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Preface

This volume contains the proceedings of the Third International Conference on
Trust and Trustworthy Computing (TRUST), held at the Ritz-Carlton hotel in
Berlin, Germany, June 21-23, 2010.

TRUST is a rapidly growing forum for research on the technical and socio-
economic aspects of trustworthy infrastructures. TRUST provides an interdisci-
plinary forum for researchers, practitioners, and decision makers to explore new
ideas and discuss experiences in building, designing, using, and understanding
trustworthy computing systems.

The third edition of TRUST welcomed manuscripts in two different tracks:
a Technical Strand and a Socio-economic Strand. We assembled an engaging
program with 21 peer-reviewed technical papers and nine peer-reviewed socio-
economic papers; eight keynotes from industry, academia, and government; and
panel discussions on privacy and standards. In addition, this year, TRUST was
co-located with four workshops: Trust in Cloud, Hardware Security, Emerging
and Future Risks, and Anonymous Signatures.

We would like to thank numerous individuals for their effort and contribu-
tion to the conference and for making TRUST 2010 possible: the Organizing
Committee members—Nadine Palacios and Marcel Winandy—for their tremen-
dous help with all aspects of the organization; the Technical and Socio-economic
Program Committee members, whose names are listed on the following pages,
together with the names of external reviewers who helped us in the process of
selecting manuscripts to be included in the conference proceedings; the keynote
and invited speakers; and the invited panel speakers.

Finally, we express our gratitude to our sponsors, whose support was crucial
to the success of TRUST 2010: Microsoft Research, Intel, Hewlett-Packard, TCG
(Trusted Computing Group), Sirrix AG security technologies, Intrinsic ID, and
CASED (Center for Advance Security Research Darmstadt).

June 2010 Alessandro Acquisti
Sean W. Smith
Ahmad-Reza Sadeghi
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Beyond Kernel-Level Integrity Measurement:
Enabling Remote Attestation for the Android
Platform

Mohammad Nauman', Sohail Khan?, Xinwen Zhang?, and Jean-Pierre Seifert*
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2 School of Electrical Engineering and Computer Science, NUST, Pakistan
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3 Samsung Information Systems America, San José, USA
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4 Technische Universitit Berlin & Deutsche Telekom Laboratories
jean-pierre.seifert@telekom.de

Abstract. Increasing adoption of smartphones in recent times has be-
gun to attract more and more malware writers towards these devices.
Among the most prominent and widely adopted open source software
stacks for smartphones is Android that comes with a strong security
infrastructure for mobile devices. However, as with any remote plat-
form, a service provider or device owner needs assurance that the de-
vice is in a trustworthy state before releasing sensitive information to
it. Trusted Computing provides a mechanism of establishing such an as-
surance. Through remote attestation, TC allows a service provider or a
device owner to determine whether the device is in a trusted state before
releasing protected data to or storing private information on the phone.
However, existing remote attestation techniques cannot be deployed on
Android due to the unique, vM-based architecture of the software stack.
In this paper, we present an attestation mechanism tailored specifically
for Android that can measure the integrity of a device at two levels of
granularity. Our approach allows a challenger to verify the integrity of
Android not only at the operating system level but also that of code
executing on top of the vM. We present the implementation details of
our architecture and show through evaluation that our architecture is
feasible both in terms of time complexity and battery consumption.

1 Introduction

Mobile devices are becoming more powerful and are offering new functionalities
that go well beyond the traditional use of cell phones such as making and receiv-
ing calls. More and more services are being deployed on these devices leading
them to their use as a PC on the go. However, this rapid growth in smartphone
usage and their evolving capabilities have made this technology more vulnerable

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 1 2010.
© Springer-Verlag Berlin Heidelberg 2010



2 M. Nauman et al.

to today’s sophisticated malware and viruses. PandaLabs [I] has identified appli-
cations downloaded from the Internet as one of the main causes of propagation
of malware on mobile phones.

According to Gartner Research [2], smartphones sales and usage has increased
by 12.7% in the first quarter of 2009. One of the driving reasons of this growth
is the introduction of open source platforms for mobile devices. In this arena,
Android [3] is the most prominent and leading open source platform which has
succeeded in attracting a large number of individuals and organizations. In fact,
Android 0s share in terms of web requests had already surpassed that of Win-
dows Mobile by June 2009 [4]. The growing popularity of Android is attracting
more and more enterprises to deploy their custom applications for Android and
to allow employees to download data for viewing or editing on their smartphones.
On the other hand, the open source nature of Android is also attracting more
and more malware writers. Hence, the growing security problems of smartphones
are becoming a real concern for users. Service providers need assurance that if
sensitive data is released to a smartphone, it will not be compromised due to
the presence of a malware on the phone. Similarly, users save highly sensitive
information such as their contacts and personal messages on the phone. In case
of Android (and other Gps-enabled devices), the phone also has access to real-
time information about the owner’s location. A compromised device can lead to
severe financial losses or even social threats.

To alleviate these problems, there is a need for the creation of a mechanism
that can securely establish the trustworthiness of an Android-based device, pro-
viding remote parties assurance that the data released to the phone will not
be compromised. The traditional approach towards solving this problem is by
signing applications as being trustworthy. This approach is followed by many
Symbian- and J2ME-based software stacks. A trusted application can perform all
tasks, whereas an untrusted application is either sandboxed or severely restricted
from accessing any sensitive resource. However, there are several problems with
this approach in the context of Android. First, Android does not distinguish
applications as being trusted or untrusted — all applications are created equal.
Secondly, the open source nature of Android means that Android’s infrastructure
can be changed arbitrarily, thus making any security infrastructure unreliable.
Finally, it has been shown in the past [5] that an assurance of trustworthiness of
a device cannot be provided through the use of software-based solutions alone.
Software is inherently mutable and can be modified to report inaccurate infor-
mation about the hosting device. To solve this problem, Trusted Computing [6]
provides the mechanism of remote attestation that allows a challenger to estab-
lish the trustworthiness of a remote target platform. Existing remote attestation
techniques mainly aim to measure all the executables loaded on a platform and
reporting them to the challenger during attestation. The challenger can then ver-
ify, using the reported measurements, whether any of the applications loaded on
the platform were malicious. However, these techniques fail to cater to the unique
architecture of Android because of the presence of a Virtual Machine (VM) that
is responsible for executing all code. As far as the integrity measurement entity
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is concerned, the VM is just another executable. Even if the vM is known to be
benign, there is no assurance that the code it loads for execution will behave
as expected. Note that it has been shown that user-space code (including that
executed by a VM) can also lead to severe vulnerabilities in a system [7I89].

In this paper, we present an efficient integrity measurement mechanism aimed
specifically at Android that allows integrity verification of code loaded on top of
the vM as well as that running on the operating system level.

Contributions: Our contributions in this paper are as follows: (1) We design
an integrity measurement architecture which ensures that all the executable
code loaded on Android is measured, (2) We provide two alternative solutions
for the deployment of our integrity measurement mechanism, which cater to
different real-world use cases, and (3) We describe the details of implementation
of both alternatives and provide evaluation results to show that the technique
is highly feasible both in terms of time taken for integrity measurement and
battery overhead caused by it.

Outline: The rest of the paper is organized as follows: Section ] provides real-
world use cases for motivating the need for integrity measurement and gives a
brief summary of the background on Android. In Section[3] we provide the details
of our architecture covering the two alternative solutions in 3.2l and 3.3l Section [
outlines the verification mechanism. Detailed evaluation results are presented in
Section Bl Sections [@ and [ reflect upon pros and cons of our technique and the
conclusions drawn respectively.

2 Background
2.1 Motivating Examples

We motivate the need for the measurement of integrity of an Android-based
smartphone through the use of two real-world use cases. The first use case is
similar to those presented as a motivation for remote attestation in the PC world,
whereas the second is more relevant to the personal nature of a smartphone.

Use case #1: Consider an organization that provides its employee — Alice — with
a G1 handset running several applications that she might require for carrying
out her job responsibilities. The employer, being the owner of the device, allows
Alice to install applications that she might need for her daily use. However,
since the organization releases sensitive information to Alice’s mobile, it wants
to ensure that the integrity of Android is intact and that there is no malicious
software or application running on the mobile device.

Use case #2: Emma, on the other hand, is a self-employed IT consultant who
has bought her own smartphone running Android. Knowing that a smartphone
in general [I0] and Android in particular [98] is much more likely to be affected
by a virus threat, she decides to take preventive measures against such attacks.
While the smartphone is better than her old cell phone, it is still dependent on
a battery source, and if Emma were to run a dedicated antivirus software on the
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device, its battery would drain a lot sooner than she would like. Therefore, she
decides to use remote attestation as a virtual antivirus. She remotely attests the
integrity of her smartphone periodically and after she installs a new application.
This ensures that her mobile device is not running any malicious software while
still keeping it free of a battery-hungry antivirus software.

2.2 Android Architecture

Android is an emerging open source platform for mobile devices like smartphones
and netbooks. It is not just an operating system but provides a complete software
stack including a middleware and some built in applications. Android architec-
ture is composed of different layers, with the Linux kernel layer at the bottom.
This layer provides various hardware drivers and acts as a hardware abstraction
layer. It is also responsible for memory and power management functionalities
of Android. The Android native libraries written in C and C++ sit above the
kernel layer. These libraries provide some core functionalities. For example, the
Surface Manager libraries are responsible for composing graphics onto the screen,
sGL and OpenGL enable graphics processing capabilities, webkit provides HTML
rendering and SQLite is used for data storage purposes.

Next is the Android runtime layer which is composed of two principle com-
ponents namely Dalvik Virtual Machine and Android core libraries. Android
runtime is specifically designed as an optimized environment to meet the re-
quirements of running on an embedded system i.e., limited battery life, cPU
speed and memory. Dalvik virtual machine executes its own bytecode repre-
sented by dezx files. The second component of Android runtime is the collection
of class libraries written in Java programming language, which contains all of
the collection classes and 1/0 utilities.

Class loaders: Android framework and applications are represented by classes
composed of dex code. One or more class loaders are used to load these classes
from a repository. These class loaders are called when the runtime system re-
quires a particular class to be loaded. All of the class loaders are systematized
in a hierarchical form where all requests to child class loaders are first delegated
to the parent class loader. The child class loader only tries to handle a request
when the parent class loader cannot handle it.

Android comes with several concrete implementations of the abstract class —
ClassLoader [IT] — which implement the necessary infrastructure required by all
of the class loaders. Of these, the PathClassLoader will be of particular importance
to us.

3 System Architecture

In Section 2.1l we presented two real-world use cases for motivating the creation
of an integrity measurement system on Android devices. In this section, we
present an architecture that provides two levels of granularity, each catering to
one of the use cases presented. Figure [[] shows the high-level architecture of our
approach.
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Fig. 1. Android Integrity Measurement Architecture

The attestation challenge begins at Alice’s employer’s system (or Emma’s PC
— depending on the scenario). The challenge is sent to the Attestation Daemon
running on the Android device. On the device, one of the two integrity measure-
ment systems must be in place: (1) Application-level attestation or (2) Class-level
attestation. In either case, the measuring entity reports the measurements to a
trusted logger that maintains an integrity measurement log and extends a PCR
with the hashes of these measurements. When an attestation challenge is re-
ceived, the attestation daemon reads the log and requests a quote over the PCR
in which the measurements have been recorded by the logger. Both of these trust
tokens — measurement log and PCR quote — are returned to the challenger as the
attestation response. The challenger can then verify the trustworthiness of the
platform based on these measurements using a validation system.

Both application-level attestation and class-level attestation require the pres-
ence of a root-of-trust. The chain of trust must be extended from this root-of-trust
to the Dalvik vM and then to the measuring entities within the virtual machine.
For this purpose, we need: (1) an implementation of a TPM, either hardware or
software; (2) a device driver library for communicating with the TPM and; (3)
a Trusted Software Stack (Tss) for providing high-level APIs for accessing the
low-level functionality of the TPM. Below, we first briefly describe the creation of
a minimal subset of the TPM and the TSS that is required for our implementation
since a hardware TPM does not exist for mobile phones.

3.1 Chain-of-Trust
For the establishment of a chain of trust, there are two requirements:

1. A root-of-trust that acts as an anchor for the chain. It must be immutable
and, according to [5], hardware-based. The TCG has defined a specification for
a hardware root-of-trust — called Mobile Trusted Module (MTM) [12] — specif-
ically aimed at mobile platforms. To date, no agreed-upon and widely de-
ployed implementation of the MTM exists. We have therefore abstracted away
the details of the MTM implementation and built our approach on top of the
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TCG specification. This allows us to decouple our integrity measurement ar-
chitecture from any specific prototype implementation and assures forward
compatibility by complying with the standards. It should also be noted that
since a hardware root-of-trust is currently not available, our implementation
cannot, as yet, be deployed in production environments. However, the suc-
cessful standardization of the MTM and its wide acceptance by the scientific
community leaves little doubt that MTM hardware will be made available in
the very near future.

2. The second requirement for a chain of trust is making all links in the chain
integrity-aware. The B10S, bootloader and the operating system all need to
be modified so that they measure the integrity of every loaded executable
before passing control on to it.

Below, we take a look at how we have addressed the aforementioned problems.

Emulating the Trusted Platform Module: One of the most important as-
pects of our architecture is the presence of a root-of-trust that can securely save
the hashes of the measurements and report them to the challenger in a trustworthy
manner. The absence of a hardware TPM mandates the creation of a minimal im-
plementation of a software emulator that can act as a prototype until a hardware
root-of-trust becomes available. Software emulators of both TPM [13] and MTM [14]
already exist. An implementation of MTM has also been proposed recently [15].
However, we decided not to use either of these. The reason is that they are com-
plex softwares that aim to implement the whole TPM/MTM specifications. We, on
the other hand, need only protected storage (i.e. PCRs) and the PCR quote oper-
ation. Implementing the complete specifications not only gives rise to complexity
in the software but also taxes the limited resources of the phone device. We have
therefore created a simplified mini TPM emulator (TPM,) that provides only these
two functionalities and is optimized for use on a mobile device to consume as little
computational cycles and battery power as possible.

We implement TPM, as part of the kernel instead of as a module so that it can
measure all the modules loaded by the kernel. TPM, uses facilities provided by the
Linux kernel code for auxiliary operations, such as random number generation.

Each of the entities performing measurements needs to communicate with
TPM,. The communication aspects of each of these entities are discussed in their
relevant sections below.

Establishing the Chain-of-Trust: In PC world, the first link in the chain of
trust is the B10S. However, in the case of mobile and embedded devices, there is
no BIOS. Device initialization is performed by the bootloader instead. Therefore,
the chain of trust in our architecture begins with the bootloader. Moreover, as
discussed earlier, no hardware root-of-trust is available on the Android device
and consequently, there is no protected storage available for storing the hashes
measured before the kernel. Therefore, as yet, the bootloader has to remain
outside the chain of trust in our architecture

! We discuss the implications of this aspect in Section
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The chain begins at the kernel level with our TPM, loaded as part of the
kernel. Since TPM, is a part of the kernel itself, it can be used to securely save the
hashes of loaded executables. Integrity measurement is performed by Integrity
Measurement Architecture that we have ported to the Android kernel. We have
tried to keep the changes to IMA at a minimum so as to ensure backward and
forward compatibility with IMA code that has now been incorporated in the
Linux kernel. However, since our architecture uses TPM, and not a hardware
TPM, we have had to make some changes regarding the communication of the
integrity measurement code with the TPM. Other than the aspects concerning
the communication with TPM, we have not modified any functionality of IMA. It
therefore measures all executables loaded on the Android platform by the Linux
operating system. This includes the Android vMm as well as any libraries (such
as libdvm.so, libandroid-runtime.so and libandroid-system.so). This ensures
that all the executables loaded outside the Dalvik virtual machine as well as the
native code of Dalvik itself gets measured and stored in the Stored Measurement
Log (sMmL).

Similarly, the semantics of SML are also unmodified. This is because we opt
not to interleave the Linux executable hashes with the Dalvik executable hashes
but keep the two logs separate. The aggregate up to the point of the Dalvik load
is stored in the Android Measurement Log (AML).

Once the chain of trust up to the Dalvik virtual machine is established, we
provide two alternatives for measurement of code that is loaded on top of the VM.
These two alternatives form the core part of our contribution and are discussed
at length in the following sections.

3.2 Application-Level Attestation

For coarse-grained attestation of the Android Software Stack that can cater to
the requirements of Use case #1 (cf. Section [Z]]), we have implemented a binary
attestation mechanism that can measure all loaded applications. Recall that in
the first use case, the employer is only interested in finding out if any malicious
application is executing on Alice’s phone.

In Android, applications are distributed as .apk files that can be downloaded
or copied onto the phone and installed through the PackageInstaller activity.
These package files contain the AndroidManifest.xml file (that defines the permis-
sions requested by the application), resource files and the .dex files that consist
of the actual application code. All .apk files are stored in the /system/app folder
in the Android filesystem. Whenever the user starts an application that isn’t
already loaded, Android looks up the class required for loading that application
and calls the PathClassLoader. The name of the required class is passed to the
class loader that loads the class file from the .apk file of that application.

We have inserted an integrity measurement hook in the findClass() function
of the PathClassLoader that ensures that whenever an application gets loaded,
the complete apk file corresponding to the application is measured and an entry
is made to the AML. The hash of the apk is extended in PCR-11 to ensure that
the log can be trusted at verification time. The implementation of the SHA-1



8 M. Nauman et al.

hashing mechanism is based on the MessageDigest algorithm provided by the
Java Cryptography Extensions (JCE).

