
Chapter 11

Consistent voting systems with a
continuum of voters

11.1 Motivation and summary

In this chapter we extend the model of Chapters 9 and 10 to a classical voting
system with still finitely many alternatives (candidates) but with very many
voters. Such a system is representative of political elections on the local or
national level. As an, in our view, best approximation we model voters as
elements of a non-atomic measure space. In particular, this approach allows
us to accommodate the fact that in such voting systems single voters have
negligible influence on the final outcome, and to avoid potential combinatorial
complexities of a model with a large but finite number of voters.

The focus of the chapter is again on strategic aspects. If we talk about
strategic aspects in this model, we necessarily deal with strategic voting by
groups of voters (coalitions). This does not have to imply that voters in
coalitions actually meet to coordinate their voting behavior. Although single
voters are negligible for the final outcome, they may nevertheless derive util-
ity from voting and, thus, may also vote strategically, possibly resulting in
strategic behavior of groups of equally-minded voters.

After introducing the basics of the model in Section 11.2, we continue in
Section 11.3 by showing that in this model the result of Gibbard (1973)
and Satterthwaite (1975) persists. In particular, the requirement of non-
manipulability implies the (undesirable) existence of an ‘invisible dictator’
as in Kirman and Sondermann (1972). Since, therefore, we cannot hope to
reach the sincere outcome since we cannot expect voters to reveal their true
preferences, we ask whether this outcome is at least attainable in an equi-
librium of the voting game. Specifically, like in the preceding chapters we
consider social choice functions satisfying the weaker requirement of exact
and strong consistency (ESC). This means that for every given profile of
preferences there is another profile which (i) is a strong (Nash) equilibrium –
no coalition can profitably deviate – in the strategic game in which each voter
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124 11 Consistent voting systems with a continuum of voters

reports a preference and the outcome is evaluated according to given ‘true’
preferences, and (ii) results in the same alternative as the true preferences.

ESC social choice functions and associated effectivity functions are intro-
duced in Section 11.4. We show that the main results of the model with
finitely many voters go through: the effectivity function associated with an
ESC social choice function is maximal, stable, and convex. This is no surprise:
an ESC social choice function, seen as a game form, is a strong representa-
tion of the associated effectivity function, and the corresponding results of
Chapter 5 continue to hold.

Next, we concentrate on anonymous ESC social choice functions, a nat-
ural restriction in large voting systems, and introduce blocking coefficients
(Section 11.5) and feasible elimination procedures (Section 11.6). Here, our
treatment deviates essentially from the case with finitely many voters. Sets
of alternatives can be ‘e-sets’ or ‘i-sets’. To block an i-set, a coalition needs
to have size strictly larger than the blocking coefficient of that set, whereas
for an e-set it can be larger or equal. Also, blocking coefficients constitute an
additive function, contrary to the finitely many voters case (cf. Oren, 1981).
As in Chapter 9, the main result is that any social choice function that selects
maximal alternatives – that is, alternatives resulting from feasible elimination
procedures – is exactly and strongly consistent. In Section 11.7 we establish
equality of the core and the set of maximal alternatives for a collection of
anonymous ESC social choice functions, and in Section 11.8 we show that
this is actually a complete characterization of anonymous ESC social choice
functions in case all blocking coefficients are required to be positive.

11.2 The basic model

Let (Ω, Σ, λ) be a non-atomic measure space. Here Ω is the set of voters or
players; Σ is the σ-field of permissible coalitions; and λ is a nonnegative non-
atomic measure on Σ, that is: λ : Σ → R is a measure with λ(S) ≥ 0 for all
S ∈ Σ, and if λ(S) > 0 for some S ∈ Σ then there is a T ∈ Σ with T ⊆ S
and 0 < λ(T ) < λ(S). The number λ(S) for a coalition S is interpreted as
the size of S. By Σ0 = Σ \ {∅} we denote the set of all nonempty coalitions,
and by Σ+ we denote the set of all coalitions S with λ(S) > 0. Throughout
we assume Ω ∈ Σ+ and λ(Ω) < ∞.

Let A be a finite set of alternatives. We assume throughout that |A| ≥ 3.
As before, a linear ordering of A is a complete, reflexive, transitive, and
antisymmetric binary relation on A, and the set of all linear orderings of A
is denoted by L.

A profile (of preferences) is a measurable function R : Ω → L, that is,
for each R ∈ L, {t ∈ Ω | R(t) = R} is in Σ. Two profiles R1 and R2

are equivalent, written R1 ∼ R2, if they differ only for a coalition of zero
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measure, that is: λ({t ∈ Ω | R1(t) 	= R2(t)}) = 0. Let ρ denote the set of all
profiles.

A social choice function (SCF) is a surjective function F : ρ → A that
satisfies

for all R1,R2 ∈ ρ, if R1 ∼ R2, then F (R1) = F (R2). (11.1)

Condition (11.1) implies that social choice functions do not depend on the
preferences of coalitions of measure 0. In particular, because of non-atomicity,
single agents do not have any influence at all.

11.3 The Gibbard-Satterthwaite Theorem

In this section we show that the Gibbard-Satterthwaite Theorem continues
to hold in our model with a continuum of voters, in the sense that any non-
manipulable social choice function must exhibit a so-called invisible dictator.
This is analogous to a similar result for Arrow’s Impossibility Theorem in Kir-
man and Sondermann (1972). We start by formulating (non-)manipulability
in the present context.

Let R ∈ ρ and S ∈ Σ. The social choice function F is manipulable by
S at R if there exists a Q ∈ L with the following property: if R1 ∈ ρ is a
profile with R1(t) = R(t) for all t /∈ S and R1(t) = Q for all t ∈ S, then
F (R) 	= F (R1) and F (R1)R(t)F (R) for all t ∈ S.1 Clearly, if F is manip-
ulable by S at R, then λ(S) > 0 by (11.1). We call F non-manipulable if
there exist no R ∈ ρ and S ∈ Σ such that F is manipulable by S at R. In
words, it can never happen that all members of a coalition obtain a preferred
alternative if that coalition coordinates on an untruthful preference. Observe
that this non-manipulability condition has necessarily the form of coalitional
non-manipulability since in our model single voters have no influence. Nev-
ertheless, it can be weakened to a condition that is a closer approximation of
individual non-manipulability. This is elaborated in Remark 11.3.7 below.

In order to formulate and prove the analogue of the Gibbard-Satterthwaite
Theorem in this model we need to introduce the following concepts. A collec-
tion D ⊆ Σ+ is called an ultrafilter if (i) D∩D′ ∈ D for all D, D′ ∈ D and (ii)
D ∈ D or Ω\D ∈ D for every D ∈ Σ+.2 A partition of Ω is a finite collection
of pairwise disjoint sets in Σ+ the union of which has measure equal to λ(Ω).

Let P = {D1, . . . , Dk} be a partition of Ω. Let D be an ultrafilter. We
claim that there is at least one i ∈ {1, . . . , k} for which Di ∈ D. If not, then
by property (ii) of D, Di :=

⋃
j=1,...,k, j �=i Dj ∈ D for every i = 1, . . . , k, so

by property (i), ∅ =
⋂

i=1,...,k Di ∈ D, a contradiction since ∅ /∈ Σ+. Hence,

1 Requiring the voters in S to coordinate on the same preference Q in this definition is
without loss of generality, as is not difficult to show.
2 Observe that by (i) exactly one of the two statements in (ii) must hold.
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there is an i with Di ∈ D and by property (i) again there is exactly one such
i. Also, if a partition P ′ of Ω is coarser than P (i.e., each element of P is
contained in an element of P ′; we also say that P is finer than P ′) then (i)
implies D ⊆ D′, where D and D′ are the elements of P and P ′ that are in
D, respectively. Therefore, there is a well defined mapping d that assigns to
each partition its element in D, and d satisfies:

If P ′ is coarser than P , then d(P) ⊆ d(P ′). (11.2)

The following lemma shows that also the converse holds.

Lemma 11.3.1. Let d be a mapping that assigns to each partition of Ω ex-
actly one element of its elements. Suppose d satisfies (11.2). Then the collec-
tion

D = {D ∈ Σ+ | there is a partition P of Ω with D = d(P)}
is an ultrafilter.

