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Preface

This volume contains the proceedings of the Third International Conference on
Trust and Trustworthy Computing (TRUST), held at the Ritz-Carlton hotel in
Berlin, Germany, June 21–23, 2010.

TRUST is a rapidly growing forum for research on the technical and socio-
economic aspects of trustworthy infrastructures. TRUST provides an interdisci-
plinary forum for researchers, practitioners, and decision makers to explore new
ideas and discuss experiences in building, designing, using, and understanding
trustworthy computing systems.

The third edition of TRUST welcomed manuscripts in two different tracks:
a Technical Strand and a Socio-economic Strand. We assembled an engaging
program with 21 peer-reviewed technical papers and nine peer-reviewed socio-
economic papers; eight keynotes from industry, academia, and government; and
panel discussions on privacy and standards. In addition, this year, TRUST was
co-located with four workshops: Trust in Cloud, Hardware Security, Emerging
and Future Risks, and Anonymous Signatures.

We would like to thank numerous individuals for their effort and contribu-
tion to the conference and for making TRUST 2010 possible: the Organizing
Committee members—Nadine Palacios and Marcel Winandy—for their tremen-
dous help with all aspects of the organization; the Technical and Socio-economic
Program Committee members, whose names are listed on the following pages,
together with the names of external reviewers who helped us in the process of
selecting manuscripts to be included in the conference proceedings; the keynote
and invited speakers; and the invited panel speakers.

Finally, we express our gratitude to our sponsors, whose support was crucial
to the success of TRUST 2010: Microsoft Research, Intel, Hewlett-Packard, TCG
(Trusted Computing Group), Sirrix AG security technologies, Intrinsic ID, and
CASED (Center for Advance Security Research Darmstadt).

June 2010 Alessandro Acquisti
Sean W. Smith

Ahmad-Reza Sadeghi
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Beyond Kernel-Level Integrity Measurement:
Enabling Remote Attestation for the Android

Platform

Mohammad Nauman1, Sohail Khan2, Xinwen Zhang3, and Jean-Pierre Seifert4
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xinwen.z@samsung.com
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Abstract. Increasing adoption of smartphones in recent times has be-
gun to attract more and more malware writers towards these devices.
Among the most prominent and widely adopted open source software
stacks for smartphones is Android that comes with a strong security
infrastructure for mobile devices. However, as with any remote plat-
form, a service provider or device owner needs assurance that the de-
vice is in a trustworthy state before releasing sensitive information to
it. Trusted Computing provides a mechanism of establishing such an as-
surance. Through remote attestation, tc allows a service provider or a
device owner to determine whether the device is in a trusted state before
releasing protected data to or storing private information on the phone.
However, existing remote attestation techniques cannot be deployed on
Android due to the unique, vm-based architecture of the software stack.
In this paper, we present an attestation mechanism tailored specifically
for Android that can measure the integrity of a device at two levels of
granularity. Our approach allows a challenger to verify the integrity of
Android not only at the operating system level but also that of code
executing on top of the vm. We present the implementation details of
our architecture and show through evaluation that our architecture is
feasible both in terms of time complexity and battery consumption.

1 Introduction

Mobile devices are becoming more powerful and are offering new functionalities
that go well beyond the traditional use of cell phones such as making and receiv-
ing calls. More and more services are being deployed on these devices leading
them to their use as a pc on the go. However, this rapid growth in smartphone
usage and their evolving capabilities have made this technology more vulnerable

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M. Nauman et al.

to today’s sophisticated malware and viruses. PandaLabs [1] has identified appli-
cations downloaded from the Internet as one of the main causes of propagation
of malware on mobile phones.

According to Gartner Research [2], smartphones sales and usage has increased
by 12.7% in the first quarter of 2009. One of the driving reasons of this growth
is the introduction of open source platforms for mobile devices. In this arena,
Android [3] is the most prominent and leading open source platform which has
succeeded in attracting a large number of individuals and organizations. In fact,
Android os share in terms of web requests had already surpassed that of Win-
dows Mobile by June 2009 [4]. The growing popularity of Android is attracting
more and more enterprises to deploy their custom applications for Android and
to allow employees to download data for viewing or editing on their smartphones.
On the other hand, the open source nature of Android is also attracting more
and more malware writers. Hence, the growing security problems of smartphones
are becoming a real concern for users. Service providers need assurance that if
sensitive data is released to a smartphone, it will not be compromised due to
the presence of a malware on the phone. Similarly, users save highly sensitive
information such as their contacts and personal messages on the phone. In case
of Android (and other gps-enabled devices), the phone also has access to real-
time information about the owner’s location. A compromised device can lead to
severe financial losses or even social threats.

To alleviate these problems, there is a need for the creation of a mechanism
that can securely establish the trustworthiness of an Android-based device, pro-
viding remote parties assurance that the data released to the phone will not
be compromised. The traditional approach towards solving this problem is by
signing applications as being trustworthy. This approach is followed by many
Symbian- and j2me-based software stacks. A trusted application can perform all
tasks, whereas an untrusted application is either sandboxed or severely restricted
from accessing any sensitive resource. However, there are several problems with
this approach in the context of Android. First, Android does not distinguish
applications as being trusted or untrusted – all applications are created equal.
Secondly, the open source nature of Android means that Android’s infrastructure
can be changed arbitrarily, thus making any security infrastructure unreliable.
Finally, it has been shown in the past [5] that an assurance of trustworthiness of
a device cannot be provided through the use of software-based solutions alone.
Software is inherently mutable and can be modified to report inaccurate infor-
mation about the hosting device. To solve this problem, Trusted Computing [6]
provides the mechanism of remote attestation that allows a challenger to estab-
lish the trustworthiness of a remote target platform. Existing remote attestation
techniques mainly aim to measure all the executables loaded on a platform and
reporting them to the challenger during attestation. The challenger can then ver-
ify, using the reported measurements, whether any of the applications loaded on
the platform were malicious. However, these techniques fail to cater to the unique
architecture of Android because of the presence of a Virtual Machine (vm) that
is responsible for executing all code. As far as the integrity measurement entity
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is concerned, the vm is just another executable. Even if the vm is known to be
benign, there is no assurance that the code it loads for execution will behave
as expected. Note that it has been shown that user-space code (including that
executed by a vm) can also lead to severe vulnerabilities in a system [7,8,9].

In this paper, we present an efficient integrity measurement mechanism aimed
specifically at Android that allows integrity verification of code loaded on top of
the vm as well as that running on the operating system level.

Contributions: Our contributions in this paper are as follows: (1) We design
an integrity measurement architecture which ensures that all the executable
code loaded on Android is measured, (2) We provide two alternative solutions
for the deployment of our integrity measurement mechanism, which cater to
different real-world use cases, and (3) We describe the details of implementation
of both alternatives and provide evaluation results to show that the technique
is highly feasible both in terms of time taken for integrity measurement and
battery overhead caused by it.

Outline: The rest of the paper is organized as follows: Section 2 provides real-
world use cases for motivating the need for integrity measurement and gives a
brief summary of the background on Android. In Section 3, we provide the details
of our architecture covering the two alternative solutions in 3.2 and 3.3. Section 4
outlines the verification mechanism. Detailed evaluation results are presented in
Section 5. Sections 6 and 7 reflect upon pros and cons of our technique and the
conclusions drawn respectively.

2 Background

2.1 Motivating Examples

We motivate the need for the measurement of integrity of an Android-based
smartphone through the use of two real-world use cases. The first use case is
similar to those presented as a motivation for remote attestation in the pc world,
whereas the second is more relevant to the personal nature of a smartphone.

Use case #1: Consider an organization that provides its employee – Alice – with
a g1 handset running several applications that she might require for carrying
out her job responsibilities. The employer, being the owner of the device, allows
Alice to install applications that she might need for her daily use. However,
since the organization releases sensitive information to Alice’s mobile, it wants
to ensure that the integrity of Android is intact and that there is no malicious
software or application running on the mobile device.

Use case #2: Emma, on the other hand, is a self-employed it consultant who
has bought her own smartphone running Android. Knowing that a smartphone
in general [10] and Android in particular [9,8] is much more likely to be affected
by a virus threat, she decides to take preventive measures against such attacks.
While the smartphone is better than her old cell phone, it is still dependent on
a battery source, and if Emma were to run a dedicated antivirus software on the
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device, its battery would drain a lot sooner than she would like. Therefore, she
decides to use remote attestation as a virtual antivirus. She remotely attests the
integrity of her smartphone periodically and after she installs a new application.
This ensures that her mobile device is not running any malicious software while
still keeping it free of a battery-hungry antivirus software.

2.2 Android Architecture

Android is an emerging open source platform for mobile devices like smartphones
and netbooks. It is not just an operating system but provides a complete software
stack including a middleware and some built in applications. Android architec-
ture is composed of different layers, with the Linux kernel layer at the bottom.
This layer provides various hardware drivers and acts as a hardware abstraction
layer. It is also responsible for memory and power management functionalities
of Android. The Android native libraries written in C and C++ sit above the
kernel layer. These libraries provide some core functionalities. For example, the
Surface Manager libraries are responsible for composing graphics onto the screen,
sgl and OpenGL enable graphics processing capabilities, webkit provides html
rendering and SQLite is used for data storage purposes.

Next is the Android runtime layer which is composed of two principle com-
ponents namely Dalvik Virtual Machine and Android core libraries. Android
runtime is specifically designed as an optimized environment to meet the re-
quirements of running on an embedded system i.e., limited battery life, cpu
speed and memory. Dalvik virtual machine executes its own bytecode repre-
sented by dex files. The second component of Android runtime is the collection
of class libraries written in Java programming language, which contains all of
the collection classes and i/o utilities.

Class loaders: Android framework and applications are represented by classes
composed of dex code. One or more class loaders are used to load these classes
from a repository. These class loaders are called when the runtime system re-
quires a particular class to be loaded. All of the class loaders are systematized
in a hierarchical form where all requests to child class loaders are first delegated
to the parent class loader. The child class loader only tries to handle a request
when the parent class loader cannot handle it.

Android comes with several concrete implementations of the abstract class –
ClassLoader [11] – which implement the necessary infrastructure required by all
of the class loaders. Of these, the PathClassLoader will be of particular importance
to us.

3 System Architecture

In Section 2.1, we presented two real-world use cases for motivating the creation
of an integrity measurement system on Android devices. In this section, we
present an architecture that provides two levels of granularity, each catering to
one of the use cases presented. Figure 1 shows the high-level architecture of our
approach.
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Fig. 1. Android Integrity Measurement Architecture

The attestation challenge begins at Alice’s employer’s system (or Emma’s pc
– depending on the scenario). The challenge is sent to the Attestation Daemon
running on the Android device. On the device, one of the two integrity measure-
ment systems must be in place: (1) Application-level attestation or (2) Class-level
attestation. In either case, the measuring entity reports the measurements to a
trusted logger that maintains an integrity measurement log and extends a pcr
with the hashes of these measurements. When an attestation challenge is re-
ceived, the attestation daemon reads the log and requests a quote over the pcr
in which the measurements have been recorded by the logger. Both of these trust
tokens – measurement log and pcr quote – are returned to the challenger as the
attestation response. The challenger can then verify the trustworthiness of the
platform based on these measurements using a validation system.

Both application-level attestation and class-level attestation require the pres-
ence of a root-of-trust. The chain of trust must be extended from this root-of-trust
to the Dalvik vm and then to the measuring entities within the virtual machine.
For this purpose, we need: (1) an implementation of a tpm, either hardware or
software; (2) a device driver library for communicating with the tpm and; (3)
a Trusted Software Stack (tss) for providing high-level apis for accessing the
low-level functionality of the tpm. Below, we first briefly describe the creation of
a minimal subset of the tpm and the tss that is required for our implementation
since a hardware tpm does not exist for mobile phones.

3.1 Chain-of-Trust

For the establishment of a chain of trust, there are two requirements:

1. A root-of-trust that acts as an anchor for the chain. It must be immutable
and, according to [5], hardware-based. The tcg has defined a specification for
a hardware root-of-trust – called Mobile Trusted Module (mtm) [12] – specif-
ically aimed at mobile platforms. To date, no agreed-upon and widely de-
ployed implementation of the mtm exists. We have therefore abstracted away
the details of the mtm implementation and built our approach on top of the
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tcg specification. This allows us to decouple our integrity measurement ar-
chitecture from any specific prototype implementation and assures forward
compatibility by complying with the standards. It should also be noted that
since a hardware root-of-trust is currently not available, our implementation
cannot, as yet, be deployed in production environments. However, the suc-
cessful standardization of the mtm and its wide acceptance by the scientific
community leaves little doubt that mtm hardware will be made available in
the very near future.

2. The second requirement for a chain of trust is making all links in the chain
integrity-aware. The bios, bootloader and the operating system all need to
be modified so that they measure the integrity of every loaded executable
before passing control on to it.

Below, we take a look at how we have addressed the aforementioned problems.

Emulating the Trusted Platform Module: One of the most important as-
pects of our architecture is the presence of a root-of-trust that can securely save
the hashes of the measurements and report them to the challenger in a trustworthy
manner. The absence of a hardware tpm mandates the creation of a minimal im-
plementation of a software emulator that can act as a prototype until a hardware
root-of-trust becomes available. Software emulators of both tpm [13] and mtm [14]
already exist. An implementation of mtm has also been proposed recently [15].
However, we decided not to use either of these. The reason is that they are com-
plex softwares that aim to implement the whole tpm/mtm specifications. We, on
the other hand, need only protected storage (i.e. pcrs) and the pcr quote oper-
ation. Implementing the complete specifications not only gives rise to complexity
in the software but also taxes the limited resources of the phone device. We have
therefore created a simplified mini tpm emulator (tpmε) that provides only these
two functionalities and is optimized for use on a mobile device to consume as little
computational cycles and battery power as possible.

We implement tpmε as part of the kernel instead of as a module so that it can
measure all the modules loaded by the kernel. tpmε uses facilities provided by the
Linux kernel code for auxiliary operations, such as random number generation.

Each of the entities performing measurements needs to communicate with
tpmε. The communication aspects of each of these entities are discussed in their
relevant sections below.

Establishing the Chain-of-Trust: In pc world, the first link in the chain of
trust is the bios. However, in the case of mobile and embedded devices, there is
no bios. Device initialization is performed by the bootloader instead. Therefore,
the chain of trust in our architecture begins with the bootloader. Moreover, as
discussed earlier, no hardware root-of-trust is available on the Android device
and consequently, there is no protected storage available for storing the hashes
measured before the kernel. Therefore, as yet, the bootloader has to remain
outside the chain of trust in our architecture.1

1 We discuss the implications of this aspect in Section 6.
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The chain begins at the kernel level with our tpmε loaded as part of the
kernel. Since tpmε is a part of the kernel itself, it can be used to securely save the
hashes of loaded executables. Integrity measurement is performed by Integrity
Measurement Architecture that we have ported to the Android kernel. We have
tried to keep the changes to ima at a minimum so as to ensure backward and
forward compatibility with ima code that has now been incorporated in the
Linux kernel. However, since our architecture uses tpmε and not a hardware
tpm, we have had to make some changes regarding the communication of the
integrity measurement code with the tpm. Other than the aspects concerning
the communication with tpm, we have not modified any functionality of ima. It
therefore measures all executables loaded on the Android platform by the Linux
operating system. This includes the Android vm as well as any libraries (such
as libdvm.so, libandroid-runtime.so and libandroid-system.so). This ensures
that all the executables loaded outside the Dalvik virtual machine as well as the
native code of Dalvik itself gets measured and stored in the Stored Measurement
Log (sml).

Similarly, the semantics of sml are also unmodified. This is because we opt
not to interleave the Linux executable hashes with the Dalvik executable hashes
but keep the two logs separate. The aggregate up to the point of the Dalvik load
is stored in the Android Measurement Log (aml).

Once the chain of trust up to the Dalvik virtual machine is established, we
provide two alternatives for measurement of code that is loaded on top of the vm.
These two alternatives form the core part of our contribution and are discussed
at length in the following sections.

3.2 Application-Level Attestation

For coarse-grained attestation of the Android Software Stack that can cater to
the requirements of Use case #1 (cf. Section 2.1), we have implemented a binary
attestation mechanism that can measure all loaded applications. Recall that in
the first use case, the employer is only interested in finding out if any malicious
application is executing on Alice’s phone.

In Android, applications are distributed as .apk files that can be downloaded
or copied onto the phone and installed through the PackageInstaller activity.
These package files contain the AndroidManifest.xml file (that defines the permis-
sions requested by the application), resource files and the .dex files that consist
of the actual application code. All .apk files are stored in the /system/app folder
in the Android filesystem. Whenever the user starts an application that isn’t
already loaded, Android looks up the class required for loading that application
and calls the PathClassLoader. The name of the required class is passed to the
class loader that loads the class file from the .apk file of that application.

We have inserted an integrity measurement hook in the findClass() function
of the PathClassLoader that ensures that whenever an application gets loaded,
the complete apk file corresponding to the application is measured and an entry
is made to the aml. The hash of the apk is extended in pcr-11 to ensure that
the log can be trusted at verification time. The implementation of the sha-1
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hashing mechanism is based on the MessageDigest algorithm provided by the
Java Cryptography Extensions (jce).

For communicating with tpmε, the measurement function requires an im-
plementation of the Trusted Software Stack (tss). As with the tpm and mtm
emulators, we have opted not to use any of the existing tss implementations
due to performance concerns. For this coarse-grained measurement, we have im-
plemented a minimal implementation of the tss specifications – called tssε –
that allows only two operations: (1) pcr extend – allowing the measurement
function to communicate the measured hash to the tpmε and (2) pcr quote –
that allows trustworthy reporting of the pcr values to the challenger. Since the
measurement functions operate below the Android application framework layer
i.e. in the Java library layer (cf. Section 2.2), tssε is implemented as a Java
class (edu.android.aim.TssE) that exposes two functions for the aforementioned
operations – pcrExtend() takes a hash and a pcr number as input for extending
the pcr and quote takes a collection of pcrs, a nonce, an aik label and the asso-
ciated authorization secrets as input and returns the quote performed by tpmε

over the pcr values and nonce using the aik associated with the label. Each pcr
extend operation must be matched by an entry made in the aml. This is also
implemented as a class in the Java libraries (edu.android.aim.TrustedLogger)
that exposes two operations – (1) logEvent() that creates a new entry in the
aml with the provided entry description and hash and; (2) retrieveLog() that
returns the complete aml. The aml is stored in the filesystem in an unprotected
space (systemdir/aml_measurements) since its correctness can be ensured through
the measurements in the protected storage of tpmε.

This coarse-grained approach has several advantages in the context of a mobile
platform. Firstly, it only requires the measurement of apk files of applications
that are loaded. For a typical smartphone user, this number is usually quite small.
This ensures that the computational requirements for integrity measurement are
keep to a minimum. Moreover, the aml is fairly small and thus aids in keeping
the communication overhead to a minimum. Likewise, the battery consumption
during calculation of hashes is also fairly small. In Section 5, we discuss the
performance issues associated with this approach.

The major drawback of attestation at this level of granularity is that it is
not complete! It does not measure the system classes which form an essential
part of Android’s trusted computing base. Ignoring these classes removes the
possibility of ensuring that, for example, the Android permission mechanism
will be enforced by the mobile device – which in turn reduces the level of trust
that can be placed in the correct enforcement of the security mechanisms that
are expected by the challenging party. To alleviate this drawback, we have im-
plemented a finer-granular integrity measurement approach as defined in the
following section.

3.3 Class-Level Attestation

To cater to fine-grained requirements of attestation for the Android platform, we
go a step beyond just measuring the applications that are loaded on the device
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and propose a solution that provides completeness in integrity measurement.
This level of attestation can measure all executables loaded on top of the Dalvik
vm and can thus cater to the requirements of Use case #2.

Class-level attestation aims to measure all executables (i.e. classes) loaded
on top of the Dalvik vm. While this approach is similar to ima in essence, it
differs significantly in the semantics of measurement. Moreover, since the loading
mechanism of Dalvik is, at its core, different from that of the Linux kernel, our
binary integrity measurement has major differences in what and how it measures.

As mentioned in Section 2.2, there are two ways in which classes may be loaded
into Dalvik. The mechanism mentioned earlier is that which uses ClassLoaders
executing on top of the vm itself. These class loaders are themselves classes
and thus need to be loaded too. Moreover, there are several classes that are
‘system classes’ and are required for the proper functioning of Java code (e.g.
java.lang.Object). These classes cannot be loaded by Java-based class loaders
and have to be loaded by the native code in the vm itself. Another issue with
ClassLoaders is their unrestrictive nature. Applications are allowed to write their
own class loaders to load classes from arbitrary sources. For example, an appli-
cation may write a class loader that reads from a byte stream to load a class.
This is substantially unlike the Linux/ima scenario in which all executables are
loaded from the filesystem. It is therefore possible in Linux to measure an exe-
cutable before it is loaded. In case of Dalvik (or any Java-based vm), this is not
always possible due to the potentiality of arbitrary class loaders. It is for this
reason that the semantics of our binary attestation are that we measure a class
after it is loaded but before it can be executed.

In Dalvik, the code responsible for calling class loaders is present in
three major files – Class.c, InternalNative.c and JNI.c The two broad cat-
egories of classes in Dalvik are system classes and (what we informally term
as) standard classes. These are loaded by dvmFindSystemClassNoInit() and
dvmFindClassFromLoaderNoInit() respectively. Both of these functions are present
in Class.c and are called from a single point – dvmFindClassNoInit(). The ‘no-
init’ functions are responsible for loading classes (either directly or by calling
a class loader) without initializing them. By placing the integrity measurement
hooks in dvmFindClassNoInit(), we ensure that (1) the measurement is complete
i.e. all the classes that are loaded get measured and (2) that classes are measured
immediately after they are loaded and before they can be executed.

After a class is loaded, it is returned to Dalvik in a structure that encapsulates
the methods, fields, loader details and other information about the class. This is
a highly complex structure and includes pointers to many internal structures rep-
resenting detailed information about the class. Including all this information in
the hash of the class would cause severe performance bottlenecks without adding
much to the utility of measurement. In our integrity measurement mechanism,
we include only those parts of this structure that may influence the dynamic
behavior of the class. We define these parts in three categories:
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Fig. 2. Subset of a Class Structure for Hash

1. Meta-information: This information does not directly influence the exe-
cution of a class but is helpful in unique identification of the class. Included
in this category are the descriptor i.e. fully qualified name of a class, the
source dex filename, the class loader and parent class etc.

2. Passive entities: These are static portions of the class that, while non-
executable, may affect the execution of the class. Passive entities include
static and instance fields, method names and instruction and register size
etc.

3. Executable code: This is the most important aspect of the measurement
and includes the instructions present in the method bodies of a class. Note
that, since inner (and anonymous) classes are measured separately, their
methods and instructions will be included in their respective measurements
and can thus be verified.

Figure 2 shows the precise structure over which the hash is calculated during
class-level integrity measurement and Figure 3 shows the integrity measurement
log. Each class is represented in the log by its descriptor and is preceded by
the hash of the structure described above. Note that since this fine-grained level
of integrity measurement computes the hash of all loaded classes, it may cause
some performance hit but as we discuss in Section 5.2, the performance hit is
minimal and with some performance enhancement can be successfully deployed
in production settings.

Note that the tssε solution proposed in Section 3.2 cannot be utilized at
this level of attestation as it operates above the vm level, whereas measurement
in this fine-grained approach is being done at the vm level. For this level of
integrity measurement, we have implemented tssς in the Dalvik vm itself. tssς

only performs one operation i.e. saving an entry in the aml. The aml is stored
in the same location as in the application-level attestation. It does not provide
a function for reading the aml because that functionality is required only at
the application level of the Android framework and can be taken care of by the
tssε’s retrieveLog(() function. The details of this retrieval operation follow.
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133A57C0CB942D5F74376BD6A89A3DD98EAB4886 vmaggregate
...
4FC88626E94A631D9FF4BD7C39C57F6EA8847C3F Landroid/widget/AbsListView;
FC060385A2B800175CE68D96AFC4A49E965A8E8F Landroid/widget/AbsListView$CheckForLongPress;
59517950D7280DC0CB4517B40E812D9E2B1BAFB2 Landroid/widget/AbsListView$SavedState$1;
69CEB9E9ED1398EFFF0C2C0705C7D45506481BA1 Landroid/widget/AbsoluteLayout;
457F0C258A8B76B4C03C3A89B1B7BAC8E306ECA1 Landroid/widget/AbsoluteLayout$LayoutParams;
8E84D83A9BFE50BDC7F41714769AB48CE55E208D Landroid/widget/AdapterView;
AE8BB8B2E8585395EB697DC8403C3EC1E2BFF7ED Lcom/android/internal/telephony/Phone;
5CB11877BF82DA663722AFBF19CB3DE2DBC03F3B Lcom/android/internal/telephony/Phone$State;
. . .

Fig. 3. ASCII representation of the Android Measurement Log: Capturing the hash of
the class and the class descriptor

4 Verification

Once the attestation tokens i.e. pcr quote and measurement logs are received
at the challenger side, they need to be verified to establish the trustworthiness
of the remote platform. The first step in the procedure is to validate the digital
signature on the quote structure to verify that a genuine tpm vouches for the
measurement logs. This is a simple procedure and requires only the knowledge
of the aik which can be provided by a PrivacyCA [16]. Afterwards, the integrity
of each loaded executable reported in the measurement log is verified individu-
ally. The Android Market [17] is by far the largest and most reliable source of
applications. The basic verification mechanism involves creation of a database
of known-good and known-bad hashes of executables retrieved from the Android
Market. For instance, currently our database includes information about our
own versions of the Intent Fuzzer and Intent Sniffer tools [9] that may be used
to maliciously monitor and/or modify the operation of Android’s intent model.
If the hash associated with one of these tools is found in the aml reported by
the target device, the challenger may conclude that the device is compromised
and take preventive measures.

5 Evaluation

In the context of mobile devices, computational complexity and battery con-
sumption are two essential factors that need to be considered when making any
changes to the software stack on these devices. We have evaluated both these as-
pects for the two options of attestation presented in this paper. As a test system,
we have taken the Android cupcake branch, operating on the htc g1 handset.
Evaluation of the two levels of attestation is presented below.

5.1 Application-Level Attestation

In general, application-level attestation imposes little overhead on both the com-
putational capabilities and battery consumption of Android.

Time: The average time for measurement of an application on our testbed was
1631ms. This is a rather large number but note that we cache the results of
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measurement and only measure an application on subsequent loads if it has
changed. This caching, coupled with the facts that mobiles are ‘always-on’ and
application apks are unlikely to change frequently, makes the average time fairly
acceptable. Moreover, since the largest portion of this time is taken by the hash-
ing algorithm, a faster Java implementation of this function may significantly
improve this time.

Log size: Since this coarse-grained attestation only reports the hashes of loaded
applications, the log size is extremely small and is dependent only on the number
of applications executed on the target device. The size L in bytes of the reported
log is given as:

L = nLh +
n∑

i=1

(Lai) + Lq + Ls

where n is the number of applications loaded, Lh is the size of the application’s
hash, Lai is the length of ith application name, Lq is the size of the data structure
representing the pcr quote signed by tpmε and Ls is the size of ima’s sml.

In our evaluation, Lh and Lq were constants (i.e. 20 bytes and 64 bytes)
respectively, the average number of applications loaded on the device was 28,
the average length of the application name was 11.2 bytes and the size of the
sml was 4998 bytes. The total size of the log for application-level attestation
was therefore:

L = (20 + 11.2)× 28 + 64 + 4998 = 5935.6

which is less than 6kb of data per attestation request for application-level
attestation.

Power: Measurementof battery consumptiononAndroid is difficultdue to the fact
that the battery charge level reported by the Android hardware is at a very coarse
grained level. Using software for measurement of battery consumption during hash
calculation simply yields ‘no change’ in battery level. However, note that since the
attestation techniques only use the cpu and do not tinker with parameters of radio
communication, the battery overhead caused by integrity measurement is directly
proportional to the time taken. Therefore, using the same arguments as those for
time consumption, we can conclude that the battery consumption overheadcaused
by our integrity measurement mechanism is also bearable.

5.2 Class-Level Attestation

Class-level attestation is performed at a finer-grained level and thus might be
expected to have slightly larger overhead in terms of both time and battery.

Time: Figure 4 shows the evaluation results of the time taken for performing
this level of integrity measurement. As can be seen, using native C/C++ code
for calculating sha-1 has improved performance by three orders of magnitude.
The average time for integrity measurement of a class is 583 μs. Integrity mea-
surement of a few classes took more than a second but these were only around
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1% of all the classes measured. Moreover, similar to application-level attesta-
tion, caching has been employed for class-level attestation to ensure that after
a class has been measured, it is not re-measured on subsequent loads unless
it has changed. Moreover, taking only a subset of the structure of the class
(cf. Section 3.3) also increases the performance of attestation.

Log size: The length of the log at this fine-grained level of attestation was rather
large. The average number of loaded classes during our tests was 1941 and the
average length of class names was 35.67. Using the same method of calculation
as for application-level attestation, the log size was:

L = (20 + 35.67)× 1941 + 64 + 4998 = 113117.47

The log size of around 110kb is not completely insignificant for the a mobile device.
However, since we do not require real-time results, attestation can be carried out
when the device is connected to the enterprise server or pc through a high-speed
connection such as WiFi, thus reducing the time taken for transmission of the log.

Power: Similar to application-level attestation, battery consumption overhead
of this finer granular integrity measurement is also directly proportional to
the time taken. Moreover, since the time taken by class-level attestation is
quite small, battery consumption is also much more acceptable than that for
application-level attestation.

6 Discussion

In this paper, we have presented the first attempt at measuring the integrity of
the Android platform using the concepts of Trusted Computing. The two levels
of granularity presented in the paper both have their pros and cons as discussed
earlier. However, there are a few issues that inhibit the deployment of either
of the techniques in production environments just yet. First of all, there is the
lack of a hardware root-of-trust. A hardware tpm or mtm does not exist for
any mobile device. We currently use an emulator for the demonstration of our
technique and rely on the assumption that it is only a matter of time before
an mtm becomes available for mobile devices. Note that we have designed the
architecture in such a way that our technique would be able to use an mtm
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directly without any change to its working. We envision the deployment of our
attestation technique probably as a separate trusted sub-system [18] that acts on
behalf of either the service provider or the local owner of the device to provide
attestation responses.

Finally, we discuss the issue of time of measurement, time of use race condi-
tions [19] that was a major concern in the original ima technique. The issue is
that when reading from a filesystem, the file may change after it is measured
but before it gets loaded for execution. Since we measure classes or applications
only after they are loaded and not from the filesystem, our architecture does not
suffer from this drawback.

7 Conclusion and Future Work

The personal and ubiquitous nature of mobile phones poses serious security con-
cerns regarding data that is stored on these devices. Measuring the integrity of
a smartphone can ensure that sensitive information accessible to applications
running on the device will not be compromised. Android is among today’s most
popular smartphone platforms. It is backed by a vast majority of industry lead-
ers and is made available as open source, thus leading to wide adoption of this
software stack. In this paper, we have proposed the design and implementation
of an integrity measurement mechanism aimed specifically at the unique archi-
tecture of Android’s software stack. We have described our architecture at two
levels of granularity catering to different real world use cases. We have shown
our architecture to be efficient both in terms of time complexity and battery
consumption – two critical factors for any architecture targeting mobile devices.

One of the more important usages of our attestation technique, that we can
foresee, is for ensuring ‘copy protection’ of paid applications for Android phone.
Paid applications that are not allowed to be moved from one device to an-
other are protected by the Android system. However, due to the presence of
‘rooted’ phone devices, it is possible for a malicious user to bypass copy pro-
tection [20]. Using our attestation technique before releasing a copy-protected
application may provide assurance to Android Market that the target device is in
a trusted state and will thus enforce copy protection as expected. Formalizing the
semantics and procedure of this mechanism forms part of our future work.
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Abstract. Recent research demonstrates that adversaries can inject ma-
licious code into a peripheral’s firmware during a firmware update, which
can result in password leakage or even compromise of the whole host op-
erating system. Therefore, it is desirable for a host system to be able to
verify the firmware integrity of attached peripherals. Several software-
based attestation techniques on embedded devices have been proposed
as potentially enabling firmware verification. In this work, we propose
a Software-Based Attestation technique for Peripherals that verifies the
firmware integrity of a peripheral and detects malicious changes with
a high probability, even in the face of recently proposed attacks. We
implement and evaluate SBAP in an Apple Aluminum Keyboard and
study the extent to which our scheme enhances the security properties
of peripherals.

1 Introduction

Recent research shows that adversaries can subvert keyboards by injecting ma-
licious code into a keyboard’s firmware during firmware update [1]. The injected
code can compromise users’ privacy and safety, such as eavesdropping a user’s
bank account password or credit card number, or embedding a kernel-level rootkit
into a clean re-installed operating system through some software vulnerabilities
in the host operating system. Similar attacks can happen on other peripherals,
such as a mice or a game controller. Peripheral manufacturers enable updating
of firmware to fix firmware bugs. However, due to constrained computation and
memory resources, the low-speed embedded microcontroller on many peripherals
cannot verify complex cryptographic signatures or message authentication codes.
Consequently adversaries can inject malicious code into peripheral firmware dur-
ing a firmware update. Therefore, a legacy computer is potentially under serious
attacks due to vulnerabilities on widely used peripherals. We take the position that
it is desirable for a host machine to verify the firmware integrity on peripherals.

Software-based attestation schemes on embedded systems [2, 3, 4] have been
proposed as potentially enabling firmware verification, which enables an exter-
nal trusted verifier to verify the firmware integrity on peripherals. However,
recent research [5] suggests that it may be feasible to hide the malicious code
from an attestation through a return-oriented attack or a compression attack.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 16–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In addition, constrained computation and memory resources in the low-speed
peripherals limit the implementation of the software-based solutions. For exam-
ple, some software-based attestation schemes [2] require hardware multiplication
units or a large amount of data memory that is not available on all peripher-
als, especially on low speed peripherals such as mice or keyboards. Therefore,
peripheral firmware integrity verification remains an important challenge.

In this paper, we propose Software-Based Attestation for Peripherals (SBAP)
to verify peripherals’ firmware integrity. Similar to previous proposals, SBAP
is based on a challenge-response protocol between a trusted verifier and an un-
trusted peripheral, and a predicted computation time constraint. It verifies the
contents of both program and data memory on the peripheral and can detect any
malicious changes with arbitrarily high probability, even in the face of recently-
proposed attacks. In this paper, we make the following contributions:

1. We propose a software-only solution to verify the firmware integrity of pe-
ripherals, that can be implemented via a software upgrade to the peripherals
and avoid a costly hardware upgrade.

2. We propose an approach to verify the code or data integrity on both program
memory and data memory in peripherals that can prevent all known attacks.

3. We design, implement, and evaluate a prototype of SBAP using an Apple
Aluminum Keyboard.

We organize the remainder of this paper as follows. In Section 2, we provide the
background on software-based attestation and related attacks. Section 3 presents
the problem definition, assumptions, and the attacker model. In Section 4, we
describe the system design including the system architecture, attestation proto-
col and verification function design. Section 5 details our SBAP implementation
on an Apple Aluminum Keyboard and Section 6 gives our experimental results.
We discuss our work in Section 7 and describe related work in Section 8. Finally,
we offer our conclusions and identify future work in Section 9.

2 Background

2.1 Software-Based Attestation for Embedded Devices

SWATT. SoftWare-based ATTestation for embedded devices (SWATT) is based
on a challenge-response protocol between a trusted verifier and an untrusted em-
bedded device, and a predicted computation time constraint. First, the verifier
sends a random nonce to the embedded device. Using this nonce as a seed, a ver-
ification function in the embedded device computes a checksum over the entire
memory contents and returns the checksum result to the verifier. The verifier has
a copy of the expected memory contents of the embedded device, so it can verify
the checksum result. Also, the verifier knows the exact hardware configuration
of this untrusted embedded device, enabling the verifier to exactly predict the
checksum computation time. Because the checksum function is well optimized,
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the presence of any malicious code in memory will either invalidate the check-
sum result or introduce a detectable time delay. Therefore, only the checksum
result received within the expected time range is valid. During checksum com-
putation, the checksum function reads memory in a pseudo-random traversal,
thus preventing an attacker from precomputing the checksum result. SWATT re-
quires that the embedded device can only communicate with the verifier during
attestation. This prevents a malicious device from communicating with a faster
machine to compute the checksum.

ICE. Indisputable Code Execution (ICE) sets up a dynamic root of trust in
the untrusted device through a challenge-response protocol between a trusted
verifier and an untrusted embedded device, and a predicted computation time
constraint. The dynamic root of trust also sets up an untampered execution en-
vironment, which in turn is used to demonstrate verifiable code execution to the
verifier. As in SWATT, the verifier first sends a random nonce to the untrusted
device. Upon receiving the random nonce, the verification function in the un-
trusted device sets up an untampered execution environment. The verification
function includes code to set up an ICE environment by disabling interrupts,
a checksum function that computes a checksum over the contents of the verifi-
cation function, a communication function (send function) that returns compu-
tation results to the verifier, and a hash function that computes a hash of the
executable that will be invoked in the untampered environment. After checksum
computation, the send function sends the checksum result to the verifier. As in
SWATT, the verifier can verify the checksum result and predict the checksum
computation duration. If the verifier receives the correct checksum within the
expected time, the verifier obtains assurance that the untampered execution en-
vironment (dynamic root of trust) has been set up in the untrusted device. The
send function invokes the hash function to compute a hash of the executable in
the embedded device and sends the hash result to the verifier. Then the verifica-
tion function invokes the executable on the untrusted device. Simultaneously, the
verifier obtains the guarantee of the integrity of the executable through verifying
the hash of the executable.

Discussion. Both ICE and SWATT implement code integrity verification through
a software-only approach. However, there are several challenges to implement ICE
on embedded devices. In ICE, CPU registers describing code location (e.g., the
program counter) and interrupt status information are included in the checksum
to confirm the intended code location and interrupt status. However, not all mi-
crocontrollers provide instructions to directly access the values of the PC or in-
terrupt status registers. For instance, on the CY7C63923 microcontroller [6] in
the Apple Aluminum Keyboard, there is no instruction to read the value of the
PC, although the CY7C63923 does provide instructions to access the Flag regis-
ter containing interrupt status information. Moreover, the code size of verification
function in ICE is larger than the code size of the checksum routine in SWATT.



SBAP: Software-Based Attestation for Peripherals 19

On some embedded devices, there are very constrained memory resources for the
implementation of the verification function. For example, on an Apple Aluminum
Keyboard, the size of Flash memory is only 8 KB and there is only about 1 KB of
free Flash memory for the implementation of our verification function.

2.2 Attacks on Existing Proposals

Memory Copy and Memory Substitution Attack. In a memory copy attack, the
attacker modifies the checksum code in program memory while keeping a correct
copy of the original code in unused memory. In a memory substitution attack,
the attacker keeps the correct code in the original memory location, but deploys
the malicious code in unused memory. In both attacks, the malicious code com-
putes the checksum when expected. To obtain the correct checksum result, the
malicious code redirects the location of the memory read operation to the correct
code. On common embedded devices, the values in empty program memory are
constant (i.e., 0xFF, which is the uninitialized value of Flash memory). Thus, the
malicious code can predict such constant values and use them during checksum
computation. SWATT and ICE prevent a memory copy or memory substitution
attack by reading the program memory in a pseudo-random fashion so that the
malicious code cannot predict the memory address to read, and has to add ad-
ditional instructions to check and redirect the memory address. Such operations
result in a detectable time overhead. On a Harvard architecture embedded de-
vice, the read latency of data memory is much smaller than the read latency
of program memory. Thus, the malicious code can minimize the computation
overhead of a memory copy attack by having a copy of the original code in data
memory and redirecting the location of checksum memory read operations to
data memory instead of program memory.

Compression Attack. One important enabler of a memory copy or memory sub-
stitution attack is that the malicious code can remember or predict the constant
values of empty memory during attestation. Therefore, Seshadri et al. [2] pro-
pose to fill the empty space of program memory with pseudo-random values and
leave no available free space for attackers to make a memory copy or memory
substitution attack. However, an attacker can still create free space through com-
pressing the existing code on program memory. Some compression algorithms,
such as the Canonical Huffman Encoding [7], can decompress the compressed
stream from an arbitrary position. Thus, the malicious code can decompress the
compressed steam on-the-fly during attestation and obtain the correct checksum
result though the checksum code reads memory in a pseudo random traversal.
The decompression procedure causes a detectable computation overhead because
of the complexity of the decompression algorithm.