For communicating with TPM,, the measurement function requires an im-
plementation of the Trusted Software Stack (TSS). As with the TPM and MTM
emulators, we have opted not to use any of the existing TSS implementations
due to performance concerns. For this coarse-grained measurement, we have im-
plemented a minimal implementation of the TSS specifications — called TSS, —
that allows only two operations: (1) PCR extend — allowing the measurement
function to communicate the measured hash to the TPM, and (2) PCR quote —
that allows trustworthy reporting of the PCR values to the challenger. Since the
measurement functions operate below the Android application framework layer
i.e. in the Java library layer (cf. Section 22), TSS. is implemented as a Java
class (edu.android.aim.TssE) that exposes two functions for the aforementioned
operations — pcrExtend () takes a hash and a PCR number as input for extending
the PCR and quote takes a collection of PCRs, a nonce, an AIK label and the asso-
ciated authorization secrets as input and returns the quote performed by TPM,
over the PCR values and nonce using the AIK associated with the label. Each PCR
extend operation must be matched by an entry made in the AML. This is also
implemented as a class in the Java libraries (edu.android.aim.TrustedLogger)
that exposes two operations — (1) logEvent() that creates a new entry in the
AML with the provided entry description and hash and; (2) retrieveLog() that
returns the complete AML. The AML is stored in the filesystem in an unprotected
space (systemdir/aml_measurements) since its correctness can be ensured through
the measurements in the protected storage of TPMe,.

This coarse-grained approach has several advantages in the context of a mobile
platform. Firstly, it only requires the measurement of apk files of applications
that are loaded. For a typical smartphone user, this number is usually quite small.
This ensures that the computational requirements for integrity measurement are
keep to a minimum. Moreover, the AML is fairly small and thus aids in keeping
the communication overhead to a minimum. Likewise, the battery consumption
during calculation of hashes is also fairly small. In Section B, we discuss the
performance issues associated with this approach.

The major drawback of attestation at this level of granularity is that it is
not complete! It does not measure the system classes which form an essential
part of Android’s trusted computing base. Ignoring these classes removes the
possibility of ensuring that, for example, the Android permission mechanism
will be enforced by the mobile device — which in turn reduces the level of trust
that can be placed in the correct enforcement of the security mechanisms that
are expected by the challenging party. To alleviate this drawback, we have im-
plemented a finer-granular integrity measurement approach as defined in the
following section.

3.3 Class-Level Attestation

To cater to fine-grained requirements of attestation for the Android platform, we
go a step beyond just measuring the applications that are loaded on the device
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and propose a solution that provides completeness in integrity measurement.
This level of attestation can measure all executables loaded on top of the Dalvik
vM and can thus cater to the requirements of Use case #2.

Class-level attestation aims to measure all executables (i.e. classes) loaded
on top of the Dalvik vM. While this approach is similar to IMA in essence, it
differs significantly in the semantics of measurement. Moreover, since the loading
mechanism of Dalvik is, at its core, different from that of the Linux kernel, our
binary integrity measurement has major differences in what and how it measures.

As mentioned in Section[Z.2] there are two ways in which classes may be loaded
into Dalvik. The mechanism mentioned earlier is that which uses ClassLoaders
executing on top of the vM itself. These class loaders are themselves classes
and thus need to be loaded too. Moreover, there are several classes that are
‘system classes’ and are required for the proper functioning of Java code (e.g.
java.lang.Object). These classes cannot be loaded by Java-based class loaders
and have to be loaded by the native code in the VM itself. Another issue with
ClassLoaders is their unrestrictive nature. Applications are allowed to write their
own class loaders to load classes from arbitrary sources. For example, an appli-
cation may write a class loader that reads from a byte stream to load a class.
This is substantially unlike the Linux/IMA scenario in which all executables are
loaded from the filesystem. It is therefore possible in Linux to measure an exe-
cutable before it is loaded. In case of Dalvik (or any Java-based vM), this is not
always possible due to the potentiality of arbitrary class loaders. It is for this
reason that the semantics of our binary attestation are that we measure a class
after it is loaded but before it can be executed.

In Dalvik, the code responsible for calling class loaders is present in
three major files — Class.c, InternalNative.c and JNI.c The two broad cat-
egories of classes in Dalvik are system classes and (what we informally term
as) standard classes. These are loaded by dvmFindSystemClassNoInit() and
dvmFindClassFromLoaderNoInit () respectively. Both of these functions are present
in Class.c and are called from a single point — dvmFindClassNoInit (). The ‘no-
init’ functions are responsible for loading classes (either directly or by calling
a class loader) without initializing them. By placing the integrity measurement
hooks in dvmFindClassNoInit(), we ensure that (1) the measurement is complete
i.e. all the classes that are loaded get measured and (2) that classes are measured
immediately after they are loaded and before they can be executed.

After a class is loaded, it is returned to Dalvik in a structure that encapsulates
the methods, fields, loader details and other information about the class. This is
a highly complex structure and includes pointers to many internal structures rep-
resenting detailed information about the class. Including all this information in
the hash of the class would cause severe performance bottlenecks without adding
much to the utility of measurement. In our integrity measurement mechanism,
we include only those parts of this structure that may influence the dynamic
behavior of the class. We define these parts in three categories:
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Fig. 2. Subset of a Class Structure for Hash

1. Meta-information: This information does not directly influence the exe-
cution of a class but is helpful in unique identification of the class. Included
in this category are the descriptor i.e. fully qualified name of a class, the
source dex filename, the class loader and parent class etc.

2. Passive entities: These are static portions of the class that, while non-
executable, may affect the execution of the class. Passive entities include
static and instance fields, method names and instruction and register size
etc.

3. Executable code: This is the most important aspect of the measurement
and includes the instructions present in the method bodies of a class. Note
that, since inner (and anonymous) classes are measured separately, their
methods and instructions will be included in their respective measurements
and can thus be verified.

Figure [2] shows the precise structure over which the hash is calculated during
class-level integrity measurement and Figure[3]shows the integrity measurement
log. Each class is represented in the log by its descriptor and is preceded by
the hash of the structure described above. Note that since this fine-grained level
of integrity measurement computes the hash of all loaded classes, it may cause
some performance hit but as we discuss in Section [5.2], the performance hit is
minimal and with some performance enhancement can be successfully deployed
in production settings.

Note that the TSS. solution proposed in Section cannot be utilized at
this level of attestation as it operates above the VM level, whereas measurement
in this fine-grained approach is being done at the vM level. For this level of
integrity measurement, we have implemented TSS. in the Dalvik vM itself. TSS.
only performs one operation i.e. saving an entry in the AML. The AML is stored
in the same location as in the application-level attestation. It does not provide
a function for reading the AML because that functionality is required only at
the application level of the Android framework and can be taken care of by the
TSS.’s retrieveLog(() function. The details of this retrieval operation follow.
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133A57COCB942D5F74376BD6A89A3DDISEAB4886 vmaggregate

4FC88626E94A631D9FF4BD7C39C57F6EA8847C3F Landroid/widget/AbsListView;
FC060385A2B800175CE68D96AFC4A49E965A8ESF Landroid/widget/AbsListView$CheckForLongPress;
59517950D7280DCOCB4517B40E812D9E2B1BAFB2 Landroid/widget/AbsListView$SavedState$l;
69CEB9E9ED1398EFFF0C2C0705C7D45506481BA1 Landroid/widget/AbsoluteLayout;
457F0C258A8B76B4C03C3A89B1B7BACSE306ECA1 Landroid/widget/AbsoluteLayout$LayoutParams;
8E84D83A9BFE50BDC7F41714769AB48CES5E208D Landroid/widget/AdapterView;
AESBB8B2E8585395EB697DC8403C3EC1E2BFF7ED Lcom/android/internal/telephony/Phone;
5CB11877BF82DA663722AFBF19CB3DE2DBCO3F3B Lcom/android/internal/telephony/Phone$State;

Fig. 3. ASCII representation of the Android Measurement Log: Capturing the hash of
the class and the class descriptor

4 Verification

Once the attestation tokens i.e. PCR quote and measurement logs are received
at the challenger side, they need to be verified to establish the trustworthiness
of the remote platform. The first step in the procedure is to validate the digital
signature on the quote structure to verify that a genuine TPM vouches for the
measurement logs. This is a simple procedure and requires only the knowledge
of the AIK which can be provided by a PrivacyCA [16]. Afterwards, the integrity
of each loaded executable reported in the measurement log is verified individu-
ally. The Android Market [I7] is by far the largest and most reliable source of
applications. The basic verification mechanism involves creation of a database
of known-good and known-bad hashes of executables retrieved from the Android
Market. For instance, currently our database includes information about our
own versions of the Intent Fuzzer and Intent Sniffer tools [9] that may be used
to maliciously monitor and/or modify the operation of Android’s intent model.
If the hash associated with one of these tools is found in the AML reported by
the target device, the challenger may conclude that the device is compromised
and take preventive measures.

5 Evaluation

In the context of mobile devices, computational complexity and battery con-
sumption are two essential factors that need to be considered when making any
changes to the software stack on these devices. We have evaluated both these as-
pects for the two options of attestation presented in this paper. As a test system,
we have taken the Android cupcake branch, operating on the HTC G1 handset.
Evaluation of the two levels of attestation is presented below.

5.1 Application-Level Attestation

In general, application-level attestation imposes little overhead on both the com-
putational capabilities and battery consumption of Android.

Time: The average time for measurement of an application on our testbed was
1631ms. This is a rather large number but note that we cache the results of
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measurement and only measure an application on subsequent loads if it has
changed. This caching, coupled with the facts that mobiles are ‘always-on’ and
application apks are unlikely to change frequently, makes the average time fairly
acceptable. Moreover, since the largest portion of this time is taken by the hash-
ing algorithm, a faster Java implementation of this function may significantly
improve this time.

Log size: Since this coarse-grained attestation only reports the hashes of loaded
applications, the log size is extremely small and is dependent only on the number
of applications executed on the target device. The size L in bytes of the reported

log is given as:
n

L=nLp+»  (La)+ Lg+ Ls
i=1
where n is the number of applications loaded, Lj is the size of the application’s
hash, L,, is the length of it" application name, L, is the size of the data structure
representing the PCR quote signed by TPM, and L is the size of IMA’S SML.

In our evaluation, L, and L, were constants (i.e. 20 bytes and 64 bytes)
respectively, the average number of applications loaded on the device was 28,
the average length of the application name was 11.2 bytes and the size of the
SML was 4998 bytes. The total size of the log for application-level attestation
was therefore:

L = (20 4 11.2) x 28 4 64 + 4998 = 5935.6

which is less than 6KB of data per attestation request for application-level
attestation.

Power: Measurement of battery consumption on Android is difficult due to the fact
that the battery charge level reported by the Android hardware is at a very coarse
grained level. Using software for measurement of battery consumption during hash
calculation simply yields ‘no change’ in battery level. However, note that since the
attestation techniques only use the CPU and do not tinker with parameters of radio
communication, the battery overhead caused by integrity measurement is directly
proportional to the time taken. Therefore, using the same arguments as those for
time consumption, we can conclude that the battery consumption overhead caused
by our integrity measurement mechanism is also bearable.

5.2 Class-Level Attestation

Class-level attestation is performed at a finer-grained level and thus might be
expected to have slightly larger overhead in terms of both time and battery.

Time: Figure d shows the evaluation results of the time taken for performing
this level of integrity measurement. As can be seen, using native C/C++ code
for calculating SHA-1 has improved performance by three orders of magnitude.
The average time for integrity measurement of a class is 583 pus. Integrity mea-
surement of a few classes took more than a second but these were only around
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1% of all the classes measured. Moreover, similar to application-level attesta-
tion, caching has been employed for class-level attestation to ensure that after
a class has been measured, it is not re-measured on subsequent loads unless
it has changed. Moreover, taking only a subset of the structure of the class
(cf. Section B3) also increases the performance of attestation.

Log size: The length of the log at this fine-grained level of attestation was rather
large. The average number of loaded classes during our tests was 1941 and the
average length of class names was 35.67. Using the same method of calculation
as for application-level attestation, the log size was:

L = (20+ 35.67) x 1941 + 64 + 4998 = 113117.47

The log size of around 110KB is not completely insignificant for the a mobile device.
However, since we do not require real-time results, attestation can be carried out
when the device is connected to the enterprise server or PC through a high-speed
connection such as WiFi, thus reducing the time taken for transmission of the log.

Power: Similar to application-level attestation, battery consumption overhead
of this finer granular integrity measurement is also directly proportional to
the time taken. Moreover, since the time taken by class-level attestation is
quite small, battery consumption is also much more acceptable than that for
application-level attestation.

6 Discussion

In this paper, we have presented the first attempt at measuring the integrity of
the Android platform using the concepts of Trusted Computing. The two levels
of granularity presented in the paper both have their pros and cons as discussed
earlier. However, there are a few issues that inhibit the deployment of either
of the techniques in production environments just yet. First of all, there is the
lack of a hardware root-of-trust. A hardware TPM or MTM does not exist for
any mobile device. We currently use an emulator for the demonstration of our
technique and rely on the assumption that it is only a matter of time before
an MTM becomes available for mobile devices. Note that we have designed the
architecture in such a way that our technique would be able to use an MTM
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directly without any change to its working. We envision the deployment of our
attestation technique probably as a separate trusted sub-system [I8] that acts on
behalf of either the service provider or the local owner of the device to provide
attestation responses.

Finally, we discuss the issue of time of measurement, time of use race condi-
tions [19] that was a major concern in the original IMA technique. The issue is
that when reading from a filesystem, the file may change after it is measured
but before it gets loaded for execution. Since we measure classes or applications
only after they are loaded and not from the filesystem, our architecture does not
suffer from this drawback.

7 Conclusion and Future Work

The personal and ubiquitous nature of mobile phones poses serious security con-
cerns regarding data that is stored on these devices. Measuring the integrity of
a smartphone can ensure that sensitive information accessible to applications
running on the device will not be compromised. Android is among today’s most
popular smartphone platforms. It is backed by a vast majority of industry lead-
ers and is made available as open source, thus leading to wide adoption of this
software stack. In this paper, we have proposed the design and implementation
of an integrity measurement mechanism aimed specifically at the unique archi-
tecture of Android’s software stack. We have described our architecture at two
levels of granularity catering to different real world use cases. We have shown
our architecture to be efficient both in terms of time complexity and battery
consumption — two critical factors for any architecture targeting mobile devices.
One of the more important usages of our attestation technique, that we can
foresee, is for ensuring ‘copy protection’ of paid applications for Android phone.
Paid applications that are not allowed to be moved from one device to an-
other are protected by the Android system. However, due to the presence of
‘rooted’ phone devices, it is possible for a malicious user to bypass copy pro-
tection [20]. Using our attestation technique before releasing a copy-protected
application may provide assurance to Android Market that the target device is in
a trusted state and will thus enforce copy protection as expected. Formalizing the
semantics and procedure of this mechanism forms part of our future work.
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Abstract. Recent research demonstrates that adversaries can inject ma-
licious code into a peripheral’s firmware during a firmware update, which
can result in password leakage or even compromise of the whole host op-
erating system. Therefore, it is desirable for a host system to be able to
verify the firmware integrity of attached peripherals. Several software-
based attestation techniques on embedded devices have been proposed
as potentially enabling firmware verification. In this work, we propose
a Software-Based Attestation technique for Peripherals that verifies the
firmware integrity of a peripheral and detects malicious changes with
a high probability, even in the face of recently proposed attacks. We
implement and evaluate SBAP in an Apple Aluminum Keyboard and
study the extent to which our scheme enhances the security properties
of peripherals.

1 Introduction

Recent research shows that adversaries can subvert keyboards by injecting ma-
licious code into a keyboard’s firmware during firmware update [I]. The injected
code can compromise users’ privacy and safety, such as eavesdropping a user’s
bank account password or credit card number, or embedding a kernel-level rootkit
into a clean re-installed operating system through some software vulnerabilities
in the host operating system. Similar attacks can happen on other peripherals,
such as a mice or a game controller. Peripheral manufacturers enable updating
of firmware to fix firmware bugs. However, due to constrained computation and
memory resources, the low-speed embedded microcontroller on many peripherals
cannot verify complex cryptographic signatures or message authentication codes.
Consequently adversaries can inject malicious code into peripheral firmware dur-
ing a firmware update. Therefore, a legacy computer is potentially under serious
attacks due to vulnerabilities on widely used peripherals. We take the position that
it is desirable for a host machine to verify the firmware integrity on peripherals.
Software-based attestation schemes on embedded systems [2,3l[4] have been
proposed as potentially enabling firmware verification, which enables an exter-
nal trusted verifier to verify the firmware integrity on peripherals. However,
recent research [5] suggests that it may be feasible to hide the malicious code
from an attestation through a return-oriented attack or a compression attack.
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© Springer-Verlag Berlin Heidelberg 2010
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In addition, constrained computation and memory resources in the low-speed
peripherals limit the implementation of the software-based solutions. For exam-
ple, some software-based attestation schemes [2] require hardware multiplication
units or a large amount of data memory that is not available on all peripher-
als, especially on low speed peripherals such as mice or keyboards. Therefore,
peripheral firmware integrity verification remains an important challenge.