Proof. Let P1 and P2 be partitions and D1 = d(P1), D2 = d(P2). We show
that D1 ∩ D2 ∈ D. Consider the join P of P1 and P2, i.e., the partition

P = {D ∩ E | D ∈ P1, E ∈ P2, D ∩ E ∈ Σ+}.
Obviously, P is finer than both P1 and P2. Suppose D∗ = d(P). Then by
(11.2), both D∗ ⊆ D1 and D∗ ⊆ D2, hence D∗ ⊆ D1 ∩ D2. By definition of
P therefore, D∗ = D1 ∩ D2, which implies D1 ∩ D2 ∈ D.

Finally let D ∈ Σ+. If λ(D) = λ(Ω) then D = d({D}), so D ∈ D. Other-
wise, either D = d({D, Ω\D}) or Ω\D = d({D, Ω\D}), hence either D ∈ D
or Ω \ D ∈ D.

Thus, D is an ultrafilter. ��
Now let R1, . . . , R|A|! be an enumeration of the elements of L. Each profile

R ∈ ρ results in a collection P = {S1, . . . , S|A|!} of subsets of of Ω with
Sk = {t ∈ Ω | R(t) = Rk} ∈ Σ for each 1 ≤ k ≤ |A|! . We denote by P(R)
the collection obtained from P by omitting the sets of measure 0 and call
this the partition generated by R.

We associate with an ultrafilter D a social choice function FD, as follows.
For a profile R ∈ ρ let D be the unique element of P(R) that is in D. Define
FD(R) := x where xR y for all y ∈ A and R = R(t) for (all) t ∈ D. We have:

Lemma 11.3.2. Let D be an ultrafilter. Then the social choice function FD

is non-manipulable.

Proof. Let R ∈ ρ. Suppose that coalition S can manipulate at R. Then
S ∩ D = ∅, where D is the element of P(R) in D. Hence, a manipulation of
S results in a profile R′ such that P(R′) shares D with P(R). But then D
is also the element of P(R′) that is in D by condition (i) of an ultrafilter. So
FD(R′) = FD(R), a contradiction. ��
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Conversely, let F be a non-manipulable social choice function. We will
show that there is an ultrafilter D such that F = FD, by applying (the
Gibbard-Satterthwaite) Theorem 8.2.1. In order to satisfy the range condition
in the theorem, we fix profiles R1, . . . ,R|A| in ρ such that |{F (Rj) | j =
1, . . . , |A|}| = |A| – this is possible since F is surjective by assumption. For an
arbitrary partition P ⊆ Σ+ of Ω let P∗ be the coarsest common refinement of
P and the generated partitions P(Rj), j = 1, . . . , |A|. Regard every element
of P∗ as a separate agent. By Theorem 8.2.1 there is a fixed element D∗ of
P∗ such that, for every profile R ∈ ρ that is measurable with respect to P∗,
we have F (R) = x where x is the top element of R(t) for (all) t ∈ D∗. Denote
by dF (P) the element of P that contains D∗ and let

DF := {dF (P) | P ⊆ Σ+ is a partition}.

Lemma 11.3.3. (i) DF is an ultrafilter. (ii) F = FDF

.

Proof. (i) By Lemma 11.3.1 it is sufficient to prove that dF satisfies (11.2). Let
P and P ′ be partitions with P ′ coarser than P . Let D′ ∈ P ′ with dF (P) ⊆
D′. Let R, Q ∈ L have different top elements. Take a profile R ∈ ρ that
is measurable with respect to P ′, and hence with respect to P , and with
R(t) = R for all t ∈ D′ and with R(t) = Q otherwise. Then F (R) is the top
element of R since R = R(t) for (all) t ∈ dF (P). Hence, dF (P ′) = D′, so that
dF (P) ⊆ dF (P ′).

(ii) Let R ∈ ρ with generated partition P(R). Let D∗ be the element of
P(R)∗ such that F (R) = x, where x is the top element of R(t) for (all)
t ∈ D∗. Let D be the element of P(R) with D∗ ⊆ D. By definition, FDF

(R)
is the top element of R(t) for (all) t ∈ D, hence FDF

(R) = x = F (R). ��
Lemmas 11.3.2 and 11.3.3 have the following corollary.

Corollary 11.3.4. Let F : ρ → A be a social choice function. Then F is
non-manipulable if and only if there is an ultrafilter D with F = FD.

Corollary 11.3.4 is the form the Gibbard-Satterthwaite Theorem takes in
our model with a continuum of voters and measurable profiles.3 First, we
show that the result is not vacuous.

Theorem 11.3.5. There exists a non-manipulable social choice function.

Proof. By Corollary 11.3.4 it is sufficient to show that there exists an ultra-
filter of sets in Σ+.

A filter in Σ+ is a collection F ⊆ Σ+ satisfying

(i) for all D, D′ ∈ F , D ∩ D′ ∈ F ;

3 For the case of finitely many voters the relation between the concepts of non-
manipulability and ultrafilter has been examined before, see Batteau, Blin, and Monjardet
(1981).
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(ii) for all D ∈ F and D′ ∈ Σ+ with D ⊆ D′, D′ ∈ F .

(Clearly, an ultrafilter is a filter.) Let U be the collection of all filters F that
satisfy, additionally,

(iii) for all D ∈ F and D′ ∈ Σ+ with D′ ⊆ D and λ(D) = λ(D′), D′ ∈ F .

Any set of positive measure together with all its subsets of the same measure
and all measurable supersets of these form a filter, so U is non-empty. The
inclusion relation is a partial ordering on U and each chain in U has an
upper bound, namely the union of all filters in the chain. Hence, Zorn’s
Lemma implies that U has a maximal element, say D. We claim that D is an
ultrafilter. If not, then there is a D ∈ Σ+ such that D /∈ D and Ω \ D /∈ D
(recall that D ∈ D and Ω \ D ∈ D is not possible by (i)). By (ii), we have
D′ ∩ D 	= ∅ and D′ ∩ (Ω \ D) 	= ∅ for every D′ ∈ D and by (iii), we have
λ(D′ ∩ D) > 0 and λ(D′ ∩ (Ω \ D)) > 0. Now consider the collection D′

obtained by adding to D the collection {D′ ∩ D | D′ ∈ D}. Then it is easy
to check that D′ is a filter in U that is larger than D, contradicting the
maximality of D. Hence, D is an ultrafilter. ��

Since this existence proof is based on an application of Zorn’s Lemma,
it does not actually show how to construct a non-manipulable social choice
function. If we require constructibility then it can be shown that a non-
manipulable social choice function does not exist, so that Corollary 11.3.4 is
truly an impossibility result. Observe that in our model a single voter cannot
be a dictator in view of (11.1).

For a concrete illustration of Theorem 11.3.5 see the next example.

Example 11.3.6. Let Ω = [0, 1] and let λ be the Lebesgue measure. If D is an
ultrafilter, then for any t ∈ [0, 1] exactly one of the two intervals [0, t] and
[t, 1] must be in D. Suppose, for the sake of the argument, that this is always
the lower one, [0, t]. Then for every positive ε, every element of D has an
intersection of positive measure with [0, ε]. The point 0 is an invisible dicta-
tor in the sense of Kirman and Sondermann (1972). Of course, the singleton
0 does not have any power at all, but always needs, roughly, a coalition of
positive measure in any arbitrarily small neighborhood to exercise its ‘dicta-
torship’. In this sense, the social choice function FD associated with D has
an invisible dictator, namely voter 0.

We conclude this section by discussing a possible weakening of the non-
manipulability condition.

Remark 11.3.7. Our non-manipulability condition can be weakened to a ver-
sion that is a closer approximation of individual non-manipulability. Call F
ε-manipulable if for every ε > 0 there is a profile R ∈ ρ and a coalition
S ∈ Σ with λ(S) < ε such that F is manipulable by S at R. Call F non-ε-
manipulable if it is not ε-manipulable. This means that there is an ε > 0 such
that at no profile coalitions with size smaller than ε can manipulate. Clearly,
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non-ε-manipulability is weaker than non-manipulability, hence for every ul-
trafilter D the social choice function FD satisfies it. Conversely, suppose that
F is non-ε-manipulable. Take ε > 0 so small that no coalition of size smaller
than ε can ever manipulate, and take an arbitrary partition Pε of Ω such
that each element of Pε has size smaller than ε. Modify the definition of P∗

preceding Lemma 11.3.3 such that P∗ is now the coarsest common refinement
of Pε and P(Rj), j = 1, . . . , |A|. Then Lemma 11.3.3 and Corollary 11.3.4
continue to hold if we replace non-manipulability by non-ε-manipulability.

