Paschke, A., Dietrich, J., Kuhla, K.: A logic based sla management framework. In:
SWPC ’05: Semantic Web Policy Workshop at ISWC ’05 (2005)

25. Pitt, J., Venkataram, P., Mamdani, A.: Qos management in manets using norm-
governed agent societies. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW
2005. LNCS (LNAI), vol. 3963, pp. 221–240. Springer, Heidelberg (2006)

26. Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated sla monitoring
for web services. In: IEEE/IFIP DSOM, pp. 28–41 (2002)

27. Sierra, C., Dignum, F.: Agent-mediated electronic commerce: Scientific and tech-
nological roadmap. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS
(LNAI), vol. 1991, pp. 1–18. Springer, Heidelberg (2001)

28. Tosic, V., Patel, K., Pagurek, B.: Wsol - web service offerings language. In: Bussler,
C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and
WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)

29. Trzec, K., Huljenic, D.: Intelligent agents for qos management. In: AAMAS ’02,
pp. 1405–1412 (2002)

30. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang, J.: Autonomous
service level agreement negotiation for service composition provision. Future Gener.
Comput. Syst. 23(6), 748–759 (2007)

Combining Schema and Level-Based Matching
for Web Service Discovery

Alsayed Algergawy1, Richi Nayak2, Norbert Siegmund3,
Veit Köppen3, and Gunter Saake3

1 Department of Computer Science, University of Leipzig, Germany
2 Queensland University of Technology, 2434 Brisbane, Australia

3 School of Computer Science, University of Magdeburg, Germany
algergawy@informatik.uni-leipzig.de, r.nayak@qut.edu.au,
{n.siegmund,veit.koeppen,saake}@iti.cs.uni-magdeburg.de

Abstract. Due to the availability of huge number of Web services (WSs),
finding an appropriate WS according to the requirement of a service con-
sumer is still a challenge. In this paper, we present a new and flexible
approach, called SeqDisc, that assesses the similarity between WSs. In
particular, the approach exploits the Prüfer encoding method to repre-
sent WSs as sequences capturing both semantic and structure informa-
tion of service descriptions. Based on the sequence representation, we
develop an efficient sequence-based schema matching approach to mea-
sure the similarity between WSs. A set of experiments is conducted on
real data sets, and the results confirm the performance of the proposed
solution.

Keywords: Web service, WS discovery, WSDL, Schema matching.

1 Introduction

Web Services (WSs) have emerged as a popular paradigm for distributed
computing, and sparked a new round of interest from research and industrial
communities. By adopting service oriented architectures (SOA) using WS tech-
nologies, enterprises can flexibly solve enterprise-wide and cross-enterprise in-
tegration challenges [8]. These advantages of WSs can also be used within a
network of embedded systems which access and retrieve information from each
other (e.g., a logistic hub consisting of sensors, PDAs, etc. [18]). Web services can
then be used as an abstract interface for the devices to overcome communication
and data integration problems resulting from the heterogeneity of the devices.
Therefore, WSs can also be used to achieve the interoperability of a complex
and heterogeneous system.

The research community has identified two major areas of interest: Web ser-
vice discovery and Web service composition [15]. In this paper, we present the
issue of locating WSs efficiently. As the number of WSs increases, the problem
of locating desired service(s) from a large pool of WSs becomes a challenging re-
search problem [20,11,13,7,4]. In addition, if WSs are generated on demand (e.g.,

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 114–128, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Combining Schema and Level-Based Matching for Web Service Discovery 115

to fulfill a certain task for a defined time, see [14,18]), it is difficult to discover
the most suitable services. Several solutions have proposed, however, most of
them suffer from the following two main disadvantages. Firstly, A large number
of these solutions are syntactic-based. These methods use simple keyword search
on Web service descriptions, and traditional attribute-based matchmaking al-
gorithms to locate Web services according to a service request. However, these
mechanisms are insufficient in the Web service discovery context since since they
do not capture the underlying semantic of Web services and/or they partially
satisfy the need of user search. This is due to the fact that keywords are often
described by a natural language. As a result, the number of retrieved services
with respect to the keywords are huge and/or the retrieved services might be
irrelevant to the need of their consumers [15]. More recently, this issue sparked
a new research into the Semantic Web where some research uses ontology to
annotate the elements in Web services [5,16]. Nevertheless, integrating different
ontologies may be difficult while the creation and maintenance of ontologies may
involve a huge amount of human effort. To address the second aspect, clustering
algorithms are used for discovering WSs. However, they are based on keyword
search [11,16,15].

Secondly, most of the existing approaches are not scale well to large-scale and
to large numbers of services, service publishers, and service requesters. This is
due to the fact that they mostly follow a centralized registry approach. In such
an approach, there is a registry that works as a store of WS advertisements
and as the location where service publication and discovery takes place. The
scalability issue of centralized approaches is usually addressed with the help of
replication (e.g., UDDI). However, replicated Registries have high operational
and maintenance cost. Furthermore, they are not transparent due to the fact
that updates occur only periodically.

We see Web service discovery as a matching process, where available services’
capabilities satisfy a service requester’s requirement. There are two main aspects
that should be considered during solving the matching process: the quality of
the discovered service and the efficiency especially in large-scale environments.
To obtain a better quality, not only is the textual description of Web services
sufficient, but also the underlying structures and semantics should be exploited.
Also to get a better performance, an efficient methodology should be advised.

In this paper, we propose a flexible and efficient approach, called SeqDisc,
for assessing the similarity of Web services, which can be used to support lo-
cating WSs. We first represent WS document specifications described in WSDL
as rooted, labeled trees, called service trees. By investigating service trees, we
observe that each tree can be divided into two parts (subtrees), namely the
concrete and abstract parts. We discover that the concrete parts from different
WSDL documents have the same hierarchal structure, but may have different
names. Therefore, we develop a level-based matching approach, which computes
the name similarity between concrete elements at the same level. However, the
abstract parts of the WSDL documents have differences in structure and se-
mantics. To efficiently access the abstract elements, we represent them using

116 A. Algergawy et al.

the Prüfer encoding method [17], and then apply our sequence-based schema
matching approach to the sequence representation. A set of experiments is con-
ducted in order to validate our proposed approach employing real data sets. The
experimental results showed that the approach performs well.

2 Preliminaries

A Web service is a software component identified by an URI, which can be
accessed via the Internet through its exposed interface. Three fundamental layers
are required to provide or use WSs [6]. First, WSs must be network-accessible
to be invoked, HTTP is the de-facto standard network protocol for Internet
available WSs. However, other network protocols can be used to enable the use
of Web services in other kinds of networks (e.g., sensor networks). Second, WSs
use XML-based messaging for exchanging information, and SOAP1 is the chosen
protocol. Finally, it is through a service description that all the specification for
invoking a WS are made available; WSDL2 is the de-facto standard for XML-
based service description.

2.1 Web Service Modeling

In this paper, we represent a WSDL specification as a rooted labeled tree, called
service tree, ST, defined as follows:

Definition 1. A service tree, (ST), is a 3-tuple element; ST = (N, E, Lab),
where: N = {nroot, n2, ..., nn} is the set of nodes representing WSDL document
elements, where nroot is the root node of the tree; E = {(ni, nj)|ni, nj ∈ N} is the
set of edges representing the parent-child relationship between WSDL document
elements; and Lab is a set of labels associating to WSDL document elements
describing the properties of them.

Examining the hierarchical structure of the WSDL document, we found that a
service consists of a set of ports, each containing only one binding. A binding
contains only one portType. Each portType consists of a set of operations, each
containing an input message and a set of output messages. A message includes
a set of parts, where each part describes the logical content of the message. All
WSDL document elements (except part elements) have two main properties: the
type property to indicate the type of the element (port, binding, operation,...)
and the name property to distinguish between similar type elements.

From the hierarchal structure of a service tree, we divide its elements into
a concrete part and abstract part. The intuition for this classification is that
service trees representing different web services have the same structure from
the root node to the part node, while the structure of the remaining depends
on the content of operation messages. The following are definitions for concrete
and abstract parts of a service tree.
1 http://www.w3.org/TR/soap/
2 http://www.w3.org/TR/wsdl20/

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20/

Combining Schema and Level-Based Matching for Web Service Discovery 117

(a) WSDL1: getData Web Service. (b) WSDL2: getProduct Web service.

Fig. 1. Two WSDL specifications

Definition 2. A concrete part of a service tree (ST) is the subtree (STC) ex-
tending from the root node to the portType element, such that STC = {NC , EC ,
LabC} ⊂ ST , NC = {nroot, nport1, nbinding1, nportType1, ..., nportTypel

} ⊂ N ,
where l is the number of concrete elements in the service tree.

Definition 3. An abstract part of a service tree (ST) is the set of subtrees rooted
at operation elements, such that STA = {STA1 , STA2, ..., STAk

}, where k is the
number of operations in the service tree.

A service tree comprises a concrete part and an abstract part, i.e., ST = STC ∪
STA. To assess the similarity between two WSs, we consequently compare their
concrete and abstract parts. The problem of measuring similarity between Web
services is converted into the problem of tree matching- comparing their concrete
and abstract parts.

Let us now introduce an example of assessing the similarity between two WSs,
which is taken from [20]. As shown in Fig. 1, we have two WSs described by
two WSDL documents WSDL1 and WSDL2, respectively. WSDL1 contains
one operation , getData, that takes a string as input and returns a complex data
type named POType, which is a product order. The second document contains
one operation, getProduct, that takes an integer as input and returns the complex
data type MyProduct as output.

3 The SeqDisc Approach

The proposed SeqDisc approach is based on the exploitation of the structure
and semantic information from WSDL documents. The objective is to develop
a flexible and efficient approach that measures the similarity between WSs. The
measured similarity is used as a guide in locating the desired service. To realize

118 A. Algergawy et al.

this goal, we first analyze WSDL documents and represent them as service trees
using Java APIs for WSDL (JWSDL) and a SAX parser for the contents of the
XML schema (the types element). Each service tree is examined to extract its
concrete and its abstract parts. The concrete parts from different service trees
have the same hierarchal structure. Hence, the similarity between concrete parts
of two web services is computed using only concrete part element names by com-
paring elements with the same level. We call this type of matching level-based
matching. Abstract parts from different service trees have different structures
based on the message contents. Therefore, we propose a sequence-based abstract
matching approach to measure the similarity between them. By the two mech-
anisms we gain a high flexibility in determining the similarity between WSs. In
Section 6, we show two possibilities to compute the similarity. The first is to
exploit abstract parts (operations), while the second is to use both the abstract
and concrete parts. Furthermore, the proposed approach scales well. As it will
be shown, the level-based matching algorithm has a linear time complexity as a
function of the number of concrete elements, while the sequence-based matching
algorithm benefits from the sequence representation to reduce time complexity.

4 Level-Based Matching

Once obtaining the concrete parts of service trees, STC1 ⊂ ST 1 and STC2 ⊂
ST 2, we apply our level-based matching algorithm that linguistically compares
nodes at the same level, as shown in Fig. 2(a). The level-based approach considers
only semantic information of concrete elements. It measures the elements (tag
names) similarity by comparing each pair of elements at the same level based on
their names.

Algorithm 1 accepts the concrete parts of the service tress, STC1, STC2, and
computes the name similarity between the elements of the concrete parts. It
starts by initializing the matrices, wherein the name similarities are kept. We
have three levels for each service tree, line 2. When the loop index equals 1,
i = 1, the algorithm deals with the port nodes, when i = 2 it deals with the
binding nodes, and with the portType nodes when i = 3. To compute the sim-
ilarity between elements at the same level, the algorithm uses two inner loops,
lines 3 & 5. It first extracts the name of the node j at the level i, line 4, and
the name of the node k at the same level, line 6. Then, the algorithm uses a
name similarity function to compute the name similarity between the names of
the nodes, line 7. Finally, depending on the level, it stores the name similarity
matrix into the corresponding element matrix.

To compute the name similarity between two element names represented as
strings, we first break each string into a set of tokens T1 and T2 using a customiz-
able tokenizer using punctuation, upper case, special symbols, and digits, e.g.
getDataService → {get, Data, Service}. We then determine the name similarity
between the two sets of name tokens T1 and T2 as the the average best similarity
of each token with a token in the other set. It is computed as follow:

Nsim(T1, T2) =

∑
t1∈T1

[maxt2∈T2 sim(t1, t2)] +
∑

t2∈T2
[maxt1∈T1 sim(t2, t1)]

|T1| + |T2| (1)

Combining Schema and Level-Based Matching for Web Service Discovery 119

Algorithm 1. Level-based matching algorithm
Require: Two concrete parts, STC1&STC2

Ensure: 3Name similarity matrices, NSimM
1: PortSimM [][] ⇐ 0, BindSimM [][] ⇐ 0, PTypeSimM [][] ⇐ 0;
2: for i = 1 to 3 do
3: for j = 1 to l do
4: name1 ⇐ getName(STC1(i, j));
5: for k = 1 to l′ do
6: name2 ⇐ getName(STC2(i, k));
7: NSimM [i][j] ⇐ NSim(name1, name2);
8: end for
9: end for

10: if i = 1 then
11: PortSimM ⇐ NSimM ;
12: else if i = 2 then
13: BindSimM ⇐ NSimM ;
14: else
15: PTypeSimM ⇐ NSimM ;
16: end if
17: end for

To measure the string similarity between a pair of tokens, sim(t1, t2), we use
two string similarity measures, namely the edit distance and trigrams [10]. The
name similarity between two nodes is computed as the combination (weighted
sum) of the two similarity values. The output of this stage is 3 (l × l′) name
similarity matrices, NSimM , where l is the number of concrete part elements of
STC1 and l′ is the number of concrete part elements of STC2 per level (knowing
that the number of ports, the number of bindings, and the number of protType
are equal). In the running example, see Fig. 2(a), l = 1 and l′ = 1.

Algorithm Complexity. The algorithm runs three times, one for every level.
Through each run, it compares l elements of STC1 with l′ elements of the second
concrete part. This leads to a time complexity of O(l × l′), taking into account
that the number of elements in each level is very small.

5 Abstract Matching

In contrast to concrete parts, the abstract parts from different service trees
have different structures. Therefore, to compute the similarity between them,
we should capture both semantic and structural information of the abstract
parts of the service trees. To realize this goal, we propose a sequence-based
matching approach to achieve this goal. The approach consists of two stages:
Prüfer Sequence Construction and Similarity computation.3. The Pre-processing
phase is considered with the representation of each abstract item (subtree) as
a sequence representation using the Prüfer encoding method. The sequences

3 For more details about our sequence-based schema matching approach, see [3].

120 A. Algergawy et al.

should capture both semantic and structure information of the service tree. The
similarity computation phase aims to assess the similarity between abstract parts
of different service trees exploiting both information to construct an operation
similarity matrix.

The outline of the algorithm implementing the proposed schema matching
approach is shown in Algorithm 2. The algorithm accepts two sets of abstract
parts of the service trees input, STA1 = {STA11, STA12, ..., STA1k} and STA2 =
{STA21, STA22, ..., STA2k′}, where each item in the sets represents an operation
in the service tree. k and k′ are the number of operations in the two abstract
parts, respectively. We first analyze each operation (abstract item) and rep-
resent it as a Consolidated Prüfer Sequence (CPS) using the Prüfer encoding
method. Then, the algorithm proceeds to compare all CPS pairs to assess the
similarity between every operation pair using our developed sequence matching
algorithms. The returned similarity value is stored in its corresponding position
in the operation similarity matrix, OpSimM .

Prüfer Sequence Construction. This aims to represent every item in the ab-
stract part set (operation) as a sequence representation using the Prüfer encod-
ing method. The semantic and structural information of service tree operations
are captured in Label Prüfer Sequences (LPSs) and Number Prüfer Sequences
(NPSs), respectively. The two sequences form what is called a Consolidated
Prüfer Sequences (CPS = (NPS, LPS)) [19]. They are constructed by doing
a post-order traversal that tags each node in the service tree operation with a
unique traversal number, as shown in Fig. 2(b) for ST 1. NPS is then constructed
iteratively by removing the node with the smallest traversal number and append-
ing its parent node number to the already structured partial sequence. LPS is
constructed similarly but by taking the node labels of deleted nodes instead of
their parent node numbers.

Example 1. Consider the abstract parts of the two service trees ST 1 & ST 2
shown in Fig. 2(b). CPS(STA1) = (NPS, LPS), where NPS(STA1)= (2 10 8 8
7 7 8 9 10 -) and LPS(STA1).name = (id, getDataReequest, id, name, quantity,
product, item, POType, getDataResponse, getData).

This sequence representation of service trees makes the proposed framework
able to cope with the two mentioned aspects in Section 1. From the quality

(a) Concrete parts of WSDL1 & WSDL2. (b) Abstract parts of WSDL1 & WSDL2.

Fig. 2. Concrete & abstract parts of WSDL1 & WSDL2

Combining Schema and Level-Based Matching for Web Service Discovery 121

Algorithm 2. Schema matching algorithm
Require: Two abstract parts, STA1&STA2

STA1 = {STA11, STA12, ..., STA1k}
STA2 = {STA21, STA22, ..., STA2k′}

Ensure: Operation similarity matrix, OpSimM
1: OpSimM [][] ⇐ 0;
2: for i = 1 to k do
3: CPS1[i] ⇐ buildCPS(STA1i)
4: end for
5: for j = 1 to k′ do
6: CPS2[j] ⇐ buildCPS(STA2j)
7: end for
8: for i = 1 to k do
9: for j = 1 to k′ do

10: OpSimM [i][j] ⇐ computeSim(CPS1[i], CPS2[j]);
11: end for
12: end for
13: return OpSimM ;

point of view, CPS captures both semantic information in LPSs and structure
information in NPSs, which increases quality of Web service discovery. From
performance point of view, CPS provides several structural properties, which
enable dealing with service trees in an efficient manner.

Similarity Computation. This stage aims to compute the similarity between
abstract parts (operations) from different service trees. This task can be stated as
follows: Consider we have two Web service document specifications WSDL1 and
WSDL2, each contains a set of operations represented as the abstract part of
the corresponding service tree. STA1 = {STA11, STA12, ..., STAk} represents the
operation set belonging to WSDL1, while STA2 = {STA21, STA22, ..., STA2k′}
is the operation set of WSDL2. The task at hand is to construct a k × k′ op-
eration similarity matrix, OpSimM , where k is the number of operations in
WSDL1 and k′ is the number of operations in WSDL2. Each entry in the
matrix, OpSimM [i][j], represents the similarity between operation STA1i from
the first set and operation STA2j from the second. The similarity computa-
tion algorithm operates on the sequence representations of service trees, see
Algorithm, line 6, and consists of three steps.

1. Linguistic matcher. First, a linguistic similarity algorithm is used to compute
a degree of linguistic similarity between the elements of service tree operation
pairs exploiting their semantic information represented in LPSs. The output
of this step are k × k′ linguistic similarity matrices, LSimM . Equation 2
gives the entries of a matrix, where Nsim(Ti, Tj) is computed using the
same procedure in Eq. 1, DataType is a similarity function to compute the
type/data type similarity between nodes, and combinel is an aggregation

122 A. Algergawy et al.

function that combines the name and data type similarities.

LSimM [i, j] = combinel(Nsim(Ti, Tj), DataType(ni, nj)) (2)

2. Structural matcher. Once a degree of linguistic similarity is computed, we
use the structural algorithm to compute the structural similarity between
abstract part elements. This matcher is based on the node context, which is
reflected by its ancestors and its descendants. The descendants of an element
include both its immediate children and the leaves of the subtrees rooted
at the element. The immediate children reflect its basic structure, while the
leaves reflect the element’s content. We consider three kinds of node contexts
depending on its position in the service tree: child, leaf, and ancestor context.
The context of a node is the combination of its ancestor, its child, and its leaf
context. Two nodes will be structurally similar if they have similar contexts.
To measure the structural similarity between two nodes, we compute the
similarity of their child, leaf, and ancestor contexts utilizing the structural
properties carried by sequence representations of service trees as follows:

– Child Context Similarity; The child context of a node is the set of
its immediate children. This set can be easily extracted from the CPS
representation of operations considering each entry in CPS represents
an edge from the parent node NPS to its immediate child node LPS. To
compute the child context similarity between two nodes ni ∈ CPS1 and
nj ∈ CPS2, we first extract the child context set for each node, then
we get the linguistic similarity between each pair of children in the two
sets. We select the matching pairs with maximum similarity values, and
finally we take the average of best similarity values.

– Leaf Context Similarity; The leaf context of a node is the set of leaf
nodes of subtrees rooted at the node. This set can be efficiently extracted
from CPS representation. To determine the leaf context similarity be-
tween two nodes ni ∈ CPS1 and nj ∈ CPS2, we extract the leaf context
set for each node, then we determine the gap between the node and its
leaf context set as a vector, and finally we use the cosine measure between
the two vectors.

– Ancestor Context Similarity; The ancestor context of a node is the
path extending from the root node to the node. To measure the ancestor
context similarity between two nodes ni ∈ CPS1 and nj ∈ CPS2, first
we extract each ancestor context from CPS representation, say path Pi

for ni and Pj for nj , then we compare the two paths. To compare between
paths, we use the scores established in [9].

The output of this step are k × k′ structural similarity matrices, SSimM .
Equation 3 gives entries of a matrix, where child, leaf , and ancestor are
similarity functions that compute the child, leaf, and ancestor context sim-
ilarity between nodes respectively, and combines is an aggregation function
combining these similarities.

SSimM [i, j] = combines(child(ni, nj), leaf(ni, nj), ancestor(ni, nj)) (3)

Combining Schema and Level-Based Matching for Web Service Discovery 123

3. After computing both linguistic and structural similarities between Web ser-
vice tree operations, we combine them. The output of this phase are k × k′

total similarity matrices, TSimM . Equation 4 gives the entries of a matrix,
where combine is an aggregation function combining these similarities.

TSimM [i, j] = combine(LSimM [i, j], SSimM [i, j]) (4)

Operation Similarity Matrix. We use k×k′ total similarity matrices to con-
struct the Web service operation similarity matrix, OpSimM . We compute the
total similarity between every operation pairs by ranking element similarities in
their total similarity matrix per element, selecting the best one, and averaging
these selected similarities. Each computed value represents an entry in the ma-
trix, OpSimM [i, j], which represents the similarity between operation op1i from
the first set and operation op2j from the second set.

Example 2. Applying the sequence-based matching approach to abstract parts
illustrated in Fig. 2(b), we get OpSim(getData, getProduct) = 0.75.

Algorithm Complexity. The worst case time complexity of the schema match-
ing algorithm can be expressed as a function of the number of nodes in each
operation, the number of operation in each WS, and the number of WSs. Let
n be the average operation size, k be the average operation number, and S be
the number of input WSs. Following the same process in [3], it can be proven
that the overall worst-case time complexity of the schema matching algorithm
between two WSs is O(n2k2) .

Matching Refinement. For every WS pairs we have two sets of matrices: three
NSimM matrices that store the similarity between concrete elements, and one
OpSimM that stores the similarity between two WS operations. This provides
the SeqDisc approach more flexibility in assessing the similarity between services.
As a consequence, we have two different possibilities to get the similarity.

Using only abstract parts ; Given, the operation similarity matrix, OpSimM , that
stores the similarity between operations of two WSs, how to obtain the similarity
between them. We can simply get the similarity between the two services by
averaging the similarity values in the matrix. However, this method produce
smaller values, which do not represent the actual similarity among services.
And due to uncertainty inherent in the matching process, the best matching
can actually be an unsuccessful choice [12]. To overcome these shortcomings,
similarity values are ranked up to top-2 ranking for each operation. Then, the
average value is computed for these candidates.

Using both abstract and concrete parts ; The second possibility to assess the sim-
ilarity between WSs is to exploit both abstract and concrete parts. For any
operation pair, op1i ∈ WSDL1 and op2j ∈ WSDL2, whose similarity is greater
than a predefined threshold (i.e. OpSimM [i, j] > th), we increase the similarity
of their corresponding parents (portType, binding, and port, respectively).

124 A. Algergawy et al.

6 Experimental Evaluation

Table 1. Data set specification

Category No. of WSs NO. of operations Size (KB)
Address 13 50 360
Currency 11 88 190

DNA 16 48 150
Email 10 50 205

Stock quite 14 130 375
Weather 13 110 266

In order to evaluate the degree to which
the SeqDisc approach can distinguish between
WSs, we need to obtain families of related
specifications. We found such a collection pub-
lished by XMethods4 and QWS data set [1].
We selected 78 WSDL documents from six dif-
ferent categories. Table 1 shows these cate-
gories and the number of Web services inside
each one. Using the “analyze WSDL” method
provided by XMethods, we identify the number of operations in each WS, and
get the total number of operations inside each category, as shown in the table. All
the experiments below share the same design: each service of the collection was
used as the basis for the desired service; this desired service was then matched
against the complete set to identify the best target service(s).

6.1 Experimental Results

We use precision, recall, and F-measure to evaluate the effectiveness of the Se-
qDisc framework. We have two possibilities to assess Web discovery process by
finding the similarity between Web services depending on the exploited informa-
tion of WSDL specifications.

Assessing the WS similarity using only abstract parts (operations).
In the first set of experiments, we match abstract parts of each service tree
from each category against the abstract parts of all other service trees from all
categories. Then, we select a set of candidate services, such that the similar-
ity between individual candidate services and the desired one is greater than
a predefined threshold. Precision and recall are then calculated for each service
within a category. These calculated values are averaged to determine the average
precision and recall for each category. Precision, recall and F-measure are calcu-
lated for all categories and illustrated in Fig.3(a). There are several interesting
findings, which are evident in this figure. First, the SeqDisc approach has the
ability to discover all WSs from a set of relevant services. As can be seen, across
different six categories, the approach has a recall rate of 100% without missing
any candidate service. This ability reflects the strong behavior of the approach
of exploiting both semantic and structural information of WSDL specifications
in an effective way. Second, Fig. 3 also shows that the ability of the approach
to provide relevant WSs from a set of retrieved services is reasonable. The pre-
cision of the approach across six categories ranges between 64% and 86%. This
means that while the approach does not miss any candidate service, however, it
produces false match candidates. This is due to the WS assessment approach is
based on lightweight semantic information and does not use any external dictio-
nary or ontology. Finally, based on precision and recall, our framework is almost
accurate with F-measure ranging from 78% to 93%.
4 http://www.xmethods.net

http://www.xmethods.net

Combining Schema and Level-Based Matching for Web Service Discovery 125

(a) Quality measures (abstract parts only). (b) Quality measures (both parts).

Fig. 3. Effectiveness evaluation of SeqDisc

Assessing the WS similarity using abstract and concrete parts. In this
set of experiments, we matched the whole parts (both abstract and concrete)
of each service tree against all other service trees from all categories. Then, we
selected a set of candidate services, such that the similarity between individual
candidate services and the desired one is greater than a predefined threshold.
Precision and recall are then calculated for each service within a category. These
calculated values are averaged to determine the average precision and recall
for each category. Precision and F-measure are calculated for all categories and
illustrated in Fig. 3(b). We also compared them against the results of the first
possibility. The results are reported in Fig. 3(b). The figure represents a number
of appealing findings. (1) The recall of the approach remains at the unit level,
i.e. no missing candidate services. (2) Exploiting more information about WSDL
documents improves the approach precision, i.e. the number of false retrieved
candidate services decreases across six different categories. The figure shows
that the precision of the approach exploiting both concrete and abstract parts
of service trees ranges between 86% in the Email category and 100% in the DNA
category. (3) The first two findings lead to the quality of the approach is almost
accurate with F-measure ranging between 90% and 100%.

Effect of Individual Matchers. We also performed another set of experi-
ments to study the effect of individual matchers (linguistic and structure) on
the effectiveness of WS similarity. To this end, we used data sets from the Ad-
dress, Currency, DNA, and Weather domains. We consider the linguistic matcher
utilizing either abstract parts or concrete and abstract parts. Figure 4 shows
matching quality for these scenarios.

The results illustrated in Fig. 4 show several interesting findings. (1) Recall of
the SeqDisc approach has a value of 1 across the four domains either exploiting
only abstract parts or exploiting both parts, as shown in Fig. 4(a,b). This means
that the approach is able to discover the desired service even if the linguistic
matcher is only used. (2) However, precision of the approach decreases across the
tested domains (except only for the DNA domain using the abstract parts). For
example, in the Address domain, precision decreases from 88% to 70% utilizing
both parts, and it reduces from 92% to 60% utilizing both parts in the Weather
domain. This results in low F-measure values compared with the results shown
in Fig. 3. (3) Exploiting both abstract and concrete parts outperforms exploiting

126 A. Algergawy et al.

(a) Utilizing abstract parts. (b) Utilizing both parts.

Fig. 4. Effectiveness evaluation of SeqDisc

only the abstract parts. This can be investigated by comparing results shown in
Fig. 4(a) to results in Fig. 4(b).

In summary, using only the linguistic matcher is not sufficient to assess the sim-
ilarity between WSs. Hence, it is desirable to consider other matchers. As the re-
sults in Fig. 3 indicate that the SeqDisc approach employing the structure matcher
is sufficient to assess the similarity achieving F-measure between 90% and 100%.

Performance Comparison. Besides studying the performance of the SeqDisc
approach, we also compared it with the discovery approach proposed in [7], called
KerDisc5. To assess the similarity between the a service consumer request (user
query) and the available WSs, the KerDisc approach first extracts the content
from the WSDL documents followed by stop-word removal & stemming [7]. The
constructed support-based semantic kernel in the training phase is then used to
find the similarity between WSDL documents and a query when the query is
provided. The topics of WSDL documents which are most related to the query
topics are considered to be the most relevant. Based on the similarity computed
using the support-based semantic kernel, the WSDLs are ranked and a list of
appropriate Web services is returned to the service consumer.

Both SeqDisc and KerDisc have been validated using the data sets illustrated
in Table 1. The quality measures have been evaluated and results are reported in
Fig. 5. The figure shows that, in general, SeqDisc is more effective than KerDisc.
It achieves higher F-measure than the other approach across five domains. It is
worth noting that the KerDisc approach indicates low quality across the Address
and Email domains. This is due to the two domains have common content, which
produces many false positive candidates. The large number of false candidates
declines the approach precision. Compared to the results of SeqDisc using only
the linguistic matcher shown in Fig. 4(b), our approach outperforms across the
Address and DNA domains, while the KerDisc approach is better across the
other domains. This reveals two interesting findings: (1) KerDisc can effectively
locate the desired service among heterogeneous WSs, while it fails to discover the
desired service among a set of homogeneous services. In contrast, our approach
could effectively locate the desired service among either a set of homogeneous or
a set of heterogenous services. (2) SeqDisc clarifies the importance of exploiting
the structure matcher.
5 We give the approach this name for easier reference.

Combining Schema and Level-Based Matching for Web Service Discovery 127

Fig. 5. Effectiveness comparison Fig. 6. Response time response

Efficiency Evaluation. From the response time point of view, Fig. 6 gives
the response time that is required to complete the task at hand, including both
pre-processing and similarity measuring phases. The reported time is computed
as a total time and an average time. The total time is the time needed to locate
desired Web services belonging to a certain category, while the average time
is the time required to discover a Web service of the category. The figure also
shows that the framework needs 124 seconds in order to identify all desired Web
services in the DNA category, and it requires 7 seconds to discover one service
in the category, while it needs 3.7 minutes to locate all services in the Email
category. We also considered the response time and compared it to the response
time of the first set (i.e, using only the abstract parts). The results are calculated
and listed in Fig. 6. The figure shows that the response time required to locate
the desired Web service using both abstract and concrete parts equals to the
response time when only using abstract parts, or needs a few milliseconds more.

7 Conclusions

We introduced a new and flexible approach to assess the similarity between
WSs, which can be used to support a more automated WS discovery frame-
work. The approach makes use of the whole WSDL document specification and
distinguishes between the concrete and abstract parts. The concrete parts from
different Web services have the same hierarchal structure, hence we devised
a level-based matching approach. The abstract parts have different structures,
therefore, we developed a sequence-based schema matching approach to compute
the similarity between them. We have conducted a set of experiments to validate
our approach. Our experimental results have shown that our method is accurate
and scale-well. However, we are still a long way from automatic service discov-
ery. In our ongoing work, we plan to complete the service discovery framework
exploiting more WSDL features, such as text values associated to each element
through documentation.

Acknowledgements. This work is an extended version of the paper presented
in [2]. The work of A. Algergawy is supported by the BMBF, grant 03FO2152.
While, the work of N. Siegmund and V. Köppen is also funded by the BMBF,
project 01IM08003C.

128 A. Algergawy et al.

References

1. Al-Masri, E., Mahmoud, Q.H.: Qos-based discovery and ranking of web services.
In: ICCCN 2007, pp. 529–534 (2007)

2. Algergawy, A., Schallehn, E., Saake, G.: Efficiently locating web services using a
sequence-based schema matching approach. In: 11th ICEIS(1) (2009)

3. Algergawy, A., Schallehn, E., Saake, G.: Improving XML schema matching perfor-
mance using prüfer sequences. DKE 68(8), 728–747 (2009)

4. Anadiotis, G., Kotoulas, S., Lausen, H., Siebes, R.: Massively scalableweb service
discovery. In: AINA ’09 (2009)

5. Atkinson, C., Bostan, P., Hummel, O., Stoll, D.: A practical approach to web
service discovery and retrieval. In: ICWS 2007, pp. 241–248 (2007)

6. Avila-rosas, A., Moreau, L., Dialani, V., Miles, S., Liu, X.: Agents for the grid:
A comparison with web services (part ii: Service discovery). In: AAMAS ’02, pp.
52–56 (2002)

7. Bose, A., Nayak, R., Bruza, P.: Improving web service discovery by using semantic
models. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.)
WISE 2008. LNCS, vol. 5175, pp. 366–380. Springer, Heidelberg (2008)

8. Cabral, L., Domingue, J., Motta, E., Payne, T.R., Hakimpour, F.: Approaches to
semantic web services: an overview and comparisons. In: Bussler, C.J., Davies, J.,
Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 225–239. Springer,
Heidelberg (2004)

9. Carmel, D., Efraty, N., Landau, G.M., Maarek, Y.S., Mass, Y.: An extension of
the vector space model for querying XML documents via XML fragments. SIGIR
Forum 36(2) (2002)

10. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics
for name-matching tasks. In: IIWeb, pp. 73–78 (2003)

11. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: VLDB 2004, pp. 372–383 (2004)

12. Gal, A.: Managing uncertainty in schema matching with top-k schema mappings.
Journal on Data Semantics 6, 90–114 (2006)

13. Hao, Y., Zhang, Y.: Web services discovery based on schema matching. In: ACSC
2007, pp. 107–113 (2007)

14. Köppen, V., Siegmund, N., Soffner, M., Saake, G.: An architecture for interoper-
ability of embedded systems and virtual reality. IETE Tech. Rev. 26(5) (2009)

15. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic
approach. In: CSSSIA 2008, p. 5 (2008)

16. Nayak, R., Lee, B.: Web service discovery with additional semantics and clustering.
In: WI 2007, pp. 555–558 (2007)

17. Prufer, H.: Neuer beweis eines satzes uber permutationen. Archiv fur Mathematik
und Physik 27, 142–144 (1918)

18. Siegmund, N., Pukall, M., Soffner, M., Köppen, V., Saake, G.: Using software
product lines for runtime interoperability. In: RAM-SE, pp. 1–7 (2009)

19. Tatikonda, S., Parthasarathy, S., Goyder, M.: LCS-TRIM: Dynamic programming
meets XML indexing and querying. In: VLDB ’07, pp. 63–74 (2007)

20. Wang, Y., Stroulia, E.: Flexible interface matching for web-service discovery. In:
WISE 2003, pp. 147–156 (2003)

Web Messaging for Open and Scalable
Distributed Sensing Applications

Vlad Trifa1,2,�, Dominique Guinard1,2, Vlatko Davidovski1,
Andreas Kamilaris3, and Ivan Delchev2

1 Institute for Pervasive Computing, ETH Zurich, Switzerland
2 SAP Research, Zurich, Switzerland

3 University of Cyprus, Nicosia, Cyprus
vlad.trifa@ieee.org

Abstract. Future Web applications will increasingly require real-time
data from the physical world collected by a myriad of sensors and actua-
tors. Currently, integration of such devices require customized solutions
due to the lack of widely adopted protocols for devices. Because the
Web architecture offers a high degree of interoperability and a low en-
try barrier, we propose to leverage the Web to build hybrid applications
that combine the physical world with Web content. Our work builds
upon recent developments in Web push techniques and extends them for
embedded devices with a RESTful messaging system. Our results illus-
trate that fully Web-based distributed sensing applications are not only
feasible - but actually desirable - because Web standards offer an ideal
compromise between performance and functionality.

1 Introduction

In the last decade computers have been silently pervading every corner of our
lives. Among them, networks of tiny sensors that gather data about the real
world – called Wireless Sensor Networks (WSN) – have been increasingly used
in various disciplines ranging from civil engineering to biology. Because of their
deeply embedded nature, WSN have the potential to revolutionize our under-
standing of natural and physical systems. As these systems will mature, the data
they collect will increasingly need to be available on the Web in real time. A
scenario for such applications is a heterogeneous city-wide Web API as shown
in Fig. 1, to share real time information about the status of a city with dif-
ferent consumers. This data could be private and secure information (alarms,
fire alerts, household energy consumption), but also public information (air and
noise pollution levels, traffic status, etc).

Programming wireless sensor networks is challenging because devices have
limited energy and computational resources that must be carefully managed.
In addition, WSNs are highly dynamic and transient: connectivity is often un-
predictable, devices disappear and reappear, new ones are added to extend the

� Corresponding author.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 129–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

130 V. Trifa et al.

network or to replace failed ones. In such conditions, a high-level data-centric
approach in which information is delivered based on content rather than explicit
addressing of individual nodes can simplify the development of applications that
integrate data from these devices. Although consumer electronics with Inter-
net access are becoming increasingly popular [1], a common ground that enables
seamless integration of devices with applications is still lacking. Indeed, the myr-
iad of existing protocols and standards for networked devices turns each network
into isolated islands that hardly interact with each other.

Web

http://houseA.com/

http://building24.com/

http://cityTransport.com/

Trains

Buses

Taxi

Real-time traffic
information

Police

Fire department

Energy consumption

Security system

Fire alarm

Energy consumption

Security system

Fire alarm

CCTV

City fire
alerts

Public
Mashups

Electricity Provider

Fig. 1. Future distributed sensing applications will require a scalable infrastructure
where new devices and services can be added and used with minimal effort

Because the Web is widely used, open, and easy to integrate, the Web of
Things vision proposes to reuse the wide-spread Web infrastructure and stan-
dards (HTTP/XML/RSS) to connect embedded devices [2]. In this article, we
extend the Web of Things paradigms to support more scalable and interopera-
ble WSN applications by leveraging the event-driven nature of publish-subscribe
systems.

A priori, HTTP seems not suited for building WSN applications because of
its request/response nature. However, the recent success of Web push tools and
techniques have enabled the development of event-driven applications directly
over the Web. Our results show that RESTful messaging for embedded devices
is a viable and scalable approach for building more open and programmable
distributed sensing applications. To our knowledge, our work is the first to show
the feasibility of a fully Web-based distributed sensing application that combines
the recent advances in Web technologies to design an HTTP-based event-driven
programming model for sensor networks.

Web Messaging for Open and Scalable Distributed Sensing Applications 131

After introducing the related work in Section 2, we survey Web messaging
techniques and analyze their suitability for embedded devices in Section 3. Based
on these findings, we designed RMS (Restful Messaging System), a scalable
HTTP-based messaging system for distributed sensing applications which is de-
scribed in Section 4. In Section 5 we evaluate the performance of RMS both with
a simulation and with real devices. Finally, in Section 6 we discuss our results
and their applicability for future distributed sensing, and Section 7 concludes
this article.

2 Background

The Web of Things is the intersection of two fields that have been rarely as-
sociated in the past – networked embedded sensors and Web engineering. In
this section we provide the required background and related work required to
understand our contributions.

2.1 Networked Sensors and Actuators

Most sensor network applications share a common goal: gather, process, and
store data collected by physically distributed sensors. To simplify the develop-
ment and deployment of such applications, early approaches have explored the
use of declarative data-centric models and query languages that consider sensor
networks as a single logical unit, among which TinyDB [3]. However, such ap-
proaches are limited to heterogeneous systems and are not suited to the loosely
coupled nature of the Web of Things, where new devices are added/removed at
runtime.

Integration of physical things with the Web has already been proposed almost
a decade ago [4,5]. However, these early projects focused mainly on embedding
information about physical objects onto embedded Web servers and linking the
objects with their virtual counterparts on the Web, which is fundamentally dif-
ferent from integrating devices into the Web as we propose here. Not only devices
can be interacted with and controlled through an open Web API, but their status
and functions can be searched, browsed, and used just like any other Web con-
tent. More recent projects [6] have investigated how to access embedded devices
using the REST paradigm (see Section 2.2), but they mainly focused on isolated
experiments and didn’t address more scalable and heterogeneous systems.

The term Sensor Web refers to a global network of Web-connected sensors,
and several projects have been proposed to build such a worldwide Sensor Web,
as for example IRISnet [7], Senseweb [8], or Pachube1. In these projects, a unique
endpoint is used to register and store data collected by many physical sensors.
Such a central point of failure is against the distributed nature of the Web. Ad-
ditionally, direct interaction among devices is not allowed as commands have
to pass through the server. Stream Feeds [9] have proposed to extend the Web

1 http://pachube.com

132 V. Trifa et al.

feed model (RSS/ATOM) to accommodate the large size and real-time nature
of sensor data streams, however beyond a promising idea, a more substantial
description and evaluation with actual devices is lacking and the project seems
discontinued.

In this paper, we extend the simplistic stream feed model and propose a
general-purpose, distributed, and flexible publish/subscribe system that is par-
ticularly suited for the requirements of the Web of Things. The novelty of our
approach lies in the fact that RMS enables to collect and use data streams from
heterogeneous sensors directly over the Web. This significantly lowers the access
barrier for Web developers that can now rapidly integrate real time data in their
Web applications using the tools they already know – which until now required
advanced knowledge in embedded systems.

2.2 RESTful Web Services

HTTP is a rather simple protocol that follows the Representational State Trans-
fer (REST) architectural style [10]. REST defines a few design constraints for
building Internet-scale applications that are more flexible and simpler to use.
Every component of an application is an URI-addressable resource whose rep-
resentation is manipulated with a uniform and fixed interface, defined by the
four main HTTP verbs (GET, POST, PUT, and DELETE). Interactions are
stateless, thus servers do not keep the state of applications, which improves
significantly the scalability of the system. HTML is the primary resource repre-
sentation which is universally understood and is a lightweight language providing
hypermedia features, while XML and JSON are the preferred representation for
machine readable data.

Existing middleware for sensor networks have predominantly focused on data
collection and processing, therefore ad-hoc interaction with devices is difficult,
if not impossible. In a RESTful application, there is no need for any special
interface as the application fully blends into the Web. Interacting with it does not
use any special API beyond a HTTP client to access resources and manipulate
them. Because of the low access barrier, more and more Web application have
been switching from SOAP to REST as basis for their API, and this observation
serves as motivation to apply the same paradigm to interact with embedded
devices, as we suggested in this article.

2.3 Web-Based Sensor Networks

The core idea of the Web of Things is to enable Web-based interactions with em-
bedded devices. This requires their functionality to be accessible through URIs
that can be manipulated using HTTP. For example, one could send commands to
actuators (turn on LEDs), retrieve sensor data (get temperature sensor reading),
or change application state (change the sampling frequency) directly through a
RESTful API [6]. As described in [2], two solutions are possible for Web-enabling
sensor networks: directly on devices or through a proxy.

Web Messaging for Open and Scalable Distributed Sensing Applications 133

Device-level enablement. In this case, each device runs an actual Web server
that processes and serves HTTP requests directly. Using HTTP for embedded
devices has been often criticized because of the high memory footprint of HTTP
servers and because of the verbosity of the HTTP protocol. However, recent work
has shown that embedded Web servers can run on resource-constrained devices
[11], requiring as little as 8 kB of memory [12]. Additionally, as the software and
operating system for embedded devices are usually event-driven, their underlying
architecture lends itself well for the construction of efficient event-driven HTTP
servers [12]. Such event-driven Web applications are the most desirable approach
for energy-constrained devices that sleep most of the time.

Proxy-level enablement. When device-level support for HTTP is not possible
or desirable, Web integration can take place on a smart proxy (referred to gate-
ways hereafter) which hides the actual communication protocol used by devices
behind a uniform Web interface, as proposed in [13]. Although gateways are not
required for devices that support HTTP directly, they can nevertheless augment
the functionality of single devices and improve the overall performance of sens-
ing networks. Because gateways are much less constrained than sensor nodes,
they can serve as distributed master nodes that can manage sensor networks.
In addition, gateways can be delegated tasks that would be too expensive in
terms of CPU and energy to be run on resource-constrained embedded devices.
For example, caching data from the sensors for concurrent read accesses, buffer
incoming request for devices, perform aggregation of data and local mashups, or
manage security policies and access control to devices, could be all taken care of
by gateways.

3 Web-Based Messaging

As the size of distributed sensing applications increase, so does the necessity to
integrate disparate hardware and software platforms. Interfacing different mes-
saging protocols is a complex procedure, and bridging different middlewares is
prone to severely hinder the performance and scalability of such a future dis-
tributed systems. Publish-subscribe systems (pub/sub) are commonly used in
distributed computing and large enterprise applications, because they allow de-
coupling data producers and consumers. Loose coupling allows more flexible and
scalable systems where new entities can be easily added or removed. Highly scal-
able and efficient messaging protocols with various features have been proposed,
however none of them directly integrates with the Web, as an additional proto-
col must be implemented on top of HTTP. XMPP is an XML-based messaging
protocol widely used for chat servers. It is based on a decentralized network of
servers that provide a multi-hop routing delivering messages from one client to
the other. Because it is based on XML, it remains quite heavy for lightweight
messaging with resource-constrained devices.

Only recently sensor networks have began to explore pub/sub messaging for
building complex and interoperable applications that scale, as pub/sub shields
applications from the underlying complexities of the WSN and provides a simple

134 V. Trifa et al.

– yet powerful – interface to interact with a WSN. MQTT-S [14] is a messaging
protocol designed for tiny devices. TinyDDS [15] is another publish/subscribe
middleware that enables interoperability between WSNs.

Web Syndication. A rudimentary form of Web messaging is content syndica-
tion. Feed formats such as RSS, or the more well-defined Atom, have become
popular formats for exchanging machine-readable data over the Web. Atom offers
a convenient metaphor to deal with time-ordered collections of entities, there-
fore would be particularly suited for storage, query, and retrieval of stored sensor
data. However, Atom is limited by the pull-based mode, which cannot meet the
requirements of event-driven applications. A push-based pub/sub protocol for
the Web would simplify significantly the integration between WSNs and appli-
cations, however, such a messaging protocol that fully integrates with the Web
has not yet been proposed.

Comet. Comet (also called HTTP streaming or server push) has become an
increasingly popular technique to implement server side eventing for Web appli-
cations that circumvent the limitations of the traditional HTTP polling. Comet
enables a Web server to push data back to the browser without the client re-
questing it explicitly by keeping the TCP/IP connection open after an initial
response has been sent to the client. Since Web browsers (and HTTP) were not
designed to support server-initiated notifications, Comet is a hack implemented
through several specification loopholes. Comet servers and clients frequently use
named channels or topics which are useful when different objects want to send
data to a number of other interested parties. The main advantage of Comet
is that standard Web clients (in particular browsers) can receive notifications
pushed from servers in near real-time, even when behind firewalls or NAT.

Web Hooks. Web hooks are another solution for HTTP eventing that enable
users to receive events and data in real time from applications through user-
defined callbacks over HTTP. Once an event occurs, the application will POST
data to the callback URLs specified by the users at subscription time. This pat-
tern has been used by the PayPal service which allows you to specify a URL (on
your own online commerce site) that will be triggered by PayPal once a pay-
ment has been accepted. Web hooks enables Web applications to synchronize
data with other applications, but also to process, filter, or aggregate data from
different sources and to notify people via email, IRC, Jabber, or Twitter. How-
ever, clients that want to receive notifications must also run a Web server where
notifications will be posted. Web hooks are an elegant, clean, and RESTful solu-
tion for bi-directional Web eventing, unfortunately cannot be used when clients
are behind NAT or a firewall, as they do not have a public network address.

The growing need for push-based communication on the Web is further sup-
ported by the introduction of Web Sockets and server-sent events in the HTML
5 specification, and also by the browser-side Web server embedded in the Opera
Unite browser. An interesting recent project is RestMS2, which offers a
2 http://www.restms.org

Web Messaging for Open and Scalable Distributed Sensing Applications 135

RESTful interface to the Advanced Message Queuing Protocol (AMQP) and de-
fines the behavior of a set of feed, join, and pipe types that provide an AMQP-
interoperable messaging model. PubSubHubbub3 (PuSH) is a lightweight and
open server-to-server publish/subscribe protocol based on Web hooks as an ex-
tension to Atom and RSS. Servers can get near-instant notifications when a topic
(feed URL) they’re interested in is updated. However, these solutions were not
designed for embedded devices as they are rather verbose. Based on these obser-
vations, we have designed RMS, a fully Web-based publish/subscribe mechanism
designed to meet the requirements of distributed Web-based sensing applications,
as will be described in the next section.

4 RMS: RESTful Messaging for Devices

Nowadays, integration of different WSNs is done in a fairly rigid manner: devices
are tightly coupled to custom bridges that connect them to the outside world
because of the lack of a common, widely adopted application protocol for sen-
sor networks. In contrast, a uniform Web-based messaging would allow devices,
gateways, brokers, and applications to transparently interact with each other
in an ad-hoc manner. Devices can directly exchange information transparently
with each other and with other Web resources thanks to the loose coupling of
REST. Furthermore, as gateways are optional, they can easily be bypassed in
case they fail, which increases the overall robustness of the whole system.

Two main classes of WSN applications exist: event-driven (where notifications
are sent sporadically when an event occurs) and stream-based (sensor data is
collected periodically and sent to a sink to be processed and/or stored). To
support such interaction models, we developed the RESTful Messaging System
(RMS), which is a lightweight pub/sub messaging suited for devices. In essence,
our system is similar and directly mappable to RestMS and PubSubHubbub
(PuSH). However, as we target embedded devices, we tried to keep it as simple
as possible. Rather than creating a custom protocol on top of HTTP (such as
XMPP or PuSH), we implement the core functionality of a pub/sub system
solely using RESTful design patterns. More elaborate pub/sub protocols such
as XMPP have a higher barrier of adoption and are somewhat complex for
embedded devices. Also, just like SOAP-based Web services, packets are opaque
therefore cannot be interpreted and acted upon by 3rd party proxies.

The gateway offers a RESTful API to use the eventing system and provides
the following resources to manage interactions:

– /rms/channels every sub-resource represents a hierarchical channel where
entities can post data to. For example, /rms/channels/ethz/ifw/floor/d/
49.2 identify the channel related to the office No. 49.2 of the D floor, in our
building (called ifw) at our school (ETH Zurich).

– /rms/subscriptions contains each subscription of entities to individual
channels.

3 http://pubsubhubbub.googlecode.com

136 V. Trifa et al.

Pub/sub
broker

Gateway

RMS

Subscriber

Subscriber

Subscriber

ATOM Pull

Comet

RMS Push

Device

Device

Device

POST

POST

POST

Gateway

RMS
Device

Device

Device

POST

POST

POST

Private sensor
network

External access to
sensor network data

Fig. 2. The general model of Web-based messaging. Devices can POST their data on
the gateway, using standard HTTP POST, AtomPub, or other proprietary protocols.
Gateways will then forward it to another gateway or to a powerful broker using RMS.
External users can fetch the data using the most appropriate method for their needs.

– /rms/channels/*/publishers contains all entities that are publishing data
on the channel *.

– /rms/channels/*/subscribers contains all entities that are subscribed to
events on the channel *.

A subscriber that wants to receive notifications about a channel, creates a new
subscription by POSTing the following HTTP request to the gateway:

POST /rms/ethz/ifw/floor/d/49.2/subscriptions
Host: gateway_ip
Content-type: application/x-www-form-urlencoded
Content: cb-url=http://sub_ip/callback_url

Each new message posted on this channel will be POSTed back to all subscribers
using the Web hook pattern to the URL they specified with the cb-url param-
eter. Any entity can publish data to the gateway by POSTing the following
request on the gateway:

POST /rms/channels/ethz/ifw/floor/d/49.2
Host: gateway_ip
Content-type: application/x-www-form-urlencoded
Content: pub-url=http://device1&temperature=21

Web Messaging for Open and Scalable Distributed Sensing Applications 137

This device has never been registered with the gateway, so it includes its
URL in the posted parameters, providing the gateway with a possibility to au-
tomatically scan it for semantic description of its capabilities and get required
information. The message is posted directly to the channel /ethz/ifw/d/49.2
without any need to previously create it. Other parameters are treated as tags
(in this case temperature). In addition to specifying the channel or topic, pub-
lishers can also annotate messages with free text tags. Similarly, subscribers can
easily filter out messages that contain or not specific tags.

Comet implementations such as CometD4 treat topics as paths to support
hierarchical relationships between topics. This is quite useful for example for
permission models or aggregated data, where a subscriber to a parent topic can
receive all messages from child topics. Paths can directly map with URI (e.g.,
ethz/ifw/floor d/49.2), which can be directly integrated with the Web. Our
gateway is implemented in OSGi5 and supports Web hooks and Comet-based
eventing. Comet data is accessible by replacing rms/ by cometd/ in the URL
above. Therefore, users can can see in real time messages on a particular channel
by pointing their Web browser to following URL:
http://gateway ip/cometd/channels/{channel path}

Because our gateway uses the internal eventing capabilities offered by OSGi
as abstract model for notifications, additional notification protocols can be easily
added (SMS, Twitter, e-mail, etc).

5 Evaluation

To evaluate the performance of RESTful messaging under extreme load condi-
tions, we have conducted an experiment using simulated devices and subscribers
connected through an RMS broker running a desktop computer (1.1 GHz, 2GB
Ram, Gigabit Ethernet and Gentoo Linux). The HTTP clients (subscribers)
were simulated on another machine (2x2.13 GHz, 8GB Ram, Gigabit Ethernet,
Gentoo Linux). In the second part of this section, we describe a second experi-
ment done to measure the performance of RMS in real-world conditions through
an actual sensing system deployed using real sensor nodes.

Synthetic Load Simulation. First, we simulate many devices attached to
the gateway, each one generating an event at a random interval between 1 and
5 seconds. Three runs have been performed with respectively 50 devices, 100
devices, and 200 devices attached. The time required to receive, process, and
deliver all the events to one client has been measured, and results are shown in
Figure 3.

Second, we evaluate the scalability of RMS with respect to concurrent sub-
scribers for the same event triggered by a device. A test client started an event
sink to receive events on respectively 50, 100, and 200 different ports, and for each
port an event subscription was posted to the gateway. The gateway generated

4 http://cometd.org/
5 http://www.osgi.org

138 V. Trifa et al.

50 d. 100 d. 200 d.
Min 29ms 30ms 418ms
Max 127ms 284ms 1087ms
RT 50% 41ms 124ms 641ms
RT 80% 71ms 174ms 733ms
Mean 52ms 125ms 699ms

Fig. 3. Many devices: Response time to deliver events to a client with 50 devices (box),
100 devices (circle), and 200 devices (triangle) attached

artificial events (containing the generation time) that were delivered to all the
subscribed ports. The test client measured the arrival time and from that com-
puted the delay for each arriving event, and results are shown in Figure 4.

50 r. 100 r. 200 r.
Min 34ms 35ms 34ms
Max 396ms 553ms 1347s
RT 50% 94ms 165ms 326ms
RT 80% 120ms 236ms 479ms
Mean 97ms 180ms 360ms

Fig. 4. Many receivers: Event delivery times measured for 50 subscribers (box), 100
subscribers (circle), 200 subscribers (triangle)

Third, we want to evaluate the performance of the classic request/response
pattern under heavy load where many devices are attached to a gateway and
a varying number of clients access simultaneously devices through HTTP. The
test client started several concurrent threads that accessed the gateway and its
devices randomly to simulate real clients accessing the gateway. In the first case,
4000 devices, three test runs with 100 clients, 50 clients and 25 clients, and
results are shown in Table 1. In the second test 1000 virtual devices are attached
to the gateway and three test runs have been performed with respectively 375
clients, 750 clients, and 1500 clients, and results are shown in Tables 2.

For a moderate number of devices (50 and 100) the gateway is able to dispatch
RMS messages efficiently, with respectively 52 ms and 125 ms average delivery
time. Doubling the number of devices results in a approximate doubling of the
latency (2.4x). However, with 200 devices the performance drops significantly
(5.59x slower than with 100). The third test shows that gateways can handle
over 750 concurrent read requests per second from 1000 devices and 80% of
these requests will be answered within 224 ms.

Web Messaging for Open and Scalable Distributed Sensing Applications 139

Table 1. Response time in milliseconds [ms] to deliver a request from a gateway with
4000 simulated devices attached to resp. 25 clients, 50 clients, and 100 clients

25 clients 50 clients 100 clients
Min 3 3 3
Max 326 253 1248
RT 50% 16 40 56
RT 80% 44 111 172
Mean 63 67 136

Table 2. Response time in milliseconds [ms] to deliver a request from a gateway with
1000 simulated devices attached and resp. 375 clients, 750 clients, and 1500 clients

375 clients 750 clients 1500 clients
Min 2 2 2
Max 9250 21054 21261
RT 50% 29 48 124
RT 80% 135 224 3059
Mean 614 860 1686

Real deployment. In this second experiment, we test the performance of RMS
to transmit data from a real sensor network (devices used were TMotes running
TinyOS), where the Web-enablement is done at the gateway level. Devices broad-
cast an event every second that are received at a time t1 by a base station (A)
attached to a WSN gateway running an RMS broker. Each event from the sensor
network is then posted using RMS (Web hooks) to subscribers (in this case a
sink laptop on the same LAN). Each event from the WSN is also caught using a
spy base station (B) which starts a timer (also at time t1). The timer is stopped
when the corresponding notification is received from the WSN gateway though
RMS at a time t2. The time difference t2 − t1 corresponds to the time required
to create and dispatch the RMS message from the WSN gateway and receive it
on the sink.

Similarly to our results in the first experiment with simulated devices, a fully
HTTP-based messaging system can transmit data from real sensor nodes with
reasonable delivery times, as shown in Fig. 6. In all the cases, events needed
less than 60 ms to be pushed from the publisher to the subscriber. This la-
tency can be considered tolerable even for emergency and time-critical deploy-
ments. Obviously, the delay would be significantly larger for subscribers not on
the same LAN as the RMS broker, or if the sensor network used a multi-hop
topology.

WSN deployments for environmental monitoring rarely have more than 50
devices per gateway and sampling rate is rarely higher than one sample per
second. Based on our results, we conclude that a fully HTTP-based solution
is largely sufficient for collecting data in typical sensor network scenarios even
when sub-second latency with hundreds of concurrent requests is needed.

140 V. Trifa et al.

WSN Base station (A)

~30 cm radius

Wireless sensors
sampling periodically

WSN Gateway
with RMS broker

Spying base station (B)
to start/stop timer

Sink subscribed to
WSN events.

Measures RMS latency.

RMS Push

Fig. 5. Experimental setup to measure the latency of RMS. TMotes broadcast peri-
odically numbered events caught by base station (A). The sink subscribes to all WSN
events and each time it catches an event from the WSN (through its spy base station
B) it starts a timer that will be stopped when it receives a RMS notification about the
same event from the WSN Gateway.

6 Discussion

Nowadays, Web applications routinely integrate data from multiple sources such
as RSS/Atom feeds, blogs, maps, etc. As the number of networked sensing devices
will increase, so will the incentives to share and integrate the data they produce
with Web applications. So far, only few projects have explored the Web of Things
beyond linking physical objects with Web pages. Different middlewares have
been proposed for the integration of heterogeneous sensors with applications,
however they would introduce a strong coupling between components that is
inappropriate with the ad-hoc nature of dynamic sensor networks, as all devices
in the global network should settle on a single protocol, which is unlikely to
happen.

The work presented here differs from middleware-based approaches in that we
leverage only the ubiquitous modern Web architecture as abstraction layer for
the peculiarities of various hardware and software platforms available for sensor
networks. Enabling RESTful access with embedded devices significantly lower
the access barrier to consume real-time data from the physical world. Simpli-
fied access to WSN data over the Web fosters the development of physical Web
applications, as devices would have a Web API just like other Web resources.
Programming with them could be done using highly popular and relatively sim-
ple languages such as JavaScript, DHTML, PHP, or even simple and visual
mashup editors such as Yahoo Pipes. Web integration would be maximized as
devices could be searched for, browsed, linked to, and used just like other Web
content.

Web Messaging for Open and Scalable Distributed Sensing Applications 141

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Events per Second

M
ea

n
Pu

sh
 T

im
e

(m
se

c)

Fig. 6. Average delivery time for events generated on sensor nodes using a 1-hop sub-
scriptions. Each devices generates one message per second, and increasing the number
of devices also increases messages per second (here we use between 1 and 12 devices
sending concurrent messages). Variability (not shown here) is mainly due to the phys-
ical nature of radio communication, which is hard to control.

Publishers and subscribers are loosely coupled to each other through the use
of RMS. Unlike traditional pub/sub systems, a fully Web-based pub/sub system
further decouples participants because only an HTTP client is needed and no
additional protocol need to be implemented. Web standards maximize interop-
erability and loose coupling between components, which are desirable properties
for scalable distributed applications. Along with the event-driven interaction
model of RMS, these properties match well the dynamic nature of WSNs.

Future sensing applications will require enabling easy and timely access to
physical data, and the solution we propose lowers the barriers to access WSN
data while being fully integrated with the Web. As more embedded devices
will be present in our daily environments, one could install gateways on home
(or enterprise) routers where the number of attached devices is moderate (e.g.
a WiFi, mobile phone, network attached storage...). For these appliances the
performance of the system should therefore be sufficient.

In contrast to other optimized messaging systems, RMS suffers from the over-
head of the HTTP protocol. Although our results are encouraging, optimizations
and enhancements of the RMS broker implementation could increase the per-
formance and throughput of the system. As RMS mainly consists of an HTTP
server and client, it scales with the hardware. That is, running the broker on
a more powerful machine would allow to attach more devices and serve more
clients simultaneously.

7 Conclusion

As more embedded devices will be connected to the Internet, efficient solutions
will be needed to collect, process, and store the data they will generate. In this

142 V. Trifa et al.

article, we have described how to reuse the ubiquitous Web standards to build
a scalable infrastructure for connecting embedded devices, the Web of Things.
Our solution not only supports the request-response model of HTTP, but also
leverages the recent development in the real-time Web to offer an efficient Web-
based publish/subscribe system.

Our main contribution is to provide quantitative results to support the idea
that using HTTP as application protocol for distributed sensing applications
is not only a feasible, but also a desirable solution for integrating physical de-
vices with applications. This is especially true when integration primes over raw
performance in terms of latency and throughput, as the advantages brought by
using Web technologies at the device-level outweighs the loss in performance. Our
results show that HTTP-based messaging can support hundreds of concurrent
users accessing hundreds of devices simultaneously with a sub-second latency,
which is sufficient for most monitoring applications that use sensor networks.
We have pointed out how the loss in performance in comparison to traditional
messaging systems could be compensated by using gateways to improve the per-
formance, scalability, and functionality of the applications running within sensor
networks.

References

1. Dunkels, A., Vasseur, J.: IP for Smart Objects Alliance. Internet Protocol for Smart
Objects (IPSO) Alliance White paper (September 2008)

2. Guinard, D., Trifa, V., Wilde, E.: Architecting a mashable open world wide web
of things. Technical Report 663, Institute for Pervasive Computing, ETH Zurich
(February 2010)

3. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acqui-
sitional query processing system for sensor networks. ACM Trans. Database
Syst. 30(1), 122–173 (2005)

4. Ljungstrand, P., Redström, J., Holmquist, L.E.: WebStickers: using physical tokens
to access, manage and share bookmarks to the Web. In: DARE ’00: Proceedings
of DARE 2000 on Designing Augmented Reality Environments, New York, NY,
USA, pp. 23–31. ACM, New York (2000)

5. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P.,
Gopal, G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic,
M.: People, places, things: web presence for the real world. Mob. Netw. Appl. 7(5),
365–376 (2002)

6. Luckenbach, T., Gober, P., Arbanowski, S., Kotsopoulos, A., Kim, K.: TinyREST -
a protocol for integrating sensor networks into the internet. In: Proc. of REALWSN
(2005)

7. Gibbons, P., Karp, B., Ke, Y., Nath, S., Seshan, S.: IrisNet: an architecture for a
worldwide sensor Web. IEEE Pervasive Computing 2(4), 22–33 (2003)

8. Kansal, A., Nath, S., Liu, J., Zhao, F.: SenseWeb: an infrastructure for shared
sensing. IEEE Multimedia 14(4), 8–13 (2007)

9. Dickerson, R., Lu, J., Lu, J., Whitehouse, K.: Stream Feeds: an Abstraction for the
World Wide Sensor Web. In: Proceeding of the 1st Internet of Things Conference
(IOT), Zurich, Switzerland (2008)

Web Messaging for Open and Scalable Distributed Sensing Applications 143

10. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

11. Yazar, D., Dunkels, A.: Efficient Application Integration in IP-Based Sensor Net-
work. In: Proc. of the First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings (BuildSys), at SenSys ’09 (2009)

12. Duquennoy, S., Grimaud, G., Vandewalle, J.J.: Consistency and scalability in event
notification for embedded web applications. In: 11th IEEE International Sym-
posium on Web Systems Evolution (WSE’09), Edmonton, Canada, Edmonton,
Canada (September 2009)

13. Trifa, V., Wieland, S., Guinard, D., Bohnert, T.M.: Design and implementation
of a gateway for web-based interaction and management of embedded devices. In:
Proceedings of the 2nd International Workshop on Sensor Network Engineering
(IWSNE’09), Marina del Rey, CA, USA (June 2009)

14. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S - A publish/subscribe
protocol for Wireless Sensor Networks. In: Proceedings of the Third International
Conference on COMmunication System softWAre and MiddlewaRE (COMSWARE
2008), Bangalore, India, pp. 791–798 (January 2008)

15. Boonma, P., Suzuki, J.: Middleware support for pluggable non-functional proper-
ties in wireless sensor networks. In: SERVICES ’08: Proceedings of the 2008 IEEE
Congress on Services - Part I, Washington, DC, USA, pp. 360–367. IEEE Computer
Society, Los Alamitos (2008)

On Actors and the REST

Janne Kuuskeri and Tuomas Turto

Department of Software Systems
Tampere University of Technology
PL 553, 33101 Tampere, Finland

{janne.kuuskeri,tuomas.turto}@tut.fi

Abstract. The prevalence of RESTful services requires that we pay
closer attention to how the principles that underlay REST are realized in
actual services being implemented. This is especially crucial as REST is
being applied to problem domains that require complex operations such
as transactions. In this paper we investigate the relationship between
RESTful web services and the actor model of computation. We suggest
that by formulating RESTful services as a network of actors we can
achieve deeper understanding what it means for a service to be RESTful.

1 Introduction

In his thesis Fielding [9] discusses how the Web’s architecture as a distributed
hypermedia system evolved in its early stages. In particular, the thesis describes
how the Representational State Transfer, or REST, architectural style was used
to guide the development. Given that REST pinpoints the architectural con-
straints that have made the Web a success, it has been argued that also the web
services should be architected in a similar fashion [16]. These so-called RESTful
services would then embrace the way applications on the Web are intended to
function.

Often, however, the well-intended discussion on the principles of RESTful
web services degenerates into heated debate about the merits of REST com-
pared to the big web services implemented using the WS-* stack [20]. Although
the architectural choice between a RESTful approach and the WS-* stack does
require significant consideration and there are arguably better problem domains
for each of them [14], this sort of comparative argumentation does not deepen
our knowledge of RESTful services as much as it could.

Although the key principles of REST, such as the use of resources and the
hypertext as an engine of application state in the sense of [9], are widely agreed
upon, there seems to be conceptual confusion regarding how they do manifest
and how they should manifest themselves in actual RESTful services. Discussion
about the fundamentals of REST and a deeper understanding of these key issues
is urgently required as RESTful services embed more complex behavior such as
transactions [15]. Furthermore, as REST itself is being extended [7], we need
solid understanding on how to apply the ideas behind REST.

In this paper we investigate the principles of REST in the framework of the
actor model of computation [3]. The actor model has previously been used to

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 144–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Actors and the REST 145

reason about distributed systems in general [1] and as the basis for Internet-
wide middleware development [2]. Also, from a more pragmatic point of view,
programming languages based on the actor principles, such as Erlang [4], have
received acclaim for their ability to implement RESTful services in a natural
style. We conjecture that it is indeed the actor model that makes them especially
suitable for implementing RESTful services.

The main contribution of this paper is an explicit investigation into the re-
lationship between the actor computation model and the principles of REST.
We show how a restricted actor model can be used to understand the principles
underlying the RESTful paradigm and especially how an actor system embodies
the idea of hypertext as an engine of application state. Moreover, we suggest a
notation for describing RESTful systems.

The rest of the paper is structured as follows. In Section 2 we review the key
ideas behind RESTful services and introduce the actor model of computation.
Next, in Section 3, the underlying principles of REST and the actor model are
related to each other. In Section 4 we introduce a notation for expressing REST-
ful services in a restricted form of actors and apply the result to an example.
Section 5 discusses the pros and cons of the suggested approach and Section 6
provides a review of related work. Section 7 concludes the paper with some final
remarks.

2 Background

In this section we introduce REST and the actor model of computation sepa-
rately in order to provide the necessary background for the rest of the article.

2.1 RESTful Architectural Style

Although REST is a general architectural style for building network-based soft-
ware, in this article we consider RESTful interfaces only in the context of web
services. In this resource oriented architecture, resources are exposed by the
servers and consumed by the clients using HTTP methods [8]. A resource is
accessed via a URL and its state is transferred using its representation. A key
characteristic of a RESTful interface is the clear division of application state
between the client and the server. In the following we inspect these essential
features of REST in more detail.

Resources and URLs. In a RESTful interface, everything is a resource. Con-
versely, everything that can be represented by a URL can be a resource. A re-
source can be static (e.g. /blog/2010-01-03) or its representation can change
over time (e.g. /blog/latest). Moreover, the resource can also represent a list
of things (e.g. /blog/2010/). Although every resource must be addressable by
a URL, the REST itself does not mandate any scheme for constructing URLs.
Human readable URLs are preferred, as they should suggest how to use the in-
terface, but not required by REST. However, the URL should not contain any
information about any operation that might be applied to the resource (e.g.
/add/ or /remove/).

146 J. Kuuskeri and T. Turto

Connectedness. A property that is closely related to addressability is con-
nectedness. For a client to be able to consume a RESTful service, it needs to
know the addresses of all the necessary resources. These resource identifiers can
be pre-configured into the client but this is not desirable because it does not
enforce connectedness. Instead, the server should guide the client by letting it
know about all meaningful resources and then the client can make the decision
which path to choose. The server can do this be sending hypermedia links to
other resources it exposes. This pattern is also known as Hypermedia as the
Engine of Application State.

Methods of REST. For RESTful services, the most commonly used HTTP
methods are POST, GET, PUT and DELETE. These methods define the basic
CRUD1 operations for resources. These methods can be categorized in accor-
dance to how they operate on resources. The GET method is said to be safe
because it has read only semantics on the resource, implying that it is meant
only for information and data retrieval without any side effects. With PUT and
DELETE, GET is also idempotent, since it does not matter whether the operation
is applied once or several times on a resource. The end result is always the same.
For instance, it does not make a difference if a resource /blog/2010-02-09
is deleted once or twice; it will not exist afterwards.

Statelessness. Honoring the principles of HTTP, REST is strictly stateless.
Any application state is stored only on the client. The server, on the other hand,
only stores the resources and their states. This also means that each request
to a resource must be self-containing; i.e. each request must contain all the
information needed to carry out the request. So, the server does not need to
– nor it should – know anything about any previous or future request made
by the client. Each request should happen in complete isolation from any other
request.

Uniform Interface. A very unique characteristic of REST is the uniform in-
terface that it imposes on the services that employ it. Where RPC style services
expose bespoke objects and methods for clients, RESTful interfaces expose re-
sources with a fixed set of HTTP methods and return values for each resource.
Most importantly this is a profound change in the way the interface for a web
service is designed. Everything needs to be designed in terms of resources as
opposed to functionality.

2.2 The Actor Model of Computation

Hewitt et al. [11] originally suggested the actor model of computation in the
context of enhancing programming languages for artificial intelligence. Our ex-
position follows [3] that describes actors as a model for concurrent computation
in distributed systems.

1 Create, Read, Update, Delete.

On Actors and the REST 147

mail queue

M1 M2

X

mail queue
Mn

mail queue

Y

1

2

3

Fig. 1. Sending messages and creating actors

Actors. In the actor model of computation a system is composed of a multitude
of computational agents. Each of these computational agents is an actor. An
actor is an active self-contained entity that is identified by its address. Actors
encapsulate all the necessary information that is required, as specified by the
actor’s behavior, for it to function as a part of the system. Actors do not share
any state and communicate only by passing messages.

For each address there exists a corresponding conceptual mailbox that queues
the incoming messages. In the actor model message passing guarantees that
messages sent to an actor are eventually delivered, but it does not guarantee the
time it takes to deliver a message, nor does it specify the order in which sent
messages arrive at the target actor’s mail queue. Furthermore, it is not possible
to send a message to an arbitrary actor without first knowing its address.

Operational behavior. The driving force in an actor system is the process of
sending and receiving messages. In fact, it is the only way the computation in
an actor system makes progress. Each time an actor receives a message, it

– must decide on its replacement behavior.
– can create new actors.
– can send messages to other actors.

These three actions can occur concurrently. Once the replacement behavior has
been decided another instance of an actor machine is created to represent the
actor. This new actor machine is then able to process the next message from the
actor’s mail queue.

This process is shown in Figures 1 and 22. In Figure 1 an actor with two
messages in its message queue is shown. The actor is represented by the actor
machine X that processes the first message in the mail queue, M1 (1). As a part

2 Figures adapted and extended from Figure 3.2 in [3].

148 J. Kuuskeri and T. Turto

mail queue

M1 M2

X
mail queue

Y

Z

MzMy

4 5

6

Fig. 2. Concurrent actor machines

of its behavior it can send messages to other actors (2) and create new actors
(3). Once the actor machine X has done enough work to decide its replacement
behavior with respect to the message it received and its environment, another
actor machine Z that corresponds to this replacement behavior is created (4).
This is depicted in Figure 2. It is important to note that once the replacement
behavior has been decided, both actor machines run concurrently. That is, the
new actor machine Z can create new actors or send messages to existing actors
(5), while X is free to do the same (6).

3 Relating Actors and REST

In this section we relate the essential concepts of the actor model to those of
REST and investigate the relationship. Although it might seem, as actors rep-
resent a model of computation and REST is an architectural style, that the
connection between them is far-fetched, this is not the case. Let us consider
the following rule of thumb given in the literature. Hewitt [10] defines the actor
programming methodology to consist of

1. Deciding on the natural kinds of actors (objects) to have in the system to
be constructed.

2. Deciding for each kind of actor what kind of messages it should receive.
3. Deciding for each kind of actor what it should do when it receives each kind

of message.

On the other hand, adapting from Richardson and Ruby [16], for RESTful web
services we get the following

1. Figure out the data set and split it into resources.
2. Name the resources with URLs and expose a subset of the uniform interface.

On Actors and the REST 149

3. Design the representation(s) for the resources.
4. Integrate the resources with one another using hypermedia links.

Both approaches consider self-standing individual entities as the basic elements:
actors in the actor model of computation and resources in REST. These elements
are then identified by unique addresses, and they communicate by passing mes-
sages. In this section we first elaborate the relationship and then present an
example where a RESTful service is represented in terms of the actor model.

3.1 Comparison

In Section 2 we reviewed the essential concepts in RESTful interfaces and in the
actor model of computation. Table 1 shows the suggested correspondence. In the
following, we investigate each pair individually.

Actor/Resource. Both actors and resources are meant to denote an entity that
is self-contained and isolated. Moreover, both actors and resources are the basic
components fundamental to the respective approach. In addition, the external
interface of the constructed system is defined in terms of actors or resources.
In RESTful services the resources available define the vocabulary for the web
service, and in an actor system the external actors – those initially visible outside
the system – determine the entities to which messages can be sent.

Mailbox/URL. In the actor model, the actors are identified by their mail-
box addresses. Similarly, a RESTful design uses URLs to denote the resources
the service exposes. In both scenarios the mailbox address or the URL is the
only way for an external client to interact with the system. Moreover, both ap-
proaches allow entities that forward the received messages to other addresses.
This corresponds to the use of aliases (e.g. /blog/latest/).

Acquaintance/Hypertext Link. In the actor model a node can only com-
municate with another node if it has its address. When the system is initialized,
some set of external addresses is typically declared. In this way the actors whose
addresses are revealed comprise the external interface of the system. When out-
side actors communicate with the external interface, they may receive addresses
of actors that are not part of the external interface. Thus the topology of actor
connections is not static but grows when the system is used.

Table 1. Counterparts in Actors and REST

Actor model REST

Actor Resource
Mailbox name URL
Acquaintance Hypertext link
Message HTTP request
Behavior Resource state change
Customer Client

150 J. Kuuskeri and T. Turto

In the context of RESTful services, this behavior of actors giving out addresses
of other actors corresponds to returning URLs in the resource’s representation.
This is especially important as now the evolving graph of actor’s acquaintances
makes the concept of hypermedia as the engine of application state explicit.

Messages/HTTP Request and Response. The actor model is based on
asynchronous message passing with guaranteed delivery. REST, on the other
hand, is built on top of HTTP and thus uses the traditional request/response
paradigm. This might seem like a mismatch but, if necessary, the synchronous
behavior of HTTP can be emulated by actors.

With respect to messages and their processing, the actor model is a lot more
general. In the actor model of computation the messages can in principle be of
any kind. HTTP, on the other hand, specifies pre-defined set of methods and
return values. From the correspondence between the actor model and REST,
this means that while using actors for analyzing RESTful services, we must
limit ourselves to those of HTTP.

Behavior/Resource State Change. In the actor model, the functionality
of an actor is defined by its behavior. This behavior changes over time as the
actor processes messages and new replacement behaviors are decided. In REST,
a resource has state. Also this state changes over time as requests are processed.
For example, if a resource receives a PUT message it has to update its internal
state to reflect the new representation of the data it received.

Customer/Client. The term customer refers to the sender of the message in
the actor model. This way it becomes an acquaintance of the actor that receives
the message. In REST the customer refers to the client of the request, which
is most often the browser. In the actor model a “return value” of a behavior
simply means sending a message to the customer. This is analogous to RESTful
approach, where a response message always follows a request message. The only
difference is that in actor model the response message is not mandatory.

3.2 Example

We now take a simple blogging service as an example and apply the ideas pre-
sented above. To keep the example simple, we omit issues such as user accounts,
authentication, blog comments, and so forth. Thus the system under investiga-
tion consists solely of blog posts and their relationships.

We can consider the blogging service in two distinct ways. First, we can con-
sider it to be a RESTful web service. On the other hand, we can start to analyze
the service as a network of actors that process the messages of HTTP. To prop-
erly illustrate the relationship, we show both sides.

In REST, and with actors, we must first decide on the resources and then move
on to the behavior. Since our service is simple, we only have a few resources. The
root resource is the container for all blog entries. We give the name /blog for
this resource. From the actor point of view, this means that the actor responsible

On Actors and the REST 151

Table 2. Supported messages and their corresponding behaviors

/blog /blog/2010-01-10

POST Create actor /blog/2010-01-10
with default behavior and send 201
to customer

No effect, send 405 to customer

GET Send 200 with addresses of the
available blog entries (actors) to the
customer

Send 200 with the contents of the
blog entry to customer

PUT No effect, send 405 to customer Change the behavior of the actor
to reflect the updated content. Send
200 to customer.

DELETE No effect, send 405 to customer In future forward all messages to ac-
tor representing status 404. Send
200 to customer

for all posts should have a mailing address /blog. When new entries are added,
they become new resources having names (addresses) like /blog/2010-01-10
and /blog/2010-01-15. In the actor model this means that new actors are
created whose addresses correspond to the URLs.

Because RESTful interfaces always implement a subset of the uniform interface
instead of defining methods on the interface, we specify the supported set of the
HTTP methods. This is traditionally done using a table that specifies the resource,
method and the intended effect. For our example, such table is shown in the Table
2. Note that this time we formulate the intended effect in the language of actors.
Numerical return codes used in the table are from the HTTP specification.

4 Applying Actors to a RESTful Interface

In order to better examine the relationship between the actor model and REST
we need a notation for defining actor based RESTful web services. Using the no-
tation we are then able to apply it to some use cases to gain better understanding
on how the relationship would work in practice.

4.1 The Notation

Notations for actor systems are usually full fledged programming languages such
as PLASMA [10] and Act2 [17]. However, also simpler alternatives exist. The
minimalistic example in Listing 1.1 shortly demonstrates the notation used by
Agha in [3]. This is not a programming language but a notation used to illustrate
actor behaviors. The example defines a piggy bank actor that can be used to
deposit money but one is able withdraw money only by breaking it. When the
actor receives a deposit message, it replaces its behavior with the new balance.
Conversely, when the actor receives a break message, it sends the balance to
customer and is replaced by a behavior that ignores all messages (sink).

152 J. Kuuskeri and T. Turto

piggy_bank with acquaintance balance
if message is deposit
become new piggy_bank with balance + amount

if message is break ∧ balance 	= 0
send amount to customer
become sink

Listing 1.1. Piggy Bank Actor

piggy_bank[balance] =
POST[amount] →
send 200 to customer
become (new piggy_bank(balance + amount))

GET →
send 405 to customer

PUT →
send 405 to customer

DELETE →
send balance to customer
become 404

Listing 1.2. RESTful Piggy Bank

Obviously, the example only covers a small subset of all the features in the
actor model, but it does portray a notation that can be used to describe an actor
and its behavior. In the listing the actor has the balance as its only acquaintance
as indicated by the acquaintance keyword. The balance becomes actor’s ac-
quaintance when the actor’s behavior is created. The replacement behavior is
defined using the become keyword.

From Agha’s notation we derive our own RESTful actor notation. This no-
tation is presented in Listing 1.2, which demonstrates a similar piggy bank ser-
vice as the previous example. The difference is that this time the actor can be
thought of as a RESTful web service. Our notation resembles Agha’s notation
but also shows clear connection to REST via its HTTP keywords. In the listing,
piggy bank defines the behavior of the actor. It has one acquaintance as de-
noted by the variable balance within brackets. The actor implements handlers
for all four messages but it only supports the POST and DELETEmessages. When
a POST message is received, the actor sends 200 OK to customer, whereas when
a DELETE message is received, the balance is sent to customer after which the
resource becomes unavailable. Other messages are responded with 405 Method
Not Allowed. The keyword become is omitted in cases where the replacement
behavior is the same as the one being executed.

4.2 Example

By now we have established the analogy between the actor model and REST.
We have also defined the notation for applying the actor model to a RESTful
interface. Hence, we have the elements to take the blog example presented in
Section 3.2 and demonstrate how to depict it using our notation.

On Actors and the REST 153

blog[list] =
GET →
send 200[self/latest] to customer

PUT →
send 405 to customer

POST[c] →
new blog_entry(call POST[c] to list) @ self/current-date
send 201[self/current-date] to customer

DELETE →
send 405 to customer

blog_entry[item] =
GET →
send 200[call GET to item] to customer

PUT[c] →
send PUT[c] to item
send 200 to customer

POST →
send 405 to customer

DELETE →
send DELETE to item
send 200 to customer
become 404

create the blog and bind it to an address
new blog(new list) @ /blog

Listing 1.3. Blog example

The Listing 1.3 defines two actor behaviors: blog and blog entry. The
blog defines the top level actor for all blog entry actors. For the sake of
brevity we have left out code listings for list and list item actor behaviors,
which are acquaintances of blog and blog entry respectively. The list actor
is responsible for storing the blog content. There are a couple of new notations
used in Listing 1.3:

– self refers to the address of the actor instance itself.
– Symbol @ makes actor external by binding it to the given address.
– call is similar to send but synchronous. That is, the actor blocks the

execution until it has received the response from the actor it calls. The
call expression of the actor model is defined in [3].

Next, we examine the most interesting parts of the Listing 1.3.
blog.GET: The self/latest is the address of the latest blog entry in

the blog. Interestingly, messages sent to this address end up in the mailbox of
different actors over time. Note that this behavior differs from the one presented
in Table 2.
blog.POST: The call POST[c] to list sends POST message to the list

and synchronously waits for the list item that is returned by the list. The list

154 J. Kuuskeri and T. Turto

item is then given as acquaintance to the new blog entry actor. The new
blog entry is bound to blog’s own address appended with current date. The
current-date is expected to be a primitive returning current date.
blog entry.GET: The actor retrieves the contents of the blog entry syn-

chronously from the list item actor. Next, it sends 200 with the content to
the customer.
blog entry.DELETE: The actor deletes the contents of the blog entry by

sending DELETE to its list item. Furthermore, it creates a replacement behavior
404 for itself.

The last line in the listing creates the blog and binds it to address /blog.
Also note that the created list actor is not explicitly bound to any address. This
means that it is not an external actor but visible only for the blog actor.

5 Discussion

The previous sections have motivated the relationship between the actor model
of computation and RESTful services. Moreover, we have investigated the rela-
tionship in more detail and provided an example. In this section we discuss the
pros and cons of the suggested approach to understand RESTful services as a
network of actors.

5.1 Resources and Communication

The presented correspondence between REST and actor model of computation
puts emphasis on resources and actors, message passing in the form of a subset
of the uniform interface, and revealing the hypertext as an engine of application
state via returned actor addresses. However, it is important to note what is ab-
stracted away: selection of representation, cookies, and HTTP protocol headers.

At this abstraction level the emphasis is on the resources and actors them-
selves. Therefore it helps the designer to see the system being built as a network
of entities with their internal state and behavior. As it also abstracts away im-
plementation details such as databases, we must model the information storing
using actors. This makes the concurrent nature of web services more visible as
opposed to hiding it by delegating the concurrency problems to the database.

The use of actors also provides us with a built-in mechanism for inter-resource
communication. So far, this has been a property of the framework actually used
to implement a service. Also in these cases often the database has been used as
an arbitrer to store the shared information. The actor view of RESTful services,
on the other hand, does not make a distinction between local and external actors.
Hence, external web services can be thought of as being actors too and they can
be accessed using the same message passing paradigm as local actors.

5.2 Naming

The naming of resources poses a problem for our approach. In the original actor
model the names of individual actors are opaque. That is, there is no external

On Actors and the REST 155

representation that can be resolved by some mechanism to an actor. Naturally,
when the addresses of actors are represented by URLs, there is an implicit as-
sumption that a suitable URL corresponds to an actor. Indeed, the presented
relationship builds on this assumption.

The opaqueness of actor naming also means that in our notation we have
to provide means by which an actor is bound to a URL. The universal actor
model [19] has investigated the naming of actors, but their model is not directly
suitable for us, as it relies on an own naming scheme. The problem is made more
difficult by the fact that when names are identified by URLs, there is nothing
that stops the client from guessing arbitrary URLs and seeing whether they
resolve to actual actors.

The most difficult problem related to naming occurs in conjunction with the
PUT method. From a RESTful point of view, when a new resource is created
using PUT, the distinction between a PUT and a POST is that a POST is targeted
towards an existing resource whereas with PUT the client is in charge of naming
the new resource. When considering the service as a network of actors, the POST
case is easy: there exists a corresponding actor that in due course creates more
actors if necessary. With PUT, however, there is necessarily no existing actor with
the given URL and the actor model of computation does not allow an infinite
number of actors.

5.3 Notation

In order to discuss RESTful systems as a network of actors, we have presented
an informal notation. Although in the actor model there are no restrictions on
the messages actors may send and receive, we must limit our notation to include
only the ones supported by HTTP – the HTTP methods and status codes. In
addition, the actor model imposes no predefined semantics for actor behavior.
In contrast, RESTful actors must adhere to semantics of HTTP methods when
responding to messages. This means, for example, that an actor is not allowed
to create new actors when receiving a GET message.

As mentioned, we abstract away issues such as the content type of the repre-
sentation. In addition, the notation is meant to be suggestive and it is not spec-
ified formally. Nevertheless, the notation puts emphasis on the inherent concur-
rency available when implementing RESTful services. The notation shows when
it is possible to decide on the new behavior and to create a new actor machine
respectively. Most important benefit of the notation is that it provides a tool
for the developer to discuss a service especially from the point of view of REST,
without implementation details.

6 Related Work

Actors have previously been used to analyze distribution in web applications [6].
Closer to our approach, however, is the actor based research done on middleware
systems. Especially the research on Worldwide Computing Middleware [2] and
the related research on universal actor model [18] is related to our work.

156 J. Kuuskeri and T. Turto

Although the Worldwide Computing Middleware (WCM) has identified many
of the same connections between HTTP and actors (see the Table 1.1 of [2] and
our Table 1) as we have, there are crucial differences in the overall approach.
The WCM has a more generic approach and considers issues such as mobility
that are outside the scope of this paper. Furthermore, the system they envisage
would work outside the Web proper, although utilizing many of the familiar web
concepts. Our approach, on the other hand, focuses strictly on RESTful services.

Research related to understanding RESTful interfaces has also been done in
the context of modeling [12] [13]. However, the emphasis is placed on the process
of developing a model that has the required RESTful properties. Our approach,
on the other hand, investigates REST in a context of a computation model. This
model of message passing has been previously suggested for web services [5], but
not specifically, as far as we know, in the context of REST.

7 Conclusions

In recent years, REST has gained popularity as an architectural style of choice
for big and complex web services. Unfortunately many of these services fall short
of truly embracing the REST principles. To alleviate this problem and to gain
better understanding of RESTful services in general, we need solid foundation
as to how RESTful web services should be designed and modeled.

In this paper we have established the relationship between the actor model of
computation and REST. We have presented the analogy in detail and identified
the mismatching features between the two approaches. In order to apply the actor
model to a RESTful web service, we have defined a notation for it. Using this
notation we have designed a simple blogging service to illustrate the usefulness
of the approach.

Building on the work reported in this paper, our next objective is to formalize
the notation and build an environment where we are able to visualize the network
of actors created by their behaviors. We hope that this visualization will help us
to better understand complex RESTful web services.

References

1. Agha, G., Thati, P., Ziaei, R.: Actors: A Model For Reasong About Open Dis-
tributed Systems. Formal Methods for Distributed Processing - An Object Oriented
Approach, ch. 8. Cambridge University Press, Cambridge (2001)

2. Agha, G., Varela, C.A.: Worldwide computing middleware. In: Singh, M. (ed.)
Practical Handbook on Internet Computing. CRC Press, Boca Raton (2004)
(invited book chapter)

3. Agha, G.A.: Actors: A model of concurrent computation in distributed systems.
Technical Report 844, MIT Artifical Intelligence Laboratory (June 1985)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Prag-
matic Bookshelf (June 2007)

5. Böhm, A., Kanne, C.-C.: Processes Are Data: A Programming Model for Dis-
tributed Applications. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 53–56. Springer, Heidelberg (2009)

On Actors and the REST 157

6. Chang, P.H., Agha, G.: Supporting reconfigurable object distribution for cus-
tomized web applications. In: The 22nd Annual ACM Symposium on Applied
Computing, SAC (2007)

7. Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., Taylor, R.N.: From represen-
tations to computations: the evolution of web architectures. In: ESEC-FSE ’07:
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The foundations of Software
Engineering, pp. 255–264. ACM, New York (2007)

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard) (June
1999), updated by RFC 2817 http://www.ietf.org/rfc/rfc2616.txt

9. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

10. Hewitt, C.: Viewing control structures as patterns of passing messages. A.I. Memo
410, MIT Artifical Intelligence Laboratory (December 1976)

11. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for ar-
tificial intelligence. In: IJCAI’73: Proceedings of the 3rd International Joint Con-
ference on Artificial Intelligence, pp. 235–245. Morgan Kaufmann Publishers Inc,
San Francisco (1973)

12. Laitkorpi, M., Koskinen, J., Systa, T.: A uml-based approach for abstracting ap-
plication interfaces to rest-like services. In: WCRE ’06: Proceedings of the 13th
Working Conference on Reverse Engineering, pp. 134–146. IEEE Computer Soci-
ety Press, Washington (2006)

13. Laitkorpi, M., Selonen, P., Systa, T.: Towards a model-driven process for design-
ing restful web services. In: ICWS ’09: Proceedings of the 2009 IEEE Interna-
tional Conference on Web Services, pp. 173–180. IEEE Computer Society Press,
Washington (2009)

14. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web
services: making the right architectural decision. In: WWW ’08: Proceeding of the
17th International Conference on World Wide Web, pp. 805–814. ACM, New York
(2008)

15. Razavi, A., Marinos, A., Moschoyiannis, S., Krause, P.: RESTful Transactions
Supported by the Isolation Theorems. In: Gaedke, M., Grissnikalus, M., Diaz, O.
(eds.) ICWE 2009. LNCS, vol. 5648, pp. 394–409. Springer, Heidelberg (2009)

16. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)
17. Theriault, D.G.: Issues in the design and implementation of act2. Technical Report

728, MIT Artifical Intelligence Laboratory (June 1983)
18. Varela, C.: Worldwide Computing with Universal Actors: Linguistic Abstractions

for Naming, Migration, and Coordination. Ph.D. thesis, U. of Illinois at Urbana-
Champaign (2001)

19. Varela, C.A., Agha, G.: Programming dynamically reconfigurable open systems
with SALSA. In: ACM SIG-PLAN Notices. OOPSLA’2001 Intriguing Technology
Track Proceedings, vol. 36(12), pp. 20–34 (December 2001)

20. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River
(2005)

http://www.ietf.org/rfc/rfc2616.txt

Multi-level Tests for Model Driven Web
Applications

Piero Fraternali1 and Massimo Tisi2

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
Milano, Italy

piero.fraternali@polimi.it
2 AtlanMod, INRIA & Ecole des Mines de Nantes

Nantes, France
massimo.tisi@inria.fr

Abstract. Model Driven Engineering (MDE) advocates the use of mod-
els and transformations to support all the tasks of software development,
from analysis to testing and maintenance. Modern MDE methodologies
employ multiple models, to represent the different perspectives of the
system at a progressive level of abstraction. In these situations, MDE
frameworks need to work on a set of interdependent models and tran-
formations, which may evolve over time. This paper presents a model
transformation framework capable of aligning two streams of transfor-
mations: the forward engineering stream that goes from the Computation
Independent Model to the running code, and the testing stream that goes
from the Computation Independent Test specification to an executable
test script. The “vertical” transformations composing the two streams
are kept aligned, by means of “horizontal” mappings that can be ap-
plied after a change in the modeling framework (e.g., an update in the
PIM-to-code transformation due to a change in the target deployment
technology). The proposed framework has been implemented and is un-
der evaluation in a real-world MDE tool.

1 Introduction

In Model Driven Engineering (MDE), models incorporate knowledge about the
application at hand, at a specific level of abstraction. An MDE environment usu-
ally comprises several models, connected by semantic relationships. The knowl-
edge embodied in more abstract models is primarily used for forward engineering,
that is, the progressive refinement towards models that are more concrete, and
eventually towards the final implementation code. For instance, a well-known
way of structuring the refinement process is provided by the Model Driven Ar-
chitecture (MDA)[21] scheme that distinguishes three main levels of abstraction:
Computation Independent Models (CIM), Platform Independent Models (PIM)
and Platform Specific Models (PSM). The translation from one level to the fol-
lowing can be performed manually or, in generative software engineering, it can
be driven by automatic transformations between models.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 158–172, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multi-level Tests for Model Driven Web Applications 159

Models have a range of application that goes beyond code generation [23].
In particular, several works use MDE as a support to testing [22,5,20,6]. In
these works we can identify a common approach, consisting in producing a set
of test cases from the analysis of a CIM or PIM and in executing them on the
running software. When the process is automated, model transformations are
used to build the testing artifacts. In these approaches the main challenge is in
producing tests that have the highest chance of revealing errors.

In this paper we focus on the problem of defining, managing and executing
test cases for applications modeled at multiple levels of abstraction, in automated
MDE environments. We ignore the issue of generating the right test cases (for
that topic, we refer the reader to the aforementioned papers), and concentrate on
the problem of aligning the CIM-PIM-PSM transformation stream of the code
generator to the parallel CIT-PIT-PST1 stream used to produce and maintain
test cases. In multi-level environments in which a certain number of CIMs, PIMs
and PSMs have a parallel lifecycle, this problem is rather complex. For example,
if one of the forward engineering transformations is updated, it is not obvious
how to modify the “parallel” test transformations.

We introduce a model-transformation framework for test cases, and a pro-
totype implementation of this framework that relies on concrete modeling lan-
guages: the CIM level consists of BPMN models [27], which express the multi-
actor processes served by the application; at the PIM level, we use a specific
Web application DSL, WebML [10], which expresses the data, business logic and
front-end interface of the Web/SOA application that supports the business pro-
cesses specified at the CIM level. The CIM to PIM to PSM transformation is
provided by a commercial tool suite, called WebRatio [3]. The paper concen-
trates on the chain of transformations for producing tests and its contribution
can be summarized as follows:

– suitable metamodels for representing test cases for Web applications at dif-
ferent levels of abstraction (CIM/BPMN and PIM/WebML);

– a mechanism for supporting automatic alignment of the Platform Indepen-
dent Test specifications after the manual refinement of a partial CIM to PIM
transformation;

– a mechanism to co-evolve the PIM to PSM transformation and the paral-
lel PIT to PST transformation, which ensures that tests are automatically
regenerated after the regeneration of the application code for a different
platform.

The rest of the paper is organized as follows: Section 2 presents the case study
used throughout the paper; Section 3 overviews the framework and describes
the testing metamodels; Sections 4 illustrates how to keep test representations
synchronized, when models and transformations evolve; Section 5 compares our
contribution to the related work; Section 6 draws the conclusions.

1 Computation Independent Test (CIT), Platform Independent Test (PIT), Platform
Specific Test (PST).

160 P. Fraternali and M. Tisi

2 Case Study

As a case study, we consider a simple application that manages the creation of
an expense report by an employee and all the following approval steps.

Fig. 1. BPMN model of the Product Catalog Application

The case study is first modeled at the CIM level by the BPMN model shown in
Figure 1. The model has three lanes, representing the actors that take part to the
process, i.e. employee, supervisor and treasurer. The application process starts
with the Edit Report activity that allows the employee to insert the title and
the total amount of the expense. The values are stored in the Title and Expense
parameters and evaluated by a condition in the following gateway. If the expense
exceeds 100$ then the process flow goes to the supervisor, while a smaller expense
is directly managed by the treasurer. In the first case the supervisor checks
the report parameters and sets the Review status parameter to “Approved”
or “Rejected” (Review Report activity). If the value is “Approved” then the
flow goes to the treasurer, otherwise the rejection is sent back to the employee.
Finally the treasurer has to set the “Receipts status” parameter in the Confirm
Receipt activity, and explain in the “Treasurer notes” parameter the reasons of
this choice. If the value of “Receipts status” is “Confirmed” then the expense
report is directly sent to the company account system by the Process Expense
activity.

The model in Figure 1 is created using the BPMN modeling tool in the
WebRatio toolsuite [3]. The toolsuite can automatically translate this process
model into a Web application model, represented in the WebML language. The
generated WebML application is specified on top of a data model by means of one
or more site views, comprising pages, possibly clustered into areas, and containing
various kinds of data publishing components (content units in the WebML jargon)
connected by links. The WebRatio generator from BPMN to WebML creates:

Multi-level Tests for Model Driven Web Applications 161

Fig. 2. Generated WebML hypertext for the Confirm Receipt activity

– a generic data model for the process execution (with entities like User, Ac-
tivityInstance, Parameter),

– two standard site views for authentication and process administration,
– one site view for each lane, for the orchestration of the process,
– one module, i.e. a composable partial site-view, for each activity.

Figure 2 shows for example the WebML translation of the Confirm Receipt ac-
tivity. The Input unit represents the entry point of the module. The units have
outgoing links, which enable navigation and parameter passing. For example,
Input activates the Confirm Receipts page. The page displays the name of the
current activity (by the Info unit) and retrieves from the application context
the needed parameters by the Get Parameters unit. The retrieved parameters
are Title and Expense, needed to evaluate the expense report, but the unit also
looks for pre-existing values of Receipt Status and Treasurer notes, that could
have been saved by the treasurer in a previous access to this activity. The link
outgoing from Get Parameters communicates these values to the User Input
unit that denotes a data entry form. The parameter values are used to pre-fill
four corresponding input fields in the form. The user can edit these values and
select one of the three outgoing navigable links. He can 1) store the new values
of the parameters and pass to the Next Activity, giving the control to the corre-
sponding module or 2) cancel the activity without touching the current value of
the parameters or 3) save a temporary value for the Receipt status and Treasurer
notes before cancelling the activity.

The WebML model enriches the BPMN process scheme with operational de-
tails. For example, the parameter saving functionality is not explicitly defined by
the BPMN model but added automatically to the WebML design by the Web-
Ratio generator. Furthermore, the application developer can manually modify
the generated WebML model to add collateral functions not described at the
CIM level. For example, it could be useful to give to the treasurer the possibility
to review the history of past expense reports before taking a decision. To model
this functionality the designer edits the WebML model to obtain the diagram in
Figure 3. In the final model the treasurer can navigate a new link that takes him
to the Expense Log page, showing a table of all the registered expenses (by the

162 P. Fraternali and M. Tisi

Fig. 3. Edited WebML hypertext for the Confirm Receipt activity

Expenses List index unit). From this page the user has to return to the Confirm
Receipts page, to take a definite decision.

The final WebML PIMs can be automatically translated into a running ap-
plication, by means of the WebRatio code generator. The generator produces all
the implementation artifacts for the Java2EE deployment platform, exploiting
the popular MVC2 Struts presentation framework and the Hibernate persistence
layer. In particular, the View components can utilize any rendition platform (e.g.,
HTML, FLASH, Ajax), because the code generator is designed to be extensible:
the generative rules producing the components of the View adopt a template-
based style and thus can incorporate examples of layout for the various WebML
elements (pages and content units) coded in arbitrary rendition languages. The
user provided templates (like the main code generator) are written in the Groovy
language, which allows a Java-like syntax encapsulated into scriptlets, to create
template-based transformations.

Once the generated application has been deployed, the application models
can be exploited to generate sets of testing sessions, to optimize some testing
accuracy metric, e.g., by using techniques like the ones in [9]. For instance, the
testing policy could require all the paths of the BPMN model to be exercised by
at least one test. A testing session generated at the CIM level is expressed using
the concepts that appear in the BPMN model. In the subsequent sections, we
will use the following example:

1. an employee starts the process instance

2. the employee creates the report named "Car Rental" for 50$

3. a treasurer receives a report named "Car Rental"

4. the treasurer accepts the receipt

5. the expense report is sent to the company account system

From this high-level test we want to generate the correspondent platform-
independent and executable versions.

Multi-level Tests for Model Driven Web Applications 163

3 Model-Driven Test Representation

Figure 4 shows an overview of the models involved in our framework. For each
one of the MDA abstraction levels, we define both a metamodel of the Web
application and a metamodel of the test case:

– at the CIM level, the modeling language is BPMN and the Computation
Independent Tests (CITs) are modeled in our BPMN-Test metamodel;

– at the PIM level, the modeling language is WebML and the Platform Inde-
pendent Tests (PITs) are modeled in our WebML-Test metamodel;

– at the PSM/code level, Platform Specific Tests (PSTs) are Web naviga-
tions represented as scripts of a Web testing suite (e.g. the Canoo WebTest
system2).

Fig. 4. Overview of the transformation framework

In the design of the test case metamodels we seek maximum simplicity and
extensibility. The metamodels are based on a common core. They comprise a
container class TestSuite that can be decorated with information about the ap-
plication configuration. TestSuite contains multiple Tests composed by ordered
sets of Steps. Each Step specifies the identifier of an application session, e.g. use-
ful for distinguishing actions performed by concurrent users of the system. Step
is specialized in two abstract classes that have to be subclassed for each concrete
test case metamodel: an ActionStep activates some elements of the application
model, referenced by an identifier, while an AssertionStep represents the eval-
uation of a predicate over the application state. Given an application domain,
new ActionStep or AssertionStep subclasses can always be defined for domain-
specific tests. Excerpts from the BPMN-Test and WebML-Test metamodels are
shown in Figures 5 and 6. It is easy to identify in the two metamodels a refer-
ence to the specific concepts of the respective application models. A BPMN-Test
model allows one to initiate a process instance, follow its links and insert values
in the process instance variables. The only assertion provided checks the value
of a process instance variable, but new assertions can be introduced by defining
new subclasses. Finally a Not assertion allows one to negate the truth value

2 http://webtest.canoo.com

http://webtest.canoo.com

164 P. Fraternali and M. Tisi

Fig. 5. BPMNTest Metamodel

Fig. 6. WebML-Test Metamodel

of a referenced assertion. The WebML-Test metamodel is more complex, as ex-
pectable. ActionSteps include the activation of links (providing an optional set
of correspondent parameter couplings), of landmark elements3, of input fields,
selections and scrolling. AssertionSteps allow one to check information about: 1)
the current page (i.e. id, title and contained text), 2) currently visualized units
(i.e. id, name and contained text), 3) a single element of a currently visualized
unit, provided the id of the unit, of the attribute and the numerical coordinates
of the record in the table or tree represented by the unit (e.g., to check that the
third element of an index contains a given value).

The test models are associated to a default semantics, according to which
the test is successful if: 1) it is possible to execute all the ActionSteps, 2) no
AssertionStep evaluates to false. Going back to our case study, the described
BPMN test scenario is a single Test with this sequence of Steps elements:

1a. initiate (session=’1’, id=’lane1’)

2a. setParameter (session=’1’, id=’title’, value=’Car Rental’)

3 Landmarks are global navigation targets, like the home page or the entry pages of
main application areas.

Multi-level Tests for Model Driven Web Applications 165

2b. setParameter (session=’1’, id=’expense’, value=’50’)

3c. followLink (session=’1’, id=’link2’)

3a. initiate (session=’2’, id=’lane3’)

3b. checkParameter (session=’2’, id=’title’, value=’Car Rental’,

predicate=’equal’)

3c. checkParameter (session=’2’, id=’expense’, value=’50’,

predicate=’equal’)

4a. setParameter (session=’2’, id=’Receipts status’, value=’true’)

4b. followLink (session=’2’, id=’link4’)

4c. followLink (session=’2’, id=’link5’)

4 Synchronizing Test Representations

The vertical arrows in Figure 4 represent refinement transformations. Transfor-
mations in the right column refine the specification of the test case. A BPMN
test case, conforming to the BPMN-Test metamodel is translated in one or more
WebML test cases, conforming to the WebML-Test metamodel. A model of a
WebML test is translated into a Web testing script.

The horizontal arrows represent the synchronization mechanisms between ap-
plication transformations and test transformations that is the main contribution
of this paper. It is important to remark that this kind of synchronization is not
always necessary in generic model-driven testing. If the application transforma-
tion is complete, i.e. it generates automatically the whole target model, and fixed,
i.e. it does not change over time, then no synchronization mechanism is required.
This is a common case in transformation environments. Several applications are
based on a single stable transformation that refines an input model, generating a
complete output model. Notable examples are compilers, optimizers, analyzers.
In all these cases the transformation logic is fixed, and a corresponding fixed
transformation can be easily written also for the test cases. In the cases in which
the main transformation is not complete (i.e. it is partial) or not fixed (i.e. it
is user-defined or evolving), a synchronization mechanism becomes necessary.
In Section 4.1 we propose a solution for partial transformations, using the case
study BPMN to WebML. Section 4.2 investigates applications with user-defined
and evolving transformations using the case study WebML to code.

4.1 Synchronizing Tests with Partial Transformations

Sometimes the main model transformation is partial, meaning that it generates
only a skeleton of the target model, leaving to the modeler the task of complet-
ing the modeling artifact. In these cases, the abstract test case can be easily
translated into a skeleton of the concrete test case by a fixed transformation.
However, only by means of a synchronization mechanism it is possible to deal
with testing the manual additions to the application model.

As exemplified in Section 2, the transformation BPMN to WebML is a case
of partial transformation, since the developer may manually intervene on the
generated model to add complementary activities to the main workflow. Hence,

166 P. Fraternali and M. Tisi

the transformation between CIT and PIT can’t be directly derived by analyzing
the CIM-to-PIM transformation. While creating the WebML test we need to
take in account also the current state of the WebML model.

In our case study, each Step of the BPMN test sequence can be easily trans-
lated in one or more Steps for testing the generated WebML model. For instance,
steps 3b-4b can be transformed automatically into the following steps over the
WebML module in Figure 2:

3b. verifyEntryUnitElement (session=’2’, unitID=’enu12’,

attrName=’title’, value=’Car Rental’, predicate=’equal’)

3c. verifyEntryUnitElement (session=’2’, unitID=’enu12’,

attrName=’expense’, value=’50d’, predicate=’equal’)

4a. setEntryUnitField (session=’2’, id=’fld12’, value=’yes’)

4b. followLink (session=’2’, id=’ln21’)

However, manual modifications of the WebML application model could impact
the previously generated test set in two ways:

– the test could loose the completeness property, due to the occurrence of new
paths in the modified WebML model that would not be subject to test;

– the test could be no longer applicable to the new model, e.g., there could be
no link ln21 exiting from the entry unit enu12.

For example, while the above-mentioned test sequence is still applicable to the
model in Figure 3, it would not test for errors in the presentation of the list of
past expenses. The solution for making the BPMN-Test to WebML-Test trans-
formation aware of manual modifications to the application model is shown in
Figure 7. The CIT to PIT transformation is given a composite structure, made of
two steps: T1a. A first set of standard CIT to PIT rules implements the default
refinement from BPMN-Test to WebML-Test, following the same logic used for
the forward engineering from BPMN to WebML models. These transformation
rules match the elements of the BPMN test sequence, retrieve additional infor-
mation from the BPMN model, if necessary, and apply a default translation to
each test step, mirroring the logic in the forward engineering. T1b. A second set
of PIT extension rules implements an algorithm for checking test executability
and for extending test coverage to the newly introduced parts of the application
model. The algorithm analyzes each test step generated by the standard CIT to
PIT rules and checks it with respect to the modified WebML model. If the step
is not executable from the modified WebML model or, in case of followlink test
steps, if the new model presents alternative paths, the algorithm updates the
test with a policy that depends on the desired depth of the testing. Otherwise,
the step is simply copied to the result. In our prototype, the test update policy
chooses non deterministically an alternative link to follow with respect to the
non-executable link, or a subset of the newly introduced navigation paths. The
algorithm stops when: a) all the BPMN-Test steps have been analyzed (success)
or b) there is no way to proceed with the test extension or the number of steps
in the test exceeds a threshold (failure).

In the case study, T1a would generate the steps 3b-4b shown above. T1b
would copy 3b-4a to the output script, and would start the coverage algorithm

Multi-level Tests for Model Driven Web Applications 167

for the step 4b, since new alternative paths have been added to the application
model, so to add, in at least one of the updated test cases, the path towards the
manually added page that shows the expense list.

Fig. 7. Transformation framework implementation (BPMN to WebML)

Fig. 8. Adaptation framework to align the PIT to PST transformation

The PIT extension rules are able to handle any manual modification to the
application model, with the only limitation to elements removal (e.g., the deletion
of the User Input unit). Units can instead be repositioned in the model, other
units can be interposed between them, and the topology of links can be altered.

4.2 Synchronizing Tests with User-Defined and Evolving
Transformations

If the application transformation is user-defined or it is evolving in time, then
adaptation of the PIT to PST transformation is required. This is the typical
case of Web applications, in which the PIM can be translated into code in sev-
eral ways, depending on a number of implementation choices. Notably, on most
model-driven Web environments, the implementation transformation depends
on the presentation style defined by the graphical designer, which is subject to
frequent changes. The code generation process can be seen as a model-to-model
transformation that maps an input model at PIM level (e.g., the WebML model
of the application) into a an executable model (e.g., the Java2EE code). It is
normally a lossy transformation: since its purpose is to produce the code to be
actually executed, no extra information is added to the output model and the
links between the input and output artifacts are lost.

168 P. Fraternali and M. Tisi

The transformation from WebML to code is organized into three sub-trans-
formations. The Layout Transformation generates a set of JSP pages (one for
each page of the WebML model) and miscellaneous elements required by the
target platform: Struts configuration (i.e. the controller in the Struts MVC archi-
tecture), localization bundles, and form validators. The Business Logic Transfor-
mation generates a set of XML files (logic descriptors) describing the run-time
behavior of the elements of the source model, mainly pages, links, and units.
In addition, this transformation produces secondary artifacts, such as the ac-
cess/authentication logic. The Persistence Transformation produces the stan-
dard Hibernate artifacts: Java Beans and configuration mapping (one for each
entity of the source model) as well as the overall database configuration.