Return Oriented Programming Attack. Return oriented programming (ROP) [8,
9,10] performs computation on a system by executing several pieces of code that
are terminated by a return instruction. These pieces of code are executed through
well-controlled stack content. If there is sufficient existing binary code in the
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system, an adversary can execute arbitrary computations through a ROP attack
without injecting any code, except for overwriting the stack with well-designed
content. Castelluccia et al. [5] present that an adversary can use a ROP attack
to protect malicious code from being detected by software-based attestation
schemes. Briefly, the adversary code first saves a copy of the adversary code on
data memory before attestation. Then the adversary code modifies the contents
of data memory by embedding ROPs on the stack. Through these ROPs, the
attacker erases all the malicious code in program memory and restores the orig-
inal code before checksum computation. Then, during checksum computation,
the contents of program memory are exactly as expected. After attestation, the
attacker restores malicious code in program memory through an additional ROP.
The ROP attack generates little computation overhead. For example, in the attack
described by Castelluccia et al. [5], the computation overhead caused by a ROP
attack is undetectable, only 0.3% of the expected checksum computation time.

Attack Analysis. As described above, an attacker can hide malicious code from
an attestation through a compression attack or a ROP attack. However, both
attacks modify the contents of data memory, by storing either malicious code
or ROP data. Thus, a checksum function can detect such malicious changes by
verifying the contents of both program memory and data memory. However,
it is challenging to verify the contents of data memory, since the content is
unpredictable to the verifier. To verify it, the verifier must be able to reset data
memory into a known or predictable state before attestation. The verification
function can reset data memory into a known state by erasing the contents of
data memory. To prevent attacker from predicting or compressing the contents
of data memory, the data memory should be filled with pseudo-random values
before attestation.

3 Problem Definition, Assumptions and Attack Mode

Problem Definition. We consider the problem of how a host machine can verify
the firmware integrity of a peripheral attached to it without any dedicated hard-
ware, i.e., using a software-only approach that can detect arbitrary malicious
changes.

Assumptions. We assume that the verifier knows the exact hardware configura-
tion of the peripheral, such as the CPU model, the CPU clock speed, the size of
program memory, and the size of data memory. We also assume that the verifier
has a copy of the expected contents of the program memory of the peripheral. We
assume that the communication channel between the peripheral and the verifier
can provide message-origin authentication. We also assume that the peripheral
can only communicate with the verifier during the attestation, which prevents
the peripheral from communicating with a faster machine to compute the check-
sum (this attack is called a proxy attack). This can be implemented through a
physical connection, such as USB cable.
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Attacker Model. We assume that an attacker cannot change the hardware config-
uration of peripherals, such as speeding up the CPU clock, or adding additional
program memory or data memory. However, the attacker can make arbitrary
changes to the peripheral software. We assume that there are software vulner-
abilities in the peripheral firmware, through which an attacker can attempt a
compression or ROP attack.

4 SBAP: Software-Based Attestation for Peripherals

4.1 System Overview

Similar to previous proposals [2, 3], SBAP verifies the firmware integrity of a
peripheral through a challenge-response protocol and a predicted computation
time constraint. To prevent known attacks, SBAP leaves no available empty
space in memory for attackers by filling all unused space in program and data
memory with pseudo-random values, and verifying the integrity of both program
and data memory. Also, different from SWATT and ICE, SBAP utilizes an effi-
cient pseudo-random number generator, which is mainly designed for low-speed
devices with constrained computation and memory resources. Figure 1 depicts
an overview of the system setup as well as the protocol steps. On the peripheral,
the verification function is responsible for disabling all interrupts in the micro-
controller, filling the data memory with pseudo-random values, computing the
checksum over the entire contents of data memory and program memory, and
sending the final checksum result to the verifier. Before peripheral deployment,
available free space in program memory must be filled with pseudo-random val-
ues. On the verifier, a nonce generator generates random nonces to seed the
untrusted peripheral and a timer measures the verification time. A checksum
simulator on the verifier computes the expected checksum result by simulating
the checksum procedure.

Nonce 

Generator

Checksum 

Simulator

Peripheral Verifier

Interrupt Table

Peripheral

 Functions

Verification

Function

1. Attesation Request (Nonce)

5. Checksum Result

4. Compute
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2. Disable

Interrupts

Communication Channel

6. Check 

Computation time 

and 

Checksum Result

Bootloader

3. Fill RAM

with PRN

6. Reset 

Peripheral

Timer

Fig. 1. System Overview and Protocol
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4.2 Protocol

To verify the firmware integrity on a peripheral, SBAP performs the following
steps:

1. The verifier sends the attestation request to the untrusted peripheral. An
8-byte random nonce is included in this request as a seed to the verification
function.

2. Upon receiving the attestation request, the verification function first dis-
ables all interrupts on the peripheral to set up an untampered execution
environment.

3. The verification function fills the entire data memory with pseudo-random
values generated using the nonce as a seed.

4. The verification function computes a checksum over the entire contents of
both program memory and data memory. Our checksum function uses part
of data memory to store variables. The values of these variables are pre-
dictable to the verifier though they change dynamically during checksum
computation.

5. The verification function sends the checksum result to the verifier.
6. The verifier verifies the checksum result as well as the computation time. If

the verifier receives the expected checksum result within predicted time, the
verifier trusts the attached peripheral. Otherwise, the verifier rejects the at-
tached peripheral. At the same time, the peripheral is reset so that the pseudo-
random values in data memory are cleaned, and the registers of the peripheral
are restored to their default states.

After the attestation, since data memory is filled with pseudo-random values,
the peripheral should be reset before being used. Additionally, during the reset,
some of the registers should be restored to their default states. Otherwise, an
attacker may get a chance to hide malicious data in the register space for future
attacks. An attacker may store the malicious data in some IO data or control
registers that are never used by the peripheral. For example, on a CY7C63923
microcontroller, there are 17 bytes of IO data registers that an attacker can use
to hide malicious data for future attacks. In general, a power on reset is always
enabled on a peripheral, during which all the registers are restored to their
default values. A software-based reset function is also a solution if the function
can prevent an attacker from hiding any malicious data in register space.

4.3 Verification Function

Due to the constrained computation and memory resources in the simple micro-
controllers that are deployed on low-speed peripherals, the verification functions
that are used in previous proposals cannot be deployed directly in SBAP. In this
section, we detail the verificationdesign in SBAP by describing the pseudo-random
number generator, our design for filling data memory with pseudo-random values,
and our checksum function.
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Pseudo-Random Number Generator (PRNG). In the verification function, the
PRNG is used for two purposes:

1. output PRNs to fill the data memory;
2. output PRNs to construct memory address to read in a pseudo-random

fashion.

In previous proposals [2], T-functions [11] or RC4 [12] are used to output PRNs.
However, on low speed peripherals, it is challenging to implement the same
PRNGs efficiently due to constrained computation or memory resources. T-
functions need a multiplication unit to generate PRNs efficiently. However, a
hardware multiplication unit is not available in many low-speed microcontrollers
that are used in peripherals. Software-based multiplication is too slow to be a
viable option. For instance, on a CY7C63923 microcontroller [6], a software-
based multiplication requires thousands of cycles to complete a 16-bit multipli-
cation. An RC4-based PRNG outputs pseudo-random numbers through simple
arithmetic and logical operations. However, RC4 requires at least 256 bytes of
RAM, which consumes all memory resource on some microcontrollers (such as
the CY7C63923). Laszlo et al. [13] propose several efficient PRNGs that are
primarily designed for low speed embedded devices. The PRNGs proposed by
Laszlo et al. only require simple addition, XOR, or shift operations and few
memory resources to output PRNs efficiently. From the PRNGs that Laszlo et
al. propose, we select a 2-stage PRNG in our SBAP design. Other PRNGs that
have the same features are also potential choices for SBAP. The PRNG we select
outputs PRNs as follows:

x[i + 1] = x[i − 1] + (x[i] ⊕ rot(x[i − 1], 1)) (1)

⊕ is the logical XOR operation and rot is the left rotation shift operation. x is
the output of this PRNG, a 32-bit long stage. The value of one stage is updated
based on the values of the previous two stages in each iteration.

Filling Data Memory With Pseudo-Random Values. The verification function
fills data memory in a pseudo-random fashion. Such a design is required to
prevent an attacker from reserving one small block at the end of data memory
to store malicious data, and then generating the PRNs that are expected to
be in that small block of data memory on-the-fly when they are needed by the
checksum routine. In our design, the verification function determines the data
memory addresses to be filled based on the outputs of the PRNG. Each address
is then filled using the XOR of two bytes of PRNG output. This prevents the
attacker from generating the PRNs that are expected in data memory based
on the values of existing PRNs in other locations in data memory, since only
XOR results are stored in data memory. To make sure that all data memory
is filled, the verifier can obtain the number of loop iterations upon which all
data memory has been filled. This value is determined by simulating the filling
procedure before sending the attestation request.
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Checksum Function Design. The checksum function computes a fingerprint over
the entire contents of both program memory and data memory. As in SWATT or
ICE, the checksum is computed through a strongly ordered sequence of addition,
XOR, and rotation shift operations. If the sequence of the operations is altered
or some operations are removed, the checksum result will be different with a
high probability. Also, the checksum function reads memory in a pseudo-random
traversal. If the memory size is N bytes, each memory location is accessed at least
once after O(NlnN) memory read with a high probability [2]. The input to the
checksum function is a 16-byte pseudo-random value, which is used to seed the
PRNG (i.e., to provide stages x[0] and x[1]) and to initialize an 8-byte checksum
vector. The output of the checksum function is also an 8-byte checksum vector.
Each byte of the checksum vector is called a checksum state. For each iteration
of the checksum function, the value of one checksum state is updated based on
the current memory contents, the pseudo-random value, and the values of other
checksum states. Following is the pseudo code of one iteration of the checksum
function:

/* C is the checksum vector, i is its current index. */
/* PRN is the pseudo-random number */
/* addr is the memory address */

addr = PRN & MASK /* Construct memory address */
/* update one checksum state */

C[i] = C[i] + ( Mem[addr] xor C[(i-2) mod 8] )
C[i] = left rotate one bit (C[i])
i = (i + 1) mod 8 /* update the index i */

To optimize the computation time of the checksum, we unroll the checksum loop
eight times and each time one checksum state is updated by either the contents of
program memory or the contents of data memory, which can be adjusted based
on the memory size proportion of each. For example, on a peripheral that has 8
KB of programmable Flash and 256-bytes of RAM, seven checksum states can
be updated based on the contents of Flash memory while one checksum state
can be updated based on the contents of RAM.

5 Implementation

In this section, we detail the implementation of SBAP on a wired Apple Alu-
minum Keyboard.

5.1 The Apple Aluminum Keyboard

The Apple Aluminum Keyboard connects to a computer via a USB interface.
Inside the Apple Aluminum keyboard, a Cypress CY7C63923 microcontroller
controls the keyboard matrix. During a firmware update, the firmware on the
CY7C63923 microcontroller is updated. The Cypress CY7C63923 microcon-
troller belongs to the Cypress enCoReTM II family and is primarily designed
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for low-speed USB peripheral controllers, such as mice, keyboards, joysticks,
game pads, barcode scanners, and remote controllers. The Cypress CY7C63923
is a Harvard Architecture, 8-bit programmable microcontroller with 256 bytes
of RAM and 8 KB of Flash. Five registers on this microcontroller control the
operations of its CPU. These five registers are the Flag register (F), Program
Counter (PC), Accumulator Register (A), Stack Pointer (SP), and Index Regis-
ter (X). PC is 16-bits in length, while all the other registers are 8-bits long. A
and I are used during arithmetic or logical operations on this microcontroller.

5.2 Verification Function

Following a keyboard firmware update, the Flash memory from 0xe00 to 0x1300
(1280 bytes) is available free space, where we implement our verification func-
tion. Figure 2 shows the final memory layout of keyboard Flash memory. The
verification function is located at addresses 0x0e00 – 0x1268 in the Flash mem-
ory. The Flash memory from 0x1268 to 0x1300 is filled with pseudo-random
values. In the verification function, a ’Send Function’ is the communication
module that handles the attestation request from the verifier and returns check-
sum results through the USB channel to the verifier following checksum com-
putation. Before the attestation, the contents of RAM is unpredictable to the
verifier. Therefore, an ’Initial Function’ sets the contents of data memory to
a known state by filling the data memory with pseudo-random values (we fill
data memory in a linear sequence instead of in a pseudo-random fashion as de-
signed). The data memory from 0x18 to 0xff is filled with with pseudo-random
values, while the data memory from 0x00 to 0x17 is used to store variables
for the verification function. Also, the ’Initial Function’ disables all interrupts
on the CY7C63923 microcontroller, which prevents the contents of data mem-
ory from being modified by an interrupt call during checksum computation.
A ’Checksum Function’ is implemented, which computes a checksum over the
entire contents of both program memory (Flash) and data memory (RAM).
After attestation, we reset the Apple Aluminum Keyboard. A two-stage pseudo-
random number generator (PRNG) is implemented in both the ’Initial Func-
tion’ and ’Checksum Function’. The 8-byte nonce sent by the verifier is used
to seed the PRNG in the ’Initial Function’. After filling RAM, the PRNG in
’Initial Function’ outputs a 16-byte random number to serve as input to the
’Checksum Function’, which is used to seed the PRNG in ’Checksum Function’
and to initialize the 8-byte checksum vector. All of these functions are imple-
mented in assembly. The two-stage PRNG is implemented using 23 assembly
instructions. It outputs 4 bytes of pseudo-random values every 157 CPU cy-
cles on the Apple Aluminum Keyboard. We unroll the checksum iteration eight
times. Each time one checksum state is updated. The first seven checksum states
are updated based on the content of Flash memory while the last checksum
state is updated based on the content of RAM. Including the two-stage PRNG,
’Checksum Function’ only requires 19.5 instructions and 133.5 CPU cycles on
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the average to update one checksum state on the Apple Aluminum Keyboard.
Following is the assembly we implement to update one checksum state:

; [0x00] to [0x07] saves outputs of PRNG
; [0x08] to [0x0f] saves temp variables, such as counter
; [0x10] to [0x17] saves checksum states
; ROMX is the instruction to read flash memory
; CPU loads memory address from register A
; and register X when ROMX is executed
; the result of ROMX is saved in register A automatically by CPU
; Update checksum[0]
MOV X, [0x00] ; read pseudo-random values
MOV A, [0X01] ; to register X and A
AND A,0X1F ; construct memory address
ROMX ; read Flash memory, result is saved in A
XOR A, [0x16] ; Mem[addr] xor checksum[6]
ADD [0x10], A ; add previous checksum value
ASL [0x10] ; left shift 1 bit
ADC [0x10],0x00 ; add flag (equal to rotation shift)

Interrupt Table

Key Handling Func

Verification 

Function
Checksum Func

Send Func

Initial Func

Randomness

USB Func

0x0000

0x1FFF

0x0080

0x0e00

0x1300

Program Memory

0x1268

Fig. 2. Memory layout of program memory

6 Experimental Results

Verification Time. Figure 3 shows the verification time for 40 trials. In each
trial, the verifier measures the entire verification time between sending a nonce
to the Apple Aluminum Keyboard and receiving the checksum result from the
keyboard. The average verification time of the 40 trials is 1706.77 ms while the
standard deviation is only 0.18 ms.

USB Communication Overhead. In this experiment, the verifier first sends an
attestation request to the Apple Aluminum Keyboard. Upon receiving a request
from the verifier, the verification function on the Apple Aluminum Keyboard
returns an 8-byte value to the verifier immediately without computing the check-
sum. To obtain accurate experimental results, the verifier measures the entire
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Fig. 3. Verification Time

Fig. 4. USB Communication Overhead

time of 1000 runs of the communication in each trial. Figure 4 shows the av-
erage communication time of the 1000 runs in each trial. The average value of
the USB communication overhead for all the experiments is 1.83 ms and the
standard deviation is only 0.01 ms.

Analysis. The experimental results show that the verification procedure is very
stable. As shown in Figure 3, the verification time for all 40 trials varies from
about 1706 ms to about 1708 ms. An attacker cannot hide malicious code from
an attestation unless the malicious code computes the correct checksum result
with a computation overhead less than 3 ms, which is only about 0.2 percent
of the verification time. This kind of attack is extremely challenging for the at-
tacker since there is not any free space left in program or data memory. Also,
the experimental results show that the communication overhead does not af-
fect the detection of the computation overhead caused by malicious code, since
the communication is also very efficient and stable. Another important result
we obtain from the system evaluation is that SBAP is an efficient and realistic
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solution to solve the peripheral integrity verification problem. In our prototype,
a verifier (a user) only needs to wait about 2 seconds for the entire verification
procedure, which is acceptable if run in response to being connected to a host.

7 Discussion

To the best of our knowledge, there is no efficient attack against SBAP. One
possible attack is that an attacker performs a compression attack or ROP at-
tack and stores the malicious data or code in data memory, then generates the
pseudo-random values that should be filled in data memory on-the-fly during
the checksum computation. However, this attack causes large computational
overhead due to the complexity of the PRNG. Another attack is that an at-
tacker performs a memory copy attack by having a copy of the original code or
pseudo-random values that should be in data memory in the register space of
the microcontroller. This attack can be detected by the verifier since a memory
copy attack causes a detectable computation overhead. In fact, there is very low
likelihood that an attacker can perform this attack because there is not much
register space available for an attacker to perform a memory copy attack on a
peripheral. For example, we find that on a CY7C36923 microcontroller there are
about 30 registers (30 bytes) that can be used for a memory copy attack by an
attacker. However, once the attacker changes the checksum loop, the attacker
needs hundreds of bytes memory to store the original copy of the checksum
function. Finally, an attacker can hide some malicious data that can be used for
future attacks in the register space of a peripheral. SBAP prevents this attack
by resetting the peripheral after an attestation.

8 Related Work

Several software based attestation technologies on embedded devices have been
proposed. Seshadri et al. propose SWATT [2], ICE, SCUBA [3], and SAKE [4],
as discussed in Section 2. However, as discussed in this paper, it is challenging to
implement ICE in resource-constrained embedded devices. To prevent adversary
from hiding malicious code in the empty memory, Yang et al. suggest filling the
available empty space with pseudo-random values [14]. However, a compression
attack [5] can create free space by compressing the original code in program
memory.

9 Conclusions and Future Work

We propose SBAP, a software-only solution to verify the firmware integrity of
peripherals. SBAP verifies the contents of both program memory and data mem-
ory in a peripheral and detects malicious changes with high probability in the
face of recently proposed attacks (e.g., a memory copy or memory substitution,
a compression attack, and a ROP attack). We implement and evaluate SBAP
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on an Apple Aluminum Keyboard. One area of future work is to implement and
evaluate SBAP on other peripherals, especially high-speed peripherals such as a
network interface. The hardware architecture and configuration of a high-speed
peripheral is different from those of a low speed peripheral. Therefore, there will
likely be new challenges when we evaluate SBAP on a high-speed peripheral.

References

1. Chen, K.: Reversing and exploiting and apple firmware update. In: Black Hat.
(July 2009)

2. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: Swatt: Software-based attes-
tation for embedded devices. In: Proceedings of the IEEE Symposium on Security
and Privacy (2004)

3. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Scuba: Secure code
update by attestation in sensor networks. In: ACM Workshop on Wireless Security
(WiSe 2006) (2006)

4. Seshadri, A., Luk, M., Perrig, A., Van Doorn, L., Khosla, P.: Sake: Software at-
testation for key establishment in sensor networks. In: Nikoletseas, S.E., Chlebus,
B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp.
372–385. Springer, Heidelberg (2008)

5. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of ACM Con-
ference on Computer and Communications Security (CCS) (November 2009)

6. CYPRESS: Cypress encore ii low-speed usb peripheral controller (cy7c639xx)
7. Huffman, D.: A method for the construction of minimum redundancy codes. In:

Proceedings of the IRE 40 (1962)
8. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go

bad: Generalizing return oriented programming to risc. In: Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (October 2008)

9. Hund, R., Holz, T., Freiling, F.: Return oriented rootkit: Bypassing kernel code
integrity protection mechanisms. In: Proceedings of the 18th USENIX Security
Symposium (August 2009)

10. Shacham, H.: The geometry of innocent flesh on the bone: Return into libc without
function calls (on the x86). In: Proceedings of the ACM Conference on Computer
and Communications Security (CCS) (2007)

11. Klimov, A., Shamir, A.: A new class of invertible mappings. In: Kaliski Jr., B.S.,
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Abstract. Credential platforms implemented on top of Trusted Execu-
tion Environments1 (TrEEs) allow users to store and use their creden-
tials, e.g., cryptographic keys or user passwords, securely. One important
requirement for a TrEE-based credential platform is the ability to attest
that a credential has been created and is kept within the TrEE. Cre-
dential properties, such as usage permissions, should be also attested.
Existing attestation mechanisms are limited to attesting which applica-
tions outside the TrEE are authorized to use the credential. In this paper
we describe a novel key attestation mechanism that allows attestation
of both TrEE internal and external key usage permissions. We have im-
plemented this attestation mechanism for mobile phones with M-Shield
TrEE.

1 Introduction

Cryptographic protocols use credentials to authenticate users to various security
sensitive services, including on-line banking and corporate network access. Tra-
ditional credential solutions fall short. Software credentials, such as passwords,
are vulnerable to on-line fraud [4] and software attacks [12]. Dedicated hardware
tokens, such as SIM-cards used for authentication in cellular networks, provide
higher level of security, but are expensive to manufacture and deploy, and a sep-
arated hardware token is typically needed for each service, which forces users to
have multiple tokens.

Recently, hardware-based commodity general-purpose Trusted Execution En-
vironments (TrEEs), such as Trusted Platform Module (TPM) [17], JavaCard [6],
M-Shield [14] and ARM TrustZone [1], have started to become widely deployed.
TPMs are already available on many high-end personal computers while sev-
eral mobile phone models are based on TrEEs like M-Shield and TrustZone.
Credential platforms implemented on top of these TrEEs, including On-Board
Credentials [7] and Trusted Execution Module [3], provide higher level of secu-
rity compared to software credentials, and easier deployment and better usability
compared to dedicated hardware tokens.
1 A trusted EE is a computing environment where execution takes place as expected.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 30–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Key Attestation from Trusted Execution Environments 31

Credential platforms [7,3] allow third-parties to implement their own “cre-
dential programs” that are executed within the TrEE in a controlled manner.
These credential programs may generate new asymmetric keys within the TrEE.
One important requirement for a credential platform is the ability to attest that
a key has been created and is kept within the TrEE. Additionally, the attesta-
tion should prove key properties, such as usage permissions. A straightforward
approach would be to limit the usage permissions of such keys only to the cre-
dential program that generated the key. However, in some cases the developer
of the credential program should be able to authorize other credential programs
to use the key. Then the credential platform should be able to enforce specified
by the developer key usage permissions and to provide an attestation of these
permissions to an external verifier.

The following use case provides an example: IT department of a company
creates a credential program that generates an asymmetric key within the TrEE
and performs (possibly proprietary) corporate network authentication opera-
tion. The employees of the company may use this credential program to create
themselves a corporate network authentication credential and enroll it to the
authentication system of the company. Later, the same IT department wants to
issue another credential program to their employees; this time for email signing.
The email signing credential program should be allowed to operate on the same,
already enrolled key, to save the employees from enrolling multiple keys (typ-
ically each enrollment operation requires some user interaction). At the same
time credential programs developed by other companies should not be able to
use this key. The credential platform should provide an attestation of these key
properties to the enrollment server of the company, so that only compliant keys
are enrolled to the authentication system of the company.

Contribution. In this paper we describe an extension to On-board Credentials
platform [7] that enables credential program developers and applications to de-
fine which other entities both within the TrEE and externally are authorized
to use the asymmetric keys they generate and for which operations these keys
may be used. We also describe a key attestation mechanism that provides evi-
dence on internal and external key usage permissions to a verifier. To the best of
our knowledge, no other credential platform provides similar functionality. We
have implemented the key attestation mechanism and matching key property
enforcements for Symbian mobile phones with M-Shield TrEE.

2 Requirements and Assumptions

Requirements. The main objective is to design a framework for a credential
platform that allows credential programs, written by third-parties, to generate
new asymmetric keys within the TrEE and to prove certain properties of these
keys to any (correct) verifying entity. More concretely, the credential platform
should support the following features:
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R1: Key usage and usage permission definition. The key creator,
i.e., the entity who generates a new key, should be able to define (i) key us-
age, i.e., allowed key operations (e.g., signing, decryption) and (ii) key usage
permissions by defining entities, both internal and external to TrEE, which are
authorized to use the key. In particular, the key creator should be able to au-
thorize key usage for an entity whose exact identity is not known at the time of
key generation (e.g., other credential programs written by the same credential
developer in future).

R2: Key usage permissions update. The key creator should be able to
update key usage permissions after the key has been generated. Such a possibility
should be optional and be allowed or restricted at the time of key generation.

R3: Key usage enforcement. The credential platform should enforce key
usage and key usage permissions defined by the key creator.

R4: Attestation coverage. The credential platform should provide an (ex-
ternally) verifiable evidence/proof that the subject key was created and is acces-
sible only within the TrEE. Additionally, the attestation should provide evidence
on the following subject key properties: (i) key creator, (ii) key usage (signing,
decryption), (iii) key usage permissions (entities which are authorized to use the
key), and (iv) indication whether the key creator is allowed to update key usage
permissions.

R5: Attestation unforgeability. The credential platform should only at-
test credentials it has generated itself and which are under its control. In other
words, an attacker should not be able to fool the credential platform to attest
keys generated by the attacker.

R6: Attestation freshness. In case the creator of the key is allowed to
update key usage permissions (R2), an external verifier should not trust previous
(old) attestations (the key creator might have changed key usage permissions
after the old attestation was created). Thus, the key attestation mechanism
should provide freshness guarantee.

Assumptions. We make some assumptions regarding underlying hardware and
operating system level security:

A1:Trustedexecutionenvironment. We assume availability of a hardware-
based TrEE that provides: (i) isolated code execution (by means of separation of
processing and memory), (ii) secure storage (by ensuring integrity and confiden-
tiality of persistent data), (iii) integrity protection of secure execution environment
for credential programs.

A2: OS security. We assume existence of operating system level platform se-
curity framework with the following features: (i) availability of the secure storage
for OS level applications/processes, (ii) access control on inter-process commu-
nication, (iii) integrity protection of security critical components, (iv) isolation
of application/process execution, and (v) access control model that allows only
trusted (e.g. signed) OS-level components to communicate with TrEE.
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Note that these assumptions are reasonable in the context of our primary imple-
mentation platform: We utilize M-Shield [14] security hardware and Symbian [10]
operating system. M-Shield provides all required features for TrEE. First, it sup-
ports secure boot2 which ensures integrity of TrEE. Second, M-Shield supports
secure code execution in hardware by means of separation of processing and
memory. Third, it provides the secure storage by means of sealing all data with
a device-specific symmetric key which is protected by the TrEE. The Symbian OS
provides the application-specific secure storage and process execution isolation,
and enforces control on inter-process communication via capability mechanism3.
Moreover, the integrity of security critical OS components is ensured with secure
boot that utilizes M-Shield hardware.

Adversary Model. We assume the following adversary capabilities:

AC1: Communication channel attacks. The adversary has access to
communication channel between the attesting device and the external verifier
and is able to eavesdrop, reply, relay or alert any network traffic.

AC2: End-point software attacks. The adversary can launch software
attacks targeting the ObC platform. The execution of the OS-level components
cannot be affected and OS-level secure storage cannot be accessed if the ad-
versary is not able to compromise OS platform security at runtime. Assuming
inability to compromise OS security framework may not be realistic due to the
large size of modern operating systems and in Section 6 we discuss the implica-
tions of OS security compromise to our proposal.

AC3: End-point hardware attacks. The adversary can launch limited
subset of hardware attacks on a circuit board level. We assume that the adver-
sary is not able to tamper with chips and launch side-channel attacks, but can
eavesdrop on the conductor wires connecting components or try to modify data
or program code stored on the device (e.g., via programming interface).

3 On-Board Credentials Platform

In this section we give a brief overview of the On-board Credentials (ObC)
platform. Figure 1 describes the parts of the ObC platform architecture that are
relevant to key usage control and attestation. For more detailed description of
the ObC platform see [7].

Interpreter. The core of the ObC platform is a trusted Interpreter that can be
executed within the TrEE. The trust on the Interpreter can be based on code
signing, i.e., only authorized code is allowed to be executed within the TrEE.
Interpreter provides a virtualized environment where “credential programs”, i.e.,
scripts developed by untrusted third-parties, can be executed. When a credential
program is executed, the Interpreter isolates it from secrets that are stored within
the TrEE and from the execution of other credential programs.
2 Secure boot means a system terminates the boot process in case the integrity check

of a component to be loaded fails [5].
3 A capability is an access token that corresponds to access permissions[10].
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Fig. 1. On-board Credential architecture

The Interpreter provides a sealing4/unsealing function for ObC programs,
which can be used to protect secret data stored persistently outside the TrEE.
Additionally, the Interpreter provides common cryptographic primitives, such
as encryption, decryption and hash functions, for credential program develop-
ers. The credential programs are written using (a subset of) Lua scripting lan-
guage [8] or in assembler.

The ObC platform supports three types of credentials: (1) credential programs
that operate on symmetric secrets provisioned by an external provisioner, (2)
credentials programs that locally generate and operate on asymmetric keys, and
(3) asymmetric keys locally generated by applications without involvement of
credential programs. In this paper we focus on two latter credential types.

The ObC platform supports a concept of “credential families”. A family is
defined by a credential provisioner (full description of credential provisioning
and families can be found in [7]). Credential programs belonging to the same
family may share sealed and persistently stored data.

Credential Manager. The ObC platform includes a trusted operating system
level component called Credentials Manager CM . The trust in CM can be pro-
vided, e.g., based on secure boot. CM provides an API for third-party developed
applications. Using the API the applications can execute credential programs,
and create and use new asymmetric keys. CM maintains a database, in which
credentials and key properties are stored. CM also enforces that only authorized
applications are allowed to use credentials.

Device Keys. The ObC platform uses three device specific keys (which are only
accessible within the TrEE) for key generation and attestation:

– ObC platform key (OPK ) is a symmetric device key. The Interpreter uses
OPK for sealing/unsealing function.

4 Protecting an object so that only a certain set of OS-level or TrEE-level entities can
access or use it.
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– Internal device key (PKI , SKI) is an asymmetric device key. The public
part of this key is certified as an “internal device key” by the device manu-
facturer. The Interpreter uses this key only to sign data that originates from
within the TrEE, or data whose semantics or structure it can verify.

– External device key (PKE , SKE) is an asymmetric device key. The public
part of this key is certified as an “external device key” by the device man-
ufacturer. The Interpreter uses this key to sign data that originates from
outside the TrEE. Using secure boot and OS-level security framework, we
limit the use of the external device key to CM only.

4 Key Attestation Design

Key attestation protocols involve the following entities: (i) attestor A, i.e., ObC
platform which attests to properties of the locally generated subject key, (ii)
the platform manufacturer M which certifies device specific keys of A, (iii) a
server S which aims to get assurance regarding subject key properties, and (iv)
certification authority CA which may issue subject key certificate.

We utilize the following notations: A signature scheme consists of algorithms
(GenKey(), Sign(), Verify()). Here (SK ,PK ) ← GenKey() is the key generation
algorithm that outputs signing key (private key) SK , and the corresponding
verification key (public key) PK , σ ← Sign(SK , m) is the signature algorithm
on message m which outputs a signature σ, and ind ← Verify(PK , σ, m) is the
signature verification algorithm with ind ∈ {0, 1}.

An authenticated encryption5 scheme consist of algorithms (Enc(), Dec()).
Here c ← Enc(K, m) is the encryption algorithm on a message m using K as the
symmetric key which outputs an encrypted message c, and (ind , m) ← Dec(K, c)
is the decryption algorithm on c using K as the symmetric key with ind ∈ {0, 1}
indicating integrity of c.

A hash algorithm is denoted by H().

4.1 Key Generation by Credential Programs

Key generation by a credential program is illustrated in Figure 2. We describe
the main steps in the following:

Step 1: A credential program requests the Interpreter to generate the subject
key. It may authorize other credential programs to use this key in two ways:

(i) Credential Program Identifiers are used to define zero or more identi-
fiers of credential programs that are authorized to use the generated key. In ObC
platform, credential programs are identified by the hash of the program code;
(ii) Family Identifiers are used to define zero or more identifiers of creden-
tial families that are authorized to use the generated key. Credential families are

5 We use authenticated encryption AES-EAX for various needs including seal-
ing/unsealing operations to keep code and memory footprint minimal.



36 K. Kostiainen et al.

Credentials 
Manager Interpreter

(SKS, PKS) GenKey()

IVB CreatorId || CredIds || 
FamIds || Usage || Update

SSKS Enc(OPK, SKS || IVB)

KeyId H(PKS)

2. SSKS, KeyId
Store SSKS
for KeyId

3. KeyId

1.CreateKey(Usage, 
Update, CredIds, FamIds)

Legend

Usage = key usage(signing/encryption)

Update = update permissions (true/flase)

CredIds = list of credential identifiers 

FamIds = list of family identifiers

IVB = internal validation block

(SKS, PKS) = subject key pair

SSKS = sealed private subject key

Credential 
Program 1

Credential 
Program 2

for KeyId

4. UseKey(KeyId)
5. KeyId

Get SSKS for 
KeyId 6. SSKS

SKS || IVB Dec(OPK, SSKS)

Enforce rules defined in IVB

SSKS = sealed private subject key

Fig. 2. Key generation by a credential program

identified by the hash of family key6. The credential program also defines key
usage and whether key usage permissions are allowed to be updated.

Step 2: The Interpreter generates a new subject key (SKS , PKS ) and creates a
structure called internal validation block (IVB). IVB contains (i) the identifier
CreatorId of the credential program that created the key, (ii) a list of creden-
tial program identifiers CredIds ; (iii) a list of family identifiers FamIds , (iv) an
indication whether credential program identifiers and family identifiers may be
updated by the key creator Update and (v) the allowed key operations Usage.
The Interpreter seals the private part of the subject key SKS and IVB using
platform key OPK . Then it derives the key identifier KeyId by hashing the
public key PKS . The resulting sealed key SSKS and KeyId are stored on the
operating system side by CM .

Step 3: The key identifier KeyId is returned to the credential program that
may, e.g., export it to the application that triggered the credential program
execution, so that the same key can be used later (from the same or another
credential program).

Steps 4-6: The next time the key is used, the Interpreter requests, and obtains
the sealed key from CM on operating system side based on KeyId , and unseals
it using OPK . The Interpreter unseals SSKS and verifies IVB components and
performs the requested key operation only if the key usage is allowed, and the
calling credential program is either the creator of the key or its identifier, or
family is listed as authorized to use the key.

4.2 Key Generation by Applications

The Credentials Manager CM provides an API for creating and using asym-
metric keys directly from applications. Figure 3 illustrates key generation by an
application.
6 Family key is used in credential provisioning.
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Step 1: An application calls the key creation function over the API provided by
CM . The application may authorize other applications to use the generated key
in two ways: (i) to define zero or more application identifiers. The listed ap-
plications are permitted to use the key. This method requires that the underlying
OS can provide reliable information about the identity of the calling application
to CM 7; (ii) to define that an authorization token called application authen-
tication key (AAK ) is required to use the key. In such a case the generated
key may be only used if the correct AAK is provided by the application to CM .
AAK may be shared among several applications.

When an application creates a new key, CM constructs IVB . Application
identifiers AppIds are not included in IVB , since those cannot be reliably verified
within the TrEE. If AAK is used, it is included in IVB together with the key
usage Usage, the identity of the application that generated the key CreatorId
and a flag Update that defines whether key usage permissions can be updated.

Step 2: CM loads IVB to the TrEE, in which the Interpreter generates the
subject key (SKS , PKS ), and seals the private part together with IVB to SSKS .

Steps 3-4: PKS and SSKS are returned to CM . CM stores them together
with hash of AAK , the list of application identifiers AppIds , the key creator
CreatorId , and the key usage Usage. A key identifier KeyId is returned to the
application.

Steps 5-6: When the same or another application requests to use the subject
key, CM verifies the identifier of the calling application with respect to locally
stored CreatorId and AppIds . CM also checks key usage Usage and hash of
AAK if needed. If these checks pass, CM loads the sealed private key SSKS

7 For example, in Symbian OS each process has a unique identifier which can be
verified for each inter-process function call.
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and possible AAK to the TrEE in which the Interpreter unseals the key and
checks that AAK matches the one defined in IVB (if used), and that key usage
is allowed before performing the private key operation.

4.3 Interactive Key Attestation

The attestation process must be interactive in case the key creator is authorized
to update key usage permissions during key life time (as required by the objective
(R2)). In interactive scenario, the attestation evidence must be verified by the
server S. Figure 4 illustrates this attestation protocol.

Steps 1-2: S picks a random nonce called external attestation challenge (EAC)
and sends it to an application on the target device. The application identifies the
subject key to attest (typically based on information originating from S) and
triggers the attestation. CM retrieves the sealed subject key SSKS from local
storage.

Steps 3-4: CM loads SSKS and EAC to TrEE. Inside the TrEE the Interpreter
first unseals SSKS , derives PKS from SKS

8 and then creates an internal attesta-
tion evidence (IAE ). IAE is a concatenation of IVB , hash H (PKS ) of a subject
public key and EAC. Then IAE is signed using the internal device key SKI .
The Interpreter returns IAE and signature SigIAE to CM .

Steps 5-6: CM constructs an external validation block EVB . EVB is a concate-
nation of IAE , SigIAE , KeyId (hash of public subject key H (PKS )), and a list of
8 PKS can be derived from SKS efficiently in our implementation.
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Fig. 5. Non-interactive key attestation

application identifiers AppIds . CM loads EVB to TrEE in which the Interpreter
signs it using the external device key SKE. The resulting attestation evidence
AE is sent back to CM .

Steps 7-8: CM returns AE together with the subject public key PKS and
certificates of both internal and external device keys (CertI , CertE ) to the ap-
plication. The application forwards this data to the server S which verifies the
following: (i) AE has been signed with a key that has been certified as an ex-
ternal device key by a trusted authority, and (ii) the public key hash in EVB
matches the received subject public key PKS . If these two conditions hold, S
can parse the external key usage permissions and based on that determine which
OS level key usage permissions are enforced by CM .

To verify the internal attestation, S checks that (i) IAE contains signature
made with a key that has been certified as internal device key, (ii) the public
key hash inside IAE matches the received subject public key, and (iii) EAC
inside IAE matches the one picked by S earlier. If these three conditions hold, S
can determine from IVB the key usage permissions enforced by the Interpreter
within the TrEE.

4.4 Non-interactive Key Attestation

Non-interactive key attestation can be used when key usage permissions are not
allowed to be updated and freshness guarantee is not needed. Figure 5 depicts
non-interactive attestation. In this scenario a certification authority CA validates
the attestation evidence and issues a subject key certificate that other servers
can verify. The main steps of the protocol are described below:

Steps 1-2: The credential platform triggers attestation with fixed challenge
(e.g., EAC = 0). CM and Interpreter create the attestation evidence as in
interactive key attestation. CM generates also a certificate request containing
the public part of subject public key, subject identity and proof-of-possession of
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the subject key9. The certificate request, attestation evidence and internal and
external device key certificates are submitted to CA. CA validates AE using
the fixed challenge (verification is performed in the same way as in interactive
scenario described in Section 4.3). Additionally, CA verifies that the key usage
permissions are not allowed to be updated, i.e., the field Update in IVB structure
is set to false. Finally, CA issues a subject certificate CertS and returns it to the
ObC platform.

Step 3: The ObC platform submits the key enrollment request to S. The request
includes PKS and CertS . S validates CertS , and if it is correct, enrolls the subject
key. In this scenario, S relies on CA to verify the attestation evidence. However,
since X.509 certificates do not have standard place to indicate if the attestation
evidence has been validated by CA, S must have out of band knowledge that
the particular CA always validates the attestation evidence before the public
key certificate is issued.

Another approach for non-interactive attestation assumes that CA issues pub-
lic key certificate omitting attestation evidence validation, then attestation evi-
dence is incorporated into subject key certificate. The TCG SKAE [16] defines a
X.509 certificate extension for this purpose. In this approach verification of the
attestation evidence is left for the server.

Note, that in both scenarios communication between ObC platform and CA
must be secured so that CA can associate the submitted public key with the
correct authorizations allowed for the submitter.

5 Implementation

We have implemented the described attestation mechanism for Nokia N96 mo-
bile phone with M-Shield TrEE. In M-Shield architecture trusted (signed) code
can be executed within the TrEE isolated from the rest of the system. The
trusted code is implemented as so called “protected applications” (PAs) in C.
The maximum size of each PA is very limited (in terms of both implementation
footprint and runtime memory) and for this reason we had to implement the
Interpreter, key generation and attestation functionality as three separate PAs:
(i) Interpreter PA, (ii) RSA PA and (iii) Attestation PA. Because in M-Shield
architecture the communication between different PA invocations must be me-
diated by an operating system level component (CM in our architecture), the
data that is transfered from one PA to another one must be protected.

Interpreter PA is the component that handles credential program execution.
When Interpreter PA encounters key creation macro it constructs IVB , creates
a fresh session key and seals IVB and the current state of the program execution
using the session key. The Interpreter PA saves the session key to volatile secure
memory inside the TrEE and returns IVB and program state in sealed format.