In this paper, we propose Software-Based Attestation for Peripherals (SBAP)
to verify peripherals’ firmware integrity. Similar to previous proposals, SBAP
is based on a challenge-response protocol between a trusted verifier and an un-
trusted peripheral, and a predicted computation time constraint. It verifies the
contents of both program and data memory on the peripheral and can detect any
malicious changes with arbitrarily high probability, even in the face of recently-
proposed attacks. In this paper, we make the following contributions:

1. We propose a software-only solution to verify the firmware integrity of pe-
ripherals, that can be implemented via a software upgrade to the peripherals
and avoid a costly hardware upgrade.

2. We propose an approach to verify the code or data integrity on both program
memory and data memory in peripherals that can prevent all known attacks.

3. We design, implement, and evaluate a prototype of SBAP using an Apple
Aluminum Keyboard.

We organize the remainder of this paper as follows. In Section 2, we provide the
background on software-based attestation and related attacks. Section 3 presents
the problem definition, assumptions, and the attacker model. In Section 4, we
describe the system design including the system architecture, attestation proto-
col and verification function design. Section 5 details our SBAP implementation
on an Apple Aluminum Keyboard and Section 6 gives our experimental results.
We discuss our work in Section 7 and describe related work in Section 8. Finally,
we offer our conclusions and identify future work in Section 9.

2 Background
2.1 Software-Based Attestation for Embedded Devices

SWATT. SoftWare-based AT Testation for embedded devices (SWATT) is based
on a challenge-response protocol between a trusted verifier and an untrusted em-
bedded device, and a predicted computation time constraint. First, the verifier
sends a random nonce to the embedded device. Using this nonce as a seed, a ver-
ification function in the embedded device computes a checksum over the entire
memory contents and returns the checksum result to the verifier. The verifier has
a copy of the expected memory contents of the embedded device, so it can verify
the checksum result. Also, the verifier knows the exact hardware configuration
of this untrusted embedded device, enabling the verifier to exactly predict the
checksum computation time. Because the checksum function is well optimized,
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the presence of any malicious code in memory will either invalidate the check-
sum result or introduce a detectable time delay. Therefore, only the checksum
result received within the expected time range is valid. During checksum com-
putation, the checksum function reads memory in a pseudo-random traversal,
thus preventing an attacker from precomputing the checksum result. SWATT re-
quires that the embedded device can only communicate with the verifier during
attestation. This prevents a malicious device from communicating with a faster
machine to compute the checksum.

ICE. Indisputable Code Execution (ICE) sets up a dynamic root of trust in
the untrusted device through a challenge-response protocol between a trusted
verifier and an untrusted embedded device, and a predicted computation time
constraint. The dynamic root of trust also sets up an untampered execution en-
vironment, which in turn is used to demonstrate verifiable code execution to the
verifier. As in SWATT, the verifier first sends a random nonce to the untrusted
device. Upon receiving the random nonce, the verification function in the un-
trusted device sets up an untampered execution environment. The verification
function includes code to set up an ICE environment by disabling interrupts,
a checksum function that computes a checksum over the contents of the verifi-
cation function, a communication function (send function) that returns compu-
tation results to the verifier, and a hash function that computes a hash of the
executable that will be invoked in the untampered environment. After checksum
computation, the send function sends the checksum result to the verifier. As in
SWATT, the verifier can verify the checksum result and predict the checksum
computation duration. If the verifier receives the correct checksum within the
expected time, the verifier obtains assurance that the untampered execution en-
vironment (dynamic root of trust) has been set up in the untrusted device. The
send function invokes the hash function to compute a hash of the executable in
the embedded device and sends the hash result to the verifier. Then the verifica-
tion function invokes the executable on the untrusted device. Simultaneously, the
verifier obtains the guarantee of the integrity of the executable through verifying
the hash of the executable.

Discussion. Both ICE and SWATT implement code integrity verification through
a software-only approach. However, there are several challenges to implement ICE
on embedded devices. In ICE, CPU registers describing code location (e.g., the
program counter) and interrupt status information are included in the checksum
to confirm the intended code location and interrupt status. However, not all mi-
crocontrollers provide instructions to directly access the values of the PC or in-
terrupt status registers. For instance, on the CY7C63923 microcontroller [6] in
the Apple Aluminum Keyboard, there is no instruction to read the value of the
PC, although the CY7C63923 does provide instructions to access the Flag regis-
ter containing interrupt status information. Moreover, the code size of verification
function in ICE is larger than the code size of the checksum routine in SWATT.
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On some embedded devices, there are very constrained memory resources for the
implementation of the verification function. For example, on an Apple Aluminum
Keyboard, the size of Flash memory is only 8 KB and there is only about 1 KB of
free Flash memory for the implementation of our verification function.

2.2 Attacks on Existing Proposals

Memory Copy and Memory Substitution Attack. In a memory copy attack, the
attacker modifies the checksum code in program memory while keeping a correct
copy of the original code in unused memory. In a memory substitution attack,
the attacker keeps the correct code in the original memory location, but deploys
the malicious code in unused memory. In both attacks, the malicious code com-
putes the checksum when expected. To obtain the correct checksum result, the
malicious code redirects the location of the memory read operation to the correct
code. On common embedded devices, the values in empty program memory are
constant (i.e., 0xFF, which is the uninitialized value of Flash memory). Thus, the
malicious code can predict such constant values and use them during checksum
computation. SWATT and ICE prevent a memory copy or memory substitution
attack by reading the program memory in a pseudo-random fashion so that the
malicious code cannot predict the memory address to read, and has to add ad-
ditional instructions to check and redirect the memory address. Such operations
result in a detectable time overhead. On a Harvard architecture embedded de-
vice, the read latency of data memory is much smaller than the read latency
of program memory. Thus, the malicious code can minimize the computation
overhead of a memory copy attack by having a copy of the original code in data
memory and redirecting the location of checksum memory read operations to
data memory instead of program memory.

Compression Attack. One important enabler of a memory copy or memory sub-
stitution attack is that the malicious code can remember or predict the constant
values of empty memory during attestation. Therefore, Seshadri et al. [2] pro-
pose to fill the empty space of program memory with pseudo-random values and
leave no available free space for attackers to make a memory copy or memory
substitution attack. However, an attacker can still create free space through com-
pressing the existing code on program memory. Some compression algorithms,
such as the Canonical Huffman Encoding [7], can decompress the compressed
stream from an arbitrary position. Thus, the malicious code can decompress the
compressed steam on-the-fly during attestation and obtain the correct checksum
result though the checksum code reads memory in a pseudo random traversal.
The decompression procedure causes a detectable computation overhead because
of the complexity of the decompression algorithm.

Return Oriented Programming Attack. Return oriented programming (ROP) [8]
9/10] performs computation on a system by executing several pieces of code that
are terminated by a return instruction. These pieces of code are executed through
well-controlled stack content. If there is sufficient existing binary code in the
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system, an adversary can execute arbitrary computations through a ROP attack
without injecting any code, except for overwriting the stack with well-designed
content. Castelluccia et al. [5] present that an adversary can use a ROP attack
to protect malicious code from being detected by software-based attestation
schemes. Briefly, the adversary code first saves a copy of the adversary code on
data memory before attestation. Then the adversary code modifies the contents
of data memory by embedding ROPs on the stack. Through these ROPs, the
attacker erases all the malicious code in program memory and restores the orig-
inal code before checksum computation. Then, during checksum computation,
the contents of program memory are exactly as expected. After attestation, the
attacker restores malicious code in program memory through an additional ROP.
The ROP attack generates little computation overhead. For example, in the attack
described by Castelluccia et al. [5], the computation overhead caused by a ROP
attack is undetectable, only 0.3% of the expected checksum computation time.

Attack Analysis. As described above, an attacker can hide malicious code from
an attestation through a compression attack or a ROP attack. However, both
attacks modify the contents of data memory, by storing either malicious code
or ROP data. Thus, a checksum function can detect such malicious changes by
verifying the contents of both program memory and data memory. However,
it is challenging to verify the contents of data memory, since the content is
unpredictable to the verifier. To verify it, the verifier must be able to reset data
memory into a known or predictable state before attestation. The verification
function can reset data memory into a known state by erasing the contents of
data memory. To prevent attacker from predicting or compressing the contents
of data memory, the data memory should be filled with pseudo-random values
before attestation.

3 Problem Definition, Assumptions and Attack Mode

Problem Definition. We consider the problem of how a host machine can verify
the firmware integrity of a peripheral attached to it without any dedicated hard-
ware, i.e., using a software-only approach that can detect arbitrary malicious
changes.

Assumptions. We assume that the verifier knows the exact hardware configura-
tion of the peripheral, such as the CPU model, the CPU clock speed, the size of
program memory, and the size of data memory. We also assume that the verifier
has a copy of the expected contents of the program memory of the peripheral. We
assume that the communication channel between the peripheral and the verifier
can provide message-origin authentication. We also assume that the peripheral
can only communicate with the verifier during the attestation, which prevents
the peripheral from communicating with a faster machine to compute the check-
sum (this attack is called a proxy attack). This can be implemented through a
physical connection, such as USB cable.



SBAP: Software-Based Attestation for Peripherals 21

Attacker Model. We assume that an attacker cannot change the hardware config-
uration of peripherals, such as speeding up the CPU clock, or adding additional
program memory or data memory. However, the attacker can make arbitrary
changes to the peripheral software. We assume that there are software vulner-
abilities in the peripheral firmware, through which an attacker can attempt a
compression or ROP attack.

4 SBAP: Software-Based Attestation for Peripherals

4.1 System Overview

Similar to previous proposals [2,[3], SBAP verifies the firmware integrity of a
peripheral through a challenge-response protocol and a predicted computation
time constraint. To prevent known attacks, SBAP leaves no available empty
space in memory for attackers by filling all unused space in program and data
memory with pseudo-random values, and verifying the integrity of both program
and data memory. Also, different from SWATT and ICE, SBAP utilizes an effi-
cient pseudo-random number generator, which is mainly designed for low-speed
devices with constrained computation and memory resources. Figure [Il depicts
an overview of the system setup as well as the protocol steps. On the peripheral,
the verification function is responsible for disabling all interrupts in the micro-
controller, filling the data memory with pseudo-random values, computing the
checksum over the entire contents of data memory and program memory, and
sending the final checksum result to the verifier. Before peripheral deployment,
available free space in program memory must be filled with pseudo-random val-
ues. On the verifier, a nonce generator generates random nonces to seed the
untrusted peripheral and a timer measures the verification time. A checksum
simulator on the verifier computes the expected checksum result by simulating
the checksum procedure.

Peripheral Verifier
(N

- [ —__
Communication Channel Nonce
Interrupt Table
Generator
Peripheral Checksum
Functions Simulator

2. Disable
Interrupts S

3. Fill RAM Verification 1. Attesation Request (Nonce) 6. Check
with PRN Function Computation time
4. Compute and
Checksum g 5. Checksum Result Checksum Result

6. Reset
Peripheral

- -

Fig. 1. System Overview and Protocol
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4.2 Protocol

To verify the firmware integrity on a peripheral, SBAP performs the following
steps:

1. The verifier sends the attestation request to the untrusted peripheral. An
8-byte random nonce is included in this request as a seed to the verification
function.

2. Upon receiving the attestation request, the verification function first dis-
ables all interrupts on the peripheral to set up an untampered execution
environment.

3. The verification function fills the entire data memory with pseudo-random
values generated using the nonce as a seed.

4. The verification function computes a checksum over the entire contents of
both program memory and data memory. Our checksum function uses part
of data memory to store variables. The values of these variables are pre-
dictable to the verifier though they change dynamically during checksum
computation.

5. The verification function sends the checksum result to the verifier.

6. The verifier verifies the checksum result as well as the computation time. If
the verifier receives the expected checksum result within predicted time, the
verifier trusts the attached peripheral. Otherwise, the verifier rejects the at-
tached peripheral. At the same time, the peripheral is reset so that the pseudo-
random values in data memory are cleaned, and the registers of the peripheral
are restored to their default states.

After the attestation, since data memory is filled with pseudo-random values,
the peripheral should be reset before being used. Additionally, during the reset,
some of the registers should be restored to their default states. Otherwise, an
attacker may get a chance to hide malicious data in the register space for future
attacks. An attacker may store the malicious data in some IO data or control
registers that are never used by the peripheral. For example, on a CY7C63923
microcontroller, there are 17 bytes of IO data registers that an attacker can use
to hide malicious data for future attacks. In general, a power on reset is always
enabled on a peripheral, during which all the registers are restored to their
default values. A software-based reset function is also a solution if the function
can prevent an attacker from hiding any malicious data in register space.

4.3 Verification Function

Due to the constrained computation and memory resources in the simple micro-
controllers that are deployed on low-speed peripherals, the verification functions
that are used in previous proposals cannot be deployed directly in SBAP. In this
section, we detail the verification design in SBAP by describing the pseudo-random
number generator, our design for filling data memory with pseudo-random values,
and our checksum function.



SBAP: Software-Based Attestation for Peripherals 23

Pseudo-Random Number Generator (PRNG). In the verification function, the
PRNG is used for two purposes:

1. output PRNs to fill the data memory;
2. output PRNs to construct memory address to read in a pseudo-random
fashion.

In previous proposals [2], T-functions [I1] or RC4 [12] are used to output PRNs.
However, on low speed peripherals, it is challenging to implement the same
PRNGs efficiently due to constrained computation or memory resources. T-
functions need a multiplication unit to generate PRNs efficiently. However, a
hardware multiplication unit is not available in many low-speed microcontrollers
that are used in peripherals. Software-based multiplication is too slow to be a
viable option. For instance, on a CY7C63923 microcontroller [6], a software-
based multiplication requires thousands of cycles to complete a 16-bit multipli-
cation. An RC4-based PRNG outputs pseudo-random numbers through simple
arithmetic and logical operations. However, RC4 requires at least 256 bytes of
RAM, which consumes all memory resource on some microcontrollers (such as
the CY7C63923). Laszlo et al. [I3] propose several efficient PRNGs that are
primarily designed for low speed embedded devices. The PRNGs proposed by
Laszlo et al. only require simple addition, XOR, or shift operations and few
memory resources to output PRNs efficiently. From the PRNGs that Laszlo et
al. propose, we select a 2-stage PRNG in our SBAP design. Other PRNGs that
have the same features are also potential choices for SBAP. The PRNG we select
outputs PRNs as follows:

zli + 1] = z[i — 1] + (z[i] ® rot(z[i — 1], 1)) (1)

@ is the logical XOR operation and rot is the left rotation shift operation. x is
the output of this PRNG, a 32-bit long stage. The value of one stage is updated
based on the values of the previous two stages in each iteration.

Filling Data Memory With Pseudo-Random Values. The verification function
fills data memory in a pseudo-random fashion. Such a design is required to
prevent an attacker from reserving one small block at the end of data memory
to store malicious data, and then generating the PRNs that are expected to
be in that small block of data memory on-the-fly when they are needed by the
checksum routine. In our design, the verification function determines the data
memory addresses to be filled based on the outputs of the PRNG. Each address
is then filled using the XOR of two bytes of PRNG output. This prevents the
attacker from generating the PRNs that are expected in data memory based
on the values of existing PRNs in other locations in data memory, since only
XOR results are stored in data memory. To make sure that all data memory
is filled, the verifier can obtain the number of loop iterations upon which all
data memory has been filled. This value is determined by simulating the filling
procedure before sending the attestation request.
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Checksum Function Design. The checksum function computes a fingerprint over
the entire contents of both program memory and data memory. As in SWATT or
ICE, the checksum is computed through a strongly ordered sequence of addition,
XOR, and rotation shift operations. If the sequence of the operations is altered
or some operations are removed, the checksum result will be different with a
high probability. Also, the checksum function reads memory in a pseudo-random
traversal. If the memory size is N bytes, each memory location is accessed at least
once after O(NInN) memory read with a high probability [2]. The input to the
checksum function is a 16-byte pseudo-random value, which is used to seed the
PRNG (i.e., to provide stages z[0] and z[1]) and to initialize an 8-byte checksum
vector. The output of the checksum function is also an 8-byte checksum vector.
Each byte of the checksum vector is called a checksum state. For each iteration
of the checksum function, the value of one checksum state is updated based on
the current memory contents, the pseudo-random value, and the values of other
checksum states. Following is the pseudo code of one iteration of the checksum
function:

/* C is the checksum vector, i is its current index. */
/* PRN is the pseudo-random number */
/* addr is the memory address */

addr = PRN & MASK /* Construct memory address */
/* update one checksum state */

C[i] = C[i] + ( Mem[addr] xor C[(i-2) mod 8] )

C[i] = left rotate one bit (C[il])

i=(i+ 1) mod 8 /* update the index i */

To optimize the computation time of the checksum, we unroll the checksum loop
eight times and each time one checksum state is updated by either the contents of
program memory or the contents of data memory, which can be adjusted based
on the memory size proportion of each. For example, on a peripheral that has 8
KB of programmable Flash and 256-bytes of RAM, seven checksum states can
be updated based on the contents of Flash memory while one checksum state
can be updated based on the contents of RAM.

5 Implementation

In this section, we detail the implementation of SBAP on a wired Apple Alu-
minum Keyboard.