The sub-transformations are based on Groovy. Being the output a set of struc-
tured XML and JSP/HTML files, the Groovy generators use a template-based
approach: each sub-transformation comprises templates similar to the expected
output (e.g., XML or HTML) enriched with scriptlets for looking-up the needed
elements of the source model.

The adaptation problem to be solved occurs whenever the code generation
produces an implementation with a different way of performing a test step. In
this case, also the testing scripts generated from the PIT need to be updated,
to automatically align the test session to the updated implementation.

For example, continuing the case study from the previous section, step 4b re-
quires the test to follow a WebML link (ln21) outgoing from an entry unit. The
designer may re-generate the application code with a new Groovy template, which
alters the presentation of the unit: link 21 could be rendered differently, e.g. as a
button instead of an HTML anchor tag. The different rendering could require dif-
ferent activations from the physical test script. For example, in the Canoo
WebTest suite, scripts are represented as XML files and links and buttons are
activated by specifying different tags, respectively <clickLink xpath="..."/>
<clickButton xpath="..."/>, where the xpath attributes is filled by the PIT
to PST transformation, in order to point to the correct link or button. In princi-
ple, since one cannot make assumptions about the PIM to PSM transformation,
which can incorporate any arbitrary code generation rule, the adaptation frame-
work should be able to analyze the code of the transformation itself to detect
the new code generation rules. However such an analysis would be remarkably
complex. For this reason we propose approach to synchronize the PIT to PST
transformation with an evolving PIM to PSM transformation, which relies only
on the generated code, and not on the internal structure of the PIM to PSM
transformation code. Figure 8 pictorially illustrates the framework.

The key to such a solution is the a posteriori explicitation of the relationship
between PIM concepts and the PSM primitive used to render them; this task is
performed by an Annotator transformation, which enriches the WebML model
with the references to the PSM concepts. For the Annotator to remain generic
(i.e., not depend on the target implementation platform) another step is required:
being able to trace each model concept to the (arbitrary) implementation code
produced by the PIM to PSM transformation. This problem is solved by a Higher

Multi-level Tests for Model Driven Web Applications 169

Order Transformation (HOT), which automatically weaves traceability links into
the PIM to PSM mapping. Therefore, the control flow of the adaptation frame-
work goes as follows: 1) the designer applies the PIM to PSM transformation to
generate the code, which may invalidate previous test cases; 2) the framework uses
the HOT to mutate the PIM to PSM transformation and produce an augmented
PIM to PSM mapping that creates traceability links; 3) the augmented PIM to
PSM transformation is executed to produce an augmented implementation code
with embedded traceability links; 4) the Annotator transformation uses the PIM
(WebML model) and the PSM (J2EE code) augmented with traceability links and
produces an annotated PIM model, in which the relationship between PIM con-
cepts and their PSM rendition is made explicit and declarative; 5) the PIT to PST
transformation is parametric and exploits the information in the annotated PIM
to produce a test case that mirrors the platform dependent primitives used to ren-
der the PIM concepts. 6) the test cases automatically generated in this way can
be run against the new application implementation.

In Step 2, we exploit our previous work on traceability weaving [15], and we
implement an extended version of our Higher Order Transformation (HOT) for
traceability. A HOT is a transformation that acts on another transformation,
in our case on the transformation used for generating the code. Adding trace-
ability to the generative framework requires preserving the relationship between
the elements of the input model and the elements of the output model derived
from them. The input of the HOT is the M2M transformation that produces
the implementation code. This transformation can be seen as a model, repre-
sented by the chosen transformation language (Groovy, in our case study). The
output is another transformation, derived by extending the input model with
extra elements (additional code generation rules and templates) for producing
the traceability links in the implementation code. The HOT must apply to the
relevant original transformation rules and produce extended rules such that: 1)
they generate the same output elements as the original rules; 2) they add the
needed traceability links to the output. The HOT takes only the layout sub-
transformation in input, because this is the only one that produces the View
elements exercised by the testing script. The traceability links are stored within
presentation-neutral, transparent elements (e.g., HTML DIV elements) added
to the View artifacts of the output model (namely, the JSP pages).

Once the traceability links are stored into the output code, the Annotator
parses each element of the WebML model, looks for the associated element in the
generated code and adds an annotation to the WebML element (e.g. it would add
“type=button” or “type=link” to ln21). Finally, the PIT to PST transformation
translates WebML tests into Canoo tests. T2 is parametrized by the element
types stored in the annotated WebML model.

The HOT has been implemented using the ATL language and the AmmA
[7] framework. To integrate the Groovy language in the transformation frame-
work, a Groovy metamodel has been developed extending the JavaAbstractSyn-
tax metamodel provided by the MoDisco project [1]. The Annotator has been
implemented in Java and the PIT to PST transformation is written in ATL.

170 P. Fraternali and M. Tisi

To summarize, the design of the proposed transformation scheme has the
following benefits:

– thanks to the HOT approach the user can freely develop a Groovy template
for the website generation;

– the template analysis logic is contained in the HOT and Annotator, and it
is kept separated from the test generation logic of T2;

– the template analysis is remarkably semplified by the fact that instead of
interpreting the Groovy code, the Annotator has to interpret only the result
of this code, i.e. the HTML/JSP.

The main limitation of our current approach is the supposed one-to-one relation-
ship between the PIM and the PSM model (i.e. one PIM element translates into
one PSM element, with an arbitrary internal complexity). While this assumption
is verified in most WebML applications, an extended version of the algorithm
could be advisable for more complex cases.

5 Related Work

The three-layers parallel transformation flow in Figure 4 is first introduced in
[13] and the model transformations that compose it are studied in several works,
as surveyed in [24]. One of the most popular tasks in this area is test script
generation from application requirements, for which an extensive list of refer-
ences can be found in [14]. In these approaches requirements are modeled by
activity diagrams [16], sequence diagrams [9] or natural text [8]. [24] introduces
a Functional Requirement Metamodel similar to our BPMN-Test. Our work
differentiates from these in being the only one to investigate the automatic syn-
chronization between refinement transformations of application and test cases.

Similar problems to our framework are addressed in the field of model and
transformation co-evolution, for instance in [18], [26] and [11]. While some of the
design issues are shared with these works, our proposal addresses the peculiar
relationship between the model of an artifact and the model of a test case.

Our framework makes use of traceability links to connect a generated model
element with its source and avoid the direct analysis of generation code. Trans-
formation frameworks can address traceability during the design of transforma-
tions [12], either by providing dedicated support for traceability (e.g., Tefkat
[19], QVT [2]), or by encoding traceability as any other link between the input
and output models (e.g., VIATRA [25], GreAT [4]). Traceability links may be en-
coded manually in the transformation rules (e.g., [19]), or inserted automatically
(e.g., [2]). A HOT-based traceability system for ATL is already implemented in
[17], where the HOT adds to each original transformation rule the production
of a traceability link in an external ad-hoc traceability model (conforming to a
small traceability metamodel). The approach that we propose is inspired from
[17] and can be used to add traceability support to a language like Groovy, that
does not provide any built-in support to automatic or manual traceability links.

Multi-level Tests for Model Driven Web Applications 171

6 Conclusions

In this paper we have addressed the problem of managing complex model-driven
development and testing environments by automatically aligning model trans-
formations. As an application, we have considered the problem of testing Web
applications specified at the CIM level with BPMN and at the PIM level with
WebML. The proposed framework consists of four “vertical” transformations
(CIM-to-PIM and PIM-to-PSM) applied to the forward engineering and to the
production of test scripts, which are kept aligned by two “horizontal” transfor-
mations that are capable to reinforce integrity after a change of the WebML
model produced from the BPMN process diagram and after the update of the
WebML-to-Java transformation that yields the executable application. A pro-
totype of the framework has been implemented in Java and ATL. The ongoing
and future work will concentrate on the performance validation of the current
prototype on very large projects, on its integration with the WebRatio develop-
ment tool suite, and on the provision of effective mechanisms for evaluating the
coverage of a test set with respect to the CIM, PIM and PSM of the application.
As a particularly important direction of work, the illustrated framework could
be exploited to promote a Test Driven Development approach for MDE.

References

1. MoDisco home page, http://www.eclipse.org/gmt/modisco/
2. QVT 1.0, http://www.omg.org/spec/QVT/1.0/
3. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: Webratio 5: An eclipse-based case

tool for engineering web applications. In: Baresi, L., Fraternali, P., Houben, G.-J.
(eds.) ICWE 2007. LNCS, vol. 4607, pp. 501–505. Springer, Heidelberg (2007)

4. Agrawal, A., Karsai, G., Shi, F.: Graph transformations on domain-specific models.
Technical report, ISIS (November 2003)

5. Baerisch, S.: Model-driven test-case construction. In: ESEC-FSE Companion ’07:
6th Joint Meeting on European SE Conf. and the ACM SIGSOFT Symp. on the
Foundations of SE, pp. 587–590. ACM, New York (2007)

6. Baresi, L., Fraternali, P., Tisi, M., Morasca, S.: Towards model-driven testing of a
web application generator. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS,
vol. 3579, pp. 75–86. Springer, Heidelberg (2005)

7. Bézivin, J., Jouault, F., Touzet, D.: An introduction to the ATLAS model man-
agement architecture. Research Report LINA(05-01) (2005)

8. Boddu, R., Mukhopadhyay, S., Cukic, B.: RETNA: from requirements to testing
in a natural way. In: Proceedings of 12th IEEE International Requirements Engi-
neering Conference, vol. 4, pp. 244–253 (2004)

9. Briand, L., Labiche, Y.: A UML-based approach to system testing. Software and
Systems Modeling 1(1), 1042 (2002)

10. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, USA (2002)

11. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating Co-evolution
in Model-Driven Engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, pp. 222–231 (2008)

http://www.eclipse.org/gmt/modisco/
http://www.omg.org/spec/QVT/1.0/

172 P. Fraternali and M. Tisi

12. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA ’03 Workshop on Generative Techniques in the Context of MDA (2003)

13. Dai, Z.R.: Model-driven testing with UML 2.0. Computer Science at Kent (2004)
14. Denger, C.M.M., Mora, M.M.: Test Case Derived from Requirement Specifications.

Fraunhofer IESE Report, Germany (033) (2003)
15. Fraternali, P., Tisi, M.: A Higher Order Generative Framework for Weaving Trace-

ability Links into a Code Generator for Web Application Testing. In: Gaedke, M.,
Grissnikalus, M., Diaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 273–292.
Springer, Hiedelberg (2009)

16. Hartmann, J., Vieira, M., Foster, H., Ruder, A.: A UML-based approach to system
testing. Innovations in Systems and Software Engineering (1), 12–24 (2005)

17. Jouault, F.: Loosely coupled traceability for atl. In: European Conference on Model
Driven Architecture (ECMDA), workshop on traceability (2005)

18. Lammel, R.: Coupled software transformations. In: First International Workshop
on Software Evolution Transformations, Citeseer, p. 3135 (2004)

19. Lawley, M., Steel, J.: Practical declarative model transformation with tefkat.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer,
Heidelberg (2006)

20. Li, N., Ma, Q.-q., Wu, J., Jin, M.-z., Liu, C.: A framework of model-driven web
application testing. In: COMPSAC ’06, Washington, DC, USA, pp. 157–162. IEEE
Computer Society Press, Los Alamitos (2006)

21. Miller, J., Mukerji, J., et al.: MDA Guide Version 1.0. 1. Object Management
Group, 234 (2003)

22. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J.S., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg
(2005)

23. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons, Chichester (2006)

24. Torres, A.H., Escalona, M.J., Mejias, M., Gutiérrez, J.: A MDA-Based Testing: A
comparative study. In: 4th International Conference on Software and Data Tech-
nologies, ICSOFT, Bulgary (2009)

25. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of
visual languages. Sci. Comput. Program. 44(2), 205–227 (2002)

26. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, p. 600. Springer, Heidelberg (2007)

27. White, S.A.: Business process modeling notation. Specification, BPMI. org. (2004)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 173–188, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Capture and Evolution of Web Requirements
Using WebSpec

Esteban Robles Luna1,2, Irene Garrigós3
Julián Grigera1, and Marco Winckler4

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,julian.grigera}@lifia.info.unlp.edu.ar

2 Also at Conicet
3 Lucentia Research Group, DLSI, University of Alicante, Spain

igarrigos@dlsi.ua.es
4 IRIT, University Paul Sabatier, France

winckler@irit.fr

Abstract. Developing Web applications is a complex and time consuming
process that involves different kind of people, ranging from customers to devel-
opers. Requirement artefacts play an important role as they are used by these
people to perform their daily activities. However, state of the art in requirement
management for Web applications disregards valuable features that tend to im-
prove the development process, such as quick validation during elicitation,
automatic requirement validation on the final application and useful change
management support. To tackle these problems we introduce WebSpec, a re-
quirement artefact for specifying interaction and navigation features in Web ap-
plications. We show its use through the development of an example application
in the social networking area, and its implementation as an Eclipse plugin.

1 Introduction

It is usual to have multidisciplinary teams (including customers, analysts, developers,
QA staff, etc) involved in the development of real world Web applications, making it
a complex and time consuming process. Moreover, requirements are susceptible of
changing along the development cycle, so it is important to keep them updated and
record their changes to reduce risks and time efforts. Many times, the success of a
Web project relies on how Web requirements are captured and specified [16].

Several studies [16, 19] in industrial cases have shown the importance of require-
ments in Web application development. Requirements are generally described in in-
formal documents (e.g. use cases [13]) that are shared by the different stakeholders of
the project. However, Web applications tend to evolve in short periods of time [16]
and sometimes not having a comprehensive way of handling requirement changes in
coherent documents. Therefore, testing against the requirement specification is not
feasible [19]. Furthermore, it is sometimes necessary to get deeper in the development
or design phases so that customers start to understand their own needs [19].

In this context, capturing requirements should be efficient enough to accomplish
the time constraint, without disregarding the interactive nature of Web applications.

174 E. Robles Luna et al.

Therefore, requirement artefacts have to be easily understood and validated by stake-
holders prior to the development, in order to avoid future wastes of time. Moreover,
during the development process, the application has to be checked to validate that
new requirements have been correctly implemented without “breaking” previous
ones. Furthermore, requirement artefacts should help to maintain good quality stan-
dards during the development process, which are hard to keep with short time con-
straints.

In the context of model driven Web engineering approaches [22, 20, 14, 2, 11] the
aforementioned concerns are not generally taken into account [7]. As a consequence,
Web applications developed with these methodologies share some commonalities
with the industrial cases, such as outdated requirements, unfeasibility to test against
the requirements and unsuitably to handle fast evolution. Web requirements artefacts
(e.g. user interaction diagrams [22], extended use cases [6], etc) capture important
aspects of Web applications like navigation; however they are either used to docu-
ment [13] or to derive the first version of the domain or navigation models [8, 10] and
do not consider either evolution or validation (except WebRe [8] which provide test
derivation from WebRe models) or even quick validation during the capture phase.

To tackle these problems we present WebSpec, a multi purpose requirement arte-
fact used to capture navigation, interaction and UI (User Interface) features in Web
applications. To improve the capturing phase, WebSpec can be used in conjunction
with mockups to provide realistic UI simulations, hence improving requirement elici-
tation. Also, to allow quick requirements’ validation in the final application, WebSpec
automatically derives a set of interaction tests. Finally, WebSpec enforces change
management support which could be used to improve the development cycle by
automating structural changes in the application. Summarizing, we show how to:

• Simulate the application using WebSpec and mockups to improve communica-
tion between the different stakeholders and reduce elicitation times.

• Derive tests from WebSpec diagrams to reduce requirement validation times.
• Capture requirement changes and use them to semi/automatically upgrade the

application and maintain quality standards.

The rest of the paper is structured as follows: in Section 2 we present WebSpec, its
concepts and syntax. In Section 3 we show how it is used in different activities in the
development cycle by improving requirement’s elicitation, helping to automatically
validate the requirements and managing their changes. Section 4 briefly shows Web-
Spec Eclipse plugin and describes its use in a real application. Section 5 presents re-
lated work and finally in Section 6 we conclude and present further work.

2 WebSpec: A DSL to Capture Interactive Web Requirements

WebSpec is a DSL (Domain Specific Language) that allows specifying navigation,
interaction and UI aspects in a more formal way than, for example, use cases. A
WebSpec diagram has two key elements: interactions and navigations (Fig. 1).

An interaction (the counterpart of a Web page in the requirements stage) represents
a point where the user can interact with the application by using its interface objects
(widgets). Interactions have a name (unique per diagram) and may have widgets such

 Capture and Evolution of Web Requirements Using WebSpec 175

as: labels, list boxes, buttons, radio buttons, check boxes and panels. Labels define the
content (information) shown by an interaction. Interactions are graphically repre-
sented with a rounded rectangle which contains the interaction’s name and widgets. A
WebSpec diagram must have a starting interaction represented with dashed lines.

Fig. 1. WebSpec’s basic concepts

A mockup is a sketch of the “possible” application which generally represents UI
elements. We can associate interactions with mockups and WebSpec widgets with
their concrete UI elements in the mockup to improve the stakeholder’s communica-
tion during the elicitation phase. There are several tools that could be used to create
mockups, such as Balsamiq [1] or plain HTML. WebSpec allows using any of them
as long as they provide a unique way to locate the interface elements.

Fig. 2. Tweet Webspec diagram

Invariants are Boolean predicates that must always hold. Every interaction has an
invariant that specifies which properties must be satisfied (in case that we do not de-
fine one, it is assumed that the invariant is true). Fig. 2 shows a simplified diagram of
a Twitter-like application that specifies the post a message (tweet) requirement and

176 E. Robles Luna et al.

has 3 interactions named: Login, Register and Home. The Home interaction defines
an invariant (marked with the I icon near the interaction’s name): Home.username =
${username} && Home.tweetsCount = ${tweets} && ${long} -> Home.messages =
“Invalid message” that states that the contents of the username label must be equal to
the username variable (denoted as ${variableName}) and the contents of the tweet-
sCount label must be equal to the tweets variable and if the long variable is true then
the contents of the messages label must be equal to “Invalid message”.

A navigation from one interaction to another can be activated if its precondition
holds by executing a sequence of actions such as: clicking a button, adding some text
in a text field, etc. As well as invariants, preconditions can reference variables previ-
ously declared in the diagram. For example, the delete navigation (Fig. 2) has the pre-
condition: ${tweets} > 0. Navigations are graphically represented in the WebSpec
diagrams with gray arrows while its name, precondition and actions are displayed as
labels over them. Actions are written in an intuitive DSL conforming to the syntax:
var := expr | actionName(arg1,… argn). Traditional hyperlink navigation is repre-
sented with no precondition (indeed, an always true precondition) and with only one
action click (follow) a link widget (see Login to Register navigation in Fig 2). An
example of a more complex sequence of actions is the invalidPost navigation (Fig. 2):

(1) added := false;
(2) long := true;
(3) type(Home.msgTF, $invalidMessages$);
(4) click(Home.tweet);

The first 2 sentences (1-2) assign constant values to variables. Then some text gen-
erated by the invalidMessages generator (denoted between $) is typed in the msgTF
text field (3) and finally the tweet button is clicked (4).

WebSpec allows specifying general properties like “an error must be shown if the
user tries to post a message with more that 150 characters” using generators. Follow-
ing the idea of QuickCheck [3], we extract the data used for specifying interaction
requirements into generators. If a property in a WebSpec diagram holds, then it must
hold for any element that could be generated by a generator. A generator is a function
that can be called from navigation actions (e.g. $invalidMessages$) and generates
data. For example, Fig. 2 has 6 generators: usernames, passwords, messages and in-
validMessages, firstNames, lastNames. The invalidMessages generator generates
strings with size > 150, so when that invalidPost navigation is activated, some invalid
text will be typed and because the long variable will be true an error message must be
display (recall the invariant of the Home interaction) in the messages label.

Fig. 3. WebSpec simplified metamodel

 Capture and Evolution of Web Requirements Using WebSpec 177

For those Web requirements that have strong hidden behaviour (not perceived from
an interaction point of view, e.g. send an email), Webspec could be combined with
simple notes over the diagram or by linking navigations with use cases or user stories.
For example, if an email has to be sent when a user posts a message, we can easily
add a note over the post navigation.

Finally, WebSpec is formally defined in a metamodel (Fig. 3) that is used to im-
prove the development process as shown in the following section. A diagram has a
root object of the class Diagram which contains many Interaction and Navigation in-
stances. An Interaction instance knows its name, forward navigations and associated
mockup. A Navigation knows its source and target Interaction and the sequence of
Action instances that triggers them. Finally, the interaction knows its root widget
Container which can contain many AbstractWidget (Widget or Container) instances.

3 Using WebSpec along the Development Cycle

WebSpec allows specifying interaction requirements for Web applications at a con-
ceptual level without imposing any particular development process. Notwithstand-
ing, WebSpec diagrams can be used at different steps of the development cycle of
Web applications. To illustrate this fact, we show in Fig. 4 how WebSpec can be
used in the different activities of a test-driven approach like WebTDD [21] and in a
methodology using a RUP [15] like process. Simulation (S in Fig. 4) can be used to
share design options between stakeholders and validate their requirements in the
requirements phase of both kind of processes. Tests generated from the diagrams
(TG in Fig. 4) can be used to validate requirements against the final implementation
when using a RUP style or to drive the development process in WebTDD. Changes
during the development cycles are recorded (CR in Fig. 4) in the requirements phase
of both. Finally, semi/automatic upgrades (CA in Fig. 4) using the previously re-
corded changes can be applied to the application in the development phase of
WebTDD and RUP. In the following subsections we show how these features are
supported in WebSpec.

Fig. 4. Using WebSpec in activities of different approaches

178 E. Robles Luna et al.

3.1 Simulating the Application during Requirements Elicitation

With the aim of improving the requirement elicitation phase, WebSpec diagrams al-
low the simulation of the resulting application. Simulation is important to bridge the
gap between the understanding of customers and designers about requirements thus
getting real feedback from them.

Most requirement artefacts [13, 8, 1, 22] require some level of knowledge from cus-
tomers to be fully understood, causing communication or understanding problems dur-
ing elicitation. WebSpec is not the exception; understanding a diagram may take some
time and require some knowledge of WebSpec’s concepts, e.g. variables and interac-
tions. To ameliorate this scenario WebSpec provides some interesting features such as
mockup association and formal specification which allows to formally simulating the
application to improve the communication between stakeholders during elicitation. We
say formally, because different from the simulation provided by tools such as Balsamiq
[1], we not only show transitions between the pages but also execute real actions and
provide descriptions of what would be the real output of the application directly over
mockups. The descriptions provided are generated automatically from the WebSpec
diagram and they are easy to understand because they are written in natural language.
In this way, from every WebSpec diagram a set of simulations is automatically gener-
ated which could be used at any time by customers to understand the meaning of the
diagram and suggest changes or improvements to the analyst.

The set of simulations is obtained following the different paths from the starting in-
teraction of each WebSpec diagram. If the diagram has cycles (a path that contains
more than one occurrence of an interaction) then we have to prune those paths to ob-
tain finite paths. For example, in the Tweet Diagram (Fig. 2) we can obtain the fol-
lowing paths pruning them (as it is a cycled diagram) to a length of 5 interactions:

Login -> Register -> Home -> (post nav) Home -> (post nav) Home
Login -> Register -> Home -> (invalidPost nav) Home -> (post nav) Home
Login -> Register -> Home -> (post nav) Home -> (invalidPost nav) Home
Login -> Register -> Home -> (invalidPost nav) Home -> (invalidPost nav) Home
Login -> Register -> Home -> (post nav) Home -> (delete nav) Home

Each simulation is created following the sequence of interactions and navigations
of the path and data is generated when a generator is referenced inside expressions.
The path is transformed into a simulation model (not shown for space reasons) that
specifies the simulation steps. A simplified version of the transformation algorithm is
shown next:

(01) simulation := new Simulation();
(02) for (PathItem item : path.getItems()) {
(03) if (item.isInteraction()) {
(04) Interaction interaction = (Interaction) item;
(05) simulation.openMockup(interaction.getMockup());
(06) simulation.showPredicate(interaction.getInvariant());
(07) } else {
(08) Navigation navigation = (Navigation) item;
(09) simulation.showPredicate(navigation.getPrecondition());
(10) for (Action action : navigation.getActions()) {
(11) simulation.simulateAction(action);
(12) }
(13) }
(14) }

 Capture and Evolution of Web Requirements Using WebSpec 179

Line 1 creates the simulation model. For every item (interaction or navigation) in
the path (2): if it is an interaction (3) we show the mockup associated with it (5) and
show the predicate of its invariant to describe which properties must hold (e.g. “The
label should have the value ‘John’) (6); if the item is a navigation, we show the pre-
condition (9) and for every action we simulate it (10-12).

As an example of a simulation we next show a sequence of the simulation steps of
the path: Login -> Register -> Home -> (post nav) Home -> (post nav) Home generated by
the algorithm. For space reasons, we can not show all the steps so we will describe the
first 11 steps and show steps 8 through 11 (except step 10 which is equal to step 11
without the label) in Fig. 5.

(01) open("loginMockup.html");
(02) click("register", "the user clicks the register button");
(03) open("registerMockup.html");
(04) type("firstName", "John", "the user types ‘John’");
(05) type("lastName", "Doe", "the user types ‘Doe’");
(06) type("username", "john.doe", "the user types ‘john.doe’");
(07) type("password", "aaa", "the user types ‘aaa’");
(08) type("confirmPassword", "aaa", "the user types ‘aaa’");
(09) click("register", "the user clicks the register button");
(10) open("homeMockup.html");
(11) showDescriptionNearTo("it should contain the text ‘John’",

"username");

Line 1 opens the first mockup. Line 2 clicks the register button and line 3 we simu-
late navigation by opening the mockup associated with the Register interaction. Lines
4-9 execute the actions to move from Register to Home interaction. Specifically, line
8 (Step 8 of Fig. 5) types ‘aaa’ to the confirm password field and line 9 (Step 9 of Fig.
5) clicks the register button. Line 10 simulates the navigation by opening the mockup
associated with the Home interaction and finally line 11 (Step 11 of Fig. 5) shows the
label with the condition that must be satisfied according to the filled information. No-
tice that the algorithm has to use generators in lines 4, 5, 6, 7, 8 to generate data ac-
cording to the specification of Fig 2 (Register to Home navigation).

Fig. 5. Simulation steps of the Tweet diagram

Once the requirements elicitation phase is completed we can automatically gener-
ate a set of tests that the application must pass as shown in the following subsection.

180 E. Robles Luna et al.

3.2 Automatic Validation of Requirements

New requirements must be validated to guarantee their correct implementation while
previous ones still work as intended. However, it is hard to perform this task in short
periods of time thus making it more important to keep requirements updated for the
quality assurance team.

A well known way of validating requirements consists in running automated tests
(that express the requirements) over the application. If one of these tests fails, then a
requirement is not satisfied by the application. In particular, interaction tests play an
important role in industrial settings as they execute a set of actions in the same way a
user would do on a real Web browser, thus their use is continuously growing [17].
However, in the Web engineering research area their use is recently appearing in ap-
proaches like WebTDD [21].

In a similar way we have created the simulations, we build a test suite (a set of test
cases) from a WebSpec diagram by following the different paths from the starting
interaction. To capture the basic concepts of tests, we have created a metamodel (Fig.
6) which is independent of the technology used. The metamodel contains the Test and
TestSuite classes that conceptualize a test and a set of tests. A Test has a sequence of
actions: assertions on interface objects or actions performed by the user over the ap-
plication. Both cases are covered by the TestItem hierarchy.

Fig. 6. Test metamodel

To build the test suite, we transform each path into a SimpleTest (see Fig. 6) by
executing the following simplified version of algorithm over each path. Similar to
simulations, we will use generators to generate data according to the specification
when an expression references it. The TestSuite is obtained by simple composition
(see the composition relationship in the metamodel of Fig. 6) of the previous Sim-
pleTest instances. More complex scenarios could be manually created by composing
different Test suites into a bigger one. Once the TestSuite model is generated, we can
translate it to a specific implementation framework such as Selenium [24].

(01) test := new SimpleTest();
(02) test.addItem(new OpenURL(applicationURL));
(03) for (PathItem item : path.getItems()) {
(04) if (item.isInteraction()) {
(05) Interaction interaction = (Interaction) item;
(06) test.addItem(new Assert(interaction.getInvariant()));
(07) } else {
(08) Navigation navigation = (Navigation) item;
(09) for (Action action : navigation.getActions()) {
(10) test.addItem(new Execute(action));
(11) }
(12) }
(13) }

 Capture and Evolution of Web Requirements Using WebSpec 181

Line 1 creates the test model and line 2 generates the action to open the applica-
tion. For each element in the path: if it is an interaction (4), we assert its invariant (6);
if it is a navigation (8) we execute the actions that allow us to navigate from one in-
teraction to another one (9-11).

To better illustrate these ideas, let us consider a specific path of the Tweet diagram:
Login -> Register -> Home -> (post nav) Home -> (delete nav) Home. Applying the previ-
ous algorithm to the path and deriving a Selenium version of the test gives the next
result:

(01) selenium.open("http://localhost:8080/index.html");
(02) selenium.click("id=register");
(03) selenium.waitForPageToLoad("30000");
(04) selenium.type("id=firstName", "John");
(05) selenium.type("id=lastName", "Doe");
(06) selenium.type("id=username", "john.doe");
(07) selenium.type("id=password", "wqe4yt24");
(08) selenium.type("id=confirmPassword", "wqe4yt24");
(09) selenium.click("id=register");
(10) selenium.waitForPageToLoad("30000");
(11) assertTrue((selenium.getText("id=username").equals("John"))
(12) && (selenium.getText("id=tweetsCount").equals("0")));
(13) selenium.type("id=tweetMessage" "@Office");
(14) selenium.click("id=tweet");
(15) selenium.waitForPageToLoad("30000");
(16) assertTrue((selenium.getText("id=username").equals("John"))
(17) && (selenium.getText("id=tweetsCount").equals("1"))
(18) selenium.click("id=tweetDelete0");
(19) selenium.waitForPageToLoad("30000");
(20) assertTrue((selenium.getText("id=username").equals("John"))
(21) && (selenium.getText("id=tweetsCount").equals("0")));

Line 1 opens the application in the Web browser. Lines 2-3 click on the register

link. Lines 4-10 fill the register information (first name, last name, username, pass-
word and confirm password) and clicks the register button. Lines 11-12 assert that the
labels of the Home page have the values previously filled. Lines 13-15 post a new
message to the wall. Lines 16-17 assert the new value that the labels must have after
the post are valid. Lines 18-19 click on the delete button of the first message to delete
the post. Finally, lines 20-21 assert the values of the labels after the delete operation.

As aforementioned, Web applications tend to change very fast, thus recording re-
quirements changes is important to improve the development process. In the next sub-
section we show how requirement changes are captured in WebSpec.

3.3 Capturing Requirement Changes

Capturing requirements changes is an important feature to predict their impact in the
application. Though some mature requirement artefacts [13] provide extensions to
support change management, in the Web engineering field there are not many studies
about how requirement changes can be captured and used to improve some part of the
development process (see Sect. 5 for details).

In WebSpec, changes are recorded into change objects that group a set of changes.
WebSpec can suffer different coarse grained changes, such as the addition or deletion
of an interaction or navigation element. These elements can be modified too, by the

182 E. Robles Luna et al.

Fig. 7. Change metamodel

addition or deletion of widgets to an interaction, changes in invariants, etc. As for
navigations, we can add or delete preconditions, change their source, target, or the
actions that triggers them. All these types of possible changes have been represented
in the metamodel of Fig. 7. When the user modifies the diagram, a change object is
created and the sequence of changes is recorded as instances of these classes.

As an example, let us suppose we want to add a link between the Login interaction
(Fig. 2) and a new TermsOfService interaction. The change in the diagram generates a
new change object (Fig. 8) which has the following elements: a new interaction
(TermsOfService), a new navigation (Login -> TermsOfService), a new link (tosLink)
and a new label (the description of the terms of service). To take advantage of captur-
ing changes, we show in the following subsection how to use WebSpec change ob-
jects to semi/automatically upgrade the application.

Fig. 8. Change object representing the new Terms of Service functionality

3.4 Using Requirement Changes to Evolve the Application

Though handling requirement changes serves for multiple useful purposes, we will
focus on how to semi automatically upgrade the application using them. Since change
objects represent changes at the WebSpec level, we decouple the process of upgrading
the application by providing different effect handlers. An effect handler is a compo-
nent responsible of mapping the changes in the diagrams to a concrete technology and
storing the trace links between the WebSpec elements and the technology ones. For
example, a WebSpec diagram generates a change that can be applied with different
effect handlers depending on the underlying technology: Seaside [23], GWT [12],
WebRatio [25], etc. Seaside and GWT effect handlers will create/update methods and
classes but WebRatio effect handler will produce model transformations in order to
update the models.

 Capture and Evolution of Web Requirements Using WebSpec 183

As an example of the use of effect handlers, we next show how to use the change
object of the previous subsection to upgrade the application. We assume that the ap-
plication is developed with Seaside, so we use the Seaside effect handler.

The effect handler “reads” the change object and suggests actions to the developer.
The first change (add the TermsOfService interaction) suggests to create a new class
(WATermsOfService) that extends the base class of the Seaside framework (WALay-
outPane) (see row 1 of Fig. 9). The developer accepts the proposal and continues with
the next change that represents the navigation from Login to TermsOfService interac-
tion. This change refers to behavioral aspects that the effect handler does not handle
yet, so it does not propose an action. The two remaining changes involve adding wid-
gets to the interactions. The first one adds a link in the Login interaction; because the
effect handler stores the trace link between the interaction and the implementation
class, it suggests adding a new method that creates the link to the WALogin class
(Row 2). Finally, the effect handler suggests adding a new method to the WATerm-
sOfService to create the new label (Row 3).

Fig. 9. Semi/automatic upgrades using the Seaside effect handler

4 Implementation

WebSpec has been implemented as an Eclipse plugin using EMF and GMF technolo-
gies. The plugin allows the creation of diagrams and the association of interactions
with HTML mockups inside the environment. Simulations are implemented using a
small extension to the Selenium framework, and JUnit selenium tests are automatically
generated from diagrams. Finally, changes are recorded and stored into XML files that
could be read by different effect handlers. We have implemented effect handlers for
Seaside and GWT. Fig. 10 shows a screenshot of the WebSpec Eclipse plugin.

Using the plugin and following the WebTDD approach, we have successfully im-
plemented a complete application for the Post-graduate area of the College of Medi-
cine in the University of La Plata. We have used GWT, Spring and Hibernate as base
technologies for the development process and actively used the generated tests to

184 E. Robles Luna et al.

Fig. 10. Webspec Eclipse plugin

check that the application satisfies the requirements in an incremental way. Simula-
tion was used for improving the elicitation of requirements and change objects al-
lowed automating the creation of the structural UI classes of the application.

5 Related work

In the context of Web Engineering, the specification of interaction requirements is a
complex task due to some unique characteristics of Web applications such as the need
to represent the navigation in information spaces, the need of describing technical
constraints related to the information flow (e.g. session management), the rapid evolu-
tion of requirements, sensitive communication among developers and the participa-
tion of customers in the development process (e.g. marketing experts, editorial board,
etc) [26]. In the last years, a large variety of model-based artefacts have been em-
ployed to capture Web requirements like UML use cases and sequence diagrams [4],
User Interaction Diagrams [22], task models [27], and navigation models [11]. It is
also worthy noting a widespread use of paper-based mockups to capture requirements
related to the user interface of Web applications [9] which has lead to the develop-
ment of advanced tools for sketching and storyboarding the user interface of Web
applications such as Denim [18] and Balsamiq [1].

In Table 1 we compare the expressiveness power of some artefacts with respect to
the concepts for representing Web requirements. As shown in the table, each artefact
includes only part of the concepts required to express requirements of Web applica-
tions. For example, whilst use cases can be used to represent functional requirements,
mockups (either paper-based or supported by tools) are more likely to capture and
represent requirements related to the composition of the user interface. Task models
allow expressing fine-grained functional requirements including navigation, user
transactions and business processes. As can be seen, Web engineering methods have

 Capture and Evolution of Web Requirements Using WebSpec 185

Table 1. Expressiveness power of requirement artefacts for Web applications

Artefacts used for representing requirements Concept

Use cases (UC) Task Models WebRE WebSpec Mockups

Navigation Dependencies

between UC

Dependencies

between tasks

Navigation Navigation arrows Arrows

Process Use cases Tasks, WebProcess WebSpec diagram -

User interac-

tion

Functional

requirements

Interactive

tasks

User transaction Action -

Constraints OCL Lotus opera-

tors

OCL Precondition Annotated

text

B
e
h

a
v
i
o
u

r

Information

flow

- Data transfer

between tasks

Data transfer in

user transaction

Data transfer

between interactions

-

Node / page - - Node Interactions /

navigations

Prototype

Content - - Content Widgets Widgets

UI composition - - - Containers Prototype

S
t
r
u

c
t
u

r
e

User roles Actor Actor WebUser - -

often included more than one artefact for capturing requirements; for example use
cases are present in OOHDM [22] in combination with UIDS. Besides, use cases and
activity diagrams, WebML [2] uses semi-structured textual descriptions to capture
additional information that can hardly be expressed using the former models. Simi-
larly, UWE [14] proposes extended use cases, scenarios and glossaries for specifying
requirements and WSDM [6] employs task models using concurrent task trees.

Currently, there is no consensus on which notation(s) should be used to capture and
specify Web requirements. In order to provide a more uniform view on the coverage
of requirements by each artefact, Escalona and Koch [8] have proposed a metamodel
based on WebRE profiles [8]. Its main advantage is the automatic generation of con-
ceptual models (content and navigation models) which automatically satisfy the re-
quirements. Notwithstanding, some requirements such as detailed composition of the
user interface and behaviour constraints cannot be fully described with this notation.

In another study, Escalona and Koch [7] have investigated how different Web en-
gineering methods support the capture of requirements. They demonstrated that Web
engineering methods do not pay equal attention to requirements. Some methods em-
ploy classical notations to deal with Web requirements or ignore this phase of the
development process. It is interesting to notice that requirement artefacts might play
several roles during the development process: they can act as communication tools
(for elicitation requirements with clients), as elements for early specifications (that
should be taken into account during implementation phases) and as checklists for as-
sessing if the final implementation complies the initial requirements. Requirement
checklists can indeed be employed in regression testing [28] for assessing in a longer
term, the evolution of requirements expressed for a single application.

In [5] the authors have investigated the communication role of artefacts and they
proposed MoLIC which acts as a kind of blueprint of the application and thus allow-
ing professionals from multidisciplinary backgrounds to share the same understanding
of the essence of the application. Other authors however, have investigated how to
automate the generation of the system specification from the requirements specifica-
tion; for example OOWS [20] which extends activity diagrams with the concept of
interaction point to describe the interaction of the user with the system. It provides
automatic generation of (only) navigation models from the tasks description by means

186 E. Robles Luna et al.

of graph transformation rules. A-OOH [10] considers the i* framework in order to
specify the requirements model which is goal-oriented. From this specification, the
conceptual models (e.g. domain and navigation models) are generated by means of
QVT transformations. Both OOWS and A-OOH approaches are examples of methods
that specify requirements and provide code derivation; however the level of detail
they provide make them unsuitable as communication tools with clients.

WebSpec supports features that tend to improve the development process when
changes appear often and should be implemented fast, in comparison with the afore-
mentioned requirement artefacts. It provides a means to describe several of the unique
aspects of Web applications (such as navigation and information flow); when used in
combination with mockups, it provides animated storyboards to improve the commu-
nication between stakeholders. Moreover, they contain enough information to support
test generation independently of the development method. Finally, change support
and effect handlers allow managing the fast evolution of the application.

6 Concluding Remarks and Further Work

In this paper we have presented WebSpec: a requirement artefact used to capture
navigation, interaction and UI features in Web applications independently of the de-
velopment process. WebSpec presents several advantages that help to improve the
development cycle in short periods of time. We have shown its use in conjunction
with mockups to provide a formal simulation of the final Web application, getting real
feedback during the requirement elicitation phase. Furthermore, requirements ex-
pressed in WebSpec diagrams are easily validated due to the automatic derivation of
interaction tests. Finally, it has been shown how keeping diagrams updated contrib-
utes to semi/automatically upgrade the application thus improving development times.

This work focuses on interactive requirements of Web applications. In the future
we aim at exploring how WebSpec can be used in conjunction with other techniques
for expressing non-interactive requirements such as accessibility and usability of Web
applications. We are currently working on adding RIA expressiveness to WebSpec, so
that RIA features (e.g. autocomplete, hover detail, etc) can be easily specified in the
diagrams. Also, we aim to associate WebSpec diagrams to tasks, so we can monitor
the progress of a development process. Finally, we are analyzing different alternatives
to support the specification of requirements at the domain level which can be seam-
less integrated in WebSpec.

References

1. Balsamiq, http://www.balsamiq.com/products/mockups
2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-

guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

3. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell
programs. In: Proceedings of the fifth ACM SIGPLAN international conference on Func-
tional programming, vol. 35, pp. 268–279 (September 2000)

 Capture and Evolution of Web Requirements Using WebSpec 187

4. Conallen, J.: Building Web Applications with UML, 300 p . Addison-Wesley, Reading
(2000)

5. de Paula, M.G., da Silva, B.S., Barbosa, S.D.: Using an interaction model as a resource for
communication in design. In: CHI ’05 Extended Abstracts on Human Factors in Comput-
ing Systems, Portland, USA, April 02-07, pp. 1713–1716 (2005)

6. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In: 3rd Int. Workshop on Web-Oriented Software Technologies, Oviedo, Spain
(2003), http://www.dsic.upv.es/~west/iwwost03/articles.htm

7. Escalona, M.J., Koch, N.: Requirements engineering for web applications – a comparative
study. J. Web Eng. 2(3), 193–212 (2004)

8. Escalona, M.J., Koch, N.: Metamodeling Requirements of Web Systems. In: Proc. Interna-
tional Conference on Web Information System and Technologies (WEBIST 2006),
INSTICC, Setúbal, Portugal, pp. 310–317 (2006)

9. Flannagan, S.: The Paper Version of the Web. In: Deeplinking,
http://deeplinking.net/paper-web/

10. Garrigós, I., Mazón, J.N., Trujillo, J.: A Requirement Analysis Approach for Using i* in
Web Engineering. In: Gaedke, M., Grissnikalus, M., Diaz, O. (eds.) ICWE 2004. LNCS,
vol. 5648, pp. 151–165. Springer, Hidleberg (2009)

11. Gómez, J., Cachero, C.: OO-H Method: extending UML to model web interfaces. In: van
Bommel, P. (ed.) Information Modeling For internet Applications, pp. 144–173. IGI Pub-
lishing, Hershey (2003)

12. GWT, http://code.google.com/webtoolkit/
13. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM

Press/Addison-Wesley (1992)
14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An Ap-

proach Based On Standards. In: Web Engineering, Modelling and Implementing Web Ap-
plications, pp. 157–191. Springer, Heidelberg (2008)

15. Kruchten, P.: The Rational Unified Process: an Introduction, 3rd edn. Addison-Wesley
Longman Publishing Co., Inc., Amsterdam (2003)

16. McDonald, A., Welland, R.: Web Engineering in Practice. In: Proceedings of the Fourth
WWW10 Workshop on Web Engineering, pp. 21–30 (May 1, 2001)

17. Maximilien, E.M., Williams, L.: Assessing test-driven development at IBM. In: Proceed-
ings of the 25th international Conference on Software Engineering, Portland, Oregon, May
03-10, pp. 564–569. IEEE Computer Society, Washington (2003)

18. Lin, J., Newman, M.W., Hong, J.I., Landay, J.A.: DENIM: finding a tighter fit between
tools and practice for Web site design. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI 2000, The Hague, The Netherlands, April 01 -
06, pp. 510–517. ACM, New York (2000)

19. Lowe, D.: Web system requirements: an overview. Journal of Requirements Engineering,
102–113 (2003)

20. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2001.
LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

21. Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-Driven Approaches in
Web Engineering. In: Gaedke, M., Grissnikalus, M., Diaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 136–150. Springer, Heidelberg (2009)

22. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

188 E. Robles Luna et al.

23. Seaside, http://www.seaside.st/
24. Selenium web application testing system, http://seleniumhq.org/
25. The WebRatio Tool Suite, http://www.webratio.com
26. Uden, L., Valderas, P., Pastor, O.: An Activity-theory-based to analyse Web applications

requirements. Information Research 13(2) (June 2008)
27. Winckler, M., Vanderdonct, J.: Towards a User-Centered Design of Web Applications

based on a Task Model. In: Proceedings of IWWOST 2005, Porto, Portugal, June 12-13
(2005)

28. Zheng, J.: In regression testing selection when source code is not available. In: Proceed-
ings of the 20th IEEE/ACM international Conference on Automated Software Engineer-
ing, ASE ’05, Long Beach, CA, USA, November 07-11, pp. 752–755. ACM, New York
(2005), doi:http://doi.acm.org/10.1145/1101908.1101997

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 189–203, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Re-engineering Legacy Web Applications
into Rich Internet Applications*

Roberto Rodríguez-Echeverría, José María Conejero, Marino Linaje,
Juan Carlos Preciado, and Fernando Sánchez-Figueroa

Quercus Software Engineering Group
Universidad de Extremadura, 10003, Cáceres, Spain

{rre,chemacm,mlinaje,jcpreciado,fernando}@unex.es

Abstract. There is a current trend in the industry to migrate its traditional Web
applications to Rich Internet Applications (RIAs). To face this migration,
traditional Web methodologies are being extended with new RIA modeling
primitives. However, this re-engineering process is being figured out in an ad-
hoc manner by introducing directly these new features in the models,
crosscutting the old functionality and compromising the readability, reusability
and maintainability of the whole system. With the aim of performing this re-
engineering process more systematic and less error prone we propose in this
paper an approach based on separation of concerns applied to the specific case
of WebML.

Keywords: Web Models Transformations, Patterns, Rich Internet Applications.

1 Introduction

More and more, traditional Web applications are being migrated to RIAs and,
consequently, more and more, traditional Web methodologies are incorporating RIA
modeling features [1][10][13][18]. Among these proposals, WebML deserves our
attention due it being one of the most promising approaches because of its significant
extensions to accomplish RIA features at different levels: client/side processing and
storing [1], event handling [17] or presentation [11].

Despite these efforts, the real fact is that the industry is performing this migration
in and ad-hoc manner, leading to two different problems: on the one hand, the original
model becomes tangled with concerns for different purposes such as distribution or
persistence which compromises the readability, understandability and, consequently,
maintainability of the system. On the other hand, the adaptations performed related to
RIA features are not reusable since they have to be applied again from the scratch in
any new migration process. This is a significant drawback since there are quite a few
adaptations that recurrently appear in many RIAs, e.g., synchronization patterns
needed to work in a disconnected mode.

Precisely, this paper presents a proposal for the systematic re-engineering of Web
applications modeled with WebML into RIAs following an Aspect-Oriented approach [4]

* This work has been supported by MEC under contract: TIN2008-02985.

190 R. Rodríguez-Echeverría et al.

in the sense that the RIA features are modeled separately. The main contribution of the
proposal is twofold: on the one hand, extending the WebML metamodel to include RIA
features and, on the other hand, defining a new systematic model driven re-engineering
process, based on model compositions driven by weaving models and pattern
instantiations, to perform the weaving between the legacy model (WebML metamodel
compliant) and the model describing the RIA related features (extended WebML
metamodel compliant). As an additional contribution, several RIA synchronization
patterns have been also identified and modeled separately, applying one of them to a
running example. The RIA features contemplated are those related with data and business
logic distribution and their associated issues, e.g. synchronization, event notifications,
communications, etc. The separation approach followed is symmetric in the sense that it
takes advantage of the entities and units already defined in WebML. A main objective of
the proposal is to define a reusable framework automatically applicable to any re-
engineering process within the domain.

The rest of the paper is as follows. Section 2 briefly introduces WebML extensions
for RIA. In section 3 we present a motivating example to highlight the problems we
want to solve with the proposed approach that is presented in Section 4. Section 5
applies the proposal to the motivating example, while section 6 identifies related
works and presents the main conclusions.

2 WebML for Rich Internet Applications Capabilities in Brief

WebML is a language for the high-level description of a Web system consisting of
data model, hypertext model, presentation model and personalization model. The
application data are modeled using Entity-Relationship (E-R) or UML class diagrams.
On top of the data model, WebML allows specifying the business logic and the
content/containers composition by means of the hypertext model, whose key
ingredients include siteviews, areas, pages, content units, operation units, and links.
New entities have been included to treat new challenges like the XMLOUT and XMLIN
ones, which have been used in [12] to marshall and unmarshall data, respectively.

Recently, WebML has been extended to cover RIA features in an approach called
WebML for RIA [1]. Extensions proposed for the data model are characterized by
two different dimensions: 1) the architectural tier, where client entities and
relationships are marked with a “C” label while server ones are marked with a “S”;
and 2) the persistence of the data, which is also indicated.

Extensions proposed for the hypertext model are those ones affecting the structural
composition of RIAs typing WebML pages into server pages (marked with a “S”) and
client pages (marked with a “C”). Links are special cases since they could relate
entities of client and server pages. In that sense, a link relating two client units is
considered as client tier, whereas a link relating a client and a server unit is
considered as inter-layer operation chains. An event model to support pulling/pushing
RIA capabilities for WebML is also defined in [17]. This event model extends the
original WebML data model and the set of units available in the hypertext model
(adding the sent event and receive event ones). The full set of constrains to be
accomplished by the model in order to be computable to generate the code are also

 Re-engineering Legacy Web Applications into Rich Internet Applications 191

specified in [1]. Both WebML extensions (i.e., [17] and [1]) are used in our work to
specify RIA capabilities plus [12] where XMLIN and XMLOUT units are introduced to
cope with marshalling and unmarshalling data into/from a XML file.

3 Motivating Example

Let us consider a simple e-shop for selling tickets for concerts where a pre-booking
mechanism is mandatory in order to avoid situations such as two different users
booking the same seat for the same show at the same time.

First, the example is solved using WebML. Then, some RIA features are included
and modeled with WebML for RIA. The aim is just illustrating how the resulting
model becomes tangled, leading to the two problems identified in section 1.

3.1 The Traditional Ticket e-Shop in WebML

Conceptual Data Model. (Fig. 1): PreBookings is specified to avoid booking conflicts
(where the endTime attribute represents the deadline of a pre-booking). CartItem
entity stores the different seats selected by a user in a volatile way (note the italic
style in the name). Unlike CartItem, PreBooking is not volatile to ensure that the seats
are not booked more than once in the database. The Order and OrderItems entities
manage the information required to make persistent an order.

Order

OID
TotalPrice
ShippingMethod

User

OID
UserName
Password
Email

1
*

OrderItem

OID
Artist
Show
SeatNumber

Seat

OID
Number
Row
Price
Booked: Boolean

1 *

* 1

Show

OID
Date

Artist

OID
Name

* 1

PreBookings

OID
/Artist
/Show
/SeatNumber
endTime: TimeStamp

1 *

CartItem

OID
/Artist
/Show
/SeatNumber

Place

OID
Name
City
Country

1 *

1
*

1 *

Fig. 1. Data model for the tickets reservation

Conceptual Hypertext Model. (Fig. 2)1: When a user accesses to the details of a show
from the list of shows (Events for artist page), the pre-bookings and availability of
seats for this show are displayed (Booking page) and they can be added to the cart. By
using traditional Web techniques, the free seats are displayed when the user accesses
the booking page, so this information is not later updated even when other users are
performing bookings in that moment.

The operation chains depicted in the excerpt of the hypertext model are responsible
for two different actions: i) the addition of a seat to the cart, including
the management of the pre-booking (marked A with a dashed rectangle) and ii) the
generation of an order from the user’s cart and the removal of the cart items and the
pre-bookings of that user (marked B).

1 In the example some units have been omitted for simplicity and space reasons.

192 R. Rodríguez-Echeverría et al.

(B)

(A)
Events for artist

ArtistsList

Artist Show
[OID]

ShowDetails

Shows

Show
[ShowToEvent]

Booking

FreeSeats

Seat
[ShowToSeat]
[Booked=false]

Prebookings
List

PreBooking
[Show]

KO

AddPreBooking

PreBooking

AddCartItem

CartItem

OK

OK

CreateOrder

Order

Add To Cart

Confirm

Get unit

User

Create
OrderItems

OrderItem

BookSeat

Seat
[OID]

<booked := true>

Delete
PreBooking

PreBooking

MyOrders

Orders

Order

OK

OrderItems

OrderItems
[OrderToOrderItems]

CartContent

CartItems

Delete
CartItem

CartItems

CartItems

CartItems

[?]

PreBookings

PreBooking

[?]

ExistPreBooking

PreBookings
[OID]

[?]

Fig. 2. Hypertext model for the tickets reservation

This solution is good enough to solve our initial problem. However, note some
issues arising in this solution: on one hand, the whole process is performed at server
side while part of the business logic could be at client-side reducing workloads in the
server. On the other hand, the problem of a double pre-booking of a seat could be
avoided if the data of the booking page is updated when a different user pre-books a
seat. This is only possible with additional synchronous roundtrips in traditional web
applications. This synchronous communication imposes processing, rendering and
refreshing the whole page (even those parts that have not changed, e.g. cart items).

To solve these issues, RIA features are necessary. Processing and storing
capabilities at client side and asynchronous communications come to the scene.

Order

OID
TotalPrice
ShippingMethod

User

OID
UserName
Password
Email

1

*
OrderItem

OID
/Artist
/Show
/SeatNumber

Seat

OID
Number
Row
Price
Booked: Boolean

1

*

* 1

Show

OID
Date

Artist

OID
Name* 1

1 *

CartItem

OID
/Artist
/Show
/SeatNumber

1*

Place

OID
Name
City
Country

1 *

1

*

C

PreBookings

OID
/Artist
/Show
/SeatNumber
endTime: TimeStamp

C

PreBookingShared

OID
/Artist
/Show
/SeatNumber
initTime: TimeStamp

*

1

Event

OID
Recipient

PreBookingChange

OID
/Artist
/Show
/SeatNumber
Prebooked:boolean

1

*

S S

S
S

S

S
S

S S

S

Fig. 3. Data model for the RIA version of the tickets system

3.2 The Ticket e-Shop Revisited Using RIA Capabilities

Conceptual Data Model. (Fig. 3): This data model adds the persistence level and
location of the entities. CartItem volatile entity is marked as client because each client
has a cart and its content is managed at client side. PreBookings entity is duplicated
following [1] (PreBooking volatile at client side and PreBookingShared persistent at

 Re-engineering Legacy Web Applications into Rich Internet Applications 193

server side) and two new entities are defined to support event notification according
to [17]. For the latter, Event stores the information related to each event that is related
(through a generalization) with PreBookingChange that stores changes in the
PreBooking or PreBookingShared entities.

Conceptual Hypertext Model. (Fig. 4 and Fig. 5): In Fig. 4 the new RIA operations
chain (A from Fig. 2) is depicted. In this model, the pre-bookings are permanently
updated since an event is sent whenever a user makes a pre-booking. This event is
received by the rest of clients to update their PreBooking entity (Fig. 4 right). Using
this approach, users may work with their local pre-bookings (e.g., sorting by
expiration time) avoiding continuous invocations to the server.

Show
[OID]

ShowDetails

Booking

FreeSeats

Seat
[ShowToSeat]
[Booked=false]

Prebookings
List

PreBooking
[Show]

Add
PreBooking

PreBooking

AddCartItem

CartItem

Add

To Cart

PreBooking
Change

PreBookingChangeToSeat

Add
PreBooking

PreBookingShared

NotifyPreBooking
Change

PreBookingChange
[recipient:=UserIDS]
[seat:=seatChanged]

[booked:=true]

E

PreBookings

PreBooking

[?]S

C

C

C S

S

S

S

Cart Content

CartItem

Booking

FreeSeats

Seat
[Booked=false]

Prebookings
List

PreBooking
[Show]

Receive
PreBookingChange

PreBookingChange
[recipient:=UserIDS]
[seat:=seatChanged]

[booked:=true]

E
Show
[OID]

ShowDetails

Add
PreBooking

PreBooking

C

PreBookings

PreBooking

[?]C

C S

C

Fig. 4. Adding items to the cart and notifying the rest of users (left-side) and Reception of the
PreBookingChange event by clients (right-side)

BookingC

Cart Content

CartItem

XML-OUT

CartItem

C

Confirm
Delete

PreBookings

PreBooking

C

Delete
CartItems

CartItems

C

BookSeats

Seat
[OID]

<booked := true>

PreBooking
Change

PreeBookingChangeToSeat

NotifyPreBooking
Change

PreBookingChange
[recipient:=UserIDS]
[seat:=seatChanged]

[booked:=true]

E
XML-IN

OrderItem

CreateOrder

Order

OK

C

MyOrders

Orders

Order

OrderItems

OrderItem
[OrderToORderItems]

OK

Delete
PreBookings

PreBookingShared

C

S

S

S S S S

Fig. 5. Client confirms the buying and the order is processed

Regarding to the operation chain B (from Fig. 2), now part of the pages (Figure 5)
are at client side (i.e., Booking and MyOrders pages) and also part of the operations
related with these content management (i.e., Delete CartItems and Delete
PreBookings). XMLOUT is used to collect the items in the cart (pre-booked by the user)
at client side and to send this data to the server creating the corresponding order. Server
side part of the operation chain also removes the seats from the PreBookingShared
entity since these seats become booked. This action implies a new event raised by the

194 R. Rodríguez-Echeverría et al.

server to notify the rest of the clients that these seats have been definitively booked. At
the client side, the event is received through the ReceivePreBookingChange event unit
(not shown due to space limitations)

The process used for migrating the system may introduce potential problems that
could compromise its applicability:

• Firstly, observe that the original model has been tangled with concerns related to
distribution, synchronization, event notification or persistence. This situation is
harmful for readability and understandability complicating, thus, the
maintainability of the system.

• Secondly, the adaptations performed are not reusable since they should be applied
again in any new migration process, and these adaptations will be very similar
independently of the application context.

4 The Approach

Following the Aspect-Oriented Modeling (AOM) principles [4] three different meta-
models are defined: CMM, RMM and WMM. CMM is the meta-model of the model
being migrated (core functionality in AOM terminology so it is called Core
metamodel). RMM is an extended CMM with RIA features. In our context these RIA
features can be considered as aspects in AOM terminology. Finally, WMM is the
weaving meta-model. Fig. 6 shows the basic architecture of the approach. The legacy
Web application is represented as the model M that conforms to CMM. RIA features
are collected in the model M’ that conforms to RMM. The composition (weaving) of
both models, using the weaving model WM, produces the model M’’ that conforms to
RMM. M’’ represents the resulting model of the migration process from the legacy
Web application to the final RIA. In other words, M’’ would be a similar solution to
that provided in section 3.2, but here obtained following a systematic approach that
avoid the two problems identified in previous section.

<<conforms to>>

Ecore

<<conforms to>>

<<conforms to>>

<<conforms to>>

CMM
(MDWE Metamodel)

WMM
(Weaving Metamodel) RMM

(RIA Metamodel)

<<conforms to>>

M
(Web Model)

<<conforms to>>

M’’
(RIA-enriched Weaved Model)

<<links to>> <<links to>>

<<generates>>

M’
(Adaptations to RIA Model)

WM
(Weaving Model)

<<links to>> <<links to>>

Fig. 6. Weaving of models to obtain the migrated application

4.1 RMM: WebML Metamodel with RIA Features

Among the different WebML metamodel definitions, the work in [16] has been
selected due to its completeness and suitability for our approach. This metamodel is
enriched with the RIA features introduced in Section 2 as follows (see Fig. 7):

 Re-engineering Legacy Web Applications into Rich Internet Applications 195

• A new attribute tier is defined as a member of the metaclass WebML::ModelElement.
This attribute may hold two different values: client and server. It indicates the
architectural tier of existence for a data entity, or the tier of processing for a hypertext
unit.

• New types of units are defined for marshalling data by means of the XMLIN and
XMLOUT metaclasses. They are introduced in the package ContentManagement
inheriting from EntityManagementUnit metaclass.

• And, finally, the units for modeling distributed events, Send Event and Receive
Event, are defined as new kinds of operation units: Notification Management Unit.

Model Element

Linkable Element

Entity Management Unit Relationship Management Unit Send Event Receive Event

Set Unit Content Management Unit

Marshalling Units Create Unit Modify Unit Delete Unit

XMLIn XMLOut Hypertext::Selector

1

*

1

*

1

*

Distribution Attribute

- tier: Distribution tier

Operation Unit

<< ENUMERATION>>
Distribution tier

- Client
- Server

Data Model

Relationship

1
*

Attribute

1*

attributes
Entity

Hypertext::Content Unit

Content::Entity

Content::Entity

Notification Management Unit

Content::Relationship

target relationships

Link

1 *

links
target

Fig. 7. WebML Extended Metamodel to cope with RIA concepts

4.2 WMM: The Weaving Metamodel

The WMM (Fig. 8) is defined as an extension of the generic model weaver AMW
metamodel [5] [6] for the Model Driven Web Engineering [14] (WebML) domain.
The composition process consists on the definition of weaving models and their
processing by means of generic transformation rules defined in ATL [9]. For the sake
of simplicity, we only consider here the extensions needed to process WebML data
entities and operation units.

1

MigrationModel

WLinkWModel

11

WModelRef

WElementRef

- ref: String

WLinkEnd
Merge

DataEntity
Enrich

DataEntity
Merge

OperationUnit
Merge

- dataEntityPriority
- orderClausePriority

Enrich
 -tier

WebLinkEnd

WebModelRef RIAModelRef

11

1

1

MigrationLink

WebModel
ElementRef

RIAModel
ElementRef

1 *targetModel links

rightModelleftModel

WDataEntityWSelector

WWebLink

1
1
left

1

1

right

1

*

1*

Selector
Enrich

WOperationUnit

WWebLinkParameter

LinkMerge

Matching

LinkParameter
Matching

*

* *

1 **matchings

OperationUnit
Enrich

- entity

entity

Fig. 8. WMM excerpt (extension of the AMW core metamodel)

196 R. Rodríguez-Echeverría et al.

As shown in Fig. 8, basically, WMM extends AMW metamodel as follows:

• A new type of weaving model, MigrationModel, is defined. It contains references to
the woven models: the legacy Web Model (leftModel), the RIA model (rightModel)
and the final model (targetModel). It is also composed by a collection (links) of
MigrationLink.

• The metaclass WLink has been extended by the definition of three types of
migration links: Merge, Enrich and Match. They define how the elements from the
source models are woven into the target model.

• The Merge metaclass defines a merging connection between a model element from
the Web Model and a model element from the RIA model of the same type.
Concretely, it may define a link between two data entities, two operation units or
two Web links. In case of merging operation units, additional information may be
specified to indicate the selection priority of their different components. This
information is maintained by the attributes dataEntityPriority and
orderClausePriority. These attributes may hold the values left and right, indicating
which end is selected to compose the target unit. Thus, the Merge instances are used
to generate a target model element with the selected information of the two source
elements.

• The Enrich metaclass allows specifying the tier (client or server) of the target model
element. In its basic form, this link has only one end that refers to a model element
from any of the source models. This metaclass has been extended with three new
types, indicating the type of model elements that can be enriched, i.e. data entities,
operation units and selectors. As a special case, we highlight the OperationUnitEnrich
which additionally allows the instantiation of its components, e.g. its related data
entity according to the entity reference. The Enrich instances of a WM work as
annotations of Web elements useful for their transformation to RIA elements.

• The Matching metaclass defines a mapping between a model element from the Web
Model and a model element from the RIA model. In concrete, the
LinkParameterMatching defines the parameter matching within a merged link, i.e. it
specifies the mapping between the source parameters from the left link and the
target parameters from the right link.

• The metaclass WebLinkEnd establishes the joinpoint model of the source models. In
other words, it defines the set of elements that may be linked by the weaving model
(selectors, operation units, data entities, links and link parameters).

4.3 The Composition Process

The current composition process is performed by means of the ATL model
transformation language. We have defined a set of ATL rules that generate the final
RIA model taking as input the weaving model that links the legacy Web model and
the RIA model. These ATL rules are only dependant on the WMM and the CMM. So,
once defined for a concrete tuple (wmm, cmm), they can be automatically applied to
any migration process conformed to that metamodel tuple.

In order to keep simple the definition and maintainability of this set of ATL rules,
we specify the weaving process focusing on the first-class entities of WebML, i.e.,
entities, units, pages and areas, which drives the composition. In this sense, following

 Re-engineering Legacy Web Applications into Rich Internet Applications 197

the layer decomposition of WebML, we have grouped the ATL rules in two different
subsets: one for data entities, and another one for hypertext elements. Here we explain
only the rules defined to merge data entities and operation units.

For WebML data model composition, two basic rules are defined:

Rule 1. Migrating not merging data entities. They appear in the weaving model as
DataEntityEnrich instances. They are the data entities from any of the source models
that remain barely unchanged on the target model. The application of this rule only
produces two kinds of modifications over a data entity: (1) updating the value of its
tier attribute; and (2) resolving the target entities of its relationships pointing to a
merging data entity (dangling relationships).

Rule 2. Migrating merging data entities. They appear in WM as DataEntityMerge
instances. The application of this rule produces a new data entity as the result of
merging the linked entities of the source models. This new entity takes its name from
the source entity of the legacy Web model. It contains the union of the attribute sets
contained by the merging entities. It is also composed by all the relationships whose
origin was one of the source entities. In this case, it is also necessary to solve the
dangling relationships generated, referencing the merged unit in the target model.
Finally, the redundancy is removed from the collection of relationships.

For WebML hypertext model composition (only operation units), three basic
rules are defined:

Rule 1. Migrating not merging operation units. They appear in the weaving model as
OperationUnitEnrich instances. They are the operation units from any of the source
models that remain barely unchanged on the target model. The application of this rule
only produces three kinds of modifications over a operation unit: (1) updating the
value of its tier attribute; (2) resolving the related data entity according its entity
reference; and (3) removing its merging outgoing links (processed later by the rule 3).

Rule 2. Migrating merging operation units. They appear in the weaving model as
OperationUnitMerge instances. In this case, the application of this rule produces a
new operation unit as the result of merging the linked units of the source models. This
new unit takes its name from the source unit of the legacy Web model. Next, the
description of how the different components of a unit are merged is shown:

1. If the units are related to a data entity, the weaving model specifies which one will
be used in the final model by means of the dataEntityPriority attribute.

2. If they both present selectors, all their conditions are concatenated in the final
selector clause, indicating the tier in which they will be processed. In the weaving
model, SelectorEnrich instances specify the processing tier of each selector.

3. If they both present order clauses, the sorting attributes will be concatenated in the
final order clause, according to the sequence specified by the orderClausePriority
attribute

4. Regarding the link composition, in this case, we only focus on the outgoing links
because they are defined as components of the merging units. In this sense,
considering the operation unit merging, we only selected the set of not merging
outgoing links because their target unit and parameter matching are not modified.

198 R. Rodríguez-Echeverría et al.

Rule 3. Migrating merging links. They appear in the weaving model as LinkMerge
instances. In this case, the target unit and the parameter matching of the target link
must be solved. The target unit selected is always the one pointed from the right link.
And the parameter matching is established according to its collection of
LinkParameterMatch instances (matching).

Fig. 9 shows a simplified version of one of the ATL rules implemented, in particular,
the rule to enrich operation units (rule 1 of hypertext model composition).

helper def: entity2rule: Map(CMM!Entity, WMM!MigrationLink) =
 CMM!MigrationLink.allInstances()->iterate(mlk;
 res: Map(CMM!Entity, WMM!MigrationLink) = Map{}|
 res->including(mlk.left,mlk));

rule OperationUnitEnriching {
from

 oue : WMM!OperationUnitEnrich
to

 ou : RMM!OperationUnit (
 name <- oue.left.name,
 entity <- thisModule.entity2rule(oue.entity),
 tier <- oue.tier,
 links <- oue.left.links->union(oue.right.links).asSet()
)
}

rule LinkMigration {
from

 lnk : CMM!Link
to

 mlnk: RMM!Link (
 type <- lnk.type,
 target <- thisModule.target2rule(lnk.target)
)
}

Fig. 9. ATL rule to deal with OperationUnitEnrich entities

Although we have only presented adding and merging operations, our approach
supports also deletion of elements from the legacy Web application. The simplest
form of specifying the deletion of a concrete element is not referencing it from the
weaving model.

5 The Motivating Example Revisited

This section illustrates how the approach presented in Section 4 may be applied in a real
application (our ticket e-shop example). In particular, this section describes how to model
separately a concrete crosscutting concern: synchronization. The behavior of this concern
has been defined by means of synchronization patterns so that they are encapsulated into
separated models as a highly reusable RIA concern. Those patterns may be stored in

 Re-engineering Legacy Web Applications into Rich Internet Applications 199

model repositories to facilitate their localization and instantiation in future migration
processes, reducing costs substantially. Finally, the section shows a particular weaving
model (based on the meta-model shown in Fig. 8) used to generate the final RIA system,
composing, thus, the original web model with the synchronization patterns.

5.1 Aspect Identification: Synchronization Scenarios

One of the main characteristics of RIA applications is the distribution of data and
business between server and client minimizing the communications between them.
However, it usually involves synchronization mechanisms to ensure the data
consistency at both sides of communication. This implies that many actions related to
the synchronization are scattered throughout the system and tangled [20] with the core
functionality and business logic of the system (as mentioned in Section 3.3).

In this setting, based on the analysis of many RIA applications (and, in particular,
our running example), we have classified the synchronization behavior involved in
any RIA application in terms of two different dimensions: source of synchronization
(client or server) and matter of synchronization (operation or data). This classification
is presented in Fig. 10.

Observe that several kinds of synchronization scenarios may be classified into the same
category. As an example, when a client is initialized or reconnected (when offline mode is
available), the server must send the data required to run the application to the client. As a
different example, when some data have changed at the server tier, the client copy of these
data must be synchronized according to these changes. This synchronization is performed
in RIA by event notification (e.g., observe the NotifyPreBookingChange unit used in the
cart confirmation process in our running example, Fig. 5).

The event notification may be also used to synchronize an operation carried out at
server tier. In this case, the event stores the data regarding to the operation produced
(see also the NotifyPreBookingChange unit in Fig. 4 or the task assignation to a user
event presented in [17]).

Synchronizations from client to server are also typical in RIA environments
(especially in collaborative environments). For instance, when a client reconnects
(after working in offline mode) the client must send to the server the data collected in
order to be synchronized (e.g., see the cart synchronization using the XMLOut unit in
Fig. 5). Also in collaborative applications, the replication at server tier of an action
performed at client side is very common. This action allows the server (and the rest of
clients connected) to keep synchronized (e.g., observe the addPrebooking replication
when a client adds a seat to the cart in Fig. 4).

5.2 Models for Synchronization Patterns According to RMM

According to the kinds of synchronization identified in previous section, different
patterns may be defined to model the behavior of the synchronization concern. In
particular, a synchronization pattern has been defined for each type of synchronization.
This section presents just one of these patterns: a pattern to model the synchronization
carried out when the client must send to the server a set of data (User Triggered Bulk
Data Replication of Fig. 10)

200 R. Rodríguez-Echeverría et al.

D
at

a

Server

O
pe

ra
tio

n

User Triggered
Action Replication

Client

Event Notification

Client Initialization

Client Reconnection

User Triggered Bulk
Data Replication

Event Notification

Client Reconnection

M
at

te
r

of

S
yn

ch
ro

ni
za

tio
n

Source of Synchronization

Fig. 10. Scenarios of synchronization based on source and matter dimensions

User Triggered Bulk Data Replication. This pattern happens when a client requires
sending a set of data to the server so that these data must be synchronized at client and
server tiers. The pattern is defined in terms of the XMLOUT and XMLIN entities to
marshall and unmarshall a set of data (see Fig. 11). As it is suggested by the guidelines
defined in [1], this synchronization usually requires the duplication of the data entity
which stores the data to be synchronized at client and server tiers (sometimes with
different names, e.g. Order and CartItem entities in our running example).

 CTierEntity
OID
Attributes

C STierEntity
OID
Attributes

S

A
(Linkable
Element)

Entity

XML-OUT

Entity

CC

B
(Linkable
Element)

Entity

C

XML-IN

Entity

A
(Linkable
Element)

Entity

S S

B
(Linkable
Element)

Entity

S

(a) (b) (c)

Fig. 11. User Triggered Bulk Data Replication pattern: (a) data entity duplication; (b)
marshalling data, (c) unmarshalling data

5.3 Weaving Model

A weaving model, conformed to WMM, is defined to indicate the merging elements
that constitute the join points linking the different models. Moreover, this weaving
model contains annotations to incorporate additional information for the composition
process, such as the distribution tier of different elements of the legacy model. Fig.
12. shows an excerpt of the weaving model for our tickets e-shop.

The weaving model presents the necessary elements to merge the second part (Fig.
11c) of the User Triggered Bulk Data Replication pattern with the operation chain B
from our motivating example. The elements related to the rest of the pattern (Fig. 11a
and Fig. 11b) have been omitted due to space limitations. The OUMerge instance V
links the operation unit Create Order from the legacy Web model and the linkable
element A previous to the XMLIN unit. In this case, the target unit will be a create unit
related to the Order data entity (from the left model), as specified by the priority
attributes of this instance, and the outgoing link to the XMLIN (from the right model),
as indicated by a specific LinkMerge instance (not shown in the figure). The
OUEnrich instance X indicates that the unit XMLIN has to be added to the target model
only modifying the data entity related (entity reference). The OUMerge instance Z
links the operation unit Book Seat and the linkable element B. So the target unit will
be a modify unit related to the Seat data entity and the outgoing link to the
PreBooking Change unit (both from the left model). Finally, the LinkMerge units W
and Y relate the links that must be merged due to the merging of two operation units.

 Re-engineering Legacy Web Applications into Rich Internet Applications 201

Moreover, two operation units of the chain B from the legacy Web Model are deleted,
i.e. they do not appear in the final model. These units (selection unit CartItems and
creation unit Create OrderItems) are no longer necessary for the RIA chain B
redefinition. In this sense, they are not referenced from the weaving model. Observe
that the output of the weaving performed (using the ATL rules explained in Section
4.3) is the model M’’. The lower part of Fig. 12. shows an excerpt of the application
resulting of the composition process, in particular the part obtained by the
composition explained by this figure. Note that the models resulting of the whole
composition process have been previously presented in the figures of Section 3.2.
Thus, the lower part of Fig. 12. shows a snippet of Fig. 5.

The weaving model is the only part that depends on the concrete application. The
rules and the ATL transformations generated would be the same for any WebML
application. Therefore, the migration of different applications may be performed just
defining the corresponding pattern instantiations and weaving models.

OUMerge V

- dataEntityPriority = left
- orderClausePriority= left

OUMerge Z

- dataEntityPriority = left
- orderClausePriority= left

OUEnrich X

- tier = ‘S’
- entity = OrderItem

CreateOrder

Order

Create
OrderItems

OrderItem

BookSeat

Seat
[OID]

<booked := true>

CartItems

CartItems

[?]

XML-IN

Entity

A
(Linkable
Element)

Entity

S

S

B
(Linkable
Element)

Entity

S

WM (AMWeaving)M (WebML) M’ (RIA Pattern)

M’’ (RIA
Weaved model) XML-IN

OrderItem

CreateOrder

Order

S

S

BookSeat

Seat
[OID]

<booked := true>

S

ATL Rules

LinkMerge W

[param1=OID]

LinkMerge Y

[param1=OID]

Fig. 12. Snippet of the weaving model

6 Conclusions and Related Works

This paper has presented a systematic model driven re-engineering process, based on
a weaving metamodel and composition rules, to perform the migration of traditional
Web applications into RIAs. With the proposal here presented this re-engineering
process can be barely reduced to the definition of weaving models driving the model
composition. Meanwhile the weaving models must be defined specifically for every
migration case; the transformation rules are generic and can be applied automatically
to any re-engineering process, improving highly the time and effort to carry out such
migrations. As an ongoing work, we are studying the application of automatic model
matching techniques in order to alleviate the effort of defining the weaving model.

202 R. Rodríguez-Echeverría et al.

The approach has been presented with the help of a motivating example where
synchronization patterns appear as a crosscutting concern that has been separately
defined. The patterns ensure the reusability of the migration process to different
systems just by defining new weaving models. The applicability of the patterns is not
limited to adding RIA features to legacy systems. They may be also applied to new
developments where RIA capabilities are added from the beginning. Indeed, similar
patterns may be also identified to add different concerns to the system (e.g., to add
volatile concerns [7] or context aware information [15].

Crosscutting concerns in Web models have been previously treated in the
literature. The approach in [19] allows to clearly decoupling requirements that belong
to different concerns. In [15] aspects are introduced, using an asymmetric aspect
separation approach which increases the complexity of the obtained models and the
learning process. In both approaches RIA issues are not considered.

In [21] a RIA metamodel for OOWS is presented to deal with the new
technological challenges arisen with Web 2.0. In [18] an aspect-oriented solution to
include RIA issues in OOHDM is presented. However, both works only deal with
presentation issues, not dealing with the RIA features here treated.

Although many works have previously introduced the concept of model weaving in
WebML, none of them deals with RIA capabilities. In [3] KM3 and Abstract State
Machines are introduced defining a Composition Weaving Model to check the
consistency among the models of the WebML stack. In [8] a proposal to mix domain
specific modeling languages (i.e., WebML and XACML for access control) using a
general purpose modeling language (i.e., AMW) is introduced. For the weaving
approaches listed above as well as for our work, the WebML metamodel plays a
pivotal role. While there is not an official WebML metamodel, many researchers have
covered this issue. For example, in [2] a WebML metamodel is presented to transform
WebML models to MDA.

Although here applied to WebML, the proposal is generic enough to be applied to
other Web modeling languages. The scope of our project is broader than here shown
and includes not only other Web modeling languages but also the migration of legacy
applications that have not been implemented using a modeling notation. In this case, an
important process of reverse engineering and business process reengineering is needed.

References

1. Bozzon, A., Comai, S., Fraternali, P., Carughi, G.T.: Conceptual modeling and code
generation for rich internet applications. In: 6th international Conference on Web
Engineering ICWE ’06. LNCS, vol. 263, Springer, Heidelberg (2006)

2. Brambilla, M., Fraternali, M., Tisi, M.: A metamodel transformation framework for the
migration of WebML models to MDA. In: MDWE, CEUR Workshop Proceedings,
vol. 389, pp. 91–105. CEUR-WS.org (2008)

3. Cicchetti, A., Di Ruscio, D.: Decoupling web application concerns through weaving
operations. Sci. Comput. Program. 70(1), 62–86 (2008)

4. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach.
Addison-Wesley Professional, Reading (2005)

5. Del Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A generic model
weaver. In: Procs. of IDM ’05, pp. 105–114 (2005)

 Re-engineering Legacy Web Applications into Rich Internet Applications 203

6. Del Fabro, M., Valduriez, P.: Towards the efficient development of model transformations
using model weaving and matching transformations. Software and Systems Modeling 8(3),
305–324 (2009)

7. Ginzburg, J., Distante, D., Rossi, G., Urbieta, M.: Oblivious Integration of Volatile
Functionality in Web Application Interfaces. Journal of Web Engineering 8(1), 25–47 (2009)

8. Hovsepyan, A., Van Baelen, S., Berbers, Y., Joosen, W.: Specifying and Composing
Concerns Expressed in Domain-Specific Modeling Languages. In: 47th International
Conference, TOOLS EUROPE ’09, pp. 116–135 (2009)

9. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

10. Koch, N., Pigerl, M., Zhang, G., Morozova, T.: Patterns for the Model-Based
Development of RIAs. In: Gaedke, M., Grossnilkalus, M., Diaz, O. (eds.) ICWE 2009. 9th
international Conference on Web Engineering 2009. LNCS, vol. 5648, pp. 283–291.
Springer, Heidelberg (2009)

11. Linaje, M., Preciado, J.C., Sanchez-Figueroa, F.: Engineering Rich Internet Application
User Interfaces over Legacy Web Models. IEEE Internet Computing 11(6), 53–59 (2008)

12. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-driven design
and deployment of service-enabled web applications. ACM Trans. Internet Technol. 5(3),
439–479 (2005)

13. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In: Eighth international Conference on Web
Engineering ICWE ’08, pp. 13–23. IEEE Computer Society, Los Alamitos (2008)

14. Moreno, N., Romero, J.R., Vallecillo, A.: An Overview of Model-Driven Web
Engineering and the MDA. In: Web Engineering: Modeling and Implementing Web
Applications, pp. 353–382. Springer, Heidelberg (2007)

15. Schauerhuber, A., Wimmer, M., Schwinger, W., Kapsammer, E., Retschitzegger, W.:
Aspect-Oriented Modeling of Ubiquitous Web Applications: The aspectWebML
Approach. In: 14th Annual IEEE international Conference and Workshops on the
Engineering of Computer-Based Systems, pp. 569–576. IEEE Computer Society, Los
Alamitos (2007)

16. Schauerhuber, A., Wimmer, M., Kapsammer, E.: Bridging existing Web modeling
languages to model-driven engineering: a metamodel for WebML. In: 2nd international
workshop on model driven Web engineering MDWE ’06 (2006)

17. Toffetti-Carughi, G., Comai, S., Bozzon, A., Fraternali, P.: Modeling distributed events in
data-intensive Rich Internet Applications. In: Benatallah, B., Casati, F., Georgakopoulos,
D., Bartolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 593–602.
Springer, Heidelberg (2007)

18. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich Internet
Applications. In: LA-WEB ’07. Latin American Web Congress, pp. 144–153 (2007)

19. Valderas, P., Pelechano, V., Rossi, G., Gordillo, S.: From crosscutting concerns to
web systems models. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C.,
Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 573–582. Springer,
Heidelberg (2007)

20. Van den Berg, K., Conejero, J., Hernandez, J.: Analysis of Crosscutting in Early Software
Development Phases based on Traceability. In: Rashid, A., Aksit, M. (eds.) Transactions
on AOSD III. LNCS, vol. 4620, pp. 73–104. Springer, Heidelberg (2007)

21. Valverde, F., Pastor, O.: Facing the Technological Challenges of Web 2.0 - a RIAModel-
Driven Engineering Approach. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 131–144. Springer, Heidelberg (2009)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 204–217, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Deriving Vocal Interfaces from Logical Descriptions in
Multi-device Authoring Environments

Fabio Paternò and Christian Sisti

CNR-ISTI, HIIS Laboratory, Via Moruzzi 1, 56124 Pisa, Italy
{Fabio.Paterno,Christian.Sisti}@isti.cnr.it

Abstract. Model-based approaches for interactive Web applications have
neglected vocal interaction. However, ubiquitous multi-device environments
call for better support for such modality. In this paper we present a language for
logical descriptions of vocal interfaces along with a transformation for deriving
corresponding implementations and show an example application. Such results
have been integrated into a multi-device authoring environment.

Keywords: Model-based user interface design, Vocal interfaces, XML-based
user interface languages.

1 Introduction

The convergence of telecommunications and the Web is now bringing the benefits of
Web technology to the telephone, enabling Web developers to create applications that
can be accessed via any telephone, and allowing people to interact with these
applications via speech and keypads [16].

In this context the W3C has developed a suite called Speech Interface Framework
in which one of the main contribution is VoiceXML 2.0, a language designed for
developing vocal interfaces with support for audio dialogues, vocal and DTMF
recognition, recording and telephony feature. For this reason we are witnessing the
spread of Voice Browsers, which offer Web Based services from any phone.

In a number of contexts of use vocal interaction is important: when the visual
channel is busy (e.g. while car driving), for disabled people (e.g. the vision-impaired),
or while users are moving. Some possible scenarios are in accessing business (e.g.
booking services, airline information, etc.), public (e.g. weather information, news) or
personal information (e.g. appointment calendar, telephone list). The vocal features
make it suitable to support quick access to information and to interact in a way more
similar to that used for communication among humans. Thus, in modern technological
ubiquitous settings, the need for supporting vocal interaction is acquiring increasing
importance, and the associated technology has considerably improved in terms of
efficiency and accuracy, even if some limitations still apply (e.g. performance in
noisy environments).

Model-based approaches for interactive systems are characterized by the use of
logical languages, which identify and classify user interface elements and ways to
compose them according to their effects. They have stimulated interest in particular

 Deriving Vocal Interfaces from Logical Descriptions 205

with the advent of multi-device user interfaces [7] because they allow designers to
better manage the complexity of user interfaces that have to adapt to varying
interaction resources. They allow designers to concentrate on logical decisions
without having to deal with a plethora of low-level implementation details. However,
most model-based approaches have mainly addressed issues related to desktop/mobile
adaptation and have neglected other modalities such as vocal interaction. Thus, there
is a need for solutions able to facilitate the development of multiple versions of an
interactive application, including the vocal one. For this purpose, the ideal solution is
to identify a core set of interaction concepts independent of the modality and then
refine it for each possible modality in order to account for its specific aspects. For
example, the vocal modality in general is linear, not persistent, quicker and more
natural in some operations. This implies the need for continuous feedback, and the
rendering of short prompts or option lists in order to limit memory efforts.

Stanciulescu [17] indicated some criticisms of the model-based approach in user
interface design. Our framework has been developed taking into account such
comments and aiming to minimize the negative aspects. One of the highlighted points
is the high threshold, the designer needs to learn a new language before starting new
interface development. To this end, we have created a graphical-based tool to assist
designers in developing multiple versions depending on the target platform, which
share a common set of abstract concepts, thus reducing the learning effort when they
start a new version.

Another problem in model-based approaches may be the low ceiling, the user
interfaces that can be generated have various limitations due to the excessively
abstract design. We address this criticism by proposing a model-based solution using
two levels of abstraction, in which the lower level (that refines the higher one) permits
good control over the resulting interface without having to know the details of the
implementation language. The unpredictability of some final results is avoided by
furnishing complete documentation of the transformation rules.

On the other hand, model-based approaches offer some advantages in terms of
methodology (user -centred approach), reusability (the various concrete languages are
refinements of the same abstract language) and consistency (between early design
phase and final result).

In the paper after discussing some related work we introduce the proposed
approach and present the logical language for vocal interaction, then we describe the
transformation from the logical language to VoiceXML, and we show an example
application in the museum domain. Lastly, some conclusions are drawn along with
indications for future work.

2 Related Work

The problem of designing multi-device interfaces, including vocal ones, has been
addresses in some previous work but still needs more general and better engineered
solutions. Damask [6] includes the concept of layers to support the development of
cross-device (desktop, smartphone, voice) user interfaces. Thus, the designers can
specify user interface elements that should belong to all the user interface versions
and elements that should be used only with one device type. However, this approach

206 F. Paternò and C. Sisti

can be useful in developing desktop and mobile versions but does not provide
particularly useful support when considering the vocal version, which requires user
interface structures profoundly different from the graphical versions. XFormsMM [4]
is an attempt to extend XForms in order to derive both graphical and vocal interfaces.
In this case the basic idea is to specify the abstract controls with XForms elements
and then use aural and visual CSS for vocal and graphical rendering, respectively. The
problem in this case is that aural CSS have limited possibilities in terms of vocal
interaction and the solution proposed requires a specific ad hoc environment in order
to work. For this purpose we propose a more general solution able to derive
implementations in the W3C standard Voice XML. Obrenovic et al. [9] have
investigated the use of conceptual models expressed in UML in order to then derive
graphical, form-based interfaces for desktop or mobile devices or vocal ones. UML is
a software engineering standard mainly developed for designing the internal software
of application functionalities. Thus, it seems unsuitable to capture the specific
characteristics of user interfaces and their software. In [11] there is a proposal to
derive multimodal user interfaces using attribute graph grammars, which have a well-
defined semantics but limitations in terms of performance. The possibility of deriving
vocal interfaces was addressed in [1] but using hardcoded solutions for the
transformation and logical descriptions that were unable to describe typical Web2.0
interactions and access to Web services.

A different approach to multimodal user interface development has been proposed
in [5], which aims to provide a workbench for prototyping them using off-the-shelf
heterogeneous components. In that approach, model-based descriptions are not used
and it is necessary to have an available set of previously defined components able to
communicate through low-level interfaces, thus making it possible for a graphical
editor to easily compose them.

To summarise, we can say that the few research proposals that have also
considered vocal interaction have not been able to obtain a general solution in terms
of logical descriptions and provide limited support in terms of generation of the
corresponding user interface implementations. For example, in [1] the transformations
were hard-coded in the Java implementation, while in [11] the transformations were
specified using attributed graph grammars, whose semantics is formally defined but
have considerable performance limitations.

3 The Proposed Approach to Vocal Interaction

In this paper we present a general logical language for vocal interaction, which is
included in an overall environment able to support development of multi-device user
interfaces. The associated authoring environment includes a transformation tool able
to derive VoiceXML implementations from the logical specifications and satisfies the
requirements for multimodal interface generation discussed in previous work [8], such
as modality independence, support for specifying hierarchical grouping, etc.

One of our goals is to propose a framework that allows designers to generate vocal
interfaces that take into account the challenges and principles for conversational
interfaces design identified in [15]. One of these challenges is to make the interaction
feel conversational. Our approach, in this sense, allows designers to set a number of

 Deriving Vocal Interfaces from Logical Descriptions 207

synthesizing properties (e.g. prosody, volume, tone, speed, etc). Moreover, we
support the barge-in technique that allows users to interrupt the speech synthesizer by
using their voice. Another point is the problem of recognizing the start/stop of
subdialogues corresponding to the grouping. We propose different solutions to
communicate this information to the user, such as inserting simple delimiting sounds
or prompting short meaningful phrases (e.g. “Main menu”).

Another challenge is error recognition: “One can never be completely sure that the
recognizer has understood completely” [15]. The errors are divided into three
categories: rejection errors, occur when the recognizer does not match the user input
with any expected utterance; substitution errors, when the platform erroneously
recognizes a wrong but legal input; insertion error, if the recognizer accepts a noise
as a valid input. Our framework allows different mechanisms to avoid these errors. In
the case of rejection errors, a simple solution is to answer with a “not understand”
feedback. This approach could stimulate user frustration and so, as suggested in [15],
we provide designers with the possibility of implementing the tapered prompting
technique. In this way the error messages that the user receives become more explicit
as the number of errors increase.

To reduce the occurrence of the substitution errors, we allow the designers to
verify the utterance when necessary. Lastly, the problem of insertion errors is
attenuated by including in the generated vocal interfaces two vocal commands to start
and stop the dialogue with the platform. In this way, the user can temporarily interrupt
the interaction and restart it at his convenience.

4 A Logical Language for Vocal Interaction

MARIA is a recent model-based language, which allows designers to specify abstract
and concrete user interface languages according to the CAMELEON Reference
framework [2] (Fig. 1 shows an instance of the framework). This language represents a
step forward in this area because it provides abstractions also for describing modern
Web 2.0 dynamic user interfaces and Web service accesses. In its first version it
provides an abstract language independent of the interaction modalities and concrete
languages for graphical desktop and mobile platforms [10]. In general, concrete
languages are dependent on the typical interaction resources of the target platform but
independent of the implementation languages. In this paper we present a concrete
language for vocal interfaces, which has been designed within the MARIA framework.

In MARIA an abstract user interface is composed of one or multiple presentations,
a data model, and a set of external functions. Each presentation contains: a number of
user interface elements (interactors) and interactor compositions (indicating how to
group or relate a set of interactors); a dialogue model, describing the dynamic
behaviour of such elements and connections, indicating when a change of
presentation should occur. The interactors are first classified in abstract terms: edit,
selection, output and control. Each interactor can be associated with a number of
event handlers, which can change properties of other interactors or activate external
functions.

208 F. Paternò and C. Sisti

Fig. 1. Possible abstraction levels

While in graphical interfaces the concept of presentation can be easily defined as a
set of user interface elements perceivable at a given time (e.g. a page in the Web
context), in the case of vocal interfaces we consider a presentation as a set of
communications between the vocal device and the user that can be considered as a
logical unit, e.g. a dialogue supporting the collection of information regarding a user.

In defining the vocal language we have refined the abstract vocabulary for this
platform. This mainly means that we have defined vocal refinements for the elements
specified in the abstract language: interactors (user interface elements), the associated
events and their compositions.

The refinement involves defining some elements that enable setting some presentation
properties. In particular, we can define the default properties of the synthesized voice
(e.g. volume, tone), the speech recognizer (e.g. sensitivity, accuracy level) and the DTMF
(Dual-Tone Multi-Frequency) recognizer (e.g. terminating DTMF char).

Only-output interactors simply provide output to the user; the abstract interface
classifies them into text, description, feedback and alarm output. Refinement of the
text element is composed of two new elements: speech and pre-recorded message.
Speech defines text that the vocal platform must synthesize or the path where the
platform can find the text resources. It is furthermore possible to set a number of
voice properties, such as emphasis, pitch, rate, and volume as well as age and gender
of the synthesized voice. Moreover, we have introduced control of behaviour in the
event of unexpected user input: by suitably setting the element named barge in, we

 Deriving Vocal Interfaces from Logical Descriptions 209

Fig. 2. Specialization example

can decide if the user can stop the synthesis or if the application should ignore the
event and continue. As mentioned above, the other element that refines abstract text is
pre-recorded message: it defines the path of pre-defined audio resources that must be
played. We support the case of missing resources by defining an alternative content
that can be synthesized when this case occurs. Besides speech and pre-recorded
message, the other only-output element is sound. This element permits defining the
path of a non-vocal audio resource that must be played by the platform. It is also
possible to insert a textual description of the sound that could be used as additional
information regarding the sound content.

Selection interactors permit performing a selection between a set of elements; the
abstract interface distinguishes between single and multiple choice. In order to
support such interactions in vocal context we have introduced the interactor vocal
selection (see Fig.2). This element defines the question(s) to direct to the user and the
set of possible user input that the platform can accept. In particular, it is possible to
define textual input (word or sentences) or DTMF input. Depending on the type of
selection one or multiple elements can be selected. Semantic differences between this
two interactors are made at abstract user interfaces level: for the single choice it is
possible to set only one selected element instead, in the case of the multiple choice,
more than one user input can be set as selected elements.

The control interactor at the abstract level can be distinguished in activator, to
activate a functionality, and navigator, to manage navigation between the
presentations. The activator is refined in the vocal language into: command, in order to
execute a script, submits, to send a set of data to a server, and goto to perform a call to
a script that triggers an immediate redirection. While the navigator is refined into: goto,
for automatic change of presentation; link, for user-triggered change of presentation,
and menu for supporting the possibility of multiple target presentations.

Edit interactors gather more complex user input. We refined three abstract
elements: text edit, numerical edit and object edit. Text edit, from the graphical web
context point of view, can be regarded as an editable textual field. In the vocal context

210 F. Paternò and C. Sisti

Fig. 3. Grouping refinement

we refined this concept with the vocal textual input element, which permits setting a
vocal request and specifying the path of an external grammar for the platform
recognition of the user input. Numerical edit is an interactor to collect numbers, which
are refined into numerical input. As in the textual input it is possible to define a
request and an external grammar. Moreover, it is also possible to set a predefined
grammar, such as date, digits, phone or currency. Finally, we have refined the object
edit interactor into a record element, which allows specifying a request and storing
the user input as an audio resources. It is possible to define a number of attributes
relative to the recording, such as beep to emit a sound just before recording, maxtime
to set the maximum duration of the recording, and finalsilence, to set the interval of
silence that indicates the end of vocal input. Record elements can be used for example
when the user input cannot be recognised by a grammar (e.g. a sound).

In the logical language one of the elements that permit the composition of the
interactors is grouping. From the visual point of view we could refine this concept,
for example, into a table element. Group vocal interactor is more complex. We
propose four solutions to permit the user to identify the beginning and the end of a
grouping (see Fig. 3). Inserting a sound at the beginning and at the end for this
purpose can be a good non-invasive solution. Another solution can be inserting a
pause, which must be neither too short (useless) nor too long (slow system feedback).
Moreover, it is possible to change the synthesis properties such as volume and voice
gender. The last possibility is to insert keywords that explicitly define the start and the
end of the grouping.

Another substantial difference of vocal interfaces is in the event model. While in
the case of graphical interfaces the events are related mainly to mouse and keyboard
activities, in vocal interfaces we have to consider different types of events: noinput
(the user has to enter a vocal input but nothing is provided within a defined amount of
time), nomatch, the input provided does not match any possible acceptable input, and
help, when the user asks for support (in any platform specific way) in order to
continue the session. All of them have two attributes: message, indicating what
message should be rendered when the event occurs, and re-prompt, to indicate
whether or not to synthesize the last communication again.

In order to facilitate authoring and editing of logical specifications a graphical
editor has been designed and implemented (Fig. 4). It allows editing the various

 Deriving Vocal Interfaces from Logical Descriptions 211

Fig. 4. The graphical editor for the vocal logical language

presentations in the central area. The user interface elements are created by drag-and-
drop from the lists in the right frame, which show the elements that can be inserted
according to the language specification. In the middle tab in the right frame it is also
possible to specify the associated events and attributes. In the left side there is an
interactive nested tree view of the presentations and the associated elements. The
output of the tool is a logical description of the interface formalized in XML.

5 Transforming Logical Description into VoiceXML
Implementations

The current standard for voice browsing implementation is VoiceXML [13]. Thus, this
was the first target implementation language from the vocal logical description. Since
VoiceXML is also an XML-based language, XSL Transformations (XSLT) [14] seemed
the most appropriate technology for implementing such transformation. This language
provides a number of constructs for creating mappings among elements of two XML-
based languages. However, such mappings are not trivial to create because both
languages have a structure that provides constraints about where to locate an element.
For example, in VoiceXML a vocal output is implemented differently depending on
whether it occurs in a form or in a menu. This has been solved using the “XSLT
modes”, an XSLT technique to identify which template to use in the transformation
when this element occurs. More generally, this mechanism allows the transformation to
change template to apply in the mapping depending on the current context.

212 F. Paternò and C. Sisti

For the sake of clarity we show a simple example of application of an XSLT
template in Figure 5. The XML source code is a simple excerpt of our logical
language in which we describe the noinput event. Every time that the XSLT Engine
finds a match with a noinput source tag the suitable template is called. In this case the
template adds the suitable VoiceXML <noinput> tag and then tests if it was set up a
message to synthesize. If true a <prompt> VoiceXML tag is added. Note that the
attribute bargein of the VoiceXML code is forced to be false to prevent interruption
of the system communication by any user input. Each presentation is associated with
a VoiceXML document. The presentation element has a list of possible default
settings. Some of them can be defined once for the entire presentation (e.g. speech
recognizer properties); in this case they are opportunely mapped into a <property>
VoiceXML. In other cases the properties can be set up multiple times in the
presentation (e.g. voice synthesis properties). The policy for defining such properties
follows the structure of the specification (bottom-up): first it checks whether local
properties have been defined, if not the properties of the surrounding grouping
operator, if any, are applied, and lastly, if even these are missing, the properties
general to the entire presentation are used.

Fig. 5. A small example of XSLT Transformation

SGRS1 grammars format has been used to specify possible inputs, since that it is
what the VoiceXML specification supports. The grammars define the set of possible
input that the vocal platform is able to recognize. In the generated implementations
we use predefined VoiceXML grammars, when possible, such as date, number and
currency in the numerical edit element mapping.

In some cases we generate inline grammars, which are grammars defined in the
transformation process and directly inserted in the VoiceXML code. This is the case of
the link element that can be activated both by vocal or DTMF command thanks to two
expressly created grammars (using the parameters defined in the logical description).

1 Speech Recognition Grammar Specification Version 1.0,
 http://www.w3.org/TR/speech-grammar/

 Deriving Vocal Interfaces from Logical Descriptions 213

Another solution is used in the mapping of the single vocal selection: in this case,
we know ‘a priori’ the list of possible inputs, and we can use one VoiceXML
<option> element for each input. This is equivalent to using a grammar able to
recognize the entire list of user input. Figure 5 shows an example of a logical
description with a single choice and how its elements are mapped onto VoiceXML
elements.

The case of the multiple vocal selection, instead, introduces a problem: we do not
know how many choices (in the predefined list) the user will make. In our solution the
platform asks all the choices one-by-one and the user must answer yes/no to accept/reject
each one. This solution may seem verbose but in practise there may be two situations:
few choices, in this case the verbosity is negligible; many choices, in this case the
verbosity is an advantage because it will reduce the mnemonic effort of the user.

As mentioned in previous sections, textual edit is similar to the visual concept of
editable text box. It is very hard (if not impossible) to have a grammar able to
recognize every kind of user input. We prefer to leave it up to the application
developer to implement an external-grammar (or to find a pre-built one) that satisfies
the possible input (case by case). For example, suppose that the platform asks the
name of the user, the developer should build a grammar containing a dictionary of
names to provide for recognition.

In the visual context we have some mechanisms to force the input of numbers in a
certain range (e.g. a spin box); from the vocal point of view we resolve this problem
by carrying out a check, before accepting the user input, using the conditional
VoiceXML tags. If the number specified by the user is out of range, we refuse the
input and re-prompt the request.

Fig. 6. Example of Logical-to-Implementation transformation

The control interactor command is mapped into a VoiceXML variable that contains
the results of the execution of a script that must be defined at presentation level
(which corresponds to a VoiceXML document in the implementation). The others
control interactors: submit, goto, link, and menu are mapped into corresponding
VoiceXML elements. VoiceXML links must be declared externally to the dialogue

214 F. Paternò and C. Sisti

constructs and thus they are globally activable. Each possible menu choice is
transformed into a <choice> VoiceXML element. In this way the grammar for
recognizing the user input is automatically provided by the VoiceXML browser.

In the case of textual input the developer has the possibility to specify an
appropriate grammar containing the rules for the acceptable inputs. Numerical input
can be recognised by predefined grammars. It is also possible to generate in the code
the check whether the input satisfies a given range.

6 Application

The VoiceXML code generated by the above transformation has been tested with
Tellme.Studio Voice Browser [12] (suggested by W3C) and has passed the validation
test integrated in it. The applications have then been used through VoIP access to the
vocal server.

Figure 7 shows the structure of some parts of an example application created with
our environment. It consists of a virtual museum application. The rectangles represent
the presentations. Each of them is a dialogue or a set of dialogues that can be logically
grouped together. In general, each presentation supports three basic possibilities: to be
executed again, to go to the main menu, and to go to the previous presentation.

Fig. 7. An Example Application

 Deriving Vocal Interfaces from Logical Descriptions 215

The main menu allows the user to choose among three options: accessing more
detailed information regarding the museum, performing a virtual visit, and buying a
museum ticket. In the first case the user can just listen to the detailed information and
then return to the main menu. In the second case the user can select an artist and then
receive a related general description and then the possibility of accessing the
associated artworks. When buying a ticket there are two possibilities depending on the
age. In the case of under 13 the application activates a presentation communicating
that the entrance is free otherwise the user has to provide personal information and
perform the payment. More in details the system ask: user name, described logically
with a text edit element with associated an external grammar that contain a dictionary
of names; user surname, described in the same way of the previous one; credit card
type, described by a single choice with three possible options (Visa, Mastercard,
PostePay); credit card number, described by a numerical edit with associated a
predefined grammar (number); favoured museum’s rooms, described by a multiple
choice with a number of possible options and further notice, described by a record
element to permit at the user to leave a personal comment.

In the table below we show an example of resulting dialogue in order to better
understand the interaction user-platform that we have obtained. We focus in this
example only on the module related to the inserting of the user information.

 Input / Output
Logical
Element

System: To buy a ticket you have to tell me some
information.

Only Output

System: What is your name? Text Edit

User: . . . (do not respond)

System: Sorry, I did’t hear you. What is your name? No input event

User: Henry (with noise)

System: Sorry, I do not understand No match event

User: Henry

System: What is your surname? Text Edit

User: Smith

System: Kind of credit card between: Visa, Mastercard
and PostePay?

Single Choice

User: PostePay

System: Credit card number? Numerical Edit

User: 123456789#

System: We are interest to know which room you prefer to
visit. Are you interested in Van Gogh’s room?

Multiple Choice

User: Yes

System: Are you interested also in Leonardo’s room?

216 F. Paternò and C. Sisti

User: Yes

System: After the beep leave a comment about this
services

Record

System: Beep

User: . . . (some second silent length)

System: Thanks. Do you want confirm you reservation? Only Output

User: Yes

System: Submit

System: Your request has been registered. Only Output

7 Conclusions and Future Work

This work introduces a novel logical language for vocal interfaces and the associated
environment, which allows designers to easily compose vocal interfaces and derive
VoiceXML implementations. This has been integrated in an environment for multi-
device interface design and development, thus facilitating the implementation of
multiple versions adapted to the various target modalities because of the use of a
common abstract vocabulary, which is then refined according to the target platforms.
This avoids requiring developers to learn a plethora of details of the many possible
implementation languages

This result has been validated through the development of a number of vocal
applications (one of them is briefly described in the paper), which have been rendered
through publicly available voice browsers.

Future work will be dedicated to empirical tests in order to better assess how the
development process is facilitated with this approach, especially when multi-device
interfaces should be developed (e.g. desktop, mobile and vocal versions of the same
application). We also plan to develop an automatic system able to support graphical-
to-vocal adaptation and a new logical language for multimodal interfaces able to
exploit the language presented in this paper for the vocal part.

Acknowledgments

We gratefully acknowledge support from the EU ServFace Project (http://www.servface.eu).

References

1. Berti, S., Paternò, F.: Model-Based Design of Speech Interfaces. In: Jorge, J.A., Jardim
Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 231–244.
Springer, Heidelberg (2003)

2. Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, O., Marucci, L., Paternò, F.,
Santoro, C., Souchon, N., Thevenin, D., Vanderdonckt, J.: The CAMELEON reference
framework. CAMELEON project, Deliverable 1.1 (2002)

 Deriving Vocal Interfaces from Logical Descriptions 217

3. Edwards, A., Pitt, I.: Design of Speech-Based devices. Springer, Heidelberg (2007)
4. Honkala, M., Pohja, M.: Multimodal interaction with XForms. In: Proceedings ICWE,

pp. 201–208 (2006)
5. Lawson, J., Al-Akkad, A., Vanderdonckt, J., Macq, B.: An open source workbench for

prototyping multimodal interactions based on off-the-shelf heterogeneous components. In:
Proceedings ACM EICS, pp. 245–254 (2009)

6. Lin, J., Landay, J.A.: Employing Patterns and Layers for Early-Stage Design and
Prototyping of Cross-Device User Interfaces. In: Proc. CHI, pp. 1313–1322 (2008)

7. Myers, B.A., Hudson, S.E., Pausch, R.: Past, Present and Future of User Interface Software
tools. ACM Trans. Comput. Hum. Interact. 7, 3–28 (2000)

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld, R., Pignol, M.:
Generating remote control interfaces for complex appliances. In: Proceedings ACM
UIST’02, pp. 161–170 (2002)

9. Obrenovic, Z., Starcevic, D., Selic, B.: A Model-Driven Approach to Content
Repurposing. IEEE Mutimedia, 62–71 (Januray-March 2004)

10. Paternò, F., Santoro, C., Spano, L.D.: MARIA: A Universal Language for Service-
Oriented Applications in Ubiquitous Environment. ACM Transactions on Computer-
Human Interaction 16(4), 1–30 (2009)

11. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F.: A
Transformational Approach for Multimodal Web User Interfaces based on UsiXML. In:
Proc. ICMI, pp. 259–266 (2005)

12. Tellme.Studio Voice Browser, https://studio.tellme.com/
13. Voice extensible markup language (VoiceXML) version 2.0,

http://www.w3.org/TR/2009/REC-voicexml20-20090303/7
14. XSL Transformations (XSLT) Version 2.0, http://www.w3.org/TR/xslt20/
15. Yankelovich, N., Levow, G., Marx, M.: Designing SpeechActs: Issues in Speech User

Interfaces. In: CHI 1995, pp. 369–376 (1995)
16. Voice Browser Activity (W3C), http://www.w3.org/Voice/
17. Stanciulescu, A.: A Methodology for Developing Multimodal User Interfaces of

Information Systems. Ph.D Thesis, University of Louvain (2008)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 218–232, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Quality, Quality in Use, Actual Usability and User
Experience as Key Drivers for Web Application

Evaluation

Philip Lew1, Luis Olsina2, and Li Zhang1

1 School of Computer Science and Engineering, Beihang University, China
2 GIDIS, Web Engineering School at Universidad Nacional de La Pampa, Argentina

philiplew@gmail.com, olsinal@ing.unlpam.edu.ar, lily@buaa.edu.cn

Abstract. Due to the increasing interest in Web quality, usability and user
experience, quality models and frameworks have become a prominent research
area as a first step in evaluating them. The ISO 25010/25012 standards were
recently issued which specify and evaluate software and data quality
requirements. In this work we propose extending the ISO 25010 standard to
incorporate new characteristics and concepts into a flexible modeling
framework. Particularly, we focus on including information quality, and
learnability in use characteristics, and actual usability and user experience
concepts into the modeling framework. The resulting models and framework
contribute towards a flexible, integrated approach to evaluate Web applications.
The operability and particularly the learnability of a real Web application are
evaluated using the framework.

Keywords: Learnability, quality, usability in use, learnability in use, usability,
information quality, user experience.

1 Introduction

Web applications (WebApps), a combination of information content, functionality
and services are fast becoming the most predominant form of software
implementation and delivery today. Due to these evolutions, usability, information
quality, quality in use and, in the end, actual user experience have taken on increased
importance. With the latest ISO 25010 quality standard [8], and other recent work by
researchers in the field of quality in use, usability and user experience such as Bevan
[2] and Hassenzahl [7], it is still not totally clear where characteristics such as
information quality, learnability in use, actual usability and user experience fit in
regarding quality modeling.

The recent ISO 25010 standard on quality models, updates and brings previous
standards together while delineating three views of quality viz internal, external
quality and quality in use. Some researchers including the ISO 9241-11 have
suggested that quality in use is defined similarly to usability. Of particular interest in
ISO 25010 is the standard’s new breakdown of quality in use and usability which
provides us insight into our framework for this paper. Bevan examined ISO 25010

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 219

from the viewpoint of usability and user experience (UX) and drew some interesting
relationships regarding usability as performance in use, and satisfaction as it relates to
user experience. Hassenzahl´s work in classifying user experience in two categories,
hedonic and pragmatic is also useful when examining usability from the do, pragmatic
viewpoint and the be, or hedonic satisfaction viewpoint.

Meanwhile, ISO 25012 [9], a recent standard on data quality, considers data as an
entity by itself, and as a separate model. However, extending the number and span of
standards runs the risk that nobody will use them [19]. There is a need to integrate
information quality as part of the overall quality of an application, particularly for
WebApps, rather than as a separate entity. Olsina et al [14] made an initiative in this
direction as discussed in Section 3.

Rather than rely on separate standards, we propose to augment the ISO 25010
standard to include information quality as a characteristic of internal/external quality
because this is a critical characteristic of WebApps. Furthermore, the 25010 standard
has categorized learnability as an internal/external quality subcharacteristic under the
operability characteristic. We further propose to include learnability in use as a
characteristic of usability in use to account for the learning process and the
importance of context of use during learning. Lastly, we propose an integrated means
to evaluate the characteristics of usability in use as they relate to user experience. All
these issues will be combined into an integrated framework which embraces the
possibility of instantiating different models. This framework and its models, i.e.,
internal/external Quality, Quality in use, actual Usability and User experience
(2Q2U, for short) are as compliant as possible with the recent ISO standards,
considering other well-known contributions as well.

Ultimately, the specific contributions of this research are: (a) An extension to ISO
25010 internal/external quality model to include information quality as a
characteristic; (b) An extension to ISO 25010 quality in use model to include
learnability in use as a subcharacteristic of usability in use; (c) An integrated and
flexible framework for modeling quality requirements, and particularly quality in use
to relate the concepts of actual usability and user experience; and (d) An
instantiation, for illustration purposes, of the ISO 25010 external quality model with
subcharacteristics and measurable attributes to evaluate operability for WebApps,
which can influence learnability in use.

Following this introduction, Section 2 reviews recent related work and delineates
opportunities for improvements. In Section 3, our proposal of extending the ISO 25010
standard in order to incorporate new characteristics and concepts into a flexible
framework called 2Q2U is discussed. In Section 4, we discuss the usefulness of the
proposed framework, in the context of evaluating operability and some of its
subcharacteristics, e.g. learnability for a WebApp. Section 5 draws our main conclusions
and outlines future work.

2 Related Work and Motivation

User experience, a relatively new term, combined with usability, information quality,
and quality in use, have all recently come to the research forefront especially for
WebApps due to the shift in emphasis to satisfying the end user. Yet based on the

220 P. Lew, L. Olsina, and L. Zhang

current standards and literature reviewed, it can be difficult to understand their
relationships and we often observe a lack of consensus in meaning. This section
examines the related work with an eye for improvement opportunities.

In the recent ISO 25010 standard, the concept of quality has been broadened from
6 characteristics (ISO 9126-1 [11]) to 8 as shown in Fig. 1.a.