CM on the OS side saves sealed program execution state temporarily and
loads RSA PA to the TrEE together with the sealed IVB . RSA PA unseals IVB ,

9 E.g., a signature created using the subject key within the TrEE.
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generates a new RSA key and seals IVB and private part of the generated key
using OPK for future use. RSA PA calculates key identifier (hash of public key)
and returns this sealed with the session key. CM loads Interpreter PA to TrEE
together with the sealed key identifier and sealed program execution state. The
Interpreter PA can unseal the state and the key identifier using the session key
and continue credential program execution.

Asymmetric key operations are handled in similar fashion. When Interpreter
PA encounters key operation in credential program execution it seals key oper-
ation parameters and current state with the session key. CM triggers RSA PA
which unseals parameters, performs the operation and seals the results for Inter-
preter PA. Key attestation and application triggered key operations are handled
by Attestation PA which requires no communication with other PAs.

The operating system side CM component is implemented as a Symbian OS
server in C++. Using Symbian OS platform security framework CM can check
unique identifier of calling application for each function call. CM maintains a
database in its private directory which is not accessible by other applications
(except few trusted system components).

In our implementation, the device keys (internal and external) are generated
when the credential platform is first taken into use. The keys are created within
the TrEE and sealed using OPK for storage in CM database. When the device
keys are created, a key type tag is included to the seal. With the tag, the key
type can be determined when the key is later unsealed inside the TrEE.

In our implementation, the internal validation block (IVB) is a binary struc-
ture with fixed format, to keep the TrEE side implementation minimal. IVB can
contain up to five identifiers which are used to define credential programs, fami-
lies and AAK . A bitfield in the header defines the types of these identifiers. IVB
header also defines the key creator, usage and whether usage permission can be
updated. We have implemented the external validation block using ASN.1 for-
matting (similar to TCG SKAE [16]) to make external attestation flexible and
easy to implement. For non-interactive attestation our CM implementation can
generate standard X.509 certificate requests into which the attestation evidence
is included as an extension.

We have not yet implemented a mechanism to update key usage permissions.
Currently, key usage permissions are always defined as unchangeable at the time
of key generation.

6 Security Analysis

Based on the assumptions on the underlying hardware platform (A1) and on
the OS security framework (A2) (see Section 2), in the following we will give an
informal security analysis of our proposal.

Our design and implementation provide key usage definition (R1) for keys
generated both from within or outside the TrEE. The internal key usage per-
missions are defined in terms of credential program and family identifiers. The
external key usage permissions are defined in terms of application identifiers
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and by means of applying the application authentication tokens. Allowed key
operations are defined in Usage.

Key usage enforcement (R3) is provided in the following way: the allowed
key operations Usage and internal usage permissions are enforced by the trusted
Interpreter. Note that the Interpreter resides within TrEE. Moreover, the under-
lying hardware provides secure execution. Hence, the integrity of the Intepreter
is ensured both statically and in run-time.

In case of external usage permissions, rules defined through application iden-
tifiers are enforced by CM . Note that CM is a trusted OS-level component, and
hence its integrity is provided based on the assumptions regarding OS security
framework, so that CM can enforce the usage permission rules specified for each
credential., e.g., in EVB.

Key usage permissions update (R2) can be supported, because the key creator
can be always identified via key creator identity CreatorId included into IVB .
Also, the attestation evidence creation is not bound to time of the key generation,
thus it can reflect changes made during key life time. Possible solutions for the
key usage permissions update mechanism are discussed in Appendix B..

Attestation coverage (R4) is simply realized by including all required state-
ments into the attestation evidence. Attestation unforgeability (R5) is ensured
through the use of the device keys for attestation those are protected by the
TrEE and their genuineness is certified by the trusted device manufacturer. At-
testation freshness (R6) is guaranteed with inclusion of the challenge in the
internal attestation evidence.

Discussion on Run-Time Compromise. As mentioned in Section 2, we can-
not generally assume that the adversary cannot compromise OS-level security
framework. In this section we discuss implications of OS compromise to our
solution.

First, we consider credential program generated keys. As shown in Figure 2,
OS-level components including CM do not have access to the key properties
in unsealed form during key generation process. A compromised CM is able to
forge an external attestation for credential program generated key with false
application level usage permissions, but it does not allow CM to use the key
since the Interpreter inside the TrEE will deny the key operation invoked by the
CM for a key generated by a credential program. Internal attestation can be
trusted, since it is performed internally by Interpreter within the TrEE. Also,
a malicious CM is not able to invoke SKI usage to sign forged IVB since the
Interpreter will not use this key to sign data that originates outside the TrEE.
The external attestation evidence cannot impersonate the internal attestation
evidence since they are signed with different keys, SKE and SKI respectively.

Next, we consider application created keys. Again, a compromised CM is
able to forge external attestation evidence and specify usage permissions for
false OS-level applications. If the key usage permissions are defined in terms of
application identifiers, a compromised CM can allow key usage for unauthorized
applications. If the key usage permissions are defined in terms of AAK a com-
promised CM cannot use the key without knowledge of valid AAK . However,



Key Attestation from Trusted Execution Environments 43

one should note that if the adversary is able to compromise CM he most likely
can read AAK from the storage of the authorized application as well, and thus
use the key. Internal attestation can be trusted for application generated keys,
only if CM has been compromised after the key was generated. If CM was com-
promised before key generation, even internal attestation cannot be trusted for
application generated keys.

As a conclusion, our design and implementation can only partly address the
problem of runtime compromise of OS-level security framework10. Thus in real
life scenarios the verifier should take into account the discussed arguments and
define the trust to the attestation created by the ObC platform according to its
security policy.

7 Related Work

Trusted Computing Group (TCG) [15] has specified a mechanism called Subject
Key Attestation Evidence (SKAE) [16] for attesting TPM generated asymmetric
keys. In short, a SKAE attestation contains the public part of the attested
subject key and the platform configuration (in terms of platform configuration
register values) under which the subject key can be used, signed with a certified
and device-specific attestation identity key. A typical use of SKAE is to include
it as an extension to a certificate request; the SKAE extension proves to the
certificate authority that the subject key was created and is kept within a TPM
and specifies the application(s) that can use the key by defining the platform
configuration.

The TCG SKAE is limited to attesting which applications outside the TrEE
are allowed to use the attested subject key whereas our attestation mechanism
provides evidence on TrEE-internal key usage permissions as well. Moreover, the
TCG SKAE is a non-interactive mechanism, and thus not applicable to attesting
keys which usage setting may be updated (R2).

The work closest to ours is “outbound authentication” (OA) architecture [13]
for IBM 4758 programmable secure coprocessors. IBM 4758 is TrEE with layered
security architecture: layers 0-2 boot up the coprocessor and run an operating
system. Applications originating from different (possibly mutually distrusting)
sources can be loaded to the coprocessor and executed on layer 3. External
parties should be able to verify which of the applications within the coprocessor
performed certain operation. The OA architecture uses certificate chaining to
achieve this. Layer 0 has a root key (certified by a trusted authority) which is used
to certify higher layers. When an application is executed, the operating system
layer creates a key for the application and certifies this key. The application may
authenticate itself to an external verifier using its key.

10 It should be noted that handling runtime compromise is still an open research prob-
lem and the existing solutions such as Runtime Integrity Monitors either require
extra hardware support (e.g., [9]) or utilize virtualization technology to run the sys-
tem under inspection within a virtual machine (e.g., [2]) which is hard affordable for
mobile devices due to the corresponding overhead.
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Our attestation mechanism and OA architecture address essentially the same
problem — providing evidence on which entity within a TrEE is allowed to access
a certain key. However, our attestation mechanism supports certain features that
fall outside the scope of OA. First, the ObC architecture supports sharing of
keys between entities within the TrEE and our attestation mechanism provides
evidence on this in terms of credential programs and family identifiers. Second,
our attestation mechanism provides also evidence on TrEE external access.

KeyGen2 [11] is a proposal for provisioning of asymmetric keys to devices, such
as mobile phones. In KeyGen2 asymmetric keys are created inside the TrEE of
the client device. To enroll a key to a server, the client creates an attestation of
the key by signing it with a device key. To distinguish this attestation signature
from other signatures made with the same device key, special padding (reserved
for this use only) is applied.

The key attestation in KeyGen2 does not include information about software
that is authorized to use the key neither in terms of platform configuration (as it
is done in the TCG SKAE), nor in form of TrEE internal key usage permissions
(as in our proposal). The attestation only proves that the to-be-enrolled key was
created and is kept within the TrEE.

8 Conclusion

In this paper we have described a key attestation mechanism that allows a plat-
form to attest to a verifier key usage permissions and properties of both (internal)
programs residing in a Trusted Execution Environment (TrEE) as well as OS-side
applications outside the TrEE. We have implemented this key attestation mech-
anism and matching local enforcements as an extension to the existing on-board
Credentials platforms for mobile phones based on M-Shield secure hardware. To
the best of our knowledge, this is the first credential platform that efficiently
provides such an enhanced attestation functionality.
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elements before signing. If such an approach were used, the device key should
never sign anything else except an attestation evidence, otherwise the specific
formatting can be forged. Thus, such a solution does not scale well since may
require new device keys for other operations.

Second, the signatures can be made distinguishable by applying different
padding schemes or hashing algorithm as proposed in [11]. For example a unique
padding could be used for internal attestation signatures, another unique padding
for external attestation signatures, and standard padding could be used for nor-
mal signatures. The disadvantage of this approach is that the external verifier
is required to understand these non-standard padding schemes which can be an
obstacle for wide scale deployment.
Device Key Chaining. Another alternative would be to use certificate chain-
ing. In this approach two separate device keys would be used for signing the
attestations, but the device manufacturer would have to certify only one de-
vice key which in turn could certify the second needed device key locally on
the platform. The benefit of such an approach is that only one device key has
to be created when the device is manufactured or when the credential platform
is taken into use. The second device key can be generated and certified later,
e.g., when the device is in idle state, but before the device is used for attestation.
This approach would also scale better, if more than two device keys are needed.

Appendix B. Key Usage Permissions Update

The task of updating key usage permissions can be seen as consisting of two
subtasks: (i) to grant usage rights to new credential programs and applications;
(ii) to revoke usage rights granted before.

One alternative would be to provide the key creator the possibility to do both,
to grant and to revoke key usage permissions. In this way, lists of credential
programs and applications authorized to use the key may be freely modified by
the key creator.

Another alternative would be to provide the key creator the only possibility
to revoke key usage permissions. In this way, identities of credential programs
and applications may be excluded from the lists defined before, but new identi-
ties may not be added. In this situation, key usage permissions can be granted
via utilization of already available mechanisms: Family paradigm can be used to
grant usage permissions to additional credential programs, and application au-
thentication token can be used to grant usage permissions to new applications.

The former design solution provides better flexibility, since family identifiers
and application tokens can be added and updated by the key creator. The lat-
ter design solution is less flexible, but it does not require to ensure attestation
freshness. Indeed, if the old attestation is satisfactory for the verifier, the new
one would be also for sure accepted because it has reduced list of authorized en-
tities compare to the old version. When freshness is not required, the attestation
could be always performed in non-interactive manner, that is an advantage of
this scheme.
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Abstract. Anonymous credential systems provide privacy-preserving
authentication solutions for accessing services and resources. In these
systems, copying and sharing credentials can be a serious issue. As this
cannot be prevented in software alone, these problems form a major
obstacle for the use of fully anonymous authentication systems in prac-
tice. In this paper, we propose a solution for anonymous authentication
that is based on a hardware security module to prevent sharing of cre-
dentials. Our protocols are based on the standard protocols Transport
Layer Security (TLS) and Direct Anonymous Attestation (DAA). We
present a detailed description and a reference implementation of our
approach based on a Trusted Platform Module (TPM) as hardware secu-
rity module. Moreover, we discuss drawbacks and alternatives, and pro-
vide a pure software implementation to compare with our TPM-based
approach.

1 Introduction

Anonymous authentication (see, e.g., [13,26,22,21]) is a widely studied crypto-
graphic concept that allows to authenticate users (e.g., check authorization to
access a service) while maintaining their privacy (i.e., their identities are not dis-
closed). As an application scenario, consider an online subscription service where
users can access contents, such as a service for real-time information about stock
market prices or news. Service provider and users have different objectives, which
intuitively may seem to be in conflict: The service provider requires that only
subscribed users access the service; users desire to be anonymous because access
details are personal and sensitive information (e.g., which stocks they are in-
terested in). Anonymous authentication resolves this tension by providing both
authentication (provider’s requirement), and user privacy.

A particularly powerful means for anonymous authentication are anonymous
credential systems (see, e.g., [13,10]): Users obtain credentials from an issuer
and can use them to access (online) services from different providers, but their
communication remains unlinkable even in case the providers collude with the
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issuer. Basing on such systems, it is possible to extend classical authentication
primitives to take into account the privacy aspects of the users.

Unfortunately, the direct application of fully anonymous credential systems in
practice, e.g., for online subscription services, poses a serious problem: Dishonest
users can share their credentials with others, hence allowing a potentially very
large group of (actually unauthorized) users to access the service. With a fully
anonymous solution implemented in software, this cannot be prevented, because
users can just copy all necessary authentication data (i.e., the credential).

To some extent, this threat can be mitigated by using pseudonyms instead of
full anonymity: The service provider might detect if a pseudonym is used too
often within a short period of time and thus conclude that the credential has
been shared. As an alternative, a valuable secret (e.g., a key that is important
to the user) can be embedded into the credential such that users have to share
this secret in order to share credentials. For this to work as intended, all users of
the system need to have such a valuable secret that they do not want to share.

As we elaborate in related work below, current solutions either do not con-
sider sharing of credentials explicitly [26,21,22], they offer the possibility to use
pseudonyms [5,3,13], or they support all-or-nothing sharing [10,5].

As another solution, hardware security modules can be used to prevent users
from copying credentials. At a first glance, this approach seems to be an expen-
sive special-purpose solution with limited applicability. However, current PCs are
already equipped with a cost-effective security chip, the Trusted Platform Mod-
ule (TPM) [30]; this device implements a hardware security module specified
by the Trusted Computing Group (TCG).1 The TPM supports a cryptographic
protocol called Direct Anonymous Attestation (DAA) [8,30] that is a kind of
anonymous credential system. DAA mitigates a major privacy issue: Each TPM
is endowed with an encryption key, called Endorsement Key (EK), which is
embedded at manufacturing time and, together with its certificate, represents
a unique cryptographic identity for the TPM. DAA allows the TPM to create
anonymous signatures based on a “credential” that has been issued by a Trusted
Third Party, the DAA issuer, which must inspect the EK certificate of the TPM
in order to ensure that only genuine TPMs can obtain credentials.

Contribution. In this paper, we propose a generic framework that combines
TLS with DAA for implementing an anonymous authentication system: A hard-
ware security module is employed to prevent unauthorized sharing of credentials.

Our framework is flexible to adapt to different scenarios with different security
requirements. We provide a high-security solution based on a TPM as security
module, which prevents the sharing of authentication credentials. We also present
a pure software implementation (based on a newer version of the DAA protocol
[15]), which has better performance, but where sharing of credentials is possible
unless additional countermeasures are taken.

1 Although recent news about attacks (e.g., [24]) show that TPM chips cannot guar-
antee security against highly determined and well-equipped adversaries, they still
offer security against software attacks as much as any highly secure smart card, and
against basic hardware attacks that do not require costly specialized equipment.
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Our framework supports both full anonymity and pseudonymity, allowing for
different business models and enhancements: For instance, it can be combined
with remote attestation (a feature to report the integrity state of a platform,
supported by the TPM) to achieve an anonymous trusted channel2. We present
our solution based on OpenSSL and the TPM, with experimental results.

Related Work. Anonymous authentication is a topic extensively studied in the
scientific literature (see, e.g., [13,26,22,21]), indeed a plethora of cryptographic
protocols have been proposed. Although there exist proposals to use secure hard-
ware tokens such as smart cards for anonymous authentication (see, e.g., [21]),
to our knowledge the question of preventing clients from cloning authentica-
tion credentials has not been considered widely. However, some authors (e.g.,
in [10]) propose all-or-nothing sharing. In contrast, our proposal for anonymous
authentication is the first including detailed protocols and an implementation
that prevents cloning using widely deployed security hardware: The TPM.

Since their introduction by Chaum [13], various anonymous credential systems
have been proposed: Camenisch-Lysyanskaya (CL) [10] is of particular impor-
tance for this paper. This scheme forms the basis for all DAA schemes, and hence
also for our proposal. Variants of CL credentials based on the strong RSA3 as-
sumption [10], and based on pairings over elliptic curves [11] exist.

Recently, a credential system using strong RSA-based CL credentials, called
Idemix, has been implemented within the PRIME project [5,1]. Compared to
Idemix, we employ a hardware security module to prevent credential sharing, and
our software implementation uses a more efficient pairing-based variant of DAA
than the Idemix implementation, which is based on RSA. Moreover, Idemix’
protocols have to be executed over a TLS connection (or another implementation
of a secure channel), whereas our solution explicitly combines TLS and DAA. On
the other hand, the objectives of PRIME (and Idemix) are set in a much wider
scope than just anonymous authentication (which is the topic of this paper).

Bichsel et al. [6] present an implementation of CL credentials that uses a
JavaCard as hardware module, providing portable credentials and multi-appli-
cation support. This solution prevents credential sharing, provided the JavaCard
is secure. However, users need additional hardware (JavaCard and card reader),
whereas our solution uses TPMs that are integrated in many recent computers.

Leung and Mitchell [20] introduce an anonymous authentication protocol
based on DAA, as in our proposal, for client authentication and conventional
public key cryptography (based on X509 certificates) to authenticate the server.
However, they discuss neither copying of credentials (although by using TPMs
their solution prevents this), nor the combination with a standard protocol for a
secure channel (such as TLS). Further, they do not present an implementation.

Balfe et al. [3] propose pseudonymous authentication in peer-to-peer networks
by using DAA with TLS and IPsec, but they only sketch how such results can
be achieved. Instead, we provide a detailed design and implementation.

2 A trusted channel is a secure channel ensuring integrity of its endpoints (e.g., [18,2]).
3 The strong RSA assumption was introduced in [4].
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Finally, we note that some vulnerabilities have been found in DAA which may
lead to privacy violation (e.g., [27]), and fixes have been proposed. However,
since we focus on the design of a general framework that allows to use a generic
DAA scheme together with TLS, any strict improvement of DAA that counters
these vulnerabilities can be included in our framework, by only fixing DAA
implementation without affecting the rest of the system. Other fixes not strictly
related to the DAA core (e.g., choice of parameter values) might also require a
review of our protocols. However, our design approach (see Sect. 4) enables easy
protocol updates and flexible DAA version negotiation.

Anonymous communication is required by all schemes that are supposed to
provide anonymous authentication, otherwise information from the communica-
tion system could be used to break the anonymity of the authentication scheme.
Various solutions for anonymous communication have been proposed and imple-
mented, including mix networks [12], onion routing [19,28], and Crowds [23]. Our
proposal does not address the problem of anonymous communication, instead,
it can be implemented on top of any such system.
Structure. The remainder of this paper is organized as follows: Sect. 2 intro-
duces objectives and model of our solution, Sect. 3 provides a background on TLS
and DAA, and Sect. 4 presents our work in more details. In Sect. 5, we sketch a
security analysis, while Sect. 6 describes our implementation and experimental
results. Finally, Sect. 7 concludes the paper and mentions future works.

2 Anonymous Authentication: Objectives and Model

Requirements. A practical anonymous authentication system should satisfy
the following requirements4:

R1. (Correctness) Users with valid credentials must be able to (anonymously)
authenticate to the server.

R2. (Unforgeability) Users must not be able to forge an authentication, i.e., they
must not be able to authenticate without having obtained a valid credential.

R3. (Unclonability) Valid credentials must be unclonable, i.e. cannot be copied.
R4. (Unlinkability, or full anonymity) Unlinkable sessions must be possible.
R5. (Pseudonymity) Alternatively, it must be possible to link sessions.
R6. (Viability) All protocols should be based on well-established standards, and

implemented upon widely used software libraries and hardware components.

R4 and R5 are (mutually exclusive) privacy requirements and express the prop-
erties of anonymous authentication. A real system should be flexible and im-
plement both options, to be chosen at runtime. R1, R2 and R3 are security
requirements that, in general, should be met by any authentication scheme.
Anyway, non-anonymous ones, even if using weak credentials like username and
password, could allow to identify intrusions and misuse – e.g., by performing a

4 Note: full user anonymity (or pseudonymity) requires the prevention of traceability
at all communication layers. However, this work focuses on the transport layer only.
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statistical analysis of the accesses – and to revoke the related credentials. With
anonymous systems, instead, misuse detection is much more difficult; therefore
for an anonymous authentication scheme, R3 is mandatory while it could be
optional for non-anonymous systems. R6 emphasizes that realistic solutions must
be based on standards, otherwise it is unlikely that they are ever deployed in
practice. Further, they should allow simple retrofitting of existing applications.

Model and Overview. We give a model and high-level overview of our solution
for anonymous (or pseudonymous) authentication, based on the joint usage of
the TLS protocol and DAA (see Sect. 3). The protocols are detailed in Sect. 4.

Figure 1 presents our model: A security module M, a host H, an issuer I and
a verifier V . The user U owns a platform based on the DAA design: M carries
out the security critical operations, while H computes the more computationally
intensive ones. The service provider plays the role of I to issue credentials (Join
protocol) and of V to authenticate U (TLS-DAA Handshake). Here, we consider
client anonymous authentication only, though our design can be extended with
server anonymous authentication (e.g., for peer-to-peer scenarios).

Fig. 1. Model for anonymous authentication based on TLS and DAA

The Join protocol runs only once at time of subscription. M and H interact
with I to obtain a secret key SK, and a DAA credential CredDAA on SK.

When U wants to anonymously authenticate to a service, H engages a TLS-
DAA Handshake with V . During the execution of the protocol, M and H com-
pute a DAA signature σDAA using SK and CredDAA, binding together DAA
authentication and TLS session (see Sect. 4 for details). After successful verifi-
cation of σDAA, H and V can exchange data over the secure TLS channel.

Our framework design is flexible enough to support several DAA variants and
many designs or implementations of M. In our solution, M is instantiated by
the TCG-proposed TPM, whose design ensures that the DAA credentials are
bound to the TPM and a valid signature cannot be generated without its usage.
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3 Background

Transport Layer Security (TLS). TLS [16] is a protocol that provides a se-
cure channel (data authentication, integrity and confidentiality) between a client
C initiating the communication and a server S listening for incoming connections.
TLS is composed of several sub-protocols. In the following, we will only focus on
the Handshake, because the other sub-protocols are not affected by our proposal.

To add functionality to TLS, Hello Extensions [7,16] have been standardized:
C can propose one or more extensions and S may accept them or not. Since
Hello Extensions may deeply change the Handshake flow and affect its security,
new extensions must be defined via RFC to be validated. Furthermore, Hello
Extensions are backward compatible: By specification, S must ignore any ex-
tension it does not know. Hello Extensions are carried over ClientHello and
ServerHello messages (of limited size) in a single client-server interaction.

Supplemental Data [25] have been standardized as new Handshake messages
SupplementalData (client and server) to transmit supplemental application data
during the Handshake, for instance data useful to take authentication and au-
thorization decisions. By specification, Supplemental Data can carry multiple
data, SupplementalDataEntry, for different applications; they must be negoti-
ated through a Hello Extension, and must be processed only after the Handshake
finishes. Figure 2 shows the Handshake messages relevant for our framework.

ClientHello (with HelloExtensions)

ServerHello (with HelloExtensions),
Certificate, ServerKeyExchange,

CertificateRequest, ServerHelloDone

SupplementalData, Certificate, ...

. . .

. . .TLS Handshake continues as usual

Finished

Finished

protected application data

Client C Server S

Fig. 2. TLS Handshake with Hello Extensions and client Supplemental Data messages

Direct Anonymous Attestation (DAA). DAA [8,30] is an anonymous cre-
dential system that has been designed specifically to encapsulate security-critical
operations in a cost-effective secure hardware module. DAA offers various fea-
tures, such as linking signatures and tagging rogue participants. Here, we
concentrate on the most relevant components for our purpose.
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A DAA scheme involves the following parties: A DAA issuer I which issues
DAA credentials; a security module M (e.g., a TPM) and a host H which gener-
ate a secret key SK, obtain DAA credentials and create DAA signatures whose
correctness is checked by a verifier V . DAA consists of these sub-protocols:

– Setup: On input of a security parameter, I uses this algorithm to generate a
secret key SKI and a set of public parameters, including the issuer public key
PK I . In practical schemes, I must prove the validity of PK I . We denote by
CredI the set of PK I and such a proof of validity (this is a public parameter).

– Join: This protocol runs between I that issues a credential, and H and M
that work together to obtain this credential. M generates a secret key SK
and, supported by H, a commitment com on SK. On input of com and
SK I , I generates CredDAA, a DAA credential associated with SK. The
value CredDAA is given to H5, while SK is only known to M. In practical
schemes, M must append a proof that it is a genuine security module to com
(e.g., a TPM must include its EK certificate). In this case, I has to validate
such a proof (e.g., the EK certificate) before issuing CredDAA.

– Sign: On input of SK, CredDAA, a basename bsn (the name of V for pseu-
donymity, or the empty string for full anonymity), the verifier’s nonce nV
(for freshness) and a message m, M and H run this protocol to obtain a
signature σDAA on m. In fact, σDAA is a signature proof of knowledge demon-
strating that M and H possess a valid credential, which does not include
any information about their identities.

– Verify: On input of a message m, a candidate signature σDAA for m, a base-
name bsn, a nonce nV and the issuer public key PK I , V runs this algorithm
to return either accept or reject. Note that σDAA does not include any infor-
mation about the signer. In practical schemes, this algorithm gets a list of
rogue participants as input to avoid accepting a signature made by a rogue
M. How to deal with such a list is out of the scope of this paper.

– Link: On input of two signatures σDAA and σ′
DAA, V runs this algorithm to

return linked, unlinked or invalid signatures.

Different DAA variants have been proposed [8,9,15,14]. For our purpose [8]
and [15] are particularly relevant and will be considered in Sect. 6: The original
DAA scheme based on the strong RSA assumption – which has been specified
by the TCG and implemented in TPM v1.2 – and a recent proposal based on
elliptic curve cryptography and asymmetric pairings.6

4 Protocols for TLS-Based Anonymous Authentication

In this section, we describe our enhancement of TLS based on Hello Extensions
and Supplemental Data (cf. Sect. 3) to incorporate DAA for anonymous authen-
tication. We detail the Join protocol and the TLS-DAA Handshake, using the
5 Depending on the underlying DAA protocol, CredDAA may also be forwarded to M.

However, we omit this technical detail in the following.
6 Security flaws were found in this scheme, and a preprint of a fixed version is available

at eprint.iacr.org/2009/198. Our current implementation is based on [15].

eprint.iacr.org/2009/198
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TPM as M. I must run DAA Setup (cf. Sect. 3) before the Join protocol starts.
Usually one party, the service provider, will play the roles of both I and V .

Join Protocol. This protocol is executed only once, between U and I, to let U
obtain DAA credentials: More specifically, M will generate a secret key SK, and
H will obtain the associated DAA credential CredDAA. The latter can be used for
multiple anonymous TLS sessions with possibly distinct servers. Basically, H and
I open a standard TLS session, without modification, that is used to encapsulate
a DAA Join providing integrity and confidentiality of messages exchanged over
the network and authentication of I. We recall that in this phase anonymity is
not required (in fact, U must be often identified, e.g. to collect payments).

Fig. 3. Join protocol with a TPM as security module: a conventional TLS session is
used to protect the communication between host and issuer during the (unmodified)
DAA Join protocol. For clarity, a simplified abstract version of DAA Join is shown.

Our protocol is shown in Fig. 3 and proceeds as follows:

1. A conventional TLS session is initiated to protect all subsequent messages
from outside adversaries (i.e., attackers that cannot compromise H or I).

2. H retrieves I’s credential CredI and verifies its validity.
3. M, H and I execute the DAA Join protocol as specified by the TCG

(cf. Sect. 3). For brevity, we only show the main steps here:
(a) M, instructed by H to initiate the DAA Join, generates SK.
(b) M and H together prove to I that SK has been generated in a secure

environment, i.e. a genuine TPM (cf. Sect. 3).
(c) If the proof is correct, I issues CredDAA to H.

TLS-DAA Handshake. Our approach combines DAA and TLS protocols by
defining appropriate Hello Extensions and Supplemental Data for client authen-
tication. In our scenario, the DAA verifier V plays the role of TLS server S and
anonymously authenticates H (i.e., the TLS client C) and M.

We first give an overall description of our solution, then we detail the protocol.
H and V negotiate the usage of the anonymous authentication via TLS Hello Ex-
tensions. Then H performs a TLS client authentication using SelfCertS , an X509
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User U
TPM M Host H Verifier VClientHello (with DAAAuthExt)

ServerHello (with DAAAuthExt[nv, bsn])

Certificate[SelfCertS ]

KS ← TLS KeyGen()
SelfCertS ← X509 CertIssue(KS )

SupplementalData (with DAAAuthSupplDataEntry[σDAA])

. . .

. . .TLS Handshake continues as usual

Finished

OK ← DAA Verify(σDAA,PK I , bsn, nv,SelfCertS )

σDAA ← DAA Sign(CredDAA, bsn, nv,SelfCertS )

(bsn, nv) ← DAA Verifier Init()

unmodified
DAA Sign

CertificateRequest . . . other TLS data . . .

DAA Sign
Use SK

Fig. 4. Our anonymous authentication protocol based on TLS (cf. Fig. 2) and DAA.
For clarity, the (conventional, unmodified) DAA Sign protocol is shown without details.

certificate that must be freshly-generated (and signed by a freshly-generated key)
for each different TLS session to guarantee anonymity. Further, H and M run
the DAA Sign protocol: They compute σDAA over SelfCertS to prove possession
of credentials issued by I during Join protocol. Finally, H sends σDAA to V via
a Supplemental Data message to be verified.

Our protocol relies on the following functions as an interface to DAA7:

– (bsn, nV) ← DAA_Verifier_Init() is run by V to generate a nonce nV (used
for freshness) and the basename bsn, that can be either fixed for pseudo-
nymity, or the empty string for full anonymity.

– σDAA ← DAA_Sign(CredDAA, bsn, nV ,m) is run byH to initiate the DAA Sign
protocol with M and obtain a DAA signature σDAA on the message m.

– OK ← DAA_Verify(σDAA,PK I , bsn, nV ,m) is run by V to invoke DAA Verify.

The details of our anonymous authentication protocol are shown in Fig. 4 and
its flow is described below:

1. H starts the TLS Handshake by sending a ClientHello message containing
a Hello Extension DAAAuthExt which informs V to use DAA for anonymous
authentication. According to TLS best practices, DAAAuthExt contains a
list of supported DAA protocols (allowing for future extensions) and DAA
operation modes (full anonymity or pseudonymity).

2. V uses the function DAA_Verifier_Init to generate nV and bsn. Then, in
the ServerHello message, V sends to H the Hello Extension DAAAuthExt,
that contains the chosen DAA protocol, operation mode, nV and bsn. For full
anonymity, bsn is left empty. Moreover, V requests the TLS client
authentication by sending a CertificateRequest message.

7 For TPMs, the TCG specifies these as part of the TCG Software Stack (TSS) [29].
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3. H prepares for the anonymous authentication by generating a new key pair
KS for TLS client authentication (e.g., an RSA or DSA key pair), and issuing
a self-signed certificate SelfCertS for this key8. For full anonymity, SelfCertS
must not contain any data that might identify U ; for pseudonymity, it may
contain additional data useful to link U ’s sessions.

4. H invokes the DAA_Sign function, resulting in running the DAA Sign protocol
between H and M to obtain a signature σDAA on SelfCertS . For this, H and
M use respectively CredDAA and SK obtained during the Join protocol.

5. H sends σDAA to V in a DAAAuthSupplDataEntry carried by the client
SupplementalDatamessage, and sends SelfCertS in the ClientCertificate
message (as during the standard TLS Handshake).

6. Then the TLS Handshake continues as usual. As in a conventional TLS
session, H authenticates by computing a signature with KS over all messages
previously exchanged between H and V .

7. After the Finished messages have been exchanged, V verifies σDAA by in-
voking DAA_Verify to validate the anonymous authentication9. We assume
V has its own list of trusted DAA issuers, including the issuer’s key PK I .

In case of pseudonymity, V runs the DAA Link algorithm with input σDAA and
signatures previously received. How V handles the output of such an algorithm
is application-dependent and out of the scope of this paper.

Discussion. We chose to use Supplemental Data instead of other possibilities
(e.g., defining a new ciphersuite for TLS) mainly for flexibility reasons: Different
versions of DAA have different optional features that may require to exchange
additional data (e.g., the TCG specifications [29] offer the possibility to selec-
tively reveal attributes of the credential in which case additional information
must be exchanged). Moreover, our framework is adaptable to scenarios which
require to transport additional data between client and server (e.g., information
about the platform configuration). Finally, encapsulating the DAA signature
into Supplemental Data allows to define a specific optimization for reconnecting
to the same hostname (see Sect. 6 for details).

5 Sketch of Security Analysis

As explained in the following, the security of our solution is based on the secu-
rity of DAA and TLS. For both protocols, security proofs in (idealized) formal
models exist (see, e.g., [8,17]). In this section, we give an informal analysis of

8 It is possible to precompute and store several keys KS with their certificates SelfCertS
for use in later sessions. If pseudonymity is in use, the process can be optimized by
generating only one single KV and SelfCertV per-verifier instead of per-session.

9 The verification of σDAA is delayed until this step to comply with [25]: To prevent a
modification of the normal protocol flow, it mandates that the Supplemental Data
are ignored until the TLS handshake finishes; any action involving the data carried
by SupplementalData must be performed after the handshake is completed.
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our protocols with respect to the requirements listed in Sect. 2, based on the
assumption that DAA and TLS are secure (and are used in a secure mode).

Assumptions. For this analysis, we assume that it is infeasible for the adversary
A to compromise M. This assumption is motivated by the fact that current
TPMs provide (limited) tamper-evidence and tamper-resistance.

Moreover, we do not consider so-called relay attacks, i.e., attacks where A
poses as a man-in-the-middle between H and V and simply forwards all data
that is relevant for authentication. Note that although this allows some limited
shared use of credentials among users, it still requires (online) interaction of an
authorized M with V for each authentication. Since H could also forward all
traffic that it obtains over an authenticated link, this kind of “online sharing”
cannot be prevented by an authentication mechanism alone.

Informal Security Analysis. During the Join protocol, I must verify that
M is genuine and guarantees unclonability of credentials. With TPM, this is
done by verifying the EK certificate (cf. Sect. 3 and 4). Since the EK is unique
to a specific TPM, it is privacy-sensitive data which must not be disclosed to
outsiders. Our protocol protects via TLS the EK certificate, as all Join messages.

Our protocols fulfill requirements R1 and R2, because authentication is suc-
cessful only when the DAA signature σDAA can be verified correctly. σDAA is
used to authenticate the certificate SelfCertS used for TLS, hence it is bound to
the TLS channel. Thus, the unforgeability of DAA signatures implies that only
users with valid DAA credentials can authenticate successfully to V . Breaking
requirement R2 implies forging a DAA credential, which would also break the
security of the underlying DAA scheme.

Unclonability of credentials (requirement R3) is achieved based on the as-
sumption that A cannot attack M. When using a TPM, the DAA secret key
SK is protected by the TPM (i.e., when stored outside the chip, it is always
encrypted with a key only the TPM can access), and unless the TPM can be
attacked successfully (e.g., by hardware attacks), the secret is never disclosed to
H and thus cannot be copied. Therefore, our solution meets requirement R3.

Unlinkability (requirement R4) follows from the unlinkability of DAA signa-
tures and from the fact that SelfCertS and the corresponding key KS are freshly
generated for distinct TLS sessions and do not contain any identifying informa-
tion. In addition, no other data that allows linking is transmitted.

However, in [27], the authors discovered a weakness in the DAA protocol for
the case when I and V collude or are under the control of a single party, as
in our subscription service scenario. To fix this issue, as suggested in [27], bsn
must be chosen properly, which requires additional steps in the protocol (H must
either choose bsn , or verify that it has been formed correctly). Such fixes can be
incorporated into our solution, but are not implemented yet.

The possibility of DAA to provide pseudonymity instead of full anonymity
means that, in such case, DAA signatures can be linked to a pseudonym. This
implies that our protocols also offer pseudonymous authentication (requirement
R5) by using the same bsn for multiple authentications.
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6 Architecture and Implementation

To support a large number of applications, we chose a widely used library imple-
menting TLS and based our work on OpenSSL10 v1.0: libcrypto and libssl
have been extended to support, respectively, DAA and the DAA enhancement to
TLS. Applications not directly using OpenSSL can also be supported via local
proxy that first sets up a TLS-DAA channel, then carries data over this tunnel.

In order to put our framework11 to use, applications require very limited mod-
ifications. Moreover, legacy applications which cannot be modified may establish
an anonymous TLS channel by exploiting a legacy mode which automatically
triggers the anonymous channel and allows to set the necessary parameters via
environment variables or a configuration file.12

Software-Only Anonymous Authentication. Beside the solution described
in Sect. 4, we also offer a purely software implementation based on elliptic curves
cryptography (ECC) and pairings [15]. The main motivation for such an imple-
mentation is demonstrating the flexibility of our framework, that allows to easily
switch between different cryptographic modules (RSA-DAA based on TPM/TSS
and purely software ECC-DAA). Moreover, the pure software version allows to
analyze the impact of DAA on TLS handshake avoiding the overhead due to
the TPM (see below for details). However, a software-only implementation can-
not provide unclonability of DAA credentials. In the future, we will explore the
possibility of using a combination with other hardware and software security
mechanisms to protect the credentials.

Efficiency Aspects. We performed experiments with two HP Compaq DC7700
with Intel Core2 Duo 2.13GHz CPU, 2GB of RAM and Infineon TPM 1.2,
both running Linux (Fedora 12), using OpenSSL s_server on the server and
OpenSSL s_time on the client to measure the number of connections per second.
We remark that measures are taken from a client perspective and we are not
benchmarking the server, which is left as future work.

The TPM operations are very slow, while the software implementation per-
forms reasonably well: We can see the impact of DAA on the TLS handshake.13

In Fig. 5, we present two data sets to support the feasibility of our solution:
The number of connections per second (table on the left) and the total number
of bytes transmitted during a handshake (chart on the right). We compare TLS
without and with client authentication to the TLS-DAA channel, using the ECC
and TPM/TSS implementations.

Table on the left in Fig. 5 reports the number of connections per second for
initiating new connections (new/s) and resuming previous TLS sessions (res./s).
The DAA enhancement introduces a considerable latency in the TLS hand-
shake: The TPM is really slow, while the pure software implementation provides

10 Currently, OpenSSL implements TLS v1.1.
11 Available at http://security.polito.it/tc/daa/
12 Details of our framework architecture are available in the full paper.
13 In Appendix A of the full paper we provide timings of the DAA primitives.

http://security.polito.it/tc/daa/
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Protocol Connections
new/s res./s

TLS (no client auth.) 91.62 690.8
TLS (with client auth.) 80.23 495.3
TLS-DAA (ECC) 3.22 493.1
TLS-DAA (TPM/TSS) 0.03 456.3

Fig. 5. (Left) Number of new connections/sessions resumed per second for TLS and
DAA-TLS. (Right) Total number of bytes sent by client and server during a handshake.

reasonable timings (around 300ms for a connection) from the perspective of
a user wanting to anonymously access a service. Further, the use of TLS ses-
sion resumption guarantees almost no loss in performance for all following ac-
cesses. Indeed the number of resumed connections with the DAA enhancement
(both ECC and TPM/TSS) is close to that one for standard TLS with client
authentication.

Enhancing TLS with Supplemental Data instead of introducing a new cipher-
suite for DAA (cf. Sect. 4) allows the client, after a successful connection, to
reconnect to the same server with a full TLS handshake (using client authen-
tication with the same X509 certificate previously signed with DAA), without
the DAA overhead, i.e. recomputing the DAA signature and sending it via sup-
plemental data.14 This use of multiple connections to a single host is common
practice, e.g., by browsers to speed up the loading of web pages’ resources.15

We finally examine the amount of data transmitted during the handshake
(Fig. 5, chart on the right). This may be a relevant aspect for the deployment in
constrained environments, such as mobile or wireless sensor networks. We con-
sider a simple scenario where the client’s certificate is only 512 bytes long and no
certificate chain is transmitted. As we are performing only client anonymous au-
thentication, the amount of data sent by the server with the DAA enhancement
is almost unchanged, compared to standard TLS with client authentication. On
the client side, the TPM/TSS version implements the RSA-based DAA whose
signature is 1225 bytes long. Nevertheless, the ECC version provides a very ef-
ficient solution, as the DAA signature is only 256 bytes long in this case.