11.4 Exactly and strongly consistent social choice
functions

In the preceding section we have seen that a version of the Gibbard-
Satterthwaite Theorem continues to hold in our model with a continuum
of voters. Like in Chapters 9 and 10, as an answer to this we shall study ex-
actly and strongly consistent social choice functions. We start with defining
this concept within the present model.

Let F be a social choice function and observe that for every R ∈ ρ the
pair (F,R) defines a game in strategic form in the usual and natural way:
each player t ∈ Ω has strategy set L and preference R(t) on A for evaluating
any outcome F (R∗) ∈ A, R∗ ∈ ρ. For S ∈ Σ0, denote by ρS the set of
all measurable functions RS : S → L. Let R ∈ ρ. The profile Q ∈ ρ is a
strong (Nash) equilibrium of the game (F,R) if for every S ∈ Σ+ and every
VS ∈ ρS , there exists T ∈ Σ+ with T ⊆ S and F (Q)R(t)F (QΩ\S ,VS) for
every t ∈ T .

Definition 11.4.1. The social choice function F is exactly and strongly con-
sistent (ESC) if for every R ∈ ρ there exists a strong equilibrium Q of (F,R)
such that F (Q) = F (R).

Thus, if F is an ESC social choice function, then for every profile there is
a strong equilibrium profile that results in the same outcome, and therefore
F is not necessarily distorted.

In the remainder of this chapter we shall concentrate on anonymous ESC
social choice functions. In our model a social choice function F : ρ → A is
anonymous if for all R1,R2 ∈ ρ we have: if λ({t ∈ Ω | R1(t) = R}) = λ({t ∈
Ω | R2(t) = R}) for all R ∈ L, then F (R1) = F (R2). Thus, a social choice
function is anonymous if it only depends on the numbers of voters for each
preference.

We first consider a simple example of an anonymous ESC social choice
function.4 For a profile R and a, b ∈ A, a 	= b, we say that a Pareto dominates
b if λ({t ∈ Ω | bR(t) a}) = 0. We call an alternative a ∈ A Pareto optimal

4 This example is similar to Example 5.2.2.
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with respect to R if it is not Pareto dominated by some other element of A,
and denote by PAR(R) the set of Pareto optimal alternatives with respect
to R.

Example 11.4.2. Let ā ∈ A be a designated alternative, and let R0 ∈ L be
fixed. Define a social choice function F : ρ → A by

F (R) =

⎧
⎨

⎩

ā if ā ∈ PAR(R)
a if ā /∈ PAR(R) and a is the R0-maximum

of {b ∈ PAR(R) | b Pareto dominates ā}
for all R ∈ ρ. Note that ā can be interpreted as the ‘status quo’. Obviously,
F is surjective and anonymous. We show that F is ESC. Let R ∈ ρ. We
distinguish the following possibilities.

(i) ā ∈ PAR(R).
Let Q ∈ ρ satisfy āQ(t) a for all t ∈ Ω and a ∈ A\{ā}. Then Q is a strong

equilibrium of (F,R) and F (Q) = F (R).

(ii) ā /∈ PAR(R).
Let q be the R0-maximum of B = {b ∈ PAR(R) | b Pareto dominates ā}.

Define Q ∈ ρ by q Q(t) āQ(t) a for all t ∈ Ω and a ∈ A \ {ā, q}. Then
F (Q) = q = F (R) and Q is a strong equilibrium of (F,R). Indeed, Ω does not
have a profitable deviation from Q since q is Pareto optimal with respect to
R. Now let S ∈ Σ+, λ(S) < λ(Ω), and VS ∈ ρS . Then F (QΩ\S ,VS) ∈ {ā, q}.
Hence, VS cannot be a profitable deviation for S.

11.4.1 Effectivity functions of ESC social choice
functions

Before proceeding with our investigation of anonymous ESC social choice
functions, we define the concept of an effectivity function in our model, and
collect some properties of effectivity functions associated with ESC social
choice functions – analogous to the case with finitely many voters in Chapter
10.

Definition 11.4.3. An effectivity function (EF) is a function E : Σ →
P (P0(A)) that satisfies the following conditions: (i) E(Ω) = P0(A); (ii)
E(∅) = ∅; (iii) A ∈ E(S) for every S ∈ Σ0; and (iv) if S1, S2 ∈ Σ0 and
λ(S1 \ S2) + λ(S2 \ S1) = 0, then E(S1) = E(S2).

Condition (iv) in Definition 11.4.3 is specific for our model. It says that the
effectivity function does not distinguish between coalitions that differ only in
a set of measure 0.

All of the following definitions and statements are analogous to their coun-
terparts in the finite case, but we nevertheless list them for the sake of com-
pleteness.
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An effectivity function E is superadditive if for all S1, S2 ∈ Σ with S1∩S2 =
∅ and all B1 ∈ E(S1) and B2 ∈ E(S2) we have: B1 ∩ B2 ∈ E(S1 ∪ S2). The
EF E is monotonic if for all S, S∗ ∈ Σ and B, B∗ ∈ P0(A) with B ∈ E(S),
S ⊆ S∗ and B ⊆ B∗, we have B∗ ∈ E(S∗). An EF E is maximal if for all
S ∈ Σ0 and B ∈ P0(A) we have: if B /∈ E(S) then A \ B ∈ E(Ω \ S). An
EF E is convex if for all S1, S2 ∈ Σ and B1 ∈ E(S1), B2 ∈ E(S2) we have
B1 ∩ B2 ∈ E(S1 ∪ S2) or B1 ∪ B2 ∈ E(S1 ∩ S2).

Also the core of an effectivity function is defined exactly as in the finite
model. Let E : Σ → P (P0(A)) be an EF and let R ∈ ρ. Let B ∈ P0(A),
x ∈ A \ B, and S ∈ Σ. We say that B dominates x via S at R if B ∈ E(S)
and bR(t)x for all b ∈ B and t ∈ S. Also, x is dominated at R if there
exists B ∈ P0(A) and S ∈ Σ such that B dominates x via S at R. If b is not
dominated at R then b is undominated at R.

Definition 11.4.4. The core C(E,R) is the set of all undominated alterna-
tives at R. The effectivity function E is stable if C(E,R) 	= ∅ for all R ∈ ρ.

Let F : ρ → A be a social choice function. We associate with F an effec-
tivity function EF as follows. Let S ∈ Σ0 and let B ∈ P0(A). Call S effective
for B if there exists an RS ∈ ρS such that F (RS ,QΩ\S) is in B for every
QΩ\S ∈ ρΩ\S . Define EF (∅) = ∅, and for S ∈ Σ \ {∅}

EF (S) = {B ∈ P0(A) | S is effective for B}.
In the following theorem we collect some useful properties of EF .

Theorem 11.4.5. Let F : ρ → A be an ESC social choice function. Then EF

is superadditive, monotonic, maximal, stable, and convex. Moreover, F (R) ∈
C(EF ,R) for all R ∈ ρ.

Proof. Superadditivity and monotonicity are straightforward from the defi-
nition of EF (ESC is not needed for this). Maximality and stability, as well
as the last statement in the theorem, can be proved analogously to the case
of finitely many voters, see Section 5.2. Finally, stability and maximality
together imply convexity. A proof of this fact is analogous to the proof of
Theorem 6.A.9 in Peleg (1984). ��

11.5 Blocking coefficients of anonymous ESC SCFs

In the remainder of the chapter we concentrate on anonymous ESC social
choice functions. Anonymity is a natural requirement for voting procedures.
Moreover, imposing this condition will enable us to derive much more detailed
results on both social choice functions and effectivity functions than Theorem
11.4.5 provides.

Let F : ρ → A be an anonymous ESC social choice function, with associ-
ated effectivity function EF . Then EF is superadditive, monotonic, maximal,
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stable and convex, cf. Theorem 11.4.5. A central concept is that of a blocking
coefficient.