Fig. 1. a) ISO 25010 Internal/External Quality Model; b) Adding Information Quality

The standard is split into 2 quality models. The first is a software internal/external
quality model. In comparison with ISO 9126-1, the previous characteristic of usability
has been renamed as operability with broader meaning. For instance some sub-
characteristics such as learnability among others have remained while new ones such
as technical accessibility compliance and helpfulness were added. Security has been
added as a separate characteristic, rather than as a subcharacteristic of functionality in
the former, while other names have changed slightly to enhance descriptiveness. The
second model in ISO 25010 depicted in Fig. 2.a refers to quality in use and includes
previous ISO 9126-1 quality in use characteristics while adding others. Note that the
effectiveness and satisfaction characteristics from ISO 9126-1 were imported into this
newer standard as subcharacteristics of usability in use, while the productivity has
been renamed as efficiency in use. In addition, flexibility in use has been added to
accommodate different usage contexts including accessibility in use. It is worth
mentioning that the suffix ‘in use’ was added to two characteristics and many
subcharacteristics.

As can be seen from these figures, learnability, an internal/external sub-
characteristic of usability/operability in ISO 9126-1/25010 has not been moved to
usability in use. In addition, ISO 25010 does not include information or content
quality as a characteristic of either model. Recent ISO’s intentions are for data to be
addressed by a complementary standard, namely ISO 25012.

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 221

Fig. 2. a) ISO 25010 Quality in Use Model; b) Adding Learnability in Use into Usability in Use

ISO 25012 is a general data quality model intended to be used to establish data
quality requirements, and plan and perform data quality evaluations. This standard is
intended to be used in conjunction with ISO 25010, but by going to such length to
define quality of data, it loses emphasis in using data as information and as a
component of a WebApp rather than just data as an entity itself. Information quality
as a characteristic was researched by [14] whereby they proposed extending ISO
9126-1 with content quality containing four sub-characteristics including content
accuracy, content suitability, content accessibility, and legal compliance. We adapt
their contribution to the ISO 25010 internal/external quality model as discussed in
Section 3.

Learnability has been removed from the usability characteristic of ISO 9126-1 and
moved to the operability characteristic of ISO 25010 where it is defined as “degree to
which the software product enables users to learn its application” borrowing the
dialogue principles from ISO 9241-110 [10] regarding suitability for learnability.

For WebApps, users are expected to learn intuitively with no user manual.
However, learnability in ISO 25010 is solely a product quality, which does not
incorporate evaluation of the process of learning and does not model learnability in
different real contexts of use such as the domain of the system, and its target users.
Research made by [17] exemplifies the need to examine learning from different user
viewpoints, as learning observed for new users is not necessarily related to continued
learning. Furthermore many researchers have determined learnability to be linked
directly with usability as summarized by Abran [1]. Bevan [3] also noted learnability
in use as part of usability in use.

On the other hand, the term UX is becoming more important as evidenced by the
definitions by various researchers. To understand the term requires breaking down the
word ‘user experience’ and examining first what experience means.

Experience is a general concept which refers both immediately-perceived events
and the wisdom gained in interpretation of events. In the context of UX, it is a
sequence of events over time for a user’s interaction with the software product. [7]

222 P. Lew, L. Olsina, and L. Zhang

notes that the time dimension could be either momentary or accumulated and
changing over time. The ‘moment’ perspective does not exclude the accumulation or
summary perspective, rather, it adds to it like a continuum.

Examining the ‘user’ part of the user experience concept, [7] characterizes a user’s
goals into pragmatic, do goals and hedonic, be goals and assumes the interactive
product quality is perceived in two dimensions, pragmatic and hedonic. Pragmatic
quality refers to the product's perceived ability to support the achievement of tasks
such as paying a bill and focuses on the product’s utility and usability in completing
tasks that are the ‘do-goals’ of the user. Hedonic quality refers to the product's
perceived ability to support the user’s achievement of ‘be-goals’, such as being
happy, or satisfied with a focus on self. He also argues that the fulfillment of be-goals
is the driver of experience and that lack of usability or inability to complete do-goals
may prevent achieving be-goals, but do-goals are not the end goal of the user. Rather
the real goal of the user is “to fulfill be-goals such as being autonomous, competent,
related to others, stimulated, and popular through technology use.” He also states that
pragmatic quality enables achieving hedonic quality be-goals and has no value by
itself, but only through enabling accomplishment of be-goals. In summary, user
experience comes from fulfilling be-goals in the time dimension, at the moment, and
in summation over time.

Given that, it’s easy to see why UX has become such a buzz word regarding
WebApps. Websites and the interactive game industry have combined to change our
expectations of software/WebApps. We not only expect them to work and help us get
our task done, but also expect them to be pleasant to use and provide satisfaction. Yet,
a common standard definition for user experience is still not available. According to
Stewart [18], the next revision of ISO 9241-210 defines UX as ‘all aspects of the
user’s experience when interacting with the product, service, environment or facility’
and that “it is a consequence of the presentation, functionality, system performance,
interactive behavior, and assistive capabilities of the interactive system. It includes all
aspects of usability and desirability of a product, system or service from the user’s
perspective”. Stewart states that usability depicts a narrower concept than user
experience and simply focuses on systems being easy to use. In his words, “Easy to
use is not enough” as exemplified through the IPod’s market dominance through more
than just ease of use.

Satisfaction in use, as noted by Bevan, correlates to Hassenzahl’s hedonic goals
whereas usability in use and its do-goals are related to a user’s pragmatic goals. In
summary, usability in use, satisfaction in use, and user experience, need clearer
relationships in order to model and evaluate them. After a reviewing the related work,
we found possible opportunities for improvement, as we discuss in the next Section.

3 2Q2U Models and Framework: Proposal and Discussion

The aim of the proposed models and framework is twofold: first, adding characteristics
to extend the ISO 25010 standard and; second, add two new concepts, actual usability
and actual UX, to which characteristics and subcharacteristics can be related and new
models created in a flexible way. Regarding the extension of the ISO 25010 standard,
as shown in Figures 1.b and 2.b, we added the following:

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 223

• Information quality, defined as the degree to which the software/WebApp provides
accurate, suitable, accessible and legally compliant information. This new
characteristic becomes part of the internal/external quality model.

• Learnability in use defined as the degree to which specified users can learn
efficiently and effectively while achieving specified goals in a specified context of
use. This new subcharacteristic becomes part of the usability in use characteristic
in the quality in use model.

The ISO 9126-1 standard stated “evaluating product quality in practice requires
characteristics beyond the set at hand”. Hence, the revised ISO 25010 increased the
total number of characteristics from 6 to 8. As software applications continue to
change, we suggest including the above mentioned characteristics accordingly.

Second, regarding the addition of two new concepts, actual usability and UX, we
hereby provide the following definitions:

• Actual Usability: the degree to which specified users can achieve specified goals
with effectiveness in use, efficiency in use, learnability in use, and accessibility in
use in a specified context of use. Note: Actual usability is measured and evaluated
in a real operational environment where real users perform actual specified tasks.

• Actual User Experience: the degree to which specified users can achieve actual
usability, safety, and satisfaction in use in a specified context of use. Note: Actual
UX is evaluated not only by measures and indicators of user performance –as in
actual usability-, but also by means of satisfaction instruments.

Subsections 3.1 through 3.3 further develop the aspects above and then relate them
together in our flexible framework in section 3.4, which models characteristics of
usability in use to bring together the concepts of usability and user experience.

3.1 Adding Information Quality

In our proposal to extend ISO 25010, we assume that the software quality models,
definitions, and concepts in the standard were intended for application to software
products as a whole and therefore are also applicable to WebApps, a type of software
application. Like any software product, building WebApps involves different
development stages, from inception and development to operation and maintenance.
Thus we should be able to use the same ISO internal and external quality and quality
in use models for WebApps with the same eight prescribed quality characteristics
(and their subcharacteristics) for internal and external quality requirements, and the
three characteristics for quality in use requirements, but some other considerations
might be taken into account.

As highlighted elsewhere [5] the very nature of WebApps is a mixture of contents
and functions. Therefore we argue that the eight internal/external quality characteristics
(see Figure 1.a) are not well suited, nor were they intended to specify requirements for
information quality.

We intentionally use the term ‘information’ to differentiate from ‘data’. Data
comes from attribute measurements, facts, formula calculations, etc. and are often
organized and represented in databases. On the other hand, information is the
meaningful interpretation of data for a given purpose and context. Given that a
WebApp is very often content oriented and intended mainly to deliver information,

224 P. Lew, L. Olsina, and L. Zhang

the central issue is the ability to specify the information quality for WebApps from
the internal and external quality viewpoints. This viewpoint is also supported by ISO
9241-110 which relates characteristics of presented information to its dialogue
principles. Therefore, we propose augmenting the internal/external quality model with
the information quality characteristic, with content accuracy, content suitability,
content accessibility, and content legal compliance as subcharacteristics, shown in
Fig. 1b. Definition for each characteristic is done by Olsina et al in [14].

It may be argued that information quality should be added as a quality in use
characteristic. However, it can be evaluated as an internal/external quality characteristic
by measuring its attributes. In addition, when designing tasks for quality in use, for
example for evaluating efficiency and effectiveness in use, content and functions are
embedded in the task design itself rather than as attributes of the software/WebApp.
Satisfaction in use questionnaires can also address information quality with specific
questions related to its sub-characteristics [4].

3.2 Adding Learnability in Use

As mentioned earlier, learnability solely as a product quality does not incorporate
evaluation of the learning process or different usage contexts. More specifically, we
examine learning context to strengthen our reasoning to include learnability in use as
a usability in use subcharacteristic, from the user group type and time viewpoints.

Regarding the former, the learning objectives and therefore behavior of different user
groups have an impact on the learning process as novice users behave differently than
expert users [17]. Ease of learning depends on the user group type and the task being
attempted. As an extreme, a quality requirement characteristic to minimize the necessary
learning time, or to make the learning time equal to zero depends entirely on who the user
is, and what tasks they are trying to do. As another example of how user group types
behave differently based on their background and task at hand, requirements for users who
are trying to re-learn a task can be difficult to model as a product characteristic. Grossman
et al [6] also noted several other user group types including: i) Level of experience with
computers; ii) Level of experience with interface; iii) Level of related domain knowledge;
iv) Experience with similar software. Therefore, the dimension of user group types and its
influence in learnability is of paramount importance.

Regarding the time aspect, learning from different user viewpoints such as initial
learning and continued learning as researched by [17] are not necessarily correlated.
So, measuring the learning of users must be done in the time dimension as the time
delta between initial learning and continued learning has an influence on the
learnability of the software in a real context. Many learnability measures focus on
initial learnability. As Nielsen states: “One simply picks some users who have not
used the system before and measures the time it takes them to reach a specified level
of proficiency in using it” [13]. However, continued learnability requires assessing
performance over time using a constant user group.

Some may argue that effectiveness in use and efficiency in use either combined or
solely, can constitute learnability in use. However, software that is easy to learn is not
always efficient to use and vice versa. A WebApp´s design evaluated highly as part of
the learnability external quality characteristic, may lead to less efficient procedures.

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 225

Learnability therefore depends on the domain of the software, its target users and
tasks at hand. Hence it cannot solely be determined by inspection, as an internal or
external quality characteristic. Bevan also related learnability in use as a sub-
characteristic of usability in use, as discussed in Section 2. Given the aforementioned
reasons, and recalling our definition as “the degree to which specified users can learn
efficiently and effectively while achieving specified goals in a specified context of
use”, we argue that learnability in use should be added to the usability in use
characteristic as a subcharacteristic. Moreover, if we agree on including learnability
in use into the model, we can combine, for instance, the following measurable
attributes [12]:

• Assisted learning time: Time for user from a specific user group type to learn to
complete a specific task in a specified time, plus the amount of instructional
guidance time if needed.

• Relative user learning efficiency: The efficiency of an ordinary user as compared
to an expert measuring the time required to reach a predefined threshold ratio.

Other attributes such as task time deviation, error rate over time, learning efficiency
and so forth can be supplemented and used in conjunction with external attribute
learnability measurements in order to draw relationships between quality in use and
learnability.

3.3 Modeling Actual Usability and User Experience

As mentioned in Section 2, these two concepts are mainly derivatives through the [2,
7] works. In Bevan´s work relating and explaining factors contributing to system
usability and UX he defines 4 characteristics of usability in use: i) Effectiveness and
productivity in use ii) Learnability in use iii) Accessibility in use and iv) Safety in use.
He also matches usability to performance in use measures equivalent to those
characteristics related to the pragmatic ‘to-do’ goals of the end user.

Measures of UX are noted by Bevan as being composed of satisfaction in use as
equivalent to achieving pragmatic and hedonic goals, with its subcharacteristics as
specified by ISO 25010 including pleasure, likability, comfort, and trust. Hassenzahl
further elaborates on hedonic goals as: “fulfilling the human needs for autonomy,
competency, stimulation (self-oriented), relatedness, and popularity (others-oriented)
through interacting with the product or service”. He further states that pragmatic
quality facilitates satisfaction of be-goals. That is, be-goals are not dependent on, but
facilitated by do-goals; i.e. a user could be satisfied even if do-goals are not satisfied.
For example, if a user cannot buy a product online efficiently (slowly with mistakes),
but ends up buying what they like, then they may achieve their be-goals and be very
satisfied.

Thus, achieving UX is influenced through satisfaction of both usability in use
(pragmatic goals) and satisfaction in use (hedonic goals). Ultimately, the actual
usability and UX definitions given in the introduction of Section 3 are based on this
rationale. The above concepts and relationships are shown in Figure 3 and further
explained in the following section in the context of our proposed framework.

226 P. Lew, L. Olsina, and L. Zhang

Fig. 3. Relationships of Quality in Use, Actual Usability, and Actual User Experience

3.4 Specifying and Using the Proposed Framework

Now, given the aforementioned definitions and relationships, our 2Q2U framework
for modeling nonfunctional requirements for internal/external Quality, Quality in use,
actual Usability and User experience can be specified and generalized to flexibly
meet the evaluator needs to represent these calculable concepts. Figure 4 shows a
basic Venn diagram to represent this viewpoint.

Fig. 4. Proposed 2Q2U modeling framework

The particular 2Q2U models can in turn be instantiated relying on the INCAMI
(Information Need, Concept model, Attribute, Metric and Indicator) nonfunctional
requirement specification component. As detailed in by Olsina et al [16], the
InformationNeed allows evaluators to establish the evaluation purpose, user
viewpoint, Entity, focus, and CalculableConcept such as external quality, actual
usability, user experience, among others. As such, our proposed framework can be
used flexibly to generate ConceptModels by choosing CalculableConcepts
(characteristics in the ISO terminology) depending on the specific InformationNeed.
We can then combine Attributes to characteristics or subcharacteristics to fully
instantiate the selected model, resulting in a requirements tree, for further
measurement and evaluation purposes.

2Q2U is in line with the intention of the ISO 25010 standard where tailoring the
model is encouraged for relative importance of characteristics depending on the
situation at hand: “It is not practically possible to measure all internal and external

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 227

…. Similarly it is not usually practical to measure quality in use for all possible user-
task scenarios. The relative importance of quality characteristics will depend on the
product and application domain. So the model should be tailored before use…”

Regarding the above, we just examine –for space reasons- the actual UX model
(subset of quality in use) including our proposed learnability in use subcharacteristic
in the light of our actual usability concept. To this aim, we modeled four
characteristics, namely, efficiency in use, effectiveness in use, learnability in use and
accessibility in use as shown in Fig. 5.

As per our discussion that actual usability is related to satisfying the do goals of
the end user while completing real specified tasks, we include satisfaction in use as
part of actual UX rather than in actual usability. Fig. 5 depicts our model composition
as part of the framework with actual usability and actual user experience as defined
and discussed above.

Fig. 5. Model composition representing Actual Usability and Actual User Experience

Note from Fig. 5 that actual usability is not a prerequisite for actual UX, but rather
has influence as one out of three characteristics. Both concepts involve the temporal
component, not just UX [7] but also actual usability. Note that safety is a quality in use
characteristic defined by ISO 25010 as ”Acceptable levels of risk of harm to people,
business, data, software, property or the environment in the intended contexts of use”.
Satisfaction in use and safety are in italic to denote their hedonic nature. Safety is
depicted as a hedonic characteristic of actual UX because often it contributes to the
user´s emotional needs for security and trust rather than a characteristic which satisfies
a do-goal. Lastly, accessibility in use, defined in ISO 25010 as the ”degree of usability
in use for users with specified disabilities“ is modeled as part of actual usability.

4 Example of Evaluating WebApp Operability

As the contributions mentioned in the Introduction Section, we developed a flexible
modeling framework that uses to a great extent the latest ISO quality models, but also
we have enlarged their models to include new characteristics and concepts, taking into
account other well-known contributions in the discipline. As discussed above, our
outcome is a set of new related models, assembled using the 2Q2U framework, which
ties together well-known terms: quality, usability and user experience. Moreover the
2Q2U framework can be flexibly inserted and used with the so-called INCAMI

228 P. Lew, L. Olsina, and L. Zhang

nonfunctional component. In turn, we can use INCAMI to design the measurement,
evaluation, and analysis.

INCAMI and its methodology have been used in different case studies. Recently,
we performed a practical case by evaluating external quality requirements for a
shopping cart, followed by Web Model Refactoring [15] for improvements. As stated
by ISO 25010, for the end user, quality in use results mainly from functional
suitability, reliability, operability and performance efficiency. Thus, for illustration
purposes, we have applied the same methodology, taking into account the ISO 25010
operability characteristic because subcharacteristics and attributes related to
operability as well as information quality could affect quality in use and usability in
use including not only efficiency in use and effectiveness in use but also learnability in
use. This will be addressed in our future work.

In Table 1, we now examine some of the subcharacteristics of operability, namely,
learnability, ease of use, and helpfulness to measure and evaluate external quality
requirements for software/WebApps. We strive to maintain consistency and
alignment with the ISO 25010 quality models, while recognizing that there are many
possibilities for other dimensions and attributes. In addition, these subcharacteristics
have been modeled for general evaluative purposes for use with all WebApps. Some
attributes associated to subcharacteristics could be more applicable to some domains
than others and therefore receive higher relative weighting.

Table 1. Definition of used operability characteristics, subcharacteristics and attributes

Operability
Characteristics and
Attributes

Definition

1 Learnability Degree to which the software/WebApp enables users to learn its
application.

1.1 Predictability Degree to which the software enables users to predict its
interactions, functionality or content. Note: By being able to predict
the consequences of an action, users can operate the software with
minimal unintended consequences and fewer errors.

1.1.1 Action
determinability

Degree to which the software /WebApp enables the user to predict
what his action will do. Note: For instance, the user can evaluate
potential inputs showing the result before changes are applied.

1.1.2Predictive textual
anchor
information

Degree to which the textual link provides users meaningful anchors
or contextual information in order to help predict the target
destination.

1.2 Feedback
Suitability

Degree to which mechanisms and information regarding the
success, failure or awareness of actions is provided to users to help
them interact with the application. Note: Users need to know what
might happen given the options available. Feedback about system
states relieves users from having to remember these states, thereby
making learning easier.

1.2.1Task Progress
feedback suitability

Degree to which users are made aware of what they are doing for a
specific task, function, or process. Note: For example, display
progress in current process with number of steps completed and
how many remaining to complete the task, or please wait, system is
processing.

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 229

Table 1. (continued)

1.2.2 Navigability
feedback
completeness

Degree to which users are made aware of past, current, and possible
locations while performing a navigation-oriented task.

1.2.3 Entry form
feedback awareness

Degree to which users are made aware of the correctness or
incorrectness of data entries.

1.2.4 Error message
appropriateness

Degree to which meaningful error messages are provided upon
invalid operation so that users know what they did wrong, what
information was missing, or what other options are available. Note:
This also relieves users from learning error recovery methods.

2 Ease of Use
Degree to which the software/WebApp makes it easy for users to
operate and control it.

2.1 Controllability Degree to which users can initiate and control the direction and
pace of the task until task completion.

2.1.1 Permanence of
main controls

Degree to which main controls are consistently available for users
in all appropriate screens.

2.1.2 Stability of main
controls

Degree to which main controls are in the same location in all
appropriate screens.

2.2 Error
Tolerance

Degree to which if, despite input errors, the intended result may be
achieved with either no, or minimal, corrective action by the user.

2.2.1 Invalid Action
Forgiveness

Degree to which users are allowed to attempt invalid actions
without negative consequences.

2.2.2 Error Recovery
Support

Degree to which the software/WebApp provides support for error
recovery. Note: For instance, cursor is automatically positioned at
the location where correction is required.

3 Helpfulness
Degree to which the software product provides help that is easy to
find, comprehensive and effective when users need assistance.

3.1 Help Suitability Degree to which the software/WebApp provides appropriate help
given the users, their experience and context of help when required.

3.1.1 Context-sensitive
help availability

Degree to which the software/WebApp provides context sensitive
help depending on the user profile and goal, and current interaction.

3.1.2 Help
Appropriateness

Degree to which the software/WebApp provides traditional online
help with a structure that is easily readable and searchable. Note:
For example, a top down hierarchy with hyperlinks for more detail
for easier reading, semantic search, and advanced search.

Table 1 shows the selected characteristics, subcharacteristics and attributes (in

italic). The purpose of the evaluation was to understand the external quality level of
the operability characteristic for filling new prescriptions (the evaluated entity) of a
pharmacy WebApp. For confidentiality reasons, we do not disclose the company
name and site, but are closely cooperating with the company to recommend
improvements in case low satisfaction of these requirements were achieved. Table 2
shows an excerpt of the whole current evaluation.

Note in table 2 that for each attribute of the requirement tree has a metric to
quantify it. For example, for Error recovery support attribute (coded 2.2.2), users
should not have to search to find their mistake to correct it. So we designed a direct
metric whose scale specifies four categories considering an ordinal scale type,
namely: (0) None, does not support at all; (1) Partially, sometimes there is support but
not always; (2) Complete support but only partial controllability, and (3) Complete,
always support with complete controllability.

230 P. Lew, L. Olsina, and L. Zhang

Table 2. External quality requirements for new prescription filling for Operability; EI =
Elementary Indicator; P/GI = Partial/Global Indicator

Fig. 6. Screenshot exhibiting error recovery support in a pharmacy prescription WebApp

As can be seen from table 2, its measurement resulted in 3 because it was clear to
the user what the error was and the cursor was automatically placed at the error
location throughout the task. However, the measure by itself does not have meaning
so we must design an elementary indicator to interpret the level of satisfaction met.
Therefore, a new scale transformation and decision criteria for acceptability ranges
needs to be defined. In our study, we used three acceptability ranges in a percentage
scale: a value within 40-70 (marginal –yellow) indicates a need for improvement
actions; a value within 0-40 (unsatisfactory –red) means changes must take place with
high priority; a score within 70-100 indicates a satisfactory level –green- for the
analyzed attribute. Table 2 shows an elementary indicator value of 100% for the 2.2.2
attribute, but for instance resulted in 50% for the 1.1.1 attribute taking into account
that a measure value of 1 mapped to 50%. This attribute would be totally suitable if
the measure is 2. In the current state for the new prescription filling WebApp, users
should not have to guess the results of their actions especially if they are infrequent
users and improvement is needed.

 Quality, Quality in Use, Actual Usability and User Experience as Key Drivers 231

Expanding the analysis as shown in table 2 can enable evaluators to understand the
application’s current external quality state and make recommendations for
improvements. Note that the above model is just a possible instantiation of the
external quality model represented in the 2Q2U framework (recall Figures 1 and 4).
Going forward, we can also use the framework to model characteristics of quality in
use and perform evaluation by extending the above study. By doing this with real
users executing real tasks, we could derive relationships between learnability and
quality in use characteristics such as learnability in use in order to determine how
making improvements at the external quality level can affect quality in use. Regarding
this, characteristics defined for learnability in use in section 3.2 can be measured with
relationships drawn to the external quality learnability characteristics above.

5 Conclusions and Future Work

In this paper, we have developed a framework for modeling Quality, Quality in use,
Usability and User experience (2Q2U) for Web applications, which in turn can be
instantiated by using the INCAMI nonfunctional requirement specification component.
In doing so, we have provided reasoning for and recommendations for adding 2
characteristics to extend the ISO 25010 standard, namely information quality and
learnability in use. We have also characterized and described two new concepts, actual
usability and actual user experience to bring to light their relationships while
demonstrating using the framework.

To illustrate the applicability of the proposed approach, an example of external
quality evaluation has been presented, in which the importance of taking into account
operability was highlighted. 2Q2U offers not only an integrated framework for
modeling requirements for quality, quality in use, actual usability and user
experience, but also a consistent, and flexible way for representing calculable
concepts (characteristics) and subconcepts which can then be used in conjunction with
INCAMI for measurement and evaluation.

Another manuscript will thoroughly discuss the subcharacteristic, learnability in
use covered in Section 3.2, including the further definition of attributes, metrics, and
indicators for user group types performing specific tasks in real environments.
Ongoing research is focused on further utilizing the 2Q2U framework when modeling
and understanding the relationships among internal/external quality, quality in use,
actual usability and UX. This concern has often been neglected in the literature, but
may help evaluators to make sound design recommendations and ultimately better
decision-making for improving the user experience as a whole.

Acknowledgments. Thanks to the support by Nat’l Basic Res. Prog. of China (973
project-2007CB310803) and Nat’l Natural Science Foundation of China (No.
60773155), and PAE-PICT 2188 project at UNLPam, Science and Technology
Agency, Argentina.

References

1. Abran, A., Surya, W., Khelifi, A., Rilling, J., Seffah, A., Robert, F.: Consolidating the ISO
Usability Models. In: 11th annual Int’l Software Quality Management Conference (2003)

2. Bevan, N.: Extending quality in use to provide a framework for usability measurement. In:
Proc. of HCI Int’l 2009, San Diego, California, USA (2009)

232 P. Lew, L. Olsina, and L. Zhang

3. Bevan, N.: Classifying and selecting UX and usability measures. In: Proc. of the 5th
COST294-MAUSE Workshop on Meaningful Measures: Valid Useful User Experience
Measurement (2008)

4. Covella, G., Olsina, L.: Assessing Quality in Use in a Consistent Way. In: ACM
proceedings, Int’l Congress on Web Engineering (ICWE ’06), SF, USA, pp. 1–8 (2006)

5. Ginige, A., Murugesan, S.: Web Engineering: An Introduction. IEEE Multimedia 8(1),
14–18 (2001)

6. Grossman, T., Fitzmaurice, G., Attar, R.: A survey of software learnability: metrics,
methodologies and guidelines. In: Proceedings of the 27th Int’l conference on Human
factors in computing systems, pp. 649–658 (2009)

7. Hassenzahl, M.: User experience (UX): towards an experiential perspective on product
quality, IHM. In: Proc. of the 20th Int’l Conference of the Assoc. Francophone
d’Interaction Homme-Machine, vol. 339, pp. 11–15 (2008)

8. ISO/IEC CD 25010 Software engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Quality model and guide (2009)

9. ISO/IEC 25012 Software engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Data quality model (2008)

10. ISO 9241-110, Ergonomics of human-system interaction, Part 110: Dialogue principles
(2006)

11. ISO/IEC 9126-1. Software Engineering— Software Product Quality—Part 1: Quality
Model (2001)

12. Lew, P., Zhang, L., Wang, S.: Model and Measurement for Web Application Usability
from an End User Perspective. In: Proc. of QAW 2009: 1st Quality Assessment in Web
Workshop held at Int’l Congress on Web Engineering (ICWE ’09), CEUR Workshop
Proceedings, San Sebastian, Spain, vol. 561 (2009) ISSN 1613-0073,
http://ceur-ws.org

13. Nielsen, J., Levy, J.: Measuring usability: preference vs. performance. Comm. of the
ACM 37(4), 66–75 (1994)

14. Olsina, L., Sassano, R., Mich, L.: Towards the Quality of Web 2.0 Applications. In: Proc.
of 8th Int’l Workshop on Web-oriented Software Technology (IWWOST 2009) held at
Int’l Congress on Web Engineering (ICWE09), San Sebastian, Spain, vol. 493, pp. 3–15,
CEUR (ceur-ws.org) (2009) ISSN 1613-0073

15. Olsina, L., Rossi, G., Garrido, A., Distante, D., Canfora, G.: Web Applications Refactoring
and Evaluation: A Quality-Oriented Improvement Approach. Journal of Web
Engineering 4(7), 258–280 (2008)

16. Olsina, L., Papa, F., Molina, H.: How to Measure and Evaluate Web Applications in a
Consistent Way. In: Rossi, Pastor, Schwabe, Olsina (eds.) Springer book: Web
Engineering: Modeling and Implementing Web Applications, ch. 13, pp. 385–420 (2007)

17. Santos, P.J., Badre, A.N.: Discount learnability evaluation. Graphics, Visualization &
Usability Center, Georgia Institute of Technology (1995),
ftp://ftp.gvu.gatech.edu/pub/gvu/tr/1995/95-30.pdf
(accessed by 20/12/2009)

18. Stewart, T.: Usability or user experience - what’s the difference? System concepts (2008),
http://www.usabilitynews.com/news/article4636.asp
(accessed by 20/12/2009)

19. Vaníček, J.: Software and Data Quality. In: Proc. Conference of Agricultural Perspectives
XIV, Czech University of Agriculture in Prague, vol. 52 (3), pp. 138–146 (2005)

Interfaces for Scripting: Making Greasemonkey Scripts
Resilient to Website Upgrades

Oscar Díaz, Cristóbal Arellano, and Jon Iturrioz

ONEKIN Research Group, University of the Basque Country,
San Sebastián, Spain

��������	�
���	�������������������	����	�
��������

���������������	������

Abstract. Thousands of users are streamlining their Web interactions through
user scripts using special weavers such as Greasemonkey. Thousands of pro-
grammers are releasing their scripts in public repositories. Millions of down-
loads prove the success of this approach. So far, most scripts are just a few
lines long. Although the amateurism of this community can partially explain
this fact, it can also stem from the doubt about whether larger efforts will pay
off. The fact that scripts directly access page structure makes scripts fragile to
page upgrades. This brings the nightmare of maintenance, even more daunt-
ing considering the leisure-driven characteristic of this community. On these
grounds, this work introduces interfaces for scripting. Akin to the JavaScript
programming model, Scripting Interfaces are event-based, but rather than being
defined in terms of low-level, user-interface events, Scripting Interfaces abstract
these DOM events into conceptual events. Scripts can now subscribe to or no-
tify of conceptual events in a similar way to what they did before. So-developed
scripts improve their change resilience, portability, readability and easiness to
collaborative development of scripts. This is achieved with no paradigm shift:
programmers keep using native JavaScript mechanisms to handle conceptual
events.

Keywords: Greasemonkey, JavaScript, Maintenance, Web2.0.

1 Introduction

Traditional adaptive techniques permit to adjust websites to the user profile with none
(a.k.a. adaptive techniques) or minimum (a.k.a. adaptable techniques) user intervention
[13]. No design can provide information for every situation, and no designer can include
personalized information for every user. Hence, traditional customization techniques do
not preclude the need for do-it-yourself (DIY) approaches where users themselves can
locally modify websites for their own purposes.

A popular client-based DIY technology is JavaScript, using special plugins such as
Greasemonkey (GM) [1]. A GM script resides locally, and it has a scope, i.e. the web-
sites to be subject to scripting (identified through URL patterns). GM silently watches
whether the current URL matches the URL patterns, and if so, locally executes the
script that leads to on-the-fly changes on the current page. Scripts can be uploaded to

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 233–247, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

234 O. Díaz, C. Arellano, and J. Iturrioz

script repositories such as userscripts.org. With thousands of members and scripts, user-
scripts.org registers hundreds of downloads everyday! These remarkable figures stem
from both the usefulness of scripts created by anyone, and the easiness of installation
(a two-click process). This success evidences how scripting is moving from being a
solitude practice to become a community phenomenon where laymen can enjoy scripts
even if ignorant about JavaScript.

Unfortunately, current scripting practices do not scale up. Scripts directly access
the structure of the page being rendered (i.e. the DOM tree). If the page changes, all
the scripting can fall apart. And the page can change due to either upgrades on the
website or changes made by previously enacted scripts. The problem is that websites
are reckoned to evolve frequently, and the number of simultaneously enacted scripts
tends to increase. This brings the nightmare of maintenance, even more daunting con-
sidering the altruistic, leisure-driven characteristic of many script programmers. Our
base premise is then that the maintenance burden is hindering GM scripters from
becoming a mature community, not so in size but on the complexity of the scripts
available.

On these grounds, this work aims at shielding scripts from changes in the scripted
pages. This implies separating the stable part of the script from the one more exposed
to page changes. The former stands for the “mod logic”, i.e. the code that supports the
additional functionality provided by the script. The unstable part corresponds to code
that weaves this mod logic to the current page, i.e. the code that consults/updates the
scripted page.

We propose to encapsulate the fragile part of current scripts through interfaces. In-
terfaces for scripting encapsulate the current realization of HTML pages in terms of the
concepts these pages convey. Now, scripts can subscribe to conceptual events (rather
than subscribing to low-level, UI events) and notify of conceptual events (rather than
directly modifying the page). This approach does not imply so much a change in the
programming model but in the development methodology. Scripts keep using handlers
but now upon conceptual events rather than UI events. The difference rests on the two-
stage process. A first script implements the interface (so-called Class Script). A second
script supports the mod logic on top of this interface (so-called Mod Script). In this way,
the mod logic is decoupled from the concrete realization of the concepts this logic acts
upon. Page changes only impact the Class Script.

From the perspective of the Mod Script, this approach accounts for change resilience
(i.e. mod scripts are sheltered from changes in the website), readability (i.e. mod scripts
are described in terms of conceptual events rather than HTML scraping), portability (i.e.
mod scripts work for any website providing the same interface), and “collaborativeness”
(i.e. the Class Script and the Mod Script can be developed by different users).

We regard as main contributions of this work, first, the rationales for bringing in-
terfaces into the scripting realm, backed by examples taken from the GM community.
And second, a non-disruptive approach that keeps current scripting practices without
changes in neither the JavaScript Engine nor GM. Although the study is conducted
for Greasemonkey, the approach can be generalized to any other weaver. Readers are
encouraged to download the solution from http://userscripts.org/users/61033.

Interfaces for Scripting 235

The paper begins by stating the problem, i.e. (1) script tight coupling to page ren-
dering and, (2) companion script collision. Section 3 introduces interfaces for script-
ing. Its realization entails the introduction of three types of scripts: Interface Scripts,
Class Scripts and Mod Scripts which are the subject of sections 4, 5 and 6, respectively.
Section 7 revises the approach. Related work and conclusions end the paper.

Fig. 1. Amazon enhanced with the BookBurro script: prices for the current book at other online
bookshops are shown at the top-right side

2 Problem Statement

Greasemonkey (GM) is a Firefox extension that permits end users to install scripts at
the client that make on-the-fly changes to the underlying HTML page structure (a.k.a.
DOM tree) [2]. This is known as a weaver. This work focuses on Greasemonkey as a
weaver for Firefox. Besides Firefox, weavers are available for Internet Explorer (e.g.
IE7Pro or Turnabout), Opera (e.g. User javascript), Safari (e.g. SIMBL + GreaseKit)
and natively supported in Google Chrome.

236 O. Díaz, C. Arellano, and J. Iturrioz

Table 1. Rationales for upgrading BookBurro
along a year period. (source: changelog in Book-
Burro script)

Reason Times

Perfective maintenace 22

Adding new bookshops 18

Upgrades on bookshop websites 3

Remove sites 1

Corrective maintenance 13

Centralize scraping data 1

Bugfix 3

Improve code understandability 2

Improve UI 5

Add extra functionality (AJAX, caching) 2

Adaptive maintenance 4

Weaver-based no backward compatibility 3

Port to other browser weavers 1

Weavers permit scripts to act upon
Web pages at runtime. Pages are per-
ceived as DOM trees1. The script is
triggered by User Interface events (UI
events) on this DOM tree (e.g. load,
click). Event payloads provide the data
that feed script handlers which in turn,
update the DOM tree. Scripts are writ-
ten in JavaScript. For instance, a popular
script, BookBurro2, embeds price com-
parison in amazon.com web pages. On
loading, the script retrieves the book’s
ISBN being rendered, and next, embeds a
panel with the price of this book at other
online bookshops, e.g. Buy, BN, Powell,
Half, etc (see Figure 1). At install-time,
scripts are associated with URL patterns
that denote the pages to which the script
applies. You can keep the script for your-
self or upload it into a script repository
(e.g. userscripts.org) for others to down-
load. BookBurro, with more than 18,684
downloads, illustrates this ripple benefit.

Millions of downloads and thousands of uploads at userscripts.org provide anecdotal
evidence of the profound impact that user scripting is having on a large number of users.
Unfortunately, this practice is being hindered by maintenance burdens.

Next subsections provide two real scenarios where BookBurro is confronted with
changes in either the scripted pages or the companion scripts. These scenarios are far
from being just an academic exercise but they reflect similar settings as those faced
up by BookBurro during its lifetime. Indeed, we examined the 18 different versions of
BookBurro to assess the main reasons for the upgrades. Table 1 depicts the findings.

2.1 Upgrades on Scripted Pages

BookBurro embeds price comparison in amazon.com web pages from distinct online
bookshops. The script is outlined in Figure 2 (left side). The process goes as follows:

– interacting with a page triggers UI events (e.g. load),
– the script can react to this event by triggering a handle (e.g. “init”, line 20). The

association between event and handler (a.k.a. event listener) are achieved through
the addEventListener() function (line 35),

1 The Document Object Model (DOM) is a platform- and language-independent standard object
model for representing HTML or XML documents as well as an Application Programming
Interface (API) for querying, traversing and manipulating such documents.

2 BookBurro is available at http://userscripts.org/scripts/source/1859.user.js

Interfaces for Scripting 237

Fig. 2. Two versions of the BookBurro script: traditional (left side) vs. interface-aware (right side)

– a handler can access any node of the page (using DOM functions such as “doc-
ument.evaluate()” in lines 22-26), and create HTML fragments (e.g. bookBur-
roPanel in lines 11-18),

– a handler can also change the DOM structure at wish by injecting HTML frag-
ments. In the example, a bookBurroPanel is injected at a point identified by an
XPath expression on the underlying DOM structure (i.e. the injection point). A
DOM functions are used for this purpose (e.g. “document.body.appendChild
(bookBurroPanel)” in line 32).

Scripts can do any change on the underlying page. But this freedom has a downside:
makes the script bound to the actual page structure. If Amazon website is upgraded, all
the scripting can fall apart. Back to our sample case, BookBurro first needs to retrieve
the book’s ISBN from the current page, and next, injects the bookBurroPanel at a cer-
tain location. This is normally achieved through XPath expressions (line 23-24). If the
underlying page changes, XPath expressions could no longer recover/identify the right
DOM portion which could make BookBurro stop working properly.

Recovering from these failures can be classified as perfective maintenance. For Book-
Burro, this accounts for 22 changes (see Table 1). This includes not only upgrades on
consulted pages but also the need for BookBurro to run in bookshops other than Ama-
zon (see user discussion thread at http://userscripts.org/topics/15357). These changes
are not always straightforward which leads to delays on meeting these petitions by
BookBurro programmers, more to the point if we consider that most programmers tend
to do it altruistically. The problem is that websites are reckoned to evolve frequently,
and programmers might not have the time to keep the script updated.

238 O. Díaz, C. Arellano, and J. Iturrioz

2.2 Changes in Companion Scripts

Scripts and scripted pages can exhibit an M:N relationship: a script can be applied to
different pages, and a page can be the target of distinct scripts. BookBurro illustrates
the first case where the very same script provides its mod (i.e. the bookBurroPanel)
to different websites (e.g. Amazon, Buy, BN...). But, these websites can also be the
substrate for other scripts. Amazon is a case in point. At the time of this writing, 261
scripts are reported to be available for Amazon at userscripts.org. If you are a regular
Amazon visitor, it would be more than likely you have different scripts installed. These
scripts (i.e. the companion set) will be enacted simultaneously when you visit Amazon.
It is important to notice that script enactment is not in parallel but in sequence, i.e.
scripts are launched in the order in which they were installed. This implies that the first
script acts on the raw DOM tree, the second script consults the DOM once updated by
the first script, and so on.

The problem is that programmers develop scripts from the raw DOM, being unaware
of changes conducted by other companion scripts. This can end up in a real nightmare
where code developed by different authors with different aims, is mixed up together
with unforeseen results. Even worse, the final DOM tree can even be dependent on the
order in which scripts are intermingled! This is not unusual for popular websites that
enjoy a large set of scripts. The larger the set of (companion) scripts installed, the higher
the likelihood of clashed. And the number of scripts available is steadily increasing
which will likely lead to an increase in the number of scripts in each user installation.
We then perceive “this DOM-based interaction model” as a main stumbling block for
scripting to scale up. As learnt from previous experiences in Software Engineering,
the approach is to abstract the way scripts are developed by moving away from “the
implementation platform” (basically, the DOM document, and the UI events) to a more
abstract platform. This is the aim of the interfaces for scripting.

3 The Big Picture

So far, scripts act directly upon DOM trees. We strive to abstract away from the DOM
tree and the UI events through Scripting Interfaces. Interface reckons to hide “design
decisions in a computer program that are most likely to change, thus protecting other
parts of the program from change if the design decision is changed” [12]. Scripting
Interfaces aim at shielding scripts from layout/presentation decisions “that are likely to
change” in current HTML pages.

Scripting Interfaces characterise pages in terms of the concepts these pages con-
vey, hiding the circumstantial representation of these concepts in HTML. For instance,
“Bookmark” could be a concept for del.icio.us, “Book” for amazon.com, “Article” for
acm.org, etc. Now, scripts do no longer access directly the DOM tree but through the
interface: you can subscribe to loadBook (rather than the DOM event, load) and obtain
book data through the event payload rather than scraping the DOM tree; you can pub-
lish the event appendChildBook to add an HTML fragment as a child of a Book (rather
than using an XPath expression). The right side of Figure 2 shows the BookBurro script
but now supported through a Scripting Interface. The mod logic is the same (lines 11-
18). Differences rest on (1) page scraping being substituted by event payload recovering

Interfaces for Scripting 239

(lines 22-23) and (2), injection points described by the point where a conceptual event
occurred (lines 27-31) rather than an XPath expression.

Fig. 3. The Problem Space

Figure 3 outlines the main notions of
the problem space (in bold). “User-
Scripts” act upon “BaseWebsites” but
rather than accessing websites directly,
scripts are now specified in terms of
a “ScriptingInterface”. Programming
languages clearly distinguish between
the interface and the realization of this
interface (a.k.a. class). Likewise, Script-
ing Interfaces are implemented through
“ScriptingClasses” which implement
interfaces based on websites.

How are Scripting Interfaces de-
scribed? Interfaces are commonly speci-
fied in terms of operations defined upon data types. However, JavaScript favours event-
based programming, i.e. listeners are associated to UI events. Unlike operations, listen-
ers are not explicitly called but triggered when the associated event occurs. Akin to the
JavaScript approach, Scripting Interfaces are to be described in terms of events rather
than operations, but they will act upon concepts rather than DOM nodes.

A (scripting) concept is a data compound whose rendering is liable to be enhanced
as a unit. This approach resembles that of microformats [10] (e.g. hCalendar). How-
ever, there exist two main differences. First, microformats are designed to be widely
applicable, i.e., they are targeted at general-purpose agents. By contrast, scripting is
website-specific, i.e. each website can have its own concepts. Second, microformats are
server-based, i.e. they are annotated by the site owner. Conversely, scripting is client-
based, i.e. it is up to the scripter to decide which the concepts of interest are. While
microformats aim at re-using existing HTML tags to convey metadata, “scripting con-
cepts” can be website-specific.

Additionally, components distinguish between the provided and the required inter-
faces to differentiate between services facilitated or necessitated by the component,
respectively. Likewise, a Scripting Interface encapsulates a DOM tree, and offers a
set of services to “read” and to “write” this DOM tree. From the interface perspec-
tive, the “read” part realizes the required interface as the set of events the interface
realization just signals but leaves to scripts their processing (a.k.a. Publishing Events).
This basically implies abstracting away from UI events (i.e. those rised when manip-
ulating HTML elements) to conceptual events (i.e. those signalled when acting upon
concepts). For instance, amazon.com can publish events on book loading (e.g. load-
Book). Scripts can now subscribe to loadBook rather than listening to the UI event,
load. From this perspective, Publishing Events are to concepts what UI events are to
DOM nodes: means to operate on the underlying structure. But while DOM nodes
are implementation-dependant, concepts are design notions, more stable under website
upgrades.

240 O. Díaz, C. Arellano, and J. Iturrioz

Fig. 4. The bookInterface script

As for the “write” part, scripts
directly modify the DOM struc-
ture, coupling the script to the
current page implementation.
This coupling is now eliminated
by identifying the place to be
modified in terms of concept
occurrences rather than through
DOM nodes: the Processing
Events. Processing Events are to
concepts what DOM operations
are to DOM nodes: means to
operate on the underlying
structure. For instance, Figure 2
(right side) shows the new ver-
sion of BookBurro. Now, the lo-
cation to place the BookBurro
panel is specified in terms
of event dispatching: append-

ChildBook (line 31). It is up to the Scripting Interface to map this event to the specific
physical location (i.e. DOM node). From this perspective, Processing Events are the
means to operate on the encapsulated realization of concepts. Processing events then
realize the provided interface3.

So far, the main notions of the problem space have been introduced. Next, we move
to the solution space by addressing how previous concerns are engineered. Our main
requirement is non-disruptiveness from current practices. The implications are twofold:

– from a programmer perspective, this implies Mod Scripts to be developed in a sim-
ilar way to traditional scripts. This entails native JavaScript mechanisms to be used
to notify/subscribe conceptual events,

– from the user perspective (i.e. users who install scripts), non-disruptiveness implies
minimum diverge with current practices for script installation.

As a result, our proposal is uniquely based on traditional GM scripts where no plugin for
neither Firefox nor Greasemonkey is required. Specifically, three types of GM scripts
are introduced: Interface Scripts, which specify the interfaces; Class Scripts, which
implement interfaces for a given base websites, and finally, Mod Scripts which built
the mod logic on top of an interface. Next sections delve into the details.

4 Interface Scripts

Interfaces for scripting are specified through Interface Scripts using JSON (JavaScript
Object Notation). JSON is a text format which is less verbose than XML, and whose

3 The terminology of “processing events” and “publishing events” is widely used for event-based
components such as portlets [9].

Interfaces for Scripting 241

syntax is familiar to JavaScript programmers [3]. JSON document structure can be con-
strained through a JSON Schema specification [4] (much like what XML Schema provides
for XML). An interface is a collection of “ScriptingConcepts”, “PublishingEvents” and
“ProcessingEvents” instances (see Figure 4 for an example).

Concepts have a conceptId and a set of attributes. Each attribute has an attributeId, a
type and other features that constraint the set of possible values (e.g. min, max, pattern,
etc). The sample case includes Book as a concept with four attributes: title, author, isbn
and price,

Publishing Events are described through (1) the event payload, (2) when the event
arises and (3), whether it can be cancelled or not. The event payload i.e. the type of
parameter the event conveys (“payloadType” property), corresponds to one of the in-
terface’s Concepts. This concept is communicated at loading time, mouseover time, etc
as specify by the “uiEventType” property whose values are taken from the W3C’s DOM
Level 2 Events specification [5]. Finally, the “cancelable” property mimics the name-
sake property available for JavaScript events whereby an event is liable to be called off
by a handler so that the occurrence is no longer propagated to other handlers. The book-
Interface exhibits loadBook as a publishing event to be raised when a page containing
a Book is loaded,

Processing Events are specified through (1) the event payload and (2), how the
signalled event is going to be processed. Processing Events carry a piece of HTML
markup, i.e. its payload type is described along the W3C’s DOM Level 2 HTML and
Style specification [5] (e.g. HTMLParagraphElement). In this way, the Scripting In-
terface can restrict the type of the markup to be injected to those that can be safely
injected (e.g. if the concept is realized through an HTMLTableElement <table>, only
HTMLTableRowElement <tr> could be permitted). As for the processing mode, it spec-
ifies what is affected (i.e. the “targetConcept” property), and how is affected (i.e. the
“operationType” property). The latter through a reference to the W3C’s DOM Level
2 Core operations [5] (e.g. appendChild). The bookInterface provides an example: ap-
pendChildBook is raised when HTMLDivElement fragments are to be added as children
of a Book concept.

Interface Scripts just contain the description of an interface. Additionally, they can
be uploaded into script repositories so that a URL is generated. For instance, book-
Interface can be found at userscripts.org where the following URL was generated:
http://userscripts.org/scripts/source/60315.user.js . This is important for others to uni-
vocally refer to this script, e.g. Class Scripts.

5 Class Scripts

A Class Script implements an interface based on a specific website. A Class Script
contains mappings that indicate how interface concepts are obtained from the circum-
stantial representation of those concepts in a concrete website. Figure 5 shows the
bookAmazonClass script that implements the bookInterface for the Amazon website
along the following characteristics:

242 O. Díaz, C. Arellano, and J. Iturrioz

Fig. 5. The bookAmazonClass script

– “baseWebsite”, which holds a URL expression for the base website (e.g.
www.amazon.com/*) 4,

– “implements”, which keeps the URL of the Interface Script whose interface is
being realized. This URL is obtained from userscripts.org (see later),

– “scrapers”, which contains a tripplet <scrapedConcept, expression,
attributeScrapers> that indicates that scrapedConcept is to be located by applying
the expression to the baseWebsite page, and its properties obtained by applying at-
tributeScrapers. The latter is a set of pairs (attribute,expression) that denotes that
attribute can be obtained by applying expression on the baseWebsite page. Expres-
sions can be either functions or XPath expressions. In the latter case, XPath expres-
sions for attributes are relative to the location of the concept. In the example, XPath
is used to identify “title” and “author” while JavaScript functions are needed to
extract “isbn” and “price”. It is worth noticing, how the function to extract the
ISBN coincides with the one embedded in the traditional script of Figure 2 (left
side, lines 22-28).

Greasemonkey allows for scripts to have require dependencies (specified through the
@require comment tag). At install-time, Greasemonkey will download and keep a lo-
cally cached copy of the required files. This facility is used for Interface Scripts to be
simultaneously downloaded with the installation of the Class Scripts so that consumers
of Class Scripts do not have to install the interface separately. Figure 5 shows this

4 This URL expression should coincide with the one specified at the time the Class Script is
installed.

Interfaces for Scripting 243

dependency through the @require tag in line 45. Also, this facility is used to import the
library that manages conceptual events and initializes the environment. This library is
shared among all Class Scripts and its description is omitted due to paper length restric-
tions. Finally, the registerScriptingClass instruction (line 29), which is defined inside
this library, makes the environment aware of this class.

Class Scripts can be uploaded to userscripts.org and installed as traditional scripts.
Once a Class Script is successfully installed, the environment will generate conceptual
events in the very same way that traditional UI events (see later). Now, it is the turn of
Mod Scripts to capitalize on these conceptual events.

6 Mod Scripts

This section addresses the definition of scripts based on conceptual events. Native
JavaScript mechanism is used to notify/subscribe conceptual events with no variations
w.r.t. traditional script development. This is the most important characteristic to ensure
non-disruptiveness with current JavaScript practices.

Notification of Processing Events. JavaScript follows an event-based approach where
listeners can be associated with DOM-based events. An event is a happening of in-
terest. Event types include: MouseEventTypes (e.g. click, mouseover, mousemove...),
UIEventTypes (e.g. DOMFocusIn, DOMFocusOut and DOMActivate), MutationEvent-
Types (e.g. DOMSubtreeModified, DOMNodeInserted) and
HTMLEventTypes (e.g. load, change). Operations are available for creation of event oc-
currences (e.g. createEvent("MouseEvents")), assigning the payload to an occurrence
(e.g. initMouseEvent("eventInstance", “eventParameters”)), or raising the event manu-
ally (e.g. dispatchEvent(eventOccurrence)). The following code simulates a click on a
checkbox:

var ev=document . c r e a t e E v e n t (�������������) ;
var cb=document . ge tE lementById (������� �) ;
e v t . i n i t M o u s e E v e n t (���	��� , true , true , window , 0 , 0 , 0 , 0 ,

0 , f a l s e , f a l s e , f a l s e , f a l s e , 0 , n u l l) ;
cb . d i s p a t c h E v e n t (ev) ;

The snippet illustrates the pattern for dispatching an event occurrence: [createEvent,
obtain DOM node, initMouseEvent, dispatchEvent on this node]. This is standard
JavaScript code.

Conceptual events mimic this pattern. Back to our running example, a bookBur-
roPanel (i.e. an HTML fragment) is to be injected as a child of a Book. For this case,
the pattern goes as follows: [createEvent, obtain concept, initProcessingEvents, dis-
patchEvent on this concept]. The code follows (the complete script can be found at
Figure 2):

var ev=document . c r e a t e E v e n t (�!������	�������� �) ;
var book = loadBookOcc . c u r r e n t T a r g e t ;

5 This @require tag is only read at install-time, and the remote file is not monitored for changes.
Class Scripts are not aware of changes made to interfaces once installed.

244 O. Díaz, C. Arellano, and J. Iturrioz

e v t . i n i t P r o c e s s i n g E v e n t (�������"�	��#��� � , book ,
bookBur roP ane l) ;

doc . d i s p a t c h E v e n t (ev) ;

The only difference with traditional scripting is that now injection points are not
DOM nodes but the current concept. This current concept is to be obtained through
Publishing Events.

Subscription to Publishing Events. JavaScript achieves event subscription by regis-
tering a listener through the addEventListener method. An example follows:

f u n c t i o n i n i t (. . .) { . . . }
var cb=document . ge tE lementById (������� �) ;
cb . a d d E v e n t L i s t e n e r (���	��� , i n i t , t rue) ;

This code associates the script function init() with the occurrence of clicks on a
checkbox node (a.k.a. the event target). From then on, a click on a checkbox will cause
init() to be enacted. Since most JavaScript events are UI events, event occurrences are
generated while the user interacts with the interface, raised by the JavaScript Engine,
and captured and processed through script functions.

Subscription to conceptual events is accomplished in the very same way: associ-
ating a listener. For instance, instruction (line 35 in Figure 2 (right side)) “doc.add
EventListener("loadBook",init,true)” adds a listener to the loadBook event, i.e. occur-
rences of loadBook will trigger the init() function. The difference rests on listeners
being associated to the whole document (i.e. variable doc) rather than to DOM nodes
(e.g. a checkbox). This highlights the fact of events happening on a document of books
rather than on DOM nodes that are the circumstantial representation of these books.

7 Discussion

Change resilience. We advocate for traditional scripts to decouple the stable part (i.e.
the mod logic which is realized through Mod Scripts) from the unstable part (i.e. the
logic that reads/writes the DOM which is supported through Class Scripts). In so do-
ing, website upgrades will only impact Class Scripts. Mod Scripts are sheltered from
the circumstantial realization of concepts in the website. For example, if Amazon de-
cides to add more product details (e.g. other online bookshops include the book format:
“printed” or “electronic”), bookAmazonClass needs to be rewritten but the BookBurro
script itself is preserved. More to the point, the extreme change is moving to a differ-
ent site altogether. For instance, BookBurro is initially thought to work upon Amazon.
However, it can be made available for your favourite on-line bookshop as long as appro-
priate Class Script realizing bookInterface are provided for the target bookshop. This
can be regarded as improving the portability of the script.

Script interferences. Companion scripts refer to those scripts that are simul-
taneously executed, then acting upon the very same DOM tree. The problem is that
programmers develop scripts from the raw DOM, being unaware of changes conducted
by other companion scripts. So far, scripts are enacted sequentially based on the time
they were installed. This implies changes made by the first script to be visible to ulterior

Interfaces for Scripting 245

scripts. Two types of dependencies arise: read dependency (a script can accidentally
read data written by a previous script), and write dependency (the injection point can
be displaced by the writing of a node made by a previous script). As a result, the very
same set of scripts can deliver different outcomes depending on the time they were
installed.

Scripting Interfaces alleviate these problems. Read dependencies are obviated by
making script changes transparent to other scripts. Scripts can only access the raw
DOM, i.e. the DOM sent by the web server, previous to being updated by the scripts.
Implementation wise, this is achieved by imposing Class Scripts (i.e. those accessing
the DOM) to be executed before any Mod Script (i.e. those updating the DOM). Since
Class Scripts are the first to be executed, the raw data is first captured as event payloads.
Then, Mod Scripts take their data from these payloads. Therefore, there is no risk of a
Mod Script reading data introduced by other Mod Script.

As for write dependencies, they are avoided by describing the writing point (i.e.
the injection point) in terms of concepts (e.g. the location where a book is rendered)
rather than directly addressing the DOM nodes. The injection point becomes logical
rather than physical. If two appendChild scripts acts upon the very same concept, the
“interference” is only noticeable in the order in which the children are rendered.

Readability. Both subscription and notification of conceptual events is easier to un-
derstand that their code counterparts (i.e. HTML scraping with XPath expressions).
Additionally, both Interface Scripts and Class Scripts are JSON structures, hence, more
declarative than JavaScript code. Besides improving legibility, this makes scripts liable
to be automatically generated and processed. Indeed, Class Scripts can be automatically
obtained using MashMaker’s data extractors [7] where XPath expressions are easily ob-
tained by directly clicking on the page rendering (see section on related work).

Collaborative development. Compared with traditional practices, this proposal makes
explicit a three-stage process during script development: interface definition, interface
realization and mod-logic implementation. At first glance, this could look cumbersome
compared with current practices where a unique script is needed. This additional effort
can payoff in the following scenarios: the website suffers frequent updates, the very
same mod logic is reused for distinct websites, or the page scraping part is complex
enough to advice for separation of concerns. Additionally, this separation of concerns
promotes collaborative development of scripts. For instance, a community interested in
a certain topic (e.g. book price comparison) can provide interfaces that isolate this topic
from its realization in distinct websites and then, releases Class Scripts for other pro-
grammers to capitalize upon (e.g. through userscripts.org). This resembles the genesis
of microformats where microformat tags are first introduced, and later, become ad-hoc
standards as the rest of the community adopts them.

8 Related Work: Scraping, Scripting, Mashuping

Web scraping is the process of automatically converting Web resources into a specific
structured format. For instance, Piggy Bank is a plugin for Web browsers that “lets Web

246 O. Díaz, C. Arellano, and J. Iturrioz

users extract individual information items from within Web pages and save them in
Semantic Web format” [8]. Both the extraction technique and the target format serve to
characterize scripting tools [11].

Mashuping overcomes scraping by addressing not only data extraction but also how
this data is combined in novel ways [14]. For the purpose of this work, mashup ap-
proaches can be classified as compositional and “customizational” based on the role
played by the source applications. Compositional approaches are akin to integration
efforts to built new applications out of existing resources. This is, most mashup ex-
amples aggregate data coming from different sources to conform a new application in
its own right, detached from the source websites. Yahoo Pipes is a case in point [6].
By contrast, “customizational” approaches focus on a given application which is then
leverage using mashups. The mashup can only be understood that by referring to the
customized website. MashMaker is one of the few examples. According to its authors,
MashMaker augments “the familiar web browsing interface that the user already uses
to browse data, and enhances this with mashed up information” [7].

Scripting aligns with customizational mashup efforts. Greasemonkey scripts also act
within the realm of Web pages. The difference stems for the target audiences. Mash-
Maker is oriented towards end users. Do-it-yourself is a main tenant of the mashup
movement. The downside is expressiveness. MashMaker amendments can only occur at
the time the page is load. By contrast, scripts can be attached to any DOM event. Mash-
Maker amendments tend to be gadgets as reusable components which end users can eas-
ily plug into the target application. By contrast, scripts can attach any HTML fragment
where deletions are also possible (e.g. removing banners). Basically, any MashMaker
amendment can be achieved through scripting but not the other way around. Notice
however, that the very same amendment that takes some few minutes to complete in
MashMaker, could become a lengthy scripting effort6.

This also supports the rationale for this work, i.e. Scripting Interface as the means
to preserve the costly development of scripts. Indeed, our work strives to detach scripts
from the underlying Web pages. Events are the means to realize both data extraction
(i.e. publishing events) and data injection (i.e. processing events). By contrast, loose
coupling is not a priority in MashMaker. MashMaker couples data extractors (i.e. the
counterpart of Class Scripts) and gadgets (i.e. the counterpart of the Mod Script). The
data is extracted as a raw structure which should coincide with the parameters of the
gadget to be plugged. In practice, this implies that each gadget has its own data extrac-
tor. More to the point, the location where the gadget is to be injected is limited to the
place the data is extracted. This is in contrast to Scripting Interfaces where the very
same Mod Script can inject its output at different locations raising distinct Processing
events.

Is it possible to obtain the best of both worlds, i.e. the easiness of MashMaker and
the flexibility of scripting? As an attempt, we were able to obtain Class Scripts out
of MashMaker data extractors. This permits Greasemonkey programmers to resort to
MashMaker to obtain their Class Scripts, and move down to JavaScript to code their
own amendments without being limited to reusing existing MashMaker widgets.

6 Of course, if you have to program your own MashMaker gadgets then this is a complete
different matter.

Interfaces for Scripting 247

9 Conclusions

This work introduces interfaces for scripting to shelter user scripts from changes in
the underlying Web pages. These interfaces are realised through standard scripts that
generate conceptual events from UI events. The approach is aligned to JavaScript prac-
tices (event-based) and supported through standard Greasemonkey scripts. No plugin
is required. Preliminary experiments suggest that this approach does not convey main
disruptions for programmers while improving both change resilience and readability of
scripts. The presumption is that improving change resilience will lead to greater user
implication and more sophisticated scripts.

Next follow-ons include how to engineer sites to be more user-script friendly, with
the possibility of providing the class/interface part directly from the site. At this re-
gard, the possibility of automatically generating the class/interface parts using widget-
ing tools such as MashMaker, has so far being very encouraging.

Acknowledgements. This work is co-supported by the Spanish Ministry of Education,
and the European Social Fund under contract TIN2008-06507-C02-01/TIN (MODE-
LINE), and the Avanza I+D initiative of the Ministry of Industry, Tourism and Com-
merce under contract TSI-020100-2008-415.

References

1. Greasemonkey Homepage, ��������������������������
2. Greasemonkey in Wikipedia, �����������	�	���	�������	�	�$�����%����&
3. JSON (JavaScript Object Notation),����������������
4. JSON Schema, �����������'����%������
5. W3C DOM Level 2, ������������(�����)*��)*�+,-��%.
6. Yahoo Pipes, ��������	����&�������%��	����
7. Ennals, R., Brewer, E.A., Garofalakis, M.N., Shadle, M., Gandhi, P.: Intel Mash Maker: join

the web. SIGMOD Record (2007)
8. Huynh, D., Mazzocchi, S., Karger, D.R.: Piggy Bank: Experience the Semantic Web Inside

Your Web Browser. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 413–430. Springer, Heidelberg (2005)

9. Java Community Process (JCP). JSR 168: Portlet Specification Version 1.0 (2003),
������������������������������	�/	�0123

10. Khare, R., Çelik, T.: Microformats: a pragmatic path to the semantic web. In: The 15th Inter-
national Conference on World Wide Web (2007)

11. Kushmerick, N.: Languages for Web Data Extraction. In: Encyclopedia of Database Systems,
p. 1595. Springer, Heidelberg (2009)

12. Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules. Commu-
nications of the ACM 15, 1053–1058 (1972)

13. Magoulas, G.D., Chen, S.Y.(eds.): Adaptable and Adaptive Hypermedia Systems. IRM Press
(2005)

14. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE
Internet Computing 12, 44–52 (2008)

http://www.greasespot.net/
http://en.wikipedia.org/wiki/Greasemonkey
http://json.org/
http://json-schema.org/
http://www.w3.org/DOM/DOMTR#dom2
http://pipes.yahoo.com/pipes/
http://www.jcp.org/en/jsr/detail?id=168

Context-Aware Interaction Approach to Handle
Users Local Contexts in Web 2.0

Mohanad Al-Jabari1,�, Michael Mrissa2, and Philippe Thiran1

1 PReCISE Research Center, University of Namur, Belgium
2 Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract. Users sharing and authoring of Web contents via different
Web sites is the main idea of the Web 2.0. However, Web users belong to
different communities and follow their own semantics (referred to as local
contexts) to represent and interpret Web contents. Therefore, they en-
counter discrepancies when they have to interpret Web contents authored
by different persons. This paper proposes a context-aware interaction ap-
proach that helps Web authors annotate Web contents with their local
context information, so that it becomes possible for Web browsers to
personalize these contents according to different users’ local contexts.

1 Introduction

Web users usually belong to different communities and follow their local contexts
for representing and interpreting Web contents. A local context (or context, for
short) refers to the shared knowledge of a community such as a common language
and common local notations and conventions (keyboard configurations, character
sets, and notational standards for measure units, time, dates, durations, phys-
ical quantities, prices [3,4,14]. As a consequence, the same real world concepts
might be represented and interpreted in different ways by different Web authors
and readers. Such concepts are referred to in the following as Context-Sensitive
Contents, or CSCs). For example, the concept of price could be represented
using different currencies (e.g., Euro, US Dollar) and according to different price
formats. Also, date and time concepts could be represented using different time
zones and according to different formats. This situation leads to several discrep-
ancies Web readers encounter on the Web, as they (need to) follow their contexts
to interpret these CSCs.

Recently, the Web 2.0 has revolutionized the way information is designed
and accessed over the internet. In our previous work [2], we advocated that the
heart idea of the Web 2.0 lies into sharing and authoring of Web contents via
different Web users and sites. Also, we illustrated a set of use cases that Web
2.0 sites/services provide. Indeed, Web 2.0 sites enable users not only brows-
ing the Web but also creating and updating Web contents (i.e., they can act
� Supported in part by the Programme for Palestinian European Academic Coopera-

tion in Education (PEACE).

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 248–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Context-Aware Interaction Approach to Handle Users Local Contexts 249

as Web authors). Several authors can author and update the same Web contents
(e.g., wiki). In addition, Web 2.0 sites/services can aggregate Web contents from
several sites and display them as a single Web page. Contents aggregation may
happen both on client-side (e.g., using RSS) or on server-side (e.g., blogs’ aggre-
gations on sites like Technorati). Therefore, we concluded that Web contents in
a single Web page are represented according to several authors’ contexts, and
the discrepancies Web readers encounter increase accordingly.

One possible solution is to annotate CSCs with semantic metadata (i.e., au-
thors’ contexts), so that it becomes feasible for Web browsers to adapt the former
to different users’ contexts [6,10]. This paper proposes a context-aware approach
to resolve the discrepancies Web users encounter when they interact with Web
2.0 sites. This approach is an extension to our previous work [2,3] and consists
of: (1) an evaluation of several design alternatives to adapt CSCs to different
users’ contexts; (2) a model that describes how CSCs are annotated with con-
text information; (3) a context-aware architecture that shows how our approach
works seamlessly with Web technologies; and (4) an annotation process that
details how Web authors are assisted to specify their contexts and to annotate
CSCs with a suitable context information.

The rest of the paper is structured as follows. Section 2 introduces a moti-
vating example and evaluates the design alternatives. Section 3 summarizes a
semantic model proposed in [3] to represent CSCs together with context in-
formation. Section 4 illustrates the annotation of CSCs based on the semantic
model. Section 5 presents our proposed architecture and Section 6 details the
annotation process. Section 7 introduces a prototype as a proof-of-concept. Sec-
tion 8 discusses related work, and Section 9 concludes the paper.

2 Motivation and Design Alternatives

2.1 Motivating Example

This section presents an example to illustrate the discrepancies that Web users
could encounter when they interact with Web 2.0 sites, as shown in Figure 1.
This example considers several authors and readers from different communities.
Also, it considers several tasks (i.e., T1-T7) performed on different Web 2.0 pages
in sequential manner as follows:

– A British author creates and publishes a length and a date contents on
page A (T1). After that, an American author browses the contents of page
A (T2), and then updates the date content created by the British author
to 07/09/2009 and publishes it again (T3).

– A Canadian author (from French speaking community) browses the contents
of page B and deletes the date content 2009-09-11 (T4). We consider the
page B’s contents were created by this author. Next, the length and date
contents from pages A and B are aggregated to page C (T5).

– An Italian reader browses the date contents that are automatically aggre-
gated, via RSS engine, from pages A and B (T6). Finally, a French reader
browses the date and length contents that are aggregated to the page C (T7).

250 M. Al-Jabari, M. Mrissa, and P. Thiran

W
eb

 2
.0

 si
te

s
U

se
rs

’ A
pp

lic
at

io
ns

HasHasHas

Semantic Discripancies

U
se

rs
’ L

oc
al

 C
on

te
xt

s

Length(Unit, Format)
Date(TimeZone, Format)

5,678.90 mi
07/09/2009

. . . A

Updates
(T3)

Has

5,678.90 mi
07/08/2009

. . . A

Browses
(T2)

Creates
(T1)

British
ContextAmerican

ContextCanadian
Context

Has

Italian
ContextFrench

Context

1 234,50 mi
2009-09-10
2009-09-11

B

Web Editor
5,678.90 mi
07/08/2009

A British
Author

Web Browser
07/09/2009
2009-09-10
Aggregator

An Italian
Reader

Web Browser
1 234,50 mi
5,678.90 mi
07/09/2009
2009-09-10

A French
Reader

Web Editor
1 234,50 mi
2009-09-10
2009-09-11

Web Editor
5,678.90 mi
(07/08/2009)

An American
Author

A Canadian
Author

1 234,50 mi
5,678.90 mi
07/09/2009
2009-09-10

C

Browses (T7)

Aggregates
(T5)

Deletes
(T4)

Aggregates
(T6)

Fig. 1. Web 2.0 contents’ sharing and the implicit use of users’ local contexts

It is obvious that the date and length contents are represented in different ways by
different authors. For example, the British author implicitly uses the British con-
text1 in T1. In contrast, Web readers usually (need to) interpret these contents
according to their contexts. For example, as the French reader uses the Meter unit
and the French length format (e.g. 1 234,50), he is responsible to adapt the length
from Mile to Meter and to French length format. The problem is similar with re-
spect to the date content 07/09/2009which is updated at task T3. It is not obvious
whether the American author updates the date content according to his context
or according to the British context of the original author. Even if the ambiguity is
resolved (i.e., he uses his context), the French reader might misinterpret this date
as the 7th of September (following the French format) instead of the 9th of July
(following the American format). Finally, several time zones are implicitly used
by different users for representing and interpreting the date contents.

To conclude, the local context is clearly part of the CSCs′ semantics. Also,
the discrepancies that rise do not relate to the CSCs themselves, but rather to
the contexts of Web users who represent and interpret them.

2.2 Design Alternatives

To resolve the aforementioned discrepancies, there is a need to adapt CSCs from
their multiple authors’ contexts to their readers’ contexts. To do so, there are
several design alternatives, each of which has its own strengths and limitations.
In the following, we evaluate three alternatives with respect to Web 2.0 use cases.

1 Mile unit, British notation (e.g. 1,234.50) and date format (dd/mm/yyyy).

Context-Aware Interaction Approach to Handle Users Local Contexts 251

Adaptation to a Standard Local Context

The first alternative imposes a standard, unified context for all Web sites. Then,
each CSC needs to be annotated with a standardized machine interpretable
version (MV). The latter is generated by adapting the value of CSC from the
author’s local context to the standard context at creation and update time. Addi-
tionally, there is a need to adapt the MV into different human-readable versions
according to different readers’ contexts. In practice, we can use Microformat
specifications and Microformat’s abbr design pattern2 for generating MV and
annotating CSC. For instance, the date content above can be annotated with
an MV date based on the ISO 8601 date/time standard.

This alternative allows CSCs from several sites to be aggregated seamlessly
as they are annotated with unified MV s. However, it violates the “do not repeat
yourself” (DRY) design principle [1]. Indeed, each CSC needs to be represented
twice (in the text and in the MV), and therefore needs to be maintained twice.
For instance, when an author updates an annotated CSC, then both versions
need to be updated. In addition, it lacks flexibility and may not satisfy the
requirements of all Web sites. For example, most Europe countries use a tax
system called VAT, while different states in the USA use different tax systems.
Finally, CSCs need to be adapted twice: one from the author’s version to MV
version and from the latter to the reader’s version.

Adaptation to a Single Page Local Context

The second alternative is to identify a local context for each page. In this setting,
each CSC is adapted from an author’s context to a page’s context at creation
and update time, and adapted to different readers’ contexts at browsing time.

This alternative does not violate the DRY principle and does not impose a
standard context. Moreover, Web contents in a single Web page are homoge-
neously represented. However, CSCs need to be adapted many times. These
adaptations are often not necessary. For instance, assume the British author
above needs to update the date content he created before. To this end, this date
needs to be adapted to the author’s context, since it was adapted from the au-
thor’s to the page’s A contexts at creation time. Also, it needs to be adapted
from the author’s to the page’s A contexts after update. Furthermore, when
the date and length contents are aggregated from pages A and B to the page C,
then other unnecessary adaptations are needed to adapt the aggregated contents
according to the context of page C.

Annotation of a CSC with Author’s Local Context

The final alternative is to annotate CSCs with authors’ contexts at creation
and update time and to adapt the annotated CSCs to the readers’ contexts at
browsing time. For instance, annotating the above date and length contents with
several authors’ contexts, and adapting them to the French contexts at task T7.
2 See http://microformats.org/wiki/

http://microformats.org/wiki/

252 M. Al-Jabari, M. Mrissa, and P. Thiran

This alternative does not violate the DRY principle and does not impose a
standard context. Furthermore, it preserves the initial Web contents as they were
submitted to the Web page, which may be useful for their in-depth understanding
or analysis. Also, it optimizes the number of required adaptations of CSCs.
Finally, context information like date format can be made visible to readers in
case CSCs cannot be adapted to readers’ contexts. However, when an author
needs to update a CSC created by another author, the Web editor must take
care to update the annotation too (hidden from the user).

2.3 Discussion

Our proposal is to adopt the third design alternative, since it is the best tradeoff
with respect to the context representation flexibility, the DRY principle, and the
number of CSCs adaptations, as summarized in Table 1 below:

Table 1. Evaluation summary of the design alternatives

Design Alternatives
Standard Single Page’s Multiple authors’
Context Context Contexts

Context Rep. Flexibility No Yes Yes
DRY Principle Compliance No Yes Yes

Number of Adaptations Twice Many Once

However, there are several techniques to annotate CSCs, and annotation of
CSCs is still a complex process. Indeed, we should consider that authors often do
not know the relations between CSCs and local context information. They also
do not have theoretical and technical knowledge about the annotation process.
As a consequence, we identify several objectives to be addressed in the rest of
the paper as follows:

1. Identify the relations between CSCs (e.g., date) and context information
(e.g., date format and time zone) at the conceptual (meta) level.

2. Evaluate and optimize different annotation techniques, and illustrate how to
annotate CSCs with context information.

3. Assist authors (e.g., British author) to specify their contexts and annotating
each type of CSCs (e.g., date) with suitable context information (e.g., date
format =“dd/mm/yyyy”, date style =“short”, and time zone =“UTC”).

3 Semantic Model of Web Contents

To address the first objective presented in Section 2.3, we proposed a seman-
tic representation model in our previous work [3]. This model builds on a lo-
cal context ontology and uses the notion of semantic object to represent each
type of CSC together with suitable context information, as summarized in the
following.

Context-Aware Interaction Approach to Handle Users Local Contexts 253

3.1 Local Context Ontology

As already mentioned, CSCs such as date, time, price, physical quantity, phone
number, and address are represented and interpreted in different ways by dif-
ferent users. To annotate CSCs with authors’ context, we specify a set of local
context attributes in an ontology called local context ontology. These attributes
are mainly related to country and community. Indeed, each country has a set of
local conventions such as currency, tax, measure system, etc. Also, each coun-
try has many cities, sometimes located in different time zones. In addition, one
country may have one or more communities (e.g., French and Dutch speaking
communities in Belgium). Each community usually relies on a common natural
language and a set of common conventions such as writing formats of the above
CSCs. More details about local context ontology and CSCs are given in [3].

3.2 Semantic Object

A semantic object provides a way to represent each CSC together with one or
more context attributes. Basically, a semantic object SemObj is a triple 〈S, V, C〉.
S represents the real world concept that the CSC adheres to, V is the physical
representation (the value) of the CSC. C specifies the local context of SemObj.
This context is represented as a finite set of context attributes. Also, context
attributes themselves are represented as semantic objects, which may also have
context attributes. This provides a recursive means for context description. Also,
we categorized context attributes into two subsets: static and dynamic. Static
attributes are the minimum context attributes that are used to describe the
context of a semantic object and hence, their values must be specified explicitly.
Dynamic attributes can be inferred from other context attributes that belong to
that semantic object (See Table 2 below). However, Web authors can explicitly
specify the values of one or more dynamic attributes if required, thus overrid-
ing the inference results. The motivation behind dynamic attributes is twofold.
First, some dynamic attributes such as currency exchange rate could have dy-
namic value, and therefore cannot be statically stored. Second, it simplifies the
specification of context information. For example, it is easier for users to specify
the city instead of the time zone of this city.

To illustrate the notion of semantic object, Figure 2 represents the date from
our scenario updated by the American author during Task T3 as a semantic
object (See Figure 1). Date refers to the date concept S. ‘07/09/2009’ repre-
sents the value V . Finally, Context represents the set of context attributes C.
Here, the date SemObj has DateStyle as static attribute, and the DateFormat
and T imeZone as dynamic attributes. The other context parts further describe
the context of other semantic objects (i.e., DateFormat and TimeZone). The
DateFormat value is inferred from the country, language, and dateStyle and
the T imeZone value is inferred from the country and city static attributes.

Table 2 summarizes the relations between CSCs and static/dynamic context
attributes. These relations are mainly derived from the W3C Internationalization
initiatives that helped us to build CSCs [9]. As we will see in Section 6, these
relations are utilized to extract the context attributes of semantic objects.

254 M. Al-Jabari, M. Mrissa, and P. Thiran

<Date, “07/09/2009”, Context >

 Context ‘C’TimeZone
= “-08:00”

DateFormat =
“mm/dd/yyyy”

DateStyle
= “Short”

Country
= “US”

Language
= “EN”

Concept ‘S’ CSC ‘V’

City =
“California” Dynamic

Static

Fig. 2. Sample of date semantic object

Table 2. Relations between CSCs and context attributes (the value of a dynamic
attribute can be inferred if the value(s) of attribute(s) between brackets are known)

Context-Sensitive Context Attributes
Contents (CSCs) Static Dynamic

Date/Time Date style Date format(Country, Language, Date style)
Time zone(Country, City)

Price VAT included
Currency(Country), VAT rate(Country)
Currency Exchange Rate (Date issued)

Price format(Country, Language)
Physical Measure unit, scale Measure System(Country), unit prefix(scale)
Quantity Error percentage Quantity format(Country, Language)

Telephone
Country calling code(Country)

Number
International prefix(Country)

Phone format(Country, Language)
Address Address format(Country, Language)

4 Semantic Annotation of Web Contents

Representing a CSC as semantic object requires annotating it with metadata
(i.e., a concept S and a set of context attributes C). This section initially gives
an insight on the different annotation techniques, namely external and internal
annotation. Then, it details the advantages of internal annotation and RDFa
technology for the purpose of this paper.

4.1 Annotation Techniques: External vs. Internal

Document annotation can be external and internal. With external annotation,
metadata is represented and stored in an external annotation document. Then,
these metadata refers to a part of a document (typically an XHTML tag) that is
annotated using a pointing language such as Xlink and Xpointer. For instance,
the value V of the aforementioned date semantic object can be annotated us-
ing this technique as follows. The concept S and the context information C are
represented inside an RDF statement as a set of RDF attribute-value pairs. The

Context-Aware Interaction Approach to Handle Users Local Contexts 255

subject of this statement is an Xpointer (e.g., /pageA#Xpointer(html/body/
div[2])) which refers to the second div element. The latter represents the date
value V inside the annotated document (page A)3. The main motivations behind
external annotation are twofold. First, it provides a way to annotate already-
published HTML documents without changing them and to annotate new ones
without introducing new elements into their document-type definition (DTD).
Second, one annotation document can be reused for annotating specific parts
of multiple Web documents. This is useful for annotating (already-published)
parts that have common semantics and structures such as calender events and
products data [6,7,10].

However, since Xpointers refer to annotated elements based on their paths in
the annotated document, this technique requires additional work to synchronize
the annotation document with the annotated document. Furthermore, external
annotation leads to problems when aggregating contents. First, references to the
document structure are modified; and second, aggregation may imply context
changes, and as the external annotation files are attached to the original contents,
they should not be updated when the context changes due to aggregation in
different contexts.

On the contrary, internal annotation stores Web contents and metadata to-
gether in the same document. Metadata is embedded as an XHTML attribute of
the document element (e.g., XHTML tag) that delimits the Web contents to be
annotated. As we will see in the next section, internal annotation remains simple,
and the aggregation of annotated contents does not require additional synchro-
nization, since metadata are directly embedded in the document. Then, as long
as the document is accessible for editing, both Web content and annotation can
be edited, deleted, and/or aggregated without any problems.

However, internal annotation requires additional work for annotating already-
published Web documents. Indeed, each XHTML tag that represents a Web
content to be annotated should be edited separately to embed the annotation,
leading to a redundancy problem. For instance, if two or more date contents
are created by one author (may be in the same page), then the same context
information needs to be provided in all the corresponding XHTML elements.

To conclude, external annotation faces significant limitations with respect to
creation/delete, update, and aggregation of Web contents and metadata. There-
fore, we adopt internal annotation, which despite its redundancy drawback, re-
mains the best tradeoff with respect to the Web 2.0 use cases as it eases the
creation/delete, update, and aggregation tasks. We rely on the RDFa4 syntax in
order to annotate our documents. We give a short introduction to RDFa in the
following before detailing our architecture.

4.2 RDFa-Based Internal Annotation

RDFa provides an annotation syntax to express RDF statements in XHTML
documents. It relies on a collection of XHTML attributes such as about, property,
3 More details available on W3C annotation note : http://www.w3.org/TR/annot/
4 http://www.w3.org/TR/xhtml-rdfa-primer/

http://www.w3.org/TR/annot/
http://www.w3.org/TR/xhtml-rdfa-primer/

256 M. Al-Jabari, M. Mrissa, and P. Thiran

and content to embed RDF statements in XHTML. Also, it provides processing
rules to extract these statements from XHTML [1,3].

This section shows how we utilize RDFa for annotating CSCs as semantic
objects and illustrates how it works seamlessly with the Web 2.0 use cases.
To keep the paper self-contained, we annotate the date contents presented in
Section 2.1 as semantic objects and track the tasks to perform, as shown in
Figure 3. We represent the concepts S and the context attributes C as RDF
statements and localize them using RDFa syntax.

In page A, the namespaces inside HTML tag represent the URLs of RDF con-
structs and the XHTML+RDFa version of XHTML DTD. The RDFa attribute
about = ‘#D1′ identifies a date SemObj. The RDFa attribute property=‘dc:date’
represents the date concept S and the date contents 07/09/2009 represents the
value V of the date after being updated by the American author5. In the inner
〈span〉 tags, the set of RDFa property attributes represent the date context at-
tributes, and the RDFa content attributes represent the values of the context
information related to the American author, as illustrated in Figure 2. Also, the
date content 2009-09-10 in page B is annotated with the context information
related to the Canadian author in similar way. Next, the annotated dates from
pages A and B are aggregated like “copy and past” to the page C. It is worth
noting that when the American author updates the date contents on page A
(i.e., T3), the annotations are updated according to his context too.

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''
 xmlns:ns="http//www.example.org/
 xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page C</title></head>
<body>. . .
 <div>1 234,50 mi . . .
 <div>5,678.90 mi . . .
 <div about=`#D1' property=`dc:date'> 07/09/2009

 </div>
 <div about=`#D2' property=`dc:date'> 2009-09-10

 </div>
. . .

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''

xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page B</title></head>
<body>. . .
 <div about=`#D2' property=`dc:date'> 2009-09-10

 </div>
. . .

Aggregated To

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''

xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page A</title></head>
<body>. . .
 <div about=`#D1' property=`dc:date'> 07/09/2009

 </div>
 . . .

Aggregated To

Fig. 3. Internal annotation using RDFa

5 Architecture
In this section, we present our proposed architecture to illustrate how our ap-
proach can be deployed and work seamlessly with the existing Web technology
5 We do not present the original date value created by the British author for brevity.

Context-Aware Interaction Approach to Handle Users Local Contexts 257

Local Context
Ontology

Concepts S

C
on

ce
pt

s
D

es
cr

ip
tio

n

Instances-Of

Create
Update

A-Cxt3A-Cxt2A-Cxt1

Have

Web Editor

Web
Contents

ACxt3
Web

Contents

ACxt2
Web

Contents

A-Cxt1

R-Cxt2R-Cxt1

Have

Instances-Of

Annotation

C

E
xt

en
de

d
U

se
rs

’ A
pp

.
W

eb
 2

.0
 S

ite
s

Web Authors Web Readers

 : Process : Relation : Component Name

Web
Contents

ACxt2
Web

Contents

A-Cxt1
Web

Contents

A-Cxt3
Web

Contents

ACxt3
Web

Contents

ACxt2
Web

Contents

A-Cxt1

Browse

Web Browser
Adaptation

Web
ContentsWeb
ContentsWeb
Contents

R-Cxt2
Web

ContentsWeb
ContentsWeb
Contents

R-Cxt1

BA

Aggregate

Fig. 4. A general architecture overview

stack. This architecture adds a layer called concept description and extends
both traditional Web editors and Web browsers with an annotation engine and
an adaptation engine respectively, as shown in Figure 4.

The concept description layer illustrates the relation between CSCs and con-
text attributes at a conceptual level as described in Section 3. The role of this
layer is to provide the necessary vocabularies to specify users’ local contexts (i.e.,
A-Cxts and R-Cxts) and concepts S. We consider that Web authors and readers
agreed on these common vocabularies.

The role of the annotation engine is to assist authors for annotating CSCs
with their context. Web authors need to specify their context (i.e., A-Cxts) and
the type of the CSC to be annotated. Then, the annotation engine interactively
annotates the specified CSC with context attributes, which now forms a seman-
tic object 〈S, V, C〉. Section 6 discusses the annotation process in more details
with the extended Web editor. The adaptation engine also allows Web readers
to specify their contexts (i.e., R-Cxts). Then, it adapts each annotated CSC
from authors’ to a reader’s context. The output is semantically equivalent to
the annotated CSC, but it is represented according to the reader’s context. The
adaptation process of the extended Web browser are out of this paper scope
(See [3] for more details).

6 Annotation Process

This section details our vision on how to interactively accomplish the annota-
tion process. Basically, this process illustrates the role of the aforementioned

258 M. Al-Jabari, M. Mrissa, and P. Thiran

annotation engine during a Web author/extended Web editor interaction (Fig-
ure 5). Our annotation process consists of one pre-annotation task (i.e., Task 1)
and four annotation tasks as follows:

1. Local context specification
Input 1: Author’s context attributes C
Output 1: A-Cxt document
In this task, the Web author needs to specify his local context. Here, the
author must specify static attributes, and one or more dynamic attributes if
there is a specific need for unusual/specific dynamic values. Other dynamic
attributes are inferred from static context attributes as described in Table 2.
The specified values are then stored in the A-Cxt document. This task (pre-
annotation task) is thus performed prior to content annotation.

2. Context attributes extraction
Input 2: A concept S, a content V , Context ontology, A-Cxt document
Output 2: S, V , C
During content creation or update, the author needs to select (i.e., highlight)
the target value V of CSC to be annotated, and then selects a concept S.
Upon selection of S and V , this process extracts the corresponding context
attributes from the context ontology based on the concept S and its relations
with these attributes (See Table 2). After that, the value of static and speci-
fied dynamic context attributes are extracted from the A-Cxt document. S,
V , and C are utilized as inputs to Task 3.

3. Annotation creation
Input 3: S, V, C
Output 3: SemObj =〈S, V, C〉
Using the inputs received from the Task 2, this process annotates V as a
SemObj as follows. First, it builds a semantic object instance SemObj from
S, V , and C. Second, it generates the XHTML+RDFa representation of this
SemObj. Finally, in the extended Web editor interface, it replaces the value
V with the generated SemObj. Note that, an author can repeat this task
and the previous one in order to annotate other CSCs.

4. Annotation testing
Input 4: SemObjs in the editing interface, A-Cxt document
Output 4: Tested SemObjs
During authoring and annotation process, this task scans Web contents in
the background and checks the generated SemObjs. To this end, a semantic
object instance called testerSemObj is built for each generated SemObj.
The testerSemObj takes the concept S and the context C of the generated
SemObj as parameters and generates a test value TV . Then, the generated
SemObj is compared with the tester SemObj as follows. First, the value V
is compared with the value TV and provides a warning message if the former
does not comply with TV (like a smart tag in Microsoft Word). For example,
if an author, by mistake, annotates a length CSC with a date concept, then
the generated SemObj is highlighted and provides a warning message (e.g.,
this content is not a date). Second, it compares V with the context attributes

Context-Aware Interaction Approach to Handle Users Local Contexts 259

A-Cxt

Context attr.
extraction

Annotation
creation

S
, V

, C Annotation
testing

Se
m

O
bj

S , V

Correction &
publishing

Te
st

ed

Se
m

O
bj

s

2 3 4 5

In
st

an
ce

O
f

Web
Contents

ACxt2
Web

Contents

A-Cxt1Local context
specification
1

C
A Web Author

Fig. 5. Details of the annotation process

stored in the A-Cxt. For example, comparing a date content with a date style
attribute and provides the corresponding warning message if V violates this
attribute.

5. Correction and publishing
Input 5: Tested SemObj
Output 5: Annotated CSCs in a Web page
In this task, an author needs to correct the highlighted SemObjs. For ex-
ample, he needs to correct the annotation of the length CSC, in the above
example, with the length concept (instead of the date concept). Finally, the
author publishes the annotated Web contents.

The above tasks provide the means to annotate CSCs in an interactive and easy
manner. First, context attributes that are specified in the A-Cxt document can
be reused to annotate Web contents at different authoring times. Second, Task
2 enables authors annotating CSCs as easy as formatting text in word proces-
sors [12]. Furthermore, authors do not need to know the relations between the
CSCs and the local context attributes, since the context attributes and their
values are extracted automatically based on the concept S. At the same time
our approach is flexible as advanced authors still have the possibility to over-
ride dynamic inferred attributes in the annotation. Third, creation of semantic
annotation, in Task 3, hides the technical complexities of the RDFa syntax. In
addition, it reduces the annotation efforts and the number of annotation errors
that could be performed by Web authors. Finally, testing semantic objects, in
Task 4, assists authors into correctly authoring CSCs and therefore reduces the
potential errors that they could perform.

The annotation process can be extended in one of the following directions.
First, it can be extended with information extraction, together with semantic-
aware auto-complete interface [8]. Information extraction is used to match typed
CSCs, at authoring time, with one of the concepts S based on predefined con-
cept patterns for example. If the matching task succeeds, then the semantic
auto-complete interface will recommend this concept to the author. This in-
creases the willingness of authors for annotating CSCs. Also, it helps authors
knowing which CSCs need to be annotated. Second, providers (i.e., Web sites
designers or administrators) can relate concepts S and context attributes C
to annotation templates, such as event and product templates. Based on an

260 M. Al-Jabari, M. Mrissa, and P. Thiran

author’s context, these templates are generated upon an author’s request, and
the typed (filled) CSCs are annotated accordingly. This is useful for annotat-
ing structured contents [11]. Third, the annotation testing task can reuse the
information extraction technique to check if there is a CSC that matches one of
the concept S. If so, then it provides a warning message to the author in order
to confirm or deny this matching. This enhances the annotation results, since
authors could forget annotating some CSCs.

7 Prototype

This section presents a prototype as a proof-of-concept of our approach. Ba-
sically, the proposed prototype demonstrates the annotation process presented
above. To this end, we use an HTML form to allow authors specify and store
their contexts information into A-Cxts. The latter and the context ontology are
implemented using RDF/XML syntax, and existing concepts from published
ontology (e.g., Dublin Core) are reused as concepts S. We also extends the
TinyMCETMWYSIWYG editor6 with a concept menu. The latter allows au-
thors to select concepts S for annotating CSCs typed in the editor. As a back
end, we use JavaTMAPIs to extract context attributes and their values for each
concept S. Finally, Javascript is utilized to annotate the value V with the se-
lected concept S and the extracted context attributes C as semantic object.
Figure 6 presents a screenshot of our prototype that illustrates how the date
content from our scenario during Task T3 can be annotated as semantic object.

Fig. 6. A screenshot of the extended Web editor

8 Related Work

This section discusses existing works related to Web annotation and users’ lo-
cal contexts. The term Web annotation has been used to refer to a process of
6 http://tinymce.moxiecode.com/

http://tinymce.moxiecode.com/

Context-Aware Interaction Approach to Handle Users Local Contexts 261

adding metadata to a Web document (e.g., XHTML document) or to metadata
itself [6,10]. In practice, annotation is performed manually by authors or auto-
matically by software application. Manual annotation incurs several problems
such as usability, error proneness, scalability, and time consumption. Automatic
annotation usually relies on information extraction techniques and/or machine
learning to identify and annotate Web contents based on a natural language
knowledge base (e.g., WordNet). However, automatic annotation faces concept
disambiguation problems. Indeed, many Web contents have overlapping seman-
tics and an annotation application cannot correctly recognize them all [5,15].

Interactive annotations have been commonly used recently [5]. Amaya is a
W3C annotation framework that enables authors to add and share notes about
Web contents. These notes are created and updated by authors, represented us-
ing RDF schema, associated with contents using XPointer, and can be stored
on authors’ machines or on a remote annotation server [10]. Saha [15] is another
interactive annotation system. It aims at enabling authors to enrich Web docu-
ments with ontological metadata and uses the latter as a semantic index. Saha
uses a set of predefined ontological schemas and associates them with annotated
documents using Xpointer.

In the domain of the Web 2.0, several systems have relied on interactive an-
notation and on RDFa. For instance, Luczak-Roesch and Heese [12] propose
a system that enables authors to annotate Web contents and publish them as
RDF-based linked data using RDFa. Also, semantic wikis such as SweetWiki7

and OntoWiki8 allow authors to annotate wiki contents with RDF-based prede-
fined metadata (e.g., FOAF) using RDFa.

Local context has been acknowledged as an important issue [4,13,14]. However,
a few approaches have used annotations for handling users’ contexts. Further-
more, most existing approaches rely on two assumptions. First, Web contents in
a single Web page are represented according to one context only. Second, con-
text information such as users’ preferences or users’ device capabilities are ac-
quired into a context model, and then different contents are provided to different
users. For example, transcoding systems annotate Web contents with transcod-
ing metadata to define contents’ roles. Then, annotated contents are adapted
(e.g., restructured, summarized, or deleted) based on users’ device capabilities
or based on special requirements of users (i.e., visually impaired) [7].

To conclude, to our best knowledge, none of the existing approaches enable
authors to annotate Web contents with their local contexts, so that Web browsers
can handle local contexts’ discrepancies. We advocate that our approach is one
step further towards enriching the semantics of Web contents. Several works can
be extended with this approach.

9 Conclusion

Today, the Web has evolved to a new era characterized by authoring and shar-
ing of Web contents via different Web users and sites, known as Web 2.0. This
7 http://semanticweb.org/wiki/SweetWiki
8 http://ontowiki.net/

http://semanticweb.org/wiki/SweetWiki
http://ontowiki.net/

262 M. Al-Jabari, M. Mrissa, and P. Thiran

evolution leads to misunderstandings of Web contents as users from different
communities use their own local contexts to represent and interpret these con-
tents. This paper proposes a context-aware interaction approach that enables
authors enriching Web contents with context information as easily as formatting
text. Accordingly, it becomes feasible for Web browsers to personalize annotated
contents according to different users’ contexts. We present an architecture and a
prototype to show how our approach works seamlessly with the Web technology
stack. As a future work, we plan to set up an experiment to evaluate the practical
feasibility of our approach from both authors’ and readers’ perspectives.

References

1. Adida, B.: hGRDDL: Bridging microformats and RDFa. J. Web Sem. 6(1) (2008)
2. Al-Jabari, M., Mrissa, M., Thiran, P.: Handling users local contexts in web 2.0: Use

cases and challenges. In: AP WEB 2.0 International Workshop. CEUR Workshop
Proceedings, vol. 485, pp. 11–20 (2009)

3. Al-Jabari, M., Mrissa, M., Thiran, P.: Towards web usability: Providing web con-
tents according to the readers contexts. In: Houben, G.-J., McCalla, G., Pianesi, F.,
Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 467–473. Springer,
Heidelberg (2009)

4. Barber, W., Badre, A.: Culturability: The merging of culture and usability. In: The
4th Conference on Human Factors and the Web (1998)

5. Corcho, Ó.: Ontology based document annotation: trends and open research prob-
lems. IJMSO 1(1), 47–57 (2006)

6. Handschuh, S., Staab, S.: Authoring and annotation of web pages in CREAM. In:
WWW, pp. 462–473 (2002)

7. Hori, M., Kondoh, G., Ono, K., Hirose, S., Singhal, S.K.: Annotation-based web
content transcoding. Computer Networks 33(1-6), 197–211 (2000)

8. Hyvönen, E., Mäkelä, E.: Semantic autocompletion. In: Mizoguchi, R., Shi, Z.-
Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 739–751. Springer,
Heidelberg (2006)

9. Ishida, R.: Making the World Wide Web world wide. W3C internationalization ac-
tivity, http://www.w3.org/International/articlelist/ (last accessed: February
19, 2010)

10. Kahan, J., Koivunen, M.-R., Hommeaux, E.P., Swick, R.R.: Annotea: an open
RDF infrastructure for shared web annotations. Computer Networks 39(5) (2002)

11. Kettler, B.P., Starz, J., Miller, W., Haglich, P.: A template-based markup tool for
semantic web content. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 446–460. Springer, Heidelberg (2005)

12. Luczak-Roesch, R.H.M.: Linked data authoring for non-experts. In: Proceedings of
the WWW ’09, Workshop Linked Data on the Web, LDOW 2009 (2009)

13. Reinecke, K., Bernstein, A.: Culturally adaptive software: Moving beyond inter-
nationalization. In: Aykin, N. (ed.) HCII 2007. LNCS, vol. 4560, pp. 201–210.
Springer, Heidelberg (2007)

14. Troyer, O.D., Casteleyn, S.: Designing localized web sites. In: Zhou, X., Su, S.,
Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.) WISE 2004. LNCS, vol. 3306,
pp. 547–558. Springer, Heidelberg (2004)

15. Valkeapää, O., Alm, O., Hyvönen, E.: An adaptable framework for ontology-based
content creation on the semantic web. J. UCS 13(12), 1835 (2007)

http://www.w3.org/International/articlelist/

Rethinking Microblogging:
Open, Distributed, Semantic

Alexandre Passant1, John G. Breslin1,2, and Stefan Decker1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
firstname.lastname@deri.org

2 School of Engineering and Informatics, National University of Ireland, Galway
john.breslin@nuigalway.ie

Abstract. In order to break down the walls that lock-in social data and
social networks, new paradigms and architectures must be envisioned.
There needs to be a focus on the one hand on distributed architectures
— so that users remain owners of their data — and on the other hand
on means to semantically-enhance their content — so that it becomes
more meaningful and interoperable. In this paper, we detail the anatomy
of SMOB, a distributed semantic microblogging framework. In particu-
lar, we describe how it achieves the previous objectives using Semantic
Web standards (including RDF(S)/OWL, RDFa, SPARQL) and Linked
Data principles, as a consequence rethinking the microblogging experi-
ence and, more generally, providing Linked Social Data as part of the
growing Linking Open Data cloud.

Keywords: Social Web, Semantic Web, Linked Data, Microblogging,
Distributed Systems.

1 Introduction

Founded in 2006, Twitter1 defined the foundations of a now well-known phe-
nomena: microblogging. While blogs let people openly share their thoughts on
the Web, microblogging goes further by enabling real-time status notifications
and micro-conversations in online communities. While it is mainly recognised as
a way to provide streams of information on the Web, it can be used in various
settings such as Enterprise 2.0 environments. The simplicity of publishing mi-
croblogging updates, generally shorter than 140 characters, combined with the
ubiquitous nature of microblog clients, makes microblogging an unforeseen com-
munication method that can be seen as a hybrid of blogging, instant messaging
and status notification. Moreover, by considering microblog content as being in-
formation streams, new real-time applications can be imagined in the realm of
citizen sensing [18].

So far, most of the current research around microblogging focuses on studying
and understanding its communication patterns [10] [11]. However, its technical

1 http://twitter.com

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 263–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://twitter.com

264 A. Passant, J.G. Breslin, and S. Decker

and engineering aspects still have to be studied, especially regarding the need
for more openness in Social Web applications, argued by various manifestos such
as “A Bill of Rights for Users of the Social Web”2. This would enable means to
make microblogging integrated more closely with other Social Web applications,
as well as with other data from the Web, for instance to identify information
about a particular topic or event. In this paper, we discuss the motivations,
the architecture and the use of SMOB — http://smob.me —, an open-source
framework for open, distributed, and semantic microblogging3. In particular, our
contributions include:

– an ontology stack to represent microblogs and microblog posts, using and
extending popular vocabularies, hence making microblog data integrated
with other efforts from the Semantic Web realm;

– a distributed architecture, based on hubs interacting together using SPARQL
and SPARQL/Update, and which could also be used in a broader context of
real-time RDF data replication; and

– interlinking components, enhancing existing practices such as #tags and pro-
viding the means to make microblogging interlinked with any resource from
the growing Linking Open Data (LOD) cloud4.

The rest of the paper is organised as follows. In Section 2, we discuss different
engineering issues of microblogging systems, from which we derive three main
requirements to enhance the microblogging experience. Based on these require-
ments, Section 3 describes the anatomy of SMOB, focusing on our main contri-
butions and their applicability to other components of the Social Semantic Web.
We then describe the system in use (Section 4), demonstrating how the previous
principles enhance the microblogging experience in terms of content publishing
and data reuse and discovery. We discuss related work in Section 5, and finally
conclude the paper.

2 Issues with Current Microblogging Services and
Requirements for a Richer User Experience

2.1 Lack of Machine-Readable Metadata

A first issue regarding microblogging services concerns the lack of metadata ex-
posed from these applications, in a way that could be easily reused. Twitter has
adopted microformats5 for describing lists of followers (and followees), but this
does not provide the means to match one username with other profiles that she
or he may have in other platforms. Relatedly, users must create a new profile
2 http://opensocialweb.org/2007/09/05/bill-of-rights/
3 While the first release of SMOB has been designed mid-2008, this paper describes

its recent 2.x series, redesigned with a completely new architecture and introducing
new paradigms for semantic microblogging.

4 http://richard.cyganiak.de/2007/10/lod/
5 http://microformats.org/

http://smob.me
http://opensocialweb.org/2007/09/05/bill-of-rights/
http://richard.cyganiak.de/2007/10/lod/
http://microformats.org/

Rethinking Microblogging: Open, Distributed, Semantic 265

— and fill in related details — on each platform they join. While OpenID could
be used as a first step to solve this, there are still some issues with regards to
maintaining attributes (profile pictures, etc.) across different websites. Further-
more, posts themselves do not provide enough fine-grained metadata (creation
date, topics being addressed, recipient(s), etc.), beyond the use of RSS elements.
Such a lack of metadata makes it difficult for microblogging to be interoper-
able with other systems, and it is also difficult for the data to be efficiently
queried (e.g. to retrieve all microblog posts written by one’s friend in the last six
days). Consequently, we identified a first requirement to enhance microblogging
systems:

– R1: machine-readable metadata — in order to make microblogging more
interoperable, not only between microblogging applications but also consid-
ering the Social Web at large, there is a need for more machine-readable
metadata about (1) microblog posts (time, author, etc.), (2) their content
(topics, etc.) and (3) their authors (name, depiction, etc.).

2.2 Microblogs as Closed-World Data Silos

A second issue is that microblogging services act as closed worlds similar to
most Web 2.0 applications. To that extent, the current centralised architecture
of microblogging systems raises an important issue in terms of data portability,
since data is locked into a particular platform, and cannot be automatically
reused in other applications. While subscribing to RSS feeds in order to get a
local copy of one’s data can be an alternative, it does not provide the means
to gather a complete dump of, e.g. last year’s Twitter activity in a particular
domain, unless one crawled the feed since the beginning. Therefore, our second
requirement is the following:

– R2: decentralised architecture and open data — in order to solve the walled-
garden issue of current microblogging systems, new decentralised architec-
tures must be provided, so that everyone can setup her or his own platform
and claim ownership on the published data, while at the same time making
it openly available for other applications that may require it.

2.3 Lack of Semantics in Microblog Posts

Finally, in addition to the previous metadata concerns, microblog posts them-
selves do not carry any semantics, making their querying and reuse difficult.
Twitter users have adopted hashtags (#tag patterns included in microblog posts
to emphasise particular words, now officially supported by the service, as is the
@user pattern), but their semantics are not readily machine-processable, thus
raising the same ambiguity and heterogeneity problems that tagging practices
cause [14]. Someone interested in the Semantic Web would have to follow var-
ious tags to get an accurate description of what is happening in that realm.
Especially, she or he will have to consider the different tag variations caused

266 A. Passant, J.G. Breslin, and S. Decker

by the sparse expertise levels and backgrounds of users, as raised by [7] in De-
licious, i.e. subscribing to #RDF, #SPARQL, etc. This consequently leads to our
third requirement:

– R3: data-reuse and interlinking — in order to enhance semantic descriptions
of microblog posts and their content, they must be interlinked with existing
resources using meaningful and typed relationships, going further than the
traditional usage of ambiguous and heterogeneous hashtags and hyperlinks.

3 Anatomy of SMOB

Based on the aforementioned requirements, we engineered SMOB — Semantic
MicrOBlogging —, an open-source microblogging framework providing an open,
distributed and semantic microblogging experience. In particular, the system
completely relied on state-of-the-art Semantic Web and Linked Data [3] tech-
nologies to achieve this goal. Therefore, SMOB offers a combination of these
technologies with existing Social Web paradigms and tools (microblogging, in-
formation streams), leading to what is generally known as the Social Semantic
Web [5]. To enable such integration and solve the aforementioned issues, we have
engineered a system relying on several components. In particular:

– R1: machine-readable metadata is achieved thanks to lightweight ontologies
and RDFa markup, enabling common semantics and standard representa-
tions to model microblog posts (and microblog services) and their metadata
and consequently providing interoperable descriptions of microblog posts.
Thus, posts can be exchanged not only between SMOB applications but
with any service capable of consuming RDF(S)/OWL data;

– R2: decentralised architecture and open data is achieved thanks to distributed
hubs, spread across the Web and exchanging information (posts and sub-
scriptions) based on the previous ontologies and a sync protocol (based on
SPARQL/Update over HTTP). These hubs also act as end-users publishing
and browsing interfaces for microblog posts;

– R3: data-reuse and interlinking is achieved thanks to interlinking compo-
nents, so that microblog posts can be interlinked with resources from the
Web, and in particular those from the aforementioned Linking Open Data
cloud, by turning #tags into URIs identifying Semantic Web resources. Thus,
it allows (1) microblog posts to become more discoverable, by being linked
to existing resources using the Linked Data principles [2]; and (2) microblog-
ging and the Social Web to join the Linking Open Data Cloud, and not exist
as an isolated subset.

In addition, thanks to these different components, the boundaries between mi-
croblogging and other Social Semantic Web applications become (voluntarily)
weaker. Microblog content can indeed be immediately mashed-up and integrated
between various applications supporting the same standards. This emphasises
the object-centric [13] nature of many online conversations and social networks,

Rethinking Microblogging: Open, Distributed, Semantic 267

enhancing them with a real-time component. For example, it provide means to
integrate microblog updates with blog posts or RSS feeds mentioning the same
object (research topic, project, etc.), this object being identified by its own URI.

Technically, as our goal was to make the system as easy as possible to deploy,
SMOB only requires a LAMP — Linux, Apache, PHP and MySQL — environ-
ment. This also emphasises how Semantic Web and Linked Data technologies
can be brought to end users and developers thanks to simple frameworks and
engineering practices linking these technologies to object-oriented paradigms.
In our case, we relied on the ARC2 PHP framework6, which provides a simple
toolkit to build RDF-based applications in PHP. The different objects (posts,
users, etc.) and views (lists of posts, map views, etc.) have been mapped to
SPARQL and SPARQL/Update queries using the aforementioned ontologies in
order to be generated and saved in the local database, so that the underlying
RDF(S)/OWL structure is directly mapped to PHP objects.

3.1 The SMOB Ontologies Stack

In order to semantically-enhance microblogging services and microblog posts by
providing more fine-grained metadata (R1), there is a need for models represent-
ing these services and their related content. This entails the need for ontologies
representing:

– users, their properties (name, homepage, etc.), their social networking ac-
quaintances and contextual information about themselves (geographical con-
text, presence status, etc.);

– microblogging services and microblog posts, including common features such
as #tags and replies (@user).

In order to model user profiles, we naturally relied on FOAF — Friend of a
Friend [6] — as it provides a simple way to define people, their main attributes
and their social acquaintances. Moreover, FOAF is already widely used on the
Web, providing SMOB users with a way to reuse their existing profiles in their
microblogs, thus also enabling distributed profile management and authentica-
tion. As we mentioned earlier, one major issue with current Web 2.0 services
is the need to create a new profile each time one wants to join a new website.
Given the popularity and the number of new services appearing regularly on
the Web, this quickly becomes cumbersome and leads to what some have called
“social network fatigue”. We have addressed this issue by letting users create
a SMOB account simply by specifying their FOAF URI. User profiles are then
retrieved from these URIs (assuming they follow the Linked Data principles),
so that name of an author, depiction, etc. can be stored and updated in third-
pary websites, but are however integrated in microblog updates. In addition,
the original profile can be any any RDF serialisation, for example in the form
of an RDFa-annotated profile (Fig. 1). Furthermore, each post is linked to this
author (using foaf:maker), every author being uniquely identified on the Web
6 http://arc.semsol.org

http://arc.semsol.org

268 A. Passant, J.G. Breslin, and S. Decker

http://apassant.net

http://example.org

foaf:depiction in RDFa

Fig. 1. Distributed and user-owned profiles

thanks to her of his URI. Then, for each microblog post, additional information
about its author can be immediately obtained by dereferencing its author’s URI.
Moreover, we also used OPO — Online Presence Ontology [20] — to describe
users’ presence information, such as their geolocation aspects. Finally, we can
benefit from these FOAF-based user profiles for authentication purpose, since
SMOB hubs rely on FOAF-SSL [21] to enabling distributed authentication.

Regarding the modelling of microblogs and microblog posts, we relied on and
extended SIOC — Semantically-Interlinked Online Communities [4]. Notably, we
introduced two new classes to the SIOC Types module7 to model these services
and their data: (1) sioct:Microblog and (2) sioct:MicroblogPost. We also
introduced two additional properties: (1) sioc:follows, to express following /
follower notifications (the same property being used for both, benefiting of the
RDF graph model), and (2) sioc:addressed_to, to represent whom a given
post is intended for.

Finally, a further aspect concerns the enhancement of tagging practices, no-
tably to bridge the gap between #tags as simple keywords and URIs identifying
Semantic Web resources. We rely on MOAT — Meaning Of A Tag [16] — to
do so, since it provide a model to represent the meaning of tags using Semantic
Web resources, such as identifying that in a particular context, the tag apple is
used to identify “apple, the fruit” (identified by dbpedia:Apple) but “‘Apple,
the computer brand” (dbpedia:Apple_Inc.) in another one.

Combined together, these ontologies form a complete stack to represent the
various elements involved in microblogging applications (Fig. 2). We did not want
to provide a new unique and huge ontology, but rather defined this combination

7 http://rdfs.org/sioc/types#, prefix sioct

http://rdfs.org/sioc/types#

Rethinking Microblogging: Open, Distributed, Semantic 269

People

Representations

Profiles

Data

Topics

Presence

SIOC

SIOC

MOAT

OPO

FOAF

Ontologies

User-Interface

Fig. 2. The SMOB ontologies stack

of lightweight ontologies [8] to fit with existing applications and provide a coher-
ent framework to represent the different artifacts of paradigms appearing in the
Social Web. Therefore, this stack is not specific to SMOB but can be referred to
as a more global ontologies stack for the Social Semantic Web and can be reused
in any applications relying on similar modeling requirements. Each post created
with SMOB is then modelled using this stack and made available on the Web
as RDFa-annotated content, in the author’s hub. The following snippet of code
(Fig. 3, prefixes omitted) shows an example of a microblog post represented via
SMOB with this ontologies stack, here in Turtle.

<http://example .org/smob/post /20091101 -1755 > a sioct:MicroblogPost ;
sioc:content "Drinking #coffee with @milstan in #Torino" ;
sioc:has_creator <http://apassant .net/smob/owner > ;
foaf:maker <http://apassant .net/alex > ;
sioc:has_container <http://apassant .net/smob > ;
sioc:addressed_to <http://ggg. milanstankovic.org/foaf.rdf#milstan > ;
moat:taggedWith <http://dbpedia .org/resource /Coffee > .