7 Conclusion and Future Work

In this paper, we designed and implemented an anonymous authentication sys-
tem combining TLS with DAA. Our system supports both full anonymity and
14 Of course, such a reconnect is linkable to the first connection.
15 Whilst HTTP/1.1 recommends to open only two connections per hostname, recent

browsers use more, e.g. 6 for Firefox 3.0 (see http://www.browserscope.org/).

http://www.browserscope.org/
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pseudonymity, and prevents credential cloning by employing a hardware security
module. We designed our framework to be flexible enough to support different
variants of DAA, as well as multiple designs and implementations of the security
module – which is instantiated by the TCG-proposed TPM in our solution. To
demonstrate the feasibility of our solution, we implemented a prototype based
on OpenSSL, and we provided two implementations for DAA: one employing
the TPM, and another as pure software implementing a more recent version of
DAA based on elliptic curves cryptography and pairings. For both, we provided
experimental data and discussed efficiency aspects.

As future work, we plan extensions and improvements of our framework. As
already mentioned, we will consider the extension of anonymous authentica-
tion to the server side (e.g., for peer-to-peer scenarios) and the coupling of our
pure software implementation of DAA with security mechanisms to guarantee
credential unclonability, with (hopefully) better performance than our current
TPM-based solution. Moreover, we are working to enhance our framework with
remote attestation to provide anonymous trusted channels. Finally, we plan an
implementation on embedded hardware (e.g. smartphones), as well as more de-
tailed benchmarking and a formal security analysis.
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Abstract. One of the central aims of Trusted Computing is to provide
the ability to attest that a remote platform is in a certain trustworthy
state. While in principle this functionality can be achieved by the remote
attestation process as standardized by the Trusted Computing Group,
privacy and scalability problems make it difficult to realize in practice:
In particular, the use of the SHA-1 hash to measure system components
requires maintenance of a large set of hashes of presumably trustworthy
software; furthermore, during attestation, the full configuration of the
platform is revealed. In this paper we show how chameleon hashes allow
to mitigate of these two problems. By using a prototypical implementa-
tion we furthermore show that the approach is feasible in practice.

1 Introduction

One of the main functionalities of the Trusted Platform Module (TPM), as spec-
ified by the Trusted Computing Group (TCG), is the ability to attest a remote
system, i.e., to verify whether the system is in a well-defined (trustworthy) state.
The TCG specified a measurement process that uses the TPM as a root of trust
and employs a measure-then-load approach: Whenever control is passed to a spe-
cific system component, its executable code is hashed and the hash is added to
a tamper-resistant storage (the Platform Configuration Registers, PCRs) within
the TPM in the form of a hash chain: the hash value of the program to be exe-
cuted is concatenated with the current values in the PCR register, the resulting
string is hashed and stored in the PCR. The content of the PCR registers there-
fore can be considered to reflect the current state of the system. In the process of
remote attestation, this state is signed and transferred to a remote entity (called
challenger), who can subsequently compare the provided measurements with a
list of trusted measurements (Reference Measurement List, RML) and decide
about the trustworthiness of the remote platform.

Research has identified several problems with the remote attestation process
as specified by the TCG. These problems include privacy [1] and scalability is-
sues [2, 3], problems with the sealing functionality [4] and high communication
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and management efforts [3]. In this paper we deal with these aforementioned
problems. Remote attestation discloses full information about the software run-
ning on the attested platform, including details on the operating system and
third-party software. This may be an unwanted privacy leak, as it allows for
product discrimination (e.g., in a DRM context a party can force the use of a
specific commercial software product before certain data is released, thereby lim-
iting freedom of choice) or targeted attacks (e.g., if a party knows that someone
runs a specifically vulnerable version of an operating system, dedicated attacks
are possible). Thus, attestation methods are required that do not reveal the full
configuration of the attested platform but nevertheless allow a challenger to gain
confidence on its trustworthiness. The second major problem of TCG attestation
is the scalability of Reference Measurement Lists [2]. The large number of soft-
ware products and versions of operating systems makes maintenance of the lists
cumbersome. For instance, [5] notes that a typical Windows installation loads
about 200 drivers from a known set of more than 4 million, which is increasing
continuously by more than 400 drivers a day. The large number of third-party
applications aggravates the problem further. Scalability of the remote attestation
process is sometimes seen as a major limiting factor for the success of Trusted
Computing [3].

In this paper, we propose novel attestation and integrity measurement tech-
niques which use chameleon hashes in addition to SHA-1 hash values or group
signatures in the integrity measurement and attestation process. Even though
this increases the computational complexity of the attestation process, we show
that the presented mechanisms increase the scalability of remote attestation,
while providing a fine-grained mechanism to protect privacy of the attested plat-
form. One construction uses chameleon hashing [6], which allows grouping sets
of software and hardware versions, representing them through one hash value.
For instance, all products of a trusted software vendor or versions of the same
software can be represented by one hash value. On the one hand, this reduces the
management effort of maintaining RMLs, and on the other hand increases pri-
vacy, as the challenger is not able to see any more the exact configuration of the
attested platform, but only the installed software groups. At the same time, the
challenger system can be assured that all running software comes from trusted
software groups. We show that the proposed system can easily be integrated into
an architecture similar to the TCG, with only minor modifications. We have im-
plemented the attestation process in a prototypical fashion and show that the
approach is feasible in practice. Finally, we show that a very similar attestation
technique can be implemented by group signatures instead of chameleon hashes
as well.

This paper is organized as follows. In Section 2 we briefly review the mecha-
nism provided by the TCG standards to measure system integrity and to perform
remote attestation. In addition, we give background material about chameleon
hashes and discuss its security. Furthermore, we discuss the problems with re-
mote attestation and outline solutions proposed in related work. In Section 3
we outline our Chameleon Attestation approach to integrity measurement and
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remote attestation and also propose an alternative using group signatures.
Section 4 provides details on our implementation, and Section 5 discusses the ad-
vantages of Chameleon Attestation and details our experimental results. Finally,
we conclude the paper in Section 6.

2 Background and Related Work

2.1 Integrity Measurement and Remote Attestation

One of the main goals of Trusted Computing is to assure the integrity of a plat-
form. This is done by measuring every entity (such as BIOS, OS kernel and
application software) using the SHA-1 hash before its execution. All measure-
ments are securely stored by extending values in a particular PCR register by a
hash chain. To allow the challenger to recompute the hash values, information
on the measured entities is stored in form of a Measurement Log (ML). To pre-
vent malicious software behavior, the TPM chip only allows to extend the PCR
registers, so that PCRs can not be reset as long as the system is running (the
only way to reset the registers is to reboot).

A practical attestation framework called IMA, an extension of the Linux ker-
nel, was developed by IBM research [2]. IMA measures user-level executables,
dynamically loaded libraries, kernel modules and shell scripts. The individual
measurements are collected in a Measurement List (ML) that represents the
integrity history of the platform. Measurements are initiated by so-called Mea-
surement Agents, which induce a measurement of a file, store the measurement
in an ordered list into ML, and report the extension of ML to the TPM. Any
measurement taken is also aggregated into the TPM PCR number 10. Thus, any
measured software can not repudiate its existence.

Signed measurements can be released to third parties during the process of
“remote attestation”. For this purpose, the challenger creates a 160-bit nonce
and sends it to the attested platform. The attestation service running on that
host forwards the received nonce and the PCR number requested by the chal-
lenger to the TPM chip, which signs the data using the TPM Quote function.
After signing, the results are sent back to the attestation service. To protect
identity privacy, only the Attestation Identity Keys (AIKs) can be used for the
signing operation. The attestation service sends the signed data together with
the ML back to the challenger. Using the corresponding public key AIKpub, the
challenger verifies the signature and the nonce, and re-computes the hash chain
using the ML. If the re-computed hash value equals the signed PCR value, then
ML is untampered. Finally, the challenger determines whether all measurements
in ML can be found in the trusted Reference Measurement List (RML); in this
case the attested platform is considered as trusted.

2.2 Chameleon Hashing

Chameleon hashing was introduced by Krawczyk and Rabin [6]. Unlike stan-
dard hash functions, chameleon hashes utilize a pair of public and private keys.
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Every party who knows the public key is able to compute the hash value on a
given message. The possession of the private key enables collisions to be created.
However, chameleon hash functions still provide collision-resistance against users
who have no knowledge of the private key.

A chameleon hash function is defined by a set of efficient (polynomial time)
algorithms [7]:

Key Generation. The probabilistic key generation algorithm Kg : 1κ → (pk,
sk) takes as input a security parameter κ in unary form and outputs a pair
of a public key pk and a private key (trapdoor) sk.

Hash. The deterministic hash algorithm CH : (pk, m, r) → h ∈ {0, 1}τ takes
as input a public key pk, a message m and an auxiliary random value r and
outputs a hash h of length τ .

Forge. The deterministic forge algorithm Forge : (sk, m, r) → (m′, r′) takes as
input the trapdoor sk corresponding to the public key pk, a message m and
auxiliary parameter r. Forge computes a message m′ and auxiliary param-
eter r′ such that (m, r) �= (m′, r′) and CH(pk, m, r) = h = CH(pk, m′, r′).

In contrast to standard hash functions, chameleon hashes are provided with the
Forge algorithm. By this algorithm only the owner of the trapdoor (sk) can
generate a different input message such that both inputs map to the same hash
value. In some chameleon hashes the owner of the private information can even
choose himself a new message m′ and compute the auxiliary parameter r′ to find
a collision CH(pk, m, r) = h = CH(pk, m′, r′). This is a powerful feature since
anyone who knows the private information can map arbitrary messages to the
same hash value.

We desire the following security properties to be fulfilled by a chameleon hash
function (besides the standard property of collision resistance):

Semantic Security. For all message pairs m, m′, the hash values CH(pk, m, r)
and CH(pk, m′, r) are indistinguishable, i.e., CH(pk, m, r) hides any infor-
mation on m.

Key Exposure Freeness. Key Exposure Freeness indicates that there exists
no efficient algorithm able to retrieve the trapdoor from a given collision,
even if it has access to a Forge oracle and is allowed polynomially many
queries on inputs (mi, ri) of his choice.

Any chameleon hash function fulfilling the above definitions and security re-
quirements can be used in our approach; our particular choice of a chameleon
hash is detailed in [7].

2.3 Group Signatures

Group signatures were introduced by Chaum and van Heyst [8] and allow a
member of a group to anonymously sign a message on behalf of the group. A
group has a single group manager and can have several group members. Unlike
standard digital signatures, signers of a group are issued individual signing keys
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gsk[i], while all members share a common group public key gpk such that
their signatures can be verified without revealing which member of the group
created the signature. This provides anonymity. However, the group manager
is assigned with a group manager secret key gmsk and is able to discover the
signer (traceability).

Basically, a group signature scheme GS = (GKg,GSig,GVf ,Open) is de-
fined by a set of efficient algorithms (for more details, we refer to [8] and [9]):

Group Key Generation. The probabilistic group key generation algorithm
GKg : (1κ, 1n) → (gpk,gmsk,gsk) takes as input the security parame-
ter κ and the group size parameter n in unary form and outputs a tuple
(gpk,gmsk,gsk), where gpk is the group public key, gmsk is the group
manager’s secret key, and gsk is an vector of n secret signing keys. The
group member i ∈ {1, . . . , n} is assigned the secret signing key gsk[i].

Group Signing. The probabilistic signing algorithm GSig : (gsk[i], m) →
σi(m) takes as input a secret signing key gsk[i] and a message m and outputs
a signature σi(m) of m under gsk[i].

Group Signature Verification. The deterministic group signature verifica-
tion algorithm GVf : (gpk, m, σ) → {0, 1} takes as input the group public
key gpk, a message m and a signature σ and outputs 1 if and only if the sig-
nature σ is valid and was created by one of the group members. Otherwise,
the algorithm returns 0.

Opening. The deterministic opening algorithm Open : (gmsk, m, σ) → {i,⊥},
which takes as input a group manager secret key gmsk, a message m and a
signature σ of m. It outputs an identity i ∈ {1, . . . , n} or the symbol ⊥ for
failure.

Join. A two-party protocol Join between the group manager and a user let
the user become a new group member. The user’s output is a membership
certificate certi and a membership secret gsk[i]. After an successful execution
of Join the signing secret gsk[i] is added to the vector of secret keys gsk.

In order to allow revocation of users, we require an additional property:

Revocability. A signature produced using GSig by a revoked member must
be rejected using GVf . Still, a signature produced by a valid group member
must be accepted by the verification algorithm.

2.4 Attestation Problems and Related Work

Integrity measurement according to the TCG specification seems to be a promis-
ing way to check the trustworthiness of systems. However, the suggested remote
attestation process has several shortcomings:

– Privacy. We can distinguish between identity privacy (IP) and configuration
privacy (CP). IP focuses on providing anonymity for the attested platform.
This problem can be solved by Direct Anonymous Attestation (DAA) [1, 10,
11].On theother hand,CP is concernedwithkeeping configurationdetailsof an
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attested platform secret, since disclosure may lead to privacy violations. Still,
the challenger system must be assured that the attested platform indeed is in
a trustworthy state. In this paper we focus on providing CP. (However, since
CP and IP are orthogonal problems, our solution can be used in conjunction
with mechanisms that guarantee IP).

– Discrimination and targeted attacks. By using remote attestation, product
discrimination may be possible. For example, in the context of DRM envi-
ronments, large operating system vendors and content providers could col-
laborate and force usage of specific proprietary software, which restricts the
freedom of choice. Furthermore, an adversary could leverage the precise con-
figuration of the attested platform and perform a specific targeted attack [12].

– Scalability. A further drawback lies in the scalability of Reference Measure-
ment Lists [2]. The TCG attestation requires the challenger to maintain a
Reference Measurement List, which contains hashes of all trustworthy soft-
ware, to validate the received measurements. Consequently, software up-
dates or patches require distribution of new hash values. For this reason,
the management overhead increases to a point where attestation becomes
impractical. Consequently, keeping these RML lists up-to-date involves high
management and communication efforts.

– Sealing. Besides remote attestation, TCG offers the ability to seal data to
the configuration of a specific platform. Again, any software update or con-
figuration change can lead to a completely new platform configuration state
and consequently hinder unsealing [4].

Sadeghi and Stüble [4] approached the above mentioned problems by the intro-
duction of Property-based Attestation (PBA). By applying PBA, the attested
platform proves that it fulfills certain semantic security requirements, called
“properties”. This way, the concrete configuration of a platform does not need
to be disclosed. However, PBA requires an extension of TPM or alternatively a
Trusted Third Party along with a Trusted Attestation Service, which is respon-
sible for translations between properties and software. Semantic attestation [13]
verifies that the behavior of a platform fulfills given particular high-level proper-
ties. WS-Attestation proposed by Yoshihama et al. [14] employs PCR obfuscation
to hide software versions; however, scalability remains a problem [15].

3 Group-Based Attestation

In this section we propose three novel attestation techniques, which are based
on either chameleon hashes or group signatures. The first and second technique
allow balancing configuration privacy with the control precision of the attestation
process and substantially decrease the overhead for maintaining RMLs, while
the third one provides more flexibility for the challenger in control precision but
offers no privacy advantage when compared with the TCG attestation.
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3.1 Chameleon Attestation I

In this section we describe a novel remote attestation approach, which makes
it possible for the challenger to decide on the trustworthiness of the attested
platform, without knowing its detailed configuration. The assumptions listed
in [2] about the attacker model are also the basis of our approach. In particular
we assume that once a measurement is stored in an RML, the corresponding
software is considered trusted; additional security mechanisms must be in place
to secure the integrity of the RML (this is out of scope of this work).

To reduce the management overhead, we propose the concept of software
groups ; according to the precise scenario, these groups may e.g. contain all soft-
ware products of the same vendor, compatible software products or all versions
of one specific software. We design the attestation process in such a way that
we assign the same hash value to all members of a software group. To achieve
this, we make use of a chameleon hash function. As mentioned in Section 2.2,
any party who knows the public key pk is able to compute the hash value for a
given message. In contrast, only the trusted instance holding the private key sk
can create collisions. Based on the idea of software groups sharing the same hash
value, we describe in the following a novel remote attestation we call Chameleon
Attestation I.

Setup phase: For each group, a trusted instance (such as a software vendor)
runs the key generation algorithm Kg to obtain a public/private key pair
(pk, sk). When establishing a new software group, the software vendor picks
for the first product contained in the new software group a random r and
makes it available to the attested platform by delivering it with the software.
Furthermore, he hashes the code m of the software with the chameleon hash
to obtain h = CH(pk, m, r); for performance reasons the SHA-1 hash value
of the software is taken as m. The obtained chameleon hash is made public in
a trusted RML. Subsequently, to add a new software m′ to the same software
group, he uses the algorithm Forge to find a new r′ so that CH(pk, m′, r′) =
h and distributes the new r′ alongside the software. Step 1 in Figure 1 (a)
shows the parameters distributed to the attested platform by a software
vendor.

Integrity measurement: On the attested platform, the operation proceeds in
a similar way as in the original integrity measurement process, see Figure 1
(a). In particular, the software is first hashed using SHA-1 (step 2). Subse-
quently, the attested platform computes in step 3 the chameleon hash value
h of the software using the public key pk and the random value r distributed
alongside the software. Since the PCRs in the TPM accept only a 160-bit
message to be extended to a particular register, the chameleon hash value
is hashed again using SHA-1 in step 4 and the corresponding information is
stored in the ML in step 5. The resulting value is finally extended to a PCR
register (step 6).

Remote attestation: The attestation process of Chameleon Attestation I is
very similar to the standard TCG attestation process. In step 1 in Figure 1
(b) the challenger sends a nonce and the PCR numbers whose content has



70 S. Alsouri, Ö. Dagdelen, and S. Katzenbeisser

to be signed by the TPM. In step 2 the Attestation Service forwards the
request to the TPM, and in step 3 the TPM signs the desired PCRs values
and the nonce, and sends them back to the Attestation Service. In step 4,
the attested platform sends the ML containing the chameleon hash values
instead of SHA-1 values. In steps 5-7 the challenger verifies the signature,
validates the PCRs values against ML, and checks the trustworthiness of
the sent measurements. Only if ML contains trustworthy measurements the
attested platform is considered trusted.
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Fig. 1. Chameleon Integrity and Attestation

Chameleon Attestation I is flexible in the sense that the granularity of the soft-
ware groups can easily be chosen to balance privacy and control precision: If
more privacy is desired, then larger software groups may be formed; on the
other hand, if distinction between different software versions is an issue, smaller
groups can be maintained. Note that the decision of how granular a group is, can
be made only by the software vendor. Without modifying the TPM, Chameleon
Attestation I supports only the static chain of trust, since the TPM itself does
not provide functionalities to calculate chameleon hashes.

3.2 Group Signatures Based Attestation

An alternative approach to improve the remote attestation process in terms of
privacy and scalability is possible by applying digital signatures, in particular
group signatures. This requires the following modifications to the integrity mea-
surement architecture:

Setup phase: We again use the concept of software groups. This time, we use
group signatures; each software in the software group has its own private sig-
nature key gsk[i], while all share a common verification key gpk. Whenever a
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new product or an update of software is published, the software is first hashed
with SHA1 to obtain h = SHA-1(SW ), where SW is the code of the soft-
ware. Then, the hash value h is signed by the private key gsk[i], i.e. σ =
GSig(gsk[i], h). The public verification key and the signature is distributed
alongside the software. Furthermore, the public keys of all trusted software
groups are stored in the RML.

Integrity measurement: Whenever a software is loaded, it is hashed with
SHA-1 and its signature is checked with the included public key using the
group signature verification algorithm GVf . If the signature is valid, the
attesting platform hashes the public key and extends the particular PCR
with the hash value of the public key of the verified software (instead of the
hash value of the software). Afterwards, a corresponding information item
containing the name of the software group and its public key gpk is stored
in the Measurement Log (ML). If any failure occurs, similar to the process
of IMA, the corresponding PCR is set to an invalid state.

Remote attestation: The remote attestation works exactly as described in
Section 2.1 up to the point where the challenger receives the answer from
the attested platform. Then, the challenger verifies the signed PCR and his
chosen nonce, validates the hash chain of the PCR against the public keys
contained in the ML and checks whether they are all listed in the trusted
RML. If all checks succeed, the system is considered trustworthy.

Using group signatures instead of chameleon hashes provides some advantages.
While in Chameleon Attestation I a revocation of chameleon hash value requires
the revocation of all group members, using group signatures allows the revocation
of specific members of the group without the need to revoke the whole group.
A second advantage lies in the ability of fitting a group signature hierarchy to
an organization structure. That is, every product realm or series could have its
own private key, while verification is performed with one single public key.

On the other hand, Chameleon Attestation I outperforms group signature
based attestation in terms of performance. While fast group signature schemes
(like [16]) need about six exponentiations for signing and verification, chameleon
hash functions require much less computations. For instance, our particular
choice of a chameleon hash detailed in [7] performs only two exponentiations.
To the best of our knowledge there exists no group signature which require less
than three exponentiations.

3.3 Chameleon Attestation II

The remote attestation proposed above can be used to mitigate the privacy
problem. However, there is a tradeoff between privacy and control precision of
the approach: as the challenger is only able to see the software groups running
on the attested system, the challenger cannot distinguish individual software
versions any more: Assume a software vendor has developed a product SWv.1
which is later updated to SWv.2 because of disclosed security vulnerabilities. By
applying the technique mentioned above, a challenger cannot distinguish plat-
forms where SWv.1 or SWv.2 is run. When using Chameleon Attestation I we
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lose the possibility to efficiently revoke certain members of a software group. A
software vendor can only declare the old chameleon hash value for the group
as invalid and publish a new one. However, this requires an update to the chal-
lenger’s RML. That is, revocation in this context means revocation of the whole
software group with all of its members and not revocation of a certain member
or even a subgroup.

In this section we show how chameleon hashes can be used to reduce the man-
agement overhead of maintaining large RMLs in scenarios where configuration
privacy is not an issue. Instead of computing chameleon hashes on the attested
platform, we can move this calculation to the challenger side. As in the system
described in Section 3.1, the manufacturer picks one chameleon hash for each
software group, publishes the hash value of each group in an RML, and sends
alongside the software random values r required to compute the chameleon hash.
On the attested system, the standard integrity measurement process is performed
(in which SHA-1 hashes of loaded executables are stored into PCRs), except that
the random values r required to compute the chameleon hashes and the SHA-1
hashes are both saved in the ML. The remote attestation process proceeds as in
the standard TCG attestation, i.e., the challenger receives the signed PCR val-
ues. Subsequently, the challenger verifies the signed PCR and his chosen nonce
and validates the contents of the PCR against the ML containing all SHA-1
values. Finally, for each entry in ML, the chameleon hash is computed to build
software groups and validated against the RML.

Applying Chameleon Attestation II makes revocation of specific software
group members easier. Unlike Chameleon Attestation I and group signatures
based attestation, the challenger himself can refuse untrusted software versions
by simply validating the SHA-1 values of these members against blacklists of
revoked or untrusted group members. This leads to more flexibility for the chal-
lenger and gives him a tradeoff between scalability and control precision.

4 Implementation

In this section we describe the changes we made to the Linux system during
the implementation of both variants of Chameleon Attestation as proposed in
Sections 3.1 and 3.3.

In order to support a trusted boot we use the Grand Unified Bootloader
(GRUB) version 0.97 with the TrustedGrub extension 1.13. All measurements
taken are stored in the Intel iTPM. As Linux distribution, we used Fedora 10 with
the kernel version 2.6.27.38. The kernel contains the Integrity Measurement Ar-
chitecture (IMA), which measures all executables and stores the measurements
in the Measurement Log (ML). For Trusted Computing support we use the Java
based jTSS in version 0.4.1. Because jTSS supports only one measurement log,
we modified it to also support reading the measurement log created by IMA. For
the remote attestation process, we implemented a Java based server and client.
jTSS is used by the server to access the functions of the TPM such as reading
PCR registers, signing PCR content, etc. The client also uses the functionalities
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provided by jTSS to verify signatures and recompute PCR contents. In addition,
a MySQL database management system was used on the client side to store the
Reference Measurement List (RML).

Implementation of Chameleon Attestation I. For the first variant described in
Section 3.1, it is necessary to calculate our chosen chameleon hash function
described in [7], denoted as CH, on the attested platform. For that reason,
we extended IMA such that the CH value is calculated after measuring ev-
ery executable. We assume that the parameters required to calculate CH are
delivered with the executable and stored. We first created a special measure-
ment list MLCH which contains the chameleon hashes of measured executa-
bles. We also modified the standard ML to store the public CH parameters
J, r, e and N . In particular, in order to store these parameters we extended the
struct ima measure entry. Afterwards, to read these parameters again from ML,
we implemented a new function in the file /security/ima/ima main.c, which is
called from the functions that are responsible for measuring executables, namely
ima do measure file and ima do measure memory. To calculate the CH value,
we created a new function in the file /ima/ima main.c, which also stores the
resulting CH value in MLCH and the SHA-1 value in standard ML. Note that
the standard ML is used only for internal purposes, whereas the MLCH is sent
to the challenger during the attestation process. For the implementation of CH
we used a slightly changed version of the RSA patch for avr32linux.

Implementation of Chameleon Attestation II. In the second variant described
in Section 3.3 we need to calculate the chameleon hash on the platform of the
challenger. We thus modify the measurement process in a way that the parame-
ters J, r, e and N are added to ML, as in Chameleon Attestation I. Furthermore,
we extended the package iaik.tc.tss.impl.java.tcs.evenmgr of jTSS such that the
new chameleon hash parameters can be read from ML in addition to SHA-1
values. To calculate the chameleon hash on the challenger side, we modified the
server such that the SHA-1 values and the corresponding new parameters can
be delivered to the challenger. We implemented the RSA based chameleon hash
function using OpenSSL on the side of the challenger to enable it to calculate
the hash value and verify it against the RML.

5 Experimental Results

In this section we show that Chameleon Attestation significantly reduces the
number of the reference measurements required to decide the trustworthiness of
the attested system. Subsequently, we discuss the performance of our approach.

Scalability. To test the scalability of Chameleon Attestation, we first created an
RML by measuring a fresh installation of Fedora 10 (kernel version 2.4.27.5), but
neglecting the content two folders: the folder /var/ which contains variable data
that can be changed or deleted at runtime, and the folder /usr/share/ which
contains the architecture-independent data. Since it is difficult in retrospect to
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Table 1. Reduction of measurements in RML

Packages Measurement Fresh installation Update Total Statistics
% Fresh % Update

installation
kernel TCG 1,820 1,816 3,636 50.1 % 49.9 %

CA 1 0 1 100.0 % 0.0 %
samba-comomn TCG 18 15 33 54.5 % 45.5 %

CA 1 0 1 100.0 % 0.0 %
samba TCG 24 26 50 48.0 % 52.0 %

CA 1 0 1 100.0 % 0.0 %
httpd (Apache) TCG 71 72 143 49.7 % 50.3 %

CA 1 0 1 100.0 % 0.0 %
...

...
...

...
...

...
...

All TCG 8,268 5,448 13,716 60.3 % 39.7 %
CA 981 37 1.018 96.3 % 3.7 %
ratio 8.5:1 147:1 13.5:1 10.7:1

group packages by manufacturer (because the package manager of Fedora does
not store information about the author/manufacturer of a package), we grouped
software products by packages and assigned each file in a package its appropriate
random r. Table 1 shows how our approach reduces the number of entries in the
RML. The table shows that we need 8,268 different entries in RML for the fresh
installation when we employ classic TCG attestation (one for each file). In the
contrast, we only need to store 981 measurements in the RML by applying our
approach (one for each package in case of grouping by packages).

To test the management overhead when updating packages, we performed
another experiment by updating the Linux distribution and its installed packages
to newer versions. For instance, the kernel is updated from version 2.6.27.5 to
2.6.27.41, the package samba-common from 3.2.4 to 3.2.15, the package samba
from 3.2.4 to 3.2.15, and the package httpd from 2.2.10 to 2.2.14. Table 1 shows
that in case of using the classic TCG attestation 1,816 new SHA-1 measurements
(49.9 % of the total measurements for the kernel) have to be distributed and
published in RMLs. Conversely, by employing Chameleon Attestation no new
measurements have to be distributed or published. For the overall distribution
and its installed packages, we only need to update 37 chameleon hashes rather
than 5,448. These hashes mainly account for newly added packages. Thus, the
management and communication effort is significantly reduced.

Privacy. The configuration privacy of the attested platform is substantially en-
hanced by the use of Chameleon Attestation I: the challenger can decide on the
trustworthiness of the attested platform without knowing the exact details of the
configuration. Since there is a tradeoff between privacy and control precision,
the scheme can be applied on different granularities: depending on the choice of
the manufacturer, software groups may encompass different versions of individ-
ual files, packages, software systems or even software of a specific vendor (see
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Figure 2). The higher the level, the more privacy can be protected; on the down-
side, less information on the platform is available, i.e., the control precision is
lower. Our approach can be easily combined with other identity privacy ap-
proaches, such as a Privacy CA and DAA.

Sealing. In a similar manner, the sealing problem can be avoided, since different
versions of the same software will have the same chameleon hash value; con-
sequently, data can be bound to this value without risking data unavailability
when updating to the next version.

Performance evaluation. To evaluate the performance of Chameleon Attestation,
we measure the timing difference compared to the standard TCG measurement
process. Our experiments were performed on a Lenovo W500 with the following
main components: Intel CPU Core 2 2.8 Ghz, 1066 Mhz FSB, a HD of 250 GB
SATA 7200 rpm, 4 GB SDRAM, Fedora 10, and kernel version 2.6.27.41.

The calculation of CH in Chameleon Attestation I (see Section 3.1) is per-
formed in the kernel space and requires 4,674 μs, while the calculation of CH in
Chameleon Attestation II (see Section 3.3) is done in the user space and requires
896 μs, i.e., the fifth of the time needed for the first variant. The calculation of
collisions takes 899 μs in the user space. All measurements were taken using the
function gettimeofday in both the kernel space and the user space. Note that
all measurements we present in this section aim at giving a gross overview on
the overhead of applying public-key schemes in the attestation process. We ex-
pect that significant performance improvements can be obtained using highly
optimized code also in kernel space.

We used bootchart1 to determine the boot time of a standard kernel, a kernel
with IMA, and a kernel with CH. While a standard kernel takes 30s to finish
booting, a kernel with IMA takes 33s and a kernel with CH takes 44s.

The times required to measure individual files give more insight into the per-
formance. Table 2 illustrates the performance of CH in the measurement process.
Obviously, the size of the measured files influences the required time significantly.
For instance, the calculation of SHA-1 of a 1 KB file takes approx. 20.1 μs, while

1 http://www.bootchart.org
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Table 2. Performance of CH depending on SHA-1 and different file sizes

Measurement method 2 byte 1 KB 1 MB

SHA-1 2 μs 20 μs 18,312 μs
SHA-1 + CH 4,677 μs 4,694 μs 22,986 μs
CH fraction 99.8 % 99.6 % 20.3 %
SHA-1 + extend 9,972 μs 9,989 μs 28,281 μs
SHA-1 + CH + extend 14,646 μs 14,663 μs 32,955 μs
CH fraction 31.9 % 31.9 % 14.2 %

measuring a 1 MB file takes 18,312.3 μs ≈ 18.3 ms. Note that the time required
to compute CH is constant, as it is only applied to a SHA-1 value. Table 2 also
gives timing measurements for the whole process of computing the SHA-1 and
chameleon hashes and extending the PCR register with the newly created hashes.
The measurements show that for a file of 1 MB 14.2% of the total time required
to extend a particular PCR is taken for computing the CH value. This percent-
age falls further when larger files are executed. Thus, we believe that Chameleon
Attestation can be implemented in current Trusted Computing platforms with
reasonable overhead.

6 Conclusion

In this paper we have considered the problem of privacy and scalability in remote
attestation, as standardized by the Trusted Computing Group. In particular,
the use of SHA-1 hashes to measure the integrity of programs and system com-
ponents creates a large management overhead; in addition, remote attestation
causes privacy problems, as the full state of the system is disclosed. To miti-
gate these problems we proposed Chameleon Attestation, where we can assign a
single hash value to sets of trusted software. By a prototypical implementation
we show that the performance overhead of using public-key operations in the
attestation process is acceptable.
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Abstract. Today’s mobile phone platforms are powerful enough to be
used as personal assistants that render and edit even complex document
formats. However, short development cycles in combination with high
complexity and extendability make these devices not secure enough for
security-critical tasks. Therefore, end-users either have to use another
secure device, or to accept the risk of losing sensitive information in the
case of a loss of the device or a successful attack against it.

We propose a security architecture to operate on security-critical doc-
uments using a commercial off-the-shelf (COTS) mobile phone hard-
ware platform offering two working environments. The first one is under
full control of the user while the second is isolated and restricted by
additional security and mobile trusted computing services.

The realizability of such an architecture has been proven based on a
’TrustedSMS’ prototype developed on top of an OMAP-35xx develop-
ment board, a hardware platform similar to many actual mobile phone
platforms. The prototype includes nearly all components required to se-
curely isolate the two compartments and implements use cases such as
SMS writing, signing, receiving, verification, and key management.

1 Introduction

Nowadays, mobile phones are the most used mobile computing devices in the
world. The Global System for Mobile Communications standard (GSM) and its
successors define a mobile telephone communication system that is used by over
4 billion people1 in over 200 countries2.

Due to the increasing bandwidth and the possibility to connect to the Internet
via GSM or UMTS, more and more devices are used as personal assistants. In
the past, tethering techniques have been used in order to connect a computer
to the Internet or a closed enterprise network. Today, the performance and form
1 http://www.bitkom.org/60614_60608.aspx
2 http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=109&STORY=/www/story/

06-13-2006/0004379206&EDATE=

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 78–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.sirrix.com
http://www.bsi.bund.de
http://www.bitkom.org/60614_60608.aspx
http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=109&STORY=/www/story/06-13-2006/0004379206&EDATE=
http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=109&STORY=/www/story/06-13-2006/0004379206&EDATE=


Towards a Trusted Mobile Desktop 79

factor of mobile devices allows users to directly view and edit even complex
document formats: End-users are able to read mail, edit documents, or browse
in the Internet while traveling.

On the one hand, the increasedflexibility and performance of modern mobile de-
vices allows users to individualize their devices, e.g., by installing additional third
party software such as iPhone Apps. However, third party software often comes
from untrusted or unknown sources and thus should not have access to security-
critical information. On the other hand, users also want to use their devices to
operate on security-critical and/or private documents, or to access restricted en-
terprise networks (e.g., VPNs). However, the increasing list of known exploits and
malicious software shows that this gap between extendable and configurable end-
user systems and high trustworthiness to operate on sensitive information cannot
be solved by today’s mobile operating systems. The reasons for the low assurance
on their security and reliability are well-known but hard to solve: Short develop-
ment cycles due to the feature pressure of the market and the high complexity of
the underlying software components are only two of them [7, 9].

However, today’s mobile processors in combination with today’s efficient mi-
crokernels [8, 17, 18] are powerful enough to execute (para-) virtualized operating
systems offering isolated working environments. Moreover, these devices provide
enough memory to run two or more operating systems in parallel, and many
state of the art mobile devices are shipped with open operating systems such
as Android or Maemo which are based on the Linux operating system and thus
provide a higher level of flexibility and configurability than the legacy operating
systems used in the past.

Therefore, it is our goal to offer on top of a COTS mobile device a trustworthy
communication and working environment that is executed in parallel to another
legacy operating system that fulfills user requirements regarding configurability,
extendability, and individualization. Both working environments are executed
on top of a microkernel-based security kernel providing different security ser-
vices and Trusted Computing technology provided by a Mobile Trusted Module
(MTM). Parts of this work have been initiated by the BSI-Project MoTrust [1].

Contribution and Outline. After a short discussion of related work in the follow-
ing section, section 3 describes the general design and the security components
required to realize the security kernel and the Trusted Mobile Desktop (TMD)
on top of an existing mobile phone platform.

Then, section 4 describes the demonstration prototype, a trusted SMS appli-
cation, that has been implemented based on an OMAP-35xx development board.
This prototype includes two virtualized Linux instances, a TrustedGUI, an Attes-
tation Service, and a Software-MTM implementation used to sign and attest SMS.

This paper concludes with an analysis of the implementation in section 5 as
well as an outlook of open issues and possible enhancements in section 6.

2 Related Work

The design and the implementation of a minimal MTM is proposed in [11]. This
work is especially to be used in the context of embedded and/or mobile systems.
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The Software-MTM implementation used in the TrustedSMS prototype has not
been optimized with the focus on resource consumption, but on an easy design
and an easy API. However, the usage of a more efficient MTM implementation
is possible.

Two MTM designs and implementations are proposed by the authors of [10].
The first MTM design uses the ARM TrustZone [4] technology to provide a
hardware-supported isolation of the MTM state and the legacy operating system.
The second proposal is the use of a smartcard as a trust anchor to realize an
MTM. In contrast, our approach uses the isolation mechanisms of the underlying
microkernel to protect the MTM state, but an adoption to one of the other
proposals would also be possible.

An isolation mechanism between security domains in a distributed IT infras-
tructure is described in [2]. The architecture proposed in this paper only provides
isolation between two working compartments executed on one mobile platform.
However, the basic idea behind the Trusted Mobile Desktop was to connect it
to an existing security-critical infrastructure. Thus, the proposed architecture
could be used to extend the Trusted Virtual Domains (TVD) used in [2] by
mobile platforms.

Several publications discuss designs and realizations of secure user interfaces,
a good overview is provided by Epstein [12]. The secure user interface imple-
mented for the proposed prototype is an embedded version of the secure GUI
of the Turaya Security Kernel [20, 21]. In contrast to, e.g., Nitpicker [14] that
allows to show different compartments on one screen, the embedded secure user
interface strictly isolates compartments using different virtual desktops and a
fixed TrustBar (see section 3.1).

3 Design of a Trusted Mobile Desktop

This section introduces the required building blocks to realize a Trusted Mobile
Desktop (TMD) in parallel to a regular operating system (see Figure 1). While,

Fig. 1. High-level architecture of the Trusted Mobile Desktop
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in general, the protected compartment can be used in a similar way to the
User Linux compartment, the main focus is to have the TMD compartment
under control of the organization the TMD is connected to. In an enterprise
environment, e.g., the TMD compartment would be connected to the internal
enterprise network if allowed by the enterprise’s security policy. Moreover, the
enterprise’s security policy defines the allowed information flows between user
compartment and TMD compartment. This way, the Trusted Mobile Desktop
compartment can be seen as a part of the enterprise’s network.

The resulting architecture includes a mobile version of the Turaya Security
Kernel (which will be introduced in subsection 3.1), different security-critical
Turaya services, as well as the “Trusted Mobile Desktop” compartment and the
“User Linux” compartment.

3.1 Turaya Security Architecture

Turaya is a security architecture providing strong isolation and multilaterally se-
cure policy enforcement of legacy applications [3, 21]. As illustrated in Figure 1,
a Turaya-based security architecture consists of three layers: (i) an Embedded
Hardware Layer, including conventional components such as memory and CPU;
(ii) the Turaya Security Kernel, including a Hypervisor Layer and a Trusted Soft-
ware Layer; (iii) applications and legacy operating systems that are executed in
parallel and isolated from each other.

Hypervisor Layer. The Hypervisor Layer of the Turaya Security Kernel acts
as a traditional Virtual Machine Monitor (VMM) by managing the hardware re-
sources and providing basic virtualization support. Due to the modular concept
of the Turaya architecture, different VMMs and microkernels can be used. Here,
the PikeOS microkernel P4 is used [8], which has been ported to the ARM-
based hardware target within the Trusted Embedded Computing (TECOM)
project3. On top of the P4 microkernel, fundamental services dedicated to re-
source management are executed. These include services for the management
of processes, memory, interrupts, as well as those providing device drivers and
enforcing system-wide security policies. Depending on the used security associ-
ations of the Turaya Security Kernel, the Hypervisor Layer enforces the com-
munication policies between isolated partitions. This is achieved by providing
unidirectional communication channels between the corresponding entities. Ac-
cess to these channels is only permitted to the assigned partitions thus enabling
a system wide information flow control enforced by the microkernel.

Trusted Software Layer. The Trusted Software Layer is located directly above
the Hypervisor Layer and provides high-level security services, such as a se-
cure user interface (TrustedGUI) or a file encryption service. Turaya services as
well as user processes and virtualized operating systems are isolated in so-called
compartments based on a mandatory security policy.

3 See http://www.tecom-project.eu

http://www.tecom-project.eu
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The provided security services are explained in the next subsections.

Secure User Interface. A secure user interface [12, 13, 15, 23] is an essential
prerequisite of the trustworthiness of the Trusted Mobile Desktop. The embedded
version of a secure GUI, called ’m-gui’, is a slightly adapted version of its desktop
pendant, the TrustedGUI [21]. The m-gui is a native Turaya service providing a
trusted path to users.