For B ∈ P0(A) \ {A}, the blocking coefficient is the real number

β(B) = inf{λ(S) | A \ B ∈ EF (S)}. (11.3)

The number β(B) represents the minimum size of a ‘blocking coalition’ of B.
It is useful since F is anonymous. We call B an e-set (‘e’ from ‘equality’) if
S ∈ Σ and λ(S) = β(B) imply that A \B ∈ EF (S); otherwise, B is called an
i-set (‘i’ from ‘inequality’). Thus, to block an e-set B we need a coalition of
size at least β(B) but to block an i-set B we need a coalition of size strictly
larger than β(B).

We formulate a first observation concerning the blocking coefficients β(·).
Suppose B ∈ P0(A) is an e-set. If β(B) = 0 then A \ B ∈ EF (S) for some
coalition S ∈ Σ0 with λ(S) = 0. Since B ∈ EF (Ω \ S) by conditions (i)
and (iv) in the definition of an effectivity function, we have a violation of
superadditivity of EF . Thus, we have shown:

If B is an e-set, then β(B) > 0. (11.4)

We now derive a number of other properties of β(·), in particular Theorem
11.5.1 below, which says that β(·) is an additive function.

If B1, B2 ∈ P0(A) and B1 ∪ B2 	= A, then

β(B1 ∪ B2) ≤ β(B1) + β(B2). (11.5)

To see this, note that if the right hand side of this inequality is greater than
or equal to λ(Ω), then the inequality holds. Now assume it is smaller. Let
ε > 0 be small and let Si ∈ Σ with λ(Si) = β(Bi)+ε and A\Bi ∈ EF (Si) for
i = 1, 2, such that S1∩S2 = ∅. By superadditivity, A\(B1∪B2) ∈ EF (S1∪S2),
hence β(B1∪B2) ≤ β(B1)+β(B2)+2ε. By letting ε approach 0, (11.5) follows.

For every B ∈ P0(A) \ {A} we have

β(B) + β(A \ B) ≥ λ(Ω) (11.6)

because otherwise there would be disjoint coalitions S and T with B ∈ EF (S)
and A \ B ∈ EF (T ), contradicting the superadditivity of EF . We shall now
show the reverse inequality. Assume β(B) > 0 otherwise there is nothing left
to prove. For every 0 < δ < β(B) and S ∈ Σ with λ(S) = δ we have A \B /∈
EF (S). Hence by maximality of EF , B ∈ EF (Ω\S), so β(A\B) ≤ λ(Ω)− δ.
This implies the reverse inequality of (11.6), hence

β(B) + β(A \ B) = λ(Ω) (11.7)

for every B ∈ P0(A) \ {A}.
Suppose that B ∈ P0(A) \ {A} is an e-set and let S ∈ Σ such that β(B) =

λ(S) and A \B ∈ EF (S). Then, by superadditivity, B /∈ EF (Ω \S). Also, by
(11.7), β(A \ B) = λ(Ω \ S), so that A \ B is an i-set. Conversely, let A \ B
be an i-set and S ∈ Σ with λ(S) = β(A \ B). Then B /∈ EF (S) so that, by
maximality, A \ B ∈ EF (Ω \ S). Since, by (11.7), β(B) = λ(Ω \ S), we have
that B is an e-set. Summarizing,
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B is an e-set ⇔ A \ B is an i-set (11.8)

for every B ∈ P0(A) \ {A}.
Moreover, monotonicity of EF clearly implies monotonicity of the function

β(·):
B1 ⊆ B2 ⇒ β(B1) ≤ β(B2) (11.9)

for all B1, B2 ∈ P0(A) \ {A}.
We now show that blocking coefficients are actually additive, that is,

β(B1 ∪ B2) = β(B1) + β(B2) for all B1, B2 ∈ P0(A) with B1 ∩ B2 = ∅
and B1 ∪ B2 	= A.

Theorem 11.5.1. β(·) is additive.

Proof. Let Bi ∈ P0(A), i = 1, 2, with B1 ∩B2 = ∅ and B1 ∪B2 	= A. In view
of (11.5) it is sufficient to prove that β(B1 ∪B2) ≥ β(B1) + β(B2). By (11.9)
we may assume β(Bi) > 0 for i = 1, 2. Let S and T satisfy λ(S) < β(B1),
λ(T ) < β(B2), and S ∩ T = ∅. Then by (11.7) and (11.9), B1 ∈ EF (Ω \ S)
and B2 ∈ EF (Ω \T ). By convexity of EF , B1 ∪B2 ∈ EF (Ω \ (S ∪ T )). Thus,
by (11.7) and the definition of β(·),

β(B1 ∪ B2) = λ(Ω) − β(A \ (B1 ∪ B2))
≥ λ(Ω) − λ(Ω \ (S ∪ T ))
= λ(S) + λ(T ).

Since, by (11.7) and (11.9), β(B1) + β(B2) ≤ λ(Ω), we can choose λ(S) and
λ(T ) as close to β(B1) and β(B2), respectively, as desired, which completes
the proof. ��

In view of Theorem 11.5.1 and (11.7) it is useful to define β(A) = λ(Ω)
and let A be an i-set. Note that this is another deviation from the case of
finitely many voters, where the analogous statement is

∑
a∈A β(a) = n + 1,

cf. Section 9.2.
For e-sets we have the following theorem.

Theorem 11.5.2. If B1 and B2 are e-sets, then B1 ∩ B2 or B1 ∪ B2 are
e-sets.

Proof. Let B1 and B2 be e-sets. If B1 ∩ B2 = ∅ then take disjoint coalitions
S1 and S2 of sizes β(B1) and β(B2), respectively. Then A\B1 ∈ EF (S1) and
A \ B2 ∈ EF (S2). By superadditivity, A \ (B1 ∪ B2) ∈ EF (S1 ∪ S2). Since
λ(S1 ∪ S2) = β(B1 ∪B2) by Theorem 11.5.1, we conclude that B1 ∪B2 is an
e-set.

Next, assume B1 ∩B2 	= ∅. Choose pairwise disjoint sets S1, S2, and S3 in
Σ0 such that λ(S1) = β(B1)− β(B1 ∩B2), λ(S2) = β(B2)− β(B1 ∩B2), and
λ(S3) = β(B1 ∩ B2). Define T1 = S1 ∪ S3 and T2 = S2 ∪ S3. Then λ(T1) =
β(B1), λ(T2) = β(B2), λ(T1∩T2) = β(B1∩B2), and λ(T1∪T2) = β(B1∪B2).
By assumption, A \B1 ∈ EF (T1) and A \B2 ∈ EF (T2). Since EF is convex,
A \ (B1 ∪B2) ∈ EF (T1 ∪ T2) or A \ (B1 ∩B2) ∈ EF (T1 ∩ T2). Thus, B1 ∪B2

or B1 ∩ B2 are e-sets. ��
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Example 11.5.3. The effectivity function associated with the ESC social
choice function of Example 11.4.2 is as follows. If S ∈ Σ+ with λ(S) < λ(Ω)
then B ∈ EF (S) if and only if ā ∈ B, for all B ∈ P0(A); and if λ(S) = λ(Ω)
then EF (S) = P0(A). This implies that for all B ∈ P0(A) we have β(B) = 0
if ā /∈ B, and β(B) = λ(Ω) if ā ∈ B. Also, B 	= A is an i-set if ā /∈ B, and an
e-set if ā ∈ B. In particular, β({x}) = 0 and {x} is an i-set for all x ∈ A\{ā},
and β({ā}) = λ(Ω) and {ā} is an e-set.

We conclude this section by generalizing the concepts of e-sets and i-sets.
Let β : P0(A) → [0, λ(Ω)] and let {i, e} be a partition of P0(A) satisfying

β is additive, β(A) = λ(Ω), and β(B) > 0 for all B ∈ e, (11.10)

for all B ∈ P0(A) \ {A}, B ∈ e ⇔ A \ B ∈ i, and A ∈ i, (11.11)

for all B1, B2 ∈ e, we have B1 ∩ B2 ∈ e or B1 ∪ B2 ∈ e. (11.12)

Properties (11.10)–(11.12) summarize exactly all the properties of the e-
sets and i-sets of the effectivity function associated with an anonymous ESC
social choice function established above.

Next, for a system (β; e, i) satisfying (11.10)–(11.12), we define an effec-
tivity function E by E(Ω) = P0(A), E(∅) = ∅, A ∈ E(S) for every S ∈ Σ0,
and

for all B ∈ e and S ∈ Σ, if λ(S) ≥ β(B) then A \ B ∈ E(S), (11.13)

for all B ∈ i and S ∈ Σ, if λ(S) > β(B) then A \ B ∈ E(S). (11.14)

It is straightforward to check that E is an effectivity function according to
Definition 11.4.3: the premise in condition (iv) implies in particular that
λ(S1) = λ(S2), so that E(S1) = E(S2) according to the definition of E.