<http://example .org/smob/presence /20091101 -1755 > a opo: OnlinePresence ;
opo:customMessage <http://example .org/smob/post /20091101 -1755 > ;
opo:currentLocation <http://sws.geonames .org/2964180/ > .

Fig. 3. Representing microblog posts using the SMOB ontologies stack

3.2 Distributed Hubs and Synchronisation Protocols

In order to fulfill our second requirement (R2: decentralised architecture and
open data), we designed an architecture based on distributed microblogging
hubs that communicate with each other to exchange microblog posts and noti-
fications. That way, there is no centralised server but rather a set of hubs that
contains microblog data and that can be easily replicated and extended. Hubs
communicate with each other via HTTP thanks to SPARQL/Update (the Up-
date part of SPARQL, currently being standardised in the W3C8). We rely in
8 http://www.w3.org/TR/sparql11-update/

http://www.w3.org/TR/sparql11-update/

270 A. Passant, J.G. Breslin, and S. Decker

particular on a subset of SPARQL/Update, namely the LOAD clause, in order to
publish items from one hub to another (Fig. 4). When creating a new microblog
post on a SMOB hub, the workflow is the following:

– the post is immediately stored in the local RDF store, and published in an
RDFa-enabled page at its own URI, e.g. http://example.org/post/data,
using the aforementioned vocabularies;

– a SPARQL query identifies all the poster’s followers from the local store, as
well as the URL of their hub;

– a SPARQL/Update query is sent (via HTTP POST) to each hub so that they
aggregate the newly-created RDF data.

To avoid hijacking, only posts whose URI corresponds to the URI of a followee
can be loaded in remote stores, so that only trusted data (i.e. generated by a
followee) is aggregated. A SPARQL/Update pre-processor is used to provide this
additional level of security on top of SPARQL endpoints. Future improvements
may include FOAF-SSL or OAuth9 to further address this issue.

HTTP POST

SPARQL/Update +
HTTP POST

Local SPARQL/Update

SMOB hub at http://apassant.net

SMOB hub at http://example.org

http://twitter.com

Fig. 4. Communication between SMOB hubs using SPARQL/Update

Using this workflow, posts are immediately broadcasted to every follower as
soon as the content is created. This push approach (contrary to a pull one where
hubs would regularly fetch followees’ information) is similar to what is provided
by the OStatus protocol10. However, while OStatus sends all information about
the posts (using Atom feeds), our approach directly sends a SPARQL/Update
LOAD query to each follower’s hub. Such a query only contains the URI of the
post to be loaded, this URI being dereferenced when it is loaded in the fol-
lower’s RDF store. That way, we rely on “self-descriptive” posts as each URI

9 http://oauth.net/
10 http://ostatus.org/

http://oauth.net/
http://ostatus.org/

Rethinking Microblogging: Open, Distributed, Semantic 271

identifying a microblog post can be dereferenced and delivers a full set of RDFa
information about itself. This nicely illustrate the use of Linked Data princi-
ples to transmit rich status updated (since they can contain geolocation in-
formation, semantically-enhanced tagging, etc.) in the context of distributed
microblogging.

In addition, each hub features a triggering approach which loads followees’
FOAF profiles each time one of their post is loaded into the store. Then, if a
user edits his or her depiction, this will be forwarded to each hub following as
soon as a new post is created, without any additional intervention, and without
having to send this information in the post itself, thanks to the FOAF-based
approach that we earlier described.

A similar approach is used with regards to the followers and followees sub-
scriptions. A bookmarklet is provided to let anyone become a follower of an-
other user when browsing that user’s hub. The subscription is registered in the
follower’s hub by adding a "<user-uri> sioc:follows <remote-user-uri>"
triple, while the same triple is included in the remote store. Thus, that both par-
ties are instantaneously aware of this new relationship, which can be then used
in the aforementioned publishing protocol when new updates are published.

3.3 Integrating Microblogging in the Linking Open Data Cloud

As we mentioned in our third requirement (R3: data-reuse and interlinking), our
goal was to make microblog posts more discoverable by linking them to existing
resources on the Web. In particular, our vision is to make microblogging updates
linked to resources from the Linking Open Data cloud. While such interlinking
is already provided by reusing existing FOAF profiles, there is a need to go
further and link to relevant data to make sense of the content of microblog
updates.

To achieve such goal, we extended the common #tag practice in order to
turn these tags into machine-readable identifiers, i.e. URIs identifying Semantic
Web resources. In particular, we aim at relying on URIs from the Linking Open
Data cloud, since it provides identifier for various things, from generic topics
in DBpedia (the RDF export of Wikipedia) to drug information information
in LODD [12]. Our approach therefore focuses on extending the genuine #tag
practice by turning tags into identifier to resources from the LOD cloud, en-
abling interlinking between tagged content and these resources. Then, #tags are
not simple tags anymore, but provide links to uniquely identified and structured
resources. In addition to the interlinking, this practice also solves the ambiguity
and heterogeneity issues of tagging. Indeed, by linking a microblog post ini-
tially tagged with #apple to dbpedia:Apple_Inc., one can identify that this
post is about the computer brand (and not the fruit nor the record label), and
could also benefit from the links existing from (and to) the related URI to iden-
tify that this is a message about computers (since dbpedia:Apple_Inc. and
dbpedia:Computer_hardware are linked in DBpedia).

272 A. Passant, J.G. Breslin, and S. Decker

Fig. 5. The SMOB publishing interface and its interlinking components

4 SMOB in Use: Publishing and Discovering
Semantically-Enhanced Microblog Posts

4.1 Publishing and Interlinking Microblog Posts

SMOB is available under the terms of the GNU/GPL license at http://smob.me
and can be simply setup on any LAMP environment. Its user interface is some-
how similar to existing microblogging applications, but when writing posts, a
parser interprets the content entered by the user (using JQuery and a set of
regular expressions) in order to identify if a know pattern has been used, such as
#tag, @user or L:loc (generally used for geolocation purposes). In addition, each
pattern is mapped to a set of wrappers that query existing services in real-time
to suggest relevant URI(s) for the resource they may refer to.

Default wrappers for #tag include Sindice (the Semantic Web index11) or
DBpedia, whilst also letting people write their own wrappers. The mappings are
then modelled using MOAT and exposed in the microblog posts as RDFa, so that
they can be used for querying as we shall see next. Regarding @replies, we have
mainly relied on Twitter and on other SMOB hubs that the user interacts with so
that we can link to a user’s FOAF profile when responding to a message. Finally,
for the L:location patterns, we use the GeoNames service12 that provide URIs
for more than six million geographic entities. Interestingly, not only cities or
countries are referenced, but also various places such as hotels, which offers an
interesting level of granularity for representing this information.
11 http://sindice.com
12 http://geonames.org/export

http://smob.me
http://sindice.com
http://geonames.org/export

Rethinking Microblogging: Open, Distributed, Semantic 273

From the suggested URIs, users can then decide which one is the most relevant
(Fig. 5), that choice being saved for further reuse. As soon as the post is saved,
informations are stored in the local RDF store and can be browsed in the user
interface using RDFa. Furthermore, the mappings are saved for next posts and
can be shared between hubs so that one’s mapping can be provided to followers
to enhance the interlinking process. While this process of manual interlinking
from #tags may sound complex, we recently demonstrated the usefulness of
MOAT in a corporate context, showing how users could benefit from the system
to improve information retrieval [16] and showed that users are willing to do the
additional effort of assigning resources to their tags.

As new wrappers can be created, it may be useful to build these in enterprise
contexts if people want to refer to their own knowledge bases. For example, a tag
such as #p:1453 could automatically be linked to the URI of the corresponding
project, identified by its ID (1453). It therefore provides a use-case for enhancing
microblogging in Enterprise 2.0 environments [15], following some of our previous
work on Semantic Enterprise 2.0 [17].

SMOB can also be used as a Twitter client, relying on the Twitter API to do
so. In that case, not only SMOB content is cross-posted to Twitter, but Twitter
data is integrated in SMOB hubs and translated into RDF using the previous
ontologies. Thus, Twitter data can be queried in a similar way to native SMOB
data (using SPARQL) providing another way to make existing microblogging
data enters the Linking Open Data cloud.

4.2 Geolocation Mash-Ups

In order to let users define geolocation information, SMOB enables a deep inte-
gration with GeoNames13. In addition to the webservice used to map the L:loc
patterns, SMOB provides an autocompletion field so to users can define their
current location. The auto-completion is based on the GeoNames webservice,
and its JSON answers are interpreted on runtime to fill the location textbox.
The main interest of GeoNames in our context is that each location has its own
URI and has a description available in RDF. Thus, each time a new post fea-
turing location information is created (or posted to a hub), the GeoNames URI
corresponding to the current location (linked to the post with OPO, see previous
example) is dereferenced and the data is integrated in the SMOB hub. We there-
fore benefit from any related information, such as the location of the feature,
its inhabitants, its parent zone, etc. Consequently, posts can be geolocated in
real-time, as seen in Fig. 6, and new features can be provided from the querying
side, for instance identifying all content posted in a given country, while the only
information available in the annotation refers to a city.

4.3 Data Discovery and Querying with SPARQL

In addition, SMOB hubs can be queried using SPARQL, either directly (via their
local endpoint) or distributively, as each hub pings Sindice when new content
13 http://geonames.org

http://geonames.org

274 A. Passant, J.G. Breslin, and S. Decker

Fig. 6. Real-time geolocation of microblog posts with SMOB and GeoNames resources

is created. Then, using a library such as the Semantic Web Client Library [9],
which uses an approach to enable SPARQL query over the Web by traversing
RDF graphs, one can discover hubs and microblog content that are distributed
on the Web.

SELECT DISTINCT ?post ?author
WHERE {

?post a sioct: MicroblogPost ;
sioc:has_creator ? author ;
moat:taggedWith [? related dbpedia :Italy] .

}

Fig. 7. Example of advanced SPARQL query retrieving SMOB data

As an example, the SPARQL query in Fig. 7 (prefixes omitted) identifies posts
about Italy and their author, even if the tag #italy was not initially used in
the post, but by beneficing of (1) the interlinking from the original post to the
URI identifying a given location (e.g. dbpedia:Milan) and (2) the existing links
between dbpedia:Italy and this location in DBpedia.

Additionally, it can provides means to subscribe to topic-based or geolocation-
based feeds, without having to rely on various subscriptions feeds. Moreover, if
the links in DBpedia are enriched, the feeds will be automatically updated with
new resources.

5 Related Work

Since the first release of SMOB mid-2008, the first semantic microblogging
platform developed, various related projects have emerged. Microblogging plat-
forms generating semantic data (i.e. represented using RDF(S)/OWL) include

Rethinking Microblogging: Open, Distributed, Semantic 275

smesher14 and StatusNet15 (formerly Laconica). smesher is a semantic microblog-
ging client with local storage, that integrates with Twitter and Identi.ca
(another popular microblogging website, powered by StatusNet). StatusNet pub-
lishes both FOAF (describing people) and SIOC data (as SIOC-augmented RSS
feeds for users and groups), and allows users to create friend connections across
installations. It also uses the OpenMicroBlogging (OMB) protocol16 for client-
server communication (currently redesigned as OStatus). However, these appli-
cations do not provide interlinking with the Linked Data cloud, focusing only
on representing the containers or structures using semantics, but not on linking
its content to existing resources, hence leaving microblogging isolated from the
ongoing LOD initiative. In addition, the semantics exposed in StatusNet are rel-
atively light and do not take into account particular features of microblogging
(such as modelling @user message recipients).

Moreover, in order to extend current microblogging systems, various syntax
extensions have been proposed, including MicroTurtle17, microsyntax18, nanofor-
mats19, Twitterformats20 and TwitLogic [19]. These syntaxes however generally
require specific ways of formatting microblog posts, that may be not be widely
used and are restricted to particular niches of users.

In addition, one can also implement semantic capabilities on top of existing
systems. SemanticTweet21 provides exports of user profiles from Twitter using
FOAF, and the Chisimba Twitterizer22 provides microblog data using open for-
mats, but the original content is still stored in a closed system. We also recently
designed a system translating Twitter streams to RDF data (including some of
the vocabularies used in the SMOB ontologies stack) in real-time23 so that it can
be used in Semantic Web applications using streamed SPARQL extensions such
as C-SPARQL [1] However, many of these applications and syntaxes rely on the
Twitter infrastructure, and do not offer the distributed and open architecture
that SMOB provides.

6 Conclusion

In this paper, we detailed the architecture of SMOB, a framework for an open,
distributed and semantic microblogging experience. In particular, we focused on
the issues of existing microblogging systems and detailed how we designed and
used (i) a set of ontologies combined together to represent metadata related to

14 http://smesher.org/
15 http://status.net/
16 http://openmicroblogging.org/
17 http://buzzword.org.uk/2009/microturtle/
18 http://www.microsyntax.org/
19 http://microformats.org/wiki/microblogging-nanoformats
20 http://twitterformats.org/
21 http://semantictweet.com
22 http://trac.uwc.ac.za/trac/chisimba/browser/modules/trunk/twitterizer
23 http://realtimesemanticweb.org

http://smesher.org/
http://status.net/
http://openmicroblogging.org/
http://buzzword.org.uk/2009/microturtle/
http://www.microsyntax.org/
http://microformats.org/wiki/microblogging-nanoformats
http://twitterformats.org/
http://semantictweet.com
http://trac.uwc.ac.za/trac/chisimba/browser/modules/trunk/twitterizer
http://realtimesemanticweb.org

276 A. Passant, J.G. Breslin, and S. Decker

microblogs and microblog posts, associated with RDFa markup to model mi-
croblog data, (ii) a distributed architecture to make microblogging more open
and let users claim their data, combined with a synchronisation protocol that
can be reused in other distributed Social Semantic Web applications, and (iii) in-
terlinking components to make microblogging — and more generally the Social
Semantic Web — part of the ongoing Linking Open Data cloud and offer new
querying and mash-up capabilities.

In future work, we may consider how to not only link to existing content, but
to extract new information from microblog updates, following practices generally
used in Semantic Wikis, and enabling in this case streamed statements creation
and notification that could provide new possibilities in terms of real-time infor-
mation monitoring.

Acknowledgements

The work presented in this paper has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Ĺıon 2). We would like to thanks
Uldis Bojārs and Tuukka Hastrup for their involvement in SIOC and in the first
version of SMOB as well as Milan Stankovic and Philippe Laublet for their work
on OPO.

References

1. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Continuous
Queries and Real-time Analysis of Social Semantic Data with C-SPARQL. In: Pro-
ceedings of the Second Social Data on the Web Workshop (SDoW 2009). CEUR
Workshop Proceedings, vol. 520, CEUR-WS.org (2009)

2. Berners-Lee, T.: Linked Data. Design Issues for the World Wide Web, World Wide
Web Consortium (2006), http://www.w3.org/DesignIssues/LinkedData.html

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data — The Story So Far. Inter-
national Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22
(2009)

4. Breslin, J.G., Harth, A., Bojārs, U., Decker, S.: Towards Semantically-Interlinked
Online Communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 500–514. Springer, Heidelberg (2005)

5. Breslin, J.G., Passant, A., Decker, S.: The Social Semantic Web. Springer,
Heidelberg (2009)

6. Brickley, D., Miller, L.: FOAF Vocabulary Specification. Namespace Document,
FOAF Project (September 2, 2004), http://xmlns.com/foaf/0.1/

7. Golder, S., Huberman, B.A.: Usage patterns of collaborative tagging systems. Jour-
nal of Information Science 32(2), 198–208 (2006)

8. Gómez-Prez, A., Corcho, O.: Ontology languages for the Semantic Web. IEEE
Intelligent Systems 17(1), 54–60 (2002)

9. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web
of linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 293–309. Springer, Heidelberg (2009)

http://www.w3.org/DesignIssues/LinkedData.html
http://xmlns.com/foaf/0.1/

Rethinking Microblogging: Open, Distributed, Semantic 277

10. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter
under the microscope. Computing Research Repository (CoRR), abs/0812.1045
(2008)

11. Java, A., Song, X., Finin, T., Tseng, B.: Why We Twitter: Understanding Mi-
croblogging Usage and Communities. In: Proceedings of the Joint 9th WEBKDD
and 1st SNA-KDD Workshop 2007 (2007)

12. Jentzsch, A., Zhao, J., Hassanzadeh, O., Cheung, K.-H., Samwald, M., Andersson,
B.: Linking Open Drug Data. In: Linking Open Data Triplification Challenge 2009
(2009)

13. Knorr-Cetina, K.D.: Knorr-Cetina. Sociality with objects: Social relations in post-
social knowledge societies. Theory, Culture and Society 14(4), 1–30 (1997)

14. Mathes, A.: Folksonomies: Cooperative Classification and Communication
Through Shared Metadata (2004)

15. Mcafee, A.P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan
Management Review 47(3), 21–28 (2006)

16. Passant, A., Laublet, P., Breslin, J.G., Decker, S.: A URI is Worth a Thousand
Tags: From Tagging to Linked Data with MOAT. International Journal on Seman-
tic Web and Information Systems (IJSWIS) 5(3), 71–94 (2009)

17. Passant, A., Laublet, P., Breslin, J.G., Decker, S.: SemSLATES: Improving En-
terprise 2.0 Information Systems using Semantic Web Technologies. In: The 5th
International Conference on Collaborative Computing: Networking, Applications
and Worksharing. IEEE Computer Society Press, Los Alamitos (2009)

18. Sheth, A.: Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE
Internet Computing 13(14), 80–85 (2009)

19. Shinavier, J.: Real-time SemanticWeb in = 140 chars. In: Proceedings of the WWW
2010 Workshop Linked Data on the Web (LDOW 2010), CEUR Workshop Pro-
ceedings. CEUR-WS.org (2010)

20. Stankovic, M.: Modeling Online Presence. In: Proceedings of the First Social Data
on the Web Workshop. CEUR Workshop Proceedings, vol. 405. CEUR-WS.org
(2008)

21. Story, H., Harbulot, B., Jacobi, I., Jones, M.: FOAF+TLS: RESTful Authentica-
tion for the Social Web. In: First International Workshop on Trust and Privacy on
the Social and the Semantic Web (SPOT 2009) (June 2009)

A Web-Based Collaborative Metamodeling
Environment with Secure Remote Model Access�

Matthias Farwick1, Berthold Agreiter1, Jules White2, Simon Forster1,
Norbert Lanzanasto1, and Ruth Breu1

1 Institute of Computer Science University of Innsbruck, Austria
{matthias.farwick,berthold.agreiter,simon.forster,

norbert.lanzanasto,ruth.breu}@uibk.ac.at
2 Electrical Engineering and Computer Science Vanderbilt University,

Nashville, TN, USA
jules@dre.vanderbilt.edu

Abstract. This contribution presents GEMSjax – a web-based meta-
modeling tool for the collaborative development of domain specific lan-
guages. By making use of modern Web 2.0 technologies like Ajax and
REST services, the tool allows for simultaneous web browser-based cre-
ation/editing of metamodels and model instances, as well as secure re-
mote model access via REST, which enables remote model modification
over a simple HTTP-based interface. This paper describes the
complex technical challenges we faced and solutions we produced to pro-
vide browser-based synchronous model editing. It further explains on
the XACML-based access control mechanisms to provide secure remote
access to models and model elements. Additionally, we highlight the use-
fulness of our approach by describing its application in a realistic usage
scenario.

1 Introduction

Nowadays, there exist a multitude of different modeling tools for a variety of
purposes. The wide adoption of model-driven techniques further stimulates the
creation of domain specific modeling languages. Furthermore, in today’s global-
ized economy engineering teams are often geographically dispersed to cut down
costs, bring together expertise, or to explore new markets. However, to allow
such teams to collaborate in an efficient manner, specific tools are needed which
support the collaborative way of working. Modeling is a well-established task in
software engineering and enterprise architecture today. In this context, modeling
tools are used, for example, to communicate software architecture or to model
the IT-landscape of large organizations. Contemporary research studies have
shown evidence that complex projects conducted by such virtual teams are less

� This work was partially supported by the Austrian Federal Ministry of Economy as
part of the Laura-Bassi – Living Models for Open Systems – project FFG 822740/QE
LaB.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 278–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Web-Based Collaborative Metamodeling Environment 279

successful than geographically concentrated teams [5]. The difficulty of sharing
knowledge in dispersed teamwork has been identified as one of the main reasons
for such failures [4,3]. Therefore, collaborative tools have to be created that aid
the experts in sharing knowledge, and working together on solutions. Another
fact which is mostly not respected by current modeling tools are concepts that
allow feeding back information from the real world into models, thus keeping the
model (partly) in–sync with the real world. To cope with the two requirements of
collaborative modeling and remote model access, we present GEMSjax1, a web-
based metamodeling tool leveraging the full technological capabilities of Web
2.0. GEMSjax has been built from the ground up having collaborative model-
ing and bidirectional information flow in mind, e.g. by supporting concurrent
browser-based modeling and collaborative chat.

The tool allows for developing metamodels from which web-based graphical
editors for the corresponding domain specific language (DSL) are generated.
These generated editors run in the same browser-based graphical environment,
hence there is no need for users to install software for participating in the mod-
eling process. Many of the features, such as look-and-feel customization via
stylesheets, dynamic styles reflecting attribute changes, as well as the remote
model access, are inspired by the Generic Eclipse Modeling System (GEMS [13]).
Apart from the metamodeling capabilities, the tool employs a novel approach to
remote model access by providing a REST-based (REpresentational State Trans-
fer [6]) remote interface for model elements. The interface can be used to easily
integrate GEMSjax models into other applications and to provide live updates
of model elements by remote applications. These updates can be used to keep
the model partly in–sync with what it represents in the real world. For example,
in a model of a server landscape, the remote interface can be used to signal when
a new server is added to the system or when a server is down. A malfunctioning
server could be, for example, drawn in red, or, in case of the addition of a new
server, a new model element can be added to the model remotely.

We faced the following implementational and conceptual challenges because
of the web-based nature of our solution: i) browser-based manipulation of mod-
els, ii) synchronization of simultaneous model changes by different clients, iii)
access control management of the remote interfaces. To provide the browser-
based manipulation of models we created a client-side representation for them.
In order to tackle the synchronization problem, we made use of a bidirectional
push protocol. In order to cater for adequate security protection of the interfaces
to models, we developed a sophisticated access control architecture based on the
eXtensible Access Control Markup Language (XACML [9]). This contribution
focuses on our solutions to the aforementioned challenges.

The remainder of this paper is structured as follows. The next section mo-
tivates the need for GEMSjax by giving a short introduction on metamodeling
and summarizing the requirements. Section 3 outlines a typical usage scenario
that requires the features of GEMSjax. In Section 4 we provide a high-level

1 GEMSjax is a short form of GEMS(A)jax, where GEMS is the Eclipse-based tool
whose features GEMSjax brings to the web via Ajax (see Section 4).

280 M. Farwick et al.

overview of the challenges we faced and solutions we created to provide browser-
based graphical model editing. After that, Section 5 focuses on the secure REST
model interface and the XACML-based architecture to enforce access control on
models and model elements. The final section concludes the paper by referring
to related tools and pointing out directions of future work.

2 Motivation

To justify the need for the tool presented here, we first cover background in
metamodeling as this is the main foundation this work builds on. After that, we
identify the requirements for such at tool, to prepare the reader for the expected
solution realized by GEMSjax.

2.1 Metamodeling

Today, software engineers have several possibilities in order to create models for a
given domain. The predominant choice is still the use of General Purpose Model-
ing Languages (GPML) like the Unified Modeling Language (UML)2. The meta-
model of such languages predefines their syntax and partially their semantics. In
order to customize, e.g. UML, one needs to utilize the stereotyping mechanism,
so that customized models remain compatible to their base language. With this
mechanism one can apply new semantics to meta-elements. However, the under-
lying syntax remains static and needs to be manually adjusted via the use of the
Object Constraint Language (OCL). Restricting the metamodel in such a way
is very cumbersome and error-prone, leading to inconsistent models. Another al-
ternative is creation of a Domain Specific Modeling Language (DSML). Opposed
to a GPML, a DSML is specifically created to model selected domain aspects.
Here, a metamodel is created from a generic meta-metamodel that specifies the
syntax and semantics of the desired language, thereby only describing what is
allowed in the language, and implicitly prohibiting everything that is not speci-
fied. With UML, on the other hand, everything that is not explicitly prohibited
is allowed to be modeled. The comparison of the two above-mentioned modeling
processes is shown in Figure 1.

Therefore, UML is more suitable for application areas that are closely related
to the core competence of UML, like Software Engineering, where the syntax and
semantics only need to be slightly adapted. DSMLs however, allow for a precise
language definition without the need to restrict a large metamodel. Further-
more, by using well-designed DSMLs, the modeling process can be considerably
speeded up compared to GPMLs like UML [8,7].

2.2 Requirements Analysis

Before we start with the description of the tool and the problems we faced, we
first identify its requirements. As many design decisions are motivated by the
2 http://www.uml.org/

http://www.uml.org/

A Web-Based Collaborative Metamodeling Environment 281

Fig. 1. UML Profiling vs. Domain Specific Modeling

requirements, this section clarifies why specific approaches have been selected. For
a quick overview, Table 1 shows all requirements in a condensed representation.

Today’s economy becomes more and more globalized, e.g. companies have
subsidiaries distributed all over the world. This leads to the need for synchro-
nization and effective collaboration over distance. We want to provide a tool
supporting this collaboration. Collaboration should be as easy as possible for
the partners, i.e. instant availability without the need for installing software
packets (R1). Furthermore, it is likely that due to the geographical dispersion,
heterogeneous environments will be encountered. Because of this, our tool should
be platform-independent wherever applicable (R2). With GEMSjax we want to
provide a tool that helps domain experts to express their knowledge as directly
as possible. Domain-specificity is aimed at targeting exactly the questions of the
domain, without blurring the important information by side information. For
this reason, a further requirement to GEMSjax is the ability to create domain
specific languages via metamodeling (R3). As already mentioned, an additional
requirement to our tool is the possibility to support a collaborative way of mod-
eling. This collaboration should allow several domain experts to view and edit
models simultaneously (R4).

A known problem of models is that they are often created in the design phase
only, and not maintained anymore at later stages. However, if the information
captured in the models changes later on, the model and the real world are out-of-
sync. This is certainly not desired, and should be avoided to derive greater benefit
from models, cf. [2]. Such updates are not necessarily executed by humans, e.g.
an information system which has just been booted up can update its status in
the model autonomously. For this reason, GEMSjax aims to provide a way for
updating models remotely, even without using a graphical modeling tool (R5).
Naturally, this interface needs to be protected against unauthorized usage.

282 M. Farwick et al.

Table 1. GEMSjax requirements

R1 Instant availability for users, without installing large packages.
R2 Platform independence.
R3 Ability to create domain specific languages.
R4 Simultaneous model access.
R5 Secure remote model API for querying/manipulating models.

3 Usage Scenario

The IT-landscape of the large global enterprise Example Corp. is distributed over
several continents, technologically heterogeneous, and poorly documented, since
it evolved over several decades and was changed by many different individuals.
Additionally, it is often not clear to the management of Example Corp. how
each (technical) component (e.g., servers, information systems, etc.) in the IT-
landscape contributes to the core business of the enterprise. Therefore, the CIO
decides to start an Enterprise Architecture Management (EAM) effort, in order
to document and model the global IT-landscape, standardise used technology
(e.g. only Apache Tomcat version 6 should be in use), plan infrastructure change,
and to analyze how each component contributes to the business goals of the
company. It is also decided that in the long run, the IT-landscape model should
be coupled with the actual run-time infrastructure in order to always have an
up-to-date view of the infrastructure.

The first step in the EAM initiative of Example Corp. is the metamodel defini-
tion (R3) of the enterprise’s IT-landscape and the business functionalities (e.g.
selling hotel bookings, selling cars). Due to the distributed nature of Example
Corp. not all stakeholders of the company’s IT can gather for a physical meeting
to discuss the metamodel. Therefore, a web-based meta-modeling solution like
GEMSjax is chosen (R4). The IT-responsibles at each data center meet in the
virtual modeling environment, where they can collaboratively create the enter-
prise metamodel, and communicate via a chat to discuss ideas. Furthermore, the
dynamic graphical appearance of each model element is defined. For example, a
server, whose workload reaches a certain threshold dynamically appears in red.

After several weeks of discussion, an agreement on the metamodel is found
that is capable of expressing all necessary IT and business assets of the company.
An instance of this metamodel is created in GEMSjax and the stakeholders at
each site insert their IT-infrastructure in the global model. Where interfaces
between two data centers exist, these model elements are also collaboratively
created in GEMSjax.

Finally, a satisfying representation of the enterprise IT-landscape is created.
However, this representation is hard to keep up to date without unjustifiable man-
ual labor. In order to reduce this workload, some of the infrastructure devices are
equipped with agents that communicate their existence and state to the GEMSjax
model via its REST interface (R5). The high security standards of Example Corp.
are met by the XACML-based access control engine of GEMSjax.

A Web-Based Collaborative Metamodeling Environment 283

4 The GEMSjax Metamodeling Tool

To enable distributed, collaborative (meta-)modeling, needed for the usage sce-
nario described before, we developed GEMSjax, a browser-based graphical model
editor. The web-based nature of the tool allows for instant availability and plat-
form independence, as everything needed on the client-side is a web browser
with Javascript capabilities (R1 & R2). GEMSjax provides a graphical model-
ing view for Eclipse Modeling Framework (EMF)3 models. EMF is an Eclipse
project that provides the means to work on top of a structured data model, in-
clude code generation and manipulation interfaces. GEMSjax is written in Java
and the client-side browser editor is compiled from Java into Javascript and
HTML using the Google Web Toolkit (GWT)4. The server-side of GEMSjax is
built on Java servlets. Figure 2 shows its web interface with the classical model-
ing tool setup. The left side shows the metamodels and model instances specific
to the logged-in user. The modeling canvas is located in the center and has
nested tabs for metamodels and different views for them. Model elements can be
dragged from the palette on the right onto the canvas. Each model instance has
its own chat where users, which have the right to view or edit the model, can
post messages. Attributes of a selected model element can be viewed and edited
in the center-bottom panel. Table 2 summarizes the key features of GEMSjax
to give the reader a quick overview.

The remainder of this section provides a high-level overview of the challenges
we faced and solutions we created to provide browser-based graphical model
editing.

4.1 Client-Side Manipulation of EMF Models

One of the key challenges of developing GEMSjax was establishing a method
for building a client-side in-memory representation of a server-side EMF model.
EMF models, themselves, cannot be transported to the client via HTTP and
loaded into memory as Javascript (a future alternative might be the recent
Eclipse project proposal JS4EMF5). To address this challenge, we created a
generic Javascript object graph for representing EMF models in memory on the
browser. The client-side memory representation manages structural constraints
in the model, such as allowed parent/child relationships or valid associations
between model elements. The reason for checking such constraints on the client-
side instead of on the server is to avoid one roundtrip. This enhances the user-
experience because immediate feedback is provided without the need to wait
for a server response on each action. If, in the future, complex constraints are
introduced, e.g via OCL, these should be evaluated on the server-side to ensure
model consistency. Our solution allows for leveraging server-side computation
power and reusing existing constraint libraries which are currently non-existent
for client-side Javascript.
3 http://www.eclipse.org/modeling/emf/
4 http://code.google.com/webtoolkit/
5 http://www.eclipse.org/proposals/js4emf/

http://www.eclipse.org/modeling/emf/
http://code.google.com/webtoolkit/
http://www.eclipse.org/proposals/js4emf/

284 M. Farwick et al.

Fig. 2. Screenshot of the GEMSjax web-interface

When a model is first opened, a Java servlet on the server reads in the EMF
model from disk and translates the model into an equivalent JavaScript Object
Notation (JSON) representation that is sent to the client to be loaded into
memory using our generic Javascript object graph framework. The server-side
also associates a unique ID with each EMF and client-side Javascript object in
order to provide a mapping from EMF objects to Javascript objects and vice-
versa. The structural rules from the Ecore metamodel of the EMF model are
also extracted into a JSON representation and transported to the client-side to
enforce basic structural constraints, such as allowed containment relationships.

4.2 Bidirectional Client/Server Model Synchronization

For implementing the simultaneous model access (R4), a bidirectional client/
server synchronization scheme is used. HTTP is designed for a request/response
style communication between a client and remote server. A key challenge
we faced was determining how to push changes triggered in the server-side
EMF model to the client-side Javascript representation. In situations where a
model edit originated from the client-side, any updates, such as triggered model
transformations, performed on the server can be returned in the HTTP response

A Web-Based Collaborative Metamodeling Environment 285

Table 2. GEMSjax key features

Key Feature Description

Metamodeling Typical metamodeling possibilities: (abstract-) classes,
attributes, connections, inheritance

Model Instances Instantiate metamodel in same web interface
Customization Instance customization via stylesheets
Dynamic styles Dynamic styles of model elements depending on attribute values
Remote Interface Model modification via REST interface
Access Control Role Based Access Control of graphical and REST interface
Collaborative Modeling Simultaneous modeling
Chat One chat instance per model instance
Export Exports EMF models, e.g. for model transformation

to the client. However, changes in the model that originate in the server outside
of an HTTP response to a client request, such as time-based triggers, incoming
REST API calls, or edits from modeling collaborators, cannot be pushed to the
browser using standard HTTP approaches.

To address this limitation of standard HTTP request/response architectures,
GEMSjax uses the bidirectional HTTP push protocol Cometd6 to allow updates
from the server to be delivered to the client browser. GEMSjax uses an event
bus built on top of the Cometd protocol to communicate changes between clients
and the server. Synchronization between clients editing the same model is main-
tained by broadcasting model edits on the event bus to each connected client.
Each client compares the state change in incoming events to the model to de-
termine if the event represents a duplicate change. A priority scheme is used
to reconcile and rollback conflicting changes. Also, information about which ele-
ments are currently selected by other modelers can be pushed to the other clients
to avoid conflicting changes a priori. However, the effectiveness of our conflict
avoiding/resolution approach needs further investigation.

The sequence diagram in Figure 3 shows an example of the bidirectional com-
munication with two clients connected to the server. When a client connects
to the server, it first gets the most current version of the model by calling the
getModelPackage(modelID: String)-method. Note that all calls originating
from clients are asynchronous calls, s.t. the behavior is non-blocking. For ev-
ery client to receive updates that originate from a different source than itself,
it makes a call to receiveModelChange(). This call opens a connection to the
server and leaves it open until either an update has to be delivered to the client,
or a timeout occurs. In our example, Client1 updates the model (step 7) and
afterwards Client2 receives the updated version (step 9) as response of the call in
step 6. After client2 receives the update it re-opens the connection to the server
in the final step 10. Note that this technique avoids frequent polling. Further-
more, updates are delivered to all clients immediately after the server changes
the status of a model.

6 http://cometdproject.dojotoolkit.org/

http://cometdproject.dojotoolkit.org/

286 M. Farwick et al.

Server : Server Client2 : ClientClient1 : Client

<SuccessResponse>8:

<model1>2:

<model1>9:

<model1>5:

receiveModelChange("m1")6:

receiveModelChange("m1")10:

getModelPackage("m1")4:

sendModelChange("m1")7:

receiveModelChange("m1")3:

getModelPackage("m1")1:

Fig. 3. Client-push protocol example with two clients connected to the server

4.3 (Meta-)modeling Lifecycle

The metamodel representations in GEMSjax are managed on the server-side.
Figure 4 shows the lifecycle of the involved metamodels and their correspond-
ing instantiations. On top of the figure is the GEMSjax metamodel which is
predefined as an Ecore metamodel (1).

In the metamodeling step an EMF instance (2) of the GEMSjax Ecore meta-
metamodel is created according to the requirements of the new DSML. This
realizes our requirement R3. Each time the metamodel is saved on the client
side (web–browser) the model is serialized to its EMF representation on the
server. Once the metamodel is finished, it is transformed again to act as an
Ecore metamodel (3) for new DSML model instances. This is achieved via JET
templates7 that transform the EMF representation of the metamodel into an
Ecore metamodel. Finally, instances of that DSL-specific Ecore metamodel can
be created with the client (4).
7 http://wiki.eclipse.org/M2T-JET: JET is a template-based code generation

framework, which is part of the Eclipe Model to Text (M2T) project.

http://wiki.eclipse.org/M2T-JET

A Web-Based Collaborative Metamodeling Environment 287

Fig. 4. Image showing the modeling lifecycle from the GEMSjax metamodel to a do-
main specific model instance

5 Secure Remote Model Access

As mentioned earlier, one of the key-features of GEMSjax is the easy-to-use
REST interface of the models. Using this interface allows developers to integrate
information of models in their own tools or update the models, because the
HTTP protocol is available in practically any programming environment. This
way, models can become actual configuration artifacts and represent the real
state of a system.

5.1 The REST Interface

The REST API treats models as hierarchical resources that can be accessed and
manipulated via the basic HTTP operations GET, PUT, POST and DELETE.
It uses the hierarchical property of URIs to describe containment of model el-
ements. The GET operation is used to retrieve information about model ele-
ments, PUT to create new elements, POST and DELETE to change and delete
elements respectively. Table 3 exemplifies the usage of the simple interface calls.

By specifying return mime-types the user can choose the return type of the
operation, e.g. XML or JSON. This allows for a flexible client implementation.
Input values for the PUT and POST commands are transmitted via simple
key-value pairs in the body of the messages. Responses conform to the HTTP
specification, e.g. by returning 201 (Created) for a PUT request containing the
URI of a newly created model resource.

288 M. Farwick et al.

Table 3. Examples of REST HTTP Commands

Operation HTTP Command and URL

Get list of available models GET http://. . . /gemsjax/models

Get attributes of an element GET http://. . . /gemsjax/modelID/. . . /elementID/attributes

Get all meta element names of model GET http://. . . /gemsjax/modelID/meta

Create new element PUT http://. . . /gemsjax/modelID/. . . /metaType

Update Element POST http://. . . /gemsjax/modelID/. . . /elementID

Delete Element DELETE http://. . . /gemsjax/modelID/. . . /elementID

5.2 Access Control Architecture

To constrain access to model elements we incorporate an Access Control Layer in
our architecture (cf. Fig. 5). With each request a user needs to provide credentials
in the form of a username/password combination over HTTPS. As mentioned
before, there are two possibilities to access GEMSjax models – the REST in-
terface and the graphical interface of the modeling tool (GWT RPC interface).
Calls via the REST API are first translated to the actual action to be taken on
the model by the URI Mapper. After that, requests are forwarded to the Request
Handler which provides a model interface independent of the access method.
These actions could immediately be executed on the model, however the request
first has to pass the Access Control Layer.

Fig. 5. Access Control Architecture

The access control layer is based on the XACML Target Architecture (cf. [9]),
since it is a proven access control architecture with several open-source imple-
mentations. In an XACML architecture, requests are generally first intercepted
by the Policy Enforcement Point (PEP). It forwards the request context (e.g.
user credentials, requested action) to the Policy Decision Point (PDP). The PDP
decides on the access rights according to policies stored in a policy repository.
This decision is then enforced by the PEP. A typical example for an XACML

A Web-Based Collaborative Metamodeling Environment 289

Fig. 6. An example XACML policy

policy in GEMSjax is depicted in Figure 6. First, a rule combining algorithm
is set in the initial < Policy > element. This algorithm governs the final result
of the policy evaluation depending on the evaluation of < Rule > elements.
In this case a PERMIT evaluation of a rule overrides the DENY result of a
previous rule. The following < Target > element specifies to which subject, re-
source, and requested action the policy applies. Here, it applies to actions of the
type update, on the model resource with ID exampleModelID. Finally, the Rule
element states that for the user with the role admin access should be permitted.

Depending on the PDP’s decision, the Policy Enforcement Point will forward
the action to the Model Repository or block access. The creator of a metamodel is
in charge of granting permissions to registered users of the system. This entails
that GEMSjax enforces a combination of Role-based Access Control (RBAC)
and Discretionary Access Control (DAC)8.

Note that the XACML policies can be very fine grained down to the attribute
level, and are very flexible, e.g. to allow another group of users to update the
model it suffices to add another rule element to the policy. Also policies can be
used for complex requirements like delegation of rights, if, e.g., a user wants to
invite an expert that only has read access to the model for consulting purposes.
The REST interface to GEMSjax and the access control architecture described
here, form the realization of requirement R5.

6 Related Work and Conclusion

In this work we presented GEMSjax a web-based metamodeling tool for the
collaborative development of domain specific languages. We highlighted its
8 In Discretionary Access Control the owner of an object has the right to delegate

permissions on an object to other users.

290 M. Farwick et al.

usefulness in a usage scenario and described the technological challenges and
our solutions for implementing a metamodeling tool in a web enabled manner.
We also presented a novel approach to secure (remote) model access, based on
REST and XACML.

Related literature describes several collaborative modeling approaches, none
of which combines all three key features of GEMSjax: the secure REST model
interface, web-based DSL definition, and simultaneous collaborative modeling.

In his work on COMA [10], Rittgen describes a collaborative modeling tool
for UML models, that provides a voting mechanism to achieve consensus on a
model. Opposed to our work this tool does not provide the means to create do-
main specific languages and has no means to enforce access control on models.
The commercial modeling tool MagicDraw Teamwork Server [1] allows for col-
laborative modeling by providing a locking mechanism for models but does not
provide a REST interface and strictly operates on UML models. Many of the
features of GEMSjax are inspired by GEMS [13], however GEMS is not browser-
based, does not support collaborative modeling, and does not provide security for
its RPC interface. The Eclipse-based Graphical Modeling Framework (GMF)9

also allows for graphical metamodeling, but is relatively more complicated to
configure and does not provide web-based and collaborative modeling. The re-
search prototype SLIM, presented in [12], uses similar technology to GEMSjax
and also aims for a lightweight collaborative modeling environment. However,
it is only able to represent UML class diagrams, which contradicts to our re-
quirement to create domain specific languages. Moreover, SLIM does not offer a
remote model API which eliminates the usage of the tool where updates should
not be made by human users only.

Our future work in this area will include further development of the tool as
well as experiments. Specifically, we will work on an Eclipse integration, that will
enable to use all Eclipse features while editing GEMSjax models in the Eclipse
browser tab. Collaborative modeling environments expose a number of further
issues to solve, like locking or versioning. Future work will also comprise the
integration of existing solutions for such problems (e.g. [11]). We will investigate
on the integration of model voting, concurrency issues and code generation tech-
niques. We also plan a collaborative modeling experiment with dispersed teams
of students in the US and Austria to get further insight on the effectiveness of
our collaborative modeling approach.

References

1. Blu Age: MagicDraw TeamWork Server (2009),
http://www.bluage.com/?cID=magicdraw_teamwork_server

2. Breu, R.: Ten principles for living models - a manifesto of change-driven software
engineering. In: 4th International Conference on Complex, Intelligent and Software
Intensive Systems, CISIS-2010 (2010)

3. Conchúir, E.O., Ågerfalk, P.J., Olsson, H.H., Fitzgerald, B.: Global software de-
velopment: where are the benefits? Commun. ACM 52(8), 127–131 (2009)

9 http://www.eclipse.org/modeling/gmf

http://www.bluage.com/?cID=magicdraw_teamwork_server
http://www.eclipse.org/modeling/gmf

A Web-Based Collaborative Metamodeling Environment 291

4. Cramton, C.D.: The mutual knowledge problem and its consequences for dispersed
collaboration. Organization Science 12(3), 346–371 (2001)

5. Cramton, C.D., Webber, S.S.: Relationships among geographic dispersion, team
processes, and effectiveness in software development work teams. Journal of Busi-
ness Research 58(6), 758–765 (2005), http://www.sciencedirect.com/science/
article/B6V7S-4BM92C5-4/2/60cbbf7fa88eb389c6e745f355acca58

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. Ph.D. thesis, University of California, Irvine, Irvine, California (2000)

7. Frank, U., Heise, D., Kattenstroth, H., Fergusona, D., Hadarb, E., Waschkec, M.:
ITML: A Domain-Specific Modeling Language for Supporting Business Driven IT
Management. In: DSM ’09 (2009)

8. Luoma, J., Kelly, S., Tolvanen, J.: Defining Domain-Specific Modeling Languages:
Collected Experiences. In: Proceedings of the 4th OOPSLA Workshop on Domain-
Specific Modeling, DSM ’04 (2004)

9. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.03.
OASIS Standard (February 2005)

10. Rittgen, P.: Coma: A tool for collaborative modeling. In: CAiSE Forum, pp. 61–64
(2008)

11. Schneider, C., Zündorf, A., Niere, J.: CoObRA-a small step for development tools
to collaborative environments. In: Proc. of the Workshop on Directions in Software
Engineering Environments (WoDiSEE), Edinburgh, Scotland, UK (2004)

12. Thum, C., Schwind, M., Schader, M.: SLIM – A Lightweight Environment for
Synchronous Collaborative Modeling. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 137–150. Springer, Heidelberg (2009)

13. White, J., Schmidt, D.C., Mulligan, S.: The Generic Eclipse Modeling System. In:
Model-Driven Development Tool Implementer’s Forum at the 45th International
Conference on Objects, Models, Components and Patterns (June 2007)

http://www.sciencedirect.com/science/article/B6V7S-4BM92C5-4/2/60cbbf7fa88eb389c6e745f355acca58
http://www.sciencedirect.com/science/article/B6V7S-4BM92C5-4/2/60cbbf7fa88eb389c6e745f355acca58

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 292–306, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Carbon: Domain-Independent Automatic Web Form
Filling

Samur Araujo, Qi Gao, Erwin Leonardi, and Geert-Jan Houben

Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
{s.f.cardosodearaujo,q.gao,e.leonardi,g.j.p.m.houben}@tudelft.nl

Abstract. Web forms are the main input mechanism for users to supply data to
web applications. Users fill out forms in order to, for example, sign up to social
network applications or do advanced searches in search-based web applications.
This process is highly repetitive and can be optimized by reusing the user’s data
across web forms. In this paper, we present a novel framework for domain-
independent automatic form filling. The main task is to automatically fill out a
correct value for each field in a new form, based on web forms the user has
previously filled. The key innovation of our approach is that we are able to
extract relevant metadata from the previously filled forms, semantically enrich
it, and use it for aligning fields between web forms.

Keywords: Auto-filling, auto-completion, concept mapping, web forms,
semantic web.

1 Introduction

Current applications on the Web show a high degree of user interaction. A large
amount of the data that users input into web applications, is supplied through web
forms. This process of filling out forms is highly repetitive and can be optimized by
intelligently reusing the user’s data across web forms, basically following the
observation that web forms from applications in a similar domain demand the same
data from a user. As a simple example, most sign-up forms require the user’s email
and first name.

Recently, auto-filling and auto-completion emerged as techniques to assist the
users in reusing their data for filling out web forms. Auto-filling is a mechanism for
automatically filling out web forms. It exists as tools, in web browsers, and when the
user visits a web page containing a form, auto-filling can be triggered by a simple
mouse click. Google Toolbar Auto-fill [6] is one of the tools available, however it is
the simplest form of auto-filling, as it only works in sign-up forms that demand the
user’s personal data. Another tool is the Firefox Auto-fill Forms plug-in [1] that is
also limited to the user’s personal data. However, it allows the user to extend the pre-
configured fields. Both approaches demand the user to fill out an application-
proprietary form containing some basic fields (e.g., name, address, zip code, etc.)
before they can be used to automatically fill out web forms. The Safari browser has an
auto-fill feature that reuses data from previously filled out forms for automatically

 Carbon: Domain-Independent Automatic Web Form Filling 293

filling out different forms with this data. However, its matching mechanism is only
based on the string matching of field names. Auto-completion is a feature provided
by many applications for suggesting a word or phrase that the user wants to enter
without the user actually entering it completely. Most of the browsers have native
support for auto-completion. It stores values that have been filled before and based on
this history it recommends values for a field that has been already visited. However,
this mechanism demands user interaction for each field that needs to be filled out.

In this paper, we propose and validate a new concept-based approach for
automatically filling out web forms re-using data from previously filled out forms.

Manipulating (the code behind) web forms is not a trivial task, due the high
heterogeneity among them. Web forms have different shapes, different numbers of
fields, different labels, different representation for values, and different purposes. To
be able to derive proposed values for a new form from the knowledge obtained from
the already filled out forms, a concept-based structure is used. This helps to represent
the knowledge from the filled out forms at a conceptual level and exploit that
conceptual level to reason about the proposal for values for fields from the new form.
Figure 1 shows an example of the translation of a simple string representing a field
name to a meaningful concept in some known vocabulary, for example, WordNet for
forms in English. With these concepts we can thus construct a conceptual model with
which it is then possible to connect (the concepts from) the target form and its fields
to (the concepts from) the data gathered from the previously filled out forms. An
essential step in that process is the mapping of ‘target’ concepts to ‘source’ concepts.
Several options are possible here and we will choose in this paper a semantic-based
approach to show the feasibility. Figure 2 shows a mapping between two form fields
using a path of concept relations.

Fig. 1. Example Translation Fig. 2. Example Mapping

The concept-based structure and mappings can thus be used to suggest values for a
target form to be filled out automatically. In this respect, we see two main notions that
exist in current techniques, auto-completion and auto-filling, which we mentioned
before. The main difference between them is that auto-completion guesses a value
from a fixed and defined set of values (e.g. rows in a database column) based on what
the user types and only applies for text fields (not for select, checkbox or radio button
fields), while auto-filling guesses a value based on the concept that the field

294 S. Araujo et al.

represents and applies to all types of fields. Both techniques are instantiations of a
general (meta) model for automatically filling out forms that discerns the following
aspects:

• Mapping technique: Mapping can use string or semantic-based techniques.
• Data source: Proposals for values to be filled out can be made on knowledge

gathered through forms that have been filled out previously, from a pre-
defined list of values extracted from a database (e.g. list of cities), or it can
be gathered by explicitly forcing the user to fill out an application-specific
form, like in the case of Google Toolbar Autofill.

• Field identifier: For matching fields the name of the INPUT tag can be used
or the label of the field (the latter is not always available), for example a field
can have the label “First Name” and the name “F_name”.

• User-intervention: User interaction can be required as in the case of
completion or it can be omitted in the fully automatic case.

• Domain-dependence: Approaches can be using domain-specific intelligence,
like Firefox Autofill, or be domain-independent.

Existing auto-filling approaches are typically string-matching-based tools. They do
not consider the concepts associated with the field label and/or field name.
Consequently, they are not able to exploit available background knowledge. A simple
example is the use of synonym relationships between concepts (e.g., city is the
synonym of town).

In this paper, we present Carbon, a domain-independent automatic web form filling
approach that exploits the semantic of concepts behind the web form fields. Carbon
uses semantic techniques to accumulate and connect the data from previously filled
out forms to the target form to be filled out. Carbon goes beyond the state of the art in
auto-filling since it can be applied for auto-filling any kind of form in the English
language.

This paper is organized as follows. After this motivation, we discuss the related
work in Section 2. In Section 3, we present a deep look at web forms, with an
evaluation of the distribution of field labels in web forms. Section 4 presents our
approach for auto-filling forms. Section 5 elaborates on our Carbon implementation in
details by describing the architecture and data model for the implementation. We then
present an experimental validation of the approach, with a study of the performance
of the approach in Section 6. Finally, Section 7 concludes this paper.

2 Related Work

Form Extraction. Extracting labels from web forms is a challenging and non-trivial
problem. In [17], Raghavan et al. presented HiWE (Hidden Web Exposer) that used a
layout-based information extraction technique to find candidate labels and a set of
heuristic rules to compute and rank the distance between form elements and candidate
labels. In [8], He et al. presented a technique for extracting labels from web forms by
capturing the textual layout of elements and labels, and based on their position the
relationships between elements and labels are determined. Recently, Nguyen et al.

 Carbon: Domain-Independent Automatic Web Form Filling 295

presented LABELEX for extracting element labels from web form interfaces by using
learning classifiers [14] and they introduced the idea of mapping reconciliation.

Auto-completion. Auto-completion is a feature found in web browsers, e-mail
clients, text editors, query tools, etc. Based on the user’s input, it predicts a word or
phrase that a user wants to type before the user types the whole word or phrase. One
of the early auto-completion facilities was command line completion in the Unix
Shell. In [2], the authors introduced an auto-completion feature for full-text search
using a new compact indexing data structure called HYB to improve the response
time of this feature. In most web browsers, an auto-completion feature is available for
completing URLs, suggesting search terms, and for auto-completing form fields. In
the context of web form filling, the web browser typically reuses previously inputted
form data for the prediction of values for fields to be filled out in a new form.
Recently, Hyvönen et al. [9] generalized the idea of syntactic text auto-completion
onto the semantic level by matching the input string to ontological concepts.

Auto-filling. In spite of the usefulness of auto-completion in helping users to fill out
forms, auto-filling is a step further and often more suitable for this task because it
does not require explicit user intervention. With an auto-completion tool, a user has to
type at least one letter for each field (and thus helps the tool with the proposal of
values), where with auto-filling the only action needed is to signal the system to start
its process of finding suggestions; note that tools can allow the user to confirm or
adjust the given proposal. A number of auto-filling tools [1,6,18] require the users
beforehand to fill out a predefined “form” (outside the use of any form-based
application) that will act as the source of data for later when the tools attempts to
automatically fill out a target form. Note that the predefined form usually has a very
small number of fields that are typically related to standard personal information [18].
Even though some of the tools have the capability of adding extra fields and defining
rules [1,18], the users have to explicitly define them beforehand. This task is not
trivial and is often perceived as cumbersome by many users. Another tool, called
iMacros [10], records the interactions between a user and a web page when she fills
out a form and then generates macros for these interactions. These macros are then
later used to automatically fill out the same form. While this tool is useful if the user
wants to fill out one kind of form with different values (e.g., in the process of
searching for products using various keywords), it cannot be used to automatically fill
out different forms. In [21], a framework called iForm was presented for
automatically filling out web forms using data values that are implicitly available in a
text document given by the user as input.

Syntactical Matching and Semantic Matching. A host of works [11,13,19,22] has
addressed the problem of measuring syntactical similarity between strings, and in
many approaches for predicting form values such work is used. They measured how
similar two strings are by computing the minimum number of operations needed to
transform one string into the other [13,19], by computing the numbers of matches and
transpositions, or by indexing the strings by their pronunciations [11]. Semantic
matching is a technique used to identify information that is semantically related.
Typically, this is achieved through concept-based structures that represent semantic
relations between concepts, and the matching process then tries to find connections
between concepts based on such relations. The semantic relations are obtained from

296 S. Araujo et al.

ontologies such as WordNet, DBpedia, etc. In [3,4,5,15] the problem of mapping and
aligning ontologies was addressed. Tools exist [12,16] that are specifically built to
measure semantic similarity between concepts. WordNet::Similarity [16] is a freely
available software package that implements a variety of semantic similarity and
relatedness measures based on information from the lexical database WordNet1. The
DBpedia Relationship Finder [12] is a tool for exploring connections/relationships
between objects in a Semantic Web knowledge base, specifically DBpedia2.

3 Web Forms

Web forms are the main input mechanism for users to enter data for web sites and
web applications. They occur in different shapes, different numbers of fields, different
labels, different values representations (e.g., ‘Brazil’, ‘BR’ or ‘BRA’), and different
purposes (e.g., for signing up, searching or commenting). Forms in HTML are by far
the most used ones on the web, but there also exist forms in others standards such as
XFORMS3 and Adobe Flash4. Our focus in this paper is on forms expressed in HTML
(also XHTML).

In this section we consider the format of forms and report on a study into the nature
of forms, reporting how the form elements are distributed and shared between forms.

3.1 Format of Data in HTML Forms

A web form is a set of HTML INPUT tags enclosed by a tag HTML FORM that when
rendered in the browser, allows users to enter data in a HTML page. After a user has
filled out a web form, it can be submitted to a server application for further
processing. Each INPUT field in a form is associated with a name (e.g.,
“user[‘First_Name’]”), a value (e.g., “John”), and a type (e.g., checkbox, textarea,
text, select, radio button or button). Also, a form field can be associated to a human-
readable label (e.g. “First name”). In spite of the fact that the HTML specification
defines the tag LABEL to represent a human-readable label, it is not widely used by
HTML programmers and most forms represent labels in an alternative way. However,
even that is not always the case, as form fields can come without label, can have
labels in a position hard to detect by machines, or can have meaningless names. In the
last case, it is hard to process it for auto-filling, due to the fact that we cannot map an
opaque field (with a meaningless name such as “$er32”) using any matching strategy.

3.2 Nature of Web Forms

For the challenge of filling out web forms automatically, the first step is to
“understand” how similar web forms can be. One way to measure this is by looking for
the field labels, and how these labels (or concepts) are distributed and shared between
forms. For this purpose, we conducted a study using a typical dataset on web forms.

1 http:// wordnet.princeton.edu
2 http://dbpedia.org/About
3 http://www.w3.org/TR/2009/REC-xforms-20091020/
4 http://www.adobe.com/products/flashplayer/

 Carbon: Domain-Independent Automatic Web Form Filling 297

3.2.1 Experimental Setup
When we consider web forms in a specific domain, there are two characteristics that
are worth further investigation. One phenomenon is that the same labels occur
distributed in different forms. For example, in the book domain a label named
“author” occurs in many different forms. Another characteristic is that different labels
can be connected to a single concept. For example, both of the labels “postal code”
and “zip code” can be associated with one concept representing the “postal code”.
Identifying and exploiting these two phenomena, we have the capability of a
significant reduction from labels to concepts.

In an experiment to evaluate these characteristics mentioned above, we adopted the
TEL-8 dataset [20], a manually collected dataset, which contains a set of web query
interfaces of 447 web sources across 8 domains in the Web, including Airfares,
Automobiles, Books, Car Rentals, Hotels, Jobs, Movies, and Music Records. We note
that they are typical domains on the Web and that this dataset captures the structures
of forms on the Web nowadays. For each domain, we gathered all labels from TEL-8
files and we grouped them into sets of distinct labels. Then we categorized these
distinct labels by mapping them to concepts, manually. Afterwards, we investigated
the distribution of labels and concepts in the forms for each domain and analyzed the
reduction from labels to concepts.

3.2.2 Experimental Results
The results show the distribution of forms, (distinct) labels and concepts and also the
average number of labels and concepts in the forms, for each domain (see Table 1). In
Table 1 we see the number of forms per domain and the number of labels that are
contained in all those forms. We see also how many of those labels are distinct labels.
Further, we see how many concepts are associated with these distinct labels.

Table 1. Nature of Web Forms

We define a measure named “Reduction Rate” to represent the reduction from the
labels to the concepts in the web forms due to the conceptual mapping. Given one
specific domain, let Nc be the number of concepts and Nl be the number of labels. The
reduction rate is defined as follows:

The reduction rate ranges from 42% to 71% and is 55% in average. The higher this
number is, the fewer concepts we need to cover all the fields in one domain. In Table
1, we can see that the reduction rate is composed of two parts. The first part of the

298 S. Araujo et al.

reduction is from labels to distinct labels, due to the fact that labels are repeated
among different forms. The second part is caused by the application of concept
mapping that groups distinct labels into clusters of concepts that they represent. The
intelligent exploitation of these two reduction steps is the main motivation for our
approach.

4 Conceptual Framework for Form Auto-Filling

The main idea behind our approach for automatically filling out web forms is to
extract data from previously filled out forms and propose them for the new form.
Thus we exploit the observations we made in the study presented above. The use of
data from previously filled out forms, increases, progressively, the variety of forms
that can be automatically filled, since, once a user manually has filled out a form in a
specific domain (e.g., social networks or hotels), this data is then available as a solid
basis for automatically filling out other forms in the same domain.

This approach allows Carbon to go beyond of the state of the art of available auto-
filling tools by exploiting the semantic overlap of knowledge contained in the
previously filled out forms.

4.1 Extracting Concepts from Web Forms

We represent a form field by a conceptual structure containing the field name, the
label, the type, the values, the URL of the page containing the form, the domain of the
URL, the universal unique identifier of the form, and the update date. The process of
auto-filling forms starts with the instantiation of this conceptual structure by
extracting metadata from web forms that the user fills out. Afterwards this metadata is
stored and enriched for further use. The next step is to instantiate a similar structure
for a target form, and subsequently to map this instance to the previously obtained
knowledge structure, to obtain suggestions for values for empty fields. The mapping
between form representations can exploit any attribute of the knowledge structure, but
in the implementation for the experiment described in this paper, we just exploited the
attribute representing the form field’s name.

As we typically do not have access to (the database behind) the web application,
we choose to collect the form field metadata in real-time - i.e. after a user fills out the
form and before submitting it. We extract this metadata from the DOM5 (Document
Object Model) tree of the HTML page that contains the form. The DOM is a
programming API for documents that has a logical structure that represents a
document as a tree of objects. By navigating through the HTML DOM tree we can
access any web page element and their attributes, including form input fields. Carbon
processes the DOM tree, extracting name, value, and type of the HTML INPUT tags.
The Carbon version used in this experiment does not implement a label extraction
strategy, however this can be easily plugged into the architecture.

The extraction intelligence applied for previously filled out forms and for an
(empty) target form is logically similar, but obviously occurs at distinct moments.

5 http://www.w3.org/DOM/

 Carbon: Domain-Independent Automatic Web Form Filling 299

4.2 Mapping Web Form Concepts

The main idea behind Carbon is to connect fields at the conceptual level. For
example, Carbon can connect the (different) concepts “city” and “town” using
WordNet, a large lexical database for English, for bringing two words together that
represent synonyms.

Carbon starts by mapping a field name string to atomic syntactic elements or
lexical words in WordNet. Carbon splits the string by eliminating all non-letter
characters, e.g., the string “reg.name[last]” is split into “reg”, “last” and “name”.
Afterwards, Carbon builds a tree of prefixes and suffixes for each of the thus split
strings and looks for English terms in the WordNet database that match these
substrings. So, in the example it only retrieves (the concepts for) the terms “last” and
“name”. By exploiting WordNet collations (sequences of words that go together, such
as “zip code”), Carbon also retrieves the term “last name”. Carbon uses WordNet
synsets (a set of word or collation synonyms) to retrieve synonyms of the found
terms. So, Carbon maps the field name string to all WordNet terms thus found, e.g.,
“reg.name[last]” is mapped to the WordNet terms “name”, “last”, “last name”,
“surname” and “family name”.

Like this, Carbon can use this knowledge to propose values for a target form field.

5 Auto-Filling Web Forms with Carbon

Carbon has two main parts: Carbon Client and Carbon Server. Figure 3 shows an
overview of the interactions between the Carbon Client and Carbon Server.

Fig. 3. Client-Server Interactions.

Carbon Server is a semantic application that stores and enriches metadata about
web forms in order to recommend values in the process of automatically filling forms.
Carbon Client is a browser extension that processes web pages extracting relevant
metadata from previously filled out web forms, extracts relevant metadata from an
empty target form, and automatically suggests values for the empty form’s fields.

5.1 Carbon Client

Carbon Client was implemented as a Greasemonkey6
 script. Greasemonkey scripts

can be easily added to the Firefox browser and can be enabled or disabled with a
simple mouse click. Carbon uses it to have access to the DOM tree of the HTML page

6 http://www.greasespot.net/

300 S. Araujo et al.

that the user visits. The communication between Carbon Client and Carbon Server is
done via the XMLHttpRequest7 object.

Since Carbon uses previously filled out forms for the purpose of auto-filling an
empty form, Carbon Client extracts metadata about all forms that the user fills out.
For doing this, for every page that the user visits Carbon Client accesses the DOM
tree, searches for all input elements, and adds to them a Javascript8 Onblur DOM
event. An Onblur event triggers a function when the user moves the focus from an
HTML INPUT element to another. At this moment, Carbon Client extracts the
metadata (name, value, and type) of the input tag that triggered the event and sends,
together with the page URI, such information to Carbon Server via an AJAX9 request.
Once the request has been received, Carbon Server processes it and stores it.

When the user visits a page with an empty form, Carbon Client can be triggered to
automatically fill out the form. This triggering can occur upon the explicit request of
the user or automatically whenever the user visits a page with an empty form. At that
moment, for each field, Carbon Client extracts metadata, and sends, with the page
URI, an autofill request to Carbon Server. Carbon Server retrieves suggestions for
values that fit those fields. Carbon Client uses these values to fill out the empty fields.

5.2 Carbon Server

Carbon Server plays a main role in Carbon as it is responsible for storing and
enriching metadata about web forms. Also, Carbon Server implements the logic
behind the mapping of form fields.

Carbon Server is a web application that was implemented using the Ruby on
Rails10 framework. As storage technology we use Sesame11, an RDF (Resource
Description Framework)12 open source framework. We also use ActiveRDF13, a Ruby
library for manipulating RDF data following the object-oriented paradigm. Figure 4
gives an overview of the Carbon Server implementation architecture.

Carbon Server uses 3 different data models: a Form Data Model, a Configuration
Data Model, and an Enriched Data Model. All these models are instances of the
Carbon Ontology that we will not detail in this paper due to space limitations. Using
RDF as the representation model, Carbon can be easily extended to include any
relevant metadata about web forms. Also, RDF is the foundation of the Semantic
Web, and a lot of open data is being published in this environment, such as WordNet
that Carbon uses in the process of mapping form fields. The main benefit of the use of
such a model is that Carbon can consume data from any external source in the
Semantic Web, and thus provides a flexible and extensible environment that allows
for the definition of new rules and their application in the conceptual mapping of
fields. For example, Carbon could use dictionaries in other languages, in addition to
the English version of WordNet that is already used in the process of mapping fields.

7 http://www.w3.org/TR/XMLHttpRequest/
8 https://developer.mozilla.org/en/About_JavaScript
9 http://en.wikipedia.org/wiki/Ajax_%28programming%29
10 http://rubyonrails.org/
11 http://www.openrdf.org/
12 http://www.w3.org/RDF/
13 http://www.activerdf.org/

 Carbon: Domain-Independent Automatic Web Form Filling 301

Fig. 4. Carbon Server Implementation Architecture

The Form Data Model stores the conceptual structures of forms and fields, for all
previously filled out forms. For example, the concept for the field with the label “Last
Name”, the name “reg.lastName”, the type “text”, and the value “Donald” is
represented as follows in the Carbon Ontology using the RDF notation N314.

@prefix carbon: <http://www.carbon-autofill.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
<carbon:7382> <rdfs:type> <carbon:Field> .
<carbon:7382> <carbon:fieldLabel> ‘Last Name’ .
<carbon:7382> <carbon:fieldId> <carbon:7382> .
<carbon:7382> <carbon:originalFieldName> ‘reg.name[last]’ .
<carbon:7382> <carbon:name> ‘regnamelast’ .
<carbon:7382> <carbon:formUri>
<https://secure.gettyimages.com/register/> .
<carbon:7382> <carbon:urlDomain> <https://secure.gettyimages.com> .
<carbon:7382> <carbon:updated_at> ‘1254390507.71’ .
<carbon:7382> <carbon:fieldValue> ‘Donald ‘ .

Following this data model, all form data is stored in a Sesame repository called
FormData.

The Enriched Data Model stores extra knowledge about instances of the Form
Data Model. It can store any meta-knowledge about the conceptual structures; in the
implementation that we used in the current experiment it stores concepts that are
related to fields’ names and labels. The example below shows the enrichment related
to a form field labeled “Last Name”:

@prefix carbon: <http://www.carbon-autofill.org/> .
@prefix wordnet: <http://www.w3.org/2006/03/wn/wn20/instances/> .
<carbon:7382> <carbon:relatedto> <wordnet:synset-last_name-noun-1> .
<carbon:7382> <carbon:relatedto> <wordnet:synset-surname-noun-1> .
<carbon:7382> <carbon:relatedto><wordnet:synset-family_name-noun-1> .

Here, the WordNet synset consisting of the words or collations “last name”,
“surname” and “family name” is associated to the concept 7382 that represents the
form field labeled “Last Name”. The property relatedto defined in the Carbon

14 http://www.w3.org/DesignIssues/N3Resources

302 S. Araujo et al.

Ontology was used to denote this association. Following this data model, all enriched
data is stored in a Sesame repository called EnrichedData.

The Configuration Data Model allows to extend the knowledge from the Form
Data Model and the Enriched Data Model. For example, the concepts “street” and
“address” are not synonyms in the WordNet vocabulary, so Carbon will not map these
two. Even another semantic matching strategy such as WordNet::Similarity[16], will
give them a low degree of similarity. However, the designer can add extra triples in
this repository (using Carbon’s named graph), see the example below, which extends
the WordNet synsets enabling Carbon to perform better for this example.

@prefix carbon: <http://www.carbon-autofill.org/> .
@prefix wordnet: <http://www.w3.org/2006/03/wn/wn20/instances/> .
<wordnet:synset-address-noun-1><wordnet:containsWordSense>

<wordnet:wordsense-street-noun-1> .

The triple above connects these two concepts using the property

“containsWordSense” which is the main relation exploited by Carbon to determine
the similarity among concepts.

6 Evaluations

In this section, we present two sets of evaluations. In the first set of experiments we
want to see how many concepts in a new form have been found in the previously
filled out forms. We define this as concept completeness. In the second set of
experiments, we examine the effectiveness of Carbon in terms of precision and recall.
Both sets of experiments use the TEL-8 (see Section 3.2) data set with Airfares,
Automobiles, Books, Hotels, Jobs, and Movies domains.

6.1 Concept Completeness: Definition and Evaluation

We first formally define the notion of concept completeness. Given a set CS of
concepts related to fields in a set S of filled out forms and a set Cf of concepts related
to fields in a new form f, the concept completeness of form f given a set of filled
forms S is defined as follows:

The value of concept completeness ranges from 0 to 1. If it equals 1, then it means
that all the concepts in the new form are completely covered by the concepts in the
previously filled out forms. If the concept completeness equals 0, then the previously
filled forms are not useful in filling out the new form.

For all the forms in a domain d in the TEL-8 data set, we did the following:
1) We mapped the fields in all forms to WordNet concepts. In this set of

experiments, we used the field labels that were extracted and available in the
data set and mapped them to WordNet concepts.

 Carbon: Domain-Independent Automatic Web Form Filling 303

2) For each form f in domain d, we determined all possible subsets of forms in
domain d with size r, and used these subsets as sets of source forms. Then, for
each subset Sr, we computed the Completeness(f,Sr).

3) Finally, we computed the concept completeness average grouped by d and r.

Table 2 shows the concept completeness for 6 different domains based on the concept
mapping performed by human experts (denoted by “Experts”) and by our Carbon
Server (denoted by “Carbon”). The results of the Experts act as benchmark for
Carbon. Note that r denotes the number of forms that a user has previously filled out
and in this table r ranges from 1 to 6.

Table 2. Concept Completeness Evaluation Results

We see that the concept completeness of a new form becomes higher if a user has
filled out more forms previously. For Carbon, the concept completeness of the
“Airfares” domain increases from 25.21% to 65.14%. For Experts, it increases from
49.24% to 80.10%. On average the concept completeness of Carbon and Experts for r
= 6 is 50.73% and 62.31%, respectively. This means that even though a user has only
filled out 6 forms, the concepts in the filled forms can cover 50-62% of the concepts
in a new form. The uncovered concepts in the new form are usually application-
specific, meaning that those concepts occur only in a small number of forms.

We also see that the increment rate becomes slower as the user fills out more
forms: the more forms a user fills out, the fewer new concepts can be discovered. For
example, the increment rate of the concept completeness for Carbon in the “Hotels”
domains drops from 11% when r=2 to 4% when r = 6. A similar result is also revealed
for Experts. Checking all results in the 6 domains, we found the increment in all
domains to become rather small (all below 5%) when r reaches 6. Considering the
increase of computation complexity and the decrease in increments for the concept
completeness, we therefore set the maximum value of r to 6.

We also observe how the concept completeness of human experts is (expectedly)
always higher than Carbon’s. On average, the concept completeness of Carbon
reaches almost 74% of that of the human experts. It shows that, while there is still
room for improvement, the ability of this Carbon version to map labels and concepts
is quite close to the one of human experts.

6.2 Effectiveness: Performance Measures and Dataset

In our second evaluation, precision and recall are used as the performance measures
[7]. Precision expresses the proportion of retrieved relevant fields among all the

304 S. Araujo et al.

retrieved fields, while recall expresses the proportion of retrieved relevant fields from
the total relevant fields:

The basic idea of this experiment is to compare the forms filled by the human experts
according to users’ profiles to those filled by Carbon automatically. In detail it is
divided into four steps described as follows:

1) We randomly chose 10 forms for each domain as the test set.
2) We collected 6 user profiles according to the real personal information, for

each domain. These profiles will be used as the facts for filling the forms.
3) In order to evaluate the performance of Carbon, we needed to set up a

benchmark for the evaluation by filling out 10 forms for each domain
according to these user profiles. This was accomplished by human experts.

4) For each domain we then chose one available form as a target form. Based
on the results of the first set of experiments, another 6 forms were selected
randomly as the source forms, representing the forms that users have filled
out formerly. Then Carbon filled the target form automatically according to
the knowledge extracted from these source forms. Repeating this process for
8 different target forms, we calculated the precision and recall for the
domain.

6.3 Effectiveness Evaluation Results

Table 3 summarizes the results of the effectiveness evaluation on Carbon in terms of
precision and recall for each domain. The precision ranges from 0.54 to 0.81 and on
average is 0.73. The recall ranges from 0.42 to 0.61 and on average is 0.53. We can
see that the recall is less than ideal. There are two explanations for this recall result.
One is that when we use the field names instead of the labels in the experiments, some
of the field names, e.g. “inp_ret_dep_dt_dy”, “DEST-1”, etc., are not meaningful
enough to be parsed to words and mapped to concepts. Sometimes the field name is
meaningful, but Carbon fails to map it to related concepts. Taking the example of the
Airfare domain that has the lowest recall, among all the 77 relevant fields in this
domain, 18 fields are meaningless. If we ignore these fields and re-calculate the
recall, it will increase to 0.55 from 0.42. Furthermore, we observe that in those cases
where there are labels they are more meaningful than the field names, and despite that
these labels could improve Carbon’s precision and recall, using the names we have
shown the capability of the semantic matching approach for auto-filling forms.

Table 3. Precision and Recall Results

 Carbon: Domain-Independent Automatic Web Form Filling 305

7 Conclusion

Filling out forms is an essential aspect of many web applications and many users are
confronted with a large degree of repetition in this process across applications. Tools
exist to help users in this process, but an optimization step is not only welcome but
also feasible if we are able to integrate form data across web forms. In this paper, we
presented a novel framework for domain-independent automatic form filling. The
main challenge behind the approach is to provide good suggestions for the values to
be used for each field in a new form to be filled out, and to do so based on the web
forms the user has previously filled out. We have approached this challenge with a
number of innovative steps in which we are able to extract relevant metadata from the
previously filled forms, semantically enrich this metadata, and use it for aligning
fields between web forms. We have also given details of experimental validations of
the approach. First, to describe the nature of the problem and challenge, we have done
a study of the distribution of field labels in web forms. Second, we have conducted a
study of the performance of the approach with the Carbon implementation.

As our focus in this paper is to show how to exploit the semantics of concepts
behind the web form fields and to use semantic-based techniques to automatically fill
out web forms, several usability and privacy issues could not be discussed in this
paper. Amongst them are web form domain resolution, encrypted transfer of data and
the management of form data for multiple users. The first issue can effectively be
resolved by plugging a web page classifier into Carbon’s architecture. Thus, Carbon
is able to select data from previously filled forms that are classified in the same
domain as the target form. The second and third issues can also be addressed, by
adding an encryption and authentication system into Carbon’s architecture,
respectively.

In the continuation of this research, we study how a hybrid approach that uses a
combination of auto-filling and auto-completion performs in terms of effectiveness,
based on the observation that auto-completion could be exploited over the enriched
knowledge structure that was created over the form data stored in the user's history.

References

1. Autofill Forms – Mozilla Firefox Add-on, http://autofillforms.mozdev.org/
2. Bast, H., Weber, I.: Type Less, Find More: Fast Autocompletion Search with a Succinct

Index. In: The Proceedings of SIGIR 2006, Seattle, USA (August 2006)
3. Bouquet, P., Serafini, L., Zanobini, S.: Semantic Coordination: A New Approach and an

Application. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 130–145. Springer, Heidelberg (2003)

4. Doan, A.H., Domingos, P., Halevy, A.Y.: Learning to Match the Schemas of Data
Sources: A Multistrategy Approach. Machine Learning 50(3), 279–301 (2009)

5. Doan, A.H., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to Map between
Ontologies on the Semantic Web. VLDB Journal, Special Issue on the Semantic
Web 12(4), 303–319 (2003)

6. Google Toolbar Autofill, http://toolbar.google.com/
7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman,

San Francisco (2001)

306 S. Araujo et al.

8. He, H., Meng, W., Yu, C.T., Wu, Z.: Automatic Extraction of Web Search Interfaces for
Interface Schema Integration. In: the Proceedings of WWW 2004 - Alternate Track Papers
& Posters, New York, USA (May 2004)

9. Hyvönen, E., Mäkelä, E.: Semantic Autocompletion. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 739–751. Springer, Heidelberg
(2006)

10. iOpus Internet Macros, http://www.iopus.com/
11. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3, pp.

394–395. Addison-Wesley, Reading (1973)
12. Lehmann, J., Schüppel, J., Auer, S.: Discovering Unknown Connections - the DBpedia

Relationship Finder. In: The Proceedings of CSSW 2007, Leipzig, Germany (September
2007)

13. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

14. Nguyen, H., Nguyen, T., Freire, J.: Learning to Extract Form Labels. In: the Proceedings
of VLDB 2008, Auckland, New Zealand (August 2008)

15. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: The Proceedings of AAAI/IAAI 2000, Austin, USA (July-
August 2000)

16. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet: Similarity - Measuring the
Relatedness of Concepts. In: The Proceedings of AAAI/IAAI 2004, San Jose, USA (July
2004)

17. Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In: The Proceedings of
VLDB 2001, Rome, Italy (Septmeber 2001)

18. RoboForm, http://www.roboform.com/
19. Smith, T., Waterman, M.: Identification of Common Molecular Subsequences. Journal of

Molecular Biology 147(1), 195–197 (1981)
20. TEL-8 Query Interfaces,

http://metaquerier.cs.uiuc.edu/repository/datasets/tel-8/
21. Toda, G.A., Cortez, E., de Sá Mesquita, F., da Silva, A.S., de Moura, E.S., Neubert, M.S.:

Automatically Filling Form-based Web Interfaces with Free Text Inputs. In: the
Proceedings of WWW 2009, Madrid, Spain (April 2009)

22. Winkler, W.E.: The State of Record Linkage and Current Research Problems. Statistics of
Income Division, Internal Revenue Service Publication R99/04 (1999)

Scalable and Mashable Location-Oriented Web
Services

Yiming Liu and Erik Wilde

School of Information
UC Berkeley

Abstract. Web-based access to services increasingly moves to location-
oriented scenarios, with either the client being mobile and requesting
relevant information for the current location, or with a mobile or sta-
tionary client accessing a service which provides access to location-based
information. The Web currently has no specific support for this kind of
service pattern, and many scenarios use proprietary solutions which re-
sult in vertical designs with little possibility to share and mix information
across various services. This paper describes an architecture for provid-
ing access to location-oriented services which is based on the principles of
Representational State Transfer (REST) and uses a tiling scheme to al-
low clients to uniformly access location-oriented services. Based on these
Tiled Feeds, lightweight access to location-oriented services can be im-
plemented in a uniform and scalable way, and by using feeds, established
patterns of information aggregation, filtering, and republishing can be
easily applied.

Keywords: Web Services, Location-Oriented Services, REST, Loose
Coupling.

1 Introduction

The mobile Web, the mobile access to Web-based resources, has gained a lot of
momentum and attention. The increasing availability of sophisticated devices for
mobile Web access (smartphones and netbooks) means that an increasing share
of Web users access the Web from mobile settings, and in many cases, these users
are interested in localized services. Complementing this, the increasing usage
of the mobile Web produces an increasing amount of localized data (“location
trails” of users and networked objects), which allows novel and personalized
access to services based on this localized data. In summary, location-orientation
on the Web has seen a sharp incline in interest and sophistication, and it is likely
that this development will continue for the foreseeable future.

An increasing share of the services provided over the Web, either in the form
of Web pages for browser-based UIs, or in the form of Web service APIs for use
by applications, use or support location in some form, but the Web itself still is
a location-unaware information system [7], which means that in many cases, the
services or information made available are hard to repurpose and reuse. A lot

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 307–321, 2010.
� Springer-Verlag Berlin Heidelberg 2010

308 Y. Liu and E. Wilde

of location-oriented services nowadays use Web technologies, but in many cases,
the spatial component of service design is service-specific, and thus cannot be
easily reused or recombined across services. A first change in that landscape is
the W3C’s current work towards a geolocation API [19], which allows scripting
code to access a client’s location services, but this API is still in its draft stage,
and only covers the case where location information should be made available
on the client.

In the general area of Geographic Information System (GIS) research, Web-
oriented access to GIS systems has seen only little advances beyond the tradi-
tional model of client-based access to a centralized GIS server. Web GIS [1] are
often simply regarded as Web interfaces for GIS systems, which means that they
replace other client-side technologies with browser-based access to a single GIS.
The Open Geospatial Consortium (OGC) has released a number of standards
for accessing GIS systems using Web services, but all of these specifications are
based on RPC models of interaction, and thus do not apply principles of Web
architecture to GIS systems.

In this paper, a more loosely coupled architecture [17] of accessing GIS services
is described, which can be used to provide access to any kind of geospatial service.
It is based on the principles of Representational State Transfer (REST), and thus
is designed around interlinked resource representations served through a uniform
interface, instead of using the RPC model of a sophisticated method set provided
through a single endpoint.

2 Related Work

The Open Geospatial Consortium (OGC) has defined the Web Map Service
(WMS) [11] and Web Feature Service (WFS) [13] as two standards for accessing
map imagery and map features using Web services. Both of these standards are
based on SOAP, which means that instead of exposing map imagery and map
features as Web resources, they expose functions that can be remotely called to
request map imagery and features. The RESTful approach of our work, on the
other hand, exposes information in the interlinked fashion of Web resources, and
thus clients do not need to support SOAP or the specific set of functions defined
by WMS/WFS. We claim that the decision between RPC-style Web services and
RESTful Web services [18] should be based on the expected use cases, and that
map imagery and even more so map features should be provided in a way which
allows “serendipitous reuse” [22].

The idea of tiled access to map information in general has been proposed
very early and goes back to the approach of using Quadtree [20] structures for
organizing spatial data. Popular Web mapping services such as Google Maps are
using tiled access to map imagery for scalability reasons, so that the vast amount
of map imagery can be efficiently stored, served, and cached. Beyond these spe-
cific implementations, the Tile Map Service [16] proposes a general scheme for
how services can expose map imagery through a tiling scheme. However, APIs
for location-based services as Google Maps, Flickr do not use the tiling concept

Scalable and Mashable Location-Oriented Web Services 309

to organize and deliver spatial information. Proprietary APIs for location-base
services are typically designed in ad-hoc fashion, with different types of access
capability. The simplest instantiations, such as Flickr, allow queries by point and
radius, while some services may allow user-specified bounding boxes.

To the best of our knowledge, no scheme so far has been proposed that com-
bines the tiled model of spatial information representation with a RESTful ar-
chitecture for accessing the resources organized in this fashion.

3 Feeds as RESTful Web Services

Starting from the principle of loose coupling [17], a popular and well-established
method for implementing RESTful access to collections of resources is Atom [10],
a language for representing feeds. Extending the idea of the feed as a single rep-
resentation of a collection, the model of interaction with feeds can be extended
to cover queries and other interaction mechanisms [24], so that feeds and interac-
tions with feeds turn into a more feature-rich model of interaction with resource
collections. This model, however, is still a read-only model, but the Atom Pub-
lishing Protocol (AtomPub) [5] can be used to extend it into a model that also
allows write access to collections.

While feeds satisfy the criteria for RESTful resource access (URI-based ac-
cess, self-describing representations, interlinked information resources), addi-
tional feed-based capabilities for filtering, querying, and sorting collections are
not yet standardized. Some feed-based services such as Google’s GData or Mi-
crosoft’s OData introduce their own extensions to add this functionality to feed-
based services, but none of these so far has reached critical mass to be accepted
as a new standard. In this paper, we focus on describing an access model to spa-
tial information that builds on feeds to define a lightweight interaction model
with spatial data that provides access to spatial information services. This model
lays the groundwork for establishing scalable and open interaction patterns with
these services. We highlight some of the issues for a more flexible and customiz-
able access to these services in the final parts of the paper, but leave these issues
for further work.

4 The Tiled Feed Model

In this section, we present a REST-based model for delivering mashable location-
oriented services, based on multiple potential data sources. The design goals for
this model are to address four areas of concern in the design of location-oriented
Web services:

Remixability. Much of the geospatial information on the Web remains stand-
alone and service-specific. Application scenarios involving multiple sources of
geospatial information — now becoming common with highly localized and
personalized services — require ad-hoc integrations with each of the desired
data sources in turn. One of our primary goals in this model is to facilitate
the creation of novel location-oriented services that reuse and remix available
geospatial data.

310 Y. Liu and E. Wilde

Loose coupling. Much as we seek to liberate geospatial data from the con-
straints of service-specificity and tight coupling, clients of our model should
not be tightly bound a specific system of our own design.

Scalability. With the rapid growth of location-oriented services and users, a
model that scales cheaply and efficiently, using existing technology and know-
how is particularly desirable.

Ease of Deployment. A driving factor of the rapid growth of the Web rests
with ease of development of Web sites via HTML. In a similar vein, many
individuals and organizations may have geospatial data that would be valu-
able if made available as open Web services, and more valuable if easily
remixed with data from other entities. The development of applications that
use existing data and services should be made as easy as possible.

Our solution is called Tiled Feeds, geospatial data feeds based atop various ge-
ographic information systems. Tiled feeds can be published by an individual or
organization with first-hand geospatial information, a commercial data provider,
or even motivated third-parties, much like conventional RSS or Atom feeds. As
with conventional news or blog feeds, client applications may use one or more
tiled feeds to build, mix, and visualize spatial information as they wish.

4.1 Tiled Feed Architecture

Tiled feeds consist of, as the name implies, spatial tiles and data feeds. In this
model, the world is partitioned into standard sets of tiles, at varying levels of
resolution. Each tile is then published as an Atom feed with simple spatial exten-
sions. Entries within the feed represent geospatial features that are located within
that tile. The entries are represented in Keyhole Markup Language (KML) [15]
or Geographic Markup Language (GML) [12], which are standard markup lan-
guages for representing geospatial information features, such as points, lines,
polygons, etc.

Tiles. In the tiled feed system, tiles represent a standardized spatial unit for
access to feeds. Tiling is a well-known technique for spatial division and aggrega-
tion of georeferenced data. Size of the tiles indicates level of resolution — larger
tiles offer less detail but more coverage of an area, and vice versa for smaller
tiles. Repeated tiling of the same area provides different levels of resolution, or
“zoom levels”, for a tiled map. For example, a map may be divided into four
large tiles at the first level of detail, and 16 smaller tiles at the second level.

There are many possible tiling schemes, but we adopt the basic tiling approach
used in most Web-based mapping services [21,4]. The base map is a map of the
world, in WebMercator or EPSG:3857 projection [2]. We subdivide this base
map into smaller and smaller tiles, using a conventional quadtree-based [20]
tiling algorithm.

In our canonical tiling scheme for tiled feeds, the world map is recursively
divided into four smaller tiles. The top-level tile is set to be the entire base map.
This constitutes zoom level 0. We then divide the top-level tile into four equal

Scalable and Mashable Location-Oriented Web Services 311

square tiles, creating the tiles for zoom level 1. Each of the four new tiles in
level 1 can be divided again, in four, to create 16 tiles in level 2. This process
continues for each new level of resolution desired. We recommend a maximum
of 20 levels, the same provided by most mapping services. Due to the properties
of the Mercator projection1, we restrict the base map to latitudes between -
85.05112878 and 85.05112878 — the same restrictions used in both Google Maps
and Bing Maps. This also conveniently creates a square map, which yields square
tiles simplifies tile-based distance computations.

For identification and linking purposes, an

Fig. 1. Quadtree-based tiling and
addressing scheme

addressing value is assigned to each tile. Both
the tiling and the addressing scheme are il-
lustrated in Figure 1, with the world recur-
sively divided and each area numbered 0 to 3.
In essence, the top-left tile, covering the top-
left sector of its parent tile, is always given a
value of 0. The top-right tile is always given
a value of 1, the bottom-left given 2, and the
bottom-right is given 3. Thus, the tile key, a
hash string that uniquely identifies a partic-
ular tile, is given by the concatenation of the
addressing values of its parent tiles. For ex-
ample: the key “0-1” identifies the top-right tile of the top-left tile of the base
map. The length of its tile key represents the zoom level of the tile.

Tile Feeds. Each tile is represented by an Atom feed, called the tile feed. The
tile feed carries metadata information and descriptions similar to an ordinary
Atom feed. The tile is referenced by a unique URI. For example, the tile repre-
senting the entire world would have an ID of http://example.com/feed/top.
The northwestern tile at zoom level 1 would have an ID of http://example.
com/feed/0. The tile feed links to neighboring, contained, and containing tiles,
for RESTful navigation of the map.

However, the tile feed is extended with some simple spatial properties. In
particular, a tile feed has the following specific properties:

– The atom:id element contains the URI for the tile.
– Four atom:link elements point to the neighboring tiles. Links with the re-

lations of north, south, east, and west point to the URIs of neighboring tiles
in the four cardinal directions. If there is no tile in that direction2, the cor-
responding link element is omitted.

– An atom:link element points to the containing parent tile. A link with the
relation of up points to the URI of the tile one zoom-level up, which contains
the current tile.

1 Singularities are present on both poles. The line at the top of a Mercator map, is in
actuality a point — the north pole. The same applies for the line at the bottom of
a Mercator map.

2 For example, the tile 0 has no neighboring tile to its north.

http://example.com/feed/top
http://example.com/feed/0
http://example.com/feed/0

312 Y. Liu and E. Wilde

– Four atom:link elements point to the tiles at the next zoom level, contained
within the current tile. A link with the relation of down-northwest points to
the URI of the tile at the northwestern quadrant, the down-northeast relation
for the northeastern quadrant, down-southwest for the tile at southwestern
quadrant, and down-southeast for the tile at the southeastern sector.

With these extensions, subscribing clients of the tile feed can navigate the world
using the provided links, load neighboring tiles, and retrieve information as
needed. Each individual atom:entry in the tile feed consist of a resource avail-
able within this tile, representing some GIS feature and its attributes, written in
KML or GML. For read-only feeds, these entries are refreshed when its back-end
data source is updated. For writeable feeds, AtomPub may be used as a standard
means for posting, editing, and deleting resource items within the feeds, creating
more dynamic tile feeds.

Features and attributes are provided by the underlying geographic information
system. The system may be, for example, geographic information databases, third-
party location-oriented services, or standardized GIS web services. We discuss the
methods for integration with these data sources in more detail in Section 5.

A tile feed may support paging, and does so according to the standardized feed
paging mechanism [8]. A specific page is requested with a page query parameter
in its URI, with a value equals to some positive integer representing desired page
number. In this case, additional atom:link elements will point to the URIs of the
previous, next, first, and last pages, as directed in the feed paging specification.
More advanced operations, such as filtering, sorting, or querying, may also be
supported; we discuss this in more depth in Section 5.

Implementation. We have implemented proof-of-concept tiled feeds using
freely available geospatial datasets and geospatial-aware relational databases.
The popular PostgreSQL RDBMS can be augmented for GIS geometry columns
and spatial query functions using the PostGIS3 add-on. GIS features were loaded
into PostgreSQL tables, and a thin service layer is written to serve GIS features
in the tiled feed format as described. We created, as tiled feeds, the locations
and addresses of 861 Amtrak4 stations in the United States, the addresses and
species of 64,318 street trees maintained or permitted by the city of San Fran-
cisco, and 25,928 magnitude 3.0+ earthquakes occurring in the United States in
2008.

An excerpt from the feed is provided in Listing 1. As noted in the previous
section, the feed, in addition to resource entries and standard Atom metadata,
also contains navigational extensions pointing to neighboring tile feeds, as well
as the feeds of its parent tile and child tiles.

The Amtrak tiled feed effectively describes points of access for inter-city pas-
senger rail service in the United States, and is useful as an example of an infor-
mation collection covering a large area. The San Francisco trees collection, on the

3 Available at http://postgis.refractions.net/
4 Amtrak is the sole intercity passenger rail service in the United States.

http://postgis.refractions.net/

Scalable and Mashable Location-Oriented Web Services 313

<?xml version ="1.0" encoding ="UTF -8"?>
<feed xmlns:fh ="http://purl.org/syndication/ history /1.0" xml:lang ="en-US"

xmlns="http://www.w3.org/2005/ Atom">
<id>http://tfserver /tiles /02301021</id>
<link type="text/html" rel="alternate" href="http://tfserver /tiles

/02301021"/>
<link type="application/atom+xml" rel="self" href="http:// tfserver /tiles

/02301021"/>
<title type="text">Tile 02301021 </title>
<updated >2009 -11 -04T11:10:46 -08:00</updated >
<author >

<name>TileFeed Generator</name>
</author >
<link type="application/atom+xml" rel="http:// tfserver / tiledfeeds/

relation /north" href="http: //tfserver /tiles /02301003" />
<link type="application/atom+xml" rel="http:// tfserver / tiledfeeds/

relation /south" href="http: //tfserver /tiles /02301023"/>
...

<link type="application/atom+xml" rel="http:// tfserver / tiledfeeds/
relation /down -southwest" href="http:// tfserver /tiles /023010212"/>

<link type="application/atom+xml" rel="http:// tfserver / tiledfeeds/
relation /down -southeast" href="http:// tfserver /tiles /023010213"/>

<fh:complete/>
<entry >

<id>http://tfserver /items /287</id>
<link type="text/html" rel="alternate" href="http://tfserver /items /287"

/>
<title>ACA</title>
<updated >2009 -11 -04T11:10:44 -08:00</updated >
<content type=" application/vnd.google -earth.kml+xml">

<kml xmlns="http://www.opengis .net/kml/2.2">
<Placemark>

<name>ACA</name>
<description>100 I Street , Antioch -Pittsburg , CA</ description>
<Point>

<coordinates> -121.815132000194,38.0180849997628</coordinates>
</Point>

</Placemark>
</kml>

</content >
</entry >
...

Listing 1. An example, unpaged tile feed containing Amtrak stations for the tile
02301021, a tile covering northern California

other hand, is a demonstration of a highly localized yet relatively dense dataset.
Such collections are potentially useful for community-based location-oriented
services, such the creation of a municipal dashboard for local government or a
neighborhood environmental program.

We use a typical page-caching pattern for optimizing feed services. When a
tile feed is requested, its feed is generated, and a static file containing the entire
feed is saved to disk. As long as the underlying information is not updated, the
file is not regenerated, and the feed service simply serves the static file for every
subsequent request for the tile. The feed itself supports standard HTTP ETag
based caching, for reader-level caching.

Our service implementation supports 20 zoom levels for the entire world,
which yields

∑20
i=1 4i tiles. However, for typical datasets, only a small number of

tiles are in service. While Amtrak covers much of the continental United States,

314 Y. Liu and E. Wilde

its stations are distributed unequally and mostly in coastal or urban areas. A
similar effect occurs for the earthquake feed, where tiles of seismically active
areas in the western United States tend to have data. When a tile without data
is requested, the requesting client is simply presented with a standard HTTP
404 response. The response, too, can be cached unless a new feature is created
within that tile.

Location-Oriented Application

Client-Side ToolkitC
lie

nt
S

er
ve

r

Map Service Web Service

Application Code

Location-Oriented Application

Client-Side Toolkit

Map Service Web Service

Application Code

Web ServiceWeb ServiceWeb Service

Fig. 2. Architectural comparison between a conventional location-aware service built
upon tightly-coupled, application-specific APIs, and a service built upon tiled feeds

Discussion. Tile feeds are accessed by clients in the same manner as ordi-
nary Atom feeds. Compared with current client-server architectures for location-
oriented applications, the tiled feed model creates a standardized interface for
interacting with location-oriented services. An architectural comparison diagram
is provided in Figure 2.

The tiled feed design accomplishes the four design goals we initially laid out
for access to geospatial information. For a typical location-oriented application,
tiled feeds provide access to multiple resources in an easy, uniform way, pro-
viding for easy remixability. For example, currently, a mobile application for
travelers may write code to interact with several APIs: one for flight updates
and traffic information, another for restaurant reviews, etc. The application must
also download map visualizations via a specific mapping service such as Google
Earth, Bing Maps, or standard services like the Web Map Service (WMS) [11]. In
contrast, with a tiled feed, the application can simply include a tiled feed reader
and subscribe to the tile feeds for the areas needed. Remixing data — such as
traffic conditions, restaurant reviews, and map visualization — is as simple as
subscribing to two different tiled feeds for the same tile.

Feed accesses are loosely coupled, much as Atom feeds themselves are loosely
coupled from their internal systems and representations. Interactions with the
tiled feeds take place via standard HTTP requests to resources and resource collec-
tions. This also provides advantages in simple scalability and deployment, in that

Scalable and Mashable Location-Oriented Web Services 315

existing techniques for scaling Web servers and feeds (as opposed to GIS-specific
servers and optimizations) can be directly applied to scaling tiled feeds.

As an example, tile feeds can be cached as typical feeds. At client level, entity
tag-based caching [3] for RSS and Atom-based feeds, can be used with no modi-
fication for a tile feed. Since tile feeds corresponds to unique URIs, conventional
Web caches and caching proxies can be used for multi-level caching. At server
level, simple page caching techniques can be used to generate and serve static
feeds. This enables feed servers to satisfy a large number of requesting clients
at very little additional expense. If no data is available for a particular tile —
an expected outcome for many data sources covering only specific locations —
simple HTTP 404 responses, or redirects to the closest available tile, can be
used. It would then be up to the tiled feed client to handle error responses and
decide whether to follow redirects to another tile.

The tiled feed model, as described, presents distinct advantages over exist-
ing methods for accessing and using geospatial information. As Atom feeds, the
data presented is conveniently consumable via standard tools. Clients can choose
the tiles that interest them, at any particular level of geographic resolution —
thus avoiding the complexity and overhead of geospatial queries. Further, the tile
model provides for simple horizontal scalability. By mediating queries for geospa-
tial data into predictable, RESTful patterns, techniques for typical HTTP- and
feed-based content delivery can be directly applied for these geospatial feeds as
well. Perhaps most importantly, tiled feeds can be easily remixed and combined.
Much as Web-based news and blogs are delivered via standard feeds, processed
by a variety of reader software, and syndicated across many web sites, geospa-
tial data in tiled feeds can also be consumed in this manner. Remixability also
lowers the barrier to reusing data, and encourages the creation of information
dashboards and mashups.

5 Publishing Tiled Feeds

A tiled feed publisher may publish data from many types of geospatial informa-
tion sources. We describe three implementation scenarios of tiled feeds atop ex-
isting data sources, including geospatial databases, proprietary location-oriented
services, and standard GIS services. A diagram illustrating the three particular
scenarios is presented in Figure 3.

5.1 Geospatial Databases

Much geospatial data exist in GIS-specialized relational databases and static
files. Both consumer and enterprise-grade relational databases now possess
geospatial information storage and querying capabilities, implementing and ex-
tending the OpenGIS Simple Feature Access [14] to varying degrees. Static
geospatial datasets, often provided as shapefiles of vector or raster data, can
be imported to these databases using widely available tools, as we have done in
our implementations.

316 Y. Liu and E. Wilde

Tiled Feed Client

C
lie

nt
S

er
ve

r

Tiled Feed Service

B
ac

k-
E

nd

Custom Adaptor

Proprietary
Service

WFS Adaptor

WFSWFS WFS

Local Database WFS
Service

WFS
Service

WFS
Service

Fig. 3. Implementations of Tiled Feeds atop various geospatial data sources

A tiled feed implementation has the greatest potential capability and flexi-
bility when directly integrated with such a spatial database, at the cost of a
tight coupling. The feed generator would be able to create any tile feed on re-
quest, and provide grouping and filtering capabilities cheaply. For example, list-
ing all features and associated attributes in a given tile is a trivial spatial SQL
query.

Due to the tight coupling, the publisher of the tiled feed must have direct
access to the database, and must create a tiled feed service based on the data.
As tiled feed services are simply Atom feeds with spatial extensions, this should
be relatively painless. GIS server software such as GeoServer5, which integrate
with geospatial databases to provide data access interfaces, may be also extended
to publish tiled feeds, so as to reduce custom implementation work.

5.2 Proprietary Location-Oriented Services

Tiled feeds can also be implemented atop existing location-oriented services with
APIs. The growth of location-aware devices has prompted many Web applica-
tions, such as Flickr or Twitter, to provide geotagged data. A tiled feed can
be created from these proprietary APIs via a software adapter that queries the
underlying API for information within the requested tile boundaries.

Adapted tiled feeds based on proprietary APIs may have widely varying levels
of capability and flexibility, depending on the spatial queries offered by the un-
derlying API. There is significant potential for mismatches in desired capability
and offered capability. For example, the Flickr API offers radius-based search
for photos; the query takes as input a geographic coordinate and a set of query
terms. Obviously this query is not fully compatible with the square geometries
of tiles and multiple zoom levels of the tiled feed model. Furthermore, advanced
features such as filtering or paging entries, or writing new entries into the tiled
feed, depend upon support from the underlying API.
5 Available at http://geoserver.org/

http://geoserver.org/

Scalable and Mashable Location-Oriented Web Services 317

There are potential fixes. Algorithmic approaches may be used to mask some
spatial querying mismatches, such as using geometric approximations of the tile
using a crafted radius-based query. Adapting existing sources of data also enables
a wider variety of spatial data to become available as tiled feeds, and promotes
data reuse and remixing. It is also more likely that third parties would be able
to offer tiled feeds based on these APIs.

5.3 Standardized Services

Somewhere in the middle of the spectrum of potential capability are tiled feed
implementations based on standard GIS web services. The Web Feature Service
(WFS) [13], an Open Geospatial Consortium (OGC) standard, provides a stan-
dardized interface to geospatial data. The Web Feature Service defines a set of
operations for querying, creation, update, and deletion of geographic features
contained within a geospatial dataset. Results can be encoded in different for-
mats, including the Geography Markup Language [12] and ordinary key-value
pairs. The aforementioned GeoServer software is a reference implementation of
the WFS, and many other GIS support WFS as well.

A tiled feed model can be implemented atop standardized GIS services such
as WFS with relative ease, given the rich set of operations defined by these
standards. Further, only one tiled feed adapter need be implemented, which then
can be used to consume all WFS-compliant services. WFS-based tiled feeds may
also support advanced features such as querying or sorting of tile entries, which
are supported by the underlying API.

There still exists potential for capability mismatch between the tiled feed ser-
vice and the underlying WFS or other standard API. Depending on the geospa-
tial dataset, spatial features provided by WFS queries may be difficult to group
into higher-level features. For example, a WFS service may return simple line
geometries to establish the boundaries of a plot of land, which the tiled feed
adapter must assemble into a polygon for its KML or GML resource entry. The
WFS may also provide more advanced features than a tiled feed adapter requires,
such as complex, multi-dimensional geometries that may be incompatible with a
feed or feed reader. Such mismatches may be reconciled via additional metadata,
or incompatible features may be excluded altogether from tiled feeds.

6 Experimental Client

To experiment with tiled feeds and assess the consumption of tiled feed-based
services in both application development and practical use, we also implemented
a prototype mobile tiled feed client using the iPhone SDK (shown in Figure 4).

The tiled feed client prototype has three views. In the first, the user adds
tiled feeds as services to be consumed. The process is similar to adding feeds
to a typical feed reader. Each feed can be hosted by a different organization,
backed by a different geospatial dataset.

318 Y. Liu and E. Wilde

Fig. 4. A basic tiled feed reader. In (a), the user is consuming two location-based
services as tiled feeds — locations of nearby Amtrak train stations, and recent M3+
earthquakes from the USGS, respectively. In (b), the user has subscribed to five loca-
tions of interest, including Berkeley, CA. In (c), the user selected the Berkeley location,
is shown a mashup of Amtrak services and earthquakes at the location of Berkeley, CA.

Second, he identifies specific locations that interest him, such as “two blocks
around UC Berkeley campus”, or “Vienna, Austria”. From this view of all “sub-
scribed locations’, he can immediately jump to a location on the map view. The
tiled feed reader will retrieve features for that tile from all subscribed services
and draw a mashup of the data in the map view. Alternatively, he can explore
the world map manually, and the reader will load features for the current visible
tile in the viewport from all services. As he navigates around the map, tiles are
loaded and unloaded as needed — tiles with no features return 404 from the
server, and are simply ignored by the client. At any particular location, the user
may choose to add the current map view as a location of interest, adding it to
the list of subscribed locations.

Views at specific locations may be personalized further. In the consumption
of location-based services, users’ information needs are highly context-sensitive.
Depending on the usage, data useful at one location is not useful at another [6].
The tiled feed reader adapts to these user contexts; if a user is not interested
in data from a particular service for a location, he can turn the service off for
that location. For example, if a user is subscribed to a location-based service
that provides traffic data, but is interested in the Los Angeles area solely for
earthquake and air pollution information, he can turn off the (potentially data-
heavy) traffic data for that location, but keep the earthquake and air pollution
data on the map view.

This client development experiment demonstrates the significant advantages
of the tiled feed model. From the user perspective, there is no central silo or any
single point of failure — anyone with access to a geotagged dataset may pub-
lish it as a tiled feed. Creating mashups of geospatial services is easy, by simply
using two or more services at a given location. From the developer perspective,

Scalable and Mashable Location-Oriented Web Services 319

creating location-aware applications using tiled feed services required minimal
code, mostly in the presentation layer to draw the maps, markers, and overlays.
We used a standard Atom feed reader component, slightly extended to read the
spatial properties from Tiled Feeds; no ad-hoc API adapters were required for
adding additional services.

Both the server and the client caches retrieved tiles. Standard caching ap-
proaches yields significant benefit. The majority of accesses hits cache rather
than triggering new geospatial queries.

In all, the tiled feed model makes information remixing from multiple data
sources easy, and encourages the creation of in-context, personalized views and
mashups of geospatial data.

7 Future work

With large amounts of geospatial data, tiles feed may contain tens of thousands
of features in a given tile at average zoom level. Bandwidth consumption and
server load increases significant at this scale, and tiled feed clients on constrained
devices are often unable to process or visualize such amounts of data. As GIS
datasets and wrapped geospatial APIs often contain large amounts of data, tiled
feed servers and clients should be able to properly handle such tiles, if requested.

One solution involve clustering or aggregation on the server side. Aggregate
features, identified by a special collection type that marks them as clustered
versions of individual geospatial features. The tiled feed client is given the option
of dereferencing aggregates into their component features.

Tiled feed filtering and sorting capability are also useful in this context. Feed
querying in general remain an open problem [23], as the Atom standard does not
adequately cover the query use case. There has been some prior work, including
the aptly named Feed Item Query Language (FIQL) [9]. However, there are
significant mismatches between FIQL and the set of operations desirable in a
tiled feed query language. FIQL is largely interested in enabling the retrieval of
markup elements in a feed, in a relatively domain-agnostic way. In contrast, tiled
feeds may require queries against specific geospatial features contained within a
feed, which would require some understanding of GML or KML datatypes.

It is also desirable for clients to autodiscover the query capabilities supported
by a particular tile feed (otherwise, human intervention or configuration would
be required to read new tiled feeds). For example, certain feed servers may not
be able to execute complex queries like GROUP BY aggregation, or it may not
be able to sort against a particular key. There is no appropriate mechanism to
publish this information in FIQL. The design of an appropriately powerful query
language for feeds in general, and tiled feeds in particular, is left for future work.

We are also working on more extensive user evaluations of tiled feed client pro-
gramming (beyond our current simple client) and tiled feed-based applications,
as well as quantitative scalability measurements of tiled feed server systems, to
explore the advantages and drawbacks of the tiled feed model.

320 Y. Liu and E. Wilde

8 Conclusions

We have presented an architecture for providing uniform, lightweight access to
location-oriented services, using feeds and geospatial tiling. Based on the prin-
ciples of Representational State Transfer (REST), tiled feeds is designed around
interlinked resource representations served through a uniform interface, allowing
loosely coupled and scalable access patterns. Tiled feeds can be easily created
from existing sources of data and consumed by standard clients, reducing ap-
plication complexity and easing application development. Established patterns
of information aggregation, filtering, and republishing on the Web can be ap-
plied to tiled feeds, allowing the creation of novel information dashboards and
mashups using geospatial data.

References

1. Di Martino, S., Ferrucci, F., Paolino, L., Sebillo, M., Tortora, G., Vitiello, G.,
Avagliano, G.: Towards the Automatic Generation of Web GIS. In: Samet, H.,
Shahabi, C., Schneider, M. (eds.) 15th ACM International Symposium on Geo-
graphic Information Systems, pp. 57–64. ACM Press, Seattle (November 2007)

2. EPSG: 3857, WGS84 (2009),
http://www.epsg-registry.org/report.htm?type=selection\&entity=urn:

ogc:def:crs:EPSG::3857\&reportDetail=short\&style=urn:uuid:

report-style:default-with-code\&style_name=OGP%20Default%

20With%20Code\&title=EPSG:3857

3. Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk Nielsen, H., Masinter, L., Leach,
P.J., Berners-Lee, T.: Hypertext Transfer Protocol | HTTP/1.1. Internet RFC 2616
(June 1999)

4. Google: Map Overlays (2009),
http://code.google.com/apis/maps/documentation/overlays.html#Google_

Maps_Coordinates

5. Gregorio, J., de Hóra, B.: The Atom Publishing Protocol. Internet RFC 5023
(October 2007)

6. Kaasinen, E.: User Needs for Location-Aware Mobile Services. Personal and Ubiq-
uitous Computing 7(1), 70–79 (2003)

7. Kofahl, M., Wilde, E.: Location Concepts for the Web. In: King, I., Baeza-Yates,
R. (eds.) Weaving Services and People on the World Wide Web, pp. 147–168.
Springer, Heidelberg (2009)

8. Nottingham, M.: Feed Paging and Archiving. Internet Draft draft-nottingham-
atompub-feed-history-11 (June 2007)

9. Nottingham, M.: FIQL: The Feed Item Query Language. Internet Draft draft-
nottingham-atompub-fiql-00 (December 2007)

10. Nottingham, M., Sayre, R.: The Atom Syndication Format. Internet RFC 4287
(December 2005)

11. Open Geospatial Consortium: OGC Web Map Service Interface. OGC 03-109r1,
Version 1.3.0 (January 2004)

12. Open Geospatial Consortium: OpenGIS Geography Markup Language (GML) En-
coding Specification. OGC 03-105r1, Version 3.1.1 (February 2004)

13. Open Geospatial Consortium: Web Feature Service Implementation Specification
OGC 04-094, Version 1.1.0 (May 2005)

http://www.epsg-registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::3857&reportDetail=short&style=urn:uuid:report-style:default-with-code&style_name=OGP%20Default%
http://www.epsg-registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::3857&reportDetail=short&style=urn:uuid:report-style:default-with-code&style_name=OGP%20Default%
http://www.epsg-registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::3857&reportDetail=short&style=urn:uuid:report-style:default-with-code&style_name=OGP%20Default%
20With%20Code&title=EPSG:3857
http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates
http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates

Scalable and Mashable Location-Oriented Web Services 321

14. Open Geospatial Consortium: OGC Simple Feature Access. OGC 06-103r3, Version
1.2.0 (October 2006)

15. Open Geospatial Consortium: OGC KML. OGC 07-147r2, Version 2.2.0 (April
2008)

16. Open Source Geospatial Foundation: Tile Map Service Specification (2009),
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

17. Pautasso, C., Wilde, E.: Why is theWeb Loosely Coupled? A Multi-Faceted Metric
for Service Design. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.)
18th International World Wide Web Conference, pp. 911–920. ACM Press, Madrid
(April 2009)

18. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. “Big”
Web Services: Making the Right Architectural Decision. In: Huai, J., Chen, R.,
Hon, H.W., Liu, Y., Ma, W.Y., Tomkins, A., Zhang, X. (eds.) 17th International
World WideWeb Conference, pp. 805–814. ACM Press, New York (April 2008)

19. Popescu, A.: Geolocation API Specification. World Wide Web Consortium, Work-
ing Draft WD-geolocation-API-20090707 (July 2009)

20. Samet, H.: The Quadtree and Related Hierarchical Data Structures. ACM Com-
puting Surveys 16(2), 187–260 (1984)

21. Schwartz, J.: Bing Maps Title System (2009),
http://msdn.microsoft.com/en-us/library/bb259689.aspx

22. Vinoski, S.: Serendipitous Reuse. IEEE Internet Computing 12(1), 84–87 (2008)
23. Wilde, E.: Feeds as Query Result Serializations. Tech. Rep. 2009-030, School of

Information, UC Berkeley, Berkeley, California (April 2009)
24. Wilde, E., Marinos, A.: Feed Querying as a Proxy for Querying theWeb. In: An-

dreasen, T., Bulskov, H. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 663–674. Springer,
Heidelberg (2009)

 http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://msdn.microsoft.com/en-us/library/bb259689.aspx

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 322–336, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Flexible Rule-Based Method for Interlinking,
Integrating, and Enriching User Data

Erwin Leonardi1, Fabian Abel2, Dominikus Heckmann3, Eelco Herder2,
Jan Hidders1, and Geert-Jan Houben1

1 Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
{e.leonardi,a.j.h.hidders,g.j.p.m.houben}@tudelft.nl

2 L3S Research Center, Appelstrasse 9a, 30167 Hannover, Germany
{abel,herder}@l3s.de

3 German Research Center for Artificial Intelligence, Saarbrucken, Germany
heckmann@dfki.de

Abstract. Many Web applications provide personalized and adapted services
and contents to their users. As these Web applications are becoming
increasingly connected, a new interesting challenge in their engineering is to
allow the Web applications to exchange, reuse, integrate, interlink, and enrich
their data and user models, hence, to allow for user modeling and
personalization across application boundaries. In this paper, we present the
Grapple User Modeling Framework (GUMF) that facilitates the brokerage of
user profile information and user model representations. We show how the
existing GUMF is extended with a new method that is based on configurable
derivation rules that guide a new knowledge deduction process. Using our
method, it is possible not only to integrate data from GUMF dataspaces, but
also to incorporate and reuse RDF data published as Linked Data on the Web.
Therefore, we introduce the so-called Grapple Derivation Rule (GDR) language
as well as the corresponding GDR Engine. Further, we showcase the extended
GUMF in the context of a concrete project in the e-learning domain.

