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Preview to this book

A constitution describes the rights and obligations of individuals and groups
in a society. Thus, it implies to which social states or sets of social states these
groups are entitled. In order to enforce such rights and obligations, laws and
rules are required that set bounds to the behavior of individuals and groups:
they restrict the choices that individuals can make. A few natural desiderata
for such a system of laws and rules come to mind. First, these laws and
rules should leave the society members enough space to be able to enforce
those social states to which they are constitutionally entitled, but not more
than that. Second, such a system of laws and rules should make a situation
possible in which society is stable, that is, in some state of equilibrium. Third,
such equilibrium social states should be collectively optimal if possible: there
should be no social state that is better for all members of society.

In this monograph, following Gärdenfors (1981), we model rights and con-
stitutions by effectivity functions, a term coined by Moulin and Peleg (1982).
An effectivity function assigns to each group in society a collection of sets of
social states. If a group S is effective for a set of social states B, then this
means that S is constitutionally entitled to the prevailing social state being
in B. As described above, we additionally need a set of laws and rules in order
that S be able to ‘enforce’ the social state to be in B. This is formalized by
a game form. A game form endows each individual with a set of strategies.
To each profile of individual strategies, an outcome function assigns a social
state. Thus, a game form makes it possible to impose the constitution in prac-
tice. The idea of society functioning as a game is well established. Friedman
(1962, p. 25) writes:

It is important to distinguish the day-to-day activities of people from the general

customary and legal framework within which these take place. The day-to-day ac-
tivities are like the actions of the participants in a game when they are playing it;
the framework, like the rules of the game they play. [...]

Naturally, the rules and laws (game form) should reflect the constitution.
More precisely, by jointly choosing their individual strategies the members of

xi



xii Preview to this book

a group (coalition) S can make sure that the resulting social state (alternative,
outcome) is in some set B. These combinations (S,B) induced by the game
form should be exactly the same as the combinations determined by the
constitution. In that case, we say that the game form represents the effectivity
function which models the constitution.

However, it is not sufficient to have a game form representing the constitu-
tion: we also want the game form to possess a certain form of stability. Also
this point is stressed by Friedman (1962, p. 25):

In both games and society also, no set of rules can prevail unless most participants
most of the time conform to them without external sanctions; unless that is, there
is a broad underlying social consensus. But we cannot rely on custom or on this
consensus alone to interpret and to enforce the rules; we need an umpire. These
then are the basic roles of government in a free society: to provide a means whereby
we can modify the rules, to mediate differences among us on the meaning of the
rules, and to enforce compliance with the rules on the part of those few who would
otherwise not play the game.

Friedman uses the need for stability (social consensus) as an argument to
have an ‘umpire’ in the form of the government. In our approach, governments
do not appear explicitly, but may be represented by a group of individuals
in the game form. The same holds for ‘law and order’: policemen and judges
can be players or groups in the game form. This approach does not favor
any political points of view: these should be implicit in the constitution or
perhaps in the individual preferences of the players. For stability we rely on
game-theoretic equilibrium concepts. Individuals in society are characterized,
not only by their rights and obligations, but also by their preferences. The
minimal requirement that we impose is that, whatever preferences the in-
dividuals hold, the resulting game (i.e., game form cum preferences) has a
Nash equilibrium.

The issue of representation of a given power structure by a game form can
be traced back to von Neumann and Morgenstern (1944), who showed that a
superadditive coalitional game can be represented by a (transferable utility)
strategic game. This result was extended to games with nontransferable util-
ity, see Aumann (1967) and Borm and Tijs (1992). The most basic theorem in
this monograph, Theorem 2.4.7, is in fact the generalization of this result to
coalitional game forms1, that is, effectivity functions. The rest of the mono-
graph originates, conceptually, mainly from work from the mid-seventies by
the first author (Peleg, 1978a and 1978b).

The emphasis in this work is on strategic stability of game forms repre-
senting effectivity functions, and not so much on considerations of equity or
fairness. One could say that these should be embodied in the constitution
modelled by the effectivity function and represented by the game form. Nev-
ertheless, just as in the work of Hurwicz and Schmeidler (1978) we shall also
pay attention to Pareto optimality of equilibrium outcomes of our represent-
ing game forms. In fact, it will appear that in the prevalent representing

1 This term is due to Abdou and Keiding (1991).



Preview to this book xiii

game forms constructed in this monograph there are always Pareto optimal
equilibrium outcomes.

Summarizing, we study representations of effectivity functions by game
forms that satisfy, at least, the minimal stability requirement of having a Nash
equilibrium for any profile of individual preferences. Although our leading
motivation is to view effectivity functions as modelling constitutions, this is
certainly not their exclusive usage. The theory presented here applies also to
societies on a smaller scale. In principle, it applies to any society (including,
for instance, academic societies) where member rights and obligations are
exercised through a set of rules or procedures (e.g., by-laws).

Before we proceed to a more detailed description of the parts and chapters
by which this monograph is organized, a few remarks pertaining to both its
extent and limitations are in order.

First, from a broader perspective and as mentioned, an effectivity func-
tion can be viewed as a general form of a cooperative game, in the spirit
of characteristic function games as introduced by von Neumann and Mor-
genstern (1944). The representation problem is then tantamount to finding
a non-cooperative game (form) that endows each player and coalition with
the same ‘power’ as the given effectivity function. The challenge is to find
representations that perform well in terms of existence of Nash equilibria (or
strong Nash equilibria), and Pareto optimality of the resulting equilibrium
outcomes. If possible, the representing game form should be ‘nice’, e.g., in
the sense of some continuity properties. Thus, although constitutions of large
and small societies form a leading motivation for this work, the actual scope
is larger.

Second, our emphasis is on representation and game-theoretic stability
issues, and we do not have the ambition to contribute substantially to the
purely legal or philosophical literature on laws and constitutions. Rather,
this work can be seen as a specific contribution to the economic literature
on mechanism design if we take the latter in a wide sense: the design of
game forms (mechanisms) in order to reach collective decisions on the basis
of individual choices.

Third, the theory in this book should be distinguished from what is usually
called implementation theory. Implementation theory is concerned with find-
ing a game form associated with a social choice correspondence (or function)
such that, for any profile of preferences, the (Nash, strong,...) equilibrium out-
comes of the game coincide exactly with the outcomes prescribed by the social
choice correspondence. Thus, in implementation theory, one could say that
the representation problem is restricted to equilibrium outcomes: there are
no restrictions on the outcomes resulting from non-equilibrium behavior. In
contrast, in the theory of this book, the representation issue is not restricted
to equilibrium outcomes, and, consequently, representing game forms can be
constructed completely independently of admissible preference profiles.

This monograph consists of two parts. Part I (Chapters 1–7) is closest
to the above general description of the book and considers representations
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of effectivity functions by game forms, strategic stability properties of those
game forms, Pareto optimality of equilibrium outcomes of those game forms,
and continuity properties of game forms. Part II (Chapters 8–11) specializes
to social choice functions . A social choice function assigns an alternative to
any profile of preferences and is, thus, a game form where the strategies of
the players are their individual preferences. Such a social choice function or,
equivalently, such a game form induces an effectivity function which, natu-
rally, is represented by it. Thus, compared to Part I, Part II of the monograph
focuses on a special kind of (‘direct revelation’) game forms, namely social
choice functions. The well-known Gibbard-Satterthwaite Theorem says that
in such a game form there is always a player who can manipulate, i.e., fares
better by not playing the strategy of reporting his true preference. As a conse-
quence, playing the game may lead to undesirable outcomes, and in particular
not to the outcomes intended by the original social choice function. For this
reason, we shall focus on strong Nash equilibria that result in the same final
outcome which would ensue if each player reported his true preference.

The book is based on work that has appeared over the last thirty years, in-
cluding some recent articles, but also contains new results, such as Nash con-
sistency of upper semicontinuous representations (Chapter 7), and a strongly
consistent representation result for topological spaces (Chapter 5). There are
quite some new or improved proofs of existing results as well, for instance the
proof of the representation theorem in Chapter 2, and many of the proofs in
Chapter 3.

Part I: Representations of constitutions

After the introductory Chapter 1 we set off in Chapter 2 with a formal de-
scription of a constitution and the effectivity function that it induces. We fol-
low Gärdenfors (1981) and Peleg (1998): the latter reference presents a more
detailed formalization of the concept of rights. The main result of Chapter 2
is Theorem 2.4.7, which shows that every effectivity function (under the usual
necessary conditions of monotonicity and superadditivity) can be represented
by a game form. The game form used in the proof of this theorem is central:
it is used and modified throughout Part I of the monograph.

In Chapter 3 we derive necessary and sufficient conditions on an effectivity
function to be representable by a Nash consistent game form, i.e., a game
form that has a Nash equilibrium for every profile of preferences. This is
Theorem 3.2.3. In Theorem 3.3.10 we show that for the case where the number
of alternatives (social states) is finite, these conditions can be phrased directly
in terms of the original effectivity function. The crucial condition here is
an intersection condition that limits the power of individuals. Most of the
remainder of this chapter is devoted to the case where the set of alternatives
is infinite and we have some topological structure on this set and on the
effectivity function. To obtain Nash consistency we need to add a topological
condition, but the mentioned intersection condition stays intact.
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In this chapter we also discuss the relation between our results and some
well-known ‘paradoxes’ in the social choice literature, notably the Gibbard
Paradox (Gibbard, 1974), and the inconsistency of Pareto Optimality and
Minimal Liberalism (Sen, 1970), also called the ‘liberal paradox’. As to the
latter, we show that the game form used to prove the existence of Nash
consistent representations – the same game form as used for the main repre-
sentation result in Chapter 2, see above – is, in fact, weakly acceptable. This
means that the game formed by the game form and any profile of preferences
has a Nash equilibrium with a Pareto optimal outcome. In this sense, our
results offer a partial resolution to the liberal paradox.

Chapter 3 is based mainly on Peleg, Peters, and Storcken (2002). The part
on the topological case also owes to Abdou (1988).

Chapter 4 goes deeper into the issue of Pareto optimality. Specifically, an
acceptable game form is a Nash consistent game form such that all Nash
equilibrium outcomes for all preference profiles are Pareto optimal. This is
clearly desirable: whenever a Nash equilibrium is played, we do not have
to worry about its Pareto optimality. Acceptability is attained under the
demanding extra condition that no two disjoint coalitions can veto the same
alternative x: it is not possible that both coalitions S and T are effective for
the set of all alternatives except x if S and T are disjoint. Chapter 4 is based
mainly on Peleg (2004).

In Chapter 5 we consider representing game forms that are strongly con-
sistent , i.e., admit a strong Nash equilibrium for any profile of preferences.
A strong Nash equilibrium is a strategy profile that is resistant not only to
deviations by individuals but also to deviations of all other coalitions. Strong
consistency is a natural strengthening of Nash consistency in view of the fact
that we might also expect coalitions to deviate, but it is attained only at the
price of strong conditions on the effectivity function, specifically maximality
and core stability. Maximality means that the effectivity function is equal to
its polar: for the case of finitely many alternatives, this implies that for each
set of alternatives and each coalition of individuals, either that coalition is
effective for the given set of alternatives or the complement of that coalition
is effective for the complement of the given set of alternatives. Core stability
means that for any given profile of preferences there should be an undomi-
nated alternative, where an alternative x is undominated if no coalition S is
effective for a set B such that all members of S prefer all alternatives of B
over x. Stability can be replaced by convexity, which is a condition imposed
directly on the effectivity function (see Corollary 5.3.4). The results of this
chapter are collected from various sources, among which is Peleg (1998).

In Chapter 6 we reexamine the intersection condition necessary for Nash
consistency of representing game forms, as established in Chapter 3. Restrict-
ing ourselves to the case of finitely many alternatives, we manage to avoid
this restrictive condition at the price of allowing some uncertainty in the
outcomes. Specifically, we show that adding equal chance lotteries over pure
alternatives and assuming that players evaluate these by utility functions
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respecting stochastic dominance – a minimal and natural requirement – en-
ables us to obtain Nash consistent representations without any extra condi-
tion. We call such an effectivity function, obtained by adding equal chance
lotteries, a lottery model if it preserves the original effectivity function in the
following sense: a coalition is effective for a set of lotteries if and only if it
was originally effective for the set consisting of the union of the supports of
all those lotteries. Chapter 6 may serve as a starting point for finding repre-
sentations under incomplete information about player types (preferences). It
is based on Peleg and Peters (2009).

In the final chapter of Part I we go deeper into the topological properties
of representing game forms for the case where the set of alternatives is a
compact metric space. Specifically we investigate continuity of the outcome
function. Our motivation for this is that continuity of the outcome function is
a desirable property: it would be undesirable if a small change in an individual
strategy would result in an entirely different social state. Unfortunately, we
have to start with an impossibility result, entirely due to the lack of continuity
of set intersection. On the other hand, we establish some weaker continuity
properties, like for instance (upper or lower) semicontinuity when the set of
alternatives is a compact subset of the real line. In the analysis the Cantor
(ternary) set plays an important role, due to the mathematical fact that there
exists a continuous surjective function from the Cantor set to any compact
metric space.

The approach in Chapter 7 is necessarily more technical. Nevertheless
the main message is that, although completely continuous representations
may not exist, there is still much continuity possible while maintaining Nash
consistency. This chapter is based mainly on Keiding and Peleg (2006b).

Part II: Consistent voting

Chapter 8 is introductory to Part II and recalls the Gibbard-Satterthwaite
Theorem for social choice functions. As explained above, a social choice func-
tion is a special kind of game form, in which the possible preferences of the
players are their strategies – so each player reports a strategy – and the out-
come function (the social choice function) assigns to each profile of (reported)
preferences an alternative. The Gibbard-Satterthwaite Theorem states that
there is always a profile of (true) preferences and a player for whom it is not
optimal to report his true preference, unless there is a dictator or there are
only two alternatives. As a result, the final outcome may not be the desired
outcome (desired according to the social choice function applied to the true
preference profile). In Part II we accept this state of affairs as a matter of fact
and consider the following alternative approach: for a given profile of (true)
preferences, can we find a strong Nash equilibrium of the associated game
such that the resulting outcome is identical to the outcome we would obtain
if each player were to report truthfully? A social choice function with this
property is called exactly and strongly consistent (ESC). Chapter 8, more-
over, very briefly reviews other approaches to escape the consequences of the
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Gibbard-Satterthwaite Theorem. One of these is the concept of ‘equilibrium
with threats’ (Peleg and Procaccia, 2007).

Chapter 9 starts the investigation of ESC social choice functions using
feasible elimination procedures , already treated in Peleg (1978a). The main
results of this chapter imply that a(n anonymous) social choice function is
ESC if and only if it always selects an alternative that can be obtained
by a feasible elimination procedure. Such a feasible elimination procedure
is based on a given set of positive integer weights assigned to alternatives.
For a given preference profile, an alternative can be eliminated if it is the
bottom alternative for a coalition of cardinality at least the weight of the
alternative. This is reminiscent of the core of an associated effectivity function
and, indeed, a relation between feasible elimination procedures and the core
is established (Theorem 9.3.6).

In Chapter 10 the concept of a feasible elimination procedure is extended
to apply to effectivity functions. An effectivity function is called elimination
stable if the set of alternatives resulting from applying feasible elimination
procedures is non-empty. The chapter contains characterizations of elimina-
tion stable effectivity functions in terms of conditions that can be checked
independently of preference profiles, and is based mainly on Holzman (1986b).

In the final chapter (Chapter 11), based on Peleg and Peters (2006), we
extend our results to the case where the number of alternatives is (still)
finite but the set of individuals is a continuum: this is the prevalent frame-
work of (for instance, national) elections. We start by extending the Gibbard-
Satterthwaite Theorem to this model and establish, similar to Kirman and
Sondermann (1972), that non-manipulability is only possible if there is a so-
called ‘invisible dictator’. Next, we extend the concept of feasible elimination
procedures and find that for subsets of alternatives we have to distinguish
between ‘e-sets’ and ‘i-sets’: the latter can only be blocked – and hence, elim-
inated – by coalitions of size strictly larger than the total weight of the ‘i-set’,
whereas for ‘e-sets’ equality is sufficient for blocking. Using these tools, we
are able to extend most of the results of Chapters 9 and 10 to this frame-
work with a continuum of voters. In particular, we obtain an almost complete
characterization of anonymous ESC social choice functions in this model.
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Chapter 1

Introduction to Part I

1.1 Motivation and summary

In this chapter we explain why we adopt Gärdenfors’s (1981) model of a
constitution rather than Arrow’s model of a (‘well behaved’) social welfare
function. We start, in Section 1.2, with the definition of a social welfare
function and recall some of the questions that it invoked. Then we proceed
to formulate Arrow’s Impossibility Theorem in Section 1.3. This theorem has
severe implications for Arrow’s notion of a constitution. We quote Arrow’s
(1967) account of the dilemma posed by his impossibility theorem.

In Section 1.4 we briefly recall Gärdenfors’s definition of a constitution.
Then we proceed with a short summary of Part I of this book. We conclude,
in Section 1.5, with the remark that within our model a theory is developed
which is parallel to Sen’s theory of individual rights and liberalism.

1.2 Arrow’s constitution

As far as we know Arrow was the first to give a precise definition of a
constitution in modern social choice theory. We recall the definition. Let
N = {1, . . . , n} be the set of members of a society (n ≥ 2) and let
A = {a1, . . . , am} be the set of social states or alternatives (m ≥ 3). A
linear ordering of A is a complete, reflexive, transitive, and antisymmetric
binary relation on A. For the sake of simplicity we restrict ourselves here to
linear orderings, that is, strict preferences. The set of all such linear order-
ings on A is denoted by L. A ‘constitution’ or social welfare function (SWF)
is a function Φ : LN → L. Thus, a social welfare function associates with
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4 1 Introduction to Part I

every possible profile of linear orderings, i.e., individual preferences, a social
ordering.1

In our view at least two questions may be asked about the foregoing defi-
nition.
(a) Is it meaningful to regard a social ordering Φ(LN ) as a preference of the
group or society N? Some economists argue that only individual preferences
are legitimate (see e.g. Buchanan and Tullock, 1962). We think that group
preferences may make sense provided one drops the completeness assumption.
Indeed, in defining their dominance relation von Neumann and Morgenstern
(1944) assume that a coalition may take some action as a result of the co-
incidence of the preferences of its members over a pair of alternatives. The
coalitional preferences in their theory are clearly incomplete. Nevertheless,
they lead to interesting solution concepts like stable sets and, later, the core.
Furthermore, if completeness is replaced by acyclicity in Arrow’s theory then
positive results become possible (cf. Mas-Colell and Sonnenschein, 1972).
(b) Is Arrow’s notion of a constitution useful as a model for actual, real-life
constitutions? In other words, may we deduce conclusions from it that apply
to real-life constitutions? Intuitively, the answer to these questions seems to
be negative. A constitution is a system of laws that govern the every day life
of the members of a society up to interpretation by the judicial authority
and modification by the legislative authority. Thus, a constitution is only
indirectly related to individual preferences: it does not operate directly on
such preferences the way a social welfare function does. Moreover, individual
preferences are usually private information, but Arrow’s approach ignores
game-theoretic aspects (Arrow, 1963, p. 7). As we shall see it is possible to
build a game-theoretic model where the definition of a constitution is much
closer to the ordinary one. Furthermore, some phenomena that appear in
Arrow’s model also occur in the game-theoretic model.

1.3 Arrow’s Impossibility Theorem and its implications

We assume the same model as in the preceding section. For a linear ordering
Ri ∈ L and x, y ∈ A we also denote (x, y) ∈ Ri by xRi y. By Ri|{x, y} we
denote the restriction of Ri to the set {x, y}. Similarly, RN |{x, y} denotes
the restriction of the profile RN ∈ LN to {x, y}.

A social welfare function Φ is Paretian if for all RN ∈ LN and all x, y ∈ A
such that xRi y for all i ∈ N , we have xΦ(RN ) y.

A social welfare function Φ satisfies independence of irrelevant alterna-
tives (IIA) if for all RN , QN ∈ LN and all x, y ∈ A such that RN |{x, y} =
QN |{x, y} we have Φ(RN )|{x, y} = Φ(QN )|{x, y}.

1 Strictly speaking, in Arrow (1967) a constitution is not literally an SWF but rather a
social choice function derived from an SWF. Nevertheless, the basis is an SWF.
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Theorem 1.3.1 (Arrow’s Impossibility Theorem). If Φ : LN → L is
Paretian and satisfies IIA, then Φ is dictatorial, that is, there exists d ∈ N
such that Φ(RN ) = Rd for all RN ∈ LN .

Theorem 1.3.1 has important implications for the possible use of social
welfare functions as modelling constitutions. Indeed, Arrow (1967) defined
constitutions as ‘well behaved’ social welfare functions, which means that they
should be Paretian and satisfy IIA. But then Arrow’s Impossibility Theorem
implies that there exists no satisfactory constitution. Arrow’s reaction to this
is as follows (Arrow, 1967, p. 228):

This conclusion is quite embarrassing, and it forces us to examine the conditions
which have been stated as reasonable. It’s hard to imagine anyone quarrelling either
with the Pareto Principle or the condition of Non-Dictatorship. The principle of

Collective Rationality may indeed be questioned. One might be prepared to allow
that the choice from a given environment be dependent on the history of previous
choices made in earlier environments, but I think many would find that situation
unsatisfactory. There remains, therefore, only the Independence of Irrelevant Alter-
natives....

Further on (p. 231), he continues:

Unfortunately, it is clear, as I have already suggested, that social decision processes
which are independent of irrelevant alternatives have strong practical advantages,
and it remains to be seen whether a satisfactory social decision procedure can really
be based on other information.

In order to resolve the described impasse a different definition of a con-
stitution is required. In this book we use Gärdenfors’s (1981) definition of a
‘rights-system’. Incorporating, as well, Peleg’s (1998) representation of a con-
stitution by a game form, we obtain a comprehensive game-theoretic model
for social interaction both for large and for small communities. Thus, we also
avoid the critique on Arrow’s model that it does not take game-theoretic
aspects into consideration.

1.4 Gärdenfors’s model

Gärdenfors (1981) defines a ‘rights-system’ as follows. A right of a non-empty
coalition S ⊆ N is a non-empty subset B ⊆ A. The interpretation is that
S is legally entitled to the containment of the final social alternative in B.
A rights-system E is the set of all pairs (S,B) where B is a right of S.
Gärdenfors also assumes monotonicity and coherence of rights systems.

This definition of a rights system is formally similar to the definition of
an effectivity function. We build on this similarity and define a constitution
as an effectivity function. We also strengthen Gärdenfors’s assumption of
coherence and assume superadditivity of the constitution. Finally, we use
Peleg’s (1998) notion of a representation of an effectivity function by a game
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form to obtain a comprehensive model for the interaction of the members of
a social or political system.

In Part I of this book we investigate the following questions. In Chapter
2 we solve the problem of representations of effectivity functions by game
forms. A complete characterization of constitutions that may be represented
by Nash consistent game forms is given in Chapter 3. Both discrete and
continuous models are considered. Chapter 4 characterizes effectivity func-
tions that may be represented by acceptable game forms, a notion that refers
to Pareto optimality of Nash equilibria. Representations by strongly consis-
tent game forms are investigated in Chapter 5, where some new results are
included compared to the existing literature. Chapter 6 reconsiders repre-
sentations by Nash-consistent game forms when (even-chance) lotteries on
subsets of alternatives are allowed: it is shown that within this framework
constitutions have Nash consistent representations without the restrictive as-
sumption established in Chapter 3. Finally, in Chapter 7, we investigate the
continuity of the outcome function of a representation when the outcome
space and the strategy sets are compact metric spaces.

1.5 Notes and comments

The inclusion of the game-theoretic aspects of a political or social system
in the definition of a constitution is a deviation from Arrow’s definition.
Nevertheless, some phenomena appearing in Arrow’s theory, which relies on
social welfare functions, also appear in our theory, which relies on game forms
representing the constitution and on equilibrium notions. A notable example
is Sen’s (1970) theory of individual rights and liberalism, which is developed
within Arrow’s model, but has an analog in our model, with results that are
different but similar in spirit. See, in particular, Section 3.6.



Chapter 2

Constitutions, effectivity functions,
and game forms

2.1 Motivation and summary

In this chapter we expound on Gärdenfors’s (1981) theory of rights-systems
or constitutions. Gärdenfors formalizes rights-systems as follows. If S is a
coalition (a group of individuals, members, players,...) and B is a set of so-
cial states (outcomes, alternatives,...), then B is a ‘right’ of S in the sense
of Gärdenfors if S is legally entitled to the final social state being in B.
The set of all pairs (S,B) where S is a coalition and B is a right of S, is
a rights-system. Under very mild conditions a rights-system is a so-called
effectivity function. (Effectivity functions are formally introduced in Defini-
tion 2.3.1.) Under some additional intuitive conditions, implying the require-
ments of monotonicity and consistency as postulated in Gärdenfors (1981), a
rights-system is a monotonic and superadditive effectivity function (see Sec-
tion 2.3). Gärdenfors’s definition of rights is somewhat indirect, as it is based
on attainability of social states. Therefore, we first introduce Peleg’s (1998)
model of a constitution (Section 2.2). This model distinguishes between rights
and social states and describes explicitly how rights of groups result in at-
tainable sets of social states. Nevertheless, for a given assignment of rights
the model can be reduced to a rights-system in the sense of Gärdenfors (see
Section 2.3). Section 2.2 also contains some important examples – such as the
example underlying Gibbard’s Paradox (1974) – which are used throughout
Part I of this book.

A society cannot function exclusively on the basis of a rights-system or
constitution but additionally needs a collection of rules that delimits the
actions available and permissible to individuals. For instance, freedom of
speech is a basic right in most constitutions but in practice one needs a set
of rules that distinguish between an individual’s right to express his opinion
on the one hand, and slander or discrimination on the other hand. Such rules
are the legal means to reach social states that agree with the constitution. As
another example, the right to a minimum subsistence level may be part of the
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constitution, but stealing is usually not regarded as a legal way to satisfy it.
Such a collection of rules will be formalized by a game form (Definition 2.4.1).
Thus, we search for a game form that ‘represents’ the effectivity function
(constitution). This idea of representation will be given a precise meaning: the
game form should endow each group in the society (including, of course, single
individuals) with the same possibilities as intended by the constitution. This
also implies, basically, that the ‘legality’ of the game form is judged in terms
of the constitution itself. For instance, if stealing is forbidden and, thus, every
group of individuals is entitled to a social state where nobody gets robbed,
then no individual will have stealing available as a strategy in the game form,
since this could lead to a social state where at least one other individual is
the victim of theft. In Section 2.4 we prove the existence of a representation
for every monotonic and superadditive effectivity function (Theorem 2.4.7).
This theorem will be applied and extended throughout Part I.

In Section 2.5 we briefly comment on the possibility of the simultaneous
exercising of rights by disjoint coalitions. Section 2.6 concludes with some
further remarks.

Notations. The following notations are used throughout this book. For an
arbitrary set D, |D| denotes its cardinality (possibly infinite), P (D) is the
collection of all subsets of D, and P0(D) is the collection of all non-empty
subsets of D. For a subset C of D, C+ denotes the collection of all supersets
of C, that is, C+ = {C′ ∈ P (D) | C ⊆ C′}.

2.2 Constitutions

In this section we present a precise definition of a constitution. Although
our definition is based on Gärdenfors (1981), it is more general since we
distinguish between rights on the one hand and attainable sets of social states
on the other hand.1 We start with the definition of a society.

Definition 2.2.1. A society is a list S = (N,A, ρ, α, γ) where

(1) N is the (finite) set of members of S.
(2) A is the (finite or infinite) set of social states.
(3) ρ is the (finite) set of rights.
(4) α : P (N) → P (ρ), with α(∅) = ∅, is the (current) assignment of rights to

groups of members of S.
(5) γ : P (N) × P (ρ) → P (P0(A)), with γ(∅, θ) = ∅ and A ∈ γ(S, θ) for all

θ ⊆ ρ and S ∈ P0(N), is the access correspondence. Thus, γ determines
the sets of attainable social states by groups of members of S as a function
of their rights.

1 A particular consequence is, that this approach allows the change of the constitution as a
function of time. See also Remark 2.6.1. However, the possibility of changing constitutions
is not further explored in this book.
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Some comments on this definition of a society are in order. First, a social
state is a complete description of all aspects relevant to the members of
society of a possible social situation. Whether the number of social states is
finite or infinite depends on the specific application. Sometimes it may be
convenient and instructive to model the set of social states as an infinite set,
possibly a continuum, with some topological or measure-theoretic structure.
Instead of the term ‘social state’ we often also use the terms outcome and
alternative.

In our definition of a society the set of rights ρ is an abstract set. Intuitively,
however, rights are means to reach certain social states. They determine some
major aspects of the ‘distribution of power’ in society S. In our definition,
this is reflected by the access correspondence γ. The definition of this corre-
spondence needs a more detailed explanation. If S is a (non-empty) group of
society members and θ ⊆ ρ is a set of rights, then γ(S, θ) = {B1, . . . , Bm} is
interpreted as follows: if the group S has rights θ, then it is legally entitled
to the final social state being in B1 or in B2 or ... or in Bm. More precisely, S
could insist on the final social state being in B1, or S could insist on the final
social state being in B2, etc. But it does not mean that S can insist on the
final social state being in the intersection of these sets, assuming that this
intersection is non-empty. We shall elaborate on this point in the examples
below, and also in Section 2.5, when we discuss the simultaneous exercising
of rights by disjoint coalitions. The additional conditions on the access cor-
respondence in (5) above express that the empty coalition is not entitled to
anything (this is merely a formal condition) and that any non-empty coali-
tion is at least entitled to the set of all social states. If, in some case, we have
γ(S, θ) = {A}, then this means that S is essentially powerless. In particular,
it is usually natural to have γ(S, ∅) = {A} for any (non-empty) coalition S.

The first example we consider is a classical example, basically due to Gib-
bard (1974).

Example 2.2.2. Consider a society with two members. Each member has
two shirts, a white one and a blue one, and must wear exactly one of
the two. Denote w for white and b for blue. Then the set of members is
N = {1, 2} and the set of social states is A = {(w,w), (w, b), (b, w), (b, b)},
where for each state the first letter refers to the color of 1’s shirt and
the second letter to the color of 2’s shirt. The set of rights is ρ = {r1},
where r1 is the right for each member of a group to which r1 is assigned,
to choose his own shirt.2 The rights assignment α is given by α(∅) = ∅,
and α(1) = α(2) = α(N) = r1.3 The access correspondence γ is de-
fined as follows. For all θ ⊆ ρ, γ(∅, θ) = ∅. Further, γ(S, ∅) = {A}
for all non-empty S ⊆ N , γ(1, r1) = {(w,w), (w, b)}+ ∪ {(b, w), (b, b)}+,

2 Thus, we formalize this right as one and the same right applicable to different groups.
Alternatively, it could be modelled as three different rights for the three non-empty groups
in this example.
3 When no confusion is likely we will often denote a singleton {a} by a.
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γ(2, r1) = {(w,w), (b, w)}+ ∪ {(w, b), (b, b)}+, and γ(N, r1) = P0(A). We
shall return to this example more than once. It has played an important role
in the literature, see also Gaertner, Pattanaik, and Suzumura (1992).

We proceed with a somewhat more elaborate example, which is related to
another example in Gibbard (1974).

Example 2.2.3. Let N = {m1,m2, f}, where mi is a man, i = 1, 2, and f is
a woman. We let A = {w1, w2, s}, where wi is the social state in which f
marries mi, i = 1, 2, and s denotes the state where f remains single. The
set of rights is ρ = {r1, r2}, where r1 is the right to remain single (which
is not a vacuous right in some societies), and r2 is the right of a mixed
couple to marry (an orthodox society). The assignment of rights is given by
α(m1) = α(m2) = α(f) = r1 and α(mi, f) = r2 for i = 1, 2. The other groups
have no rights as groups. The access correspondence is as follows. If m1 has
right r1, then m1 is entitled to the ‘final’ social state being in the set {w2, s},
and, trivially, all supersets: so γ(m1, r1) = {w2, s}+. By a similar kind of
reasoning we have γ(m1, r2) = {A}, since for m1 having the right r2 does not
give any ‘power’ (legal entitlement): m1 would need the consent of f to marry
her and, moreover, m2 might also have the right to marry f , and these rights
cannot simultaneously be met if polyandry is prohibited. Table 2.1 presents
the complete access correspondence for all non-empty groups.

rights m1 m2 f m1m2 m1f m2f m1m2f

∅ A A A A A A A
r1 {s, w2} {s, w1} {s} {s} {s} {s} {s}
r2 A A A A {w1} {w2} {w1}, {w2}
ρ {s, w2} {s, w1} {s} {s} {w1}, {s} {w2}, {s} {x}, x ∈ A

Table 2.1 Description of the access correspondence of Example 2.2.3.

The entry in row ρ and column m1f , for instance, must be read as γ({m1, f},
ρ) = {w1}+ ∪ {s}+. This means that the group consisting of man m1

and woman f is entitled to the social state where the two get married
and also to the social state where both remain single. Further, γ(N, ρ) =
γ({m1,m2, f}, ρ) = P0(A).

The constituents of a society which are directly connected with rights form
the constitution.

Definition 2.2.4. Let S = (N,A, ρ, α, γ) be a society. The triple (ρ, α, γ) is
called a constitution.

Thus, a constitution consists of a set of rights, an assignment of rights to
groups of members of the society, and a function that specifies for each group
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of members the attainable sets of social states as a function of the rights of
the group.

Our definition of a constitution allows for personal rights: there are no a
priori symmetry conditions imposed on α or γ. In existing constitutions the
same rights are assigned to members of society with similar characteristics.
This is of course not ruled out in applications of our definition of a society.
For instance, in Example 2.2.3 the two men have the same characteristics
and play symmetric roles, which is reflected by both the rights assignment α
and the access correspondence γ.

Remark 2.2.5. The above consideration may be formalized by introducing a
set of parameters π such that each member i of the society is completely
specified, for the sake of the analysis of rights and power, by a non-empty
subset πi ⊆ π. Under this assumption, two members i and j can be called
symmetric if πi = πj . Also, the constitution (ρ, α, γ) satisfies equal treatment
if for every pair of symmetric members i and j the transposition (i, j) is a
symmetry of the pair (α, γ): that is, if πi = πj and S ⊆ N \ {i, j}, then
α(S ∪ i) = α(S ∪ j) and γ(S∪ i, θ) = γ(S ∪ j, θ) for every θ ⊆ ρ. For instance,
in Example 2.2.3 one could introduce the parameter set π = {male, female}
and check that indeed m1 and m2 are symmetric.

In a similar vein it is relevant to note that, although individuals may
exercise the rights assigned to the groups of which they are members, that
does not mean that these rights become individual. For instance, persons over
65 as well as disabled persons may be entitled to free public transportation.
In the terminology of the preceding remark, parameters (dummy variables)
stating whether a person is over 65 and whether a person is disabled would
be included in the overall set of parameters. So a person i may be entitled
to free public transportation because he is 65, or because he is disabled,
or because he belongs to both groups, but not because he is person i. (Of
course, it could happen that person i has special exemption from paying
public transportation fares, in which case this right is strictly individual.)
The same example also shows that there is no contradiction in one group
having right r and another overlapping group not having right r.

It is also of interest to note that in our model rights should be interpreted
in a broad sense: they may include obligations to society, e.g. paying taxes.
The observation that a constitution may also contain obligations is not new,
see e.g. Kanger and Kanger (1972).

The following example illustrates some of these considerations.

Example 2.2.6. Consider a society with N = M∪F ,M∩F = ∅. The members
in M are the males and the members in F the females. For a group S, mS

denotes the number of males in S and fS the number of females. The total
number of members is n, so n = mN + fN . There are two rights, ρ = {o, r}.
If a group S has right o, then this means that all males in S are obliged to
serve in the army. Thus, o is really an obligation. If a group S does not have
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right (obligation) o, then this means that the men in S are not allowed to
serve in the army. If a group S has right r, then this means that every female
in S has the right (but not the obligation) to serve in the army. If a group
S does not have right r, this means that the women in S are not allowed to
serve in the army. (Of course, different interpretations of o and r are possible,
and these may lead to different expressions below.)

The set of social states is assumed to be A = {0, . . . , n}, where k ∈ A
means that exactly k society members serve in the army.

The access correspondence is as follows. For every non-empty group S
we have γ(S, ∅) = {A}, and γ(∅, θ) = ∅ for every θ ⊆ ρ. Further, for any
non-empty group S:

γ(S, o) = {mS ,mS + 1, . . . , n− fS}+ ,

γ(S, r) =
⋃

0≤x≤fS

{x, x+ 1, . . . , x+ n− |S|}+ ,

γ(S, ρ) =
⋃

0≤x≤fS

{x+mS , x+ 1 +mS , x+ n− fS}+ .

The first line reflects the fact that all men in group S have to serve in the
army; the fact that the women in S do not have right to serve in the army
means that they cannot serve in the army. So S is legally entitled to a so-
cial state where the number k of society members who serve in the army is
between mS and n − fS, but cannot decide on the exact value of k. In the
second expression, the group S can decide how many women x serve in the
army; the men in S do not have the obligation to serve, which is interpreted
as the impossibility to serve. The third equation reflects the fact that all men
in S have to serve and all women in S can choose to serve.

This example illustrates that our definition of a constitution does not for-
mally distinguish between rights and obligations. The access correspondence,
however, shows that rights and obligations (in this case, r and o) play different
roles and lead to essential differences in attainable sets of social states.

2.3 Constitutions and effectivity functions

Throughout this section let S = (N,A, ρ, α, γ) be a society, with constitution
(ρ, α, γ). Although the access correspondence γ is specified for any assign-
ment of rights, all that matters to determine the actual attainable sets of
social states is the assignment of rights α. Thus, all the relevant informa-
tion inherent in the constitution (ρ, α, γ) can be summarized by a function
E : P (N) → P (P0(A)) defined by

E(S) = E(S;α, γ) =
⋃

T⊆S

γ(T, α(T )) (2.1)
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for every S ⊆ N . Hence, according to E, group or coalition S is entitled to
all sets of social states to which some subcoalition of S is legally entitled.

Since, by Definition 2.2.1, γ(∅, ·) = ∅, we have E(∅) = ∅. Also, (2.1) implies
that E is monotonic with respect to coalitions:4

S ⊆ T ⇒ E(S) ⊆ E(T ) for all S, T ∈ P (N). (2.2)

Since A ∈ γ(S, θ) for all S ∈ P0(N) and θ ⊆ ρ, we have

A ∈ E(S) for every S 
= ∅. (2.3)

We call the constitution (ρ, α, γ) non-imposed if the grand coalition N has
complete power in terms of E, that is:

E(N) = P0(A) . (2.4)

These conditions on the function E, except for monotonicity with respect
to coalitions, are collected in the concept of an effectivity function. We will
formally introduce effectivity functions in a more general framework where
not all subsets of A are necessarily admitted as possible sets of social states.
More precisely, a structure on A is a set T ⊆ P0(A) such that (i) A ∈ T ;
and (ii) B1 ∩ B2 ∈ T for all B1, B2 ∈ T with B1 ∩ B2 
= ∅. Examples are
situations where (A, T ) is a topological or measurable space. Of course, also
T = P0(A) is a structure. We use the notation (A, T ) to refer to a set of
alternatives with structure and call this a structured space.

Definition 2.3.1. For a structured space (A, T ), an effectivity function (EF)
is a function E : P (N) → P (T ) that satisfies (i) E(∅) = ∅, (ii) (2.3), and (iii)
E(N) = T .

Condition (iii) in this definition is equivalent to (2.4) if T = P0(A).
The functions E associated according to (2.1) with the examples of Sec-

tion 2.2 are described in the following example.

Example 2.3.2. (i) The function E associated with first Gibbard example con-
cerning the choice of shirt color (Example 2.2.2) is given by E(∅) = ∅ and:

E(1) = {(w,w), (w, b)}+ ∪ {(b, w), (b, b)}+ ,

E(2) = {(w,w), (b, w)}+ ∪ {(w, b), (b, b)}+ ,

E(N) = P0(A) .

Clearly, (ρ, α, γ) is non-imposed and, consequently, E is an effectivity func-
tion.

(ii) The function E associated with the second Gibbard example concern-
ing marriage within the trio {m1,m2, f} (Example 2.2.3) is given by E(∅) = ∅
and:

E(m1) = {s, w2}+ , E(m2) = {s, w1}+ , E(f) = {s}+ ,

4 This condition is also proposed in Gärdenfors (1981).
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E({m1, f}) = {s}+ ∪ {w1}+ , E({m2, f}) = {s}+ ∪ {w2}+ ,

E({m1,m2}) = {s, w2}+ ∪ {s, w1}+ , E(N) = P0(A) .

Again, (ρ, α, γ) is non-imposed, and consequently, E is an effectivity function.
(iii) For Example 2.2.6 concerning the right or obligation to serve in the

army, we assume that every non-empty coalition is assigned ρ = {o, r}, that
is: in every non-empty coalition the men have the obligation to serve in the
army while each women has the right to serve in the army. Then E(∅) = ∅. For
every non-empty coalition S, every non-empty T ⊆ S and every 0 ≤ x ≤ fT

we have

{x+mS , . . . , x+ n− fS} ⊆ {x+mT , . . . , x+ n− fT } .

This implies

E(S) = γ(S, ρ) =
⋃

0≤x≤fS

{x+mS , x+ 1 +mS , x+ n− fS}+

for every non-empty coalition S. In particular,

E(N) =
⋃

0≤x≤fN

{x+mN}+
� P0(A)

so (ρ, α, γ) violates non-imposition. Of course, this is obvious: since N has
obligation o, states where not all men serve are not attainable. Thus, E is
not an effectivity function. In the present example, if all men in all coalitions
are obliged to serve in the army by assumption (rights assignment), then
we could reformulate the set of social states by letting these indicate the
number of women that serve in the army. Formulated this way, E would
become an effectivity function. Alternatively, we can introduce the structure
T consisting of the set A and all sets of social states where all men serve in
the army. In that case,

E(S) =
⋃

0≤x≤fS

{x+mN , x+ 1 +mN , x+ n− fS}+, and

E(N) =
⋃

0≤x≤fN

{x+mN}+ = T ,

where the superscript ‘+’ should be read as ‘all supersets within T ’.

Gärdenfors introduced constitutions as effectivity functions. Indepen-
dently, Moulin and Peleg (1982) introduced effectivity functions in the gen-
eral context of game theory and especially in its relation to social choice. The
concept of an effectivity function can be applied in many directions. For an
early summary of the applications of effectivity functions to social choice see
Abdou and Keiding (1991).

We continue with further properties of the access correspondence γ. We
say that γ is monotonic with respect to outcomes if
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[B ∈ γ(S, θ), B ⊆ B∗ ⇒ B∗ ∈ γ(S, θ)] for all B,B∗ ⊆ A, S ⊆ N , θ ⊆ ρ.
(2.5)

Note that in the examples so far this condition is implicit since we always
included all supersets in describing the access correspondences. Condition
(2.5) simply means that if S can reach the set B of social states or outcomes
when θ is its set of rights, then it can logically reach the larger set B∗.

Similarly, we say that E : P (N) → P (T ) is monotonic with respect to
outcomes if

[B ∈ E(S) and B ⊆ B∗ ⇒ B∗ ∈ E(S)] for all B,B∗ ∈ T , S ⊆ N . (2.6)

Remark 2.3.3. A function E : P (N) → P (P0(A)) that is monotonic with re-
spect to outcomes, i.e. satisfies (2.6), also satisfies (2.4), i.e. E(N) = P0(A),
as soon as {a} ∈ E(N) for all a ∈ A. Thus, under monotonicity with re-
spect to outcomes ‘non-imposition’ is equivalent to the grand coalition being
effective for any single social state.

A function E : P (N) → P (T ) is monotonic if it is monotonic both with
respect to coalitions (cf. (2.2)) and with respect to outcomes.

A crucial property of a constitution is the property of coherence.5

Definition 2.3.4. The constitution (ρ, α, γ) is coherent if for all S1, S2 ∈
P0(N) with S1 ∩ S2 = ∅ and all B1 ∈ γ(S1, α(S1)) and B2 ∈ γ(S2, α(S2)) we
have: B1 ∩B2 
= ∅.

The intuition behind coherence is straightforward: if, in this definition,
B1 ∩B2 were empty then S1 and S2 could end up in an impossible situation
since S1 is entitled to the social state being in B1 whereas S2 is entitled to the
social state being in B2. It is easy to see that coherence of the constitution
(ρ, α, γ) implies and is implied by the analogous condition on the function
E defined by (2.1). In what follows, however, we usually need the following
stronger condition on an effectivity function.

Definition 2.3.5. An effectivity function E : P (N) → P (T ) is superadditive
if for all S1, S2 ∈ P0(N) with S1∩S2 = ∅ and all B1 ∈ E(S1) and B2 ∈ E(S2)
we have: B1 ∩B2 ∈ E(S1 ∪ S2).

Observe that, if S � T and B ∈ E(S), then superadditivity of the EF E
implies B = B ∩A ∈ E(S ∪ (T \ S)) = E(T ), hence superadditivity implies
monotonicity with respect to coalitions.

Also, if E defined by (2.1) is a superadditive EF, then the constitution
(ρ, α, γ) is coherent. For let B1 ∈ γ(S1, α(S1)), B2 ∈ γ(S2, α(S2)), and S1 ∩
S2 = ∅. Then clearly B1 ∈ E(S1) and B2 ∈ E(S2), so by superadditivity
B1 ∩B2 ∈ E(S1 ∪ S2), which implies B1 ∩B2 
= ∅.

Gärdenfors (1981) assumes monotonicity with respect to coalitions and
coherence for constitutions modelled as effectivity functions.

5 Called ‘consistency’ in Gärdenfors (1981).
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2.4 Game forms and a representation theorem

Let S be a society, and suppose the constitution is described in a concise way
by the function E : P (N) → P (T ), as in the preceding section. Recall that
E describes for any coalition the sets of social states to which this coalition
is legally entitled. It does not tell us how the members of society can actually
exercise their rights.

To this end, we assume now that every society member has at its disposal
a set of ‘legal’ strategies. These strategies should be compatible with the
constitution in the sense that they endow each coalition with the same legal
power as the constitution does. To make this precise, we first introduce the
concept of a game form.

Definition 2.4.1. A game form (GF) is a list Γ = (N ; Σ1, . . . ,Σn; g;A)
where N is the set of members of the society or players; Σi is the non-empty
set of strategies of i ∈ N ; g : Σ = Σ1× . . .×Σn → A is the outcome function;
and A is the set of social states or outcomes.

Example 2.4.2. Let Γ = ({1, 2, 3}; {2, 3}, A,A; g; {a, b, c}), with g(2, x, y) = x
and g(3, x, y) = y. This is the so-called ‘kingmaker’ game form: player 1
chooses the king (2 or 3), who in turn chooses an outcome from A = {a, b, c}.
(Cf. Hurwicz and Schmeidler (1978).)

We mentioned that strategies should be ‘legal’. We do not give a formal
definition of this concept but – informally – call a game form ‘legal’ if the
available strategies do not contradict the assignment of rights. For example,
if Adam has the obligation to support his family and stealing is forbidden by
law (so by the assignment of rights) then Adam cannot support his family by
stealing. That is, stealing is not an available strategy. Moreover, we assume
that also coalitions cannot break the law by coordination of their strategies.

We do formalize the preservation of legal power or entitlement resulting
from a constitution through a game form by introducing the concept of rep-
resentation below. First, we associate an effectivity function with each game
form.