Fig. 2. Screenshot of the m-gui control center showing buttons for the available
compartments

In order to ensure that only the m-gui has access to the physical graphic
memory, each compartment receives its own virtual isolated framebuffer to be
used for graphics output. Due to the isolation of memory regions enforced by
the microkernel, different kinds of attacks, e.g., “Overlaying Attacks” where a
password dialog window is overlayed by a fake window to retrieve the user input
are prevented.

The actual graphic resolution of the framebuffer is reduced by a small region
that is explicitly used by the m-gui to show a trusted status bar (TrustBar).
This TrustBar is under full control of the m-gui and indicates the currently
active compartment. Since the information displayed in the TrustBar cannot
be modified by the client, “Look-Alike Attacks”, where an application looks
like another one, can be identified. Additionally, further information about the
compartment’s trust state is shown by the TrustBar using colors. An accessory
icon symbolizes the trust state, in case one cannot distinguish between the colors
red and green.

Furthermore, the m-gui realizes a secure input channel between a compart-
ment and the user by controlling the input hardware and forwarding user inputs
only to the active compartment. This allows users to always identify the current
communication endpoint of their inputs (such as passwords).

The m-gui offers different ways of switching the focus of the currently dis-
played compartment. The m-gui main screen (cmp. Figure 2) shows buttons for
each registered compartment, i.e., it is possible to select the compartment by
clicking on the button. Moreover, the TrustBar shows the title of the currently
active compartment and provides a button in the upper left corner to return to
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the main overview screen of the m-gui4. In addition, the m-gui allows to iterate
through the available compartments by clicking onto the TrustBar.

Attestation Service. The Attestation Service provides to the application layer
interfaces for key management and remote attestation. For this purpose, the
Attestation Service internally uses the Mobile Trusted Module to manage cryp-
tographic keys and to attest the security kernel and application-level compart-
ments. However, the application interfaces are kept general enough to be able to
support alternative hardware security modules.

In the context of the TrustedSMS prototype introduced in section 4, for exam-
ple, the Attestation Service manages the signature key to sign the SMS and the
Attestation Identity Key to perform remote attestation. Further, the Attestation
Service creates a platform certificate, called trust state, uniquely identifying the
state of the signing platform in order to allow external entities the verification
of the platform state, the configuration of the TrustedSMS application, and the
signed SMS. The invoked commands of the MTM include a quote over the Plat-
form Configuration Register (PCR) values of the MTM. The Attestation Service
is also used to manage public keys required for verification of incoming data.

MTM. The Mobile Trusted Module is a trust anchor defined and specified by
the Trusted Computing Group (TCG) [19]. It can be seen as a specialization of
a Trusted Platform Module (TPM) [25], coping the needs for mobile devices. In
contrast to a TPM, an MTM can be realized as a software component, in this
case a dedicated MTM service running in a separate compartment. The MTM
command set is extended in a way to fulfill the requirements of local parties as
well as external parties such as mobile device vendors, software, or - in case of
mobile phones - network providers.

Within the Trusted Mobile Desktop, the MTM is used for different pur-
poses: Firstly, it is used to verify Reference Integrity Metrics (RIM) certifi-
cates of trusted compartment to realize “Secure Boot” based on the command
MTM VerifyAndExtend. Secondly, the MTM is used to attest to a remote entity
a compartment configuration including the underlying security kernel. Thirdly,
the MTM is used instead of a smartcard to create, manage, and operate on
cryptographic keys.

In order to ease the usage of the MTM, an embedded Trusted Software Stack
(eTSS) [16, 24] for embedded devices has been developed. The eTSS is an object-
oriented implementation of a TCG Software Stack (TSS) and is compatible with
the TCG’s TPM specification version 1.2. Furthermore, it supports new features
from the current TCG’s MTM specification version 1.0.

VPN Client. The network encryption module of the Turaya Security Kernel re-
alizes VPN tunnels using the remote attestation functionality of the Attestation
Service. It establishes a so-called trusted channel [5, 22] that links a secure VPN
connection to the result of a remote attestation of the underlying Turaya sys-
tem and the according Trusted Mobile Desktop. This way, remote communication
4 Note: The button is not present in the m-gui overview screen.
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partners can derive the trustworthiness of the compartments that want to estab-
lish a connection, e.g., to the enterprise server. The used protocols can also be
combined with Trusted Network Connect (TNC) technology as specified in [26].

File Encryption. The file encryption service acts as a virtual file system by
offering a file system interface to the Trusted Mobile Desktop. This enables the
usage of the persistent file system provided by the (untrusted) User Linux to
permanently store the encrypted files. The use of such a trusted file encryption
service has several advantages:

– Permanent changes of the TMD compartment are not required. This allows
to mount the TMD image read-only.

– The available storage can be used more efficiently, since it does not have to
be split into a secure and an insecure part.

– Users can operate on the encrypted files as usual, e.g., they can send or store
them using different untrusted services such as Bluetooth, USB, or backup
clients.

The file encryption module uses the Mobile Trusted Module to bind the mas-
ter encryption key to the configuration of the TMD. This way, a manipulated
Trusted Mobile Desktop cannot access the encrypted data.

3.2 User Linux

The User Linux represents the common working environment of the user, e.g.,
a MAEMO5 or Android6. Due to the strict isolation of security-critical applica-
tions (e.g., the Attestation Service and the Mobile Trusted Module), no security-
related harm can be done to the system by malicious software or bugs.

The main benefit from the isolation is that users can have full control over
their User Linux, that is, they can install any software and configure the whole
(untrusted) working environment to their needs. However, access to critical in-
formation, e.g., to enterprise-related documents, will not be possible.

3.3 Trusted Mobile Desktop

In parallel to the User Linux compartment, another virtualized and isolated
Linux operating system is executed. The Trusted Mobile Desktop includes soft-
ware that is typically used in business environments, such as an Email client, an
SMS messenger, and/or a VoIP telephony software.

The Trusted Mobile Desktop can indirectly use services offered by the User
Linux via trusted modules of the Turaya Security Kernel. For example, it can
access the network through the VPN module, and access the User Linux file sys-
tem through the file system encryption module. However, the underlying security

5 http://www.maemo.org
6 http://www.android.com

http://www.maemo.org
http://www.android.com


Towards a Trusted Mobile Desktop 85

Fig. 3. Screenshot of the User Linux

policies enforced by the Turaya Security Kernel ensure that a direct communi-
cation between the User Linux and the Trusted Mobile Desktop is impossible.

During startup of the TMD, the Turaya Security Kernel measures the TMD
image and stores the result into the MTM. Since all user data is stored outside
of the TMD using the file encryption module, the TMD image can be mounted
read-only.

4 Prototype Implementation: TrustedSMS

For evaluation purposes of the concept of a Trusted Mobile Desktop, a proto-
type has been developed based on an OMAP-35xx development board7. The
prototype is capable of sending and receiving SMS messages by using the se-
curity services provided by the Turaya Security Kernel. Figure 4 illustrates the
corresponding high-level architecture of this demonstrator.

Fig. 4. Architecture of the TrustedSMS Demonstrator

7 http://www.mistralsolutions.com/products/omap_3evm.php

http://www.mistralsolutions.com/products/omap_3evm.php
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Fig. 5. Screenshot of the TrustedSMS application indicating the different trust states
of an SMS

In contrast to the TMD design discussed in section 3, the TrustedSMS pro-
totype is realized by a native application running on top of the underlying mi-
crokernel. The Attestation Service and the Software-MTM, however, are in this
prototype realized based on an isolated Linux kernel.

Due to the trusted path concept of the m-gui, all user inputs (here coming
from a touchpad) will directly be forwarded to the TrustedSMS application,
when it has focus. Additionally, the TrustedSMS application uses Inter-Process
Communication (IPC) mechanisms8 to communicate with the necessary security
services required for signing, verifying, and attesting the SMS.

The TrustedSMS application makes use of the Attestation Service and the
MTM in two ways: Firstly, the cryptographic key used to sign the SMS is stored
within the MTM and bound to the configuration of the security kernel and the
TrustedSMS application itself. Secondly, the public part of the signature key is
certified using the TPM CertifyKey command to enable remote parties to check
the trustworthiness of the security kernel and the TrustedSMS application.

It was also planned to realize secure boot based on the M-Shield functionality
[6] of the base board together with the MTM VerifyAndExtend functionality
of the MTM. However, the M-Shield functionality is disabled on all available
development boards. Therefore, the current prototype does not include a Root
of Trust for Verification (RTV) and thus cannot fully implement secure boot.

The TrustedSMS application itself does not include support for accessing the
GSM stack. Instead, it uses the communication mechanisms offered by the User
Linux. This is possible, since the User Linux neither has access to the signature
key, nor to the display used to indicate the result of the signature verification
process.

A screenshot of the current TrustedSMS implementation is shown in Figure 5.
The TrustedSMS application is running in its own virtual framebuffer. The trust
state of the application can be seen in the TrustBar in the upper area of the
display, the TrustedSMS application itself can only access the area below that
bar. The main application screen consists of five areas: The grey TrustedSMS

8 By using PikeOS as a microkernel, this is realized by creating unidirectional channels
between dedicated ports of the according partitions. In order to setup the commu-
nication channels, one has to connect two ports (one of each partition) in a static
channel list before building the software image, thus a manipulation at runtime is
impossible.
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status bar (1) in the upper screen (right under the TrustBar) displays current
activities and additional information. The white input box (2) below is used
as an editor / displaying window. Directly in the middle of the window is an
SMS status bar (3) indicating the trust state of the currently displayed SMS.
Due to the positioning in the middle of the screen, the trust state is always in
the focus of the user. The last two sections contain a virtual keyboard (4) as
well as buttons (5) for the according functionalities provided by the TrustedSMS
application (e.g., to sign or verify an SMS).

In the following, we describe the implemented use cases of the TrustedSMS
application:

4.1 Sending SMS

Figure 6 describes the internal communication between components to imple-
ment the “Send SMS” use case.

Fig. 6. Sequence of sending a signed SMS within the Trusted Mobile Desktop prototype

Assuming a user wants to send a secure SMS, he can switch the focus to
the TrustedSMS application by selecting the TrustedSMS button on the m-
gui overview screen. Within the TrustedSMS application, a click on the “new”
button allows the user to insert the message. As soon as he is finished, the entered
SMS can be signed by clicking on the “sign” button. The TrustedSMS application
will now send the SMS to the Attestation Service, which itself will invoke the
Mobile Trusted Module in order to load an Attestation Identity Key (AIK)
and sign the SMS. Afterwards, the signature is returned to the TrustedSMS
application and can be verified manually by pressing the “verify” button.

After pressing the “send” button, the user has to enter the telephone number
and acknowledge it with the “send” button, which will finally send the SMS
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along with the signature to the User Linux. A daemon inside the User Linux will
receive the SMS and send it via the GSM network to the dedicated recipient.

Typically, an SMS can contain up to 160 7-bit characters, 140 8-bit characters,
or 70 16-bit characters (including spaces). The signature scheme used in this
prototype is TPM SS RSASSAPKCS1v15 SHA1. In case a 512-Bit key is used,
a 64-Byte signature is generated leaving about 70 Bytes for the actual SMS. In
case a user requires more SMS space, the current GSM specification allows the
sending of multiple, concatenated SMS (currently up to ten SMS). The usage
of a signature key with 2048-Bit produces a 256-Byte signature, which would
implicitly require to send at least two SMS.

4.2 Receiving SMS

Figure 7 shows the required steps to implement the “Receive SMS” use case.

Fig. 7. Sequence of verifying a received trusted SMS within the Trusted Mobile Desktop
prototype

As soon as an incoming SMS is detected, it is transmitted from the User
Linux to the TrustedSMS application. This will invoke the Attestation Service
for a verification process. The Attestation Service will first browse its local key
storage to check for a matching public key. In case a key is found and the
SMS was successfully verified, the SMS will be displayed within the TrustedSMS
application and the trust indicator bar will switch to green. In case no public
key was found, but a public key was sent along with the SMS, the SMS will
be displayed with a warning, that the public key is unknown and the SMS
therefore is not trustworthy. In case the incoming SMS does not match the
attached signature, the trust bar will turn red and display an error message.
The SMS itself will not be displayed.

4.3 Public Key Import

In order to verify signed SMS created by a remote peer, the TrustedSMS ap-
plication provides functions to import the corresponding verification key. The
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Fig. 8. Sequence of importing a public key

public key is received via an untrusted SMS, thus it needs to be verified before
it will be imported.

Figure 8 describes the required steps to implement the “Import Public Key”
use case. As soon as a public key is received, it is transmitted to the TrustedSMS
application, which itself will invoke the Attestation Server to verify the public
key. In case a platform certificate including the current configuration of the
remote peer has also been received, it is compared against valid reference values.
Afterwards, the origin of the public key and its fingerprint are displayed to
the user, along with the verification result of the remote platform. If the user
is willing to accept the public key, he can assign a name to it and click on
an “import” button, which will store the public key. In the current prototype,
the imported public keys are stored within the Attestation Linux, such that
the Attestation Server can directly access the public keys without interacting
with the TrustedSMS application during the verification process. This has the
additional benefit that the TrustedSMS application does not require a persistent
storage and is therefore read-only.

However, in order to enhance the usability, a full-featured key management
component handling the mappings between human-readable names, telephone
numbers, and public keys is required. In order to keep the TrustedSMS applica-
tion (and thus the TCB) small, the management can be outsourced into either
a native application with persistent and secure storage or into the User Linux.
The latter would allow to re-use the already existing addressbook of the user
by adding the public key information as payload. However, due to the security
impact of this task, the stored information needs to be integrity-protected. One
way of achieving this is to have the TrustedSMS application setup the map-
ping between a public key and the according user and have it signed by the
Software-MTM through the Attestation Service. The resulting signed mapping
can then be stored inside the addressbook of the user inside the User Linux.
Upon reception of a signed SMS, the corresponding public key is retrieved from
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the addressbook of the user. First, the signature on the key mapping is verified
followed by the verification of the signed SMS.

4.4 Resource Considerations

Due to the limited resources of the target OMAP-35xx platform, resource restric-
tions needed to be taken into account during the development of the prototype
presented. The used hardware target has 128MB RAM and is running with
600MHz. The executed software is isolated in five individual compartments:

1. System Software Partition: The PikeOS system software is installed in
a special system partition with highest privileges. The executed code has a
size of 292kB for system software, network drivers and a debugging console.

2. Turaya Partition: This partition contains the m-gui. The executed code
inside this partition has about 1MB, containing of the actual m-gui appli-
cation, the LCD- and touchpad drivers for the OMAP board as well as the
background images and a small widget library to draw text and buttons
on the screen. The memory consumption of this application is depending on
the maximum amount of concurrent clients. Each client of the m-gui requires
about 0.5 MB RAM for its virtual framebuffer.

3. Attestation Partition: The first Linux instance is running in this partition.
On top of it, the Software-MTM and the Attestation Service are executed.
The executed code in this partition has a size of 2.4MB for the Linux kernel
+ 3MB Software-MTM + 1MB Attestation Service.

4. TrustedSMS Partition: The TrustedSMS application runs within this par-
tition. The size of the executed binary is 590kB, consisting of the TrustedSMS
application, required figures and a small widget library to draw text and but-
tons on the framebuffer.

5. User Linux Partition: The last partition contains the User Linux. All the
remaining resources are assigned to this partition.

5 Analysis

This section analyses the impact of possible threats to the TrustedSMS applica-
tion. Further, it is argued how the introduced architecture prevents them.

– The content of the SMS is changed without the knowledge of the user, before
the SMS is signed by the user.
One possible way to execute this attack is to undetectably modify the Trust-
edSMS application on the mobile client. This is prevented in our prototype,
since the corresponding signature key can only be used by an unmodified
TrustedSMS application. Another way to perform this attack is intercept-
ing user inputs in order to send fake keystrokes to the application or, more
generally, internally modify the message while in transit between processes.
This attack is prevented due to the strong isolation of communication paths
by the underlying microkernel as well as the trusted path between the m-gui
and the TrustedSMS application.
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– The displayed content of the SMS deviates from the actual content of the
SMS.
This attack is eliminated by the usage of a secure user interface, such as the
m-gui, provided by the underlying security layer.

– An SMS is generated, signed, and sent by an untrusted application.
In order to eliminate this attack, two security measures are in place. On
the one hand, an untrusted application does not have the permission to
communicate with the Attestation Service and the Mobile Trusted Module.
Further, the cryptographic key material used for generating the signature is
not accessible from outside. Therefore, even if an attacker is able to launch
an untrusted application, it will not be able to generate a valid signature on
the SMS, since it has no access to the key material.

– A secure SMS is generated by a malicious application sending keystrokes to
the TrustedSMS application.
This attack is avoided by strongly isolating the keypad from other functions
by the usage of a trusted path between the m-gui and the TrustedSMS ap-
plication. This way, even if the untrusted mobile phone’s operating system is
compromised, it cannot send malicious inputs to the SMS editor application,
since the input device is explicitly owned by the m-gui and therefore isolated
from the User’s operating system.

– The displayed result of the signature verification deviates from the actual re-
sult of the verification.
By strongly isolating the verification process from the mobile phone’s un-
trusted operating system and by using the m-gui provided by the underlying
security layer, this attack can be prevented.

– The underlying security kernel is maliciously or accidentally modified.
By using mechanisms such as trusted boot or secure boot on an embedded
platform, it is possible to measure and verify each security-critical applica-
tion before execution. In case the verification fails, the application is not
executed. Moreover, the platform certificate created by the MTM allows re-
mote parties to derive the trustworthiness of the TrustedSMS application in
use.

The threats for signature generation and verification can then be derived into
the following security requirements:

i Trusted path to the TrustedSMS application.
ii TrustedGUI for displaying the content of the SMS editor application.
iii TrustedGUI for displaying the content of the SMS signature application.
iv Strict isolation of the Attestation Service and the Mobile Trusted Module

from other running applications.
v Strict isolation of the keypad input driver from other running applications

while enforcing a strict communication scheme with software entities.
vi Platform integrity checks during startup.
vii Secure Storage of cryptographic keys.

As argued above nearly all requirements (except a full implementation of secure
boot) are already implemented by the TrustedSMS prototype.



92 M. Selhorst et al.

6 Outlook and Conclusion

In this document, we have proposed a security architecture allowing end-users
to view and to edit security-critical documents using a commercial off-the-shelf
(COTS) mobile phone hardware platform. The general idea behind this architec-
ture is to split the operation software into two compartments, one compartment
under full control of the user and another isolated and restricted compartment
for security-critical tasks.

Such a design allows users to operate on security-critical documents, e.g., in a
business environment, but still provides an untrusted working environment that
can be configured by users according to their needs. In our opinion, such a design
increases the acceptance of security-critical mobile devices, especially because it
supports actual mobile phone hardware.

The complexity of the Trusted Mobile Desktop compartment has been reduced
by replacing many operating system services (such as the file system, the network
stack, and the GSM stack) by a small encryption layer of the security kernel
that reuses untrusted services of the User compartment. In this context, the
underlying security kernel ensures that the User Linux cannot access code and
data outside of its own environment. Moreover, the Trusted Mobile Desktop
can be mounted read-only, measured using a cryptographic hash function, and
remotely attested using the provided MTM functionality.

We have proven the realizability of our design based on a TrustedSMS proto-
type developed on top of an OMAP-35xx development board, a hardware plat-
form similar to many actual mobile phone platforms. The realized TrustedSMS
prototype implements the most important use cases, such as SMS writing, SMS
receiving, and key management, and includes nearly all components required
to securely isolate the User Operating System and the Trusted Mobile Desktop
from each other, including a TrustedGUI, an Attestation Service, and a Software-
MTM. Several extensions of that prototype are already under development or
will start in the near future:

– First of all, the TrustedSMS application will be replaced by a shrinked Linux
compartment, the Trusted Mobile Desktop, executing existing communica-
tion software such as an Email-client and a web browser. Since the existing
prototype already includes a second Linux instance, this enhancement will
be finished in the near future.

– Another task currently under development is the implementation of the At-
testation Service and the MTM as native applications such that the underly-
ing Linux kernel can be removed. This step will heavily reduce the complexity
of security-critical components of the Turaya Security Kernel.

– Furthermore, we are looking for a development platform providing a working
Root of Trust for Verification (RTV) allowing the realization of secure boot
based on the MTM functionality.

– Finally, it is planned to port the existing prototype in the near future to
an existing mobile phone – allowing an evaluation of the resulting Trusted
Mobile Desktop in a realistic environment and by normal end-users. Devices
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currently under consideration are the Google phone HTC G19 and the Nokia
N90010. Based on the underlying hardware, it will also be decided whether
the User Linux will be based on Android or Maemo.

Our experience with the development based on the OMAP-35xx board has shown
that a good vendor support and documentation drastically reduces the required
efforts to develop such a solution. Therefore, the platform decision will mainly
be based on the offered support and the availability of documentations and
specifications.
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Abstract. Product piracy has become a serious threat for automation
and mechanical engineering in recent years. Therefore effective protec-
tion measures are desperately needed. Especially the software has to
be protected since it determines the machine’s functionality and with-
out software the machine (and the imitations) cannot work. Thereby
it has to be prevented that software can be copied from one machine
to another and that it can be manipulated in order to activate addi-
tional machine functionalities. Moreover the unauthorized replacement
of software-equipped machine components must be prohibited. This can
be achieved by applying Trusted Computing and TPMs to this new field
of application.

Keywords: Product Piracy, Automation, Mechanical Engineering,
Trusted Computing, Trusted Platform Module (TPM).

1 Introduction

Product piracy is a serious problem today not only for the consumer goods in-
dustry but also for the capital goods industry. The mechanical engineering and
automation field for instance is highly affected by piracy, covering the imitation
of spare parts and the reproduction of complex plants. Product piracy leads to
an immense loss of sales and profits for machine manufacturers, to the loss of jobs
and the insolvency of whole companies in the worst case. This is why effective
countermeasures against product piracy in mechanical engineering are desper-
ately needed that prevent—or at least complicate—the production of imitations
and pirate copies.

Nowadays machines consist of hardware and software and both have to be pro-
tected against piracy. Since the machine depends on the software and without
software the hardware (i.e. the mechanics) cannot work, it is especially important
to protect the software. This holds particularly since many machine manufac-
turers sell different machine variants in different prize categories on the market
concurrently, which sometimes differ only in the software that runs on them. In
this case the machine’s functionality is only determined by software and not by
hardware and thus it has to be prevented that one can copy the software from
a more expensive machine variant to a cheaper one.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 95–108, 2010.
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Furthermore it has to be prevented that software-equipped machine com-
ponents are exchanged without permission e.g. for imitated ones. It must be
achieved that the machine “behaves” only in the intended manner after it has
been sold and delivered i.e. that it only works if its hardware/software-configu-
ration has not been changed illegally.

By applying Trusted Computing (TC) and Trusted Platform Modules (TPM)
to automation and mechanical engineering, these goals can be achieved and ef-
fective protection measures against product piracy can be implemented as de-
scribed in Section 4. Trusted Computing was primarily intended to be used in
general-purpose computing systems like desktop PCs, laptops and mobile de-
vices, and a lot of work has been done in this area in recent years. The related
work covers e.g. an architecture that enables arbitrary applications to perform
remote platform attestation, allowing them to establish trust based on their cur-
rent configuration, as proposed in [1]. In [2], approaches for mobile TPMs have
been introduced since in contrast to common TPMs, TPMs for mobile platforms
do not need to be implemented as microcontrollers, leading to different security
assumptions. In [3] the use of TPMs in embedded systems is described in detail.
This is quite different from its use in ordinary PC environments as described in
Section 3.

The application of Trusted Computing and TPMs to industrial environments
like mechanical engineering and automation is a new field of application and
is thus challenging (see Section 3). The ordinary applications of TPMs for
general-purpose computing systems do not apply here due to different hardware
platforms and specific constraints. In the following, several approaches will be
introduced how Trusted Computing and TPMs can be applied to this field in
order to prevent product piracy.

The remainder of this paper is organized as follows: in Section 2 an overall
introduction to Trusted Computing is given, including its aims, benefits and
criticism. Section 3 outlines the challenges of using Trusted Computing in me-
chanical engineering. In Section 4 the implementation of several protection mea-
sures against product piracy is introduced that achieve the desired protection
goals, machine manufacturers have today. Finally Section 5 briefly concludes the
paper.

2 Aims and Criticism of Trusted Computing

The Trusted Computing (TC) concept was developed and promoted by the
Trusted Computing Group (TCG), an international not-for-profit industry stan-
dards organization of leading hardware and software manufacturers, including
AMD, HP, IBM, Microsoft, Infineon, Intel, Sun Microsystems et al. Its aim is to
increase the security and trustworthiness of IT-systems. “Trust” in the TCG’s
terminology means “the expectation that a device will behave in a particular
manner for a specific purpose” [4].

The basic element of Trusted Computing is a special crypto-chip, the so called
Trusted Platform Module (TPM), which is usually mounted on the mainboard
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of a computer platform and fulfills several cryptographic functions. Due to its
integrated hardware random number generator it can be used e.g. to generate
random keys for the (symmetric) encryption of data. Moreover it can generate
pairs of keys for asymmetric RSA [5] encryption and securely store these keys.

By the use of a TPM data can be bound to a specific platform by encrypting
it with a key stored in the TPM so that it can only be decrypted by this specific
TPM. Moreover the encrypted data can be bound (“sealed”) to a specific TPM
“state” which corresponds to a specific hardware/software-configuration of the
platform. Therefor “measurements” of the configuration are taken by computing
hash values of the program code and storing them in special registers of the
TPM, the so called Platform Configuration Registers (PCR). The contents of
these registers are then incorporated into the sealing-operation. In doing so, the
encrypted data can later only be decrypted if the hash values in these registers
are the same as during encryption.

The Trusted Computing concept has been highly controversial ever since its
development. Those critics and opponents object that it was intended to be used
by device and software manufacturers to enforce software usage rights, to control
the user and to achieve monopolization. Many users feared that they could be
controlled and supervised e.g. when surfing the Internet with a TPM equipped
device since it would be possible to unambiguously identify a platform (and thus
also the user if the hardware platform is always used by only one user) due to
the TPM’s unique Endorsement Key.

In cases where privacy and anonymity play an important role for the users
(e.g. when surfing the Internet for private purposes) it is important to protect
their right to “informational self-determination” which belongs to the German
data privacy law. This right states that “[...] in the context of modern data pro-
cessing, the protection of the individual against unlimited collection, storage, use
and disclosure of his/her personal data is encompassed by the general personal
rights of the [German Constitution]. This basic right warrants in this respect
the capacity of the individual to determine in principle the disclosure and use of
his/her personal data. Limitations to this informational self-determination are
allowed only in case of overriding public interest.” [6].

Hence the user concerns and critics about Trusted Computing in regard to
privacy are indeed comprehensible, but they do not apply to industrial envi-
ronments like mechanical engineering and automation, in which software and
devices are used for production and not for private purposes. Beyond that ma-
chines are often not connected to the Internet. Machines are no multi-purpose
devices (like desktop PCs, laptops etc.) but they are usually designed for one
purpose only and it is not intended to change this purpose afterwards. Hardware
and software of machines today are usually developed by the same manufacturer
and they are designed to work only in conjunction. Thus an inseparable binding
of both is reasonable in this case.

For these reasons it is feasible and practicable to apply Trusted Computing to
this field of application in order to achieve effective protection against product
piracy.
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3 Challenges in Using Trusted Computing in Mechanical
Engineering

Using Trusted Computing in mechanical engineering and automation is differ-
ent from its use in general-purpose computing systems and challenging due to
different hardware platforms and additional requirements that apply specifically
to this field of application.

Machines mostly consist of an industrial PC (IPC), which is the superordi-
nate machine control unit, and several connected “embedded devices” like sen-
sors, actuators etc. The IPC executes complex software programs like the stored
program control and HMI1 programs, whereas the embedded devices are usually
equipped with less complex firmware. When using Trusted Computing in this
field of application, both types of platforms (IPCs and embedded systems) and
different kinds of software and firmware have to be considered.

Industrial PCs are basically similar to ordinary “x86” Personal Computers
(PCs) concerning the hardware components and they can also be run with the
same software. However they have to meet high demands on robustness, reli-
ability and stability. Today there are already IPCs with TPM available in the
market and the usage of the TPM as well as its integration into the software
development processes in IPCs is similar to its use in desktop PCs.

Just like desktop PCs, industrial PCs mostly have a BIOS2, an operating
system, device drivers etc. Today most TPM manufacturers deliver device drivers
for the common operating systems together with their devices and sometimes
even own implementations of the TCG Software Stack (TSS) [7]. This is the
software specification that provides a standard API for accessing the functions
of the TPM. There is also a free and open-source TSS implementation available
for Linux systems (TrouSerS [8]) and several commercial implementations like
the NTRU Core TCG Software Stack (CTSS) [9]. Moreover common operating
systems like Windows and Linux meanwhile support TPMs, e.g. some versions
of the Windows operating system provide the TPM Base Services (TBS) [10] for
this purpose. Furthermore there are also approaches for a Trusted BIOS e.g. in
[11] and the SecureCore BIOS from Phoenix [12].

Thus the basic software support for TPMs is at hand for manufacturers,
software developers and users, but nevertheless TPMs are hardly used so far.
The only (user) application, the TPM is actually used for, is the BitLocker
Drive Encryption [13] in the Windows operating system. Hence there is still a
lack of user experience in the practical application of Trusted Computing and
TPMs in the desktop PC world and also in industrial PC environments.

Using TPMs in embedded systems is even more challenging since embedded
systems often do not have a BIOS, an operating system, device drivers or software
stacks, which could facilitate the access to and the communication with the
TPM. In this case the communication with the TPM has to take place “directly”
i.e. by sending the appropriate byte sequences that correspond to the TPM

1 Human-machine interface.
2 Basic Input/Output System.
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commands in [14] via the LPC3- or SMBus4 to the TPM. Therefor the concrete
byte sequences have to be figured out first, which is more laborious than using
an API like the TSS.

Moreover embedded systems often do not have powerful CPUs and hence
cannot execute extensive encryption and decryption operations in suitable time.
Since TPMs were originally designed to be used in general-purpose computing
systems with one or more powerful CPU(s) and sufficient memory, its use in
embedded systems with limited processing and storage capabilities is not possible
in the same manner.

By using Trusted Computing in mechanical engineering, the following protec-
tion goals have to be met: firstly software programs on the IPC and firmware
in the embedded devices must be protected against copying and unauthorized
manipulation. Secondly the unauthorized exchange of software-equipped (em-
bedded) machine components has to be prevented or at least detected. In the
following, possible approaches are described how this can be achieved.

4 Implementation of Anti-piracy Measures for Machines
Using TPMs

As described in Section 1 there is a high demand for machine manufacturers
to implement (software) protection measures against product piracy in their
machines. So far TPMs are not used for this purpose in this domain yet, although
TPMs meanwhile have become a quasi-standard and many platforms already are
or easily can be equipped with a TPM. Today there are both industry PCs and
various embedded platforms with TPM in the market.

The TPM can be used to prevent that software on one machine can be copied
to another machine (e.g. to an imitation), that it can be manipulated (e.g. to
activate additional features) and that individual machine components can be
replaced without permission. In the following it is described how this can be
achieved.

4.1 Data Sealing

To protect software like machine control programs from being copied to another
machine, the programs (or parts of it) could be encrypted and bound to a spe-
cific hardware platform during manufacturing using a TPM, so that they are
protected when the machine is sold and delivered to a customer.

Large amounts of data are usually encrypted using a symmetric encryption al-
gorithm like the Advanced Encryption Standard (AES) [15] and later the used
symmetric key is itself encrypted by an asymmetric key pair from the TPM us-
ing RSA. The symmetric key is usually a random number, which can be gener-
ated using the random number generator of the TPM. This is done by sending the

3 Low-Pin Count.
4 System Management Bus.
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command TPM GetRandom() with the appropriate parameters (e.g. the desired
length) to the TPM which thereupon generates and returns a random number [14].

After the symmetric encryption of the data using AES and the random key,
an RSA key pair is generated within the TPM, triggered by the command
TPM CreateWrapKey(). This command both generates and creates a secure
storage bundle for asymmetric keys in the TPM. The created key can be locked
to a specific PCR value by specifying a set of PCR registers [14]. Using this RSA
key, the AES key is encrypted and optionally bound to a specific platform con-
figuration (represented by the PCR values) by using the command TPM Seal().
The input parameters of this command are the data to seal (in this case the sym-
metric key), the RSA key that should be used to encrypt the data and one or
more PCR indices which represent the platform configuration the data is sealed
to. In doing so the data is bound to a specific platform since the decryption key
resides only within the TPM and is never revealed. Beyond that it is also bound
to a specific platform configuration and it can only be decrypted by the TPM if
the platform configuration is unchanged.

After sales and delivery of the machine, the software programs have to be
decrypted before or during execution. To decrypt the sealed data the command
TPM Unseal() is sent to the TPM, together with the sealed data block and the
key handle of the key that was used to encrypt the data. The TPM thereupon
checks the content of the PCRs that were used during encryption and if they
match the current values, the TPM unseals the symmetric key. If the PCR
contents do not match, this implies that the platform configuration has changed
and thus the TPM will not reveal the key. After the TPM has unsealed the AES
key, the data (i.e. the program) can be decrypted and executed.

The introduced data sealing approach using the TPM is similar to the sealed
storage concept introduced by Microsoft in its Next-Generation Secure Comput-
ing Base (NGSCB). Thereby information can be stored in such a way that only
the application from which the data is saved (or a trusted designated applica-
tion or entity) can open it [16]. Therefor a key is generated within the TPM
during manufacturing which can later be used by applications to encrypt data
so that it can only be decrypted by the TPM. The decrypted data will only be
passed to authenticated, trusted applications and it is inaccessible both to other
applications and the operating system.

The NGSCB should have been integrated into the next generations of the
Windows operating system but it seems that Microsoft gave up these plans
due to unknown reasons [17] since in the two major versions Windows Vista and
Windows 7 none of the principal features described in the NGSCB has appeared.
Thus in case there is no support for sealed storage by the operating system, our
approach to encrypt and seal data to a specific platform configuration using the
TPM could be used instead.

4.2 Software Integrity Verification

To prevent or at least detect the unauthorized alteration of software program
code (e.g. so as to activate additional features) and to prevent the execution of
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manipulated or malicious software, an approach is needed that first checks the
integrity and authenticity of the software program code before it is executed.
This can be done by a “trust measurement” approach as described in [11]. The
measurement has to be done by a separate entity that is reliably always executed
at first after the platform is turned on. In the Trusted Computing Terminology
this separate entity that does the integrity measurement is called Core Root
of Trust for Measurement (CRTM). The CRTM has necessarily to be trusted
and must be implemented in an immutable part of the storage so that it cannot
be manipulated, overwritten or circumvented by means of software. Ideally the
CRTM should be implemented in the TPM according to [18] but in this case the
microprocessor reset vector has to point to the TPM which is not yet possible
with existing computer architectures [11].

Thus the CRTM has to be implemented in a separate storage outside the
TPM e.g. in an (OTP-)ROM5. This ROM contains the first instructions that
are executed by the microprocessor after start-up. Usually this is done by mak-
ing the CRTM part of the BIOS and storing it together with the BIOS firmware
in the Boot-ROM. The CRTM starts the so-called Chain-of-Trust by measuring
the next stage of the boot process (which is typically the rest of the BIOS) before
passing control to this stage. “Measuring” in this case means to compute a hash
value of the program code using a hash algorithm like SHA-1 [19]. The measure-
ment results i.e. the computed hash values are usually stored in the Platform
Configuration Registers (PCRs) of the TPM. Therefrom they can trustworthily
be reported to a remote entity like a communication partner who then can ver-
ify the computed hash values and thus the current platform configuration by
comparing the received hash values with the values he expects. This process is
called “Remote Attestation”.

In our use case there is no remote entity or communication partner which
could verify the integrity of the platform and the loaded software programs
since the machines are usually stand-alone and not connected to others. Thus
the integrity verification has to be done within the system itself e.g. by the CRTM
program. One possibility to realize this is to verify the digital signature of the
software program code in case the software manufacturer generated a signature
and attended it to the software. This is done by computing a hash value of the
program code and signing this hash value with the private part of an RSA key
that only the manufacturer knows. To be able to verify the signature, the CRTM
must have access to the corresponding public part of this RSA key i.e. the public
key has to be stored within the system.

In order to prevent an attack, in which an attacker signs his own (malicious)
code using his own private RSA key and replaces the public key that is needed
for verification with his own public key as described in [11], the public key should
be stored securely e.g. in the TPM. In this case the signature could be verified
by the TPM’s internal RSA engine.

In case the software program does not contain a digital signature (e.g. in
small microcontroller platforms that are only equipped with a firmware in the

5 One Time Programmable Read-Only Memory.
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flash memory) another approach could be used to verify the firmware integrity.
Therefor a hash value of the firmware code is computed by the CRTM which
is afterwards compared to a reference value that is the expected value if the
firmware code has not been altered. This reference value has to be stored within
the system as well, which could also be done using the TPM. The TPM has
therefor a special-purpose register, the so called Data Integrity Register (DIR),
which is part of the non-volatile storage within the TPM and can hold digest
values of usually 160 bit. During manufacturing, when the platform is equipped
with the firmware, the reference value has to be computed and securely stored
in the DIR using the TPM command TPM DirWriteAuth() which requires user
authorization. The user authorization data must only be known to authorized
people e.g. the manufacturer in this case.

After sales and delivery of the device respectively the machine, the CRTM has
to compute a hash value of the firmware code and compare this to the reference
value at each start-up before the software is to be executed. To read the content
of the DIR the command TPM DirRead( ) is used. So the following operations
have to be executed after power-on, every time before the software program is
to be executed as illustrated in Fig. 1:

1. The CRTM program computes a hash value of the software program code
2. The command TPM DirRead() is sent to the TPM
3. The TPM sends the content of the DIR (which is the stored reference value)

back to the CRTM program
4. The CRTM program compares the computed hash value to the reference

value
5. If both values match, the software program is executed

If the computed hash value and the reference value do not match (in step 4),
the software is not executed. The problem with this approach (marked with the
red arrow) is that the TPM’s return to the command TPM DirRead() in step 3
contains no user authorization [14] and thus the receiver (in this case the CRTM
program) cannot be sure if the message block he receives really comes from the
TPM or not. This could be exploited by an attacker in that he intercepts the
TPM DirRead() command that is sent from the CRTM program to the TPM in
step 2 and sends a message block with a chosen hash value back to the CRTM
program (step 3). The CRTM program would not notice that the response in
fact does not come from the TPM but that a wrong value has been foisted
on it.

So if an attacker had the ability to alter the software program code and to
foist a wrong reference value on the CRTM program he could deceive the system
and circumvent the protection measure. Therefore it must be ensured that the
CRTM program always receives the correct reference value that really comes
from the TPM. An alternative approach to securely store the reference value
and to ensure that it is trustworthily reported to the CRTM program, is to
encrypt it with a private key from the TPM and seal it to a specific platform
configuration i.e. to a specific PCR value. This PCR value could for instance be
the hash value of the unchanged software program code.
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Fig. 1. Software Integrity Verification Process Using DIR

Thus the determination and secure storage of the reference value can be im-
proved in the following way:

1. Compute a hash value h1 of the program code and write it to PCRi

2. Create an RSA key pair k1 = (kpriv
1 , kpub

1 ) within the TPM
3. Call TPM Seal() with k1, h1 and PCRi as arguments
4. Get the sealed data block b1 from the TPM
5. Store b1

Each time the software program is to be executed, the following steps have to
be done to check the software integrity (see Fig. 2):

1. The CRTM program computes the current hash value h2 of the software
program code

2. The CRTM program writes h2 to PCRi

3. The CRTM program reads the sealed data block b1 from the memory
4. The command TPM Unseal() with k1, b1 and PCRi as arguments is sent to

the TPM
5. The TPM checks the content of PCRi

6. If the value of PCRi (i.e. h2) is equal to h1, the TPM decrypts the sealed
data block using kpriv

1 and sends it back
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7. The CRTM program compares the computed hash value to the decrypted
reference value

8. If both values match, the software is executed

If h2 does not match h1 in step 6, the reference value is not decrypted and the
TPM sends an error code back. In this case the software should not be executed.
Step 7 could also be omitted since the reference value is only decrypted by the
TPM in step 6 if the value of PCRi (which is the currently computed hash value)
matches the value it had during encryption. So if the reference value is decrypted
by the TPM, this implies that both hash values match and the software code
has not been altered.