5.1 The Apple Aluminum Keyboard

The Apple Aluminum Keyboard connects to a computer via a USB interface.
Inside the Apple Aluminum keyboard, a Cypress CY7C63923 microcontroller
controls the keyboard matrix. During a firmware update, the firmware on the
CY7C63923 microcontroller is updated. The Cypress CY7C63923 microcon-
troller belongs to the Cypress enCoReTM II family and is primarily designed
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for low-speed USB peripheral controllers, such as mice, keyboards, joysticks,
game pads, barcode scanners, and remote controllers. The Cypress CY7C63923
is a Harvard Architecture, 8-bit programmable microcontroller with 256 bytes
of RAM and 8 KB of Flash. Five registers on this microcontroller control the
operations of its CPU. These five registers are the Flag register (F), Program
Counter (PC), Accumulator Register (A), Stack Pointer (SP), and Index Regis-
ter (X). PC is 16-bits in length, while all the other registers are 8-bits long. A
and I are used during arithmetic or logical operations on this microcontroller.

5.2 Verification Function

Following a keyboard firmware update, the Flash memory from 0xe00 to 0x1300
(1280 bytes) is available free space, where we implement our verification func-
tion. Figure [2 shows the final memory layout of keyboard Flash memory. The
verification function is located at addresses 0x0e00 — 0x1268 in the Flash mem-
ory. The Flash memory from 0x1268 to 0x1300 is filled with pseudo-random
values. In the verification function, a 'Send Function’ is the communication
module that handles the attestation request from the verifier and returns check-
sum results through the USB channel to the verifier following checksum com-
putation. Before the attestation, the contents of RAM is unpredictable to the
verifier. Therefore, an ’'Initial Function’ sets the contents of data memory to
a known state by filling the data memory with pseudo-random values (we fill
data memory in a linear sequence instead of in a pseudo-random fashion as de-
signed). The data memory from 0x18 to Oxff is filled with with pseudo-random
values, while the data memory from 0x00 to 0x17 is used to store variables
for the verification function. Also, the ’Initial Function’ disables all interrupts
on the CY7C63923 microcontroller, which prevents the contents of data mem-
ory from being modified by an interrupt call during checksum computation.
A ’Checksum Function’ is implemented, which computes a checksum over the
entire contents of both program memory (Flash) and data memory (RAM).
After attestation, we reset the Apple Aluminum Keyboard. A two-stage pseudo-
random number generator (PRNG) is implemented in both the ’Initial Func-
tion” and ’Checksum Function’. The 8-byte nonce sent by the verifier is used
to seed the PRNG in the ’Initial Function’. After filling RAM, the PRNG in
'Initial Function’ outputs a 16-byte random number to serve as input to the
’Checksum Function’, which is used to seed the PRNG in ’Checksum Function’
and to initialize the 8-byte checksum vector. All of these functions are imple-
mented in assembly. The two-stage PRNG is implemented using 23 assembly
instructions. It outputs 4 bytes of pseudo-random values every 157 CPU cy-
cles on the Apple Aluminum Keyboard. We unroll the checksum iteration eight
times. Each time one checksum state is updated. The first seven checksum states
are updated based on the content of Flash memory while the last checksum
state is updated based on the content of RAM. Including the two-stage PRNG,
"’Checksum Function’ only requires 19.5 instructions and 133.5 CPU cycles on



26 Y. Li, J.M. McCune, and A. Perrig

the average to update one checksum state on the Apple Aluminum Keyboard.
Following is the assembly we implement to update one checksum state:

; [0x00] to [0x07] saves outputs of PRNG

; [0x08] to [0x0f] saves temp variables, such as counter

; [0x10] to [0x17] saves checksum states

; ROMX is the instruction to read flash memory

; CPU loads memory address from register A

; and register X when ROMX is executed

; the result of ROMX is saved in register A automatically by CPU
; Update checksum[0]

MOV X, [0x00] ; read pseudo-random values

MOV A, [0X01] ; to register X and A

AND A,OX1F ; construct memory address

ROMX ; read Flash memory, result is saved in A
XOR A, [0x16] ; Mem[addr] xor checksum[6]

ADD [0x10], A ; add previous checksum value

ASL [0x10] ; left shift 1 bit

ADC [0x10],0x00 ; add flag (equal to rotation shift)

Program Memory

0x0000
Interrupt Table
0x0080
Key Handling Func
0x0e00
Send Func
Initial Func Verification
Function
Checksum Func
0x1268
Randomness
0x1300
USB Func
Ox1FFF

Fig. 2. Memory layout of program memory

6 Experimental Results

Verification Time. Figure [3] shows the verification time for 40 trials. In each
trial, the verifier measures the entire verification time between sending a nonce
to the Apple Aluminum Keyboard and receiving the checksum result from the
keyboard. The average verification time of the 40 trials is 1706.77 ms while the
standard deviation is only 0.18 ms.

USB Communication Overhead. In this experiment, the verifier first sends an
attestation request to the Apple Aluminum Keyboard. Upon receiving a request
from the verifier, the verification function on the Apple Aluminum Keyboard
returns an 8-byte value to the verifier immediately without computing the check-
sum. To obtain accurate experimental results, the verifier measures the entire
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time of 1000 runs of the communication in each trial. Figure M shows the av-
erage communication time of the 1000 runs in each trial. The average value of
the USB communication overhead for all the experiments is 1.83 ms and the
standard deviation is only 0.01 ms.

Analysis. The experimental results show that the verification procedure is very
stable. As shown in Figure [B] the verification time for all 40 trials varies from
about 1706 ms to about 1708 ms. An attacker cannot hide malicious code from
an attestation unless the malicious code computes the correct checksum result
with a computation overhead less than 3 ms, which is only about 0.2 percent
of the verification time. This kind of attack is extremely challenging for the at-
tacker since there is not any free space left in program or data memory. Also,
the experimental results show that the communication overhead does not af-
fect the detection of the computation overhead caused by malicious code, since
the communication is also very efficient and stable. Another important result
we obtain from the system evaluation is that SBAP is an efficient and realistic
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solution to solve the peripheral integrity verification problem. In our prototype,
a verifier (a user) only needs to wait about 2 seconds for the entire verification
procedure, which is acceptable if run in response to being connected to a host.

7 Discussion

To the best of our knowledge, there is no efficient attack against SBAP. One
possible attack is that an attacker performs a compression attack or ROP at-
tack and stores the malicious data or code in data memory, then generates the
pseudo-random values that should be filled in data memory on-the-fly during
the checksum computation. However, this attack causes large computational
overhead due to the complexity of the PRNG. Another attack is that an at-
tacker performs a memory copy attack by having a copy of the original code or
pseudo-random values that should be in data memory in the register space of
the microcontroller. This attack can be detected by the verifier since a memory
copy attack causes a detectable computation overhead. In fact, there is very low
likelihood that an attacker can perform this attack because there is not much
register space available for an attacker to perform a memory copy attack on a
peripheral. For example, we find that on a CY7C36923 microcontroller there are
about 30 registers (30 bytes) that can be used for a memory copy attack by an
attacker. However, once the attacker changes the checksum loop, the attacker
needs hundreds of bytes memory to store the original copy of the checksum
function. Finally, an attacker can hide some malicious data that can be used for
future attacks in the register space of a peripheral. SBAP prevents this attack
by resetting the peripheral after an attestation.

8 Related Work

Several software based attestation technologies on embedded devices have been
proposed. Seshadri et al. propose SWATT [2], ICE, SCUBA [3], and SAKE [],
as discussed in Section 2. However, as discussed in this paper, it is challenging to
implement ICE in resource-constrained embedded devices. To prevent adversary
from hiding malicious code in the empty memory, Yang et al. suggest filling the
available empty space with pseudo-random values [14]. However, a compression
attack [5] can create free space by compressing the original code in program
memory.

9 Conclusions and Future Work

We propose SBAP, a software-only solution to verify the firmware integrity of
peripherals. SBAP verifies the contents of both program memory and data mem-
ory in a peripheral and detects malicious changes with high probability in the
face of recently proposed attacks (e.g., a memory copy or memory substitution,
a compression attack, and a ROP attack). We implement and evaluate SBAP
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on an Apple Aluminum Keyboard. One area of future work is to implement and
evaluate SBAP on other peripherals, especially high-speed peripherals such as a
network interface. The hardware architecture and configuration of a high-speed
peripheral is different from those of a low speed peripheral. Therefore, there will
likely be new challenges when we evaluate SBAP on a high-speed peripheral.
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Abstract. Credential platforms implemented on top of Trusted Execu-
tion Environmentd] (TrEEs) allow users to store and use their creden-
tials, e.g., cryptographic keys or user passwords, securely. One important
requirement for a TrEE-based credential platform is the ability to attest
that a credential has been created and is kept within the TrEE. Cre-
dential properties, such as usage permissions, should be also attested.
Existing attestation mechanisms are limited to attesting which applica-
tions outside the TrEE are authorized to use the credential. In this paper
we describe a novel key attestation mechanism that allows attestation
of both TrEE internal and external key usage permissions. We have im-
plemented this attestation mechanism for mobile phones with M-Shield
TrEE.

1 Introduction

Cryptographic protocols use credentials to authenticate users to various security
sensitive services, including on-line banking and corporate network access. Tra-
ditional credential solutions fall short. Software credentials, such as passwords,
are vulnerable to on-line fraud [4] and software attacks [12]. Dedicated hardware
tokens, such as SIM-cards used for authentication in cellular networks, provide
higher level of security, but are expensive to manufacture and deploy, and a sep-
arated hardware token is typically needed for each service, which forces users to
have multiple tokens.

Recently, hardware-based commodity general-purpose Trusted Execution En-
vironments (TrEEs), such as Trusted Platform Module (TPM) [I7], JavaCard [6],
M-Shield [14] and ARM TrustZone [I], have started to become widely deployed.
TPMs are already available on many high-end personal computers while sev-
eral mobile phone models are based on TrEEs like M-Shield and TrustZone.
Credential platforms implemented on top of these TrEEs, including On-Board
Credentials [7] and Trusted Execution Module [3], provide higher level of secu-
rity compared to software credentials, and easier deployment and better usability
compared to dedicated hardware tokens.

1 A trusted EE is a computing environment where execution takes place as expected.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 30 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Credential platforms [73] allow third-parties to implement their own “cre-
dential programs” that are executed within the TrEE in a controlled manner.
These credential programs may generate new asymmetric keys within the TrEE.
One important requirement for a credential platform is the ability to attest that
a key has been created and is kept within the TrEE. Additionally, the attesta-
tion should prove key properties, such as usage permissions. A straightforward
approach would be to limit the usage permissions of such keys only to the cre-
dential program that generated the key. However, in some cases the developer
of the credential program should be able to authorize other credential programs
to use the key. Then the credential platform should be able to enforce specified
by the developer key usage permissions and to provide an attestation of these
permissions to an external verifier.

The following use case provides an example: IT department of a company
creates a credential program that generates an asymmetric key within the TrEE
and performs (possibly proprietary) corporate network authentication opera-
tion. The employees of the company may use this credential program to create
themselves a corporate network authentication credential and enroll it to the
authentication system of the company. Later, the same I'T department wants to
issue another credential program to their employees; this time for email signing.
The email signing credential program should be allowed to operate on the same,
already enrolled key, to save the employees from enrolling multiple keys (typ-
ically each enrollment operation requires some user interaction). At the same
time credential programs developed by other companies should not be able to
use this key. The credential platform should provide an attestation of these key
properties to the enrollment server of the company, so that only compliant keys
are enrolled to the authentication system of the company.

Contribution. In this paper we describe an extension to On-board Credentials
platform [7] that enables credential program developers and applications to de-
fine which other entities both within the TrEE and externally are authorized
to use the asymmetric keys they generate and for which operations these keys
may be used. We also describe a key attestation mechanism that provides evi-
dence on internal and external key usage permissions to a verifier. To the best of
our knowledge, no other credential platform provides similar functionality. We
have implemented the key attestation mechanism and matching key property
enforcements for Symbian mobile phones with M-Shield TrEE.

2 Requirements and Assumptions

Requirements. The main objective is to design a framework for a credential
platform that allows credential programs, written by third-parties, to generate
new asymmetric keys within the TrEE and to prove certain properties of these
keys to any (correct) verifying entity. More concretely, the credential platform
should support the following features:
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R1: Key usage and usage permission definition. The key creator,
i.e., the entity who generates a new key, should be able to define (i) key us-
age, i.e., allowed key operations (e.g., signing, decryption) and (ii) key usage
permissions by defining entities, both internal and external to TrEE, which are
authorized to use the key. In particular, the key creator should be able to au-
thorize key usage for an entity whose exact identity is not known at the time of
key generation (e.g., other credential programs written by the same credential
developer in future).

R2: Key usage permissions update. The key creator should be able to
update key usage permissions after the key has been generated. Such a possibility
should be optional and be allowed or restricted at the time of key generation.

R3: Key usage enforcement. The credential platform should enforce key
usage and key usage permissions defined by the key creator.

R4: Attestation coverage. The credential platform should provide an (ex-
ternally) verifiable evidence/proof that the subject key was created and is acces-
sible only within the TrEE. Additionally, the attestation should provide evidence
on the following subject key properties: (i) key creator, (ii) key usage (signing,
decryption), (iii) key usage permissions (entities which are authorized to use the
key), and (iv) indication whether the key creator is allowed to update key usage
permissions.

R5: Attestation unforgeability. The credential platform should only at-
test credentials it has generated itself and which are under its control. In other
words, an attacker should not be able to fool the credential platform to attest
keys generated by the attacker.

R6: Attestation freshness. In case the creator of the key is allowed to
update key usage permissions (R2]), an external verifier should not trust previous
(old) attestations (the key creator might have changed key usage permissions
after the old attestation was created). Thus, the key attestation mechanism
should provide freshness guarantee.

Assumptions. We make some assumptions regarding underlying hardware and
operating system level security:

A1:Trusted execution environment. We assume availability of a hardware-
based TrEE that provides: (i) isolated code execution (by means of separation of
processing and memory), (ii) secure storage (by ensuring integrity and confiden-
tiality of persistent data), (iii) integrity protection of secure execution environment
for credential programs.

A2: OS security. We assume existence of operating system level platform se-
curity framework with the following features: (i) availability of the secure storage
for OS level applications/processes, (ii) access control on inter-process commu-
nication, (iii) integrity protection of security critical components, (iv) isolation
of application/process execution, and (v) access control model that allows only
trusted (e.g. signed) OS-level components to communicate with TrEE.
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Note that these assumptions are reasonable in the context of our primary imple-
mentation platform: We utilize M-Shield [14] security hardware and Symbian [10]
operating system. M-Shield provides all required features for TrEE. First, it sup-
ports secure boot? which ensures integrity of TrEE. Second, M-Shield supports
secure code execution in hardware by means of separation of processing and
memory. Third, it provides the secure storage by means of sealing all data with
a device-specific symmetric key which is protected by the TrEE. The Symbian OS
provides the application-specific secure storage and process execution isolation,
and enforces control on inter-process communication via capability mechanismf.
Moreover, the integrity of security critical OS components is ensured with secure
boot that utilizes M-Shield hardware.

Adversary Model. We assume the following adversary capabilities:

AC1: Communication channel attacks. The adversary has access to
communication channel between the attesting device and the external verifier
and is able to eavesdrop, reply, relay or alert any network traffic.

AC2: End-point software attacks. The adversary can launch software
attacks targeting the ObC platform. The execution of the OS-level components
cannot be affected and OS-level secure storage cannot be accessed if the ad-
versary is not able to compromise OS platform security at runtime. Assuming
inability to compromise OS security framework may not be realistic due to the
large size of modern operating systems and in Section [fl we discuss the implica-
tions of OS security compromise to our proposal.

AC3: End-point hardware attacks. The adversary can launch limited
subset of hardware attacks on a circuit board level. We assume that the adver-
sary is not able to tamper with chips and launch side-channel attacks, but can
eavesdrop on the conductor wires connecting components or try to modify data
or program code stored on the device (e.g., via programming interface).

3 On-Board Credentials Platform

In this section we give a brief overview of the On-board Credentials (ObC)
platform. Figure [ describes the parts of the ObC platform architecture that are
relevant to key usage control and attestation. For more detailed description of
the ObC platform see [7].

Interpreter. The core of the ObC platform is a trusted Interpreter that can be
executed within the TrEE. The trust on the Interpreter can be based on code
signing, i.e., only authorized code is allowed to be executed within the TrEE.
Interpreter provides a virtualized environment where “credential programs”, i.e.,
scripts developed by untrusted third-parties, can be executed. When a credential
program is executed, the Interpreter isolates it from secrets that are stored within
the TrEE and from the execution of other credential programs.

2 Secure boot means a system terminates the boot process in case the integrity check
of a component to be loaded fails [5].
3 A capability is an access token that corresponds to access permissions[10].
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Fig. 1. On-board Credential architecture

The Interpreter provides a sealinﬁ/unsealing function for ObC programs,
which can be used to protect secret data stored persistently outside the TrEE.
Additionally, the Interpreter provides common cryptographic primitives, such
as encryption, decryption and hash functions, for credential program develop-
ers. The credential programs are written using (a subset of) Lua scripting lan-
guage [§] or in assembler.

The ObC platform supports three types of credentials: (1) credential programs
that operate on symmetric secrets provisioned by an external provisioner, (2)
credentials programs that locally generate and operate on asymmetric keys, and
(3) asymmetric keys locally generated by applications without involvement of
credential programs. In this paper we focus on two latter credential types.

The ObC platform supports a concept of “credential families”. A family is
defined by a credential provisioner (full description of credential provisioning
and families can be found in [7]). Credential programs belonging to the same
family may share sealed and persistently stored data.