Keywords: user modeling, user data integration, personalization, semantic
enrichment, knowledge derivation.

1 Introduction

Nowadays, numerous Web applications provide adapted and personalized contents
and services to their users. To be able to provide such contents and services, these
applications explicitly or implicitly collect data about their users and their behavior.
Explicit user data collection approaches rely on asking the user directly, for example,
by using a survey form or by asking the user to give ratings to certain products.
Implicit approaches imply the observation of the users’ behavior: Web applications
log and monitor the user behavior in order to construct a user model fitting with the
personalization goals of the application. So, a key concern in developing such
adaptive Web applications is to model the users and their behavior for achieving the
personalization and adaptation goal of the applications. At the same time, these Web

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 323

applications are becoming increasingly connected. This creates the interesting
challenge of performing user modeling and personalization across application
boundaries. It requires approaches allowing various Web applications to exchange,
reuse, interlink, and integrate user data. On the one hand, the ability of exchanging,
reusing, interlinking, and integrating the user models allows applications to enhance
and broaden their user models with additional data. In addition, it is particularly
essential for a better integration and cooperation between the applications. On the
other hand, it helps users to get the content and services that suit their needs and
situations and to syndicate these services. As different applications may represent the
same information in different ways, using different syntactic and semantic, the Web
applications have to ensure interoperability of the user data in order to be able to
exchange, reuse, and integrate user data. Consequently, addressing the interoperability
issue is essential when developing interoperable adaptive Web applications.

In essence, there are two ways to ensure interoperability between two applications
and their user models: the shared format approach [5,20,22] and the conversion
approach [6]. The shared format approach involves a lingua franca, an agreement
between all parties on a common representation and semantic. An alternative
approach, which is more flexible, involves conversion between the different
applications’ user models. Conversion allows for flexible and extensible user models,
and for applications to join into a platform. Moreover, in contrast to a shared format
approach, conversion is suitable for “open-world user modeling”, which is not
restricted to one specific set of systems [6].

Furthermore, we observe that there is a growing effort known as Linking Open
Data1 to make data interlinked and openly accessible on the Web by following the
principles of Linked Data [7]. This effort opens opportunities to unlock a huge
potential of data, including the user data. By reusing this interlinked data (such as
DBpedia2 and GeoNames3), various relationships between data can now be derived
and discovered, and thus make data more meaningful and richer. Note that this data is
published as RDF and accessible through a SPARQL endpoint. Nevertheless, the
distributed nature of the RDF data sources creates a new interesting problem, that is,
the problem of integrating RDF data from multiple distributed data sources. There are
two possible solutions for this problem: data centralization and query federation
[8,9,10]. The first approach provides a query service over a collection of data copied
from different sources on the Web, while the second approach executes queries only
on selected datasets that are part of the collection. This observation leads us to
investigate how this distributed interlinked data can be reused and be beneficial for
the purpose of exchanging, integrating, and enriching user data in the interoperable
adaptive Web applications.

In this paper, we present the Grapple User Modeling Framework (GUMF) that
facilitates the brokerage of user profile information and user model representations.
We show how the existing GUMF [11] is extended with a new flexible rule-based
method that enhances the reasoning capability of GUMF by allowing the applications

1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
 LinkingOpenData
2 http://dbpedia.org/
3 http://geonames.org/

324 E. Leonardi et al.

to specify a “recipe” that guides the new knowledge deduction process in the
distributed setting using a rule language called Grapple Derivation Rule language
(GDR). GDR extends GUMF with the flexibility for applications to flexibly define
configurations that guide the user data integration and enrichment processes. Also,
with GDR the applications are able not only to integrate data from GUMF dataspaces,
but also to incorporate and reuse linked data published on the Web. Without GDR
performing such processes are more complex and may not be efficient. To validate
this, the implementation of the GUMF extended with GDR is applied in the
GRAPPLE project4 for user data in the e-learning domain.

The rest of this paper is organized as follows. Section 2 discusses the related work.
We briefly introduce GUMF in Section 3. In Section 4, the Grapple Derivation Rule
language (GDR) and the GDR Engine are presented. We also elaborate how GUMF is
extended with GDR. Section 5 showcases the extended GUMF in the e-learning
domain in the context of a concrete project. Finally, Section 6 concludes our
discussion.

2 Related Work

In the user modeling research field, a host of approaches have been delivered to
address the user model interoperability problem. There are basically two approaches:
the shared format approach and the conversion approach. In the first approach, a
common language for a unified user profile (a lingua franca) is needed. Examples of
this approach are the General User Model Ontology (GUMO) [20] and Composite
Capability/Preference Profiles (CC/PP)5. This approach is easily exchangeable and
interpretable as there is no syntactic and semantic heterogeneity issue to be addressed
[20]. However, this approach is not suitable for open and dynamic environments, such
as the Web, as it is impractical and in many cases impossible to enforce Web
applications to follow the lingua franca [21]. The conversion approach is more
flexible and suitable for open and dynamic environments [6]. In this approach, a
technique has to be developed for converting a user model of one application to
another application. It should deal with the problem of syntactic and semantic
heterogeneity. The potential drawbacks of this approach are that it is possible that
some information is lost during the conversion process, and that it is possible that
models are simply incompatible. It is also possible that the mappings are incomplete
because required information in one model is not available in the other model.

Furthermore, the Grapple Derivation Rule language builds upon existing rule
languages such as the Rule Markup Language (RuleML) [18] defined by the Rule
Markup Initiative. RuleML is a markup language developed to express both forward
(bottom-up) and backward (top-down) rules in XML for deduction, rewriting, and
further inferential-transformational tasks. RuleML itself covers the entire rule
spectrum, from derivation rules to transformation rules to reaction rules, and thus
can specify queries and inferences in Web ontologies, mappings between Web
ontologies, and dynamic Web behaviors of workflows, services, and agents. The

4 GRAPPLE is the acronym for an EU FP7 STREP Project denoting “Generic Responsive

Adaptive Personalized Learning Environment” http://www.grapple-project.org/
5 http://www.w3.org/Mobile/CCPP/

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 325

Semantic Web Rule Language (SWRL) [15] is a proposal for a Semantic Web rules-
language that is based on a combination of the OWL DL and OWL Lite sublanguages
of the OWL Web Ontology Language [16,17] with the Unary/Binary Datalog
RuleML sublanguages of the Rule Markup Language [18]. Rules are of the form of
an implication between an antecedent (body) and consequent (head). The intended
meaning can be read as “whenever the conditions specified in the antecedent hold,
then the conditions specified in the consequent must also hold”. The observation that
there are currently many “rules languages” in existence in the web community lead to
the Rule Interchange Format (RIF) which is a standard in development within the
W3C Semantic Web Activity [19]. GDR is different from the existing rule languages
at least for the following reasons. Firstly, it provides definitions of premise and
consequent at the level of Grapple statements that constitute the lingua franca when
interacting with GUMF. Secondly, it allows the integration of knowledge using
multiple distributed data sources published as Linked Data on the Web.

To deal with the distributed nature of data sources published on the Web as RDF
data, recently, there has been much research on the subject of integrating different
RDF graphs into a single RDF graph and the related problem of querying distributed
RDF data sources that were integrated into a single virtual RDF data source.
Langegger et al. present in [10,12] the SemWIQ system that has a mediator-wrapper
architecture and allows the integrated data to be queried with a subset of SPARQL
and implements and optimizes these queries by translating them to an algebra called
ARQ2. The notion of networked graphs is introduced by Schenk et al. in [13] where
they discuss the problem of integrating different RDF graphs by defining SPARQL-
based integration rules between them. The problem of optimizing a query that queries
different external RDF data sources is discussed by Zemanek et al. in [14] which
concentrates on minimizing communication cost by using semi-joins. The same
problem is addressed by Hartig et al. in [9] which focuses on the subproblems of
efficiently finding the data sources related to the query during query execution and
efficiently executing the queries by using an iterator-based pipeline approach in its
query evaluation plans. Finally, the DARQ system, described by Quilitz et al. in [8]
allows the integration of distributed RDF data sources into a single virtual RDF data
source by specifying which data is to be found in which external data source. It uses
query-rewriting and cost-based query optimization to obtain efficient distributed
query evaluation plans.

3 GUMF

The Grapple User Modeling Framework (GUMF) [11] enables systems to benefit
from the multi-faceted user data traces that are distributed across different Web
systems. GUMF provides generic user modeling functionality that is adaptable to the
requirements of the individual systems that utilize it: it aggregates, contextualizes and
models user data so that systems can easily incorporate the data without having to
solve interoperability issues such as schema mapping. Further, GUMF together with
its plug-ins feature reasoning capabilities for deducing new information about users
from their profile and activity data. In the context of the afore mentioned GRAPPLE
project, GUMF is applied to provide user modeling functionality across e-learning

326 E. Leonardi et al.

application boundaries and thus it connects learning management systems such as
Moodle, AHA!, and CLIX. In the remainder of this section we present the
architecture and components of GUMF in more detail.

Fig. 1. GUMF Architecture

3.1 Architecture and Building Blocks

GUMF can be considered as an intelligent storage and reasoning engine that provides
uniform access to distributed heterogeneous user data. Fig. 1 FigFshows its
architecture. The blue elements at the top provide the essential, generic functionality
of the framework; the purple components at the bottom provide generic as well as
domain-specific plug-in and reasoning functionality.

Client applications can access GUMF either via a RESTful or SOAP-based API.
Further, there is a Java Client API that facilitates development of GUMF client
applications. Client applications mainly approach GUMF to store user information
(handled by the Store Module) or to query for information (handled by Query
Engine). By default, user profile information is modeled by means of Grapple
statements (see below) that constitute the lingua franca when interacting with GUMF.
Grapple statements are basically reified RDF statements about a user, enriched with
DCMI metadata6 for describing provenance details. The current GUMF
implementation supports SPARQL [4] and SeRQL [2] queries as well as a pattern-
based query language – Grapple Query language – that exploits the Grapple statement
structure to specify what kind of statements should be returned.

Queries are executed on so-called dataspaces (Dataspace Logic) that logically
bundle data that is possibly distributed across different sources on the Web, as well as
offer reasoning functionality provided by different reasoners and plug-ins of the
Reasoning Logic. Dataspaces thus go beyond the notion of namespaces as they
explicitly denote a set of things (e.g. data, reasoning rules, data aggregation plug-ins,
schema mapping rules), on which an operation – such as a query, store or reasoning

6 http://dublincore.org/documents/dcmi-terms/

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 327

operation – should be performed. In more detail, such dataspaces represent the part of
GUMF that a certain client application is managing and responsible for, i.e., its own
workspace. The Administrator of a GUMF client application can configure dataspaces
and plug-ins via the GUMF Admin Interface (see Fig. 1F). Activating or deactivating
plug-ins and adjusting plug-ins and reasoning rules directly influence the behavior of
dataspaces. Inspired by Web 2.0 practices, a key principle of GUMF is that
dataspaces can be shared across different client applications. Therefore, clients can
subscribe to other dataspaces, as long as the administrator of the dataspace approves
them. When subscribed to a dataspace, the client is allowed to query it. However, it
might still not be allowed to access all statements that are made available via the
dataspace, as fine-grained access control functionality can be embedded in the
dataspaces as well.

Fig. 2. User Modeling with GUMF Dataspaces

3.2 User Modeling with Intelligent Dataspaces

User modeling functionality of GUMF is embedded into dataspaces. In [1] we
implemented the user modeling components that are applied to enrich data stored by
client applications as depicted in Fig. 2. Client C1 stores information about a user in a
dataspace and more precisely in the repository associated with the dataspace. C1
might for example report that a new user registered to the system. Information about
the user is internally modeled by means of Grapple statements, for example, C1 stores
that a new user whose name is “Bob Myers” registered to C1. Fig. 3 shows the
corresponding statement in RDF/XML syntax.

Grapple statements are subject-predicate-object bindings enriched with metadata.
They not only describe the actual statement, i.e. Bob’s (gc:subject =
http://bob.myopenid.com) name (gc:predicate = http://xmlns.com/foaf/0.1/name) is
“Bob Myers” (= gc:object), but also additional details such as the creator of the
statement (gc:creator), the time when the statement was created (gc:created) or the

328 E. Leonardi et al.

degree to which the statement holds for the subject (gc:level)7. Storing a Grapple
statement might trigger some plug-ins embodied into the dataspace. In Fig. 2, the
Social Web Aggregator [1] obtains other accounts the user has via the Social Graph
API8. Given these mappings, the plug-in gathers – if available – public profile data
about the user from the corresponding platforms: tag-based profiles from Delicious,
StumbleUpon, Last.fm, and Flickr, social network profiles from LinkedIn and
Facebook, and blog posts from Twitter and Blogspot. The aggregated profile data is
then enriched with semantic annotations (Semantic Enhancement in Fig. 2). In
particular, the elements of the tag-based profiles [3] are mapped to DBpedia URIs that
specify the semantic meaning of the tags and WordNet9 categories are applied to
cluster the profile [1]. Hence, based on the rather basic Grapple statement, which is
listed in Fig. 3, GUMF gathers the distributed profile traces of the user so that the
client can exploit a rich profile the next time it is querying the dataspace (cf. Fig. 2).

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:gc="http://www.grapple-project.org/grapple-core/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<gc:Statement rdf:about="http://grapple-project.org/2010-01-28-526341">
 <gc:subject redf:resource="http://bob.myopenid.com"/>
 <gc:predicate rdf:resource="http://xmlns.com/foaf/0.1/name"/>

<gc:object>Bob Myers</gc:object>
<gc:level rdf:datatype="xsd:double">1.0</gc:level>
<gc:created rdf:datatype="xsd:dateTime">
 2010-01-28T00:09:20.621+02:00
</gc:created>
<gc:creator rdf:resource="http://grapple-project.org/client/1"/>

</gc:Statement>
</rdf:RDF>

Fig. 3. Grapple statement: Bob's name is Bob Myers

The components that are plugged into dataspaces come in different flavors: Some
plug-ins are black-box components while others are rule-based and are thus highly
flexible. In [1], an example of black-box plug-ins is presented and in [11] a rule-based
plug-in that is limited to integrate data only within a single Grapple dataspace is
discussed. In the next section, we introduce the GDR language that extends and
enhances the reasoning capability of GUMF and enables developers and
administrators to create such flexible, rule-based dataspace plug-ins that are capable
of integrating user data from multiple Grapple dataspaces and data published as
Linked Data on the Web.

4 GDR

In this section, we elaborate in details on the Grapple Derivation Rule language
(GDR) that enables GUMF to provide a flexible way of defining plug-ins by allowing

7 Note that gc:creator and gc:created are sub-properties of dc:creator and dc:created as defined

by DCMI.
8 http://socialgraph.apis.google.com
9 http://wordnet.princeton.edu

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 329

the applications to specify a “recipe” for integrating and enriching user data. We also
discuss the GDR Engine that processes a GDR rule and derives new Grapple
statements. Finally, we present how GUMF is extended with GDR.

4.1 GDR Definition

In the human readable syntax, a GDR rule has the form: a ⇒ c, where a and c are the
antecedent and consequent of the rule, respectively, where a is a conjunction of
premises written p1 ∧ ... ∧ pn. The premises of a GDR rule are classified into two
types: dataspace premises and external source premises. A dataspace premise
describes conditions over a Grapple dataspace in the form of a pattern-based Grapple
Query. An external source premise specifies conditions in the form of triple patterns
over an external data source accessible through a SPARQL endpoint. The consequent
describes the Grapple statements that will be derived if all the premises are hold. It
specifies the subject, predicate, and object properties of the Grapple statements, and
optionally the level properties. A GDR rule also has extra information such as name,
description, and creator. Variables are indicated using the standard convention of
prefixing them with a question mark (e.g., ?x). The GDR rule is formally defined as
following.

Definition 1. [Dataspace Premise] A dataspace premise d is a 2-tuple (ds, f), where
ds is the Grapple dataspace identifier, and f is partial function that maps a finite set of
Grapple statement properties to variables and constants. A set of dataspace premises
is defined as D.

Definition 2. [External Source Premise] An external source premise e is a 4-tuple
(uri, endpoint, namedGraph, T), where uri is the informal identifier of the dataset,
endpoint is the URI of SPARQL endpoint of the data source where the dataset is
stored, namedGraph is the named graph that is used to store the dataset in the data
source, and T is a basic graph pattern with at least one triple pattern. A set of external
source premises is defined as E.

Definition 3. [Consequent] A consequent c is a dataspace premise (ds, f), where f is
defined for at least gc:subject, gc:predicate, and gc:object, and at most also gc:level.

Definition 4. [A GDR Rule] A GDR rule r is a 3-tuple (M, A, c), with:

• M is a set of additional information of r, such as the name, description, and
creator of the rule,

• A is the antecedent of the rule, which is a conjunction of premises written p1 ∧
... ∧ pn, where pi ∈ (D ∪ E) and n > 0,

• c is the consequent of the rule such that all variables in c appear in at least one
premise of A.

In Section 4.3, we present the XML serialization format of GDR by an example. The
next section introduces the engine that interprets and enforces given GDR rules.

330 E. Leonardi et al.

Fig. 4. The Architecture of GDR Engine

4.2 GDR Engine

The GDR Engine is responsible to derive new knowledge based on a “recipe” defined
in a GDR rule that possibly effects the integration of data from different data sources.
Fig. 4 depicts its architecture and interactions with other GUMF modules. The GDR
Engine consists of five components: the Controller, the Query Engine (QE), the Join
Processor (JP), the Result Generator (RG), and the Temporary Repository (TR).

The Controller manages the whole process happening inside the GDR Engine. It
receives requests from the GUMF Reasoning Logic Core. It also utilizes the QE to
fetch data and maintain intermediate data temporarily and the JP component to
perform join operations. It exploits the RG to generate a set of newly derived Grapple
statements. The QE inside the GDR Engine performs the following tasks: 1) by
sending query requests to the GUMF Dataspace Logic, it fetches data from GUMF
dataspaces; 2) it queries external data sources through SPARQL endpoints; 3) it reads
and writes data that is temporarily maintained in the TR. The TR component is an
RDF repository that is used to store the RDF triples of intermediate results (e.g. join
results). The JP component is responsible in performing join operations. This
component interacts with the QE whenever it wants to retrieve data from the TR and
the external data sources as well as to put data into the TR. The RG analyzes the
premises and consequent of the rule, generates a SPARQL query that will be issued
against the GDR’s temporary repository, and constructs a set of Grapple statements to
be returned to the GUMF Reasoning Logic Core as the result.

When a client application issues a pattern-based query q to GUMF, the Dataspace
Logic forwards query q to the Reasoning Logic. The Reasoning Logic Core module
then checks if there are any GDR rules relevant for q. For each relevant rule r, the
Reasoning Logic Core sends a request to the GDR Engine to process rule r.

The GDR Engine first evaluates all the dataspace premises of r and maintains the
result of each dataspace premise evaluation in the TR by utilizing the QE. Based on
the Grapple Query patterns specified in the dataspace premises, the QE sends requests
to the GUMF Dataspace Logic to fetch data from dataspaces. If there is at least one
dataspace premise evaluation that returns no result, then the GDR Engine stops
processing r and returns null meaning that rule r derives no result. The intuition
behind this is as following. The empty result of a dataspace premise d means that

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 331

there is no Grapple statement that satisfies the pattern defined in premise d.
Consequently, premise d does not hold, and thus rule r does not hold. In the case that
all dataspace premise evaluations return results, the GDR Engine continues
processing r.

Next, the GDR Engine exploits the JP to join the dataspace premises using the
results stored in the TR. If two dataspace premises d1 and d2 share the same variables,
then they can be joined. The join results are also temporarily stored in the TR. If two
premises can be joined, but the join result is empty, then the GDR Engine stops
processing r and returns null. Note that in the current implementation, the GDR
Engine joins the dataspace premises based on the appearance order in r. Optimizing
the join order is an interesting and non-trivial research problem. However, since the
focus of this paper is to present a configurable method for integrating and enriching
user data, the join optimization issue will be investigated in the future.

The next step is to process the external premises. The GDR Engine also processes
the external source premises according to the appearance order in r. Given an external
premise e, the JP checks if e can be joined with previously processed premises (both
dataspace and external source premises). If e can be joined, then the QE is exploited
to fetch the data of previously processed premises stored in the TR, to construct
SPARQL queries based on the specified triple patterns and fetched data, and to send
these queries to the SPARQL endpoint of e. The results of these queries are
maintained by the TR. Note that the results can be used in processing other external
source premises. If e can be joined with another external source premise ej that is not
processed yet, the JP will process ej first before processing e. This process stops if all
possible joins between premises are performed. If there is an external source premise
ek that cannot be joined with other premises, the JP requests the QE to constructs a
SPARQL query only based on the specified triple patterns. In constructing the query,
the QE takes into account whether or not premise ek and the consequent of r share at
least one variable. If they do not share any variables, then the QE rewrites the query
to an ASK form to test whether or not it has a solution. The intuition is that if a
premise cannot be joined with other premises and the data from this premise will not
be used in the final result, then we only need to check whether this premise returns
any results. The constructed query then is sent to the SPARQL endpoint of ek, and the
result is stored in the TR.

After all premises are processed, then the Controller sends request to the RG that
generates a set of new Grapple statements. The RG analyzes rule r and generates a
SPARQL query that is executed against the temporary data stored in the TR. The
result of this SPARQL query is then modeled as Grapple statement and sent to the
Controller, which subsequently sends it to the Reasoning Logic Core.

4.3 Extending GUMF with GDR

We implemented the GDR Engine in Java. For the Temporary Repository component,
we choose to base our implementation on the open-source RDF framework Sesame10.
Sesame offers a good level abstraction on connecting to and querying of RDF data,
similar to JDBC. The GDR Engine is integrated into GUMF as a module inside the

10 http://www.openrdf.org/

332 E. Leonardi et al.

Fig. 5. GUMF Administrator Page

Fig. 6. GDR Rule Creation Page: Friendly Mode

Reasoning Logic. For this purpose, there are several components in GUMF that have
to be extended. The “Plug-in & Rule Repository” of GUMF is extended to be able to
store the GDR rules. We added a feature in the Reasoning Logic Core component to
detect which GDR rules in the dataspace are relevant for a Grapple query sent by
GUMF client. This can be done by analyzing the consequent of the rules. The
Reasoning Logic Core has to be able to communicate with the GDR Engine.
Furthermore, the GUMF administrator page is extended such that it shows the list of
specified GDR and a hyperlink to the GDR rule creation page (Fig. 5). There are two
ways of creating a GDR rule: friendly mode and expert mode. In the friendly mode
(Fig. 6) the dataspace administrator specifies the rule by filling up provided form
fields. In the expert mode, the administrator has to type the rule in XML format.

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 333

Fig. 7. The Snapshot of A1 and A2 Dataspaces (partial view)

5 Use Case

In this section, we showcase the extended GUMF in the e-learning domain in the
context of the GRAPPLE project. GDR applied in GUMF allows for distributed user
modeling across e-learning systems. Suppose there are two adaptive e-learning
applications, namely, A1 and A2 that use GUMF. A1 that is a Moodle-based application
is used for a basic Geography course, and A2 that is an AHA!-based application is used
for an Urban Geography course. Fig. 7(a) depicts a set of Grapple statements in the A1
dataspace. Fig. 7(b) depicts a set of Grapple statements in the A2 dataspace. A set of
triples derived by a semantic enhancement plug-ins that relates data in the dataspace to
the GeoNames concepts is shown in Fig. 7(c).

The creator of A2 would like to suggest Wikipedia pages about the subject that the
students are currently taking for enhancing their knowledge about the subject if they
have good basic knowledge about Geography. She knows that application A1 provides
the basic Geography course, and thus chooses to reuse data from A1. She applies for a
dataspace subscription to A1 and the creator of A1 approves this subscription request.
Thus, A2 is able to query data in the A1 dataspace. Moreover, the creator of A2 defines
a GDR rule named “Get Wiki Page” as shown in Fig. 8 that can be used to integrate
data from four distributed data source to get the URLs of Wikipedia pages.

There are two dataspace premises and three external source premises defined in the
GDR rule. The first dataspace premise (Lines 06 – 11) is used to determine the
students who have passed the Geography subject using application A1 with at least a
50% score. The second one (Lines 12 – 16) retrieves a set of Grapple statements
whose gc:predicate is http://apps.org/A2/isLearning. These dataspace premises are
joined, and the result of join is as following.

user subject
user:anna subject:Malaysia
user:cindy subject:Delft

Using this result, the external source premises are processed. For example, the
bindings of variable subject that is one of the variables in the first external premise

334 E. Leonardi et al.

Fig. 8. An Example of a GDR Rule in XML Syntax

(Lines 17 – 19) are available. Hence, the values of the bindings of variable subject
and the triple pattern specified in this premise are used to construct SPARQL queries
that will be sent to the SPARQL endpoint of the premise. For the first external source
premise, the following SPARQL query is constructed.

 SELECT ?geonameConcept ?subject
 WHERE {
 { ?subject <http://sakai.org/isRelatedTo> ?geonameConcept .
 FILTER (?subject = <http://subject.org/Delft>) . }
 UNION
 { ?subject <http://sakai.org/isRelatedTo> ?geonameConcept .
 FILTER (?subject = <http://subject.org/Malaysia>) . }
 }

The result of this query is stored in the Temporary Repository for further processes.

Basically, the external source premises specify the graph patterns across three
different data sources (namely, dataspace A2, GeoNames, and DBpedia) that must be
matched in order to get the Wikipedia pages. For example, Fig. 9 depicts the path
from resource subject:Malaysia to resource http://en.wikipedia.org/wiki/Malaysia.
The GDR rule in Fig. 8 derives two Grapple statements as depicted in Fig. 10.

 A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data 335

Fig. 9. Graph Patterns Across Three Different Data Sources

Fig. 10. Derived Grapple Statements

6 Conclusion

In this paper, we have extended the Grapple User Modeling Framework (GUMF) with
the Grapple Derivation Rule language (GDR), and thus the reasoning capability of
GUMF is extended and enhanced by allowing Web applications to exchange, reuse,
integrate, and enrich the user data using not only data in Grapple dataspaces, but also
openly accessible data published on the Web as Linked Data in a flexible and
configurable way. We have implemented and integrated our method into the GUMF
and applied it in an e-learning setting where different e-learning systems (such as
Moodle, AHA!, and CLIX) are connected. Our method successfully supports the
integration and enrichment of user data as demonstrated by a representative use case.

As a continuation of our work, we plan to extend GDR specification such that we
can derive not only Grapple statements, but also RDF graphs. We also plan to
improve the join heuristic of GDR Engine as currently the join process only follows
the order of appearance in the rule. We also would like to evaluate the GDR Engine in
terms of performance and, especially, scalability to explore the limit of our approach
as Semantic Web reasoning applications typically run into scalability issues.

Acknowledgments. This work was partially supported by the European 7th
Framework Program project GRAPPLE (“Generic Responsive Adaptive Personalized
Learning Environment”): http://www.grapple-project.org.

References

1. Abel, F., Henze, N., Herder, E., Krause, D.: Interweaving Public Profile Data on the Web,
Technical Report, L3S Research Center, Hannover, Germany (2010)

2. Broeskstra, J., Kampman, A.: SeRQL: A Second Generation RDF Query Language. In:
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, Vrije Universiteit,
Amsterdam, Netherlands (2003)

3. Firan, C.S., Nejdl, W., Paiu, R.: The Benefit of Using Tag-based Profiles. In: Proc. of
LA-WEB 2007, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2007)

4. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation (January 2008),
http://www.w3.org/TR/rdf-sparql-query/

336 E. Leonardi et al.

5. Stewart, C., Celik, I., Cristea, A., Ashman, H.: Interoperability between aeh user models.
In: Proc. of APS 2006 (2006)

6. Aroyo, L., Dolog, P., Houben, G., Kravcik, M., Naeve, A., Nilsson, M., Wild, F.:
Interoperability in personalized adaptive learning. J. Educational Technology
&Society 9(2), 4–18 (2006)

7. Berners-Lee, T.: Design Issues: Linked Data (2006),
http://www.w3.org/DesignIssues/LinkedData.html

8. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

9. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL Queries over the Web of Linked
Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg
(2009)

10. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data
integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)

11. Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J., Krause, D., Leonardi, E.,
van der Sluijs, K.: A Framework for Flexible User Profile Mashups. In: The Proc. of the
APWEB 2.0 2009 Workshop in conjunction UMAP 2009 (2009)

12. Langegger, A.: Virtual data integration on the web: novel methods for accessing
heterogeneous and distributed data with rich semantics. In: Proc. of iiWAS’08 (2008)

13. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules, sparql
views and rdf data integration on the web. In: Proc. of WWW ’08 (2008)

14. Zemanek, J., Schenk, S., Svatek, V.: Optimizing sparql queriesover disparate rdf data
sources through distributed semi-joins. In: ISWC 2008 Poster and Demo Session
Proceedings. CEUR-WS (2008)

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/

16. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview,
W3C Recommendation (February 2004),
http://www.w3.org/TR/owl-features/

17. OWL W3C: Working Group (eds.): OWL 2 Web Ontology Language Document
Overview, W3C Recommendation (October 2009),
http://www.w3.org/TR/owl2-overview/

18. Rule Markup Language Initiative. Rule Markup Language (RuleML),
http://ruleml.org/

19. Kifer, M.: Rule Interchange Format: The Framework. In: Calvanese, D., Lausen, G. (eds.)
RR 2008. LNCS, vol. 5341, pp. 1–11. Springer, Heidelberg (2008)

20. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff,
M.: GUMO - The General User Model Ontology. In: Ardissono, L., Brna, P., Mitrović, A.
(eds.) UM 2005. LNCS (LNAI), vol. 3538, Springer, Heidelberg (2005)

21. Kuflik, T.: Semantically-Enhanced User Models Mediation: Research Agenda. In: Proc. of
UbiqUM 2008 Workshop at IUI 2008, Gran Canaria, Spain (2008)

22. Finkel, J.R., Grenager, T., Manning, C.: Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling. In: Proc. of ACL 2005 (2005)

Ranking the Linked Data: The Case of DBpedia

Roberto Mirizzi1, Azzurra Ragone1,2,
Tommaso Di Noia1, and Eugenio Di Sciascio1

1 Politecnico di Bari – Via Orabona, 4, 70125 Bari, Italy
mirizzi@deemail.poliba.it, {ragone,dinoia,disciacio}@poliba.it
2 University of Trento – Via Sommarive, 14, 38100 Povo (Trento), Italy

ragone@disi.unitn.it

Abstract. The recent proliferation of crowd computing initiatives on
the web calls for smarter methodologies and tools to annotate, query
and explore repositories. There is the need for scalable techniques able
to return also approximate results with respect to a given query as a
ranked set of promising alternatives. In this paper we concentrate on
annotation and retrieval of software components, exploiting semantic
tagging relying on Linked Open Data. We focus on DBpedia and propose
a new hybrid methodology to rank resources exploiting: (i) the graph-
based nature of the underlying RDF structure, (ii) context independent
semantic relations in the graph and (iii) external information sources such
as classical search engine results and social tagging systems. We compare
our approach with other RDF similarity measures, proving the validity
of our algorithm with an extensive evaluation involving real users.

1 Introduction

The emergence of the crowd computing initiative has brought on the web a new
wave of tools enabling collaboration and sharing of ideas and projects, rang-
ing from simple blogs to social networks, sharing software platforms and even
mashups. However, when these web-based tools reach the “critical mass” one of
the problem that suddenly arises is how to retrieve content of interest from such
rich repositories. As a way of example, we can refer to a platform to share soft-
ware components, like ProgrammableWeb1, where programmers can share APIs
and mashups. When a user uploads a new piece of code, she tags it so that the
component will be later easily retrievable by other users. Components can be
retrieved through a keywords-based search or browsing accross categories, most
popular or new updates. The limits of such platforms, though very popular and
spread out on the entire web, are the usual ones related to keywords-based re-
trieval systems, e.g., if the user is looking for a resource tagged with either Drupal
or Joomla!2, the resources tagged with CMS (Content Management System) will
not be retrieved. For example, in ProgrammableWeb, APIs as ThemeForest and

1 http://www.programmableweb.com
2 http://www.drupal.org, http://www.joomla.org

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 337–354, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.programmableweb.com
http://www.drupal.org
http://www.joomla.org

338 R. Mirizzi et al.

Ecordia3 are tagged with CMS but not with Drupal nor Joomla, even if in their
abstracts it is explicitly written that they are available also for the two specific
CMSs.

An effective system should be able to return also approximate results w.r.t. the
user’s query, results ranked based on the similarity of each software components
to the user’s request. Referring to the previous example, it means that the two
mentioned APIs should be suggested as relevant even if the exact searched tag
is not present in their description, due to their similarities with the query.

Another issue stricly coupled with the keyword-based nature of current tag-
ging systems on the web is synonymy. Different tags having the same meaning
can be used to annotate the same content. Faviki4 is a tool for social book-
marking that helps users to tag documents using DBpedia [2] terms extracted
from Wikipedia. Although it is a good starting point to cope with synonymy, it
does not solve the problem of ranking tags w.r.t. a query. Moreover it does not
provide the user with any suggestion of tags related to the ones selected during
the annotation phase, e.g., if the user tags a page with Drupal, the tool does not
suggest to tag the page with CMS too.

Partially inspired by Faviki, in this paper we propose a new hybrid approach
to rank RDF resources within Linked Data [1], focusing in particular on DBpedia,
which is part of the Linked Data Cloud. Given a query (tag), the system is
able to retrieve a set of ranked resources (e.g., annotated software components)
semantically related to the requested one. There are two main relevant aspects
in our approach: (1) the system returns resources within a specific context, e.g.,
IT, Business, Movies; (2) the final ranking takes into account not only DBpedia
links but it combines the DBpedia graph exploration with information coming
from external textual information sources such as web search engines and social
tagging systems.

A system able to compute a ranking among DBpedia nodes can be useful both
during the annotation phase and during the retrieval one. On the one hand, while
annotating a resource, the system will suggest new tags semantically related to
the ones already elicited by the user. On the other hand, given a query formulated
as a set of tags, the system will return also resources whose tags are semantically
related to the ones representing the query. For instance, if a user is annotating
an API for ProgrammableWeb with the tag CMS (which refers to DBpedia
resource http://dbpedia.org/resource/Content_management_system), then
the system will suggest related tags as Drupal, Joomla and Magento (each one
related to their own DBpedia resource).

Main contributions of this work are:

– A novel hybrid approach to rank resources on DBpedia w.r.t. a given query.
Our system combines the advantages of a semantic-based approach (relying on
a RDF graph) with the benefits of text-based IR approaches as it also exploits
the results coming from the most popular search engines (Google, Yahoo!,
Bing) and from a popular social bookmarking system (Delicious). Moreover,

3 http://www.programmableweb.com/api/themeforest|ecordia
4 http://www.faviki.com

http://dbpedia.org/resource/Content_management_system
http://www.programmableweb.com/api/{themeforest|ecordia}
http://www.faviki.com

Ranking the Linked Data: The Case of DBpedia 339

our ranking algorithm is enhanced by textual and link analysis (abstracts and
wikilinks in DBpedia coming from Wikipedia).

– A relative ranking system: differently from PageRank-style algorithms, each
node in the graph has not an importance value per se, but it is ranked w.r.t.
its neighbourhood nodes. That is, each node has a different importance value
depending on the performed query. In our system we want to rank resources
w.r.t. a given query by retrieving a ranked list of resources. For this reason
we compute a weight for each mutual relation between resources, instead of a
weight for the single resource, as in PageRank-style algorithms.

– A back-end system for the semantic annotation of web resources, useful in
both the tagging phase and in the retrieval one.

– An extensive evaluation of our algorithm with real users and comparison w.r.t.
other four different ranking algorithms, which provides evidence of the quality
of our approach.

The remainder of the paper is structured as follows: in Section 2 we introduce
and detail our ranking algorithm DBpediaRanker. In Section 3 we present a
prototype that highlight some characteristics of the approach. Then, in Section
4, we show and discuss the results of the experimental evaluation. In Section 5
we discuss relevant related works. Conclusion and future work close the paper.

2 DBpediaRanker: RDF Ranking in DBpedia

In a nutshell, DBpediaRanker5 explores the DBpedia graph and queries exter-
nal information sources in order to compute a similarity value for each pair of
resources reached during the exploration. The operations are performed offline
and, at the end, the result is a weighted graph where nodes are DBpedia re-
sources and weights represent the similarity value between the two nodes. The
graph so obtained will then be used at runtime, (i) in the annotation phase, to
suggest similar tags to users and (ii) in the retrieval phase, to retrieve a list of
resources, ranked w.r.t. a given query.

The exploration of the graph can be limited to a specific context. In our ex-
perimental setting we limited our exploration to the IT context and, specifically,
to programming languages and database systems, as detailed in Section 2.3.

For each node in the graph a depth-first search is performed, stopped after a
number of n hops, with n depending on the context. The exploration starts from
a set of seed nodes and then goes recursively: in place of seed nodes, at each
step the algorithm identifies a number of representative nodes of the context,
i.e., popular nodes that, at that step, have been reached several times during the
exploration. Representative nodes are used to determine if every node reached
during the exploration is in the context and then should be further explored in
the next step. This is done computing a similarity value between each node and
representative ones – if this similarity value is under a certain threshold, the
node will not be further explored in the subsequent step.
5 For a more detailed description of the system the interested reader can refer to
http://sisinflab.poliba.it/publications/2010/MRDD10a/

http://sisinflab.poliba.it/publications/2010/MRDD10a/

340 R. Mirizzi et al.

The similarity value is computed querying external information sources (search
engines and social bookmarking systems) and thanks to textual and link analysis
in DBpedia. For each pair of resource nodes in the explored graph, we perform a
query to each external information source: we search for the number of returned
web pages containing the labels of each nodes individually and then for the two
labels together (as explained in Section 2.2). Moreover, we look at abstracts in
Wikipedia and wikilinks, i.e., links between Wikipedia pages. Specifically, given
two resource nodes a and b, we check if the label of node a is contained in the
abstract of node b, and vice versa. The main assumption behind this check is that
if a resource name appears in the abstract of another resource it is reasonable to
think that the two resources are related with each other. For the same reason, we
also check if the Wikipedia page of resource a has a (wiki)link to the Wikipedia
page of resource b, and vice versa.

Fig. 1. The ranking system DBpediaRanker

In the following we will describe all the components of our system, whose archi-
tecture is sketched in Figure 1. The main data structure we use in the approach
contains information about DBpedia resources6 reached during the exploration.
Hence, for each reached resource an associated data structure r is defined as:

As the exploration starts from the seed nodes, a global variable R is initialized
with the set of seed nodes and then it is further populated with other nodes
reached during the graph exploration (see Algorithm 1 in the Appendix). Seed
nodes must belong to the context to explore and are selected by domain experts.

6 From now on, we use the words URI, resource and node indistinctly.

Ranking the Linked Data: The Case of DBpedia 341

The algorithm explores the DBpedia graph using a depth-first approach up to a
depth of MAX DEPTH (see Section 2.1).

2.1 Graph Explorer

This module queries DBpedia via its SPARQL endpoint7. Given a DBpedia resource,
the explorer looks for other resources connected to it via a set of predefined prop-
erties. The properties of DBpedia to be explored can be set in the system before
the exploration starts. In our initial setting, we decided to select only the SKOS8

properties skos:subject and skos:broader9. Indeed, these two properties are
very popular in the DBpedia dataset. Moreover, we observed that the majority
of nodes reached by other properties were also reached by the selected properties,
meaning that our choice of skos:subject and skos:broader properties does not
disregard the effects of potentially domain-specific properties.

Given a node, this is explored up to a predefined distance, that can be config-
ured in the initial settings. We found through a series of experiments that, for the
context of programming languages and databases, setting MAX DEPTH = 2
is a good choice as resources within two hops are still highly correlated to the
root one, while going to the third hop this correlation quickly decreases. Indeed,
we noticed that if we set MAX DEPTH = 1 (this means considering just nodes
directly linked) we lost many relevant relation between pairs of resources. On
the other hand, if we set MAX DEPTH > 2 we have too many non relevant
resources.

In order to find the optimal value for MAX DEPTH , we initially explored
100 seed nodes up to a MAX DEPTH = 4. After this exploration was com-
pleted, we retrieved the top-10 (most similar) related resources for each node
(see Section 2.2). The results showed that on the average the 85% of the top-
10 related resources where within a distance of one or two hops. The resources
two hops far from the seeds where considered as the most relevant the 43% of
times (σ = 0.52). On the contrary the resources above two hops were rarely
present among the first results (less than 15% of times). In figure 2 the aver-
age percentage of top-10 related resources w.r.t. to the distance from a seed
(MAX DEPTH) is shown.

The exploration starts from a node root. Given a DBpedia node root and a
maximal depth to be reached, this module browses (using a depth-first approach)
the graph from root up to a number of hops equal to MAX DEPTH (see Al-
gorithm 2 in the Appendix). For each node u discovered during the exploration,
we check if u is relevant for the context and computes a similarity value between
root and u. Such value is computed by the module Ranker as detailed in Section
2.2. As we said before, given a resource u, during the exploration of the RDF
graph we analyze only the properties/links skos:subject and skos:broader
for which u is either rdf:subject or rdf:object.
7 http://www.w3.org/TR/rdf-sparql-query/
8 http://www.w3.org/2004/02/skos/
9 skos:subject has been recently deprecated in the SKOS vocabulary. Nevertheless, in
DBpedia it has not been replaced by its corresponding dcterms:subject.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2004/02/skos/

342 R. Mirizzi et al.

Fig. 2. Evaluation for MAX DEPTH . It represents the average percentage (y axis)
of the top-10 resources related to 100 seeds within a distance of 1 to 4 hops (x axis).

2.2 Ranker

This is the core component of the whole system. Given two resources u1 and
u2 in the same graph-path, it compares how much they relate with each other
exploiting information sources external to DBpedia such as search engines and
social tagging systems (see Algorithm 3 in the Appendix).

The aim of this module is to evaluate how strong a semantic connection is
between two DBpedia resources using information taken from external sources.
In our current implementation we consider as external sources both web search
engines (Google, Yahoo! and Bing) and social tagging systems (Delicious), plus
Wikipedia-related information contained in DBpedia. Given two DBpedia re-
sources u1 and u2, we verify how many web pages contain (or have been tagged
by) the value of the rdfs:label associated to u1 and u2. Then we compare these
values with the number of pages containing (or tagged by) both labels. We select
more than one search engine because we do not want to bind the result to a spe-
cific algorithm of a single search engine. Moreover, we want to rank a resource
not only with respect to the popularity of related web pages on the web, but also
considering the popularity of such resources among users (e.g., in Delicious). In
this way we are able to combine two different perspectives on the popularity of
a resource: the one related to the words occurring within web documents, the
other one exploiting the social nature of the current web. Through formula (1)
we evaluate the related similarity of two resources u1 and u2 with respect to an
external information source info source.

sim(u1, u2, info source) =
pu1,u2

pu1

+
pu1,u2

pu2

(1)

Given the information source info source, pu1 and pu2 represent the number
of documents containing (or tagged by) the rdfs:label associated to u1 and
u2 respectively, while pu1,u2 represents how many documents contain (or have
been tagged by) both the label of u1 and u2. It is easy to see that the formula
is symmetric and the returned value is in [0, 2]. Ranker does not use only ex-
ternal information sources but exploits also further information from DBpedia.

Ranking the Linked Data: The Case of DBpedia 343

In fact, we also consider Wikipedia hypertextual links mapped in DBpedia by
the property dbpprop:wikilink. Whenever in a Wikipedia document w1 there
is a hypertextual link to another Wikipedia document w2, in DBpedia there is a
dbpprop:wikilink from the corresponding resources u1 and u2. Hence, if there
is a dbpprop:wikilink from u1 to u2 and/or vice versa, we assume a stronger
relation between the two resources. More precisely, we assign a score equal to
0 if there are no dbpprop:wikilinks between the two resources, 1 if there is
a dbpprop:wikilink just in one direction, 2 if both resources are linked by
dbpprop:wikilink in both directions. Furthermore, given two resources u1 and
u2, we check if the rdfs:label of u1 is contained in the dbpprop:abstract
of u2 (and vice versa). Let n be the number of words composing the label of
a resource and m the number of words composing the label which are also in
the abstract, we also consider the ratio m

n in the final score, with m
n in [0,1] as

m ≤ n.

2.3 Context Analyzer

The purpose of Context Analyzer is to identify a subset of DBpedia nodes rep-
resenting a context of interest. For instance, if the topics we are interested in
are databases and programming languages, we are interested in the subgraph
of DBpedia whose nodes are somehow related to databases and programming
languages as well. This subgraph is what we call a context. Once we have a
context C, given a query represented by a DBpedia node u, first we look for the
context u belongs to and then we rank nodes in C with respect to u. In order to
identify and compute a context, we use Graph Explorer to browse the DBpedia
graph, starting from an initial meaningful set of resources (seed nodes). In this
preliminary step a domain expert selects a subset of resources that are represen-
tative of the context of interest. The set of seed nodes we selected for the context
of databases and programming languages are PHP, Java, MySQL, Oracle, Lisp,
C# and SQLite.

Since we do not want to explore the whole DBpedia graph to compute C,
once we reach nodes that we may consider out of the context of interest we
need a criterion to stop the exploration. During the exploration we may find
some special nodes that are more popular than others, i.e., we may find nodes
in the context that are more interconnected to other nodes within C. We call
these resources representative nodes of the context. Intuitively, given a set
of representative nodes of a context C, we may check if a DBpedia resource u
is within or outside the context of interest evaluating how relevant u is with
respect to representative nodes of C.

While exploring the graph, Graph Explorer populates at each iteration the set
R with nodes representing resources reached starting from the initial seed nodes.
Each node contains also information regarding how many times it has been
reached during the exploration. The number of hits for a node is incremented
every time the corresponding URI is found (see Algorithm 4 in the Appendix).
This value is interpreted as “how popular/important the node is” within R.

344 R. Mirizzi et al.

In DBpedia there are a special kind of resources called categories10. Since in
Wikipedia they are used to classify and cluster sets of documents, in DBpedia
they classify sets of resources. They might be seen as abstract concepts describing
and clustering sets of resources. As a matter of fact, to stress this relation, every
DBpedia category is also a rdf:type skos:Concept. Moreover, since DBpedia
categories have their own labels we may think at these labels as names for
clusters of resources. Context Analyzer uses these categories in order to find
representative nodes. In other words, the representative nodes are the most
popular DBpedia categories in R.

Hence, for each new resource found during the exploration, in order to eval-
uate if it is within or outside the context, we compare it with the most pop-
ular DBpedia categories in R. If the score is greater than a given threshold,
we consider the new resource within the context. The value THRESHOLD
is set manually. After some tests, for the context of programming languages
and database systems, we noticed that a good value for the context we an-
alyzed is THRESHOLD = 4.0. Indeed, we noticed that many non-relevant
resources were considered as in context if the threshold was lower. On the con-
trary, a greater value of the threshold was too strict and blocked many relevant
resources.

2.4 Storage

For each pair of resources, we store the results computed by Ranker. We also keep
the information on how many times a resource has been reached during the graph
exploration. For each resource belonging to the extracted context, the Storage
module stores the results returned by Ranker. For each resource root we store
information related to it: 〈root, hits, ranked, in context〉, plus ranking results
for each of its discovered nodes ui: 〈root, ui, wikipedia, abstract, google, yahoo,
bing, delicious〉.

3 Not Only Tag

In this section we describe a concrete system that exploits the algorithms pro-
posed in Section 2 in order to suggest semantically related tags.

We borrow directly from DBpedia the use case to “classify documents, anno-
tate them and exploit social bookmarking phenomena”11. Terms from DBpedia
can be used to annotate Web content. Following this idea, our system wants
to offer a fully-semantic way of social tagging. Figure 3 shows a screenshot of
the prototype of the system, Not Only Tag, available at http://sisinflab.
poliba.it/not-only-tag.

The usage is very simple. The users starts by typing some characters (let
us say “Drup”) in the text input area (marked as (1) in Figure 3) and the
system returns a list of DBpedia resources whose labels or abstracts contain
10 http://en.wikipedia.org/wiki/Help:Category
11 http://wiki.dbpedia.org/UseCases#h19-5

http://sisinflab.poliba.it/not-only-tag
http://sisinflab.poliba.it/not-only-tag
http://en.wikipedia.org/wiki/Help:Category
http://wiki.dbpedia.org/UseCases#h19-5

Ranking the Linked Data: The Case of DBpedia 345

Fig. 3. Screenshot of Not Only Tag system

the typed string. Then the user may select one of the suggested items. Let us
suppose that the choice is the tag Drupal. Then, the system populates a tag
cloud (as shown by (2) in Figure 3), where the size of the tags reflects their
relative relevance with respect to the chosen tag (Drupal in this case). The
biggest tags are Ubercart, PHP, MySQL, Elgg and Joomla!. When the user clicks
on a whatever tag, the corresponding cloud is created. Thanks to this feature
the user can efficiently navigate the DBpedia subgraph just like she usually
does when jumping from a web page to another one. The user can also drag
a tag and drop it in her tag bag area (indicated by (3) in Figure 3) or just
click on the plus icon next to each tag. Once the user selects a tag, the system
enriches this area by populating it with concepts related to the dropped tag.
For example, in the case of Drupal, its most similar concepts are PHP, Software,
Web Development, Content Management System and so on. These ancestors
correspond to Wikipedia Categories. As seen in Section 2.3 it is possible to
discover them because they are the subject of a triple which has rdf:type as
property and skos:Concept as object. Moreover skos:broader property links
Categories with each other (specifically a subcategory to its category), whereas
skos:subject relates a resource to a Category. By means of a recursive SPARQL
query, filtered by the above mentioned properties, it is possible to check if a node
is parent of another one.

4 Evaluation

In the experimental evaluation we compared our DBpediaRanker algorithm with
other four different algorithms; some of them are just a variation of our algorithm
but lack of some key features.

Algo2 is equivalent to our algorithm, but it does not take into account textual
and link analysis in DBpedia.

Algo3 is equivalent to our algorithm, but it does not take into account exter-
nal information sources, i.e., information coming from search engines and social
bookmarking systems.

346 R. Mirizzi et al.

Algo4, differently from our algorithm, does not exploit textual and link anal-
ysis. Moreover, when it queries external information sources, instead of Formula
(1), it uses the co-occurrence formula: pu1,u2

pu1+pu2−pu1,u2
.

Algo5 is equivalent to Algo4, but it uses the similarity distance formula [3]
instead of the co-occurrence one.

We did not choose to use either the co-occurrence formula or the similarity
distance with DBpediaRanker since they do not work well when one of the two
resources is extremely more popular than the other, while formula (1) allows to
catch this situation.

In order to assess the quality of our proposal we conducted a study where
we asked participants to rate the results returned by each algorithm. For each
query, we presented five different rankings, each one corresponding to one of the
ranking methods. The result lists consisted of the top ten results returned by
the respective method. In Figure 4, results for the query Drupal are depicted.
Looking at all the results obtained with our approach (column 3), we notice
that they are really tightly in topic with Drupal. For example, if we focus on the
first three results, we have Ubercart, that is the popular e-commerce module for
Drupal, PHP which is the programming language used in Drupal, and MySQL
the most used DBMS in combinance with Drupal. The other results are still very
relevant, we have for example Elgg and Joomla!, that are the major concurrents
of Drupal, and Linux which is the common platform used when developing with
Drupal.

We point out that even if we use external information sources to perform
substantially a textual search (for example checking that the word Drupal and
the word Ubercart appear more often in the same Web pages with respect to the
pair Drupal and PHP), this does not mean that we are discarding semantics in
our search and that we are performing just a keyword-based search, as the inputs
for the text-based search come from a semantic source. This is more evident if
we consider the best results our system returns if the query is PHP. In fact, in
this case no node having the word PHP in the label appears in the first results.
On the contrary, the first results are Zend Framework and Zend Engine, that
are respectively the most used web application framework when coding in PHP
and the heart of PHP core. PHP-GTK is one of the first resources that contains
the word PHP in its label and is ranked only after the previous ones.

During the evaluation phase, the volunteers were asked to rate the different
ranking algorithms from 1 to 5 (as shown in Figure 4), according to which list
they deemed represent the best results for each query. The order in which the
different algorithms were presented varied for each query: e.g., in Figure 4 the
results for DBpediaRanker algorithm appear in the third column, a new query
would show the results for the same algorithm in a whatever column between
the first and the last. This has been decided in order to prevent users to being
influenced by previous results.

The area covered by this test was the ICT one and in particular programming
languages and databases.

Ranking the Linked Data: The Case of DBpedia 347

Fig. 4. Screenshot of the evaluation system. The five columns show the results for,
respectively, Algo3, Algo4, DBpediaRanker, Algo2 and Algo5.

The test was performed by 50 volunteers during a period of two weeks,
the data collected are available at http://sisinflab.poliba.it/evaluation/
data. The users were Computer Science Engineering master students (last year),
Ph.D. students and researchers belonging to the ICT scientific community. For
this reason, the testers can be considered IT domain experts. During the testing
period we collected 244 votes. It means that each user voted on average about 5
times. The system is still available at the website http://sisinflab.poliba.
it/evaluation. The user can search for a keyword in the ICT domain by typing
it in the text field, or she may directly select a keyword from a list below the text
field that changes each time the page is refreshed. While typing the resource to
be searched for, the system suggests a list of concepts obtained from DBpedia.
This list is populated by querying the DBpedia URI lookup web service12.

If the service does not return any result, it means that the typed characters
do not have any corresponding resource in DBpedia, so the user can not vote on
something that is not in the DBpedia graph. It may happen that after having
chosen a valid keyword (i.e., an existing resource in DBpedia) from the sugges-
tion list, the system says that there are no results for the selected keyword. This
happens because we used the context analyser (see Section 2.3) to limit the ex-
ploration of the RDF graph to nodes belonging to programming languages and
databases domain, while the URI lookup web service queries the whole DBpedia.
In all other cases the user will see a screenshot similar to the one depicted in Fig-
ure 4. Hovering the mouse on a cell of a column, the cells in other columns having
the same label will be highlighted. This allows to see immediately in which po-
sitions the same labels are in the five columns. Finally the user can start to rate
the results of the five algorithms, according to the following scale: (i) one star:
very poor ; (ii) two stars: not that bad ; (iii) three stars: average; (iv) four stars:
good ; (v) five stars: perfect. The user has to rate each algorithm before sending
her vote to the server. Once rated the current resource, the user may vote for
a new resource if she wants. For each voting we collected the time elapsed to

12 http://lookup.dbpedia.org/api/search.asmx

http://sisinflab.poliba.it/evaluation/data
http://sisinflab.poliba.it/evaluation/data
http://sisinflab.poliba.it/evaluation
http://sisinflab.poliba.it/evaluation
http://lookup.dbpedia.org/api/search.asmx

348 R. Mirizzi et al.

σ

Fig. 5. Average ranks

rate the five algorithms: on the average it took about 1 minute and 40 seconds
(σ = 96.03 s). The most voted resources were C++, MySQL and Javascript with
10 votings.

In Figure 5 we plotted the mean of the votes assigned to each method. Error
bars represent standard deviation. DBpediaRanker has a mean of 3.91 (σ = 1.0).
It means that, on the average, users rated it as Good. Examining its standard devi-
ation, we see that the values are within the range of ∼ 3÷5. In order to determine
if the differences between our method and the others are statistically significant
we use the Wilcoxon test [13] with p < .001. From the Wilcoxon test we can con-
clude that not only our algorithm performed always better than the others, but
also that the (positive) differences between our ranking and the others are statisti-
cally significant. Indeed, the z-ratio obtained by comparing DBpediaRanker algo-
rithm with Algo2, Algo3, Algo4 and Algo5 is respectively 4.93, 8.71, 7.66, 12.89,
(with p < 0.0001). By comparing these values with the critical value of z 13, we
can reject the null hypothesis (correlated rankings), and say that the differences
between our algorithm and the others are statistically significant.

5 Related Work

Nowadays, a lot of websites expose their data as RDF documents; just to cite
a few: the DBPL database, RDF book mashup, DBtune, MusicBrainz 14. SPARQL
is the de-facto standard to query RDF datasets. If the considered dataset has
a huge dimension, SPARQL will return as result of the query a long list of not-
ranked resources. It would be very useful to have some metrics able to define the
relevance of nodes in the RDF graph, in order to give back to the user a ranked
list of results, ranked w.r.t. the user’s query. In order to overcome this limit sev-
eral PageRank-like [11] ranking algorithms have been proposed [4,7,9,6]. They
seem, in principle, to be good candidates to rank resources in a RDF knowledge
base. Yet, there are some considerable differences, that cannot be disregard, be-
tween ranking web documents and ranking resources to which some semantics
13 http://faculty.vassar.edu/lowry/ch12a.html
14 http://www.informatik.uni-trier.de/~ley/db/,

http://www4.wiwiss.fu-berlin.de/bizer/bookmashup/,
http://dbtune.org/, http://musicbrainz.org/

http://faculty.vassar.edu/lowry/ch12a.html
http://www.informatik.uni-trier.de/~ley/db/
http://www4.wiwiss.fu-berlin.de/bizer/bookmashup/
http://dbtune.org/
http://musicbrainz.org/

Ranking the Linked Data: The Case of DBpedia 349

is attached. Indeed, the only thing considered by the PageRank algorithm is the
origin of the links, as all links between documents have the same relevance, they
are just hyperlinks. For RDF resources this assumption is no more true: in a RDF
graph there are several types of links, each one with different relevance and dif-
ferent semantics, therefore, differently from the previous case, a RDF graph is not
just a graph, but a directed graph with labels on each edge. Moreover a RDF re-
source can have different origins and can be part of several different contexts and
this information has be exploited in some way in the ranking process. Swoogle
[4] is a semantic web search engine and a metadata search provider, which uses
the OntologyRank algorithm, inspired by the PageRank algorithm. Differently
from Swoogle, that ranks RDF documents which refer to the query, our main task
is to rank RDF resources similar to the query. Nonetheless, we borrowed from
Swoogle the idea of browsing only a predefined subset of the semantic links.
Similarly to our approach also the ReConRank [7] algorithm explores just a spe-
cific subgraph: when a user performs a query the result is a topical subgraph,
which contains all resources related to keywords specified by the user himself.
In the subgraph it is possible to include only the nodes directly linked to the
particular root node (the query) as well as specify the number n of desired hops,
that is how far we want to go from the root node. The ReConRank algorithm
uses a PageRank-like algorithm to compute the relevance of resources, called
ResourceRank. However, like our approach, the ReConRank algorithm tries to
take into account not only the relevance of resources, but also the “context” of a
certain resource, applying the ContextRank algorithm [7]. Our approach differs
from [7] due to the semantic richness of the DBpedia graph (in terms of number
of links) the full topical graph for each resource would contain a huge number of
resources. This is the reason why we only explore the links skos:subject and
skos:broader. Hart et al. [6] exploit the notion of naming authority, introduced
by [9], to rank data coming from different sources. To this aim they use an algo-
rithm similar to PageRank, adapted to structured information such as the one
contained in an RDF graph. However, as for PageRank, their ranking measure
is absolute, i.e. it does not depend on the particular query. In our case, we are
not interested in an absolute ranking and we do not take into account naming
authority because we are referring to DBpedia: the naming authority approach
as considered in [6] loses its meaning in the case of a single huge source such
as DBpedia. Mukherjea et al. in [10] presented a system to rank RDF resources
inspired by [9]. As in the classical PageRank approach the relevance of a resource
is decreased when there are a lot of outcoming links from that, nevertheless such
an assumption seems not to be right in this case, as if an RDF resource has a
lot of outcoming links the relevance of such a resource should be increased not
decreased. In our approach, in order to compute if a resource is within or outside
the context, we consider as authority URIs the most popular DBpedia categories.
Based on this observation, URIs within the context can be interpreted as hub
URIs. TripleRank [5], by applying a decomposition of a 3-dimensional tensor
that represents an RDF graph, extends the paradigm of two-dimensional graph
representation, introduced by HITS, to obtain information on the resources and

350 R. Mirizzi et al.

predicates of the analyzed graph. In the pre-processing phase they prune domi-
nant predicates, such as dbpprop:wikilink, which, instead, have a fundamental
role as shown in the experimental evaluation. Moreover in [5] they consider only
objects of triples, while we look at both directions of statements. Finally, as for
all the HITS-based algorithms, the ranking is just based on the graph structure.
On the contrary we also use external information sources. Sindice [12], differ-
ently from the approaches already presented, does not provide a ranking based
on any lexicographic or graph-based information. It ranks resources retrieved by
SPARQL queries exploiting external ranking services (as Google popularity) and
information related to hostnames, relevant statements, dimension of information
sources. Differently from our approach, the main task of Sindice is to return RDF
triples (data) related to a given query. Kasneci et al. [8] present a semantic search
engine NAGA. It extracts information from several sources on the web and, then,
finds relationships between the extracted entities. The system answers to queries
about relationships already collected in it, which at the moment of the writing
are around one hundred. Differently from our system, in order to query NAGA
the user has to know all the relations that can possibly link two entities and
has to learn a specific query language, other than know the exact name of the
label she is looking for; while we do not require any technical knowledge to our
users, just the ability to use tags. We do not collect information from the entire
Web, but we rely on the Linked Data cloud, and in particular on DBpedia at
the present moment.

6 Conclusion and Future Work

Motivated by the need of of annotating and retrieving software components in
shared repositories, in this paper we presented a novel approach to rank RDF
resources within the DBpedia dataset. The notion of context is introduced to re-
duce the search space and improve the search results. Semantic resources within
a context are ranked according to the query exploiting the semantic structure
of the DBpedia graph as well as looking for similarity information in web search
engines and social tagging systems, and textual and link analysis. The approach
has been implemented in a system for semantic tagging recommendation. Ex-
perimental results supported by extensive users evaluation show the validity of
the approach. Currently, we are mainly investigating how to extract more fine
grained contexts and how to enrich the context extracting not only relevant
resources but also relevant properties. Moreover we are developing a wrapper
for ProgrammableWeb using our tagging system as a backend for the annota-
tion process. The aim is to facilitate the tagging process and the subsequently
recommendation of software components in the retrieval phase.

Acknowledgment

We are very grateful to Joseph Wakeling for fruitful discussion and to the anony-
mous users who participated in the evaluation of the system. This research has
been supported by Apulia Strategic projects PS 092, PS 121, PS 025.

Ranking the Linked Data: The Case of DBpedia 351

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Bizer, C., et al.: Dbpedia - a crystallization point for the web of data. In: Web
Semantics: Science, Services and Agents on the World Wide Web (July 2009)

3. Cilibrasi, R., Vitányi, P.: The Google Similarity Distance. IEEE Transactions on
Knowledge and Data Engineering 19(3), 370–383 (2007)

4. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, S.R., Peng, Y., Reddivari, P., Doshi, V.,
Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: CIKM
’04, pp. 652–659 (2004)

5. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking semantic web data
by tensor decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 213–228. Springer, Heidelberg (2009)

6. Harth, A., Kinsella, S., Decker, S.: Using naming authority to rank data and on-
tologies for web search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 277–292. Springer, Heidelberg (2009)

7. Hogan, A., Harth, A., Decker, S.: ReConRank: A Scalable Ranking Method for
Semantic Web Data with Context (2006)

8. Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: Naga: Search-
ing and ranking knowledge. In: ICDE 2008 (2008)

9. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: Proc. of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (1998)

10. Mukherjea, S., Bamba, B., Kankar, P.: Information Retrieval and Knowledge Dis-
covery utilizing a BioMedical Patent Semantic Web. IEEE Trans. Knowl. Data
Eng. 17(8), 1099–1110 (2005)

11. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical report (1998)

12. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the Open Linked
Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer,
Heidelberg (2007)

13. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6), 80–83 (1945)

352 R. Mirizzi et al.

Appendix: Algorithms

Algorithm 1. DBpediaRanker

Input: a set S = {ui} of seed nodes
Output: the context
R = ∅;1
/* For each seed, we create the corresponding node. We impose each seed to be within

the context. */
foreach ui ∈ S do2

create new node(ri);3
ri.URI = ui;4
ri.hits = 1;5
ri.ranked = false;6
ri.in context = true;7
R = R ∪ {ri};8

end9
finished = false;10
while finished == false do11

/* We expand only the DBpedia nodes whose corresponding URI is evaluated to be
within the context. */

foreach ri ∈ R such that both (ri.in context == true) and (ri.ranked == false) do12
explore(ri.URI, ri.URI, MAX DEPTH);13

end14
finished = true;15
/* After we updated R expanding nodes whose URI is within the context, we might

have new representative nodes of the context. Hence, we check if nodes
previously considered outside of the context can be reconsidered as part of it.
*/

foreach ri ∈ R such that (ri.in context == false) do16
if is in context(ri.URI) then17

ri.in content = true;18
finished = false;19

end20
end21

end22

Ranking the Linked Data: The Case of DBpedia 353

Algorithm 2. explore(root, uri, depth). The main function implemented in Graph Explorer.

Input: a URI root; one of root’s neighbour URIs uri; depth: number of hops before the
search stops

/* We perform a depth-first search starting from root up to a depth of MAX DEPTH.
*/

if depth < MAX DEPTH then1
if there exists ri ∈ R such that ri.URI == uri then2

/* If the resource uri was reached in a previous recursive step we update its
popularity. Moreover, if uri is evaluated to be within the context we
compute how similar uri and root are. */

ri.hits = ri.hits + 1;3
if is in context(uri) then4

sim = similarity(root, uri);5
end6

else7
/* If the resource uri was not reached in a previous recursive step we create

the corresponding node. Moreover, if uri is evaluated to be within the
context we compute how similar uri and root are, otherwise we mark uri as
being outside of the context. */

create new node(ri);8
ri.URI = uri;9
ri.hits = 1;10
ri.ranked = false;11
if is in context(uri) then12

sim = similarity(root, uri);13
ri.in context = true;14

else15
ri.in context = false;16

end17
end18

end19
/* If we are not at MAX DEPTH depth w.r.t. root, we create the set of all the

resources reachable from uri via skos:subject and skos:broader. */
if depth > 0 then20

N = explode(uri);21
end22
/* We recursively analyze the resources reached in the previous step. */
foreach ni ∈ N do23

explore(root, ni, depth − 1);24
end25
save 〈root, uri, sim〉;26

Algorithm 3. similarity(u1, u2). The main function implemented in Ranker.

Input: two DBpedia URIs
Output: a value representing their similarity
wikipedia = wikiS(u1, u2);1
abstract = abstractS(u1, u2);2
google = engineS(u1 , u2, google);3
yahoo = engineS(u1 , u2, yahoo);4
bing = engineS(u1 , u2, bing);5
delicious = socialS(u1, u2, delicious);6
return wikipedia + abstract + google + yahoo + bing + delicious;7

354 R. Mirizzi et al.

Algorithm 4. is in context(uri, R). The main function implemented in Context Analyzer.

Input: a DBpedia URI uri
Output: true if uri is considered part of the context, false otherwise
cont = 0;1
r = 0;2
foreach node r ∈ R do3

/*
We consider the most popular DBpedia categories reached during the exploration
as the representative URIs of the context.

*/
if r.URI is one of the ten most popular DBpedia categories reached so far during the4
search then

s = s + similarity(uri, r.URI)5
end6
/*

If the similarity value computed between uri and the representative URIs of the
context is greater than a threshold we consider uri as part of the context.

*/
if s ≥ THRESHOLD then7

return true8
end9

end10
return false11

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 355–369, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Linkator: Enriching Web Pages by Automatically Adding
Dereferenceable Semantic Annotations

Samur Araujo1, Geert-Jan Houben1, and Daniel Schwabe2

1 Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
2 Informatics Department, PUC-Rio Rua Marques de Sao Vicente, 225, Rio de Janeiro, Brazil

{s.f.cardosodearaujo,g.j.p.m.houben}@tudelft.nl,
dschwabe@inf.puc-rio.br

Abstract. In this paper, we introduce Linkator, an application architecture that
exploits semantic annotations for automatically adding links to previously
generated web pages. Linkator provides a mechanism for dereferencing these
semantic annotations with what it calls semantic links. Automatically adding
links to web pages improves the users’ navigation. It connects the visited page
with external sources of information that the user can be interested in, but that
were not identified as such during the web page design phase. The process of
auto-linking encompasses: finding the terms to be linked and finding the
destination of the link. Linkator delegates the first stage to external semantic
annotation tools and it concentrates on the process of finding a relevant
resource to link to. In this paper, a use case is presented that shows how this
mechanism can support knowledge workers in finding publications during their
navigation on the web.

Keywords: auto-linking, semantic annotation, semantic link, dereferencing,
dynamic links, navigation.

1 Introduction

The links between HTML pages offer the main mechanism for users to navigate on
the web. It allows a user, with a simple mouse click, to go from one page to another.
However, most websites only contain links that are considered essential for the
functioning of the web site, therefore leaving some potentially relevant terms on the
web pages unlinked. This can be observed specially in the long tail of the web, where
pages are created manually, and where adding extra links can be a laborious and time-
consuming task. Because of this situation, a recurring scenario has risen when users
browse web pages: they very often select a piece of text (e.g., a telephone, an address,
or a name) from a web page and copy and paste it into search engine forms, as the
only reasonable procedure available for accessing relevant resources related to those
terms. However, this procedure may be significantly reduced, and the navigation
improved, by automatically adding links semantically related to those terms.

The problem of automatically adding links to an existing web page can be divided
in two main tasks. First, identifying candidate terms (anchors) for adding links –
typically they denote concepts in which the user is interested. Second, identifying a

356 S. Araujo, G.-J. Houben, and D. Schwabe

web resource to be the link target. The first task can be solved by using information
extraction techniques for identifying candidate terms to be linked. Two major sub-
problems here are to determine whether a term should be linked, for avoiding
“overlinking”, and to disambiguate candidate terms to the appropriate concepts, since
the terms can have different meanings and consequently demand different links. The
second task, that is the focus of this paper, demands using an external source of
knowledge in order to discover links related to the terms – actually, the concepts –
that were found in the first task. The major sub-problem here is to select a source of
data for finding the destination to the link. It can be achieved by querying a pre-
defined knowledge base (e.g. Wikipedia) or by querying a distributed and wider data
space such as the Semantic Web. The latter approach requires also a pre-selection of
the sources to be consulted, since only a few sources in the whole data space can
contain relevant knowledge about the concept being exploited.

Although several solutions are being proposed to automatically add links to web
pages, they focus on the first part of the problem, i.e. to disambiguate keywords in the
text of the page, and typically select the target of the link to be in a single website
(e.g., Wikipedia or DBpedia). However, the full problem is only solved after finding
the most significant destination for the link. For instance, [3, 4, 5, 6] are focused on
linking keywords on web pages to Wikipedia articles, which reduces to
disambiguating terms using the Wikipedia as a knowledge base. In spite of their
relevance, Wikipedia articles are not always the most adequate objects to link to.
These approaches support relatively well users that are interested in, for example,
encyclopedic knowledge, however they do not adequately support for example users
that are shopping and need to find more information about products, or knowledge
workers that are interested in finding bibliographic references for their research.

This paper introduces Linkator1, a framework that uses Semantic Web technology
to build dereferenceable semantic annotations, which in this paper are called semantic
links. It shows how information extraction technology can be composed with
semantic technology for automatically and semantically annotating terms in web
pages, and subsequently exploiting these semantic annotations to define a target of the
link. Linkator expects the extractor component to have the intelligence to
disambiguate the terms and annotate them properly, and focuses on determining the
appropriate target of the link.

The paper shows the use of the Linked Data cloud2 as an external source of
knowledge for discovering link destinations for the recognized terms. With Linked
Data the destination of a link can be semantically determined, instead of restricting it
to just one source on the web. The source in the Linked Data to be queried and the
query itself are defined based on the semantics of the annotation of the semantic link.
By combining these two processes, given an input document, the Linkator system has
the ability to identify, on the fly, the important concepts in a text, and then link these
concepts to semantically related resources on the web in a contextually relevant way.
Later in this paper we will present an example of how Linkator can be used to support
knowledge workers.

1 Linkator prototype is available at:
http://www.wis.ewi.tudelft.nl/index.php/linkator

2 Linked Data - http://linkeddata.org/

 Linkator: Enriching Web Pages 357

2 Related Work

2.1 Auto-linking

Augmentation of text with links is not novel. Hughes and Carr [6] discussed the Smart
Tag system, a Microsoft agent for automatically enriching documents with semantic
actions. Google’s AutoLink is another tool for augmenting web pages with links. It
uses a pattern-based approach to detect numbers related to entities on web pages, such
as street addresses, ISBN numbers, and telephone numbers, and to add links to them.
In this tool, users can select an action to be performed after a click action, however it
is limited in the number of recognizable entities and the number of sources to be
linked to.

Some authors proposed to augment web pages by adding links to Wikipedia
articles, therefore having an impartial (e.g., not commercially oriented) target for the
link and still adding value to the user navigation. In [3, 4, 5, 6] the same approach for
the problem is used. They integrate a term extraction algorithm for automatically
identifying the important terms in the input document, and a word sense
disambiguation algorithm that assigns each term with the correct link to a Wikipedia
article. NNexus [14] proposes an approach that works for general sources of data.
Basically, it builds a concept graph of terms extracted from a specific knowledge base
and indexes it with the destination document. Then that index is exploited for linking
a concept with a document.

Another related research area is that of link recommendation systems. Whereas
the idea is similar, these systems are typically oriented towards recommending
additional links to entire web pages, as opposed to specific items within a page.
Whereas some of the algorithms may be adapted for Linkator’s purposes, we have not
focused on this aspect here.

2.2 Semantic Annotations

Annotating existing and new documents with semantics is a requirement for the
realization of the Semantic Web. A semantic annotation tags an entity on the web
with a term defined in an ontology. The annotation process can be done manually or
automatically, and the latter demands a specialized system to accomplish the task.
The automatic process of annotating is composed basically of finding terms in
documents, mapping them against an ontology, and disambiguating common terms.
The systems that solve this problem differ in architecture, information extraction tools
and methods, initial ontology, amount of manual work required to perform
annotation, and performance [7]. The result of the annotation process is a document
that is marked-up semantically. For that concern, some markup strategies were
proposed. Microformats3 is an approach to semantic markup for XHTML and HTML
documents, that re-uses existing tags to convey metadata. This approach is limited to
a few set of published Microformats standards. Moreover, it is not possible to validate
Microformats annotations since they do not use a proper grammar for defining it. An

3 http://microformats.org/

358 S. Araujo, G.-J. Houben, and D. Schwabe

evolution of Microformats is eRDF (embedded RDF)4, an approach for annotating
HTML pages using RDF5, however it faces the same criticism than Microformats,
since they use the same strategy for annotating pages. Another approach for
semantically annotating pages is RDFa6 (Resource Description Framework - in -
attributes). RDFa is a W3C Recommendation that adds a set of attribute level
extensions to XHTML for embedding RDF metadata within web documents.

2.3 SPARQL Endpoint Discovery

Querying the Semantic Web implies querying a distributed collection of data.
Federated querying over linked data has been addressed in [8, 9, 10, 11, 12, 13].
Among others, a part of this problem is related to selecting the proper sources of data
to be queried. For this concern, two approaches stand out. The first approach requires
the designer of the query to specify, declaratively, in the body of the query, which
sources of data should be queried [9, 11]. In those cases, the endpoints to be queried
are fixed and pre-determined by the user. The second approach tries to select the
sources automatically, by finding correspondences between the terms mentioned in
the query and the sources available in the Semantic Web. For instance, [8, 12] exploit
the fact that recursively dereferencing resources mentioned in the query provides the
data that then can be used for solving the query. The authors point out that this
approach works well in situations where incomplete results are acceptable, since the
dereferencing process does not reach all available graphs that match with the query
pattern. Also, this approach is limited to a subset of SPARQL queries, since some
elements must be present in the query in order to trigger this mechanism.

Another approach that tries to exploit such a correspondence uses statistics about
the data in the SPARQL endpoints. For instance, [10] summarizes the endpoint data
into an index containing statistics about the data space. In order to determine relevant
sources, it tries to locate, for each triple pattern in the query, which entry in the index
matches it. The selection of the endpoint is determined if the pattern matches with an
entry in the index. In [13] middleware is used that catalogs the instances and classes
in each endpoint. This middleware selects the right endpoint by matching the
resources used in the query with the resources registered in the catalog.

3 Semantic Link – Definition

In an HTML page, an HTML link is denoted by the HTML tag A. Normally,
it addresses a specific URL which when clicked triggers an HTTP request that
retrieves an HTML document that a browser can render in a human-readable
representation of this URL. Fig. 1 shows an example of a conventional HTML
link. Once clicked, this link redirects the user to the URL described in the href
attribute: www.st.ewi.tudelft.nl/~leonardi/

In these cases, HTML links are defined through an explicit intervention of an
author, at the time the page is created or programmed.

4 http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
5 http://www.w3.org/TR/rdf-primer/
6 http://www.w3.org/TR/xhtml-rdfa-primer/

 Linkator: Enriching Web Pages 359

Fig. 1. Example of a conventional HTML link

Definition 1: A semantic link is an HTML tag A that is semantically annotated with
RDFa, which implies that RDF triples are associated to the link. The semantic link
must contain the attribute property or rel, which is defined in the RDFa specification;
it semantically relates the link to another resource or content. The triples associated to
the semantic link are determined by the semantics defined in the RDFa specification7.
Linkator uses the semantics of these triples to compute, dynamically, the URL of the
link. Based on the semantics of these triples, it selects sources in the Linked Data
cloud to search for a URL for the link. The next example (in Fig. 2) shows how two
links with the same anchor (e,g., “Erwin Leonardi”) can take the user to distinct pages
based on the semantics in the link: Erwin Leonardi’s Facebook page and Erwin
Leonardi’s DBLP8 publications page.

Fig. 2. Examples of semantic links

Note that conceptually, based on the semantics of the RDFa annotations, there are
two triples associated to the link in line 7 of Fig. 2 (expressed here in the notation
N39). Fig. 3 represents these triples.

Fig. 3. Example of an HTML link

7 http://www.w3.org/TR/rdfa-syntax/
8 http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/
 Leonardi:Erwin.html
9 http://www.w3.org/2000/10/swap/Primer

360 S. Araujo, G.-J. Houben, and D. Schwabe

Those triples add the following semantics to the link: it is about a person, named
“Erwin Leonardi” that is described in the resource http://www.theleonardi.com/
foaf.rdf. One possible result for this link is to show Erwin Leonardi’s Facebook page,
since this homepage is a relevant resource semantically related to those triples. Such
information could be obtained in Linked Data that describes people or in the resource
http://www.theleonardi.com/foaf.rdf that describes the person mentioned. On the other
hand, for the link in line 10 of Fig. 2, it would be more relevant to show Erwin
Leonardi’s DBLP publications page, since author and creator are concepts (see the
triples in Fig. 4) that are semantically more related to DBLP10 Linked Data than the
previous mentioned sources.

Fig. 4. Example of an HTML link

The main benefit of semantic links here is that Linkator can use this extra
information for finding a significant value for the href attribute, i.e. the link URL,
automatically. Therefore, based on vocabularies used for annotating the semantic
links, Linkator can select a source on Semantic Web to look for a human-readable
representation related to the concept behind the link. This process is further explained
in detail in the rest of this paper.

4 Adding Semantic Links

Adding semantic links to a web page means to detect the relevant entities on this page
and add anchors that will lead the user to a related document on the web. In this
section we will describe these two processes. Fig. 5 illustrates the full process
described in this paper.

Fig. 5. Semantic link processing flow

10 http://dblp.l3s.de/d2r/

 Linkator: Enriching Web Pages 361

The first stage in the whole process is to detect the relevant entities to be linked.
For this, Linkator can use any available information extraction engine, due to its
flexible and plug & play architecture. The main advantage of this approach is that
Linkator delegates the intelligence of entity extraction to the extractor tools. However,
as most of the extractors do not produce annotations in RDF or RDFa, a major
additional step here is to convert the annotation made by the extractor into RDFa
annotations. This step is achieved by mapping a specific domain ontology to the
schema used by the extractor, and later using that mapping to convert the extractor
annotations into RDFa. As the result of that entire process, the entities extracted are
annotated in a domain specific ontology representing the domain that the extractor
was trained for.

Let us give an example. Suppose that we decided to plug the Freecite11 extractor
into Linkator. Freecite is an entity extraction engine for bibliographic citations. It is
able to detect citations in text documents and retrieve a structured XML file
containing authors, title, year of publication, location, number of pages, and volume
of the citation.

Fig. 6. Sample HTML page with a bibliographic reference

Fig. 6 shows an example of a web page with a bibliographic reference. The result

of the parsing and extraction of this page in Freecite is shown in Fig. 7.

Fig. 7. Output extracted with Freecite in XML

11 FreeCite - Open Source Citation Parser - freecite.library.brown.edu

362 S. Araujo, G.-J. Houben, and D. Schwabe

Notice that, in particular, Freecite does not directly mark the source page with the
corresponding extracted semantic annotation. As was mentioned before, in order to
get the original document semantically annotated as output from the extractor, an
extended version of Freecite was developed in Linkator for directly annotating the
original document with RDFa. For this purpose, the DBLP ontology12 (the set of
vocabularies used in this dataset) was used as the underlying ontology for the
annotation, although any other similar ontology or vocabulary can be used in this
process. This Freecite extension is able to transform the Freecite XML output to RDF
format and embed the annotations in the original web page. Basically, it transforms
the XML file to RDF using an XSL transformation13. The resulting file is then
automatically injected into the original web page with RDFa annotations. Linkator
places the annotation into the original page by matching the literal objects of the RDF
triples against the text in the page. The result of this transformation is shown in Fig. 8.

Like this, the first step of the process has been completed as the web page has been
extended with semantic links. Yet the computation of the target URL has to be done,
and in the next section we choose to do this by exploiting the triples that are
associated to the semantic link, which represent the semantics of the link in the page.

Fig. 8. Original page with semantic links expressed as RDFa annotations

5 Dereferencing Semantic Links

The next step in the process is to define a destination for the added link. Regardless of
the destination of the anchor being defined during the annotation process, as

12 http://dblp.l3s.de/d2r/
13 http://www.w3.org/TR/xslt

 Linkator: Enriching Web Pages 363

illustrated in [7, 8, 9, 10], in Linkator, it is computed at the moment the user clicks on
the semantic link. Therefore, it can select the most significant source to find the
destination of the anchor, based on the current context where the anchor occurs. To
improve performance Linkator uses the Linked Data cloud for discovering
destinations for the semantic link as opposed to querying search engines or a fixed
knowledge base. For that reason, the destination is computed at the user click, since it
would be very slow to query the linked data for find all destination beforehand.

Explained in brief, in order to dereference the semantic link, Linkator queries the
Linked Data cloud or an RDF source that exposes a SPARQL endpoint, looking for a
human-readable representation of the triples related to the semantic link. Thus, the
dereferencing process reduces to defining the endpoints to be queried and defining the
query itself.

5.1 Endpoint Resolution

SPARQL endpoint resolution is a problem that has recently attracted attention of
researchers in the field of federated queries [15, 16, 17, 18, 19, 20]. In spite of the fact
that many approaches have been proposed as (partial) solution for this problem there
is not yet a consensus or standard. Due to this fact, the Linkator architecture
implements its own solution.

Fig. 9. Excerpt from the DBLP voID descriptor

In Linkator, the SPARQL endpoint to be queried is determined based on three
things:

1. the triple associated to the semantic link itself,
2. the RDF graph of the annotations that exist on the web page,
3. the voID (Vocabulary of Interlinked Datasets) [5] descriptors of the

available endpoints.

Linkator selects available endpoints based on the vocabularies that they use. The
vocabulary that an endpoint uses defines the semantics of the data that it contains to a

364 S. Araujo, G.-J. Houben, and D. Schwabe

great extent. Therefore, by matching the vocabulary used on the semantic link with
the endpoint vocabularies, Linkator can resolve which endpoint may contain
significant information about the resources associated with the semantic link. The
vocabularies used by the endpoints can be obtained from their voID descriptors. VoID
is an RDF vocabulary used to describe linked datasets in the Semantic Web. Fig. 9
shows a fragment of a voID descriptor for the DBLP14 endpoint.

When Linkator receives a dereferencing request, it executes the algorithm
illustrated in Fig. 10 to choose the most relevant endpoint:

Fig. 10. Algorithm of the SelectEndpoint function that resolves which endpoint will be queried
based on the matching between vocabularies.

Let us illustrate how this mechanism works. Suppose that a user clicks on the

semantic link Erwin Leonardi illustrated in line 16 of Fig. 8. In addition to the triple
of this link shown in Fig. 11, all triples annotated and associated to the semantic link
can be used during this process.

Fig. 11. Triple associated to the semantic link Erwin Leonardi in line 16 of Fig. 8

The SelectEndpoint function (see Fig. 10, line 3) looks in those triples for an
rdf:type object. In this example, it matches the resource swrc:Article (that represents

14 The DBLP SPARQL server can be accessed at: http://dblp.l3s.de/d2r/

 Linkator: Enriching Web Pages 365

the expanded URL http://ontoware.org/swrc/swrc_v0.3.owl#Article). In the next step
(Fig. 10, line 4), it extracts the vocabulary associated to this resource. This is done by
the function ExtractVocabulary (Fig. 10, line 22) that retrieves the vocabulary
http://ontoware.org/swrc/swrc_v0.3.owl, in this example. The last step in this process
is to find the endpoints that use this vocabulary. In line 8, the procedure queries the
voID descriptor of the available SPARQL endpoints, looking for such a vocabulary.
The endpoints that contain it will be used during the querying process, as described in
the next subsection.

Note that the SelectEndpoint function can retrieve more than one endpoint,
and in that case, all of them will be used during the querying process. Also, note
that in this example, the algorithm found an rdf:type object in the annotations.
However, in the case where rdf:type is not available the engine uses the predicate
associated to the semantic link, which, in this last example, would be the resource
http://purl.org/dc/elements/1.1/creator.

In spite of the existence of endpoints covering a broad range of topics (e.g.,
DBpedia) and using hundreds of vocabularies, most of them are domain-specific and
use a small set of vocabularies, which justifies this as a reasonable approach for
detecting the endpoint semantically associated to the link being dereferenced.

Nevertheless, several other heuristics can be used to semantically disambiguate
the endpoint, for instance, it could be based on the conceptual description of the
content of the endpoint. In voID, the dcterms:subject property should be used to
describe the topics covered by the datasets, and in a future version we intent to
exploit such information to implement an approach based on concept mapping
between the content in endpoint and the semantic links. We also intend to use the
voID Store15 service that aims to aggregate voID descriptors of public endpoints
available in the Semantic Web.

5.2 Query Formulation

As mentioned earlier, Linkator queries an RDF source in order to find a URL for the
semantic link. The query itself is created based on the object of the triples associated
to the semantic link. The resulting query varies depending on whether the object is a
URL (i.e., an ObjectProperty) or an RDF literal (i.e., a DatatypeProperty). In this
approach, triples where the object is an RDF blank node are discarded. In the case
where the object is a literal, the query is Select ?s where {?s rdfs:label literal}. For
example, for the triple in Fig. 11, one of the SPARQL queries generated is shown in
Fig. 12.

Fig. 12. Sample query to find URLs for links

15 http://void.rkbexplorer.com/

366 S. Araujo, G.-J. Houben, and D. Schwabe

In fact, the query exemplified in Fig. 12 is just one of the queries computed.
Linkator executes a set of queries in order to overcome the limitations posed by the
endpoints. For the previous example, the entire set of queries generated is shown in
Fig. 13:

Fig. 13. Set of queries generated

Note however, that the query in line 4 is only executed if the endpoint supports
keyword search, otherwise, in practice, such a query has a large probability of timing
out or even returning an error. The support for keyword search can be obtained from
the voID descriptor of the endpoint.

The final step in the dereferencing process is to find a URL to be inserted in the
generated XHTML. Since a resource is retrieved in the query, Linkator tries to find a
URL that contains a human-readable representation associated to the resource.
Otherwise, it dereferences the resource URL directly. This same process also applies
in the case where the object of the triple is a URI and not a literal. In order to find a
human-readable representation for that resource, Linkator searches for predicates in
the target resource that contain the string ‘seealso’, ‘homepage’, ‘web’ or ‘site’. This
means that it is able to match predicates such as: foaf:homepage, akt:has-web-
address, rdfs:seeAlso, that in general, contain a human-readable representation for
RDF resources, meaning, a URL for a website. The whole dereferencing process ends
with Linkator redirecting the user request to the URL found.

6 Proof of Concept

Linkator has been implemented as an extension to the Firefox browser, together with
a backend service used by the extension. In this section, it is illustrated how Linkator
can be used for supporting users in their searches where they try to locate PDF files
and author’s pages for references that they encounter in web pages with citations. In
this scenario, the main problem is that some researchers or research groups mention
their works on their homepages but they often do not add a link to the referred
documents. Therefore, other researchers spend a considerable time looking for copies
of the documents on the web: Linkator is able to automatically do this job without any
intervention of the user or author. The Linkator prototype used to exemplify this
mechanism can be found at: http://www.wis.ewi.tudelft.nl/index.php/linkator

To exemplify this particular scenario, consider Erwin Leonardi’s personal homepage:
http://www.theleonardi.com/. That page contains a list of Erwin Leonardi’s
publications, as exhibited in Fig. 14.

 Linkator: Enriching Web Pages 367

Fig. 14. Excerpt from Erwin Leonardi’s publications listed in http://www.theleonardi.com

The same page, after it has been (automatically) processed by Linkator, is shown in
Fig. 15. The semantic links added by Linkator are shown in blue.

Fig. 15. Excerpt from Erwin Leonardi’s publications enriched with semantic links

After Linkator processes the page, clicking on the name of an author (annotated

with dc:creator) makes Linkator search for a human-readable representation of the
author in the DBLP SPARQL endpoint, as described in the previous section. As a
result, it retrieves a homepage of this author, as registered in the DBLP records. For
instance, by clicking on “Jan Hidders” the homepage http://www.wis.ewi.tudelft.nl/
index.php/personal-home-page-hidders is retrieved, while by clicking on “Geert-Jan
Houben” the homepage http://wwwis.win.tue.nl/~houben/ is retrieved, since both
URLs are stored in the DBLP endpoint. The same applies to the title of the citations
that were annotated by Linkator with semantic links. By clicking on a title (annotated
with dc:title), Linkator searches in DBLP for a human-readable representation of this
title. For instance, in Erwin Leonardi’s page, by clicking in the title “XANADUE: A
System for Detecting Changes to XML Data in Tree-Unaware Relational Databases”,
it retrieves the ACM page of this article (http://portal.acm.org/citation.cfm?doid=
1247480.1247633). In this page the user can find the PDF file for the article.

This proof of concept scenario shows how Linkator operates. Although the
example solves a trivial task, the full approach exemplifies how the problem of auto-
linking page can be decomposed to support a domain-independent and an adaptive
approach.

368 S. Araujo, G.-J. Houben, and D. Schwabe

7 Conclusion and Future Work

Linkator is an architecture that brings the benefits of semantic annotation closer to
end-users. It automatically adds links to web pages, which increases the connectivity
of the web page with related external resources, consequently improving user
navigation and access to web resources. This paper shows how this auto-linking
problem can be solved by incorporating elements of the Semantic Web into a solution
based on semantic links. Also, it focuses on the process of finding a URL for the
semantic link, using the Semantic Web as underlying knowledge base. Linkator is
able to select a source to be queried based on the semantics of the annotations on the
page. Therefore, it can determine the URL of the link, by exploiting a knowledge base
that is semantically related to the concept that is being linked. The Linkator prototype
exemplifies how knowledge workers can benefit from such a mechanism to find
documents related to bibliographic citations mentioned in web pages.

As future work, we intend to extend and measure Linkator’s discovery and query
model for improving the dereferencing mechanism; investigate the use of more
general adaptation and recommendation approaches that can be enriched with
Linkator’s added semantics; improve the Linkator resolution mechanism when the
endpoint retrieves more than one human-representation for an semantic link; and
investigate how the link generation can benefit from integrating with classical search
engines as well.

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets - On
the Design and Usage of voiD, the ‘Vocabulary of Interlinked Datasets’. In: Linked Data
on the Web Workshop (LDOW ’09), in conjunction with 18th International World Wide
Web Conference, WWW ’09 (2009)

2. Hughes, G., Carr, L.: Microsoft Smart Tags: Support, ignore or condemn them? In:
Proceedings of the ACM Hypertext 2002 Conference, Maryland, USA, pp. 80–81 (2002)

3. Medelyan, O., Witten, I.H., Milne, D.: Topic Indexing with Wikipedia. In: Proceedings of
the AAAI 2008 Workshop on Wikipedia and Artificial Intelligence (WIKIAI 2008),
Chicago, IL (2008)

4. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In:
Proceedings of the 16th ACM Conference on Information and Knowledge management
(CIKM ’07), Lisbon, Portugal, pp. 233–242 (2007)

5. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceeding of the 17th ACM
conference on Information and knowledge management, Napa Valley, California, USA,
October 26-30 (2008)

6. Gardner, J., Xiong, L.: Automatic Link Detection: A Sequence Labeling Approach. In:
International Conference on Information and Knowledge Management, CIKM ’09 (2009)

7. Reeve, L., Han, H.: Survey of semantic annotation platforms. In: Proceedings of the 2005
ACM Symposium on Applied computing, Santa Fe, New Mexico, March 13-17 (2005)

8. Hartig, O., Bizer, C., Freytag, J.: Executing SPARQL Queries over the Web of Linked
Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg
(2009)

 Linkator: Enriching Web Pages 369

9. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL rules,
SPARQL views and RDF data integration on the web. In: Proceeding of the 17th
international conference on World Wide Web (WWW ’08), New York, NY, USA, pp.
585–594 (2008)

10. Harth, A., Hose, K., Karnstedt, M., et al.: On Lightweight Data Summaries for Optimised
Query Processing over Linked Data (2009)

11. Zemanek, J., Schenk, S., Svatek, V.: Optimizing SPARQL Queries over Disparate RDF
Data Sources through Distributed Semi-Joins. In: ISWC 2008 Poster and Demo Session
Proceedings. CEUR-WS (2008)

12. Bouquet, P., Ghidini, C., Serafini, L.: Querying the Web of Data: A Formal Approach. In:
The Semantic Web, pp. 291–305 (2008)

13. Langegger, A., Wöß, W., Blöchl, M.: A Semantic Web Middleware for Virtual Data
Integration on the Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)

14. Gardner, J.J., Krowne, A., Xiong, L.: NNexus: An Automatic Linker for Collaborative
Web-Based Corpora. IEEE Trans. Knowl. Data Eng. 21(6), 829–839 (2009)

A Generic Proxy for Secure
Smart Card-Enabled Web Applications

Guenther Starnberger, Lorenz Froihofer, and Karl M. Goeschka

Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{guenther.starnberger,lorenz.froihofer,karl.goeschka}@tuwien.ac.at

Abstract. Smart cards are commonly used for tasks with high security
requirements such as digital signatures or online banking. However, sys-
tems that Web-enable smart cards often reduce the security and usability
characteristics of the original application, e.g., by forcing users to exe-
cute privileged code on the local terminal (computer) or by insufficient
protection against malware. In this paper we contribute with techniques
to generally Web-enable smart cards and to address the risks of malicious
attacks. In particular, our contributions are: (i) A single generic proxy to
allow a multitude of authorized Web applications to communicate with
existing smart cards and (ii) two security extensions to mitigate the ef-
fects of malware. Overall, we can mitigate the security risks of Web-based
smart card transactions and—at the same time—increase the usability
for users.

Keywords: Smart cards, Web applications, Digital signatures, Security.

1 Introduction

Despite ongoing efforts to Web-enable smart cards [1] there is still a media dis-
continuity when using smart cards in combination with Web applications, as
smart cards typically require a native helper application as proxy to commu-
nicate with the Web browser. One reason is that the Web security model is
fundamentally different from the smart card security model, leading to potential
security issues even for simple questions such as: “Is a particular Web application
allowed to access a particular smart card?”.

Ongoing research to Web-enable smart cards typically either requires com-
putational capabilities at smart cards higher than the capabilities provided by
today’s smart cards or requires users to install software customized to particular
types of Web applications [2]. In contrast, our generic mapping proxy enables
access from arbitrary Web applications to arbitrary smart cards, while using
access control to protect smart cards from malicious Web applications, without
requiring any on-card software modifications.

However, guarding only against malicious Web applications is not sufficient,
if the local computer is potentially controlled by malware. Consequently, we

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 370–384, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Generic Proxy for Secure Smart Card-Enabled Web Applications 371

enhance our mapping approach to provide end-to-end security between a user
and a smart card, but this enhancement requires the possibility to adapt on-card
software. In particular, we allow the user to (i) either use the TPM (Trusted
Platform Module) inside her computer or, (ii) alternatively, use a trusted secure
device to secure communication with the smart card.

Summarized, the contributions of our paper are:

– A smart card Web communication protocol that provides a secure way for
Web applications to interact with existing smart cards. Unlike state-of-the-
art technologies, our approach allows any Web application to interact with
any given smart card where communication is allowed based on our autho-
rization and access control mechanisms.

– A first extension to our protocol that uses the Trusted Computing facilities
part of recent PC (Personal Computer) hardware. This allows us to mitigate
the effects of malware on the local computer, but requires modification of
the on-card software.

– A second extension to our protocol that uses QR-TANs (Quick Response
– Transaction Authentication Number) [3] instead of a TPM. Thus, the
security is provided by an external security device instead of a PC.

Section 2 discusses related work before Sect. 3 presents the architecture and trust
model of our application. Sect. 4 introduces our generic Web mapping. Sect. 5
extends our mapping approach with TPM-based attestation, while Sect. 6 pro-
vides alternative security measures based on QR-TAN authentication. Finally,
Sect. 7 concludes the paper and provides an outlook on future work.

2 Related Work

In this section we discuss related work to Web-enable smart cards as well as to
improve client-side security.

Web-enabling smart cards. Itoi et al. [4] describe an approach for secure Internet
smart cards that allows users to access remote smart cards over the Internet. In
contrast, we provide the client-side part of a Web application running in a Web
browser with access to smart cards at the local computer. Thus, the security
assumptions and implementation details differ fundamentally. An expired IETF
Internet draft for SmartTP by P. Urien [5] specifies a unique software stack
applicable to different types of smart cards, but—unlike our approach—requires
software support from the smart card. Hence, it is not applicable to legacy cards.
The TLS-Tandem approach [6] seems to use smart cards for access control to
a Web server, while we aim at Web-enabling smart cards to mitigate man-in-
the-middle attacks. Further details on approaches to provide smart cards with
network access can be found in [1].

Improving client-side security. Lu et al. [7] increase security with respect to
online identity theft by placing confidential information inside the smart card
from where it can be transferred to a remote authenticated server. This reduces

372 G. Starnberger, L. Froihofer, and K.M. Goeschka

the risk of confidential information being captured by malware at a user’s com-
puter. However, it does not guarantee that data entered on the computer are not
changed on the way to the server, which is the focus of our two security exten-
sions. Bottoni and Dini [8] use a secure device to secure transactions between a
user and a merchant. This is conceptually similar to our QR-TAN approach [3].
However, in this work we secure transactions between the user and the smart
card itself. While our techniques rely on a trusted device or execution platform,
Aussel et. al [9] include security-hardened monitors into applications running on
untrusted platforms and use USB (Universal Serial Bus) smart cards to verify the
log data provided by the monitors. Consequently, this approach could comple-
ment our techniques if no trusted execution environment is available, providing
less security than a dedicated secure hardware device, of course.

Conclusion. Related work and existing implementations prove that connectivity
of smart cards is a well researched topic. However, real Internet smart cards [10]
able to communicate directly using the IP protocol are not yet widely avail-
able on the market. Furthermore, all existing evaluated solutions require custom
on-card software for communication with the terminal. In comparison to ex-
isting work, our approach strives to partition trust requirements between Web
applications and different smart cards and, additionally, features advanced secu-
rity capabilities that allow to mitigate attacks due to insecure terminals. While
Internet smart cards do not require our proxy application for Internet access,
they do not provide equivalent capabilities for request filtering on the terminal.
However, combining Internet smart cards with our two security mechanisms dis-
cussed in Sections 5 and 6 would allow to improve these cards’ security in regard
to man-in-the-middle attacks.

3 Architecture and Trust Model

This section presents our overall system architecture and the different security
constraints. Due to the different trust requirements of the different entities, the
problem we solve can be seen as a type of multilateral security [11] problem. For
example, the user and the Web server both trust the smart card, but neither does
the user trust executable code provided by the Web server, nor does the Web
server trust executable code provided by the user. And while the user may place
considerable trust into her own hardware, this hardware may not be trustworthy
enough for the Web application in regard to non-repudiability requirements.

An overview of our architecture is given in Figure 1, which illustrates the ma-
jor components and communication paths, but not the sequence of interactions
detailed later. Figure 1(a) shows the architecture when used in combination
with TPM and Figure 1(b) shows the architecture when used in combination
with QR-TAN. The black arrows indicate direct communication paths between
two entities while the highlighted broader lines in the background depict the se-
cure channels in our system. If a secure channel spans several black arrows, this
means that the intermediate entities are untrusted and data are passed through
that entities by means of encryption or digital signatures. The trust relations

A Generic Proxy for Secure Smart Card-Enabled Web Applications 373

Web browser

measure dynamic root

Secure
channel

Communication

(a) TPM

Web browser

(b) QR-TAN

Fig. 1. System components

between the constituents described in the following paragraphs are depicted in
Figure 2. Arrows labelled “high” indicate that a component is highly trusted,
while “partial” indicates a lower trust relationship.

Web application and Web server. The Web application is an entity that wants
to interact with the smart card; for example a banking site that requires a digital
signature before conducting a transaction. The user trusts the Web application
for communication with the smart card. However, the user does not trust the
Web application with unrestricted access to her computer—e.g., to execute bi-
nary code obtained from the Web application. The server-side part of the Web
application is running on the Web server, while the client-side part of the Web
application is implemented in JavaScript and running on the Web browser. The
term “Web application” refers to the combination of these two components.

Web browser. The Web browser is the entity used to interact with the smart
card. It hosts the client-side part of the Web application and interacts with the
server-side part of the Web application and the smart card. The user needs to
trust the Web browser for the type of executed transaction. For low security
transactions such as reading a stored-value counter, a normal Web browser can
be used. For high security transactions, the trust in the Web browser can either
be increased by executing the Web browser inside a trusted environment (see
Sect. 5), or the trust requirements in the Web browser can be decreased by
outsourcing part of the transaction to a trusted secure device (see Sect. 6).

Proxy. The proxy is our application responsible for mapping requests from a
Web browser to a smart card. Combined with our generic mapping approach
(Sect. 4), only a single generic proxy provided by a trusted vendor is required
to be installed in order to allow access to smart cards from a multitude of
authorized Web applications using state-of-the-art Web technologies. The trust
requirements in the proxy are two-fold: From a user’s perspective, the proxy is
running on a semi-trusted platform as the proxy is started on her local operating
system. Thus, some security features—such as controlling which type of APDUs

374 G. Starnberger, L. Froihofer, and K.M. Goeschka

Web server

High

Proxy

For the provided
services: High

For the provided
services: High

High

Partial

Smart
card

For the provided
services: High

User

Fig. 2. Trust relations

(Application Protocol Data Unit) can be transmitted to smart cards are taken
care of by the proxy. However, from a smart card issuers perspective the proxy is
not necessarily trusted, as malware could control the computer. Thus, the smart
card issuer can mandate additional security measures such as the authentication
over a TPM (Sect. 5) or QR-TANs [3] (Sect. 6).

Smart card. A smart card is issued by an entity such as a local bank and is
responsible for signing sensible data and/or for executing sensitive transactions.
User and Web application have trust in the smart card’s correctness. However,
the user does not have a direct input and output path to the smart card. Thus,
malware can manipulate the user’s communication with the smart card.

4 Our Generic Proxy and Mapping Approach

Our generic proxy Web-enables smart cards without installation of custom on-
card software and hence is applicable to a large range of existing smart cards.
In sections 5 and 6, we enhance our approach to provide even better security in
particular against malware for cases where the on-card software can be adapted.

The developed mapping technique uses a proxy to provide Web applications
with access to smart cards and—in addition—protect the smart card from mali-
cious Web applications. In contrast to existing techniques, our generic mapping
allows a single executable to be used for a diverse set of Web applications and
smart cards, not requiring the user to trust and execute code obtained from
different Web sites. We validated our concepts with prototype implementations,
showing that (i) the proxy concept is feasible in practice, (ii) correctly serves as
a filter between Web applications and smart cards, and (iii) allows Web access
to smart cards using state-of-the-art Web technologies.

Our system uses a mapping configuration to map abstract method calls to
APDUs; an example is shown in Figure 3. This configuration defines how in-
voked methods with their arguments are mapped to APDUs and how results
are mapped back to a structure. Furthermore, it includes a list of trusted ori-
gins, defining Web sites that may use the mapping, and a list of ATRs (An-
swer To Reset—an ATR identifies a smart card), identifying accessible cards.
An AID (Application Identifier) identifies the respective smart card application.

A Generic Proxy for Secure Smart Card-Enabled Web Applications 375

<mapping>
<smartcard atr="3b134028351180" aid="A00000006203010C0202" />
<method name="login">

<request>
<args><arg name="pin" type="STRING" /></args>
<apdu−mapping is="D4"><argument name="pin" /></apdu−mapping>

</request>
<response />

</method>
</mapping>

Fig. 3. Request mapping example

The mapping is cryptographically signed by the card issuer with a key certified
by a Privacy CA (Privacy Certificate Authority).
Mapping procedure. The following steps detail how a Web application can call
a particular method defined in the mapping file. The interaction between the
different components is shown in Figure 4.

1. The Web browser obtains a mapping definition and transmits the mapping
to the proxy via an RPC (Remote Procedure Call) call by using JavaScript.

2. The proxy verifies that the origin of the client-side Web application part run-
ning in the Web browser matches the origin defined in the mapping file—e.g.,
by providing a secret to the Web application over a callback—and verifies
the signature of the mapping.

3. The proxy verifies that there is a card in the reader and that the ATR of the
card matches the ATR of the mapping. If the ATR is different, or if during
the remaining process the ATR changes (e.g., because the card is replaced),
the proxy will reset.

4. The proxy either asks the smart card if the public key used to sign the map-
ping should be trusted, or—alternatively—only verifies if the public key has
been signed by a trusted certificate authority. If one of the options succeeds,
the process is continued. Otherwise, the process is aborted.

5. The proxy receives RPC requests from the Web application’s JavaScript code
running inside the browser and converts them to APDUs according to the
mapping. These APDUs are subsequently transmitted to the smart card.
After the response APDU is received from the smart card it is converted
and sent back to the application running in the Web browser.

Summarized, to protect smart cards from malicious Web applications we first
identify the type of smart card connected to the PC. We proceed by verifying if
the smart card provider has authorized the mapping file1 provided by the Web
application for this particular type of smart card. If this verification succeeds,
this mapping is then used to restrict which Web applications can access the
smart card and to restrict the type of APDUs that the Web application may
transmit to the smart card.
1 The authorization of a Web application’s mapping file is an administrative task

in contrast to the development and installation of on-card software, which would
require re-distribution of smart cards.

376 G. Starnberger, L. Froihofer, and K.M. Goeschka

Card reader

Mapping

1a
1b

2

3

4
5

5
Smart card Proxy Web browser

Fig. 4. Mapping procedure

5 Smart Card-Based TPM Attestation

This and the next section show extensions for establishment of a secure channel
between the smart card and either (i) the Web browser running in a secure
environment, or (ii) a mobile device trusted by the user. Both extensions require
the support of on-card software.

The approach of this section uses an end-to-end security protocol between
smart card and Web browser that provides authentication, integrity and confi-
dentiality between the two endpoints. Our protocol works on a layer between
APDU transmission and APDU interpretation. Conceptually, it can be com-
pared to TLS. However, instead of desktop computers it targets smart cards
and uses the remote attestation features of TPM that allow a remote party to
verify if a computer is running a particular software configuration. The main
requirements of our protocol are: (i) Authentication: Each party must be able to
securely authenticate the other party. (ii) Integrity: Each party must be able to
verify that the transmitted data has not been manipulated. (iii) Confidentiality
(optionally): End-to-end encryption between the parties must be possible.

The first two items are required to prevent manipulation of transmitted data:
Without authentication of the remote party, an attacker could directly establish
a connection to one of the parties. Furthermore, without integrity of individual
data items, an attacker could use a man-in-the-middle attack to manipulate these
data items while in transit. The third item is optional: Without encryption, a
man-in-the-middle is able to read transmitted information, but she is not able
to manipulate this information. By using encryption, we can prevent an attacker
from learning information about ongoing transactions.

In the following sections we first introduce the TPM functionality we use for
remote attestation. Afterwards, we continue with a description of our secure
channel that provides authentication, integrity and confidentiality. While a se-
cure channel is already part of the Global Platform specification (http://www.
globalplatform.org/), the specification assumes that there is a shared secret
key between smart card and accessor. However, as we want to enable access to
smart cards from different Web sites, a shared secret between the smart card
and each individual Web site is infeasible.

5.1 Secure Computer Model

For the endpoint of our end-to-end security protocol on the local computer (see
Figure 1(a)) we assume a computer model that allows to create a secure runtime

http://www.globalplatform.org/
http://www.globalplatform.org/

A Generic Proxy for Secure Smart Card-Enabled Web Applications 377

partition in which software is executed that cannot be accessed or manipulated
by the user’s (default) operating system. This secure partition hosts a browser
instance used for communication with the smart card. Furthermore, the secure
partition allows for remote attestation—allowing a remote entity to securely
identify the executed software. To provide compatibility across different types
of trusted environments, our model does not assume any further features. In
particular, we do not assume that it is possible to open a secure channel to I/O
devices such as smart card readers. This is in accordance with the current state
of trusted environments, where applications can open secure channels only to
some types of I/O devices such as monitors and keyboards [12, 13].

There are different technologies that allow for the creation of such a secure
partition. One technology is Intel’s Trusted Execution Technology (Intel TXT)
that complements the functionality of a TPM by allowing a secure hypervisor
to provide virtual environments that are protected from access by malicious
applications. For remote attestation, a TPM can be used. The Xen hypervisor
provides a vTPM [14] implementation that provides virtual TPM chips [15] to
the executed instances. These virtual TPMs use features of the host’s hardware
TPM for the secure implementation of their different functions.

5.2 Establishing a Shared Secret for HMAC and Encryption

As basis for encryption and authentication we use a shared secret between smart
card and Web browser running in a trusted environment. To establish this secret
we use an authenticated Diffie-Hellman (DH) key exchange [16] as depicted in
Figure 5. The variables g, p, A, B in the figure are Diffie-Hellman parameters.
For authentication, we sign the parameter set sent by each of the parties with
digital signatures that prevent man-in-the-middle attacks. On the smart card we
use an asymmetric key that is certified by the smart card manufacturer, while
on the TPM we use the AIK (Attestation Identity Key) for authentication.

Instead of using Diffie-Hellman, it would also be possible to generate the
symmetric key on one of the endpoints and use asymmetric encryption to transfer
this key to the other endpoint. However, with such a method the long-term
security of the communication would depend on the security of the particular
asymmetric key. If the asymmetric key would be broken, each symmetric key
encrypted with this key in the past would be compromised. With Diffie-Hellman
on the other hand, an attacker needs to crack each session key individually.

5.3 Mutual Authentication and Integrity

Mutual authentication allows each endpoint of a conversation to authenticate
the identity of the opposing endpoint. Authentication and integrity are inter-
twined concepts: When endpoint authentication is used without data integrity,
an adversary can exchange data while in transit. Likewise, if data integrity is
used without endpoint authentication, an endpoint knows that the data have
not been modified, but does not know the identity of the remote endpoint.