The introduced approach works as long as no firmware update is necessary.
In case of an update, a new reference value has to be sealed to the TPM and
stored at the place, the CRTM program expects it. Thereby it must be ensured
that an attacker cannot foist an own reference value to the system. To seal data
to the TPM using TPM Seal() an authorization value is needed (see [14]). The
same value is used later by the CRTM program when sending TPM Unseal() to
the TPM. If these values are not identically, the TPM will not unseal the data
and return an error code. Thus in this case the CRTM program will not execute
the software program. So if an attacker does not know the correct authorization
value, he cannot seal his reference value to the TPM in such a way it is expected
by the system i.e. with the same authorization value that is used by the CRTM
program. Hence the authorization value must be kept secret within the CRTM
program as well.
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Fig. 2. Software Integrity Verification Process using TPM Seal()
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4.3 Mutual Authentication between Machine Components

If machine manufacturers want to ensure that no machine component can been
replaced without permission, an approach for the mutual authentication between
the machine components can be implemented in such a way that the superor-
dinate control unit (i.e. the IPC) first checks the authenticity of the connected
embedded devices and vice versa before the whole system starts working.

This could be done by implementing a Challenge-Response protocol between
the IPC and the connected embedded devices using TPMs as illustrated in Fig. 3.
For this a pair of RSA keys has to be generated in the TPM of the IPC as well
as in the TPMs of each embedded device during manufacturing. Afterwards
the public parts of the key pairs are interchanged between IPC and embedded
devices and stored respectively.

After delivery of the machine the following steps are executed by the IPC at
each start-up of the machine:

1. The IPC generates a nonce (i.e. a random number e.g. by using the random
number generator of its TPM)

2. The nonce is sent to all embedded devices with the request to sign it with
the private parts of their particular RSA key

3. The embedded devices i.e. their TPMs each sign the nonce with their private
RSA key and send it back to the IPC

4. The IPC compares the received nonces to the sent one
5. If the numbers match, the IPC verifies the signatures using the public part

of the appropriate RSA keys

If the signatures could successfully be verified, the IPC knows that the embedded
devices are authentic since otherwise they would not have the correct private
key to generate the correct signature. Thus the illegitimate replacement of an
embedded machine component would be detected by the IPC.

The other way round the embedded devices can also verify the authenticity of
the IPC by each generating a nonce and sending it to the IPC with the request
to sign it. The IPC thereupon sends TPM Sign() for each nonce to its TPM
which signs all the nonces with its private RSA key and sends them back so
that the devices can verify the signature by using the IPC’s public key. If the
signatures could successfully be verified by the embedded components, the IPC
has proved his authenticity since only the authentic IPC has the correct private
key within its TPM to generate the correct signatures.

Assuming there are n embedded components in the machine, the IPC—its
TPM respectively—has to generate n signatures for n different nonces, which
might perhaps be too time-consuming in some cases, depending on how often the
authentication should take place. Hence an alternative approach would be to use
a (symmetric) Message Authentication Code (MAC) instead of the asymmetric
signature generation and verification method.

For this purpose a shared symmetric key has to be stored securely both in
the IPC and the embedded devices during manufacturing. When the mutual
authentication takes place, the IPC generates a nonce (to prevent replay-attacks)
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Response Protocol and TPMs
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and computes a MAC for this nonce using the symmetric key. The nonce and
the computed MAC is then sent to all the embedded devices which can verify
that the MAC is correct by computing the MAC to the message (i.e. the nonce)
on their part using the symmetric key and comparing the computed MAC to
the received one. If both MAC values match, this implies that the message has
probably not been altered and the MAC really comes from the IPC since an
attacker would probably not be able to guess the correct symmetric key.

5 Conclusion

In this paper, several approaches have been introduced how Trusted Computing
and TPMs can be applied to the mechanical engineering and automation field
in order to prevent product piracy.

Copy protection of software programs like machine control programs can be
achieved by encrypting these programs (or parts of it) during manufacturing and
sealing it to a specific platform configuration using the TPM. During runtime,
the symmetric key has to be unsealed by the TPM which is only done if the
platform configuration has not been changed. Afterwards the program can be
decrypted and executed.

The unauthorized manipulation of software programs can be prevented by
first verifying the integrity of the program code before the program is executed.
This is done by the Core Root of Trust for Measurement (CRTM) that computes
a hash value of the program code and compares it to a reference value which is
encrypted and stored within the system. If both values match, the software (or
firmware) is executed otherwise not.

To prevent or at least detect the unauthorized replacement of software-
equipped (embedded) machine components, a mutual authentication between
the superordinate machine control (i.e. the industrial PC) and the connected
embedded devices (sensors, actuators etc.) can be executed. This can be done
using a Challenge-Response protocol and asymmetric generation and verifica-
tion of signatures or—in case this is too time-consuming—by using Message
Authentication Codes (MAC).

With the introduced approaches, Trusted Computing and TPMs can be rea-
sonably applied in the mechanical engineering and automation field to prevent
product and software piracy. To our knowledge there are so far no applications of
Trusted Computing in this field yet, although there is a great demand for effec-
tive countermeasures against product piracy, particularly in this domain. Thus
a new field of application for Trusted Computing and TPMs has been depicted
that has to be explored doing further research.
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Abstract. We propose a new approach to verifiability of Internet e-voting pro-
cedures: correct counting of each single ballot can be checked, but verification is
a zero-knowledge court procedure. After verification period is over, certain keys
are destroyed and breaking vote privacy becomes substantially harder.

Our main goal is to provide a framework for the political situation in which
the voters are more concerned about disclosure of their preferences than about
the correctness of the results. Our approach also responds to threats of coercion
exercised by a physically present coercer.

Our approach can be used on top of most previous schemes to improve their
privacy features. It is limited to the cases when the voters hold electronic ID cards.

Keywords: remote e-voting, electronic ID card, anonymity, verifiability,
Lagrangian interpolation, zero-knowledge proof, undeniable signature.

1 Introduction

There is a growing demand for remote electronic voting procedures that could be ap-
plied safely in major political elections. Growing mobility of voters makes it inevitable
to admit methods such that physical presence at the polling station at the election day
is no longer a precondition to cast a vote. Unfortunately, designing a good e-voting sys-
tem turns out to be an extremely difficult task, perhaps one of the most difficult ones for
trust and privacy protection technologies.

History of e-voting is not only history of developing new ideas and techniques, but
also continuous evolution of requirements for e-voting systems and growing awareness
of diversity and complexity of the problem. Numerous and sometimes spectacular fail-
ures follow from misunderstanding or neglecting critical design factors. One of them is
technical security of the system, however, not the only one. It is equally important how
the voters perceive their personal security and how they are influenced by their under-
standing of security problems. In particular, a voter may believe that a cryptographic
ballot betrays her or his vote, despite of a formal security proof.

One of the sources of problems in e-voting design is insufficient information flow
between computer systems designers and specialists in sociology and political sciences
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[5]. This concerns also information flow between different fields of computer science.
For instance, some people claim that disclosing the code and the algorithm is enough to
achieve transparency of the voting process. This is not, since for instance the trapdoors
may be installed by a compiler (see e.g a textbook [12]).

Also, it is necessary to have in mind that due to very different voting mechanisms in
different countries there is no unique model of voting, no universal set of requirements
for such a system. A good example would be a comparison between the British and
the German voting system. In the first case, it is necessary to provide mechanisms for
disclosing the votes and recounting them openly after a court decision. This eliminates,
for instance, any cryptography without a trapdoor (for the entitled authorities). On the
other hand, even possibility of existence of such a trapdoor eliminates immediately such
an e-voting system in Germany, due to the rules contained in the German constitution.

Verifiability versus privacy. We focus on the problem of voters concerned that ver-
ifiability, which became a must-to-be condition in serious e-voting procedures, may
be feared by the voters as a source of information endangering secrecy of their voting
preferences in a long run. So far, most authors and political activists, especially from
Anglo-American countries, follow the opinion that after elections as much information
should be published as possible (a notable exception is [11]). “As possible” means here
that the published information must not violate privacy of votes. However, the real pur-
pose of publishing voting information is to guarantee that the published election results
match the voter’s decisions. So according to standard information processing rules, the
system should reveal the minimal amount of information to achieve the goal and not the
maximal one that does not violate other rules.

In some societies the voters are more interested in their long term privacy than in the
election results. They fear that the information published can be reused for linking the
votes to the voters. In fact, this is justified, since progress in cryptanalysis may provide
necessary tools in the future. We have to keep in mind that time horizon is here quite
long – breaking after, say 20 years, is a serious concern. On the other hand, nobody can
provide security guarantees for cryptographic methods for such a long time. Current e-
voting schemes disregard this issue; it seems to be the main weakness of most e-voting
schemes compared with paper-based methods.

The problem described above has been reported for voters behavior in case of veri-
fiable paper audit trails. Use of cryptography in the paper trials and hiding information
there can be a source of distrust - the voter may believe that their votes are encoded
there so that some authorities may read it.

In principle, the only function of verification is to enable checking correctness of
the results by the voters and election observers. It does not mean that a verification
procedure must be really executed – the threat of inevitable detection of frauds makes
participants of the process behave correctly. So, without endangering the role of verifi-
cation, we might limit information disclosure as long as fraud detection is possible. The
goal of this paper is to design alternative and privacy aware means of verifiability.

Trust issues. One of the major problems in designing e-voting systems is to convince
general public that the system can be really trusted. Certainly, declarations of the system
providers are not enough, even if they are honest. For instance, the declaration concerning
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the Estonian system is not much useful, as securing e-elections from malicious PC’s was
not a part of the specification.

There are multiple issues that lead to citizens’ acceptance or distrust in e-voting
systems. The main issues from the point of view of a single voter is not only correctness
of the results but also confidentiality of his voting decisions. In a long run even a threat
to break voter’s privacy may severely influence voter’s choice: a voter may abstain
from voting or cast the votes as expected by a ruling party. There are many examples
in history and in present political situation that this is one of the key issues – it is the
crucial issue to convince the voter about security of a system.

1.1 State of the Art

End-to-end systems. Recent history of deployment of electronic voting systems is full
of failure stories of systems that miss to reach a decent security level. A typical mistake
is to relay solely on the declarations of the manufacturers about security and safety of
their systems in the case when security requirements have not been even formulated (a
good source of examples of this kind is the California Report [3]).

It is often assumed that certain e-voting participants or protocol agents are honest. In
particular, most authors of academic papers made no distinction between the voter and
her or his computational devices as different protocol participants. A hidden assumption
was that hardware and software components used for voting are secure, non-malicious,
and under full control of the voter. Unfortunately, attacking election software, provid-
ing fake election equipment and even installing trapdoors to the system are relatively
easy. Currently available techniques are quite effective, e.g. kleptographic techniques
by Young and Yung can be easily applied against e-voting schemes [14] revealing com-
pletely voters’ choices to the attacker. Certainly, some problems can be avoided thanks
to deployment of TPM’s. However, it turns out that the protection offered by TPM’s is
not unbreakable (see e.g. [21]) and TPM’s can be both fooled about the state of the sys-
tem and allow extraction of their private keys. Similarly, in some opinions, using smart
cards prevents attacks due to Trojan software and unwelcome dependence on general
purpose operating systems, allowing more reliable inspection of the hardware used.
While this is true, one has to keep in mind that it is quite easy to replace original smart
cards with malicious ones: due to black box principle it is almost impossible to detect
the fraud in a normal use. Also, usage of smart cards with a single e-voting functionality
may facilitate vote selling - so in fact reaching reverse effect than intended.

There is growing consensus about necessity to design end-to-end systems, where
security is examined not for chosen components (including both protocol participants
and hardware/software components), but for the system as a whole, including all kinds
of threats, including for example socio-technical attacks (see Dagstuhl Accord [1]).

So far, design of end-to-end voting systems was quite successful in the area of paper
based methods (Prêt à Voter [9], Punchscan [6], Scantegrity [8], VAV [20] and their vari-
ations). Surprisingly, it has turned out that one can achieve verifiability of the election
result without violating privacy requirements (let us remark that the traditional way of
voting offers almost no verifiability). The first elections of this kind already took place
in Takoma Park in Maryland.
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Systems for remote voting over computer networks. There is a vast literature con-
cerning remote e-voting systems. Here we point only to a few recent trends.

Remote voting is more challenging that designing systems for a polling station. The
problem is that one has no control over the equipment used by a voter to create and send
a ballot. Moreover, one cannot assume that cryptographic operations are performed by
the voter manually, so he must use some computing devices.

If computer networks are used for communication only, like in [19], the situation
is somewhat easier: a voter can fetch a ballot electronically, print it, fill it and send to
the election committee via a different channel (per post or by faxing the ballot). In this
scenario we avoid the problem of a malicious PC leaking information on voter’s pref-
erences. On the other hand, selling votes becomes easier even than for mail-in systems,
as a ballot can be sold with no physical contact between the seller and the buyer.

Paper [16] states a security model for remote e-voting and proposes scheme for this
model. The solution is based on credentials, but validity of a credential cannot be deter-
mined by a PC or a coercer. The idea is that each vote comes together with a credential
and that the votes with invalid credentials are removed during the final stage just before
vote counting. Moreover, the credentials are not published in plaintext, therefore coer-
cion is almost impossible. This conceptually simple and elegant solution is inefficient
for large scale elections. Paper [22] shows that efficiency can be improved. However,
there are major security problems with this scheme when applied in real life elections.
The main concern is that the PC (or the PC’s) used by the voter may cheat and send a
vote for a different candidate than indicated by the voter – the scheme assumes silently
that the voter’s computer is honest. The voter has no possibility to check his vote. Sec-
ond, the registrar R can cast additional votes for candidates of his choice through an
anonymous channel re-using the credentials of the voters. The duplicates are removed
according to some policy, but it seems to be inevitable that some votes cast by the reg-
istrar will remain.

The scheme [17] provides a solution in which the PC used by a voter cannot deter-
mine the meaning of a ballot, even if it has been prepared by the PC. So, it cannot break
privacy of the vote. Coercion is excluded by a mechanism of anti-votes: if a vote is cast,
it can be later disabled by the same voter (after appropriate authentication). Moreover,
the fact of canceling the vote is not visible for a coercer, so the voter can do it safely.
Nevertheless, the voter can cast the vote once more after sending an anti-vote. There-
fore, the voter can cheat and sell its vote many times and finally vote as he wishes. The
scheme splits a vote into parts that are re-encrypted during the mixing process - which
makes verification of mixes fairly simple and efficient. However, the scheme is concep-
tually too complex to be accepted even by very well educated voters, even the process
of vote casting is not a simple one. So it does not satisfy “transparency” requirement
and is a purely academic solution.

The recent Helios [4] is an example of a system, where threats of coercion and attacks
by infecting PC are simply ignored (see [10]). Despite this the system has been used in
practice in university elections in Belgium.

The scheme SC&V presented in paper [18] reuses the ideas of Threeballot, Punch-
scan, and Prêt à Voter. It offers immunity against malicious PC used by a voter - the
idea is that the PC performs some operations for the voter, but it is unaware about the
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meaning of the vote, even if it knows the ballot cast by the voter. Manipulating the ballot
is hard, since it is unclear which configurations of the “marks” on the ballot are valid for
a vote. So, with a substantial probability misbehavior of the PC would be immediately
detected. The construction depends on an additional information channel inaccessible
for the PC, through which the voter gets information necessary to fill the ballot. The
scheme is relatively friendly and transparent, but certainly too complex for a certain
voters. Its prototype has been tested in real life elections (elections of student represen-
tatives in a university). The main drawback is that vote selling and coercion is possible,
when the buyer or coercer appears in person – only online coercion is prevented.

Remote e-voting in political elections in practice. The systems deployed so far in
practice for political elections are far away from fulfilling minimal security require-
ments. The system in Estonia assumes that user’s PC and electronic ID card are secure,
and that the mixing authorities (there are just two!) do not cooperate. In Switzerland,
a version of SureVote is used: computer of the voter need not to be trusted, however
secrecy of voter’s preferences against election authorities is quite limited. Even less se-
cure methods has been deployed in Austria in student elections, and in France for AFE
(the assembly that represents French nationals living abroad). These schemes are not
immune against malicious PCs and offer limited privacy of votes.

On the other hand, there is an e-voting project in Norway [2], where the set of re-
quirements well describes necessary security goals. However, the system to be deployed
gives no guarantee of voters’ privacy against her or his computer – the computer learns
the option chosen by the voter. On the other hand, the voter gets a receipt that makes it
possible to detect that the vote has been changed by the computer. The mechanism is
similar to SureVote.

Deploying a good system is however a non-trivial task, as so far no system really
fulfills all conditions. Sometimes problematic issue is not only security, for instance
it might be electronic authentication of voters and their education level. In particular,
formal security proofs of voting protocols have mainly academic value, what it really
needed is a convincing security argument for non-specialists.

Our contribution. In this paper we show how to build an extra layer on top of remote
voting schemes such as SC&V in order to provide better privacy guarantees and coer-
cion resistance. The method is quite general and can be viewed as a plug-in solution for
schemes where vote casting is performed by setting a number of binary values in a spe-
cific way. Namely, our approach is to show how to set the binary values when casting
a vote using any other remote voting scheme. So, thereby we get a scheme that inherits
all positive security features of the main scheme, but adds an additional one:

– verification can be performed only in an election court and the evidence cannot be
used outside the court due to its zero knowledge properties,

– verification requires cryptographic keys of the election authorities; so it is possible
to destroy the keys and thereby prevent any investigations once the election results
are irrevocable (for instance, when the term of elected persons is over).

On the other hand, each binary value is encoded by several ciphertexts created with
asymmetric methods. So, it increases communication complexity, but on the other hand
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any usable e-voting scheme must not require too much manual work, and in particular
clicking too many buttons. So the number of binary values is restricted by design of the
background scheme.

2 Method Description

In order to make description easier to follow we formulate it as a stand-alone scheme
were the voter has to choose between two values (“yes” or “no”). However, we have in
mind that the scheme serves as a subprocedure for other algorithms.

2.1 Personal Identity Cards

In the European Union there are decisions to introduce electronic personal identity cards
for citizens. Potentially, these cards can be used for remote e-voting schemes. Its pri-
mary use for e-voting is reliable remote authentication and verification of voting rights
(i.e. citizenship and age). However, using personal identity card for e-voting has an
additional advantage. Any special purpose e-voting smart card can be given to a vote
buyer. This is not the case for personal identity card, since it might be misused by the
vote buyer for other purposes, like taking a cash credit. Moreover, it is a well learned
behavior of the voters, to refuse to give anybody own personal identity card. It will be
even stronger if more functionalities appear on the personal identity card.

From now on, a smart card that is non-transferable and able to authenticate the voter
will be called ID card of the voter.

2.2 Registration

Before the election day, a voter has to register with his ID card. Registration is necessary
anyway, since we have to admit both remote voting and voting at polling stations. In
order to generate the list of voters eligible to cast votes in a traditional way, we need to
get a list of the voters that cast the votes electronically. (In countries like USA or Aus-
tralia, there is almost no voter verification and casting many votes is possible. However,
our goal is to design a system that each voter has a single vote.)

During registration a voter receives a voting token necessary for casting a vote (and
sometimes for verification purposes). A token x is constructed in the following way:

1. The ID card of a voter generates at random a pair of keys for some signature
scheme. For the purpose of description, let cs denote here the secret key, and cp
denote the public key generated.

2. The ID card encapsulates cp preparing a request for a blind signature of the Regis-
tration Authority. The request is signed digitally by the card with a regular digital
signature of the voter.

3. The request is passed to the Registration Authority through a PC, or through an
e-government kiosk installed by public authorities.

4. Registration Authority checks the signature on the request and marks the voter as
registered for electronic elections. Then it blindly generates a signature s over cp.

5. The blind signature is delivered back to the ID card.
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6. The ID card recovers the signature s and creates a token x = (cp, s).
7. The ID card sends a confirmation to the Registration Authority about receiving the

token.

If the Registration Authority does not receive the confirmation from the last step, then
the voter is asked to resend it. If the confirmation is still not received, then the voter is
asked to appear in person with the card. Then the blind signature can be loaded directly
into the card. If the voter does not appear, then the token is regarded as delivered, but
simultaneously the public signature key of the voter is revoked for the further use. So
if the voter does not cooperate, his ID card becomes blocked for electronic use. For the
voter, the only way to avoid responsibility (the ID card has to be protected by its owner,
with penalties for not doing this), is to show up claiming that the ID card has been lost.
In this case the inconvenience for the voter is so high, that it is reasonable to assume
that in practice he would better confirm receiving the token. Note that he would not be
admitted to cast a vote in a traditional way after loosing identification document.

2.3 Ballot Structure

In the next subsections we explain in detail the role of each component of a ballot. Now
we only sketch the general structure:

– A voter sends triples of the form (x, y, z) , where x is the token mentioned above.
– The voter may send many such triples, but still casting one vote. This prevents vote

selling and coercion – the voter can change how her vote is counted as long as she
holds her ID card.

– Parameter z is an activation counter chosen at random (except for a few occasions).
The numbers x and y are used for Lagrangian interpolation of some polynomial
used for counting the results. The point x is the argument, while y together with x
is used by an election authority to determine the value of the polynomial at x.

– The ID card computes y in a deterministic and verifiable way:
y = hash(signID(x, z)). The signature is created with a key used only for creating
the parameters y (for some discussion see Sect. 3.7).

2.4 Casting a Vote

During counting procedure two polynomials will be constructed: one for “yes” and one
for “no” option. The degree of each polynomial will represent the number of votes cast
for its option.

All triples (x, y, z) with the same first component x (sent by the same voter) are used
to construct a single point of one of the polynomials. Which polynomial is used depends
on the values of the activation counters. Now we describe some details of the procedure:

– The ID card creates some number of triples of the form (x, y, z) with different num-
bers z and the fixed x, it sends them to (possibly different) Electronic Ballot Boxes.
The triples must be sent via an anonymous channel or via a proxy, no authentication
of the sender is necessary. The triples can be created at different times and sent via
different computers. However, at least two such triples must be sent. This may be
guaranteed by the property that for each demand the ID card creates two triples.
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– To each triple (x, y, z) the ID card attaches a signature created with the key cs.
Recall that cp is contained in x, so Electronic Ballot Box can verify this signature.

– The triple (x, y, z) and its signature are encrypted with probabilistic encryption
scheme with designated receiver. The designated receiver is, in this case, the tally-
ing authority. As usual, many layers of encryption may be used in case of multiple
tallying authorities, each layer to be removed by one authority.

– Each Electronic Ballot Box sends a signed confirmation of each packet received. In
this way it may also confirm receiving junk, since the decoding is done later by the
tallying authorities. An important feature is that the same encrypted triple can be
sent to many Electronic Ballot Boxes – there is no problem with duplicates during
vote counting. In this way, one can deal with denial of service problem or lack of
confirmations due to communication system failures.

– If a voter sends some number of triples of the form (x, y, z), say (x, y1, z1), . . . ,
(x, yk, zk), then the vote will be counted for the “yes” option provided that

∑
zi =

0 mod m (where m is some sufficiently big number) – via creating a point for
Lagrangian interpolation of the “yes”- polynomial. Otherwise, the point will be
used for the “no”-polynomial.

Note that the card can easily turn a vote cast to no by sending an additional triple
(x, y, z) with z generated at random. Since the voter may send the triples from different
locations and different PC’s, a coercer or vote buyer would have to retain the personal
ID of the voter in order to prohibit him from revoking a yes vote.

Similarly, if the ID card keeps the sum of different numbers z from the triples already
sent to the Electronic Ballot Boxes, then the card can turn a “no” vote to a “yes” vote.

2.5 Ballot Mixing and Decryption

The ballots are processed via a cascade of tallying authorities in an conventional way,
each tallying authority removes one layer of encryption. In order to avoid any later
dispute in case of fraud detection, when a tallying authority outputs partially decrypted
ballots to the next authority in the cascade, then the set of ballots is signed by both
authorities and retained in a safe place. No procedure to check the mixing and decoding
is necessary due to other integrity mechanisms implemented by our scheme.

2.6 Counting the Votes

After the final decryption of ballots, Counting Authority gets a set of triples with sig-
natures. It verifies the signatures and discards any triple with an invalid signature. Then
it groups all triples with the same x. Say, for a given x there are triples (x, z1, y1), . . . ,
(x, zk, yk) properly signed. The triples with x are processed as follows:

– Counting Authority computes z :=
∑k

i=1 zi.
– If z mod m = 0, then the point (x, F (

∑
yi)) is used for Lagrangian interpo-

lation of the “yes”-polynomial (for the definition of F see below). Otherwise,
(x, F (

∑
yi)) is used for Lagrangian interpolation of the “no”-polynomial.
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Function F (y) is an undeniable signature of Counting Authority created for y. For this
purpose, the scheme proposed in e.g. [7] can be used. The key properties of such a
scheme are that:

– verification of the signature requires cooperation with Counting Authority,
– verification takes the form of a zero-knowledge proof (hence a transcript of the

proof is meaningless for the third party),
– Counting Authority can either prove that the signature is correct (if it is so), or

prove that it is invalid (if the signature is false). (The proof might be probabilistic.)

After computing all these points Counting Authority uses Lagrangian interpolation to
compute polynomials Wyes and Wno that go through all these points.

2.7 Publishing the Results

Counting Authority publishes the polynomials Wyes and Wno constructed in the count-
ing phase. For instance, if the degree of W equals N , then Counting Authority may
present the values of W for the arguments 0, 1, 2, . . . , N .

The triples used to compute the results are not published.

2.8 A Sketch of the Verification by a Voter

The scheme offers possibility to check that each single vote has been properly counted.
The procedure is executed on demand of a voter in a court. The only participants of the
procedure are the judge, the voter (appearing in person) and perhaps independent and
trusted election observers (e.g. from OECD). The Counting Authority provides access
to electronic interface with the judge.

– The voter presents the triples sent and their confirmations to the judge.
– The triples are sent by the judge through the cascade of tallying authorities in order

to decrypt them.
– Counting Authority is asked about the number of triples with x.

• If it is larger than the number of confirmations shown by the voter, then Count-
ing Authority is asked to present additional triples with the same x, if they are
used in the counting process. Since each ballot is self-signed, it is evident that
they come from the same ID card. If Counting Authority presents such triples,
it means that the voter provides incomplete data and the case is closed.

• If the number of triples obtained by Counting Authority is lower than the num-
ber of confirmations obtained by the voter, then all triples are decrypted by
Tallying Authorities under supervision of the judge. The judge finds out which
Tallying Authority has removed a triple from the list of intermediate results in
the original process by checking for their presence on the original list. The case
is closed by finding the cheating authority.

– The judge computes z =
∑

zi, where the values zi are taken from all triples pro-
vided by the voter.
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– Based on the value of z, a vote for the “yes”- option or for the “no”-option is
checked. That is, either Wyes(x) or Wno(x) should take the value F (

∑
yi). Let

us assume that W•(x) = F (
∑

yi) should hold. Since W• has been published
as the voting result, one can compute the value W•(x). On the other hand, re-
call that F (

∑
yi) is a deterministic undeniable signature of the Counting Author-

ity for
∑

yi. So, in order to check the equality W•(x) = F (
∑

yi) an interactive
zero knowledge verification protocol is executed by the Counting Authority and
the judge. For the polynomial W◦ that does not correspond to the voter’s choice, a
repudiation protocol is executed to show that W◦(x) �= F (

∑
yi).

This procedure ensures that it is risky for Counting Authority and Tallying Authorities
to modify any vote cast or not to include it in the tally in the correct way. On the other
hand, the value F (

∑
yi) is proved in the court only in the electronic procedure initiated

by the judge with the electronic interface of Counting Authority. Even if the session is
recorded by the voter, it has no value for a vote buyer due to the properties of the zero
knowledge proofs.

During the procedure the judge usually learns the value chosen by the voter (“yes” or
“no”). However, the judge and the Counting Authority can easily cheat the coercer show-
ing him a fake zero-knowledge proof. The only problematic case is is when the judge
himself is the coercer. However, recall that the whole procedure (setting binary values) is
designed as a plug-in to another protocols (like SC&V, Threeballot, ...), where the voter
may show some number of her binary choices without revealing her vote. In fact, these
schemes even provide explicit receipts with binary values signed by the election author-
ities. For the reason mentioned, the voter is allowed to challenge Counting Authority on
a limited number of binary values. Their exact number depends on the scheme used.

Apart from the checking procedure initiated by a voter, there might be an additional
checking procedure. There are M special ID cards that can only cast a “yes” vote, and
M special ID cards that can only cast a “no” vote. They are used by audit bodies just
as regular ID cards (and cannot be distinguished from them), but do not influence the
election results as M values are given to each option. The difference is that afterward the
checking procedure is executed openly. The number M is chosen so that from statistical
point of view any attempt of the election authorities to change the election result would
require to manipulate such a subset of vote that at least one of M special votes has to
be manipulated as well with a fairly high probability.

2.9 Destroying Verification Material

After the period, during which the voters are allowed to challenge the election results,
all keys used for verification are destroyed. This concerns in particular the keys used
to prove the values of F . This is to prevent any attempt to break voting privacy in the
future, when the control over voting data becomes weaker.

2.10 Verification of the Number of Votes Cast

The main purpose of the procedure described here is to avoid casting additional votes
by the Counting Authority. We have to make sure that if additional votes have been cast,
they have no influence on the final election outcome.
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For each token x, used for counting the votes, Counting Authority publishes u(x),
which is a cryptographic commitment to token x. Of course, the number of these sig-
natures must be equal to the sum of degrees of Wyes and Wno.

Depending on the election result, some number of entries u(x) is checked. The ex-
act number of entries to be verified is determined according to the rules of statistics.
Verification is executed with election observers and an election court, but the results
may be published. First, the value of x is revealed. Then one of the triples containing x
together with the signature created by the ID card is shown by the Counting Authority.
Since the token x contains the verification key signed by Registration Authority, we can
therefore check the signature and assure ourselves that the token x has been really used
for casting a vote.

3 Discussion of Security Features

In this section we discuss some of the features of our approach. We do not provide
complete assumptions and risk analysis, since our method is thought to be used jointly
with other schemes. As experience shows, most vulnerabilities arise on the boundary
between different design layer, so such an analysis is useful only if performed on a
complete system.

Of course, the scheme proposed does not offer unconditional correctness of the re-
sults. The authorities may create virtual voters and let them vote. However, this is the
problem of any voting procedure including the traditional ones, where a person may
appear in multiple polling stations, each time with a different personal ID. Note that
some number of such ID’s are issued by security agencies for operational purposes.

3.1 Vote Selling and Coercion

Vote buying and coercion does not work, since the voter can always send an additional
triple to flip the vote value. Moreover, the additional triple can be sent before selling
the vote. So it does not change the situation, if the ID card of the voter gets locked just
after selling the vote, and remains inaccessible until the end of the election day.1

If the ID-card remembers the sum of values zi sent so far, then it would be possible
to turn the vote in both directions: from “yes” to “no” and from “no” to “yes”. There is
a technical aspect that the card must not reveal the status of the sum of all zi.

If Counting Authority is the coercer, then he can ask the voter to send some big
number of triples in order to recognize the voters contribution by the number of triples.
This may be defended in a number of ways. One of them is that each binary value is
submitted to a different counting authority, so the counting authorities would have to
cooperate to coerce. If counting authorities are under supervision of different parties,
this becomes hard. Another method is to limit the number of triples that may be sent
by each ID card and keep it in a reasonable range so that quite many repetitions regard-
ing the number of sent triples must occur. The voter can cheat the coercer about the
admissible number of triples and send some triples before.

1 In Estonia, one can cancel a vote, but it requires using personal ID card. So a vote buyer may
put the ID card in a special envelope and leave it to its owner, he pays after the election day if
the envelope has not been opened.
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3.2 Malicious Computers

No cryptographic operation is computed on a PC, it is used only for communication.
So it cannot encode the voter’s choice with techniques such as kleptographic codes. Of
course, the PC can inform an attacker about:

– transmitting a ballot from this computer,
– the serial number of the ID card (unless the card is configured very carefully),
– the choice of the voter entered on the keyboard.

However, a voter may use different PC’s for sending triples. Then, the attacker does not
get information about the voters choice unless all computers used are under his control.
Moreover, the background scheme should be designed in such a way that even revealing
all choices of the voter at the keyboard does not reveal the vote.

An additional countermeasure would be that together with the ID card a voter gets
information about which key is regarded to be “yes” and which is regarded to be “no”.
This information can be delivered like PIN codes for the ATM cards. So, even if the
machine can see the stroked key, it does not know if it stands for “yes” or “no”. Since
there are not many public elections during a typical lifetime of an ID card (say, 5–10
years), one can even provide a different translation scheme for each election! So the
adversary cannot even learn if a particular voter changes her or his preferences.

3.3 Voter’s Privacy

Thanks to the blind signatures, the ID card authenticates only against Registration
Authority, vote casting is via anonymous channel without any authentication against
Electronic Ballot Box. The cascade of mix servers run by Tallying Authorities ensures
disruption of the link between a voter casting an encrypted ballot and the triples in the
plaintext form. However, there are additional points that make the algorithm stronger:

– The published results do not reveal the data obtained from the Tallying Authorities.
The polynomials published are checked against this data on demand only.

– The link between a token x and the voter getting it is untraceable as long as the
blind signature scheme is secure, or Registration Authority remains honest and
the communication between the voter and Registration Authority is well protected
against eavesdropping.

Additionally, breaking privacy of the votes becomes even harder after destroying the
keys used for computing F and proving its values.

3.4 Decline of Cryptographic Strength of Algorithms

Due to improvements of cryptanalytic techniques, one may fear that some day her or
his ballot encoded cryptographically will be readable to everybody. This is a serious
threat to any scheme where the encoded ballots are presented on a bulletin board.

In this sense, the scheme presented in this paper reduces the problems compared to
other solutions for remote voting presented in the literature. The information about the
encoded ballots publicly available is very limited. The verification procedure can be
performed on demand, but again the data processed is not published.
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Of course, some data may be retained by dishonest election authorities. However,
since we assume that the keys for F are stored in an HSM, we can destroy them without
leaving any information.

3.5 Dishonest Authorities

Serious problems occur, if all authorities are controlled by a malicious party. Since the
authorities are issuing the ID cards as well, then the system becomes broken completely.
However, this is the case also for traditional paper based voting.

On the other hand, Tallying Authorities can be supervised by different parties and one
honest mix guarantees privacy of mixing. Registration Authority may collaborate with
Counting Authority, however it does not break the system, since Registration Authority
does not know the token signed for a given user. The crucial part is security of the ID
cards. However, as we explain below, to some extent they can be verified as well.

3.6 Dishonest Judge

During the court procedure, the judge learns identity of a voter and some of his voting
choices. Therefore, at the first look it seems that the judge can leak sensitive informa-
tion. However, if we use a proper background scheme, then verification may be per-
formed so that no information on voter’s preference is revealed. In fact, this is the main
idea of Threeballot [20] and the schemes following it.

3.7 Verifiability of ID Cards

The main idea is to make the work of an ID card deterministic, so that it can be checked
for correctness and lack of any hidden information (for instance a kleptographic chan-
nel). This is important, since the ID card knows everything about voting preferences of
its owner. (Note that due to simplicity of the system on the card it is technically fea-
sible to implement a procedure for cleaning up the card from any information on past
elections.)

As explained, we have to use cryptographic schemes that are immune against klep-
tography. There are the following key moments:

– the choice of (cs, cp),
– generating a request for a blind signature (for instance the choice of the blinding

factor used),
– the choice of the “random” parameters z,
– the choice of the encoding for the cascade of mixes.

Designing methods resistant against kleptography is known in some cases (e.g. for DH
key exchange [15]).

The issue of choosing the parameters z is relatively easy. We can assume that each
“fresh” value zi (i.e. the one that does not convert the sum to zero) is related with the
last “fresh” value zj already used in such way that zj = HASH(zi), where HASH is
a secure hash function. This enforces the ID card to choose a root value and compute
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the values zi on demand by hashing repeatedly the root value appropriate number of
times. Note that then irregularities can be detected at the stage of vote counting – the
parameters z have to be related as described. Of course, the ID cards can be tested in
trial elections where all data are accessible. We note also that the described way of
creating strings z leaves not much room for kleptographic tricks.

Similarly, the blinding factor can be verified in a cut and choose fashion: after a re-
quest is stated the card might be asked to reveal the blinding factor and generate the keys
(cs, cp) once more. The blinding factor itself can be generated as a deterministic digital
signature (with the keys used for this purpose only), so that it remains unpredictable for
a third party while it can be easily verified after revealing.

Encrypting for a cascade of mixes can be done with a deterministic public key
scheme.

Final Remarks and Acknowledgments

The framework proposed in this paper is just a first step in a new direction - finding a
new balance between privacy and correctness of results. Of course, many details, like
cryptographic building blocks, should be adjusted to suit particular requirements.

Finally, we would like to thank anonymous referees for helpful suggestions. We also
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Abstract. The TCG Software Stack (TSS) specifies the software layer
for application developers to use functions provided by a Trusted Plat-
form Module (TPM). However, the current TSS interface is highly com-
plex, which makes its usage very difficult and error-prone, and the high
complexity makes it unsuitable for embedded devices or security kernels.

We present a simplified TSS design and implementation (μTSS) pro-
viding a lightweight and intuitive programming interface for developers
based on the TPM main specification. The major principles of the μTSS
design are a reduced complexity, obtaining type safety, object encap-
sulation, and a simple error handling. These principles ensure that the
resulting μTSS is maintainable and easy to use. Moreover, the modular
architecture of the μTSS allows using only a subset of the provided func-
tionality as it is required, e.g., for embedded systems, mobile devices, or
in the context of a security kernel. This paper discusses experiences with
the μTSS, based on several projects such as the TCG TPM compliance
test suite and a Mobile Trusted Module (MTM) implementation.

1 Motivation and Problem Description

Trusted Computing is a technology allowing parties of an electronic infrastruc-
ture to verify the integrity of remote computing platforms. The Trusted Com-
puting Group (TCG) is an industry-consortium of important IT-enterprises that
has published a list of documents specifying building blocks to realize a trusted
IT-infrastructure.

The main documents include the TPM specification [1] defining a hardware
module providing protected keys and cryptographic functions, the Trusted Net-
work Connect (TNC) specification [2] defining protocols and formats on the net-
work level, and the TCG Software Stack (TSS) specification [3] defining software
layers to access the TPM. Based on these building blocks (hardware, software,
network protocols), a trusted IT-infrastructure can be built where access to crit-
ical information is only permitted after a successful authentication and integrity
verification of the involved computing platforms.

Trusted Computing is an evolving technology and in the near future, many
new applications that are using this technology as a building block are expected
to come into the market. Example applications currently under development are

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 124–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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security kernels [4,5], VPN gateways [6], and security add-ons such as TPM-
based hard-disk encryption systems [7,8].

However, the trust in an IT-infrastructure depends on the trust in its building
blocks including the TPM, the TSS, and the used protocols. The TSS has espe-
cially to be trusted by the user, since it (i) has access to many cryptographic keys
used to encrypt user-data and (ii) it can violate anonymity requirements. More-
over, the TSS specification is very complex1, since it includes about 750 pages
containing a huge number of structures, constants and function definitions (see
Section 2 for more details) distributed over several architectural layers. This re-
sults in three main disadvantages: Firstly, the high complexity of the TSS API
makes it hard for developers to profit from its security functions. Secondly, the
high complexity decreases the maintainability and increases the probability of
internal bugs and wrong or insecure implementations of application developers.
Thirdly, the TSS specification includes functions that are not required or even
not available, especially in small execution environments such as embedded sys-
tems, mobile devices, or security kernels. In some environments, for instance,
persistent memory to realize an object storage is not available.

Contribution. We define requirements to be fulfilled by a software stack compat-
ible with the TPM Main Specification and to be used in the context of small and
security-critical environments such as embedded systems, security kernels, and
MTM/TPM realizations. Based on these requirements, we propose an object-
oriented TSS interface and the corresponding implementation providing a light-
weight interface to developers that is more intuitive and easier to use than the
flexible but complex interface of the existing TSS specification. The μTSS de-
sign is directly based on the TPM Specification and thus covers the full TPM
functionality without adding the overhead required for a full TSS implementa-
tion. Moreover, the object-oriented design of the μTSS hides the complexity of
the TPM Specification by automating functions such as key loading, unloading,
or the creation of authentication sessions. Finally, the μTSS design is modular
allowing the use of only a subset of the provided functionality as it is required,
e.g., for embedded systems or mobile devices. The μTSS implementation has
already been successfully used in different projects: The TCG TPM Compli-
ance Test Suite used for certification of TPMs2, a Software-TPM as well as
a Software-MTM implementation, and the TPM Manager [9], an open-source
graphical TPM management tool based on the Qt widget-library3.

It is important to mention that the proposed μTSS design is not intended to
replace the existing TSS specification. However, it is rather a suggestion of an
alternative design allowing a more intuitive and easier usage of the functionality
provided by the TPM. When meaningful, we decided not to support specific
functions required by the TSS specification (e.g., the object storage) in favor of
1 The term complexity is used in this paper to point that something is not easy

to understand and is hard to deal with. This may be substituted by the term
complicated.