Credential Manager. The ObC platform includes a trusted operating system
level component called Credentials Manager CM. The trust in CM can be pro-
vided, e.g., based on secure boot. CM provides an API for third-party developed
applications. Using the API the applications can execute credential programs,
and create and use new asymmetric keys. CM maintains a database, in which
credentials and key properties are stored. CM also enforces that only authorized
applications are allowed to use credentials.

Device Keys. The ObC platform uses three device specific keys (which are only
accessible within the TrEE) for key generation and attestation:

— ObC platform key (OPK) is a symmetric device key. The Interpreter uses
OPK for sealing/unsealing function.

4 Protecting an object so that only a certain set of OS-level or TrEE-level entities can
access or use it.
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— Internal device key (PK;, SK7) is an asymmetric device key. The public
part of this key is certified as an “internal device key” by the device manu-
facturer. The Interpreter uses this key only to sign data that originates from
within the TrEE, or data whose semantics or structure it can verify.

— External device key (PKg, SKg) is an asymmetric device key. The public
part of this key is certified as an “external device key” by the device man-
ufacturer. The Interpreter uses this key to sign data that originates from
outside the TrEE. Using secure boot and OS-level security framework, we
limit the use of the external device key to CM only.

4 Key Attestation Design

Key attestation protocols involve the following entities: (i) attestor A, i.e., ObC
platform which attests to properties of the locally generated subject key, (ii)
the platform manufacturer M which certifies device specific keys of A, (iii) a
server S which aims to get assurance regarding subject key properties, and (iv)
certification authority CA which may issue subject key certificate.

We utilize the following notations: A signature scheme consists of algorithms
(GenKey(), Sign(), Verify()). Here (SK, PK) < GenKey() is the key generation
algorithm that outputs signing key (private key) SK, and the corresponding
verification key (public key) PK, o « Sign(SK,m) is the signature algorithm
on message m which outputs a signature o, and ind < Verify(PK, o, m) is the
signature verification algorithm with ind € {0,1}.

An authenticated encryptionf] scheme consist of algorithms (Enc(), Dec()).
Here ¢ < Enc(K,m) is the encryption algorithm on a message m using K as the
symmetric key which outputs an encrypted message ¢, and (ind, m) < Dec(K, ¢)
is the decryption algorithm on ¢ using K as the symmetric key with ind € {0, 1}
indicating integrity of c.

A hash algorithm is denoted by H().

4.1 Key Generation by Credential Programs

Key generation by a credential program is illustrated in Figure 2l We describe
the main steps in the following:

Step 1: A credential program requests the Interpreter to generate the subject
key. It may authorize other credential programs to use this key in two ways:

(i) Credential Program Identifiers are used to define zero or more identi-
fiers of credential programs that are authorized to use the generated key. In ObC
platform, credential programs are identified by the hash of the program code;
(ii) Family Identifiers are used to define zero or more identifiers of creden-
tial families that are authorized to use the generated key. Credential families are

® We use authenticated encryption AES-EAX for various needs including seal-
ing/unsealing operations to keep code and memory footprint minimal.
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Fig. 2. Key generation by a credential program

identified by the hash of family key@. The credential program also defines key
usage and whether key usage permissions are allowed to be updated.

Step 2: The Interpreter generates a new subject key (SKgs, PKg) and creates a
structure called internal validation block (IVB). IVB contains (i) the identifier
Creatorld of the credential program that created the key, (ii) a list of creden-
tial program identifiers Credlds; (iii) a list of family identifiers Famlds, (iv) an
indication whether credential program identifiers and family identifiers may be
updated by the key creator Update and (v) the allowed key operations Usage.
The Interpreter seals the private part of the subject key SKg and IVB using
platform key OPK. Then it derives the key identifier Keyld by hashing the
public key PKg. The resulting sealed key SSKg and Keyld are stored on the
operating system side by CM.

Step 3: The key identifier Keyld is returned to the credential program that
may, e.g., export it to the application that triggered the credential program
execution, so that the same key can be used later (from the same or another
credential program).

Steps 4-6: The next time the key is used, the Interpreter requests, and obtains
the sealed key from CM on operating system side based on Keyld, and unseals
it using OPK. The Interpreter unseals SSKg and verifies IVB components and
performs the requested key operation only if the key usage is allowed, and the
calling credential program is either the creator of the key or its identifier, or
family is listed as authorized to use the key.

4.2 Key Generation by Applications

The Credentials Manager CM provides an API for creating and using asym-
metric keys directly from applications. Figure [3illustrates key generation by an
application.

5 Family key is used in credential provisioning.
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Step 1: An application calls the key creation function over the API provided by
CM . The application may authorize other applications to use the generated key
in two ways: (i) to define zero or more application identifiers. The listed ap-
plications are permitted to use the key. This method requires that the underlying
OS can provide reliable information about the identity of the calling application
to CMIT; (ii) to define that an authorization token called application authen-
tication key (AAK) is required to use the key. In such a case the generated
key may be only used if the correct AAK is provided by the application to CM.
AAK may be shared among several applications.

When an application creates a new key, CM constructs IVB. Application
identifiers Applds are not included in I'VB, since those cannot be reliably verified
within the TrEE. If AAK is used, it is included in IVB together with the key
usage Usage, the identity of the application that generated the key Creatorld
and a flag Update that defines whether key usage permissions can be updated.

Step 2: CM loads IVB to the TrEE, in which the Interpreter generates the
subject key (SKgs, PKg), and seals the private part together with IVB to SSKg.

Steps 3-4: PKg and SSKg are returned to CM. CM stores them together
with hash of AAK, the list of application identifiers Applds, the key creator
Creatorld, and the key usage Usage. A key identifier Keyld is returned to the
application.

Steps 5-6: When the same or another application requests to use the subject
key, CM verifies the identifier of the calling application with respect to locally
stored Creatorld and Applds. CM also checks key usage Usage and hash of
AAK if needed. If these checks pass, CM loads the sealed private key SSKg

" For example, in Symbian OS each process has a unique identifier which can be
verified for each inter-process function call.
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Fig. 4. Interactive key attestation

and possible AAK to the TrEE in which the Interpreter unseals the key and
checks that AAK matches the one defined in IVB (if used), and that key usage
is allowed before performing the private key operation.

4.3 Interactive Key Attestation

The attestation process must be interactive in case the key creator is authorized
to update key usage permissions during key life time (as required by the objective
(R2D)). In interactive scenario, the attestation evidence must be verified by the
server S. Figure [ illustrates this attestation protocol.

Steps 1-2: S picks a random nonce called external attestation challenge (EAC)
and sends it to an application on the target device. The application identifies the
subject key to attest (typically based on information originating from S) and
triggers the attestation. CM retrieves the sealed subject key SSKg from local
storage.

Steps 3-4: CM loads SSKs and EAC to TrEE. Inside the TrEE the Interpreter
first unseals SSKg, derives PKg from SK. Sﬁ and then creates an internal attesta-
tion evidence (IAE). IAE is a concatenation of IVB, hash H(PKg) of a subject
public key and FAC. Then IAFE is signed using the internal device key SK7j.
The Interpreter returns IAFE and signature Sigrag to CM.

Steps 5-6: CM constructs an external validation block EVB. EVB is a concate-
nation of IAFE, Sigiag, Keyld (hash of public subject key H(PKjs)), and a list of

8 PKs can be derived from SKg efficiently in our implementation.
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application identifiers Applds. CM loads EVB to TrEE in which the Interpreter
signs it using the external device key SKpg. The resulting attestation evidence
AFE is sent back to CM.

Steps 7-8: CM returns AE together with the subject public key PKg and
certificates of both internal and external device keys (Cert;, Certg) to the ap-
plication. The application forwards this data to the server S which verifies the
following: (i) AE has been signed with a key that has been certified as an ex-
ternal device key by a trusted authority, and (ii) the public key hash in FVB
matches the received subject public key PKg. If these two conditions hold, §
can parse the external key usage permissions and based on that determine which
OS level key usage permissions are enforced by CM.

To verify the internal attestation, S checks that (i) JAE contains signature
made with a key that has been certified as internal device key, (ii) the public
key hash inside JAE matches the received subject public key, and (iii) EAC
inside TAF matches the one picked by S earlier. If these three conditions hold, S
can determine from I'VB the key usage permissions enforced by the Interpreter
within the TrEE.

4.4 Non-interactive Key Attestation

Non-interactive key attestation can be used when key usage permissions are not
allowed to be updated and freshness guarantee is not needed. Figure [l depicts
non-interactive attestation. In this scenario a certification authority CA validates
the attestation evidence and issues a subject key certificate that other servers
can verify. The main steps of the protocol are described below:

Steps 1-2: The credential platform triggers attestation with fixed challenge
(e.g., FAC = 0). CM and Interpreter create the attestation evidence as in
interactive key attestation. CM generates also a certificate request containing
the public part of subject public key, subject identity and proof-of-possession of
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the subject keyﬁ. The certificate request, attestation evidence and internal and
external device key certificates are submitted to CA. CA validates AE using
the fixed challenge (verification is performed in the same way as in interactive
scenario described in Section A3]). Additionally, CA verifies that the key usage
permissions are not allowed to be updated, i.e., the field Update in IVB structure
is set to false. Finally, C'A issues a subject certificate Certs and returns it to the
ObC platform.

Step 3: The ObC platform submits the key enrollment request to .S. The request
includes PKg and Certg. S validates Certg, and if it is correct, enrolls the subject
key. In this scenario, S relies on CA to verify the attestation evidence. However,
since X.509 certificates do not have standard place to indicate if the attestation
evidence has been validated by CA, S must have out of band knowledge that
the particular CA always validates the attestation evidence before the public
key certificate is issued.

Another approach for non-interactive attestation assumes that CA issues pub-
lic key certificate omitting attestation evidence validation, then attestation evi-
dence is incorporated into subject key certificate. The TCG SKAE [16] defines a
X.509 certificate extension for this purpose. In this approach verification of the
attestation evidence is left for the server.

Note, that in both scenarios communication between ObC platform and CA
must be secured so that CA can associate the submitted public key with the
correct authorizations allowed for the submitter.

5 Implementation

We have implemented the described attestation mechanism for Nokia N96 mo-
bile phone with M-Shield TrEE. In M-Shield architecture trusted (signed) code
can be executed within the TrEE isolated from the rest of the system. The
trusted code is implemented as so called “protected applications” (PAs) in C.
The maximum size of each PA is very limited (in terms of both implementation
footprint and runtime memory) and for this reason we had to implement the
Interpreter, key generation and attestation functionality as three separate PAs:
(i) Interpreter PA, (ii) RSA PA and (iii) Attestation PA. Because in M-Shield
architecture the communication between different PA invocations must be me-
diated by an operating system level component (CM in our architecture), the
data that is transfered from one PA to another one must be protected.
Interpreter PA is the component that handles credential program execution.
When Interpreter PA encounters key creation macro it constructs VB, creates
a fresh session key and seals IVB and the current state of the program execution
using the session key. The Interpreter PA saves the session key to volatile secure
memory inside the TrEE and returns IVB and program state in sealed format.
CM on the OS side saves sealed program execution state temporarily and
loads RSA PA to the TrEE together with the sealed IVB. RSA PA unseals IVB,

9 E.g., a signature created using the subject key within the TrEE.
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generates a new RSA key and seals IVB and private part of the generated key
using OPK for future use. RSA PA calculates key identifier (hash of public key)
and returns this sealed with the session key. CM loads Interpreter PA to TrEE
together with the sealed key identifier and sealed program execution state. The
Interpreter PA can unseal the state and the key identifier using the session key
and continue credential program execution.

Asymmetric key operations are handled in similar fashion. When Interpreter
PA encounters key operation in credential program execution it seals key oper-
ation parameters and current state with the session key. CM triggers RSA PA
which unseals parameters, performs the operation and seals the results for Inter-
preter PA. Key attestation and application triggered key operations are handled
by Attestation PA which requires no communication with other PAs.

The operating system side CM component is implemented as a Symbian OS
server in C++. Using Symbian OS platform security framework CM can check
unique identifier of calling application for each function call. CM maintains a
database in its private directory which is not accessible by other applications
(except few trusted system components).

In our implementation, the device keys (internal and external) are generated
when the credential platform is first taken into use. The keys are created within
the TrEE and sealed using OPK for storage in CM database. When the device
keys are created, a key type tag is included to the seal. With the tag, the key
type can be determined when the key is later unsealed inside the TrEE.

In our implementation, the internal validation block (IVB) is a binary struc-
ture with fixed format, to keep the TrEE side implementation minimal. VB can
contain up to five identifiers which are used to define credential programs, fami-
lies and AAK . A bitfield in the header defines the types of these identifiers. VB
header also defines the key creator, usage and whether usage permission can be
updated. We have implemented the external validation block using ASN.1 for-
matting (similar to TCG SKAE [16]) to make external attestation flexible and
easy to implement. For non-interactive attestation our CM implementation can
generate standard X.509 certificate requests into which the attestation evidence
is included as an extension.

We have not yet implemented a mechanism to update key usage permissions.
Currently, key usage permissions are always defined as unchangeable at the time
of key generation.

6 Security Analysis

Based on the assumptions on the underlying hardware platform (Al and on
the OS security framework (A2]) (see Section ), in the following we will give an
informal security analysis of our proposal.

Our design and implementation provide key usage definition (R[] for keys
generated both from within or outside the TrEE. The internal key usage per-
missions are defined in terms of credential program and family identifiers. The
external key usage permissions are defined in terms of application identifiers
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and by means of applying the application authentication tokens. Allowed key
operations are defined in Usage.

Key usage enforcement (RB]) is provided in the following way: the allowed
key operations Usage and internal usage permissions are enforced by the trusted
Interpreter. Note that the Interpreter resides within TrEE. Moreover, the under-
lying hardware provides secure execution. Hence, the integrity of the Intepreter
is ensured both statically and in run-time.

In case of external usage permissions, rules defined through application iden-
tifiers are enforced by CM. Note that CM is a trusted OS-level component, and
hence its integrity is provided based on the assumptions regarding OS security
framework, so that CM can enforce the usage permission rules specified for each
credential., e.g., in EVB.

Key usage permissions update (R2]) can be supported, because the key creator
can be always identified via key creator identity Creatorld included into IVB.
Also, the attestation evidence creation is not bound to time of the key generation,
thus it can reflect changes made during key life time. Possible solutions for the
key usage permissions update mechanism are discussed in

Attestation coverage (RH]) is simply realized by including all required state-
ments into the attestation evidence. Attestation unforgeability (RE]) is ensured
through the use of the device keys for attestation those are protected by the
TrEE and their genuineness is certified by the trusted device manufacturer. At-
testation freshness (Rl is guaranteed with inclusion of the challenge in the
internal attestation evidence.

Discussion on Run-Time Compromise. As mentioned in Section 2] we can-
not generally assume that the adversary cannot compromise OS-level security
framework. In this section we discuss implications of OS compromise to our
solution.

First, we consider credential program generated keys. As shown in Figure 2]
OS-level components including CM do not have access to the key properties
in unsealed form during key generation process. A compromised CM is able to
forge an external attestation for credential program generated key with false
application level usage permissions, but it does not allow CM to use the key
since the Interpreter inside the TrEE will deny the key operation invoked by the
CM for a key generated by a credential program. Internal attestation can be
trusted, since it is performed internally by Interpreter within the TrEE. Also,
a malicious CM is not able to invoke SK; usage to sign forged IVB since the
Interpreter will not use this key to sign data that originates outside the TrEE.
The external attestation evidence cannot impersonate the internal attestation
evidence since they are signed with different keys, SKg and SK7 respectively.

Next, we consider application created keys. Again, a compromised CM is
able to forge external attestation evidence and specify usage permissions for
false OS-level applications. If the key usage permissions are defined in terms of
application identifiers, a compromised CM can allow key usage for unauthorized
applications. If the key usage permissions are defined in terms of AAK a com-
promised CM cannot use the key without knowledge of valid AAK. However,
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one should note that if the adversary is able to compromise CM he most likely
can read AAK from the storage of the authorized application as well, and thus
use the key. Internal attestation can be trusted for application generated keys,
only if CM has been compromised after the key was generated. If CM was com-
promised before key generation, even internal attestation cannot be trusted for
application generated keys.

As a conclusion, our design and implementation can only partly address the
problem of runtime compromise of OS-level security frameworkY. Thus in real
life scenarios the verifier should take into account the discussed arguments and
define the trust to the attestation created by the ObC platform according to its
security policy.

7 Related Work

Trusted Computing Group (TCG) [15] has specified a mechanism called Subject
Key Attestation Evidence (SKAE) [I6] for attesting TPM generated asymmetric
keys. In short, a SKAE attestation contains the public part of the attested
subject key and the platform configuration (in terms of platform configuration
register values) under which the subject key can be used, signed with a certified
and device-specific attestation identity key. A typical use of SKAE is to include
it as an extension to a certificate request; the SKAE extension proves to the
certificate authority that the subject key was created and is kept within a TPM
and specifies the application(s) that can use the key by defining the platform
configuration.

The TCG SKAE is limited to attesting which applications outside the TrEE
are allowed to use the attested subject key whereas our attestation mechanism
provides evidence on TrEE-internal key usage permissions as well. Moreover, the
TCG SKAE is a non-interactive mechanism, and thus not applicable to attesting
keys which usage setting may be updated (REZ).