Definition 2.4.3. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a game form, and let T
be a structure on A. Let S ∈ P0(N), and let B ∈ T . Then S is effective
for B if there exists σS

0 ∈ ΣS =
∏

i∈S Σi such that g(σS
0 , σ

N\S) ∈ B for
all σN\S ∈ ΣN\S . If g is surjective, then EΓ : P (N) → P (T ) defined by
EΓ(∅) = ∅ and

EΓ(S) = {B ∈ T | S is effective for B} for all S ∈ P0(N)

is the effectivity function for (A, T ) associated with Γ.

Observe that EΓ is indeed an effectivity function. In particular, surjec-
tivity of g implies that EΓ(N) = T . Effectivity functions associated with
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game forms were introduced in Moulin and Peleg (1982) as so-called alpha-
effectivity functions. It is straightforward to verify that EΓ is monotonic and
superadditive.

Example 2.4.4. For the kingmaker game form Γ of Example 2.4.2 the associ-
ated effectivity function E = EΓ is given by E(i) = {A} for each i ∈ N and
E(S) = P0(A) for |S| ≥ 2.

Example 2.4.5. Let N = {1, 2}, A = {a, b, c, d}, and consider the matrix

(L M R

T a d c
B c b d

)

where player 1 chooses rows and player 2 columns. This matrix defines a two-
person game form Γ = (N ; {T,B}; {L,M,R}; g;A) in an obvious way. The
associated effectivity function EΓ is given by EΓ(1) = {a, d, c}+ ∪ {c, b, d}+,
EΓ(2) = {a, c}+ ∪ {d, b}+ ∪ {c, d}+, and EΓ(N) = P0(A). Such a game form
is called a bimatrix game form since it results in a bimatrix game if utilities
of the players on A are added.

The announced idea of representation is one of the main concepts of this
part of the book. From now on, let T be a fixed structure on A.

Definition 2.4.6. Let E : P (N) → P (T ) be an effectivity function. A game
form Γ is a representation of E if EΓ = E.

Thus, a game form represents an effectivity function E if its associated
effectivity function is equal to E. In particular, if E is derived from a con-
stitution as in (2.1), then a representing game form may be considered as a
permissible mechanism that enables all the members of the society to exercise
their rights simultaneously. Such an effectivity function E may be represented
by many different game forms: each of these may be considered as a legal
translation of the constitution into strategic behavior. Thus, similar societies
and constitutions may be represented quite differently.

Since the effectivity function associated with a game form is monotonic
and superadditive, these conditions are necessary for the existence of a repre-
sentation of an effectivity function. We now show that they are also sufficient.

Theorem 2.4.7. Let E : P (N) → P (T ) be an effectivity function. Then E
has a representation if and only if E is monotonic and superadditive.

Proof. For the only-if direction, let Γ = (N ; Σ1, . . . ,Σn; g;A) be a represen-
tation of E. We are done by observing that E = EΓ and EΓ is monotonic
and superadditive.

For the if-direction, assume that E is monotonic and superadditive. We
construct a game form that represents E. For every i ∈ N let N i = {S ⊆ N |
i ∈ S} and
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M i = {mi : N i → N i × T | mi
1(S) ⊆ S, mi

2(S) ∈ E(mi
1(S))} (2.7)

where mi(·) =
(
mi

1(·),mi
2(·)

)
and mi is monotonic, that is

i ∈ S ⊆ T ⇒ mi
1(S) ⊆ mi

1(T ) and mi
2(T ) ⊆ mi

2(S) . (2.8)

Observe that M i 
= ∅ since it contains the trivial function S �→ (S,A). A
selection from T is a function ϕ : T → A such that ϕ(B) ∈ B for every
B ∈ T . Denote by Φ the set of all selections from T . We define a game form
Γ0 = (N ; Σ1, . . . ,Σn; g0;A) as follows. For each i ∈ N , the set of strategies
of i is Σi = M i × Φ × N . Let σ = (σ1, . . . , σn) ∈ Σ1 × . . . × Σn, where
σi = (mi, ϕi, ti) for every i ∈ N . In order to define g0(σ) we introduce a
sequence of partitions of N . First, for S ∈ P0(N) we define an equivalence
relation ∼σ on S by

i ∼σ j :⇔ mi(S) = mj(S), for all i, j ∈ S, (2.9)

and denote by D(S, σ) the partition of S with respect to ∼σ. Now let the
first partition of N be H0(σ) = {N}. If Hk = {Sk,1, . . . , Sk,�} is the k-th
partition, k ≥ 0, then we define

Hk+1(σ) =
�⋃

j=1

D(Sk,j , σ) .

Clearly, there exists a minimal r such that Hk(σ) = Hr(σ) for all k ≥ r.
Write Hr(σ) = {S1, . . . , S�}. Then mi

1(Sj) = Sj and mi
2(Sj) = Bj for some

Bj ∈ E(Sj), for all i ∈ Sj and j = 1, . . . , �. Since E is superadditive, B :=⋂�
j=1 Bj 
= ∅ and B ∈ T . Let 1 ≤ i0 ≤ n be the player with i0 = (t1 + · · · +

tn) mod n. Then we define g0(σ) = ϕi0(B).
We prove that Γ0 is a representation of E. Let S ∈ P0(N) and B ∈

E(S). Choose σi = (mi, ϕi, ti) for every i ∈ S such that mi
1(S

∗) = S and
mi

2(S
∗) = B for all S∗ ⊇ S and i ∈ S. Then S is an element of the partition

Hr(σS , τN\S) for each τN\S ∈ ΣN\S , and mi
2(S) = B for all i ∈ S. Hence,

by definition of g0, g0(σS , τN\S) ∈ B for all τN\S ∈ ΣN\S . So B ∈ EΓ0(S).
To prove the converse inclusion let C ∈ T \E(S). Let σS = (mi, ϕi, ti)i∈S ∈

ΣS and i0 ∈ N \ S (such an i0 exists since E(N) = T and thus S 
= N).
Choose strategies τ i = (mi, ϕi, ti) ∈ Σi for every i ∈ N \ S, as follows. For
every T ⊇ N \ S and i ∈ N \ S, let mi

1(T ) = N \ S and mi
2(T ) = A.

Further, let
(∑

i∈S t
i +

∑
i∈N\S t

i
)

mod n = i0. Clearly, Hr(σS , τN\S) =

{S1, . . . , S�, N \S} for some partition {S1, . . . , S�} of S. Let Bj = mi
2(Sj), i ∈

Sj , j = 1, . . . , �. Then Bj ∈ E(Sj) for every j = 1, . . . , �, so by superadditivity
of E, B =

⋂�
j=1 Bj ∈ E(S). Thus, B\C 
= ∅ since otherwise, by monotonicity

of E, C ∈ E(S), a contradiction. Since mi
2(N \ S) = A for all i ∈ N \ S, if

ϕi0(B) ∈ B \ C then g0(σS , τN\S) /∈ C. Hence C /∈ EΓ0(S). ��

The game form Γ0 constructed in the proof of Theorem 2.4.7 is not the
unique representation of E. Alternative game forms that can be used to prove
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the theorem can be found in Peleg (1998) and in Peleg, Peters, and Storcken
(2002). For reasons that will become clear in the next chapter the game form
Γ0 will be called a canonical representation of E.

2.5 Representation and simultaneous exercising of rights

Recall from our earlier discussion that a constitution in the sense of Gärden-
fors (1981) is simply an effectivity function E : P (N) → P (P0(A)) – as-
suming that P0(A) is the structure on A – and that a right for coalition
S is simply any B ∈ E(S). One may wonder whether rights are non-
conflicting or, equivalently, whether they can be exercised simultaneously.
For instance, in the first Gibbard (1974) example (Example 2.3.2(i)), the
‘rights’ {(w,w), (w, b)} ∈ E(1) and {(b, w), (b, b)} ∈ E(1) coincide with the
right ρ1 (Example 2.2.2) of player 1 to choose the color of his own shirt. Simi-
larly, player 2 can choose the color of his own shirt or, equivalently, has rights
{(w,w), (b, w)} and {(w, b), (w, b)}. Clearly, these rights can be exercised si-
multaneously: any of the two rights of player 1 has non-empty intersection
with any of the two rights of player 2. This follows from the coherence condi-
tion of Gärdenfors and, a forteriori from superadditivity of E. This implies
that it also follows from the existence of a representation of E, a fact which
is also easy to see directly.

Proposition 2.5.1. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a representation of E,
and let Si ∈ P0(N) and Bi ∈ E(Si) for i = 1, 2, such that S1 ∩ S2 = ∅. Then
B1 ∩B2 
= ∅.
Proof. Let, for i = 1, 2, σSi ∈ ΣSi satisfy g(σSi , τN\Si) ∈ Bi for all
τN\Si ∈ ΣN\Si . Then g(σS1 , σS2 , τN\(S1∪S2)) ∈ B1 ∩B2 for all τN\(S1∪S2) ∈
ΣN\(S1∪S2), so B1 ∩B2 
= ∅. ��

Note that the effectivity function of the second Gibbard example (Exam-
ples 2.2.3, 2.3.2(ii)) is superadditive and monotonic, and thus has a repre-
sentation. The same holds for the adapted version of the effectivity function
in Examples 2.2.6 and 2.3.2(iii) for the structure described at the end of Ex-
ample 2.3.2(iii). In particular, in all these examples rights can be exercised
simultaneously.

2.6 Notes and comments

This chapter is based mainly on Peleg (1998) and Gärdenfors (1981). The
proof of Theorem 2.4.7 has benefited from Peleg, Peters, and Storcken (2002).

In the following remark we place the idea of a constitution as introduced
in Section 2.2 in a dynamic perspective.
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Remark 2.6.1. A constitution (ρ, α, γ) is at any given point of time a result
of a past political process. In a democracy the constitution at a given time
represents the status quo of the rights-system and the assignment of rights.
Thus, it may be changed by the legislative institutions by procedures such as
voting. So, implicitly, in our model rights are politically determined (cf. Sen,
1997). At each time t the members of society have a preference profile RN(t)
that determines the direction of change. Thus, in our framework the prob-
lem of choosing the constitution does not arise since the constitution at a
given period determines the possible legal constitutions at the next period.
In particular, illegal changes such as coups d’état are not covered by our
model.

Somewhat related to the previous remark is the concept of a local effectivity
function (Abdou, 1995; Abdou and Keiding, 2003). In a local effectivity func-
tion the effectivity of a coalition depends on the current set of social states.
Thus, the concept of a local effectivity function generalizes the concept of an
effectivity function as used in this monograph.

The next remark concerns the idea of liberalism, a theme that will reoccur
in the first part of this book.

Remark 2.6.2. Let E : P (N) → P (T ) represent a constitution. E satisfies
liberalism if each member i ∈ N can veto some alternative, that is, for each
i ∈ N there exists some Bi ∈ E(i) \ {A}. For instance, in Example 2.2.3
each member can veto the possibility that he or she gets married and so the
associated effectivity function E (Example 2.3.2(ii)) satisfies liberalism. The
same is true for Example 2.2.2, where each member can choose the color of
his own shirt. The adapted version of the army example (see the last part
of Example 2.3.2(iii)) does not satisfy liberalism, since individual men have
no say about the number of women in the army. A game form Γ satisfies
liberalism if the associated effectivity function EΓ satisfies liberalism.

Clearly, liberalism implies the existence of non-trivial rights in the sense
of Gärdenfors (1981). E satisfies minimal liberalism if there are two different
individuals i and j with non-trivial rights, i.e., there are Bi ∈ E(i) \ {A} and
Bj ∈ E(j) \ {A}. A game form Γ satisfies minimal liberalism if the associ-
ated effectivity function EΓ does. The relationship between liberalism and
Pareto optimality, as in Sen’s Liberal Paradox (Sen, 1970), will be explored
in Chapters 3 and 4.



Chapter 3

Nash consistent representations

3.1 Motivation and summary

In Chapter 2 we have seen how a constitution of a society or more formally,
an effectivity function, and a set of rules that enable the members of the
society to exercise their rights simultaneously, i.e., a game form representing
the effectivity function, govern the behavior of the members of a (civilized)
state. In this chapter we introduce a new element: the preferences of the
society members over the social states.1

Given a preference profile RN of the members of society N and a game
form Γ that represents the effectivity function E, the members of N are
engaged in an (ordinal) n-person game (Γ, RN ) in strategic form. Since in
such a game the individuals can choose their strategies independently, there
is no guarantee that this will lead to a society that is stable, in the sense
that no one would like to change his strategy. Therefore, we will impose in
this chapter the minimum requirement of Nash consistency: whatever the
individual preferences, the resulting game should have at least one Nash
equilibrium. The objective of this chapter is to find necessary and sufficient
conditions on an effectivity function to have a Nash consistent representation.

We start in Section 3.2 with a general existence theorem, Theorem 3.2.3,
which will be used throughout Part I, with suitable modifications. The proof
of this theorem heavily relies on our basic representation theorem, Theorem
2.4.7. The main drawback of Theorem 3.2.3 is that in order to check its second
condition, (2.3), one has to examine all permissible profiles of preferences.
Therefore, in the subsequent sections, Sections 3.3–3.5, we look for direct
conditions on an effectivity function for the existence of a Nash consistent
representation.

1 The preferences of an individual i can be seen as determined by his set of parameters
πi (see Remark 2.2.5). For instance, the preferences of a public servant are determined by
both his social role and his selfish interests.

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
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Section 3.3 considers the case where the set of alternatives is finite. It
turns out that existence of a Nash consistent representation is guaranteed if
the number of individual rights is ‘limited’. To quantify this, we introduce the
polar effectivity function E∗, due to Abdou (1991), and we obtain a concise
necessary and sufficient condition (namely (3.6), an intersection condition
on polar sets). This condition is not overly strong, in the sense that it is
compatible with liberalism (see Remark 2.6.2). On our way to this result
we find two interesting properties of the canonical game form Γ0 used for
Theorem 3.2.3 and already constructed in the proof of Theorem 2.4.7, namely:
(i) it contains all Nash equilibrium outcomes attainable through any Nash
consistent representation of the underlying effectivity function, and is thus
maximal in this respect; (ii) it contains for every profile of preferences a
Pareto optimal Nash equilibrium outcome.

Section 3.4 generalizes the results of Section 3.3 to compact Hausdorff
topological spaces of alternatives and topological effectivity functions. In the
continuous (nondiscrete) case we need an additional condition to obtain Nash
consistent representation, namely closedness of the sets E(N \ i) in the space
of all closed subsets of the topological space A.

Following Abdou (1988) we consider in the fifth section topological veto
functions. When A is a compact metric space with a probability measure μ
on its Borel subsets we find sharp inequalities on the topological veto func-
tion (which is the appropriate way to describe neutral topological effectivity
functions on measure spaces) that guarantee the existence of Nash consistent
representations.

Some implications of the existence of Pareto optimal Nash equilibrium
outcomes for the canonical game form Γ0, in particular in relation to Sen’s
(1970) ‘liberal paradox’, are collected in Section 3.6. We end with some notes
and comments in Section 3.7.

3.2 Existence of Nash consistent representations: a
general result

Let A be a set of alternatives, finite or infinite, with at least two elements.
A preference on A is a complete, reflexive and transitive relation on A. The
set of all preferences on A is denoted by W = W (A). If R ∈ W and x, y ∈ A,
then xPy means xRy and not yRx. For a ∈ A and R ∈W we denote by

L(a,R) = {b ∈ A | aRb} (3.1)

the lower contour set of a with respect to R, i.e., the set of alternatives
to which a is weakly preferred. Clearly, a ∈ L(a,R). Following the usual
notation, we denote by WS = {f | f : S →W} the set of mappings from set
S to set W .
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Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a game form. An element RN ∈ WN is
a profile of preferences. For RN ∈WN , the pair (Γ, RN ) defines a(n ordinal)
game in strategic form. We denote by Σ =

∏
i∈N Σi the set of all strategy

combinations. A strategy combination σ ∈ Σ is a Nash equilibrium (NE) of
(Γ, RN ) if

g(σ)Rig(σN\{i}, τ i) for all i ∈ N and τ i ∈ Σi , (3.2)

where σN\{i} denotes the restriction of σ to N \ {i}. The set of all Nash
equilibria of the game (Γ, RN ) is denoted by NE(Γ, RN ).

Let T be a structure on A. We call T rich if {a} ∈ T for every a ∈ A. For
instance, the set of all closed subsets of a Hausdorff topological space (a case
that we will consider) is rich.

We call a set of preferences Q ⊆W compatible with T if for every R ∈ Q
and a ∈ A, L(a,R) ∈ T . For instance, P0(A) is a rich structure and every
Q ⊆W is compatible with P0(A). Other examples will be considered later.

For Q ⊆ W , a game form Γ is Nash consistent on QN if NE(Γ, RN) 
= ∅
for every RN ∈ QN . So a Nash consistent game form has at least one Nash
equilibrium for every (permissible) profile of preferences.

The remainder of this section is devoted to proving a general result on
the existence of Nash consistent representations of effectivity functions. The
proof relies heavily on the representation Theorem 2.4.7. For easy reference
we split it up in two propositions.

Proposition 3.2.1. Let T be a structure and let Q ⊆ W be compati-
ble with T . Let E : P (N) → P (T ) be an effectivity function and let
Γ = (N ; Σ1, . . . ,Σn; g;A) be a representation of E. Let RN ∈ QN , σ ∈
NE(ΓN , RN ), and x ∈ A with x = g(σ). Then L(x,Ri) ∈ E(N \ i) for all
i ∈ N .

Proof. Suppose L(x,Ri) /∈ E(N\i) for some i ∈ N . Since Γ is a representation
of E and, thus, E = EΓ, we have L(x,Ri) /∈ EΓ(N \ i). In particular, there
must be a τ i ∈ Σi such that g(τ i, σN\i) /∈ L(x,Ri), hence g(τ i, σN\i)P ix.
Since x = g(σ), this contradicts the assumption σ ∈ NE(Γ, RN). ��

In the following proposition Γ0 is the canonical game form for E as con-
structed in the proof of Theorem 2.4.7.

Proposition 3.2.2. Let T be a rich structure and let E : P (N) → P (T ) be
a monotonic and superadditive effectivity function. Suppose that RN ∈ WN

is such that there exists an x ∈ A with L(x,Ri) ∈ E(N \ i) for all i ∈ N .
Then (Γ0, R

N) has a Nash equilibrium σ with g(σ) = x.

Proof. By Theorem 2.4.7 the game form Γ0 represents E. Choose strategies
σi = (mi, ϕi, ti) in Γ0 for every i ∈ N such that (i) mi(N) = (N, {x}) for
every i ∈ N and (ii) mi(N \j) = (N \j, L(x,Rj)) for all i ∈ N \j, j = 1, . . . , n.
(Observe that (i) is possible since T is rich.) Then, by the definition of g0
(see the proof of Theorem 2.4.7), g0(σ) = x and g0(σN\{i}, τ i) ∈ L(x,Ri) for
all i ∈ N and τ i ∈ Σi. Thus, σ is a Nash equilibrium. ��
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The main result of this section is a direct consequence of Propositions 3.2.1
and 3.2.2 and Theorem 2.4.7.

Theorem 3.2.3. Let T be a rich structure on A and let Q ⊆W be compatible
with T . Let E : P (N) → P (T ) be an effectivity function. Then E has a
representation which is Nash consistent on QN if and only if the following
two conditions are satisfied:

(i) E is monotonic and superadditive.
(ii) For every RN ∈ QN the following condition holds:

there exists an x ∈ A such that L(x,Ri) ∈ E(N \ {i}) for all i ∈ N . (3.3)

3.3 The case of finitely many alternatives

Although Theorem 3.2.3 gives a complete and general characterization of ef-
fectivity functions for which there is a Nash consistent representation and,
in fact, shows that we can take the canonical game form Γ0 for such a rep-
resentation (Proposition 3.2.2), this result is not very well suited for many
applications since we have to verify condition (3.3) for all permissible pro-
files of preferences. In this section we look for direct conditions on effectivity
functions to guarantee the existence of Nash consistent representations for
the case that A is finite and the structure is the set of all non-empty subsets
of A. In later sections we consider the same problem for the case where the set
of alternatives is infinite but has some topological or measurable structure.

We first need some definitions and results for general effectivity functions.
Unless stated otherwise, (A, T ) is an arbitrary structured space.

Definition 3.3.1. Let E : P (N) → P (T ) be an effectivity function. The
polar of E is the effectivity function E∗ : P (N) → P (T ) defined by E∗(∅) = ∅
and for S ∈ P0(N)

E∗(S) = {B ∈ T | B ∩B′ 
= ∅ for all B′ ∈ E(N \ S)} . (3.4)

Thus, B ∈ E∗(S) means that B has something in common with every
set for which the complement N \ S is effective. Intuitively, this means that
N \S cannot prevent S from obtaining an alternative in B. The function E∗

reflects a weaker effectivity condition than E: whereas E tells us what each
coalition can guarantee on its own, E∗ tells us what each coalition cannot be
kept from.2

It is easy to verify that, indeed, E∗ is an effectivity function: A ∈ E∗(S)
for every S ∈ P0(N) and E∗(N) = T since E(∅) = ∅. If B1 ∈ E∗(S) and
T � B2 ⊇ B1 then obviously B2 ∩ B′ 
= ∅ for all B′ ∈ E(N \ S), so E∗ is

2 In the literature this is sometimes called β-effectivity, as opposed to α-effectivity. See
Abdou (1991) and Abdou and Keiding (1991).
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monotonic with respect to alternatives. Suppose that E is monotonic with
respect to coalitions. If B ∈ E∗(S) and S ⊆ T , then for all B′ ∈ E(N \ T )
we have B′ ∈ E(N \ S) and thus B ∩ B′ 
= ∅; so B ∈ E∗(T ), and E∗ is
monotonic with respect to coalitions. In particular, if E is monotonic then
E∗ is monotonic. (See Section 2.3 for the definitions of these properties.)

The polar of a superadditive effectivity function, however, does not have
to be superadditive, as the following example shows.

Example 3.3.2. For the polar of Example 2.3.2 concerning the choice of shirt
color we have:

E∗(1) = {(w,w), (w, b)}+∪{(w,w), (b, b)}+∪{(b, w), (w, b)}+∪{(b, w), (b, b)}+

and

E∗(2)= {(w,w), (b, w)}+∪{(w,w), (b, b)}+∪{(w, b), (b, w)}+∪{(w, b),(b, b)}+.

Since, for instance, {(w,w), (b, b)} ∈ E∗(1) and {(w, b), (b, w)} ∈ E∗(2), and
these sets have empty intersection, E∗ is not superadditive.

Let E : P (N) → P (T ) be an effectivity function. We associate with E a
function Ê : P (N) → P (T ) as follows:

Ê(S) =

⎧
⎪⎨

⎪⎩

E∗(i) if S = {i}, i ∈ N

{A} if |S| > 1, S ⊆ N

∅ if S = ∅ .

(3.5)

The function Ê is called the residual of E. Our next step is to define the ‘core’
of the residual, a concept that will be introduced in a more general context
later on. Here, we use it for the analysis of Nash consistent representations
of E. For i ∈ N , Ri ∈W , B ∈ P0(A), and x ∈ A \B, we write BP ix if yP ix
for all y ∈ B.

Definition 3.3.3. Let E : P (N) → P (T ) be an effectivity function and let
RN ∈WN . The core of Ê with respect to RN is the set

C(Ê, RN ) = {x ∈ A | there are no i ∈ N and B ∈ E∗(i) with BP ix} .

Ê is stable on QN ⊆WN if C(Ê, RN) 
= ∅ for every RN ∈ QN .

Hence, if x is an element of the core C(Ê, RN ), then no individual i can
improve upon x, that is, has a set of alternatives for which he is E∗-effective
and which has all elements preferred to x.

Non-emptiness of the cores C(Ê, RN) is closely connected to condition
(3.3) in Theorem 3.2.3, which is a necessary condition for the existence of a
Nash consistent presentation. Very roughly, this condition can be interpreted
as the sets E(N \ i) being ‘large’, which implies that the polars E∗(i) should
be ‘small’. In turn this allows the cores C(Ê, RN) to be non-empty. To become
precise, we have the following lemma.
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Lemma 3.3.4. Let E : P (N) → P (T ) be a monotonic effectivity function
and let Q ⊆ W be compatible with T . Let x ∈ A and RN ∈ QN . Then the
following two statements are equivalent:

(i) x ∈ C(Ê, RN ).
(ii) L(x,Ri) ∈ E(N \ i) for all i ∈ N .

Proof. For the implication (i) ⇒ (ii), let x ∈ C(Ê, RN) and i ∈ N . Then A \
L(x,Ri) /∈ E∗(i). Thus, by definition of E∗ there must be some B′ ∈ E(N \i)
with B′ ∩ (A \ L(x,Ri)) = ∅. Hence, B′ ⊆ L(x,Ri) and by monotonicity of
E and compatibility of QN , L(x,Ri) ∈ E(N \ i).

For the implication (ii) ⇒ (i), let L(x,Ri) ∈ E(N \ i) for all i ∈ N . Then,
for all i ∈ N and B ∈ E∗(i), we have B∩L(x,Ri) 
= ∅. Hence, x ∈ C(Ê, RN ).

��

Lemma 3.3.4 has the following corollary, which characterizes the existence
of Nash consistent representations under a condition for which we still have
to check every permissible profile of preferences.

Corollary 3.3.5. Let T be a rich structure on A and let Q ⊆ W be com-
patible with T . Let E : P (N) → P (T ) be a monotonic and superadditive
effectivity function. Then E has a representation which is Nash consistent on
QN if and only if Ê is stable on QN .

Proof. Straightforward from Theorem 3.2.3 and Lemma 3.3.4. ��

Note that, by Proposition 3.2.1 and Lemma 3.3.4, all Nash equilibrium
outcomes of the game (Γ, RN) for any representing game form Γ are elements
of the core C(Ê, RN). By Proposition 3.2.2 and Lemma 3.3.4, if T is rich,
it holds that any element of C(Ê, RN) is a Nash equilibrium outcome of the
particular game (Γ0, R

N). We summarize these facts in another corollary.

Corollary 3.3.6. Let T be a structure on A and let Q ⊆ W be compatible
with T . Let E : P (N) → P (T ) be a monotonic and superadditive effectivity
function. Then:

(a) If E has a Nash consistent representation Γ with outcome function g,
then g(NE(Γ, RN )) ⊆ C(Ê, RN) for all RN ∈ QN .

(b) If T is rich and C(Ê, RN) 
= ∅ for all RN ∈ QN , then g0(NE(Γ0, R
N))

= C(Ê, RN) for all RN ∈ QN , where g0 is the outcome function of Γ0.

A particular consequence of this corollary is that the canonical game form
Γ0 admits the maximum number of Nash equilibrium outcomes. That is, for
any preference profile any Nash equilibrium outcome in any representing Nash
consistent game form is also a Nash equilibrium outcome for that preference
profile in the game form Γ0. The following example shows that this inclusion
can be strict. We first need a definition.
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Definition 3.3.7. An alternative x ∈ A is Pareto optimal with respect to
preference profile RN ∈ WN if for every y ∈ A there exists i ∈ N such that
xRiy.

Example 3.3.8. Consider the kingmaker game form of Example 2.4.2, i.e.,
Γ = ({1, 2, 3}; {2, 3}, A,A; g;A), where A = {a, b, c}, with g(2, x, y) = x and
g(3, x, y) = y, and let E = EΓ. Since E(S) = P0(A) for every coalition S with
at least two players, we have E∗(i) = {A} for i = 1, 2, 3. Thus, C(Ê, RN ) = A
for every RN ∈WN . Since in every Nash equilibrium of a game (Γ, RN ) the
chosen alternative is a best alternative of either player 2 or player 3, every
Nash equilibrium outcome is Pareto optimal. Obviously, for certain profiles
of preferences the set of Pareto optimal outcomes is a strict subset of A. The
game form Γ in this example is not the canonical game form Γ0.

Everything so far in this section holds for arbitrary structured spaces
(A, T ). In the remainder we consider the case of finitely many alternatives
and all subsets permissible.

Proposition 3.3.9. Let 2 ≤ |A| < ∞ and let E : P (N) → P (P0(A)) be
a monotonic and superadditive effectivity function. Then C(Ê, RN ) 
= ∅ for
every RN ∈ WN if and only if

[Bi ∈ E∗(i) for all i ∈ N ] ⇒
n⋂

i=1

Bi 
= ∅ . (3.6)

Proof. For the only-if direction assume, on the contrary, that there exist
B′

i ∈ E∗(i) such that
⋂n

i=1 B
′
i = ∅. Let Ri ∈W satisfy B′

iP
i(A\B′

i) for every
i ∈ N . Then for x to be in C(Ê, RN ) we would need x ∈ B′

i for each i ∈ N ,
hence x ∈

⋂n
i=1B

′
i, a contradiction.

For the if-part, let RN ∈WN . For each i ∈ N define

Bi = {x ∈ A | L(x,Ri) ∈ E(N \ i)} .
We claim that Bi ∈ E∗(i). Indeed, let C ∈ E(N \ i). Since A is finite there
exists y ∈ C such that yRiz for all z ∈ C. By monotonicity of E, L(y,Ri) ∈
E(N \ i). So y ∈ Bi by definition of Bi. Hence, Bi ∩ C 
= ∅. Since C was
arbitrary, we have Bi ∈ E∗(i), and this holds for every i ∈ N . By (3.6) there
exists x ∈

⋂n
i=1 Bi. We claim that x ∈ C(Ê, RN ). Indeed, for each i ∈ N let

xi
0 be a worst element of Bi, i.e., yRixi

0 for all y ∈ Bi. Then xRixi
0 for each

i. Clearly, L(xi
0, R

i) ∈ E(N \ i) for each i by definition of Bi. Hence, if BP ix
for some i and B ⊆ A then B∩L(xi

0, R
i) = ∅ and therefore B /∈ E∗(i). Thus,

x ∈ C(Ê, RN). ��

The following theorem follows directly from Corollary 3.3.5 and Proposi-
tion 3.3.9.

Theorem 3.3.10. Let 2 ≤ |A| < ∞ and let E : P (N) → P (P0(A)) be a
monotonic and superadditive effectivity function. Then E has a Nash consis-
tent representation on WN if and only if (3.6) is satisfied.
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This theorem characterizes existence of Nash consistent representations
directly in terms of properties of the effectivity function. To see how it can
be used we return to the two Gibbard examples.

Example 3.3.11. Recall from Example 3.3.2 that, for the Gibbard example
concerning the choice of shirt color, we have {(w,w), (b, b)} ∈ E∗(1) and
{(w, b), (b, w)} ∈ E∗(2), and these sets have empty intersection. So (3.6) is
violated, which implies that this effectivity function has no Nash consistent
representation. We can also give a clear intuition why this is so. Recall that,
in general, B ∈ E∗(S) means that the complement N \ S cannot keep coali-
tion S from achieving an outcome in B. Similarly, {(w,w), (b, b)} ∈ E∗(1)
means that player 2 cannot keep player 1 from achieving an outcome in
{(w,w), (b, b)}, and {(w, b), (b, w)} ∈ E∗(2) means that player 1 cannot
keep player 2 from achieving an outcome in {(w, b), (b, w)}. Now suppose
that player 1 prefers {(w,w), (b, b)} over {(w, b), (b, w)}, and player 2 prefers
{(w, b), (b, w)} over {(w,w), (b, b)}. Clearly, this game cannot have a Nash
equilibrium: player 1 would ‘overrule’ any outcome in {(w, b), (b, w)} and
player 2 any outcome in {(w,w), (b, b)}.3

Example 3.3.12. In the ‘marriage’ example (Example 2.2.3)) we have (see Ex-
ample 2.3.2(ii)) E({m2, f}) = {s}+ ∪ {w2}+, so that E∗(m1) = {s, w2}+.
Also, E({m1, f}) = {s}+ ∪ {w1}+, so that E∗(m2) = {s, w1}+. Since
E({m1,m2}) = {s, w2}+∪{s, w1}+ whereas E(m1) = {s, w2}+ and E(m2) =
{s, w1}+, it follows that E is not superadditive and therefore has no repre-
sentation. If we change the assignment of rights in Example 2.2.3 such that
α({m1,m2}) = {r1}, then E({m1,m2}) = {s}+, so that E becomes not
only superadditive but, moreover E∗(f) = {s}+ and therefore s is in any
intersection as in (3.6). In that case, E has a Nash consistent representation.

We conclude this section by establishing another attractive property of
the canonical game form Γ0. We have already seen (Corollary 3.3.6) that
this game form admits the maximal number of Nash equilibria. The (proof
of the) following theorem shows that any outcome that Pareto dominates a
Nash equilibrium outcome must itself be a Nash equilibrium outcome. In par-
ticular, since A is finite, there always exist Pareto optimal Nash equilibrium
outcomes.

Theorem 3.3.13. Let 2 ≤ |A| < ∞ and let E : P (N) → P (P0(A)) be a
monotonic and superadditive effectivity function that has a Nash consistent
representation. Then the canonical game form Γ0 is a Nash consistent rep-
resentation of E with the following property: for every RN ∈ WN and every
Nash equilibrium outcome x of (Γ0, R

N) there exists a Pareto optimal Nash
equilibrium outcome y of (Γ0, R

N) such that yRix for every i ∈ N .

3 An early consideration of Nash consistency of game forms can be found in Gurvich (1989).
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Proof. Let σ ∈ NE(Γ0, R
N) and x = g0(σ). If z ∈ A and zRix for all i ∈ N ,

then L(z,Ri) ⊇ L(x,Ri) for each i. Since L(x,Ri) ∈ E(N \ i) for all i by
Proposition 3.2.1, monotonicity of E implies L(z,Ri) ∈ E(N \i) for all i ∈ N .
Hence, by Proposition 3.2.2, (Γ0, R

N ) has a Nash equilibrium with outcome
z. Since A is finite the set {z ∈ A | zRix for all i ∈ N} contains a Pareto
optimal alternative. ��

3.4 Nash consistent representations of topological
effectivity functions

In this section we drop the assumption that the set of alternatives A is finite.
Instead, we assume throughout that A is a topological space and that the
structure on A is the collection of all closed sets:

K = K(A) = {B ∈ P0(A) | B is closed} .

(Of course, this includes the finite case with structure P0(A) under the dis-
crete topology.) As before, N is the set of players. An effectivity function
E : P (N) → P (K) – hence with E(∅) = ∅, E(N) = K, and A ∈ E(S) for
every S 
= ∅ – is called topological. A preference R ∈ W is continuous if for
every a ∈ A the sets {b ∈ A | aRb} and {b ∈ A | bRa} are closed. By V we
denote the set of all continuous preferences on A.

The main purpose of this section is to look for necessary and sufficient
conditions for the existence of Nash consistent representations of topological
effectivity functions on V N . Our first result is the derivation of a necessary
condition analogous to the intersection condition (3.6) for finite sets of al-
ternatives, under the assumption that A is a normal topological space. We
recall that a topological space is normal if for every two disjoint closed sets B
and B′ there are two disjoint open sets U and U ′ with B ⊆ U and B′ ⊆ U ′.
Before deriving the announced necessary condition (Theorem 3.4.3 below) we
need some preliminary topological concepts and results.

A finite family of open subsets U1, . . . , Um of A is a covering of A if⋃m
i=1 Ui = A. A finite family of continuous functions fi : A → [0, 1],

i = 1, . . . ,m, such that
∑m

i=1 fi(x) = 1 for all x ∈ A, is a partition of
unity. A partition of unity f1, . . . , fm is subordinate to a covering U1, . . . , Um

if fi(x) = 0 for all x /∈ Ui for i = 1, . . . ,m. For a proof of the following lemma
see Kelley (1955, p. 171).

Lemma 3.4.1. Let A be a normal space and U1, . . . , Um a covering of A.
Then there exists a partition of unity f1, . . . , fm which is subordinate to
U1, . . . , Um.

This lemma has the following corollary.
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Corollary 3.4.2. Let A be a normal space and let B1, . . . , Bm be closed sub-
sets of A such that

⋂m
i=1Bi = ∅. Then there are open sets U1, . . . , Um such

that Ui ⊇ Bi for all i = 1, . . . ,m and
⋂m

i=1 Ui = ∅.
Proof. Consider the open sets U ′

i = A \ Bi for each i = 1, . . . ,m. Since⋂m
i=1 Bi = ∅, these sets are a covering of A. By Lemma 3.4.1 there is a

partition of unity f1, . . . , fm which is subordinate to U ′
1, . . . , U

′
m. Now define

for each i = 1, . . . ,m the set Ui = {x ∈ A | fi(x) < 1/(2m)}. Then Ui is open
and contains Bi since fi(x) = 0 for all x ∈ Bi. Moreover, for each x ∈ A, since∑m

i=1 fi(x) = 1, there must be some i such that x /∈ Ui. So
⋂m

i=1 Ui = ∅. ��
We are now ready to prove the announced necessary condition for the

existence of a Nash consistent representation.

Theorem 3.4.3. Let A be a normal space and let the topological effectivity
function E have a Nash consistent representation on V N . Then

[Bi ∈ E∗(i) for all i ∈ N ] ⇒
n⋂

i=1

Bi 
= ∅ . (3.7)

Proof. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a Nash consistent representation of
E on V N . Let Bi ∈ E∗(i) for every i ∈ N . Assume, contrary to what we
want to prove, that

⋂n
i=1Bi = ∅. By Corollary 3.4.2 there exist open sets

U1, . . . , Um such that Ui ⊇ Bi for all i = 1, . . . ,m and
⋂m

i=1 Ui = ∅. By
Urysohn’s Lemma (e.g., Kelley, 1955, p. 115) there are continuous functions
fi : A → [0, 1] (i ∈ N) which are equal to 1 on Bi and equal to 0 on A \ Ui.
Consider the continuous preferences induced by the functions fi, also denoted
by fi, and let σ be a Nash equilibrium in the associated game (Γ, (fi)i∈N )
with outcome g(σ) = x. Since

⋂m
i=1 Ui = ∅ there exists i ∈ N with x /∈ Ui,

so fi(x) = 0. Hence, L(x, fi) = {y ∈ A | fi(y) ≤ 0} = {y ∈ A | fi(y) = 0}.
Since σ is a Nash equilibrium of (Γ, (fi)i∈N ), by Proposition 3.2.1 we have
L(x, fi) ∈ E(N \ i). As Bi ∈ E∗(i), Bi ∩L(x, fi) 
= ∅. But fi is equal to 1 on
Bi and fi is equal to 0 on L(x, fi), a contradiction. ��

In contrast to the case of finitely many alternatives (Theorem 3.3.10) the
converse of Theorem 3.4.3 is not true, as the following example shows.

Example 3.4.4. Let A = [0, 1], let N = {1, 2, 3}, and let λ be the Lebesgue
measure on A. Consider a topological EF on A satisfying: E(N) = K(A);
E(S) = {B ∈ K(A) | λ(B) > 1

3}, if |S| = 2; E(i) = {A} for every i ∈ N ;
and E(∅) = ∅. Note that E is monotonic and superadditive. In this case,
E∗(i) = {B ∈ K | λ(B) ≥ 2

3} for every i ∈ N , and (3.7) is satisfied. Consider
the following three functions defined on A: u1(x) = x, u2(x) = 1 − x, and
u3(x) = max(1

2 − x, x− 1
2 ). Define the profile RN ∈ V N by

xRiy ⇔ ui(x) ≥ ui(y), for all x, y ∈ A and all i ∈ N.

As may be verified, there is no point a ∈ A such that λ(L(a,Ri)) > 1
3 for

i = 1, 2, 3. See Figure 3.1. Hence, Proposition 3.2.1 implies that E has no
Nash consistent representation.
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Fig. 3.1 The utility functions in Example 3.4.4.

In order to obtain sufficient conditions for Nash consistent representation
we introduce an additional condition on a topological effectivity function. To
this end we need a topology on K(A).

Let � denote the topology on A. The upper topology �u is defined by its
base

{B ∈ K(A) | B ⊆ U}, U ∈ � .

It follows that the closed sets in �u are the intersections of sets of the form

{F ∈ K(A) | F ∩ C 
= ∅}, C ∈ K(A) .

This implies that, if E is an effectivity function, then the sets E∗(S) are
closed in the upper topology for all S ∈ P (N).

The regularity condition that we will impose is the following:

E(N \ i) is closed in (K(A),�u) for every i ∈ N . (3.8)

Note that this condition is not satisfied by the effectivity function in Ex-
ample 3.4.4, since the sets {B ∈ K(A) | λ(B) > 1

3} are not closed in the
upper topology.4

We shall show that (3.7) and (3.8) are sufficient conditions for the exis-
tence of a Nash consistent representation for the case where A is a compact
Hausdorff space. Recall that a topological space A is Hausdorff if for any two
different points x and y there are open disjoint sets B and C with x ∈ B and

4 Otherwise, {B ∈ K(A) | λ(B) ≤ 1
3
} would be open in the upper topology, but for instance

[0, 1
3
] is only contained in open sets U with λ(U) > 1

3
, and such sets contain closed sets of

Lebesgue measure larger than 1
3
.



32 3 Nash consistent representations

y ∈ C. If A is Hausdorff then, in particular, singletons are closed, so K(A) is
a rich structure.

Theorem 3.4.5. Let A be a compact Hausdorff topological space and let
E : P (N) → P (K(A)) be a monotonic and superadditive effectivity function
which satisfies (3.7) and (3.8). Then E has a Nash consistent representation
on V N .

Proof. Since V is compatible with K(A) and K(A) is rich it is sufficient to
prove that E satisfies (3.3) in Theorem 3.2.3, i.e., for every RN ∈ V N there
exists an x ∈ A such that L(x,Ri) ∈ E(N \ {i}) for all i ∈ N .

Let RN ∈ V N . For every i ∈ N let Bi be the set

Bi = {a ∈ A | L(a,Ri) ∈ E(N \ i)} .

Let Fi =
⋂
{L(a,Ri) | a ∈ Bi}. If Fi is empty then, since all sets L(a,Ri) are

closed, the sets A\L(a,Ri) (a ∈ Bi) are an open covering of A. Hence, since A
is compact, there is a finite sub-covering A\L(a1, R

i), . . . , A\L(am, R
i) of A

and thus
⋂m

j=1 L(aj, R
i) = ∅. This is a contradiction since the sets L(aj, R

i)
(j = 1, . . . ,m) are completely ordered by inclusion. Hence, Fi 
= ∅.

We claim that Fi ∈ E(N \ i). Suppose not then, since K(A) \ E(N \ i)
is open in the upper topology by (3.8), there is a U ∈ � with Fi ⊆ U
and for all B ∈ K(A) with B ⊆ U we have B /∈ E(N \ i). In particular,
L(a,Ri) ∩ (A \ U) 
= ∅ for all a ∈ Bi. By a similar compactness argument
as in the preceding paragraph,

⋂
{L(a,Ri) | a ∈ Bi} ∩ (A \ U) 
= ∅, hence

Fi ∩ (A \ U) 
= ∅, a contradiction.
By continuity of the preference Ri the compact set Fi has a maximal

element xi with respect to Ri. Then Fi = L(xi, Ri) and by monotonicity of
E, Bi = {a ∈ A | aRixi}. In particular, Bi ∈ K(A).

We claim that Bi ∈ E∗(i) for every i ∈ N . Indeed, let B′ ∈ E(N \ i)
and let x′ be a maximal element of B′ with respect to Ri (which exists since
B′ is compact and Ri is continuous). Since B′ ⊆ L(x′, Ri), monotonicity
of E implies L(x′, Ri) ∈ E(N \ i). By the definition of Bi, it follows that
x′ ∈ Bi ∩B′. Thus, Bi ∈ E∗(i).

Since Bi ∈ E∗(i) for every i ∈ N , (3.7) implies the existence of an x ∈⋂n
i=1 Bi. Thus, L(x,Ri) ∈ E(N \ i) for every i ∈ N , so that condition (3.3)

of Theorem 3.2.3 is satisfied. ��

Remark 3.4.6. As a representing game form again the canonical game form
Γ0 constructed in Theorem 2.4.7 can be used. In the above proof Theorem
3.2.3 is used, which in turn is based on Theorem 2.4.7.

In the remainder of this section we extend as much as possible the other
results of Section 3.3. The first result is an almost direct consequence of
Corollary 3.3.5. It characterizes Nash consistent representation in terms of
the residual Ê, defined by (3.5).
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Corollary 3.4.7. Let A be a Hausdorff space and let E : P (N) → P (K(A))
be a monotonic and supperadditive topological effectivity function. Then E
has a Nash consistent representation on V N if and only if Ê is stable.

Proof. Since a Hausdorff space is rich, i.e., singletons are closed sets, and
V is compatible with K(A), i.e., L(a,Ri) ∈ K(A) for all a ∈ A and i ∈ N
by definition of continuity of preferences, the result follows from Corollary
3.3.5. ��

In a similar way the next result follows from Corollary 3.3.6.

Corollary 3.4.8. Let A be a topological space and let E : P (N) → P (K(A))
be a monotonic and superadditive effectivity function. Then:

(a) If E has a Nash consistent representation Γ with outcome function g, then

g(NE(Γ, RN )) ⊆ C(Ê, RN) for all RN ∈ V N .

(b) If A is a Hausdorff space and C(Ê, RN ) 
= ∅ for all RN ∈ V N , then
g0(NE(Γ0, R

N )) = C(Ê, RN) for all RN ∈ V N , where g0 is the outcome
function of Γ0.

Here, Γ0 with outcome function g0 is again the game form constructed in
the proof of Theorem 2.4.7. Thus also in this case Γ0 is a canonical repre-
sentation of an effectivity function E : P (N) → P (K(A)) which admits the
maximal set of Nash equilibrium outcomes.

We next enquire whether Proposition 3.3.9, which characterizes stability
of the residual Ê in terms of the intersection condition on polar sets E∗(i),
can be generalized to topological effectivity functions. Suppose that A is
a compact Hausdorff space and that the topological effectivity function E
satisfies (3.8), i.e., the sets E(N \ i) are closed in the upper topology. Then E
has a Nash consistent representation if and only if the intersection condition
(3.7) on the polar sets E∗(i) is satisfied. This follows from Theorem 3.4.3 –
by observing that a compact Hausdorff space is normal – and Theorem 3.4.5.
By combining this observation with Corollary 3.4.7 we obtain the following
theorem.

Theorem 3.4.9. Let A be a compact Hausdorff space and let E : P (N) →
P (K(A)) be a monotonic and superadditive effectivity function satisfying
(3.8). Then C(Ê, RN ) 
= ∅ for all RN ∈ V N if and only if E satisfies (3.7).

Finally, we consider the question of existence of Pareto optimal Nash equi-
librium outcomes. For the finite case we have seen (Theorem 3.3.13) that
every Nash equilibrium outcome of a game resulting from using the canoni-
cal game form Γ0, is (weakly) Pareto dominated by a Pareto optimal Nash
equilibrium outcome in the same game. This result generalizes to the case
where A is a compact Hausdorff space.
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Theorem 3.4.10. Let A be a compact Hausdorff space and let E : P (N) →
P (K(A)) be a monotonic and superadditive effectivity function. For each
RN ∈ V N , if x ∈ g0(NE(Γ0, R

N)), then there exists y ∈ g0(NE(Γ0, R
N))

such that y is Pareto optimal with respect to RN and yRix for all i ∈ N .

Proof. Let RN ∈ V N and x ∈ g0(NE(Γ0, R
N)), then by Proposition 3.2.1 we

have L(x,RN ) ∈ E((N \ i) for every i ∈ N . Let z ∈ A satisfy zRix for every
i ∈ N , then by monotonicity of E, L(z,RN) ∈ E((N \ i) for every i ∈ N . By
Proposition 3.2.2, z ∈ g0(NE(Γ0, R

N)). As A is compact, the compact set
{z ∈ A | zRix for every i ∈ N} contains a Pareto optimal alternative y. ��

We end this section with the following direct consequence of Theorem
3.4.10 (cf. Remark 3.4.6).