In this section we provide our approach for authentication and integrity. There
are two endpoints (see Figure 1(a)): The smart card and the Web browserrunning

378 G. Starnberger, L. Froihofer, and K.M. Goeschka

DH parameters #1: g,p,a,NonceEven,signatureFromCard(hash(g,p,A,nonceOdd);
DH parameters #2: B,signatureFromTPM(hash(B,NonceEven));

DH
pa

ra
m

et
er

s #
1

Nonce
Odd

DH
param

eters #2

Trusted boot
container c

Smart card s

Fig. 5. Exchange of Diffie-Hellman parameters for secure channel. A nonce is used to
prevent replay attacks. Each endpoint transfers cryptographically signed DH parame-
ters to the other endpoint. These parameters are then used to establish the key for the
secure channel.

in a trusted environment. Authentication uses authenticated Diffie-Hellman key
exchange, while integrity uses HMACs (Keyed-Hash Message Authentication
Codes).

Each smart card stores a custom key pair generated on initialization and
digitally signed by the smart card issuer. When transmitting Diffie-Hellman
parameters, the smart card signs them with its private key and appends the
public key together with the certificate of the issuer to the data structure as
shown in Figure 5.

On the PC, the TPM Quote command of the TPM is used to sign the content of
particular PCRs (Platform Configuration Registers) that contain measurements
of the executed software used to identify a particular software configuration.
When PCRs are updated, the TPM combines the existing value with the new
value, thus software running on the computer is not able to set the registers to
arbitrary values. By cryptographically signing the values within the registers,
the TPM chip can attest the state of the system to a remote system. This
functionality is also called remote attestation.

The certification of the TPM’s key is more complex than in the case of the
smart card. Figure 6 shows the certification and attestation procedure, illustrat-
ing which entity certifies which other entity to build up a chain of trust that
allows the smart card to verify a correct software execution environment. The
TPM contains two different types of keys: The unmodifiable EK (Endorsement
Key) generated during production and certified by the TPM’s manufacturer
and a modifiable AIK used for attestation. A Privacy CA (Privacy Certificate
Authority) with knowledge about EK and AIK is responsible for certifying the
AIK [12,13]. During attestation, the AIK signs a set of values that identifies the
executed software. The smart card compares these values with a set of reference
values identifying a particular browser appliance and signed by a trusted party
(e.g., the smart card issuer).

5.4 APDU Encryption and Authentication

For the encryption and authentication of APDUs we use a protocol similar to
smart card secure messaging defined in ISO/IEC 7816-4. The main reason why

A Generic Proxy for Secure Smart Card-Enabled Web Applications 379

EK

AIK

ce
rti

fie
s

Privacy CA PCR State

Expected
PCR State

Trusted
party

certifiescertifies

certifies

co
m

pa
re

TPM

TPM
manufacturer certifies

TPM

Fig. 6. Certification and attestation procedure

we cannot directly use secure messaging is that secure messaging requires a
shared key between smart card and terminal. However, in our application sce-
nario, this is not feasible as we want to enable secure communication with the
smart card from a wide range of Web applications.

In theory, it would be possible to use the secret we established in Section 5.2 as
the basis of a ISO/IEC 7816-4 compliant communication established directly by
the smart card’s operating system. However, as common smart card operating
systems do not allow for access to the particular layer by client applications,
this option is not possible. Instead, we re-implement comparable functionality
inside the application layer, transmitting secured data as payload in APDUs.
Therefore, APDU encryption and authentication allows us to establish a secure
channel between smart card and Web browser.

APDUs are encrypted and authenticated by calculating encrypt(session key,
hmac(session key, orig apdu + counter) + orig apdu + counter) using a sym-
metric encryption protocol such as AES (Advanced Encryption Standard). If
no encryption is required, using an HMAC without encryption is possible. The
HMAC serves to detect manipulation attempts of the APDU. The counter al-
lows to detect replay attacks: In the beginning, a counter value derived from the
shared key is used. As the session proceeds, each endpoint increases the counter
value by one for each request and each response. Furthermore, each endpoint
can detect if the received counter value matches the expected counter value. As
a side effect, the counter also acts as a type of initialization vector (IV), as two
equal APDUs encrypt to two different cipher texts.

5.5 Security Discussion

One issue with the certification of the PCR state by the smart card is that if the
Privacy CA only certifies that the AIK belongs to any valid TPM implemen-
tation, it would be sufficient for an adversary to obtain the private key of any
certified TPM to apply signatures. To cause a security problem the adversary
would need to (i) break the user’s environment so that the browser does not
run inside a secure environment with the effect that malware has access to the
software and (ii) to sign the TPM’s side of the transaction with a certified key
from another broken TPM implementation.

380 G. Starnberger, L. Froihofer, and K.M. Goeschka

One option for mitigation of such an issue would be for the Privacy CA to not
only certify that the key belongs to any TPM implementation, but to further
include a user identifier in the certificate. This certificate can then be used by
the smart card to verify that the TPM belongs to an authorized user. Another
option is to store the first TPM key used for authentication and to only allow this
particular key for future transactions. While this does not help against malware
on a freshly installed PC, it protects the user against later attacks. However,
to use another PC, a user would first need to obtain a certificate from the card
issuer that instructs the smart card to reset the stored key.

When a secure channel is used, there is an important difference in the be-
havior of the intermediate proxy: In unencrypted communication, the proxy is
responsible for filtering requests, i.e., to only allow requests whitelisted in the
mapping to pass. However, with encryption, such a filtering is not possible as the
proxy does not have access to the plain text. Thus, the proxy cannot verify if a
particular encrypted APDU is allowed by the mapping file. As the proxy cannot
filter requests sent to smart cards in that case, smart cards need to be developed
with the assumption that potentially any Web site can send requests. While
a majority of smart cards is already designed to withstand external attacks,
the optimal mitigation strategies in our scenario are different. Traditionally, a
smart card does, e.g., deactivate itself, if large amounts of failed authentication
attempts are detected. However, if any Web application can communicate with
the smart card, a Web application could abuse such a behavior for a DoS (Denial
of Service) attack: By deliberately causing failed authentication attempts, any
Web application could disable the smart card.

As mitigation strategy, smart cards should not take any destructive actions in
case of failed authentication attempts or other types of security alerts that can
be caused by external Web applications. For example, instead of deactivating
the smart card in case of multiple failed authentication attempts the smart card
could just increase the minimum interval required between each authentication
attempt. As an alternative, the on-card application responsible for the secure
connection can filter requests according to the information in the mapping—and
thereby accomplish the filtering task of the proxy.

6 Authentication with QR-TAN

This section presents the second option to increase the security of the proxy, by
extending our system with QR-TANs [3]. QR-TANs are a transaction authentica-
tion technique that uses a secure device to allowusers to securely confirm electronic
transactions on remote systems. A user scans a two dimensional barcode contain-
ing information about a transaction with a secure device. The secure device allows
the user to verify the transaction. To approve the transaction, the user transmits a
TAN (Transaction Authentication Number) dynamically generated by the secure
device to the remote system. In comparison to our original QR-TAN approach [3],
our modifications allow the use of QR-TANs without the interaction of a server.

Conceptually, it is sufficient to replace the RTC (Remote Trusted Computer) in
the original approach with a smart card. However, due to the different capabilities

A Generic Proxy for Secure Smart Card-Enabled Web Applications 381

of smart cards and servers, modifications to the original approach allow for better
integration. In particular, our modifications address the following issues:

1. On smart cards, the generation of textual authentication requests intended
for humans is more complicated than on servers. Especially as the smart
card’s memory restricts the amount of stored localizations and as it is rather
complex to update the messages once the card has been issued.

2. The smart card should have the capability to decide if external transaction
authentication is required. For example, in banking applications a smart
card may allow daily transactions of up to a particular total value without
authentication, only requiring authentication above that value.

3. Usage of QR-TAN should be transparent to applications using the proxy.
Thus, only the smart card, the proxy, and the secure device should contain
QR-TAN specific code.

To enable these properties, we extend our mapping description to contain informa-
tion about QR-TAN authentication. In particular, we introduce a new <auth />
section that describes which status words in the APDU response indicate that
QR-TAN authentication is required and how human readable text is generated
from the structure returned by the smart card. For authentication the following
steps depicted in Figure 7 are used:

Fig. 7. QR-TAN authentication steps

1. On initialization the browser provides the mapping to the proxy. The proxy
transmits a hash and a certificate of the used mapping file signed by a trusted
third party to the smart card. The smart card verifies that the certificate
allows use of the given mapping file.

2. The Web browser sends its transaction request to the smart card.
3. The smart card responds with a particular status word indicating that QR-

TAN authentication is required for this type of transaction. The data of
the response contains a structure with information about the transaction, a
nonce, and the secure hash of the used mapping file.

382 G. Starnberger, L. Froihofer, and K.M. Goeschka

4. The proxy reads the response by the smart card and converts it to a QR code
that is subsequently displayed to and scanned by the user’s secure device.

5. The secure device first checks if it has stored the mapping file indicated in
the QR code. If not, it prompts the user to install the mapping file—e.g., by
scanning a compressed QR code containing the mapping file. Otherwise, it
generates a human readable text according to the information in the mapping
file and asks the user for confirmation.

6. If the user confirms, the secure device generates a QR-TAN over the data
structure of the original request (in step 2), the nonce, and the hash of the
mapping file and presents this QR-TAN to the user.

7. When the user provides this QR-TAN to the proxy, it generates an APDU
with this information and sends it together with the nonce and the hash of
the mapping file to the smart card. The smart card validates if the QR-TAN
request for the particular nonce matches the hash of the information within
the APDU.

8. In case of success, the smart card returns the response of the original APDU
request issued in step 2.

The conversion of the transaction data to a human readable text can be done on
either one of the two endpoints of the QR-TAN authentication: Inside the smart
card or inside the trusted secure device. It is not possible to do this conversion
on any device between these two endpoints as this would prevent from successful
end-to-end authentication. In our approach we perform this conversion inside the
secure device. While generating the text directly within the smart card would be
conceptually simpler, it would require the smart card to store potentially large
amounts of textual data—e.g., if multiple localizations are required. Furthermore,
it is not easily possible to adapt the text once the smart card has been issued.

As the secure device uses a mapping file to convert the structure with informa-
tion about the transaction to a textual format, it must ensure that the mapping
file is also authenticated. Otherwise, an attacker would be able to send a manip-
ulated mapping file to the secure device, causing the device to show incorrect
transaction information to the user. It is not sufficient for the secure device to
only validate if the mapping file has been signed by a trusted party: As the secure
device cannot securely obtain the ATR (Answer To Reset) of the smart card, it
cannot ensure that the mapping file belongs to a particular smart card. Instead,
we include a hash of the mapping file in the structure that is hashed by the
secure device, allowing the smart card to ensure that the QR-TAN belongs to a
particular mapping. While the smart card does not need to know the content of
the mapping file, it needs to know the digital signature to decide if it can trust
the mapping. Thus, the proxy can send the signature of a mapping to the smart
card via APDUs.

By integrating our QR-TAN approach directly with the proxy, the proxy is re-
sponsible for displaying the QR code and for forwarding the QR-TAN back to the
smart card. Thus, the whole process can be transparent to applications using the
mapping, as the only difference between authentication and non-authentication
is the additional delay of the authentication process.

A Generic Proxy for Secure Smart Card-Enabled Web Applications 383

7 Conclusion and Outlook

We presented a secure approach for Web-based smart card communication. Our
overall contributions are: (i) a secure technique using a single generic proxy to
allow a multitude of authorized Web applications to communicate with exist-
ing smart cards and (ii) techniques for new smart cards that allow for secure
end-to-end communication between a user and a smart card. In particular, our
security extensions cover the usage of (i) a TPM and (ii) QR-TANs to secure
communication with smart cards.

Especially with citizen cards recently introduced in several countries and with
high security requirements in online banking, a secure solution for Web-enabled
smart cards is required. Compared to related approaches, our system works with
existing smart cards without requiring changes to on-card software. Thereby, we
can increase the security of the user’s system, by not requiring the user to install
privileged software distributed by Web sites that require access to a smart card.
Furthermore, in cases where it is feasible to adapt on-card software, we can
increase the security over the state-of-the-art even further, as we can use the
TPM or QR-TANs to secure transactions that would otherwise be affected by
malware on the terminal.

Overall, we see that Web to smart card communication techniques are an area
where further research is required. In particular, researching the possibilities to
use state-of-the-art Web protocols for secure mashups [17] may provide viable
results, allowing smart cards to use standard Web protocols to identify and
authorize Web applications. However, with increasing usage of Web technologies
in smart cards also new kinds of attacks against smart cards are viable, as
malicious applications can now target the Web browser to gain access to the
smart card. Therefore, end-to-end security techniques are required to allow smart
cards to mitigate the risk of such attacks. Additionally, new approaches [18]
in automatic generation of network protocol gateways can allow for the more
efficient generation of Web to smart card mapping files.

Concluding, our research can serve as basis for a newer, more secure generation
of smart card to Web communication. By combining the security features of
smart cards with the features provided by TPMs and QR-TANs, we can mitigate
the effects of the terminal problem [19] as the smart card is able to assert that the
transaction data has not been manipulated. While future smart card generations
may require modifications to the specific techniques introduced in this paper, the
overall approach will still be applicable. Furthermore, recent developments such
as the Trusted Execution Module (TEM) [20] allow for the implementation of
more powerful request mapping approaches on smart cards.

Acknowledgments. The authors would like to thank Markus Wilthaner for
the proof-of-concept prototype implementation of the work described in this
paper. This work has been partially funded by the Austrian Federal Ministry
of Transport, Innovation and Technology under the FIT-IT project TRADE
(Trustworthy Adaptive Quality Balancing through Temporal Decoupling, con-
tract 816143, http://www.dedisys.org/trade/).

http://www.dedisys.org/trade/

384 G. Starnberger, L. Froihofer, and K.M. Goeschka

References

1. Lu, H.K.: Network smart card review and analysis. Computer Networks 51(9),
2234–2248 (2007)

2. Leitold, H., Hollosi, A., Posch, R.: Security architecture of the austrian citizen card
concept. In: ACSAC, pp. 391–402. IEEE Computer Society, Los Alamitos (2002)

3. Starnberger, G., Froihofer, L., Goeschka, K.M.: QR-TAN: Secure mobile transac-
tion authentication. In: International Conference on Availability, Reliability and
Security. ARES ’09, Fukuoka, pp. 578–583 (March 2009)

4. Itoi, N., Fukuzawa, T., Honeyman, P.: Secure internet smartcards. In: Attali,
I., Jensen, T.P. (eds.) JavaCard 2000. LNCS, vol. 2041, pp. 73–89. Springer,
Heidelberg (2001)

5. Urien, P.: Smarttp smart transfer protocol. Internet Draft (June 2001)
6. Urien, P.: TLS-tandem: A smart card for WEB applications. In: 6th IEEE Con-

sumer Communications and Networking Conf. CCNC 2009, pp. 1–2 (January 2009)
7. Lu, H.K., Ali, A.: Prevent online identity theft - using network smart cards for se-

cure online transactions. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225,
pp. 342–353. Springer, Heidelberg (2004)

8. Bottoni, A., Dini, G.: Improving authentication of remote card transactions with mo-
bile personal trusted devices. Computer Communications 30(8), 1697–1712 (2007)

9. Aussel, J.D., d’Annoville, J., Castillo, L., Durand, S., Fabre, T., Lu, K., Ali, A.:
Smart cards and remote entrusting. In: Future of Trust in Computing, pp. 38–45.
Vieweg/Teubner (2009)

10. Márquez, J.T., Izquierdo, A., Sierra, J.M.: Advances in network smart cards au-
thentication. Computer Networks 51(9), 2249–2261 (2007)

11. Rannenberg, K.: Multilateral security a concept and examples for balanced security.
In: NSPW ’00: Proceedings of the 2000 workshop on New security paradigms, pp.
151–162. ACM, New York (2000)

12. Müller, T.: Trusted Computing Systeme. Xpert.press/Springer (2008)
13. Challener, D., Yoder, K., Catherman, R., Safford, D., Van Doorn, L.: A practical

guide to trusted computing. IBM Press (2007)
14. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:

Virtualizing the Trusted Platform Module. In: Proceedings of the 15th USENIX
Security Symposium, USENIX, pp. 305–320 (August 2006)

15. England, P., Löser, J.: Para-virtualized tpm sharing. In: Lipp, P., Sadeghi, A.-R.,
Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 119–132. Springer, Heidelberg
(2008)

16. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

17. Hammer-Lahav, E., Cook, B.: The oauth core protocol. Internet Draft draft-
hammer-oauth-02 (March 2009)

18. Bromberg, Y.D., Réveillàre, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009.
LNCS, vol. 5896, pp. 21–41. Springer, Heidelberg (2009)

19. Gobioff, H., Smith, S., Tygar, J.D., Yee, B.: Smart cards in hostile environments. In:
WOEC’96: Proc. of the 2nd USENIX Workshop on Electronic Commerce, Berkeley,
CA, USA, USENIX Association, p. 3 (1996)

20. Costan, V., Sarmenta, L.F.G., van Dijk, M., Devadas, S.: The trusted execu-
tion module: Commodity general-purpose trusted computing. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 133–148. Springer,
Heidelberg (2008)

Efficient Term Cloud Generation for
Streaming Web Content

Odysseas Papapetrou, George Papadakis,
Ekaterini Ioannou, and Dimitrios Skoutas

L3S Research Center, Hannover, Germany
{papapetrou,papadakis,ioannou,skoutas}@L3S.de

Abstract. Large amounts of information are posted daily on the Web,
such as articles published online by traditional news agencies or blog
posts referring to and commenting on various events. Although the users
sometimes rely on a small set of trusted sources from which to get their
information, they often also want to get a wider overview and glimpse of
what is being reported and discussed in the news and the blogosphere.
In this paper, we present an approach for supporting this discovery and
exploration process by exploiting term clouds. In particular, we provide
an efficient method for dynamically computing the most frequently ap-
pearing terms in the posts of monitored online sources, for time intervals
specified at query time, without the need to archive the actual pub-
lished content. An experimental evaluation on a large-scale real-world
set of blogs demonstrates the accuracy and the efficiency of the proposed
method in terms of computational time and memory requirements.

1 Introduction

The popularity of online news sources has experienced a rapid increase recently,
as more and more people use them every day as a complement to or replacement
of traditional news media. Therefore, all major news agencies make nowadays
their content available on the Web. In addition, there exist several services, such
as Google News or Yahoo! News, that aggregate news from various providers.
At the same time, more and more people maintain Web logs (blogs) in a regular
basis as a means to express their thoughts, present their ideas and opinions, and
share their knowledge with other people around the globe. Studies about the
evolution of the Blogosphere [3,19] report around 175, 000 new blogs and 1.6
million new blog posts every day. Micro-blogging has also emerged as a special
form of such social communication, where users post frequent and brief text
messages, with Twitter constituting the most popular example. This results in
an extremely large and valuable source of information that can be mined to
detect themes and topics of interest, extract related discussions and opinions,
and identify trends. Perhaps the most interesting aspect that distinguishes these
sources from other information available on the Web is the temporal dimension.
Several recent research activities have focused on analyzing and mining news and

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 385–399, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

386 O. Papapetrou et al.

blogs for detecting events or stories (e.g., [2,1,15,19]), identifying trends (e.g.,
[5,11]), and extracting opinions and sentiments (e.g., [8,18,22]).

In the Web, users very often need to explore large collections of documents
or pages, without having a-priori knowledge about the schema and the content
of the contained information. Various techniques, such as clustering, faceted
browsing, or summarization, are used in such scenarios to help the user more
effectively navigate through the volume of the available information, to obtain
an overview, and to drill down to the items of interest. One simple visualization
technique that has become very popular, especially in Web 2.0 applications, is
presenting to the user a visual overview of the underlying information in the form
of a tag cloud. This is typically a set comprising the most popular (i.e., frequent)
tags contained in or associated to the underlying data collection, where most
frequent tags are visualized in a more prominent way (i.e., using larger font size).
In many applications, the cloud is constructed from the tags assigned to the data
explicitly by users. For example, Flickr provides tag clouds of the most popular
tags entered by the users in the last 24 hours or over the last week1. In other
cases, where no such tags or keywords are available, the cloud can be constructed
from terms (or other semantically richer items, such as entities) automatically
extracted from the text, as for example in Blogscope [2]. The advantage of tag
clouds lies mainly in the fact that they are very simple, intuitive, and visually
appealing to the user, while serving two purposes; first, they provide an easy and
quick way to the user to get hints about what is contained in the underlying data,
e.g., what is being reported and discussed in the news. Second, they allow the
user to navigate and explore the available information, by selecting an interesting
term in the cloud and viewing the corresponding documents.

In this work, our goal is to exploit these benefits of tag clouds to facilitate
users in exploring and obtaining an overview of Web content made available in
a streaming fashion, such as news-related information provided by online media
and the blogosphere. Once the candidate terms are available, either explicitly
provided or automatically extracted, the construction of the cloud comprises just
a single task: computing the frequencies of these terms, and selecting the most
frequent ones to visualize in the cloud. This computation is straightforward and
can be done on the fly in most cases, when dealing with a relatively small set
of documents. However, this is not scalable to very large collections of items, as
in our scenario, which should scale, for example, to millions of news and blog
posts, and over potentially very long time periods. Moreover, we do not want to
restrict the interests of the users to pre-defined time periods, e.g., for the current
day, as typically happens in existing applications. Instead, the users should be
able to request the generation of a term cloud for arbitrarily small or large, as
well as for arbitrarily more or less recent, time intervals, such as for the last
hour(s), day(s) or week(s), for the last year, for the summer of 2008, etc.

To deal with these challenges, we cast the above problem as one of finding
frequent items in incoming streams of data. Specifically, we assume a stream
consisting of the terms extracted from the newly published posts that are made

1 http://www.flickr.com/photos/tags/

http://www.flickr.com/photos/tags/

Efficient Term Cloud Generation for Streaming Web Content 387

available to the system. Our goal is to maintain space-efficient data structures
that allow the computation of the top-k frequent terms in the stream, for arbi-
trary time intervals and as accurately as possible. This formulation allows us to
exploit the advantages of efficient algorithms that have been proposed for mining
frequent items in streaming data. In particular, our main contributions are as
follows.

– We exploit term clouds to facilitate the navigation and exploration of stream-
ing Web content, such as incoming news-related posts from online media and
the blogosphere.

– We present an efficient method for generating term clouds dynamically for
arbitrary time periods, based on techniques for mining frequent items in data
streams.

– We validate experimentally the efficiency and the effectiveness of our method,
using a large-scale real-world collection of blog posts.

The remainder of the paper is organized as follows. The next section discusses
related work. Section 3 presents our approach in detail. In Section 4, we present
our experimental evaluation. Section 5 concludes the paper.

2 Related Work

As discussed above, our purpose is to help users to get an overview and to
explore and navigate large streams of news-related information, by identifying
and visualizing in the form of a cloud the most popular terms appearing in
the posts. Such clouds have become a very popular visualization method, es-
pecially in Web 2.0 applications, for presenting frequent tags or keywords for
exploration and navigation purposes. Blogscope [2], for instance, presents in its
front page a cloud of keywords extracted from the posts of the current day.
Similarly, Grapevine [1], which builds on Blogscope, displays also a cloud of the
main entities related to a selected topic or story, using the font size to denote
the popularity of the entity, and the font color to denote its relatedness to the
topic or story. In a different domain, PubCloud [14] is an application that al-
lows querying the PubMed database of biomedical literature, and employs term
clouds as a visualization technique to summarize search results. In particular,
PubCloud extracts the words from the abstracts retrieved for the given query,
performs stopword filtering and stemming, and visualizes the resulting terms as
a cloud. It uses different font sizes to denote term frequency and different font
colors to denote the recency of the corresponding publications in which the term
appears. Through a user study, the authors show that this summarization via the
term cloud is more helpful in providing descriptive information about the query
results compared to the standard ranked list view. TopicRank [4] generates a
term cloud from documents returned as a result to a query, where the position-
ing of the terms in the cloud represents their semantic closeness. Page History
Explorer [9] is a system that uses term clouds to visually explore and summarize
the contents of a Web page over time. Data clouds are proposed in [13] for com-
bining the advantages of keyword search over structured data with those of tag

388 O. Papapetrou et al.

clouds for summarization and navigation. Complex objects are retrieved from
a database as responses to a keyword query; terms found in these objects are
ranked and visualized as a cloud. Other tools also exist, such as ManyEyes2 or
Wordle3, for generating word clouds from user provided text.

In all these applications, the term cloud is generated from a corpus that has a
relatively limited size, e.g., blog posts of a particular day or story, query results,
or a document given by the user. Hence, efficiently computing the most frequent
terms for visualization in these scenarios does not arise as a challenging problem
per se, and, naturally, it does not constitute the focus of these works. Instead,
in our work, frequent terms need to be computed on demand from very long
streams of text (e.g., news articles and blog posts spanning several months), and
therefore efficiency of the computation becomes a crucial issue.

To meet these requirements, we formulate the problem as finding frequent
items in streaming data. Several space-efficient algorithms have been proposed
that, given a stream of items, identify the items whose frequency exceeds a given
threshold or estimate the frequency of items on demand. A survey and compar-
ison of such algorithms can be found in [6,16]. In our case, we are interested in
finding the top-k frequent items. Hence, these algorithms are not directly appli-
cable, since there is no given frequency threshold nor is it efficient to maintain a
set of all possible items and then calculate their frequencies on demand to select
the top-k ones. The problem of finding the top-k frequent items in a stream is ad-
dressed in [21]. The authors propose two algorithms, one based on the Chernoff
bound, and one that builds on the Lossy Counting algorithm from [17]. How-
ever, these solutions consider either the entire data stream or a sliding window
that captures only the most recent items. Instead, we want to allow the users to
construct the term clouds on arbitrary time intervals of the stream. The TiTi-
Count+ algorithm has been proposed in [20] for finding frequent items in ad hoc
windows. This algorithm, though, finds the items with frequency above a given
threshold and not the top-k frequent items. Thus, the method we present in this
paper builds on the ideas and advantages of the solutions presented in [20,21] in
order to meet the requirements of our case.

3 Term Clouds for Streaming Text

In this section, we present our approach for constructing term clouds from
streaming text. A term cloud is composed of the top-k frequent terms in the
data collection, which in our case is a substream of text covering a specified
time interval, defined by the query. First, we describe the main components of
the system and we formally define the problem. Then, in Section 3.2, we describe
the data structures used to support the efficient computation of the term cloud.
Using these data structures, we describe in Section 3.3 how the term cloud for
a desired time interval is generated dynamically upon request.

2 http://services.alphaworks.ibm.com
3 http://www.wordle.net

http://services.alphaworks.ibm.com
http://www.wordle.net

Efficient Term Cloud Generation for Streaming Web Content 389

News Articles Blog Posts

documentsTermSelection

StreamManager

SourceMonitoring

...< t0, t1, t2, ... >

top-k terms
time interval

QueryManager

Fig. 1. System overview

3.1 System Overview

The overall system architecture is depicted in Figure 1. The SourceMonitoring
component monitors online sources for new posts (e.g., online news agencies
and blogs) and updates the system when new information is published. These
incoming posts are provided as input to the TermSelection component, which is
responsible for extracting a set of terms from each post. These are the candidate
terms from which the term clouds are generated. These terms consist the input
to the StreamManager component, which maintains a set of data structures
for efficiently generating term clouds. Finally, the QueryManager component is
responsible for receiving and evaluating user queries for term clouds, using the
data structures provided by the StreamManager.

Each component poses a set of challenges. For example, regarding the Source-
Monitoring component, the main issues that arise are how to select or dynam-
ically discover sources, and how to monitor and extract the useful text from
sources that do not provide feeds. A main challenge for the TermSelection com-
ponent is how to tokenize the incoming text and to select potentially useful and
meaningful terms. Solutions for this may vary from simply filtering out some
terms using a stopword list to applying more sophisticated NLP techniques for
extracting keywords and identifying named entities. In this paper, we focus on
the StreamManager and QueryManager components, which we describe in detail
in the following sections. This modular architecture for the processing pipeline
allows us to easily plug in and try different solutions for the other components.

3.2 Data Structures

We now describe the data structures maintained by StreamManager for support-
ing the efficient computation of term clouds.

As described above, the TermSelection component extracts a set of candidate
terms from each newly published post that is detected by the SourceMonitoring
component, and provides the resulting terms as an input to the StreamManager
component. Hence, the input of StreamManager is a stream of terms T = <
t0, t1, t2, . . . >. For each term ti, we also maintain a pointer to the document
from which it was extracted. As will be described later, only a subset of the
incoming terms are maintained by the system. Accordingly, only the pointers
to the documents containing these terms are finally stored. Maintaining these
pointers is required to enable the navigation functionality in the term cloud.
Also note that the actual contents of the posts are not stored in main memory;

390 O. Papapetrou et al.

they are fetched (from the Web or from a local cache in secondary storage) only
if the user requests them by navigating in the term cloud. The order in which
the terms are appended to the stream is according to the publishing time of the
corresponding posts. This implies that the SourceMonitoring component fetches
the posts in batches, and sorts them by their publishing time, before pushing
them further down the processing pipeline. Posts with the same publishing time
are ordered arbitrarily, while terms extracted from the same post are ordered
according to their appearance in the post. Hence, the first (last) term in the
stream is the first (last) term of the least (most) recent post that has been
processed by the system.

Efficiently computing the top-k frequent terms in the stream involves two
main issues: (a) a method to estimate the frequency of a given term, and (b)
a method to distinguish which terms have high probability to be in the top-k
list, so that only these terms are maintained by the system to reduce memory
requirements. In the following, we describe how these issues are addressed.

Instead of storing the whole stream, we maintain a compact summary of
the observed terms and their frequencies (i.e., number of occurrences) using an
hCount structure [10], as briefly described in the following. hCount is composed
of a set of counters, which allow us to estimate the frequency of a term with high
accuracy. Specifically, this structure is a 2-dimensional array of counters com-
prising h rows and m columns. Each row is associated with a hashing function,
which maps a given term to an integer in the range [0, m − 1]. When the next
term t in the stream arrives, its hashing values for all the h hashing functions are
computed. Then, for each row i, the counter of the column hi(t) is incremented
by 1. The frequency of a term t can then be estimated as follows: the term is
hashed as before, to identify the corresponding counters, and the minimum value
of these counters is used as an estimation of the term’s frequency. The benefit
is that this operation now requires only h × m counters instead of |Td| which
would be required for storing the exact frequencies of all the distinct terms Td.
hCount also provides probabilistic guarantees for the frequency estimation error
of a term t in a given stream T . According to [10], if e

ε × ln
(
− |Td|

ln ρ

)
counters are

stored, the frequency estimation error for each term is not more than ε×|T | with
probability ρ. In our experiments in Section 4, a sufficiently accurate estimation
of the term frequencies was achieved using only a very small number of counters,
i.e., (h × m) << |Td|, and thereby with negligible memory requirements.

The problem that arises next is how to determine for which terms to probe
the hCount structure for their frequencies, in order to get the top-k frequent
terms. A straightforward solution, albeit prohibitively expensive, is to maintain
a list of all the distinct terms, and look them up in the hCount structure to get
their estimated frequencies. To significantly reduce the memory requirements and
execution time, we need to prune this list, maintaining instead only a subset
of terms, such that all the top-k frequent terms are contained in this subset
with high probability. To determine this subset, we employ a method based on
Chernoff bounds, as proposed in [21]. The method considers the terms in the
stream in batches of fixed length l. For each batch B, the exact frequencies of all

Efficient Term Cloud Generation for Streaming Web Content 391

the contained terms are calculated, and the frequency of the k-th most frequent
term in the batch, denoted by freqk(B), is found. The support of this term in
terms of B is computed as sk(B) = freqk(B)/l. Then, using Chernoff bounds,
we filter out all terms in the batch that do not belong in the top-k terms of
the stream with probability higher than a predefined value δ. In particular, only
terms that have observed support:

s(B) ≥ sk(B) − 2

√
2 × sk(B) × ln(2/δ)

l
(1)

need to be maintained in a term pool P , with P ⊆ Td, and it is sufficient to use
only these terms for probing the hCount structure. The final size of P is typically
substantially smaller than the total number of distinct terms |Td| observed from
the beginning of the stream. In our experiments presented in Section 4, we were
able to obtain highly accurate results by maintaining no more than 2× k terms
in P (which was at least 3 orders of magnitude less than the total number of
distinct terms occurring in the stream). At query time, to extract the top-k
terms from Td, the system estimates the frequency of each term t ∈ Td from
the hCount structure, it sorts all the terms on their estimated frequency, and it
returns the top-k ones to the user.

The method described so far allows us to efficiently compute the top-k fre-
quent terms for the whole stream. However, different users may be interested in
different time periods. Therefore, we want to generate term clouds for arbitrary
time intervals specified by the query. A query is a tuple Q =< i, j >, defining
a substream comprising all the terms between the positions i and j (i < j).

To allow users to view term clouds for arbitrary time intervals, we divide the
stream into time windows, as proposed in the TiTiCount+ algorithm [20]. Each
window covers a different time interval, i.e., a different substream, as illustrated
in Figure 2. Specifically, the first window, i.e. w0, has size b, which means that it
contains summary information for the b most recently received terms, where b is a
predefined system parameter. Each subsequent window wi, i > 0, has size 2i−1b.
This particular organization of the windows is motivated by the assumption
that users will more often be interested in more recent time periods; hence, the
more recent parts of the stream are covered by windows of higher resolution
(i.e., contain less terms) than the least recent ones. In the presence of these
windows, the method described above is adapted by maintaining a separate
hCount structure and a term pool of potentially frequent terms for each window,
instead of the whole stream. The same number of counters and pool sizes are
used for all the windows; hence, all windows have the same memory requirements.
Consequently, the maintained summary in windows that cover less recent parts
of the stream, and therefore have larger size, has typically lower accuracy.

Initially, the hCount structures in all the windows are empty. Each new in-
coming term is received by the first window. When a batch of b terms has been
received, this window becomes full. Then, the contents of this window are shifted
to the second one, so that new terms can be received. When the second win-
dow reaches its maximum size, its contents are shifted to the third window, and
this continues recursively. If the window that receives the new content already

392 O. Papapetrou et al.

1
2

h

1 2 3 m

... ...

window 0

hCount structures

Ti
Ti
C
ou
nt
+

Candidate
term pools: term 2

...

...

window 1 window 2 window i

term 3 ...term 2term 1

b b 2b 2i-1b
...

...

Fig. 2. An illustration of the StreamManager

contains some information, i.e., the counters in its hCount structure are not 0,
the old contents need to be merged with the new one. Merging two subsequent
windows involves: (a) merging the two hCount structures, as proposed in [20],
and, (b) computing the new set of candidate top-k terms for the result of the
merge, which is to replace the contents of the least recent of the two windows.
Merging of the hCount structures is straight-forward; each counter of the result-
ing merged window is set to the sum of the corresponding hCount counters from
the initial windows. Computing the new set of candidate top-k terms proceeds
as follows. Let Pi and Pi+1 denote, respectively, the corresponding pools of can-
didate terms of the original windows wi and wi+1. The new candidate terms
P ′

i+1 are initially set to Pi ∪ Pi+1. Then, the size of P ′
i+1 is further reduced by

re-applying the Chernoff bound to the merged pool, with probability again δ,
but now using the new window size as the length of the batch, i.e., 2i × b. As
before, the estimation for the Chernoff bound requires computing the support
of the k most frequent term in the pool P ′

i+1. For this, the hCount structure
of the new window is used to estimate the frequencies of all terms in Pi ∪ Pi+1
with high accuracy. Since the tightness of the Chernoff bound increases with
the length of the batch (see Equation 1), the final number of terms in P ′

i+1 is
typically substantially smaller than the number of terms in Pi ∪ Pi+1.

3.3 Query Execution

The QueryManager component is responsible for receiving the user query and
evaluating it using the data structures described above. Mainly, this involves
the following operations: (a) identifying the windows corresponding to the time
interval specified in the query; (b) collecting the candidate top-k terms from each
window; and (c) estimating their frequencies using the corresponding hCount
structures, and identifying the top-k terms.

The first operation is rather straightforward. Given a query Q =< i, j >,
the windows that are involved in the query execution are those covering a time
interval that overlaps with the interval requested in the query. Once these rele-
vant windows WQ have been identified, the QueryManager constructs the set of
the candidate top-k terms for Q, denoted by PQ. This set is the union of all the
candidate top-k terms in the relevant windows, i.e., PQ =

⋃
wi∈WQ

Pi. For each

Efficient Term Cloud Generation for Streaming Web Content 393

of the terms in PQ, the term frequency is estimated using the respective hCount
structures. The terms are sorted descending on their estimated frequencies, and
the top-k terms are returned to the user.

Note that, the starting and ending position specified in the query will typically
not coincide with window bounds. Hence, some windows will be involved only
partially in query execution. For example, consider a window of size 	 that has
an overlap of size 	′ with the query. Assume also a term t in the pool of this
window, with estimated frequency ft provided by the hCount structure of this
window. Then, this estimation is adjusted as f ′

t = (′/) × ft. Even though this
relies on a uniform distribution of the occurrences of the term in the duration of
this window, our results show that the introduced error from non-uniform term
distributions, i.e., bursty terms, is usually small.

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate our approach, we have implemented a prototype as described in
Section 3. Recall that in this paper we focus on the StreamManager and Query-
Manager components (see Figure 1); hence, for the TermSelection component we
have only implemented standard stemming and stopword filtering, and we have
omitted the SourceMonitoring component, using instead the publicly available
ICWSM 2009 dataset4, which is a crawled collection of blogs. In particular, this
is a large, real-world dataset comprising 44 million blog posts from the period
between August 1st and October 1st, 2008. The posts are ordered by posting
time, enabling us to simulate them as a stream. They are also separated by lan-
guage. In our experiments, we have used only the English posts, which yields
a number of 18.5 million posts. After the stemming and stopword filtering, the
total number of distinct terms in the stream was 5 million, while the total num-
ber of terms was 1.68 billion. The statistics of this data collection used in our
experiments are summarized in Table 1.

In the conducted experiments, we measure the performance of our system with
respect to memory usage and for different query types. The examined parameters
and their value ranges are summarized in Table 2. In our implementation, we set
the size of the first window to be 1, 000, 000 terms, which corresponds roughly
to half an hour. Moreover, we set the error parameter for the Chernoff-based
filtering to ε = 0.0001, which resulted to maintaining approximately 2× k terms
per window. The results of our evaluation are presented below.

4.2 Accuracy Versus Memory

First, we investigate how the amount of memory that is available to the sys-
tem affects the quality of the results. Recall from Section 3 that the amount
of memory used is related to: (a) the number of counters used by the hCount

4 http://www.icwsm.org/2009/data/

http://www.icwsm.org/2009/data/

394 O. Papapetrou et al.

Table 1. Statistics for the ICWSM 2009 Blog dataset (English posts)

Days 47
Blog posts 18, 520, 668
Terms 1, 680, 248, 084
Distinct terms 5, 028, 825
Average blog posts per day 394, 056
Average terms per post 90.72

Table 2. Parameters for the experiment. The default values are emphasized.

Parameter Values

Counters per window 10,000 (0.45Mb), 25,000 (1.14Mb), 40,000 (1.83Mb),
and total memory required 70,000 (3.20Mb), 100,000 (4.57Mb), 130,000 (5.95Mb)
Top-k terms to retrieve 25, 50, 75, 100, 125
Query length [1, 1.68 × 109], 107

structure in each window (i.e., the accuracy when estimating the frequency of a
term), and (b) the number of candidate terms maintained in each window (i.e.,
the probability to falsely prune a very frequent term). To measure the quality
of our results, we compare the list L of top-k frequent terms computed by our
method to the exact list L0 of top-k terms computed by the brute-force method,
i.e., by counting the exact occurrences of all the terms in the query interval.
In particular, we evaluate accuracy using two standard measures, recall5 and
Spearman’s footrule distance [12], which are briefly explained in the following.

The recall measure expresses the percentage of the actual top-k frequent terms
that have been correctly retrieved by our system, i.e., the overlap between the
two lists L and L0:

recall(L,L0) =
|L ∩ L0|

k
(2)

However, simply identifying the actual top-k frequent terms is not sufficient.
Since the contents of a cloud are typically visualized with different emphasis
based on their frequency, identifying also the correct ordering of the terms is
important. Hence, the ordering of the terms in L should be as close as possible to
that in L0. To measure this, we use Spearman’s footrule distance [12], a popular
distance measure for comparing rankings. In particular, we use the extended
version proposed by Fagin et al. [7], henceforth referred to as Spearman’s distance
(F ∗), which also handles the case where the overlap of the two compared rankings
is not complete. This measure is computed as follows:

F ∗(L,L0) =
∑
i∈D

|pos(i,L) − pos(i,L0)|/maxF ∗ (3)

where D denotes the set of terms in L ∪ L0, and function pos(i,L) gives the
position of i in the list L if i ∈ L, or (|L| + 1) otherwise. maxF ∗ denotes the
5 Since we are retrieving a fixed number of terms k, recall and precision have always

the same value.

Efficient Term Cloud Generation for Streaming Web Content 395

L0 L1 L2 L3 L4
term1 term1 term1 term4 term5
term2 term2 term2 term3 term6
term3 term3 term4 term2 term7
term4 term4 term3 term1 term8

Recall=1 Recall=1 Recall=1 Recall=0
Spearman=0 Spearman=2/20 Spearman=8/20 Spearman=20/20

Fig. 3. Comparing various rankings, L1, L2, L3, L4, to a correct ranking L0

Table 3. Sample queries (the most recent window is 0 and the oldest is 11)

Query Start time End time Length Involved windows

Q1 1 10000000 10000000 11
Q2 1600000001 1610000001 10000000 6, 7
Q3 1672000004 1680248081 8248078 0 - 4

maximum possible value that F ∗ can take, which equals to (k + 1) × k. Some
examples are illustrated in Figure 3.

Figure 4 displays the Spearman’s distance and the recall for the three sample
queries depicted in Table 3, with respect to the system’s memory. We see that
both quality measures increase by increasing the available system memory. This
happens because with more memory available, TiTiCount+ is automatically
configured with more counters per window, thereby substantially reducing the
probability of collisions in the hCount structure and increasing the accuracy.
The memory increase is beneficial especially for the queries that involve many
windows (e.g., Q3). A near-maximum accuracy of the system is achieved by using
only 3Mb memory, even for the most difficult queries that involve small parts of
very old windows (e.g., Q1). Increasing the available memory beyond 3 Mb still
contributes to the accuracy, though at a lower rate.

4.3 Accuracy Versus Query Characteristics

We now examine how the accuracy of the system varies with different types
of queries, and in particular with respect to (a) the query starting point, (b)
the query length, and (c) the number k of most frequent terms to be retrieved.
Throughout this section, we present the experimental results for three different
memory configurations.

For the first set of experiments, we fix the query length to 10 million terms,
and we vary the query starting point. Figure 5 presents the values for Spearman’s
distance and recall for the experiments with k = 50. As expected, the most recent
queries are more accurate, since they are evaluated against windows of higher
resolution. Nevertheless, even the queries that involve the least recent windows
are still accurate, giving a minimum recall of 0.83 and a maximum Spearman’s
distance of 0.15. As shown by the previous experiments, we can further increase
the accuracy for all queries by increasing the available system memory.

We also notice that both quality measures have some small peaks, e.g., at the
queries starting at ca. 500 million terms. These peaks are due to the existence or

396 O. Papapetrou et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1 2 3 4 5 6

S
pe

ar
m

an
 d

is
ta

nc
e

Memory (Mbytes)

Q1 Q2 Q3

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6

R
ec

al
l

Memory (Mbytes)

Q1 Q2 Q3

Fig. 4. Varying the allowed system memory: (a) Spearman’s distance (b) Recall

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 200 400 600 800 1000 1200 1400 1600 1800

S
pe

ar
m

an
 d

is
ta

nc
e

Query starting point (Million terms)

10K counters(0.457Mb)
25K counters(1.14 Mb)
40K counters(1.83Mb)

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

R
ec

al
l

Query starting point (Million terms)

10K counters(0.457Mb)
25K counters(1.14 Mb)
40K counters(1.83Mb)

Fig. 5. Varying the query starting point: (a) Spearman’s distance (b) Recall

absence of bursty terms in the particular query range: As explained in Section 3,
when a query does not fully overlap with a window but involves only a part
of it, then the computation of the term frequencies for the overlapping part
are computed by multiplying the frequency given by hCount with the ratio of
the overlap with the window length. This assumes a uniform distribution of
the occurrences of the term in the duration of this window; therefore, if bursty
terms are included in this overlap period, then a small error is introduced. In
future work, we plan to deal with this issue by identifying these bursty terms
and handling them differently, thereby providing even more accurate results.

We also conducted experiments varying the length of the query. For this, we
fix the ending point of the query to the most recent term read from the stream,
and we increase the query length with exponential steps. Figure 6 presents the
two quality measures related to these experiments, for three example memory
configurations. We see that the query length has a small effect on the system’s
accuracy. In particular, the accuracy is higher for the queries that involve the
most recent windows, since these have higher resolution. Nevertheless, also the
queries involving older windows are still answered with high accuracy.

Finally, we performed experiments varying the desired number of k most fre-
quent terms to retrieve, keeping the rest of the system parameters fixed. Figure 7
presents the results for the three queries described in Table 3, for different values

Efficient Term Cloud Generation for Streaming Web Content 397

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000 1200 1400 1600 1800

S
pe

ar
m

an
 d

is
ta

nc
e

Query length (Million terms)

10K counters(0.457Mb)
25K counters(1.14 Mb)
40K counters(1.83Mb)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

R
ec

al
l

Query length (Million terms)

10K counters(0.457Mb)
25K counters(1.14 Mb)
40K counters(1.83Mb)

Fig. 6. Varying the query length: (a) Spearman’s distance (b) Recall

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 25 50 75 100 125

S
pe

ar
m

an
 d

is
ta

nc
e

Top-k

Q1 Q2 Q3

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 25 50 75 100 125

R
ec

al
l

Top-k

Q1 Q2 Q3

Fig. 7. Varying the desired number of top-k terms: (a) Spearman’s distance (b) Recall

of k. These results were obtained using 1.83 Mb memory (40000 counters per
window). We see that the value of k has no noticeable effect on the system’s
accuracy. This is expected, because as explained in Section 3, the system adapts
to the value of top-k.

4.4 Execution Time Versus Query Characteristics

We also investigated how query execution time changes with system memory
and with query characteristics. Figure 8(a) plots the execution time per query
while varying the query length, for three example memory configurations. The
results are averaged over 100 query executions, on a single 2.7 GHz processor.
We see that query execution time scales linearly with query length. This is
expected, since the query length determines the number of the involved windows,
thereby also the number of number of hCount probes that need to be executed.
Nevertheless, even for the query involving the whole stream range, the required
execution time is negligible, below 200 msec. The execution time is also slightly
affected by the system configuration, i.e., the number of counters, but this effect
is also negligible.

Figure 8(b) plots the query execution time in correlation to query length, for
five values of k. The execution time scales sublinearly to the value of k. This
happens because with a higher k, the number of candidate terms that need to

398 O. Papapetrou et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(m

se
c)

Query length (Million terms)

10K counters(0.457Mb)
25K counters(1.14 Mb)
40K counters(1.83Mb)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(m

se
c)

Query length (Million terms)

k=25
k=100

k=50
k=125

k=75

Fig. 8. Execution time: (a) varying the query length and the setup configuration, and
(b) varying the query length and the number of top-k terms

be probed in the windows increases slightly, requiring more time. Nevertheless,
all queries are executed at less than 200 msec, even for k = 125.

5 Conclusions

We have presented a system for generating term clouds from streaming text.
The proposed method can be used to answer queries involving arbitrary time
intervals, and it is very efficient with respect both to execution time and mem-
ory requirements. Our approach works by summarizing the term frequencies in
compact in-memory structures, which are used to efficiently detect and main-
tain the top-k frequent terms with high accuracy. We have also conducted a
large-scale experimental evaluation of the approach, using a real-world dataset
of blog posts. The experimental results show that the proposed system offers
high accuracy for identifying and correctly ordering the top-k terms in arbitrary
time intervals, measured both with recall and Spearman’s distance. Owing to the
small memory footprint and the small query execution time, the system can be
used for summarizing huge streams, and for efficiently answering top-k queries.

Our current and future work focuses mainly on two directions. First, we are
working on increasing the resolution of the windows with respect to terms with
uneven distribution, i.e., bursty terms. As shown in our experiments, when such
terms occur in the query range, they introduce a small error in the accuracy
of the results. This error can be avoided by identifying and handling such un-
even term distributions differently. Furthermore, we will also focus on the other
two components, the TermSelection and the SourceMonitoring component, to
address the additional challenges mentioned in Section 3.1.

Acknowledgments

This work was partially supported by the FP7 EU Projects Glocal (contract
no. 248984) and Sync3 (contract no. 231854).

Efficient Term Cloud Generation for Streaming Web Content 399

References

1. Angel, A., Koudas, N., Sarkas, N., Srivastava, D.: What’s on the grapevine? In:
SIGMOD, pp. 1047–1050 (2009)

2. Bansal, N., Koudas, N.: Blogscope: spatio-temporal analysis of the blogosphere.
In: WWW, pp. 1269–1270 (2007)

3. Bansal, N., Koudas, N.: Searching the blogosphere. In: WebDB (2007)
4. Berlocher, I., Lee, K.-I., Kim, K.: TopicRank: bringing insight to users. In: SIGIR,

pp. 703–704 (2008)
5. Chi, Y., Tseng, B.L., Tatemura, J.: Eigen-trend: trend analysis in the blogosphere

based on singular value decompositions. In: CIKM, pp. 68–77 (2006)
6. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. In:

PVLDB, pp. 1530–1541 (2008)
7. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA, pp. 28–36

(2003)
8. He, B., Macdonald, C., He, J., Ounis, I.: An effective statistical approach to blog

post opinion retrieval. In: CIKM, pp. 1063–1072 (2008)
9. Jatowt, A., Kawai, Y., Tanaka, K.: Visualizing historical content of web pages. In:

WWW, pp. 1221–1222 (2008)
10. Jin, C., Qian, W., Sha, C., Yu, J.X., Zhou, A.: Dynamically maintaining frequent

items over a data stream. In: CIKM, pp. 287–294 (2003)
11. Juffinger, A., Lex, E.: Crosslanguage blog mining and trend visualisation. In:

WWW, pp. 1149–1150 (2009)
12. Kendall, M., Gibbons, J.D.: Rank Correlation Methods. Edward Arnold, London

(1990)
13. Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Data clouds: summarizing keyword

search results over structured data. In: EDBT, pp. 391–402 (2009)
14. Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summa-

rizing web search results. In: WWW, pp. 1203–1204 (2007)
15. Leskovec, J., Backstrom, L., Kleinberg, J.M.: Meme-tracking and the dynamics of

the news cycle. In: KDD, pp. 497–506 (2009)
16. Manerikar, N., Palpanas, T.: Frequent items in streaming data: An experimental

evaluation of the state-of-the-art. Data Knowl. Eng. 68(4), 415–430 (2009)
17. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:

VLDB, pp. 346–357 (2002)
18. Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining

lexical knowledge with text classification. In: KDD, pp. 1275–1284 (2009)
19. Platakis, M., Kotsakos, D., Gunopulos, D.: Searching for events in the blogosphere.

In: WWW, pp. 1225–1226 (2009)
20. Tantono, F.I., Manerikar, N., Palpanas, T.: Efficiently discovering recent frequent

items in data streams. In: SSDBM, pp. 222–239 (2008)
21. Wong, R.C.-W., Fu, A.W.-C.: Mining top-k frequent itemsets from data streams.

Data Mining and Knowledge Discovery 13, 193–217
22. Zhang, W., Yu, C.T., Meng, W.: Opinion retrieval from blogs. In: CIKM,

pp. 831–840 (2007)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 400–414, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Experiences in Building a RESTful Mixed Reality Web
Service Platform

Petri Selonen, Petros Belimpasakis, and Yu You

Nokia Research Center, P.O. Box 1000, FI-33721 Tampere, Finland
{petri.selonen,petros.belimpasakis,yu.you}@nokia.com

Abstract. This paper reports the development of a RESTful Web service
platform at Nokia Research Center for building Mixed Reality services. The
platform serves geo-spatially oriented multimedia content, geo-data like street-
view panoramas, building outlines, 3D objects and point cloud models. It
further provides support for identity management and social networks, as well
as for aggregating content from third party content repositories. The
implemented system is evaluated on architecture qualities like support for
evolution and mobile clients. The paper outlines our approach for developing
RESTful Web services from requirements to an implemented service, and
presents the experiences and insights gained during the platform development,
including the benefits and challenges identified from adhering to the Resource
Oriented Architecture style.

Keywords: Web Services, REST, Mixed Reality, Web Engineering.

1 Introduction

Mixed Reality (MR) refers to the merging of real and virtual worlds to produce new
environments and visualizations where physical and digital objects co-exist and
interact in real time, linked to each other [8]. As a concept, it encompasses both
Augmented Reality (AR) and Augmented Virtuality (AV). As smart phones become
more potent through graphical co-processors, cameras and a rich set of sensors like
GPS, magnetometer and accelerometers, they turn out to be the perfect devices for
AR/MR applications: interactive in real time and registering content in 3D [2] [6].

MR related research has been active for many years at Nokia Research Center
(NRC). Most AR/MR applications developed at NRC (e.g. [5][9]) have focused on
studying user interface and interaction, and therefore been either stand alone clients or
clients linked to project specific service back-ends. The lack of having open
Application Programming Interfaces (APIs) have kept these applications isolated,
resulting in limited amount of content, prohibited sharing it with other similar
systems, and not providing support for third party mash-ups. Some AR/MR
prototypes have utilized content from Internet services like Flickr that have not been
built for AR/MR applications, and therefore lack proper support for rich media types
and geographical searching. In practice, each new AR/MR application has
implemented another backend to host their content.

 Experiences in Building a RESTful Mixed Reality Web Service Platform 401

This paper describes an effort to move from stand-alone service back-ends to a
common Mixed Reality Web services platform, referred to as MRS-WS. An essential
aim was to build a common backend for easily creating Mixed Reality services and
applications for both mobile clients and Web browsers. Taking care much of the
complexity at the backend infrastructure side, the creation of applications on top of
this service platform would be faster, simpler and open also to 3rd parties.

As we essentially serve content, we have chosen REST [4] as the architectural style
for the platform. Up to date, there does not exist a systematic method for proceeding
from requirements to an implemented RESTful API, so we briefly outline the
approach emerged during the development. In what follows, we present the platform
architecture, explore its architectural qualities and discuss some of the experiences
and insights gained during building the platform.

2 Requirements for the Service Platform

The MRS-WS platform is developed within the context of a larger NRC Mixed
Reality Solutions program building a multitude of MR solutions, each integrating
with the platform. At the time of writing, a first client solution has been deployed and
is currently being maintained, and a second one is under development. In addition to
the functional features required by the dedicated program clients, there are other more
generic requirements to the platform architecture, outlined next.

2.1 Overview to Functional Requirements

The first of the two clients allows the user to explore photos at the location of the
image spatially arranged with its original orientation and camera pose. Once a photo
is taken using a mobile phone, the photo is uploaded to a content repository with
metadata acquired from the GPS, digital compass (magnetometer) and accelerometers
of the device. The user and his friends can later add and edit comments, tags and
descriptions related to the photos. There are both a Web browser based client for
exploring the user’s content rendered on map and 3D space (Augmented Virtuality)
and a mobile client that can show the photo on location, overlaid on top of a view-
through camera image in situ (Augmented Reality). Screenshots of this solution,
called Nokia Image Space1, is shown in Fig. 1. To enable access to masses of pre-
existing content, the platform supports aggregation of content and social relationships
from 3rd party content repositories, starting with Flickr.

The second client fetches street-view panoramas, building outlines and points of
interest based on a location, and visualizes annotations and related comments
belonging to the user overlaid on top the panorama. The client enables the users to
annotate particular buildings and other landmarks through touch and share these
annotations with other users. The geo-data is post-processed from commercial Navteq
content using advanced computer vision algorithms for e.g. recognizing building
outlines from panoramic images.

1 http://betalabs.nokia.com/apps/nokia-image-space

402 P. Selonen, P. Belimpasakis, and Y. You

Fig. 1. Image Space Web and mobile AR clients

Generalizing from the above client requirements and general MR domain knowledge,
we can identify high-level functional requirements for the platform as support for

─ managing MR metadata—geographical location, orientation and accelerometer
data —for storing and visualizing content in 3D space;

─ storing content of different media types, such as photos, videos, audio and 3D
objects, as well as non-multimedia like point clouds and micro-blogging entries;

─ managing the typical social media extensions for every content item, including
comments, tags and ratings;

─ managing application specific metadata for content items, allowing clients with
specific needs to store pieces of information without modifications at the
platform side;

─ managing user identities, social connections and access control lists; and
─ creating, modifying, retrieving, searching and removing the above content.

In addition, there are requirements related to content hosted on external repositories:

─ aggregating content and social connections from, and synchronizing with, third
party repositories to provide a uniform API to all content available to the clients,
making the clients agnostic about the interfaces and existence of external
repositories; and

─ serving commercial geo-data and content post-processed from it, including 360-
degree street view panoramic images, POIs and building outlines.

The platform is supporting both aggregating content from other content providers and
exposing it in a uniform manner, and enabling other services to link our platform to
them. The clients are able to discover, browse, create, edit and publish geo-content
useful for MR applications.

2.2 Overview to Non-functional Requirements

In addition to the functional requirements collected above, we consider a few of the
most important non-functional requirements to the platform, identified as

─ usability of the platform to ensure that its users—end developers—find it easy
to use and to integrate with;

─ modifiability and extensibility of the platform to ensure that new requirements
and clients can be rapidly integrated;

 Experiences in Building a RESTful Mixed Reality Web Service Platform 403

─ support for mobile devices—the main devices through which augmented reality
is realized—translating to efficient bandwidth utilization and fine-grained
content control for the clients;

─ security and privacy to ensure user generated content is safely stored and
transferred; and

─ scalability and performance to make sure the system architecture will scale up to
be used in global scale with potentially millions of users.

While all of the above qualities are important, we place special emphasis in realizing
the three first ones. The main contribution expected from the platform is to provide an
easy-to-use API for developers to build MR applications and Web mash-ups. In the
case of mash-ups, external services should be able to link their unique content to the
MRS-WS platform to be seamlessly visualized in MR view by our platform clients.
As a simple example, consider a restaurant business “pushing” their menu offering to
our platform which would then be visible in AR view to a potential customer passing
by the restaurant and exploring the area via his mobile phone, as a “magic lens” to
reality. The key in the quest for killer applications is proper support for open
innovation.

3 Developing Resource Oriented Architectures

REST architecture style provides a set of constraints driving design decisions towards
such properties as interoperability, evolvability and scalability. To this end, RESTful
APIs should exhibit qualities like addressability, statelessness, connectedness and
adhering to a uniform interface. The MRS-WS platform serves what essentially is
content: the core value of the service is in storing, retrieving and managing
interlinked, MR enabled content through a unified interface. Therefore, REST and
Resource Oriented Architecture [10] were chosen as the architecture style for the
platform. We have also previously explored using REST with mobile clients, and the
lessons learned were taken into use in the platform building exercise.

However, so far there does not exist a commonly agreed, systematic and well-
defined way to proceed from a set of requirements to an implemented RESTful API.
The best known formulation of designing RESTful Web services has been presented
by Richardson and Ruby [10] which can be summarized as finding resources and their
relationships, selecting uniform operations for each resource, and defining data
formats for them. This formulation is too abstract to be followed as a method and
further, it does not facilitate communication between service architects and other
stakeholders. In our previous work [7] we have explored how to devise a process for
developing RESTful service APIs when the set of service requirements are not
content oriented but arbitrary functional features. We took the learnings of this work
and constructed a more lightweight and agile approach, suited for the Mixed Reality
program and its a priori content oriented domain. In a way, the result is something
resembling a lightweight architecture style for developing Resource Oriented
Architectures, in a way a ROA meta-architecture.

404 P. Selonen, P. Belimpasakis, and Y. You

3.1 Resource Model, Information Model and Implementation

In the heart of the approach is the concept of a resource model. A resource model,
adapted from Laitkorpi et al [7], organizes the elements of a domain model to
addressable entities that can then be mapped to elements of a RESTful API, service
implementation and database schema, while still being compact and understandable
by the domain experts. The resource model divides resources into items, which
represent individual resources having a state that can be created, retrieved, modified
and deleted, containers that can be used for retrieving collections of items and
creating them, and projections that are filtered views to containers. Resources can
have subresources and references to other resources.

A natural way to map the service requirements into a resource mode is to first
collect them to a domain model called the information model—expressed for
example as a UML class diagram—which is essentially a structural model
describing the domain concepts, their properties and relationships, and annotated
with information about required searching, filtering and other retrieval
functionality. The concepts of the information model are mapped to the resource
model as resources; depending on their relationship multiplicities, they become
either items or containers containing items. Composition relationships form
resource–subresource hierarchies while normal relationships become references and
collections of references between resources. Attributes are used to generate resource
representations with candidates for using standard MIME singled out when
possible. Each search or filtering feature defined by an annotation—e.g. UML
note—is represented by a projection container. There are obviously fine-grained
details in the mapping, but they are left out as they are not relevant for the high-
level architectural picture.

The concepts of a resource model, i.e. containers, items and projections, are then
mapped to implementation level concepts in service specifications (e.g. WADL),
database schema and source code. For example, containers can manifest themselves
as tables in relational databases, items as rows in a table, item representation as
columns, and subresources and references as links to other tables. Similarly,
containers and items can be mapped to HTTP resource handlers in the target REST
framework (say, Ruby on Rails, Django or Restlet).

3.2 MRS-WS Implementation Binding and Architecture

The concrete binding between the MRS-WS domain model, resource model and the
implementation is done by mapping resource model concepts above to the concepts of
the selected technology stack: Restlet, Hibernate, Java EE and MySQL. The overall
approach is illustrated in Fig. 2. The top-left corner shows a simple information model
fragment, mapped to a resource model shown at bottom-left corner and further to an
implementation shown on the right-hand side. Based on the information model
fragment, the resource model contains Annotations container, Annotation item and
Annotations-By-Category projection that are in turn mapped into implementation

 Experiences in Building a RESTful Mixed Reality Web Service Platform 405

model elements: AnnotationsResource, AnnotationResource, AnnotationsView,
AnnotationView, Annotation model and AnnotationDAO. The binding is further
explained in Table 1.

Implementation

Resource Model

Information
Model

Fig. 2. Overview of the ROA architecture

Fig. 3. shows the architectural layers of the platform. The design of the architecture
is to provide a uniformed REST API set for MR data plus mashed-up contents from
third party content providers available to the service clients. Each resource handler is
identified by a URI and represents the unique interface for one function and dataset.
The operation function delegates the request to concrete business logic code which
works closely in the persistence layer. After returning from the business logic code,
the operation function transforms the returned internal data to the corresponding data
format through the representation classes along the output pipe to the web tier and the
client eventually.

406 P. Selonen, P. Belimpasakis, and Y. You

Table 1. MRS-WS implementation binding

 API (Restlet) Representation
(XML/JSON)

Model
(Hibernate, Java EE)

Persistence
(MySQL)

Item Restlet resource
bound to the
URI. Supported
default
operations are
GET, PUT and
DELETE.

Representation
parsing/generation
based on the item
attributes.
Subresources
inlined per request
basis.

A native Java object
(POJO) generated for
each item with a
Hibernate Data Access
Object and binding to
database elements.

Items are rows in
respective database
table with columns
specified by item
attributes.
References map to
foreign keys.

Container Restlet resource
bound to the
URI. Supported
default
operations are
GET and POST.

Representation
parsing/generation
delegated to
Items.

Basic retrievals to
database, using item
mappings.

Containers are
database tables.

Projection Implemented on
top of respective
Containers.

Representation
generation
delegated to
Container.

Extended retrievals to
database, using item
mappings.

Stored procedures
for more advanced
database queries.
Tables implied by
Container.

Mixed Reality Web Service Platform (MRS-WS)

ReST API

Own Content
Repository

Ph
ot

os

External Content
Repositories

An
no

ta
tio

ns

Po
in

tc
lo

ud
s

C
om

m
en

ts

O
vi

Sh
ar

e

Identity
Providers

O
pe

nI
D

N
ok

ia
Ac

co
un

t

Social
Networks

Fl
ic

kr

N
ok

ia
C

on
ta

ct
s

Unique Navteq
Geo-Data

PO
Is

Bu
ild

in
gs

Pa
no

ra
m

as

Te
rra

in

R
oa

d
N

et
w

or
k

Fl
ic

kr

Secure API Authorization Frameworks

Mobile Clients Desktop Clients 3rd Party Services

Fig. 3. Overview of the MRS Platform Architecture

To federate and provide aggregated contents, the platform defines a generic
interface and a set of standard data models for general geo-referenced data. The
platform aggregates the contents returned from the interfaces and transform them into
the federated representations requested by the clients. The returned data is then
transformed and merged by the aggregator as same as the interface approach. The
advantage of this approach is to scale up the platform easily. Unlike the interface
approach, which the business logic must be implemented by each every connector and
integrated closely to the aggregator component inside the platform, the callback
approach enables the implementation hosting outside the platform, typically residing
on the third party controlled servers. This gives much flexibility and freedom to the
third parties and eases the platform maintenance.

 Experiences in Building a RESTful Mixed Reality Web Service Platform 407

4 Examples of MRS-WS API

Following the discussion above, we give some concrete examples of MRS-WS APIs,
starting with the Annotation API. MR annotations can be attached to a particular
location or a building, and they can comprise a title and a textual description, as well
as link to other content elements. Essentially an Annotation is a way of the users to
annotate physical entities with digital information and share those with other users.

Fig. 4. Annotation Information Model and Implied Resource Hierarchy

Fig. 4 shows an Annotation information model, related resources and generated

resource hierarchy. The default operations are as stated earlier: GET and POST for
containers, GET, PUT, POST and DELETE for items and GET for projections. A
sample representation subset for an annotation resource is given below, showing
attributes inherited from Content and Annotation classes. Location subresources and
Building reference are inlined to the representation, as shown in Fig. 5.

<annotation href=”...”>
 <id>4195042682</id>
 <updated>2009-12-18 04:01:13.0</updated>
 <published>2009-12-18 04:01:02.0</published>
 <title>I have an apartment for rent here!</title>
 <alert>true</alert>

/users/{user.nickname}/
 /content/annotations

/content/annotations/{annotation.id}

/content/comments
/content/comments/{comment.id}

/content/locations
/content/locations/{location.id}

/content/annotations?category=

 {annotation.category}

 /content/annotations?
 lon1={location.lon}&
 lat1={location.lat}&
 lon2={location.lon}&
 lat2={location.lat}

/content/annotations?
 lon={location.lon}&
 lat={location.lat}&

radius={Float}

/buildings
/buildings/{building.id}

408 P. Selonen, P. Belimpasakis, and Y. You

 ...
 <locations>
 <location href=”...”>
 <lat>61.44921</lat>
 <lon>23.86039</lon>
 ...
 <pitch></pitch>
 </location>
 </locations>
 <building href=”..”>...</building>
</annotation>

Fig. 5. Example of content type application/vnd.research.nokia.annotation

4.1 Other MRS-WS APIs

The photo, video, audio and point cloud data objects can be accessed and modified
via similar operations and representations. The API also offers access to other read-
only geo-content originating from Navteq, such as

─ building (/buildings) footprints and 3D models (Fig. 6. a & b);
─ terrain (/terrain) tiles of earth’s morphology (Fig. 6. c & d);
─ street-view 360 panorama (/panoramas) photos (Fig. 6. e); and
─ point-of-interest (/pois), with details about businesses and attractions.

To all those resources and containers, user-generated content and static geo-data, a
uniform set of operations can be applied. Examples include:

─ geo-searching for performing searches in a bounded box (e.g.
/photos/?lat1=41.95&lon1=-87.7&lat2=41.96&lon2=-87.6) or in proximity (e.g.
/photos /?lat=41.8&lon=-87.6&radius=1);

─ pagination [x-mrs-api: page(), pagesize()] for controlling the number of objects
fetched from a container per request by setting the page size and number;

─ verbosity [x-mrs-api: verbosity()] for controlling the representation subset, ie.e
selected attributes for the retrieved items; and

─ inlining [x-mrs-deco: inline()] for selecting which subresources and referenced
items are included per resources in the response to decide when to reduce the
number of requests to the server and when to reduce the amount of data
transferred.

Inlining is heavily used in MRS-WS for exposing advanced geo-data associations. For
example, we have pre-calculated from the raw Navteq data the specific buildings that
are visible in a given street view panorama, along with their associated POIs. A client
requesting a specific panorama image can also request building data (e.g. links to 3D
building models) to be inlined. This combined information can allow very advanced
applications, such as touching and highlighting buildings, in an augmented reality
view, for interacting with the real world (e.g. touch a building to find the businesses it
hosts). Finally, when it comes to user-generated content, the following operations can
be additionally applied:

 Experiences in Building a RESTful Mixed Reality Web Service Platform 409

Fig. 6. Visualization of different data offered by our platform a) 2D footprint of a building, b)
3D model of a building, c) Searching terrain tiles in a given radius, d) 3D model of a terrain
tile, e) Street-view 360 degree panorama, f) Point cloud of a church in Helsinki, created by
multiple user photos

─ Temporal searching. It is possible to limit the scope of the search within a
specific time window. In the search query the time window (since- until) needs
to be specified, in the form of UNIX timestamps. The matching is done against
an item's "Updated time" or "Taken time", or combination of both (e.g. /photos/
lat=41.8&lon=-87.6&radius=1&updated_since=1262325600)

a)

b)

c)

d)

e)

f) f)

410 P. Selonen, P. Belimpasakis, and Y. You

─ Mixed Reality enabled. Client can request results that explicitly include geo-
spatial metadata, having in addition to geo-location at least associated bearing
(yaw) metadata. This flag is set via the URI parameter mr_only=true.

5 Architectural Evaluation and Lessons Learned

Next, we revisit the non-functional requirements of the platform and review some of
its other architectural quality attributes.

5.1 Non-functional Requirements Revisited

Usability defined as the ease of use and training of the service developers who build
their clients against the platform. So far we have experience with several client teams
building their applications against the platform and the feedback has been positive.
We have not yet performed formal reviews of the usability, but we are currently
preparing to adopt a 12-step evaluation process from Nokia Services as a medium for
collecting feedback.

Modifiability interpreted as the ease with which a software system can
accommodate changes to its software. Modifiability, extensibility and evolvability
have proved to be the key architectural characteristics achieved through using our
architecture. Integrating new requirements from the program clients has been very
easy: the new requirements are integrated with the domain model, mapped to the
resource model concepts, and to database schema and implementation level concepts.
Based on our experiences, adding new concepts now takes around a few days. This is
tightly related to the Resource Oriented Architecture style: mapping of the new
concepts to the system is straightforward and supporting infrastructure for
implementing functional requirements pre-exists.

Security and privacy as the ability to resist unauthorized attempts at usage, and
ensuring privacy and security for user generated content. The platform supports a
variant of Amazon S3 and OAuth for authorizing each REST request in isolation,
instead of storing user credentials as cookies or with unprotected but obfuscated
URIs. Our system has been audited for security by an independent body.

Scalability and performance in terms of the response time, availability, utilization
and throughput behavior of the system. In the beginning of the program, we outlined
goals for the scalability and performance in terms of number of requests, number of
users, amount of data transferred, amount of content hosted and so forth. The main
goal is to have an API and platform architecture that has built-in support for
scalability and performance once the platform is productized and transferred to be
hosted at business unit infrastructure. After initial performance tests with hosting a
few million users and content elements, the system has so far been able to meet its
requirements. While we have reason to believe that proper REST API, resource
design and statelessness should be able to support scalability, for example through
resource sharding, most performance characteristics like e.g. availability and
utilization are not related to REST or Resource Oriented Architecture per se and are
thus outside the scope of this paper.

 Experiences in Building a RESTful Mixed Reality Web Service Platform 411

Support for mobile devices is not one of the more common architectural quality
attributes but is in the heart of the MRS-WS platform. By using the results of our
previous work with REST and mobile devices, we support advanced content control
for the clients through verbosity and inlining, and more effective bandwidth
utilization through JSON and on-demand compression. Basically the clients can
control the amount of data they want to receive and thus try to optimize the amount of
requests and the amount of data being transmitted. It should be noted that optimizing
for mobile clients includes a variety of topics, ranging from HTTP pipelining and
multipart messages to intelligent device-side caching. Such techniques are outside the
scope of this paper. We do claim, however, that the architecture we have chosen
provides substantial support for implementing efficient mobile clients, and this is
even more important in the domain of Mixed Reality services.

There are other system qualities, like conformance with standard Internet
technologies and Nokia Services business unit technology stack, and still others that
with a suitable interpretation are quite naturally supported by Resource Oriented
Architecture like interoperability, one of the key promises of REST, but they are
outside the scope of this paper. However, there is one additional quality that was not
originally considered but that proved to be harder to achieve than initially expected:
testability.

Testability interpreted as the ease with which platform can be tested. Testing
complex platforms is a priori a hard task. It became obvious quite early in the
development that as most resources share similar common functionality, changes to
one part in the implementation can typically have effects throughout the API, making
automated API level regression testing very desirable to ensure rapid refactoring.
However, this is not currently properly supported by existing tools and frameworks.
We have therefore built our own test framework for in-browser API level testing
using JavaScript and XHR. The tests can be run individually, or using JSUnit as a
way for running several test pages and reporting the results. The additional benefit is
that whenever a new version of the platform is deployed, either locally, at the
development server or at the alpha servers, the tests are deployed as well. Even
though our test framework takes care of e.g. user authentication and basic content
control through HTTP headers, in practice the browser environment still makes
writing test cases more laborious than would be good. Therefore we unfortunately
often fall back to using curl command line tool for doing initial tests.

5.2 Insights on Developing RESTful APIs and Resource Oriented Architecture

One of the main benefits of having ROA based architecture is that the RESTful API
exposes concepts that are very close to the domain model, thus making understanding
of the API in itself relatively easy. The uniform interface and uniformity of the
searching and filtering operations across the platform makes the learning curve for
different API subsets smooth. However, implementing ROA based services can be
difficult for software architects lacking previous experience. Therefore having a
lightweight process of building ROA services that is not tied to a particular
implementation technology would be very useful for a project to be successful. We

412 P. Selonen, P. Belimpasakis, and Y. You

also found out that while a REST API is in principle simple, programming against it
requires a change in the programmer mindset from arbitrary APIs to a uniform
interface with resource manipulations, which sometimes can be more challenging than
expected.

Interoperability and its serendipitous form, ad-hoc interoperability, are hard to
achieve without commonly agreed content types. One of the few ways of making
interoperable systems is to use Atom, but without MR specific features it reduces
the system into yet another content repository. Another topic for further research is
how to evaluate a RESTful API against principled design characteristics like
addressability, connectedness, statelessness and adherence to uniform interface.
Issues like proper resource granularity, supporting idempotency, having one URI
for one resource, and balancing between number of requests and amount of data are
not commonly laid out. There is a clear lack of REST patterns and idioms, although
the upcoming RESTful Web Services Cookbook [1] is a step towards the right
direction.

5.3 Linking to Multiple Service Providers and Support for Multiple Sign-Ins

Generally users have multiple accounts on different services coming with different
identity providers. Our service requires mashing up authorized external data from
different services on behalf of the users. Instead of storing raw user credentials, our
service saves the access tokens or opaque identifiers from external SPs to authenticate
the requests on his behalf. Users can revoke the rights at the SP side easily to
invalidate the access token, i.e. the authorized connection between our service and the
SP. Additional benefit for the users is the ability to sign in with to their favorite
identify provides without a need to create new passwords. The benefit of having
multiple sign-in is to minimize the risk of identity service breakdown. The downside
of the multiple sign-in is that our service has difficulties to maintain a least common
denominator of user profiles.

5.4 Legal and Terms-of-Service Issues for a Service Platform

Our initial design goal was to create a generic platform on top of which our first lead
service could be publically deployed. The subsequent services could later be deployed
on top of the very same platform instance, allowing the users to be already registered
and to potentially have pre-existing content, seamlessly accessible by the different
clients, as simply different views or ways to explore the same data. However, it turned
out that this approach, while very attractive engineering-wise, was legally considered
very problematic. The Terms of Service (ToS) and the related Privacy Policy have to
be very specific to the users on what they are registering for, and how the service is
using their content. Asking the users to register for a single service now and later on
automatically deploying more services, having their content automatically available,
is against the policies for simple and clear ToS. One solution to the problem would be
to explicitly ask the users to opt-in for the new services and get their permission to
link their existing content, before making it available to the new service, which would
also have its own ToS.

 Experiences in Building a RESTful Mixed Reality Web Service Platform 413

5.5 Related Work

While a relatively new topic, a number of books on the development of RESTful
Web services have come about during the last year or are in the pipeline after the
original [10] book came out. The upcoming RESTful Web Services cookbook [1]
outlines recipes on the different aspects of building REST Web services. However,
most of its recipes lean more towards identifying a design concern than giving a
solution or stating the different forces related to using it. There are also books on
how to implement RESTful Web services on particular frameworks like Jersey and
Apache Tomcat and .NET. As one example, [3] gives a good if short overview on
how to concretely implement RESTful Web services using Java and JAX-RS. The
resource modeling approach described in this paper is an effort to outline the
approach from REST and ROA point of view without any particular implementation
platform in mind—in fact, it was originally developed and applied with Ruby on
Rails.

6 Concluding Remarks

This paper described the development of a RESTful Web service platform for Mixed
Reality services. We outlined our approach for developing RESTful Web services
from requirements, summarized the platform architecture, evaluated some of its
quality attributes and described insights gained during the development. We also
presented some of the benefits identified from adhering to the Resource Oriented
Architecture style and RESTful Web services, including having a close mapping from
domain model to architecture in the case of content oriented systems, decoupling of
clients and services, improved modifiability of the platform, and ability to support
mobile clients.

We also encountered some challenges. While REST has become something of a
buzzword in developing Internet Web services, there is a surprisingly small amount of
real-life experience reports available concerning the development of services
conforming to the Resource Oriented Architecture. In particular, there is a lack of
modeling notations and methods for systematically developing RESTful services. The
team also had to develop its own testing tools as no suitable ones existed.

As future work, the team will continue developing the platform for future clients to
be released during spring 2010. From a Web services point of view, the team plans to
continue research on the RESTful Web services engineering while from a Mixed
Reality point of view, the focus will be on supporting more advanced contextuality,
providing related and relevant information through associative browsing, and
orchestrating content and metadata coming from different sources.

Acknowledgments. The authors wish to thank Arto Nikupaavola, Markku Laitkorpi,
the former NRC Service Software Platform and the NRC Mixed Reality Solutions
program for their valuable contribution.

414 P. Selonen, P. Belimpasakis, and Y. You

References

1. Allamaraju, S., Amudsen, M.: RESTful Web Services Cookbook. O’Reilly, Sebastopol
(2010)

2. Azuma, R.: A Survey of Augmented Reality. Presence: Teleoperators and Virtual
Environments 6(4), 355–385 (1997)

3. Burke, B.: RESTful Java with JAX-RS. O’Reilly, Sebastopol (2009)
4. Fielding, R.: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral Thesis, University of California, Irvine (2000)
5. Föckler, P., Zeidler, T., Brombach, B., Bruns, E., Bimber, O.: PhoneGuide: museum

guidance supported by on-device object recognition on mobile phones. In: 4th
international Conference on Mobile and Ubiquitous Multimedia MUM ’05, vol. 154, pp.
3–10. ACM, New York (2005)

6. Höllerer, T., Wither, J., DiVerdi, S.: Anywhere Augmentation: Towards Mobile
Augmented Reality in Unprepared Environments. In: Location Based Services and
TeleCartography. Lecture Notes in Geoinformation and Cartography. Springer, Heidelberg
(2007)

7. Laitkorpi, M., Selonen, P., Systä, T.: Towards a Model Driven Process for Designing
RESTful Web Services. In: International Conference on Web Services ICWS ’09. IEEE
Computer Society, Los Alamitos (2009)

8. Milgram, P., Kishino, F.: A Taxonomy of Mixed Reality Visual Displays. IEICE
Transactions on Information Systems E77-D (12), 1321–1329 (1994)

9. Reitmayr, G., Schmalstieg, D.: Location based applications for mobile augmented reality.
In: Biddle, R., Thomas, B. (eds.) Fourth Australasian User interface Conference on User
interfaces 2003 - Volume 18, Adelaide, Australia, vol. 18. ACM International Conference
Proceeding Series, vol. 16, pp. 65–73. Australian Computer Society, Darlinghurst (2003)

10. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)

WebRatio BPM: A Tool for Designing and
Deploying Business Processes on the Web

Marco Brambilla1, Stefano Butti2, and Piero Fraternali1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{marco.brambilla,piero.fraternali}@polimi.it
2 Web Models S.r.l., I-22100 Como - Italy

stefano.butti@webratio.com

Abstract. This paper presents WebRatio BPM, an Eclipse-based tool
that supports the design and deployment of business processes as Web
applications. The tool applies Model Driven Engineering techniques to
complex, multi-actor business processes, mixing tasks executed by hu-
mans and by machines, and produces a Web application running pro-
totype that implements the specified process. Business processes are
described through the standard BPMN notation, extended with infor-
mation on task assignment, escalation policies, activity semantics, and
typed dataflows, to enable a two-step generative approach: first the Pro-
cess Model is automatically transformed into a Web Application Model
in the WebML notation, which seamlessly expresses both human- and
machine-executable tasks; secondly, the Application Model is fed to an
automatic transformation capable of producing the running code. The
tool provides various features that increase the productivity and the
quality of the resulting application: one-click generation of a running
prototype of the process from the BPMN model; fine-grained refinement
of the resulting application; support of continuous evolution of the appli-
cation design after requirements changes (both at business process and
at application levels).

1 Introduction

Business process languages, such as BPMN (Business Process Management No-
tation) [13], have become the de facto standard for enterprise-wide application
specification, as they enable the implementation of complex, multi-party business
processes, possibly spanning several users, roles, and heterogeneous distributed
systems. Indeed, business process languages and execution environments ease
the definition and enactment of the business constraints, by orchestrating the
activities of the employees and the service executions.

This paper presents an approach and a supporting toolsuite to the specifi-
cation, design and implementation of complex, multi-party business processes,
based on a Model-Driven Engineering (MDE) methodology and on code gener-
ation techniques capable of producing dynamic Web applications from platform
independent models.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 415–429, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

416 M. Brambilla, S. Butti, and P. Fraternali

The proposed approach is a top down one: the (multi-actor, multi-site) busi-
ness process is initially designed in an abstract manner, using the standard
BPMN notation for schematizing the process actors, tasks, and business con-
straints. The resulting BPMN model is an abstract representation of the business
process and cannot be used directly for producing an executable application, be-
cause it lacks information on essential aspects of process enactment such as: task
assignment to humans or to Web Services, data flows among tasks, service invo-
cation and user interface logics. Therefore, the standard BPMN specification is
manually annotated with the missing information, to obtain a detailed process
model amenable to a two-step transformation:

– A first model-to-model transformation (Process to Application) translates
the detailed process model into: 1) a platform-independent model of the Web
user interface and of the Web Service orchestrations needed for enacting the
process, expressed in a Domain Specific Language called WebML [4]; 2) a
Process Metadata Model, representing the business constraints (e.g., BPMN
precedence constraints, gateways, etc).

– A second model-to-text transformation (Application to Code) maps the Ap-
plication Model and the Process Metadata Model into the running code of
the application. The resulting application is runtime-free and runs on any
standard Java Enterprise Edition platforms.

The original contributions of the paper are: (i) a two-step generative frame-
work comprising a first model transformation from a detailed Business Process
Model to an Application Model and a second transformation for producing the
executable code from the Application Model; and (ii) an extended version of
the WebRatio toolsuite [17], called WebRatio BPM, that fully implements the
proposed transformation steps. The tool is currently in beta version and will
be released in the second quarter of 2010. However, a major European banking
customer is already adopting WebRatio BPM for the development of a large,
multi-country and multi-user business process based portal. Therefore, the vali-
dation of the approach is already ongoing and several lessons learned have been
collected.

The advantages of having a two steps modeling process are multifold: (i) the
BP model (BPMN) and the web model (WebML) allows the designer to sep-
arate the different concerns in the design, keeping the process issues separate
from the hypertext and interface issues; (ii) the transformation of the BP model
to a Web-specific model allows fine-grained description of the interfaces, while
remaining at a modeling level; (iii) the Web modeling level allows seamless inte-
gration of resulting applications within non-BP-based application models (e.g.,
web portals, B2C e-commerce sites, and so on); (iv) having distinct models allows
different user roles (i.e., business analysts at the BP level and Web engineers at
the Web modeling level) to work together and independently at the same appli-
cation design. These advantages, together with the one-click deployment option,
make our proposal unique also considering the plethora of BPM tools existing
on the market.

WebRatio BPM: A Tool for Designing and Deploying Business Processes 417

Customer
Credit Score

G
ov

er
n

H
ou

si
ng

ag

en
cy

Pr
od

uc
t

pr
ov

id
er

Ba
nk

As

so
c.

Customer
Leasing
Request

Ba
nk

Customer
tax status

Product
Type?

[Car]

[House]

House Leasing
Quotation

(Credit Score > required) &&
(Tax Status == “Valid”)

Confirm
Quotation

[Yes]

[No]

Car Leasing
Quotation

Best
Quotation
Selection

Fig. 1. Business process model of the leasing running example

The paper is organized as follows: Section 2 discusses the background tech-
nologies and notations; Section 3 discusses the approach to application devel-
opment; Section 4 and Section 5 illustrate the extended process model and the
application model, respectively; Section 6 describes the implementation of the
WebRatio BPM tool; Section 7 discusses the related work; and Section 8 draws
the conclusions.

2 Background: BPMN, WebML, and WebRatio

This work builds upon existing methods and tools to cover the different design
phases.

BPMN [13] supports the specification of business processes, allowing one to
visually specify actors, tasks, and constraints involved. Precedence constraints
are specified by arrows, representing the control flow of the application, and
gateways, representing branching and merging points of execution paths. Paral-
lel executions, alternative branches, conditional executions, events, and message
exchanges can be specified. BPMN allows analysts to describe complex orches-
trations of activities, performed by both humans and machines. Figure 1 shows
an example of BPMN, describing a simplified leasing process for houses and cars.

WebML [4] is a Domain Specific Language for data-, service-, and process-
centric Web applications [3]. It allows specifying the conceptual model of Web
applications built on top of a data schema and composed of one or more hy-
pertexts used to publish or manipulate data. The data model can be specified
through standard E-R or UML Class diagrams. Upon the same data model,
different hypertext models (site views) can be defined (e.g., for different types
of users or devices). A site view is a graph of pages, consisting of connected
units, representing data publishing components. Units are related to each other
through links, representing navigational paths and carrying parameters. WebML

418 M. Brambilla, S. Butti, and P. Fraternali

User SiteView

House
[Leasing=TRUE]

House
[OID=CurrHouse]

CurrHouse:OID

House List House details

D Search Leasing Cars PageLeasing Houses Page

Car
[Model contains keyword]

Entry unit Scroller unit Cars multidata

Car
[OID in BlockCars]

keyword BlockCars:{OID}

Fig. 2. WebML hypertext model example

allows specifying also update operations on the underlying data (e.g., the cre-
ation, modification and deletion of instances of entities or relationships) or op-
erations performing arbitrary actions (e.g. sending an e-mail, invoking a remote
service [9], and so on). Figure 2 shows a simple site view containing two pages,
respectively showing the list of houses and a form for searching cars available
for leasing. Page Search Leasing Cars contains an entry unit for inputting the
car model to be searched, a scroller unit, extracting the set of cars meeting the
search condition and displaying a sequence of result blocks, and a multidata unit
displaying the cars pertaining to a block of search results.

WebML is supported by the WebRatio CASE tool [17], which allows the
visual specification of data models and site views and the automatic generation
of J2EE code. The tool consists of a set of Eclipse plug-ins and takes advantage
of all the features of this IDE framework. It also supports customized extensions
to the models and code generators, model checking, testing support, project
documentation, and requirements specifications. The main features of WebRatio
are the following: it provides an integrated MDE approach for the development of
Web applications and Web services, empowered by model transformations able
to produce the complete running code; it unifies all the design and development
activities through a common interface based on Eclipse, which includes the visual
editing of models, the definition of presentation aspects, and the extension of
the IDE with new business components and code generation rules; it includes
a unified workspace for projects and a version control and collaborative work
environment.

3 Development Process

The development process supported by WebRatio BPM is structured in five
main steps, represented in Figure 3 according to the SPEM notation [12].

Initially, business requirements are conceptualized in a coarse Business Pro-
cess Model by the business analyst. Figure 1 is an example of BPM that can be
obtained as a requirement specification of the leasing application. Subsequently,
the BPMN schema is refined by a BPMN designer, who annotates it with pa-
rameters on the activities and data flows.

The resulting refined Process Model is subject to a first model transformation,
which produces the WebML Application Model and Process Metadata Model.

WebRatio BPM: A Tool for Designing and Deploying Business Processes 419

Design
Business
Process

Business
Analyst

WebRatio
BPM

Transformer

Generate
Application

Model

Coarse BPMN model

Refine
Business
Process

BPMN
Designer

Refined BPMN model

Application Model

Application
Designer

Complete
Application

Model

WebRatio
Code

Generator

Generate
Running

Application

Running
application

2. One-click code
generation

1. Refined
application

BP Metadata

Fig. 3. Development process overview (SPEM notation)

The Application Model (discussed in Section 5.2) specifies the details of the
executable application according to the WebML notation, representing the hy-
pertext interface for human-directed activities. The Process Metadata Model
(discussed in Section 5.1) consists of relational data describing of the activities
of the process and of the associated constraints, useful for encapsulating the
process control logic. This transformation extends and refines the technique for
model-driven design of Web applications from business process specification ini-
tially proposed in [3]. Subsequently, the generated Application Model can be
either used as is by a one-click prototype generation transformation to get a
first flavour of the application execution (option 2 in the branching point), or it
can be refined manually by the application designer, to add domain-dependent
information on the execution of activities (option 1 in the branching).

Finally, the Application Model is the input of a second transformation, which
produces the code of the application for a specific technological platform (in our
case, J2EE); this step is completely automated thanks to the code generation
facilities included in WebRatio.

4 Refined Process Model

The high-level BPMN process model designed in the requirement specification
phase is not detailed enough to allow the generation of the application code. Its
refinement is done using an extended BPMN notation, which enables a more
precise model transformation into a WebML Application Model and then into
the implementation code. In particular, the process model is enriched with infor-
mation about the data produced, updated and consumed by activities, which is
expressed by typed activity parameters and typed data flows among activities.

420 M. Brambilla, S. Butti, and P. Fraternali

Activity Name

par_1
par_2

par_5

par_3
par_4

1

43

2

Fig. 4. Extended activity notation

Furthermore, activities are annotated to express their implicit semantics, and
gateways (i.e., choice points) that require human decisions are distinguished.

Figure 4 shows the graphical notation of the extended BPMN activity. An
activity is associated with a Name (1), which is a textual description of its se-
mantics, and possibly an Annotation (2), which describes the activity behaviour
using an informal textual description. An activity is parametric, and has a (pos-
sibly empty) set of input (3) and output (4) parameters. The actual values of
input parameters can be assigned from preceding activities; the output parame-
ters are produced or modified by the activity. Analogous extensions are defined
for gateways; these are further refined by specifying whether they are imple-
mented as manual or as automatic branching/merging points. Manual gateways
(tagged as Type “M”) involve user interaction in the choice, while Automatic
gateways (tagged as Type “A”) automatically evaluate some condition and de-
cide how to proceed with the process flow without human intervention. The
output flow of gateways can be associated to a guard condition, which is an
OCL Boolean expression over the values of the parameters of the gateway; the
semantics is that the activity target of the flow link with the guard condition
can be executed only if the condition evaluates to true.

5 Application Model

Starting from the Detailed Process Model presented above, an automatic trans-
formation produces: (1) Process Metadata Model, describing the process con-
straints in a declarative way as a set of relations; (2) the Domain Model, speci-
fying the application-specific entities; (3) and the Application Model, including
both the site views for the user interaction and the service views for Web service
orchestration.

Hence, the transformation consists of two sub-transformations:

– Detailed Process Model to Process Metadata: the BPMN precedence con-
straints and gateways are transformed into instances of a relational represen-
tation compliant to the Process Metamodel shown in Figure 5, for enabling
runtime control of the process advancement;

– Detailed Process Model to Application Model: the BPMN process model
is mapped into a first-cut Application Model, which can be automatically

WebRatio BPM: A Tool for Designing and Deploying Business Processes 421

transformed into a prototype of the process enactment application or sub-
sequently refined by the designer to incorporate further domain specific
aspects.

Thanks to the former transformation, the BPMN constraints, stored in the Pro-
cess Metadata Model, are exploited by the components of the Application Model
for executing the service invocation chains and enacting the precedences among
human-executed tasks.

5.1 Process Metadata Generation

Figure 5 shows, as a UML class diagram, the schema of the metadata needed
for executing an BPMN process at runtime.

A Process represents a whole BPMN diagram, and includes a list of Activities,
each described by a set of input and output ParameterTypes. A Case is the
instantiation of a process, and is related to the executed Activity Instances, with
the respective actual Parameter Instances. The evolution of the status history
is registered through CaseLogEntry and ActivityLogEntry. Users are the actors
that perform a task and are clustered into Groups, representing their roles.

Notice that the diagram spans two modeling levels in the same data schema,
namely process model and process instance information. The BPMN part is
confined to the entities in the upper part of the figure, while the lower part
regards execution data.

-oid
-name
-description

Process
-oid
-name
-description
-execution
-type

Activity

-name
-description
-type

ParameterType

-oid
-name
-status

Case

-oid
-status

ActivityInstance
-oid
-value

ParameterInstance

-oid
-entryStatus
-entryTimestamp

CaseLogEntry
-oid
-entryStatus
-entryTimestamp

ActivityLogEntry

-oid
-username
-password

User

-oid
-groupName

Group

-oidPrevious
-oidNext
-condition

Condition

*

1

*

1

*

1

*

1 *

1

* *

*

1

*

*
*

1

*

1

*

*
*

*

*

*

*

1

*

1

*

*

Previous

Next

Executed by

Contains

Instantiated Instantiated
Belongs to

Logged Logged

Previous/
Next

OutputParameter

InputParameter

Contains

* *

Executable by

OutputParameter

InputParameter

Instantiated

Fig. 5. Process Metadata describing the BPMN constraints

The transformation from the extended BPMN to the Process Metadata
produces a relational encoding of the BPMN concepts: each process model is

422 M. Brambilla, S. Butti, and P. Fraternali

transformed to a Process instance; each activity is transformed into an Activity
instance; each flow arrow is transformed into a nextActivity/previousActivity
relationship instance; each guard condition is transformed into a Condition
instance.

Process Metadata generation has been formalized as an ATL transformation
from the BPDM metamodel to the Process Model of Figure 5.

5.2 Application Model Generation

The transformation from Refined Process Models to WebML coarse models of
services and hypertext interfaces considers the type (human or automatic) of the
gateways and the information on the data flows. The application models pro-
duced by the transformation still need manual refinement, to add domain-specific
elements that cannot be expressed even in the enriched BPMN notation. How-
ever, by exploiting information about the activity type, a first-cut application
model can be generated, which needs reduced effort for manual refinement.

The computation of the next enabled activities given the current state of the
workflow is encapsulated within a specific WebML component, called Next unit,
which factors out the process control logic from the site view or service orches-
tration diagram: the Next unit exploits the information stored in the Process
Metadata to determine the current process status and the enabled state transi-
tions. It needs the following input parameters: caseID (the currently executed
process instance ID), activityInstanceID (the current activity instance ID), and
the conditionParameters (the values required by the conditions to be evaluated).
Given the activityInstanceID of the last concluded activity, the Next unit queries
the Process Metadata objects to find all the process constraints that determine
the next activity instances that are ready for activation. Based on the condi-
tions that hold, the unit determines which of its output links to navigate, which
triggers the start of the proper subsequent activities.

The Process to Application Model Transformation from BPMN to WebML
consists of two main rules: the Process transformation rule, addressing the struc-
ture of the process in-the-large; and the Activity transformation rule, managing
the aspects of individual activities: parameter passing, starting and closing, and
behavior. For modularity and reusability, the piece of WebML specification gen-
erated for each activity is enclosed into a WebML module, a container construct
analogous to UML packages.

Figure 6 shows an overview of the outcome of the Process transformation
rule: the hypertext page for manually selecting the process to be started and for
accessing the objects resulting from process termination. This WebML fragment
models the process wrapping logic, generated from the Start Process and End
Process BPMN events.

The generated WebML model further comprises: (1) the process orchestration
site view, that contains the logic for the process execution; (2) a site view or
service view for each BPMN pool; (3) a set of hypertext pages for each human-
driven BPMN activity; (4) one service invocation (triggering the suitable actions
for application data updates) for each automatic activity.

WebRatio BPM: A Tool for Designing and Deploying Business Processes 423

Error in Next Unit
Page

Process

Processes

L

Process Control
Page

Process

Results page

Requested
Results

Result

KO

OK

Manual SiteView

NextUnit

Fig. 6. Excerpt of a WebML application model generated from a BPMN model

Error in Next Unit
Page

Switch NextUnit

[Module=1]

Customer
Leasing
Request

Error in Switch
Page

KO

KO

Case=1

OK

Case=2

Case=3

[Module=3]

Customer
Credit
Score

[Module=2]

And Split

[Module=...]

...

Case=...

...

Orchestration SV

Fig. 7. WebML Orchestration Siteview

Figure 7 shows the model of the orchestration site view. The enactment of
the process is performed through a loop of WebML module invocations, each
representing the implementation of one of the activities. At the beginning, the
initiation logic (shown in Figure 6) invokes the first module in the loop. The
invoked module, be it a Web service call or a Web interface for the user to
perform the activity, upon termination returns the control to the Next unit,
which determines the modules to be executed next.

The Activity transformation rule is based on the BPMN activity and gateway
specifications, taking into account aspects like the actor enacting the activity
(e.g., a human user or the system). For each BPMN activity and gateway, a
WebML module implementing the required behavior is generated. Each gener-
ated module has a standard structure: an input collector gathers the parameters
coming from previous activities; the activity business logic part comprises a form
with fields corresponding to the output of the activity and a Create unit that
stores the information produced by the activity persistently, for subsequent use.
For gateways, the transformation rule behaves according to the BPMN seman-
tics and to the kind of executor assigned to the gateway (human or automatic): if

424 M. Brambilla, S. Butti, and P. Fraternali

the gateway is tagged as human-driven, a hypertext is generated for allowing the
user to choose how to proceed; if the gateway is tagged as automatic, the choice
condition is embedded in the application logic. The transformation of BPMN
gateways is conducted as follows:

– AND-splits allow a single thread to split into two or more parallel threads,
which proceed autonomously. The WebML model for AND-split automatic
execution generates a set of separate threads that launch the respective sub-
sequent activity modules in parallel, while manual execution allows the user
to select and activate all the possible branches.

– XOR-splits represent a decision point among several mutually exclusive
branches. Automatic XOR-splits comprise a condition that is automatically
evaluated for activating one branch, while manual XOR-splits allow the user
to choose one and only one branch.

– OR-splits represent a decision for executing one or more branches. Automatic
OR-splits comprise a condition that is automatically evaluated for activating
one or more branches, while the manual version allows the user to choose
the branches to activate.

– AND-joins specify that an activity can start if and only if all the incoming
branches are completed. This behavior is usually implemented as automatic.

– XOR-joins specify that the execution of a subsequent activity can start as
soon as one activity among the incoming branches has been terminated. This
behavior is usually implemented as automatic.

– OR-joins specify that the execution of the subsequent activity can start as
soon as all the started incoming branches have been terminated. This behav-
ior is usually implemented as automatic, possibly through custom conditions
on the outcome of the incoming branches.

Figure 8 shows two simplified examples of generated modules: the XOR (Pro-
ductType) module (Figure 8.a) implements the automatic evaluation of the XOR

[ProductType=?]

If

[Car]

[House]

activityInstanceID
activityTypeID

userId
ProductID

Input
Collector

activityTypeID

Output
Collector

userId

Input
Collector

CreditScore

Output
Collector

Xor (ProductType) module

Customer Credit Score module

ActivityTypeID= “WSCarLQuotation”

ActivityTypeID= “WSHouseLQuotation”

Set
Parameter

Set
Parameter

(a)

(b)

Query unit

Product
[OID=ProductID]

Product
Type

CreditScore Page
Entry unit CreditScore

CreditScore

Create
+

Fig. 8. WebML Modules for XOR gateway and Customer Credit Score

WebRatio BPM: A Tool for Designing and Deploying Business Processes 425

gateway in the BPMN model of Figure 1: given the ProductID, it extracts its
type and checks whether it is a car or a house. The next activity to be performed
is set accordingly, and this information is passed to the Next unit in the orches-
tration site view. The Customer Credit Score module in Figure 8.b shows the
generated hypertext page that allows the user to enter and store the credit score
value for the customer, which is the output parameter of the Customer Credit
Score activity of Figure 1.

The whole approach is specified by an ATL transformation organized into the
three above specified rules: a Process transformation rule generates the process
actions and then invokes the Activity rule that manages untyped activities. A
set of type-specific Activity rules inherit from the general transformation and
refine it.

6 Implementation of WebRatio BPM

The illustrated method has been implemented as a new major release of WebRa-
tio, called WebRatio BPM. To achieve this result, all three major components
of the tool suite have been extended: the model editing GUI, the code gener-
ator, and the runtime libraries. The model editing GUI has been extended by:
1) creating an Eclipse-based workflow editor supporting the definition of the
refined BPMN Process Model; and 2) adding the Next unit as a new compo-
nent available in the WebML Application Model editor. The code generator has
been extended in two directions: 1) the BPMN to WebML transformation has
been integrated within the toolsuite, thus allowing automatic generation of the
WebML Application Models and of the Process Metadata. 2) the code genera-
tion from WebML has been augmented to produce the instances of the Process
Metadata and to integrate the novel components (e.g., the Next unit) into the
existing J2EE code generation rules.

Moreover, a one-click publishing function has been added to the BPMN edi-
tor, thus allowing the immediate generation of a rapid prototype of the BPMN
process. The prototype is a J2EE dynamic, multi-actor application with a de-
fault look & feel, produced from the WebML Application Models automatically
derived from the BPMN diagrams, according to the previously described tech-
niques. The process prototype comprises a few exemplary users for each BPMN
actor, and allows the analyst to impersonate each role in the process, start a
process and make it progress by enacting activities and both manual and auto-
matic gateways. Figure 9 shows a snapshot of the user interface of the WebRatio
BPMN editor.

The WebRatio BPM tool is being tested in a real industrial scenario of a major
European bank, that needs to reshape its entire software architecture according
to a BPM paradigm with a viable and sustainable design approach. The first
set of developed applications addressed the leasing department. The running
case presented in this paper is inspired by the leasing application that is under
development. The real application involves more than 80 business processes,
which orchestrate more that 500 different activities.

426 M. Brambilla, S. Butti, and P. Fraternali

Fig. 9. WebRatio BPM user interface

7 Related Work

A plethora of tools exist for business process modeling and execution, produced
by major software vendors, open source projects, or small companies. In our re-
view of existing tools, we identified more than fifty relevant tools in the field. A
report from Gartner [6] describes the magic quadrant of the field and selects the
most promising solutions. Among them, we can mention Lombardi Teamworks,
Intalio, webMethods BPMS, Tibco iProcess, Savvion BusinessManager, Adobe
Livecycle ES, Oracle BPM Suite, IBM WebSphere Dynamic Process Edition.
Most of them rely on Eclipse as IDE environment and include a visual designer
of business models and a generator of configurations for associated workflow en-
gines. In our analysis, we considered more than 50 tools: each of them exposes
different strengths and weaknesses. Some 50% of them adopt BPMN as modeling
notation; a few provide quick prototyping features (e.g., Oracle, Tibco, BizAgi),
while only one provides fine grained simulation capabilities, i.e., the prossibility
of visualizing hypothetical executions over the visual model, considering stochas-
tic properties of the executions themselves (IBM); some of them are also very
strong on BAM features (business analysis and monitoring), such as Oracle and
BizAgi; owever, the ones that provide a good level of personalization of the user
interfaces allow to do so only at the code level. The main innovations of our
approach with respect to the competitors are: (1) quick generation of a running
prototype with no coding required; (2) possibility of refinement of the prototype
at the web modeling level; (3) clear separation of concerns and assignment to
design tasks to roles; (4) model transformation and code generation of the final
Web application through MDD.

In the scientific community, some other works have addressed the challenge
of binding the business processing modeling techniques with MDD approaches
addressing Web applications development.

WebRatio BPM: A Tool for Designing and Deploying Business Processes 427

In this work we focus on process- and data-centric application design, a field
where several MDD-based approaches has proven valid. The challenge, though,
is to define methods for effectively binding the business processing modeling
techniques with MDD approaches addressing, for instance, Web applications
development. The Process Modeling language (PML) [11], for instance, is an
early proposal for the automatic generation of simple Web-based applications
starting from imperative syntax, that allows users to enact their participation
to the process .

Koch et al. [7] approach the integration of process and navigation modeling in
the context of UWE and OO-H. The convergence between the two models is lim-
ited to the requirement analysis phase, while the design of the application model,
is separated. In our work, both aspects are considered: like in UWE, we preserve
the process model as an additional domain model in the application data; as
in OO-H, we provide semi-automatic generation of WebML navigational model
skeletons directly from the process model. Among the other existing models, we
can mention Araneus [10], that has been extended with a workflow conceptual
model, allowing the interaction between the hypertext and an underlying work-
flow management system. In OOHDM [14], the content and navigation models
are extended with activity entities and activity nodes respectively, represented by
UML primitives. In WSDM [16], the process design is driven by the user require-
ments and is based on the ConcurTaskTrees notation. An alternative approach
is proposed by Torres and Pelechano [15], where BPM and OOWS [5] combines
to model process-centric applications; model-to-model transformations are used
to generate the Navigational Model from the BPM definition and model-to-text
transformations can produce an executable process definition in WS-BPEL. Liew
at al. [8] presents a set of transformations for automatically generating a set of
UML artifacts from BPM.

With respect to our previous work, this paper extends and refines the tech-
nique initially proposed in [3] with several major aspects. The main innovation
point is that the BP model and the application model are now treated at the
same level and can be evolved separately, thanks to the topology of the generated
application models, which insulates the process control logic from the interface
and navigation logic of the front-end. Specifically, while in our previous proposal
the BPM constructs were transformed into control flows in the application model
(e.g., as links in the WebML hypertexts), practical use demonstrated that this
approach led to severe difficulties during process and application maintenance
and evolution; therefore, we had to better encapsulate process with the help of
the process metadata.

Another related research area is the specification and deployment of service
orchestrations [1] (e.g., as WS-BPEL specifications). These approaches lack man-
agement of the user interactions and of results presentation.

8 Conclusion

This paper presented a methodology and a tool called WebRatio BPM for
supporting top-down, model-driven design of business-process based Web

428 M. Brambilla, S. Butti, and P. Fraternali

applications. The tool is now available for testing purposes and will be com-
mercially distributed starting from October 2009. Our approach is based on
model transformations and allows designers to produce applications (both as
early prototypes and refined products) without coding. Thanks to the two dif-
ferent modeling levels (business model and Web hypertext model), the needs
and skills of different design roles can be accommodated, thus allowing easy
joint work between business analysts and web engineers. The high-level
BPM perspective provides easy specifications of business models and quick
generation of running prototypes, while the hypertext model covers the
need of refined design of the final application, thus provide separation of
concerns.

The tool, albeit still in a beta status, is have been used in a large banking
application for 6 months now. In this period, we collected useful user feedbacks
and new requirements, that were considered in the refinement of the system.
The experiment was applied on large scale on a real industrial application:

– three different user roles worked together on the same large project: 3 busi-
ness analysts, 6 application developers, and a few key customers interacted
in the definition of the problems and of the solutions;

– the users were spread across Europe and across 4 different companies (the
business consultancy company, the application development company, the
banking customer, and WebRatio itself);

– the size and volume of the subprojects was so big that it challenged
the code generation performances, bringing to applications that included
more than 100,000 software components and XML configuration descriptors.

Although the size and the complexity of the project was so large, the need
raised only for refinements and small fixes to the approach, which therefore
proved valid. Two big requirements were collected on the field: the need for a
BAM (Business Analysis and Monitoring) console associated to the approach
and for a refined support to requirements and process changes. The BAM con-
sole design task will be simplified by the possibility of building the console it-
self with the model-driven WebML approach;being specified through models,
the console will be configurable and customizable at will depending on the
customer needs. The support to requirements and process changes is crucial
in process-based applications, since the evolution of processes must be sup-
ported even when the application is in use, and therefore several process in-
stances can be ongoing while the process change is applied. This requires to
preserve all the versions of process models (and of associated applications)
at the same time, to grant correct execution of both ongoing and new
processes.

Further tasks will include quantitative evaluation of productivity of the de-
velopers and of quality of the implemented applications, and coverage of further
aspects of BPMN semantics (i.e., customized events and exceptions).

WebRatio BPM: A Tool for Designing and Deploying Business Processes 429

References

1. Benatallah, B., Sheng, Q.Z.: Facilitating the Rapid Development and Scalable Or-
chestration of Composite Web Services. Distrib. Parallel Databases 17(1), 5–37
(2005)

2. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM TOSEM 15(4), 360–409 (2006)

3. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM TOSEM 15(4), 360–409 (2006)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: De-
signing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San
Francisco (2002)

5. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of web applications
from web enhanced conceptual schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-
W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer,
Heidelberg (2003)

6. Gartner. Magic quadrant for business process management suites. Technical report,
Gartner (February 2009)

7. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in
web application models. J. Web Eng. 3(1), 22–49 (2004)

8. Liew, P., Kontogiannis, K., Tong, T.: A framework for business model driven devel-
opment. In: STEP ’04: Software Tech. and Engineering Practice, pp. 47–56. IEEE,
Los Alamitos (2004)

9. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven
Design and Deployment of Service-Enabled Web Applications. ACM Transactions
on Internet Technologies (TOIT) 5(3), 439–479 (2005)

10. Merialdo, P., Atzeni, P., Mecca, G.: Design and development of data-intensive web
sites: The Araneus approach. ACM Trans. Internet Techn. 3(1), 49–92 (2003)

11. Noll, J., Scacchi, W.: Specifying process-oriented hypertext for organizational com-
puting. J. Netw. Comput. Appl. 24(1), 39–61 (2001)

12. OMG. Spem - software process engineering meta-model, version 2.0. Technical
report (2008), http://www.omg.org/technology/documents/formal/spem.htm

13. OMG, BPMI. BPMN 1.2: Final Specification. Technical report (2009),
http://www.bpmn.org/

14. Schmid, H.A., Rossi, G.: Modeling and designing processes in e-commerce appli-
cations. IEEE Internet Computing 8(1), 19–27 (2004)

15. Torres, V., Pelechano, V.: Building business process driven web applications. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
322–337. Springer, Heidelberg (2006)

16. De Troyer, O., Casteleyn, S.: Modeling complex processes for web applications
using wsdm. In: Ws. on Web Oriented Software Technology (IWWOST), pp. 1–12.
Oviedo (2003)

17. Webratio, http://www.webratio.com

http://www.omg.org/technology/documents/formal/spem.htm
http://www.bpmn.org/
http://www.webratio.com

A Visual Tool for Rapid Integration of
Enterprise Software Applications

Inbal Tadeski1, Eli Mordechai2, Claudio Bartolini3,
Ruth Bergman1, Oren Ariel2, and Christopher Peltz4

1 HP Labs, Haifa, Israel
2 HP Software, Yahud, Israel

3 HP Labs, Palo Alto, California, USA
4 HP Software, Fort Collins, Colorado, USA

Abstract. Integrating software applications is a challenging, but often
very necessary, activity for businesses to perform. Even when applications
are designed to fit together, creating an integrated solution often requires
a significant effort in terms of configuration, fine tuning or resolving
deployment conflicts. This is often the case when the original applications
have been designed in isolation. This paper presents a visual method
allowing an application designer to quickly integrate two products, taking
the output of a sequence of steps on the first product and using that as
input of a sequence of steps on the second product. The tool achieves
this by: (1) copying UI components from the underlying applications
user interface; (2) capturing user interaction using recording technology,
rather than by relying on the underlying data sources; and (3) exposing
the important business transactions that the existing application enables
as macros which can then be used to integrate products together.