In the next sections we consider the following question. Given a system
(β; e, i) satisfying (11.10)–(11.12) and associated effectivity function E, is
there an (anonymous) ESC social choice function F such that E = EF ? By
using feasible elimination procedures we will present a complete answer to
this question for the case where there is exactly one i-alternative, i.e., there is
exactly one x ∈ A with {x} ∈ i, in Corollary 11.7.3. This is restrictive since
we already know that there are other cases: see Examples 11.4.2, 11.5.3. On
the other hand, this case is the only possible one if we require all blocking
coefficients to be positive: see Corollary 11.8.3.

11.6 Feasible elimination procedures

In this section we describe a procedure that will enable the construction
of an anonymous exactly and strongly consistent social choice function. We
start with the definition of a so-called pseudo feasible elimination procedure.
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Throughout, β : A → R is a function satisfying β(a) ≥ 0 for all a ∈ A and∑
a∈A β(a) = λ(Ω).

Definition 11.6.1. Let R ∈ ρ. A pseudo feasible elimination procedure
(p.f.e.p.) is a sequence (x1, C1; . . . ; xm−1, Cm−1; xm) that satisfies the fol-
lowing conditions:

A = {x1, . . . , xm}. (11.15)

Cj ∈ Σ0, Cj ∩ Ck = ∅, λ(Cj) ≥ β(xj)
for all j, k = 1, . . . , m − 1, j 	= k.

(11.16)

y R(t)xj for all j = 1, . . . , m − 1, y ∈ {xj+1, . . . , xm}, t ∈ Cj . (11.17)

In a pseudo feasible elimination procedure, ‘bottom’ alternatives are elim-
inated consecutively. As

∑
a∈A β(a) = λ(Ω), it is obvious that for each profile

there always exists at least one p.f.e.p., namely one with λ(Cj) = β(xj) for
all j = 1, . . . , m − 1. In the following lemma we show that actually more is
possible: if an alternative x is bottom for a coalition of size larger than β(x),
then there is a p.f.e.p. where this alternative is eliminated first and with strict
inequality.

First we recall a notation: for a profile R and a subset B of A, denote by
R|B the profile of preferences restricted to the set B.

Lemma 11.6.2. Let R ∈ ρ and let x ∈ A satisfy

λ({t ∈ Ω | y R(t)x for all y ∈ A}) > β(x).

Then there exists a p.f.e.p. (x, Cx; x1, C1; . . . ; xm−1) with λ(Cx) > β(x).

Proof. The proof is by induction on m. The case m = 2 is obvious. Let m ≥ 3.
We define

A∗ = {y ∈ A | λ({t ∈ Ω | z R(t) y for all z ∈ A}) > β(y)}. (11.18)

By assumption, x ∈ A∗. We distinguish the following cases.

(i) |A∗| ≥ 2.
Let y ∈ A∗\{x} and choose Cy ⊆ Ω such that λ(Cy) = β(y) and Cy ⊆ {t ∈

Ω | z R(t) y for all z ∈ A}. Define the profile Q ∈ ρ as follows. If t ∈ Ω \ Cy

with z R(t) y for all z ∈ A, then let xQ(t)A\{x, y}Q(t) y; otherwise, Q(t) =
R(t). Consider the restricted profile Q1 = QΩ\Cy |A\{y} – observe that if x
is a bottom alternative for a voter t in this restricted profile then it was a
bottom element of R(t). By the induction hypothesis and by the construction
of Q there exists a p.f.e.p. (x, Cx; x1, C1; . . . ; xm−2) with respect to Q1 such
that λ(Cx) > β(x) and Cx ⊆ {t ∈ Ω | z R(t)x for all z ∈ A}. Then the
p.f.e.p. (x, Cx; y, Cy; x1, C1; . . . ; xm−2) is as required.

(ii) A∗ = {x}.
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Let Ĉx satisfy Ĉx ⊆ {t ∈ Ω | y R(t)x for all y ∈ A} and λ(Ĉx) = β(x).
Consider the profile R1 = RΩ\Ĉx |A\{x}. For all y 	= x let Cy = {t ∈ Ω \ Ĉx |
z R(t) y for all z ∈ A \ {x}}. We distinguish two subcases.

(ii.1) λ(Cy) = β(y) for all y 	= x.
Choose ȳ ∈ A \ {x} such that λ(Ĉ) > 0, where

Ĉ = {t ∈ Ω \ Ĉx | z R(t) ȳR(t)x for all z ∈ A \ {x}}.
(Observe that Ĉ ⊆ Cȳ, hence λ(Ĉ) ≤ β(ȳ).) Let Cx = Ĉx ∪ Ĉ, and let
A \ {x, ȳ} = {y1, . . . , ym−2}. Then (x, Cx; y1, Cy1 ; . . . ; ym−2, Cym−2 ; ȳ) is a
p.f.e.p. as required.

(ii.2) There exists ȳ 	= x such that λ(Cȳ) > β(ȳ).
By the induction hypothesis there exists a p.f.e.p. (ȳ, Ĉȳ ; x1, C1; . . . , xm−2)

with respect to R1 such that λ(Ĉȳ) > β(ȳ). Note that λ({t ∈ Ĉȳ |
z R(t) ȳ R(t)x for all z ∈ A \ {x}}) > 0 since ȳ /∈ A∗. Choose Ĉ ⊆ {t ∈
Ĉȳ | z R(t) ȳ R(t)x for all z ∈ A \ {x}} such that 0 < λ(Ĉ) ≤ λ(Ĉȳ)− β(ȳ).
Then (x, Ĉx ∪ Ĉ; ȳ, Ĉȳ \ Ĉ; x1, C1; . . . ; xm−2) is a p.f.e.p. as required. ��

Now note that if a procedure like p.f.e.p. should result in an anonymous
ESC social choice function then clearly some of the alternatives might be
i-alternatives and these should be blocked with inequality. The preceding
lemma exhibits a case in which this is possible. If, however, there are two or
more of such i-alternatives then it is not difficult to construct a profile where a
p.f.e.p. does not exist if we require i-alternatives to be blocked with inequality.
With this consideration and with observation (11.4) – which says that only
i-alternatives can have zero blocking coefficients – in mind, all alternatives
except at most one should have positive β-values. Therefore, in the rest of
this section we make the following assumption.

Assumption 11.6.3 There is an alternative in A, denoted by s, such that
β(a) > 0 for all a ∈ A \ {s}.

We next introduce the concept of a feasible elimination procedure within
the model of this chapter. In this procedure, the designated alternative s of
Assumption 11.6.3 can only be eliminated if, during the procedure, it becomes
a bottom alternative for a coalition of size strictly larger than β(s).

Definition 11.6.4. Let R ∈ ρ. A p.f.e.p. (x1, C1; . . . ; xm−1, Cm−1; xm) is a
feasible elimination procedure (f.e.p.) if it satisfies the following condition:

xm = s or [xj = s for some j < m and λ(Cj) > β(s)]. (11.19)

We shall now prove the existence of f.e.p.’s in our model and then relate
them to ESC social choice functions.

Theorem 11.6.5. Let Assumption 11.6.3 hold. Then, for every R ∈ ρ there
is an f.e.p. with respect to R.
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Proof. Let R ∈ ρ. The proof is by induction on m. The case m = 2 is obvious.
Let m ≥ 3. Define A∗ as in (11.18). We distinguish the following possibilities.

(i) A∗ = ∅.
For a ∈ A let C(a) = {t ∈ Ω | y R(t) a for all y ∈ A}. Then λ(C(a)) =

β(a) for all a ∈ A. Let A \ {s} = {a1, . . . , am−1}. Then (a1, C(a1); . . . ; am−1,
C(am−1); s) is an f.e.p.

(ii) A∗ 	= ∅ and s /∈ A∗.
Let y ∈ A∗ and let Cy ⊆ {t ∈ Ω | z R(t) y for all z ∈ A} satisfy λ(Cy) =

β(y). By the induction hypothesis for RΩ\Cy |A\{y} there exists an f.e.p.
(x1, C1; . . . ; xm−1) for the restricted profile. Then (y, Cy ; x1, C1; . . . ; xm−1)
is an f.e.p. for R.