Corollary 3.4.11. Under the assumptions of Theorem 3.4.10, if in addition
E satisfies (3.7) and (3.8), then Γ0 is a Nash consistent representation of
E that has a Pareto optimal Nash equilibrium outcome for every profile of
continuous preferences.

3.5 Veto functions

In this section we continue to investigate Nash consistent representation of
effectivity functions, but impose the additional condition of ‘neutrality’: this
means that only the number of alternatives plays a role in determining effec-
tiveness. This implies that effectivity functions can be described by so-called
‘veto functions’, saying how many alternatives a coalition can maximally veto.
We start with the finite case in Subsection 3.5.1, and consider topological veto
functions in Subsection 3.5.2.

3.5.1 Finitely many alternatives

Let A be a finite set of alternatives with |A| = m ≥ 2. An effectivity function
E : P (N) → P (P0(A)) is neutral if for every S ⊆ N and B ∈ E(S), if B∗ ⊆ A
and |B∗| = |B|, then B∗ ∈ E(S).

A veto function is a function v : P (N) → {−1, 0, . . . ,m − 1} such that
v(∅) = −1, v(S) ≥ 0 if S 
= ∅, and v(N) = m− 1. The interpretation of the
number v(S) is that the coalition S can veto any subset of alternatives with
at most v(S) elements. With a veto function v we can naturally associate an
effectivity function Ev by defining

Ev(S) = {B ∈ P0(A) | |A \B| ≤ v(S)} = {B ∈ P0(A) | |B| ≥ m− v(S)}
(3.9)
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for every S ∈ P (N). It is straightforward to verify that Ev is indeed an
effectivity function. Obviously, Ev is neutral, and Ev is also monotonic with
respect to alternatives by definition. Conversely, it is easy to check that for
every effectivity function E with these two properties there is a veto function
v such that E = Ev.

A veto function v is monotonic if

[S, S∗ ∈ P (N), S ⊆ S∗] ⇒ v(S) ≤ v(S∗) ,

and it is superadditive if

[S, S∗ ∈ P (N), S ∩ S∗ = ∅] ⇒ v(S) + v(S∗) ≤ v(S ∪ S∗) .

These properties have straightforward interpretations. Monotonicity means
that veto power cannot decrease if a coalition increases, and superadditivity
means that the union of two disjoint coalitions has at least as much veto
power as the two coalitions together have if they act separately. Clearly, a
veto function v is monotonic (superadditive) if and only if the associated
effectivity function Ev is monotonic (superadditive).

The following example shows that neutral effectivity functions can be in-
duced by simple games.

Example 3.5.1. A simple game is a pair (N,W) where ∅ 
= W ⊆ P0(N)
satisfies [S ∈ W and T ⊇ S] ⇒ T ∈ W. The coalitions in W are called the
winning coalitions. With a simple game (N,W) we can associate a monotonic
and neutral effectivity function E by defining E(S) = P0(A) if S ∈ W;
E(S) = {A} if S /∈ W; and E(∅) = ∅. A simple game (N,W) is proper if
for each S ∈ W we have N \S /∈ W. Properness implies in particular that if
S1 ∈ W and S2∩S1 = ∅, then S2 /∈ W; in turn, it follows that the effectivity
function associated with a proper simple game is superadditive.

The existence of Nash consistent representations for monotonic and su-
peradditive neutral effectivity functions can be easily characterized by using
Theorem 3.3.10.

Theorem 3.5.2. Let A be a finite set of m ≥ 2 alternatives and let v :
P (N) → {−1, 0, . . . ,m− 1} be a monotonic and superadditive veto function.
Then the associated effectivity function Ev has a Nash consistent representa-
tion if and only if

∑

i∈N

v(N \ i) > n(m− 1) −m . (3.10)

Proof. For every i ∈ N ,

E∗
v (i) = {B ∈ P0(A) | |B| ≥ v(N \ i) + 1} .

Hence, (3.6) is satisfied if and only if for all sets B1, . . . , Bn ⊆ A with Bi =
v(N \ i) + 1 for each i ∈ N , we have

⋂
i∈N Bi 
= ∅. This is the case exactly if⋃

i∈N A \Bi 
= A for all such Bi, i.e., if
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∑

i∈N

m− [v(N \ i) + 1] < m ,

which is the same as (3.10). ��

3.5.2 Topological veto functions

In order to define neutrality of effectivity functions in case A is an infinite
set, we need a measure on A. In this section we assume that A is a compact
metric space with metric d, we let B denote the σ-algebra of Borel sets of A,
and we let μ be a probability5 measure on (A,B). This makes it possible to
define ‘μ-neutral’ effectivity functions using veto functions.6

A veto function is now a function v : P (N) → [−1, 1] with v(∅) = −1,
v(N) = 1, and v(S) ≥ 0 for all S ∈ P0(N). The interpretation is similar as
in the finite case: coalition S can veto any (Borel) subset of A of measure
at most v(S). The associated effectivity function Ev will be restricted to
nonempty closed sets:

Ev(S) = {B ∈ K(A) | μ(B) ≥ 1 − v(S)} for every S ∈ P (N).

This effectivity function Ev is, indeed, only μ-neutral as μ may treat different
points in A differently. However, if for example A = [0, 1] and μ is Lebesgue
measure, then each Ev is neutral in the ordinary sense.

The definitions of monotonicity and superadditivity of veto functions are
identical to the earlier definitions for the finite case and are therefore not
repeated. It is easy to check that monotonicity of the veto function implies
monotonicity of the associated effectivity function. For superadditivity this
is not true, as the following two examples show.

Example 3.5.3. Let A = [0, 1
2 ] ∪ [1, 3

2 ]; μ = λ where λ is Lebesgue measure;
N = {1, 2}; and v : P (N) → [−1, 1] with v(∅) = ∅, v(1) = v(2) = 1

2 , and
v(N) = 1. Then v is a monotonic and superadditive veto function. However,
Ev is not superadditive: [0, 1

2 ] ∈ Ev(1), [1, 3
2 ] ∈ Ev(2), and [0, 1

2 ] ∩ [1, 3
2 ] =

∅ /∈ Ev(N).

Observe that the set A in the previous example is not connected. (Recall
that a topological space is connected if it cannot be written as the union of
two nonempty disjoint closed or, equivalently, open sets.) The next example
shows however that adding connectedness as a condition on A still does not
guarantee superadditivity.

Example 3.5.4. Let A = [0, 2]; μ(B) = λ(B ∩ [0, 1]) for every Borel subset
B of A; N = {1, 2}; v(∅) = −1, v(1) = 0, and v(2) = v(N) = 1. Then v is

5 This is without loss of generality: for other nonnegative measures we obtain the same
results by adapting the range of the veto function.
6 The approach in this subsection is motivated by Abdou (1988).



3.5 Veto functions 37

monotonic and superaddditive. Again, Ev is not superadditive: [0, 1] ∈ Ev(1),
[32 , 2] ∈ Ev(2), and [0, 1] ∩ [32 , 2] = ∅.

Observe that the probability measure in the last example does not have
full support (see Remark 3.5.5).

Remark 3.5.5. A support for μ is any measurable set B such that μ(B) = 1.
In our case, where A is a compact metric space and the set of measurable sets
is the set of Borel sets, there exists a minimal closed set B with μ(B) = 1,
that is, if C ∈ K(A) and μ(C) = 1 then C ⊇ B (see Hildenbrand, 1974,
p. 49). This set B is called the support of μ and it is denoted by Supp(μ).
Observe that the requirement Supp(μ) = A is equivalent to the requirement
that every non-empty open set has positive measure. If this holds, we say
that μ has full support.

It turns out that superadditivity is guaranteed if we impose the additional
conditions of connectedness and full support.

Lemma 3.5.6. Let A be a connected and compact metric space, let μ be a
probability measure on (A,B) with Supp(μ) = A, and let v be a superadditive
veto function. Then Ev is superadditive.

Proof. Let Si ∈ P0(N), i = 1, 2, S1∩S2 = ∅, and Bi ∈ Ev(Si), i = 1, 2. Then
Bi ∈ K(A) and μ(Bi) ≥ 1 − v(Si) for i = 1, 2. Therefore,

μ(B1 ∩B2) + μ(B1 ∪B2) = μ(B1) + μ(B2)
≥ 2 − v(S1) − v(S2)
≥ 2 − v(S1 ∪ S2) ,

where the last inequality follows from superadditivity of v. Thus,

μ(B1 ∩B2) ≥ 1 − μ(B1 ∪B2) + 1 − v(S1 ∪ S2) ≥ 1 − v(S1 ∪ S2) . (3.11)

This implies superadditivity of Ev if we can show that B1 ∩B2 
= ∅. Suppose
this were not true. Then by (3.11), μ(B1 ∪ B2) = 1. As A = Supp(μ), we
must have B1 ∪ B2 = A. But then A is the union of two disjoint nonempty
closed sets, contradicting connectedness. ��

The first main result in this section is the following theorem, which gives a
sufficient condition on a veto function for the associated effectivity function
to have a Nash consistent representation.

Theorem 3.5.7. Let A be a connected and compact metric space and let μ
be a probability measure on (A,B) with Supp(μ) = A. Let v be a monotonic
and superadditive veto function satisfying

n∑

i=1

v(N \ i) ≥ n− 1 . (3.12)

Then the associated effectivity function Ev has a Nash consistent representa-
tion on V N .
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For the proof of this theorem we need two lemmas. In both lemmas we
assume that the conditions of Theorem 3.5.7 are fulfilled. The first lemma
characterizes the polar of Ev.

Lemma 3.5.8. Let S ∈ P0(N). Then

E∗
v (S) = {B ∈ K(A) | μ(B) ≥ v(N \ S)} .

Proof. First, suppose that B ∈ K(A) with μ(B) < v(N \ S). We show that
B /∈ E∗

v (S). Define

Bt = {x ∈ A | d(x,B) ≥ 1
t
}, t = 1, 2, . . .

Then Bt ∈ K(A) for every t = 1, 2, . . . and
⋃∞

t=1Bt = A \ B. Hence, there
exists a t0 with μ(Bt0) ≥ 1− v(N \S), which implies Bt0 ∈ Ev(N \S). Since
Bt0 ∩B = ∅, it follows that B /∈ E∗

v (S).
Next, suppose that B ∈ K(A) with μ(B) ≥ v(N \ S) and, contrary to

what we wish to prove, B /∈ E∗
v (S). Then there exists B′ ∈ E(N \ S) with

B∩B′ = ∅. As μ(B′) ≥ 1−v(N \S) we must have μ(B∪B′) = 1. Hence, since
Supp(μ) = A, we have B ∪B′ = A, contradicting connectedness of A. ��

The next lemma shows that Ev(·) takes values that are closed in the upper
topology.

Lemma 3.5.9. For each S ∈ P0(N), Ev(S) is closed in the upper topology.

Proof. Let α ∈ [0, 1]. It is sufficient to prove that the set K∗ = {B ∈ K(A) |
μ(B) ≥ α} is closed in the upper topology, since each set Ev(S) is of this
form. We show that the complement K(A) \ K∗ = {B ∈ K(A) | μ(B) < α}
is open in the upper topology. To show this, it is by definition of the upper
topology sufficient to show that if B0 ∈ K(A) \ K∗, then there is an open
U ⊆ A with B ⊆ U and μ(U) < α. For each t = 1, 2, . . . define

Ut = {x ∈ A | d(x,B0) <
1
t
} .

Then
⋂∞

t=1 Ut = B0, hence μ(Ut) → μ(B0). So we can take t0 with μ(Ut0) < α
and set U = Ut0 . ��

We can now prove Theorem 3.5.7.

Proof of Theorem 3.5.7. The EF E is monotonic since v is monotonic, and
superadditive by Lemma 3.5.6 since v is superadditive. By Lemma 3.5.9 the
set Ev(N \ i) is closed in the upper topology for every i ∈ N . In order to
apply Theorem 3.4.5 we only have to prove

[Bi ∈ E∗
v (i) for all i ∈ N ] ⇒

n⋂

i=1

Bi 
= ∅ . (3.13)

Assume, on the contrary, that there exist Bi ∈ E∗
v (i), i ∈ N , such that⋂n

i=1 Bi = ∅. Let Di = A\Bi, i ∈ N . Clearly, since
⋂n

i=1 Bi = ∅, at least two
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of the setsDi are nonempty. Also, eachDi is open,
⋃n

i=1Di = A, and μ(Di) ≤
1−v(N \ i) for each i ∈ N by Lemma 3.5.8. By (3.12),

∑n
i=1 μ(Di) ≤ 1. Sup-

pose that for some i 
= j,Di∩Dj 
= ∅. Then μ(Di∩Dj) > 0 since Supp(μ) = A
(cf. Remark 3.5.5). Thus 1 ≥

∑n
k=1 μ(Dk) > μ(

⋃n
k=1Dk) = μ(A) = 1, a con-

tradiction. Therefore, the sets D1, . . . , Dn form a partition of open sets of A,
at least two of which are nonempty, contradicting connectedness. ��

Condition (3.12) in Theorem 3.5.7 is far from necessary for the existence
of a Nash consistent representation. Let for instance A = [0, 1] and let μ put
weight 9/10 on the one-point set {1} and distribute weight 1/10 uniformly
over the interval. Consider a monotonic and superadditive veto function v
with v(N \ i) = 8/10 for every i ∈ N . Then for n > 5 condition (3.12) is not
satisfied but

Ev(N \ i) = {B ∈ K(A) | 1 ∈ B} = E∗
v (i)

for every i ∈ N . Hence (3.13) is satisfied and Theorem 3.4.5 still implies that
Ev has a Nash consistent representation. In this example the singleton {1}
is an atom of μ. (An atom of μ is a B ∈ B such that μ(B) > 0 and for all
B′ ∈ B with B′ ⊆ B, either μ(B′) = μ(B) or μ(B′) = 0. The measure μ is
nonatomic if it has no atoms. For a compact metric space as in our case, μ
is nonatomic precisely if μ(x) = 0 for every x ∈ A.)

In the next theorem we show that for nonatomic measures condition (3.12)
is not only sufficient but also necessary for the existence of a Nash consistent
representation.

Theorem 3.5.10. Let A be a compact metric space and let μ be a nonatomic
probability measure on (A,B). Let v be a monotonic and superadditive veto
function, and let the associated effectivity function Ev have a Nash consistent
representation on V N . Then (3.12) holds, i.e.

n∑

i=1

v(N \ i) ≥ n− 1 .

Proof. Suppose, on the contrary, that
n∑

i=1

(1 − v(N \ i)) > 1 .

Let N0 = {i ∈ N | v(N \ i) < 1}, hence N0 
= ∅, and choose 0 < ε <
min{1 − v(N \ i) | i ∈ N0} such that

n∑

i=1

(1 − v(N \ i)) > 1 + nε . (3.14)

Next choose sets B̂i ∈ B, i ∈ N , as follows. If i /∈ N0 then B̂i = A. Since
(3.14) implies

∑
i∈N0

[1 − v(N \ i) − ε] > 1, by nonatomicity of μ we can
choose sets Ci with μ(Ci) = 1 − v(N \ i) − ε for each i ∈ N0 and such that
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⋃
i∈N0

Ci = A. Then let B̂i = A \ Ci for each i ∈ N0. It follows in particular
that μ(B̂i) = v(N \ i) + ε for each i ∈ N0 and

⋂
i∈N0

B̂i = ∅. As μ is a
probability measure on (A,B) we can find closed sets Bi, i ∈ N , such that:
Bi = A if i /∈ N0; Bi ⊆ B̂i and μ(Bi) > v(N \ i) for all i ∈ N0 (see Dunford
and Schwartz, 1988, p. 170).

Thus, we have obtained sets Bi ∈ E∗
v (i), i ∈ N (cf. Lemma 3.5.8) such

that
⋂

i∈N Bi = ∅. Since a metric space is normal, Theorem 3.4.3 implies
that Ev does not have a Nash consistent representation on V N . This is a
contradiction, which completes the proof. ��

We end this section with an application of Theorems 3.5.7 and 3.5.10.

Example 3.5.11. In a city occupying an area of 1 km2 a public facility has
to be located. Assume that there are three parties, N = {1, 2, 3}, and each
majority of two parties {i, j} can veto any area of at most 0 ≤ v({i, j}) ≤ 1.
Hence, it is effective for any (closed) area of at least 1 − v({i, j} km2. Also,
assume that N is effective for any nonempty closed area. Thus, with v(i) = 0,
i ∈ N , so that single parties are only effective for the whole city, we obtain
an effectivity function that is monotonic and superadditive. Theorems 3.5.7
and 3.5.10 imply that it has a Nash consistent representation if and only if

v({1, 2}) + v({1, 3}) + v({2, 3}) ≥ n− 1 = 2.

3.6 Liberalism and Pareto optimality of Nash equilibria

In this section we discuss an analogue of Sen’s (1970) Liberal Paradox within
our framework. Sen’s result is derived within the classical Arrovian model
of a social welfare function, which assigns an ordering of the (finitely many)
alternatives to every preference profile. Sen shows that there exists no social
decision function (which is a weaker version of a social welfare function)
that is Paretian and satisfies minimal liberalism. A social welfare function is
Paretian if it orders x above y if every individual does so. It satisfies minimal
liberalism if there are at least two individuals each of whom is decisive over
some distinct pair of alternatives. An individual is decisive over a pair x, y if
the social ordering of x and y coincides with that individual’s ordering of x
and y.

Our notions of liberalism and minimal liberalism are similar to Sen’s at
least in spirit. Let A be a finite set of social states, let N = {1, . . . , n} be a
set of at least two players, and let E : P (N) → P (P0(A)) be a monotonic and
superadditive effectivity function, representing a constitution as in Chapter 2.
Recall (see Remark 2.6.2) that E satisfies liberalism if every player can veto
some alternative, that is, for every i ∈ N there exists some xi ∈ A such that
A \ {xi} ∈ E(i). Note that, since E has a representation (Theorem 2.4.7),



3.6 Liberalism and Pareto optimality of Nash equilibria 41

individual i can actually enforce A\{xi}, and thus veto xi. E satisfies minimal
liberalism if there are at least two players who can veto some alternative.

As an analogue of Sen’s question in our framework we can ask whether
under minimal liberalism Pareto optimality is possible for Nash equilibria of
representing game forms. The answer to this question follows easily from our
results so far. For instance, the effectivity function of the ‘marriage prob-
lem’ (Example 3.3.12, adapted version with E({m1,m2}) = {s}+) satisfies
liberalism and has a Nash consistent representation Γ. Thus, by definition
(Remark 2.6.2), also Γ satisfies liberalism. In particular, we can take Γ = Γ0,
the canonical game form. By Theorem 3.3.13 we know that Γ0 has a Pareto
optimal Nash equilibrium outcome for every possible profile of preferences.
Thus, under this formulation a liberal paradox does not occur. We regard
this as a ‘partial’ resolution (see below) of the liberal paradox and proceed
by giving an exact formulation.

The following definition applies for general sets A.7

Definition 3.6.1. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a game form and let Q
be some set of preferences. The game form Γ is weakly acceptable on QN if
for every RN ∈ QN there exists σ ∈ NE(Γ, RN ) such that g(σ) is Pareto
optimal with respect to RN .

The same arguments used for the ‘marriage problem’ example above re-
sult in the following corollary on existence of weakly acceptable game forms.
Condition (3.6) in this corollary is the familiar intersection condition on po-
lar sets, which by Theorem 3.3.10 implies the existence of a Nash consistent
representation. Weak acceptability follows by applying Theorem 3.3.13.

Corollary 3.6.2. Let A be finite. If an effectivity function E : P (N) →
P (P0(A)) is monotonic, superadditive, and satisfies (3.6), then E has a weakly
acceptable representation on WN .

The effectivity function E in this corollary may satisfy, in particular, liber-
alism. Thus, we have within our framework a resolution of the liberal paradox,
but this resolution is ‘partial’ in the sense that in general the canonical game
form Γ0 also admits Nash equilibrium outcomes that are not Pareto optimal.
We go deeper into this issue in Chapter 4.

Results similar to Corollary 3.6.2 can be obtained for topological effectivity
functions. Condition (3.6) is replaced by the analogous intersection condition
(3.7), and we have to add the closedness condition (3.8). The following result
now follows from Corollary 3.4.11.

Corollary 3.6.3. Let A be compact Hausdorff space. If a topological effectiv-
ity function E : P (N) → P (K(A)) is monotonic, superadditive, and satisfies
(3.7) and (3.8), then E has a weakly acceptable representation on the set of
all profiles of continuous preferences V N .

7 Our terminology in this definition is different from that of Hurwicz and Schmeidler
(1978).
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Thus, we have shown in this section that under suitable conditions there
exist weakly acceptable representations for constitutions. The correspondence
of Nash equilibrium outcomes of a weakly acceptable game form contains a
Pareto optimal alternative for every permissible profile of preferences. This
is certainly not typical for arbitrary Nash consistent game forms, as the fol-
lowing example shows.

Example 3.6.4. Consider the bimatrix game form

⎛

⎝

L M R

T b a c
C a a a
B c a b

⎞

⎠

where player 1 chooses rows and player 2 columns. Clearly, (C,M) is always
a Nash equilibrium. If player 1 strictly prefers b to c and c to a and player 2
strictly prefers c to b and b to a, then (C,M) is the only Nash equilibrium
but a is not Pareto optimal.

3.7 Notes and comments

This chapter is based on Peleg, Peters, and Storcken (2002). Compared to the
original article there are a few modifications. The main new feature, which
was already suggested in the original paper, is the use of the upper topology
on the set of nonempty closed subsets of a compact topological space. This
simplifies the proofs of some of the results.

Remark 3.7.1. Definition 3.3.1 of the polar of an effectivity function is due to
Abdou (1991).

Remark 3.7.2. An effectivity function E is maximal if it is superadditive and
E = E∗. We shall explain and use this definition in Chapters 4 and 5. A
special case of maximality, 1-(n− 1) maximality, implies E(i) = E∗(i) for all
i ∈ N ; with superadditivity this implies our basic intersection condition

[Bi ∈ E∗(i) for all i ∈ N ] ⇒
n⋂

i=1

Bi 
= ∅ .

Remark 3.7.3. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a Nash consistent game form
on QN , where Q ⊆ W . The game form Γ defines a social choice correspon-
dence H : QN → P0(A) by H(RN ) = g(NE(Γ, RN)) for every RN ∈ QN . By
definition, Γ implements H in Nash equilibria (see Maskin, 1999). Hence, H
is Maskin monotonic on QN since this is a necessary condition for implemen-
tation (see again Maskin, 1999). A social choice correspondence H is Maskin

monotonic if the the following condition holds: for all RN , R̃N ∈ QN and
a ∈ A, if a ∈ H(RN ) and L(a,Ri) ⊆ L(a, R̃i) for all i ∈ N , then a ∈ H(R̃N ).
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Remark 3.7.4. In Theorem 3.4.5 we can weaken somewhat the assumption
that A is a Hausdorff topological space. It is sufficient to require there that
A is a T1-space, that is, for every x ∈ A the singleton {x} is closed. This
weakening extends to Corollaries 3.4.7 and 3.4.8, but not to Theorem 3.4.9.
Hausdorff spaces are also known as T2-spaces. We have chosen to use the
Hausdorff property because it is a well known condition.

Remark 3.7.5. Condition (3.8) can be weakened: it is sufficient to require that
E(N \ i) is closed in the Vietoris topology �V on K(A), which is finer than
the upper topology �u, i.e., �u ⊆ �V . The Vietoris topology is defined in the
following way. The lower topology �� is generated by the sets {B ∈ K(A) |
B ∩ U 
= ∅}, U ∈ �, where � is the topology on A. The Vietoris topology
is the common refinement of �u and ��. It is sufficient for our use that, if
(A,�) is a compact Hausdorff space, then (K(A),�V ) is a compact Hausdorff
space as well (Klein and Thompson, 1984, Theorem 2.35 (iii)). In the proof of
Theorem 3.4.5, note that the set {L(a,Ri) ∈ K(A) | L(a,Ri) ∈ E(N \i)} with
complete ordering ⊇ is a net, which has Fi as its unique limit point in the
compact Hausdorff space (K(A),�V ). Since E(N \ i) is closed in (K(A),�V ),
we have Fi ∈ E(N \ i). The rest of the proof is identical to the proof of
Theorem 3.4.5.



Chapter 4

Acceptable representations

4.1 Motivation and summary

In Chapter 3 we have studied the existence of Nash consistent representations
of effectivity functions. We have, in fact, shown that the same conditions that
guarantee existence of Nash consistent representations also guarantee the ex-
istence of weakly acceptable representations, that is, representations that
always admit also Pareto optimal Nash equilibria – see Corollaries 3.6.2 and
3.6.3. In this chapter we investigate a subset of the set of Nash consistent
game forms, namely the set of acceptable game forms, where a game form is
acceptable if: (i) it is Nash consistent and (ii) for every profile of preferences
every Nash equilibrium outcome is Pareto optimal. Acceptable game forms
were introduced in Hurwicz and Schmeidler (1978). One of the main results of
this chapter is a complete characterization of the effectivity functions which
can be represented by an acceptable game form. Assuming that the set of so-
cial states is a compact Hausdorff topological space and restricting ourselves
to continuous preferences we obtain the following result: an effectivity func-
tion for at least three players has an acceptable representation if and only if:
(i) it has a Nash consistent representation and (ii) no two disjoint coalitions
can veto the same alternative. (This follows from Theorem 4.3.1 and Remark
4.6.2. A precise formulation of the latter condition is (4.7).) This result is
easy to understand but the proof is quite involved. We outline it here.

First, in Section 4.2, we derive the new necessary condition: if E is the
effectivity function of an acceptable game form then no two disjoint coalitions
can veto the same alternative (Theorem 4.2.3). In Section 4.3 we formulate
the main result (Theorem 4.3.1) and relate it to the results of Chapter 3.
Thus, we obtain a neat characterization for finite sets of outcomes (Corollary
4.3.3). Section 4.4 is devoted to the construction of a game form, representing
a superadditive and monotonic effectivity function satisfying the new condi-
tion (4.7), that has only Nash equilibria with Pareto optimal outcomes. This
game form ‘extends’ the canonical game form Γ0 constructed in the proof

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
DOI 10.1007/978-3-642-13875-1 4, c© Springer-Verlag Berlin Heidelberg 2010
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of Theorem 2.4.7, but it may not be Nash consistent. Finally, in Section
4.5, we complete the proof of Theorem 4.3.1 by further ‘extending’ the game
form of Section 4.4 to an acceptable game form, using some techniques of
implementation theory.

The necessary condition (4.7) in conjunction with the familiar intersection
conditions for one-person polar sets (3.7) lead to an impossibility theorem: if
an effectivity function satisfies minimal liberalism then it has no acceptable
representation (Theorem 4.2.4). This result is our version of Sen’s Impossi-
bility of a Paretian Liberal. It shows that there is a strong tension between
the properties of liberalism and Pareto optimality of Nash equilibrium out-
comes of representations. We have seen in Chapter 3 that liberalism of an
effectivity function is compatible with the existence of a weakly acceptable
representation (Corollary 3.6.3). But insisting on acceptable representations
even contradicts minimal liberalism.

We also generalize to topological effectivity functions two earlier results on
acceptable game forms. First, we extend Theorem 1 in Hurwicz and Schmei-
dler (1978) for normal spaces (Theorem 4.2.7). Second, again for normal
spaces we prove that if an acceptable game form has a maximal effectivity
function then this is the effectivity function of a strong simple game – see
Corollary 4.2.6. This extends Theorem 3.5 in Dutta (1984). Finally, we prove
the existence of an acceptable representation for every effectivity function
derived from a proper simple game with at most one vetoer (Proposition
4.6.1).

4.2 Acceptable representations and minimal liberalism

Recall from the previous chapter that a game form is weakly acceptable if for
every profile of admissible preferences there is a Nash equilibrium outcome
in the associated game that is Pareto optimal with respect to that profile
(Definition 3.6.1). Also recall that the canonical game form Γ0, constructed
in Chapter 2 and used in Chapter 3 to establish existence of Nash consis-
tent representations of effectivity functions (constitutions) admits a Pareto
optimal Nash equilibrium outcome for every profile of preferences and, thus,
is weakly acceptable (see Corollaries 3.6.2 and 3.6.3). We have argued that
therefore these results offer a ‘partial’ resolution to Sen’s Liberal Paradox.
We have used the word ‘partial’ because in general not every Nash equilib-
rium of the canonical game form Γ0 or, for that matter, some other Nash
consistent representing game form has to be Pareto optimal. In other words,
finding game forms for which every Nash equilibrium outcome is Pareto op-
timal would be regarded as a ‘complete’ resolution of the Liberal Paradox
in our framework. We shall see in this chapter that this is possible under
an additional condition on the effectivity function, namely that no two dis-
joint coalitions can veto the same alternative. This, however, is quite a strong
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condition and, in particular, it contradicts minimal liberalism in conjunction
with our basic intersection condition necessary for the existence of a Nash
consistent representation, condition (3.7).

In order to make these statements precise we first strengthen the weak ac-
ceptability concept to ‘acceptability’ in the following definition. Let PAR(RN )
denote the set of alternatives in A that are Pareto optimal with respect to
RN .

Definition 4.2.1. A game form Γ = (N ; Σ1, . . . ,Σn; g;A) is acceptable with
respect to Q ⊆W if the following two conditions are satisfied:

NE(Γ, RN) 
= ∅ for every RN ∈ QN . (4.1)

g(NE(Γ, RN)) ⊆ PAR(RN ) for every RN ∈ QN . (4.2)

Acceptable game forms have been introduced by Hurwicz and Schmeidler
(1978). An example of an acceptable game form is the ‘kingmaker’ game form
(Example 2.4.2, see also Example 3.3.8).

We next establish a property of the effectivity function EΓ of an acceptable
game form Γ. This result will be formulated and proved for the case where A
is a normal topological space and the structure K(A) of all nonempty closed
sets is rich – thus, every singleton {x} (x ∈ A) is closed1. In later sections,
we shall need to assume stronger conditions, specifically that A is compact
and Hausdorff. Readers (only) interested in the finite case should take notice
of the following remark.

Remark 4.2.2. The case where A is finite is a special case, with the discrete
topology on A (in which all subsets of A are open and hence closed). Any
preference on A is continuous in this topology. Alternatively, all results and
proofs in this chapter can be read as if A were finite (with K(A) = P0(A)).

Theorem 4.2.3. Let A be a normal space with rich structure K(A), and let
Γ = (N ; Σ1, . . . , Σn; g;A) be an acceptable game form on V N . Then

[
S, T ∈ P0(N), B ∈ EΓ(S), C ∈ EΓ(T ), S ∩ T = ∅

]
⇒ B ∪C = A .(4.3)

Note that this condition is equivalent to the requirement that no two
disjoint coalitions can veto the same alternative. That is, if S, T ∈ P0(N)
with S ∩T = ∅, and A \ {x} ∈ EΓ(S) for some x ∈ A, then A \ {x} /∈ EΓ(T ).
This is straightforward to verify by using the monotonicity of EΓ.

Proof of Theorem 4.2.3. Suppose that there are S, T,B,C satisfying the
premise but not the conclusion of (4.3). Then there exists x ∈ A \ (B ∪ C).
Since A is normal and {x} is closed, by Urysohn’s Lemma there exists a
continuous function u : A → [0, 1] such that u(x) = 1 and u(y) = 0 for all

1 A normal space with every singleton closed is also called T4-space, cf. Kelley (1955,
p. 112).
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y ∈ B∪C.2 Define now a profile RN ∈ V N by yRiz if and only if u(y) ≥ u(z)
for all y, z ∈ A and i ∈ N . We shall construct a Nash equilibrium with a
Pareto non-optimal outcome with respect to RN .

Let σS ∈ ΣS satisfy g(σS , τN\S) ∈ B for all τN\S ∈ ΣN\S and let σT ∈
ΣT satisfy g(σT , τN\T ) ∈ C for all τN\T ∈ ΣN\T (this is possible since
B ∈ EΓ(S) and C ∈ EΓ(T )). Further, let σN\(S∪T ) ∈ ΣN\(S∪T ) be arbitrary.
Consider σ = (σS , σT , σN\(S∪T )) ∈ ΣN . Then g(σ) ∈ B∩C and g(σN\i, τ i) ∈
B∪C for every i ∈ N and every τ i ∈ Σi. Since ui(y) = 0 for every i ∈ N and
every y ∈ B ∪ C, it follows that σ is a Nash equilibrium of (Γ, RN). Since
ui(x) = 1 for all i ∈ N , it follows that g(σ) is Pareto dominated by x. ��

Recall that an effectivity function E satisfies minimal liberalism if there
exist i, j ∈ N , i 
= j, and Bi ∈ E(i), Bj ∈ E(j) such that Bi 
= A and Bj 
= A
(cf. Remark 2.6.2). The first main result of this chapter is, in fact, a negative
result.

Theorem 4.2.4. Let A be a normal space with rich structure K(A), and let
the effectivity function E : P (N) → P (K(A)) satisfy minimal liberalism.
Then E has no acceptable representation on V N .

Proof. Suppose, on the contrary, that E has an acceptable representation Γ,
so E = EΓ. Let i, j ∈ N , i 
= j, Bi ∈ E(i), Bj ∈ E(j), and Bi, Bj 
= A. By
(4.3), Bi ∪Bj = A. Thus, we can choose x ∈ Bj \Bi and y ∈ Bi \Bj . Again
by (4.3), B∪Bi = A for all B ∈ E(N \i), and thus x ∈ B for all B ∈ E(N \i).
Similarly, y ∈ B for all B ∈ E(N \ j). Hence, {x} ∈ E∗(i) and {y} ∈ E∗(j).
However, {x} ∩ {y} = ∅, contradicting the familiar necessary condition for
existence of a Nash consistent representation, i.e., (3.7) of Theorem 3.4.3. ��

Theorem 4.2.4 is an example of the kind of results that in social choice
theory are often referred to as impossibility results. If we insist on minimal
liberalism, then the theorem tells us that we have to give up the quest for
acceptable representing game forms. However, although minimal liberalism
may be an ethically desirable property, it is often not satisfied. Consider
for instance a society with set of members N that resolves some class of
societal issues by majority rule. If N contains at least three members then
this society has no individual rights (E(i) = {A} for each i ∈ N), so the
condition of minimal liberalism is not satisfied. Nevertheless, it is interesting
to know if this ‘majority rule society’ has an acceptable representation. In
somewhat different wording, although minimal liberalism may be compelling
as a general principle on a ‘macro’ social choice level, there may be ‘micro’
situations – like the example of a group deciding on a collection of relevant
issues by majority rule – where minimal liberalism does not apply. In view
of these considerations it makes sense to look for acceptable representations
and this is, basically, what the rest of this chapter is devoted to.

2 Of course, if A is finite such a function exists trivially.
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We shall first characterize acceptable game forms that have a maximal
effectivity function. Maximality of effectivity functions plays a crucial role
in Chapter 5, where we discuss so-called strongly consistent representations.
Below, maximal effectivity functions play a role in deriving a result for two-
person acceptable game forms.

We recall (see Remark 3.7.2) that an effectivity function E is maximal
if it is superadditive and equal to its polar, i.e., E = E∗. Observe that
superadditivity implies that for every coalition S, E(S) ⊆ {B ∈ K(A) |
B ∩ B′ 
= ∅ for all B′ ∈ E(N \ S)}, hence E(S) ⊆ E∗(S). Maximality of E
implies that these two sets are actually equal. Hence, if E is maximal and
B /∈ E(S), there must be some B′ ∈ E(N \ S) such B ∩ B′ = ∅. Since
maximality of E also implies monotonicity (see Remark 5.3.1 for an explicit
argument), if A is finite then this implies in turn A \ B ∈ E(N \ S), which
provides another reason for the use of the word ‘maximal’. So if A is finite
and E is maximal, then for each nonempty subset B of A, we have B ∈ E(S)
or A \B ∈ E(N \S). (If A is not finite, then A \B is not necessarily a closed
set.)

We also recall that a simple game is a pair (N,W) where ∅ 
= W ⊆ P0(N)
satisfies [S ∈ W and T ⊇ S] ⇒ T ∈ W (Example 3.5.1). A simple game
(N,W) is strong if for every S ∈ P0(N) we have S ∈ W ⇔ N \S /∈ W. With
a simple game (N,W) we have associated an effectivity function E by letting,
for each nonempty coalition S, E(S) = K(A) if S ∈ W (i.e., S is winning) and
E(S) = {A} if S /∈ W (i.e., S is losing). (See again Example 3.5.1.) It is not
difficult to verify that the effectivity function associated with a strong simple
game is maximal. As to the converse, we have the following relation between
maximal effectivity functions and strong simple games. Condition (4.4) in
the next theorem is identical to condition (4.3), which we have established
as a condition necessary for the existence of a representing acceptable game
form.

Theorem 4.2.5. Let A be a normal space with rich structure K(A) and let
E : P (N) → P (K(A)) be a maximal effectivity function. Then E satisfies

[Si ∈ P0(N), Bi ∈ E(Si), i = 1, 2, S1 ∩ S2 = ∅] ⇒ B1 ∪B2 = A (4.4)

if and only if E is the effectivity function associated with a strong simple
game.

Proof. For the only-if part, let E be a maximal effectivity function satisfying
(4.4). Further, let S ∈ P0(N), S 
= N , and let x ∈ A. We claim that

{x} ∈ E(S) ∪ E(N \ S) . (4.5)

Suppose that (4.5) were not true. Then {x} /∈ E∗(S). Hence, there exists
B2 ∈ E(N \ S) such that x /∈ B2. Similarly, there exists B1 ∈ E(S) such
that x /∈ B1. So B1 ∪ B2 ⊆ A \ {x}, which contradicts (4.4). This proves
(4.5). Suppose {x} ∈ E(S). Let y ∈ A \ {x}. Then, if {y} /∈ E(S), by (4.5)
{y} ∈ E(N \ S), hence by superadditivity {x} ∩ {y} 
= ∅, a contradiction.
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Thus, {y} ∈ E(S) for all y ∈ A. As E is monotonic (Remark 5.3.1) this
implies E(S) = K(A). Thus, by (4.4), E(N \ S) = {A}.

We have proved that, for every S ∈ P0(N), S 
= N , either E(S) = K(A)
or E(N \ S) = K(A). Since E is monotonic, it is the effectivity function
associated with a strong simple game.

The proof of the if-part is straightforward. ��

An immediate consequence of Theorems 4.2.3 and 4.2.5 is the following
extension of Theorem 3.5 in Dutta (1984) to topological effectivity functions.

Corollary 4.2.6. Let A be a normal space with rich structure K(A) and
let Γ = (N ; Σ1, . . . , Σn; g;A) be an acceptable game form on V N . If EΓ is
maximal, then EΓ is the effectivity function of a strong simple game.

We conclude this section with the characterization of two-person accept-
able game forms: under mild assumptions, the effectivity function of every
two-person acceptable game form is dictatorial. A simple game (N,W) is
dictatorial if there is a d ∈ N such that W = {d}+; d is the dictator. An
effectivity function is dictatorial if it is the effectivity function of a dictatorial
simple game. We now extend Theorem 1 of Hurwicz and Schmeidler (1978)
to topological effectivity functions.

Theorem 4.2.7. Let A be a normal space with rich structure K(A) and let
Γ = (N ; Σ1,Σ2; g;A) be an acceptable two-person game form on V N . If EΓ(i)
is closed in the upper topology for i = 1, 2, then EΓ is dictatorial.

To prove this theorem we need an auxiliary result. Let E be an effectivity
function and define E∗∗ = (E∗)∗. Clearly, if B ∈ E(S) and B′ ∈ E∗(N \ S),
then B′ ∩B 
= ∅ by definition of E∗(N \S); hence, B ∈ (E∗)∗(S). So E(S) ⊆
E∗∗(S). Moreover, we have the following lemma from Abdou and Keiding
(1991, p. 46).

Lemma 4.2.8. For every topological effectivity function E and every S ⊆ N ,
E∗∗(S) is the closure of E(S) in the upper topology.

Proof of Theorem 4.2.7. Since every two-person strong simple game is dicta-
torial, it is in view of Corollary 4.2.6 sufficient to prove that EΓ is maximal.
Let i ∈ {1, 2} then we have to prove that

(
EΓ

)∗ (i) = EΓ(i). Clearly (as ar-
gued before, by superadditivity) EΓ(i) ⊆

(
EΓ

)∗ (i). Also, if B ∈ K(A) with
B /∈

(
EΓ

)∗∗ (i), then there is B′ ∈
(
EΓ

)∗ (j) with B ∩B′ = ∅, which in turn
implies B /∈

(
EΓ

)∗ (i) by (3.7) of Theorem 3.4.3 – the intersection condi-
tion necessary for the existence of a Nash consistent representation. Hence,(
EΓ

)∗ (i) ⊆
(
EΓ

)∗∗ (i).
By Lemma 4.2.8,

(
EΓ

)∗∗ (i) = cl(EΓ(i)) = EΓ(i) (where ‘cl’ denotes the
closure in the upper topology); the second equality follows since EΓ(i) is
closed in the upper topology by assumption. Hence,

(
EΓ

)∗ (i) = EΓ(i). ��
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4.3 Existence of acceptable representations

In the preceding section we have seen that two-person acceptable game forms
are dictatorial. Therefore, in Sections 4.3–4.5 we assume that the number of
players is at least three, |N | = n ≥ 3. Moreover, we assume that (A,�) is
a compact Hausdorff space where, as before, � denotes the topology on A.
Recall (cf. Remark 4.2.2) that all our results hold for finite A with structure
P0(A) under the discrete topology.

Our main result is as follows.

Theorem 4.3.1. Let E : P (N) → P (K(A)) be an effectivity function. Then
E has an acceptable representation on V N if and only if the following three
conditions are satisfied.

E is monotonic and superadditive. (4.6)

[Si ∈ P0(N), Bi ∈ E(Si), i = 1, 2, S1 ∩ S2 = ∅] ⇒ B1 ∪B2 = A . (4.7)

For every RN ∈ V N there exists a Pareto optimal alternative x ∈ A
such that L(x,RN ) ∈ E(N \ i) for all i ∈ N . (4.8)

The necessity of (4.6) follows from Theorem 2.4.7 and the necessity of
(4.7) follows from Theorem 4.2.3 (and the definition of a representation). Fi-
nally, the necessity of (4.8) follows from Proposition 3.2.1 and the definition
of acceptability of a game form. The sufficiency part of Theorem 4.3.1 will
be proved in Sections 4.4 and 4.5. Observe that actually (4.8) can be weak-
ened by dropping the Pareto optimality requirement on x ∈ A: this follows
from continuity of the preferences and compactness of closed subsets of A.
Thus, by comparing Theorem 4.3.1 to Theorem 3.2.3 we see that the addi-
tional requirement of all Nash equilibrium outcomes being Pareto optimal is
equivalent to the addition of condition (4.7).

By Corollary 3.4.11, we know that (4.8) is guaranteed by two other con-
ditions, namely the familiar intersection conditions on polar sets and the
condition that the sets assigned by the effectivity function to (n− 1)-person
coalitions are closed in the upper topology �u. Hence, we have the following
corollary, which also follows by applying Corollary 3.6.3.

Corollary 4.3.2. Let E : P (N) → P (K(A)) be an effectivity function. Then
E has an acceptable representation on V N if it satisfies (4.6), (4.7), and the
following two assumptions:

[Bi ∈ E∗(i) for all i ∈ N ] ⇒
n⋂

i=1

Bi 
= ∅ . (4.9)

E(N \ i) is closed in (K(A),�u) for every i ∈ N . (4.10)

Since (4.10) is automatically satisfied if A is finite, and (4.9) is necessary
for the existence of a Nash consistent representation (Theorem 3.4.3), we also
have:
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Corollary 4.3.3. Let 2 ≤ |A| < ∞ and let E : P (N) → P (P0(A)) be an
effectivity function. Then E has an acceptable representation (on WN ) if
and only if (4.6), (4.7), and (4.9) are satisfied.

4.4 A game form with all Nash equilibrium outcomes
Pareto optimal

In this section we make the first step towards constructing an acceptable
game form in order to prove Theorem 4.3.1. We assume throughout that A
is a compact Hausdorff space, and that N = {1, . . . , n} with n ≥ 3 is the set
of players. Further, E : P (N) → P (K(A)) is an effectivity function satisfying
(4.6) – monotonicity and superadditivity – and (4.7): for all Si ∈ P0(N),
Bi ∈ E(Si), i = 1, 2, and S1 ∩ S2 = ∅, we have B1 ∪ B2 = A. Our purpose
is to construct a game form Γ1 with the following two properties: (i) Γ1 is
a representation of E; and (ii) for every profile of continuous preferences
RN ∈ V N , each Nash equilibrium of (Γ1, R

N) is Pareto optimal. This is not
yet a proof of Theorem 4.3.1, since a game (Γ1, R

N) may fail to have a Nash
equilibrium, i.e., Γ1 is not Nash consistent. In Section 4.5 the game form Γ1

will be extended to a game form Γ2, under the additional assumption (4.8),
which is an acceptable representation of E.

The game form Γ1 will in fact be an ‘extension’ of the canonical game
form Γ0, constructed in the proof of Theorem 2.4.7 and used throughout
Chapter 3. The structure is T = K(A), which is rich since A is Hausdorff.
Let Γ0 = (N ; Σ1, . . . ,Σn; g0;A), where, for each i ∈ N , Σi = M i × Φ × N .
The set M i is defined by (2.7) and (2.8). The set of selections Φ is defined
by Φ = {ϕ : K(A) → A | ϕ(B) ∈ B for each B ∈ K(A)}. For the definition of
the outcome function g0 see the proof of Theorem 2.4.7.

Now the game form Γ1 is the game form

Γ1 = (N ; Σ1 × {0, 1}, . . . ,Σn × {0, 1}; g1;A)
= (N ;M1 × Φ×N × {0, 1}, . . . ,Mn × Φ×N × {0, 1}; g1;A)
= (N ; Σ1

1, . . . ,Σ
n
1 ; g1;A) ,

where the outcome function g1 is defined as follows. Let σ = (σ1, . . . , σn) be
an n-tuple of strategies for Γ1, that is, σi = (mi, ϕi, ti, qi) for i = 1, . . . , n,
where mi ∈ M i, ϕi ∈ Φ, ti ∈ N , and qi ∈ {0, 1}. The equivalence relation
∼σ for each S ∈ P0(N) is the same as defined for Γ0, see (2.9), and also the
sequence of partitions is defined in the same way as in the proof of Theorem
2.4.7: after r steps, we arrive at the finest possible partition Hr(σ).

Let Hr(σ) = {S1, . . . , S�} and let mi
2(Sj) = Bj , j = 1, . . . , �, where Bj ∈

E(Sj). So far we followed precisely the construction of g0. Here, we deviate
for the first time. Call a final coalition Sj , 1 ≤ j ≤ �, decided if qi = 0 for
all i ∈ Sj ; otherwise, Sj is undecided. In defining g1 we distinguish (without
loss of generality) the following possibilities:
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S1, . . . , S� are decided. (4.11)

In this case, we define g1(σ) = g0(σ), thus: g1(σ) = ϕk(B1 ∩ . . . ∩ B�),
where k = (t1 + · · · + tn) mod n (observe that B1 ∩ . . . ∩ B� 
= ∅ since E is
superadditive).