1 Introduction

Integrating software applications is hard. Even when such applications are de-
signed to fit together, creating an integrated solution often requires a significant
effort in terms of configuration, fine tuning or resolving deployment conflicts.
If the original applications had been designed in isolation and not originally
intended to provide an integrated solution, then it might easily turn into a
nightmare. In fact, this scenario is very common. If you want to scare off an
IT executive, tell them that “it’s just a simple application integration effort”.
In reality, there is no simple and cheap application integration effort. Difficult
as it is, software integration application is often necessary. Due to the dynamic
nature of most enterprises, many disparate software applications live in the enter-
prise space. The creation of new business operations, for example, as the result of
mergers and acquisitions, brings about the need to use multiple applications. The
enterprise staff has to juggle between them to complete new business processes.
Indeed, such processes sometimes require operators to have multiple screens open
at the same time and manually move data from an application to the other. So,
the IT executive has to choose between an error prone and time consuming

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 430–444, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Visual Tool for Rapid Integration of Enterprise Software Applications 431

process, or an application integration effort. The visual integration tool presents
a way out for the IT executive, a method for rapid, programming-free software
integration.

Software applications integrations comes in various flavors, the most prevalent
of which are Enterprise Application Integration (EAI) and, more recently, web
2.0 mashups. The business relevance of this problem is exemplified by that the
total available market for EAI alone, defined as the use of software and computer
systems architectural principles to integrate a set of enterprise computer appli-
cations, is expected to reach 2.6 billion by 2009 (Wintergreen research). From
a technology point of view, what make the problem hard are issues with data
representation, data semantics, connector semantics, error control, location and
non-functional requirements.

In this paper, we introduce a novel approach to software application integra-
tion, and a visual tool that embodies it, called visual product integrator. The
main guiding principle for our approach is that software application integration
should be made faster and cheaper. Our approach aims to make the integration
process better, since our tool will enable quick proof-of-concept integrations that
can go from inception to use in a very short turn-around time. We do not ex-
pect that solutions developed using it will be as robust and as complete as full
standard application integration solutions. Having said this, our approach and
tool, when used in parallel with standard techniques, provide the advantages of
shortening developing cycles and enabling the quick and cheap creation of suc-
cessive throw-away versions of the final integrated solution. Last but not least,
our approach demands very little in terms of knowledge about the internal data
representation and semantics of the original applications.

In a nutshell, the visual product integrator allows an application designer to
quickly realize use cases for integrations of two products that can generally be
defined as taking the output of a sequence of steps on the first product and
using that as input of a sequence of steps on the second product. Visual product
integrator achieves this by

– copying UI components from the user interface of the underlying applica-
tions.

– capturing user interaction using recording technology, rather than by relying
on underlying data sources or on programming.

– exposing the important business transactions that the existing application
enables as macros.

We refer to a recorded sequence of interactions as a macro. Once macros of one
or more existing applications have been created they may be re-used in any
new application. The main contributions of our approach and visual product
integrator tool are:

– blend together the roles of the designer and the user of the integrated solu-
tion.

– require no programming of scripting for creating the graphical user interface
of the integrated solution.

432 I. Tadeski et al.

Fig. 1. Architecture Diagram for the Visual Product Integrator

– record the actions of the application user/designer similarly to what is done
when recording a macro in Microsoft Excel - only this happens when juggling
between different software applications rather than spreadsheets.

– force the designer/user to think about business transactions rather than
specific business objects: visual product integrator captures the sequence of
steps of a business process and its interactions with all the related business
objects.

2 Architecture

The visual product integrator has two main functionalities. First, it allows to
user to design a new application with a new user interface. Second, it provides
a runtime environment for the new application. The architecture of the visual
product integrator, shown in Figure 1, supports both functionalities.

At design time, the visual integrator behaves like a WYSIWYG Graphical
User Interface builder. It has the usual GUI builder capabilities for placing UI
components into the application interface, and assigning actions to these UI
components. The visual integrator goes beyond standard GUI builders, because
it can copy UI components from an existing application. To copy UI components
the user is prompted to select an application, which will be started within the
visual integrator. The Application Screen Retriever/Analyzer module of the vi-
sual product integrator initiates and displays the application. It also connects to
the object hierarchy and captures events. The user can then select the UI com-
ponents he wishes to copy into the new application: the visual integrator has
the ability to duplicate the selected components in the new application. Copied
components are tagged, so that at run time they can be synchronized with the
original application. The user can continue to copy objects from any number
of applications. An additional enhancement in the visual product integrator is

A Visual Tool for Rapid Integration of Enterprise Software Applications 433

that the actions assigned to UI components may include macros. At design time,
macros are recorded using the record/replay engine. It is also possible to import
macros that were recorded or manually written elsewhere.

At run time, the visual product integrator must do all of the following

1. Run the new application
2. Refresh copied UI components from the original application
3. Run macros on original application

Referring to the architecture diagram in Figure 1, the Runtime Engine is respon-
sible for running the new application. The critical new piece of this technology is
the Application Event Dispatcher, which handles the events of the new applica-
tion that refer to any of the original application. It dispatches events from copied
UI components of the new application to the original application. Similarly, it
refreshes the state of copied UI components based on the state of the respective
component of the original application. The Application Event Dispatcher also
handles macros using the record/replay engine.

Notice that we describe the visual product integrator independently of the
technology used for the underlying applications. Our architecture is rich enough
to enable combining Windows applications with HTML applications, Java ap-
plications, and so on. All is required is that the Application Screen Retriever/
Analyzer be able to manipulate and analyze the object hierarchy of the applica-
tion. It must be able to convert UI components from the original technology to
the technology used for the new application. For example, if the technology for
the new application is HTML and the underlying application is .NET, the Screen
Retriever/Analyzer must recognize that a selected UI component is, e.g., a .NET
button, so that it can tell the Application Designer module to create an HTML
button. Likewise, the Application Event Dispatcher must be able to replicate
events on all the technologies of the underlying applications and query the ob-
jects for their current state. These capabilities require a deep model of the object
hierarchy for each supported technology, similar to what is used for automated
software testing, e.g., in HP Quick Test Pro [3], for example. By leveraging this
technology, the visual integrator can support standard Windows, Visual Basic,
ActiveX controls, Java, Oracle, Web Services, PowerBuilder, Delphi, Stingray,
Web (HTML) and .NET.

The integrator is a GUI builder application, among other things. As such it
builds new applications in some particular technology. This technology can be
Java Swing, .NET, HTML or any other GUI technology. It is important to note
that every application built by the visual product integrator will use this same
GUI technology.

To achieve a good runtime experience, we want to present a single application
to the user. Although there are several underlying applications and all these
applications are running while the new application runs, we want to hide the
presence of these applications from the user. In the architecture, therefore, the
original applications run using a remote protocol, either on a remote machine
or on a Virtual Machine (VM), rather than on the local machine. At design
time, the Screen Retriever/Analyzer module displays the underlying application

434 I. Tadeski et al.

to the user and captures the UI objects that the user selects. At run time, the
Application Event Dispatcher passes events to and from the VM, and refreshes
the components of the new application.

3 Implementation

The prototype implementation of the visual product integrator utilizes the ar-
chitecture described in the previous section. We made several simplifying as-
sumptions that enable us to rapidly prototype and demonstrate feasibility of
the visual product integrator. The technology used to develop the new applica-
tion is HTML. In our first embodiment of the visual product integrator, we are
also restricting the underlying applications to a single technology, again HTML.
With this restriction, the Application Screen Retriever/Analyzer and the Appli-
cations Event Dispatcher need only have a model of a single technology. Much
of the functionality of the Applications Event Dispatcher is the macro record
and replay. This capability is available in the software testing application Quick
Test Pro (QTP) [3]. For the prototype we use QTP’s record/replay engine to
dispatch events on the underlying applications. QTP itself runs on the VM in
order to give the user the expected interaction with the application.

Figures 2(a) and 2(b) show screen shots of the Visual Application Integrator
prototype. To design a new application, the user does the following:

Select Application. Figure 2(a) shows the design time view in the integrator.
The user chooses one or more applications, which the integrator initiates and
displays.

Copy UI Components. The user can select UI objects for duplication in the
new application. Selected objects appear in the design view of the integrator,
as shown in Figure 2(b).

Add New UI Components. The user may add additional UI components
from the toolbar.

Set Actions. For each object the user assigns an action. Figure 2(b) demon-
strates the set of possible actions.
1. If the element was copied from one of the underlying applications, the

user selects the“keep original behavior” mode, then the object will exe-
cute the original action in the original application.

2. New objects may be assigned actions by writing a java script function.
These functions will be executed locally.

3. Another type of action for a new object is a “workflow action”. The
workflow is set up by connecting the action with a QTP script. The
QTP script will run on the original application in the VM. In the current
prototype we do not enable recording the QTP script from the integrator.
Instead, we assume that the QTP script is pre-recorded. This limitation
is related to the implementation of the record/replay engine in QTP.
Future implementations using a record/replay engine built specifically
for the integrator will not have this limitation.

A Visual Tool for Rapid Integration of Enterprise Software Applications 435

(a) A view of capturing elements from the underlying application

(b) The user can arrange UI elements, and assign actions to each element

Fig. 2. Visual Product Integrator screen shots depicting design capability

436 I. Tadeski et al.

Fig. 3. Visual Product Integrator screen shot. A view of the application at run time.

Figure 3 shows the run time view in the integrator. The integrator is now running
a HTML application in a browser object. But this application must run inside
the integrator because of the connection with the underlying applications. First,
the integrator refreshes copied objects, as necessary. Second, actions on copied UI
objects and QTP scripts are executed on the original applications. The results of
these actions are shown in the new application. The integrator uses QTP to start
and drive the application. QTP gets its instruction via its remote automation
API, thus hiding the presence of these applications from the user. Screen data
is captured and reflected in the host machine via new remote API.

4 Validation

In order to validate our tool, we used it to build a Search-Calculator applica-
tion. This application uses functionality from two Web applications, a calculator
application [1] and the Google search application [2].

To build the new application the user first opens each application in a viewer.
Figure 4 shows each application in the viewer. Next the user selects UI ele-
ments for copying. Figure 4(a) shows the calculator application, in which all the
elements making up the calculator interface have been selected for copying to the

A Visual Tool for Rapid Integration of Enterprise Software Applications 437

(a) Object capture from the calculator application

(b) Object capture from the Google search application

Fig. 4. Building the Search-Calculator application. A view of the underlying applica-
tions inside the viewer.

438 I. Tadeski et al.

Fig. 5. Building the Search-Calculator application. The user arranges UI elements and
sets actions in the designer.

new application’s UI. Figure 4(b) shows the selection of the elements on the
Google page that are needed for search, i.e., the edit box and the search button.

The next step of building the new application includes arranging UI elements,
and assigning actions to each element. The designer supports these activites, as
shown in Figure 5. For the Search-Calculator application, the actions of the
calculator components are set to remote, meaning that actions on these buttons
will be passed through to the original calculator application. Likewise, the calcu-
lator result text box is remote, so the value calculated in the original application
will be automatically updated in the new application. Similarly, remote actions
are set on the elements copied from the Google application. Finally, the work-
flow action of searching for the calculator result is set using a QTP script. That
completes the application.

At run time, the Search-Calculator application will search the Web for the
value resulting from any computation. Figure 6 demonstrates this behavior. The
user pressed the PI button on the new application’s interface. The action was
passed to the calculator application, which displays the value 3.14159. The new
application refreshes the value on the calculator display due to the change in the
underlying application. Based on the workflow set up earlier, the value 3.14159 is
copied to the search edit box and the search is started. When the search results
are available in the Google search application, the new application interface is
refreshed to show the results.

A Visual Tool for Rapid Integration of Enterprise Software Applications 439

Fig. 6. Visual Product Integrator screen shot. A view of the search-calculator ap-
plication at run time.

5 An Enterprise Application Integration Use Case

The benefit of this tool for enterprise application integration is illustrated by
the following a common scenario. In this scenario, an operator has to juggle
between two applications to carry out their daily task. The operator opens the
Customer Relationship Management (CRM) applications and finds a list of ac-
tivities. Among them, he sees a new “Contract job by partner” activity. He clicks
on the detail tab of the activity. The operator then can navigate through the de-
tails of the activity, shown in Figure 7(a). This screen shows the activity creator
camptocamp, a partner company.

At this point - as is often the case with enterprise applications - the operator
will need to pull up an Enterprise Resource Planning (ERP) application, to
retrieve collateral information about the partner, in the partner events panel.
He will have to enter in the basic search form (possibly copy-and-paste) the
name of the partner as it appears in the CRM application. On obtaining the
search results, the operator has to add a new event for this partner and fill the
details manually with information based on the activity he found in the CRM
application (Figure 7(b)).

Consider using the visual product integrator to expose the operator to a single
interface, and to automate this error-prone, manual task. To build the new ap-
plication, the application designer selects and copies a UI element from the first

440 I. Tadeski et al.

(a) A Customer Relationship Management (CRM) application. View of a new
“Contract job by partner” activity.

(b) An Enterprise Resource Planning (ERP) application. Entering new partner
activity by copying from the CRM application.

Fig. 7. An enterprise application integration example

original application, i.e., the CRM application shown in Figure 7(a). He then
adds a new action button, labeled “update ERP”. At this point, the tool makes
use of recording technology to capture the business flow that the operators has
to execute, and attaches a description of that to the button. The tool records
the sequence of copy and paste operations between the selected fields from the
first original application (CRM) to the second original application (ERP). As
the designer performs a function on the values from the selected fields in the first

A Visual Tool for Rapid Integration of Enterprise Software Applications 441

original application to fill in the value of the selected field in the second original
application, visual product integrator records that function and sets this macro
as the action on the button in the new application. Thus, this button represents
the business flow of creating a new event for a partner and copying the details
from the activity.

6 Related Work

The Visual Product Integrator tackles the problem space covered by enterprise
application integration (EAI), but aiming at making it significantly cheaper and
faster, getting inspiration from UI integration concepts such as mashups and
Web 2.0, which today are aimed at web application integration.

6.1 Enterprise Application Integration

EAI applications usually implement one of two patterns [14]:

Mediation: The EAI system acts as the go-between or broker between the
underlying applications. Whenever an interesting event occurs in an appli-
cation an integration module in the EAI system is notified. The module then
propagates the changes to other relevant applications.

Federation: The EAI system acts as the front end for the underlying appli-
cations. The EAI system handles all user interaction. It exposes only the
relevant information and interfaces of the underlying applications to the
user, and performs all the user’s actions in the underlying applications.

Most EAI solutions, whether they implement the mediation or federation ap-
proach, focus on middleware technology [15], including: Message-oriented mid-
dleware (MOM) and remote procedure calls (RPCs); Distributed objects, such
as at CORBA and COM; Java middleware standards; and Message brokers The
visual product integrator, by contrast, uses the federation pattern.

A long list of EAI solutions may be found in [18]. We mention some leading
solutions in this area. Microsoft BizTalk Server [16] is used to connect systems
both inside and across organizations. This includes exchanging data and orches-
trating business processes which require multiple systems.

Microsoft Host Integration Server allows enterprise organizations to integrate
their mission-critical host applications and data with new solutions developed
using the Microsoft Windows platform. All these middleware solutions require
the application integrator to go deep into the original application’s source code
and write wrappers that bring the original application into the fold of the new
technology.

In contrast to most EAI solutions, our approach eliminates the need to access
the application’s source code, substituting that with a representation of the
user-interaction that does not depend on the original applications information
model.

442 I. Tadeski et al.

6.2 Integration at the Presentation Layer (Web Applications)

The web engineering community has so far typically focused on model-driven de-
sign approaches. Among the most notable and advanced model-driven web engi-
neering tools we find, for instance, WebRatio [11] and VisualWade [10]. However
these approaches tend to be heavy on modeling methods, thereby being more
similar to traditional EAI in spirit than the approach we take here.

A very good account of the of the problem of integration at the presentation
layer for web applications is found in [13]. On thoroughly reviewing academic
literature, the authors drew the conclusion and concluded that there are no
real UI composition approaches readily usable in end-users composition environ-
ments. There are some proprietary Desktop UI component technologies such as
.NET CAB [9] or Eclipse RCP [8], and their being proprietary in nature limits
their possible reuse for software product integration in general. On the other
hand, browser plug-ins such as Java applets, Microsoft Silverlight, or Macro-
media Flash are easily embedded into HTML pages, but provide limited and
cumbersome interoperability through ad-hoc plumbing.

Mashup approaches, based on Web 2.0 and SOA technologies have been gain-
ing broad acceptance and adoption [13]. Existing mashup platforms typically
provide easy-to-use graphical user interfaces and extensible sets of components
for development composite applications. Yahoo! Pipes [12] integrate data ser-
vices through RSS or Atom feeds, and provide a simple data-flow composition
language. UI integration is not supported. Microsoft Popfly [7] uses a similar ap-
proach and does provide a graphical user interface for the composition of data,
application, and UI components, however does not support operation composi-
tion through different components. IBM Lotus Mashups [4] provides a wiki-based
(collaborative) mechanism to glue together JavaScript or PHP-based widgets. In-
tel MashMaker [5] takes a different approach to mashup of web application in
that it makes “mashup creation part of the normal browsing process”. As a user
navigates the web, MashMaker gives them suggestions for useful mashups to be
applied to the page that they are looking at. As a result, mashups are composed
“on-the-go”, but the main use case for MashMaker is still “Pipes”-like. It is
not oriented to producing a new stand-alone application like our visual integra-
tor. JackBe Presto [6] has an approach similar to Pipes for data mashups and
provides mashlets, or UI widgets used for visualizing the output. Throughout
all these example, we observe that mashup development is a process requiring
advanced programming skills.

6.3 Other Hybrid Approaches

One closely related solution for product integration is the OpenSpan platform
[17]. This platform may be used to build new composite applications by inte-
grating any legacy applications and/or business workflows in a rapid manner.
By dynamically hooking into applications at run-time,

OpenSpan can create integration points with an application without requiring
modification or access to the application’s source code, APIs or connectors. At

A Visual Tool for Rapid Integration of Enterprise Software Applications 443

design time, the user can set up the workflow of a business process, by hooking
into UI objects and specifying the data flow between the UI objects. We observe
two main differences between the OpenSpan platform and our Visual Product
Integrator:

1. Our integrator captures the workflow or business process as macros, using
record/replay technology. This technology spares the designer the manual
task of setting up the flows.

2. Our integrator allows the creation of a new graphical user interface. The
user of the new application only sees this interface. While the underlying
applications are running, they are not visible. Thus, the user experience is
more satisfying.

7 Conclusions

We presented a visual tool for rapid integration of software products to create a
new application. The main advantages of this tool over prior solutions are

– It goes beyond simple juxtaposition and syndication of data feeds well into
the realm of visual application design.

– It eliminates the need to access the application’s source code, substituting
that with a representation of the user-interaction that does not depend on
the original application’s information model.

– It captures the workflow or business process as macros, using record/replay
technology. This technology spares the designer the manual task of setting
up the flows.

– It allows the creation of a new graphical user interface. The user of the new
application only sees this interface. While the underlying applications are
running, they are not visible. Thus, the user experience is more satisfying.

The current prototype implementation has several limitations. The most severe
limitation is that it uses Quick Test Pro (QTP) as the record/replay engine. The
advantage of QTP is that it is a mature product. The disadvantage is that it is
cumbersome. We make it transparent to the user by running it on a VM. In future
development, we would replace QTP with a lighter weight record/replay engine.
A second limitation of the prototype is that, at present, it is restricted to HTML
applications. Future work will add support for additional GUI technologies, such
as .NET and Java. Longer term work is aimed to eliminate the need to model
specific GUI technologies by modeling the object hierarchy directly from the
application’s visual interface, i.e., the screen images.

References

1. CalculateForFree, http://www.calculateforfree.com/
2. Google search, http://www.google.com/

http://www.calculateforfree.com/
http://www.google.com/

444 I. Tadeski et al.

3. HP Quick Test Pro,
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?

zn=bto&cp=1-11-127-241352_4000_100__

4. IBM Lotus Mashups, http://www-01.ibm.com/software/info/mashup-center/
5. Intel Mash Maker, http://mashmaker.intel.com/web/
6. JackBe Presto, http://www.jackbe.com/
7. Microsoft popfly, http://en.wikipedia.org/wiki/Microsoft_Popfly
8. Rich Client Platform. Technical report, The Eclipse Foundation
9. Smart Client - Composite UI Application Block. Technical report, Microsoft Cor-

poration
10. VisualWade, http://www.visualwade.com/
11. WebRatio, http://www.webratio.com
12. Yahoo! Pipes, http://pipes.yahoo.com/pipes/
13. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Un-

derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing 11, 59–66 (2007)

14. Hohpe, G., Bobby, W.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Reading (2003)

15. Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley, Reading
(2000)

16. Microsoft Biztalk Server,
http://www.microsoft.com/biztalk/en/us/default.aspx

17. OpenSpan, http://www.openspan.com/index.php/software_platform.html
18. Wikipedia,

http://en.wikipedia.org/wiki/Enterprise_application_integration

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-241352_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-241352_4000_100__
http://www-01.ibm.com/software/info/mashup-center/
http://mashmaker.intel.com/web/
http://www.jackbe.com/
http://en.wikipedia.org/wiki/Microsoft_Popfly
http://www.visualwade.com/
http://www.webratio.com
http://pipes.yahoo.com/pipes/
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.openspan.com/index.php/software_platform.html
http://en.wikipedia.org/wiki/Enterprise_application_integration

Customization Realization in Multi-tenant Web
Applications: Case Studies from the Library Sector

Slinger Jansen1, Geert-Jan Houben2, and Sjaak Brinkkemper1

1 Utrecht University, P.O. Box 80.089, 3508TB Utrecht, The Netherlands
2 Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract. There are insufficient examples available of how customization is re-
alized in multi-tenant web applications, whereas developers are looking for ex-
amples and patterns as inspiration for their own web applications. This paper
presents an overview of how variability realization techniques from the software
product line world can be applied to realize customization when building multi-
tenant web applications. The paper addresses this issue by providing a catalogue
of customization realization techniques, which are illustrated using occurrences
of customization in two practical innovative cases from the library sector. The cat-
alogue and its examples assist developers in evaluating and selecting customiza-
tion realization techniques for their multi-tenant web application.

1 Introduction

Web applications profit greatly from customization, as they make them applicable in a
broader context, enable component reusability, and make them more user-specific. Es-
pecially when taking the software as a service model into account, the benefits of one
centralized software application with multiple tenants, over the alternative of multiple
deployments that have to be separately maintained, become apparent. Customization
and multi-tenancy, however, do not come for free. In customized web applications code
becomes more complex, performance problems impact all tenants of the system, and
security and robust design become much more important. A multi-tenant web applica-
tion is an application that enables different customer organizations (‘tenants’) to use the
same instantiation of a system, without necessarily sharing data or functionality with
other tenants. These tenants have one or more users who use the web application to
further the tenant’s goals. Software developers implementing these systems have all at
some point wondered what the available Customization Realization Techniques (CRTs)
are. This leads to the following research question:
How are customization and configurability realized in Multi-tenant web applications?

There are three research areas that are directly related to CRTs in multi-tenant web
applications: variability in software product lines, end-user personalization in web ap-
plications, and multi-tenancy architectures.

From the area of software product lines variability models can assist in determin-
ing techniques for customization as is already determined by Mietzner [1]. Svahnberg,
van Gurp, and Bosch [2] present a taxonomy of variability realization techniques, some
of which were previously encountered in a case study [3]. These variability realiza-
tion techniques, however, are only partially relevant for two reasons: (1) web applica-
tions are generally one-instance systems and (2) the variability realization techniques

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 445–459, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

446 S. Jansen, G.-J. Houben, and S. Brinkkemper

of Svahnberg have different binding times, whereas variability in web applications is
generally bound at run-time only.

Rossi et al. [4] introduce the following scenarios for web application customization:
static customization, link customization, node structure customization, node content
customization, and context customization. These scenarios are interesting, but do not
include customizations that impact the structure of the web application, such as the
integration with another (varying) application or the adaptation of the object model
on which the system is built. Chong and Carraro [5] suggest there are four ways to
customize web applications in a multi-tenant environment, being user interface and
branding, workflow and business rules, data model extensions, and access control. The
practical view of Chong does include data model extensions, but also does not take into
account integration with varying other applications. Another specific problem that is
not covered by the customizations of Chong is user interface adaptations based on user
specific properties, such as experience level.

WUML [6] is a modeling language that enables customization by splitting up func-
tionality in a generic and a customized part. Unfortunately, this technique only enables
a priori customization and end-user customization is not possible at present. A generic
framework for web site customization is introduced by Lei, Motta and Domingue [7],
that provides customization capabilities based on any logic condition for web-based
applications. The framework is based on the mature OntoWeaver web application mod-
eling and development framework. The capabilities of the customization framework
appear to be geared towards the views and controller of applications. The framework
does not cover, however, customization by linking to other applications, accessing dif-
ferent databases with one code base, or customer-specific model adjustments.

Mietzner et al. [1,8] propose a variability modeling technique for multi-tenant sys-
tems. The variability modeling technique is also rooted in the software product line
research area, and defines internal (developer view) and external (customer view) vari-
ability. Their variability modeling technique enables developers to speculate and calcu-
late costs for unique instances within a multi-tenant deployment. Furthermore, Mietzner
also addresses different deployment scenarios for different degrees of tenant variabil-
ity. Unfortunately, they do not address the CRTs. Guo et al. [9] provide a framework
for multi-tenant systems. Their framework makes a relevant distinction with regards
to security, performance, availability, and administration isolation, where issues are ad-
dressed that would not occur in a single-tenancy environment. The framework also aims
to provide as much flexibility for end-users, even to the extent that end-users create their
own customizations on the fly. Again, the issue of how such customizations are imple-
mented is not addressed.

In regards to customization and its relationship to end-user personalization, much
can be learned about the reasons for changing web application functionality based on
a user’s context. Goy et al. [10] state that customization is based on information about
the user (knowledge, interests and preferences, needs, and goals), the device used by
the user to interact with the system, and information about the context of use (physical
context, such as location, and social context). Schilit, Adams, and Want define con-
text as the ‘where you are’, ‘who you are with’, and ‘what resources are nearby’ [11].
Such information is generally stored in a user model [12,13]. Ardissono et al. [13]

Customization Realization in Multi-tenant Web Applications 447

address the problem of web application customization using an advanced evaluation
model that questions the user on his interests and that automatically derives what parts
of the application the user is interested in. Fiala and Houben present a tool that adapts
a web page after it has been generated but before it is presented to the user, using a
set of transcoding rules [14]. The models used for these techniques are, however, not
re-usable for multi-tenant systems, since the meta-configuration data stored per tenant
is dissimilar from the information that is stored per user in these user models. It must
be noted that most literature that refers to such user models [12,11] addresses dynamic
adaptation of web applications, generally to improve the system behaviour for specific
end-users, such as showing or removing options based on the level of the end-user [12].
The dynamic adaptations, however, conflict directly with the topic of this paper, i.e.,
the description of static customizations per tenant. The work on these user models and
customization is therefore considered out of scope.

In this paper we present a catalogue of CRTs for web applications and show how
these are implemented in practice using two case studies. The catalogue assists web
application developers and architects in selecting the right techniques when implement-
ing multi-tenant web applications. Without such a catalogue, developers of multi-tenant
web applications need to reinvent the wheel and are unable to profit from existing ar-
chitectural patterns used for implementing multi-tenancy.

This research was initiated because a lack was noticed in current literature regarding
customization techniques in web applications, specifically with regards to multi-tenant
web applications. The aim was set to create an overview of such techniques for develop-
ers, such that they can reuse these techniques and their associated implementation de-
tails. The research consisted of three steps. First, the two case studies were performed,
using the theory-building multi-case study approach [15,16]. The case study results
were discussed with and confirmed by lead developers from both cases. Secondly, the
CRTs overview was created. Thirdly, this overview was evaluated by five developers
of multi-tenant web applications, who were not part of the core development teams of
the case studies. In both cases the first author played a major part as lead designer. The
developers who were interviewed were all at some point involved in the development of
multi-tenant systems. They were interviewed and in-depth discussions were had about
the proposed CRTs.

Section 2 continues with a discussion of the different types of customization. Sec-
tions 3 and 4 describe the two case studies of native multi-tenant library web appli-
cations and the customization techniques encountered. Finally, in sections 5 and 6 the
findings and conclusions are presented.

2 Definition of Core Concepts: Multi-tenancy and Customization

In a multi-tenant web application there are tenants (customer companies) and the ten-
ant’s users. Users are provided with features that may or may not be customized. A
feature is defined as a distinguishing characteristic of a software item (e.g., perfor-
mance, portability, or functionality). A customized feature is a feature that has been
tailored to fit the needs of a specific user, based on the tenant’s properties, the user’s con-
text and properties, or both. Customized features are customized using customization

448 S. Jansen, G.-J. Houben, and S. Brinkkemper

techniques, which are in turn implemented by CRTs. These are implemented by vari-
ability realization techniques.

Variability realization techniques are defined by Svahnberg, van Gurp, and Bosch [2]
as the way in which one can implement a variation point, which is a particular place in
a software system where choices are made as to which variant to use. Svahberg’s vari-
ability realization techniques have specific binding times, i.e., times in the software
lifecycle at which the variability must be fixed. Because the systems under study are
multi-tenant systems, it is impossible to apply all variability realization techniques into
account that have a binding time that is not at run-time, since there is just one running
instance of the system. This constraints to the following applicable variability realiza-
tion techniques: (a) infrastructure-centered architecture, (b) run-time variant component
specializations, (c) variant component implementations, (d) condition on a variable, and
(e) code fragment super-imposition. Typically, in a multi-tenant environment a deci-
sions must be made whether to store a tenant data in a separate databases or in one
functionally divided database [5]. By following the variability techniques of Svahnberg
this major decision is classified as ‘condition on a variable’. The same is true, however,
if the tenant requires a change in the view by adding the tenant’s logo to the appli-
cation. The difference between these two examples is the scale on which the change
affects the architecture of the web application. Svahnberg’s techniques provide some
insight into the customization of web applications, but a richer vocabulary is required
to further specify how customizations are implemented in practice. The richer vocabu-
lary is required to identify patterns in the creative solutions that are employed to solve
different functional customization problems. To bring variation realization techniques
and customized features (subject to developer creativity) closer together, the CRTs are
introduced.

Before we continue providing the CRTs, the descriptions of the variability realization
techniques of Svahnberg et al. are repeated here in short. The (a) infrastructure-centered
architecture promotes component connectors to a first class entity, by which, amongst
other things, it enables to replace components on-the-fly. (b) Run-time variant com-
ponent specializations enable different behaviors in the same component for different
tenants. (c) Variant component implementations support several concurrent and coex-
isting implementations of one architectural component, to enable for instance several
different database connectors. (d) Condition on a variable is a more fine-grained ver-
sion of a variant component specializations, where the variant is not large enough to
be a class in its own right. Finally, (e) code fragment super-imposition introduces new
considerations into a system without directly affecting the source code, for instance by
using an aspect weaver or an event catching mechanism.

Five CRTs can be identified from two types of customization: Model View
Controller (MVC) customization and system customization. By MVC customization we
mean any customization that depends on pre-defined behaviour in the system itself, such
as showing a tenant-specific logo. We base it on the prevalent model-view-controller
architectural pattern [17], that is applied in most web applications as the fundamen-
tal architectural pattern. In regards to the category of MVC customization we distin-
guish three changes: model changes, view changes, and controller changes. By system
customization we mean any customization that depends on other systems, such as a

Customization Realization in Multi-tenant Web Applications 449

tenant-specific database or another web application. For the category of system cus-
tomization two types of changes are distinguished: connector changes and component
changes. Please note that each of the changes can be further specialized, but presently
we aim to at least be able to categorize any CRT.

The first customization is that of model change, where the underlying (data-)model
is adjusted to fit a tenant’s needs. Typical changes vary from the addition of an at-
tribute to an object, to the complete addition of entities and relationships to an existing
model. Depending on the degree of flexibility, the ability to make model changes can
be introduced at architecture design time or detailed design time. Binding times can be
anywhere between compilation and run-time, again depending on the degree of freedom
for the tenants and end-users. An example of an industrial application is SalesForce1, in
which one can add entities to models, such as domain specific entities. The variability
for SalesForce was introduced at architecture design time and can be bound at run-time.
The model change assumes there is still a shared models between tenants. If that is not
the case, i.e., tenants get a fully customized model, the customization is considered a
full component change (being the model itself).

The second type of customization is that of view change, where the view is changed
on a per-tenant basis. Typical changes vary from a tenant-specific look and feel, to
complete varying interfaces and templates. Again, depending on the degree of flexi-
bility, variations can be introduced between design time and run-time. Binding times
can be anywhere between compilation and runtime, also depending on the degree of
freedom for the end-users. An example of an industrial application is the content man-
agement system Wordpress, in which different templates can be created at runtime to
show tenant-specific views of the content.

Controller change is the third type of customization, where the controller responds
differently for different tenants and guides them, based on the same code, through the
application in different ways. The simplest example is that of tenant specific data, which
can be viewed by one tenant only. More extreme examples exist, such as different li-
cense types, where one tenant pays for and uses advanced features, opposed to a light
version with simple features for a non-paying tenant. Binding times are anywhere be-
tween design time and runtime and again depend on how much freedom the tenants
are given. An example of an industrial application is the online multi-tenant version of
Microsoft CRM, which enables the tenant to create specific workflows for end-users.

The system changes are of a different magnitude: they concern the system on an ar-
chitectural level and use component replacement and interfaces to provide architectural
variability. The fourth type of customization is system connector change, where an
extension that connects to another system is made variable, to enable connecting to dif-
ferent applications that provide similar functionality. An example might be that of two
tenants that want to authenticate their users without having them enter their credentials
a second time (single-sign-on), based on two different user administration systems. The
introduction time for any system connector change is during architecture design time.
The binding time can be anywhere after that up to and including during runtime. A
practical example is that of photo printing of Google’s Picasa, a photo management ap-
plication. Photo printing can be done by many different companies and depending on

1 http://www.force.com

http://www.force.com

450 S. Jansen, G.-J. Houben, and S. Brinkkemper

Table 1. Customization techniques, their realization techniques, and their latest introduction
times

Customization Realization Technique Latest introduction time a b c d e

Model change Design � �
View change Detailed design � � �
Controller change Detailed design � �
System connector change Architecture design � � �
System component change Architecture design � � �
(a) Infrastructure centered architecture, (b) Run-time variant
component specialization, (c) Variant component implementations,
(d) Condition on variable, (e) Code fragment super-imposition

which company suits the needs of the Picasa user, he or she can decide which company
(and thus connector) will be most suitable for his or her picture printing needs.

Finally, the fifth type of customization is system component change, where simi-
lar feature sets are provided by different components, which are selected based on the
tenants’ requirements. An example is that of a tenant that already developed a solution
for part of the solution provided by a multi-tenant web application that the tenant wants
to keep using. The component in the web application is, in this example, replaced by
the component of the tenant completely. Depending on the level of complexity, further
integration might be needed to have the component communicate with the web ap-
plication, when necessary. Introduction time for system component changes is during
architectural design. Binding time can be anywhere between architectural design and
runtime. A practical use of the system component change is that of Facebook, a social
networking site, which enables an end-user to install components from both Facebook
and third parties to gain more functionality. System component changes also include
the provision of a tenant-specific database or a tenant-specific model.

Table 1 lists the customization techniques of our model and their latest time of in-
troduction. These customizations have their latest binding time at run-time, since all
tenants use the same running instance of the system. The introduction time, however,
is during either architecture design or detailed design of the web application. For the
model change technique, for instance, it must be taken into account during architecture
design that end-users might be able to add to the object model of a web application.

The CRTs presented here provide deeper insight into how tenant-specific customiza-
tions can be created in multi-tenant web applications. The list assists developers in that
it provides an overview of ways in which customization can be implemented for multi-
tenant systems. These techniques are elaborated and embellished with examples from
the two case studies in sections 3 and 4, to further help developers decide what practical
problems they will encounter when implementing such customization.

3 Case Study 1: Collaborative Reading for Youngsters

In 2009 a program was launched in a Dutch library that aims to encourage reading in
public schools for youngsters between the ages of eight and twelve. The aim within the

Customization Realization in Multi-tenant Web Applications 451

Fig. 1. Screenshot Collaborative Reading Support Information System

program is to have groups of students read one specific book over a short period of time
in a so-called reading club. In that time, several events are organized at local libraries,
museums, and schools, to further encourage the student to actively participate in the
reading process. These events consist of reading contests (who reads the most excitingly
and beautifully out loud?), interviews with writers, airings of screenings of the book,
poetry contests, and other related activities. The children involved are informed using
a custom built content management system. A screenshot is shown in figure 1. The
program has been running for approximately one year. The program was launched by
one library, which means that other libraries and schools pay the initiating library a fee
per participant. Projects can run simultaneously, but also on different moments in time.
Tenants are libraries wishing to run a series of reading projects. End-users are members
of the library in the age group of 10-12 years old.

3.1 Tenant-Specific Customization

No model or view changes were made for the Reading Support Information System
(RSIS). All end-user and tenant-specific customizations are realized in the RSIS using
the controller change technique. The controller customizations are complex, however,
due to the unique views on the content for each user. For example, the RSIS provides
children with a child-specific view of the project in which they participate. The view
includes an activity agenda, a content management system on which both participants
and organizers can post, a shoutbox (a place where short unfiltered messages can be
posted by members on the frontpage), a reading progress indicator, and a project infor-
mation page. The content management system enables organizers and participants to
post polls, pictures, movies, and basic textual blog items. The RSIS also has some basic

452 S. Jansen, G.-J. Houben, and S. Brinkkemper

social network facilities, which enables users to befriend each other and enables users
to communicate. The system is not fully localized to one tenant. Participants from two
different tenants can see each other’s profiles, view each other’s blog posts, and become
friends using the social networking facilities, to enable two participants from different
areas in the country to connect.

Content is also only in part limited to the tenant. Most of the content, such as the local
organizer’s content items and that of the participants can only be seen (by default) in the
local scope. Some of the content, however, should be published nationally, when two
projects are running in different locations simultaneously and the content item spans
multiple projects. On the other hand, when a local organizer chooses to edit a national
item, a new instance of that content item is created that becomes leading within the
tenant’s scope. The tenant can choose to revert to the previous version, deleting the
tenant-specific version.

The changes to the controller are complex and required a lot of testing. During the
first pilot projects it was discovered that members could sometimes still see content
from other tenants, such as in the shoutbox, where different projects were run. Also,
a downside was discovered when doing performance testing: the home page requires
several complex queries for every refresh, thereby introducing performance problems.
The main upside of multi-tenancy, which is found in having to maintain one deploy-
ment across different customers, was almost removed completely by the performance
issue. Several solutions were implemented, such as deploying the shoutbox on a ded-
icated server, and some query optimization. In all encounters of customization, con-
troller changes were implemented using the tenant variable as the configuring condition,
i.e., if the end-user belongs to a library, the end-user stays in that particular scope.

No other customizations were necessary: the model does not require extensions, the
views must look uniform for different tenants, there are no connectors to external
components, and none of the components need to be replaced. One could argue that
some changes to the view are made since local organizers (libraries) can customize
the view offered to participants by adding a tenant specific logo. However, this logo is
stored in the database, and the controller determines which logo to show, which by our
classification makes it a controller change.

4 Case Study 2: Homework Support System for Schools

In 2007 the proposal for a Homework Support System (HSS) for secondary schools was
approved by an innovation fund for public libraries. The idea was to set up a new web
service for high school students, where help is provided to perform tasks like show-and-
tell speeches, essays and exam works for which bibliographic investigation is required.
The platform now forms the linking pin between public libraries, teachers, students,
and external bodies such as schoolbook publishers, parents, and homework assistance
institutes. The goal of the HSS is to increase the adoption of the public library for
homework assignments by the target group of high school students, to provide education
institutions with a tool to help them organise their work and save time, and for libraries
to remain an attractive place for students to meet and work, both online and on-premise.
The role of the public library as a knowledge broker would be, if the homework support

Customization Realization in Multi-tenant Web Applications 453

system is successful, reaffirmed in the age group of 12–20. This age group is well-
known for its disregard for the public library, whereas on the other hand they experience
lots of difficulty when searching on the web with commercial search engines [18]. The
tenants are libraries and the users are members of the library in the age group 12–20.

Fig. 2. Screenshot Collaborative Homework Support Information System

The HSS (aptly named Taggel.nl, screenshot in figure 2) that was developed is a
web application that helps students find reliable sources of information while doing
research for homework projects. The HSS consists of a number of main components
being groups (management), a search component, a collaboration component, a knowl-
edge link and rating component, and a portfolio component. Presently, the HSS is run-
ning a pilot with three schools and five libraries in one Dutch region. Results have been
promising, but many technical challenges are still to be solved.

The HSS consists mostly of commercial and off-the-shelf components. These com-
ponents are modeled in figure 3. Central to the HSS architecture is the HSS controller,
a relatively light-weight navigation component that coordinates each user to the right
information. The controller produces views for students and fills these views with data
from the database, which is based on the object model of the application. The object
model stores students, libraries, and schools as the main entities. When a student logs
in through the controller, the associated school and library are determined. Data is syn-
chronized regularly with the Student Administration System (SAS). Different SASs can
be used, based on a configuration option that is set by the developer or administrator
of the system. The HSS also communicates with the national library administration
system. When the system has confirmed that the user is a member of the library, the
user gains several extra features, such as automatic book suggestions in the e-learning
environment and book reservation.

454 S. Jansen, G.-J. Houben, and S. Brinkkemper

HSS

Model

Persistent
store

View
Controller

Search
Engine

Library
information

system
Content ratings

DB

Ratings
component

e-Learning
environment

School admin
system

Member
checking

component

End user
(many)

HSS Organization
(one)

School
(many)

National
public
library
(one)

Local
library
(many)

Fig. 3. Component and Component Location Overview of HSS

4.1 Tenant-Specific Customization

With regards to CRTs, the HSS is more interesting than the RSIS, since the HSS em-
ploys almost all the possible CRTs. Customizations are triggered by several tenant-
and user-specific properties. Each of the different customization types will be discussed
here, including a rationale and the advantages and disadvantages of using the CRT.

There are no changes to the models or views, since no custom model extensions
are required (the domain was known at design time) and the system must look uniform
across different tenants.

In regards to the controller changes, several customizations are specific to a tenant.
First, end-users have specific scopes in which they are active, such as their school, class-
room, or library. The scope determines what content they can see, in which discussion
groups they can take part, and to which library a homework question is directed. The
scope is determined by either the library or the school of which the student is a member.
This scoping is a typical instrument used in multi-tenancy systems, as was already seen
in the RSIS case study, the main advantage being that different tenants hide data from
each other. Much like in the RSIS case, scoping was complex compared to traditional
multi-tenant web applications, because some content is shared between tenants.

The controller component controls access to Fronter, a commercial e-learning plat-
form. The e-learning platform presently provides a lot of the functionality of the HSS,
and its Application Programming Interface (API) is used to develop other applications
that interact with the e-learning platform. The platform provides the portfolio com-
ponent, the collaboration component, and the groups functionalities. Furthermore, it
provides a real-time chat functionality, enabling librarians to provide real-time support
to students. If the school already uses Fronter or wants to use another e-learning plat-
form, it can replace the multi-tenant version of Fronter used for HSS. Simple html page
encapsulation is used to capture Fronter pages in the HSS, though more integration can
be and has been implemented using the other CRTs.

Customization Realization in Multi-tenant Web Applications 455

In regards to the interface change, several CRTs are used for the HSS. First, students
have to be able to search in the databases of their local libraries. Secondly, in case the
schools already have single sign-on solutions, these solutions can be used to sign on to
the HSS, and different component interfaces were built to support single sign-on. The
rationale behind both is simple: per tenant different systems need to be approached with
different interfaces. The development of the interfaces was relatively simple, since in
both cases previous solutions could be reused.

In regards to component change, customization is required for schools that already
have an e-learning environment to replace the HSS supported environment. The Fron-
ter component is in this case replaced by an already deployed solution on the school’s
servers. Presently, this tenant specific customization is well supported by the architec-
ture, since it only requires some links to change. However, the true integration between
systems in this case is lost. For example, it is presently possible to add any source found
in the search engine, such as a book or an online newspaper article, to any content, such
as a homework assignment or discussion, in the e-learning environment with one click.
When the component is replaced and no new integration is applied, this ceases to work.
In the development of the HSS was found that component change introduces complex-
ity on an organizational level, where suddenly schools are confronted with adjustments
to their own systems. To enable the schools in solving these problems, an API has been
constructed, which enables schools with the same student information system products
to exchange and independently maintain proprietary SAS API code.

At present, the system interface changes are built into the HSS rather haphazardly.
Customization code is built into HSS (catching specific events) in different places. Mix-
ing system customization and tenant customization code is generally considered bad
practice, and will soon be separated into several separate code files.

4.2 Combining Mechanisms for Advanced Search

An example of the combination of two CRTs is found in the search engine. The HSS was
designed to provide results ordered by quality and by relevance for a student, depending
on the student’s context (student level, school programme, source quality, locality).
Furthermore, the HSS was designed to obtain these search results from the HSS content
database and from a library specific database that contains all books and materials that
can be taken out of that local library. It has not been visualized in figure 3, but there are
in fact two sources that feed the search results, which are in turn ordered by yet another
source with content ratings from librarians and school teachers.

The customization of these search results is taken care of by the search component,
which can be considered part of the controller component of the HSS. customization
happens on three levels, being (1) which library database to pick, (2) which content
to show, and (3) in which order to show that content. The library database is chosen
based on the library of which this student is a member, or, if that library does not
participate in the HSS project, the library that is closest to the school that participates (it
is not uncommon for Dutch schools to have a steady relationship with the nearest local
library). The content that is shown from the HSS database is based on the school the
student goes to, although most content in the local HSS database presently is public.

456 S. Jansen, G.-J. Houben, and S. Brinkkemper

The customization mechanisms used are system connector change and controller
change. The controller (i.e., search component) does most of the work here, since it
has the responsibility to determine how queries are sent to which library catalogue
instance (system connector change), how search results are ordered (controller change),
and which results are shown (controller change). The variability mechanisms used are
conditional variables that are stored in the database, i.e., not all variants were made
explicit when the system was started up. Please note that the order is determined by the
ratings component, which contains content quality and level ratings from teachers and
librarians.

5 Case Study Findings

Table 2 lists the encountered CRTs in the two cases studies. The table also shows which
variability realization technique has been employed for realizing the CRT. The ‘con-
troller change’ CRT is encountered most frequently. This is not surprising, since it is
easy to implement (compared to for instance model changes), has little architectural
overhead, can be used when the number of variations is implicit or explicit, and the
mechanism can be reused over the complete web application. Also, in both cases the
model was pre-defined and no further changes were needed to the views (on the con-
trary, both systems have to present a uniform look and feel). One thing must be noted
about controller changes, and that is that controller change code must be tested exten-
sively. This is even more so when the controller shares some content across different
tenants, which can introduce privacy problems when one tenant erroneously sees sensi-
tive data from another tenant.

System customizations introduce challenging architectural challenges. In regards to
architecture, depending on the direction of the data flow (inbound or outbound to the
system) different architectural patterns can be used to arrange communication between
the systems. An example of such an architectural pattern is the use of the API of the
other system, such as in the case of the single sign-on feature of the HSS, through
varying component implementations. The use of such an API requires the developers
to know the number of variations a priori. Another example is that of an infrastructure
centered architecture that only starts to look for available components at runtime, such
as the example that the e-learning component can be replaced dynamically, based on
one variable. Since the e-learning component runs in a frame of the HSS, it can easily
be replaced. Of course, integration with other functionality of the e-learning system has
to be built in again.

Even larger organizational challenges are introduced when doing system customiza-
tions. Whereas the developers and architects generally have a ‘it can be built’ attitude,
customer organizations are reluctant to add new functionality to their existing systems
and these co-development projects (both the school and HSS team, for instance) take far
more time than necessary when looking at the actual code that is built in. For example,
the e-learning environments of schools are generally hard to adjust, if possible at all.
Also, because the interface code that is built needs to be maintained, this introduces con-
siderable increase in total cost of ownership for the tenants. The introduction of generic

Customization Realization in Multi-tenant Web Applications 457

Table 2. Customization Realization Techniques used in the Two Cases
C

as
e

Functionality Customization
parameters

Customization
realization

Variability
realization
technique

1 Social networking Tenant Controller change (d)
1 Content views Tenant Controller change (d)
1 Content add Tenant Controller change (d)
1 Calendar Tenant Controller change (d)
1 Shoutbox Tenant Controller change (d)
1 Projects Tenant, payment, date Controller change (d)
2 Discuss with peers School Controller change (d)
2 Access school content School Controller change (b)
2 Search in book and KB Library, Student level Controller change (d)
2 Discuss with librarian Library Controller change (d)
2 Be active in group Student context Controller change (d)
2 Access library database Library System interface ch. (b), (d)
2 Discuss with teacher School, SAS System interface ch. (c), (d)
2 Access SAS for single sign-on School System interface ch. (c), (d)
2 Reuse functionality in e-

learning environment
School System component

change
(a), (d)

(a) Infrastructure centered architecture, (b) Run-time variant component specialization,
(c) Variant component implementations, (d) Condition on variable, (e) Code fragment
super-imposition. SAS = School Administration System, KB = Knowledge Base

APIs could help here, but in the case of e-learning environments such generic APIs will
not be available in the near future. These APIs can be seen as enablers for an implicit
number of variations using system interface change, whereas without a generic API one
can only have a limited number of components.

Another finding from these cases is that the binding time for each of the customiza-
tions determines how much effort needs to be spent on the customization. Generally, the
later the binding time, the larger the effort to build the multi-tenant customization in the
system. For example, in both cases the model was known a priori and no adjustments
had to be made at run-time by end-users. If such functionality had to be built in, both
systems would need an end-user interface and a technical solution that enables run-time
model changes. In the two cases these were not required and developers could simply
make changes to the models at design time. The same holds for the whether there were
an implicit or explicit number of variations. When the number of variations is explicit,
such as in the case of the single sign-on solution, the variation points are easy to build
in. However, when the number of variations is implicit, such as the number of projects
that can be run in the RSIS, the code becomes much more complex because it needs
to deal with projects running at differing times that share content and also differing
projects running at differing times that do not share content.

The evaluation with developers provided relevant observations, which are summa-
rized as follows. First, they indicated that the customization overview works well on
a high level when selecting techniques, but when implementing a technique, several
combinations of customization and variability realization techniques will be required.

458 S. Jansen, G.-J. Houben, and S. Brinkkemper

Also, the second case study was mentioned specifically as being a much better example
than the first, since the first case study merely provides insight into some of the sim-
plest mechanisms proposed in the framework. The discussions with developers during
the evaluation led to changes to the model: (a) an extra variability realization technique
(“code fragment imposition”) was added for the CRT “controller change” when one of
the developers mentioned that he had implemented such a mechanism. The main advan-
tage of using code fragment imposition, using an event catching mechanism, was that
the API would function similar to the web application itself. The developers knew of
several examples where the ‘wrong’ variability realization technique had been used to
implement a customization technique. The question was posed whether advice can be
given whether a certain type of customization is best applied to a specific situation. The
developers listed several negative effects of using the wrong customization technique,
such as untraceable customization code over several components, unclear behavior of
an application when using code fragment super-imposition, and database switches that
were spread out over the whole codebase.

6 Conclusions

It is concluded that current variability realization techniques insufficiently describe
multi-tenant customization. This paper provides an overview of CRTs in multi-tenant
web applications. These CRTs are further elaborated using examples from two innova-
tive web applications from the library sector. The findings assist developers in choosing
their own CRTs and helps them avoid problems and complexities found in the two
cases. The provided list of customizations is just the beginning: we consider annotat-
ing the CRTs with customization experiences as future work. Typical examples of this
knowledge are technical implementation details, code fragments, architectural patterns
used, and non-functional requirements implications, such as performance and reliability
problems.

References

1. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability modeling to support customiza-
tion and deployment of multi-tenant-aware software as a service applications. In: ICSE
Workshop on Principles of Engineering Service Oriented Systems, pp. 18–25. IEEE Com-
puter Society, Los Alamitos (2009)

2. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques:
Research articles. Software Practice and Experience 35(8), 705–754 (2005)

3. Jaring, M., Bosch, J.: Representing variability in software product lines: A case study. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 15–36. Springer, Heidelberg (2002)

4. Rossi, G., Schwabe, D., Guimaraes, R.: Designing personalized web applications. In: WWW
’01: Proceedings of the 10th international conference on World Wide Web, pp. 275–284.
ACM, New York (2001)

5. Chong, F., Carraro, G.: Architecture strategies for catching the long tail, Microsoft white
paper (2006),
http://msdn.microsoft.com/en-us/architecture/aa479069.aspx

http://msdn.microsoft.com/en-us/architecture/aa479069.aspx

Customization Realization in Multi-tenant Web Applications 459

6. Kappel, G., Pröll, B., Retschitzegger, W., Schwinger, W.: Modelling ubiquitous web ap-
plications - the wuml approach. In: Arisawa, H., Kambayashi, Y., Kumar, V., Mayr, H.C.,
Hunt, I. (eds.) ER Workshops 2001. LNCS, vol. 2465, pp. 183–197. Springer, Heidelberg
(2002)

7. Lei, Y., Motta, E., Domingue, J.: Design of customized web applications with ontoweaver.
In: K-CAP ’03: Proceedings of the 2nd international conference on Knowledge capture,
pp. 54–61. ACM, New York (2003)

8. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining different multi-tenancy patterns
in service-oriented applications. In: Enterprise Distributed Object Computing Conference,
IEEE International, pp. 131–140. IEEE Computer Society Press, Los Alamitos (2009)

9. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-tenancy
application development and management. In: E-Commerce Technology and the 4th IEEE
International Conference on Enterprise Computing, E-Commerce, and E-Services, CEC/EEE
2007, pp. 551–558 (2007)

10. Goy, A., Ardissono, L., Petrone, G.: Personalization in e-commerce applications. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321,
pp. 485–520. Springer, Heidelberg (2007)

11. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings of
the Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE Computer
Society, Los Alamitos (1994)

12. Ardissono, L., Goy, A.: Tailoring the interaction with users in web stores. User Modeling
and User-Adapted Interaction 10(4), 251–303 (2000)

13. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
Zanker, M.: A framework for the development of personalized, distributed web-based con-
figuration systems. AI Mag. 24(3), 93–108 (2003)

14. Fiala, Z., Houben, G.J.: A generic transcoding tool for making web applications adaptive. In:
CAiSE Short Paper Proceedings (2005)

15. Jansen, S., Brinkkemper, S.: Applied Multi-Case Research in a Mixed-Method Research
Project: Customer Configuration Updating Improvement. In: Steel, A.C., Hakim, L.A. (eds.)
Information Systems Research Methods, Epistemology and Applications (2008)

16. Yin, R.K.: Case Study Research - Design and Methods, 3rd edn. SAGE Publications,
Thousand Oaks (2003)

17. Reenskaug, T.: Models, views, controllers, Xerox PARC technical note (December 1979)
18. Fidel, R., Davies, R.K., Douglas, M.H., Holder, J., Hopkins, C.J., Kushner, E.: A visit to the

information mall: Web searching behavior of high school students. Journal of the American
Society for Information Science (1), 24–37 (1999)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 460–467, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Challenges and Experiences in Deploying Enterprise
Crowdsourcing Service

Maja Vukovic1, Jim Laredo1, and Sriram Rajagopal2

1 IBM T.J. Watson Reserach Center, 19 Skyline Dr, Hawthorne, NY 10532, USA
{maja,laredoj}@us.ibm.com

2 IBM India, Chennai, India
srirraja@in.ibm.com

Abstract. The value of crowdsourcing, arising from an instant access to a
scalable expert network on-line, has been demonstrated by many success
stories, such as GoldCorp, Netflix, and TopCoder. For enterprises,
crowdsourcing promises significant cost-savings, quicker task completion
times, and formation of expert communities (both within and outside the
enterprise). Many aspects of the vision of enterprise crowdsourcing are under
vigorous refinement. The reasons for this lack of progress, beyond the isolated
and purpose-specific crowdsourcing efforts, are manifold. In this paper, we
present our experience in deploying an enterprise crowdsourcing service in the
IT Inventory Management domain. We focus on the technical and sociological
challenges of creating enterprise crowdsourcing service that are general-
purpose, and that extend beyond mere specific-purpose, run-once prototypes.
Such systems are deployed to the extent that they become an integrated part of
business processes. Only when such degree of integration is achieved, the
enteprises can fully adopt crowdsourcing and reap its benefits. We discuss the
challenges in creating and deploying the enterprise crowdsourcing platform,
and articulate current technical, governance and sociological issues towards
defining a research agenda.

Keywords: Enterprise crowdsourcing, Governance, Crowdsourcing Process.

1 Introduction

With the realization of Web 2.0, the trend of harnessing large crowds of users for
mass data collection [1] and problem-solving [2], has become a growth industry
employing over 2 million knowledge workers, contributing over half a billion dollars
to the digital economy. Crowdsourcing is nowadays being employed in many
domains, ranging from advanced pharmaceutical research [3] to T-shirt design [4].

Two types of methods have been employed to catalyze the crowd participation.
Firstly, the more traditional ones, rely on motivating the participants to share
information and thereby either gain creditability or get reciprocal information [1, 5].
Secondly, many systems provide tangible incentives to crowd participants for their
contributions (e.g., monetary prizes) [3,4,5,6].

 Challenges and Experiences in Deploying Enterprise Crowdsourcing Service 461

Tapscott and Williams [7] discuss how businesses can harness collective capability
of outside experts to facilitate innovation, growth, and success. In contrast, our
research investigates applicability of crowdsourcing methodology within the
enterprise, thereby engaging internal networks of knowledge experts.

Section 2 describes the IT Inventory Management problem to which we have
applied enterprise crowdsourcing service. Section 3 discusses our experience in
developing and deploying an enterprise crowdsourcing service. We present challenges
in building a general-purpose service, which integrates with the existing business
processes, and the necessary development support to facilitate shorter turn-arounds in
customizing new use cases. Finally, we discuss incentives and governance issues.
Section 4 outlines a set of challenges for the true realization of enterprise
crowdsourcing.

2 Use Case: Crowdsourcing for IT Inventory Management

IT inventory management captures and manages the enterprises’ IT assets in
numerous repositories, which are often outdated and incomplete. Thus they often fail
to provide consolidated, global, views of the physical infrastructure and actionable
data (e.g. which business applications would be affected if a specific data center is
consolidated). However, this information can be found in the core of the organization
- the knowledge workers that understand and drive the business and the IT itself. Yet,
there is little transparency on who knows what within an enterprise. Locating such
critical business information becomes intractable, especially as the desired knowledge
is transferred between experts when they transition within the organization.

To address this IT inventory management challenge within a large enterprise, we
used crowdsourcing (“wisdom or crowds”) approach to discover, integrate and
manage the knowledge about the physical infrastructure that hosts business
applications. An example of such a business application would be a company's
support website, which resides on a number of servers. As such, business application
is differentiated from the actual middleware that may support such as a web server or
messaging queue, as those can be discovered by utilizing advanced scripts.

The goal of our crowdsourcing service was to find out and verify the information
about 4500 business applications. We have idenitified initial enterprise crowd from
the existing business application registry. Before sending of the e-mails with task
requests, we verified that the targeted crowd was reachable and still in the same role
within the enterprise. Where possible, we used 'delegate' application owners.
Additional feature of our crowdsourcing service was the capability to re-assign tasks
to other team members.This was useful in the scenarios where a) different team
members possessed partial knowledge about the task and b) business application
owner was no longer responsible for the given application.

For each business application contributors were asked to:

1) Verify the application ownership
2) Provide compliance information (e.g. is the application subject to ITAR?)
3) Identify servers that are hosting it (e.g. enter fully qualified hostname) and their

type (e.g. production, development, testing, etc.).

462 M. Vukovic, J. Laredo, and S. Rajagopal

There were three exceptional scenarios that were also considered: 1) application
has already been sunset (it's no longer running on the infrastructure), 2) application is
hosted on a 3rd-party server and 3) application is not hosted on any server (e.g.
application could be a spreadsheet file on a destkop).

Using the enterprise crowdsourcing service, we harnessed an expert network of
2500 application owners to execute the IT Inventory Management exercise - gathering
information on the mapping of 4500 business applications to more than 14,000 of IT
Systems (servers). Crowdsourcing service has achieved 30X improvement in process
efficiency, in contrast to the traditional approach of employing two full time experts
to manually reach out to the application owners and gather the information. This
process is rather time consuming, and typically would result in 100-200 applications
being captured over the two months time. Furthermore, the powerful knowledge
network, generated as a result of crowdsourcing run, can be situationally engaged for
other large-scale business and IT transformation initiatives, such as cloud
transformation.

3 Experience in Deploying an Enteprise Crowdsourcing Service

Not all the crowdsourcing use cases within the enterprise are the same. Inherently
they impose a set of requirements on the actual crowdsourcing process. For example,
is the task to be initially sent to one or more experts? Can the task be separated in a
number of (concurrent) subtasks? What support for task sequencing needs to be
supported? Can the user reassign the task or parts of the task to other users? How do
we create tasks, what sort of existing business repositories are available and can serve
to initiate the crowdsourcing tasks? Finally, how does one go about validating the
collected data? In this section, we discuss the crowdsourcing process, its elements,
and key requirements for the development support to enable efficient deployment and
customization of new use cases.

3.1 Task Management and Crowdsourcing Process

When designing our crowdsourcing service we have been striving towards an
approach that allows drawing best practices and eventually leading us to build a self
service system where we can reuse our key elements. The use cases we have
identified are of a knowledge seeking nature, such as the IT Inventory Management
one that we describe in this work. We build a business process that facilitates the
capture of knowledge, usually around a business object (e.g. a business application or
a server).

We look at the business process as a sequence of steps where people either
contribute knowledge to the business object or make decisions upon the knowledge
that has been captured, such as validation, request for more information, or simply
complete the step in the process. A step in the process we define as a task.

In its purest form, crowdsourcing tasks should be available for everyone to apply
and attempt to complete them. In an enterprise environment we have the benefit of
other intrinsic knowledge as part of the organization that allows us to pre-assign tasks
to initiate the process. We call this the seeding process. It uses some information

 Challenges and Experiences in Deploying Enterprise Crowdsourcing Service 463

about the business object, such as prior, current ownership, or lead process owner, for
example. Once the tasks are assigned, task owners may provide requested knowledge,
segment the work and refer segments to different parties, or simply forward to
someone else to take care of the task. One concept under consideration is the use of
optional fields, if the capture process allows it, we may want to capture information as
quick as possible, yet not delay key steps in the process when prior ones have been
completed. By using optional fields we can expose and attempt to gather other
information, yet if it is not captured by the time the mandatory information is
captured, we may proceed to the next step.

Task ownership allows for other support services to accelerate the completion of
the tasks, such as the use of reminders and escalations. Once a task has been referred
to, there is the possibility of a delay due to lack of attention or misdirection. It is
important to raise awareness and force an action as soon as possible. In our studies we
were able to complete 50% of the tasks in 4 days [8], and with use of reminders and
escalations we were able to keep the process alive and close almost 90% of the tasks
in the following 3 weeks.

The lessons learned have helped us improve the task management process, and we
are driving to a design that allows us to define any business object and apply the task
management on top of it.

As tasks are completed, our system captures who is modifying each field of the
business object and completing tasks. This information allows us to build an audit
trail of all changes. This information creates user community around the business
artifact as a by product of the process. This user community has many dimensions, It
could be around a particular business object, or around the skills required to complete
the task. The community can be invited or a member can be referred to help on an
open task. The community usually outlives the process, and can be invoked at a later
stage when rerunning the business case or for new extensions of the process.

Finally, crowdsourcing process requires certain governence support. Various use
cases, may call for the admistrative and mediator roles, to provide capabilities such as
task cancellations, task management or resolution of conflicts (e.g. esp. on the
marketplaces where task requestor offers monetary rewards).

3.2 Implementation of the Enterprise Crowdsourcing Service

We have build our enterprise crowdsourcing service as a Web-application, designed
to support knowledge acquisition activity. It enables task creation based on existing
business artifacts, such as a task for the existing application in the business
application registry (e.g. task for the “Support Website”). Tasks are either assigned to
single or multiple users (based on ownership information available in the business
artifacts). The task list for each user is displayed in the home page upon logging into
the crowdsourcing service. When tasks can be worked upon by multiple users
concurrently, an application level lock is introduced to enable concurrency. Users are
notified whenever the task they are working on is concurrently modified. This helps
multiple users collaborate on a single task in a transparent manner. Users are also
presented with the modification history of artifacts enabling them to know who
changed information and what changes were made.

464 M. Vukovic, J. Laredo, and S. Rajagopal

Our crowdsourcing service relies on the Enterprise Directory (that is, a list of
employeed, their contact details, and organizational structure) for user authentication
and for obtaining the user profile information, such as such as first name, last name,
location and manager’s details. It further utilizes Enterprise Directory to enable
quicker and easier lookup of employee names and e-mail IDs when re-assigning
tasks. Business artifacts are sourced from existing internal repositories, such as server
and business application registries. Enterprise crowdsourcing service relies heavily on
the recency of data in such applications as tasks are assigned to users based on the
same. Wherever required, it validates such data against the enterprise dricetory to
confirm validity.

Enterprise crwodsourcing service also features reminder capability, to send out e-
mails to users with tasks pending for more than a predetermined number of days in
their task list. The reminder schedule can be customized by the administrator.

The application also enables users refer part of or the entire task to other users.
Preferred fields of the task can be selected before sending a referral and these are
highlighted when the referred user works on the task. Auto complete of referral
emails in the email selection box is enabled for easy and quick user lookup against
the enterprise directory.

Administrative users are provided with the capability to manage tasks by enabling
them to cancel, complete or reassign open tasks; reopen canceled and completed tasks
and editing task information without changing ownership. Administrators can also
view reports and logs of the modification history of the artifacts.

3.3 Development Support for Building Crowdsourcing Solutions

As a crowdsourcing application needs to manage tasks in a context different from that
of traditional workflow systems – multiple users collaborate on a single task with the
ability to forward part of or the whole task to one or more users. Hence, the
persistence layer requires a framework or tool that provides transaction isolation and
transaction transparency – each user working on a task needs to know what
information has been contributed/ modified about the task by other users and who did
the same. Transaction transparency can be achieved on the persistence layer by
alerting the user carrying out modifications about any intermediate transactions.
Since tasks go through various stages of its lifecycle, development would be easier if
the persistence layer also supports state-modeled artifacts.

The data layer should provide efficient techniques to cache and retrieve look-up
and drop down list data that are used frequently. This is especially critical when the
crowdsourcing platform caters to capturing information about physical assets in the
organization which typically number hundreds of thousands in big organizations. Also
critical is the efficiency of generating reports based on various criteria as the data size
can run up considerably. The servers hosting the application should be clustered to
achieve load balancing and failover.

The application also requires access to the enterprise’s employee look up database
to validate if tasks are forwarded to valid users and for ease of lookup of employee
details such as email id, name and location. Access to details such as the project of the
task owner would be helpful in cases where no response is obtained from the owner

 Challenges and Experiences in Deploying Enterprise Crowdsourcing Service 465

so that other members in the project may be assigned the task. Integration with other
organizational systems also facilitates in developing a good crowd sourcing system by
providing data on assets, language preferences of users, whether the user is still active
within the organization or is on short/long leave during task creation etc.

The application also requires a robust email service which can handle the load
required by the system. The email service should provide templating capabilities to
send out personalized and customized email messages. Some organizations have
restrictions on sending mass mailers to employees within the organization. The
support of management is essential as crowdsourcing systems usually involve sending
out high numbers of emails to employees – by way of initial information seeking
emails, referral emails and reminders for pending tasks.

3.4 Incentives and Governance

The success of any collaborative endeavor, both within an organization or when an
outside community is engaged, heavily depends on the incentive mechanisms put in
place to achieve the desired outcome. Numerous incentive mechanisms exist and
make collaborative production challenging [9]. Traditional award schemas are
presently employed by enterprises, e.g. salary, performance bonuses. Incentives for
crowdsourcing raise new legal challenges (e.g. compliance and taxation).

Types of Incentives
When building a crowdsourcing service, there are two types of incentives that
designers need to consider. Firstly, the challenges is how to attract new members?
Secondly, and more importantly, the question is how to encourage the contributions
and sustain the community of the time?

Effective integration of new members is critical factor to successfully building an
online community. Challenges with attracting and enabling contributions of new
members can be grouped in the following categories [10,11,12]:

1. New members tend to be less committed
2. They need to learn the norms of the behavior
3. Need to understand the structure of content and engagement.

To encourage contribution in a crowdsourcing exercise, one needs to reduce any entry
barriers, and provide clearly identified goals. A critical factor for participants, aside
from the clearly identifiable goal and skillset, is that benefits outweught the cost of
participating. Cosely et al. [13], present an intelligent task routing mechanism to
increase contribution by targetting contributors’efforts to where they are more needed,
and based on their expertise.

Incentives can further be grouped into material and non-material (social) ones.
Examples of material incentives, include monetary, such as the ones employed by
Mechanical Turk and Innocentive. In the same group, are (material) prizes, which are
utilized by TopCoder and Netflix for example, to award the best performing members
of the crowd.

466 M. Vukovic, J. Laredo, and S. Rajagopal

Our experience
The deployed crowdsourcing application included capabilities that allowed
participants to collect virtual points for crowdsourcing task, as well as for any
successful referrals. The points, however, at this stage were not exchangeable for a
tangible, material award. The users had the ability to see their rating, compared to
other participants. Finally, many users considered access to this consolidated
repository, which was a result of the crowdsourcing, to be an incentive on its own.

When introducing an incentive for a crowdsourcing task within an enterprise, a
number of questions are immediatelly raised: how would incentives affect employees
of different status (contractor vs. full-time), or similarly how does one engage a
service-type employee (with a billable utilization rate), as opposed to the traditional
employee with a flat-rate compensation. Following is a set of questions that form a
research topic within the enterprise crowdsourcing domain:

1. How are compliance, taxation and labor laws addressed as crowdsourcing is

being adopted?
2. How do all of the above apply to a global enterprise that coexists in many

national/regional jurisdictions?
3. How do we give incentives in a global company across borders?
4. How does a company view employees doing work (e.g. crowdsourcing tasks) that

is not their "day job"?

4 Challenges

Deploying enterprise crowdsourcing service provides an insight into its design and
use, but deploying systems beyond the limited existing, specific- prototypes will
require significant progress toward integration with the existing business processes.
We consider major challenges that must overcome before achieving this goal. This list
is by no means exhaustive; it provides a set of open questions that define the
requirements on components of enteprise crowdsourcing services.

1. Process: How does crowdsourcing become an extension of the existing business
process?

2. Technical: How can we rapidly develop and deploy new use cases for enterprise
crowdsourcing?

3. Sociological and governance: What are the effective incentives that can be
deployed within the global enterprise, and what implications do they have on the
existing compliance, tax and labor laws?

References

1. Olleros, F.X.: Learning to Trust the Crowd: Some Lessons from Wikipedia. In:
Proceedings of the 2008 International MCETECH Conference on E-Technologies (2008)

2. Brabham, D.C.: Crowdsourcing As A Model For Problem Solving: An Introduction And
Cases. Convergence: The International Journal of Research into New Media
Technologies 14(1), 75–90 (2008)

 Challenges and Experiences in Deploying Enterprise Crowdsourcing Service 467

3. http://www.innocentive.com
4. http://www.threadless.com
5. Bobrow, D.G., Whalen, J.: Community Knowledge Sharing in Practice: The Eureka Story.

Journal of the Society of Organizational Learning and MIT Press 4(2) (Winter 2002)
6. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with Mechanical Turk. In: CHI

’08 (2008)
7. Don, T., Wikinomics, W.A.D.: How Mass Collaboration Changes Everything. Portfolio

Hardcover (December 2006)
8. Vukovic, M., Lopez, M., Laredo, J.: People cloud for globally integrated enterprise. In:

The 7th ICSOC. 1st International Workshop on SOA, Globalization, People, & Work,
SG-PAW 2009 (2009)

9. Bartlett Christopher, A., Ghoshal, S.: Transnational management: text, cases, and readings
in cross-border management, 3rd edn. Irwin/McGraw Hill, Boston (2000)

10. Kraut, Burke, Riedl, van Mosh: Dealing with newcomers. Working paper 12/7/07 (2007)
11. Arguello, J., Butler, B.S., Joyce, L., Kraut, R., Ling, K.S., Ros, C.P., et al.: Talk to me:

Foundations for successful individual-group interactions in online communities. In: CHI
2006: Proceedings of the ACM Conference on Human-Factors in Computing Systems, pp.
959–968. ACM Press, New York (2006)

12. Bryant, S.L., Forte, A., Bruckman, A.: Becoming Wikipedian:Transformation of a
Participation in a Collaborative Online Encyclopedia. In: Proceedings, GROUP ’05,
Sanibel Island, Florida, November 6-9 (2005)

13. Cosley, D., Frankowski, D., Terveen, L., Riedl, J.: Suggestbot: Using intelligent task
routing to help people find work in wikipedia. In: Proceedings of the 12th ACM
international conference on intelligent user interfaces, ACM Press, New York (2007)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 468–481, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Business Conversation Manager: Facilitating People
Interactions in Outsourcing Service Engagements

Hamid R. Motahari-Nezhad, Sven Graupner, and Sharad Singhal

Hewlett Packard Labs
Palo Alto, USA

{hamid.motahari,sven.graupner,sharad.singhal}@hp.com

Abstract. People involved in outsourcing services work through collaboration,
conversations and ad-hoc activities and often follow guidelines that are
described in best practice frameworks. There are two main issues hindering the
efficient support of best practice frameworks in outsourcing services: lack of
visibility into how the work is done that prevents repeatability, and conducting
best practice processes that are ad-hoc and dynamically defined and refined. In
this paper, we present Business Conversation Manager (BCM) that enables and
drives business conversations among people around best practice processes. It
supports the dynamic definition and refinement of a process in a collaborative
and flexible manner. The ad-hoc processes are backed with a semi-formal
process model that maintains the model of interactions and an execution engine.
We present the implementation of a prototype BCM and its application in
outsourcing services. It supports making processes from best practices among
people more transparent, repeatable and traceable.

Keywords: Ad-hoc Business Processes, Collaborations, Outsourcing Services.

1 Introduction

Outsourcing services are offered through organizations of people [1]. The service
design and delivery entails several lifecycle phases, in which business artifacts are
generated and transferred from one phase to another. People involved in service
delivery often work through collaboration, conversations and ad-hoc activities.
Currently, it remains hard to provide visibility on how a service is created and
delivered across all lifecycles and track it as information about work results is
scattered across many systems such as document repositories, project management
systems, and emails. This leads to efficiency issues in the process, timing and
economics of service delivery.

There is a push towards facilitating and streamlining processes followed in
delivering outsourcing services so that they are delivered in a repeatable, traceable
and cost efficient manner. While ad-hoc, the interactions among people in service
delivery are not random: they often follow some high-level process flow described in
process frameworks (such as ITIL [2]) or in best practice documents in repositories.
For instance, the Transformation Services Catalog (TSC) from HP Enterprise Services
provides collateral templates (e.g., sales brochure, deployment guide, precedence

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 469

diagram, etc) for different lifecycle stages of several services. The templates are used
as guidelines for people engaged in advertising, designing and delivering services.

While the main activities conducted in delivering services are often given in
templates or defined by project participants, not all of these activities are known in
advance nor are they fixed: new activities may be introduced or existing ones in the
template not needed in a given engagement. Let us refer to the interaction among a
group of people to discuss and work on a business problem as a business conversation
(or conversation for short). The workplan of a given conversation should be able to be
adapted in an ad-hoc and flexible manner, often through brainstorming and
collaboration between people engaged in the service delivery. The activities within a
conversation are often inter-related, so that some may need to be done before others.
In addition, different conversations in an engagement are also related. Therefore,
there is a need for capturing relationships and dependencies of activities and
conversations. Addressing these problems could make outsourcing service delivery
significantly more cost efficient and scalable.

Current workflow management systems do not support such ad-hoc interactions
among people as often workflow systems need a well-structured and rigid definition
of processes ahead of execution time [15, 16, 21]. Document management systems
[18] such as Microsoft Sharepoint are passive repositories of documents and tasks and
do not drive interactions among people. Collaboration tools simplify the
communication between people and creating and sharing content in a collaborative
manner, however, they are unaware of the work context.

This paper presents a system called business conversation manager that supports
the guided interaction of people in a business context in a flexible, adaptive and
collaborative manner. It is capable of establishing business conversations among a
number of people (and from a template), drive work between people, and enable them
to conduct and adapt the workplan collaboratively (as they do the work). The system
does not necessarily need a starting template and can be used to start and drive ad-hoc
business conversations among an agile-formed group of people. It builds on top of
existing document management systems and collaboration systems. We envision that
users would use the business conversation manager besides and in integration with
productivity tools such as email, MS SharePoint and communication tools.

The conversation manager is backed with an engine that builds and maintains a
formal model of the workplan in the form of a task dependency graph that allows
nested task modeling, and enables automatic work allocation, progress monitoring
and dependency checking through the analysis of the underlying graph model. The
conversation manager is based on a minimal number of concepts. The core concept is
business conversation which is a conceptual container for the interactions among
people in order to achieve a business goal. It includes participants (person and role),
documents that are consumed (input) or produced (output) in the conversation as well
as a workplan for achieving the goal. A workplan consists of a set of tasks and their
dependency relationships. Participants of a business conversation can use a number of
communication channels (e.g., chat, web-based dialog mechanisms and email) to
interact with each other and update the system on the progress of tasks.

The rest of paper is structured as follows. Section 2 presents the definition of
concepts introduced in business conversation manager. Section 3 presents the
functionalities of business conversation manager from a system point of view. In

470 H.R. Motahari-Nezhad, S. Graupner, and S. Singhal

Section 4, we present the architecture and implementation of the business
conversation manager. We discuss related work in Section 5. Finally, we conclude
and present areas of future work in Section 6.

2 Business Conversation Manager: Concepts and Design

2.1 Characteristics of Business Processes for People Services

People services are offered through collaborative work of a group of people. These
services have a lifecycle that includes several phases such as inception, design,
delivery and operation. Several business processes are involved in each lifecycle
phase. These business processes are often described in best practice documents
provided either by the vendor corporation or coming from standards such as ITIL (IT
Infrastructure Library) [2]. By their very nature, these business processes do not
include precise workflows and a strict definition of what activities and in which
specific order they have to be executed. Rather, the processes define high level
descriptions of activities, some of which are optional in service engagements, as well
as a coarse-grained description of constraints on the ordering of activities.

The main characteristics of these processes include: they are (i) non-structured,
i.e., no strict or formal definition of the process exists, (ii) non-deterministic, i.e., the
execution order of the activities is not well specified, and the order may change in
different engagements, (iii) adaptive, i.e., the identified activities may be updated in
engagements and at runtime, some may be skipped and new ones added. In general,
there is no separation between definition and execution phases of the process, (iv)
templated or ad-hoc, i.e., there may exist templates for such processes that suggest an
initial set of activities, however, such processes may be defined at runtime by the
people in an ad-hoc fashion, and (v) collaborative, i.e., both the definition as well as
execution of the process may be performed in a collaborative manner between
involved people.

There are studies showing that capturing definition of processes in a complete and
accurate way is often not practical [3] due to sometimes incorrect and incomplete
information from various sources. Having adaptive and flexible mechanisms to define
processes enables updating the process models at runtime to account for such
incompleteness as well as in-accuracy. We refer to such semi-structured processes as
people processes in the context of designing and delivering people services.

2.2 People Processes: Basic Concepts

We define a minimal number of concepts for people processes informally described in
the following. The core concept is business conversation (conversation, for short)
which is a conceptual container for the interactions among people in order to achieve
a business goal. A conversation includes a number of participants that are either real
persons or roles, and a set of documents that are consumed (input) or produced
(output) in the conversation. Finally, a conversation has a workplan for achieving the
goal.

A workplan consists of a set of tasks. A task is defined by the set of its input
documents and output documents. A task can have a state of “new”, “assigned”,

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 471

“pooled” (can be picked up by one of participants), “enabled” (ready to be
performed), “started”, “completed” and “in-active”. Tasks can be composed of other
tasks in a hierarchical manner. Therefore, tasks can be either “composite” (having
subtasks) or atomic. Atomic tasks are executable, i.e., a participant may perform it
and it is completed, however, composite tasks are abstract and their completion
requires the completion of all its abstract and composite subtasks.

Tasks may have dependencies on one another. We define the dependency
relationship between two tasks as their data dependency. That is an input document of
dependent tasks may be produced by the depended task. The data dependency
between tasks is used to draw implicit control flow dependencies between tasks. This
frees users from explicit identification of control flows. Indeed, this is an important
feature that minimizes the amount of information needed from users to specify the
process. It comes from the lesson learned from the observation that most users
involved in a project in outsourcing deals do not like the burden of specifying a
control flow model (in other words a process model), but rather they are more
concerned about their own role and function in the process.

There are two types of task dependencies: “start” and “completed”. In the “start”
type, the dependent task cannot start until the depended task is started, as well. The
“completed” type specifies that the dependent task can start only if the depended task
is completed. We define the concept of communication channel to represent a
mechanism (email, chat, web-based dialog systems) through which participants of a
business conversation interact with each other and the system to perform work and
report on the progress of tasks. Similar to tasks, conversations may have dependencies
of the same types.

Finally, a participant (a role or a person) can take one of four levels of involvement
in a task: “Responsible”, “Accountable”, “Consulted” and “Informed” (similar to
RACI chart [4] for assigning roles and responsibilities in a project plan). The
role/person that is responsible should perform the task, while the accountable
role/person is ultimately required to make sure of good performance of the task.
People with consulted role are those who can be approached for brainstorming or
information, and finally, people with informed role have an interest to be informed of
the progress and the result of performing the task. Note that not all these roles have to
be assigned for a given task, but any task should have a role/person assigned as
responsible (which in this case is by accountable as well).

2.3 Towards a Formal Model for People Processes

In this section, we formally define the notion of people processes starting by the
concept of “business conversation”.

Definition 1 (Business Conversation). A business conversation c is a triple

>=< WDPc ,, in which P is the set of participants, D is the set of documents

manipulated in the conversation and W is the workplan.

The participants }|{ MpRppP ∈∨∈= where R is the set of roles and M is the

set of people in the enterprise. D is the set of documents that are either consumed or

472 H.R. Motahari-Nezhad, S. Graupner, and S. Singhal

generated in the conversation, and typically stored in document repositories such as
MS SharePoint. We define a workplan W as follows:

Definition 2 (Workplan). A workplan W is a hierarchical directed graph represented
with tuple >=< XTW , where T is the set of tasks (nodes in W), and

TTX ×⊆ is the set of transitions. A task Tt ∈ is defined with the tuple

>=< sOIt ,, in which DOI ⊆, is the set of input (outputs) respectively, and

∈s {new, assigned, pooled, enabled, started, completed, in-active} is its status. A

transition x is represented as tuple Xqtt >∈< ,, 21 meaning that the execution of

task t2 depends on that of t1 with the dependency type },{ completionstartq∈ . If

q=”start” then t2 is not enabled unless t1 is started, and if q=”completion” then t2 is
not enabled until t1 is completed. A task can be “composite” or “atomic”. To a
composite task t a child workplan 'W is associated.

New
Assigne

d

Pooled

Enabled Started
Complete

d
Inactive

Fig. 1. The lifecycle of an atomic task

Figure 1 shows the lifecycle of an atomic task, i.e., a task that is performed by a
participant. A composite task observes only some of these states, i.e., “new”,
“enabled”, “started”, “completed” and “in-active”. A composite task is “enabled”
when all its dependencies are resolved (started or completed respectively to the type
of each dependency). It is “started” when at least one of its atomic sub-tasks (in any
level) is started, and becomes “completed” when all its sub-tasks are completed. Note
that the progression (the status) of a task is updated and for composite tasks can be
over-written by participants.

2.4 Execution Semantics of People Processes

Conceptually, we map the workplan model of a business conversation into a
colored, hierarchical Petri net [5] and therefore we adopt the execution semantics of
such a model for a workplan model. Mapping to the concepts of Petri-net, tokens
could be used to represent documents flowing in a business conversation. In a
colored Petri net, tokens can take values that are defined by a simple or complex
type (historically the value of a token is referred as its color). Workplans allow
hierarchical definition to enable having multiple levels of abstraction in the process
model. This simplifies the work for different participants such as managers,
workers, etc and allows gradual development of the plan with more details
concerning specific higher-level tasks. In order to model this aspect of workplans,
the semantics of hierarchical Petri nets (HP-Net) [6] are adopted.

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 473

Note that this mapping is conceptual in the sense that we incorporate these
semantics in our execution engine. Adopting this model allows capturing and reacting
to events related to the status update or progression of tasks and document exchanges
by humans in a business conversation. Note that the dependency graph of a workplan
may form a set of disconnected sub-graphs. Each connected component in this model
is related to a set of dependent tasks. When evaluating the dependency model from
the execution semantic perspective, we can form a single HCP-net by creating a fake
initial place and transitions through which all sub-graphs are connected to form the
overall HCP-net representing the whole workplan.

2.5 Templates

In many domains and particularly in services outsourcing context, there are corporate
repositories offering templates of documents that are used in the engagements as well
as activities that have to be followed in each stage. In some areas such as IT service
management, there are standards such as ITIL [2] that describe such processes and
activities at a high level. In our previous work (reported in [7]), we have taken an
approach to formalize part of these processes as templates that are used to initiate
working processes among people based on ITIL processes. Process templates are
described as RDF graphs that are refined: more details are added to them as the work
progresses among people.

In this paper, we build on our previous work for encoding and formalizing
processes in the context of outsourcing engagements as templates. In particular, we
have taken collateral templates (high level description) for different lifecycle stages of
service delivery from HP TSC catalog. We formalize them as templates and capture
the knowledge in those processes as RDF graphs. These templates are made available
in the system to be used by participants (e.g., managers) in a business conversation as
the initial workplan that could be tailored for a specific engagement.

Fig. 2. Part of the hierarchical task dependency model for a workplan

474 H.R. Motahari-Nezhad, S. Graupner, and S. Singhal

For example, Figure 2 shows part of the (high-level) hierarchical dependency
graph for the workplan of an “assessment” business conversation in the context of an
incident management process. The ovals represent tasks and the links between them
the dependencies between them. For details on how this information is encoded in
RDF, please refer to [7].

3 Business Conversation Manager

In this section, we describe our system called “business conversation manager”
(BCM) for the establishment, management as well as adaptation of business
conversations among people.

3.1 Establishing Conversations and Implicit Dependency Model Management

While business conversations in BCM are supported with formal models, it is very
important to note that these models are not exposed to users in BCM. Indeed, BCM
creates and maintains the task dependency model of the workplan in the backend
automatically. Therefore, participants do not work with the workplan model
explicitly. Participants are concerned with the definition and progression of individual
tasks and if a given task maintains dependency relationships with others. This is
consistent with the nature of the job that they are doing. The intention is to introduce
the least amount of overhead of the automation tool for participants.

One of the main features of BCM is that it allows gradual and level-wise
definition of the model by different participants with different expertise and levels
of knowledge about the process. Therefore, there is no need for apriori definition of
the whole process. The participants can start with a high-level and incomplete
definition of the tasks. The hierarchical feature of the model allows the participants
to refine abstract tasks into more finer grained ones in a level-wise fashion by
people who are responsible for the next level of detail. Another important feature of
this system is that there is no separation between the definition and the execution of
the model. The process is considered executing right from the time that the highest
level tasks are defined. Therefore, the runtime and design of the process are inter-
leaved.

In identifying the dependencies between the tasks, BCM does not mandate
identifying which specific input document(s) of the dependent task depends on that
(those) of a depended task. This is to provide more flexibility for participants. Instead,
BCM establishes this relationship after the participants of the dependent tasks pull
and use documents produced (or manipulated) during the performance of the
depended task. Internally, this is managed in BCM by tagging documents as “input”,
“manipulated” or “output” for documents that are used or produced in the context of a
task. However, the dependency between two tasks must be explicitly specified. It
should be noted that dependency is specifiable between tasks at the same level in the
hierarchy.

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 475

3.2 Management and Adaptation of Conversation Workplans

People processes are often ad-hoc and require adaptation, especially if the workplan
of a conversation is defined according to a template. BCM provides the following
facilities for adapting definition of processes.

Adding and updating a task: This method allows the definition of a task in a
workplan. For each task, properties such as start-date, due-date, end-date, status,
actorIDs, documents, dependsOn, parent, type and method can be specified. ActorIDs
provides the list of the participants involved with their role(s) in accomplishing the
task. A task can be one of atomic or composite types, and can be accomplished using
one of two methods: “human” or “automated”. By default tasks are human-offered. If
the method of a task is “automated”, the API interface details are needed and an
adapter to call the Web service at the runtime is generated. “dependsOn” takes the list
of other tasks that the current task depends on. A task may not have any
dependencies.

The parent property takes as value the workplan or another composite task if it is
its immediate child. A composite task is a place-holder for a set of other tasks that are
not yet known. The update method enables updating various properties of a task at
runtime.

Remove a task: This method introduces a “consensus-based removal” approach for
removing tasks in a collaborative manner between conversation participants. When
the removal request for a task is made by a participant, BCM triggers an event so that
a notification message is sent to all participants with “accountable” and “responsible”
roles from the list of actorIDs of this task and all the tasks that depend on it directly to
inform them of the request for its removal. The message asks them to react if they
object to the removal of the task. If nobody objects to its removal within a pre-
specified timeline, it is removed from the workplan. Upon removal, the dependency
list of tasks that depends on the removed task is updated. The status of the removed
task is set to “in-active” meaning that it is not part of on-going conversation. It is not
shown in the list of tasks of the workplan but is maintained in the back-end repository
for historical reasons, as well, it can be restored to its last state before removal if
needed by the participant who removed it.

Join a business conversation: This method allows a person in the enterprise to
request to join a team involved in a business conversation. The membership request is
sent to the participants with “accountable” role in the business conversation for
approval (approval of one suffices). BCM creates a workspace for the new
participants in which he can review the history of the business conversation
progression.

Add/remove a participant: This method allows the participants in a business
conversation to invite new people to join the business conversation, and allows
participants with “accountable” role to remove a participant from the conversation. In
case the person is removed, the workspace of the person gets the status of “in-active”
and maintained in the repository for historical reasons.

476 H.R. Motahari-Nezhad, S. Graupner, and S. Singhal

4 Architecture and Implementation

We describe the architecture and implementation of prototype business conversation
manager in the following.

4.1 Architecture

The business conversation
manager is offered as a service
that exposes a set of APIs.
There are three main categories
of components in BCM: those
supporting the definition and
execution of workplans, and
those related to communication
channels, and the client-side
portal. The system’s architecture
is shown in Figure 3. It has the
following components:

The service APIs: The APIs
expose the functionality of
business conversation manager
as a Web service.

Business activity portal:
This is a Web-based software
component that implements
the user interface and supports
ad-hoc user interactions to define, view and update the workplan/activity details.

Workplan repository: This is the component that stores information about
workplan templates from best practices for process frameworks such as ITIL as well
as people service catalogs such as TSC. It also stores the information of on-going
conversations.

Workplan definition and adapter: This component enables definition of workplans
and updating their definitions through methods such as adding/removing tasks, as well
as updating the workplans definition in an ongoing conversation (at runtime) initiated
by events triggered from the portal.

Workplan execution engine: This component supports the execution of the
workplan of a business conversation and the execution semantics introduced in Section
2.4. This component coordinates the flow of tasks among people based on task
dependencies.

Communication channels: The communication channels are those that enable the
communications between participants such as chat and email, and document
management systems such as Microsoft SharePoint that enable storing information
used in the context of BCM.

Fig. 3. The architecture of business conversation
manager as a service

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 477

4.2 Implementation and Use

We have implemented the components for the prototype business conversation
manager service in Java. The client-side portal has been implemented using Google
Web Toolkit (GWT) (code.google.com/webtoolkit/).

Fig. 4. The screenshot of the frontend of Business Conversation Manager prototype

In the prototype BCM tool, the participants of a business conversation are
provided with a workspace within which they can manage the conversations that they
are participating in. The workspace enables participants to monitor the status and
progress of tasks as well as update the workplan. The workspace also provides
highlights such as tasks that are (over-) due.

Figure 4 shows the screenshot of the workspace for a user called “David”. In the
left panel it shows the list of conversations (active and archived). The middle panel
shows the information about a given conversation including which service
engagement and lifecycle stage it belongs to, as well as the start and end date of the
conversation. The list of participants and the input and output documents are also part
of the middle panel. The bottom panel shows the list of tasks in the conversation.
David has the option of limiting the task view to the ones allocated to him or all tasks
in the workplan of the conversation. The right panel shows updates from all
conversations in which David is participating (e.g., enablement of a particular task

478 H.R. Motahari-Nezhad, S. Graupner, and S. Singhal

because its dependent tasks are completed, and new tasks that are in the pool and
David is one of the nominated people to take it). The notification messages are visible
in the workspace and can be optionally sent by email to participants, as well.

When an outsourcing manager comes to the business activity portal, he/she can
create a new business conversation using a wizard. The system asks the manager
whether the new conversation is defined based on a pre-existing template, in which
case she can select from the list of already stored templates. Using the wizard the
people involved in the conversation are also invited. A business conversation is
considered active from the moment that it is defined.

5 Related Work

A novel contribution of the proposed business conversation manager is that is builds a
bridge among structured and rigid process-centric systems, completely ad-hoc and
unstructured conversations between people, and the use of productivity tools in work
environments to facilitate the efficiency of conducting best practice processes such as
ITIL. Therefore, related work spans across the areas of best practice frameworks;
business processes; knowledge and document management systems; and collaboration
environments.

Best practice frameworks. Processes from best practice frameworks such as ITIL
[2] and eTOM [9] have been often described as textual descriptions. There have been
efforts to support people in formalizing and following best practice frameworks. For
example, some approaches propose using semantic Wiki [8] and also ontologies [10] to
represent processes. However, these efforts only look at this representation as a
knowledge base rather than actionable processes.

Business processes. Business process modeling and management tools such ARIS,
SAP or standards such as BPEL4People [11] allow definition of well-defined and
structured business processes. However, many processes in the enterprise, especially in
the context of outsourcing services, involve human interactions that are semi-structured
and ad-hoc. In the same line of work, [13] formalizes ITIL processes as precise
business process models expressed in process modeling languages such as BPMN.

Definition of ad-hoc and flexible processes has also gained attention recently. For
instance, Caramba [14] enables definition of ad-hoc processes for virtual teams. In this
work, the process needs to be explicitly defined by the team members using graphical
process modeling tools prior to its execution. However, in the context of best practices:
(i) processes are not well-specified to enable formal definitions directly, (ii) process
users are knowledge workers that are only familiar with productivity tools; they find it
difficult to work with formal process models, And (iii) in our approach the process
models are used in the backend to support the user but not explicitly exposed to users.

Change management for adaptive and dynamic workflows is studied in the
literature [15, 16, 21]. Adaptable workflows address changes that affect the workflow
definition (structure, type, etc), while dynamic workflows are concerned with changes
to runtime instances of workflows. ADEPTflex [15] enables operators to (manually)
change the running instances of a statically defined workflow, while ensuring its
correctness. In [16] a high level definition of a workflow is assumed and the concept of
worklet is introduced to assign concrete activities from a library to realize tasks in the
predefined, high level workflow. We do not assume availability of a library of tasks
that could be used to realize high level tasks, as most often changes to tasks in process

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 479

templates are specific to the project context. Our proposed model enabled both static
and dynamic changes. The changes to the ad-hoc processes and instances are made as
the participants work.

Knowledge and document management systems. Many existing requirement
capture and management tools and business process analysis tools such as ProVison
simplify the tasks of gathering, documenting, tracking and managing requirements and
process definitions in an enterprise [17]. Typically these tools help document
requirements and processes, and in some instances simulate the impact of changes.
They are geared towards implementing and executing projects and processes in IT
systems not among people.

Collaboration approaches and tools. The proposed system differs from wiki-based
collaboration systems (e.g. Semantic Media Wiki [8]) as Wikis provide a passive
knowledge base. DOMINO [23] and OpenWater [22] are examples of early efforts to
support more flexible and cooperative processes in organizations. Unified activity
management [12] is another thread of work which aim at providing an integrated work
environment for all activities of a person across various productivity tools and
organizing them and supporting the collaborations of people around activities.
Business Conversation Manager takes a step forward by combining informal
interactions about the process with the semi-structured definition of the processes
while supports ad-hoc (best practice) processes which was not the focus in earlier
works. Recently, there has been a rapid growth in social collaboration tools and
techniques such as Google Wave (wave.google.com) as well as Web 2.0 types of
collaboration techniques. These tools and techniques are complementary to our work,
and in our platform they play a role as communication channels between conversation
participants. There has been also recently some works that allow collaborative
definition of processes, e.g., based on Google Wave platform (e.g. Gravity [19] from
SAP Research that allows collaborative process modeling) or Workflow-on-Wave
(WoW) [20]. These tools aim at defining the business process model prior to their
execution (in a collaborative manner), however, we do not assume the existence of a
business process model (other than templates) ahead of execution time and the process
definition emerges and becomes updated on the fly (while people work) in a flexible
and collaborative manner among people.

6 Conclusion and Future Work

In this paper, we have presented an enterprise-grade system for establishing,
managing and conducting business conversations to support ad-hoc people processes
from best practice frameworks such as ITIL. We have implemented a prototype
system in the context of supporting people processes for delivering outsourcing
services. Our main aim has been to reduce the burden of using the system as well as
its overhead for knowledge workers in terms of amount of process-related information
that they need to learn. At the same time, we have designed the system so that it is
backed with formal modeling and execution semantics of processes and makes uses of
them in a transparent manner for users.

The process model introduced in the paper based on dependency model offers a
“lightweight” process modeling approach that supports collaborative definition and
adaptation of the process compared to hard-coded or rigid processes that are hard to
change after the process have been started. The business conversation manager (BCM)

480 H.R. Motahari-Nezhad, S. Graupner, and S. Singhal

introduced in this paper builds on top of and allows users to utilize the existing systems
that they are familiar with in their daily jobs such as MS SharePoint, and email. We
introduce a minimum amount of abstractions in a simple and innovative manner to
simplify the job of people in defining and managing people processes.

In terms of future work, we are planning to provide a catalog of conversations to
users so that participants can find other related conversations within the project to that
of their own conversations so that inter-conversation dependencies could be managed
more efficiently. We are currently incorporating the capability to store the workplan
of active conversations that are near conclusion as templates for future reuse. We are
planning also to experimentally validate the system by having people use it in the
context of service engagements.

Acknowledgement. Authors would like to thank Sujoy Basu and Susan Spence from
HP Labs for their feedbacks and comments on earlier drafts of this paper.

References

1. Lee, J., Huynh, M.Q., Kwok, R.C., Pi, S.: IT outsourcing evolution—: past, present, and
future. Commun. ACM 46(5), 84–89 (2003)

2. Hendriks, L., Carr, M.: ITIL: Best Practice in IT Service Management. In: Van Bon, J.
(Hrsg.) The Guide to IT Service Management, London u. a, Band 1, pp. 131–150 (2002)

3. Hobson, S., Patil, S.: Public Disclosure versus Private Practice: Challenges in Business
Process Management. In: Workshop on SOA, Globalization, People, & Work (SG-PAW
2009), Sweden (2009)

4. Project Management Institute, The Project Management Body of Knowledge, PMBOK
(2000)

5. Jensen, K.: An Introduction to the Practical Use of Coloured Petri Nets. In: Reisig, W.,
Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1492, pp. 237–292. Springer, Heidelberg
(1998)

6. Choo, Y.: Hierarchical Nets: A Structured Petri Net Approach to Concurrency, Technical
Report CaltechCSTR:1982.5044-tr-82, California Institute of Technology (1982)

7. Graupner, S., Motahari-Nezhad, H.R., Singhal, S., Basu, S.: Making Process from Best
practices Frameworks Actionable. In: DDBP 2009: Second International Workshop on
Dynamic and Declarative Business Processes, Auckland, New Zealand, September 1
(2009)

8. University of Karlsruhe, Semantic Media Wiki,
http://semantic-mediawiki.org

9. TeleManagement Forum, Enhanced Telecom Operations Map (eTOM) – The Business
Process Framework,
http://www.tmforum.org/BestPracticesStandards/BusinessProces
sFramework/1647/Home.html

10. Shangguan, Z., Gao, Z., Zhu, K.: Ontology-Based Process Modeling Using eTOM and
ITIL. In: CONFENIS, vol. (2), pp. 1001–1010 (2007)

11. WS-BPEL Extensions for People—BPEL4People: A Joint White Paper by IBM and SAP
(July 2005),
http://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/
library/uuid/cfab6fdd-0501-0010-bc82-f5c2414080ed

 BCM: Facilitating People Interactions in Outsourcing Service Engagements 481

12. Moran, T.P., Cozzi, A., Farrell, S.P.: Unified activity management: supporting people in
e-business. ACM Commun. 48(12), 67–70 (2005)

13. Orbus Software, The iServer ITIL Solution,
http://www.orbussoftware.com/business-process-analysis/
products/itil-solution/

14. Dustdar, S.: Caramba — A Process-Aware Collaboration System Supporting Ad hoc and
Collaborative Processes in Virtual Teams. Distrib. Parallel Databases 15(1), 45–66 (2004)

15. Reichert, M., Dadam, P.: ADEPT flex Supporting Dynamic Changes of Workflows
Without Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129 (1998)

16. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Implementing
dynamic flexibility in workflows using worklets. Report BPM-06-06. BPMCenter.org
(2006)

17. Volere. List of Requirement Managemnt Tools,
http://www.volere.co.uk/tools.htm

18. HCi Journal, List of Document Management Software,
http://www.hci.com.au/hcisite3/journal/
Listofdocumentmanagementsoftware.htm

19. Dreiling, A.: Gravity – Collaborative Business Process Modelling within Google Wave,
SAP Research (September 2009)

20. Itensil, Workflow-on-Wave (WoW), http://itensil.com
21. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process Aware Information Systems:

Bridging People and Software Through Process Technology. WileyBlackwell (2005)
22. Whittingham, K., Stolze, M., Ludwig, H.: The OpenWater Project - A substrate for process

knowledge management tools, AAAI Technical Report SS-00-03 (2000)
23. Kreifelts, T., Hinrichs, E., Klein, K., Seuffert, P., Woetzel, G.: Experiences with the

DOMINO office procedure system. In: Second Conference on European Conference on
Computer-Supported Cooperative Work, The Netherlands, September 25 - 27 (1991)

Tools for Modeling and Generating Safe
Interface Interactions in Web Applications

Marco Brambilla1, Jordi Cabot2, and Michael Grossniklaus1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{mbrambil,grossniklaus}@polimi.it
2 INRIA - École des Mines de Nantes

Rue Alfred Kastler, 4 B.P. 20722 - F-44307 NANTES Cedex 3 - France
jordi.cabot@inria.fr

Abstract. Modern Web applications that embed sophisticated user
interfaces and business logic have rendered the original interaction para-
digm of the Web obsolete. In previous work, we have advocated a para-
digm shift from static content pages that are browsed by hyperlinks to
a state-based model where back and forward navigation is replaced by
a full-fledged interactive application paradigm, featuring undo and redo
capabilities, with support for exception management policies and trans-
actional properties. In this demonstration, we present an editor and code
generator designed to build applications based on our approach.

1 Introduction

The Web has evolved from a platform for navigating hypertext documents to a
platform for implementing complex business applications, where user interaction
relies on richer interaction paradigms (RIA, AJAX). In this context, the original
interaction paradigm of the Web, based on a simple navigation approach of
moving from one page to another is too simplistic. Browsers themselves, that
still provide the traditional features of Back and Forward page navigation along
the browsing history, are inadequate for dealing with the complexity of current
applications [1]. Depending on the bowser and the application, problems with
the use of back and forward buttons include loss of data in pages with form fields,
resetting the state of AJAX applications or repeatedly triggering a side effect
of a link, e.g., the Amazon bug. The behaviour after exceptions and errors (e.g.,
session timeout) is also indeterministic.

These issues complicate the modelling of complex Web applications and ham-
per the user experience. State-based models are well suited for the specification
of user interfaces and applications [2]. In previous work [3], we have therefore
proposed a state-based modelling language to specify safe user interactions for
Web applications, that is complementary to existing Web design methodologies,
e.g., [4,5,6]. Our approach evolves the interaction paradigm by moving the Web
from the browsing paradigm based on Pages, with related Back and Forward
actions, to a full-fledged interactive application paradigm, based on the concept

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 482–485, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Tools for Modeling and Generating Safe Interface Interactions 483

Fig. 1. Example Web interface model drawn with the online editor

of State, that features controlled Undo and Redo capabilities, exception man-
agement, and transactional properties.

This paper presents a toolset consisting in (1) a model editor to specify Web
application interfaces, (2) an API that grants access to the model concepts, and
(3) a code generator that automatically produces prototypical applications from
the models that exploit our API at runtime for granting safe navigation.

2 Modelling Safe Interfaces for Web Applications

The first step of the development process is the specification of the interface
and behaviour of the Web application. In our proposal Web applications are
represented as state machines consisting of states (i.e., possible situations the
application can be in) and transitions (i.e., changes from a state to another,
triggered by an event). A single Web page can comprise several states, depend-
ing on the granularity chosen by the designer. Additional modeling primitives
allow the definition of exception events and states (that model the response to
unexpected situations) and the definition of transaction regions, i.e., a set of
states that must be accomplished with all-or-nothing semantics. We also offer
a set of predefined kinds of transitions between states (e.g., click button, list
selection, . . .) to facilitate the definition of the state machine.

As an example, Fig. 1 shows our model editor1 at work, depicting a model for a
Web email application. Page inbox shows an index of all available messages, that
can be deleted or selected for visualization. The msgView page shows the details
of the selected message, which can be deleted. The deleteMsg and returnToList
transitions belong to the same transaction T1. If users undo the deletion, they
are actually sent back to the previously deleted message, which is also restored
(through a rollback operation) in the application state.
1 Available at http://home.dei.polimi.it/mbrambil/safeinterfaces.html

(beta version)

http://home.dei.polimi.it/mbrambil/safeinterfaces.html

484 M. Brambilla, J. Cabot, and M. Grossniklaus

Fig. 2. Interaction metamodel

The online editor has been implemented as a Rich Internet Application, ex-
ploiting the OpenJacob Draw2D and Yahoo! User Interface libraries. The editor
allows to save, load, edit, and validate models, and provides automatic genera-
tion of running prototypes from the models.

The modeling language used to describe the state machines is defined by the
internal metamodel shown in Fig. 2 (white classes). Our metamodel is based on
the the state machines sublanguage of the UML, adapted to the Web applications
domain by adding concepts like Page, GraphicalElement, Transaction and so
forth (as described above).

3 Run-Time Support for Safe Web Interactions

Our tool also helps to implement the modeled Web application by (1) automat-
ically parsing the model information and passing it on to a predefined server
component that acts as a controller for the application (MVC architecture) and
(2) providing a run-time API that programmers can use to interact with the
controller and easily manage all events involving state changes in the applica-
tion and implement correct state behaviours (including undo and redo features)
with little effort.

The data structures used internally by the controller to manage run-time
dynamic information (current state the user is in, input parameters, user events)
are shown in Fig. 2 (grey classes). For instance, every move of the application
user to a state is recorded as a new Visit. Obviously, the same user can visit
the same state several times. The visits trace is permanently stored to allow
undo/redo computation.

Both the static and run-time information of the application can be accessed/
updated using our API. For reasons of space, we only present the main API
functions. For instance, methods getNext and getPrevious can be used by

Tools for Modeling and Generating Safe Interface Interactions 485

Table 1. API Methods (Excerpt)

Method Remarks

Visit::getNext(): Visit queries next visit
Visit::getPrevious(): Visit queries previous visit
ApplicationExecution::do

(EventExec e, Parameter[] p): Visit

moves to next visit and performs the cor-
responding actions

ApplicationExecution::redo():Visit moves to the (previously visited) next visit
ApplicationExecution::undo():Visit undoes the last transition and actions
TransactionExecution::rollback() rollbacks the transaction

the application developer to query the next or previous visit in the history,
respectively. Instead, the do and undo method are then used to actually perform
a move to the next or previous visit and, thus, they manipulate the history
records during the process. Note that the do method uses the parsed information
from the state machine to know the state to go to according to the current user
state and the event triggered by the user. The method redo re-visits a state that
has already been visited.

4 Conclusion

We have sketched an approach for modeling Web application interfaces using
extended state machines. A run-time API supports the implementation of ap-
plications and ensures safe and deterministic application behaviour even in the
case of exceptions. As future work, we plan to validate the solution in industrial
case studies and provide full coverage of transactionality of side effects.

References

1. Baresi, L., Denaro, G., Mainetti, L., Paolini, P.: Assertions to Better Specify the
Amazon Bug. In: Proc. SEKE ’02, pp. 585–592 (2002)

2. Draheim, D., Weber, G.: Modelling Form-based Interfaces with Bipartite State Ma-
chines. Interacting with Computers 17(2), 207–228 (2005)

3. Brambilla, M., Cabot, J., Grossniklaus, M.: Modelling Safe Interface Interactions in
Web Applications. In: Proc. ER 2009, pp. 387–400 (2009)

4. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic Hypermedia Application Design
with OOHDM. In: Proc. Hypertext ’96, pp. 116–128 (1996)

5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

6. Vdovják, R., Frăsincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering 1(1-2), 3–26 (2003)

Linking Related Documents: Combining Tag
Clouds and Search Queries

Christoph Trattner and Denis Helic

Graz Technical University of Technology
Inffeldgasse 21a/16c

A-8010 Graz
ctrattner@iicm.edu, dhelic@tugraz.at

Abstract. Nowadays, Web encyclopedias suffer from a high bounce
rate. Typically, users come to an encyclopaedia from a search engine
and upon reading the first page on the site they leave it immediately
thereafter. To tackle this problem in systems such as Web shops addi-
tional browsing tools for easy finding of related content are provided. In
this paper we present a tool that links related content in an encyclopae-
dia in a usable and visually appealing manner. The tool combines two
promising approaches – tag clouds and historic search queries – into a
new single one. Hence, each document in the system is enriched with a
tag cloud containing collections of related concepts populated from his-
toric search queries. A preliminary implementation of the tool is already
provided within a Web encyclopaedia called Austria-Forum.

Keywords: query tags, tags, tag clouds, linking.

1 Introduction

Content in Web encyclopedias such as Wikipedia is mainly accessed through
search engines. Typically, users with an interest in a certain encyclopedic topic
submit a Google search, click on a Wikipedia document from the result list and
upon reading the document they either go back to Google to refine their search,
or close their browsers if they have already found the information they needed.
Such a user behaviour on encyclopedia sites is traceable through a typical high
bounce rate (see Alexa1 for instance) of such sites. Essentially, users do not
browse or search in Wikipedia to find further relevant content - they are rather
using Google for that purpose.

In our opinion, Web encyclopedias lack simple and usable tools that involve
users in explorative browsing or searching for related documents. In other Web
systems, most notably Web shops, different approaches have been applied to
tackle this situation. For example, one popular approach involves offering related
information through collaborative filtering techniques as on Amazon. Google or
Yahoo! apply a similar approach to offer related content by taking the users’
search query history into account via sponsored links [4].
1 http://www.alexa.com/siteinfo/wikipedia.org

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 486–489, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.alexa.com/siteinfo/wikipedia.org

Linking Related Documents: Combining Tag Clouds and Search Queries 487

Recently, social bookmarking systems emerged as an interesting alternative to
search engines for finding relevant content [3,7]. These systems apply the concept
of social navigation [5] i.e. users browse by means of so-called tag clouds, which
are collections of keywords assigned to different online resources by different
users [2] driven by different motivations [8].

In this paper we introduce a novel approach of offering related content to
users of Web encyclopedias. The approach is based on simple idea of integrating
a tagging system into a Web encyclopedia and populating that system not only
with user-generated tags but also with automatically collected Google query tags.
In this way we combine two promising approaches successfully applied elsewhere
into a single new one – the access to related content is granted not only through
social trails left in the system by other users but also through search history of
general user population. To test this idea a prototype tool has been implemented
within a Web encyclopedia called Austria-Forum2.

The paper is structured as follows. Section 2 presents the basic idea of this
new approach and provides an analysis of its potentials. Section 3 shortly dis-
cusses the implementation of the idea within Austria-Forum. Finally, Section 4
concludes the paper and provides an outlook for the future work in this area.

2 Approach

The basic idea of this new approach is to combine provision of related docu-
ments as offered by social bookmarking sites and by e.g. Google search query
history. On the one hand, tag clouds represent a usable and interesting alter-
native navigation tool in modern Web-based systems. Moreover, they are very
close to the idea of explorative browsing [6], i.e. they capture nicely the intent
of users coming to a system from a search engine - users have searched in e.g.
Google and now they click on a concept in a tag cloud that reflects their original
search intent. On the other hand, Google search query history, i.e. queries that
are “referrers” to found documents are an invaluable source of information for
refining user search in the system. It is our belief that an integration of such his-
torical queries into a tag cloud user interface provides a promising opportunity
to lead users to related documents.