The work closest to ours is “outbound authentication” (OA) architecture [13]
for IBM 4758 programmable secure coprocessors. IBM 4758 is TrEE with layered
security architecture: layers 0-2 boot up the coprocessor and run an operating
system. Applications originating from different (possibly mutually distrusting)
sources can be loaded to the coprocessor and executed on layer 3. External
parties should be able to verify which of the applications within the coprocessor
performed certain operation. The OA architecture uses certificate chaining to
achieve this. Layer 0 has a root key (certified by a trusted authority) which is used
to certify higher layers. When an application is executed, the operating system
layer creates a key for the application and certifies this key. The application may
authenticate itself to an external verifier using its key.

10 1t should be noted that handling runtime compromise is still an open research prob-
lem and the existing solutions such as Runtime Integrity Monitors either require
extra hardware support (e.g., [9]) or utilize virtualization technology to run the sys-
tem under inspection within a virtual machine (e.g., [2]) which is hard affordable for
mobile devices due to the corresponding overhead.
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Our attestation mechanism and OA architecture address essentially the same
problem — providing evidence on which entity within a TrEE is allowed to access
a certain key. However, our attestation mechanism supports certain features that
fall outside the scope of OA. First, the ObC architecture supports sharing of
keys between entities within the TrEE and our attestation mechanism provides
evidence on this in terms of credential programs and family identifiers. Second,
our attestation mechanism provides also evidence on TrEE external access.

KeyGen2 [11] is a proposal for provisioning of asymmetric keys to devices, such
as mobile phones. In KeyGen2 asymmetric keys are created inside the TrEE of
the client device. To enroll a key to a server, the client creates an attestation of
the key by signing it with a device key. To distinguish this attestation signature
from other signatures made with the same device key, special padding (reserved
for this use only) is applied.

The key attestation in KeyGen2 does not include information about software
that is authorized to use the key neither in terms of platform configuration (as it
is done in the TCG SKAE), nor in form of TrEE internal key usage permissions
(as in our proposal). The attestation only proves that the to-be-enrolled key was
created and is kept within the TrEE.

8 Conclusion

In this paper we have described a key attestation mechanism that allows a plat-
form to attest to a verifier key usage permissions and properties of both (internal)
programs residing in a Trusted Execution Environment (TrEE) as well as OS-side
applications outside the TrEE. We have implemented this key attestation mech-
anism and matching local enforcements as an extension to the existing on-board
Credentials platforms for mobile phones based on M-Shield secure hardware. To
the best of our knowledge, this is the first credential platform that efficiently
provides such an enhanced attestation functionality.
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Appendix A. Device Key Alternatives

The key attestation mechanism described in the paper requires two device keys:
Internal device key is used to sign internal attestation and external device key
is used to sign external attestation. Both of them must be certified by a trusted
authority, such as the device manufacturer. The device keys can be created either
during device manufacturing or when the credential platform is first taken into
use. In the latter case, the device key certification is an on-line protocol between
the TrEE and the device manufacturer — we assume that the device manufacturer
may authenticate its own TrEEs in reliable fashion.

Creating asymmetric keys is a time consuming process on TrEEs with lim-
ited resources. Thus, the need to have two certified device keys increases the
device manufacturing time and cost, or alternatively decreases credential plat-
form installation user experience. In this appendix we discuss two alternative
approaches to device key creation and certification to address this problem.

Single Device Key. Instead of creating two separate device keys, a single device
key could be used for signing both internal and external attestations. In such a
case, signatures made over IVB and EVB should be distinguishable from each
other to prevent EVB to be interpreted as IVB by the verifier. To distinguish
different type of signatures made with the same key, one of the following two
techniques could be applied.

First, the Interpreter could apply distinguishable formatting to IVB and EVB
before signing them. The Interpreter could, e.g., concatenate a tag to these
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elements before signing. If such an approach were used, the device key should
never sign anything else except an attestation evidence, otherwise the specific
formatting can be forged. Thus, such a solution does not scale well since may
require new device keys for other operations.

Second, the signatures can be made distinguishable by applying different
padding schemes or hashing algorithm as proposed in [I1]. For example a unique
padding could be used for internal attestation signatures, another unique padding
for external attestation signatures, and standard padding could be used for nor-
mal signatures. The disadvantage of this approach is that the external verifier
is required to understand these non-standard padding schemes which can be an
obstacle for wide scale deployment.

Device Key Chaining. Another alternative would be to use certificate chain-
ing. In this approach two separate device keys would be used for signing the
attestations, but the device manufacturer would have to certify only one de-
vice key which in turn could certify the second needed device key locally on
the platform. The benefit of such an approach is that only one device key has
to be created when the device is manufactured or when the credential platform
is taken into use. The second device key can be generated and certified later,
e.g., when the device is in idle state, but before the device is used for attestation.
This approach would also scale better, if more than two device keys are needed.

Appendix B. Key Usage Permissions Update

The task of updating key usage permissions can be seen as consisting of two
subtasks: (i) to grant usage rights to new credential programs and applications;
(ii) to revoke usage rights granted before.

One alternative would be to provide the key creator the possibility to do both,
to grant and to revoke key usage permissions. In this way, lists of credential
programs and applications authorized to use the key may be freely modified by
the key creator.

Another alternative would be to provide the key creator the only possibility
to revoke key usage permissions. In this way, identities of credential programs
and applications may be excluded from the lists defined before, but new identi-
ties may not be added. In this situation, key usage permissions can be granted
via utilization of already available mechanisms: Family paradigm can be used to
grant usage permissions to additional credential programs, and application au-
thentication token can be used to grant usage permissions to new applications.

The former design solution provides better flexibility, since family identifiers
and application tokens can be added and updated by the key creator. The lat-
ter design solution is less flexible, but it does not require to ensure attestation
freshness. Indeed, if the old attestation is satisfactory for the verifier, the new
one would be also for sure accepted because it has reduced list of authorized en-
tities compare to the old version. When freshness is not required, the attestation
could be always performed in non-interactive manner, that is an advantage of
this scheme.
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Abstract. Anonymous credential systems provide privacy-preserving
authentication solutions for accessing services and resources. In these
systems, copying and sharing credentials can be a serious issue. As this
cannot be prevented in software alone, these problems form a major
obstacle for the use of fully anonymous authentication systems in prac-
tice. In this paper, we propose a solution for anonymous authentication
that is based on a hardware security module to prevent sharing of cre-
dentials. Our protocols are based on the standard protocols Transport
Layer Security (TLS) and Direct Anonymous Attestation (DAA). We
present a detailed description and a reference implementation of our
approach based on a Trusted Platform Module (TPM) as hardware secu-
rity module. Moreover, we discuss drawbacks and alternatives, and pro-
vide a pure software implementation to compare with our TPM-based
approach.

1 Introduction

Anonymous authentication (see, e.g., [I3126022I21]) is a widely studied crypto-
graphic concept that allows to authenticate users (e.g., check authorization to
access a service) while maintaining their privacy (i.e., their identities are not dis-
closed). As an application scenario, consider an online subscription service where
users can access contents, such as a service for real-time information about stock
market prices or news. Service provider and users have different objectives, which
intuitively may seem to be in conflict: The service provider requires that only
subscribed users access the service; users desire to be anonymous because access
details are personal and sensitive information (e.g., which stocks they are in-
terested in). Anonymous authentication resolves this tension by providing both
authentication (provider’s requirement), and user privacy.

A particularly powerful means for anonymous authentication are anonymous
credential systems (see, e.g., [I3JI0]): Users obtain credentials from an issuer
and can use them to access (online) services from different providers, but their
communication remains unlinkable even in case the providers collude with the
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issuer. Basing on such systems, it is possible to extend classical authentication
primitives to take into account the privacy aspects of the users.

Unfortunately, the direct application of fully anonymous credential systems in
practice, e.g., for online subscription services, poses a serious problem: Dishonest
users can share their credentials with others, hence allowing a potentially very
large group of (actually unauthorized) users to access the service. With a fully
anonymous solution implemented in software, this cannot be prevented, because
users can just copy all necessary authentication data (i.e., the credential).

To some extent, this threat can be mitigated by using pseudonyms instead of
full anonymity: The service provider might detect if a pseudonym is used too
often within a short period of time and thus conclude that the credential has
been shared. As an alternative, a valuable secret (e.g., a key that is important
to the user) can be embedded into the credential such that users have to share
this secret in order to share credentials. For this to work as intended, all users of
the system need to have such a valuable secret that they do not want to share.

As we elaborate in related work below, current solutions either do not con-
sider sharing of credentials explicitly [2612T22], they offer the possibility to use
pseudonyms [BI3II3], or they support all-or-nothing sharing [T0/5].

As another solution, hardware security modules can be used to prevent users
from copying credentials. At a first glance, this approach seems to be an expen-
sive special-purpose solution with limited applicability. However, current PCs are
already equipped with a cost-effective security chip, the Trusted Platform Mod-
ule (TPM) [30]; this device implements a hardware security module specified
by the Trusted Computing Group (TCG ) The TPM supports a cryptographic
protocol called Direct Anonymous Attestation (DAA) [8I30] that is a kind of
anonymous credential system. DAA mitigates a major privacy issue: Each TPM
is endowed with an encryption key, called Endorsement Key (EK), which is
embedded at manufacturing time and, together with its certificate, represents
a unique cryptographic identity for the TPM. DAA allows the TPM to create
anonymous signatures based on a “credential” that has been issued by a Trusted
Third Party, the DAA issuer, which must inspect the EK certificate of the TPM
in order to ensure that only genuine TPMs can obtain credentials.

Contribution. In this paper, we propose a generic framework that combines
TLS with DAA for implementing an anonymous authentication system: A hard-
ware security module is employed to prevent unauthorized sharing of credentials.

Our framework is flexible to adapt to different scenarios with different security
requirements. We provide a high-security solution based on a TPM as security
module, which prevents the sharing of authentication credentials. We also present
a pure software implementation (based on a newer version of the DAA protocol
[15]), which has better performance, but where sharing of credentials is possible
unless additional countermeasures are taken.

! Although recent news about attacks (e.g., [24]) show that TPM chips cannot guar-
antee security against highly determined and well-equipped adversaries, they still
offer security against software attacks as much as any highly secure smart card, and
against basic hardware attacks that do not require costly specialized equipment.
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Our framework supports both full anonymity and pseudonymity, allowing for
different business models and enhancements: For instance, it can be combined
with remote attestation (a feature to report the integrity state of a platform,
supported by the TPM) to achieve an anonymous trusted channell. We present
our solution based on OpenSSL and the TPM, with experimental results.

Related Work. Anonymous authentication is a topic extensively studied in the
scientific literature (see, e.g., [I3I26022121]), indeed a plethora of cryptographic
protocols have been proposed. Although there exist proposals to use secure hard-
ware tokens such as smart cards for anonymous authentication (see, e.g., [21]),
to our knowledge the question of preventing clients from cloning authentica-
tion credentials has not been considered widely. However, some authors (e.g.,
in [I0]) propose all-or-nothing sharing. In contrast, our proposal for anonymous
authentication is the first including detailed protocols and an implementation
that prevents cloning using widely deployed security hardware: The TPM.

Since their introduction by Chaum [I3], various anonymous credential systems
have been proposed: Camenisch-Lysyanskaya (CL) [10] is of particular impor-
tance for this paper. This scheme forms the basis for all DAA schemes, and hence
also for our proposal. Variants of CL credentials based on the strong RSAH as-
sumption [I0], and based on pairings over elliptic curves [I1] exist.

Recently, a credential system using strong RSA-based CL credentials, called
Idemix, has been implemented within the PRIME project [5lI]. Compared to
Idemix, we employ a hardware security module to prevent credential sharing, and
our software implementation uses a more efficient pairing-based variant of DAA
than the Idemix implementation, which is based on RSA. Moreover, Idemix’
protocols have to be executed over a TLS connection (or another implementation
of a secure channel), whereas our solution explicitly combines TLS and DAA. On
the other hand, the objectives of PRIME (and Idemix) are set in a much wider
scope than just anonymous authentication (which is the topic of this paper).

Bichsel et al. [6] present an implementation of CL credentials that uses a
JavaCard as hardware module, providing portable credentials and multi-appli-
cation support. This solution prevents credential sharing, provided the JavaCard
is secure. However, users need additional hardware (JavaCard and card reader),
whereas our solution uses TPMs that are integrated in many recent computers.

Leung and Mitchell [20] introduce an anonymous authentication protocol
based on DAA, as in our proposal, for client authentication and conventional
public key cryptography (based on X509 certificates) to authenticate the server.
However, they discuss neither copying of credentials (although by using TPMs
their solution prevents this), nor the combination with a standard protocol for a
secure channel (such as TLS). Further, they do not present an implementation.

Balfe et al. [3] propose pseudonymous authentication in peer-to-peer networks
by using DAA with TLS and IPsec, but they only sketch how such results can
be achieved. Instead, we provide a detailed design and implementation.

2 A trusted channel is a secure channel ensuring integrity of its endpoints (e.g., [I8/2]).
3 The strong RSA assumption was introduced in [4].
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Finally, we note that some vulnerabilities have been found in DAA which may
lead to privacy violation (e.g., [27]), and fixes have been proposed. However,
since we focus on the design of a general framework that allows to use a generic
DAA scheme together with TLS, any strict improvement of DAA that counters
these vulnerabilities can be included in our framework, by only fixing DAA
implementation without affecting the rest of the system. Other fixes not strictly
related to the DAA core (e.g., choice of parameter values) might also require a
review of our protocols. However, our design approach (see Sect. H]) enables easy
protocol updates and flexible DAA version negotiation.

Anonymous communication is required by all schemes that are supposed to
provide anonymous authentication, otherwise information from the communica-
tion system could be used to break the anonymity of the authentication scheme.
Various solutions for anonymous communication have been proposed and imple-
mented, including mix networks [12], onion routing [19128], and Crowds [23]. Our
proposal does not address the problem of anonymous communication, instead,
it can be implemented on top of any such system.

Structure. The remainder of this paper is organized as follows: Sect. [2 intro-
duces objectives and model of our solution, Sect. [} provides a background on TLS
and DAA, and Sect. [ presents our work in more details. In Sect. Bl we sketch a
security analysis, while Sect. [l describes our implementation and experimental
results. Finally, Sect. [[l concludes the paper and mentions future works.

2 Anonymous Authentication: Objectives and Model

Requirements. A practical anonymous authentication system should satisfy
the following requirements3:

R1. (Correctness) Users with valid credentials must be able to (anonymously)
authenticate to the server.

R2. (Unforgeability) Users must not be able to forge an authentication, i.e., they
must not be able to authenticate without having obtained a valid credential.

R3. (Unclonability) Valid credentials must be unclonable, i.e. cannot be copied.

R4. (Unlinkability, or full anonymity) Unlinkable sessions must be possible.

R5. (Pseudonymity) Alternatively, it must be possible to link sessions.

R6. (Viability) All protocols should be based on well-established standards, and
implemented upon widely used software libraries and hardware components.

Rl and RAl are (mutually exclusive) privacy requirements and express the prop-
erties of anonymous authentication. A real system should be flexible and im-
plement both options, to be chosen at runtime. Rl RP] and RE| are security
requirements that, in general, should be met by any authentication scheme.
Anyway, non-anonymous ones, even if using weak credentials like username and
password, could allow to identify intrusions and misuse — e.g., by performing a

4 Note: full user anonymity (or pseudonymity) requires the prevention of traceability
at all communication layers. However, this work focuses on the transport layer only.
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statistical analysis of the accesses — and to revoke the related credentials. With
anonymous systems, instead, misuse detection is much more difficult; therefore
for an anonymous authentication scheme, R is mandatory while it could be
optional for non-anonymous systems. Rl emphasizes that realistic solutions must
be based on standards, otherwise it is unlikely that they are ever deployed in
practice. Further, they should allow simple retrofitting of existing applications.

Model and Overview. We give a model and high-level overview of our solution
for anonymous (or pseudonymous) authentication, based on the joint usage of
the TLS protocol and DAA (see Sect. Bl). The protocols are detailed in Sect. @

Figure[I] presents our model: A security module M, a host H, an issuer Z and
a verifier V. The user U owns a platform based on the DAA design: M carries
out the security critical operations, while H computes the more computationally
intensive ones. The service provider plays the role of Z to issue credentials (Join
protocol) and of V to authenticate U (TLS-DAA Handshake). Here, we consider
client anonymous authentication only, though our design can be extended with
server anonymous authentication (e.g., for peer-to-peer scenarios).
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Fig. 1. Model for anonymous authentication based on TLS and DAA

The Join protocol runs only once at time of subscription. M and H interact
with Z to obtain a secret key SK, and a DAA credential Credpas on SK.

When U wants to anonymously authenticate to a service, H engages a TLS-
DAA Handshake with V. During the execution of the protocol, M and H com-
pute a DAA signature opaa using SK and Credpaa, binding together DAA
authentication and TLS session (see Sect. H for details). After successful verifi-
cation of opaa, H and V can exchange data over the secure TLS channel.