S1, . . . , Sh are undecided, 1 ≤ h ≤ �, and Sh+1, . . . , S� are decided. (4.12)

For this case, in order to simplify notations, assume that
⋃h

j=1 Sj = {1, . . . , s},
where 1 ≤ s ≤ n. Let k = (t1 + · · ·+ ts) mod s. Then g1(σ) = ϕk(Bh+1∩ . . .∩
B�) if h < � and g1(σ) = ϕk(A) if h = �. This completes the definition of g1.

We now show that Γ1 represents E and that all Nash equilibrium outcomes
of games associated with Γ1 are Pareto optimal.

Claim 4.4.1 Γ1 is a representation of E.

Proof. Let S ∈ P0(N) and B ∈ E(S). Let m̂i(T ) = (S,B) for all T ⊇ S and
i ∈ S. If σi = (m̂i, ϕi, ti, 0) for all i ∈ S, then for every τN\S ∈ ΣN\S

1 , S is
a decided coalition with respect to (σS , τN\S). Hence, by (4.11) and (4.12),
g1(σS , τN\S) ∈ B for all τN\S ∈ ΣN\S

1 . Thus, B ∈ EΓ1(S), and we have
proved that EΓ1(S) ⊇ E(S) for all S ∈ P0(N).

Now let S ∈ P0(N) and C ∈ K(A) \ E(S). Then S 
= N since E(N) =
K(A). In addition B \ C 
= ∅ for every B ∈ E(S) since E is monotonic. Let
σS ∈ ΣS

1 be fixed. We will choose strategies σ̄i = (m̄i, ϕ̄i, t̄i, q̄i), i ∈ N \ S,
such that g1(σS , σ̄N\S) /∈ C, as follows. Let m̄i(T ) = (N \ S,A) for all
T ⊇ N \ S and i /∈ S. Further let q̄i = 1 for all i ∈ N \ S. Then N \ S is an
undecided coalition with respect to σ∗ = (σS , σ̄N\S). If S1, . . . , Sh, h ≥ 0,3

are the decided coalitions in the final partition Hr(σ∗), and mi
2(Sj) = Bj ,

j = 1, . . . , h, where σi = (mi, ϕi, ti, qi), i ∈ S, then B :=
⋂h

j=1 Bj ∈ E(S).
Let k ∈ N \S. Player k can choose t̃k and ϕ̃k such that g1(σ∗) = ϕ̃k(B) /∈ C.
Thus, C /∈ EΓ1(S). �

Claim 4.4.2 Let RN ∈ V N . Then for every σ ∈ NE(Γ1, R
N), g1(σ) is

Pareto optimal with respect to RN .

Proof. Let σ = (σ1, . . . , σn) be a Nash equilibrium of (Γ1, R
N ) and let the

final partition of N with respect to σ be {S1, . . . , S�}. Call S1, . . . , S� the
final coalitions. We distinguish the following possible cases.

(i) No final coalition is decided. Let x ∈ A. Then, by (4.12), each player
i can make sure that x is the outcome chosen by g1, by choosing ti and ϕi

appropriately. Since σ is a Nash equilibrium, we must therefore have g1(σ)Rix
for every i ∈ N . This holds for any x ∈ A, so g1(σ) is Pareto optimal.

(ii) Exactly one final coalition is decided. Let Sj be the decided coalition.
Then, by changing to qi = 1 and choosing ti and ϕi appropriately, each player
i ∈ Sj can make sure that x ∈ A is chosen, for any x ∈ A. Since σ is a Nash

3 By h = 0 we indicate that there are no decided coalitions.
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equilibrium, it follows that g1(σ)Rix for all i ∈ Sj and x ∈ A. Hence, g1(σ)
is Pareto optimal.

(iii) There exist at least two decided coalitions. To simplify notations as-
sume that S1, . . . , Sh, 2 ≤ h ≤ �, are the decided coalitions. Let σi =
(mi, ϕi, ti, qi), i ∈ N , and let Bj = mi

2(Sj) for i ∈ Sj and j = 1, . . . , h.
Denote Cj =

⋂
k∈{1,...,h}\{j}Bk for j = 1, . . . , h. Since player i ∈ Sj can

make coalition Sj undecided and choose from Cj , and σ is a Nash equilib-
rium, we must have g1(σ)Rix for every i ∈ Sj and x ∈ Cj , j = 1, . . . , h. We
now assert that

h⋃

j=1

Cj = A . (4.13)

We prove this assertion below, and first complete the proof of Claim 4.4.2.
Let x ∈ A. By (4.13), x ∈ Cj for some j = 1, . . . , h. Hence, g1(σ)Rix for all
i ∈ Sj . Thus, g1(σ) is Pareto optimal.

We are left to prove (4.13). Suppose, contrary to what we wish to prove,
that there is x ∈ A with x /∈

⋃h
j=1 Cj . Since x /∈ C1 we can take j ∈ {2, . . . , h}

with x /∈ Bj . Since x /∈ Cj , we can take k ∈ {1, . . . , h} \ {j} with x /∈ Bk.
Hence, x /∈ Bj ∪Bk, contradicting (4.7). ��

4.5 Proof of Theorem 4.3.1

This section is completely devoted to the proof of Theorem 4.3.1, establishing
the existence of acceptable representations under the conditions (4.6)–(4.8).
In Section 4.4 we have defined the game form Γ1 which represents E and
has only Pareto optimal Nash equilibrium outcomes, but does not have to be
Nash consistent under the conditions (4.6)–(4.8). In this section we ‘extend’
Γ1 to another game form Γ2 that has all the desired properties.

We start by defining the social choice correspondence H : V N → P0(A)
by

H(RN) = {a ∈ A | L(a,Ri) ∈ E(N \ i) for all i ∈ N and a ∈ PAR(RN )},

for all RN ∈ V N . By (4.8), H is well defined, i.e., nonempty valued. Also, it
is easy to see that H is Maskin monotonic (see Remark 3.7.3). We denote

graph (H) = {(RN , a) | RN ∈ V N and a ∈ H(RN)} ,

and proceed to define Γ2 = (N ; Σ1
2, . . . ,Σ

n
2 ; g2;A), as follows. For each i ∈ N

let

Σi
2 = graph (H) × {0, 1} × {0, 1} ×N × E(i) × Φ× Σi

1 ,

where Σi
1 is the strategy set of player i in the game form Γ1. It remains to

define the outcome function g2. Let
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ηi = ((RN )i, ai, qi
1, q

i
2, t

i
0, B

i
0, ϕ

i
0, σ

i)

for each i ∈ N describe an n-tuple η = (η1, . . . , ηn) of strategies. We distin-
guish the following possible cases.

ηi = (RN , a, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i) for all i ∈ N . (4.14)

In this case g2(η) = a.
{

There exists j ∈ N such that ηi = (RN , a, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ j, ((RN )j , aj , qj

1, q
j
2) 
= (RN , a, 0, 0), and qj

1 = 0.
(4.15)

In this case, g2(η) = ϕj
0(L(a,Rj)), where Rj is the j-th component of RN .

(Observe that g2 is well defined since n ≥ 3.)
{

There exists j ∈ N with ηi = (RN , a, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ j, and qj

1 = 1.
(4.16)

In this case, g2(η) = ϕj
0(L(a,Rj) ∩Bj

0). Note that the set L(a,Rj) ∩Bj
0 
= ∅

by superadditivity of E, since L(a,Rj) ∈ E(N \ j) and Bj
0 ∈ E(j).

⎧
⎨

⎩

There exist j, h ∈ N , j 
= h with ηi = (RN , a, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ {j, h}, ηh = (RN , a, 0, 1, th0 , B

h
0 , ϕ

h
0 , σ

h),
((RN )j , aj , qj

1, q
j
2) 
= (RN , a, 0, 0), and qj

1 = 0.
(4.17)

In this case, let k = (t10 + . . . + tn0 ) mod n. Then g2(η) = ϕk
0(A). (Observe

that this case is always different from (4.15) since n ≥ 3.)
{

There exist j, h ∈ N , j 
= h with ηi = (RN , a, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ {j, h}, ηh = (RN , a, 0, 1, th0 , Bh

0 , ϕ
h
0 , σ

h), and qj
1 = 1.

(4.18)

In this case, g2(η) = ϕh
0 (Bj

0).
In all other cases, let g2(η) = g1(σ1, . . . , σn), where g1 is the outcome

function of the game form Γ1 of Section 4.4.

We will prove that Γ2 is an acceptable representation of E. The proof is
divided into several claims.

Claim 4.5.1 Γ2 is Nash consistent.

Proof. Let RN ∈ V N . Choose a ∈ H(RN ) and define ηi = (RN , a, 0, 0, ti0, B
i
0,

ϕi
0, σ

i) for all i ∈ N . Let η = (η1, . . . , ηn), then η is a Nash equilibrium of
(Γ2, R

N) by (4.14)–(4.16). ��

Claim 4.5.2 For every RN ∈ V N , every Nash equilibrium outcome of
(Γ2, R

N) is Pareto optimal.

Proof. Let RN ∈ V N and let η = (η1, . . . , ηn) be a Nash equilibrium of
(Γ2, R

N). We distinguish the following cases, associated with (4.14)–(4.18)
and the remaining cases for g2(η).

ηi = (R̂N , â, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i) for all i ∈ N . (4.14∗)
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Then g2(η) = â and â ∈ H(R̂N). By (4.15), L(â, R̂j) ⊆ L(â, Rj) for all j ∈ N .
Thus, by Maskin monotonicity of H , â ∈ H(RN ). Hence, â is Pareto optimal
with respect to RN .{

There exists j ∈ N with ηi = (R̂N , â, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ j, ((RN )j , aj , qj

1, q
j
2) 
= (R̂N , â, 0, 0), and qj

1 = 0.
(4.15∗)

Then, by (4.17), A ⊆ L(g2(η), Ri) for all i 
= j. Thus, g2(η) is Pareto optimal.
{

There exists j ∈ N with ηi = (R̂N , â, 0, 0, ti0, Bi
0, ϕ

i
0, σ

i)
for all i ∈ N \ j, and qj

1 = 1.
(4.16∗)

Then, by (4.15), L(â, R̂j) ⊆ L(g2(η), Rj). By (4.18), Bj
0 ⊆ L(g2(η), Ri) for

all i 
= j. Also, by the definition of H , L(â, R̂j) ∈ E(N \ j). Thus, by (4.7),
L(â, R̂j) ∪Bj

0 = A. So g2(η) is Pareto optimal.⎧
⎪⎨

⎪⎩

There exist j, h ∈ N , j 
= h with ηi = (R̂N , â, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ {j, h}, ηh = (R̂N , â, 0, 1, th0 , Bh

0 , ϕ
h
0 , σ

h),
((RN )j , aj , qj

1, q
j
2) 
= (R̂N , â, 0, 0), and qj

1 = 0.
(4.17∗)

Then, by (4.17), A ⊆ L(g2(η), Ri) for all i ∈ N . Hence, g2(η) is Pareto opti-
mal.⎧

⎨

⎩

There exist j, h ∈ N , j 
= h with ηi = (R̂N , â, 0, 0, ti0, B
i
0, ϕ

i
0, σ

i)
for all i ∈ N \ {j, h}, ηh = (R̂N , â, 0, 1, th0 , B

h
0 , ϕ

h
0 , σ

h),
and qj

1 = 1.
(4.18∗)

Then, by (4.17), A ⊆ L(g2(η), Ri). Hence, g2(η) is Pareto optimal.
In all other cases, g2(η) = g1(σ), where σ is a Nash equilibrium of (Γ1, R

N ).
By the construction of Γ1 in Section 4.4, g1(σ) is Pareto optimal. ��

Our final claim completes the proof of Theorem 4.3.1.

Claim 4.5.3 Γ2 is a representation of E.

Proof. First consider S ⊆ N with |S| ≥ 2. Since S can enforce the play
of the game to be in Γ1, we have EΓ1(S) ⊆ EΓ2(S). By going over cases
(4.14)–(4.18), it follows that S cannot enforce the outcome to be in any
set that is not already in E(S) = EΓ1(S). Hence, EΓ2(S) ⊆ EΓ1(S). So
EΓ2(S) = EΓ1(S) = E(S).

We still have to prove that EΓ2(i) = E(i) for every i ∈ N . Let i ∈ N and
B ∈ E(i). Consider the following strategy of player i: ηi = ((RN )i, ai, 1, qi

2, t
i
0,

B, ϕi
0, σ

i), where σi = (mi, ϕi, ti, 0) and mi(S) = ({i}, B) for all S ∈ N i. It
is easy to verify that g2(ηi, ηN\i) ∈ B for all ηN\i ∈ ΣN\i

2 . Thus, B ∈ EΓ2(i)
and E(i) ⊆ EΓ2(i). Now suppose that B′ ∈ EΓ2(i). As |N \ i| ≥ 2, N \ i can
enforce the play of Γ1. So B′ ∈ EΓ1(i). Thus, EΓ2(i) ⊆ EΓ1(i) = E(i). ��
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4.6 Notes and comments

This chapter is based on Peleg (2004). It is interesting to note that Theorem
4.3.1 applies to the following family of effectivity functions. (A vetoer in a
simple game – see Example 3.5.1 – is a player who belongs to each winning
coalition.)

Proposition 4.6.1. Let G be a proper simple game with at most one vetoer.
Then the associated effectivity function E(G) : P (N) → P (K(A)), where A
is a compact Hausdorff space, has an acceptable representation on V N .

Proof. Since G is proper and (by definition) monotonic, E(G) satisfies (4.6)
and (4.7). In addition, if i ∈ N is not a vetoer then N \ i is winning, so
E(N \ i) = K(A) and therefore E∗(i) = {A}. Since there is at most one
vetoer, (4.9) is satisfied. Also, for each B ∈ K(A) \ {A} we have B ⊆ A \ {x}
for some x ∈ A \B, and A \ {x} is open since {x} ∈ K(A). Thus, K(A) \ {A}
is open and hence {A} is closed in the upper topology. Furthermore, K(A) is
closed in the upper topology. Hence, (4.10) is satisfied. The proof is complete
by applying Corollary 4.3.2. ��

In particular, as mentioned before, simple majority committees (i.e.,
games) have acceptable representations.

Remark 4.6.2. As was already noted, but nevertheless is remarkable, (4.8)
can be replaced by the weaker condition (3.3), namely: for every RN ∈ V N

there exists x ∈ A such that L(x,Ri) ∈ E(N \ i) for all i ∈ N . This follows
from the fact that preferences are continuous and every closed set is compact.
Alternatively, one can apply Theorems 3.4.10 and 3.2.3.



Chapter 5

Strongly consistent representations

5.1 Motivation and summary

In the preceding chapters we have studied representations of constitutions
(effectivity functions) under a minimal stability condition, namely Nash con-
sistency: for every admissible profile of preferences there should be at least
one Nash equilibrium in the representing game. In Chapter 4 we have stud-
ied acceptable representations, meaning that all Nash equilibria are Pareto
optimal. Another way to look at this is that not only single players do not
wish to deviate, but also the grand coalition of all players has no incentive to
jointly deviate to a different strategy profile. More generally, one may argue
that in many interesting conflict situations preplay communication, direct or
indirect, is possible – and sometimes unavoidable. This leads naturally to co-
ordination of strategies by coalitions of players and may upset a given Nash
equilibrium. To avoid this and maintain stability, we need to consider coali-
tional equilibrium concepts where coalitions have no profitable deviations.
In this chapter we consider the strongest equilibrium concept, namely strong
equilibrium. In a strong equilibrium no coalition S of players has a deviating
S-tuple of strategies that is (strictly) profitable for each of its members –
see Definition 5.2.1. A game form Γ is strongly consistent if for every pro-
file of preferences RN the resulting game (Γ, RN ) has a strong equilibrium.
The main goal in the chapter is to characterize effectivity functions that can
be represented by strongly consistent game forms. An effectivity function is
stable if its core is nonempty for every profile of preferences – see Definition
5.2.5. Our main result is the following: an effectivity function has a strongly
consistent representation if and only if it is maximal and stable. Although
stability is equivalent to acyclicity (Keiding, 1985), a condition which is for-
mulated directly on effectivity functions, we have also a simpler characteriza-
tion, namely: an effectivity function has a strongly consistent representation
if and only if it is maximal and convex. Convexity of an effectivity function
can usually easily be checked.

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
DOI 10.1007/978-3-642-13875-1 5, c© Springer-Verlag Berlin Heidelberg 2010
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In Sections 5.2 and 5.3 we study the mentioned necessary and sufficient
conditions for the existence of strongly consistent representations in case the
set of alternatives is finite. Section 5.4 extends these results to topological
effectivity functions.

5.2 Necessary conditions for strongly consistent
representations

Throughout this section we assume that the set of alternatives A is finite,
with |A| ≥ 2.

When preplay communication is possible, coalitions of players may coor-
dinate their strategies and possibly upset a Nash equilibrium. Consider for
instance the ‘kingmaker game form’ (Examples 2.4.2, 2.4.4) of which the
associated effectivity function E assigns P0(A) to every two-person coali-
tion and {A} to every one-person coalition, where A = {a, b, c}. Hence,
E = E(G), where G is the three-person simple majority game, and the well
known ‘voting paradox’ applies. Specifically, let R1 = (a, b, c), R2 = (c, a, b),
and R3 = (b, c, a), then for any x ∈ A there exists y ∈ A and i, j ∈ N , i 
= j,
such that yP ix and yP jx. Hence, in any representing game form coalition
{i, j} can upset a Nash equilibrium with outcome x. For an effectivity func-
tion like the one associated with the ‘kingmaker game form’ – individuals
have no rights and (n−1)-coalitions are all powerful – existence of Nash con-
sistent representations is obvious1, but strategic behavior of coalitions may
upset Nash equilibria.

Examples like this one lead to the following definition.

Definition 5.2.1. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a game form and let
RN ∈ WN . Strategy profile σ = (σ1, . . . , σn) ∈ Σ is a strong (Nash) equi-
librium (SNE) of (Γ, RN ) if for every S ∈ P0(N) and every μS ∈ ΣS , there
exists i ∈ S such that g(σ)Rig(μS , σN\S). Game form Γ is strongly consistent
if for every RN ∈WN the game (Γ, RN ) has at least one strong equilibrium.

An example of a strongly consistent game form is the following.

Example 5.2.2. Let N = {1, . . . , n}, n ≥ 2, A = {a1, . . . , am}, m ≥ 3, and
Σ1 = Σ2 = . . . = Σn = W . It remains to define g. (Note that g : WN → A
is actually a social choice function.) Let RN ∈ WN . As before, denote by
PAR(RN ) the set of Pareto optimal alternatives with respect to RN . If a1 ∈
PAR(RN ) we define g(RN ) = a1. Otherwise, we define g(RN ) = ak, where
ak is the first alternative (in the order a1, a2, . . .) in PAR(RN ) that Pareto
dominates a1. We claim that Γ = (N ; Σ1, . . . ,Σn; g;A) is strongly consistent.
To prove this we distinguish the following possibilities. Let RN ∈WN .

1 By Proposition 3.2.2 every x ∈ A is a Nash equilibrium outcome of (Γ0, RN ) for every
RN ∈ W N .
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(i) a1 ∈ PAR(RN ). For every i ∈ N let Qi be the preference Qi =
(a1, . . . , an), i.e., a1Q

i . . .Qian. Then QN is a strong Nash equilibrium of
(Γ, RN ) since no coalition S, S 
= ∅, N can change the outcome g(QN ) = a1,
and N cannot change the outcome profitably, as a1 ∈ PAR(RN ).

(ii) a1 /∈ PAR(RN ). Let ak ∈ PAR(RN ) be the first alternative that
Pareto dominates a1. Without loss of generality k = 2. Define Qi =
(a2, a1, a3, . . . , an) for each i ∈ N . Then QN is a strong Nash equilib-
rium of (Γ, RN ). Indeed, if S ∈ P0(N), S 
= N , and Q̃S ∈ WS , then
g(Q̃S , QN\S) ∈ {a1, a2}. Since a2 Pareto dominates a1 according to RN ,
this implies that S cannot profitably deviate. Since a2 is Pareto optimal ac-
cording to RN , also N cannot profitably deviate. (This example is due to
Dutta and Pattanaik (1978).)

For easy reference, we state in the following remark a simple consequence
of the definition of the effectivity function associated with a game form (see
Definition 2.4.3).

Remark 5.2.3. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a game form, let S ∈ P0(N),
S 
= N , and B /∈ EΓ(S). Then for every σS ∈ ΣS there exists μN\S ∈ ΣN\S

such that g(σS , μN\S) ∈ A \B.

Our first result gives a necessary condition for representation of effectiv-
ity functions by strongly consistent game forms, namely maximality of the
effectivity function. Recall (see Remark 3.7.2) that an effectivity function E
is maximal if it is superadditive and equal to its polar, i.e., E = E∗. See also
the discussion in Section 4.2.

Proposition 5.2.4. Let E : P (N) → P (P0(A)) be an effectivity function
that has a strongly consistent representation. Then E is maximal.

Proof. Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a strongly consistent representation
of E. Then E = EΓ is superadditive. Suppose, on the contrary, that E is
not maximal. Then there is a coalition S ∈ P0(N), S 
= N , and a set of
alternatives B ∈ E∗(S) \ E(S). Since B ∈ E∗(S), we must have A \ B /∈
E(N \S), as B∩ (A\B) = ∅. Consider a profile RN ∈ WN with BPS(A\B)
and (A \ B)PN\SB, i.e, each player in S strictly prefers each element of
B to each element of A \ B, and each player in N \ S strictly prefers each
element of A\B to each element of B.2 We claim that (Γ, RN ) has no strong
Nash equilibrium. Indeed, let σ ∈ Σ. If g(σ) = x ∈ B, then by Remark
5.2.3 coalition N \ S has a strategy combination μN\S ∈ ΣN\S such that
g(σS , μN\S) = y ∈ A \ B. Since yP ix for all i ∈ N \ S, coalition N \ S can
profitably deviate from σ. Similarly, if g(σ) ∈ A \ B then S can profitably
deviate from σ. Hence, (Γ, RN ) has no strong Nash equilibrium, which is the
desired contradiction. ��

2 So P i denotes the asymmetric part of Ri for each i ∈ N .



62 5 Strongly consistent representations

In order to formulate our second necessary condition we need the (general)
definition of the core of an effectivity function. (This concept was introduced
earlier – Definition 3.3.3 – for the residual of an effectivity function.)

Definition 5.2.5. Let E : P (N) → P (P0(A)) be an effectivity function and
letRN ∈WN . We say that x ∈ A is dominated atRN if there exist S ∈ P0(N)
and B ∈ E(S) such that x /∈ B and BPSx. The core of E with respect to RN ,
denoted by C(E,RN ), is the set of undominated alternatives with respect to
RN . The effectivity function is stable if C(E,RN ) 
= ∅ for every RN ∈WN .

The second necessary condition for the existence of a strongly consistent
representation is stability of the effectivity function.

Proposition 5.2.6. Let E : P (N) → P (P0(A)) be an effectivity function
that has a strongly consistent representation Γ = (N ; Σ1, . . . ,Σn; g;A). Then
g(σ) ∈ C(E,RN ) for every strong equilibrium σ of (Γ, RN ), for every RN ∈
WN . In particular, E is stable.

Proof. Let RN ∈WN and let σ be a strong equilibrium of the game (Γ, RN ).
We claim that x = g(σ) ∈ C(E,RN ). Indeed, suppose to the contrary that x
is dominated at RN . Then there are S ∈ P0(N) and B ∈ E(S) with x /∈ B
and BPSx. Since B ∈ E(S), S has a strategy combination μS ∈ ΣS such that
g(μS , τN\S) ∈ B for all τN\S ∈ ΣN\S . In particular, y = g(μS , σN\S) ∈ B.
Thus, yP ix for all i ∈ S, so that S has a profitable deviation from σ, a
contradiction. ��

In the next section we prove the converse result: a maximal and stable
effectivity function has a strongly consistent representation.

5.3 Existence of strongly consistent representations

We assume the same framework as in the preceding section. So A is a finite
set of at least two alternatives and E : P (N) → P (P0(A)) is an effectivity
function. For completeness and easy reference we state the following obser-
vation.

Remark 5.3.1. If E is maximal then E is monotonic. Indeed, if E is maximal
then E = E∗, so that E is monotonic with respect to alternatives since E∗ is.
Also, since E is superadditive (by definition of maximality), E is monotonic
with respect to coalitions (see the paragraph following Definition 2.3.5 for an
exact argument).

We now show that maximality and stability of the effectivity function are
sufficient for the existence of a strongly consistent representation.
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Theorem 5.3.2. Let the effectivity function E : P (N) → P (P0(A)) be stable
and maximal. Then E has a strongly consistent representation.

Proof. By Remark 5.3.1 and Theorem 2.4.7, the canonical game form Γ0 =
(N ; Σ1, . . . ,Σn; g0;A) constructed in the proof of that theorem, is a repre-
sentation of E. We show that Γ0 is strongly consistent.

Let RN ∈ WN and let a ∈ C(E,RN ). For each T ∈ P0(N) we denote by

Pr(T, a,RN) = {b ∈ A | bP ia for all i ∈ T} (5.1)

the set of all alternatives strictly preferred to a by all players in T according
to RN . Since a ∈ C(E,RN ), we have Pr(T, a,RN ) /∈ E(T ). Hence, because
of maximality of E,

A \ Pr(T, a,RN ) ∈ E(N \ T ) . (5.2)

Using (5.2) we define an n-tuple of strategies σ = (σ1, . . . , σn) = ((m1, ϕ1, t1),
. . . , (mn, ϕn, tn)) in Γ0 by

mi(T ) =
{(

T,A \ Pr(N \ T, a,RN)
)

if T ∈ P0(N), T 
= N , i ∈ T
(N, {a}) if T = N

(5.3)

and ϕi, ti, i ∈ N arbitrary but fixed. Note that the strategies σi are well de-
fined, in particular, eachmi satisfies the monotonicity condition (2.8). Indeed,
if T1 ⊆ T2 then N \T1 ⊇ N \T2, hence Pr(N \T1, a, R

N) ⊆ Pr(N \T2, a, R
N ),

so that A \ Pr(N \ T1, a, R
N ) ⊇ A \ Pr(N \ T2, a, R

N ).
We claim that σ is a strong Nash equilibrium of (Γ0, R

N). Note that g(σ) =
a. Let S ∈ P0(N) and μS ∈ ΣS . It is sufficient to prove that

g0(σN\S , μS) /∈ Pr(S, a,RN ) . (5.4)

For S = N , (5.4) follows from the Pareto optimality of a, which in turn follows
since a ∈ C(E,RN ). Now let S 
= N . Let {T1, . . . , T�} = Hr(σN\S , μS) be the
final partition associated with (σN\S , μS). By (5.3) and the definition of σi,
the members of N \S are not separated in Hr(σN\S , μS), that is, there exists
1 ≤ j ≤ � such that N \ S ⊆ Tj and mi

2(Tj) = A \ Pr(N \ Tj , a, R
N) for all

i ∈ Tj . Thus, g0(σN\S , μS) ∈ A \Pr(N \Tj , a, R
N). Since S = N \ (N \S) ⊇

N \ Tj, we have Pr(S, a,RN ) ⊆ Pr(N \ Tj, a, R
N). So A \ Pr(S, a,RN ) ⊇

A \ Pr(N \ Tj , a, R
N). Therefore, g(σN\S , μS) ∈ A \ Pr(S, a,RN ), which

implies (5.4). ��

Stability of an effectivity function can be expressed directly, in terms of
the effectivity function itself. Keiding (1985) characterized stability by a fi-
nite and explicit – but rather complex – condition of acyclicity. Fortunately
the combination of maximality and stability can be checked in a much sim-
pler way. We first introduce the following definition, which strengthens the
condition of superadditivity.

Definition 5.3.3. An effectivity function E : P (N) → P (P0(A)) is convex if

[Bi ∈ E(Si), i = 1, 2] ⇒ B1∩B2 ∈ E(S1∪S2) or B1∪B2 ∈ E(S1∩S2) .(5.5)
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From Peleg (1984) we quote the following results: (i) A maximal and stable
effectivity function is convex (Theorem 6.A.9). (ii) A convex effectivity func-
tion is stable (Theorem 6.A.7). With these results we obtain the following
corollary.

Corollary 5.3.4. An effectivity function E : P (N) → P (P0(A)) has a
strongly consistent representation if and only if it is convex and maximal.

Thus, in order to verify existence of strongly consistent representations
only the (relatively) simple conditions of maximality and convexity have to
be checked.

We conclude with the following example.

Example 5.3.5. Let |N |, |A| ≥ 2 and let p and q be strictly positive probability
vectors on A and N , respectively. Define the (additive) effectivity function E
by

B ∈ E(S) ⇔ q(S) > 1 − p(B) .

Then E is a convex effectivity function, as is straightforward to verify. If, in
addition, q(S) 
= p(B) for all S ∈ P0(N), S 
= N , and B ∈ P0(A), B 
= A,
then E is also maximal. This is again easy to verify – see also Lemma 6.2.51
in Peleg (1984).

5.4 Strongly consistent representations of topological
effectivity functions

In this section A is a topological space and E : P (N) → P (K(A)) a topo-
logical effectivity function. Before stating and proving our main result we
introduce and recall some definitions.

A set B ⊆ A is a Gδ if it is the intersection of a countable family of open
sets in A. We shall use the following auxiliary result.

Lemma 5.4.1. Let A be a normal topological space and let B ⊆ A be a
closed Gδ. Then there exists a continuous function f : A → [0, 1] such that
B = f−1(0).

See Kelley (1955, p. 134). The lemma applies in particular if A is a compact
Hausdorff space.

The definitions of stability and strongly consistent representation of a
topological effectivity function are straightforward adaptations of those in the
finite case. In our characterization theorem we will use the Vietoris topology
on K(A), which is finer than the upper topology: see Remark 3.7.5 for the
definition.

Theorem 5.4.2. Let A be a compact Hausdorff space such that each closed
set is a Gδ. Then:
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(i) If E : P (N) → P (K(A)) has a strongly consistent representation, then E
is stable and maximal.

(ii) If E : P (N) → P (K(A)) is stable and maximal and E(S) is closed in the
Vietoris topology for every S ∈ P0(N), then E has a strongly consistent
representation.

Proof. (i) Let Γ = (N ; Σ1, . . . ,Σn; g;A) be a strongly consistent representa-
tion of E. For the stability of E = EΓ the proof of Proposition 5.2.6 can
be copied. To prove maximality assume, per absurdum, that there exists
S ∈ P0(N), S 
= ∅, and B ∈ E∗(S) \ E(S). By Lemma 5.4.1 there exist
continuous functions u1, u2 : A → [0, 1] with u−1

1 (1) = B and u−1
2 (0) = B.

Consider the profile uN ∈ V N with ui = u1 for each i ∈ S and ui = u2

for each i ∈ N \ S. We claim that (Γ, uN ) has no strong Nash equilibrium.
Indeed, let σ = (σ1, . . . , σn) ∈ Σ and let x = g(σ). If x ∈ B then ui(x) = 0
for all i ∈ N \S. As B /∈ E(S), N \S has a strategy μN\S ∈ ΣN\S such that
g(σS , μN\S) = y ∈ A \ B. Thus, ui(y) > 0 = ui(x) for all i ∈ N \ S, and
therefore μN\S is an improvement of N \S on σ. Hence, in this case σ is not
a strong Nash equilibrium.

If x ∈ A \ B then u1(x) < 1. Consider the set D = {z ∈ A | u1(z) ≤
1+u1(x)

2 }. Then by continuity of u1 the set D is a closed subset of A \ B.
Since B ∈ E∗(S), D /∈ E(N \ S). Hence there exists μS ∈ ΣS such that
g(μS , σN\S) = y /∈ D. Thus, ui(y) > 1+u1(x)

2 > u1(x) for all i ∈ S, so that
μS is an improvement of S on σ. Hence, also in this case σ is not a strong
Nash equilibrium.

(ii) The proof of this part is a modification of the proof of Theorem 5.3.2,
and uses again the canonical representation from the proof of Theorem 2.4.7.
It is sufficient to prove the following claim, the rest of the proof is a copy of
the proof of Theorem 5.3.2.

Claim. Let RN ∈ V N be a profile of (continuous) preferences, and let
a ∈ C(E,RN ). For T ∈ P0(N) denote

Pr(T, a,RN) = {b ∈ A | bP ia for all i ∈ T} .

Then A \ Pr(T, a,RN) ∈ E(N \ T ).
Proof of the Claim. We may assume Pr(T, a,RN) 
= ∅ since otherwise we

are done. Since A \ Pr(T, a,RN ) is closed, by Lemma 5.4.1 there exists a
continuous function u : A → [0, 1] such that for all x ∈ A we have u(x) =
0 ⇔ x ∈ A \ Pr(T, a,RN ). Consider the sets

Dk = {x ∈ A | u(x) ≥ 1
k
}, k = 2, 3, . . .

Clearly, Dk ⊆ Pr(T, a,RN ) for all k = 2, 3, . . . As u(a) = 0 and a ∈
C(E,RN ), Dk /∈ E(T ). Since E(T ) = E∗(T ) by maximality of E, there
exists D̃k ∈ E(N \ T ) such that D̃k ∩ Dk = ∅, for all k. By Klein and
Thompson (1984, Theorem 2.3.5(iii)), E(N \ T ) is compact in the Vietoris
topology. Thus there is a subnet of {D̃k | k = 2, 3, . . .} converging to some
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D̃ ∈ E(N \ T ). Clearly, D̃ ⊆ A \ Pr(T, a,RN ). By monotonicity of E,
A \ Pr(T, a,RN) ∈ E(N \ T ). ��

Like in the finite case, if E is convex, then E is stable since A is compact
(see Abdou and Keiding, 1991). Thus, convexity may replace stability in (ii)
of Theorem 5.4.2.

Observe, further, that the theorem applies in particular to compact metric
spaces.

5.5 Notes and comments

Strongly consistent representations of effectivity functions were first men-
tioned in Remark 4.4 of Peleg (1998). However, strongly consistent repre-
sentations of simple games were considered much earlier (see Peleg, 1978b,
and Holzman, 1986a,b). In the earlier representations the representing game
forms were actually social choice functions, i.e., functions from the set of pro-
files of preferences to the set of alternatives. We will see such a representation
in Part II of this book.

Stability of effectivity functions was first considered in Moulin and Peleg
(1982), where the non-emptiness of the core of an additive effectivity function
had been proved – see Peleg (1984, p. 126) for the definition of an additive
effectivity function. That result was followed by Peleg’s (1984) proof of the
stability of convex effectivity functions. The complete solution to the stability
problem with finitely many alternatives was given in Keiding (1985). This
was followed by some works of Abdou and Keiding on stability of cores of
effectivity functions in topological spaces – see Abdou and Keiding (1991)
for a presentation of the results.



Chapter 6

Nash consistent representation
through lottery models

6.1 Motivation and summary

In Chapter 3 we have seen that – under the usual assumptions of monotonic-
ity and superadditivity, and for a finite set of alternatives (social states) –
effectivity functions (constitutions) can be represented by Nash consistent
game forms if and only if the intersection condition on individual polar sets
(3.6) is satisfied. This condition is quite restrictive, for instance, it is not
satisfied by the effectivity function derived from the familiar 2 × 2 bimatrix
game form (cf. Example 3.3.11).

A well-known way to avoid this condition is offered by game theory. If we
represent preferences by von Neumann-Morgenstern utilities and allow mixed
strategies in the representing game form, e.g., the canonical game form Γ0

constructed in the proof of Theorem 2.4.7, then there always exists a Nash
equilibrium in mixed strategies (Nash, 1951). Mixed strategies, however, can
be hard to interpret – this is a longstanding discussion in game theory that
we do not want to enter into here. Moreover, also the representation issue
is under discussion, since outcomes can be probability distributions over the
alternatives resulting from the use of mixed strategies, rather than only the
original pure alternatives. In other words, admitting mixed strategies implies
admitting lotteries over outcomes.

In this chapter we follow a different route in order to avoid the intersec-
tion condition (3.6). Instead of allowing mixed strategies we allow for some
objective uncertainty concerning the outcomes of the game form. That is, we
allow (some) lotteries over outcomes but do not need to allow mixed strate-
gies. Specifically, we add the (finite) set of equal chance lotteries over the
alternatives to the set of outcomes. Of course, also in this approach we have
to look closely at the representation issue: the effectivity function associated
with such a game form assigns sets of lotteries to coalitions. We will handle
this question by considering so called lottery models. If E is the original ef-
fectivity function and Ẽ is the effectivity function associated with the game

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
DOI 10.1007/978-3-642-13875-1 6, c© Springer-Verlag Berlin Heidelberg 2010
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form Γ̃ augmented by lotteries, then we will say that Ẽ is a lottery model
for E if the following holds: for each coalition S and each B ∈ E(S) there is
a B̃ ∈ Ẽ(S) such that the total support (i.e., union of the supports) of the
lotteries in B̃ is equal to B; and, conversely, if B̃ ∈ Ẽ(S), then B ∈ E(S)
where B is the total support of the lotteries in B̃. This seems a natural way
of extending the idea of representation to lotteries. If a coalition S is effective
for a set B then this means that S is entitled to or can enforce the final
outcome to be in B; the same holds if S is effective for a set of lotteries with
total support equal to B.

In the augmented game form, we assume that players evaluate such lot-
teries by utility functions satisfying the minimal requirement of stochastic
dominance: this means that utility increases by shifting probability to bet-
ter (pure) alternatives. Thus, if lottery �′ can be obtained from lottery � by
shifting probability to more preferred alternatives, then �′ is preferred over
�. Expected utility, for instance, is a special case of this.

With these assumptions, we are able to prove that for any effectivity func-
tion (satisfying the usual necessary conditions of monotonicity and superad-
divity, and for a finite set of alternatives) there exists a lottery model which
has a Nash consistent representation, without imposing further conditions on
the effectivity function. The representing game form is finite, and no mixed
strategies are used. The players play pure strategies, but the outcome may
be uncertain.

As a simple but illustrative example, consider the unanimity effectivity
function, where the grand coalition is effective for every single alternative
and all other coalitions are completely powerless, i.e., only effective for the
set of all alternatives. Since in any representing game form of this effectivity
function any individual can bring about any alternative, given the strategy
profile of the coalition of all other players, it follows that for any profile
of preferences in which at least two players have different top elements, a
Nash equilibrium cannot exist. By extending the effectivity function with
equal chance lotteries, for instance such that every coalition other than the
grand coalition is effective for every set of lotteries containing the lottery
that assigns equal probability to each alternative, we obtain an effectivity
function that preserves power and does have a Nash consistent representing
game form – see Example 6.3.4 below.

For a constitution modeled as a monotonic and superadditive effectivity
function, the relevance of our main result (Theorem 6.3.2) is that such a
constitution can always be ‘decentralized’ by a set of rules (a game form)
that preserves the original rights and that is stable in the sense that for any
preferences a Nash equilibrium exists, as long as we are willing to accept some
uncertainty in the form of equal chance lotteries as outcomes of the game,
evaluated by utility functions respecting stochastic dominance.

For a given finite game form our result implies that we can always find an
alternative finite game form, preserving effectivity in the indicated sense, that
has a pure Nash equilibrium for any profile of preferences, again evaluating
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lotteries by utility functions respecting stochastic dominance (e.g., expected
utility). This also entails a solution to the Gibbard (1974) paradox – see
Example 3.3.11 and Example 6.3.3 below.

In Section 6.2 we extend Theorem 3.3.10 to accommodate for cardinal util-
ities, which are used in lottery models. Section 6.3 introduces lottery models
and presents our main result (Theorem 6.3.2). In Section 6.4 we consider the
case of neutral effectivity functions, for which a natural and simple lottery
model can be based on the so-called uniform core. Section 6.5 concludes.

6.2 Nash consistent representation: an extension

In this section we assume that the set of alternatives is some finite set Z,
containing at least two alternatives. Choices for Z include our usual finite
set of social states A, augmented with equal chance lotteries over A, to be
introduced later.

Let U be a non-empty set of utility functions u : Z → R, and let X ∈
P0(Z). Call X admissible with respect to U if there is a u ∈ U such that
u(x) > u(y) for every x ∈ X and every y ∈ Z \X . Hence, a player with utility
function u strictly prefers every element of X to every element not in X .

The following theorem extends Theorem 3.3.10. In this theorem the inter-
section condition (3.6) is weakened to condition (6.1) by making it conditional
on admissibility of the involved sets.

Theorem 6.2.1. Let E : P (N) → P (P0(Z)) be a superadditive and mono-
tonic effectivity function. Then E has a representation that is Nash consistent
on UN if and only if

[X i ∈ E∗(i) and X i admissible w.r.t. U for all i ∈ N ] ⇒
n⋂

i=1

X i 
= ∅. (6.1)

Proof. First assume that E has a Nash consistent representation Γ on UN .
For each i ∈ N , let X i ∈ E∗(i) be an admissible set and ui ∈ U such that
ui(z) > ui(y) for all z ∈ X i and y ∈ Z \X i. Let x ∈ Z be a Nash equilibrium
outcome of (Γ, uN). Then, by Proposition 3.2.1,

L(x, ui) ∈ EΓ(N \ {i}) = E(N \ {i}) for all i ∈ N.

This implies X i ∩ L(x, ui) 
= ∅ for every i ∈ N . By the choice of ui, this
implies x ∈ X i for every i ∈ N , hence

⋂
i∈N X i 
= ∅, so that (6.1) holds.

For the converse, assume (6.1). Let uN ∈ UN . For every i ∈ N let Y i :=
{y ∈ Z | Z \ L(y, ui) ∈ E∗(i)} and define

X i =
{⋂

y∈Y i Z \ L(y, ui) if Y i 
= ∅
Z otherwise.
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Then X i ∈ E∗(i) and X i is admissible with respect to U for each i ∈ N ,
so by (6.1),

⋂
i∈N X i 
= ∅. Take x ∈

⋂
i∈N X i. Then, by definition of X i,

Z\L(x, ui) /∈ E∗(i) for each i ∈ N . Hence, there is some set Zi ⊆ L(x, ui) with
Zi ∈ E(N\{i}, so by monotonicity of E, L(x, ui) ∈ E(N\{i}) for every i ∈ N .
Theorem 3.2.3 now implies that E has a Nash consistent representation. ��

6.3 Lottery models

We shall now be more specific about the set Z. Let A be a finite set of
alternatives, |A| ≥ 2. For each B ∈ P0(A), �(B) denotes the lottery that
assigns equal probability 1/|B| to each alternative in B. The set of all such
equal chance lotteries with support in a set B ∈ P0(A) is denoted by B̃, hence

B̃ = {�(B′) | B′ ∈ P0(B)}.

By identifying each x ∈ A with the degenerate lottery �({x}), we have B ⊆ B̃.
Typically, we shall consider the case Z = Ã. Let Ẽ : P (N) → P (P0(Ã))

be an effectivity function. With Ẽ we associate an effectivity function E :
P (N) → P (P0(A)) as follows. Let E(∅) = ∅. For S ∈ P0(N) and B ∈ P0(A),
we let B ∈ E(S) if and only if there exists an X ∈ Ẽ(S) such that

B =
⋃

B′∈P0(A): �(B′)∈X

B′. (6.2)

In other words, elements of E(S) are obtained by taking the union of the
supports of elements of Ẽ(S). It is straightforward to check that, indeed, E
is an effectivity function. If E is derived from Ẽ in this way, then we call Ẽ
a lottery model for E.

Remark 6.3.1. Monotonicity of Ẽ with respect to the players implies mono-
tonicity of E with respect to the players, and monotonicity of Ẽ with respect
to the alternatives implies monotonicity of E with respect to the alterna-
tives. (To show the latter claim, if B ∈ E(S) resulting from B̃ ∈ Ẽ(S), and
C ⊇ B, then C ∈ E(S) follows from considering B̃ ∪ C ∈ Ẽ(S). Note that
A ⊆ Ã.) Hence, monotonicity of Ẽ is inherited by E. If Ẽ is monotonic
and superadditive, then also E is superadditive. For let Ẽ be monotonic and
superadditive, S1, S2 ∈ P0(N) with S1 ∩ S2 = ∅, and let B1 ∈ E(S1) and
B2 ∈ E(S2). Let X1 ∈ Ẽ(S1) and X2 ∈ Ẽ(S2) correspond to B1 and B2

as in the definition of E, i.e., as in (6.2). Then superadditivity of Ẽ implies
X := X1 ∩X2 ∈ Ẽ(S1 ∪ S2), hence

E(S1 ∪ S2) �
⋃

B′∈P0(A):�(B′)∈X

B′ ⊆ B1 ∩B2.
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Monotonicity of E now implies B1 ∩B2 ∈ E(S1 ∪ S2). This shows that E is
superadditive. The converse is not true: a lottery model Ẽ for a monotonic
and superadditive effectivity function E is not itself necessarily monotonic
and superadditive.

Let u : Ã → R and suppose that u(x1) ≥ u(x2) ≥ . . . ≥ u(xm), where
A = {x1, x2, . . . , xm}. For � ∈ Ã and i ∈ {1, 2, . . . ,m} let �i be the probability
assigned by � to xi. We say that u respects stochastic dominance if u(�) ≥
u(�′) whenever �, �′ ∈ Ã satisfy

m∑

i=k

�i ≤
m∑

i=k

�′i for all k = 1, 2, . . . ,m.

We assume that lotteries are evaluated by utility functions satisfying this
condition. Therefore, we define

Usd :=
{
u ∈ RÃ | u respects stochastic dominance

}
.

The set Usd contains in particular the set of expected utility functions
{
u ∈ RÃ | u(�(B)) =

∑

a∈B

u(a)
|B| for all B ∈ P0(A)

}
.

The main result of this chapter is that for every monotonic and super-
additive effectivity function there exists a lottery model which has a Nash
consistent representation on UN

sd . Clearly, monotonicity and superadditivity
cannot be left out here: a lottery model that has a representing game form
must be monotonic and superadditive, and by Remark 6.3.1 the original ‘de-
terministic’ effectivity function must also be monotonic and superadditive.
But, in contrast to Theorem 6.2.1, no additional condition is needed on E.

Theorem 6.3.2. Let E : P (N) → P (P0(A)) be a monotonic and superaddi-
tive effectivity function. Then there exists an effectivity function Ẽ : P (N) →
P (P0(Ã)) such that

(i) Ẽ is a lottery model for E;
(ii) Ẽ has a representation which is Nash consistent on UN

sd .

Proof. Define Ẽ : P (N) → P (P0(Ã)) as follows. Let Ẽ(∅) = ∅ and for every
S ∈ P0(N) with |S| 
= n− 1 let

Ẽ(S) =
{
X ∈ P0(Ã) | X ⊇ B̃ for some B ∈ E(S)

}
.

In order to define Ẽ for (n−1)-person coalitions we introduce a notation. For
each i ∈ N , C ∈ E(N \ {i}) and C′ ∈ P0(C) define the set X(C,C′) ∈ P0(Ã)
by

X(C,C′) =
{
{�({c} ∪ C′) | c ∈ C \ C′} if C′ 
= C

{�(C)} if C′ = C.



72 6 Nash consistent representation through lottery models

Note in particular that the union of the supports of the elements of the set
X(C,C′) is equal to C.

Let now S ∈ P0(N) with |S| = n − 1, say S = N \ {i} for some i ∈ N .
Then we define X ∈ Ẽ(N \{i}) if and only if X ⊇ B̃ for some B ∈ E(N \{i})
or X ⊇ X(C,C′) ∪ B̃ for some C ∈ E(N \ {i}), C′ ∈ P0(C), and B ∈ P0(A)
such that B ∩B′ 
= ∅ for all B′ ∈ E({i}. This concludes the definition of Ẽ.
It is straightforward to verify that Ẽ : P (N) → P (P0(Ã)) is a monotonic and
superadditive EF and that Ẽ is a lottery model for E.