To make this idea work the tag clouds need to be calculated in a context
or resource-specific way, i.e. each resource in the system is associated with a
special tag cloud. This resource-specific tag cloud captures the most important
concepts and topics related to the current document and hence provides a useful
navigational tool for exploration of related resources in the system. In addition
to the user-generated tags the related concepts and topics are obtained from
historic Google search queries leading to the resource in question.

To investigate the feasibility of this approach before implementing it, we con-
ducted an analysis of tagging data automatically obtained from Google queries
for Austria-Forum (AF). Thus, Google query tags have been collected over a
period of four months and analyzed using the following metrics: number of tags
2 http://www.austria-lexikon.at

http://www.austria-lexikon.at

488 C. Trattner and D. Helic

Table 1. Growth of tagging set over time with user-generated and Google query tags

(a) User Tags

day #t #tnew #r #rnew

-200 3,202 3,202 4,884 4,884
-160 7,829 4,627 7,450 2,566
-120 8,980 1,151 9,109 1,659
-80 10,009 1,029 11,523 2,414
-40 10,628 619 12,421 898
now 11,097 469 12,871 450

(b) Google Query Tags

day #t #tnew #r #rnew

-60 3,906 3,906 1,698 1,698
-50 7,020 3,114 3,160 1,462
-40 10,018 2,998 4,710 1,550
-30 12,772 2,754 6,245 1,535
-20 15,615 2,843 8,055 1,810
-10 17,743 2,128 9,368 1,313
now 19,867 2,124 10,659 1,291

#t, number of new tags #tnew, number of resources #r, and number of new
resources #rnew . The analysis observed the changes in these metrics over time.

Table 1 shows the potential of the Google query term approach. Over 10,659
AF resources were tagged during a period of 60 days by Google query tags.
Compared to the user-generated tags in AF, which show an average increase
of 399.35 tagged resources per 10 days for the last 200 days (see Table 1(a)),
an average of around 1,500 new tags per 10 days for the last 60 days has been
achieved with the query tags (see Table 1(b)). Thus, automatic tagging approach
annotated four times more resources than the human approach within AF.

As the last step two tagging datasets have been combined. The combined
dataset annotates 20,688 resources, which is an increase of nearly 100% in the
number of annotated resource as compared to user-generated tags. Additionally,
the combined dataset contains 27,824 unique tags (an increase of 150%). Similar
results have been obtained by [1] for the stanford.edu domain.

3 Implementation

The first prototypical implementation of the tool consists of four modules.

Tag Collection Module: The module consists of two sub-modules: a client-
and a server sub-module. The client collects HTTP-Referrer information of
the users that comes from the Google search engine to a particular resource
within Austria-Forum. The client sub-module is implemented via JavaScript
AJAX. The server is a Web service that processes HTTP-Referrer headers
sent over by the client sub-module. Firstly, the service identifies single query
terms and denotes them as potential tags. Secondly, to filter out the noisy
tags a stop word and a character filter is applied.

Tag Storage Module: This module stores the tags obtained by the collection
module into a database. Currently, the tag database is hosted on a MySql
server as a normalized tag database.

Tag (Cloud) Generation Module: To provide the access to related docu-
ments a resource-specific tag cloud is calculated by this module. This tag
cloud is of the form TCr = (t1, ..., tn, r1, ..., rm), where r1, ..., rm are the re-
sources that have any of t1, ..., tn tags in common. The calculated tag clouds

stanford.edu

Linking Related Documents: Combining Tag Clouds and Search Queries 489

are cached on the server-side to improve the performance of the system. For
retrieving the tags and the corresponding resources this module provides a
simple interface that consists of two functions: GetTags(URL) (generates a
XML representation of a tag cloud), and GetLinks(URL, tag) (generates a
XML representation of the resource list for a particular tag).

Tag Cloud Presentation Module: This modul is a client-side AJAX mod-
ule implemented in JavaScript. It manipulates the browser DOM objects to
render a tag cloud in a visually appealing fashion.

4 Conclusions

In this paper we presented an approach for exploring related resources in Web
encyclopedias. The tool aims at offering additional navigational paths to related
resources for users of such systems in general, and for users who come to these
systems from a search engine such as Google. The future work will include devel-
opment of a theoretical framework to compare this approach to other approaches
aiming at a provision of related content in web-based information systems. In
addition to theoretical investigations, a usability study to assess the acceptance
and usefulness of the tool will be carried out.

References

1. Antonellis, I., Garcia-Molina, H., Karim, J.: Tagging with queries: How and why.
In: ACM WSDM (2009)

2. Heymann, P., Paepcke, A., Garcia-Molina, H.: Tagging human knowledge. In: Pro-
ceedings of the Third ACM International Conference on Web Search and Data
Mining, New York, NY, USA, pp. 51–61 (2010)

3. Mesnage, C.S., Carman, M.J.: Tag navigation. In: SoSEA ’09: Proceedings of
the 2nd International Workshop on Social Software Engineering and Applications,
New York, NY, USA , pp. 29–32(2009)

4. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: AdWords and generalized online
matching. J. ACM 54(5), 22 (2007)

5. Millen, D., Feinberg, J.: Using social tagging to improve social navigation. In: Work-
shop on the Social Navigation and Community Based Adaptation Technologies,
Dublin, Ireland (2006)

6. Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? Journal
of Information Science, 34–15 (2008)

7. Strohmaier, M.: Purpose Tagging - Capturing User Intent to Assist Goal-Oriented
Social Search. In: SSM’08 Workshop on Search in Social Media, in conjunction with
CIKM’08, Napa Valley, USA (2008)

8. Strohmaier, M., Koerner, C., Kern, R.: Why do Users Tag? Detecting Users’ Motiva-
tion for Tagging in Social Tagging Systems. In: 4th International AAAI Conference
on Weblogs and Social Media (ICWSM 2010), Washington, DC, USA, May 23-26
(2010)

GAmera: A Tool for WS-BPEL Composition
Testing Using Mutation Analysis

Juan-José Domı́nguez-Jiménez, Antonia Estero-Botaro,
Antonio Garćıa-Domı́nguez, and Inmaculada Medina-Bulo

Dpt. Computer Languages and Systems
University of Cádiz, Escuela Superior de Ingenieŕıa,

C/Chile 1, CP 11003 Cádiz, Spain
{juanjose.dominguez,antonia.estero,antonio.garciadominguez,

inmaculada.medina}@uca.es

Abstract. This paper shows a novel tool, GAmera, the first mutant gen-
eration tool for testing Web Service compositions written in the
WS-BPEL language. After several improvements and the development
of a graphical interface, we consider GAmera to be a mature tool that
implements an optimization technique to reduce the number of gener-
ated mutants without significant loss of testing effectiveness. A genetic
algorithm is used for generating and selecting a subset of high-quality
mutants. This selection reduces the computational cost of mutation test-
ing. The subset of mutants generated with this tool allows the user to
improve the quality of the initial test suite.

1 Introduction

The evolution of software towards Service-Oriented Architectures (SOAs) has led
to the definition of a language that facilitates the composition of Web Services
(WS): the OASIS Web Services Business Process Execution Language (WS-
BPEL) 2.0 [1]. WS-BPEL allows us to develop new WS modeling more complex
business processes on top of pre-existing WS. WS-BPEL is an XML-based lan-
guage which specifies the behavior of a business process as a WS which interacts
with other external WS independently of how they are implemented through
message exchanges, synchronization and iteration primitives and fault or event
handlers, among other constructs.

Mutation analysis has been validated as a powerful technique for testing pro-
grams and for the evaluation of the quality of test suites [2]. It generates mutants
by applying mutation operators to the program to test. The resulting mutants
contain a single syntactic change with respect to the original program. So, in
order to apply this technique to programs in any language, we need a language-
specific set of mutation operators and a tool for generating and executing the
mutants.

Rice [3] lists the ten most important challenges in the automation of the test
process. One of them is the lack of appropriate tools, as they are too costly to use
or do not fit the tester’s intention or the required environment. Several systems

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 490–493, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GAmera: A Tool for WS-BPEL Composition Testing 491

to generate mutants for programs written in various languages exist: Mothra [4]
for Fortran, MuJava [5] for Java, . . . GAmera is the first mutation testing tool
for WS-BPEL.

One of the main drawbacks of mutation testing [2] is the high computational
cost involved in the execution of the large number of mutants produced for
some programs against their test suites. Most existing tools simply generate all
the possible mutants. GAmera follows a different approach, generating only a
subset of all the possible mutants. To select these mutants, GAmera incorporates
a genetic algorithm (GA) that selects only high-quality mutants, reducing the
computational cost.

In [6] we presented a set of specific mutation operators for WS-BPEL 2.0,
in [7] we proposed a framework for the automatic generation of mutants for
WS-BPEL based on GA and in [8] we showed the preliminary results of apply-
ing the new technique. The tool described in this paper is a direct consequence of
these previous works. This paper shows the functionality and usefulness of GAm-
era after several improvements and the development of a graphical interface.
This tool implements the GA integrated with the mutation operators defined
for WS-BPEL in the previous works. This open-source tool is freely available at
its official website1.

2 Tool Design

The GAmera tool consists of three main components: the analyzer, the mutant
generator and the execution engine that runs and evaluates the mutants.

Analyzer. It starts off the GAmera workflow by receiving as input the WS-
BPEL composition under test and listing the mutation operators that can
be applied to it. Figure 1 shows a screenshot of the application that interacts
with the analyzer. The operators are displayed in separate tabs, depending
on the category of the operator. The user can determine the set of mutation
operators to use among all the available operators.

Mutant generator. Mutants are generated using the information received from
the analyzer. The tool gives us the possibility of generating all the possible
mutants, or selecting only a subset of them with the genetic algorithm.
The selection process uses two components. The first, called mutant genetic
search, is a GA in which each individual represents a mutant. The GA is
capable of automatically generating and selecting a set of mutants, using a
fitness function that measures the quality of a mutant, depending on if there
are or not test cases that kill it [7].
The second element is the converter, that transforms an individual of the
GA into a WS-BPEL mutant. To perform this conversion, the tool uses a
different XSLT stylesheet for each mutation operator.

Execution engine. The system executes the mutants generated against a test
suite. Mutants are classified into three categories depending on their output:

1 http://neptuno.uca.es/~gamera

492 J.-J. Domı́nguez-Jiménez et al.

Fig. 1. Interaction with the analyzer

Killed. The output from the mutant differs from that of the original pro-
gram for at least one test case.

Surviving. The output from the mutant and the original program are the
same for all test cases.

Stillborn. The mutant had a deployment error and it could not be executed.
Mutants in this state hint at how the design and implementation of the
mutation operators should be revised.

For the execution of the original program and their mutants, GAmera uses
the ActiveBPEL 4.1 [9] open-source WS-BPEL 2.0 engine and the BPELUnit
[10], an open-source WS-BPEL unit test library which uses XML files to
describe test suites.

2.1 Results

GAmera shows the results obtained in the execution of the mutants. It displays
the total number of generated, killed, surviving and stillborn mutants. From
these values, we can measure the quality of the initial test suite and let the user
improve it by examining the surviving mutants and adding new test cases to kill
them. For this purpose the tool includes a viewer which shows the differences
between the original composition and the mutant.

GAmera: A Tool for WS-BPEL Composition Testing 493

3 Conclusions and Future Work

We have presented the first tool that automatically generates a set of high-
quality mutants for WS-BPEL compositions using a genetic algorithm. This
tool automates the test of WS-BPEL compositions and provides information
that allows the user to improve the quality of the test suites.

The tool is useful both for developers of WS-BPEL compositions, since it
automates the testing process, and for researchers in testing of WS-BPEL com-
positions that are intended to evaluate the quality of test suites.

We are currently working on the design of new mutation operators for provid-
ing various coverage criteria. A future line of work is adding a test case generator
to the current tool. This generator will allow the user to enhance the quality of
the test suite by generating automatically new appropriate test cases.

Acknowledgments

This paper has been funded by the Ministry of Education and Science (Spain)
and FEDER (Europe) under the National Program for Research, Development
and Innovation, Project SOAQSim (TIN2007-67843-C06-04).

References

1. OASIS: Web Services Business Process Execution Language 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Mutation
testing for the new century, pp. 34–44. Kluwer Academic Publishers, Dordrecht
(2001)

3. Rice, R.: Surviving the top 10 challenges of software test automation. CrossTalk:
The Journal of Defense Software Engineering, 26–29 (mayo 2002)

4. King, K.N., Offutt, A.J.: A Fortran Language System for Mutation-based Software
Testing. Software - Practice and Experience 21(7), 685–718 (1991)

5. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: an automated class mutation system.
Software Testing, Verification & Reliability 15(2), 97–133 (2005)

6. Estero-Botaro, A., Palomo-Lozano, F., Medina-Bulo, I.: Mutation operators for
WS-BPEL 2.0. In: Proceedings of the 21th International Conference on Software
& Systems Engineering and their Applications (2008)

7. Domı́nguez-Jiménez, J.J., Estero-Botaro, A., Medina-Bulo, I.: A framework for mu-
tant genetic generation for WS-BPEL. In: Nielsen, M., Kucera, A., Miltersen, P.B.,
Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404,
pp. 229–240. Springer, Heidelberg (2009)

8. Domı́nguez-Jiménez, J.J., Estero-Botaro, A., Garćıa-Domı́nguez, A., Medina-Bulo,
I.: GAmera: An automatic mutant generation system for WS-BPEL. In: Proceed-
ings of the 7th IEEE European Conference on Web Services, pp. 97–106. IEEE
Computer Society Press, Los Alamitos (2009)

9. ActiveVOS: ActiveBPEL WS-BPEL and BPEL4WS engine (2008),
http://sourceforge.net/projects/activebpel

10. Mayer, P., Lübke, D.: Towards a BPEL unit testing framework. In: TAV-WEB’06:
Proceedings of the workshop on Testing, analysis, and verification of web services
and applications, pp. 33–42. ACM, New York (2006)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://sourceforge.net/projects/activebpel

Open, Distributed and Semantic Microblogging
with SMOB�

Alexandre Passant1, John G. Breslin1,2, and Stefan Decker1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
firstname.lastname@deri.org

2 School of Engineering and Informatics, National University of Ireland, Galway
john.breslin@nuigalway.ie

Abstract. This demo paper introduces SMOB, an open, distributed
and semantic microblogging system using Semantic Web technologies
(RDF(S)/OWL and SPARQL) and Linked Data principles. We present
its ontology stack and related annotations, its distributed architecture,
and its interlinking capabilities with the Linking Open Data cloud.

Keywords: Social Web, Semantic Web, Linked Data, Microblogging,
Distributed Architectures.

1 Introduction

As many Web 2.0 services, microblogging1 applications suffer from various lim-
its. On the one hand, their close-world architecture strengthens the Web 2.0 data
silo issues and makes microblog posts difficultly interoperable with other applica-
tions. On their other hand, their lack of machine-readable metadata and seman-
tics entails that microblog posts cannot be fully exploited for advanced querying
and reuse. In this demo paper, we present SMOB, an open-source framework
for open, distributed and semantic microblogging that relies on Semantic Web
technologies and Linked Data principles [1] to solve the aforementioned issues. It
provides means to enable machine-readable description of microblog posts, and
defines an open architecture where anyone can setup his own service, keeping
control over his own data. To achieve this goal, SMOB relies on: (1) an ontology
stack to represent microblogs (and their posts) combined with RDFa annotations
to represent such data, (2) an open architecture based on distributed hubs that
communicate and synchronise together using SPARQL/Update and its related
HTTP protocol, and (3) interlinking components, so that microblog posts can
be linked to existing resources from the Semantic Web, and especially from the
Linking Open Data Cloud2.
� The work presented in this paper has been funded in part by Science Foundation

Ireland under Grant No. SFI/08/CE/I1380 (Ĺıon 2).
1 Microblogging consists in sharing short (generally under 140 characters) status up-

date notifications. It notably became popular via Twitter — http://twitter.com.
2 http://richard.cyganiak.de/2007/10/lod/

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 494–497, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://twitter.com
http://richard.cyganiak.de/2007/10/lod/

Open, Distributed and Semantic Microblogging with SMOB 495

2 SMOB — Semantic MicrOBlogging

2.1 The SMOB Ontologies Stack

In order to semantically-enhance microblogging services and microblog posts,
there is a need for: (i) ontologies to represent users, their features (such as names,
homepages, etc.) and their related social networking acquaintances; and (ii) on-
tologies to represent microblogging posts (and microblogs), including particular
features such as hashtags (#tag patterns included in microblog posts to empha-
sise particular words), replies, and some contextual information (geographical
context, presence status, etc.). Moreover, there is a need to link microblog posts
to existing resources from the Semantic Web, in order to represent topics dis-
cussed in these posts without any ambiguity.

Regarding the first aspect, we naturally relied on FOAF — Friend of a Friend
[3] — as it provides a simple way to define people, their attributes and their
social acquaintances. Furthermore, SMOB users can reuse their existing FOAF
profiles so that existing information about themselves is automatically linked
from their posts. Then, to describe microblog posts and microblogs, we relied
on and extended SIOC — Semantically-Interlinked Online Communities [2]. We
also used OPO — Online Presence Ontology [5] — to describe users’ presence
information, such as geolocation. Finally, we relied on MOAT — Meaning Of A
Tag [4] — to represent links between hashtags and Semantic Web resources.

Combined together, these ontologies form a complete stack for semantic mi-
croblogging, depicted in Fig. 1, and each microblog post generated with SMOB
is provided in RDFa using these ontologies.

People

Representations

Profiles

Data

Topics

Presence

SIOC

SIOC

MOAT

OPO

FOAF

Ontologies

User-Interface

Fig. 1. The SMOB ontologies stack

2.2 A Distributed Architecture

The SMOB architecture is based on distributed hubs that act as microblogging
clients and communicate each other to exchange microblog posts and follow-
ing/followers notifications. That way, there is no centralised server but rather a
set of hubs that contains microblog data and that can be easily replicated and
extended, also letting users control and own their status updates. Hubs com-
municate each others and exchange content via HTTP using SPARQL/Update

496 A. Passant, J.G. Breslin, and S. Decker

HTTP POST

SPARQL/Update +
HTTP POST

Local SPARQL/Update

SMOB hub at http://apassant.net

SMOB hub at http://example.org

http://twitter.com

Fig. 2. Communication between SMOB hubs using SPARQL/Update

(the Update part of SPARQL, currently being standardised in the W3C3) and
its LOAD clause (Fig. 2).

When a new microblog post is created, it is immediately stored in the user’s
hub and sent to the hubs of his followers using the aforementioned principles,
so that they immediately receive and store it in their hub. SMOB also enables
cross-posting to Twitter, and each hub provides its own SPARQL endpoint so
that the data it contains can be easily queried and mashed-up with other data.

Fig. 3. The SMOB publishing interface and its interlinking components

2.3 Integrating Microblogging in the Linking Open Data Cloud

Finally, SMOB provides features for integrating microblog posts into the Link-
ing Open Data cloud, in addition to the aforementioned reuse of FOAF profiles.
On the one hand, it features a set of wrappers that automatically suggest URIs of

3 http://www.w3.org/TR/sparql11-update/

http://www.w3.org/TR/sparql11-update/

Open, Distributed and Semantic Microblogging with SMOB 497

existing resources for each hashtag used in microblog updates, relying on ser-
vices such as Sindice4 or DBpedia5. Once these suggestions are validated by
the author, the mappings are modelled with MOAT and exposed in the post
with RDFa. In addition, new wrappers can be deployed for integration with
other sources, such as corporate knowledge bases. On the other hand, SMOB
provides auto-completion features for geolocation information, relying on GeoN-
ames6 data. Fig. 3 depicts its user-interface, where these two interlinking com-
ponents can be observed.

Using such interlinking, new features can be enabled, such as real-time geolo-
cation or topic-based discovery of microblog data using SPARQL queries.

3 Conclusion

In this demo paper, we gave a short overview of SMOB, a system for Open,
Distributed and Semantic Microblogging. SMOB is available at http://smob.me
under the terms of the GNU/GPL license, and can be setup on any LAMP —
Linux, Apache, MySQL, PHP — environment.

References

1. Berners-Lee, T.: Linked Data. Design Issues for the World Wide Web, World Wide
Web Consortium (2006), http://www.w3.org/DesignIssues/LinkedData.html

2. Breslin, J.G., Harth, A., Bojārs, U., Decker, S.: Towards Semantically-Interlinked
Online Communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 500–514. Springer, Heidelberg (2005)

3. Brickley, D., Miller, L.: FOAF Vocabulary Specification. Namespace Document,
FOAF Project (September 2, 2004), http://xmlns.com/foaf/0.1/

4. Passant, A., Laublet, P., Breslin, J.G., Decker, S.: A URI is Worth a Thousand Tags:
From Tagging to Linked Data with MOAT. International Journal on Semantic Web
and Information Systems (IJSWIS) 5(3), 71–94 (2009)

5. Stankovic, M.: Modeling Online Presence. In: Proceedings of the First Social Data on
the Web Workshop. CEUR Workshop Proceedings, vol. 405. CEUR-WS.org (2008)

4 http://sindice.com
5 http://dbpedia.org
6 http://geonames.org

http://smob.me
http://www.w3.org/DesignIssues/LinkedData.html
http://xmlns.com/foaf/0.1/
http://sindice.com
http://dbpedia.org
http://geonames.org

The ServFace Builder - A WYSIWYG Approach
for Building Service-Based Applications

Tobias Nestler1, Marius Feldmann2, Gerald Hübsch2,
André Preußner1, and Uwe Jugel1

1 SAP Research Center Dresden
Chemnitzer Str. 48, 01187 Dresden, Germany

{tobias.nestler,andre.preussner,uwe.jugel}@sap.com
2 Technische Universität Dresden, Department of Computer Science,

Institute for Systems Architecture, Computer Networks Group
{marius.feldmann,gerald.huebsch}@tu-dresden.de

Abstract. In this paper we present the ServFace Builder, an author-
ing tool that enables people without programming skills to design and
create service-based interactive applications in a graphical manner. The
tool exploits the concept of service annotations for developing multi-page
interactive applications targeting various platforms and devices.

Keywords: Service Composition at the Presentation Layer, Model-driven
Development, Service Frontends.

1 Background

Developing service-based interactive applications is time consuming and nontriv-
ial. Especially, the development of user interfaces (UIs) for web services is still
done manually by software developers for every new service. This is a very expen-
sive task, involving many error-prone activities. Parameters have to be bound
to input and output fields, operations to one or several application pages, such
as forms or wizards, and operation invocations to UI-events like button-clicks.

This demo presents an authoring tool called ServFace Builder (Fig. 1). The
tool leverages web service annotations [1] enabling a rapid development of simple
service-based ineractive applications in a graphical manner. The tool applies the
approach of service composition at the presentation layer, in which applications
are build by composing web services based on their frontends, rather than ap-
plication logic or data [2]. During the design process, each web service operation
is visualized by a generated UI (called service frontend), and can be composed
with other web service operations in a graphical manner. Thus, the user, in his
role as a service composer and application designer, creates an application in
WYSIWYG (What you see is what you get) style without writing any code.

The ServFace Builder aims to support domain experts. Domain experts are
non-programmers that are familiar with a specific application domain. They
need to understand the meaning of the provided service functionality without
having a deep understanding of technical concepts like web services or service

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 498–501, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The ServFace Builder 499

Fig. 1. The ServFace Builder

composition. Our demo shows, how we break down these aspects to the modeling
of data-flow and page-flow to realize multi-page applications using our authoring
tool. Finally, we show how the tool generates the executable application based
on the designed models.

Technical details as well as the existing research challenges of the proposed
approach are provided in [3] and [4].

2 The ServFace Builder - Components and Models

Components within the ServFace Builder are called service frontends, which are
visualized via form-based UIs. They represent a single operation of a WSDL-
described web service. The frontends consist of a nested container structure,
which includes UI-elements like text fields or combo boxes that are bound to the
corresponding service operation parameters. The ServFace Builder utilizes the
advantages of the ServFace service annotations to visualize the service frontends
already during design-time to give the user an impression of the resulting UI.

The annotations are created by the service developer to provide additional
information about the web service, and present the knowledge transfered from
the service developer to the service composer to facilitate the understanding
and simplify the composition of web services. These annotations are reusable
information fragments, which are usually not available for plain WSDL-based
approaches, for which they might be non-formally defined in the service docu-
mentation. The ServFace annotations are stored in an annotation model that
is based on a well-specified meta-model, which references to concrete elements
within a WSDL-document. Service annotations provide extensive additional in-
formation covering visual, behavioral, and relational aspects. Visual aspects are,
e.g., human readable labels for technical field names, grouping of parameters,

500 T. Nestler et al.

definition of enumerations for predefined values. Aspects of the behavior of UI-
elements are, e.g., client-side validation rules, suggestion of input values. And
finally, Relation-annotations are used to express, e. g., semantic data type re-
lations). An in-depth discussion of the annotation model, including examples
and a description of the referencing mechanism that links annotations to service
descriptions, can be found in [1].

Within the ServFace Builder, each web service is represented by a service
model that is automatically inferred from the WSDL and additionally contains
the corresponding annotation model. The service model bundles the necessary
information about a service including their operations and parameters and holds
a reference (Uniform Resource Identifier) to the WSDL file. The information
stored in the service model serves as the foundation for the visualization of the
frontends. Details about the service model and its elements can be found in [3].

The service model is part of the Composite Application Model (CAM). The
CAM defines the overall application structure that is visualized within the Serv-
Face Builder. Besides generally describing the integrated services, it describes
inter-service connections as data flow, and the navigation flow of an application
as page transitions coupled with operation invocations. The CAM is used as the
serialization format for storing and loading the modeled interactive applications
and serves as the input for the generation of executable applications. It is not
bound to a specific platform, and thus can be reused for developing service-based
interactive applications for various target technologies.

In the CAM, a composite application is represented by a set of pages. Every
page is a container for service frontends and represents a dialog visible on the
screen. The pages can be connected to each other to define a navigation flow.
Adding a service operation to a page triggers the inference of the corresponding
UI-elements necessary for using this operation. The CAM instance is continu-
ously synchronized with user actions, when adding pages, integrating frontends,
or modeling data flow. This instance can be serialized at any point in time as a
set of Ecore-compliant XMI-files. These files are used as input for a model-to-
code transformation process; the last step during the application development
process. The CAM as well as the code generation process are described in [3].

3 Service Composition at the Presentation Layer

The ServFace Builder implements an approach coined service composition at the
presentation layer [4] in order to combine services in a WYSIWYG manner. The
user of the tool directly interacts with single UI-elements, entire service frontends
and pages to model the desired application. No other abstraction layer is required
to define data or control flows. In this demo, we present the graphical development
process including the following steps to be accomplished by the user:

1. Select a target platform: As the initial step, the user has to select the
target platform from a set of predefined platform templates. The size of the
composition area is adjusted depending on the selection to reflect screen size
limitations, and an initial CAM for the new application will be created.

The ServFace Builder 501

2. Integrate a service frontend: After the platform selection, an initial blank
page is created and the actual authoring process begins. The Service Compo-
nent Browser offers all services provided via a connected service repository. To
integrate a specific service operation into the application, the user has to drag it
from the Service Component Browser to the Composition Area. The tool auto-
matically creates the corresponding service frontend, which can be positioned on
the page. An optional design step is to modify the configuration of the frontend,
e.g., by hiding single UI elements.

3. Define a data-flow: To define a data-flow between two service frontends, the
user has to connect UI-elements of both frontends to indicate the relationship.
A connection is created by selecting the target UI-element that is to be filled
with data and the source UI-element from which the data is to be taken. The
data-flow is visualized in form of an arrow.

4. Define a page-flow: Frontends can be placed on one page or distributed
over several pages to create a multi-page application. All pages are shown in a
graph-like overview and can be connected to define the page flow. The definition
of the page flow is done in a graphical way as well. The user has to connect two
pages in order to create a page transition.

5. Deploy the application: After finishing the design process, the modeled
application can be deployed according to the initial platform selected. Depending
on the type of target platform, the application is either automatically deployed
on a predefined deployment target (e.g., as a Spring-based web application) or
is offered for download (e.g., as a Google Android application).

Acknowledgment

This work is supported by the EU Research Project (FP7) ServFace1.

References

1. Janeiro, J., Preussner, A., Springer, T., Schill, A., Wauer, M.: Improving the Devel-
opment of Service Based Applications Through Service Annotations. In: Proceedings
of the WWW/Internet Conference (2009)

2. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

3. Feldmann, M., Nestler, T., Jugel, U., Muthmann, K., Hübsch, G., Schill, A.:
Overview of an End User enabled Model-driven Development Approach for Interac-
tive Applications based on Annotated Services. In: Proceedings of the 4th Workshop
on Emerging Web Services Technology. ACM, New York (2009)

4. Nestler, T., Dannecker, L., Pursche, A.: User-centric composition of service front-
ends at the presentation layer. In: Proceedings of the 1st Workshop on User-
generated Services, at ICSOC (2009)

1 http://www.servface.eu

http://www.servface.eu

Extracting Client-Side Web User Interface Controls�

Josip Maras1, Maja Štula1, and Jan Carlson2

1 University of Split, Croatia
2 Mälardalen Real-Time Research Center, Mälardalen University, Västerås, Sweden

{josip.maras,maja.stula}@fesb.hr, jan.carlson@mdh.se

Abstract. Web applications that are highly dynamic and interactive on the client
side are becoming increasingly popular. As with any other type of applications,
reuse offers considerable benefits. In this paper we present our first results on
extracting easily reusable web user-interface controls. We have developed a tool
called Firecrow that facilitates the extraction of reusable client side controls by
dynamically analyzing a series of interactions, carried out by the developer, in
order to extract the source code and the resources necessary for the reuse of the
desired web user-interface control.

1 Introduction

Web developers now routinely use sophisticated scripting languages and other active
client-side technologies to provide users with rich experiences that approximate the
performance of desktop applications [1]. Unfortunately, because of the very short time-
to-market and fast pace of technology development, reuse is often not one of the primary
concerns. When developers are building new applications, they often encounter prob-
lems that have already been solved in the past. Rather than re-inventing the wheel, or
spending time componentizing the already available solution, they resort to pragmatic
reuse [2]. This is especially true for web development [3], where basically all client side
code is open.

In web development, a web page, whose layout is defined with HTML (HyperText
Markup Language), is represented with the Document Object Model (DOM). All client
side interactions are realized with JavaScript modifications of the DOM and the pre-
sentation of the web page is usually defined with CSS (Cascading Style Sheets). So, in
order to be able to understand a web page and extract a reusable control, a developer
has to be familiar with HTML, JavaScript and CSS, and has to be able to make sense
of the interactions between the three separate parts that produce the end result. This is
not a simple task, since there is no trivial mapping between the source code and the
page displayed in the browser; the responsible code is often scattered between several
files and is often intermixed with code irrelevant for the reuse task. For example, even
extracting the required CSS styles is not a trivial process for the developer since CSS
styles are inherited from parent elements, they are often defined in multiple files and

� This work was partially supported by the Swedish Foundation for Strategic Research via the
strategic research centre PROGRESS, and the Unity Through Knowledge Fund supported by
Croatian Government and the World Bank via the DICES project.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 502–505, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Extracting Client-Side Web User Interface Controls 503

can be dynamically changed while the application is executing (either with JavaScript
or with CSS pseudo-classes). Required resources, such as images, can be included ei-
ther directly as HTML nodes, or via CSS styles or dynamically with JavaScript code,
and when transferring them the developer has to locate all used ones, copy them and
adjust for the changed location (e.g. if some resources are included via absolute paths).

In this paper we propose a way of semi-automatically extracting reusable client-
side controls. Using a tree-based DOM explorer the developer selects the HTML nodes
that represent the desired user-interface (UI) control on the web page and executes the
interactions that represent the behavior he/she wants to reuse. Based on the analysis
done during the execution, all resources such as images, CSS styles, JavaScript and
HTML code snippets required for the inclusion of the selected UI control are extracted.

The work presented in this paper is related to web application program slicing and
extracting code responsible for the desired behavior of the selected web UI control. In
the context of web engineering, Tonella and Ricca [4] define web application slicing
as a process which results in a portion of the web application which exhibits the same
behavior as the initial web application in terms of information of interest displayed to
the user. There also exist two related approaches and tools that facilitate the understand-
ing of dynamic web page behavior: Script InSight [5] and FireCrystal [6] that have a
similar functionality of relating elements in the browser with the code responsible for
them. However, they are both different to FireCrow in that they do not provide support
for code extraction.

2 Method

If we set aside plugins, such as Java Applets, Flash or Silverlight, the client side of
the web page is usually composed of three different parts: HTML code that defines the
structure and the layout of the page, CSS code that defines the style and the presenta-
tion, and JavaScript code that is responsible for executing client-side business logic and
interactive layout manipulation. Based on their mutual interactions and resources such
as images, the browser engine renders the web page.

In order to extract the minimum amount of resources necessary for the reuse of the
selected web UI control we have developed Firecrow, an extension to the Firebug1 de-
bugger, which supports a three-step extraction process (as shown in Figure 1).

In the fist step the developer chooses the part of the web page user interface that
he/she wishes to reuse. Firecrow uses the Firebug’s HTML DOM tree which makes it
easy for the developer to choose HTML nodes that constitute the desired section of the
user interface.

In the second step the developer starts the recording phase. This can be done in three
modes: (i) Without tracking the execution of the JavaScript code — this mode is useful
when the developer only wishes to reuse the layout and styles of the selected HTML
nodes. No attempts for extracting the JavaScript code are made. (ii) Simple tracking
of the executed JavaScript code — in this mode the tool keeps track of the executed
JavaScript code. In that way, when the process is finished the tool extracts only the code

1 Firebug is a plugin for the Firefox browser available for download from:
http://getfirebug.com

http://getfirebug.com

504 J. Maras, M. Štula, and J. Carlson

that was executed while in the recording phase. But, often web application code is not
designed for reuse, so it is likely that the executed code will not only be concerned with
the desired functionality. In that case the developer has to manually locate and remove
all statements that could cause the extracted application to break (e.g. by accessing
HTML nodes that are removed in the process of extraction). (iii) Advanced tracking
of executed JavaScript code — in this mode the tool analyzes all executed JavaScript
statements searching for statements that are in any way connected with HTML nodes
that are removed in the process of extraction. After the process of extraction is com-
pleted, the tool annotates the source code with warnings that make it easier to locate
those lines.

Fig. 1. The Firecrow extraction process

The reason for providing three different degrees of analysis is that each additional
layer of analysis comes with a performance cost. For example, in the case of JavaScript
intensive web applications, the last mode of advanced JavaScript code tracking could in
some cases make the UI non-responsive.

The third step starts when the recording phase is finished — the tool, based on the
selected resources, and the code executed while interacting with the UI control, extracts
the necessary HTML code, CSS styles, resources and JavaScript code. This significantly
simplifies the process of reuse, since the developer only has to include the extracted CSS
styles and JavaScript code, and copy the extracted HTML code to the desired location.

2.1 Firecrow

Firecrow is realized as an extension to Firebug, which is a plugin for the Firefox
browser. This allows taking advantage of the functionality provided by Firebug to an-
alyze the CSS dependencies and the DOM of selected web page. Also, Firecrow is
connected to the Firefox JavaScript engine in order to dynamically analyze the exe-
cuted JavaScript code. An evaluation version of the tool, as well as a video showing
how it can be used, is available from www.fesb.hr/∼jomaras/Firecrow.

Extracting Client-Side Web User Interface Controls 505

3 Limitations and Future Work

Firecrow is primarily designed to extract easily reusable client side web UI controls
developed with a combination of JavaScript, HTML and CSS code. For those reasons
there is currently no support for the extraction of Silverlight nor Flash UI controls.
Also, since Firecrow is directly connected with the Firefox JavaScript engine, code
specifically developed to be executed only in some other browser (e.g. Internet Explorer,
Opera, Safari, etc.) will not be extracted.

An important remark is that, even though Firecrow does relatively simple dynamic
analysis, in the case of web applications that are very JavaScript intensive there is a
significant drop of performance. This is especially noticeable when doing advanced
dynamic analysis. Currently we offer one way of tackling this problem: today many
applications use JavaScript libraries which provide common infrastructure for easier
development of JavaScript applications (out of Alexa Top 10000 Web sites 32,5% use
at least one of JavaScript libraries [7]). These libraries are complex and are usually often
reused as is. The developer can exclude those scripts from the dynamic analysis phase,
in that way focusing only on the code that is realizing the desired functionality on a
higher level of abstraction and not on the common library code that will most probably
be reused as is.

So far, Firecrow only annotates the source code with warnings that show code state-
ments that can potentially stop the application execution. As future work, we plan to
expand this with the additional functionality of removing all source code statements
that are not related with DOM modifications of the selected UI controls. Also, we will
have to find a way to avoid performance problems when doing dynamic analysis in
JavaScript intensive applications.

References

1. Wright, A.: Ready for a Web OS? ACM Commun. 52(12), 16–17 (2009)
2. Holmes, R.: Pragmatic Software Reuse. PhD thesis, University of Calgary, Canada (2008)
3. Brandt, J., Guo, P.J., Lewenstein, J., Klemmer, S.R.: Opportunistic programming: How rapid

ideation and prototyping occur in practice. In: WEUSE ’08: Proceedings of the 4th interna-
tional workshop on End-user software engineering, pp. 1–5. ACM, New York (2008)

4. Tonella, P., Ricca, F.: Web application slicing in presence of dynamic code generation. Auto-
mated Software Engg. 12(2), 259–288 (2005)

5. Li, P., Wohlstadter, E.: Script insight: Using models to explore javascript code from the
browser view. In: Proceedings of Web Engineering, 9th International Conference, ICWE 2009,
San Sebastián, Spain, June 24-26, pp. 260–274 (2009)

6. Oney, S., Myers, B.: Firecrystal: Understanding interactive behaviors in dynamic web pages.
In: VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 105–108. IEEE Computer Society, Los Alamitos (2009)

7. BackendBattles: Javascript libraries (2010),
http://www.backendbattles.com/JavaScript_Libraries

http://www.backendbattles.com/JavaScript_Libraries

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 506–509, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Applying Semantic Web Technology in a Mobile
Setting: The Person Matcher

William Van Woensel, Sven Casteleyn, and Olga De Troyer

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
{William.Van.Woensel,Sven.Casteleyn,Olga.Detroyer}@vub.ac.be

Abstract. In a mobile setting, users use, handle and search for online
information in a different way. Two features typically desired by mobile users
are tailored information delivery and context awareness. In this paper, we
elaborate a demo application that is built upon the existing SCOUT framework,
which supports mobile, context-aware applications. The application illustrates
the use of intrinsic mobile features, such as context- and environment-
awareness, and combines them with the use of Semantic Web technologies to
integrate and tailor knowledge present in distributed data sources.

Keywords: Mobile Web, Semantic Web, Context Awareness.

1 Introduction

With the up-to-par computing power and screen resolution of new generation smart
phones, together with location awareness support (e.g., GPS), sensing possibilities
(e.g., RFID) and the omnipresence of wireless internet access, an opportunity presents
itself to deliver qualitative, context- and environment sensitive information. Due to
the huge amount of information available from the user's surroundings, the main
challenge thus becomes to filter and personalize this information, exploiting the
aforementioned context data and the specific needs of the user.

SCOUT is a mobile application development framework that focuses on data
acquisition from different, decentralized sources, with the aim of personalized and
context-aware data delivery. It supports different sensing technologies to become
aware of the surrounding environment, and is primarily based on Web technologies
for communication and data delivery, and Semantic Web technologies for
integrating and enriching the knowledge present in the decentralized data sources.
In this demo, we demonstrate a mobile person matching application built on top of
SCOUT. It automatically detects people in the vicinity, performs a detailed
compatibility check based on their FOAF profiles and presents the results to the
mobile user.

Tools already exist to find and visualize FOAF profiles; however, in contrast to
FOAF visualization tools (e.g., WidgNaut [1]) or RDF search engines (e.g., [2]), the
Person Matcher runs in a mobile setting, focuses on finding useful relations between
two given FOAF profiles, and allows configurable weighting of relations.

 Applying Semantic Web Technology in a Mobile Setting: The Person Matcher 507

2 SCOUT in a Nutshell

The SCOUT framework consists of a layered architecture: each layer (from the
bottom up) is shortly explained below. For a detailed description of SCOUT, see [3].

The Detection Layer is responsible for detecting identifiable physical entities in
the vicinity of the user. The framework abstracts from the actual detection
techniques employed, and only assumes the detected entity is able to communicate
relevant information about itself (usually in the form of a URL pointing to an
existing Website or RDF source). Our demo relies on two detection techniques:
RFID and Bluetooth. Both techniques retrieve a URL from a nearby entity, which
points to relevant information about the entity. In case of Bluetooth, a Bluetooth
enabled device communicates this URL on request; in case of RFID, the URL is
present on an RFID tag attached to the physical entity, which is then read by an
RFID reader.

The Location Management Layer receives raw detection information from the
Detection Layer, and conceptualizes it by creating positional relationships: when an
entity is determined to be nearby, a positional relation is created; when the entity is no
longer nearby, the positional relation is invalidated. Determining proximity (i.e.,
remoteness and nearness) is done using proximity strategies, which may differ
depending on the available detection data and the specific detection technique used. A
single proximity strategy is employed for both RFID and Bluetooth: as the detection
range of the employed Bluetooth-enabled devices and RFID readers is relatively
small, entities are considered nearby whenever they are in range, and no longer
nearby when they move out of range.

The Environment Layer combines several models and services geared towards
mobile context- and environment-aware application development. The Environment
Model offers an integrated view on the data associated with (currently or past)
nearby entities. It encompasses the User Model, which stores the user’s
characteristics, needs and preferences (in our demo, the User Model consists of the
user’s FOAF profile), and the Relation Model, which stores the (time-stamped)
positional relationships provided by the Location Management Layer. In the
Environment layer, Semantic Web technologies are exploited to represent and
integrate data: RDF(S) / OWL to store and integrate the different data sources, and
exploiting their reasoning capabilities to derive additional information; SPARQL to
query the integrated models. The Environment Layer also provides mobile
application developers with some basic services that provide access to these models:
pull-based data retrieval, where arbitrary SPARQL queries are issued over the
different models using the Query Service, and push-based data retrieval, where a
Notification Service monitors changes in the environment and alerts registered
applications of specific changes. Our demo application utilizes the Notification
Service to be alerted of nearby entities. Furthermore, as only persons are relevant, a
condition in the form of a SPARQL query ensures the application is only notified
about entities of the type foaf:Person.

The SCOUT framework is written in JavaME. We employ the MicroJena API [4]
to programmatically access and manipulate RDF data, and an external query server to
handle SPARQL queries.

508 W.V. Woensel, S. Casteleyn, and O.D. Troyer

3 SCOUT Demo Application: The Person Matcher

As the mobile user is walking around, the Person matcher application is thus
continuously provided with FOAF profiles of persons in his vicinity. The application
subsequently calculates a “compatibility” score, based on a comparison between
the FOAF profile of the nearby person and the user’s own FOAF profile (stored in the
User Model). The matching algorithm is grounded in establishing paths between the
two FOAF profiles, and is based on a configurable weighting scheme.

The Person Matcher is likewise implemented in JavaME (MIDP 2.0, CLDC 1.1).

The weighting scheme
The user can employ the Matcher application for different reasons (e.g., finding
colleagues to collaborate with; looking for new friends); depending on this reason,
some (sequences of) FOAF properties will become more important in the matching
process, while others become less important or even irrelevant. For this purpose, the
Matcher application can be configured with different weighting schemes (specified in
RDF format), identifying relevant FOAF property sequences and their importance
(between 0 and 1). For our demo, we have provided a weighting scheme that is aimed
at finding colleagues to collaborate with. For instance, two persons having created
(foaf:made) documents with the same subject (foaf:topic) are potentially interested in
collaborating, so the weight of the sequence “foaf:made <x> foaf:topic” will be high.

The matching algorithm
The matching algorithm looks for paths, consisting of properties identified in the
weighting scheme, between the user’s FOAF profile and the FOAF profile of the
nearby person. These properties can be subdivided into two categories: “direct”
linking properties, that link a person directly to another person (e.g., foaf:knows), and
“indirect” linking properties, that connect a person to another person via a number of
intermediary resources (the maximum amount is configurable). E.g., foaf:made links
a person to a resource he made, to which other persons may also link using foaf:made.

The matching algorithm constructs a graph in a breadth-first manner, starting
concurrently from both persons’ FOAF profiles. The nodes in this graph correspond
to Persons, edges to direct or indirect links. The algorithm is able to construct some
links immediately, from data found in the initial two FOAF profiles. Subsequently,
the algorithm retrieves the RDF sources of relevant resources (i.e., intermediary
resources or linked persons), denoted by the rdfs:seeAlso property, and examines
them for other relevant resources (i.e., similar to existing Semantic Web Crawlers,
e.g. [5]), which are also added to the graph. During this process, the algorithm stops
exploring link sequences if their total score (see below) falls below a certain
threshold, and finishes once a predefined number of iterations is reached. A relevant
“connection” is found when a link sequence connects the two initial Person nodes.
Note that this algorithm combines data from a range of RDF sources, possibly
resulting in new connections for which the data was not present in any single source.

The compatibility score between two FOAF profiles is the sum of the individual
scores of connections found between the two graphs. Each connection’s score is
calculated as follows (j is the number of direct or indirect links in the connection):

 Applying Semantic Web Technology in a Mobile Setting: The Person Matcher 509

A connection’s score equals the product of the weights of its contained links, while
the last factor ensures that the score decreases with the length of the connection.

The user interface
The person matcher is a mobile application that, once started, continuously runs in the
background. The following overviews are available: 1/ last 5 persons matched, 2/ best
5 matches of the day (figure 1a), 3/ the complete matching history. In these
overviews, a detailed view of each match can be retrieved, which shows the total
compatibility score, the name of the matched person, his profile picture (if available
in the FOAF profile), and an overview of the connections linking the user with this
person (figure 1b). Furthermore, the details on each connection can be obtained: i.e.,
the links of which it consists and the persons present in the connection (figure 1c).

Fig. 1. Person Matcher screenshots (a) (b) and (c)

4 Conclusion

This demo paper presents the Person Matcher. It relies on the SCOUT framework to
detect and retrieve relevant semantic information from nearby persons, and calculates
compatibility with these persons based on their FOAF profile. Both SCOUT and the
Person Matcher are built utilizing Web technology for communication and content
delivery, and Semantic Web technology for integrating and tailoring information.

References

1. WidgNaut, http://widgets.opera.com/widget/4037/
2. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, J.:

Swoogle: a search and metadata engine for the semantic web. In: CIKM ’04 (2004)
3. Van Woensel, W., Casteleyn, S., De Troyer, O.: A Framework for Decentralized, Context-

Aware Mobile Applications Using Semantic Web technology. In: OTM Workshops (2009)
4. MicroJena, http://poseidon.elet.polimi.it/ca/?page_id=59
5. Biddulph, M.: Semantic web crawling. XML Europe (2004)

Syncro - Concurrent Editing Library for Google
Wave

Michael Goderbauer, Markus Goetz, Alexander Grosskopf,
Andreas Meyer, and Mathias Weske

Hasso-Plattner-Institute, Potsdam 14482, Germany

Abstract. The web accelerated the way people collaborate globally
distributed. With Google Wave, a rich and extensible real-time collabora-
tion platform is becoming available to a large audience. Google
implements an operational transformation (OT) approach to resolve con-
flicting concurrent edits. However, the OT interface is not available for
developers of Wave feature extensions, such as collaborative model edi-
tors. Therefore, programmers have to implement their own conflict man-
agement solution.

This paper presents our lightweight library called syncro. Syncro ad-
dresses the problem in a general fashion and can be used for Wave gadget
programming as well as for other collaboration platforms that need to
maintain a common distributed state.

1 Introduction

Collaboration is the basis for joint value creation. With increasing complexity of
tasks to conduct in business, science, and administration, efficient team collabo-
ration has become a crucial success factor.

Software tools for collaboration typically support the exchange of data and
centralized storage of information, for instance in shared workspaces. Only in
recent years, technology became available allowing real-time collaboration via
the web-browser. This enables team partners to edit a document concurrently
and let others see changes instantly.

Google Wave is a new technology that promises to bring real-time collabora-
tion to a large audience. A wave is a hosted conversation that allows multiple
users to work on a text artifact at the same time. Editing conflicts are resolved
using operational transformation (OT) [1]. Furthermore, a wave’s functionality
can be extended by gadgets. Even though gadgets live inside of waves, they are
not per se collaborative because the OT interface implemented by Google is not
available to third-party developers. For that reason, gadget programmers have
to find their own answer to handle conflicting edits.

In Section 2, we discuss OT approaches as underlying concept for conflict
resolution. We explain the syncro library, which allows conflict resolution in
Google Wave gadgets in Section 3. Implementation details, demo-gadgets and
further work are discussed in Section 4 before we conclude the paper in Section 5.

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 510–513, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Syncro - Concurrent Editing Library for Google Wave 511

2 Operational Transformation for Conflict Resolution

When multiple users edit a single artifact at the same time, conflicts are inevitable
and therefore, sophisticated algorithms are needed to handle those conflicting ed-
its. A very popular text-based approach to do this is operational transformation,
which is implemented in several collaborative text editing tools, such as MoonEdit1

or Etherpad2. OT relies on Lamport’s notion of total ordering [2] to define a unique
sequence of events in a distributed system (more details in Section 3). Moreover,
OT performs transformations to apply remote modifications, such as insert or
delete, on the local client [1]. In addition to the mentioned online text editing
tools, this approach was also implemented in a generic OT library for Windows [3].
Linked with the code, the library turns most single-user desktop applications, such
as Word, PowerPoint, or Maya, into a collaborative version.

Following the trend towards online collaboration, Google has also implemented
OT for collaborative text editing inside Google Wave. However, as their OT in-
terface is not available inside of gadgets, programmers have to implement their
own conflict management. One possible approach would be the reimplementa-
tion of OT for gadgets. This would require serializing the artifact edited in the
gadget to text before OT transformations are applied. From an engineering point
of view the indirection of converting artifacts to text is far too complicated. A
more convenient way would be to apply the modifications directly to the artifact.

3 Syncro - A Distributed Command Stack for Google
Wave

Syncro is a library that provides a generally applicable solution for concurrent
editing conflicts of complex artifacts in platforms like Google Wave. It’s based on
the command pattern [4], a software design pattern in which each modification
to an artifact is encapsulated in a command object. Using this concept, syncro
shares the commands among all participants of a wave.

Since Google Wave gadgets have no interface to send or receive commands,
syncro stores this information in the gadget state, a key value store synchronized
among all participants of a wave. To make sure that no command is overwritten,
each command has to be stored at a unique key.

Furthermore, to assure that each participant has the same view on the edited
artifact, the commands need to be applied in the same consistent order on all
clients. The challenge of ordering events in a distributed system has been ad-
dressed by Leslie Lamport in his paper from 1978 [2]. He introduces an algorithm
for synchronizing a distributed system of logical clocks, which can be used to
order events consistently among all participants. These logical clocks are called
Lamport clocks and their value is increased whenever an event occurs. In Google
Wave the events are the commands created independently by each participant.
Lamport’s algorithm attaches a logical clock value and a unique sender ID to
each command to establish a strict total order among all commands. Therefore,
1 http://moonedit.com/
2 http://etherpad.com/

http://moonedit.com/
http://etherpad.com/

512 M. Goderbauer et al.

Fig. 1. Architecture of syncro

each combination of logical clock value and sender ID is unique. In our context,
we can use the globally unique Google Wave user ID (e. g. alice@googlewave.com)
as sender ID.

Based on this, we implemented a JavaScript library named syncro. It can be
used by gadget programmers to solve the problems related to concurrent editing.
The system architecture of syncro is shown in Figure 1. When Alice interacts with
the gadget, each interaction creates a command. The gadget then pushes the com-
mand to its local syncro instance. Syncro attaches the current Lamport timestamp
consisting of the clock value and Alice’s Google Wave user ID to the command. Af-
terwards, the extended command is stored in the gadget state using its Lamport
timestamp as unique key. This state modification invokes a callback in the syn-
cro instances of the other Wave participants, here Bob and Charlie. The callback
function retrieves the new command from the wave state and inserts it chronologi-
cally correct into the local command stack using the attached Lamport timestamp.
Syncro then informs the gadget about the new command.

Obviously, Bob can also interact with his gadget while Alice’s command is
still in transmission. When Alice’s command arrives at Bob’s client and syncro
decides that her command happened before Bob’s, the syncro library calls the
gadget with the commands to be reverted and the commands to be applied. In
our case, the gadget reverts Bob’s command before applying Alice’s. Afterwards,
Bob’s command is reapplied. This guarantees that each gadget applies the com-
mands in exactly the same order ensuring that all wave participants have the
same view of the edited artifact in the gadget.

4 Library Implementation and Applications

The library presented in Section 3, the source code and a demo application is
publicly available3. The demo shows the functionality of a simple collaborative
3 http://bitbucket.org/processwave/syncro/

http://bitbucket.org/processwave/syncro/

Syncro - Concurrent Editing Library for Google Wave 513

graphic editing tool and can be tried out in a public wave4. More technical
details and further links can be found on our blog5. For programmers, syncro
solves the problem of managing conflicting edits in Google Wave gadgets and
its underlying concepts can be used in a wide variety of collaboration platforms.
We implemented syncro as a framework component for a collaborative business
process modeling tool we are integrating into Google Wave. Our modeling gadget
will build on the open source project Oryx6, a model editor running inside the
browser. Oryx supports various process modeling languages (e.g. BPMN, EPCs,
PetriNets), UML Class diagrams, xForms editing and much more. For example,
Figure 1 was modeled with Oryx. A Wave-aware version of Oryx using syncro
is planned by June 2010 and we will demonstrate it at the conference.

5 Conclusion

This paper addresses the challenge of editing artifacts collaboratively in Google
Wave gadgets. To solve the conflicts related to those concurrent edits, we have
developed a lightweight JavaScript library named syncro. Syncro is based on
Lamport clocks [2] and programmers implementing the command pattern can
use the library to enable collaborative editing. For us, syncro is a base technology
to integrate the Oryx model editor into Google Wave.

Acknowledgements

We thank the processWave.org team for their development and design activities.
Namely, Michael Goderbauer, Markus Goetz, Marvin Killing, Martin Kreich-
gauer, Martin Krueger, Christian Ress and Thomas Zimmermann.

References

1. Sun, C., Ellis, C.: Operational Transformation in Real-Time Group Editors: Issues,
Algorithms, and Achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work, pp. 59–68. ACM, New York (1998)

2. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7) (1978)

3. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent Adaptation
of Single-User Applications for Multi-User Real-Time Collaboration. ACM Trans.
Comput.-Hum. Interact 13(4), 531–582 (2006)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction and
Reuse of Object-Oriented Design. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

4 http://tinyurl.com/demowave
5 http://www.processwave.org/
6 http://www.oryx-project.org/

http://tinyurl.com/demowave
http://www.processwave.org/
http://www.oryx-project.org/

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 514–517, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Eclipse Plug-in for Model-Driven Development of
Rich Internet Applications*

Santiago Meliá, Jose-Javier Martínez, Sergio Mira,
Juan Antonio Osuna, and Jaime Gómez

Universidad de Alicante, IWAD, Campus de San Vicente del Raspeig,
Apartado 99 03080 Alicante, Spain

{santi,jmartinez,smira,jaosuna,jgomez}@dlsi.ua.es

Summary. Rich Internet Applications (RIAs) have recently appeared in the
Internet market offering a rich and efficient User Interface similar to desktop
applications. However, these applications are rather complex and their
development requires design and implementation tasks that are time-consuming
and error-prone. In this paper, we present a tool called OIDE (OOH4RIA
Integrated Development Enviroment) aimed at accelerating the RIAs
development through the OOH4RIA approach which establishes a RIA-specific
model-driven process.

1 Introduction

In the last few years, a new type of sophisticated Web applications called Rich
Internet Applications (RIAs) are breaking through the Internet market offering better
responsiveness and a more extended user experience than the traditional Web
applications. In essence, RIAs are client/server applications that are at the
convergence of two competing development cultures: desktop and Web applications.
They provide most of the deployment and maintainability benefits of Web
applications, while supporting a much richer client User Interface (UI).

However, RIAs are complex applications, with time-consuming and error-prone
design and implementation tasks. They require designing a rich user interface based
on the composition of Graphical User Interface (GUI) widgets and event-based
choreography between these widgets.

Therefore, RIA development requires new design methods and tools to represent
this complex client/server architecture and to increase the efficiency of the
development process through code generation techniques able to accelerate it and
reduce errors. To achieve this goal we propose a seamless and domain-specific RIA
development approach called OOH4RIA [4], which proposes a model-driven
development process based on a set of models and transformations to obtain the
implementation of RIAs. This approach specifies an almost complete Rich Internet
Application (RIA) through the extension of the OOH server-side models (i.e.
domain and navigation) and with two new platform-specific RIA presentation

* This work is supported by the Spanish Ministry of Education under contract TIN2007-67078

(ESPIA).

 An Eclipse Plug-in for Model-Driven Development of Rich Internet Applications 515

models (i.e. presentation and orchestration). In order to give support to this
approach, we have implemented a Rich Client Platform tool called OOH4RIA
Integrated Development Environment (OIDE) [6] defined by a set of model-driven
frameworks developed in Eclipse. Currently, this approach has been extended by
introducing artifacts that gather new concerns: a RIA quality model and the
technological and architectural RIA variability [5].

For an adequate comprehension of the OIDE tool, next section 2 presents a general
perspective of OIDE development process which implements partially the OOH4RIA
approach process. And finally, section 3 shows the most important technological
features of OIDE.

2 An Overview of the OIDE Development Process

OIDE implements partially the OOH4RIA development process specifying an almost
complete Rich Internet Application (RIA) through the extension of the OOH [2]
server-side models (i.e. domain and navigation) and with two new RIA presentation
models (i.e. presentation and orchestration).

This OIDE process starts by defining the OOH domain model, which is based on
the UML class diagram notation, to represent the domain entities and the relationships
between them. To do so, we have defined an extended domain MOF metamodel to
obtain an Object-Relational Mapping without ambiguities. To improve the quality of
the server side, the domain model has introduced several fundamental adjustments:
(1) defining a topology of different operations such as create, delete, relationer,
unrelationer, etc. to generate the CRUD (i.e. Create, Read, Update and Delete)
functionality of a data-intensive server-side. (2) Dealing with a complete collection
datatypes such as set, bag, list, etc. (3) Introducing concepts to remove the ambiguity
of the Object-Relational Mapping (ORM) such as the object identifier to obtain the
primary key, mapping from UML datatypes to database datatypes, database aliases in
class (to name the table), in attribute (to name the column) and in roles (to name the
foreign keys).

After specifying the domain model, the developer must design the OOH
Navigation Model to define the navigation and visualization constraints. The
navigation model – a DSL model – uses a proprietary notation defined by the OOH
method formalized by a MOF metamodel. This model establishes the most relevant
semantic paths through the information space filtering the domain elements available
in the RIA client-side. It also introduces a set of OCL filters permitting to obtain
information from the domain model.

At this point, the UI designer begins the definition of the RIA client-side
establishing the complete layout by means of a structural representation of different
widgets (e.g. dimensions x, y, position), panels (e.g. horizontal, vertical, flow, etc.)
and style (e.g. colour, background, fonts, etc). There are many RIA frameworks, each
with a different set of widgets with their own properties and events. For this reason,
we have defined a platform-specific model called Presentation Model, which can be
instantiated for each supported RIA framework (currently, OIDE gives support to
Google Web Toolkit and Silverlight) thus obtaining similarity with the look and feel
of a RIA UI.

516 S. Meliá et al.

To complete the information needed by an interactive UI, OOH4RIA incorporates
a platform-dependent model called Orchestration Model, which helps introduce the
dynamic behavior of the RIA UI. This model does not have a graphical representation
in the OIDE tool, being defined by a set of Event-Condition-Action (ECA) rules
defined by a property form. They determine how different widgets receive the events
from users and if an OCL condition is accomplished they invoke a set of Actions that
correspond to one or more widget methods or to one or more services offered by the
server-side business logic. These events and methods offered by the OIDE tool are
RIA framework specific (i.e. Silverlight or GWT) permitting the user to specify the
proper arguments accurately.

The last step consists in executing the model-to-text transformation to obtain the
RIA implementation. The process defines a transformation that generates the RIA
server-side from the domain and navigation model, and a second transformation
obtains the RIA client-side from the Presentation and Orchestration models.

3 The OIDE Design and Technological Features

The OIDE is a tool developed like an Eclipse plug-in based on other open-source
relevant tools in the Eclipse Modeling Project: the Graphical Modeling Framework
(GMF) [3] to represent domain-specific models and the Xpand language of the Model
to Text (M2T) project [1] to develop the transformations that carry out the OIDE
development process. This tool is a user-friendly IDE which specifies easily and
seamless the server and the client side of a RIA. Its main characteristics are: (1) a
WySWyG UI presentation model which emulates the same appearance and the layout
spatial distribution than a specific RIA design tool (see Fig. 1). (2) An intuitive ECA
rules Tree which permits to define the UI behavior selecting events and methods of a
RIA framework widgets. (3) An OCL checking which avoids introducing invalid
model configurations. (4) A rapid prototyping that helps reducing the development
iterations. (5) The integration of the model transformation editor which allows
developers to modify them for a specific application. To do so, the tool generates a set
of default transformation rules for each new OIDE project, thus allowing developers
to manipulate these transformations introducing exceptions or a specific code for this
project. OIDE integrates the following transformation languages provided by the
Eclipse Modeling Model to Text project [1]: Xpand, a model-to-text transformation
language, Xtend, a model-to-model transformation language and Check to represent
OCL-like constrains. Specifically, Xpand provides two interesting features: On the
one hand, a polymorphism rules invocation that allows developers to introduce new
rules without having to modify the default rules provided by the tool. And the other
hand, an incremental generation facility that detects which parts of a model have
changed since the last generation process and determines which files need to be
generated due to that change and which are unaffected by it.

To implement the OIDE DSLs, we have defined an EMOF metamodel (specifically
an EMF metamodel) which establish the metaclasses, attributes and relationships
between the elements of the OOH4RIA models. At this point, we use the GMF
framework to generate automatically the graphical editor for each different models
and the EMF to produce a set of Java classes that enable us to view and edit this

 An Eclipse Plug-in for Model-Driven Development of Rich Internet Applications 517

metamodel. Next, we must establish a correspondence between the relevant MOF
metaclasses and a graphical element (a node or a link) using a set of XML files. This
generates a graphical editor (canvas and tool) based on GEF.

Fig. 1. A snapshot of the Presentation Model in OIDE tool

Currently, the OIDE tool permits to generate the final implementation in two
alternative RIA frameworks: GWT and Silverlight. GWT is a DOM-based RIA
framework developed by Google, permitting developers to program with a Java API
by generating a multi-browser (DHTML and Javascript) code. Thus, OIDE integrates
a GWT plug-in which permits to prototype the RIA client-side in the Eclipse IDE. On
the other hand, Microsoft Silverlight is a very promising plugin-based RIA
framework that integrates multimedia, graphics, animations and interactivity into a
single runtime environment.

References

1. Eclipse Modeling Model to Text Project,
 http://www.eclipse.org/modeling/m2t/

2. Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web
Applications. IEEE Multimedia 8(2), 26–39 (2001)

3. Graphical Modeling Framework (GMF),
http://www.eclipse.org/modeling/gmf/

4. Meliá, S., et al.: A Model-Driven Development for GWT-Based Rich Internet Applications
with OOH4RIA. In: ICWE ’08, pp. 13–23. IEEE Computer Society, USA (2008)

5. Meliá, S., et al.: Facing Architectural and Technological Variability of Rich Internet
Applications. IEEE Internet Computing 99, 30–38 (2010)

6. OOH4RIA Integrated Development Enviroment (OIDE),
http://suma2.dlsi.ua.es/ooh4ria/

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 518–521, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Cross-Platform Software System to Create and Deploy
Mobile Mashups

Sandra Kaltofen, Marcelo Milrad, and Arianit Kurti

Centre of Learning and Knowledge Technologies (CeLeKT)
School of Computer Science, Physics and Mathematics

Linnaeus University, Sweden
{sandra.kaltofen,marcelo.milrad,arianit.kurti}@lnu.se

Abstract. Changes in usage patterns of mobile services are continuously
influenced by the enhanced features of mobile devices and software
applications. Current cross-platform frameworks that allow the implementation
of advanced mobile applications have triggered recent developments in relation
to end-user mobile services and mobile mashups creation. Inspired by these
latest developments, this paper presents our current development related to a
cross-platform software system that enables the creation of mobile mashups
within an end-user programming environment.

Keywords: End-user programming, Mobile Mashup, Cross-platform
development.

1 Introduction

Mobile devices are getting more powerful in terms of computational power and
functionalities. GPS sensors, high definition cameras and Internet access are
perceived as standard features of today’s mobile devices. The market for mobile
applications is continuously growing in direct relation to these latest developments.
The more powerful these devices will get, the more powerful mobile applications will
become. One of the drawbacks in the development of mobile applications is that
developers have to face with the restrictions in the mobile phone hardware and the
devices’ specifications [1]. Furthermore, they need to have knowledge about different
programming languages because the Software Development Kits (SDKs) released by
the platform creators are usually tied to a specific language. All these developments
generate the need of having software systems that provide end-users with a simple
way for the creation of mobile applications [2]. Such systems should be able to
integrate different features to create cross-platform mobile applications in such a way
that they would not be bound to a particular mobile platform. Another central point of
focus is mobile mashups and the lack of possibilities to create mashups optimized for
mobile usage. In order to address these specific issues, we have designed and
developed a system that enables the creation and deployment of customized cross-
platform mobile mashups using an end-user programming environment.

 A Cross-Platform Software System to Create and Deploy Mobile Mashups 519

2 Requirements and Proposed Solution

Requirements engineering for web applications follows the general guidelines used
for software applications. According to [3], the main functional requirements of web
applications need to incorporate organization, application domain, navigation and
interaction requirements. Guided by these principles and the outcomes of our
literature survey, we have identified a number of features that a mobile mashup
system should have: 1. Mobile mashups should not be bound to device specifications
and should work cross-platform [1]; 2. The mashups needs to access social networks
and other Web 2.0 services to exchange data [4]; 3. Previous programming skills
should not be required to create mobile mashups [5]; 4. The functionalities for the
mashups are offered as customizable components [2]; 5. The environment needs to
allow sharing the created mashups with other users [2, 5]; 6. The environment needs
to work with visual programming concepts and technologies [6].

Proposed solution: Based on the above-mentioned features, we have developed a
system as described in figure 1. Different components are used in order to support
enhanced customization of mobile mashups. Service components are used to provide
core functionalities for a mashup; like the access to server site features and important
Web APIs and/or their combination. These components are used to allow the user to
receive existing content or to create new content by entering personal data. Layout
components are used to present information and content such as text, images or
videos. Device components are used to access the advanced features of today’s mobile
devices like the GPS sensor data, activation of the photo camera and access to the
device content. Additional components are proposed to provide enhanced extensibility
to the software system.

Fig. 1. Overview of the proposed solution

Implementation: Our software solution consists of two applications: an end-user
programming editor to create the mobile mashups and a viewer to deploy them on a
mobile device. The Mobile Mashup Editor was implemented as a Rich Internet

520 S. Kaltofen, M. Milrad, and A. Kurti

Application (RIA) using the Google Web Toolkit (http://code.google.com/webtoolkit)
framework. The editor provides a GUI that enables to combine and to configure mashup
components using visual programming concepts and techniques. Using this editor,
mashups can be published to a service directory on a web server to make them
accessible to other users. The Mobile Mashup Viewer runs on the mobile device as a
native application. The viewer was implemented using the cross-platform mobile
framework Titanium Mobile (www.appcelerator.com) and it provides access to the
remote mashup service directory. In contrast to desktop mashups, mobile mashups have
to run within the viewer application and not within a web browser. This is necessary to
be able to access the sensor data and the content of mobile devices within a mashup. For
that reason, the editor creates and publishes the mashup not as a mobile web application
but rather as description of the created mashup. This description contains the mashup
structure and settings, its components and their configuration. The viewer can interpret
this description and deploys the mobile mashup application out of it. The proposed
software solution is cross-platform; both on the editor and the viewer site.

3 Cross-Platform Mobile Mashup Example

A mobile mashup can contain different pages and components that are added to each
specific application. When a component is added to a page it can be configured,
resized and positioned on it. A prototype of the Mobile Mashup Editor is shown in
figure 2 and contains an example with three pages. The example below has three
different components: 1) A service component for a Google Map that shows either an
address the author can configure or a location information received through a Web
API, 2) A layout component with a label and an entered mailing address text and 3) A
device component for calling a configured telephone number. Within the Mobile
Mashup Viewer application, published mashups can be deployed. The deployed
example mashup has been tested on the iPhone and Android platforms as shown in
figures 3 & 4. After the deployment, the user can navigate through the different
mashup pages. The layout of the pages and the functionalities are equal to the
designed pages and the configuration the author made in the editor.

Fig. 2. Mobile Mashup Editor Fig. 3. iPhone Fig. 4. Android

 A Cross-Platform Software System to Create and Deploy Mobile Mashups 521

4 Conclusion and Future Work

The focus of the prototype implementation was to create the basis for an extensible
software system capable of creating and deploying mobile mashups. Initial tests of
our current prototype on the iPhone and Android platforms have proven the validity
of this approach. The system offers new ways and possibilities for the creation of
mobile applications that will be accessible from several mobile platforms. Moreover,
the end-user programming environment, the Mobile Mashup Editor, provides an easy
to use development platform, as an author can make use of visual programming
concepts and techniques. Aspects related to privacy and trusts are beyond the scope of
this paper.

Innovative features and benefits: The proposed solution provides the following
unique features compared to existing approaches or systems: 1. The installed viewer
application on the mobile device allows an easy access to the published mashups.
Developers can therefore provide mobile mashup applications without the restrictions of
an application store or licensing; 2. The use of cross-platform technologies on the editor
and viewer site does not bind the solution to particular platforms and devices. As a
result, the potential benefits of the proposed software system can be described as
follows: 1. The deployed mobile applications have the layout and functionalities that
were designed for and can use the features of the mobile device like GPS, camera and
the device content; 2. The software system is component-based and therefore extensible
through the integration of additional components. In our future development, we plan to
integrate database components to our system. This will allow the Mobile Mashup
Viewer to provide offline working capabilities and synchronisation with a remote
database. Another line of exploration is the specification and development of additional
components that can be used in different application domains.

References

1. Chaisatien, P., Tokuda, T.: A Web-Based Mashup Tool for Information Integration and
Delivery to Mobile Devices. In: Proceedings of the 9th International Conference on Web
Engineering. LNCS, vol. 5648, pp. 489–492. Springer, Berlin (2009)

2. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th
International Software Product Line Conference, San Francisco, California, August 24-28,
pp. 111–119. ACM Press, New York (2009)

3. Casteleyn, S., Florian, D., Dolog, P., Matera, M.: Engineering Web Applications: Data
Centric Systems and Applications. Springer, Berlin (2009)

4. Sheth, A.: Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE Internet
Computing, 87–92 (2009)

5. Jensen, C.S., Vicente, C.R., Wind, R.: User-Generated Content: The Case for Mobile
Services. IEEE Computer 41, 116–118 (2008)

6. Trevor, J.: Doing the mobile mashup, pp. 104–106. IEEE Computer Society, Los Alamitos
(2008)

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 522–526, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Blog-Centered IPTV Environment for Enhancing
Contents Provision, Consumption, and Evolution

In-Young Ko, Sang-Ho Choi, and Han-Gyu Ko

Dept. of Computer Science, Korea Advanced Institute of Science and Technology,
335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea

{iko,shchoi9,kohangyu}@kaist.ac.kr

Abstract. There have been some efforts to take advantages of the Web for
the IPTV domain to overcome its limitations. As users become the center of the
contents creation and distribution, motivating user participation is the key to the
success of the Web-based IPTV. In this paper, we propose a new IPTV
framework, called a blog-centered IPTV, where personal blogs are the first-
class entities that represent user interests in IPTV contents. An IPTV blog
provides a user with a set of interfaces for finding, accessing and organizing
IPTV contents based on their needs, and becomes an active entity to join
communities and to participate in making community contents evolved. We
have implemented a prototype of the blog-centered IPTV, and showed that
users can easily find and access their desired contents and successfully build
community-based contents.

Keywords: IPTV, Web-based IPTV, Blog, Community, Social Networks.

1 Introduction

The Web is now being considered as an important platform for new IPTV (Internet
Protocol Television). The essential characteristics of the Web such as openness,
variety, and accessibility bring IPTV users with facilities to promote the content
creation and distribution by allowing users to collaboratively participate in creating,
organizing and sharing their contents [1]. There have been some efforts to take
advantages of the Web for the IPTV domain such as Joost, Babelgum, and Metacafe1.
To effectively motivate user participation, which is the key to the success of Web-
based IPTV, more user-centric functions and facilities are needed than simply sharing
of video contents [2].

In this paper, we propose a new IPTV framework, called a blog-centered IPTV,
where personal Web logs (blogs) are the first-class entities that represent user
interests in IPTV contents. An IPTV blog provides a user with a set of interfaces for
finding, accessing and organizing IPTV contents based on their needs, and becomes
an active entity to join communities and to participate in making community contents
evolved. Although it has similar features with Blogosphere [3], as Fig. 1 depicts, the

1 http://www.joost.com/, http://www.babelgum.com/,
 http://www.metacafe.com/

 A Blog-Centered IPTV Environment 523

blog-centered IPTV covers the entire lifecycle of IPTV communities and supports
user activities of content consumption, evolution, syndication, and provision. In
addition, it automatically identifies potential IPTV communities by analyzing the
social and personal characteristics of users, and recommends a user with an existing
community to join or a potentially useful community to create [4].

Fig. 1. Overview of the Blog-centered IPTV Environment

For an IPTV community, the IPTV blogs proactively contribute to accumulate and
organize various contents that are relevant to the community. Community contents are
then consumed by each blog in a personalized way. Users can easily locate and access
the contents that meet their interests and needs via their IPTV blogs.

The rest of this paper is organized as follows. In Section 2, we explain the
architecture of the blog-centered IPTV environment including essential components
and their relations. Section 3 presents a blog-centered IPTV prototype and the paper
ends in Section 4 with the conclusion and future work.

2 Architecture of the Blog-Centered IPTV Environment

As shown in Fig. 2, the architecture of the blog-Centered IPTV environment consists
of three main layers: (a) Media Layer, (b) IPTV Blog Layer, and (c) IPTV
Community Layer. The media layer stores and provides various resources including
media contents and their metadata, and user-related information. The media contents
are accessed via the media enabler that locates and streamlines the contents. The
semantic enabler provides an ontology-based model and reasoning methods to
represent and manage semantic metadata of IPTV contents. The social connector
accesses user-related data and extracts social network information to be used for
recommending potential blog communities.

In the IPTV blog layer, the IPTV blog handler provides a basic set of functions to
create or customize a blog by using a template, to define the profile information of a
blog, and to create channels that integrate and deliver blog contents to other users.
The semantic tagging facilities allow users to put ontology-based semantic tags on
multimedia contents. The semantic tags are automatically collected, monitored and
analyzed to identify user preferences and to determine potential communities to be

524 I.-Y. Ko, S.-H. Choi, and H.-G. Ko

recommended to the users. The semantic media syndication component provides
functions to enable blogs to subscribe for each others’ contents based on their needs
represented in an ontology-based semantic model. The contents mash-up engine
supports users with a set of methods to integrate various types of contents such as
texts, Web services as well as regular video contents, and make them delivered via the
blog channels. The semantic search engine allows blogs to be equipped with
semantically-based search capability to produce more relevant search results based on
user preferences and interests.

Fig. 2. Architecture of the blog-centered IPTV environment

Similar to the IPTV blog handler, the IPTV community handler at the IPTV
community layer provides functionality of creating and managing IPTV communities.
The social network manager identifies a social network of users centered on the
owner of a blog based on their preferences and social relationship information. The
semantic social visualization module visualizes a map of users in a social network and
allows users to browse through the map based on user interests. The community
recommendation module recommends users to create a new IPTV community or to
join an existing one by comparing profiles of blogs and by grouping relevant blogs
based on their semantic properties. A blog can subscribe for a community channels by
using the functions provided by the semantic media syndication component.

3 Prototype and Application

To show the effectiveness of our blog-centered IPTV, we implemented a prototype.
For IPTV clients, we used Silverlight2, which is one of the popular RIA (Rich
Internet Application) technologies [5]. We used IIS (Internet Information Services)
for the Web server and WMS (Windows Media Services) for the media server. The
right side of Fig. 2 shows the screen shots of an IPTV blog and a community page.
In a blog, metadata of relevant contents are arranged in a chronicle order with

2 http://www.silverlight.net/

 A Blog-Centered IPTV Environment 525

comments, rankings, tags and other annotations. An IPTV community page shows
an aggregated view of information about the most relevant contents from the blogs
in the community.

Users can find relevant contents through the semantic search capability, and as
shown in Fig. 3 (left), the search result is displayed in a radar view, by which users
can easily identify semantic closeness of the contents found toward their needs. Users
can also browse through different categories of contents by centering a different
content, and narrow down into a more specific set of contents by applying various
semantic filters such as genres, time, location, emotions, etc. that are automatically
enabled based on the context of the contents and users. By using the social network
browser (the right-side screen shot in Fig. 3), users can navigate through a group of
users who have similar interests, and access contents organized by other users. In
addition, the users can create a new IPTV community by inviting other users in the
social network.

Fig. 3. Semantic search interface (left), and a social network browser (right)

4 Conclusion

In this paper, we proposed a new IPTV environment called a blog-centered IPTV,
which provides facilities of semantically-based content search and visual browsing,
and IPTV community recommendation and management. In this approach, personal
blogs are the first class entities that organize IPTV contents in a personalized way,
and actively find and join potential communities. We believe that this framework will
enhance the provision, consumption, and evolution of IPTV contents by motivating
more user participations. We are currently extending our approach by adding features
to monitor community activities and to manage the lifecycle of communities
according to them.

Acknowledgments. This work was supported by the IT R&D program of MKE/
KEIT. [2008-S-006-02, Development of Open-IPTV (IPTV2.0) Technologies for
Wired and Wireless Networks]

526 I.-Y. Ko, S.-H. Choi, and H.-G. Ko

References

1. O’Reilly, T.: What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software. Published on O’Reilly, Communications & Strategies (1), 17 (First
Quarter, 2007)

2. Koh, J., et al.: Encouraging participation in virtual communities. Communications of the
ACM 50(2), 69–73 (2007)

3. Herring, S.C., Kouper, I., Paolillo, J.C., Scheidt, L.A., Tyworth, M., Welsch, P., Wright, E.,
Yu, N.: Conversation in the Blogosphere: An Analysis From the Bottom Up. In:
Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS’05), Big Island, Hawaii, January 3-6 (2005)

4. Ko, H.-G., Choi, S.-H., Ko, I.-Y.: A Community Recommendation Method based on Social
Networks for Web 2.0-based IPTV. In: 16th International Conference on Digital Signal
Processing, Santorini, Greece, July 5-7 (2009)

5. O’Rourke, C.: A Look at Rich Internet Applications. Oracle Magazine 18(4), 59–60 (2004)

Factic: Personalized Exploratory Search
in the Semantic Web

Michal Tvarožek and Mária Bieliková

Institute of Informatics and Software Engineering, Faculty of Informatics
and Information Technologies, Slovak University of Technology

Ilkovičova 3, 842 16 Bratislava, Slovakia
Name.Surname@fiit.stuba.sk

Abstract. Effective access to information on the Web requires constant
improvement in existing search, navigation and visualization approaches
due to the size, complexity and dynamic nature of the web informa-
tion space. We combine and extend personalization approaches, faceted
browsers, graph-based visualization and tree-based history visualization
in order to provide users with advanced information exploration and
discovery capabilities. We present our personalized exploratory browser
Factic as a unique client-side tool for effective Semantic Web exploration.

1 Introduction and Related Work

The Web has become an almost ubiquitous virtual information space where in-
formation is stored, published and shared in many different forms. To address
problems associated with information access on the Web (e.g., the navigation
problem, complex [semantic] query construction, information overload), several
directions and initiatives are being pursued such as the Semantic Web [1], Adap-
tive web-based systems [2] or Exploratory search [3].

In our previous work, we have demonstrated the practicality of adaptation in
a faceted browser by applying personalization principles to a faceted semantic
browser thus improving overall user experience when working with an onto-
logical repository [4]. While our previous approach provided good personalized
navigation and query construction support, it offered limited support for visual
information discovery, e.g., using different widgets to render topic-, time- and
location-based information as demonstrated by VisGets [5].

Furthermore, it had to be configured for a specific domain model and thus
was not seamlessly applicable across multiple (open) domains at the same time.
Consequently, we focused on improving two aspects of our solution – exploratory
search enhancement and automatic user interface generation based on domain
metadata in order to improve end user experience when accessing information
in the Semantic/Deep web, which is typically inaccessible via search engines.

2 Personalized Exploratory Search Browser

Our original personalized faceted browser Factic [4] performed faceted browsing
and personalization to adapt facets, i.e. order, hide and annotate them while also

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 527–530, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

528 M. Tvarožek and M. Bieliková

recommending restrictions based on user characteristics. To further improve user
experience, we completely reworked Factic to facilitate two new features:

– Multi-paradigm exploration – combined view-based (faceted), keyword-based,
content-based exploration with multiple adaptive result overviews and col-
laborative resource annotation (see Fig. 1), graph-based visualization and
browsing of information (see Fig. 2) and custom/external content rendering.

– User interface generation – (semi)automated generation of the browser’s
user interface based on semantic metadata from the domain ontology to
facilitate use in multiple or changing information domains such as the Web.
We primarily focus on facet generation, i.e. what data correspond to facets,
how data sources are queried, how facets are visualized and what interaction
options users can employ; result overview generation, i.e. what attributes of
results and how they are visualized; graph view generation, i.e. which nodes
and how are visualized, what attributes to show and what layout to employ.

Fig. 1. Example of a faceted query result overview in a matrix (right) with one selected
result whose attributes are edited in the annotation pane (left). The facets used for
querying are hidden below the annotation pane, which is normally invisible.

We developed Factic as a client-side Silverlight application running inside a
web browser (see Fig. 2). This simplifies deployment and enables it to process and
store information on the client device. Factic is primarily centered around end-
user specific functionality such as visualization, personalization, user modeling
and profile management. We also process end-user specific data (e.g., activity
logs and the derived user models) on the client thus reducing unwanted privacy
exposure (with optional sharing with the server-side).

Consequently, Factic works as an intelligent front-end to (multiple) search
and/or information providers thus effectively delegating querying, indexing and
crawling services to third-party providers (e.g., in the future Google, Sindice,
DBPedia). Our modular architecture allows us to easily incorporate new views

Factic: Personalized Exploratory Search in the Semantic Web 529

Fig. 2. The graph-based view shows different resources (e.g., photos, authors) as nodes.
Users can expand nodes or navigate by centering the visible window on new nodes.
Hovering over nodes shows additional annotations and associated thumbnails.

Silverlight client browser

WCF

Server-side

services

View

renderers
View

renderers
View

renderers

Event

logs

Sesame back-end

User

model

Event

log

SemanticLog

Logging

service

Steltecia

Repository

access service

SPARQL

SeRQL
User

models

Domain

models

Factic

Faceted search

engine

Support

Services

Event

handlers

Personalization

engine

Support

plugins

Service

adapters

Fig. 3. The client renders the user interface and provides personalization support (top).
The server includes web (WCF) services for faceted search (Factic), ontological repos-
itory access (Steltecia), and event logging (SemanticLog) for global statistics tracking
(right). All services store their data in a common ontological repository in Sesame.

and also gives us the flexibility to add new data sources provided that they
contain enough semantic metadata to generate user interface widgets (see Fig. 3).

Our solution is primarily suitable for digital libraries or other (semi)structured
domains which contain semantic metadata (we also experimented with publi-
cations and job offers). We evaluate our browser via user studies in the image

530 M. Tvarožek and M. Bieliková

domain where our data set contains roughly 8 000 manually and semi-
automatically annotated images. Our results have shown the viability of adap-
tive interface generation in addition to user experience improvements in terms
of better orientation, revisitation support and shorter task times.

3 Summary and Future Work

Our exploratory search browser Factic enables adaptive Semantic Web explo-
ration by empowering end-users with access to semantic information spaces with:

– Adaptive view generation.
– Interactive multi-paradigm exploratory search.
– Personalized recommendation for individual users.

Our client-side personalization and user modeling focus enables us to address
privacy and identity issues as personally identifiable data never have to leave
a user’s system. Furthermore, we see the extension of our approach to accom-
modate legacy web resources as one possible direction of future work ultimately
leading toward a Next Generation Web Browser for seamless exploration of se-
mantic and legacy web content as outlined in [6].

Acknowledgment. This work was partially supported by the grants VEGA
1/0508/09, KEGA 028-025STU-4/2010 and it is the partial result of the Research
& Development Operational Programme for the project Support of Center of
Excellence for Smart Technologies, Systems and Services, ITMS 26240120005,
co-funded by the ERDF.

References

1. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelli-
gent Systems 21(3), 96–101 (2006)

2. Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web: Methods and
Strategies of Web Personalization. LNCS, vol. 4321. Springer, Berlin (June 2007)

3. Marchionini, G.: Exploratory search: from finding to understanding. Comm. of the
ACM 49(4), 41–46 (2006)

4. Tvarožek, M., Bieliková, M.: Personalized faceted navigation in the semantic web.
In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607,
pp. 511–515. Springer, Heidelberg (2007)

5. Dörk, M., Carpendale, S., Collins, C., Williamson, C.: Visgets: Coordinated visu-
alizations for web-based information exploration and discovery. IEEE Transactions
on Visualization and Computer Graphics 14(6), 1205–1212 (2008)

6. Tvarožek, M., Bieliková, M.: Reinventing the web browser for the semantic web. In:
WI-IAT ’09: Proc. of the 2009 IEEE/WIC/ACM Int. Conf. on Web Intelligence and
Intelligent Agent Technology, pp. 113–116. IEEE CS, Los Alamitos (2009)

Takuan: A Tool for WS-BPEL Composition
Testing Using Dynamic Invariant Generation

Manuel Palomo-Duarte, Antonio Garćıa-Domı́nguez, Inmaculada Medina-Bulo,
Alejandro Alvarez-Ayllón, and Javier Santacruz

Department of Computer Languages and Systems. Universidad de Cádiz, Escuela
Superior de Ingenieŕıa, C/Chile 1, CP 11003 Cádiz, Spain

{manuel.palomo,antonio.garciadominguez,inmaculada.medina@uca.es,
alejandro.alvarez,javier.santacruz}@uca.es

Abstract. WS-BPEL eases programming in the large by composing web
services, but poses new challenges to classical white-box testing tech-
niques. These have to be updated to take context into account and cope
with its specific instructions for web service management. Takuan is an
open-source system that dynamically generates invariants reflecting the
internal logic of a WS-BPEL composition. After several improvements
and the development of a graphical interface, we consider Takuan to be a
mature tool that can help find both bugs in the WS-BPEL composition
and missing test cases in the test suite.

Keywords: Web services, service composition, WS-BPEL, white-box
testing, dynamic invariant generation.

1 Introduction

The OASIS WS-BPEL 2.0 standard allows the user to develop advanced web
services (WS) by composing others. However, it presents a challenge [1] for tra-
ditional white-box testing techniques, firstly due to its dependency on context,
and secondly because of the inclusion of WS-specific instructions not found in
most programming languages (like those for fault and compensation handling).

Automatic dynamic invariant generation [2] has proved to be a successful
technique to assist in white-box testing of programs written in imperative lan-
guages. Let us note that, throughout this work, the term dynamic invariant (or
likely invariant) is considered, as in most related works, in its broadest sense: a
property that a program holds for a specified test suite.

Takuan [3] is an open-source system that dynamically generates invariants
reflecting the internal logic of a WS-BPEL composition. After several improve-
ments [4,5] Takuan can be easily used from a graphical interface to support
WS-BPEL composition testing, helping find bugs in the composition code and
improve the test suite.

2 Dynamic Invariant Generation for WS-BPEL

Dynamic invariant generation process is not based on a formal analysis of the
composition, but on information collected from several executions. This way, if

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 531–534, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

532 M. Palomo-Duarte et al.

we use a good test suite as input, all of the features of the environment and
the complex internal logic of the composition (loops, fault handling, etc.) will
be reflected in the execution logs, and the generator will infer true invariants.
On the other hand, if we use an incomplete or biased test suite, we will get false
invariants. These are due to an incomplete test suite that needs additional test
cases which will falsify those invariants.

There are different ways to use dynamically generated invariants to help pro-
gram testing [2]. We will focus on two of them, as shown in figure 1: debugging
a program and improving a test suite.

Fig. 1. Dynamic invariant generation feedback loop

The usual dynamic invariant generation workflow starts with the user provid-
ing an initial test suite and a program. After running the program against the
test suite, unexpected invariants may be obtained. In that case, the user needs
to check if that difference was caused by a bug in the code. After fixing the bug,
the user could run the new (corrected) program against the same test suite and
check if those invariants are not inferred.

If the user considers the program to be correct, the fault may lie on the test
suite, which is lacking test cases that disprove those invariants. By appropriately
extending the test case, they would not be inferred again in the next run. This
cycle can be run as many times as needed, fixing bugs in the program code and
improving the test suite until the expected invariants are obtained.

3 Takuan

Takuan integrates our own code with several well-tested open-source systems [6]:
the BPELUnit unit testing library, the ActiveBPEL engine and the Daikon dy-
namic invariant generator. All of them have been modified to create a dynamic
invariant generation workflow that includes several optimizations to reduce run-
ning time and improve the invariants for the WS-BPEL language [4,5].

Takuan: A Tool for WS-BPEL Composition Testing 533

Takuan is available for free download under the terms of the GNU/GPL li-
cense. In its home site [7] we provide both source code for automatic script-guided
compilation and a ready-to-use virtual machine.

Takuan can be invoked directly from a shell or through a graphical plugin
for the NetBeans IDE. It can connect with a Takuan instance, both locally and
remotely through its IP address. Figure 2 shows the plugin running.

Fig. 2. Takuan NetBeans Plugin running

By default, Takuan logs every variable value before and after every sequence
instruction in the composition to check for invariants. The user can choose which
variables to consider for invariants and in which instructions.

Additionally, Takuan can replace some of the external services with mock-
ups : dummy services which will act according to user instructions. It is only
recommended when not all external services are available for testing, or to de-
fine what-if scenarios under certain predefined WS behavior. In any of these
cases, the behavior provided by each mockup in each test case (a SOAP answer
or a certain fault) will be part of the test suite specification. The user will be
responsible for providing suitable values for them.

4 Conclusions and Future Work

Takuan is an open-source dynamic invariant generator for WS-BPEL composi-
tions. It takes a WS-BPEL 2.0 process definition with its dependencies and a
test suite, and infers a list of invariants. In this paper we have shown two ways
to use Takuan in a feedback loop: highlighting bugs in the composition code and
helping to improve a test suite.

534 M. Palomo-Duarte et al.

We are currently developing a new graphical user interface, named Idig-
inBPEL, that will ease massive systematic Takuan use [7]. Our future work
will be to extend Takuan to infer non-functional properties that can be included
in composition specification, so it can be used as automatically as possible inside
a Service-Oriented-Architecture-specific developing methodology [8].

Acknowledgments

This paper has been funded by the Department of Education and Science (Spain)
and FEDER funds under the National Program for Research, Development and
Innovation. Project SOAQSim (TIN2007-67843-C06-04).

References

1. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing service composition. In: Pro-
ceedings of the 8th Argentine Symposium on Software Engineering, ASSE ’07 (2007)

2. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on Soft-
ware Engineering 27(2), 99–123 (2001)

3. Palomo-Duarte, M., Garćıa-Domı́nguez, A., Medina-Bulo, I.: Takuan: A dynamic
invariant generation system for WS-BPEL compositions. In: ECOWS ’08: Proceed-
ings of the 2008 Sixth European Conference on Web Services, Washington, DC,
USA, pp. 63–72. IEEE Computer Society, Los Alamitos (2008)

4. Palomo-Duarte, M., Garćıa-Domı́nguez, A., Medina-Bulo, I.: Improving Takuan to
analyze a meta-search engine WS-BPEL composition. In: SOSE ’08: Proceedings of
the 2008 IEEE International Symposium on Service-Oriented System Engineering,
Washington, DC, USA, pp. 109–114. IEEE Computer Society Press, Los Alamitos
(2008)

5. Palomo-Duarte, M., Garćıa-Domı́nguez, A., Medina-Bulo, I.: Enhancing WS-BPEL
dynamic invariant generation using XML Schema and XPath information. In:
Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE ’09. LNCS, vol. 5648, pp.
469–472. Springer, Heidelberg (2009)

6. Palomo-Duarte, M., Garćıa-Domı́nguez, A., Medina-Bulo, I.: An architecture for dy-
namic invariant generation in WS-BPEL web service compositions. In: Proceedings
of ICE-B 2008 - International Conference on e-Business, Porto, Portugal. INSTICC
Press (July 2008)

7. SPI&FM Group: Official Takuan home site, http://neptuno.uca.es/~takuan
8. Garćıa Domı́nguez, A., Medina Bulo, I., Marcos Bárcena, M.: Hacia la integración

de técnicas de pruebas en metodoloǵıas dirigidas por modelos para SOA. In: Actas
de las V Jornadas Cient́ıfico-Técnicas en Servicios Web y SOA, Madrid (October
2009)

http://neptuno.uca.es/~takuan

Author Index

Abel, Fabian 322
Agreiter, Berthold 278
Algergawy, Alsayed 114
Al-Jabari, Mohanad 248
Alvarez-Ayllón, Alejandro 531
Araujo, Samur 292, 355
Arellano, Cristóbal 233
Ariel, Oren 430

Bartolini, Claudio 430
Belimpasakis, Petros 400
Bergman, Ruth 430
Bieliková, Mária 527
Bozzon, Alessandro 1
Brambilla, Marco 1, 415, 482
Breslin, John G. 263, 494
Breu, Ruth 278
Brinkkemper, Sjaak 445
Butti, Stefano 415

Cabot, Jordi 482
Campi, Alessandro 50
Carlson, Jan 502
Casteleyn, Sven 506
Ceri, Stefano 50
Chbeir, Richard 16
Cherkasova, Ludmila 81
Choi, Sang-Ho 522
Conejero, José Maŕıa 189

Davidovski, Vlatko 129
Decker, Stefan 263, 494
Delchev, Ivan 129
de Nitto Personè, Vittoria 81
De Troyer, Olga 506
Dı́az, Oscar 233
Di Noia, Tommaso 337
Di Sciascio, Eugenio 337
Domı́nguez-Jiménez, Juan-José 490

Estero-Botaro, Antonia 490

Farwick, Matthias 278
Faulkner, Stéphane 98
Feldmann, Marius 498

Ferri, Fernando 16
Forster, Simon 278
Fraternali, Piero 1, 158, 415
Froihofer, Lorenz 370

Gambi, Alessio 66
Gao, Qi 292
Garćıa-Domı́nguez, Antonio 490, 531
Garrigós, Irene 173
Goderbauer, Michael 510
Goeschka, Karl M. 370
Goetz, Markus 510
Gómez, Jaime 514
Graupner, Sven 468
Grifoni, Patrizia 16
Grigera, Julián 173
Grosskopf, Alexander 510
Grossniklaus, Michael 482
Guinard, Dominique 129

Heckmann, Dominikus 322
Helic, Denis 486
Herder, Eelco 322
Herssens, Caroline 98
Hidders, Jan 322
Houben, Geert-Jan 292, 322, 355, 445
Hübsch, Gerald 498

Ioannou, Ekaterini 385
Iturrioz, Jon 233

Jansen, Slinger 445
Jugel, Uwe 498
Jureta, Ivan J. 98

Kaltofen, Sandra 518
Kamilaris, Andreas 129
Kastrinakis, Dimitrios 35
Ko, Han-Gyu 522
Ko, In-Young 522
Köppen, Veit 114
Kurti, Arianit 518
Kuuskeri, Janne 144

Lanzanasto, Norbert 278
Laredo, Jim 460

536 Author Index

Leonardi, Erwin 292, 322
Lew, Philip 218
Linaje, Marino 189
Liu, Yiming 307
Lu, Lei 81

Maesani, Andrea 50
Maras, Josip 502
Mart́ınez, Jose-Javier 514
Medina-Bulo, Inmaculada 490, 531
Meliá, Santiago 514
Meyer, Andreas 510
Milrad, Marcelo 518
Mi, Ningfang 81
Mira, Sergio 514
Mirizzi, Roberto 337
Mordechai, Eli 430
Motahari-Nezhad, Hamid R. 468
Mrissa, Michael 248

Nayak, Richi 114
Nestler, Tobias 498

Olsina, Luis 218
Osuna, Juan Antonio 514

Palomo-Duarte, Manuel 531
Papadakis, George 385
Papapetrou, Odysseas 385
Passant, Alexandre 263, 494
Paternò, Fabio 204
Pautasso, Cesare 66
Peltz, Christopher 430
Pezzè, Mauro 66
Preciado, Juan Carlos 189
Preußner, André 498

Ragone, Azzurra 337
Rajagopal, Sriram 460

Robles Luna, Esteban 173
Rodŕıguez-Echeverŕıa, Roberto 189
Ronchi, Stefania 50

Saake, Gunter 114
Sánchez-Figueroa, Fernando 189
Santacruz, Javier 531
Schwabe, Daniel 355
Selonen, Petri 400
Siegmund, Norbert 114
Singhal, Sharad 468
Sisti, Christian 204
Skoutas, Dimitrios 385
Smirni, Evgenia 81
Starnberger, Guenther 370
Štula, Maja 502

Tadeski, Inbal 430
Tekli, Joe 16
Thiran, Philippe 248
Tisi, Massimo 158
Toffetti, Giovanni 66
Trattner, Christoph 486
Trifa, Vlad 129
Turto, Tuomas 144
Tvarožek, Michal 527
Tzitzikas, Yannis 35

Van Woensel, William 506
Vukovic, Maja 460

Weske, Mathias 510
White, Jules 278
Wilde, Erik 307
Winckler, Marco 173

You, Yu 400

Zhang, Li 218

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Search
	Searching Repositories of Web Application Models
	Introduction
	Related Work
	IR Architecture Overview
	Design Dimensions of Model-Driven Project Retrieval
	Implementation Experience
	Content Processing
	Index Structure and Ranking Function Design
	Query and Result Presentation

	Evaluation
	Conclusions
	References

	Toward Approximate GML Retrieval Based on Structural and Semantic Characteristics
	Introduction
	State of the Art in GML and XML Retrieval, and Related Issues
	Background and Motivation
	A Glimpse on GML
	Querying GML Data

	Proposal
	GML Data and Query Models
	GML Query Evaluation

	Experimental Evaluation and Validation Tests
	Conclusion
	References

	Advancing Search Query Autocompletion Services with More and Better Suggestions
	Introduction
	Background and Related Work
	Trie Partitioning
	The Proposed Solution
	Distributing the Starting Characters
	Measurements

	Ranking Suggestions
	Concluding Remarks
	References

	Designing Service Marts for Engineering Search Computing Applications
	Introduction
	Related Work
	Service Marts
	Conceptual Level
	Logical Level
	Connection Patterns
	Physical Level

	The Search Computing Framework
	Web Service Registration and Adaptation
	Web Services
	Web Pages
	Materialized Databases

	Applications and Use Cases
	Conclusions
	References

	Web Services
	Engineering Autonomic Controllers for Virtualized Web Applications
	Introduction
	Architecture
	Case Study
	Service Composition Model
	System Architecture and Deployment
	The RESERVOIR Cloud Computing Testbed

	Experimental Validation
	Experimental Setup
	Results
	Objective Function

	Related Work
	Conclusion and Future Work
	References

	AWAIT: Efficient Overload Management for Busy Multi-tier Web Services under Bursty Workloads
	Introduction
	Capacity Planning and Admission Control
	$AWAIT$ Algorithm
	Static $AWAIT$
	Performance Evaluation of $AWAIT$
	Adaptive $AWAIT$ Strategy

	Related Work
	Conclusions
	References

	Normative Management of Web Service Level Agreements
	Introduction
	Case Study and Conceptual Foundations
	Case Study
	Service Level Agreement
	Mutual Obligations
	Supervised Interaction

	The Architecture and the Process for SLA Management
	SLA Management Architecture
	SLA Management Process

	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Combining Schema and Level-Based Matching for Web Service Discovery
	Introduction
	Preliminaries
	Web Service Modeling

	The SeqDisc Approach
	Level-Based Matching
	Abstract Matching
	Experimental Evaluation
	Experimental Results

	Conclusions
	References

	Web Messaging for Open and Scalable Distributed Sensing Applications
	Introduction
	Background
	Networked Sensors and Actuators
	RESTful Web Services
	Web-Based Sensor Networks

	Web-Based Messaging
	RMS: RESTful Messaging for Devices
	Evaluation
	Discussion
	Conclusion
	References

	On Actors and the REST
	Introduction
	Background
	RESTful Architectural Style
	The Actor Model of Computation

	Relating Actors and REST
	Comparison
	Example

	Applying Actors to a RESTful Interface
	The Notation
	Example

	Discussion
	Resources and Communication
	Naming
	Notation

	Related Work
	Conclusions
	References

	Development Process
	Multi-level Tests for Model Driven Web Applications
	Introduction
	Case Study
	Model-Driven Test Representation
	Synchronizing Test Representations
	Synchronizing Tests with Partial Transformations
	Synchronizing Tests with User-Defined and Evolving Transformations

	Related Work
	Conclusions
	References

	Capture and Evolution of Web Requirements Using WebSpec
	Introduction
	WebSpec: A DSL to Capture Interactive Web Requirements
	Using WebSpec along the Development Cycle
	Simulating the Application during Requirements Elicitation
	Automatic Validation of Requirements
	Capturing Requirement Changes
	Using Requirement Changes to Evolve the Application

	Implementation
	Related work
	Concluding Remarks and Further Work
	References

	Re-engineering Legacy Web Applications into Rich Internet Applications
	Introduction
	WebML for Rich Internet Applications Capabilities in Brief
	Motivating Example
	The Traditional Ticket e-Shop in WebML
	The Ticket e-Shop Revisited Using RIA Capabilities

	The Approach
	RMM: WebML Metamodel with RIA Features
	WMM: The Weaving Metamodel
	The Composition Process

	The Motivating Example Revisited
	Aspect Identification: Synchronization Scenarios
	Models for Synchronization Patterns According to RMM
	Weaving Model

	Conclusions and Related Works
	References

	Deriving Vocal Interfaces from Logical Descriptions in Multi-device Authoring Environments
	Introduction
	Related Work
	The Proposed Approach to Vocal Interaction
	A Logical Language for Vocal Interaction
	Transforming Logical Description into VoiceXML Implementations
	Application
	Conclusions and Future Work
	References

	Quality, Quality in Use, Actual Usability and User Experience as Key Drivers for Web Application Evaluation
	Introduction
	Related Work and Motivation
	2Q2U Models and Framework: Proposal and Discussion
	Adding Information Quality
	Adding Learnability in Use
	Modeling Actual Usability and User Experience
	Specifying and Using the Proposed Framework

	Example of Evaluating WebApp Operability
	Conclusions and Future Work
	References

	Interfaces for Scripting: Making Greasemonkey Scripts Resilient to Website Upgrades
	Introduction
	Problem Statement
	Upgrades on Scripted Pages
	Changes in Companion Scripts

	The Big Picture
	Interface Scripts
	Class Scripts
	Mod Scripts
	Discussion
	Related Work: Scraping, Scripting, Mashuping
	Conclusions
	References

	Web 2.0
	Context-Aware Interaction Approach to Handle Users Local Contexts in Web 2.0
	Introduction
	Motivation and Design Alternatives
	Motivating Example
	Design Alternatives
	Discussion

	Semantic Model of Web Contents
	Local Context Ontology
	Semantic Object

	Semantic Annotation of Web Contents
	Annotation Techniques: External vs. Internal
	RDFa-Based Internal Annotation

	Architecture
	Annotation Process
	Prototype
	Related Work
	Conclusion
	References

	Rethinking Microblogging: Open, Distributed, Semantic
	Introduction
	Issues with Current Microblogging Services and Requirements for a Richer User Experience
	Lack of Machine-Readable Metadata
	Microblogs as Closed-World Data Silos
	Lack of Semantics in Microblog Posts

	Anatomy of SMOB
	The SMOB Ontologies Stack
	Distributed Hubs and Synchronisation Protocols
	Integrating Microblogging in the Linking Open Data Cloud

	SMOB in Use: Publishing and Discovering Semantically-Enhanced Microblog Posts
	Publishing and Interlinking Microblog Posts
	Geolocation Mash-Ups
	Data Discovery and Querying with SPARQL

	Related Work
	Conclusion
	References

	A Web-Based Collaborative Metamodeling Environment with Secure Remote Model Access
	Introduction
	Motivation
	Metamodeling
	Requirements Analysis

	Usage Scenario
	The GEMSjax Metamodeling Tool
	Client-Side Manipulation of EMF Models
	Bidirectional Client/Server Model Synchronization
	(Meta-)modeling Lifecycle

	Secure Remote Model Access
	The REST Interface
	Access Control Architecture

	Related Work and Conclusion
	References

	Carbon: Domain-Independent Automatic Web Form Filling
	Introduction
	Related Work
	Web Forms
	Format of Data in HTML Forms
	Nature of Web Forms

	Conceptual Framework for Form Auto-Filling
	Extracting Concepts from Web Forms
	Mapping Web Form Concepts

	Auto-Filling Web Forms with Carbon
	Carbon Client
	Carbon Server

	Evaluations
	Concept Completeness: Definition and Evaluation
	Effectiveness: Performance Measures and Dataset
	Effectiveness Evaluation Results

	Conclusion
	References

	Scalable and Mashable Location-Oriented Web Services
	Introduction
	Related Work
	Feeds as RESTful Web Services
	The Tiled Feed Model
	Tiled Feed Architecture

	Publishing Tiled Feeds
	Geospatial Databases
	Proprietary Location-Oriented Services
	Standardized Services

	Experimental Client
	Future work
	Conclusions
	References

	Linked Data
	A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data
	Introduction
	Related Work
	GUMF
	Architecture and Building Blocks
	User Modeling with Intelligent Dataspaces

	GDR
	GDR Definition
	GDR Engine
	Extending GUMF with GDR

	Use Case
	Conclusion
	References

	Ranking the Linked Data: The Case of DBpedia
	Introduction
	DBpediaRanker: RDF Ranking in DBpedia
	Graph Explorer
	Ranker
	Context Analyzer
	Storage

	Not Only Tag
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Linkator: Enriching Web Pages by Automatically Adding Dereferenceable Semantic Annotations
	Introduction
	Related Work
	Auto-linking
	Semantic Annotations
	SPARQL Endpoint Discovery

	Semantic Link – Definition
	Adding Semantic Links
	Dereferencing Semantic Links
	Endpoint Resolution
	Query Formulation

	Proof of Concept
	Conclusion and Future Work
	References

	Performance and Security
	A Generic Proxy for Secure Smart Card-Enabled Web Applications
	Introduction
	Related Work
	Architecture and Trust Model
	Our Generic Proxy and Mapping Approach
	Smart Card-Based TPM Attestation
	Secure Computer Model
	Establishing a Shared Secret for HMAC and Encryption
	Mutual Authentication and Integrity
	APDU Encryption and Authentication
	Security Discussion

	Authentication with QR-TAN
	Conclusion and Outlook
	References

	Efficient Term Cloud Generation for Streaming Web Content
	Introduction
	Related Work
	Term Clouds for Streaming Text
	System Overview
	Data Structures
	Query Execution

	Experimental Evaluation
	Experimental Setup
	Accuracy Versus Memory
	Accuracy Versus Query Characteristics
	Execution Time Versus Query Characteristics

	Conclusions
	References

	Industry Papers
	Experiences in Building a RESTful Mixed Reality Web Service Platform
	Introduction
	Requirements for the Service Platform
	Overview to Functional Requirements
	Overview to Non-functional Requirements

	Developing Resource Oriented Architectures
	Resource Model, Information Model and Implementation
	MRS-WS Implementation Binding and Architecture

	Examples of MRS-WS API
	Other MRS-WS APIs

	Architectural Evaluation and Lessons Learned
	Non-functional Requirements Revisited
	Insights on Developing RESTful APIs and Resource Oriented Architecture
	Linking to Multiple Service Providers and Support for Multiple Sign-Ins
	Legal and Terms-of-Service Issues for a Service Platform
	Related Work

	Concluding Remarks
	References

	WebRatio BPM: A Tool for Designing and Deploying Business Processes on the Web
	Introduction
	Background: BPMN, WebML, and WebRatio
	Development Process
	Refined Process Model
	Application Model
	Process Metadata Generation
	Application Model Generation

	Implementation of WebRatio BPM
	Related Work
	Conclusion
	References

	A Visual Tool for Rapid Integration of Enterprise Software Applications
	Introduction
	Architecture
	Implementation
	Validation
	An Enterprise Application Integration Use Case
	Related Work
	Enterprise Application Integration
	Integration at the Presentation Layer (Web Applications)
	Other Hybrid Approaches

	Conclusions
	References

	Customization Realization in Multi-tenant Web Applications: Case Studies from the Library Sector
	Introduction
	Definition of Core Concepts: Multi-tenancy and Customization
	Case Study 1: Collaborative Reading for Youngsters
	Tenant-Specific Customization

	Case Study 2: Homework Support System for Schools
	Tenant-Specific Customization
	Combining Mechanisms for Advanced Search

	Case Study Findings
	Conclusions
	References

	Challenges and Experiences in Deploying Enterprise Crowdsourcing Service
	Introduction
	Use Case: Crowdsourcing for IT Inventory Management
	Experience in Deploying an Enteprise Crowdsourcing Service
	Task Management and Crowdsourcing Process
	Implementation of the Enterprise Crowdsourcing Service
	Development Support for Building Crowdsourcing Solutions
	Incentives and Governance

	Challenges
	References

	Business Conversation Manager: Facilitating People Interactions in Outsourcing Service Engagements
	Introduction
	Business Conversation Manager: Concepts and Design
	Characteristics of Business Processes for People Services
	People Processes: Basic Concepts
	Towards a Formal Model for People Processes
	Execution Semantics of People Processes
	Templates

	Business Conversation Manager
	Establishing Conversations and Implicit Dependency Model Management
	Management and Adaptation of Conversation Workplans

	Architecture and Implementation
	Architecture
	Implementation and Use

	Related Work
	Conclusion and Future Work
	References

	Demo and Poster Papers
	Tools for Modeling and Generating Safe Interface Interactions in Web Applications
	Introduction
	Modelling Safe Interfaces for Web Applications
	Run-Time Support for Safe Web Interactions
	Conclusion
	References

	Linking Related Documents: Combining Tag Clouds and Search Queries
	Introduction
	Approach
	Implementation
	Conclusions
	References

	GAmera: A Tool for WS-BPEL Composition Testing Using Mutation Analysis
	Introduction
	Tool Design
	Results

	Conclusions and Future Work
	References

	Open, Distributed and Semantic Microblogging with SMOB
	Introduction
	SMOB — Semantic MicrOBlogging
	The SMOB Ontologies Stack
	A Distributed Architecture
	Integrating Microblogging in the Linking Open Data Cloud

	Conclusion
	References

	The ServFace Builder - A WYSIWYG Approach for Building Service-Based Applications
	Background
	The ServFace Builder - Components and Models
	Service Composition at the Presentation Layer
	References

	Extracting Client-Side Web User Interface Controls
	Introduction
	Method
	Firecrow

	Limitations and Future Work
	References

	Applying Semantic Web Technology in a Mobile Setting: The Person Matcher
	Introduction
	SCOUT in a Nutshell
	SCOUT Demo Application: The Person Matcher
	Conclusion
	References

	Syncro - Concurrent Editing Library for Google Wave
	Introduction
	Operational Transformation for Conflict Resolution
	Syncro - A Distributed Command Stack for Google Wave
	Library Implementation and Applications
	Conclusion
	References

	An Eclipse Plug-in for Model-Driven Development of Rich Internet Applications
	Introduction
	An Overview of the OIDE Development Process
	The OIDE Design and Technological Features
	References

	A Cross-Platform Software System to Create and Deploy Mobile Mashups
	Introduction
	Requirements and Proposed Solution
	Cross-Platform Mobile Mashup Example
	Conclusion and Future Work
	References

	A Blog-Centered IPTV Environment for Enhancing Contents Provision, Consumption, and Evolution
	Introduction
	Architecture of the Blog-Centered IPTV Environment
	Prototype and Application
	Conclusion
	References

	Factic: Personalized Exploratory Search in the Semantic Web
	Introduction and Related Work
	Personalized Exploratory Search Browser
	Summary and Future Work
	References

	Takuan: A Tool for WS-BPEL Composition Testing Using Dynamic Invariant Generation
	Introduction
	Dynamic Invariant Generation for WS-BPEL
	Takuan
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