2 http://www.trustedcomputinggroup.org/certification/
3 https://projects.sirrix.com/trac/tpmmanager

http://www.trustedcomputinggroup.org/certification/
https://projects.sirrix.com/trac/tpmmanager
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an easier and less complex software architecture and to make it modular enough
to allow an integration into standalone binaries such as a boot loader.

Outline: This paper is structured as follows: The next section introduces the
TSS as specified by the TCG. Section 3 outlines the deficiencies we identified
during our experiences with the existing TSS and defines our requirements for
our own TSS design. The design of the μTSS is explained in Section 4, followed
by a usage example shown in Section 5. Section 6 summarizes our experiences
with our μTSS implementation. A short reference of related work is given in
Section 7. Section 8 concludes this work with a short summary.

2 TSS Basics

In the following, we give a short overview of the architectural layers, components,
and responsibilities of the TSS as defined in its specification [3].

The main purpose of the TSS is to multiplex access to the TPM, since a
TPM has limited resources and can only communicate with one client at a time.
Moreover, not all functions related to Trusted Computing require TPM access.
These functions are located within the TSS to allow a reduction of the complexity
of the TPM.

As illustrated in Figure 1, the TSS is comprised of the three layers TSS Service
Provider (TSP), TSS Core Services (TCS), and the TSS Device Driver Library
(TDDL) respectively their public interfaces TSPi, TCSi, and TDDLi.

Fig. 1. Architectural layers of the TCG Software Stack (TSS)

TSP and TSPi: An application employing TPM functionality has to use a TSP
via its interface, the TSPi. Every application uses its own TSP that is loaded as
a library into the application process using it. The TSP provides high-level TCG
functions as well as auxiliary services such as hashing or signature verification.

One important aspect of the TSP is the TSP ContextManager (TSPCM), which
provides dynamic handles allowing efficient usage of multiple TSPs and applica-
tion resources. The managed context provides a connection to a TSS Core Service,
which itself provides functions for resourcemanagement such as freeing ofmemory,
creatingworking objects, establishing a default policy forworking objects, andpro-
viding functionality to access the persistent storage database. However, providing
all these functions means an enormous increase in complexity.
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A second aspect is regarding the TSP Cryptographic Functions (TSPCF),
which are provided to make full use of the protected functions in a TPM. In its
specification, the TSPi is defined as a C interface.

TCS and TCSi: The TCS provides a common set of operations to all TSPs
running on a platform. Since there is only one instance of a TCS per TPM, the
main task of the TCS is to multiplex TPM access. Moreover, the TCS provides
operations to store, manage, and protect keys as well as privacy-sensitive cre-
dentials associated with the platform. The TCS also includes more sophisticated
functions to manage TPM resources such as key management.

TDDL and TDDLi: The TDDL, accessed via the TDDLi, provides a unique
interface to different TPM driver implementations. Moreover, it provides a tran-
sition between kernel mode and user mode4. The TDDL provides functions (e.g.
Open(), Close(), GetStatus()) to maintain communication with the device driver.
Additionally, it provides functions (e.g. GetCapability(), SetCapability()) to get
and set attributes of the TSP as well as direct functions (e.g. Transmit(), Can-
cel()) to transmit and cancel TPM commands.

For each of these layers, the TSS specifies several data types, flags, constants,
and functions. Collectively the TSS specification contains more than 716 defini-
tions, data types, flags, constants, and 317 functions.

3 Requirements

The requirements have mainly been derived from Trusted Computing scenarios
where the usage of a full TSS implementation is difficult or even impossible:

Trusted Boot Loader: If a trusted boot loader needs TPM commands that are
not supported by the BIOS, the corresponding functions have to be integrated
into the boot loader binary. In this scenario, a direct TPM access (using BIOS
functionality without tcsd or external TPM driver) is required.

Mobile and Embedded Devices: When integrating Trusted Computing function-
ality such as remote attestation into a mobile phone, only a small subset of TPM
commands are required and a multiplexing of different clients, as it is done by
the tcsd, is not necessary.

TPM/MTM Implementation: By implementing a Software-TPM or a Software-
MTM, the commands and structures defined by the TPM specification and not
those of the TSS specification are required.

To use Trusted Computing functionality in these scenarios, a TSS is required
that fulfills the following requirements:

1. Compliance: The μTSS should be compatible with the TCG TPM Main
Specification [1]. Moreover, it would be helpful if the μTSS could be used as
the basis of an MTM/TPM implementation.

4 The current TSS design assumes a monolithic operating system including device
drivers running in kernel mode.
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2. Completeness: The μTSS should provide all mandatory functions defined by
the TCG TPM Main Specification [1].

3. Portability: The μTSS should be usable under different operating systems
such as Linux and Windows. Moreover, different hardware architectures, es-
pecially embedded platforms such as ARM architectures, should be
supported.

4. Security: The API as well as the implementation should prevent typical
implementation errors such as buffer overflows by offering intuitive interfaces
and type safety.

5. Usability: The API should be easy and intuitive allowing application devel-
opers to use TPM features without much effort in reading and understanding
the specification. Moreover, the μTSS interfaces should hide complexity by
automating steps (e.g., key loading or opening of session) and hiding version-
specific details (e.g., TPM CertifyKey vs TPM CertifyKey2).

6. Maintainability: The design should prevent code redundancies to allow an
easy maintenance of the code, especially in the context of specification
updates.

7. Modularity: Software components should be decoupled to reduce both func-
tionality and size for usage in small and security-critical environments such
as embedded systems and security kernels. Moreover, it should be possible
to embed the μTSS, or parts of it, into single binaries without a runtime
environment, e.g., in the context of a boot loader.

8. Small code basis: Finally, the μTSS should have as few dependencies as
possible. This makes it possible to have a small code basis and therefore
it would be suitable to be integrated in security kernels or embedded
systems.

The focus of all above requirements is to prevent implementation errors of the
TSS itself and of developers using the TSS in their own applications.

4 μTSS Design

In the following, we describe design and implementation aspects of the μTSS,
an object-oriented TCG Software Stack that fulfills the requirements defined in
Section 3.

We have chosen C++ as the programming language, since it allows on the
one hand to realize maintainable code because, e.g., of its support for an object-
oriented implementation and exceptions. On the other hand, C++ only re-
quires a small runtime environment in contrast to higher-level languages such as
Python, Java, or C#.

The μTSS design includes, similar to the TSS specification, the object-oriented
architectural layers oTSP, oTCS, and oTDDL which are described in the follow-
ing. However, in contrast to the TSS specification, it is an orthogonal design
decision of whether these layers should all be included into one application (i.e.,
creating an application that is directly using the TPM device), or whether they
are split into different components to allow multiplexing (i.e., implementing a
tcsd).
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4.1 oTSP Design

Similar to the TSP specification, the oTSP layer provides the high-level interface
used by application developers to use TPM functions. The main goal of the
oTSP is to provide an object-oriented abstraction of the TPM functionality that
is more intuitive than the specified TSS interface and hides as much complexity
as possible. The underlying idea behind the design is to model all objects and
relations of the TPM specification that are directly visible for an application
developer, such as the TPM, Keys, Counters, NV-Space, etc.

The TPM class. The main component of the oTSP design is the class TPM pro-
viding the main interface to the physical TPM. The class TPM includes methods to
obtain general information about the physical TPM (e.g. the vendor name, version
and revision) as well as the possibility to read and write TPM capabilities.

Moreover, the TPM class provides access to the TPM-internal keys, namely the
Storage Root key (SRK) and the Endorsement Key (EK). Furthermore, it offers
methods to manage Platform Configuration Registers (PCR), create monotonic
counters, or manage non-volatile memory (see Figure 2(a)).

Cryptographic keys. One major task of a TPM is to manage cryptographic
keys (e.g., encryption keys and signature keys). The TPM distinguishes a variety
of key types (e.g., Endorsement Key, Binding Key, Legacy Key, etc.) that are
directly represented by the oTSP through an assortment of C++ classes such
as StorageKey, SigningKey, UnbindingKey and their public counterparts, e.g.,
VerificationKey and BindingKey.

(a) TPM (b) PrivateKey and PublicKey

Fig. 2. The public interfaces of base classes TPM, PrivateKey and PublicKey

Depending on the sensitivity of the key data, all oTSP keys are derived from
one of the two base classes, PrivateKey and PublicKey (refer to Figure 2(b)).
However, due to the fact that variant key types may implement different func-
tions (e.g. an attestation key can be used to certify other keys and to quote,
whereas a signing key can also be used to sign arbitrary data), the functionality
to be realized by cryptographic keys has been split into different interfaces to be
derived by concrete public key or private key instances.
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Moreover, the base class PrivateKey hides the complexity of loading and
flushing the key. The implementation ensures that the key data is loaded when-
ever needed, which allows a key manager to flush any key when all key slots are
in use. The key data is flushed from the TPM automatically in the destructor
of the PrivateKey.

Figure 3(a) defines the available interfaces to be used as base classes of private
keys and Figure 3(b) defines the appropriate public counterparts.

Concrete TPM key types, such as SigningKey, SRK or BindingKey imple-
ment those interfaces that provide a functionality to be used with that key.
For instance, the key type PrivateLegacyKey is derived from all private inter-
faces except Storage, since it can be used for certification, signing, quoting and

(a) private key

(b) public key

Fig. 3. The interfaces to be implemented by public and private keys

Fig. 4. PrivateLegacyKey is realized by deriving from all usable private key interfaces
and the SRK is realized by deriving from the storage interface
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unbinding but can neither seal nor unseal. Figure 4 shows two examples of con-
crete key instances, namely PrivateLegacyKey and SRK.

Other key types are constructed in a similar fashion. This type safe design
prevents misuse of the keys, e.g., a SigningKey cannot be used by mistake for a
binding operation, and the design provides a better overview of operations which
the SigningKey can perform, namely, signing, certification and attestation.

Monotonic counters. The TPM methods createCounter()and getCounter()
are used to create and instantiate monotonic counters represented by the class
Counter.

The counter method increase() is used to increase the value of the counter,
while the method readValue() reads the current counter value from the TPM.
The method readLastValue() returns the last value that was read from the
TPM (without querying the TPM).

4.2 oTCS Design

The architectural layer oTCS implements the TCS providing TPM commands,
sessions, and the CommandExecutor interface, to execute TPM commands. More-
over, this layer defines elementary data types and structures of the TPM
specification.

One of the principal design directives characterizing this layer is to realize each
TPM command as a separate C++ class to allow more flexibility in supporting
various specifications and minimizing the interface. By implementing this so-
called command pattern [10], such a design allows the modification of single
command implementations (e.g., in the case of a specification update), or the
removal of all unneeded commands (e.g., to use a selection of commands in an
embedded environment).

TPM commands The main classes of the oTCS layer are Command and Result
representing a command sent to a TPM and the result returned by a TPM,
respectively (refer to Figure 5).

Fig. 5. Interface of the classes Command and Result including a list of Operand types
and Session types
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The method execute() of the class Command executes a TPM command and
returns the associated instance of a class derived from Result. For example, a re-
sult of type GetCapabilityResult is returned by the command GetCapability
implementing the TPM GetCapability command.

Both, commands and results, consist of attributes derived from the operand
base class Operand or Session. These operands represent the parameters sent
to, or returned from, the TPM, while session objects are responsible for the
authentication of TPM objects or roles. The inclusion of a session object in a
command causes the appropriate operands (handle, nonces, etc.) to be included
with the command.

Commands as well as operands implement a streaming interface allowing ob-
jects to be converted into a binary stream. The resulting binary stream can be
sent directly to a TPM. This way, the complex marshalling and unmarshalling
process of commands and their operands has to be implemented only once in the
Command and Result base class and will be inherited by derived commands. This
also includes the complex calculation of the session authentication when sending
commands as well as authentication verification and consistency checks of data
received from the TPM. If the TPM returns an TPM AUTHFAIL error code, e.g.,
the Result automatically throws an appropriate exception of the same name to
be handled by the application.

Secret Provider. The secret provider interface manages the authentication
information to be used by the TPM. All authentication data, e.g. of owners,
keys, or other objects are saved and managed by the SecretProvider. Users
of the μTSS can derive their own implementation that, e.g., implements a se-
cure storage, a password cache, or a GUI dialog to allow users to enter the
secrets.

Sessions. Sessions are used within a TPM command to authenticate the usage
of specific objects such as cryptographic keys and to authenticate a specific role,
e.g., the TPM owner. Figure 6 illustrates the available session types provided by
the oTCS layer.

Fig. 6. The implementation of the session types OSAP, DSAP, OIAP and Transport
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Depending on the specific TPM command, the number and the type of ses-
sions may vary, just as in the specification. For example, the TPM command
TPM Quote accepts one session or no session at all, and the session can be of the
type OSAP or OIAP. To be able to handle this, the interface Session provides
the public interface of all session objects.

Separate classes are dedicated to the various session types: OIAP Session
for OIAP sessions, OSAP Session for OSAP sessions, DSAP Session for DSAP
sessions, TransportSession for transport sessions.

Command executor. The oTCS provides the CommandExecutor interface (see
Figure Figure 7) as the central instance used to handle the execution of TPM
commands as well as select the backend for execution (e.g., TDDL or tcsd). A
typical responsibility of the command executor is the handling of non-fatal errors
returned by the TPM. For example, the command executor catches the non-
fatal TPM errors TPM RETRY and waits an appropriate amount of seconds, until
it tries to resend the command to the TPM. This way, the command executor
handles many exceptional TPM states that normally had to be handled by the
application developer.

Fig. 7. Interface and available instances of the command executor

The TCS framework allows stacking of different command executor implemen-
tations. This way, an implementation that handles certain TCS or TPM errors,
or an implementation that audits the TPM commands and responses, can be
added to the existing functionality.

4.3 oTDDL Design

The oTDDL implements the TDDL interface, i.e., the interface to the TPM
device driver. As illustrated in Figure Figure 8, the singleton TDDL implements
the TDDLi interface used to send TPM commands, and the associated TPM re-
sponse, using the method transmit() based on byte streams. The static method
getInstance() provides access to the singleton by returning a reference to the
TDDL implementation.

Different back-ends implementing the TDDLi interface are provided. The class
SocketTDDL uses a TCP/IP connection to send TPM commands to a remote
service. The class DeviceTDDL, however, accesses the TPM of the local platform
under different operating systems such as Linux or Windows.
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Fig. 8. Interfaces and implementations of the architectural layer oTDDL

Multiplexer. To allow multiple applications to access the TPM, a tcsd-like
multiplexer has been implemented. The multiplexer acts upon the TDDL byte
streams and isolates clients using the class Context implemented based on the
TPM commands TPM LoadContext and TPM SaveContext.

Since the multiplexing is done on the TDDL layer, every client can use the
multiplexer through the SocketTDDL backend.

The multiplexer itself has been implemented by only 180 code lines, including
the management of different command line options.

5 Binding Usage Example

In this section we are going to give an illustrative example to show how the
μTSS is used. Listing 1.1 shows how to bind some data to the TPM and how to
unbind it.

Listing 1.1. Binding Example

try {
RND<BYTEARRAY> plain ( 204 ) ;
cout << " Plain : " << plain << endl ;

/// Create unbinding key
TPM &tpm = TPM : : getInstance ( ) ;
SRK srk = tpm . getSRK ( ) ;
UnbindingKey ubKey = srk . createUnbindingKey ( ) ;
/// Extract binding key from unbind key
BindingKey bKey = ubKey . getBindingKey ( ) ;

/// Bind the data
BYTEARRAY cipher = bKey . bind ( plain ) ;
cout << " Cipher: " << cipher << endl ;

/// Unbind the data
BYTEARRAY result = ubKey . unbind ( cipher ) ;
cout << " Result: " << result << endl ;

}
catch ( TPM_Error &e ) {

cerr << " TPM Error : " << e << endl ;
}
catch ( TCS_Exception &e ) {

cerr << " TCS Exception : " << e << endl ;
}
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In the first line we create a random plaintext of length 204 used for encryption.
Then, an unbinding key is created by the method createUnbindingKey() of the
SRK which itself was obtained from the TPM singleton. The invoked method inter-
nally uses the TPM command TPM CreateWrapKey with the correct parameters,
and returns the created UnbindingKey (ubKey).

In order to bind the plaintext, first the method getBindingKey() is used to
retrieve the public key part bKey which is then used to bind the plaintext by
invoking the method bind().

When invoking the method unbind() to unbind the ciphertext, the created key
data stored within the class UnbindingKey is automatically loaded into the TPM.

In general, the application developers neither have to care about occurring
TPM or TCS errors, nor do they have to free allocated resources explicitly, be-
cause both are automatically done by the exception system in combination with
appropriate destructors. For example, if the TPM returns the error
TPM INVALIDKEYHANDLE, because the used unbinding key is not loaded (or has
been unloaded in between), this error is caught by the unbinding key which then
loads the key data into the TPM and re-invokes the failed command.

For comparison, we provided 2 examples in the appendix of the extended
version of this paper (to be found on the Sirrix publication page5). The first
example shows an implementation of the same functionality using TrouSerS and
the other example is the implementation based on jTSS. Both examples are from
the standard test suite implementations and are not provided by the authors of
this paper.

The TrouSerS example uses the TSP API and requires 146 source lines of
code (LOC) versus 18 LOC using the μTSS6.

The jTSS example requires slightly more LOC, namely 30, than the μTSS-
based implementation. However, it provides less type-safety for the key object.
The same key data object is used for binding and unbinding, as well as for
binding and signing. Thus, the wrong key usage will result in failures during
runtime instead of compile time.

6 Evaluation

As shown in the example of Section 5, using the μTSS is very easy, since it hides
many details behind simple interfaces.

A performance analysis showed that a comparison with other software solu-
tions is irrelevant, due to the fact that the TPM itself is much slower than the
software. However, comparing an implementation of the binding example ex-
plained in Section 5 and the binding example based on TrouSerS (explained in
the extended version of the paper to be found on the Sirrix publication page7)
shows that the implementation based on the μTSS implementation takes 1.7
seconds, while the example based on TrouSerS takes 2.00 seconds.
5 http://www.sirrix.com/content/pages/publications.htm
6 Measured by sloccount http://www.dwheeler.com/sloccount/
7 http://www.sirrix.com/content/pages/publications.htm

http://www.sirrix.com/content/pages/publications.htm
http://www.dwheeler.com/sloccount/
http://www.sirrix.com/content/pages/publications.htm
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The μTSS is tested extensively and used in several applications. Section 6.1
gives an overview of the most important applications that are based on the μTSS.

6.1 Applications

The following applications are implemented based on the μTSS.
To further test the extensibility and flexibility of the μTSS design, we decided

to develop a Software-TPM based on it. We hoped that the Software-TPM could
be developed without much effort, since nearly all the required data types and
the specification of commands already exist. In fact our expectations have been
completely satisfied. The development of the Software-TPM is limited to the
implementation of the concrete command (according to the TPM specification),
by overwriting the method execute() of each Command object using a derived
class.

Based on the Software-TPM described before, an MTM Software Stack and
Software-MTM were implemented. An MTM [11] is a security extension specified
by the TCG which is similar to the TPM but intended for use in embedded
and mobile devices. An MTM command set is similar to the TPMs, but some
differences exist: On the one hand, some TPM commands are not available on
an MTM and on the other hand, the MTM has some additional commands
such as MTM VerifyAndExtend(). As at the moment no hardware support for
MTM exists, this implementation provides a facility to experiment with the basic
concepts of the MTM.

The TrustedVPN is a TPM-based enterprise VPN solution8 based on a central
management server. The implementation on both the client and server side heav-
ily utilizes TPM functionalities, e.g., to establish a PKI based on TPM-internal
keys, to bind data to a platform configuration, and to realize a trusted channel
[12,13] between VPN client and management server. The actual implementation
of the TrustedVPN solution is based on the μTSS, taking advantage of its easy
API, its limited size and complexity due to the fact that only a subset of TPM
commands are used, and the capability to use the TPM without the need to
start a tcsd.

The μTSS has been successfully used to develop a TPM Compliance Test Suite
including more than 650 test cases and covering nearly all TPM commands that
can be tested on a standard PC platform. Here, the oTCS layer has mainly been
used to implement the concrete test cases, while the high-level abstractions of
the oTSP are used as helper to generate input data etc. The development of the
test cases was very easy, since the μTSS hides most of the complexity of the
TSS.

Another project that uses the μTSS is the TPM Manager, an open-source
graphical TPM management tool based on the Qt widget-library. Earlier versions
used the TrouSerS library as the backend, while the current developer version
has been ported to the μTSS within one to two days. A specific advantage of the
μTSS here is the DeviceTDDL implementation allowing an application to directly

8 http://www.sirrix.com/content/pages/54608.htm

http://www.sirrix.com/content/pages/54608.htm
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accessing the TPM driver without the need of a tcsd daemon. This was required
to keep an initrd that includes a TPM Manager as small as possible.

6.2 Overall Evaluation Results

Although the μTSS implementation does not provide the complete functionality
required by the TSS specification, our experiences show that a TSS implementa-
tion, providing a more intuitive and easier interface, helps developers to success-
fully use TPM functions. The object-oriented and clean design helped a stable
state to be reached in a relatively small time. Finally, the command pattern [10]
used to realize the TPM commands allows the easy addition, change, or removal
of command implementations.

The μTSS fulfills the requirements defined in Section 3 for the following
reasons:

Compliance and Completeness: Since the μTSS has been used to realize the TCG
TPM compliance test suite, it obviously fulfills the compliance and completeness
requirements. Moreover, the μTSS has been used to develop a software TPM that
itself is compatible with the TPM specification.

Portability: The μTSS has been implemented in C++ and is in use on top of
the Linux/x86, Linux/ARM, and Windows XP operating systems.

Security: The type safe design of the μTSS reduces the risk of runtime errors and
the use of standard data containers instead of C-pointers limits the number of
possible buffer and heap overflows. However, C++ is not the ideal programming
language for developing secure code but has been chosen, because it allows low-
level system implementations.

Usability: The μTSS provides a simple API hiding most of the complexity of the
TPM specification. The exception handling capability makes source code easier
to read and helps developers to focus on their tasks.

Maintainability: The object-oriented design of the μTSS reduces code redundan-
cies and hides implementation details behind object interfaces.

Modularity: The μTSS can be used in different configurations. E.g., it can di-
rectly access a TPM device, use its own TPM driver, or access a network server
such as a tcsd. Moreover, it can be configured to support only a subset of TPM
commands and structures.

Small code basis: The μTSS only includes structures, TPM commands, and log-
ical objects of the TPM specification. While the oTCS layer is a one to one
mapping of the TPM specification, the oTSP layer implements the logical TPM
objects such as keys, counters, and NV-Space areas.

7 Related Work

In the following, we briefly discuss the related works in the context of the TCG
software stack. Moreover, we analyze to which extent these implementations
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fulfill the requirements of Section 3. To our knowledge none of the existing im-
plementations directly implements the TPM Main Specification [1].

TrouSerS is an open source TSS implementation maintained by IBM since
2004. The latest version released is stable and implements TSS version 1.1 [14]
interfacing version 1.1b TPMs. Since the TCG has released a new version of
the TSS specification [3] to support new functionality provided by version 1.2
TPMs, version 0.3.x of TrouSerS was developed. Most of the features are im-
plemented. The source code itself is implemented in ANSI C. Due to the high
complexity and the elaborate specification, the implementation of a TSS stack
is very challenging. The usability and maintainability requirements as described
in Section 3 cannot be achieved using TrouSerS.

The Trusted Platform Agent (TPA) [15] is an open source library, which is
designed to minimize the effort of writing applications that use Trusted Com-
puting technology and employ the TPM. According to the website, the TPA
hides the complexity of the TSS interface. The library provides a small set of
functionalities such as binding, sealing, TPM management (takeownership and
is-owned), PCR (reading and extending). The TPA library has dependencies on
TrouSerS, TrouSerS tpm-tools, OpenSSL, SQLite and libcurl.

The IAIK jTSS is developed and maintained at the Institute for Applied
Information Processing and Communication at Graz University of Technology
[16]. The IAIK jTSS stack is a new implementation of the TCG Software Stack
for the JavaTMprogramming language. IAIK has initialized a Java Specification
Request (JSR 321) in the Java Community Process (JCP). The current status
of the specification process is outlined in the recent paper of the JSR 321 group
[17]. However, the need to use a Java runtime environment for running the jTSS
violates our requirement of a small code basis.

TPM/J [18] is an object-oriented API using Java for low-level access to the
TPM. It was developed as part of the research project on Trusted Computing at
MIT. TPM/J treats TPM low-level commands (i.e., the commands directly given
to the TPM chip itself), and the response data structures of these commands, as
first-class Java objects. The TPM/J stack does not provide full functionality for
TPM commands such as Quote2, Delegation commands, NV write commands,
CertifyKey commands, CMK commands and DSAP sessions.

Another library provided by IBM [19], libtpm, is implemented to communicate
with TPMs according to the TCG specifications. The library supports TPM
v1.1b and therefore it is not fully functional with TPMs of version 1.2. For
instance, TPM RESET and TPM LOADKEY are not working anymore. libtpm contains
a small set of most important TPM commands such as TPM Seal, TPM Unseal,
TPM Bind, TPM Unbind, and has been used in the past as basis for a security
kernel [5]. As libtpm only provides a limited functionality and is not properly
functional with TPM v1.2, it does not fulfill our requirements.

The Minimized MRTM [20] is a software implementation of a minimal MRTM
that runs in hardware-enforced isolation inside the trusted execution environ-
ment of a Nokia N96 handset. The code is, with a few minor exceptions, com-
patible with the MTM v1.0 specification, and as a monolithic compilation it can
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execute in 20kB of RAM encompassing both code and data. This is achieved
by reducing the data structures to a specification compliant minimum and by
optimizing the command logic to comply with the highly specialized demands of
an MRTM. However, it is not the goal of the μTSS to realize a minimal MTM.
Instead, a TSS should be implemented that provides the basis for many different
application scenarios including the development of a Software-MTM.

8 Conclusion

This paper presented the μTSS, an object-oriented TSS design and implementa-
tion providing developers an intuitive and easy to use interface. We have analyzed
in Section 1 the deficiencies of a complex and difficult to understand software ar-
chitecture. Based on three example scenarios, Section 3 identified requirements
of a TSS to be used in specific environments such as embedded platforms or
boot loaders.

The major principles behind our μTSS design are reduced complexity to sim-
plify the interface and the implementation, type safety to prevent runtime errors
and potential programming errors, object encapsulation to hide the complexity
of the implementation, and meaningful error handling to prevent resource leaks.
The design of the μTSS prevents code redundancies and makes maintenance of
the code easier and thus the implementation more stable. The μTSS design is
scalable allowing the use of only a subset of the provided functionality as it is re-
quired, e.g., for embedded systems or mobile devices. We discussed in Section 6
our positive experiences with our μTSS based on several projects such as the
TCG TPM compliance test suite, the TPM Manager, and a Software-TPM as
well as a Software-MTM implementation.
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Abstract. Virtualization has been purported to be a panacea for many security
problems. We analyze the feasibility of constructing an integrity-protected hy-
pervisor on contemporary x86 hardware that includes virtualization support, ob-
serving that without the fundamental property of hypervisor integrity, no secrecy
properties can be achieved. Unfortunately, we find that significant issues remain
for constructing an integrity-protected hypervisor on such hardware. Based on
our analysis, we describe a set of necessary rules that must be followed by hyper-
visor developers and users to maintain hypervisor integrity. No current hypervisor
we are aware of adheres to all the rules. No current x86 hardware platform we
are aware of even allows for the construction of an integrity-protected hypervisor.
We provide a perspective on secure virtualization and outline a research agenda
for achieving truly secure hypervisors.

1 Introduction

Virtualization allows a single physical computer to share its resources among multi-
ple guests, each of which perceives itself as having total control of its virtual machine
(VM) [30]. Virtualization is an effective means to improve hardware utilization, reduce
power and cooling costs, and streamline backup, recovery, and data center management.
It is even making inroads on the client-side. However, in all of these roles, the hyper-
visor (or Virtual Machine Monitor (VMM)) becomes yet another maximally privileged
software component from the perspective of the guest’s trusted computing base (TCB).
This stands in direct violation of several well-known principles of protecting informa-
tion in computer systems [36]. In many scenarios, the hypervisor may support guests
for two or more mutually distrusting entities, thereby putting to the test the hypervisor’s
ability to truly protect its own integrity and isolate guests [7].

Unfortunately, today’s popular hypervisors are not without their share of vulnera-
bilities (e.g., [4,49]), and appear to be unsuitable for use with highly sensitive appli-
cations. Despite recent enhancements to hardware support for virtualization [6,21,32],
low-level systems problems (e.g., System Management Mode exploits [12,50] and vul-
nerable BIOSes [26,35]) continue to plague existing solutions. We distinguish between
threats to hypervisor integrity and threats to hypervisor and guest data secrecy, observ-
ing that an integrity-protected hypervisor is a necessary, but not sufficient, condition for
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maintaining data secrecy in the face of mutually distrusting guests. We define integrity-
protected to mean that the hypervisor’s code cannot be modified in any fashion and
the hypervisor’s data cannot be maliciously changed. The secrecy of guests’ data is
explicitly defined to be outside the scope of the current paper.

Are today’s virtualization and security extensions to the x86 platform sufficient to
maintain the integrity of a hypervisor? This is a challenging question to answer for cur-
rent platforms due to their high complexity. Challenging practical issues that we con-
sider include per-device idiosyncrasies that arise from devices that are not completely
standards-compliant, and the need to offer the precise (i.e., bug-compatible) environ-
ment expected by unmodified guest operating systems.

Given the challenges in designing and implementing an integrity-protected hyper-
visor, we define threats to data secrecy and availability (such as covert channels, side
channels, timing channels, and resource exhaustion attacks) to be outside the scope of
this paper. Data secrecy and availability can be ensured only if the fundamental property
of hypervisor integrity is realized. For example, without integrity-protection, portions
of the hypervisor that manage the isolation of memory pages between guests may be
maliciously modified, thereby allowing one guest to make modifications to the code or
data of another guest. These modifications may include releasing secrets.

We enumerate core system elements (e.g., buses and system components) required to
protect the integrity of the hypervisor in §2, and present rules for an integrity-protected
hypervisor in §3. In §4, we discuss specific details of AMD’s and Intel’s hardware
virtualization support in the context of an integrity-protected hypervisor. We believe
our rules represent a strong first approximation of the necessary requirements for an
integrity-protected hypervisor on today’s x86 hardware. We write these rules as hyper-
visor developers with years of experience investigating hypervisor integrity. We leave
for future work the demonstration that these rules are also sufficient.

Given the complexity of the current x86 hardware virtualization architecture and
the plethora of available devices, it may be difficult to conclude definitively that an
integrity-protected hypervisor can be created when its VMs are commodity operating
systems expecting a rich set of peripheral devices and capable of running arbitrary code.
Thus, in §5, we also describe a spectrum of different VM environments, illustrating why
it may be non-trivial to ensure that some combinations of OSes can execute unmodified
on an integrity-protected hypervisor. Further, in §6 we describe the design of several
popular hypervisors and discuss the adherence of their design to our integrity-protected
hypervisor rules. This section also includes a table summarizing our rules and the level
of adherence of these popular hypervisors.

To summarize, this paper makes the following contributions: (1) an analysis of the
platform elements that must be properly managed to integrity-protect a hypervisor, (2) a
set of rules that hypervisor developers must follow, (3) the manifestation of these rules
on contemporary systems, (4) the implications of these rules with respect to support-
ing concurrent VMs on top of the hypervisor, and (5) an analysis of the adherence of
existing hypervisor designs to these rules. While we believe our results are interesting
in their own right, we also intend this paper to serve as a call to action. Significant
additional research is needed to determine whether the rules presented here are not
just necessary but also sufficient. We also hope to inspire subsequent investigations to
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Fig. 1. Elements of today’s x86 hardware virtualization architecture. Shaded regions represent
elements that must be access-controlled to ensure hypervisor integrity. We discuss the TPM in
§3.1.

ascertain the data secrecy properties attainable with commodity virtualization solutions,
particularly given the effectiveness of recently disclosed attacks (e.g., [31]).

2 Elements of x86 Hardware Virtualization

Our goal is to preserve the integrity of a hypervisor, i.e., preventing inadvertent or mali-
cious manipulation of hypervisor memory regions (both code and data). Consequently,
only system components that can directly access memory or mediate memory accesses
become critical to preserving hypervisor integrity. AMD and Intel—the two major x86
CPU vendors that support hardware virtualization—design their CPUs to work with the
Peripheral Component Interconnect Express (PCIe [10]) system architecture and build
on the existing non-hardware virtualized x86 architecture. Both the PCIe and x86 ar-
chitectures define precise methods for moving data to and from system memory. This
standardization serves as a guide for the remainder of this section. To maintain general-
ity, where applicable, we adhere to the PCIe terminology instead of using CPU/vendor
specific terms.

2.1 Overview

Current x86 hardware virtualization encompasses both hardware and software elements
(Figure 1). The hardware elements are connected via the PCIe bus (though both Intel
and AMD employ proprietary buses – Quick Path Interconnect and Hypertransport,
respectively – to connect the northbridge and southbridge).

The Northbridge (or Memory Controller Hub – MCH – on recent Intel-VT platforms)
connects the CPU(s) (which include an integrated Memory Management Unit, or MMU)
and Memory/Cache. The northbridge also supports other performance-critical compo-
nents such as the graphics controller. Recent Intel-VT platforms use the term Graphics
and Memory Controller Hub (GMCH) to describe a MCH with integrated graphics con-
troller. The northbridge further contains an IO Memory Management Unit, or IOMMU,
which is responsible for managing Direct Memory Access (DMA) transactions between
the Memory and all attached peripherals without intervention by the CPU.

The Southbridge (or IO Controller Hub – ICH) supports less performance-critical IO
capabilities such as some types of disk and network interfaces, USB, audio, and legacy
ports such as the serial and parallel port. The southbridge also connects an optional
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Trusted Platform Module (TPM) which is used to measure a dynamic root of trust
(which we treat in §2.2 and §3.1).

The software elements in the x86 hardware-virtualized architecture are the system
boot and runtime firmware (BIOS), firmware code on various peripherals, power man-
agement scripts within the BIOS, memory regions belonging to individual VMs, and
the hypervisor itself.

Throughout this paper we use the terms northbridge, southbridge and IOMMU func-
tionally rather than referring to physical components. As an example, on the recent
AMD-V and Intel-VT architectures the northbridge and IOMMU are physically a part
of the CPU. However, their functionality remains the same. The following sections
discuss these hardware and software elements in the context of an integrity-protected
hypervisor.

2.2 Hardware Elements

The hardware elements in the context of preserving hypervisor integrity are the CPU,
Northbridge and Southbridge.

CPU. An x86 hardware virtualization-capable CPU, like a normal x86 CPU, includes
registers, caches, and an instruction set. The CPU has two over-arching operating modes:
host (more privileged) and guest (less privileged). The guest mode is used to execute
a guest OS environment in a controlled manner, i.e., in a virtual machine. The host
mode can intercept certain critical operations that are performed in guest mode such as
accessing CPU control registers and performing IO. There can be multiple concurrent
guest instantiations, but only one host mode execution environment. Both host and guest
modes can further execute in any of four privilege rings 0 (most privileged) through 3.

System Management Mode (SMM). SMM code (part of the BIOS) executes at the high-
est privilege level and is used to handle system events such as system and CPU tem-
perature control, and legacy support for USB input devices. SMM is entered whenever
a System Management Interrupt (#SMI) occurs. The #SMI is an external hardware in-
terrupt and can occur at any point during system operation. When SMM is entered,
all normal execution state is suspended (including host and guest modes) and firmware
code (#SMI handler) is executed with full access to system physical memory. The #SMI
handlers are stored in a special memory region called the System Management RAM
(SMRAM) which is only accessible by programming certain CPU registers or IO loca-
tions within the southbridge (§2.2).

Memory Management Unit (MMU). The MMU is the CPU component that enables
virtual memory management and handles all memory accesses from the CPU. Its main
function is to translate virtual addresses to physical addresses using paging structures
while enforcing memory protections, in both the host and guest modes. Recent x86
hardware-virtualized CPUs introduce the concept of hardware physical memory virtu-
alization where memory addresses are separated into guest virtual, guest physical, and
system physical. The guest virtual addresses are translated to guest physical addresses
using guest paging structures. The guest physical addresses are translated into system
physical addresses using another set of paging structures within the hypervisor.
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Microcode. CPU microcode resides in a special high-speed memory within the CPU and
translates instructions into sequences of detailed circuit-level operations. Essentially,
microcode enables the CPU to reconfigure parts of its own hardware to implement func-
tionality and/or fix bugs in the silicon that would historically require procuring a new
unit. Microcode updates are loaded by the BIOS or the OS into the CPU dynamically.

All CPU(s) are shared between the hypervisor and the VM(s) that it runs, as the
portion of the hypervisor that handles guest intercepts will always execute on the same
CPU as the VM that generated the intercept. This can lead to hypervisor integrity com-
promise if not managed properly. As an example, a malicious VM may attempt to ma-
nipulate CPU cache contents so that unintended code runs as if it is hypervisor code
(e.g., [50]). An attacker may also change existing SMI handlers in BIOS so that the ma-
licious handlers execute as SMM code with sufficient privileges to modify hypervisor
physical memory regions [12,50]. An attacker can also alter a legitimate microcode1

update to execute a CPU instruction that would normally be illegal and instead “trick”
the memory caches into thinking the CPU is in host mode [37]. From there, the attacker
can gain access to hypervisor memory regions.

Northbridge. A northbridge (aka memory controller hub, MCH, or memory bridge)
typically handles communication between the CPU, memory, graphics controller, and
the southbridge (§2.2). The northbridge handles all transactions to and from memory.
The northbridge also contains an IO Memory Management Unit (IOMMU) that is re-
sponsible for managing direct device accesses to memory via DMA.

IOMMU. An IO Memory Management Unit (IOMMU)2 manages Direct Memory Ac-
cesses (DMA) from system devices. It allows each device in the system to be assigned
to a specific protection domain which describes the memory regions that are accessible
by the device. When a device attempts to access system memory, the IOMMU inter-
cepts the access and determines whether the access is to be permitted as well as the
actual location in system memory that is to be accessed. In systems with multiple phys-
ical CPUs, there may be multiple IOMMUs, but logical CPUs on a single die currently
share an IOMMU.

Most devices today perform DMA to access memory without involving the CPU.
DMA increases system performance since the CPU is free to perform computations,
but a malicious device may attempt DMA to hypervisor memory regions, potentially
compromising its integrity. As an example, Firewire is a serial bus that allows endpoints
to issue remote DMA requests. One system may be able to issue DMA requests on the
other system via the Firewire controller, thereby gaining read/write access to the full
memory contents of the target and compromising its integrity [8].

1 Intel digitally signs microcode updates and hence altering a legitimate microcode update is
not straightforward. However, AMD microcode updates are not signed, thereby allowing an
attacker to freely modify bits [37].

2 x86 CPUs also include a more limited graphics-related address translation facility on-chip,
called a GART. However, unlike the IOMMU, the GART is limited to performing address
translation only and does not implement protections.
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Southbridge. The southbridge (also known as the IO Bridge) is a chip that implements
the lower-bandwidth IO in a system, e.g., USB, hard disks, serial ports, and TPM. It is
also responsible for providing access to the non-volatile BIOS memory used to store
system configuration data. The southbridge contains certain IO locations that may be
used to compromise hypervisor integrity. For example, SMRAM access and SMI gen-
eration are controlled by IO locations that reside within the southbridge. An attacker
could implant a malicious SMI handler by enabling SMRAM access [12] and execute
the handler by generating a SMI. The malicious SMI handler then has unrestricted ac-
cess to hypervisor memory regions. Similarly, system configuration data copied from
firmware into system memory at boot time can be manipulated using the southbridge,
potentially preventing the BIOS from setting the system to a known correct state during
boot-up.

2.3 Software Elements

In addition to the hardware elements that comprise the current x86 hardware virtualiza-
tion architecture, there are various software elements. The software elements include
firmware such as the BIOS, option ROMs, power management scripts that are embed-
ded into the platform hardware, and OS and applications that run within a VM on top of
the hypervisor. These software elements can contain bugs or can be altered to compro-
mise the integrity of a hypervisor. Further, certain software elements such as the BIOS
and option ROMs execute even before a hypervisor is initialized and can set the system
into a malicious initial state that compromises hypervisor integrity.

BIOS / UEFI. The Basic Input and Output System (BIOS) is by far the most preva-
lent firmware interface for x86 platforms. The BIOS prepares the machine to execute
software beginning from a known state – a process commonly known as system boot-
strapping. The Universal Extensible Firmware Interface (UEFI) is a specification that
defines a software interface between an operating system and platform firmware [23].
UEFI is a much larger, more complex, OS-like replacement for the older BIOS firmware
interface but is only recently making its way into commodity platforms.