It remains to prove that Ẽ has a Nash consistent representation on UN
sd .

For each i ∈ N , let X i ∈ Ẽ∗(i) such that X i is admissible with respect to
Usd. In view of Theorem 6.2.1 it is sufficient to prove

⋂
i∈N X i 
= ∅. For each

i ∈ N choose ui ∈ Usd such that

ui(x) > ui(y) for all x ∈ X i and y ∈ Ã \X i (6.3)

(this is possible since each X i is admissible), and choose Bi ∈ E({i}) and
bi ∈ Bi such that both

ui(bi) = min{ui(b) | b ∈ Bi} ≥ min{ui(b) | b ∈ B} for all B ∈ E({i})

and

Bi = {b ∈ A | ui(bi) ≤ ui(b)}.

(This is possible in view of monotonicity of E.)
Also, for each i ∈ N , define Ci :=

⋂
j∈N\{i} B

j . Then Ci ∈ E(N \ {i}) by
superadditivity of E. Choose ai ∈ Ci such that

ui(ai) = max{ui(a) | a ∈ Ci}.

Since, by superadditivity of E, Ci ∩Bi 
= ∅, we have ui(ai) ≥ ui(bi).
Now fix a player i ∈ N and write ui(x1) ≥ ui(x2) ≥ . . . ≥ ui(xm), where

A = {x1, x2, . . . , xm}. Let k ∈ {1, 2, . . . ,m} such that ai = xk. Choose p with
k ≤ p ≤ m such that

ui(�({xk, xp, xp+1, . . . , xm})) ≤ ui(�({xk, xp′ , xp′+1, . . . , xm}))

for all k ≤ p′ ≤ m. Consider the set D = {xk, . . . , xm}. Since Ci ⊆ D, we
have D ∈ E(N \ {i}). Let D′ := {xp, xp+1, . . . , xm} ⊆ D. Define Y ∈ P0(Ã)
by

Y = X(D,D′) ∪ F̃

where

F =
{
b ∈ A | ui(bi) ≥ ui(b)

}
.

Observe that, by definition of bi, we have F ∩B′ 
= ∅ for every B′ ∈ E({i}).
By definition of Ẽ and Y , we have Y ∈ Ẽ(N \ {i}). It follows, in particular,
that the set X i contains an element of Y , say y. Consider the lottery �̄ =
�(
⋂

j∈N Bj). Then
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ai∈Bi ∩Ci =
⋂

j∈N Bj and ui(ai) ≥ ui(c) ≥ ui(bi) for all c∈
⋂

j∈N Bj .
(6.4)

We show that �̄ ∈ X i by considering all the possible values for y ∈ Y ∩X i.
If y ∈ F̃ , then ui(�̄) ≥ ui(bi) ≥ ui(y), where the first inequality follows

from (6.4) and the last inequality by definition of F and the fact that ui

respects stochastic dominance. By (6.3), this implies �̄ ∈ X i.
If y ∈ X(D,D′), then y = �({xp′ , xp, . . . , xm}) for some p′ ∈ {k, k +

1, . . . , p − 1} if k < m and y = xm if k = m. In that case, we argue as
follows. Write

⋂
j∈N Bj = {ai, y1, . . . , yr} with ui(ai) ≥ ui(y1) ≥ ui(y2) ≥

. . . ≥ ui(yr). Then

ui(�̄) ≥ ui(�({ai, xm−r+1, xm−r+2, . . . , xm}))
≥ ui(�({ai, xp, . . . , xm}))
≥ ui(�({xp′ , xp, . . . , xm}))
= ui(y)

where the second inequality follows from the choice of p, and the third follows
since ui(ai) ≥ ui(xp′). (Note that for the first and third inequalities the fact
that ui respects stochastic dominance is used.) Hence also in this case, (6.3)
implies that �̄ ∈ X i.

Since i ∈ N was arbitrary, we conclude that �̄ ∈ Xj for every j ∈ N , hence⋂
j∈N Xj 
= ∅. ��

The following example illustrates the effectivity function Ẽ, constructed
in the proof of Theorem 6.3.2, for the effectivity function associated with a
2 × 2 bimatrix game form.

Example 6.3.3. Let N = {1, 2}, A = {a, b, c, d}, and consider the effectivity
function E derived from the game form

(
a b
c d

)

where player 1 chooses a row and player 2 chooses a column. In particular,
E({1}) contains {a, b}, {c, d}, and all supersets;E({2}) contains {a, c}, {b, d},
and all supersets. It is easy to see that condition (6.1) in Theorem 6.2.1 (with
Z = A) is not fulfilled. For instance, {a, d} ∈ E∗({1}), {b, c} ∈ E∗({2}), both
are (trivially) admissible with respect to RA, but {a, d}∩{b, c} = ∅. [We recall
the explanation (cf. Example 3.3.11) of why a Nash consistent representation
cannot exist. Observe that {a, d} ∈ E∗({1}) means that for any given strategy
of player 2 in some representing game form, player 1 can make sure that the
final outcome is in {a, d}. A similar statement holds for player 2 and the
set {b, c}. Now suppose that preferences are such that player 1 prefers a and
d over b and c and player 2 prefers b and c over a and d: then, clearly, a
Nash equilibrium cannot exist. This illustrates, again, the necessity of the
intersection condition (6.1).]
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The effectivity function Ẽ, constructed in the first two paragraphs of the
proof of Theorem 6.3.2, assigns the following sets (where, e.g., ab is shorthand
for �({a, b}), the equal chance lottery on {a, b}):

Ẽ({1}) : {a, b, ab} {a, d, ab} {c, b, ab} {c, d, ab}
{a, b, cd} {a, d, cd} {c, b, cd} {c, d, cd}

Ẽ({2}) : {a, c, ac} {a, d, ac} {b, c, ac} {b, d, ac}
{a, c, bd} {a, d, bd} {b, c, bd} {b, d, bd}

and all supersets of these sets within Ã. It is easy to check that Ẽ is a
lottery model for E. By the proof of Theorem 6.3.2, Ẽ has a Nash consistent
representation. This can also be verified ‘directly’ by using Theorem 6.2.1 and
showing thatX1∩X2 
= ∅ for all admissible X1 ∈ Ẽ∗({1}) andX2 ∈ Ẽ∗({2}),
but this is a rather tedious task. Admissibility has strong implications. For
instance, if a, b ∈ X1, then also ab ∈ X1, or if ab ∈ X1, then also a ∈ X1 or
b ∈ X1, etc.

The Gibbard Paradox (Example 3.3.11) is an instance of this example.
Theorem 6.3.2 shows how it can be resolved by allowing lotteries, in the way
as described above.

For particular cases, there may exist other lottery models that are less
complex than the one constructed in the proof of Theorem 6.3.2 and in that
sense more attractive. This is the case in the next example, where the una-
nimity effectivity function is considered.

Example 6.3.4. Let E : P (N) → P (P0(A)) be the unanimity effectivity func-
tion, i.e., E(S) = {A} for all S ∈ P0(N), S 
= N . This effectivity function
clearly fails to satisfy condition (6.1). It can be checked that here the lottery
�̄ in the proof of Theorem 6.3.2 is equal to �(A), but in this case the lot-
tery model Ẽ in that proof is overly complicated. It is straightforward to see
that also the effectivity function Ẽ′ is a lottery model for E, where for each
S ∈ P0(N), S 
= N , Ẽ′(S) consists of {�(A)} and all its supersets in Ã, and
Ẽ′(N) = P0(Ã). The effectivity function Ẽ′ is different from but simpler than
Ẽ. By applying Theorem 6.2.1 and checking condition (6.1) – for each player
i each element of Ẽ∗({i}) must contain �(A) – it follows that this lottery
model has a Nash consistent representation.

Example 6.3.4 is a special case of a neutral effectivity function. These
effectivity functions are studied in the next section.

6.4 Neutral effectivity functions

For convenience we recall from Section 3.5.1 some facts about veto functions.
A veto function is a function v : P (N) → {−1, 0, . . . , |A| − 1} such that
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v(∅) = −1, v(S) ≥ 0 if S ∈ P0(N), and v(N) = |A| − 1. The interpretation
is that coalition S can veto any subset of the alternatives with at most v(S)
elements. With v we can associate a neutral (i.e., not depending on the names
of the alternatives) effectivity function Ev by

Ev(S) = {B ∈ P0(A) | v(S) ≥ |A \B|} = {B ∈ P0(A) | v(S) ≥ |A| − |B|)}

for every S ∈ P (N). Conversely, every neutral effectivity function is derived
from some veto function. A veto function is monotonic if v(S) ≤ v(S∗) for
all S, S∗ with S ⊆ S∗, and superadditive if v(S) + v(S∗) ≤ v(S ∪ S∗) for all
S, S∗ ∈ P (N) with S ∩ S∗ = ∅. A veto function is monotonic [superadditive]
if and only if the associated effectivity function is monotonic [superaditive].

We shall show that for neutral effectivity functions there exists a simple
and quite natural lottery model that has a Nash consistent representation.
To this end we need the concept of the uniform core.

Let E : P (N) → P (P0(A)) be a monotonic and superadditive effectivity
function. Let U = R

A, uN ∈ UN , and say that x ∈ A is uniformly dominated
by B ∈ P0(A) via S ∈ P0(N) if (i) B ∈ E(S); (ii) x /∈ B; and (iii) ui(b) >
ui(a) for all b ∈ B, a ∈ A \B, and i ∈ S. We also say that S blocks x by B.

Observe that, if x is uniformly dominated by B via S, then x is also
dominated (cf. Definition 5.2.5) by B via S. The converse is not true: for
uniform domination we need that for every player in S the set of alternatives
better than x is exactly the set B, for domination we only need that it
contains B.

The set of all alternatives that are not uniformly dominated by some set
B via some coalition S is called the uniform core and denoted Cuf(E, uN ).
Obviously, by the above, the core C(E, uN ) is a subset of the uniform core
Cuf(E, uN ). While the core can be empty, the uniform core is never empty.
This is proved in Abdou and Keiding (1991, Lemma 3.2). For completeness’
sake we present a proof here.

Lemma 6.4.1. Let E : P (N) → P (P0(A)) be a monotonic and superadditive
effectivity function, and let uN ∈ UN . Then Cuf(E, uN ) 
= ∅.

Proof. Suppose, to the contrary, that Cuf(E, uN) = ∅. Write A = {x1, . . . , xm}
and for each j = 1, . . . ,m let Sj ∈ P0(N) and Bj ∈ E(Sj) such that xj is
uniformly dominated by Bj via Sj . Then, since for each j we have xj /∈ Bj ,
it follows that

⋂m
j=1 Bj = ∅.

Now, without loss of generality, let {B1, . . . , Br}, where 1 ≤ r ≤ m,
be those sets in {B1, . . . , Bm} that are minimal under inclusion, where
we take only one of two equal sets if any. We claim that the correspond-
ing sets S1, . . . , Sr are pairwise disjoint. Indeed, suppose for instance that
i ∈ S1 ∩ S2, and, say, ui(x1) ≥ ui(x2). Then, by definition of uniform domi-
nation it follows that B1 ⊆ B2, contradicting inclusion minimality of the sets
in {B1, . . . , Br}. By superadditivity we have

⋂r
j=1 Bj ∈ E(

⋃r
j=1 Sj). Since,

clearly,
⋂m

j=1 Bj =
⋂r

j=1Bj , we obtain
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∅ =
m⋂

j=1

Bj =
r⋂

j=1

Bj ∈ E(
r⋃

j=1

Sj) ,

a contradiction. ��

The uniform core represents E in the following sense. If S is effective for
a set of alternatives B, then S has a utility profile such that the associated
uniform core is a subset of B for every utility profile of the players outside
S. Formally, we have the following lemma (cf. Keiding and Peleg, 2006a).

Lemma 6.4.2. Let E : P (N) → P (P0(A)) be a monotonic and superadditive
effectivity function. Then, for every S ∈ P0(N) and every B ∈ P0(A),

B ∈ E(S) ⇔ ∃uS ∈ US ∀uN\S ∈ UN\S : Cuf(E, (uS , uN\S)) ⊆ B.

Proof. Let S ∈ P0(N) and B ∈ P0(A).
First, suppose B ∈ E(S). For each i ∈ S let ui ∈ U be defined by ui(x) = 1

for all x ∈ B and ui(x) = 0 for all x ∈ A \B. Then all x ∈ A \B are blocked
by S using B, so that Cuf(E, (uS , uN\S)) ⊆ B for all uN\S ∈ UN\S .

Second, for the converse, let uS ∈ US such that Cuf(E, (uS , uN\S)) ⊆ B
for all uN\S ∈ UN\S . First observe that, if x ∈ A\B, then x must be blocked
via some coalition S′ ⊆ S. Indeed, otherwise take, for each i /∈ S, a preference
ui with ui(x) = 1 and ui(y) = 0 for all y 
= x: then no player outside S can
participate in blocking x, so x ∈ Cuf(E, (uS , uN\S)) ⊆ B, a contradiction.

Now, for each player i ∈ S, take xi ∈ A, Si ⊆ S with i ∈ Si, and
Bi ∈ E(Si) such that (i) xi is blocked by Bi via Si and (ii) for each y ∈ Bi,
y is not blocked via any coalition S′ ⊆ S with i ∈ S′; if such a triple does not
exist for some player i, then we take Bi equal to A. Without loss of generality
let S = {1, . . . , |S|} and let {B1, . . . , Bk} with 1 ≤ k ≤ |S| be the subset of
those elements of {B1, . . . , B|S|} that are minimal under inclusion and all
different (if two minimal sets Bi and Bj are equal then take only one of the
two). By the same argument as in the proof of Lemma 6.4.1 the associated
coalitions S1, . . . , Sk are pairwise disjoint and thus, by superadditivity and
monotonicity,

|S|⋂

i=1

Bi =
k⋂

i=1

Bi ∈ E(
k⋃

i=1

Si) ⊆ E(S) .

Consider any x ∈
⋂|S|

i=1B
i. If x were blocked by some coalition S′ ⊆ S, then

this would violate condition (ii) in the definition of the triple xi, Si, Bi for
the players i ∈ S′, a contradiction. By the argument in the second paragraph
of the proof, it follows that x ∈ B. Hence,

⋂|S|
i=1 B

i ⊆ B, so that B ∈ E(S)
by monotonicity. ��

We can now construct a lottery model for E based on the uniform core. We
formulate this as a lemma: the proof is straightforward using Lemma 6.4.2.
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Lemma 6.4.3. Let E : P (N) → P (P0(A)) be a monotonic and superadditive
effectivity function. Define Ẽuf : P (N) → P (P0(Ã)) by requiring for each
S ∈ P0(N) and X ∈ P0(Ã):

X ∈ Ẽuf(S) ⇔ ∃uS ∈ US ∀uN\S ∈ UN\S : �
(
Cuf(E, (uS , uN\S))

)
∈ X.

Then Ẽuf is a monotonic and superadditive lottery model for E.

The construction of Ẽuf implies, in fact, that it is the effectivity function
associated with the game form Γuf = (U, . . . , U ; g; Ã), defined by g(uN) =
�(Cuf(E, uN )) for each uN ∈ UN . Hence, the game form Γuf represents the
effectivity function Ẽuf, which in turn is a lottery model for E. We will show
that Γuf is Nash consistent. Observe that Γuf is in fact a social choice function,
where each player just reports a weak ordering over the alternatives in the
form of a utility function – in fact, it is crucial for the proof of Theorem 6.4.4
below that the reported ordering can be weak. Given such a profile of reports
one computes the uniform core and the outcome of the game is the equal
chance lottery over the elements of the uniform core.

Theorem 6.4.4. Let uN ∈ UN
sd . Then the game (Γuf, u

N ) has a Nash equilib-
rium.

Proof. We construct a strategy profile ûN ∈ UN inductively as follows. First,
let W (1) ⊆ A contain exactly v(1) worst alternatives according to u1, that
is, u1(x) ≤ u1(y) for all x ∈ W (1) and y ∈ A \W (1). Define û1(x) = 0 and
û1(y) = 1 for all x ∈ W (1) and y ∈ A\W (1). Let k ∈ {2, . . . , n} and suppose
that ûl has been defined for all 1 ≤ l ≤ k − 1. Then let W (k) ⊆ A contain
exactly v(k) worst alternatives in A \

⋃k−1
l=1 W (l) according to uk, and define

ûk(x) = 0 and ûk(y) = 1 for all x ∈ W (k) and y ∈ A \W (k).
We claim that ûN is a Nash equilibrium in (Γuf, u

N). Let k ∈ N and
assume that each player l ∈ N \ {k} plays the strategy ûl. Consider any
coalition S ⊆ N \ {k} with more than one player. Then, because of the strict
inequality sign in condition (iii) of the definition of uniform domination, S
could only possibly block some alternative by the set A\W (l) for some l ∈ S,
but all these sets are different since all sets W (l) are different. Hence, only
singletons in N \{k} block: each l ∈ N \{k} blocks W (l), so altogether the set⋃

l∈N\{k}W (l) is blocked by the single players in N \ {k}. Consider the deci-
sion problem for player k. By the same argument as before, a non-singleton
coalition S containing player k can only possibly block some alternative if
S = {k, j} for some j 
= k (since all sets W (l), l ∈ N \ {k} are different), but
in that way S can only block the set W (j), namely by player k playing some
strategy u′ such that u′(x) < u′(y) for all x ∈W (j) and y ∈ A \W (j). Then
the game would result in the equal chance lottery �

(
A \

⋃
l∈N\{k}W (l)

)
. By

only using his own blocking power, however, player k can make sure that the
outcome of the game is �

(
A \

⋃
l∈N W (l)

)
by playing ûk. Since player k’s
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utility function uk respects stochastic dominance, this is clearly an improve-
ment for player k, and also the best outcome attainable by using k’s own
blocking power. ��

The Nash equilibrium exhibited in the proof of Theorem 6.4.4 is a very
natural one, since it consists of successive sincere vetoing of alternatives: first,
player 1 vetoes his v(1) worst alternatives, next, player 2 vetoes his v(2) worst
alternatives of the remaining ones, etc. Of course, vetoing according to any
other ordering of the players would also be a Nash equilibrium. These specific
equilibria have the drawback that they need not be Pareto optimal. For in-
stance, if all players have the same preference, with a unique top alternative,
but

∑
i∈N v(i) < |A| − 1, then the resulting lottery does not put probability

1 on the common top alternative. Of course, in this example the profile in
which every player reports his true preference is also a Nash equilibrium:
the uniform core associated with this profile consists of the common top al-
ternative and, thus, the degenerate lottery that puts all probability on this
alternative results.

If E is non-neutral, then Ẽuf is still a lottery model for E and Ẽuf = EΓuf ,
but it is not clear whether Γuf is still Nash consistent.

6.5 Notes and comments

In this chapter, which is based on Peleg and Peters (2009), we have proved
that every (monotonic and superadditive) effectivity function can be aug-
mented, by adding finitely many equal chance lotteries, to a new effectivity
function (lottery model) which preserves the original effectivity and has a
Nash consistent representation. This approach is based on two particular
assumptions. We elaborate on these assumptions in the next two remarks.

Remark 6.5.1. First, we assume that in the lottery model the original effec-
tiveness of a coalition S of players for a set B of alternatives is preserved if S
is now effective for some set X of equal chance lotteries such that the union of
the supports of the lotteries in X is equal to B. For instance, if B = {a, b, c},
then X could be the one-point set {�({a, b, c})} but also the two-point set
{a, �({a, b, c})}. This example shows that, in this set-up, we cannot really in-
terpret effectiveness for B as the alternatives of B being equiprobable, even
if we only add equal chance lotteries. Rather, players (or coalitions) evaluate
effectiveness purely in terms of supports.

Remark 6.5.2. Second, we assume that equal chance lotteries resulting as
outcomes of the representing game form are evaluated by utility functions
respecting first order stochastic dominance. This is a minimal requirement
and therefore hardly controversial. A special case of this is expected utility.
For a justification of the use of expected utility see Fishburn (1972), where
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preferences on sets of alternatives are considered and the expected utility
property for equal chance lotteries is derived from conditions on these prefer-
ences. The assumption of equal chance lotteries evaluated by expected utility
has been made frequently in the social choice literature, such as in Barberà,
Dutta, and Sen (2001), but also in earlier work, e.g., Feldman (1980). In these
works, outcomes can be sets, which are evaluated as equal chance lotteries
using expected utility. In fact, this was also done in Section 6.4, where we
considered the uniform core and evaluated that set as an equal chance lottery.

The assumption of utility functions respecting first order stochastic dom-
inance is called ‘monotonicity’ in Abreu and Sen (1991).

We next comment on Pareto optimality in relation to lottery models.

Remark 6.5.3. By using the game form Γ0, constructed in the proof of Theo-
rem 2.4.7, to represent a lottery model Ẽ, we obtain again weak acceptability:
for any profile of preferences there there is a Nash equilibrium with Pareto
optimal outcome. This follows since Theorem 3.3.13 continues to hold in the
extended framework of Theorem 6.2.1.

What does this mean? Suppose uN ∈ UN
sd is a profile of preferences and

a, b ∈ A such that ui(a) > ui(b) for all i ∈ N . Then, clearly, a lottery that
has b but not a in its support is not Pareto optimal, and so there is a Nash
equilibrium where this lottery is not the associated outcome. On the other
hand, it is not difficult to come up with an example of a Pareto optimal
lottery containing both a and b, since we only allow equal-chance lotteries.1

Thus, Pareto optimality of a lottery does not imply that only Pareto optimal
pure alternatives occur in the support.

Our final comment is related to the avoidance of mixed strategies in the
game form associated with a lottery model.

Remark 6.5.4. The main result in this chapter is also a contribution to the
classical ‘purification’ problem – e.g., Harsanyi (1973). For any finite game
form, it enables us to construct a new finite game form which preserves the
strategic possibilities of players and coalitions in the sense that the associated
effectivity function is a lottery model for the effectivity function associated
with the original game form, and which has a pure Nash equilibrium for any
profile of utility functions respecting first order stochastic dominance among
equal chance lotteries.

1 E.g., N = {1, 2}, A = {a, b, c}, u1(c) = 2, u1(a) = 0.4, u1(b) = 0, u2(a) = 2, u2(b) = 1.3,
u2(c) = 0; assume expected utility. Then �(A) is Pareto optimal, although both agents
strictly prefer a to b.



Chapter 7

On the continuity of representations of
constitutions

7.1 Motivation and summary

In the previous chapters we have disregarded the topological properties of
the strategy sets and the outcome functions of representations of topological
effectivity functions. In this chapter we enquire about the existence of repre-
sentations of which the strategy sets and outcomes space are compact metric
spaces and where the outcome function is continuous. Clearly, the continu-
ity of the outcome function of a representation in the strategies played by
the members of the society is very desirable. Unfortunately, in Section 7.2
we describe an effectivity function which admits no continuous representa-
tion. Fortunately – and this is a main message of this chapter – continuity
properties of representations of topological effectivity functions are latent
everywhere in our model.

In Section 7.3 we prove that every (monotonic and superadditive) effectiv-
ity function that is generated by a finite set of closed subsets of alternatives
has a continuous representation. This leads to the result that effectivity func-
tions with a continuous representation are dense in the set of all topological
effectivity functions.

Let C be the Cantor (ternary) set. It is a classical result that for every
compact metric space A there exists a continuous surjection fA : C → A. In
Section 7.4 we observe that for all such A and fA, every effectivity function
E on A can be ‘lifted’ to an effectivity function Ẽ on C. Furthermore, every
[continuous] representation of Ẽ yields naturally a [continuous] representation
of E. Thus, using the mentioned classical result we show that the general
representation problem can be reduced to the representation problem on C.

Section 7.5 contains the following important result: on C (or, as a matter
of fact, on any compact subset of the real line) every effectivity function with
closed values has an upper (or lower) semicontinuous representation. Semi-
continuity is a weaker form of continuity that nevertheless allows a generaliza-
tion of the Weierstrass Theorem: an upper [lower] semicontinuous function
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DOI 10.1007/978-3-642-13875-1 7, c© Springer-Verlag Berlin Heidelberg 2010
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on a compact set attains a maximum [minimum]. We also show that this
semicontinuous representation is Nash consistent.

Using the techniques of Section 7.4 we show in Section 7.6 that the result in
Section 7.5 implies that every effectivity function (over an arbitrary compact
metric space) has a representation of which the outcome function is a modified
Baire function of class 2. This is, again, a weaker continuity property.

7.2 Continuous representations may not exist

In this section we provide an example of an effectivity function that does not
have a continuous representation. Let A be a compact metric space and let
E : P (N) → P (K(A)) be an effectivity function – this will be the setting
throughout the chapter. (Recall that K(A) denotes the set of all non-empty
closed subsets of A.) A game form Γ = (N ; Σ1, . . . ,Σn; g;A) is a continuous
representation of E if (i) Γ is a representation of E; and (ii) Σ1, . . . ,Σn are
compact metric spaces and g : Σ = Σ1 × . . .×Σn → A is continuous when Σ
is endowed with the product topology.

Remark If d̄i is a metric on Σi for each i ∈ N , then in order to ob-
tain the product topology one may use the metric d̄ =

∑n
i=1 d̄

i on Σ, i.e.,
d̄
(
(σ1, . . . , σn), (μ1, . . . , μn)) =

∑n
i=1 d̄

i(σi, μi).

When A and all Σi are finite then in the discrete topology every represen-
tation is continuous.

We shall now give an example of a compact metric space A of alternatives
and a topological effectivity function E which has no continuous representa-
tion.

Example 7.2.1. Let

A = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, and x+ y ≤ 1} .

Further, let N = {1, 2},

E(1) = {B ∈ K(A) | B ⊇ [(1, 0), (0, y)] for some 0 ≤ y ≤ 1} ,

and

E(2) = {B ∈ K(A) | B ⊇ [(0, 1), (x, 0)] for some 0 ≤ x ≤ 1} .

With E(∅) = ∅ and E(N) = K(A), E is a monotonic and superadditive
effectivity function. See Figure 7.1 for an illustration.
We claim that E has no continuous representation. Suppose, on the contrary,
that Γ = (N ; Σ1,Σ2; g;A) is a continuous representation of E.
Let ỹ(k) ↑ 1. For each k there exists σ̃1(k) ∈ Σ1 such that

g(σ̃1(k),Σ2) = {g(σ̃1(k), σ2) | σ2 ∈ Σ2} = [(1, 0), (0, ỹ(k))] . (7.1)
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(0, 1)

(0, y)

(x, 0) (1, 0)

Fig. 7.1 Example 7.2.1.

Let σ̃1(kj) with σ̃1(kj) → σ1
0 for j → ∞ be a converging subsequence. Then

g(σ1
0 ,Σ

2) = [(1, 0), (0, 1)] . (7.2)

Denote σ1(j) = σ̃1(kj) and y(j) = ỹ(kj), j = 1, 2, . . .
Let now x̃(k) ↑ 1. For each k there exists σ̃2(k) ∈ Σ2 such that

g(Σ1, σ̃2(k)) = {g(σ1, σ̃2(k)) | σ1 ∈ Σ1} = [(0, 1), (x̃(k), 0)] . (7.3)

Let σ̃2(kj) with σ̃2(kj) → σ2
0 for j → ∞ be a converging subsequence. Then

g(Σ1, σ2
0) = [(1, 0), (0, 1)] . (7.4)

Denote σ2(j) = σ̃2(kj) and x(j) = x̃(kj), j = 1, 2, . . .
By (7.2) and (7.3)

g
(
σ1

0 , σ
2(j)

)
= (0, 1), j = 1, 2, . . .

Hence, g(σ1
0 , σ

2
0) = limj→∞ g

(
σ1, σ2(j)

)
= (0, 1). On the other hand, by (7.1)

and (7.4)

g
(
σ1(j), σ2

0

)
= (1, 0), j = 1, 2, . . .

Hence, g(σ1
0 , σ

2
0) = limj→∞ g

(
σ1(j), σ2

0

)
= (1, 0). Thus, we have a contradic-

tion as desired.

The foregoing example indicates that the main reason for non-existence
of continuous presentations is the discontinuity of set intersection. In order
make this precise we introduce the Hausdorff metric dH on K(A). Let d be a
metric on A. For B ∈ K(A) and ε > 0 we denote
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U(B, ε) = {x ∈ A | there exist y ∈ B such that d(x, y) ≤ ε} .
For B1, B2 ∈ K(A) we define

dH(B1, B2) = inf{ε > 0 | B2 ⊆ U(B1, ε) and B1 ⊆ U(B2, ε)} .
One can prove that dH is a metric, the Hausdorff metric, and (K(A), dH ) is
a compact metric space (see Hildenbrand, 1974, p. 17).

Return to Example 7.2.1 and let now α(k) ↑ 1. Then [(1, 0), (0, α(k))] →
[(1, 0), (0, 1)] and [(α(k), 0), (0, 1)] → [(1, 0), (0, 1)] in (K(A), dH ). However,

[(1, 0), (0, α(k))] ∩ [(α(k), 0), (0, 1)] =
(

α(k)
1 + α(k)

,
α(k)

1 + α(k)

)
→

(
1
2
,
1
2

)
.

Thus, the limit of the intersections is strictly contained in the intersection of
the limits.

7.3 Finitely generated effectivity functions and
ε-representations

In view of Example 7.2.1 in the preceding section we have to impose extra
conditions on an effectivity function in order to obtain a continuous repre-
sentation. A possible simple condition is dependence on a finite number of
sets of alternatives. This is made precise in the following.

Let A be a compact metric space.

Definition 7.3.1. An effectivity function E : P (N) → P (K(A)) is finitely
generated if E(∅) = ∅, E(N) = K(A), and for every S ⊆ N , S 
= ∅, N , there
exist k(S) ∈ N and B(j, S) ∈ K(A), 1 ≤ j ≤ k(S), such that

E(S) = {B ∈ K(A) | B ⊇ B(j, S) for some 1 ≤ j ≤ k(S)} . (7.5)

With this definition we can formulate our first existence result.

Theorem 7.3.2. Let E : P (N) → P (K(A)) be a monotonic and superaddi-
tive effectivity function. Let E be finitely generated, as in Definition 7.3.1.
Then E has a continuous representation.

Proof. The sets B(j, S), j = 1, . . . , k(S), S 
= ∅, N , generate a finite algebra
F . Denote by Â the atoms (i.e., minimal elements) of F . For each B ∈ P0(Â)
denote

ϕ(B̂) =
⋃

{â | â ∈ B̂} ∈ P0(A) . (7.6)

This enables us to define a discrete effectivity function Ê : P (N) → P (P0(Â))
by

Ê(S) = {B̂ ⊆ Â | ϕ(B̂) ∈ E(S)} , (7.7)
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for S 
= ∅, N ; Ê(N) = P0(Â); and Ê(∅) = ∅. As the reader may verify easily, Ê
is monotonic and superadditive. Theorem 2.4.7 implies that Ê has a (discrete)
representation Γ̂ = (N ; Σ̂1, . . . , Σ̂n; ĝ; Â). Call f : Â → A a choice function
if f(â) ∈ â for all â ∈ Â, and denote by F the set of all choice functions.
Finally, define a new game form Γ = (N ; Σ1, . . . ,Σn; g;A) by

(i) Σi = Σ̂i × F ×N for all i ∈ N ;
(ii) g

(
(σ̂1, f1, t1), . . . , (σ̂n, fn, tn)

)
= f j

(
ĝ(σ̂1, . . . , σ̂n)

)
, where j = (t1 +

. . .+ tn) mod n.

If we endow Σ̂1, . . . , Σ̂n and N with the discrete topology and F =
∏

â∈Â â
with the product topology, then g is continuous. It remains to show that
Γ is a representation of E. Clearly, EΓ(N) = K(A). Thus, let S 
= ∅, N .
First, let B = B(j, S) for some 1 ≤ j ≤ k(S). Then there is B̂ ⊆ Â such
that ϕ(B̂) = B ∈ E(S), hence B̂ ∈ Ê(S). Since Γ̂ represents Ê, this im-
plies that S has a strategy profile σ̂S ∈ Σ̂S such that ĝ(σ̂S , μ̂N\S) ∈ B̂ for
all μ̂N\S ∈ Σ̂N\S . Therefore, for arbitrary but fixed fS , tS it follows that
g
(
(σ̂S , fS , tS), (μ̂N\S , fN\S , tN\S)

)
∈ B for all (μ̂N\S , fN\S , tN\S) ∈ ΣN\S .

Thus, B ∈ EΓ(S), implying that EΓ(S) ⊇ E(S).
Second, let D ∈ K(A) \ E(S). Suppose that, for some B̂ ∈ Ê(S), we

had ϕ(B̂) ⊆ D. Then, since ϕ(B̂) ∈ E(S), we would have D ∈ E(S) by
monotonicity, a contradiction. Hence ϕ(B̂) \D 
= ∅ for every B̂ ∈ Ê(S).

Consider any σ̂S ∈ Σ̂S . If ĝ(σ̂S , μ̂N\S) ⊆ D for all μ̂N\S ∈ Σ̂N\S , then,
since Γ̂ represents Ê, it follows from (7.7) that D ∈ E(S), a contradiction.
Hence, for every σ̂S ∈ Σ̂S there exists μ̂N\S ∈ Σ̂N\S such that ĝ(σ̂S , μ̂N\S) \
D 
= ∅. Thus, in Γ there is a player i ∈ N \ S who can choose f i, ti such that
the outcome is not in D. Hence, D /∈ EΓ(S) and, thus, EΓ(S) ⊆ E(S). ��

Theorem 7.3.2 can be used to obtain an approximate representation. The
family of all finitely generated effectivity functions plays an important role
since it is dense within the set of all effectivity functions in a sense to be
made precise below.

We start with the definition of an ε-representation. Recall (see Sec-
tion 7.2) that in the compact metric space A with metric d, for B ∈
K(A) and ε > 0 the set U(B, ε) is defined by U(B, ε) = {x ∈ A |
there exist y ∈ B such that d(x, y) ≤ ε}.

Definition 7.3.3. Let A be a compact metric space, E : P (N) → P (K(A))
an effectivity function, and ε > 0. A game form Γ = (N ; Σ1, . . . ,Σn; g;A) is
an ε-representation of E if

(i) EΓ(S) ⊆ E(S) for all S ⊆ N ;
(ii) if S ⊆ N and B ∈ E(S) then U(B, ε) ∈ EΓ(S).

We notice now that if Γ is an ε-representation of E, then EΓ is an ε-
approximation of E in (K(A), dH ). Indeed, for every S ∈ P0(N), S 
= N , if
B ∈ E(S) then
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dH(B,EΓ(S)) = inf{dH(B,D) | D ∈ EΓ(S)} ≤ dH(B,U(B, ε)) ≤ ε .

Let E : P (N) → P (K(A)) be a superadditive and monotonic effectivity
function. Then, as we shall prove, for every ε > 0 there exists a continu-
ous ε-representation Γε of E. Thus, in particular, E is approximated by the
effectivity functions EΓε , which have continuous representations.

Theorem 7.3.4. Let E : P (N) → P (K(A)) be a monotonic and superad-
ditive effectivity function and let ε > 0. Then there exists a continuous ε-
representation of E.

Proof. We choose for each S ∈ P0(N), S 
= N , a finite set D∗(S) = {B(1, S),
. . . , B(k(S), S)} ⊆ E(S) such that for every B ∈ E(S) there exists 1 ≤ j ≤
k(S) with U(B, ε) ⊇ B(j, S). This is possible by a standard argument, using
compactness of (K(A), dH ). By induction on |S| we construct a system D(S),
S 
= ∅, N , such that

(1) D∗(S) ⊆ D(S) ⊆ E(S);
(2) D(S) is finite;
(3) for all S, T : S ⊆ T ⇒ D(S) ⊆ D(T ); and
(4) if Bi ∈ D(Si), i = 1, 2, and S1 ∩ S2 = ∅, then B1 ∩B2 ∈ E(S1 ∪ S2).

(The system D(S) for all S 
= ∅, N is constructed by taking D∗(S) and
adding sets in such a way as to satisfy the monotonicity and superadditivity
conditions in (3) and (4), starting with the singleton coalitions.) Let now
Ẽ : P (N) → P (K(A)) be the effectivity function which is finitely generated
by the system D(S), S 
= ∅, N . Then Ẽ is monotonic and superadditive. By
Theorem 7.3.2, Ẽ has a continuous representation Γ. By the way the sets
D∗(S) are chosen it follows that Γ is an ε-representation of E. ��

7.4 The reduction theorem

Let A be a compact metric space of alternatives and let N = {1, . . . , n} be
the set of members of the society. Suppose that there exists another compact
metric space M and a continuous surjection f : M → A. Then, as we shall
prove, each effectivity function E : P (N) → P (K(A)) can be ‘lifted’ to the
space M to yield an effectivity function Ẽ : P (N) → P (K(M)) such that
with every continuous representation of Ẽ we can associate in a natural way
a continuous representation of E. This result is our ‘reduction theorem’. It is
useful in view of the following famous result in general topology.

Theorem 7.4.1. If A is a compact metric space, then there exists a contin-
uous mapping from the Cantor set C onto A.

Remark 7.4.2. Recall that the Cantor set is the subset of the unit interval
[0, 1] constructed as follows. From [0, 1] leave out the open interval (1

3 ,
2
3 ),
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from the remaining set leave out the open intervals (1
9 ,

2
9 ) and (7

9 ,
8
9 ), etc., ad

infinitum. The remaining set is the Cantor set C. Alternatively, the Cantor
set is the set of numbers in [0, 1] of which the triadic expansion does not
contain the number 1, with the understanding that, for instance, the number
1
3 is written as 0.02222... in triadic expansion. Clearly, the Cantor set is a
compact and metric space. Its complement is open and dense in [0, 1]. See
Kelley (1955, pp. 165–166) for a treatment of the Cantor set and Theorem
7.4.1.

In view of Theorem 7.4.1 it is sufficient to find continuous representations
when A = C. This, indeed, simplifies the problem since K(C) has a continuous
selection: for each B ∈ K(C) define ϕ(B) = maxx∈B x, then ϕ : K(C) → C
is continuous (where K(C) is endowed with the Hausdorff metric). This fact
will be used in the next section.

We now turn to the general reduction theorem. As above, let A and M be
compact metric spaces and let f : M → A be a continuous surjection. Let
E : P (N) → P (K(A)) be an effectivity function, then we define a function
Ẽ : P (N) → P (K(M)) by Ẽ(∅) = ∅, Ẽ(N) = K(M), and

Ẽ(S) = {B̃ ∈ K(M) | B̃ ⊇ f−1(B) for some B ∈ E(S)} (7.8)

otherwise. Clearly, Ẽ is an effectivity function.1 Also, we note the following
result.

Lemma 7.4.3. If E is monotonic and superadditive, then Ẽ is also mono-
tonic and superadditive.

Proof. Assume that E is monotonic and superadditive. Then the monotonic-
ity of Ẽ is obvious. We are left to prove superadditivity. Let B̃i ∈ Ẽ(Si),
i = 1, 2, and S1 ∩ S2 = ∅. There exist Bi ∈ E(Si), i = 1, 2, such that
B̃i ⊇ f−1(Bi), i = 1, 2. By superadditivity of E, B1 ∩ B2 ∈ E(S1 ∪ S2).
Hence

B̃1 ∩ B̃2 ⊇ f−1(B1) ∩ f−1(B2) = f−1(B1 ∩B2)

and therefore B̃1 ∩ B̃2 ∈ Ẽ(S1 ∪ S2). ��

We now assume that E and, thus, Ẽ are monotonic and superadditive,
and remark for future reference that

[B̃ ∈ Ẽ(S) ⇒ f(B̃) ∈ E(S)] for all S ∈ P (N) and B̃ ∈ Ẽ(S). (7.9)

The main result of this section is the following.

Theorem 7.4.4 (Reduction theorem). Let Γ̃ = (N ; Σ1, . . . ,Σn; g;M) be
a (continuous) representation of Ẽ. Then Γ = (N ; Σ1, . . . ,Σn; f ◦ g;A) is a
(continuous) representation of E.

1 Not to be confused with the lottery model in Chapter 6, for which the same notation
was used.
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Proof. Since f ◦g is continuous if g is continuous, we only have to prove that Γ
is a representation of E. Let S ∈ P0(N) and B ∈ E(S). Then f−1(B) ∈ Ẽ(S),
and therefore there exists σS ∈ ΣS such that g(σS , μN\S) ∈ f−1(B) for all
μN\S ∈ ΣN\S, i.e., f(g(σS , μN\S)) ∈ B. Thus, B ∈ EΓ(S).

Let now D ∈ K(A) \ E(S). By (7.9), f−1(D) /∈ Ẽ(S). Hence, for every
σS ∈ ΣS there exists μN\S ∈ ΣN\S such that g(σS , μN\S) /∈ f−1(D). Thus,
f(g(σS , μN\S)) /∈ D, and D /∈ EΓ(S). ��

Remark 7.4.5. An interesting consequence of Example 7.2.1 and Theorems
7.4.1 and 7.4.4 is the existence of an effectivity function E : P ({1, 2}) →
P (K(C)) that has no continuous representation.

7.5 Semicontinuous representations on R

In view of the reduction theorem (Theorem 7.4.4) and Theorem 7.4.1, which
says that each compact metric space is a continuous image of the Cantor set,
the latter set will play a special role in our investigation of the existence of
continuous representations. In this section we consider the case where the set
of alternatives A is a compact subset of the real line. In that case it makes
sense to consider upper or lower semicontinuity of outcome functions.

We start with a remark about the relation between the upper topology (see
Section 3.4) and the topology induced by the Hausdorff distance (see Section
7.2) on the set of nonempty closed subsets of a compact metric space.

Remark 7.5.1. Let A be a compact metric space with metric d and let K =
{B ∈ K(A) | B ⊆ U}, where U is an open set in A, be a base element of
the upper topology. Clearly, K is also open in (K(A), dH ), so that the upper
topology is a coarsening of the topology induced by the Hausdorff metric:
every subset of K(A) that is open [closed] in the upper topology is also open
[closed] in the topology induced by the Hausdorff topology.

Conversely, suppose that K ⊆ K(A) is closed in (K(A), dH), and that
K is closed under taking supersets, that is, B ∈ K implies B′ ∈ K for all
B,B′ ∈ K(A) with B ⊆ B′. Then K is also closed in the upper topology. To
see this, let B ∈ K(A) be a limit point of K in the upper topology. For every
k ∈ N define the open (in A) set Uk by Uk = {y ∈ A | d(y,B) < 1

k}. Then
the set {C ∈ K(A) | C ⊆ Uk} is an open neighborhood of B in the upper
topology, and therefore contains an element Bk ∈ K. Every limit point of a
subsequence of (Bk)k∈N in (K(A), dH ) is in the closure (within (K(A), dH))
of K, hence in K since K is by assumption closed in (K(A), dH ). Moreover,
by definition of Uk, every such limit point is a subset of B. Since K is closed
under taking supersets, it follows that B ∈ K. Hence, K is closed in the
upper topology.
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In particular, suppose that E : P (N) → P (K(A)) is monotonic and closed-
valued, that is, for every S ⊆ N the set E(S) is closed in (K(A), dH ). Then
E(S) is closed in the upper topology for every S ⊆ N .

The following theorem provides sufficient conditions for the existence of
a semicontinuous representation when the set of alternatives is a compact
subset A of the real line. We say that Γ = (N ; Σ1, . . . ,Σn; g;A) is a semicon-
tinuous representation if the outcome function g : Σ → A is upper or lower
semicontinuous. (Given a topology on Σ, the function g : Σ → A is upper
[lower] semicontinuous whenever σt → σ implies lim supt→∞ g(σt) ≤ g(σ)
[lim inft→∞ g(σt) ≥ g(σ)].)

Theorem 7.5.2. Let A be a compact subset of R and let E : P (N) →
P (K(A)) be a monotonic and superadditive effectivity function, such that
E(S) is closed in (K(A), dH ) for every S ⊆ N . Then E has a semicontinuous
representation.

Proof. We will construct a representing game form with upper semicontinu-
ous outcome function. Let N i = {S ⊆ N | i ∈ S}. Now let

Υ i = {υi : N i → N i ×N | υi
1(S) ⊆ S and υi

2(S) ∈ S} ,

where υi = (υi
1, υ

i
2). Further, let

M i = {ψi : N i → K(A) | ψi(S) ∈ E(S) for every S ∈ N i} ,

and

M i
∗ = {ψi

∗ : N i → K(A) | ψi
∗(S) ∈ E∗(S) for every S ∈ N i} .

Define now a game form Γ = (N ; Σ1, . . . ,Σn; g;A) by the following rules. Let
Σi = Υ i ×M i ×M i

∗ × N × {0, 1} for all i ∈ N . Here, M i =
∏

Si∈Ni E(S)
and M i

∗ =
∏

Si∈Ni E∗(S) are endowed with the product topology, and Υ i,
N , and {0, 1} are endowed with the discrete topology. Observe that, since
E∗(S) is closed in the upper topology (see Section 3.4), by Remark 7.5.1 it
is also closed in (K(A), dH ), for each S ⊆ N . Thus, Σi is a compact metric
space for every i ∈ N .

It remains to define g. Let σi = (υi, ψi, ψi
∗, t

i, qi) for i ∈ N . Using
υ1, . . . , υn we introduce the following partitions of N . First, for S ∈ P0(N),
we define an equivalence relation ∼σ on S by

i ∼σ j ⇔ υi(S) = υj(S) for all i, j ∈ S ,

where σ = (σ1, . . . , σn). Denote by D(S, σ) the partition of S with respect
to ∼σ. Let the first partition of N be H0(σ) = {N} and define inductively
the following partitions, as follows. If Hk(σ) = {Sk,1, . . . , Sk,�} is the k-th
partition, k ≥ 0, then we define

Hk+1(σ) =
�⋃

j=1

D(Sk,j , σ).
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Clearly, there exists a minimal r such that Hk(σ) = Hr(σ) for all k ≥ r. Let
Hr = {S1, . . . , S�}. The coalitions S1, . . . , S� are called final. For each final
coalition Sj , j = 1, . . . , �, there exists kj ∈ Sj such that υi(Sj) = (Sj , kj) for
all i ∈ Sj . Further, a final coalition is called decided if qkj = 0.

In defining g we distinguish the following three cases:

� = 1. Then let g(σ) = max(ψk1(N)) (= max{x | x ∈ ψk1(N)}). (7.10)
{
� > 1 and S1, . . . , S� are decided.
Then let g(σ) = max

(
ψk1(S1) ∩ . . . ∩ ψk�(S�)

)
.

(7.11)

⎧
⎪⎨

⎪⎩

S1, . . . , Sh, h ≥ 1, are undecided and Sh+1, . . . , S� are decided.
Then choose j =

∑h
u=1 t

ku mod h, and let
g(σ) = max

(⋂
u
=j ψ

ku(Su) ∩ ψkj∗ (Sj)
)
.

(7.12)

We claim that g is upper semicontinuous. To this end we first observe the
following inclusion.

Bi(t) → Bi in (K(A), dH ), i = 1, 2 ⇒ lim sup
t→∞

B1(t) ∩B2(t) ⊆ B1 ∩B2 .

(7.13)

(If B(t) ∈ K(A), t = 1, 2, . . . then x ∈ lim supt→∞B(t) if there exists a
subsequence t1 < t2 < . . . and x(tj) ∈ B(tj), j = 1, 2, . . ., such that x =
limj→∞ x(tj).)