Our framework design is flexible enough to support several DAA variants and
many designs or implementations of M. In our solution, M is instantiated by
the TCG-proposed TPM, whose design ensures that the DAA credentials are
bound to the TPM and a valid signature cannot be generated without its usage.
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3 Background

Transport Layer Security (TLS). TLS [I6] is a protocol that provides a se-
cure channel (data authentication, integrity and confidentiality) between a client
C initiating the communication and a server S listening for incoming connections.
TLS is composed of several sub-protocols. In the following, we will only focus on
the Handshake, because the other sub-protocols are not affected by our proposal.
To add functionality to TLS, Hello Extensions [TI16] have been standardized:
C can propose one or more extensions and & may accept them or not. Since
Hello Extensions may deeply change the Handshake flow and affect its security,
new extensions must be defined via RFC to be validated. Furthermore, Hello
Extensions are backward compatible: By specification, S must ignore any ex-
tension it does not know. Hello Extensions are carried over ClientHello and
ServerHello messages (of limited size) in a single client-server interaction.
Supplemental Data [25] have been standardized as new Handshake messages
SupplementalData (client and server) to transmit supplemental application data
during the Handshake, for instance data useful to take authentication and au-
thorization decisions. By specification, Supplemental Data can carry multiple
data, SupplementalDataEntry, for different applications; they must be negoti-
ated through a Hello Extension, and must be processed only after the Handshake
finishes. Figure 2l shows the Handshake messages relevant for our framework.

ClientHello (with HelloExtensions) ‘

ServerHello (with HelloExtensions),

Certificate, ServerKeyExchange,
CertificateRequest, ServerHelloDone

-
-

SupplementalData, Certificate, ...

\J

TLS Handshake continues as usual

Finished

-
-

protected application data

- »
-

Fig. 2. TLS Handshake with Hello Extensions and client Supplemental Data messages

Direct Anonymous Attestation (DAA). DAA [8I30] is an anonymous cre-
dential system that has been designed specifically to encapsulate security-critical
operations in a cost-effective secure hardware module. DAA offers various fea-
tures, such as linking signatures and tagging rogue participants. Here, we
concentrate on the most relevant components for our purpose.



Anonymous Authentication with TLS and DAA 53

A DAA scheme involves the following parties: A DAA issuer Z which issues
DAA credentials; a security module M (e.g., a TPM) and a host H which gener-
ate a secret key SK, obtain DAA credentials and create DAA signatures whose
correctness is checked by a verifier V. DAA consists of these sub-protocols:

— Setup: On input of a security parameter, Z uses this algorithm to generate a
secret key SK 7 and a set of public parameters, including the issuer public key
PK 7. In practical schemes, Z must prove the validity of PK 7. We denote by
Credz the set of PK 7 and such a proof of validity (this is a public parameter).

— Join: This protocol runs between Z that issues a credential, and ‘H and M
that work together to obtain this credential. M generates a secret key SK
and, supported by H, a commitment com on SK. On input of com and
SK7z, T generates Credpaa, a DAA credential associated with SK. The
value Credpaa is given to T'IEL while SK is only known to M. In practical
schemes, M must append a proof that it is a genuine security module to com
(e.g., a TPM must include its EK certificate). In this case, Z has to validate
such a proof (e.g., the EK certificate) before issuing Credpaa.

— Sign: On input of SK, Credpaa, a basename bsn (the name of V for pseu-
donymity, or the empty string for full anonymity), the verifier’s nonce ny
(for freshness) and a message m, M and H run this protocol to obtain a
signature opaa on m. In fact, opaa is a signature proof of knowledge demon-
strating that M and H possess a valid credential, which does not include
any information about their identities.

— Verify: On input of a message m, a candidate signature opaa for m, a base-
name bsn, a nonce ny and the issuer public key PK 7, V runs this algorithm
to return either accept or reject. Note that opaa does not include any infor-
mation about the signer. In practical schemes, this algorithm gets a list of
rogue participants as input to avoid accepting a signature made by a rogue
M. How to deal with such a list is out of the scope of this paper.

— Link: On input of two signatures opaa and o7y, , V runs this algorithm to
return linked, unlinked or invalid signatures.

Different DAA variants have been proposed [SJ9JI5/T4]. For our purpose [§]
and [15] are particularly relevant and will be considered in Sect. Bt The original
DAA scheme based on the strong RSA assumption — which has been specified
by the TCG and implemented in TPM v1.2 — and a recent proposal based on
elliptic curve cryptography and asymmetric pairings

4 Protocols for TLS-Based Anonymous Authentication

In this section, we describe our enhancement of TLS based on Hello Extensions
and Supplemental Data (cf. Sect.B]) to incorporate DAA for anonymous authen-
tication. We detail the Join protocol and the TLS-DAA Handshake, using the

® Depending on the underlying DAA protocol, Cred pas may also be forwarded to M.
However, we omit this technical detail in the following.

5 Security flaws were found in this scheme, and a preprint of a fixed version is available
at eprint.iacr.org/2009/198. Our current implementation is based on [15].
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TPM as M. Z must run DAA Setup (cf. Sect. B]) before the Join protocol starts.
Usually one party, the service provider, will play the roles of both Z and V.

Join Protocol. This protocol is executed only once, between U and Z, to let U
obtain DAA credentials: More specifically, M will generate a secret key SK, and
‘H will obtain the associated DAA credential Cred pa 4. The latter can be used for
multiple anonymous TLS sessions with possibly distinct servers. Basically, H and
7 open a standard TLS session, without modification, that is used to encapsulate
a DAA Join providing integrity and confidentiality of messages exchanged over
the network and authentication of Z. We recall that in this phase anonymity is
not required (in fact, & must be often identified, e.g. to collect payments).

User U

I

conventiopal DAA Join

! _ initiate DAA Join

1

- - !

generate SK : :
Proof that SK is ‘bncratcd in secure environment (within M)

09

Credpaa

Fig. 3. Join protocol with a TPM as security module: a conventional TLS session is
used to protect the communication between host and issuer during the (unmodified)
DAA Join protocol. For clarity, a simplified abstract version of DAA Join is shown.

Our protocol is shown in Fig. Bl and proceeds as follows:

1. A conventional TLS session is initiated to protect all subsequent messages
from outside adversaries (i.e., attackers that cannot compromise H or 7).
2. H retrieves I’s credential Credz and verifies its validity.
3. M, H and Z execute the DAA Join protocol as specified by the TCG
(cf. Sect. [3). For brevity, we only show the main steps here:
(a) M, instructed by H to initiate the DAA Join, generates SK.
(b) M and H together prove to Z that SK has been generated in a secure
environment, i.e. a genuine TPM (cf. Sect. B).
(¢) If the proof is correct, T issues Credpaa to H.

TLS-DAA Handshake. Our approach combines DAA and TLS protocols by
defining appropriate Hello Extensions and Supplemental Data for client authen-
tication. In our scenario, the DAA verifier V plays the role of TLS server S and
anonymously authenticates H (i.e., the TLS client C) and M.

We first give an overall description of our solution, then we detail the protocol.
‘H and V negotiate the usage of the anonymous authentication via TLS Hello Ex-
tensions. Then H performs a TLS client authentication using SelfCert ¢, an X509
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User U

TPM M | ClientHello (with DAAAuthExt)

‘ (bsn,n,) < DAA Verifier Init() ‘

ServerHello (with DAAAuthExt[n,, bsn]) !

CertificateRequest ... other TLS data ...

Kg « TLS KeyGen()

|
unmodified SelfCertg <« X509_CertIssue(Ky)
DAA Sign T

|
I
: DAA Sign
|

|
|
|
I
I
|
|
|
|
I
I
|
|
|
SupplementalData (with DAAAuthSupplDataEntry[opaal)

Certificate[SelfCertg]

Finished i

| |
| |
| |
I I
I I e
: ! TLS Handshake continues as usual
| cee
| |
| |
I I
i

‘ OK — DAAVerify(opaa, PK1, bsn,n,, SelfCertg)

Fig. 4. Our anonymous authentication protocol based on TLS (cf. Fig. @) and DAA.
For clarity, the (conventional, unmodified) DAA Sign protocol is shown without details.

certificate that must be freshly-generated (and signed by a freshly-generated key)
for each different TLS session to guarantee anonymity. Further, H and M run
the DAA Sign protocol: They compute opaa over SelfCert ¢ to prove possession
of credentials issued by Z during Join protocol. Finally, H sends opaa to V via
a Supplemental Data message to be verified.

Our protocol relies on the following functions as an interface to DAAR:

— (bsn,ny) « DAA_Verifier_Init() is run by V to generate a nonce ny (used
for freshness) and the basename bsn, that can be either fixed for pseudo-
nymity, or the empty string for full anonymity.

— opaa < DAA_Sign(Credpaa, bsn,ny, m)isrun by H to initiate the DAA Sign
protocol with M and obtain a DAA signature opaa on the message m.

— OK < DAA_Verify(opaa, PKz, bsn,ny, m)isrun by V to invoke DAA Verify.

The details of our anonymous authentication protocol are shown in Fig. @l and
its flow is described below:

1. H starts the TLS Handshake by sending a ClientHello message containing
a Hello Extension DAAAuthExt which informs V to use DAA for anonymous
authentication. According to TLS best practices, DAAAuthExt contains a
list of supported DAA protocols (allowing for future extensions) and DAA
operation modes (full anonymity or pseudonymity).

2. V uses the function DAA_Verifier_Init to generate ny and bsn. Then, in
the ServerHello message, V sends to H the Hello Extension DAAAuthExt,
that contains the chosen DAA protocol, operation mode, ny and bsn. For full
anonymity, bsn is left empty. Moreover, V requests the TLS client
authentication by sending a CertificateRequest message.

" For TPMs, the TCG specifies these as part of the TCG Software Stack (TSS) [29].
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3. H prepares for the anonymous authentication by generating a new key pair
K for TLS client authentication (e.g., an RSA or DSA key pair), and issuing
a self-signed certificate SelfCert ¢ for this keyﬁ. For full anonymity, SelfCert g
must not contain any data that might identify U/; for pseudonymity, it may
contain additional data useful to link U’s sessions.

4. 'H invokes the DAA_Sign function, resulting in running the DA A Sign protocol
between H and M to obtain a signature opaa on SelfCert ¢. For this, H and
M use respectively Credpaa and SK obtained during the Join protocol.

5. H sends opaa to V in a DAAAuthSupplDataEntry carried by the client
SupplementalDatamessage, and sends SelfCert g in the ClientCertificate
message (as during the standard TLS Handshake).

6. Then the TLS Handshake continues as usual. As in a conventional TLS
session, H authenticates by computing a signature with Kg over all messages
previously exchanged between H and V.

7. After the Finished messages have been exchanged, V verifies opaa by in-
voking DAA_Verify to validate the anonymous authentication. We assume
V has its own list of trusted DAA issuers, including the issuer’s key PK 1.

In case of pseudonymity, V runs the DAA Link algorithm with input opaa and
signatures previously received. How V handles the output of such an algorithm
is application-dependent and out of the scope of this paper.

Discussion. We chose to use Supplemental Data instead of other possibilities
(e.g., defining a new ciphersuite for TLS) mainly for flexibility reasons: Different
versions of DAA have different optional features that may require to exchange
additional data (e.g., the TCG specifications [29] offer the possibility to selec-
tively reveal attributes of the credential in which case additional information
must be exchanged). Moreover, our framework is adaptable to scenarios which
require to transport additional data between client and server (e.g., information
about the platform configuration). Finally, encapsulating the DAA signature
into Supplemental Data allows to define a specific optimization for reconnecting
to the same hostname (see Sect. [fl for details).

5 Sketch of Security Analysis

As explained in the following, the security of our solution is based on the secu-
rity of DAA and TLS. For both protocols, security proofs in (idealized) formal
models exist (see, e.g., [8/I7]). In this section, we give an informal analysis of

8 Tt is possible to precompute and store several keys K with their certificates SelfCert
for use in later sessions. If pseudonymity is in use, the process can be optimized by
generating only one single Ky and SelfCert,, per-verifier instead of per-session.

9 The verification of opaa is delayed until this step to comply with [25]: To prevent a
modification of the normal protocol flow, it mandates that the Supplemental Data
are ignored until the TLS handshake finishes; any action involving the data carried
by SupplementalData must be performed after the handshake is completed.
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our protocols with respect to the requirements listed in Sect. 2, based on the
assumption that DAA and TLS are secure (and are used in a secure mode).

Assumptions. For this analysis, we assume that it is infeasible for the adversary
A to compromise M. This assumption is motivated by the fact that current
TPMs provide (limited) tamper-evidence and tamper-resistance.

Moreover, we do not consider so-called relay attacks, i.e., attacks where A
poses as a man-in-the-middle between H and V and simply forwards all data
that is relevant for authentication. Note that although this allows some limited
shared use of credentials among users, it still requires (online) interaction of an
authorized M with V for each authentication. Since H could also forward all
traffic that it obtains over an authenticated link, this kind of “online sharing”
cannot be prevented by an authentication mechanism alone.

Informal Security Analysis. During the Join protocol, Z must verify that
M is genuine and guarantees unclonability of credentials. With TPM, this is
done by verifying the EK certificate (cf. Sect. Bl and H]). Since the EK is unique
to a specific TPM, it is privacy-sensitive data which must not be disclosed to
outsiders. Our protocol protects via TLS the EK certificate, as all Join messages.

Our protocols fulfill requirements Rl and R2] because authentication is suc-
cessful only when the DAA signature opaa can be verified correctly. opaa is
used to authenticate the certificate SelfCert ¢ used for TLS, hence it is bound to
the TLS channel. Thus, the unforgeability of DAA signatures implies that only
users with valid DAA credentials can authenticate successfully to V. Breaking
requirement RE2l implies forging a DAA credential, which would also break the
security of the underlying DAA scheme.

Unclonability of credentials (requirement R3] is achieved based on the as-
sumption that 4 cannot attack M. When using a TPM, the DAA secret key
SK is protected by the TPM (i.e., when stored outside the chip, it is always
encrypted with a key only the TPM can access), and unless the TPM can be
attacked successfully (e.g., by hardware attacks), the secret is never disclosed to
‘H and thus cannot be copied. Therefore, our solution meets requirement RBl

Unlinkability (requirement RHE]) follows from the unlinkability of DAA signa-
tures and from the fact that SelfCert ¢ and the corresponding key K are freshly
generated for distinct TLS sessions and do not contain any identifying informa-
tion. In addition, no other data that allows linking is transmitted.

However, in [27], the authors discovered a weakness in the DAA protocol for
the case when Z and V collude or are under the control of a single party, as
in our subscription service scenario. To fix this issue, as suggested in [27], bsn
must be chosen properly, which requires additional steps in the protocol (H must
either choose bsn, or verify that it has been formed correctly). Such fixes can be
incorporated into our solution, but are not implemented yet.

The possibility of DAA to provide pseudonymity instead of full anonymity
means that, in such case, DAA signatures can be linked to a pseudonym. This
implies that our protocols also offer pseudonymous authentication (requirement
RE) by using the same bsn for multiple authentications.
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6 Architecture and Implementation

To support a large number of applications, we chose a widely used library imple-
menting TLS and based our work on OpenSSI@ v1.0: 1ibcrypto and libssl
have been extended to support, respectively, DAA and the DAA enhancement to
TLS. Applications not directly using OpenSSL can also be supported via local
proxy that first sets up a TLS-DAA channel, then carries data over this tunnel.

In order to put our framework to use, applications require very limited mod-
ifications. Moreover, legacy applications which cannot be modified may establish
an anonymous TLS channel by exploiting a legacy mode which automatically
triggers the anonymous channel and allows to set the necessary parameters via
environment variables or a configuration file[?

Software-Only Anonymous Authentication. Beside the solution described
in Sect. @l we also offer a purely software implementation based on elliptic curves
cryptography (ECC) and pairings [15]. The main motivation for such an imple-
mentation is demonstrating the flexibility of our framework, that allows to easily
switch between different cryptographic modules (RSA-DAA based on TPM/TSS
and purely software ECC-DAA). Moreover, the pure software version allows to
analyze the impact of DAA on TLS handshake avoiding the overhead due to
the TPM (see below for details). However, a software-only implementation can-
not provide unclonability of DAA credentials. In the future, we will explore the
possibility of using a combination with other hardware and software security
mechanisms to protect the credentials.

Efficiency Aspects. We performed experiments with two HP Compaq DC7700
with Intel Core2 Duo 2.13GHz CPU, 2GB of RAM and Infineon TPM 1.2,
both running Linux (Fedora 12), using OpenSSL s_server on the server and
OpenSSL s_time on the client to measure the number of connections per second.
We remark that measures are taken from a client perspective and we are not
benchmarking the server, which is left as future work.

The TPM operations are very slow, while the software implementation per-
forms reasonably well: We can see the impact of DAA on the TLS handshake[13

In Fig. Bl we present two data sets to support the feasibility of our solution:
The number of connections per second (table on the left) and the total number
of bytes transmitted during a handshake (chart on the right). We compare TLS
without and with client authentication to the TLS-DAA channel, using the ECC
and TPM/TSS implementations.

Table on the left in Fig. Bl reports the number of connections per second for
initiating new connections (new/s) and resuming previous TLS sessions (res./s).
The DAA enhancement introduces a considerable latency in the TLS hand-
shake: The TPM is really slow, while the pure software implementation provides

10 Currently, OpenSSL implements TLS v1.1.

' Available at http://security.polito.it/tc/daa/

12 Details of our framework architecture are available in the full paper.

13 In Appendix A of the full paper we provide timings of the DAA primitives.
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2500

M Server 2162

M Client
Prot 1 Connections 2000

rotoco new/s res/s 1500 1462 1533 1533

TLS (no client auth.)  91.62 690.8 o5 . -
TLS (with client auth.) 80.23 4953 0%
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TLS-DAA (TPM/TSS)  0.03 456.3
0
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TLS (no client auth.) TLS-DAA (TPM/TSS)

Fig. 5. (Left) Number of new connections/sessions resumed per second for TLS and
DAA-TLS. (Right) Total number of bytes sent by client and server during a handshake.

reasonable timings (around 300ms for a connection) from the perspective of
a user wanting to anonymously access a service. Further, the use of TLS ses-
sion resumption guarantees almost no loss in performance for all following ac-
cesses. Indeed the number of resumed connections with the DAA enhancement
(both ECC and TPM/TSS) is close to that one for standard TLS with client
authentication.