(iii) s ∈ A∗.
This case follows from Lemma 11.6.2. ��
We shall use the existence of feasible elimination procedures established in

Theorem 11.6.5 to derive the existence of an interesting class of ESC social
choice functions, similarly as we did in Chapter 9. Let R ∈ ρ. Call x ∈ A
R-maximal if there exists an f.e.p. (x1, C1; . . . ; xm) with respect to R such
that x = xm. Further, denote

M(R) = {x ∈ A | x is R-maximal}.
Thus, M(R) 	= ∅ for all R ∈ ρ if Assumption 11.6.3 holds. The following
observation concerning M(·) will be very useful below.

Remark 11.6.6. Let R ∈ ρ and let x ∈ A \ {s} satisfy

λ({t ∈ Ω | y R(t)x for all y ∈ A}) ≥ β(x).

Then x /∈ M(R). This is so since λ(
⋃

y∈A\{x}{t ∈ Ω | A \ {y}R(t)y}) ≤
λ(Ω) − β(x) and s has to be eliminated strictly in an f.e.p.

Theorem 11.6.7. Let Assumption 11.6.3 hold. Let the social choice function
F : ρ → A be a selection from M(·), that is, F (R) ∈ M(R) for every R ∈ ρ.
Then F is exactly and strongly consistent.

Proof. Let R ∈ ρ and x = F (R). Then there exists an f.e.p. (x1, C1; . . . ; xm−1,
Cm−1; x) with respect to R. Choose Q ∈ ρ that satisfies y Q(t)xj for all
t ∈ Cj , y ∈ A, and j = 1, . . . , m − 1. We claim that F (Q) = F (R) and that
Q is a strong equilibrium of the game (F,R). We distinguish the following
cases.

(i) x = s.
By Remark 11.6.6, F (Q) = s. Now assume, on the contrary, that Q is not

a strong equilibrium of (F,R). Then there exist S ∈ Σ+ and VS ∈ ρS such
that F (QΩ\S ,VS) = y, y 	= s, and y R(t) s for all t ∈ S. Let y = xj for some
1 ≤ j ≤ m − 1. Then S ∩ Cj = ∅ because sR(t)xj for all t ∈ Cj . Hence, by
Remark 11.6.6, F (QΩ\S ,VS) 	= xj , which is the desired contradiction.
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(ii) x 	= s.
Then s = xj0 for some j0 ≤ m − 1. Thus, by definition of an f.e.p.,

λ(Cj0 ) > β(s). Hence, it is not possible to eliminate all x′ 	= s in an f.e.p.
with respect to Q, and therefore F (Q) 	= s. By Remark 11.6.6 applied to all
x′ ∈ A\{x, s}, F (Q) = x. The proof that Q is a strong equilibrium of (F,R)
is analogous to that in case (i), observing that a profitable deviation from Q
can never result in s since λ(Cj0 ) > β(s) and, therefore, it is not possible to
eliminate all alternatives in A \ {s} in an f.e.p. with respect to Q. ��

We conclude this section with some observations which relate Theorem
11.6.7 to the preceding sections.

Let F̂ be an anonymous selection from M(·). For instance, for every R ∈ ρ
select the maximal element in M(R) according to a fixed order R0 ∈ L. By
Theorem 11.6.7, F̂ is an anonymous ESC social choice function, and therefore
its associated effectivity function EF̂ is characterized by blocking coefficients
(say) β̂(B) for B ∈ P0(A). Since alternatives assigned by F̂ result from
feasible elimination procedures with weights β(a) (a ∈ A), it is easy to check
that β̂(a) = β(a) for every a ∈ A, and that {s} is an i-set whereas all other
singleton sets are e-sets. By the results established in Section 11.5, it follows
that a set B ⊆ A is an i-set if and only if it contains s. Note that the effectivity
function EF̂ is independent of the particular anonymous selection F̂ chosen
since it is completely determined by the weights β(a) (a ∈ A), and thus we
can denote it by Ê. Since, for all R ∈ ρ and for every element x ∈ M(R)
we can always find an anonymous selection choosing that particular element,
Theorem 11.4.5 implies that M(R) ⊆ C(Ê,R) for all R ∈ ρ. We can also
state this as M(R) ⊆ C(E,R) for all R ∈ ρ, where E is the effectivity
function associated with the system (β, e, i) as above (cf. Section 11.5). In
the next section we shall establish the converse inclusion C(E,R) ⊆ M(R).

11.7 Core and feasible elimination procedures

In this section we prove that for any anonymous ESC social choice function
that has exactly one i-alternative, every element in the core of the associated
effectivity function can be obtained by a feasible elimination procedure.

Let (β; e, i) be a system satisfying (11.10)–(11.12) with i containing exactly
one singleton {s} for some designated s ∈ A. Hence, β(y) > 0 for all y ∈
A \ {s}. Let E be the associated effectivity function. Note that β(·) satisfies
Assumption 11.6.3 and therefore M(R) 	= ∅ for all R ∈ ρ by Theorem 11.6.5.
As explained in the last paragraph of Section 11.6, we have M(R) ⊆ C(E,R)
and in particular C(E,R) 	= ∅ for every R ∈ ρ.

Let R ∈ ρ and x ∈ C(E,R). For every y ∈ A \ {x} denote

S(y) = {t ∈ Ω | xR(t) y}.
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As before for B ∈ P0(A) we denote β(B) =
∑

y∈B β(y). Using (11.13),
(11.14), and the definition of the core it is straightforward to derive, for
all z ∈ A,

z ∈C(E,R)⇔
{

λ(∪y∈BSz(y)) ≥ β(B) for all B ∈ P0(A) with s /∈ B, z /∈ B,
λ(∪y∈BSz(y)) > β(B) for all B ∈ P0(A) with s ∈ B, z /∈ B,

(11.20)

where Sz(y) = {t ∈ Ω | z R(t) y}, so S(y) = Sx(y). In particular, we have
λ(S(y)) ≥ β(y) for all y 	= x, with strict inequality if y = s. Of course, the
sets S(y) need not be disjoint, but Theorem 11.7.1 below says that they can
be shrunk in such a way that they become pairwise disjoint while maintaining
the inequalities. This theorem is a continuous version of the discrete ‘mar-
riage theorem’ (cf. Halmos and Vaughan, 1950), suitable for our context, in
particular for deriving Theorem 11.7.2 below. The latter theorem says that
core elements are maximal, and its proof follows the construction in the proof
of Theorem 11.7.1.5

Theorem 11.7.1. There exist pairwise disjoint measurable sets C(y), y ∈
A \ {x}, such that (i) C(y) ⊆ S(y) for every y ∈ A\{x}; (ii) λ(C(y)) ≥ β(y)
for all y 	= x and λ(C(s)) > β(s).

Proof. We start by noting that, if x 	= s, we may increase β(s) with a small
ε > 0 and decrease β(x) with the same amount (note that β(x) > 0). In
this way, all inequalities in (11.20) still hold as weak inequalities and it is
sufficient to prove (ii) in the theorem with only weak inequalities. Moreover,
we may regard x as the i-alternative instead of s. For the rest of the proof
we assume that this is the case.

We prove the theorem by induction on |A| = m ≥ 2. The case m = 2 is
obvious, so we concentrate on the induction step for m ≥ 3. We first make
the following observation.

Remark. Suppose there exists a set B∗ ⊆ A \ {x} with ∅ 	= B∗ 	= A \ {x},
such that λ(∪y∈B∗S(y)) = β(B∗). In this case, we can decompose our problem
into two smaller problems to which we can apply the induction hypothesis,
as follows.

(i) The problem with set of alternatives B∗∪{x}, set of voters ∪y∈B∗S(y),
blocking coefficients β̂(x) = 0 and β̂(y) = β(y) unchanged for y ∈ B∗, and
preferences R(t)|B∗∪{x} for t ∈ ∪y∈B∗S(y). Note that all inequalities as in
(11.20) restricted to voters in ∪y∈B∗S(y) and alternatives in B∗ ∪ {x} still
hold, and that λ(∪y∈B∗S(y)) = β(B∗) = β̂(B∗ ∪ {x}).

(ii) The problem with set of alternatives A\B∗, set of voters Ω\∪y∈B∗S(y),
blocking coefficients unchanged, and preferences R(t) restricted to A \ B∗.