Let now σi
m = (υi

m, ψ
i
m, ψ

i∗m, t
i
m, q

i
m) → σi for m → ∞, i ∈ N . Then

there is m0 such that υi
m, t

i
m, q

i
m, i = 1, . . . , n, are constant for m ≥ m0.

This implies that for m ≥ m0, the determination of g stays in the same
case (7.10), (7.11), or (7.12); neither the attained partition nor decidedness
or undecidedness change; and the players making the choices do not change.
Only the sets of alternatives from which the choice is made change. Now the
upper semicontinuity of g follows with the aid of (7.13).

We shall now prove that Γ is a representation of E. Let S ∈ P0(N),
S 
= N , let B ∈ E(S) and let u ∈ S. Let σS ∈ ΣS satisfy υi(S′) = (S, u)
and ψi(S′) = B for all i ∈ S and S′ ⊇ S, and, in addition, qu = 0. Then for
every μN\S ∈ ΣN\S , S is a decided final coalition, and ψu(S) = B. Hence,
g(σS , μN\S) ∈ B for every μN\S ∈ ΣN\S . Thus, E(S) ⊆ EΓ(S).

Next, let D ∈ K(A) \ E(S). By Remark 7.5.1 E(S) is closed in the upper
topology for every S ⊆ N . Hence, by Lemma 4.2.8, E = E∗∗.2 Thus, D /∈
E∗∗(S). Therefore, by definition of the polar, there exists B ∈ E∗(N \S) such
that B ∩D = ∅. Let u ∈ N \ S, let μN\S ∈ ΣN\S satisfy υi(T ) = (N \ S, u)
and ψi∗(T ) = B for all i ∈ N \ S and T ⊇ N \ S. Further, let qu = 1. For
any σS ∈ ΣS , N \S is a final undecided coalition with respect to (σS , μN\S),
and ψu∗ (N \ S) = B. By adjusting tu (after σS is chosen), N \ S can arrange
that g(σS , μN\S) ∈ B. Since B ∩ D = ∅, this implies D /∈ EΓ(S). Thus,
EΓ(S) ⊆ E(S). ��
2 That is, E is reflexive.
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The fact that the outcome function g in the game form Γ constructed in
the proof of Theorem 7.5.2 is only semicontinuous but does not have to be
continuous, is due to the lack of continuity of set intersection, cf. Example
7.2.1. Although in this example the set of alternatives is a subset of R2, it is
not difficult to give an example where A ⊆ R, see Remark 7.4.5 – where A is
the Cantor set – or the following example.

Example 7.5.3. Let N = {1, 2}, A = [0, 2], and let E : P (N) → P (K(A)) be
defined by E(∅) = ∅; E(N) = K(A); E(1) contains all sets of the form

Bk
1 =

{
1
k
,
2
k
,
3
k
, . . . ,

2k − 1
k

}
, k = 1, 2, . . .

and all closed supersets within [0, 2]; and E(2) contains all sets of the form

Bk
2 =

{
1,

1
k
√

2
,

2
k
√

2
,

3
k
√

2
, . . . ,

mk

k
√

2

}
,
mk

k
√

2
< 2 <

mk + 1
k
√

2
, k = 1, 2, . . .

and all closed supersets within [0, 2]. Then E is a superadditive and monotonic
effectivity function. Moreover, Bk

1 ∩ Bk
2 = {1} for each k = 1, 2, . . ., whereas

limk→∞Bk
1 = limk→∞Bk

2 = [0, 2]. Hence limk→∞Bk
1 ∩ Bk

2 = {1} 
= [0, 2] =
limk→∞Bk

1 ∩ limk→∞Bk
2 . (Limits are taken with respect to the Hausdorff

metric.)
Suppose that in the game form Γ constructed in the proof of Theo-

rem 7.5.2 the two players play strategies σ1
k and σ2

k, k = 1, 2, . . ., such
that g(σk) = g(σ1

k, σ
2
k) = max

(
Bk

1 ∩Bk
2

)
, i.e., case (7.11) applies for each

k = 1, 2, . . . Then limk→∞ g(σk) = limk→∞ max
(
Bk

1 ∩Bk
2

)
= 1, whereas

g(σ) = g(limk→∞ σk) = max([0, 2]) = 2. Clearly, g is not continuous.

Next we investigate Nash consistency of the game form Γ constructed in
the proof of Theorem 7.5.2. Assume that the conditions of this theorem are
satisfied and denote

QN = {RN ∈ V N | ∃x ∈ A∀i ∈ N [L(x,Ri) ∈ E(N \ i)]} . (7.14)

Proposition 3.2.1 implies that QN is the maximal subdomain of the domain
of continuous preference profiles V N on which Γ may be Nash consistent. We
now prove that Γ is indeed Nash consistent on QN .

Theorem 7.5.4. Let Γ be the game form constructed in the proof of Theorem
7.5.2. Then for every RN ∈ QN , defined by (7.14), the game (Γ, RN ) has a
Nash equilibrium.

Proof. Let RN ∈ QN with x as in (7.14). Consider strategies σ1, . . . , σn with

υi(N) = (N, 1); ψi(N) = {x}, for all i ∈ N, (7.15)

and{
υi(N \ j) = (N \ j, kj) where kj = (j + 1) mod n ,
ψi(N \ j) = L(x,Rj), all i ∈ N \ j, j = 1, . . . , n. (7.16)

Then g(σ) = x and g(σN\i, τ i) ∈ L(x,Ri) for every τ i ∈ Σi and i ∈ N . Thus,
σ is a Nash equilibrium in (Γ, RN). ��
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By similar arguments as in Chapter 3, Γ in Theorem 7.5.2 is a ‘canonical’
representation, i.e., a representation with a maximum set of Nash equilibrium
outcomes. Also, and as in Chapter 3, since A is compact it follows that Γ is
weakly acceptable.

7.6 Representations of effectivity functions and modified
Baire functions

Properties of representations of effectivity functions like upper or lower semi-
continuity may be useful in many contexts. In this section we continue this
line of investigation of continuity properties and we study the implication of
Theorem 7.5.2 for general compact metric spaces, relying on a generaliza-
tion of the reduction theorem (Lemma 7.6.3). We start with the following
definitions.

Let M be a metric space. A set B ⊆ M is called a Gδ [Fσ] if it can be
written as a countable intersection of open sets [a countable union of closed
sets]3. It is a Gδσ if it can be written as a countable union of sets, each of
which is a Gδ. A function f : M → O between metric spaces M and O is a
Baire function of class 0 if it is continuous, that is, f−1(G) is open for every
open set G. It is a (modified) Baire function of class 1 if f−1(G) is an Fσ for
each open set G, and, finally, it is a (modified) Baire function of class 2 if
f−1(G) is a Gδσ for each open set G. For further discussion of Baire classes,
the reader is referred to Hausdorff (1962).

Let M be a compact metric space and let E : P (N) → P (K(M)) be
a monotonic and superadditive effectivity function with closed values (in
(K(M), dH)). By Lemma 7.4.3, E can be ‘lifted’ to a monotonic and super-
additive effectivity function Ẽ : P (N) → P (K(C)) as defined in (7.8). We
will prove below that Ẽ may be chosen to have closed values in (K(C), dH).
Therefore, by Theorem 7.5.2, Ẽ has an upper semicontinuous representation
Γ̃ = (N ; Σ1, . . . ,Σn; g; C). Applying now the reduction theorem (Theorem
7.4.4) we obtain that Γ = (N ; Σ1, . . . ,Σn; f ◦ g;M) is a representation of E,
where f : C → M is a continuous surjection of the Cantor set onto M . Now,
if U ⊆ M is an open set, then (f ◦ g)−1(U) = g−1(f−1(U)) is, as we shall
prove, a Gδσ of Σ = Σ1 × . . .×Σn. Hence, f ◦ g is a modified Baire function
of class 2 – see Appendix D in Hausdorff (1962).

We summarize the foregoing discussion in the following theorem.

Theorem 7.6.1. Let M be a compact metric space and let E : P (N) →
P (K(M)) be a monotonic and superadditive effectivity function with closed
values in (K(M), dH). Then E has a representation Γ = (N ; Σ1, . . . ,Σn; ĝ;M)
such that for every open set U ⊆M we have that ĝ−1(U) is a Gδσ, that is, ĝ
is a modified Baire function of class 2.

3 Gδ sets were discussed before, see Section 5.4.
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The proof of Theorem 7.6.1 follows from the lemmas below. Let M and
E as in the theorem and let f : C → M be a continuous surjection. Define
an effectivity function Ẽ : P (N) → P (K(C)) in two steps. For S ∈ P0(N),
S 
= N ,

Ê(S) = cl {B̂ ∈ K(C) | B̂ = f−1(B) for some B ∈ E(S)} ; (7.17)

Ẽ(S) = {B̃ ∈ K(C) | B̃ ⊇ B̂ for some B̂ ∈ Ê(S)} . (7.18)

As usual, Ẽ(N) = K(C) and Ẽ(∅) = ∅.

Lemma 7.6.2. Ẽ is a monotonic and superadditive effectivity function with
closed values.

Proof. Monotonicity is obvious. Also, Ẽ has closed values since Ê has (by
definition) closed values. For superadditivity, let S1, S2 ∈ P0(N), S1∩S2 = ∅,
B̂1 ∈ Ê(S1), and B̂2 ∈ Ê(S2). Then there exist B1,k ∈ E(S1), B2,k ∈ E(S2),
k = 1, 2, . . . such that f−1(B1,k) → B̂1 and f−1(B2,k) → B̂2. Clearly, Ck =
B1,k ∩ B2,k ∈ E(S1) ∪ E(S2), k = 1, 2 . . . We may assume (by considering a
subsequence) that f−1(Ck) → Ĉ. By (7.17), Ĉ ∈ Ê(S1∪S2). Also, f−1(Ck) =
f−1(B1,k) ∩ f−1(B2,k) for each k. Hence, Ĉ ⊆ B̂1 ∩ B̂2 and, thus, B̂1 ∩ B̂2 ∈
Ẽ(S1 ∪ S2). ��

We now observe that

B̃ ∈ Ẽ(S) ⇒ f(B̃) ∈ E(S), for all S ∈ P0(N) and B̃ ∈ K(C). (7.19)

Indeed, if B̂ ∈ Ê(S), then there is a sequence (Bk) in E(S) such that
f−1(Bk) → B̂. By the (uniform) continuity of f , it follows that Bk =
f(f−1(Bk)) → f(B̂). Thus, f(B̂) ∈ E(S). Hence, (7.19) holds as well.

Lemma 7.6.2 and (7.19) imply the following result by an argument analo-
gous to the proof of the reduction theorem (Theorem 7.4.4).

Lemma 7.6.3. If Γ̃ = (N ; Σ1, . . . ,Σn; g; C) is a representation of Ẽ, then
Γ = (N ; Σ1, . . . ,Σn; f ◦ g;M) is a representation of E.

Our final lemma is a standard exercise on semicontinuous real functions.

Lemma 7.6.4. Let M∗ be a metric space and let g : M∗ → C be an upper
semicontinuous function. Then for every open set U ⊆ C, g−1(U) is a Gδσ.

Proof. First we compute the inverse image of a ‘ray’ in C. There are four
possibilities.
(1) D = {x ∈ C | x ≥ a} for some a ∈ C. Then upper semicontinuity of g
implies that g−1(D) is closed.
(2) D = {x ∈ C | x > a} for some a ∈ C, a < 1, and D is not of the form as
in (1). Then there are countable as ∈ C such that as ↓ a. Hence
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g−1(D) = g−1

(
⋃

s

{x ∈ C | x ≥ as}
)

=
⋃

s

g−1 ({x ∈ C | x ≥ as})

which is an Fσ .
(3) D = {x ∈ C | x < a} for some a ∈ C. Then by (1), g−1(D) is open.
(4) D = {x ∈ C | x ≤ a} for some a ∈ C. Then, for the complement M∗ \
g−1(D) of g−1(D), either case (1) applies, so that g−1(D) is open; or case (2)
applies, so that g−1(D) is a Gδ (since M∗ \ g−1(D) is an Fσ).

By (1)–(4), the inverse image under g of every interval (closed, open, or
half-closed) in C is the intersection of an Fσ with a Gδ, and hence it is a
Gδσ. Formally, every open set in C is the union of countably many intervals.
Hence, if U ⊆ C is open, then g−1(U) is a Gδσ . ��

Theorem 7.6.1 now follows from Lemmas 7.6.2, 7.6.3, 7.6.4, and Theorem
7.5.2.

7.7 Notes and comments

This chapter is based on Keiding and Peleg (2006b). It is worthwhile to
emphasize that in spite of Examples 7.2.1 and 7.5.3 continuity properties of
effectivity functions are latent everywhere in our model. Indeed, we prove
existence of ε-representations of monotonic and superadditive toplological
effectivity functions (Theorem 7.4.4). Also, if the space of alternatives is the
Cantor set, then every monotonic and superadditive effectivity function with
closed values has a semicontinuous representation (Theorem 7.5.2).

Remark 7.7.1. We reemphasize that if set intersection were continuous (in
(K(A), dH )), then one could prove existence of continuous representations in C
– this is apparent from the proof of Theorem 7.5.2. By the reduction theorem
all (monotonic and superadditive) effectivity functions with closed values,
on arbitrary compact metric spaces of alternatives, would have continuous
representations. Thus, indeed, the discontinuity of the intersection is the sole
reason for the nonexistence of continuous representations.



Part II

Consistent voting



Chapter 8

Introduction to Part II

8.1 Motivation and summary

In this chapter we first recall the Gibbard-Satterthwaite Theorem and re-
view some of its implications. This is done in Section 8.2. The rest of the
chapter is devoted to consideration of the problem of preference distortion
as a consequence of manipulation of non-dictatorial voting rules. First we
observe that the Gibbard-Satterthwaite Theorem does not tell us whether or
not the sincere outcome is obtained after manipulation. It may be the case
that strategic voting leads to an equilibrium of which the outcome is the
sincere outcome. In that case, the result of voting by a secret ballot would be
indistinguishable from that of sincere voting. Indeed, in Section 8.3 we de-
fine exactly and strongly consistent social choice functions. Such social choice
functions have for each profile of (true) preferences a strong (Nash) equilib-
rium that yields the sincere outcome. This class of social choice functions is
the main topic of Chapters 9–11, in which we present several existence and
characterization theorems. In particular, in Chapter 11 we extend some of
the results of Chapters 9 and 10 to voting games with a continuum of voters.

In Section 8.4 we very briefly discuss voting on restricted domains for
which the manipulation problem is eliminated, and mention a few references
in order to direct the reader to some of the main results in this area.

We conclude the chapter with a discussion of equilibrium with threats,
following an idea of Pattanaik (1976), which presents another way to obtain
the sincere outcome if manipulation is possible. We construct non-dictatorial
social choice functions with the property that sincere voting is always an
equilibrium with threats.

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
DOI 10.1007/978-3-642-13875-1 8, c© Springer-Verlag Berlin Heidelberg 2010
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8.2 The Gibbard-Satterthwaite Theorem and its
implications

Let A be a set of m alternatives, m ≥ 3, and let N = {1, . . . , n} be a set of
voters. Let L denote the set of all linear orderings (strict preferences) on A,
that is, the set of all transitive, reflexive, antisymmetric and complete binary
relations on A. A social choice function (SCF) is a map F : LN → A. An
SCF F is non-manipulable (or strategy-proof) if for each profile of preferences
RN ∈ LN the strategy-profile RN itself is a Nash equilibrium in the game
(F,RN ). Thus, if F is manipulable (not non-manipulable) then there exist
RN

0 ∈ LN , i ∈ N , and Qi ∈ L such that F (RN\{i}
0 , Qi)Ri

0 F (RN
0 ), and

F (RN\{i}
0 , Qi) 
= F (RN

0 ). In this case, RN
0 is a situation in which player i

has an incentive to misrepresent his preference – ‘play’ Qi instead of his
true preference Ri

0. In slightly different words, non-manipulability of a social
choice function means that for every voter (player) reporting (playing) his
true preference is a weakly dominant strategy in every situation, i.e., every
game (F,RN ).

For a social choice function F : LN → A let the range of F , A∗, be defined
by

A∗ = {x ∈ A | x = F (RN ) for some RN ∈ LN}.

A player d ∈ N is a dictator of F if F (RN )Rd x for every RN ∈ LN and
x ∈ A∗. The SCF F is dictatorial if it has a dictator. A fundamental result
of Gibbard (1973) and Satterthwaite (1975) is the following theorem.1

Theorem 8.2.1. If a social choice function F is non-manipulable and |A∗| ≥
3, then F is dictatorial.

Thus, if a non-dictatorial social choice function F has full range (A = A∗)
then it must be manipulable. This implies that most social choice functions
based on voting procedures in every-day use, like choice by plurality voting,
Borda count, and approval voting, are manipulable. A natural question is to
which extent manipulability of a social choice function is a drawback. After
all, a voting game (F,RN ) is just a strategic game like many other every-
day games (auctions, oligopolies, etc.) and so ‘strategic’ behavior is ‘all in
the game’. Nevertheless, manipulating behavior in strategic voting situations
has some disturbing consequences, as pointed out by many authors (e.g.,
recently, Feldman and Serrano, 2005). Here, we list what we think are its
main drawbacks.

First, a specific social choice function may have been adopted because
of certain appealing properties, but these may be lost due to manipulation.
For example, a social choice function based on plurality voting is Paretian.
However, games associated with it may have equilibria resulting in outcomes
that are not Pareto optimal. Cf. Feldman and Serrano (2005).

1 For a proof see Chap. 11 in Peters (2008).
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Second, manipulation may be objectionable on ethical grounds. Specifi-
cally, a manipulating voter may benefit at the expense of others who do vote
truthfully.

Third, by manipulating behavior, especially of large groups of voters, the
outcome of the voting procedure may be very far from the sincere outcome,
i.e., the outcome corresponding to the profile of true preferences. Typically,
for instance, in a Parliamentary democracy, voters may not vote for a small
but favored political party if that party is unlikely to be a member of the gov-
ernment that is formed on the basis of the national election. (More formally,
assuming that voters play an equilibrium in some equilibrium correspondence
EQ, the actual voting correspondence changes from F to F ◦ EQ.) On the
basis of this argument, Feldman and Serrano (2005) question the legitimacy
of the voting outcome if the voting procedure is manipulable.

Fourth, an important consequence of non-manipulability is that it requires
only each voter’s knowledge of his own preference. Thus, it makes the act of
voting simple and reliable. This feature is lost under manipulability. On the
other hand, this argument can also be considered to render the possibility of
manipulation less harmful, since the cost of manipulation – e.g., to acquire
the necessary information about the preferences and voting behavior of others
– may prevent voters from actually manipulating.

In the next section we propose a weakening of the non-manipulability
condition that takes away many of these drawbacks, since it results in the
sincere outcome.

8.3 Exactly and strongly consistent social choice
functions

In order to avoid distortion of the voting outcome implied by the Gibbard-
Satterthwaite Theorem we shall weaken the non-manipulability requirement
in the remainder of this book in such a way that (i) nevertheless the sincere
outcome can result and (ii) this outcome can result under a strong stability
condition. More precisely, we impose that the sincere outcome is always a
strong (Nash) equilibrium outcome of the voting game under consideration.
In a strong equilibrium (formally introduced in Definition 5.2.1) not only
single players but also coalitions cannot gain by (joint) deviations. This route
was first suggested in Peleg (1978a).

Definition 8.3.1. The social choice function F : LN → A is exactly and
strongly consistent (ESC) if for every RN ∈ LN there exists a strong equilib-
rium QN of the game (F,RN ) such that F (QN ) = F (RN ).

An ESC social choice function trivially exists – take a constant social choice
function, assigning a fixed alternative to any preference profile. In interesting
cases, however, social choice functions are surjective, so their range is A. If



100 8 Introduction to Part II

F is a surjective ESC social choice function then, in particular, the game
form F is a strongly consistent representation of the effectivity function EF

associated with (the game form) F (see Chapter 5). This implies, in turn,
that F (QN) is an element of the core C(EF , RN ) for every strong equilibrium
QN of the game (F,RN ) – see Proposition 5.2.6. It follows that the sincere
outcome F (RN ) of the voting game (F,RN ) is in the core of (EF , RN ) and, in
particular, Pareto optimal. More generally, Pareto optimality is maintained
if we assume that voters play a strong equilibrium.

Moreover, under exact and strong consistency and assuming that voters
play a strong equilibrium it is at least possible that the sincere outcome
results. If voters have a more or less accurate conjecture about what the
sincere outcome is, then a strong equilibrium QN resulting in the sincere
outcome may become a focal point in the sense of Schelling (1960) – perhaps
because of ethical considerations. This may alleviate the objection of political
illegitimacy of the voting procedure as mentioned in the preceding section.

As a final note, we mention that if F is a surjective non-dictatorial ESC
social choice function, then there exist an RN ∈ LN and a strong equilibrium
QN of the game (F,RN ) such that F (QN ) 
= F (RN). Indeed, if not, then F
as a game form implements the SCF F in strong equilibrium: all strong equi-
libria of (F,RN ) result in the outcome F (RN ). This implies in particular that
F is Maskin monotonic (see Remark 3.7.3 for the definition of Maskin mono-
tonicity; the implication follows, e.g., by Lemma 6.5.1 in Peleg, 1984). This,
in turn, implies that F is dictatorial by the Muller-Satterthwaite Theorem
(see Muller and Satterthwaite, 1977). In other words, under non-dictatorship
we cannot have that every strong equilibrium always results in the sincere
outcome.

8.4 Strategyproofness and restricted preferences

Following the works of Gibbard (1973) and Satterthwaite (1975) there is a
large strand of literature trying to avoid the consequences of the Gibbard-
Satterthwaite Theorem. Most of this literature concentrates on what is often
termed the universal domain assumption in this theorem, which means that
all (strict) preferences – both as true preferences and as reported preferences
– are allowed. Dropping this assumption is usually referred to as the restricted
domain approach.

For a social choice function F one may consider the set

Sp(F ) = {RN ∈ LN | RN is a Nash equilibrium of (F,RN )},

and then F is strategy-proof on the domain Sp(F ). The implicit assumption
here is that the true preference profiles are from this domain, and that may
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be a strong assumption. Moreover, it may be quite difficult to compute or
characterize the domain Sp(F ).

Most results in this area are less ambitious. For instance, it was already
known from Black (1948), Arrow (1951, 1963), or Dummet and Farquharson
(1961) that generalized majority rule is strategy-proof when both the true and
the reported preference profiles are restricted to be single-peaked. (A profile
is single-peaked if there exists an ordering of the alternatives along which
each individual preference is unimodal.) Blin and Satterthwaite (1976) show
that this result no longer holds if the reported preference profiles are allowed
to be more general, even if the true preferences are single-peaked. They do
this by considering a social choice function that picks the Condorcet winner
(i.e., an alternative that beats all other alternatives in pairwise comparison) if
there is one, and otherwise picks the alternative with maximal Borda count.2

A well-known example of the converse phenomenon is approval voting,
which – under some conditions on extensions of preferences from alternatives
to sets of alternatives – is strategy-proof when both reported and true pref-
erences are dichotomous: that is, each individual approves of a set B and
disproves of the complement (see Brams and Fishburn, 1983). In this case,
strategy-proofness is lost if the true preferences can be more refined (see Roy,
Peters, and Storcken, 2009).

Most results on restricted domains therefore assume that one and the
same restriction applies to both the true and the reported preferences. For
instance, Moulin (1980) characterized all Paretian, anonymous and strategy-
proof social choice functions for a class of single-peaked preferences on the
real line. For an introduction to strategy-proof social choice functions see
Barberà (2001).

A different approach to the implication of the Gibbard-Satterthwaite The-
orem was initiated by Kelly (1988). Accepting this implication, one may look
for social choice functions that are in some way minimally manipulable, e.g.,
in terms of numbers of manipulable profiles3. See Maus, Peters, and Storcken
(2007) for a recent overview.

8.5 Equilibrium with threats

In this section, following an idea of Pattanaik (1976), we define equilibrium
with threats in game forms. We then show that there exist non-dictatorial
social choice functions with the property that sincere voting is always an

2 The Borda rule attaches a score of m points to an individual’s best alternative, m − 1
points to the second best, ..., and 1 point to the worst alternative. The Borda count
is obtained by summing over all individuals. At this introductory level we ignore the
possibility of multiple winners.
3 That is, social choice functions for which Sp(F ) has maximal cardinality.
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equilibrium with threats. This provides another way to cope with the negative
implication of the Gibbard-Satterthwaite Theorem.

As before let N = {1, . . . , n} be a set of voters and let A be a set of
m alternatives, where n ≥ 2 and m ≥ 3. Let Γ = (Σ1, . . . ,Σn; g;A) be a
game form with surjective outcome function, let RN ∈ LN , and let σ ∈ Σ =∏

i∈N Σi. A threat of a coalition S ∈ P0(N) against σ is a strategy profile
μS ∈ ΣS such that

g(μS , σN\S)Ri g(σ) for all i ∈ S, and g(μS , σN\S) 
= g(σ).

A counter-threat to μS is a strategy-profile μN\S ∈ ΣN\S such that g(σ)Ri

g(μS , μN\S) for some i ∈ S. The profile σ is an equilibrium with threats in
(Γ, RN ) if to each threat against σ there exists a counter-threat. In such a
strategy profile, for each deviation of a coalition S that makes all its members
strictly better off, there is a deviation by the complement of S such that at
least one member of S again prefers the original outcome.

We start our discussion of equilibria with threats with the following ob-
servation.

Lemma 8.5.1. Let Γ = (Σ1, . . . ,Σn; g;A) be a game form with surjective
outcome function, let RN ∈ LN , and let σ ∈ Σ. Then σ is an equilibrium
with threats in (Γ, RN) if and only if g(σ) ∈ C(EΓ, RN ).

Proof. (i) Suppose that σ is an equilibrium with threats. If g(σ) /∈ C(EΓ, RN),
then there exists S ∈ P0(N) and B ∈ EΓ(S) such that BRS g(σ) and
g(σ) /∈ B. As B ∈ EΓ(S) there exists μS

0 ∈ ΣS such that for all μN\S ∈ ΣN\S

we have g(μS
0 , μ

N\S) ∈ B. Thus, μS
0 is a threat against σ to which there is

no counter-threat, a contradiction.
(ii) Assume that g(σ) ∈ C(EΓ, RN). If σ is not an equilibrium with threats,

then there exists S ∈ P0(N) and μS
0 ∈ ΣS such that g(μS

0 , μ
N\S)Ri g(σ) and

g(μS
0 , μ

N\S) 
= g(σ) for all i ∈ S and μN\S ∈ ΣN\S . Let B = {g(μS
0 , μ

N\S)
| μN\S ∈ ΣN\S}. Then B ∈ EΓ(S) and BRS g(σ) with g(σ) /∈ B, a contra-
diction. ��

We now prove the claim that we made at the beginning of this section.
We define a social choice correspondence (SCC) as a map H : LN → P0(A).
An SCF F can be seen as a special case of an SCC by setting HF (RN ) =
{F (RN)} for each RN ∈ LN . Call an SCC H citizen sovereign if for each
a ∈ A there is an RN ∈ LN with H(RN ) = {a}. With a citizen sovereign
SCC H we can associate an effectivity function EH by EH(∅) = ∅ and for
all S ∈ P0(N) and B ∈ P0(A),
B ∈ EH(S) ⇔

there is RS ∈ LS with H(RS , QN\S) ⊆ B for all QN\S ∈ LN\S.
Clearly, EH is superadditive.

Theorem 8.5.2. There exists a nondictatorial social choice function F with
the property that sincere voting is always an equilibrium with threats, i.e.,
RN is an equilibrium with threats in the game (F,RN ) for all RN ∈ LN .
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Proof. Let E be a(n arbitrary) non-dictatorial, maximal and stable effectivity
function. Define F : LN → A by choosing F (RN ) ∈ C(E,RN ) for every
RN ∈ LN .

Observe that if B ∈ P0(A) and S ∈ P0(N) with B ∈ E(S), then for RS ∈
LS with BRS A\B we have C(E, (RS , QN\S)) ⊆ B for all QN\S ∈ LN\S, so
that B ∈ EC(E,·)(S), where EC(E,·) is the effectivity function associated with
the (citizen sovereign) social choice correspondence C(E, ·). This implies, in
turn, that B ∈ EF (S) (see Remark 9.3.3 in the next chapter). Hence, E(S) ⊆
EF (S) for all S ∈ P0(N), and since E is maximal and EF superadditive, this
implies E = EF by Lemma 9.3.1 in the next chapter.

Thus, F (RN ) ∈ C(EF , RN) for every RN ∈ LN , and the proof is complete
by Lemma 8.5.1. ��

We conclude this section by observing that for an exactly and strongly
consistent social choice function F the true preference profile RN is always an
equilibrium with threats of the game (F,RN ). This follows from the remarks
in Section 8.3, in particular from the observation that F (RN) ∈ C(EF , RN ),
and Lemma 8.5.1.

8.6 Notes and comments

The discussion in this chapter has benefitted from Peleg (1984), besides from
the references in the text. Section 8.5 is based on Peleg and Procaccia (2007).



Chapter 9

Feasible elimination procedures

9.1 Motivation and summary

We have seen in Chapter 8 that a possible way to avoid the consequences of
the Gibbard-Satterthwaite Theorem is to construct exactly and strongly con-
sistent social choice functions. We recall that such functions ensure that the
sincere outcome is an outcome of a strong Nash equilibrium for each profile
of preferences of the voters. In this chapter and the next ones we investigate
which effectivity functions (constitutions) admit exactly and strongly consis-
tent social choice functions (voting procedures). This is a relevant question
since voting is a basic characteristic of democratic societies. On a smaller
scale, a society (cf. Definition 2.2.1) may be some committee and also then
the existence of robust voting procedures is an important issue.

In this chapter we characterize all exactly and strongly consistent social
choice functions which represent a fixed effectivity function from a family
of anonymous effectivity functions (i.e., effectivity functions that do not dis-
tinguish between coalitions of the same size). From the results in the next
chapter it will follow that every anonymous effectivity function without ve-
toers which has an exactly and strongly consistent representation, belongs to
this family.

Our analysis of the class of exactly and strongly consistent social choice
functions which represent this specific family of anonymous effectivity func-
tions, is done in three stages. In Section 9.2 we show how to construct exactly
and strongly consistent social choice functions by means of feasible elimina-
tion procedures relative to a system of blocking coefficients. In Section 9.3 we
formulate the main problem of this chapter in terms of appropriate effectivity
functions and in Section 9.4 we prove the characterization result.

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
DOI 10.1007/978-3-642-13875-1 9, c© Springer-Verlag Berlin Heidelberg 2010
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9.2 Feasible elimination procedures

Let A = {a1, . . . , am} with m ≥ 2 be a set of alternatives and let N =
{1, . . . , n} be a set of voters. We assume that n + 1 ≥ m. Let the map
β : A→ N satisfy

∑
x∈A β(x) = n+1. Such a map β may be used to define an

anonymous effectivity function (see below) in which each alternative x ∈ A
can be blocked by each coalition of at least β(x) voters – in other words,
such a coalition is effective for A \ {x}. The assumption

∑
x∈A β(x) = n+ 1

ensures that N is effective for every {x}. For B ∈ P0(A) we denote β(B) =∑
x∈B β(x).
An effectivity function E is anonymous if for all B ⊆ A and S, S′ ⊆ N ,

B ∈ E(S) and |S| = |S′| imply B ∈ E(S′).
With the help of the function β we shall now construct a social choice

correspondence (SCC) M : LN → P0(A), where L denotes the set of linear
orderings of A (as in Section 8.2). Let RN ∈ LN . A feasible elimination
procedure (f.e.p.) is a sequence (x1, C1; . . . ;xm−1, Cm−1;xm), where Cs ∈
P0(N) for s = 1, . . . ,m− 1, such that:

Ct ∩ Cs = ∅ and |Cs| = β(xs) for all s, t = 1, . . . ,m− 1, s 
= t. (9.1)

A = {x1, . . . , xm}. (9.2)

{xj , . . . , xm}Rixj for all i ∈ Cj and j = 1, . . . ,m− 1. (9.3)

Observe that in a feasible elimination procedure the first element to be
eliminated, x1, is ranked last by (at least) the voters in the coalition C1. This
alternative, as well as the voters in C1, are then eliminated from the profile.
Next, x2 is then ranked last by (at least) the voters in C2, and x2 as well as
the voters in C2 are eliminated from the profile. And so on and so forth. The
last element, xm, cannot be eliminated since the number of remaining voters
is smaller than β(xm) by the condition

∑
x∈A β(x) = n + 1. Some further

observations concerning f.e.p.’s are collected in the next remark.

Remark 9.2.1. For R ∈ L and j ∈ {1, . . . ,m} let tj(R) denote the alternative
ranked at position j, that is, |{x ∈ A | xR tj(R)}| = j.

(a) Let RN ∈ LN . There must be an x ∈ A and S ⊆ N with |S| = β(x)
and x = tm(Ri) for all i ∈ S. For if not, then

n =
∑

x∈A

∣∣{i ∈ N | x = tm(Ri)}
∣∣ ≤

∑

x∈A

(β(x) − 1) = n+ 1 −m

which contradicts m ≥ 2.
(b) Now suppose the alternatives x1, . . . , xk with 1 ≤ k ≤ m−2 have been

eliminated. If in the remaining profile there would be no alternative x and
coalition S with |S| = β(x) and x ranked last for all i ∈ S, then similarly as
in (a) we would have
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n−
k∑

j=1

β(xj) ≤
∑

x∈A\{x1,...,xk}
(β(x) − 1) = (n+ 1) −

k∑

j=1

β(xj) − (m− k)

hence m ≤ k+ 1 ≤ (m− 2) + 1 = m− 1, a contradiction. So by induction, it
follows that for every RN ∈ LN there exists a feasible elimination procedure.

(c) In fact, using the same argument as in (a) and (b) it follows that an
f.e.p. may fail to exist if

∑
x∈A β(x) > n+1. Suppose

∑
x∈A β(x) = n+� with

� ≥ 1. Then the inequality derived in (b) becomes m ≤ k + � ≤ (m− 2) + �,
which implies � ≥ 2. So if we want an f.e.p. to exist for every profile of
preferences we need � = 1.

(d) Let RN ∈ LN and let x ∈ A. Suppose that there is an S ⊆ N with
β(x) = |S| and x = tm(Ri) for all i ∈ S. Then x is eliminated in each f.e.p.
To see this, suppose there is an f.e.p. in which x is not eliminated and let y
be the alternative eliminated last, say via coalition T . Then the finally left
players form a coalition S′ containing S. We have β(y)+β(x) = |T |+ |S′|+1
by definition of β, but also |T |+ |S′| ≥ β(y) + β(x), a contradiction.

To further illustrate the concept of an f.e.p. we consider an example.

Example 9.2.2. Let A = {a, b, c} and N = {1, . . . , 5}. Let β(a) = β(b) =
β(c) = 2 and let RN be given by the following table.

R1 R2 R3 R4 R5

b c a c a
c b b a c
a a c b b

Then there exist two f.e.p.’s: (a, {1, 2}; b, {4, 5}; c) and (b, {4, 5}; a, {1, 2}; c).
Let RN ∈ LN . The alternative y ∈ A is RN -maximal if there exists an

f.e.p. (x1, C1; . . . ;xm−1, Cm−1; y) with respect to RN . We denote

M(RN) = {x ∈ A | x is RN -maximal}. (9.4)

Example 9.2.3. Consider A, N , and β as in Example 9.2.2. For the profile
RN in this example we have M(RN) = {c}. But M may contain more than
one alternative. Consider for instance the preference profile QN ∈ LN given
by the following table.

Q1 Q2 Q3 Q4 Q5

b c b c b
c b c a c
a a a b a

Then M(QN) = {b, c}.
Remark 9.2.4. The SCC M : LN → P0(A) is obviously Paretian, i.e., M(RN )
contains only Pareto optimal alternatives for every RN ∈ LN (cf. Definition
3.3.7). It is also anonymous: an SCC H : LN → P0(A) is anonymous if for
all permutations π : N → N and all RN ∈ LN we have H(R1, . . . , Rn) =
H(Rπ(1), . . . , Rπ(n)).
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Recall (see Section 8.2) that a social choice function (SCF) is a map F :
LN → A. An SCF F may be considered as a special case of an SCC by
considering the SCC HF (RN ) = {F (RN)}. Then, F is Paretian (anonymous)
if HF is Paretian (anonymous). Our main concern in this chapter are SCF’s
that are selections from M . We first observe that if an SCF F is a selection
from M , that is, F (RN ) ∈ M(RN) for all RN ∈ LN , then F is Paretian.
Second, there exist anonymous selections from M – for instance, select the
maximal element of M(RN ) according to a fixed linear ordering in L.

We have argued in Chapter 8 that one possibility of avoiding the Gibbard-
Satterthwaite Theorem is to construct exactly and strongly consistent (ESC)
social choice functions. We shall now prove that every selection from M is
ESC. For convenience of the reader we replicate the precise definition. Note
that an SCF F can be seen as a game form in which each player has strategy
set L and F is the outcome function. Then (F,RN ) is a game with player
preferences given by RN . In a strong (Nash) equilibrium, no coalition can
gain by deviating, cf. Definition 5.2.1.

Definition 9.2.5. A social choice function F : LN → A is exactly and
strongly consistent if for every RN ∈ LN the game (F,RN ) has a strong
equilibrium QN ∈ LN such that F (QN ) = F (RN ).

The main result of this section is as follows.

Theorem 9.2.6. Let A = {a1, . . . , am}, m ≥ 2, N = {1, . . . , n}, n+ 1 ≥ m,
and β : A→ N such that

∑
x∈A β(x) = n+ 1. Then every selection from M

is exactly and strongly consistent.

Proof. Let an SCF F be a selection from M and let RN ∈ LN . Denote y =
F (RN ). Since y ∈ M(RN) there exists an f.e.p. (x1, C1; . . . ;xm−1, Cm−1; y)
with respect to RN . Take QN ∈ LN with tm(Q�) = xj for all j = 1, . . . ,m−1
and � ∈ Cj . Then M(QN ) = {y} by Remark 9.2.1, parts (b) and (d), so
F (QN ) = y = F (RN ). Also, QN is a strong equilibrium of (F,RN ). Indeed,
assume on the contrary that there exist S ⊆ N and PS ∈ LS such that
F (PS , QN\S) = z 
= y and zRiy for all i ∈ S. Then z = xj for some 1 ≤ j ≤
m− 1. By (9.3), yRiz for all i ∈ Cj , hence S ∩Cj = ∅. Since |Cj | = β(z) and
z = tm(Q�) for all � ∈ Cj , Remark 9.2.1 part (d) implies z /∈ M(PS , QN\S).
So F (PS , QN\S) 
= z, which is the desired contradiction. ��

9.3 Maximal alternatives and effectivity functions

In this section we again assume n+1 ≥ m, and consider a function β : A→ N
with

∑
x∈A β(x) = n + 1 and the associated social choice correspondence

M assigning maximal alternatives, i.e., alternatives resulting from feasible
elimination procedures. We first characterize M in terms of β through the
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use of effectivity functions. To this end we define an effectivity function Eβ :
P (N) → P (P0(A)) by E(∅) = ∅ and

B ∈ Eβ(S) ⇔ |S| ≥
∑

x/∈B

β(x) = β(A\B), for all S ∈ P0(N) and B ∈ P0(A).

It is easy to check that Eβ is indeed an effectivity function (Definition 2.3.1).
We claim that Eβ is also superadditive and maximal. To prove superaddi-

tivity, let Bi ∈ E(Si), i = 1, 2, and S1 ∩ S2 = ∅. Then

|S1 ∪ S2| = |S1| + |S2|
≥ β(A \B1) + β(A \B2)
≥ β ( (A \B1) ∪ (A \B2) )
= β (A \ (B1 ∩B2) ) ,

so that B1 ∩B2 ∈ E(S1 ∪ S2).
To prove maximality, suppose S 
= ∅, N and ∅ 
= B /∈ Eβ(S). Then |S| <

β(A \B) = n+ 1− β(B), so that n− |S| > β(B)− 1. Hence, n− |S| ≥ β(B)
so that A \B ∈ Eβ(N \ S).

Let EM be the effectivity function induced by the social choice corre-
spondence M (see Section 8.5 for the exact definition). Recall that EM is
superadditive. It turns out that EM and Eβ are identical. We first formulate
a general observation about effectivity functions.

Lemma 9.3.1. Let E,E′ : P (N) → P (P0(A)) be effectivity functions with
E(S) ⊆ E′(S) for all S ∈ P0(N), let E be maximal and let E′ be superaddi-
tive. Then E = E′.

Proof. Let S ∈ P0(N) and B ∈ E′(S), and suppose for contradiction that
B /∈ E(S). Then, by maximality of E, A \ B ∈ E(N \ S). Hence A \ B ∈
E′(N \ S), but this contradicts superadditivity of E′, since also B ∈ E′(S).
Hence we must have B ∈ E(S). ��

Lemma 9.3.2. EM = Eβ.

Proof. We first prove Eβ ⊆ EM . Let S ∈ P0(N) and B ∈ Eβ(S). Then
|S| ≥ β(A \ B). Let A \ B = {x1, . . . , xk} and let S1, . . . , Sk be a partition
of S such that |Sj | ≥ β(xj) for all j = 1, . . . , k. Choose RS ∈ LS such that
tm(R�) = xj for all � ∈ Sj and j = 1, . . . , k. Then, by Remark 9.2.1 part (d),
M(RS , QN\S) ⊆ B for all QN\S ∈ LN\S . So B ∈ EM (S).

The lemma now follows from the first part of the proof and Lemma 9.3.1,
since Eβ is maximal and EM is superadditive. ��

Since a social choice function F is a special case of a social choice corre-
spondence the definition in Section 8.5 also defines a (superadditive) effec-
tivity function EF . Theorem 9.2.6 and Lemma 9.3.2 now yield the following
interesting corollary. First we make a simple but useful observation.
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Remark 9.3.3. Let F, F ′ : LN → P0(A) be two social choice correspondences
with F (RN ) ⊆ F ′(RN ) for all RN ∈ LN . Then EF (S) ⊇ EF ′

(S) for all S ∈
P0(N). To see this, let S ∈ P0(N) and B ∈ EF ′

(S). Then there is QS ∈ LS

such that F ′(QS , QN\S) ⊆ B for all QN\S ∈ LN\S. Hence F (QS , QN\S) ⊆ B
for all QN\S ∈ LN\S, so that B ∈ EF (S).

Corollary 9.3.4. If a social choice function F is a selection from M , then
(i) F is exactly and strongly consistent and (ii) EF = Eβ.

Proof. Clearly, we only have to prove (ii). Since EM = Eβ by Lemma 9.3.2 we
have in particular that EM is maximal. Also, EF is superadditive. Hence, to
prove that EF = EM , it is by Lemma 9.3.1 sufficient to prove that EM (S) ⊆
EF (S) for all S ∈ P0(N), but this follows from Remark 9.3.3. ��

It turns out that the converse of Corollary 9.3.4 is true as well.

Theorem 9.3.5. If a social choice function F is exactly and strongly consis-
tent and EF = Eβ, then F is a selection from M .

Theorem 9.3.5 is a direct corollary of the following characterization of M ,
which states that M coincides with the core of Eβ .

Theorem 9.3.6. M(RN ) = C(Eβ , R
N ) for all RN ∈ LN .

We will provide a proof of Theorem 9.3.6 in the next section. To see why
Theorem 9.3.5 follows, note that an SCF F satisfying the conditions in this
theorem must be a selection from the core of its associated effectivity func-
tion EF . This follows from Proposition 5.2.6. Thus, F (RN) ∈ C(EF , RN ) =
C(Eβ , R

N) = M(RN ) for all RN ∈ LN , and Theorem 9.3.5 follows.

Remark 9.3.7. Since M(RN) 
= ∅ for all RN ∈ LN by Remark 9.2.1 part
(b), Theorem 9.3.6 implies in particular that Eβ = EM is stable. Also, since
C(Eβ , ·) is a Maskin monotonic SCC (see Remark 3.7.3), M is Maskin mono-
tonic.

Remark 9.3.8. Maskin monotonicity can be weakened as follows. Let RN ∈
LN and x ∈ A. Call RN

1 an x-improvement of RN if (i) for all a ∈ A\{x} and
all i ∈ N , xRia⇒ xRi

1a and (ii) for all a, b ∈ A \ {x} and all i ∈ N , aRib⇔
aRi

1b. Then a social choice correspondence H : LN → P0(A) is monotonic if
for all RN ∈ LN , all x ∈ H(RN) and all x-improvements RN

1 ∈ LN we have
(i) x ∈ H(RN

1 ) and (ii) H(RN
1 ) ⊆ H(RN ).

Maskin monotonicity of H implies monotonicity. This was proved in Peleg,
1984, Section 2.3, but for the sake of completeness we provide a proof here.
Note that it is sufficient to consider the case where RN

1 arises from RN by
switching x with the alternative ranked right above x, say y, in the preference
of just one player. By Maskin monotonicity, x ∈ H(RN

1 ). Suppose there is
an alternative z ∈ A \ {x} with z ∈ H(RN

1 ). By Maskin monotonicity again,
now applied to z, we obtain z ∈ H(RN ). Thus, H(RN

1 ) ⊆ H(RN ).
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Clearly, the core of a stable effectivity function is a monotonic SCC. A
social choice function F : LN → A is monotonic if the associated SCC
HF (·) = {F (·)} is monotonic. It is not hard to see that if H is a mono-
tonic SCC, then there exists a monotonic SCF F which is a selection from
H : simply fix a linear order in L and let F (RN ) be the maximal element
of H(RN ) according to this linear order. In particular, in this way we can
construct an anonymous, Paretian and monotonic selection from M .

9.4 A proof of Theorem 9.3.6

This section is completely devoted to proving Theorem 9.3.6.
First, let RN ∈ LN and x ∈ M(RN). Choose a selection F from M

such that F (RN ) = x. Then, by Corollary 9.3.4, EF = Eβ and by the
same corollary and Proposition 5.2.6, F (RN ) ∈ C(EF , RN). Thus, M(RN ) ⊆
C(Eβ , R

N).
The converse inclusion M(RN ) ⊇ C(Eβ , R

N) for all RN ∈ LN is proved
by induction on m. For m = 2 and RN ∈ LN , obviously, both M(RN )
and C(Eβ , R

N ) coincide with the same singleton. Henceforth, m ≥ 3. Let
RN ∈ LN and let x ∈ C(Eβ , R

N). Denote A \ {x} = {y1, . . . , ym−1} and let
S(y) = {i ∈ N | xRiy} for all y ∈ {y1, . . . , ym−1}. Since x ∈ C(Eβ , R

N ), we
have for every B ⊆ A \ {x}:

|∩y∈BN \ S(y)| =
∣∣{i ∈ N | yRix for all y ∈ B

∣∣ < β(A \B) = n+ 1 − β(B).

Hence n − |∪y∈BS(y)| < n + 1 − β(B), or |∪y∈BS(y)| ≥ β(B). It is easy to
see that this argument can be reversed, so that:

x ∈ C(Eβ , R
N ) ⇔ |∪y∈BS(y)| ≥ β(B) for all B ⊆ A \ {x}. (9.5)

We first consider the following case:

There exists B0 ⊆ A \ {x} such that 1 ≤ |B0| ≤ m− 2
and |∪y∈B0S(y)| = β(B0).

(9.6)

We now decompose the problem into two (non-disjoint) subproblems:1

(1) N1 = ∪y∈B0S(y), A1 = B0 ∪ {x}, β1(y) = β(y) for all y ∈ B0, β1(x) = 1,
and RN1

1 = RN1 |A1 .