Enhancing TLS with Supplemental Data instead of introducing a new cipher-
suite for DAA (cf. Sect. H)) allows the client, after a successful connection, to
reconnect to the same server with a full TLS handshake (using client authen-
tication with the same X509 certificate previously signed with DAA), without
the DAA overhead, i.e. recomputing the DAA signature and sending it via sup-
plemental data[™ This use of multiple connections to a single host is common
practice, e.g., by browsers to speed up the loading of web pages’ resources[1

We finally examine the amount of data transmitted during the handshake
(Fig. [l chart on the right). This may be a relevant aspect for the deployment in
constrained environments, such as mobile or wireless sensor networks. We con-
sider a simple scenario where the client’s certificate is only 512 bytes long and no
certificate chain is transmitted. As we are performing only client anonymous au-
thentication, the amount of data sent by the server with the DAA enhancement
is almost unchanged, compared to standard TLS with client authentication. On
the client side, the TPM/TSS version implements the RSA-based DAA whose
signature is 1225 bytes long. Nevertheless, the ECC version provides a very ef-
ficient solution, as the DAA signature is only 256 bytes long in this case.

7 Conclusion and Future Work

In this paper, we designed and implemented an anonymous authentication sys-
tem combining TLS with DAA. Our system supports both full anonymity and

4 Of course, such a reconnect is linkable to the first connection.
15 Whilst HTTP /1.1 recommends to open only two connections per hostname, recent
browsers use more, e.g. 6 for Firefox 3.0 (see http://www.browserscope.org/).
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pseudonymity, and prevents credential cloning by employing a hardware security
module. We designed our framework to be flexible enough to support different
variants of DAA, as well as multiple designs and implementations of the security
module — which is instantiated by the TCG-proposed TPM in our solution. To
demonstrate the feasibility of our solution, we implemented a prototype based
on OpenSSL, and we provided two implementations for DAA: one employing
the TPM, and another as pure software implementing a more recent version of
DAA based on elliptic curves cryptography and pairings. For both, we provided
experimental data and discussed efficiency aspects.

As future work, we plan extensions and improvements of our framework. As
already mentioned, we will consider the extension of anonymous authentica-
tion to the server side (e.g., for peer-to-peer scenarios) and the coupling of our
pure software implementation of DAA with security mechanisms to guarantee
credential unclonability, with (hopefully) better performance than our current
TPM-based solution. Moreover, we are working to enhance our framework with
remote attestation to provide anonymous trusted channels. Finally, we plan an
implementation on embedded hardware (e.g. smartphones), as well as more de-
tailed benchmarking and a formal security analysis.
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Abstract. One of the central aims of Trusted Computing is to provide
the ability to attest that a remote platform is in a certain trustworthy
state. While in principle this functionality can be achieved by the remote
attestation process as standardized by the Trusted Computing Group,
privacy and scalability problems make it difficult to realize in practice:
In particular, the use of the SHA-1 hash to measure system components
requires maintenance of a large set of hashes of presumably trustworthy
software; furthermore, during attestation, the full configuration of the
platform is revealed. In this paper we show how chameleon hashes allow
to mitigate of these two problems. By using a prototypical implementa-
tion we furthermore show that the approach is feasible in practice.

1 Introduction

One of the main functionalities of the Trusted Platform Module (TPM), as spec-
ified by the Trusted Computing Group (TCG), is the ability to attest a remote
system, i.e., to verify whether the system is in a well-defined (trustworthy) state.
The TCG specified a measurement process that uses the TPM as a root of trust
and employs a measure-then-load approach: Whenever control is passed to a spe-
cific system component, its executable code is hashed and the hash is added to
a tamper-resistant storage (the Platform Configuration Registers, PCRs) within
the TPM in the form of a hash chain: the hash value of the program to be exe-
cuted is concatenated with the current values in the PCR register, the resulting
string is hashed and stored in the PCR. The content of the PCR registers there-
fore can be considered to reflect the current state of the system. In the process of
remote attestation, this state is signed and transferred to a remote entity (called
challenger), who can subsequently compare the provided measurements with a
list of trusted measurements (Reference Measurement List, RML) and decide
about the trustworthiness of the remote platform.

Research has identified several problems with the remote attestation process
as specified by the TCG. These problems include privacy [I] and scalability is-
sues [2,3], problems with the sealing functionality [4] and high communication
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and management efforts [3]. In this paper we deal with these aforementioned
problems. Remote attestation discloses full information about the software run-
ning on the attested platform, including details on the operating system and
third-party software. This may be an unwanted privacy leak, as it allows for
product discrimination (e.g., in a DRM context a party can force the use of a
specific commercial software product before certain data is released, thereby lim-
iting freedom of choice) or targeted attacks (e.g., if a party knows that someone
runs a specifically vulnerable version of an operating system, dedicated attacks
are possible). Thus, attestation methods are required that do not reveal the full
configuration of the attested platform but nevertheless allow a challenger to gain
confidence on its trustworthiness. The second major problem of TCG attestation
is the scalability of Reference Measurement Lists [2]. The large number of soft-
ware products and versions of operating systems makes maintenance of the lists
cumbersome. For instance, [5] notes that a typical Windows installation loads
about 200 drivers from a known set of more than 4 million, which is increasing
continuously by more than 400 drivers a day. The large number of third-party
applications aggravates the problem further. Scalability of the remote attestation
process is sometimes seen as a major limiting factor for the success of Trusted
Computing [3].

In this paper, we propose novel attestation and integrity measurement tech-
niques which use chameleon hashes in addition to SHA-1 hash values or group
signatures in the integrity measurement and attestation process. Even though
this increases the computational complexity of the attestation process, we show
that the presented mechanisms increase the scalability of remote attestation,
while providing a fine-grained mechanism to protect privacy of the attested plat-
form. One construction uses chameleon hashing [6], which allows grouping sets
of software and hardware versions, representing them through one hash value.
For instance, all products of a trusted software vendor or versions of the same
software can be represented by one hash value. On the one hand, this reduces the
management effort of maintaining RMLs, and on the other hand increases pri-
vacy, as the challenger is not able to see any more the exact configuration of the
attested platform, but only the installed software groups. At the same time, the
challenger system can be assured that all running software comes from trusted
software groups. We show that the proposed system can easily be integrated into
an architecture similar to the TCG, with only minor modifications. We have im-
plemented the attestation process in a prototypical fashion and show that the
approach is feasible in practice. Finally, we show that a very similar attestation
technique can be implemented by group signatures instead of chameleon hashes
as well.

This paper is organized as follows. In Section 2 we briefly review the mecha-
nism provided by the TCG standards to measure system integrity and to perform
remote attestation. In addition, we give background material about chameleon
hashes and discuss its security. Furthermore, we discuss the problems with re-
mote attestation and outline solutions proposed in related work. In Section 3
we outline our Chameleon Attestation approach to integrity measurement and
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remote attestation and also propose an alternative using group signatures.
Section 4 provides details on our implementation, and Section 5 discusses the ad-
vantages of Chameleon Attestation and details our experimental results. Finally,
we conclude the paper in Section 6.

2 Background and Related Work

2.1 Integrity Measurement and Remote Attestation

One of the main goals of Trusted Computing is to assure the integrity of a plat-
form. This is done by measuring every entity (such as BIOS, OS kernel and
application software) using the SHA-1 hash before its execution. All measure-
ments are securely stored by extending values in a particular PCR register by a
hash chain. To allow the challenger to recompute the hash values, information
on the measured entities is stored in form of a Measurement Log (ML). To pre-
vent malicious software behavior, the TPM chip only allows to extend the PCR
registers, so that PCRs can not be reset as long as the system is running (the
only way to reset the registers is to reboot).

A practical attestation framework called IMA, an extension of the Linux ker-
nel, was developed by IBM research [2]. IMA measures user-level executables,
dynamically loaded libraries, kernel modules and shell scripts. The individual
measurements are collected in a Measurement List (ML) that represents the
integrity history of the platform. Measurements are initiated by so-called Mea-
surement Agents, which induce a measurement of a file, store the measurement
in an ordered list into ML, and report the extension of ML to the TPM. Any
measurement taken is also aggregated into the TPM PCR number 10. Thus, any
measured software can not repudiate its existence.

Signed measurements can be released to third parties during the process of
“remote attestation”. For this purpose, the challenger creates a 160-bit nonce
and sends it to the attested platform. The attestation service running on that
host forwards the received nonce and the PCR number requested by the chal-
lenger to the TPM chip, which signs the data using the TPM Quote function.
After signing, the results are sent back to the attestation service. To protect
identity privacy, only the Attestation Identity Keys (AIKs) can be used for the
signing operation. The attestation service sends the signed data together with
the ML back to the challenger. Using the corresponding public key AI K, the
challenger verifies the signature and the nonce, and re-computes the hash chain
using the ML. If the re-computed hash value equals the signed PCR, value, then
ML is untampered. Finally, the challenger determines whether all measurements
in ML can be found in the trusted Reference Measurement List (RML); in this
case the attested platform is considered as trusted.

2.2 Chameleon Hashing

Chameleon hashing was introduced by Krawczyk and Rabin [6]. Unlike stan-
dard hash functions, chameleon hashes utilize a pair of public and private keys.
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Every party who knows the public key is able to compute the hash value on a
given message. The possession of the private key enables collisions to be created.
However, chameleon hash functions still provide collision-resistance against users
who have no knowledge of the private key.

A chameleon hash function is defined by a set of efficient (polynomial time)
algorithms [7]:

Key Generation. The probabilistic key generation algorithm Kg : 1* — (pk,
sk) takes as input a security parameter £ in unary form and outputs a pair
of a public key pk and a private key (trapdoor) sk.

Hash. The deterministic hash algorithm CH : (pk,m,r) — h € {0,1}" takes
as input a public key pk, a message m and an auxiliary random value 7 and
outputs a hash h of length 7.

Forge. The deterministic forge algorithm Forge : (sk,m,r) — (m’,r’) takes as
input the trapdoor sk corresponding to the public key pk, a message m and
auxiliary parameter r. Forge computes a message m’ and auxiliary param-
eter 1’ such that (m,r) # (m/,r’) and CH(pk,m,r) = h = CH(pk,m/,r’).

In contrast to standard hash functions, chameleon hashes are provided with the
Forge algorithm. By this algorithm only the owner of the trapdoor (sk) can
generate a different input message such that both inputs map to the same hash
value. In some chameleon hashes the owner of the private information can even
choose himself a new message m’ and compute the auxiliary parameter r’ to find
a collision CH(pk, m,r) = h = CH(pk,m/, ). This is a powerful feature since
anyone who knows the private information can map arbitrary messages to the
same hash value.

We desire the following security properties to be fulfilled by a chameleon hash
function (besides the standard property of collision resistance):

Semantic Security. For all message pairs m, m’, the hash values CH(pk, m, )
and CH(pk,m/, r) are indistinguishable, i.e., CH(pk, m,r) hides any infor-
mation on m.

Key Exposure Freeness. Key Exposure Freeness indicates that there exists
no efficient algorithm able to retrieve the trapdoor from a given collision,
even if it has access to a Forge oracle and is allowed polynomially many
queries on inputs (m;,r;) of his choice.

Any chameleon hash function fulfilling the above definitions and security re-
quirements can be used in our approach; our particular choice of a chameleon
hash is detailed in [7].

2.3 Group Signatures

Group signatures were introduced by Chaum and van Heyst [§] and allow a
member of a group to anonymously sign a message on behalf of the group. A
group has a single group manager and can have several group members. Unlike
standard digital signatures, signers of a group are issued individual signing keys
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gsk[i], while all members share a common group public key gpk such that
their signatures can be verified without revealing which member of the group
created the signature. This provides anonymity. However, the group manager
is assigned with a group manager secret key gmsk and is able to discover the
signer (traceability).

Basically, a group signature scheme GS = (GKg, GSig, GVf, Open) is de-
fined by a set of efficient algorithms (for more details, we refer to [8] and [9]):

Group Key Generation. The probabilistic group key generation algorithm
GKg : (17,1") — (gpk, gmsk, gsk) takes as input the security parame-
ter k and the group size parameter n in unary form and outputs a tuple
(gpk, gmsk, gsk), where gpk is the group public key, gmsk is the group
manager’s secret key, and gsk is an vector of n secret signing keys. The
group member i € {1,...,n} is assigned the secret signing key gsk[i].

Group Signing. The probabilistic signing algorithm GSig : (gsk[i],m) —
o;(m) takes as input a secret signing key gsk[i] and a message m and outputs
a signature o;(m) of m under gsk][i].

Group Signature Verification. The deterministic group signature verifica-
tion algorithm GVT : (gpk,m,o) — {0,1} takes as input the group public
key gpk, a message m and a signature o and outputs 1 if and only if the sig-
nature o is valid and was created by one of the group members. Otherwise,
the algorithm returns 0.

Opening. The deterministic opening algorithm Open : (gmsk, m,o) — {i, L},
which takes as input a group manager secret key gmsk, a message m and a
signature o of m. It outputs an identity ¢ € {1,...,n} or the symbol L for
failure.

Join. A two-party protocol Join between the group manager and a user let
the user become a new group member. The user’s output is a membership
certificate cert; and a membership secret gsk|[i]. After an successful execution
of Join the signing secret gsk[i] is added to the vector of secret keys gsk.

In order to allow revocation of users, we require an additional property:

Revocability. A signature produced using GSig by a revoked member must
be rejected using GV{. Still, a signature produced by a valid group member
must be accepted by the verification algorithm.

2.4 Attestation Problems and Related Work

Integrity measurement according to the TCG specification seems to be a promis-
ing way to check the trustworthiness of systems. However, the suggested remote
attestation process has several shortcomings:

— Privacy. We can distinguish between identity privacy (IP) and configuration
privacy (CP). IP focuses on providing anonymity for the attested platform.
This problem can be solved by Direct Anonymous Attestation (DAA) 110,
11]. On the other hand, CP is concerned with keeping configuration details of an
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attested platform secret, since disclosure may lead to privacy violations. Still,
the challenger system must be assured that the attested platform indeed is in
a trustworthy state. In this paper we focus on providing CP. (However, since
CP and IP are orthogonal problems, our solution can be used in conjunction
with mechanisms that guarantee IP).

— Discrimination and targeted attacks. By using remote attestation, product
discrimination may be possible. For example, in the context of DRM envi-
ronments, large operating system vendors and content providers could col-
laborate and force usage of specific proprietary software, which restricts the
freedom of choice. Furthermore, an adversary could leverage the precise con-
figuration of the attested platform and perform a specific targeted attack [12].

— Scalability. A further drawback lies in the scalability of Reference Measure-
ment Lists [2]. The TCG attestation requires the challenger to maintain a
Reference Measurement List, which contains hashes of all trustworthy soft-
ware, to validate the received measurements. Consequently, software up-
dates or patches require distribution of new hash values. For this reason,
the management overhead increases to a point where attestation becomes
impractical. Consequently, keeping these RML lists up-to-date involves high
management and communication efforts.

— Sealing. Besides remote attestation, TCG offers the ability to seal data to
the configuration of a specific platform. Again, any software update or con-
figuration change can lead to a completely new platform configuration state
and consequently hinder unsealing [4].

Sadeghi and Stiible [4] approached the above mentioned problems by the intro-
duction of Property-based Attestation (PBA). By applying PBA, the attested
platform proves that it fulfills certain semantic security requirements, called
“properties”. This way, the concrete configuration of a platform does not need
to be disclosed. However, PBA requires an extension of TPM or alternatively a
Trusted Third Party along with a Trusted Attestation Service, which is respon-
sible for translations between properties and software. Semantic attestation [13]
verifies that the behavior of a platform fulfills given particular high-level proper-
ties. WS-Attestation proposed by Yoshihama et al. [I4] employs PCR obfuscation
to hide software versions; however, scalability remains a problem [I5].

3 Group-Based Attestation

In this section we propose three novel attestation techniques, which are based
on either chameleon hashes or group signatures. The first and second technique
allow balancing configuration privacy with the control precision of the attestation
process and substantially decrease the overhead for maintaining RMLs, while
the third one provides more flexibility for the challenger in control precision but
offers no privacy advantage when compared with the TCG attestation.
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3.1 Chameleon Attestation I

In this section we describe a novel remote attestation approach, which makes
it possible for the challenger to decide on the trustworthiness of the attested
platform, without knowing its detailed configuration. The assumptions listed
in [2] about the attacker model are also the basis of our approach. In particular
we assume that once a measurement is stored in an RML, the corresponding
software is considered trusted; additional security mechanisms must be in place
to secure the integrity of the RML (this is out of scope of this work).

To reduce the management overhead, we propose the concept of software
groups; according to the precise scenario, these groups may e.g. contain all soft-
ware products of the same vendor, compatible software products or all versions
of one specific software. We design the attestation process in such a way that
we assign the same hash value to all members of a software group. To achieve
this, we make use of a chameleon hash function. As mentioned in Section 2.2]
any party who knows the public key pk is able to compute the hash value for a
given message. In contrast, only the trusted insta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>