5 For a proof of a slightly less general version of the continuous ‘marriage theorem’ see
Hart and Kohlberg (1974, p. 171).



140 11 Consistent voting systems with a continuum of voters

Note that all inequalities still hold since for any set B ⊆ A \ ({x} ∪ B∗) we
have

λ(∪y∈BS(y) \ ∪ŷ∈B∗S(ŷ)) = λ(∪y∈B∪B∗S(y)) − λ(∪y∈B∗S(y))
= λ(∪y∈B∪B∗S(y)) − β(B∗)
≥ β(B ∪ B∗) − β(B∗)
= β(B).

Furthermore, λ(Ω \ ∪y∈B∗S(y)) = β(A \ B∗).
The required sets C(y), y ∈ A \ {x} are now obtained by applying the

induction hypothesis to each subproblem.

We now proceed to the induction step. Let m ≥ 3. We are done if there
is a decomposition possible as in the Remark, so suppose there is none. Let
b ∈ A \ {x} and consider the set S = S(b) \ ∪y∈A\{x,b}S(y), i.e., S = {t ∈ Ω |
y R(t)xR(t) b for all y 	= x, b}. We distinguish two cases.

Case 1 : λ(S) ≥ β(b). Since x ∈ C(E,R), 0 ≤ λ(S) ≤ β(x) + β(b). Now
take C(b) equal to S, and apply the induction hypothesis to the problem with
set of alternatives A \ {b}, set of voters Ω \S, blocking weights β′ unchanged
except β′(x) = β(x) − (λ(S) − β(b)), and preferences equal to the original
preferences restricted to A \ {b}.

Case 2: λ(S) < β(b). We also know λ(S(b)) > β(b) otherwise λ(S(b)) =
β(b) by (11.20), and we would have a decomposition as in the Remark with
B∗ = {b}. Now choose a measurable set S∗ satisfying S ⊆ S∗ ⊆ S(b) and
λ(S∗) = β(b) (this is possible by Lyapunov’s Theorem). Consider the set of
vectors

{(λ (S∗ ∪ T ∪ (∪y∈BS(y))))B�A\{b,x} | ∅ ⊆ T ⊆ S(b) \ S∗}. (11.21)

For T = S(b) \ S∗ and B = ∅ we have

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(S(b)) > β(b) (11.22)

and for T = S(b) \ S∗ and B ⊆ A \ {x, b} arbitrary we have

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(∪y∈B∪{b}S(y)) ≥ β(b) + β(B) (11.23)

by (11.20). For T = ∅ and B = ∅ we have

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(S∗) = β(b). (11.24)

Now for B ⊆ A \ {x, b} with B 	= A \ {x, b} and T ⊆ S(b) \ S∗ consider the
expression

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(T ) + λ(S∗ ∪ (∪y∈BS(y)))
−λ(T ∩ (S∗ ∪ (∪y∈BS(y)))).

This is an affine function, with variable T , of two measures λ(T ) and λ(T ∩
(S∗ ∪ (∪y∈BS(y)))). As B varies on {B′ | B′ ⊆ A \ {b, x}, B′ 	= A \ {b, x}}
we obtain an affine combination of two vector measures. Hence, its range
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(11.21) is compact and convex by Lyapunov’s Theorem. By (11.22), (11.23),
and (11.24), we can choose T = T0 such that all inequalities in (11.23) are
still valid but with at least one equality, say for B0. Now set S0 = S∗ ∪ T0,
and set B∗ = B0∪{b}. On S(b)\S0 change the preferences by shifting b up so
that it becomes preferred to x. Use the notation S̄(·) for the S(·)-sets in the
new profile. Then all sets S(y), y 	= b, remain unchanged, i.e., S̄(y) = S(y),
whereas S(b) changes to S̄(b) = S0. Then, for this new profile, we have
β(B∗) = β(b)+ β(B0) = λ(S0 ∪ (∪y∈B0S(y))) = λ(∪y∈B∗ S̄(y)). The problem
with the new profile is decomposable according to the Remark. Applying the
Remark, we obtain the desired sets: in particular, the resulting set C(b) is a
subset of S̄(b) = S0 and therefore of S(b). This concludes the proof of the
theorem. ��

Still under the assumptions made at the beginning of this section we pro-
ceed to show that x is a maximal alternative, i.e., x ∈ M(R). We first attach a
precise and formal meaning to the expression ‘bottom alternative’: we call b ∈
A a bottom alternative of R if the set Ŝ(b) = {t ∈ Ω | y R(t) b for all y ∈ A}
has measure λ(Ŝ(b)) ≥ β(b), with strict inequality sign for b = s. Observe
that there is always a bottom alternative since

∑
a∈A β(a) = λ(Ω). Obviously,

x is not a bottom alternative since it is in the core C(E,R).
We have the following result.6

Theorem 11.7.2. Alternative x is R-maximal, that is, x ∈ M(R). In partic-
ular, if b is a bottom alternative of R, then there is an f.e.p. (b, Cb; y1, C1; . . . ;
ym−2, Cm−2; x).

Proof. Let b be a bottom alternative. If b = s we slightly increase the blocking
coefficient of b (as in the beginning of the proof of Theorem 11.7.1) so that
we still have λ(Ŝ(b)) ≥ β(b). (This has the advantage that in what follows it
is sufficient to consider blocking with weak inequalities.)

The proof is by induction on m = |A|. For m = 2 the result is again
obvious. Let m ≥ 3.

(i) First suppose that the problem is decomposable into two subproblems
with sets of alternatives {x} ∪ B∗ and A \ B∗ as in the proof of Theorem
11.7.1, and with b ∈ B∗. Note that all voters in the problem with A\B∗ rank
B∗ above x. By the induction hypothesis, each of the subproblems has an
f.e.p. leading to x, with the one in the first subproblem starting with b. Let
|B∗| = k, let (b, Cb; y1, C1; . . . ; yk−1, Ck−1; x) be an f.e.p. in the problem with
{x}∪B∗ and let (x1, Ĉ1; . . . ; xm−k−1, Ĉm−k−1; x) be an f.e.p. in the problem
with A \ B∗. Then

(b, Cb; x1, Ĉ1; . . . ; xm−k−1, Ĉm−k−1; y1, C1; . . . ; yk−1, Ck−1; x)

is an f.e.p. for the original problem.

6 The analogous result to Theorem 11.7.2 for the case with finitely many voters is Theorem
9.3.6. The proof of the latter theorem has benefitted from the analysis in this chapter.
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(ii) Next, suppose the problem is not decomposable in this way. As in
the proof of Theorem 11.7.1 let S = S(b) \ ⋃

y∈A\{x,b} S(y) and distin-
guish two cases as there. In Case 1, λ(S) ≥ β(b), we take again C(b) =
S, observing that S ⊆ Ŝ(b). Applying the induction hypothesis, we let
(y1, C1; . . . ; ym−2, Cm−2; x) be an f.e.p. in the problem with set of alternatives
A \ {b}, then (b, Cb; y1, C1; . . . ; ym−2, Cm−2; x) is as desired.

In Case 2, we proceed again as in the proof of Theorem 11.7.1 but we
make sure that S0 there is chosen in such a way that λ(S0 ∩ Ŝ(b)) ≥ β(b).
This is possible since S ⊆ Ŝ(b) ⊆ S(b) and so we can choose S∗ (which is
a subset of S0 by construction) such that S∗ ⊆ Ŝ(b). We have now again
a decomposition as in (i) of this proof: since b is eliminated first, shifting b
over x in the original preferences of voters in S(b) \ S0 does not change the
restriction of these preferences to A \ B∗. ��

We conclude this section by summarizing the main results of Sections 11.6
and 11.7 in the following corollary.

Corollary 11.7.3.

(i) Let F be an anonymous ESC social choice function. Suppose that the
associated effectivity function E has exactly one i-alternative. Then
C(E, ·) = M(·) and F is a selection from this set.

(ii) Let (β; e, i) be a system satisfying (11.10)–(11.12) such that i contains
exactly one singleton. Then, for the associated effectivity function E,
C(E, ·) = M(·), and any anonymous selection from this set is an anony-
mous ESC social choice function.