(2)N2 = N\N1, A2 = A\B0, β2(y) = β(y) for all y ∈ A2, andRN2
2 = RN2 |A2 .

By (9.5), x ∈ C(Eβ1 , R
N1
1 )∩C(Eβ2 , R

N2
2 ). Hence by the induction hypothesis

there exists an f.e.p. (z1, C1; . . . ; zk, Ck;x) for subproblem (1), where k =

1 By RS |B we denote the restriction of the profile RS for a coalition S to a set of alterna-
tives B.
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|B0|, and an f.e.p. (u1, D1; . . . ;um−1−k, Dm−1−k;x) for subproblem (2). Since
B0R

ix for all i ∈ N2 by definition of N1 and N2, it follows that

(u1, D1; . . . ;um−1−k, Dm−1−k; z1, C1; . . . ; zk, Ck;x)

is an f.e.p. for the original problem. Thus, in case (9.6), x ∈M(RN).
We now consider the complementary case, i.e.,

|∪y∈BS(y)| > β(B) for all B ⊆ A \ {x} with 1 ≤ B ≤ m− 2. (9.7)

Suppose there is an � ∈ N with x = tj(R�) for some j ≤ m−2, and denote ŷ =
tj+1(R�). We switch x and ŷ in player �’s preference to obtain a new preference
R̂� and a new preference profile R̂N = (R1, . . . , R�−1, R̂�, R�+1, . . . , RN) that
still satisfies the right hand side of (9.5), hence, x ∈ C(Eβ , R̂

N) – note, in
particular, that the right hand side of (9.5) still holds for B = A \ {x} since
x 
= tm(R̂�) and, thus, � ∈ S(tm(R̂�)). If (9.6) holds for R̂N , then by the first
case, x ∈M(R̂N ). Thus, by monotonicity (cf. Remark 9.3.8), x ∈M(RN). If
(9.6) does not hold for R̂N , then we repeat this step for some player �′ ∈ N

with x = tj(R̂�′) for some j ≤ m− 2, and so on, until either (9.6) is satisfied
or there is no player left with x not ranked at the last or before last position.

In the latter case, we have a profile, say R̃N , with still x ∈ C(Eβ , R̃
N ),

and x = tm−1(R̃i) or x = tm(R̃i) for all i ∈ N . Since |S(yj)| ≥ β(yj) for
all j = 1, . . . ,m − 1 by (9.5) (for R̃N), we can take sets Sj ⊆ S(yj) for all
j = 1, . . . ,m − 1 such that (y1, S1; . . . ; ym−1, Sm−1;x) is an f.e.p. for R̃N .
Thus, x ∈M(R̃N ) and by monotonicity again, x ∈M(RN). ��

9.5 Notes and comments

Section 9.2 is based on Peleg (1978a) and on Oren (1981). In particular, the
definition of a feasible elimination procedure and the proof of Theorem 9.2.6
appeared for the first time in Peleg (1978a).

Theorem 9.3.6 is due to Polishchuk (1978). It appeared in print first in
Peleg (1984). The proof presented above is new and much more transparent
than the proof of Theorem 5.4.2 in Peleg (1984). This new proof has benefitted
from the analysis in Peleg and Peters (2006), see also Chapter 11.



Chapter 10

Exactly and strongly consistent
representations of effectivity functions

10.1 Motivation and summary

As argued in the introductory section of the previous chapter it is important
to find robust voting procedures for constitutions. In our approach, ‘robust’
means ‘exactly and strongly consistent’ (ESC): the game induced by the
social choice function should have a strong equilibrium for each profile of
preferences which, moreover, results in the same outcome as truthful voting.

In this chapter we extend the study of ESC representations to general ef-
fectivity functions. We start, in Section 10.2, by generalizing the definition of
a feasible elimination procedure to arbitrary effectivity functions: the general-
ization uses blocking coalitions instead of blocking coefficients. An effectivity
function will be called ‘elimination stable’ if it admits at least one feasible
elimination procedure (f.e.p.) for each profile of linear orderings (strict pref-
erences). We show that if the effectivity function is maximal, stable, and
elimination stable, then it has an ESC representation. In fact, each selection
from the maximal alternatives – alternatives that result from an f.e.p. – is an
ESC representation.

Thus, we conclude from Section 10.2 that the key concept associated with
the existence of ESC representations is elimination stability. Following Holz-
man (1986b) we determine sufficient conditions, denoted as D(0), . . . , D(m−
2), for the existence of f.e.p.’s for every profile of preferences. These condi-
tions are somewhat technical but arise naturally if one seeks to construct
f.e.p.’s. The main result of Section 10.3 is Theorem 10.3.2.

A natural follow-up question then is whether these conditions are also
necessary for the existence of an ESC representation. Surprisingly, there is a
partial converse. Suppose that E is an effectivity function without individual
rights, that is, singleton coalitions are only effective for the whole set A.
Then E has an ESC representation only if it satisfies D(0), . . . , D(m−2). See
Theorems 10.4.5 and 10.5.2. Thus, an effectivity function without individual
rights has an ESC representation if and only if it has such a representation

B. Peleg and H. Peters, Strategic Social Choice, Studies in Choice and Welfare,
DOI 10.1007/978-3-642-13875-1 10, c© Springer-Verlag Berlin Heidelberg 2010
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by feasible elimination procedures, that is, by a selection from its maximal
alternatives.

10.2 Feasible elimination procedures revisited

We start by extending the definition of a feasible elimination procedure, in-
troduced in Chapter 9, to general, and not necessarily anonymous, effectivity
functions. Let E : P (N) → P (P0(N)) be an effectivity function and let
RN ∈ LN . A feasible elimination procedure (f.e.p.) with respect to E and
RN is a sequence (x1, S1; . . . ;xm−1, Sm−1;xm) such that:

A = {x1, . . . , xm}, S1, . . . , Sm−1 ∈ P0(N). (10.1)

Si ∩ Sj = ∅ for all i, j = 1, . . . ,m− 1, i 
= j. (10.2)

A \ {xj} ∈ E(Sj) for all j = 1, . . . ,m− 1. (10.3)

{xj , . . . , xm}RSjxj for all j = 1, . . . ,m− 1. (10.4)

The interpretation of such an f.e.p. is similar to the interpretation in Chapter
9. Coalition S1 is effective for A\{x1} and, moreover, prefers A\{x1} over x1.
Then the alternative x1 and the players in S1 are removed from the profile,
and the procedure is repeated for S2 and x2; and so on and so forth. In the
end only xm is left.

An alternative y ∈ A is RN -maximal if there exists an f.e.p. (x1, S1; . . . ;
xm−1, Sm−1;xm) with respect to E and RN such that xm = y. We denote
M(E,RN ) = {y ∈ A | y is RN -maximal}. The effectivity function E is elim-
ination stable if M(E,RN) 
= ∅ for all RN ∈ LN .

Recall that an effectivity function E is stable if its core C(E,RN ) is non-
empty for all RN ∈ LN . We say that E has an exactly and strongly consistent
(ESC) representation if there is an ESC social choice function F (cf. Definition
9.2.5) with E = EF . Thus, for every profile RN of preferences the game
(F,RN ) has a strong Nash equilibrium QN with F (QN) = F (RN ).

If E has an ESC representation F then of course F is a strongly consis-
tent representation and thus, in particular, E is maximal and stable – this
follows from Propositions 5.2.4 and 5.2.6. Since we aim at finding ESC rep-
resentations of E we shall often assume stability and maximality of E in the
remainder of this chapter.

The first result shows that maximal alternatives of stable effectivity func-
tions are in the core.

Theorem 10.2.1. Let E be stable. Then M(E,RN) ⊆ C(E,RN ) for all
RN ∈ LN .

Proof. Suppose x ∈ M(E,RN) and let (x1, S1; . . . ;xm−1, Sm−1;x) be an
f.e.p. Define QN ∈ LN by tm(Qi) = xj for all i ∈ Sj and j = 1, . . . ,m − 1,
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Qi
|A\{xj} = Ri|A\{xj} for all i ∈ Sj and j = 1, . . . ,m − 1, and Qi = Ri for

all i ∈ N \ ∪m−1
j=1 Sj . Then xj /∈ C(E,QN ) for all j = 1, . . . ,m − 1. Hence,

by stability of E, {x} = C(E,QN ). Since xR�xj for all j = 1, . . . ,m− 2 and
� ∈ Sj , Maskin monotonicity of C(E, ·) implies x ∈ C(E,RN ). ��

The next result generalizes Theorem 9.2.6 to elimination stable effectivity
functions.

Theorem 10.2.2. Let E be stable. If E is elimination stable and the social
choice function F : LN → A is a selection from M(E, ·), then F is exactly
and strongly consistent.

Proof. Let E and F be as in the statement of the theorem, RN ∈ LN ,
and denote x = F (RN ) ∈ M(E,RN). Let (x1, S1; . . . ;xm−1, Sm−1;x) be
an f.e.p., and define QN ∈ LN as in the proof of Theorem 10.2.1. Just like
there, {x} = C(E,QN ), so by Theorem 10.2.1, {x} = M(E,QN). Thus,
F (QN ) = F (RN ) = x. We claim that QN is a strong equilibrium of (F,RN ).
Indeed, assume on the contrary that there exists S ∈ P0(N), PS ∈ LS , and
y ∈ A, such that F (PS , QN\S) = y 
= x, and yRix for all i ∈ S. Let y = xj .
Then, by (10.4), S ∩ Sj = ∅. Hence y /∈ C(E, (PS , QN\S)). So by Theorem
10.2.1, y /∈M(E, (PS , QN\S)) and, thus, y 
= F (PS , QN\S), a contradiction.

��

We proceed with the following observation.

Lemma 10.2.3. Let E be maximal, stable, and elimination stable, and de-
note M(·) = M(E, ·). Then EM = E.

Proof. Since E is maximal and EM is superadditive, it is by Lemma 9.3.1
sufficient to prove that E(S) ⊆ EM (S) for every S ∈ P0(N). Denote C(·) =
C(E, ·). By Theorem 10.2.1, M(RN) ⊆ C(RN ) for all RN ∈ LN , so by
Remark 9.3.3, EC(S) ⊆ EM (S) for every S. Hence, it is sufficient to prove
that E(S) ⊆ EC(S) for every S ∈ P0(N). Let S ∈ P0(N) and B ∈ E(S).
Consider QN ∈ LN such that BQi (A \ B) for all i ∈ S. Then, clearly,
C(QN ) ⊆ B. Hence, B ∈ EC(S). ��

This leads to the main result of this section.

Corollary 10.2.4. Let E be maximal, stable, and elimination stable. Let the
social choice function F be a selection from M(·) = M(E, ·). Then F is an
exactly and strongly consistent representation of E.

Proof. By Theorem 10.2.2 it is sufficient to prove that E = EF . Since E is
maximal and EF is superadditive, it is by Lemma 9.3.1 sufficient to prove
that E(S) ⊆ EF (S) for all S. By Remark 9.3.3 we have EM (S) ⊆ EF (S) for
all S. Hence, by Lemma 10.2.3, E(S) = EM (S) ⊆ EF (S) for all S. ��
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10.3 Sufficient conditions for elimination stability

We have seen in Section 10.2 that elimination stability of an effectivity func-
tion, combined with the necessary conditions of stability and maximality, is
a sufficient condition for the existence of an exactly and strongly consistent
representation (Corollary 10.2.4). We shall see that, under an additional con-
dition on the effectivity function, elimination stability is also necessary for
this (Theorem 10.5.2, Corollary 10.5.3). In this section we establish sufficient
conditions for elimination stability.

Let E : P (N) → P (P0(A)) be an effectivity function. We shall define a
sequence of conditions D(k), k = 0, . . . ,m− 2, on E that guarantee the non-
emptiness of M(E,RN ) for every RN ∈ LN – that is, elimination stability of
E.

In the sequel we are going to use the concept of a ‘generalized partition’:
a generalized partition (g-partition) of a set is a partition where some of the
elements may be empty.

A coalition S ⊆ N is blocking for x ∈ A if A \ {x} ∈ E(S). Denote
B(x) = {S ⊆ N | S is blocking for x}. If S ∈ B(x) but no proper subset of S
is in B(x), then S is minimal blocking. The set of minimal blocking coalitions
for x is denoted by Bm(x).

Definition 10.3.1. Let E be an effectivity function and let k be an integer,
0 ≤ k ≤ m − 2. We say that E satisfies condition D(k) if there exist no
enumeration x1, . . . , xm of A and g-partition S1, . . . , Sm of N such that Sj ∈
Bm(xj) for j = 1, . . . , k and Sj /∈ B(xj) for j = k + 1, . . . ,m.

These conditions D(k) for k = 0, . . . ,m−2 will enable us to construct, in-
ductively, a feasible elimination procedure for every RN . This is made precise
in the proof of the following theorem.

Theorem 10.3.2. Let A = {a1, . . . , am} and let E be an effectivity function
satisfying D(k) for k = 0, . . . ,m− 2. Then E is elimination stable.

Proof. Let RN ∈ LN . We construct an f.e.p. inductively. In the first step
let Ŝj = {i ∈ N | tm(Ri) = aj} for j = 1, . . . ,m. Then Ŝ1, . . . , Ŝm is a g-
partition. ByD(0) there exists j0 such that Ŝj0 ∈ B(aj0). Denote x1 = aj0 and
choose S1 ⊆ Ŝj0 , S1 ∈ Bm(x1). Then we let (x1, S1) be the first component
of the f.e.p. to be constructed.

Assume now that (x1, S1; . . . ;xk, Sk), k ≥ 1, is an initial segment of our
f.e.p. That is, Sj ∈ Bm(xj) for j = 1, . . . , k; Si ∩ Sj = ∅ for i 
= j; and
A \ {x1, . . . , xj}RSjxj for j = 1, . . . , k. Then, for each x ∈ A \ {x1, . . . , xk}
let Sx = {s ∈ N \ ∪k

i=1Si | yRsx for all y ∈ A \ {x1, . . . , xk}}. By condition
D(k) there is an x ∈ A \ {x1, . . . , xk} such that Sx ∈ B(x). Set x = xk+1 and
choose Sk+1 ⊆ Sx such that Sk+1 ∈ Bm(xk+1). Then the proof is complete
after m− 1 steps. ��
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10.4 Necessary conditions for the existence of ESC
representations

In this section we formulate a sequence of necessary conditions D∗(k) for the
existence of an exactly and strongly consistent representation of an effectivity
function E, under an additional assumption on E. In Section 10.5 we show
that these conditions imply the sufficient conditions D(k) of Section 10.3.

The additional assumption on E is the following.

E({i}) = {A} for all i ∈ N. (10.5)

This assumption can be expressed as saying that E has no vetoers.
The announced conditions D∗(k) are obtained by strengthening the condi-

tions D(k) in order to deal with sets of alternatives. We say that a coalition
S ⊆ N blocks B ⊆ A if A\B ∈ E(S). We denote by B(B) the set of coalitions
that block B. We start by formulating D∗(0).

Definition 10.4.1. Let E be an effectivity function. We say that E satisfies
conditionD∗(0) if there exists no partition C1, . . . , Cp of A and no g-partition
S1, . . . , Sp of N , p ≥ 2, such that Si /∈ B(Ci) for all i = 1, . . . , p.

The following result implies that D∗(0) is a necessary condition for the
existence of an ESC representation of an effectivity function.

Lemma 10.4.2. Let E be a stable and maximal effectivity function. Then E
satisfies D∗(0).

Proof. Suppose, on the contrary, that there exist a partition C1, . . . , Cp of
A and a g-partition S1, . . . , Sp of N , p ≥ 2, that violate D∗(0), that is,
Si /∈ B(Ci) for all i = 1, . . . , p. Consider a profile RN as in the following
table:

S1 S2 · · · Sp

C2 C3 · · · C1

C3 C4 · · · C2

...
...

...
...

Cp C1 · · · Cp−1

C1 C2 · · · Cp

where the ordering of the alternatives inside the sets Ci does not matter.
Now S1 /∈ B(C1) means A \ C1 /∈ E(S1). By maximality, C1 ∈ E(N \ S1).
Since C1 R

N\S1 C2, we have C2 ∩ C(E,RN ) = ∅. Similarly one shows Ci ∩
C(E,RN ) = ∅ for all i = 1, . . . , p. Hence, C(E,RN ) = ∅, which contradicts
stability of E. ��

We next formulate the more involved conditions D∗(1), . . . , D∗(m− 2).
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Definition 10.4.3. Let E be an effectivity function and let 1 ≤ k ≤ m− 2.
We say that E satisfies condition D∗(k) if there exist no x1, . . . , xk ∈ A,
C1, C2 ∈ P (A), and S1, . . . , Sk, T1, T2 ∈ P (N) such that

{x1}, . . . , {xk}, C1, C2 is a partition of A; (10.6)

S1, . . . , Sk, T1, T2 is a g-partition of N ; (10.7)

Si ∈ Bm(xi) for i = 1, . . . , k; and (10.8)

Ti /∈ B(Ci) for i = 1, 2. (10.9)

Lemma 10.4.4. Let the effectivity function E satisfy (10.5) and let E have
an ESC representation. Then E satisfies D∗(1).

Proof. Suppose, on the contrary, that D∗(1) is violated and let {x}, C1, C2

be a partition of A and S, T1, T2 a g-partition of N , such that S ∈ Bm(x) and
Ti /∈ B(Ci) for i = 1, 2.

By (10.5), |S| > 1. Suppose S were equal to N . Let i ∈ N . Then N \ {i} /∈
B(x) since N ∈ Bm(x). Hence A \ {x} /∈ E(N \ {i}). By maximality of E
(which follows since E has an ESC representation by assumption) this implies
{x} ∈ E({i}), which violates (10.5). Hence, 1 < |S| < n.

Let S(1), S(2) be a partition of S into two non-empty coalitions and con-
sider the following profile RN :

S(1) S(2) T1 T2

C2 C1 x x
C1 C2 C2 C1

x x C1 C2

Let F be an ESC representation of E. Since EF = E, F (RN ) ∈ C(EF , RN )
(by Proposition 5.2.6), and x /∈ C(E,RN ) (as S ∈ Bm(x)), we have
F (RN ) 
= x. Without loss of generality, F (RN ) ∈ C1. Let QN ∈ LN be
a strong equilibrium of (F,RN ) with F (QN ) = F (RN). We distinguish two
cases.

Case 1. There exist i ∈ S and y ∈ A \ {x} such that xQiy.
We observe that T1 ∪ T2 ∈ B(A \ {x, y}), since otherwise D∗(0) is violated

for the partitionA\{x, y}, {x}, {y} of A and the g-partition T1∪T2, S\{i}, {i}
of N (as S ∈ Bm(x) and {i} /∈ B({y}) by (10.5)). We consider a T1 ∪ T2-
profile PT1∪T2 such that t1(P i) = x and t2(P i) = y for all i ∈ T1 ∪ T2. Let
PN = (PT1∪T2 , QS). Since F (PN ) ∈ C(EF , PN ), we have F (PN ) ∈ {x, y}.
Moreover, A\{x} /∈ E(S \{i}) since S ∈ Bm(x), and by maximality of E this
implies {x} ∈ E(T1 ∪ T2 ∪ {i}). So y is dominated by {x} via the coalition
T1 ∪ T2 ∪ {i} and therefore F (PN ) = x. Thus, the coalition T1 ∪ T2 improves
on QN by the deviation PT1∪T2 , a contradiction.

Case 2. tm(Qi) = x for all i ∈ S.
We now observe that S(1) ∪ T1 ∈ B(C1), since otherwise D∗(0) is violated

for the partition C1, {x}, C2 of A and the g-partition S(1) ∪ T1, S
(2), T2 of
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N . Consider now an S(1) ∪ T1-profile PS(1)∪T1 such that C2 P
i {x}P iC1 for

all i ∈ S(1) ∪ T1. Let PN = (PS(1)∪T1 , QS(2)∪T2). Clearly, F (PN ) /∈ C1.
Also, since A \ C2 /∈ E(T2), we have C2 ∈ E(S ∪ T1) by maximality. Thus,
x is dominated by C2 via the coalition S ∪ T1. Hence F (PN ) ∈ C2. Thus,
since F (RN ) ∈ C1, the coalition S(1) ∪ T1 improves on QN by the deviation
PS(1)∪T1 , a contradiction. ��

We are now able to prove the main result of this section.

Theorem 10.4.5. Let the effectivity function E have an exactly and strongly
consistent representation and satisfy (10.5). Then E satisfies the conditions
D∗(0), D∗(1), . . . , D∗(m− 2).

Proof. In view of Lemmas 10.4.2 and 10.4.4 it is sufficient to prove the fol-
lowing claim:

Claim. For 2 ≤ k ≤ m− 2, if E satisfies D∗(k− 1), then E satisfies D∗(k).
To show this, suppose that E satisfies D∗(k − 1) and suppose on the

contrary that D∗(k) is violated for the partition {x1}, . . . , {xk}, C1, C2 of
A and the g-partition S1, . . . , Sk, T1, T2 of N . Since Si ∈ B(xi) and thus
A \ {xi} ∈ E(Si) we have Si 
= ∅ for i = 1, . . . , k, so that in particular
Sk ∪ T1 
= N . By superadditivity of E we have (i) Sk ∪ T1 /∈ B({xk} ∪C1) or
(ii) N \ (Sk ∪ T1) /∈ B(A \ ({xk} ∪C1). If (i) holds then D∗(k− 1) is violated
for the partition {x1}, . . . , {xk−1}, {xk} ∪ C1, C2 of A and the g-partition
S1, . . . , Sk−1, Sk ∪ T1, T2 of N . If (ii) holds, then D∗(1) is violated for the
partition {xk}, C1, A\({xk}∪C1) of A and the g-partition Sk, T1, N \(Sk∪T1)
of N . ��

We conclude this section with an example.

Example 10.4.6. Let N = {1, 2, 3, 4} and A = {a, b, c}. Define an anonymous
and neutral effectivity function E by E(∅) = ∅; E(S) = {A} if |S| = 1;
E(S) = {B ⊆ A | |B| ≥ 2} if |S| = 2; and E(S) = P0(A) if |S| ≥ 3. Consider
the partitions {1, 2}, {3}, {4} and {a}, {b}, {c}. Then {1, 2} ∈ Bm(a), {3} /∈
B(b), and {4} /∈ B(c). Thus, E violates D∗(1). Since E satisfies (10.5), it has
no representation by an ESC social choice function.

10.5 Necessity of elimination stability for the existence
of ESC representations

In this section we first show that under the (for our purposes) relevant as-
sumptions on an effectivity function E the conditions D∗(k) of Section 10.4
imply the conditions D(k) of Section 10.3.

Lemma 10.5.1. Let the effectivity function E be stable and maximal and sat-
isfy the conditions D∗(0), . . . , D∗(m−2). Then E satisfies D(0), . . . , D(m−2).
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Proof. Clearly, D∗(0) implies D(0). We shall prove that D∗(k) implies
D(k) for k = 1, . . . ,m − 2. Suppose, on the contrary, that D(k) is vio-
lated by the enumeration x1, . . . , xk, xk+1, . . . , xm of A and the g-partition
S1, . . . , Sk, Sk+1, . . . , Sm of N . Then A\ {xk+1} /∈ E(Sk+1) and A\ {xk+2} /∈
E(Sk+2).1 By maximality of E, {xk+1} ∈ E(N \ Sk+1) and {xk+2} ∈
E(N \ Sk+2). Now E is convex since it is maximal and stable (see Defini-
tion 5.3.3). Hence

{xk+1, xk+2} ∈ E(N \ (Sk+1 ∪ Sk+2)). (10.10)

Thus, by superadditivity ofE (which is implied by convexity),A\{xk+1, xk+2}
/∈ E(Sk+1 ∪ Sk+2), so Sk+1 ∪ Sk+2 /∈ B({xk+1, xk+2}). If k = m − 3, then
we obtain a violation of D∗(k), namely by taking T1 = Sk+1 ∪ Sk+2 and
T2 = Sk+3 in Definition 10.4.3. Otherwise, by repeating the above argument
we can show that Sk+1 ∪ Sk+2 ∪ Sk+3 /∈ B({xk+1, xk+2, xk+3}) by deriving
the associated version of (10.10). If k = m − 4 we are done. Otherwise, we
continue in the same manner until we obtain a violation of D∗(k). ��

The main result of this section is a direct consequence of Lemma 10.5.1
and Theorem 10.4.5.

Theorem 10.5.2. Let the effectivity function E satisfy (10.5). If E has
an exactly and strongly consistent representation then it satisfies D(0), . . . ,
D(m− 2).

The following corollary nicely summarizes some of the main findings of this
chapter. It follows by combining Theorems 10.5.2 and 10.3.2, and Corollary
10.2.4.

Corollary 10.5.3. Let the effectivity function E be maximal and stable and
satisfy (10.5). Then E has an exactly and strongly consistent representation
if and only if it is elimination stable.

We conclude with an example which relates the results of this chapter to
the results of Chapter 9 concerning anonymous effectivity functions.

Example 10.5.4. Let E : P (N) → P (P0(A)) be a monotonic and anonymous
effectivity function. For x ∈ A let

β(x) = min{|S| | A \ {x} ∈ E(S)}.

Suppose that that E has an ESC representation and that (10.5) holds or,
equivalently, β(x) ≥ 2 for all x ∈ A. We claim that

∑
x∈A β(x) = n + 1.

Clearly,
∑

x∈A β(x) ≥ n + 1 since otherwise it is straightforward to con-
struct a preference profile RN ∈ LN in which every alternative is blocked, so
that C(E,RN ) = ∅, contradicting the stability of E. On the other hand,
suppose that one of the conditions D(k) is violated by the enumeration

1 Note that for k = m − 2 we obtain an immediate contradiction with D∗(m − 2).
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x1, . . . , xk, xk+1, . . . , xm and g-partition S1, . . . , Sk, Sk+1, . . . , Sm. Then the
number of players in ∪m

j=k+1Sj is equal to n−
∑k

j=1 β(xj) and this number
must be smaller than or equal to

∑m
j=k+1(β(xj) − 1), which is equivalent

to
∑

x∈A β(x) ≥ n + m − k. For none of the D(k) to be violated (cf. The-
orem 10.5.2) we therefore need that

∑
x∈A β(x) < min{n + m − k | k =

0, . . . ,m−2} = n+2. Thus,
∑

x∈A β(x) = n+1. (Observe that Eβ(S) ⊆ E(S)
for all S ∈ P (N), where Eβ was defined in Section 9.3.)

Conversely, if E is stable and maximal and
∑

x∈A β(x) = n + 1, then by
the above argument D(0), . . . , D(m− 2) are satisfied and therefore E has an
ESC representation by Theorem 10.3.2 and Corollary 10.2.4. Observe that
(10.5) is not necessarily satisfied.

10.6 Notes and comments

This chapter is based mainly on Holzman (1986b). See also Ishikawa and
Nakamura (1980). Holzman introduced the conditions D(0), . . . , D(m − 2),
which, if satisfied, guarantee the existence of an f.e.p. for every profile of
preferences (linear orderings). His main contribution, however, is the inves-
tigation of the degree of necessity of these conditions: see Theorems 10.4.5
and 10.5.2.

We add that, if (10.5) does not hold, then the implication in Theorem
10.5.2 is not true. A simple counterexample is obtained by taking for E a
dictatorial effectivity function, i.e., there is d ∈ N such that for all S ∈ P0(N),
E(S) = P0(A) if d ∈ S and E(S) = {A} otherwise. Clearly, the dictatorial
social choice function F with dictator d is an ESC representation of E, but
D(1) is violated (take S1 = {d} in Definition 10.3.1). Observe that (10.5) is
violated as well. See also Holzman (1986b, p. 57) and Peleg (1978b), or Peleg
(1984, Sect. 4.2).

Another important remark is that Example 10.5.4 shows that the analysis
in Chapter 9 of anonymous effectivity functions is the most general possible.
Finally, our writing of this chapter has benefitted from Abdou and Keiding
(1991).



Chapter 11

Consistent voting systems with a
continuum of voters

11.1 Motivation and summary

In this chapter we extend the model of Chapters 9 and 10 to a classical voting
system with still finitely many alternatives (candidates) but with very many
voters. Such a system is representative of political elections on the local or
national level. As an, in our view, best approximation we model voters as
elements of a non-atomic measure space. In particular, this approach allows
us to accommodate the fact that in such voting systems single voters have
negligible influence on the final outcome, and to avoid potential combinatorial
complexities of a model with a large but finite number of voters.

The focus of the chapter is again on strategic aspects. If we talk about
strategic aspects in this model, we necessarily deal with strategic voting by
groups of voters (coalitions). This does not have to imply that voters in
coalitions actually meet to coordinate their voting behavior. Although single
voters are negligible for the final outcome, they may nevertheless derive util-
ity from voting and, thus, may also vote strategically, possibly resulting in
strategic behavior of groups of equally-minded voters.

After introducing the basics of the model in Section 11.2, we continue in
Section 11.3 by showing that in this model the result of Gibbard (1973)
and Satterthwaite (1975) persists. In particular, the requirement of non-
manipulability implies the (undesirable) existence of an ‘invisible dictator’
as in Kirman and Sondermann (1972). Since, therefore, we cannot hope to
reach the sincere outcome since we cannot expect voters to reveal their true
preferences, we ask whether this outcome is at least attainable in an equi-
librium of the voting game. Specifically, like in the preceding chapters we
consider social choice functions satisfying the weaker requirement of exact
and strong consistency (ESC). This means that for every given profile of
preferences there is another profile which (i) is a strong (Nash) equilibrium –
no coalition can profitably deviate – in the strategic game in which each voter
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reports a preference and the outcome is evaluated according to given ‘true’
preferences, and (ii) results in the same alternative as the true preferences.

ESC social choice functions and associated effectivity functions are intro-
duced in Section 11.4. We show that the main results of the model with
finitely many voters go through: the effectivity function associated with an
ESC social choice function is maximal, stable, and convex. This is no surprise:
an ESC social choice function, seen as a game form, is a strong representa-
tion of the associated effectivity function, and the corresponding results of
Chapter 5 continue to hold.

Next, we concentrate on anonymous ESC social choice functions, a nat-
ural restriction in large voting systems, and introduce blocking coefficients
(Section 11.5) and feasible elimination procedures (Section 11.6). Here, our
treatment deviates essentially from the case with finitely many voters. Sets
of alternatives can be ‘e-sets’ or ‘i-sets’. To block an i-set, a coalition needs
to have size strictly larger than the blocking coefficient of that set, whereas
for an e-set it can be larger or equal. Also, blocking coefficients constitute an
additive function, contrary to the finitely many voters case (cf. Oren, 1981).
As in Chapter 9, the main result is that any social choice function that selects
maximal alternatives – that is, alternatives resulting from feasible elimination
procedures – is exactly and strongly consistent. In Section 11.7 we establish
equality of the core and the set of maximal alternatives for a collection of
anonymous ESC social choice functions, and in Section 11.8 we show that
this is actually a complete characterization of anonymous ESC social choice
functions in case all blocking coefficients are required to be positive.

11.2 The basic model

Let (Ω,Σ, λ) be a non-atomic measure space. Here Ω is the set of voters or
players; Σ is the σ-field of permissible coalitions; and λ is a nonnegative non-
atomic measure on Σ, that is: λ : Σ → R is a measure with λ(S) ≥ 0 for all
S ∈ Σ, and if λ(S) > 0 for some S ∈ Σ then there is a T ∈ Σ with T ⊆ S
and 0 < λ(T ) < λ(S). The number λ(S) for a coalition S is interpreted as
the size of S. By Σ0 = Σ \ {∅} we denote the set of all nonempty coalitions,
and by Σ+ we denote the set of all coalitions S with λ(S) > 0. Throughout
we assume Ω ∈ Σ+ and λ(Ω) <∞.

Let A be a finite set of alternatives. We assume throughout that |A| ≥ 3.
As before, a linear ordering of A is a complete, reflexive, transitive, and
antisymmetric binary relation on A, and the set of all linear orderings of A
is denoted by L.

A profile (of preferences) is a measurable function R : Ω → L, that is,
for each R ∈ L, {t ∈ Ω | R(t) = R} is in Σ. Two profiles R1 and R2

are equivalent, written R1 ∼ R2, if they differ only for a coalition of zero
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measure, that is: λ({t ∈ Ω | R1(t) 
= R2(t)}) = 0. Let ρ denote the set of all
profiles.

A social choice function (SCF) is a surjective function F : ρ → A that
satisfies

for all R1,R2 ∈ ρ, if R1 ∼ R2, then F (R1) = F (R2). (11.1)

Condition (11.1) implies that social choice functions do not depend on the
preferences of coalitions of measure 0. In particular, because of non-atomicity,
single agents do not have any influence at all.

11.3 The Gibbard-Satterthwaite Theorem

In this section we show that the Gibbard-Satterthwaite Theorem continues
to hold in our model with a continuum of voters, in the sense that any non-
manipulable social choice function must exhibit a so-called invisible dictator.
This is analogous to a similar result for Arrow’s Impossibility Theorem in Kir-
man and Sondermann (1972). We start by formulating (non-)manipulability
in the present context.

Let R ∈ ρ and S ∈ Σ. The social choice function F is manipulable by
S at R if there exists a Q ∈ L with the following property: if R1 ∈ ρ is a
profile with R1(t) = R(t) for all t /∈ S and R1(t) = Q for all t ∈ S, then
F (R) 
= F (R1) and F (R1)R(t)F (R) for all t ∈ S.1 Clearly, if F is manip-
ulable by S at R, then λ(S) > 0 by (11.1). We call F non-manipulable if
there exist no R ∈ ρ and S ∈ Σ such that F is manipulable by S at R. In
words, it can never happen that all members of a coalition obtain a preferred
alternative if that coalition coordinates on an untruthful preference. Observe
that this non-manipulability condition has necessarily the form of coalitional
non-manipulability since in our model single voters have no influence. Nev-
ertheless, it can be weakened to a condition that is a closer approximation of
individual non-manipulability. This is elaborated in Remark 11.3.7 below.

In order to formulate and prove the analogue of the Gibbard-Satterthwaite
Theorem in this model we need to introduce the following concepts. A collec-
tion D ⊆ Σ+ is called an ultrafilter if (i) D∩D′ ∈ D for all D,D′ ∈ D and (ii)
D ∈ D or Ω\D ∈ D for every D ∈ Σ+.2 A partition of Ω is a finite collection
of pairwise disjoint sets in Σ+ the union of which has measure equal to λ(Ω).

Let P = {D1, . . . , Dk} be a partition of Ω. Let D be an ultrafilter. We
claim that there is at least one i ∈ {1, . . . , k} for which Di ∈ D. If not, then
by property (ii) of D, Di :=

⋃
j=1,...,k, j 
=i Dj ∈ D for every i = 1, . . . , k, so

by property (i), ∅ =
⋂

i=1,...,k D
i ∈ D, a contradiction since ∅ /∈ Σ+. Hence,

1 Requiring the voters in S to coordinate on the same preference Q in this definition is
without loss of generality, as is not difficult to show.
2 Observe that by (i) exactly one of the two statements in (ii) must hold.
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there is an i with Di ∈ D and by property (i) again there is exactly one such
i. Also, if a partition P ′ of Ω is coarser than P (i.e., each element of P is
contained in an element of P ′; we also say that P is finer than P ′) then (i)
implies D ⊆ D′, where D and D′ are the elements of P and P ′ that are in
D, respectively. Therefore, there is a well defined mapping d that assigns to
each partition its element in D, and d satisfies:

If P ′ is coarser than P , then d(P) ⊆ d(P ′). (11.2)

The following lemma shows that also the converse holds.

Lemma 11.3.1. Let d be a mapping that assigns to each partition of Ω ex-
actly one element of its elements. Suppose d satisfies (11.2). Then the collec-
tion

D = {D ∈ Σ+ | there is a partition P of Ω with D = d(P)}

is an ultrafilter.

Proof. Let P1 and P2 be partitions and D1 = d(P1), D2 = d(P2). We show
that D1 ∩D2 ∈ D. Consider the join P of P1 and P2, i.e., the partition

P = {D ∩ E | D ∈ P1, E ∈ P2, D ∩ E ∈ Σ+}.

Obviously, P is finer than both P1 and P2. Suppose D∗ = d(P). Then by
(11.2), both D∗ ⊆ D1 and D∗ ⊆ D2, hence D∗ ⊆ D1 ∩D2. By definition of
P therefore, D∗ = D1 ∩D2, which implies D1 ∩D2 ∈ D.

Finally let D ∈ Σ+. If λ(D) = λ(Ω) then D = d({D}), so D ∈ D. Other-
wise, either D = d({D,Ω\D}) or Ω\D = d({D,Ω\D}), hence either D ∈ D
or Ω \D ∈ D.

Thus, D is an ultrafilter. ��

Now let R1, . . . , R|A|! be an enumeration of the elements of L. Each profile
R ∈ ρ results in a collection P = {S1, . . . , S|A|!} of subsets of of Ω with
Sk = {t ∈ Ω | R(t) = Rk} ∈ Σ for each 1 ≤ k ≤ |A|! . We denote by P(R)
the collection obtained from P by omitting the sets of measure 0 and call
this the partition generated by R.

We associate with an ultrafilter D a social choice function FD, as follows.
For a profile R ∈ ρ let D be the unique element of P(R) that is in D. Define
FD(R) := x where xR y for all y ∈ A and R = R(t) for (all) t ∈ D. We have:

Lemma 11.3.2. Let D be an ultrafilter. Then the social choice function FD

is non-manipulable.

Proof. Let R ∈ ρ. Suppose that coalition S can manipulate at R. Then
S ∩D = ∅, where D is the element of P(R) in D. Hence, a manipulation of
S results in a profile R′ such that P(R′) shares D with P(R). But then D
is also the element of P(R′) that is in D by condition (i) of an ultrafilter. So
FD(R′) = FD(R), a contradiction. ��
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Conversely, let F be a non-manipulable social choice function. We will
show that there is an ultrafilter D such that F = FD, by applying (the
Gibbard-Satterthwaite) Theorem 8.2.1. In order to satisfy the range condition
in the theorem, we fix profiles R1, . . . ,R|A| in ρ such that |{F (Rj) | j =
1, . . . , |A|}| = |A| – this is possible since F is surjective by assumption. For an
arbitrary partition P ⊆ Σ+ of Ω let P∗ be the coarsest common refinement of
P and the generated partitions P(Rj), j = 1, . . . , |A|. Regard every element
of P∗ as a separate agent. By Theorem 8.2.1 there is a fixed element D∗ of
P∗ such that, for every profile R ∈ ρ that is measurable with respect to P∗,
we have F (R) = x where x is the top element of R(t) for (all) t ∈ D∗. Denote
by dF (P) the element of P that contains D∗ and let

DF := {dF (P) | P ⊆ Σ+ is a partition}.

Lemma 11.3.3. (i) DF is an ultrafilter. (ii) F = FDF

.

Proof. (i) By Lemma 11.3.1 it is sufficient to prove that dF satisfies (11.2). Let
P and P ′ be partitions with P ′ coarser than P . Let D′ ∈ P ′ with dF (P) ⊆
D′. Let R,Q ∈ L have different top elements. Take a profile R ∈ ρ that
is measurable with respect to P ′, and hence with respect to P , and with
R(t) = R for all t ∈ D′ and with R(t) = Q otherwise. Then F (R) is the top
element of R since R = R(t) for (all) t ∈ dF (P). Hence, dF (P ′) = D′, so that
dF (P) ⊆ dF (P ′).

(ii) Let R ∈ ρ with generated partition P(R). Let D∗ be the element of
P(R)∗ such that F (R) = x, where x is the top element of R(t) for (all)
t ∈ D∗. Let D be the element of P(R) with D∗ ⊆ D. By definition, FDF

(R)
is the top element of R(t) for (all) t ∈ D, hence FDF

(R) = x = F (R). ��

Lemmas 11.3.2 and 11.3.3 have the following corollary.

Corollary 11.3.4. Let F : ρ → A be a social choice function. Then F is
non-manipulable if and only if there is an ultrafilter D with F = FD.

Corollary 11.3.4 is the form the Gibbard-Satterthwaite Theorem takes in
our model with a continuum of voters and measurable profiles.3 First, we
show that the result is not vacuous.

Theorem 11.3.5. There exists a non-manipulable social choice function.

Proof. By Corollary 11.3.4 it is sufficient to show that there exists an ultra-
filter of sets in Σ+.

A filter in Σ+ is a collection F ⊆ Σ+ satisfying

(i) for all D,D′ ∈ F , D ∩D′ ∈ F ;

3 For the case of finitely many voters the relation between the concepts of non-
manipulability and ultrafilter has been examined before, see Batteau, Blin, and Monjardet
(1981).
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(ii) for all D ∈ F and D′ ∈ Σ+ with D ⊆ D′, D′ ∈ F .

(Clearly, an ultrafilter is a filter.) Let U be the collection of all filters F that
satisfy, additionally,

(iii) for all D ∈ F and D′ ∈ Σ+ with D′ ⊆ D and λ(D) = λ(D′), D′ ∈ F .

Any set of positive measure together with all its subsets of the same measure
and all measurable supersets of these form a filter, so U is non-empty. The
inclusion relation is a partial ordering on U and each chain in U has an
upper bound, namely the union of all filters in the chain. Hence, Zorn’s
Lemma implies that U has a maximal element, say D. We claim that D is an
ultrafilter. If not, then there is a D ∈ Σ+ such that D /∈ D and Ω \D /∈ D
(recall that D ∈ D and Ω \D ∈ D is not possible by (i)). By (ii), we have
D′ ∩ D 
= ∅ and D′ ∩ (Ω \ D) 
= ∅ for every D′ ∈ D and by (iii), we have
λ(D′ ∩ D) > 0 and λ(D′ ∩ (Ω \ D)) > 0. Now consider the collection D′

obtained by adding to D the collection {D′ ∩ D | D′ ∈ D}. Then it is easy
to check that D′ is a filter in U that is larger than D, contradicting the
maximality of D. Hence, D is an ultrafilter. ��

Since this existence proof is based on an application of Zorn’s Lemma,
it does not actually show how to construct a non-manipulable social choice
function. If we require constructibility then it can be shown that a non-
manipulable social choice function does not exist, so that Corollary 11.3.4 is
truly an impossibility result. Observe that in our model a single voter cannot
be a dictator in view of (11.1).

For a concrete illustration of Theorem 11.3.5 see the next example.

Example 11.3.6. Let Ω = [0, 1] and let λ be the Lebesgue measure. If D is an
ultrafilter, then for any t ∈ [0, 1] exactly one of the two intervals [0, t] and
[t, 1] must be in D. Suppose, for the sake of the argument, that this is always
the lower one, [0, t]. Then for every positive ε, every element of D has an
intersection of positive measure with [0, ε]. The point 0 is an invisible dicta-
tor in the sense of Kirman and Sondermann (1972). Of course, the singleton
0 does not have any power at all, but always needs, roughly, a coalition of
positive measure in any arbitrarily small neighborhood to exercise its ‘dicta-
torship’. In this sense, the social choice function FD associated with D has
an invisible dictator, namely voter 0.

We conclude this section by discussing a possible weakening of the non-
manipulability condition.

Remark 11.3.7. Our non-manipulability condition can be weakened to a ver-
sion that is a closer approximation of individual non-manipulability. Call F
ε-manipulable if for every ε > 0 there is a profile R ∈ ρ and a coalition
S ∈ Σ with λ(S) < ε such that F is manipulable by S at R. Call F non-ε-
manipulable if it is not ε-manipulable. This means that there is an ε > 0 such
that at no profile coalitions with size smaller than ε can manipulate. Clearly,
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non-ε-manipulability is weaker than non-manipulability, hence for every ul-
trafilter D the social choice function FD satisfies it. Conversely, suppose that
F is non-ε-manipulable. Take ε > 0 so small that no coalition of size smaller
than ε can ever manipulate, and take an arbitrary partition Pε of Ω such
that each element of Pε has size smaller than ε. Modify the definition of P∗

preceding Lemma 11.3.3 such that P∗ is now the coarsest common refinement
of Pε and P(Rj), j = 1, . . . , |A|. Then Lemma 11.3.3 and Corollary 11.3.4
continue to hold if we replace non-manipulability by non-ε-manipulability.

11.4 Exactly and strongly consistent social choice
functions

In the preceding section we have seen that a version of the Gibbard-
Satterthwaite Theorem continues to hold in our model with a continuum
of voters. Like in Chapters 9 and 10, as an answer to this we shall study ex-
actly and strongly consistent social choice functions. We start with defining
this concept within the present model.

Let F be a social choice function and observe that for every R ∈ ρ the
pair (F,R) defines a game in strategic form in the usual and natural way:
each player t ∈ Ω has strategy set L and preference R(t) on A for evaluating
any outcome F (R∗) ∈ A, R∗ ∈ ρ. For S ∈ Σ0, denote by ρS the set of
all measurable functions RS : S → L. Let R ∈ ρ. The profile Q ∈ ρ is a
strong (Nash) equilibrium of the game (F,R) if for every S ∈ Σ+ and every
VS ∈ ρS , there exists T ∈ Σ+ with T ⊆ S and F (Q)R(t)F (QΩ\S ,VS) for
every t ∈ T .

Definition 11.4.1. The social choice function F is exactly and strongly con-
sistent (ESC) if for every R ∈ ρ there exists a strong equilibrium Q of (F,R)
such that F (Q) = F (R).

Thus, if F is an ESC social choice function, then for every profile there is
a strong equilibrium profile that results in the same outcome, and therefore
F is not necessarily distorted.

In the remainder of this chapter we shall concentrate on anonymous ESC
social choice functions. In our model a social choice function F : ρ → A is
anonymous if for all R1,R2 ∈ ρ we have: if λ({t ∈ Ω | R1(t) = R}) = λ({t ∈
Ω | R2(t) = R}) for all R ∈ L, then F (R1) = F (R2). Thus, a social choice
function is anonymous if it only depends on the numbers of voters for each
preference.

We first consider a simple example of an anonymous ESC social choice
function.4 For a profile R and a, b ∈ A, a 
= b, we say that a Pareto dominates
b if λ({t ∈ Ω | bR(t) a}) = 0. We call an alternative a ∈ A Pareto optimal

4 This example is similar to Example 5.2.2.
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with respect to R if it is not Pareto dominated by some other element of A,
and denote by PAR(R) the set of Pareto optimal alternatives with respect
to R.

Example 11.4.2. Let ā ∈ A be a designated alternative, and let R0 ∈ L be
fixed. Define a social choice function F : ρ→ A by

F (R) =

⎧
⎨

⎩

ā if ā ∈ PAR(R)
a if ā /∈ PAR(R) and a is the R0-maximum

of {b ∈ PAR(R) | b Pareto dominates ā}
for all R ∈ ρ. Note that ā can be interpreted as the ‘status quo’. Obviously,
F is surjective and anonymous. We show that F is ESC. Let R ∈ ρ. We
distinguish the following possibilities.

(i) ā ∈ PAR(R).
Let Q ∈ ρ satisfy āQ(t) a for all t ∈ Ω and a ∈ A\{ā}. Then Q is a strong

equilibrium of (F,R) and F (Q) = F (R).

(ii) ā /∈ PAR(R).
Let q be the R0-maximum of B = {b ∈ PAR(R) | b Pareto dominates ā}.

Define Q ∈ ρ by qQ(t) āQ(t) a for all t ∈ Ω and a ∈ A \ {ā, q}. Then
F (Q) = q = F (R) and Q is a strong equilibrium of (F,R). Indeed, Ω does not
have a profitable deviation from Q since q is Pareto optimal with respect to
R. Now let S ∈ Σ+, λ(S) < λ(Ω), and VS ∈ ρS . Then F (QΩ\S ,VS) ∈ {ā, q}.
Hence, VS cannot be a profitable deviation for S.