11.8 Positive blocking coefficients

A natural question is whether Corollary 11.7.3 can be extended to general
systems (β; e, i). We have already remarked that if there are two or more
i-alternatives, then a feasible elimination procedure may fail to exist. On the
other hand, Example 11.4.2 (or 11.5.3) shows that an anonymous ESC social
choice function may generate more than one i-alternative. In this section we
show that if an anonymous ESC social choice function generates only pos-
itive blocking coefficients, then there can be at most one i-alternative. In
other words, Corollary 11.7.3 provides a complete characterization of anony-
mous ESC social choice functions if we require all blocking coefficients to be
positive.

Let E be the effectivity function associated with a system (β; e, i), satis-
fying (11.10)–(11.12).
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Definition 11.8.1. E satisfies D(k), where 1 ≤ k ≤ m − 2, if there ex-
ist no partitions {x1}, . . . , {xk}, C1, C2 of A and S1, . . . , Sk, T1, T2 of Ω,
S1, . . . , Sk, T1, T2 ∈ Σ+, such that7

(i) λ(Si) = β(xi) for i = 1, . . . , k, and x1, . . . , xk are e-alternatives;
(ii) λ(Ti) = β(Ci) for i = 1, 2, and C1 and C2 are i-sets.

The following theorem is a counterpart of similar results for the case of
finitely many voters, see Section 10.4 in particular. Its proof is deferred until
the end of this section.

Theorem 11.8.2. Let F : ρ → A be an anonymous ESC social choice func-
tion, and let (β; e, i) be the associated system. Suppose that β(a) > 0 for all
a ∈ i. Then E = EF satisfies D(k) for all 1 ≤ k ≤ m − 2.

We now have:

Corollary 11.8.3. Let F : ρ → A be an anonymous ESC social choice func-
tion that generates only positive blocking coefficients. Then there is exactly
one i-alternative.

Proof. Clearly, by (11.11) and (11.12), there must be at least one i-alternat-
ive: if all alternatives were e-alternatives then repeated application of (11.12)
would give a violation of (11.11). Also, there must be at least one e-
alternative: if not, then A \ {x} would be an e-set for each x ∈ A by (11.11),
hence A \ {x, y} = A \ {x} ∩ A \ {y} would be an e-set for all x, y ∈ A by
(11.12), and so on and so forth, implying that all singletons would be e-sets,
a contradiction.

Suppose that there are two different i-alternatives x, y in the associated
system. Let {x1}, . . . , {xk} be the e-singletons, hence 1 ≤ k ≤ m − 2. Define
C1 = {x} and C2 = {z ∈ A | z 	= x, {z} ∈ i}. Then C2 is an i-set, which
can be seen as follows. Write C2 = {y1, . . . , y�}, where � ≥ 1. If C2 were an
e-set, then also C2 \{y�} = C2∩A\{y�} would be an e-set by (11.12). Hence,
C2 \ {y�, y�−1} = C2 \ {y�} ∩ A \ {y�−1} is an e-set, and so on and so forth,
until we obtain that {y1} is an e-set, which is a contradiction.

Now choose a partition of Ω as in Definition 11.8.1, so that D(k) is violated.
This contradicts Theorem 11.8.2. ��

The combination of Corollaries 11.7.3 and 11.8.3 yields an almost complete
characterization of anonymous ESC social choice functions. The case where
there is more than one i-alternative – so that at least one i-alternative has
zero blocking coefficient – is still open.

Proof of Theorem 11.8.2

We start with the following observation.

7 Recall from Section 11.3 that elements of a partition have positive measure by definition.
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Lemma 11.8.4. Let F : ρ → A be an ESC SCF. Then there exist no
partitions S1, . . . , Sp of Ω and B1, . . . , Bp of A (where p ≥ 2) such that
A \ Bi /∈ EF (Si) for all i = 1, . . . , p.

Proof. Assume, on the contrary, that there exist partitions as in the lemma.
Consider the following profile:

S1 S2 · · · Sp

B2 B3 · · · B1

B3 B4 · · · B2

...
...

...
...

Bp B1 · · · Bp−1

B1 B2 · · · Bp

By maximality (Theorem 11.4.5) of EF , we have Bi ∈ EF (Ω\Si) for every i =
1, . . . , p. Hence, the alternatives in B2 are blocked by Ω \S1, the alternatives
in B3 by Ω \ S2, etc., so that C(EF ,R) = ∅. But this contradicts stability
(Theorem 11.4.5) of EF . ��
Proof of Theorem 11.8.2 The proof is by induction on k.

(1) k = 1. Assume, on the contrary, that there are partitions {x1}, C1, C2

of A and S1, T1, T2 of Ω, satisfying (i) and (ii) in Definition 11.8.1. Let
S1 = S1 ∪ S2 with S1 ∩ S2 = ∅ and λ(S1) = λ(S2). Consider the following
profile R:

S1 S2 T1 T2

C1 C2 x1 x1

C2 C1 C2 C1

x1 x1 C1 C2

Since S1 can block x1 (i.e., A \ {x1} ∈ E(S1)), stability of EF (Theorem
11.4.5) implies F (R) 	= x1. Without loss of generality F (R) ∈ C1. Let Q be
a strong Nash equilibrium of (F,R) with F (R) = F (Q). We distinguish the
following possibilities.

(1.1) There exists y ∈ C2 such that λ({t ∈ S1 | x1 Q(t) y}) > 0.
Choose S3 ⊆ {t ∈ S1 | x1 Q(t) y} such that 0 < λ(S3) < mina∈A β(a). Define
the T1 ∪ T2-profile P by

x1 P(t) y P(t)A \ {x1, y} for all t ∈ T1 ∪ T2.

By considering the partitions S1 \ S3, S3, T1 ∪ T2, and {x1}, {y}, A \
{x1, y}, it follows from Lemma 11.8.4 that T1 ∪ T2 blocks A \ {x1, y}.
Hence, F (QS1 ,PT1∪T2) ∈ {x1, y}. As T1 ∪ T2 ∪ S3 is effective for x1, and
F (QS1 ,PT1∪T2) ∈ C(E, (QS1 ,PT1∪T2)), we have F (QS1 ,PT1∪T2) = x1.
Thus, T1 ∪ T2 has improved upon F (Q), which is a contradiction.

(1.2) C2 Q(t)x1 for all t ∈ S1.
Consider the T1 ∪ S2-profile P defined by
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C2 P(t)x1 P(t)C1 for all t ∈ T1 ∪ S2.

Since λ(T1 ∪ S2) > λ(T1) = β(C1), T1 ∪ S2 blocks C1. Therefore, F (QT2∪S1
,

PT1∪S2
) /∈ C1. Suppose F (QT2∪S1

,PT1∪S2
) = x1. Note that, in the profile

(QT2∪S1
,PT1∪S2

), both T1 and S1 prefer C2 over x1. Moreover, λ(T1 ∪S1) =
β(C1) + β(x1) and C1 ∪ {x1} is an e-set, because C2 is an i-set; therefore,
T1 ∪ S1 blocks C1 ∪ {x1}. This contradicts F (QT2∪S1

,PT1∪S2
) = x1 and,

hence, F (QT2∪S1
,PT1∪S2

) ∈ C2. But this contradicts the fact that Q is a
strong Nash equilibrium in (F,R).

(2) Let 1 < k ≤ m− 2 and assume D(1), . . . , D(k − 1). We shall prove D(k).
Assume, on the contrary, that there exist partitions {x1}, . . . , {xk}, C1, C2

of A and S1, . . . , Sk, T1, T2 of Ω, satisfying (i) and (ii) in Definition 11.8.1. If
C1 ∪ {xk} is an i-set, then we obtain a contradiction to D(k − 1). Otherwise,
A\(C1∪{xk}) is an i-set. Then consider the partitions {xk}, C1, A\(C1∪{xk})
of A, and Sk, T1, Ω \ (Sk ∪T1) of Ω: this implies a contradiction to D(1). ��

11.9 Notes and comments

Most of the results of this chapter first appeared in Peleg and Peters (2006).
The extension of the Gibbard-Satterthwaite theorem to the continuum voter
case first appeared in the working paper version of Peleg and Peters (2006).
There, it is also shown that in this model an effectivity function is maximal
and stable if and only if it can be represented by a strongly consistent game
form. See Propositions 5.2.4 and 5.2.6 and Theorem 5.3.2, or Moulin and
Peleg (1982), for the case with finitely many voters.
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