11.4.1 Effectivity functions of ESC social choice
functions

Before proceeding with our investigation of anonymous ESC social choice
functions, we define the concept of an effectivity function in our model, and
collect some properties of effectivity functions associated with ESC social
choice functions – analogous to the case with finitely many voters in Chapter
10.

Definition 11.4.3. An effectivity function (EF) is a function E : Σ →
P (P0(A)) that satisfies the following conditions: (i) E(Ω) = P0(A); (ii)
E(∅) = ∅; (iii) A ∈ E(S) for every S ∈ Σ0; and (iv) if S1, S2 ∈ Σ0 and
λ(S1 \ S2) + λ(S2 \ S1) = 0, then E(S1) = E(S2).

Condition (iv) in Definition 11.4.3 is specific for our model. It says that the
effectivity function does not distinguish between coalitions that differ only in
a set of measure 0.

All of the following definitions and statements are analogous to their coun-
terparts in the finite case, but we nevertheless list them for the sake of com-
pleteness.
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An effectivity function E is superadditive if for all S1, S2 ∈ Σ with S1∩S2 =
∅ and all B1 ∈ E(S1) and B2 ∈ E(S2) we have: B1 ∩ B2 ∈ E(S1 ∪ S2). The
EF E is monotonic if for all S, S∗ ∈ Σ and B,B∗ ∈ P0(A) with B ∈ E(S),
S ⊆ S∗ and B ⊆ B∗, we have B∗ ∈ E(S∗). An EF E is maximal if for all
S ∈ Σ0 and B ∈ P0(A) we have: if B /∈ E(S) then A \ B ∈ E(Ω \ S). An
EF E is convex if for all S1, S2 ∈ Σ and B1 ∈ E(S1), B2 ∈ E(S2) we have
B1 ∩B2 ∈ E(S1 ∪ S2) or B1 ∪B2 ∈ E(S1 ∩ S2).

Also the core of an effectivity function is defined exactly as in the finite
model. Let E : Σ → P (P0(A)) be an EF and let R ∈ ρ. Let B ∈ P0(A),
x ∈ A \ B, and S ∈ Σ. We say that B dominates x via S at R if B ∈ E(S)
and bR(t)x for all b ∈ B and t ∈ S. Also, x is dominated at R if there
exists B ∈ P0(A) and S ∈ Σ such that B dominates x via S at R. If b is not
dominated at R then b is undominated at R.

Definition 11.4.4. The core C(E,R) is the set of all undominated alterna-
tives at R. The effectivity function E is stable if C(E,R) 
= ∅ for all R ∈ ρ.

Let F : ρ → A be a social choice function. We associate with F an effec-
tivity function EF as follows. Let S ∈ Σ0 and let B ∈ P0(A). Call S effective
for B if there exists an RS ∈ ρS such that F (RS ,QΩ\S) is in B for every
QΩ\S ∈ ρΩ\S . Define EF (∅) = ∅, and for S ∈ Σ \ {∅}
EF (S) = {B ∈ P0(A) | S is effective for B}.
In the following theorem we collect some useful properties of EF .

Theorem 11.4.5. Let F : ρ→ A be an ESC social choice function. Then EF

is superadditive, monotonic, maximal, stable, and convex. Moreover, F (R) ∈
C(EF ,R) for all R ∈ ρ.

Proof. Superadditivity and monotonicity are straightforward from the defi-
nition of EF (ESC is not needed for this). Maximality and stability, as well
as the last statement in the theorem, can be proved analogously to the case
of finitely many voters, see Section 5.2. Finally, stability and maximality
together imply convexity. A proof of this fact is analogous to the proof of
Theorem 6.A.9 in Peleg (1984). ��

11.5 Blocking coefficients of anonymous ESC SCFs

In the remainder of the chapter we concentrate on anonymous ESC social
choice functions. Anonymity is a natural requirement for voting procedures.
Moreover, imposing this condition will enable us to derive much more detailed
results on both social choice functions and effectivity functions than Theorem
11.4.5 provides.

Let F : ρ → A be an anonymous ESC social choice function, with associ-
ated effectivity function EF . Then EF is superadditive, monotonic, maximal,
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stable and convex, cf. Theorem 11.4.5. A central concept is that of a blocking
coefficient.

For B ∈ P0(A) \ {A}, the blocking coefficient is the real number

β(B) = inf{λ(S) | A \B ∈ EF (S)}. (11.3)

The number β(B) represents the minimum size of a ‘blocking coalition’ of B.
It is useful since F is anonymous. We call B an e-set (‘e’ from ‘equality’) if
S ∈ Σ and λ(S) = β(B) imply that A \B ∈ EF (S); otherwise, B is called an
i-set (‘i’ from ‘inequality’). Thus, to block an e-set B we need a coalition of
size at least β(B) but to block an i-set B we need a coalition of size strictly
larger than β(B).

We formulate a first observation concerning the blocking coefficients β(·).
Suppose B ∈ P0(A) is an e-set. If β(B) = 0 then A \ B ∈ EF (S) for some
coalition S ∈ Σ0 with λ(S) = 0. Since B ∈ EF (Ω \ S) by conditions (i)
and (iv) in the definition of an effectivity function, we have a violation of
superadditivity of EF . Thus, we have shown:

If B is an e-set, then β(B) > 0. (11.4)

We now derive a number of other properties of β(·), in particular Theorem
11.5.1 below, which says that β(·) is an additive function.

If B1, B2 ∈ P0(A) and B1 ∪B2 
= A, then

β(B1 ∪B2) ≤ β(B1) + β(B2). (11.5)

To see this, note that if the right hand side of this inequality is greater than
or equal to λ(Ω), then the inequality holds. Now assume it is smaller. Let
ε > 0 be small and let Si ∈ Σ with λ(Si) = β(Bi)+ε and A\Bi ∈ EF (Si) for
i = 1, 2, such that S1∩S2 = ∅. By superadditivity,A\(B1∪B2) ∈ EF (S1∪S2),
hence β(B1∪B2) ≤ β(B1)+β(B2)+2ε. By letting ε approach 0, (11.5) follows.

For every B ∈ P0(A) \ {A} we have

β(B) + β(A \B) ≥ λ(Ω) (11.6)

because otherwise there would be disjoint coalitions S and T with B ∈ EF (S)
and A \ B ∈ EF (T ), contradicting the superadditivity of EF . We shall now
show the reverse inequality. Assume β(B) > 0 otherwise there is nothing left
to prove. For every 0 < δ < β(B) and S ∈ Σ with λ(S) = δ we have A \B /∈
EF (S). Hence by maximality of EF , B ∈ EF (Ω\S), so β(A\B) ≤ λ(Ω)− δ.
This implies the reverse inequality of (11.6), hence

β(B) + β(A \B) = λ(Ω) (11.7)

for every B ∈ P0(A) \ {A}.
Suppose that B ∈ P0(A) \ {A} is an e-set and let S ∈ Σ such that β(B) =

λ(S) and A \B ∈ EF (S). Then, by superadditivity, B /∈ EF (Ω \S). Also, by
(11.7), β(A \B) = λ(Ω \ S), so that A \ B is an i-set. Conversely, let A \ B
be an i-set and S ∈ Σ with λ(S) = β(A \ B). Then B /∈ EF (S) so that, by
maximality, A \ B ∈ EF (Ω \ S). Since, by (11.7), β(B) = λ(Ω \ S), we have
that B is an e-set. Summarizing,
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B is an e-set ⇔ A \B is an i-set (11.8)

for every B ∈ P0(A) \ {A}.
Moreover, monotonicity of EF clearly implies monotonicity of the function

β(·):
B1 ⊆ B2 ⇒ β(B1) ≤ β(B2) (11.9)

for all B1, B2 ∈ P0(A) \ {A}.
We now show that blocking coefficients are actually additive, that is,

β(B1 ∪ B2) = β(B1) + β(B2) for all B1, B2 ∈ P0(A) with B1 ∩ B2 = ∅
and B1 ∪B2 
= A.

Theorem 11.5.1. β(·) is additive.

Proof. Let Bi ∈ P0(A), i = 1, 2, with B1 ∩B2 = ∅ and B1 ∪B2 
= A. In view
of (11.5) it is sufficient to prove that β(B1 ∪B2) ≥ β(B1) + β(B2). By (11.9)
we may assume β(Bi) > 0 for i = 1, 2. Let S and T satisfy λ(S) < β(B1),
λ(T ) < β(B2), and S ∩ T = ∅. Then by (11.7) and (11.9), B1 ∈ EF (Ω \ S)
and B2 ∈ EF (Ω \T ). By convexity of EF , B1 ∪B2 ∈ EF (Ω \ (S ∪ T )). Thus,
by (11.7) and the definition of β(·),
β(B1 ∪B2) = λ(Ω) − β(A \ (B1 ∪B2))

≥ λ(Ω) − λ(Ω \ (S ∪ T ))
= λ(S) + λ(T ).

Since, by (11.7) and (11.9), β(B1) + β(B2) ≤ λ(Ω), we can choose λ(S) and
λ(T ) as close to β(B1) and β(B2), respectively, as desired, which completes
the proof. ��

In view of Theorem 11.5.1 and (11.7) it is useful to define β(A) = λ(Ω)
and let A be an i-set. Note that this is another deviation from the case of
finitely many voters, where the analogous statement is

∑
a∈A β(a) = n + 1,

cf. Section 9.2.
For e-sets we have the following theorem.

Theorem 11.5.2. If B1 and B2 are e-sets, then B1 ∩ B2 or B1 ∪ B2 are
e-sets.

Proof. Let B1 and B2 be e-sets. If B1 ∩B2 = ∅ then take disjoint coalitions
S1 and S2 of sizes β(B1) and β(B2), respectively. Then A\B1 ∈ EF (S1) and
A \ B2 ∈ EF (S2). By superadditivity, A \ (B1 ∪ B2) ∈ EF (S1 ∪ S2). Since
λ(S1 ∪ S2) = β(B1 ∪B2) by Theorem 11.5.1, we conclude that B1 ∪B2 is an
e-set.

Next, assume B1 ∩B2 
= ∅. Choose pairwise disjoint sets S1, S2, and S3 in
Σ0 such that λ(S1) = β(B1)− β(B1 ∩B2), λ(S2) = β(B2)− β(B1 ∩B2), and
λ(S3) = β(B1 ∩ B2). Define T1 = S1 ∪ S3 and T2 = S2 ∪ S3. Then λ(T1) =
β(B1), λ(T2) = β(B2), λ(T1∩T2) = β(B1∩B2), and λ(T1∪T2) = β(B1∪B2).
By assumption, A \B1 ∈ EF (T1) and A \B2 ∈ EF (T2). Since EF is convex,
A \ (B1 ∪B2) ∈ EF (T1 ∪ T2) or A \ (B1 ∩B2) ∈ EF (T1 ∩ T2). Thus, B1 ∪B2

or B1 ∩B2 are e-sets. ��
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Example 11.5.3. The effectivity function associated with the ESC social
choice function of Example 11.4.2 is as follows. If S ∈ Σ+ with λ(S) < λ(Ω)
then B ∈ EF (S) if and only if ā ∈ B, for all B ∈ P0(A); and if λ(S) = λ(Ω)
then EF (S) = P0(A). This implies that for all B ∈ P0(A) we have β(B) = 0
if ā /∈ B, and β(B) = λ(Ω) if ā ∈ B. Also, B 
= A is an i-set if ā /∈ B, and an
e-set if ā ∈ B. In particular, β({x}) = 0 and {x} is an i-set for all x ∈ A\{ā},
and β({ā}) = λ(Ω) and {ā} is an e-set.

We conclude this section by generalizing the concepts of e-sets and i-sets.
Let β : P0(A) → [0, λ(Ω)] and let {i, e} be a partition of P0(A) satisfying

β is additive, β(A) = λ(Ω), and β(B) > 0 for all B ∈ e, (11.10)

for all B ∈ P0(A) \ {A}, B ∈ e ⇔ A \B ∈ i, and A ∈ i, (11.11)

for all B1, B2 ∈ e, we have B1 ∩B2 ∈ e or B1 ∪B2 ∈ e. (11.12)

Properties (11.10)–(11.12) summarize exactly all the properties of the e-
sets and i-sets of the effectivity function associated with an anonymous ESC
social choice function established above.

Next, for a system (β; e, i) satisfying (11.10)–(11.12), we define an effec-
tivity function E by E(Ω) = P0(A), E(∅) = ∅, A ∈ E(S) for every S ∈ Σ0,
and

for all B ∈ e and S ∈ Σ, if λ(S) ≥ β(B) then A \B ∈ E(S), (11.13)

for all B ∈ i and S ∈ Σ, if λ(S) > β(B) then A \B ∈ E(S). (11.14)

It is straightforward to check that E is an effectivity function according to
Definition 11.4.3: the premise in condition (iv) implies in particular that
λ(S1) = λ(S2), so that E(S1) = E(S2) according to the definition of E.

In the next sections we consider the following question. Given a system
(β; e, i) satisfying (11.10)–(11.12) and associated effectivity function E, is
there an (anonymous) ESC social choice function F such that E = EF ? By
using feasible elimination procedures we will present a complete answer to
this question for the case where there is exactly one i-alternative, i.e., there is
exactly one x ∈ A with {x} ∈ i, in Corollary 11.7.3. This is restrictive since
we already know that there are other cases: see Examples 11.4.2, 11.5.3. On
the other hand, this case is the only possible one if we require all blocking
coefficients to be positive: see Corollary 11.8.3.

11.6 Feasible elimination procedures

In this section we describe a procedure that will enable the construction
of an anonymous exactly and strongly consistent social choice function. We
start with the definition of a so-called pseudo feasible elimination procedure.
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Throughout, β : A → R is a function satisfying β(a) ≥ 0 for all a ∈ A and∑
a∈A β(a) = λ(Ω).

Definition 11.6.1. Let R ∈ ρ. A pseudo feasible elimination procedure
(p.f.e.p.) is a sequence (x1, C1; . . . ;xm−1, Cm−1;xm) that satisfies the fol-
lowing conditions:

A = {x1, . . . , xm}. (11.15)

Cj ∈ Σ0, Cj ∩Ck = ∅, λ(Cj) ≥ β(xj)
for all j, k = 1, . . . ,m− 1, j 
= k.

(11.16)

yR(t)xj for all j = 1, . . . ,m− 1, y ∈ {xj+1, . . . , xm}, t ∈ Cj . (11.17)

In a pseudo feasible elimination procedure, ‘bottom’ alternatives are elim-
inated consecutively. As

∑
a∈A β(a) = λ(Ω), it is obvious that for each profile

there always exists at least one p.f.e.p., namely one with λ(Cj) = β(xj) for
all j = 1, . . . ,m − 1. In the following lemma we show that actually more is
possible: if an alternative x is bottom for a coalition of size larger than β(x),
then there is a p.f.e.p. where this alternative is eliminated first and with strict
inequality.

First we recall a notation: for a profile R and a subset B of A, denote by
R|B the profile of preferences restricted to the set B.

Lemma 11.6.2. Let R ∈ ρ and let x ∈ A satisfy

λ({t ∈ Ω | yR(t)x for all y ∈ A}) > β(x).

Then there exists a p.f.e.p. (x,Cx;x1, C1; . . . ;xm−1) with λ(Cx) > β(x).

Proof. The proof is by induction onm. The casem = 2 is obvious. Let m ≥ 3.
We define

A∗ = {y ∈ A | λ({t ∈ Ω | zR(t) y for all z ∈ A}) > β(y)}. (11.18)

By assumption, x ∈ A∗. We distinguish the following cases.

(i) |A∗| ≥ 2.
Let y ∈ A∗\{x} and choose Cy ⊆ Ω such that λ(Cy) = β(y) and Cy ⊆ {t ∈

Ω | zR(t) y for all z ∈ A}. Define the profile Q ∈ ρ as follows. If t ∈ Ω \ Cy

with zR(t) y for all z ∈ A, then let xQ(t)A\{x, y}Q(t) y; otherwise, Q(t) =
R(t). Consider the restricted profile Q1 = QΩ\Cy |A\{y} – observe that if x
is a bottom alternative for a voter t in this restricted profile then it was a
bottom element of R(t). By the induction hypothesis and by the construction
of Q there exists a p.f.e.p. (x,Cx;x1, C1; . . . ;xm−2) with respect to Q1 such
that λ(Cx) > β(x) and Cx ⊆ {t ∈ Ω | zR(t)x for all z ∈ A}. Then the
p.f.e.p. (x,Cx; y, Cy;x1, C1; . . . ;xm−2) is as required.

(ii) A∗ = {x}.
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Let Ĉx satisfy Ĉx ⊆ {t ∈ Ω | yR(t)x for all y ∈ A} and λ(Ĉx) = β(x).
Consider the profile R1 = RΩ\Ĉx |A\{x}. For all y 
= x let Cy = {t ∈ Ω \ Ĉx |
zR(t) y for all z ∈ A \ {x}}. We distinguish two subcases.

(ii.1) λ(Cy) = β(y) for all y 
= x.
Choose ȳ ∈ A \ {x} such that λ(Ĉ) > 0, where

Ĉ = {t ∈ Ω \ Ĉx | zR(t) ȳR(t)x for all z ∈ A \ {x}}.

(Observe that Ĉ ⊆ Cȳ, hence λ(Ĉ) ≤ β(ȳ).) Let Cx = Ĉx ∪ Ĉ, and let
A \ {x, ȳ} = {y1, . . . , ym−2}. Then (x,Cx; y1, Cy1 ; . . . ; ym−2, Cym−2 ; ȳ) is a
p.f.e.p. as required.

(ii.2) There exists ȳ 
= x such that λ(Cȳ) > β(ȳ).
By the induction hypothesis there exists a p.f.e.p. (ȳ, Ĉȳ ;x1, C1; . . . , xm−2)

with respect to R1 such that λ(Ĉȳ) > β(ȳ). Note that λ({t ∈ Ĉȳ |
zR(t) ȳR(t)x for all z ∈ A \ {x}}) > 0 since ȳ /∈ A∗. Choose Ĉ ⊆ {t ∈
Ĉȳ | zR(t) ȳR(t)x for all z ∈ A \ {x}} such that 0 < λ(Ĉ) ≤ λ(Ĉȳ)− β(ȳ).
Then (x, Ĉx ∪ Ĉ; ȳ, Ĉȳ \ Ĉ; x1, C1; . . . ;xm−2) is a p.f.e.p. as required. ��

Now note that if a procedure like p.f.e.p. should result in an anonymous
ESC social choice function then clearly some of the alternatives might be
i-alternatives and these should be blocked with inequality. The preceding
lemma exhibits a case in which this is possible. If, however, there are two or
more of such i-alternatives then it is not difficult to construct a profile where a
p.f.e.p. does not exist if we require i-alternatives to be blocked with inequality.
With this consideration and with observation (11.4) – which says that only
i-alternatives can have zero blocking coefficients – in mind, all alternatives
except at most one should have positive β-values. Therefore, in the rest of
this section we make the following assumption.

Assumption 11.6.3 There is an alternative in A, denoted by s, such that
β(a) > 0 for all a ∈ A \ {s}.

We next introduce the concept of a feasible elimination procedure within
the model of this chapter. In this procedure, the designated alternative s of
Assumption 11.6.3 can only be eliminated if, during the procedure, it becomes
a bottom alternative for a coalition of size strictly larger than β(s).

Definition 11.6.4. Let R ∈ ρ. A p.f.e.p. (x1, C1; . . . ;xm−1, Cm−1;xm) is a
feasible elimination procedure (f.e.p.) if it satisfies the following condition:

xm = s or [xj = s for some j < m and λ(Cj) > β(s)]. (11.19)

We shall now prove the existence of f.e.p.’s in our model and then relate
them to ESC social choice functions.

Theorem 11.6.5. Let Assumption 11.6.3 hold. Then, for every R ∈ ρ there
is an f.e.p. with respect to R.
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Proof. Let R ∈ ρ. The proof is by induction onm. The casem = 2 is obvious.
Let m ≥ 3. Define A∗ as in (11.18). We distinguish the following possibilities.

(i) A∗ = ∅.
For a ∈ A let C(a) = {t ∈ Ω | yR(t) a for all y ∈ A}. Then λ(C(a)) =

β(a) for all a ∈ A. Let A \ {s} = {a1, . . . , am−1}. Then (a1, C(a1); . . . ; am−1,
C(am−1); s) is an f.e.p.

(ii) A∗ 
= ∅ and s /∈ A∗.
Let y ∈ A∗ and let Cy ⊆ {t ∈ Ω | zR(t) y for all z ∈ A} satisfy λ(Cy) =

β(y). By the induction hypothesis for RΩ\Cy |A\{y} there exists an f.e.p.
(x1, C1; . . . ;xm−1) for the restricted profile. Then (y, Cy ;x1, C1; . . . ;xm−1)
is an f.e.p. for R.

(iii) s ∈ A∗.
This case follows from Lemma 11.6.2. ��

We shall use the existence of feasible elimination procedures established in
Theorem 11.6.5 to derive the existence of an interesting class of ESC social
choice functions, similarly as we did in Chapter 9. Let R ∈ ρ. Call x ∈ A
R-maximal if there exists an f.e.p. (x1, C1; . . . ;xm) with respect to R such
that x = xm. Further, denote

M(R) = {x ∈ A | x is R-maximal}.
Thus, M(R) 
= ∅ for all R ∈ ρ if Assumption 11.6.3 holds. The following
observation concerning M(·) will be very useful below.

Remark 11.6.6. Let R ∈ ρ and let x ∈ A \ {s} satisfy

λ({t ∈ Ω | yR(t)x for all y ∈ A}) ≥ β(x).

Then x /∈ M(R). This is so since λ(
⋃

y∈A\{x}{t ∈ Ω | A \ {y}R(t)y}) ≤
λ(Ω) − β(x) and s has to be eliminated strictly in an f.e.p.

Theorem 11.6.7. Let Assumption 11.6.3 hold. Let the social choice function
F : ρ→ A be a selection from M(·), that is, F (R) ∈M(R) for every R ∈ ρ.
Then F is exactly and strongly consistent.

Proof. Let R ∈ ρ and x = F (R). Then there exists an f.e.p. (x1, C1; . . . ;xm−1,
Cm−1;x) with respect to R. Choose Q ∈ ρ that satisfies yQ(t)xj for all
t ∈ Cj , y ∈ A, and j = 1, . . . ,m− 1. We claim that F (Q) = F (R) and that
Q is a strong equilibrium of the game (F,R). We distinguish the following
cases.

(i) x = s.
By Remark 11.6.6, F (Q) = s. Now assume, on the contrary, that Q is not

a strong equilibrium of (F,R). Then there exist S ∈ Σ+ and VS ∈ ρS such
that F (QΩ\S ,VS) = y, y 
= s, and yR(t) s for all t ∈ S. Let y = xj for some
1 ≤ j ≤ m− 1. Then S ∩ Cj = ∅ because sR(t)xj for all t ∈ Cj . Hence, by
Remark 11.6.6, F (QΩ\S ,VS) 
= xj , which is the desired contradiction.
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(ii) x 
= s.
Then s = xj0 for some j0 ≤ m − 1. Thus, by definition of an f.e.p.,

λ(Cj0 ) > β(s). Hence, it is not possible to eliminate all x′ 
= s in an f.e.p.
with respect to Q, and therefore F (Q) 
= s. By Remark 11.6.6 applied to all
x′ ∈ A\{x, s}, F (Q) = x. The proof that Q is a strong equilibrium of (F,R)
is analogous to that in case (i), observing that a profitable deviation from Q
can never result in s since λ(Cj0 ) > β(s) and, therefore, it is not possible to
eliminate all alternatives in A \ {s} in an f.e.p. with respect to Q. ��

We conclude this section with some observations which relate Theorem
11.6.7 to the preceding sections.

Let F̂ be an anonymous selection from M(·). For instance, for every R ∈ ρ
select the maximal element in M(R) according to a fixed order R0 ∈ L. By
Theorem 11.6.7, F̂ is an anonymous ESC social choice function, and therefore
its associated effectivity function EF̂ is characterized by blocking coefficients
(say) β̂(B) for B ∈ P0(A). Since alternatives assigned by F̂ result from
feasible elimination procedures with weights β(a) (a ∈ A), it is easy to check
that β̂(a) = β(a) for every a ∈ A, and that {s} is an i-set whereas all other
singleton sets are e-sets. By the results established in Section 11.5, it follows
that a set B ⊆ A is an i-set if and only if it contains s. Note that the effectivity
function EF̂ is independent of the particular anonymous selection F̂ chosen
since it is completely determined by the weights β(a) (a ∈ A), and thus we
can denote it by Ê. Since, for all R ∈ ρ and for every element x ∈ M(R)
we can always find an anonymous selection choosing that particular element,
Theorem 11.4.5 implies that M(R) ⊆ C(Ê,R) for all R ∈ ρ. We can also
state this as M(R) ⊆ C(E,R) for all R ∈ ρ, where E is the effectivity
function associated with the system (β, e, i) as above (cf. Section 11.5). In
the next section we shall establish the converse inclusion C(E,R) ⊆M(R).

11.7 Core and feasible elimination procedures

In this section we prove that for any anonymous ESC social choice function
that has exactly one i-alternative, every element in the core of the associated
effectivity function can be obtained by a feasible elimination procedure.

Let (β; e, i) be a system satisfying (11.10)–(11.12) with i containing exactly
one singleton {s} for some designated s ∈ A. Hence, β(y) > 0 for all y ∈
A \ {s}. Let E be the associated effectivity function. Note that β(·) satisfies
Assumption 11.6.3 and therefore M(R) 
= ∅ for all R ∈ ρ by Theorem 11.6.5.
As explained in the last paragraph of Section 11.6, we have M(R) ⊆ C(E,R)
and in particular C(E,R) 
= ∅ for every R ∈ ρ.

Let R ∈ ρ and x ∈ C(E,R). For every y ∈ A \ {x} denote

S(y) = {t ∈ Ω | xR(t) y}.
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As before for B ∈ P0(A) we denote β(B) =
∑

y∈B β(y). Using (11.13),
(11.14), and the definition of the core it is straightforward to derive, for
all z ∈ A,

z ∈C(E,R)⇔
{
λ(∪y∈BSz(y)) ≥ β(B) for all B ∈ P0(A) with s /∈ B, z /∈ B,
λ(∪y∈BSz(y)) > β(B) for all B ∈ P0(A) with s ∈ B, z /∈ B,

(11.20)

where Sz(y) = {t ∈ Ω | zR(t) y}, so S(y) = Sx(y). In particular, we have
λ(S(y)) ≥ β(y) for all y 
= x, with strict inequality if y = s. Of course, the
sets S(y) need not be disjoint, but Theorem 11.7.1 below says that they can
be shrunk in such a way that they become pairwise disjoint while maintaining
the inequalities. This theorem is a continuous version of the discrete ‘mar-
riage theorem’ (cf. Halmos and Vaughan, 1950), suitable for our context, in
particular for deriving Theorem 11.7.2 below. The latter theorem says that
core elements are maximal, and its proof follows the construction in the proof
of Theorem 11.7.1.5

Theorem 11.7.1. There exist pairwise disjoint measurable sets C(y), y ∈
A \ {x}, such that (i) C(y) ⊆ S(y) for every y ∈ A\{x}; (ii) λ(C(y)) ≥ β(y)
for all y 
= x and λ(C(s)) > β(s).

Proof. We start by noting that, if x 
= s, we may increase β(s) with a small
ε > 0 and decrease β(x) with the same amount (note that β(x) > 0). In
this way, all inequalities in (11.20) still hold as weak inequalities and it is
sufficient to prove (ii) in the theorem with only weak inequalities. Moreover,
we may regard x as the i-alternative instead of s. For the rest of the proof
we assume that this is the case.

We prove the theorem by induction on |A| = m ≥ 2. The case m = 2 is
obvious, so we concentrate on the induction step for m ≥ 3. We first make
the following observation.

Remark. Suppose there exists a set B∗ ⊆ A \ {x} with ∅ 
= B∗ 
= A \ {x},
such that λ(∪y∈B∗S(y)) = β(B∗). In this case, we can decompose our problem
into two smaller problems to which we can apply the induction hypothesis,
as follows.

(i) The problem with set of alternatives B∗∪{x}, set of voters ∪y∈B∗S(y),
blocking coefficients β̂(x) = 0 and β̂(y) = β(y) unchanged for y ∈ B∗, and
preferences R(t)|B∗∪{x} for t ∈ ∪y∈B∗S(y). Note that all inequalities as in
(11.20) restricted to voters in ∪y∈B∗S(y) and alternatives in B∗ ∪ {x} still
hold, and that λ(∪y∈B∗S(y)) = β(B∗) = β̂(B∗ ∪ {x}).

(ii) The problem with set of alternatives A\B∗, set of voters Ω\∪y∈B∗S(y),
blocking coefficients unchanged, and preferences R(t) restricted to A \ B∗.

5 For a proof of a slightly less general version of the continuous ‘marriage theorem’ see
Hart and Kohlberg (1974, p. 171).
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Note that all inequalities still hold since for any set B ⊆ A \ ({x} ∪ B∗) we
have

λ(∪y∈BS(y) \ ∪ŷ∈B∗S(ŷ)) = λ(∪y∈B∪B∗S(y)) − λ(∪y∈B∗S(y))
= λ(∪y∈B∪B∗S(y)) − β(B∗)
≥ β(B ∪B∗) − β(B∗)
= β(B).

Furthermore, λ(Ω \ ∪y∈B∗S(y)) = β(A \B∗).
The required sets C(y), y ∈ A \ {x} are now obtained by applying the

induction hypothesis to each subproblem.

We now proceed to the induction step. Let m ≥ 3. We are done if there
is a decomposition possible as in the Remark, so suppose there is none. Let
b ∈ A \ {x} and consider the set S = S(b) \ ∪y∈A\{x,b}S(y), i.e., S = {t ∈ Ω |
yR(t)xR(t) b for all y 
= x, b}. We distinguish two cases.

Case 1 : λ(S) ≥ β(b). Since x ∈ C(E,R), 0 ≤ λ(S) ≤ β(x) + β(b). Now
take C(b) equal to S, and apply the induction hypothesis to the problem with
set of alternatives A \ {b}, set of voters Ω \S, blocking weights β′ unchanged
except β′(x) = β(x) − (λ(S) − β(b)), and preferences equal to the original
preferences restricted to A \ {b}.

Case 2: λ(S) < β(b). We also know λ(S(b)) > β(b) otherwise λ(S(b)) =
β(b) by (11.20), and we would have a decomposition as in the Remark with
B∗ = {b}. Now choose a measurable set S∗ satisfying S ⊆ S∗ ⊆ S(b) and
λ(S∗) = β(b) (this is possible by Lyapunov’s Theorem). Consider the set of
vectors

{(λ (S∗ ∪ T ∪ (∪y∈BS(y))))B�A\{b,x} | ∅ ⊆ T ⊆ S(b) \ S∗}. (11.21)

For T = S(b) \ S∗ and B = ∅ we have

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(S(b)) > β(b) (11.22)

and for T = S(b) \ S∗ and B ⊆ A \ {x, b} arbitrary we have

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(∪y∈B∪{b}S(y)) ≥ β(b) + β(B) (11.23)

by (11.20). For T = ∅ and B = ∅ we have

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(S∗) = β(b). (11.24)

Now for B ⊆ A \ {x, b} with B 
= A \ {x, b} and T ⊆ S(b) \ S∗ consider the
expression

λ(S∗ ∪ T ∪ (∪y∈BS(y))) = λ(T ) + λ(S∗ ∪ (∪y∈BS(y)))
−λ(T ∩ (S∗ ∪ (∪y∈BS(y)))).

This is an affine function, with variable T , of two measures λ(T ) and λ(T ∩
(S∗ ∪ (∪y∈BS(y)))). As B varies on {B′ | B′ ⊆ A \ {b, x}, B′ 
= A \ {b, x}}
we obtain an affine combination of two vector measures. Hence, its range
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(11.21) is compact and convex by Lyapunov’s Theorem. By (11.22), (11.23),
and (11.24), we can choose T = T0 such that all inequalities in (11.23) are
still valid but with at least one equality, say for B0. Now set S0 = S∗ ∪ T0,
and set B∗ = B0∪{b}. On S(b)\S0 change the preferences by shifting b up so
that it becomes preferred to x. Use the notation S̄(·) for the S(·)-sets in the
new profile. Then all sets S(y), y 
= b, remain unchanged, i.e., S̄(y) = S(y),
whereas S(b) changes to S̄(b) = S0. Then, for this new profile, we have
β(B∗) = β(b)+ β(B0) = λ(S0 ∪ (∪y∈B0S(y))) = λ(∪y∈B∗ S̄(y)). The problem
with the new profile is decomposable according to the Remark. Applying the
Remark, we obtain the desired sets: in particular, the resulting set C(b) is a
subset of S̄(b) = S0 and therefore of S(b). This concludes the proof of the
theorem. ��

Still under the assumptions made at the beginning of this section we pro-
ceed to show that x is a maximal alternative, i.e., x ∈M(R). We first attach a
precise and formal meaning to the expression ‘bottom alternative’: we call b ∈
A a bottom alternative of R if the set Ŝ(b) = {t ∈ Ω | yR(t) b for all y ∈ A}
has measure λ(Ŝ(b)) ≥ β(b), with strict inequality sign for b = s. Observe
that there is always a bottom alternative since

∑
a∈A β(a) = λ(Ω). Obviously,

x is not a bottom alternative since it is in the core C(E,R).
We have the following result.6

Theorem 11.7.2. Alternative x is R-maximal, that is, x ∈M(R). In partic-
ular, if b is a bottom alternative of R, then there is an f.e.p. (b, Cb; y1, C1; . . . ;
ym−2, Cm−2;x).

Proof. Let b be a bottom alternative. If b = s we slightly increase the blocking
coefficient of b (as in the beginning of the proof of Theorem 11.7.1) so that
we still have λ(Ŝ(b)) ≥ β(b). (This has the advantage that in what follows it
is sufficient to consider blocking with weak inequalities.)

The proof is by induction on m = |A|. For m = 2 the result is again
obvious. Let m ≥ 3.

(i) First suppose that the problem is decomposable into two subproblems
with sets of alternatives {x} ∪ B∗ and A \ B∗ as in the proof of Theorem
11.7.1, and with b ∈ B∗. Note that all voters in the problem with A\B∗ rank
B∗ above x. By the induction hypothesis, each of the subproblems has an
f.e.p. leading to x, with the one in the first subproblem starting with b. Let
|B∗| = k, let (b, Cb; y1, C1; . . . ; yk−1, Ck−1;x) be an f.e.p. in the problem with
{x}∪B∗ and let (x1, Ĉ1; . . . ;xm−k−1, Ĉm−k−1;x) be an f.e.p. in the problem
with A \B∗. Then

(b, Cb;x1, Ĉ1; . . . ;xm−k−1, Ĉm−k−1; y1, C1; . . . ; yk−1, Ck−1;x)

is an f.e.p. for the original problem.

6 The analogous result to Theorem 11.7.2 for the case with finitely many voters is Theorem
9.3.6. The proof of the latter theorem has benefitted from the analysis in this chapter.
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(ii) Next, suppose the problem is not decomposable in this way. As in
the proof of Theorem 11.7.1 let S = S(b) \

⋃
y∈A\{x,b} S(y) and distin-

guish two cases as there. In Case 1, λ(S) ≥ β(b), we take again C(b) =
S, observing that S ⊆ Ŝ(b). Applying the induction hypothesis, we let
(y1, C1; . . . ; ym−2, Cm−2;x) be an f.e.p. in the problem with set of alternatives
A \ {b}, then (b, Cb; y1, C1; . . . ; ym−2, Cm−2;x) is as desired.

In Case 2, we proceed again as in the proof of Theorem 11.7.1 but we
make sure that S0 there is chosen in such a way that λ(S0 ∩ Ŝ(b)) ≥ β(b).
This is possible since S ⊆ Ŝ(b) ⊆ S(b) and so we can choose S∗ (which is
a subset of S0 by construction) such that S∗ ⊆ Ŝ(b). We have now again
a decomposition as in (i) of this proof: since b is eliminated first, shifting b
over x in the original preferences of voters in S(b) \ S0 does not change the
restriction of these preferences to A \B∗. ��

We conclude this section by summarizing the main results of Sections 11.6
and 11.7 in the following corollary.

Corollary 11.7.3.

(i) Let F be an anonymous ESC social choice function. Suppose that the
associated effectivity function E has exactly one i-alternative. Then
C(E, ·) = M(·) and F is a selection from this set.

(ii) Let (β; e, i) be a system satisfying (11.10)–(11.12) such that i contains
exactly one singleton. Then, for the associated effectivity function E,
C(E, ·) = M(·), and any anonymous selection from this set is an anony-
mous ESC social choice function.

11.8 Positive blocking coefficients

A natural question is whether Corollary 11.7.3 can be extended to general
systems (β; e, i). We have already remarked that if there are two or more
i-alternatives, then a feasible elimination procedure may fail to exist. On the
other hand, Example 11.4.2 (or 11.5.3) shows that an anonymous ESC social
choice function may generate more than one i-alternative. In this section we
show that if an anonymous ESC social choice function generates only pos-
itive blocking coefficients, then there can be at most one i-alternative. In
other words, Corollary 11.7.3 provides a complete characterization of anony-
mous ESC social choice functions if we require all blocking coefficients to be
positive.

Let E be the effectivity function associated with a system (β; e, i), satis-
fying (11.10)–(11.12).
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Definition 11.8.1. E satisfies D(k), where 1 ≤ k ≤ m − 2, if there ex-
ist no partitions {x1}, . . . , {xk}, C1, C2 of A and S1, . . . , Sk, T1, T2 of Ω,
S1, . . . , Sk, T1, T2 ∈ Σ+, such that7

(i) λ(Si) = β(xi) for i = 1, . . . , k, and x1, . . . , xk are e-alternatives;
(ii) λ(Ti) = β(Ci) for i = 1, 2, and C1 and C2 are i-sets.

The following theorem is a counterpart of similar results for the case of
finitely many voters, see Section 10.4 in particular. Its proof is deferred until
the end of this section.

Theorem 11.8.2. Let F : ρ → A be an anonymous ESC social choice func-
tion, and let (β; e, i) be the associated system. Suppose that β(a) > 0 for all
a ∈ i. Then E = EF satisfies D(k) for all 1 ≤ k ≤ m− 2.

We now have:

Corollary 11.8.3. Let F : ρ→ A be an anonymous ESC social choice func-
tion that generates only positive blocking coefficients. Then there is exactly
one i-alternative.

Proof. Clearly, by (11.11) and (11.12), there must be at least one i-alternat-
ive: if all alternatives were e-alternatives then repeated application of (11.12)
would give a violation of (11.11). Also, there must be at least one e-
alternative: if not, then A \ {x} would be an e-set for each x ∈ A by (11.11),
hence A \ {x, y} = A \ {x} ∩ A \ {y} would be an e-set for all x, y ∈ A by
(11.12), and so on and so forth, implying that all singletons would be e-sets,
a contradiction.

Suppose that there are two different i-alternatives x, y in the associated
system. Let {x1}, . . . , {xk} be the e-singletons, hence 1 ≤ k ≤ m− 2. Define
C1 = {x} and C2 = {z ∈ A | z 
= x, {z} ∈ i}. Then C2 is an i-set, which
can be seen as follows. Write C2 = {y1, . . . , y�}, where � ≥ 1. If C2 were an
e-set, then also C2 \{y�} = C2∩A\{y�} would be an e-set by (11.12). Hence,
C2 \ {y�, y�−1} = C2 \ {y�} ∩ A \ {y�−1} is an e-set, and so on and so forth,
until we obtain that {y1} is an e-set, which is a contradiction.

Now choose a partition of Ω as in Definition 11.8.1, so thatD(k) is violated.
This contradicts Theorem 11.8.2. ��

The combination of Corollaries 11.7.3 and 11.8.3 yields an almost complete
characterization of anonymous ESC social choice functions. The case where
there is more than one i-alternative – so that at least one i-alternative has
zero blocking coefficient – is still open.

Proof of Theorem 11.8.2

We start with the following observation.

7 Recall from Section 11.3 that elements of a partition have positive measure by definition.
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Lemma 11.8.4. Let F : ρ → A be an ESC SCF. Then there exist no
partitions S1, . . . , Sp of Ω and B1, . . . , Bp of A (where p ≥ 2) such that
A \Bi /∈ EF (Si) for all i = 1, . . . , p.

Proof. Assume, on the contrary, that there exist partitions as in the lemma.
Consider the following profile:

S1 S2 · · · Sp

B2 B3 · · · B1

B3 B4 · · · B2

...
...

...
...

Bp B1 · · · Bp−1

B1 B2 · · · Bp

By maximality (Theorem 11.4.5) of EF , we haveBi ∈ EF (Ω\Si) for every i =
1, . . . , p. Hence, the alternatives in B2 are blocked by Ω \S1, the alternatives
in B3 by Ω \ S2, etc., so that C(EF ,R) = ∅. But this contradicts stability
(Theorem 11.4.5) of EF . ��

Proof of Theorem 11.8.2 The proof is by induction on k.

(1) k = 1. Assume, on the contrary, that there are partitions {x1}, C1, C2

of A and S1, T1, T2 of Ω, satisfying (i) and (ii) in Definition 11.8.1. Let
S1 = S1 ∪ S2 with S1 ∩ S2 = ∅ and λ(S1) = λ(S2). Consider the following
profile R:

S1 S2 T1 T2

C1 C2 x1 x1

C2 C1 C2 C1

x1 x1 C1 C2

Since S1 can block x1 (i.e., A \ {x1} ∈ E(S1)), stability of EF (Theorem
11.4.5) implies F (R) 
= x1. Without loss of generality F (R) ∈ C1. Let Q be
a strong Nash equilibrium of (F,R) with F (R) = F (Q). We distinguish the
following possibilities.

(1.1) There exists y ∈ C2 such that λ({t ∈ S1 | x1 Q(t) y}) > 0.
Choose S3 ⊆ {t ∈ S1 | x1 Q(t) y} such that 0 < λ(S3) < mina∈A β(a). Define
the T1 ∪ T2-profile P by

x1 P(t) yP(t)A \ {x1, y} for all t ∈ T1 ∪ T2.

By considering the partitions S1 \ S3, S3, T1 ∪ T2, and {x1}, {y}, A \
{x1, y}, it follows from Lemma 11.8.4 that T1 ∪ T2 blocks A \ {x1, y}.
Hence, F (QS1 ,PT1∪T2) ∈ {x1, y}. As T1 ∪ T2 ∪ S3 is effective for x1, and
F (QS1 ,PT1∪T2) ∈ C(E, (QS1 ,PT1∪T2)), we have F (QS1 ,PT1∪T2) = x1.
Thus, T1 ∪ T2 has improved upon F (Q), which is a contradiction.

(1.2) C2 Q(t)x1 for all t ∈ S1.
Consider the T1 ∪ S2-profile P defined by
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C2 P(t)x1 P(t)C1 for all t ∈ T1 ∪ S2.

Since λ(T1 ∪ S2) > λ(T1) = β(C1), T1 ∪ S2 blocks C1. Therefore, F (QT2∪S1
,

PT1∪S2
) /∈ C1. Suppose F (QT2∪S1

,PT1∪S2
) = x1. Note that, in the profile

(QT2∪S1
,PT1∪S2

), both T1 and S1 prefer C2 over x1. Moreover, λ(T1 ∪S1) =
β(C1) + β(x1) and C1 ∪ {x1} is an e-set, because C2 is an i-set; therefore,
T1 ∪ S1 blocks C1 ∪ {x1}. This contradicts F (QT2∪S1

,PT1∪S2
) = x1 and,

hence, F (QT2∪S1
,PT1∪S2

) ∈ C2. But this contradicts the fact that Q is a
strong Nash equilibrium in (F,R).

(2) Let 1 < k ≤ m− 2 and assume D(1), . . . , D(k− 1). We shall prove D(k).
Assume, on the contrary, that there exist partitions {x1}, . . . , {xk}, C1, C2

of A and S1, . . . , Sk, T1, T2 of Ω, satisfying (i) and (ii) in Definition 11.8.1. If
C1 ∪ {xk} is an i-set, then we obtain a contradiction to D(k− 1). Otherwise,
A\(C1∪{xk}) is an i-set. Then consider the partitions {xk}, C1, A\(C1∪{xk})
of A, and Sk, T1, Ω \ (Sk ∪T1) of Ω: this implies a contradiction to D(1). ��

11.9 Notes and comments

Most of the results of this chapter first appeared in Peleg and Peters (2006).
The extension of the Gibbard-Satterthwaite theorem to the continuum voter
case first appeared in the working paper version of Peleg and Peters (2006).
There, it is also shown that in this model an effectivity function is maximal
and stable if and only if it can be represented by a strongly consistent game
form. See Propositions 5.2.4 and 5.2.6 and Theorem 5.3.2, or Moulin and
Peleg (1982), for the case with finitely many voters.
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convexity of an effectivity function, 63

core of an effectivity function, 62, 131

core of residual, 25

core stability, xv, 25, 62

dictatorial simple game, 50

effectivity function, xi, 5, 13, 130

elimination stability, xvii, 114

equilibrium with threats, 102
exact and strong consistency (ESC), xvi,

99, 108, 129

feasible elimination procedure, xvii, 106,
114

filter, 127

game form, xi, 16
generalized partition, 116
Gibbard-Satterthwaite Theorem, 98

Hausdorff metric, 84

Hausdorff space, 31, 51

implementation theory, xiii
invisible dictator, 128

kingmaker game form, 16, 60

liberal paradox, xv, 20, 40, 46
liberalism, 20, 40
linear ordering, 3

local effectivity function, 20
lottery model, xvi, 70
lower contour set, 22
lower topology, 43
Lyapunov’s Theorem, 140

manipulability, 125
marriage theorem, 139
Maskin monotonicity, 42, 100, 110
maximality, xv, 42, 49, 61
maximality of alternatives, 107, 114
mechanism design, xiii
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minimal blocking coalition, 116
minimal liberalism, xv, 20, 40, 48
monotonicity, 15
monotonicity of SCC, 110
monotonicity w.r.t. coalitions, 13
monotonicity w.r.t. outcomes, 14, 15

Nash consistency, xiv, 23
Nash equilibrium, xii, 23
neutrality, 34
non-imposition, 13

normal topological space, 29, 47

obligation, xi, 11
outcome, 9, 16
outcome function, 16

Pareto optimality, xii, xiii, 27, 130
partition, 125
partition of unity, 29
polar effectivity function, 24
preference, 22
profile of preferences, 23, 124
proper simple game, 35
pseudo feasible elimination procedure, 135
purification problem, 79

reflexivity of effectivity function, 90
representation, 17
residual, 25
rich structure, 23
right, xi, 5, 8

semicontinuity, 89

simple game, 35, 49

social choice correspondence, xiii, 42, 102

social choice function, xiv, 60, 98, 125
social state, xi, 8

social welfare function, 3

society, 8

stochastic dominance, 71

strategy-proofness, 98
strong consistency, xv, 60

strong Nash equilibrium, xv, 60

strong simple game, 49

structure, 13, 23

superadditivity, 5, 15

topological effectivity function, 29

ultrafilter, 125
unanimity effectivity function, 74

uniform core, 75

upper topology, 31, 88

Urysohn’s Lemma, 30

utility function, 69

veto function, 34, 36, 74

vetoer, 117

Vietoris topology, 43, 64

weak acceptability, xv, 41, 46

Zorn’s Lemma, 128
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