The BIOS is typically stored on a Flash (EEPROM) chip that can be program-
matically updated. This allows for BIOS vendors to deliver BIOS upgrades that take
advantage of newer versions of hardware or to correct bugs in previous revisions. Un-
fortunately, this also means that a legitimate BIOS can be overwritten with a malicious
one that may compromise hypervisor integrity, e.g., hardware virtualization rootkits
such as BluePill [34] that emulate nested hypervisor functionality. Thus, an integrity
protected hypervisor thinks it is executing at the lowest level; BluePill code however
has complete control over hypervisor memory regions.

Note that certain bootstrapping firmware such as Intel’s EFI [23] and Phoenix’s Se-
cureCore BIOS [41] only allow signed updates to the relevant Flash chip. However,
since they have to include OEM customizable sections, parts of the BIOS image are
not signature verified. Such areas (e.g., the BIOS boot logo) have been successfully
changed by attackers to run malicious code [18].
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Option ROMs. A system can contain several BIOS firmware chips. While the pri-
mary BIOS typically contains code to access fundamental hardware components, other
devices such as SCSI storage controllers, RAID devices, network interface cards, and
video controllers often include their own BIOS, complementing or replacing the pri-
mary BIOS code for the given component. These additional BIOS firmware modules
are collectively known as Option ROMs, though today they are rarely implemented as
read-only, instead using Flash to support updates.

The BIOS invokes option ROM code for all system devices during bootstrapping.
This gives the option ROMs the chance to intercept system interrupts and occupy sys-
tem memory, in order to provide increased functionality to the system at runtime. The
option ROM code is often legacy code that accesses physical memory directly. An at-
tacker may replace a legitimate option ROM with a malicious one which may then
be invoked at runtime by an OS running within a VM [16]. This code can then have
unrestricted access to hypervisor physical memory regions, thereby compromising its
integrity. Certain BIOS code (e.g., Intel Active Management Technology) execute on a
seperate processor in parallel to the main CPU and can be used to compromise hyper-
visor integrity via DMA.

Power Management Scripts. Most systems today are equipped with power manage-
ment capabilities where the entire system, including devices, can be transitioned into a
low-power state to conserve energy when idle. Power management on current commod-
ity systems is governed by the Advanced Configuration and Power Interface (ACPI)
specification [20]. With an ACPI-compatible OS, applications and device drivers in-
teract with the OS kernel, which in turn interacts with the low-level ACPI subsystem
within the BIOS.

An ACPI subsystem provides an OS with certain power management data structures
in memory. A Differentiated System Descriptor Table (DSDT) provides power manage-
ment code for system devices in a bytecode format called the ACPI Machine Language
(AML). The OS kernel typically parses and executes the DSDT scripts to set device and
CPU power states. Popular OSes such as Windows parse AML scripts in a CPU mode
that allows accessing physical memory directly. An attacker that can insert malicious
code within AML scripts will then have unrestricted access to physical memory when
executed [17].

Other Code. A VM running on a hypervisor can run a full commodity OS. The OS
itself may be subverted and may attempt to attack the hypervisor. As an example, mali-
cious code within a VM may attempt to manipulate the caching policies of hypervisor
memory, thereby effectively gaining access to hypervisor memory regions.

3 Integrity-Protected Hypervisor

We now present our assumptions and the rules an integrity-protected hypervisor must
observe, with related discussion. For the hypervisor to protect its integrity, it must en-
sure that it starts up in an unmodified fashion and continues to run without any inadver-
tent modifications to its code and data.
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Fig. 2. An integrity-protected hypervisor: (a) must use a dynamic root of trust to startup, (b)
must protect itself against any code via physical memory virtualization, and (c) must prevent any
device in the system from directly accessing hypervisor memory. Finally, the hypervisor itself
must be free of vulnerabilities.

We assume that: The target system on which an integrity-protected hypervisor runs
is physically protected. An attacker who can physically tamper with or replace with
malicious versions system components such as the northbridge, southbridge, CPU, or
TPM may successfully compromise hypervisor integrity. As an example, commands
generated by the CPU during dynamic root of trust establishment (see §3.1) must reach
the TPM with their integrity intact. The TPM connects via the Low Pin Count (LPC) bus
to the southbridge. The LPC bus is a relatively inexpensive and low-speed bus in modern
systems, and is thus susceptible to physical tampering. Therefore, the platform on which
an integrity-protected hypervisor runs must be physically protected at all times.

The rules for an integrity-protected hypervisor can be divided into rules that must
be followed for (a) startup, (b) runtime, and (c) hypervisor design (Figure 2). From §2
we note that there are only two ways in which hypervisor memory regions can be ac-
cessed on an x86 hardware-virtualized platform: (a) via code executing on the CPU,3

and (b) via system devices performing DMA operations. Accordingly, we present the
exact rules that must be followed by an integrity-protected hypervisor during startup
and runtime, and consider its design in the context of cases (a) and (b) above. Conse-
quently, a hypervisor that follows these rules is automatically protected from integrity
compromise.

3.1 Startup Rules

These rules allow for the requirement that an integrity-protected hypervisor must start
up in an unmodified fashion.

Definition 1. A dynamic root of trust (DRT) is an execution environment created
through a disruptive event that synchronizes and reinitializes all CPUs in the system

3 This includes code executing from the CPU caches. For example, an attacker could attempt
to tamper with the execution of the hypervisor not by changing the memory of the hypervisor
directly, but by changing the view of the hypervisor’s code when it is executed on the CPU by
tampering with the values stored in the CPU code caches.
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to a known good state. It also disables all interrupt sources, DMA, and debugging ac-
cess to the new environment. An explicit design goal of a DRT mechanism is to prevent
possibly malicious firmware from compromising the execution of a hypervisor.

Rule 1. An integrity-protected hypervisor must be initialized via the creation of a dy-
namic root of trust.

Discussion. The traditional BIOS initialization and boot sequence is plagued by having
existed for several decades. As such, modern security requirements and virtualization
capabilities did not exist when it was first conceived. The result of this is that there
may exist legacy code in a system’s BIOS that should not be trusted, since it was never
subjected to rigorous analysis for security issues.4 Further, many devices have option
ROMs (§2.3) that are invoked by the system’s BIOS at boot time. Thus, a malicious
option ROM may take control of a platform before the hypervisor can be initialized. The
dynamic root of trust mechanism provides a means for integrity-protected hypervisor
initialization without breaking compatibility with myriad legacy devices.

Rule 2. A dynamic root of trust mechanism must allow for an external verifier to as-
certain the identity (e.g., cryptographic hash) of the memory region (code and data) in
the new execution environment.

Discussion. In some cases the DRT establishment can be unsuccessful (e.g., not all
CPUs were able to synchronize). Further, if the DRT is successful, it only guarantees
that the environment that is initialized is clean. The code that executes within the new
environment may be a hypervisor whose integrity is already compromised. Therefore,
there must be a mechanism to securely communicate to an external verifier whether a
DRT was successfully established, as well as a cryptographic hash of the code and data
in the clean execution environment, so that the identity of the loaded hypervisor can
be verified to be one known to enforce integrity protections. There are currently both
hardware (TPM-based [44]) and software [38] based hardware mechanisms for DRT
establishment. The dynamic root of trust mechanism available on today’s systems from
AMD and Intel also includes a facility to perform an integrity measurement of the new
environment using the platform’s TPM chip.

3.2 Runtime Rules

Once an integrity-protected hypervisor has started in an unmodified form, it must con-
tinue to run without any inadvertent modifications to its memory regions (code and
data). The following are the set of rules that must be followed at runtime by a hypervi-
sor to ensure its integrity protection.

Rule 3. An integrity-protected hypervisor must employ physical memory virtualiza-
tion to prevent any code executing within a VM from accessing hypervisor memory
regions.

4 For a closed system where only known firmware is executed at boot-time, a dynamic root
of trust may not be necessary. However, most (if not all) x86 systems do not fall under this
category.
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Discussion. A VM running on top of an integrity-protected hypervisor can run any
commodity OS and applications. Such an OS can use the BIOS, option ROM, and
Power Management Script code during runtime. E.g., Windows uses PCI BIOS func-
tions during startup and employs the video BIOS to control the video subsystem during
runtime. Further, it parses and executes Power Management Scripts as a part of system
power management.

Code running within a VM may manipulate the MMU’s virtual memory data struc-
tures to map and access hypervisor memory regions. Further, it may disable virtual
memory support and directly access system physical memory. Therefore, an integrity-
protected hypervisor must verify any physical address originating from a VM before
it reaches the memory controller. Consequently, an integrity-protected hypervisor must
virtualize physical memory.

Definition 2. We define a hypervisor core to be the part of a hypervisor that is respon-
sible for initializing, creating, and terminating VMs and for handling any intercepts
that occur during VM execution.

Definition 3. We define critical system operations as operations that can result in com-
promising hypervisor integrity, e.g., changing page tables mapping within a VM to map
and access memory regions belonging to the hypervisor.

Rule 4. An integrity-protected hypervisor must execute its core in the highest privilege
level so it can interpose on critical system operations.

Discussion. An integrity-protected hypervisor is responsible for setting up guest en-
vironments, running them, and tearing them down. These operations require execution
of privileged instructions and hence the hypervisor must be in an operating mode that
allows the use of such instructions. Further, an integrity-protected hypervisor must be
able to detect any attempts to modify its memory regions by any other code within
the system (e.g., code within the guest environments or device firmware). Thus, an
integrity-protected hypervisor must execute in a CPU mode that enables the hypervisor
to intercept and handle critical system operations such as device IO and writing to CPU
control registers. Other parts of the hypervisor can execute at lower privilege levels
contingent on hypervisor design.

Definition 4. Critical CPU registers are the set of CPU registers that can be used to
compromise the integrity of a hypervisor. On the x86 hardware virtualized architecture
they can be divided into: (i) control registers – used for controlling the general behavior
of the CPU such as interrupt control, switching the addressing mode (16/32/64-bit), and
floating-point/multimedia unit control, (ii) segment registers – used to define the mem-
ory region and access type for code, data and stack segments, (iii) debug registers – used
for debugging purposes, and (iv) machine specific registers (MSR) – special-purpose
control registers exposing CPU implementation-specific features. E.g., MSR EFER is
used on both Intel-VT and AMD-V CPUs to enable extended features such as NX (no-
execute) memory protections.

Rule 5. An integrity-protected hypervisor must have an independent set of critical
CPU registers and must sanitize values of CPU data registers during control trans-
fers to and from VMs.
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Discussion. Sharing critical CPU registers between the hypervisor and a VM can lead
to hypervisor integrity compromise. Code within a VM may use the control registers to
turn off MMU-based virtual memory and set the data segment to address all of physi-
cal memory to gain access to hypervisor physical memory regions. Certain MSRs are
employed by the CPU to save host mode state. As an example, on AMD-V CPUs, the
VM HSAVE MSR is used to set the host mode save area which describes the physical
memory region used to save certain host mode runtime state. A guest environment that
can change the contents of this MSR can then change the host mode registers and com-
promise hypervisor integrity. Memory Type Range Registers (MTRRs) are another type
of MSR which are used to set caching policy for a range of physical memory. A guest
environment can setup the MTRRs such that the CPU cache contents can be accessed
and manipulated at runtime [50]. Since parts of hypervisor code and data will often be
in the CPU cache, such MTRR manipulation can be used to compromise hypervisor
integrity if the hypervisor’s page tables for a guest map hypervisor code or data with
read permissions.5 Therefore, an integrity-protected hypervisor must have an indepen-
dent set of critical CPU registers which are always in effect when the CPU is operating
in the host mode.

The CPU data registers are used for data movements to and from system memory.
Data registers can be divided into: integer, floating-point, and multimedia registers.
Guest modes can run a full-fledged OS which typically use these data registers for their
functioning. If a hypervisor uses these registers (or a subset of them) for its operation,
values of these registers carried over from the guest environment during an intercept can
result in the compromise of hypervisor data integrity. Therefore, an integrity-protected
hypervisor must either set data registers to a defined state (e.g., zero them) or save and
restore contents of used data registers during control transfers to and from guest modes.

Rule 6. An integrity-protected hypervisor requires the MMU to maintain independent
states for the hypervisor and guest environments.

Discussion. The MMU is the CPU component that includes support for virtual memory
(using paging) and memory access protections. The MMU interface is exposed via a set
of CPU registers. The MMU also employs a Translation Lookaside Buffer (TLB) for
caching address translations when using virtual memory. Since the MMU is involved in
nearly every instruction that is executed by the CPU, a guest environment can compro-
mise hypervisor memory regions if the MMU register set and internal states are shared
between host and guest modes. As an example, if a hypervisor does not have its own
TLB, the TLB entry loaded in guest mode can lead to unexpected address translations
or access permissions. Therefore, an integrity-protected hypervisor needs the MMU on
the CPU to maintain independent states for the hypervisor and guest environments.

Rule 7. An integrity-protected hypervisor must intercept all x86 hardware virtualiza-
tion instructions.

5 Note that an adversary cannot exploit cache synchronization protocols in multi-core CPUs in
order to manipulate CPU cache contents. All current x86 CPUs supporting hardware virtual-
ization implement cache coherency in hardware, thereby maintaining a uniform view of main
memory.
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Discussion. An x86 hardware virtualized CPU provides a set of virtualization specific
instructions that are used to create, modify, run and terminate guest environments and
to save and load guest environment states. A hypervisor can be compromised if these
instructions are allowed to execute within a guest environment. For example, a guest
environment could load its own state devoid of protections set by the hypervisor. How-
ever, an integrity-protected hypervisor can choose to implement recursive virtualization
by emulating such instructions.

Definition 5. We define containerization as the process by which a hypervisor isolates
some given code and associated data and executes them under complete control.

Rule 8. An integrity-protected hypervisor must containerize any System Management
Mode code and BIOS, option ROM or Power Management Scripts it uses.

Discussion. SMM code, BIOS, option ROMs, and Power Management Scripts are low-
level code that have unrestricted access to all system resources such as critical CPU
registers, memory, and device IO locations. A buggy or malicious #SMI handler can
therefore access memory regions belonging to the hypervisor and compromise its in-
tegrity [12,50]. Malicious code can be embedded within the BIOS, option ROM, or
Power Management Scripts [16,17,18] and these in turn can alter hypervisor memory
regions. Therefore, if an integrity-protected hypervisor requires the use of BIOS, op-
tion ROM, or Power Management Script code, it must run them in isolation (e.g., in a
VM). Further, since #SMIs can occur at any point during system operation, an integrity-
protected hypervisor must always containerize any SMM code regardless of the CPU
operating mode.

Rule 9. An integrity-protected hypervisor must prevent system devices from directly
accessing hypervisor memory.

Discussion. An integrity-protected hypervisor can choose to let a VM use a physical
device without employing any form of device virtualization. Alternatively, the hypervi-
sor might need to virtualize a physical device and let the VM use a virtual device. As
an example, in many systems, a single physical USB controller device controls all the
available USB ports. The only way to share the USB ports between VMs would be to
present each VM with its own virtual USB controller device that then controls a sub-
set of the physical USB ports on the system. The virtual USB controller devices reside
within the hypervisor and interpose on the USB protocol and direct the requests to the
appropriate physical USB controller.

USB, Firewire, Storage and Network devices can directly access physical memory
via DMA, potentially bypassing the hypervisor. These devices can be programmed by
an attacker to access any portion of the physical memory including those belonging
to the hypervisor [8]. Malicious firmware on a device can also accomplish the same
goal by replacing legitimate physical memory addresses passed to it with hypervisor
physical memory regions. Therefore, an integrity protected hypervisor must prevent
devices from directly accessing its memory regions.

Rule 10. An integrity-protected hypervisor must enumerate all system devices at
startup and be able to detect hot-plug devices at runtime.
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Discussion. As discussed in the previous rule, an integrity-protected hypervisor must
restrict devices from accessing hypervisor memory regions. This requires the hypervi-
sor to configure memory access restrictions for every device within the system. Conse-
quently, the hypervisor needs to uniquely identify each device. While a device can be
uniquely identified (e.g., the bus, device and function triad on a PCIe bus), the identifi-
cation can change depending on system configuration. As an example, the triad on the
PCIe bus is dependent on the physical location of the device on the system board, which
may change between hardware upgrades. Therefore, an integrity-protected hypervisor
must always enumerate all system devices during its startup to configure permissible
memory regions for each device. Further, with hot-plugging capabilities in current sys-
tems (where a device can be added or removed from the system at runtime), an integrity-
protected hypervisor must be able to dynamically detect such additions and removals
and enforce memory access restrictions for such devices. (An alternative, non-technical
solution is to maintain stringent physical security to prevent devices from being hot-
plugged. This may not be economical in practice.)

Definition 6. We define critical system devices to be devices that must be properly man-
aged to prevent hypervisor integrity compromise. On the x86 hardware-virtualized ar-
chitecture, these devices are the functional equivalents of the northbridge, southbridge,
and IOMMU, as they can constrain the behavior of all other devices.

Rule 11. An integrity-protected hypervisor must prevent access to critical system de-
vices at all times.

Discussion. Critical system devices, like any other device, can expose their interface
through either legacy IO or memory-mapped IO. For example, Intel-VT systems ex-
pose the IOMMU as a DMA device through ACPI while AMD-V systems expose the
IOMMU as a PCI device. A VM on top of the hypervisor may perform direct IO to
these devices, effectively compromising the integrity of the hypervisor. Therefore, an
integrity-protected hypervisor must prevent access to these critical system devices at all
times.

3.3 Design Rule

A hypervisor’s runtime integrity can be compromised by manipulating its memory re-
gions. On an x86 hardware virtualized platform memory can be accessed either via code
executing on the CPU or system devices using DMA. In this section, we discuss the rule
governing the design of an integrity-protected hypervisor in the above context.

Rule 12. An integrity-protected hypervisors’ code must be free of vulnerabilities.

Discussion. A hypervisor needs to be configured with guest environment state (guest
OS and allocated resources) before a guest environment can be run. Further, contingent
on hypervisor design, configuration changes can be needed at runtime during guest
environment operation (e.g., adding or removing resources at runtime). Depending on
the hypervisor design, inter-VM communication (e.g., drag and drop between different
guest environments) and guest runtime interfaces to the hypervisor (e.g., accelerated IO
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drivers for virtualized devices) might be supported. Such runtime interfaces might also
directly access hypervisor data (e.g., accelerated drivers within the guest may access
temporary data buffers that are mapped within hypervisor memory regions for fast IO).
All these configuration options and interfaces pose significant risk to hypervisor in-
tegrity if they are complex [4]. An integrity-protected hypervisor must therefore ensure
that such configuration and runtime interfaces are minimal. Further, designers must also
ensure that the hypervisor’s core operating logic is simple and its code-base is within
limits to perform manual and analytical audits to rule out any vulnerabilities [11,14,27].

4 Integrity-Protected Hypervisor on AMD-V and Intel-VT

We present details on if and how the rules described in §3 can be enforced on AMD-V
and Intel-VT.

Rule 1. An integrity-protected hypervisor must be initialized via the creation of a dy-
namic root of trust. To date, hardware- and software-based [38] mechanisms for creating
a dynamic root of trust have been proposed. AMD introduced a new CPU instruction
called SKINIT [6], and Intel introduced a family of instructions called GETSEC [22],
where GETSEC [SENTER ] is the most similar to AMD’s SKINIT.

Rule 2. A dynamic root of trust mechanism must allow for an external verifier to as-
certain the identity of the code that executed on a system. The TPM’s PCR 17 is reset
during the establishment of a DRTM. It resets to 0 (20 bytes of 0x00) during successful
establishment, and -1 (20 bytes of 0xff) in the event of an error. The contents of the
code to be executed in the new environment are sent to the TPM itself, where they are
hashed and extended into the newly reset PCR. On the AMD-V this is PCR 17 while on
the Intel-VT it is PCR 18. (An Intel-provided Authenticated Code Module, or ACMod,
is extended into PCR 17 on Intel systems.)

Rule 3. An integrity-protected hypervisor must virtualize physical memory to prevent
access to its memory regions. There are both software and hardware approaches to
physical memory virtualization.

Software physical memory virtualization performs guest virtual to system physical
address translations on behalf of the guest environment by using shadow page tables
within the hypervisor. The shadow page tables are synchronized with the guest page
tables during guest page table modifications and are enforced using MMU configuration
registers of the guest environment. Note that if the guest environment attempts to run
without virtual memory support (e.g., real-mode), the switch must be intercepted and
virtual memory support must be enabled transparently.

On both AMD-V and Intel-VT, all guest accesses to MMU registers can be inter-
cepted by the hypervisor, which facilitates enforcement of shadow page tables. Further,
TLB flushes are performed using the CR3 and CR4 registers and the INVLPG instruc-
tion, all of which can be intercepted by the hypervisor to synchronize shadow page
tables. Furthermore, CPU mode switches within a VM can be intercepted by the hyper-
visor on both architectures, to enable virtual memory transparently.
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Both AMD-V and Intel-VT have support for hardware physical memory virtualiza-
tion in the form of nested page tables and extended page tables, respectively. With
hardware physical memory virtualization, the guest has its own set of MMU configu-
ration registers and page tables which need not be tracked by the hypervisor. Instead,
the guest page tables translate guest virtual addresses into guest physical addresses. The
guest physical addresses are then translated to system physical addresses by the MMU
using nested (extended) page tables which reside within the hypervisor for each guest.
All page faults incurred in the nested (extended) page tables lead to a control transfer to
the hypervisor. This guarantees that the hypervisor has full control over system physical
memory.

Rule 4. An integrity-protected hypervisor must execute its core in the highest privilege
level to allow it to interpose on critical system operations. Consequently, an integrity-
protected hypervisor on AMD-V or Intel-VT must run in the host mode in ring 0. On
AMD-V, a CPU can be switched to host mode in ring 0 using the CR0 register and by en-
abling host mode using MSR EFER (once in host mode, MSR VM HSAVE PA should
be initialized to point to the host save area). On Intel-VT, a CPU can be switched to host
mode in ring 0 using the CR0 register and by initializing VMXON region contents, en-
abling host mode using the CR4 register, and executing the VMXON instruction.

Rule 5. An integrity-protected hypervisor must have an independent set of critical CPU
registers and must sanitize values of CPU data registers during control transfers to and
from VMs. Both AMD-V and Intel-VT CPUs provide the host and each guest mode
with their own set of control, debug, and segment registers. Thus, guest-mode changes
to these registers only impact the guest mode operation and cannot result in any changes
within the host mode.

On both AMD-V and Intel-VT CPUs, certain MSRs are shared between the host and
guest modes. AMD-V has support for an MSR Bitmap structure for every guest mode
instance. If a bit corresponding to a particular MSR is set in the bitmap, it results in an
intercept to the hypervisor when a guest mode accesses the MSR. Intel-VT has a similar
mechanism using MSR Lists for guest mode. On AMD-V CPUs an integrity-protected
hypervisor must intercept accesses to VM HSAVE PA (used to store host mode state),
EFER (used to control enabling/disabling virtualization) and the SMRAM MSR (used
to control SMRAM access and SMI generation).

In both AMD-V and Intel-VT, MTRRs are implemented by using a set of MSRs. The
MTRRs are divided into fixed range (for setting caching type for 1 MB and below) and
variable range (for greater than 1 MB). There is also a default-range MTRR which sets
the default caching policy for all other physical memory regions apart from the fixed-
and variable-range MTRRs. AMD-V CPUs have another MSR related to the MTRRs
which is responsible for global configuration of MTRR registers. An integrity-protected
hypervisor must intercept access to all the MTRRs and ensure that the memory ranges
specified by guests do not belong to the hypervisor.

Both AMD-V and Intel-VT CPUs share integer registers (except registers R/EAX,
R/ESP, and R/EFLAGS), floating-point registers and multimedia registers between the
host and guest modes. Thus, if a hypervisor makes use of these registers, it must sanitize
their values across guest mode switches.
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Rule 6. An integrity-protected hypervisor requires the MMU to maintain independent
states for the hypervisor and guest environments. Both AMD-V and Intel-VT CPUs
provide the host and each guest mode with their own set of MMU-related configuration
registers. Thus, any changes to these registers only impact MMU operation within the
specific mode. Further, both AMD and Intel support Address Space Identifiers (ASID).
With ASID, a unique ID can be assigned for each guest; the host mode is always allo-
cated ASID 0. The ASIDs are then used to isolate TLB entries of the hypervisor and
guests.

Rule 7. An integrity-protected hypervisor must intercept all x86 hardware virtualiza-
tion instructions. Both AMD-V and Intel-VT CPUs cause an unconditional guest mode
intercept if any virtualization-specific instructions are used within a guest environment.
Therefore, a hypervisor must handle guest mode intercepts caused due to such instruc-
tions [6,21]. The nature of operations performed on such intercepts is contingent on
hypervisor design.

Rule 8. An integrity-protected hypervisor must containerize any System Management
Mode code and BIOS, option ROM or Power Management Scripts it uses. Code associ-
ated with the BIOS, option ROM, and Power Management Scripts can be contained by
running them within a VM. The hypervisor can use a similar technique for SMM code
by intercepting SMIs and running the SMI handlers in isolation.

Intel-VT provides support for SMM containerization using dual-monitor treatment.
With dual-monitor, there is a regular hypervisor and an SMM Transfer Monitor (STM)
that is in control of a hardware virtual machine solely for running SMM code. The
STM gets control on all SMIs (occurring within the hypervisor as well as guests) and is
responsible for running the target SMM code.

SMI handlers in production systems typically need to execute with guaranteed ex-
ecution response. The fundamental question then with STM is whether it can provide
real-time execution guarantees. Given that the STM runs within its own hardware vir-
tual machine, the CPU would have to save and restore entire hardware virtual machine
execution contexts, which would incur non-negligible runtime cost. Furthermore, given
the fact that there are currently no Intel CPUs that implement STM, it is impossible to
precisely evaluate whether the STM model is applicable in practice.

AMD-V on the other hand only supports interception of SMIs occurring in the guest
mode. Thus, while an integrity-protected hypervisor on the AMD-V can intercept such
guest mode SMIs and run them within a VM, it must disable SMI generation when in
host mode. This can be done by controlling the SMRAM MSRs. However, disabling
SMI generation in such a fashion results in two problems in practice: (i) an SMI can
occur during the time taken to perform a transition from guest to host mode and before
SMI generation is disabled. Such an SMI results in a SMM handler that executes with-
out any form of isolation, thereby potentially compromising hypervisor integrity, and
(ii) disabling SMI altogether would result in a system freeze on most platforms which
require certain SMM code to execute periodically (e.g., system temperature sensors).

Rule 9. An integrity-protected hypervisor must prevent system devices from directly ac-
cessing hypervisor memory regions. The IOMMU is the only system device that can
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intervene between DMA transactions occurring between a device and memory and
hence must be employed by an integrity-protected hypervisor to protect its memory
regions from direct access by devices. Both AMD-V and Intel-VT provide an IOMMU
as a part of the northbridge. The IOMMU on both architectures allows each periph-
eral device in the system to be assigned to a set of IO page tables. When an IO device
attempts to access system memory, the IOMMU intercepts the access, determines the
domain to which the device has been assigned, and uses the IO page tables associated
with that device to determine whether the access is to be permitted as well as the ac-
tual location in system memory that is to be accessed. An integrity protected hypervisor
must instantiate IO page tables such that physical addresses corresponding to hypervisor
memory regions are marked as inaccessible to any device.

Rule 10. An integrity-protected hypervisor must enumerate all system devices at startup
and be able to detect hot-plug devices at runtime. On the PCIe bus, each device is
uniquely identified using the bus, device, and function triad. When a hypervisor starts
up, it can iterate through all possible bus, device and function locations and query the
PCIe configuration space for the triad. If a device is present, the configuration space
access returns a valid device identification.

Hot-plug devices on the PCIe bus can be detected by the hypervisor using ACPI. The
Hot Plug Parameters (HPP) table is updated by the ACPI subsystem whenever there is a
hot-plug device insertion or removal. A hypervisor can periodically scan the table, and
obtain the device identification triad on the PCIe bus.

Rule 11. An integrity-protected hypervisor must prevent access to critical system de-
vices at all times. On both AMD-V and Intel-VT CPUs, devices can be controlled via
legacy or memory-mapped IO. Legacy IO is performed using a set of four instructions:
IN, OUT, INS, and OUTS. Further, both architectures provide a method for the hypervi-
sor to intercept legacy IO operations on a per-port basis using an IO permission bitmap
for each guest. Both AMD-V and Intel-VT support software and hardware physical
memory virtualization. An integrity-protected hypervisor can set desired protections
using page table entries corresponding to the memory-mapped IO region to intercept
accesses.

As seen from the preceding discussions, Rule 1 through Rule 11 depend on the plat-
form hardware and all of them except Rule 8 can be completely implemented on current
x86 hardware virtualized platforms. As discussed earlier in this section, Rule 8 cannot
be completely implemented as current x86 platforms do not contain adequate hard-
ware support to containerize SMM code. Rule 12 (§3.3) depends on the design of an
integrity-protected hypervisor and will be discussed in the following two sections.

5 Guest and Hardware Requirements

In §3, we identified rules that an integrity-protected hypervisor must obey. We further
analyzed these rules in the context of commodity hardware from AMD and Intel in §4,
and established the feasibility of constructing an integrity-protected hypervisor. In this
section, we discuss the impact that such a hypervisor design has on its guests and on
hardware requirements. That is, some combinations of guest operating systems may
require additional hypervisor functionality that is in conflict with Rule 12.
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5.1 Multiple Guests

An integrity-protected hypervisor’s ability to support multiple guests is contingent on
the hardware and device requirements of the individual guests. For example, an ex-
tremely minimal guest that requires only a processor on which to perform basic compu-
tations does not introduce any resource contention beyond the CPU time and memory
space allocated to it. On the other hand, multiple instances of a fully-interactive, media-
rich modern OS may require many of the system’s underlying devices to be somehow
multiplexed between the guests.

Sharing Devices. On a well-behaved system with sufficient peripherals, each guest
running on top of the hypervisor can be granted access to a disjoint set of devices. For
example, web servers belonging to mutually distrusting entities can each be allocated
their own network interface, disk controller, and set of drives. The hypervisor can pro-
tect itself by properly configuring the IOMMU, as previously discussed.

However, in certain cases a hypervisor needs to share a single hardware device be-
tween two or more guests. For example, many systems today actually do have multiple
USB controllers, each of which controls what are generally (though to our knowledge
there is no requirement that this remain so) a small number of physically proximal
ports, e.g., front-panel vs. rear-panel ports. It is technically feasible to assign distinct
USB controllers to distinct guests. Unfortunately, today it generally requires trial-and-
error to determine which controller is responsible for which physical ports. For, e.g., a
USB flash drive containing corporate secrets, this level of uncertainty is not acceptable.
Thus, one may be tempted to design the hypervisor to interpose on some USB traffic,
with the intention of ensuring that certain devices are only accessible from the appro-
priate guests. In practice, we fear that this will significantly complicate the hypervisor,
and risk breaking compliance with Rule 12.

Guest BIOS Calls. Many legacy operating systems – especially closed-source ones –
depend on BIOS calls as part of their basic operation. While BIOS calls can be invoked
inside of another virtual environment to protect the hypervisor (recall §2.3 and, e.g.,
Rule 3), these calls can have lasting effects on the relevant devices. In practice, devices
manipulated through BIOS calls cannot be shared without a software emulation or vir-
tualization layer to resolve conflicts between multiple guests that attempt to use the
device concurrently, or in conflicting operating modes.

A consequence of the above characteristics of many operating systems is that they
cannot be readily executed simultaneously on an integrity-protected hypervisor, as the
logic necessary to virtualize, emulate, or otherwise multiplex legacy calls such as
BIOS calls may drastically increase the complexity of the hypervisor, again threatening
Rule 12.

Sharing Between Guests. One solution to sharing a single hardware device between
multiple guests is to create an additional guest with the sole responsibility of virtualizing
a single physical device and exposing multiple instances of a virtual device. The virtual
device may appear identical to the physical device behind it, or the virtual device may
expose a different interface. Each option has its advantages. This design space has been
explored in great detail as it applies to microkernels [15].
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From the perspective of an integrity-protected hypervisor, such an architecture re-
quires a means for sharing information between guests. The primary risk to the hyper-
visor is the inclusion of a larger configuration interface that enables the creation of,
e.g., shared memory and message passing mechanisms for guest intercommunication.
We note that any mechanism within the hypervisor that attempts to filter or otherwise
restrict traffic between guests will have the effect of further complicating the imple-
mentation of the hypervisor. The issue of one guest attacking another via the sharing
interface is significant, but it is orthogonal to the hypervisor’s ability to protect its own
integrity.

5.2 Hardware Considerations

Today, a device is deemed “compatible” with a particular platform architecture and op-
erating system if it implements an interface close enough to the relevant specifications
that any differences or discrepancies can be remedied within the relevant device driver.
This somewhat sloppy approach has security consequences for an integrity-protected
hypervisor. We now discuss the importance of correct hardware, and then relate some
examples we have encountered in the wild of devices and systems that do not behave as
expected.

To keep the hypervisor minimal, it is of utmost importance that peripheral devices are
in compliance with the relevant specification or API. Today, devices abound with bugs
or compliance issues that are considered minor from a functionality perspective (“fixed”
via a software work-around) but potentially create significant security vulnerabilities.

The problem is that buggy or non-compliant devices generally require a work-around
in the form of additional device driver code. In the limit, an integrity-protected hyper-
visor will need to be aware of these work-arounds, in the form of additional hypervisor
code. This effectively bloats the hypervisor codebase and precludes formal or man-
ual verification of the hypervisor’s correctness and security properties (i.e., violating
Rule 12).

Experiences with Devices. Here we relate some of our own experience exploring sys-
tems built using hardware virtualization and trusted computing support in the context
of an integrity-protected hypervisor.

South Bridge Renders DRTM / PCR 17 Unusable. An integrity-protected hypervisor
must initialize itself using a dynamic root of trust mechanism (§3.1). A critical com-
ponent of the DRTM is its ability to extend the hash of the newly loaded code into a
PCR in the system’s TPM. In practice, we have encountered systems that do not update
PCR 17 correctly. We have received one report that there is a bug in the southbridge
that results in data corruption on the LPC bus [13], thereby rendering the resulting PCR
value meaningless. This bug renders infeasible on the affected systems an entire class
of trustworthy computing systems.

SMRAM locked by the BIOS resulting in no SMI intercept. Rule 8 states that an integrity-
protected hypervisor must containerize any System Management Mode code (§2.2). For
a BIOS which does not authenticate SMM code, an integrity-protected hypervisor can
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containerize SMM code by intercepting #SMIs and executing #SMI handlers within a
VM (§4, Rule 8). However, we have encountered systems in the wild where the SMRAM
is locked by a non-integrity measured BIOS, thereby preventing an SMI intercept from
being generated when the CPU is in guest mode. In other words, an SMM handler (as a
result of an SMI) can execute in SMM mode without the hypervisor having any control
over it. This leaves a hypervisor on such hardware potentially vulnerable to malicious
SMM handler code.

iTPM. The v1.2 TPM specification states that all TPM chips must expose the same,
well-defined interface [43]. In practice, this is not the case. For example, the TPM in
the Intel GM45 chipset returns an incorrect status message, substituting the VALID
TIS status message when it should return the DATA EXPECT status [42]. This seem-
ingly minor issue can be worked-around in a few lines of code. However, this serves to
illustrate the risk posed to an integrity-protected hypervisor by the plethora of devices
available today. If each device requires even just a few lines of code in the hypervisor,
then the hypervisor’s code size is likely to escalate to the point where compliance with
Rule 12 (no vulnerabilities in the hypervisor) is intractable.

The Importance of Correct Hardware. If integrity-protection for the hypervisor is
a priority, then non-compliant devices are unacceptable. Given that today’s market re-
mains largely dominated by features and performance, this situation is troubling. An
integrity-protected hypervisor may have to include a blacklist of known non-conformant
devices. Or, if blacklists fail to scale, then such a hypervisor may have to include a
whitelist of the few hardware devices known to provide the required properties. In prac-
tice, this will likely increase the cost of systems.

6 Popular Hypervisors

We now present the designs of popular Type 1 [30] hypervisors and discuss the impact
of such designs on the rules discussed in §3. To keep our discussion focused we choose
VMware ESX Server, Xen, Hyper-V, L4 and SecVisor as our examples. We believe they
encompass the current hypervisor spectrum from general-purpose to ad-hoc.

Figure 3 shows the hypervisors and the integrity rules that each of them adhere to.
As seen, no hypervisor adheres to all the rules. None of the hypervisors except Xen
and SecVisor load by establishing a dynamic root of trust and hence violate Rule 1.
However, adding support to adhere to Rule 1 should be fairly straightforward. More im-
portantly, none of the hypervisors containerize (or can containerize) SMM code (§2.2,
§4-Rule 8), thereby violating Rule 8. Finally, implementation of a design of a particu-
lar hypervisor leads to increased hypervisor code/data and attack surface that violates
Rule 12 as described in the following paragraphs.

A VMware virtual environment consists of the hypervisor and drivers for all sup-
ported platform hardware. It also consists of a service console which is used for initial
system configuration and ongoing management tasks [45]. The hypervisor also provides
a standard API which enables configuration and management via local and/or remote
applications. Since the VMware hypervisor is monolithic by design, it results in an in-
creased code base (since all device drivers are present in memory irrespective of the
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1. An integrity-protected hypervisor must be initialized via the creation of a dynamic 
root of trust.

VMware Xen Hyper-V L4 SecVisor
Integrity Rules

Hypervisors

2. A dynamic root of trust mechanism must allow for an external verifier to ascertain 
the identity of the code that has received control in the new execution environment.

3. An integrity-protected hypervisor must employ physical memory virtualization to 
prevent any code executing within a VM from accessing hypervisor memory 
regions.

4. An integrity-protected hypervisor must execute its core in the highest privilege 
level that allows it to interpose on critical system operations.

5. An integrity-protected hypervisor must have an independent set of critical CPU 
registers and must sanitize values of CPU data registers during control transfers to 
and from VMs.

6. An integrity-protected hypervisor requires the MMU to maintain independent 
states for the hypervisor and guest environments.

7. An integrity-protected hypervisor must intercept all x86 hardware virtualization 
instructions.

8. An integrity-protected hypervisor must containerize any SMM code, BIOS, option 
ROM or Power Management Script it uses.

9. An integrity-protected hypervisor must prevent system devices from directly 
accessing hypervisor memory regions.

10. An integrity-protected hypervisor must enumerate all system devices at startup 
and be able to detect hot-plug devices at runtime.

11. An integrity-protected hypervisor must prevent access to critical system devices 
at all times.

12. An integrity-protected hypervisors’ code must be free of vulnerabilities. *

Fig. 3. No existing hypervisors adhere to all of our integrity rules. In particular, no hypervisor
supports (or can support) containerization of SMM code (Rule 8). Note that Xen adheres to
Rule 1 using OSLO [26] or tboot [40] at boot time. *SecVisor has gone through a rigorous formal
verification process that proves the correctness of its memory protection scheme [14].

platform hardware). The VMware ESX server core is reported to have around 500K
lines of code [46]. This can lead to vulnerabilities within the hypervisor core itself [3].
Further, the local and/or remote management interfaces can be exploited in order to
execute code with hypervisor privileges [5].

A Xen virtual environment consists of the Xen hypervisor, Domain-0, Domain Man-
agement and Control (DMC) software, and paravirtualized and hardware-virtualized
guest domains [51]. Domain-0 is a paravirtualized Linux kernel and is a unique virtual
machine running on the Xen hypervisor that has special rights to access physical I/O
resources as well as interact with the other guest domains. DMC supports the overall
management and control of the virtualization environment and executes within Domain-
0. Domain-0 and DMC is required to be running before any other guest domains can be
started. The Xen hypervisor also exposes a set of hypercalls which can be used by both
Domain-0 and guest domains to directly interact with the hypervisor.

Xen Domain-0 uses standard Linux OS drivers to control system hardware. Hence
Domain-0 has privileged access to most system hardware. Further, since the Domain-
0 TCB is large (due to an entire Linux kernel and supporting drivers) it is easy to
exploit vulnerabilities within the OS to gain root access in Domain-0 [1,2]. Once within
Domain-0, an attacker can employ DMA accesses, Xen hypercall functionalities and
DRAM controller programming in order to access Xen Hypervisor memory regions
[47,48].
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Hyper-V virtualization consists of partitions. A partition is a logical unit of isola-
tion, supported by the hypervisor, in which operating systems execute. The Hyper-V
hypervisor must have at least one parent, or root, partition, running Windows Server
2008 [29]. The virtualization stack runs in the parent partition and has direct access
to the hardware devices. The root partition then creates the child partitions (using the
hypercall API) which host the guest operating systems. Given that the Hyper-V root
partition consists of a complete Windows Server 2008 installation, any vulnerability
that affects Windows Server 2008 will affect Hyper-V. For example, last fall, a routine
Windows patch resulted in the compromise of the Hyper-V parent partition [28].

L4 employs a microkernel approach towards virtualization [19]. It provides basic
resource and communication abstractions to which guest OSes need porting. While the
current L4 code-base has not been verified, the size of the L4 microkernel (order of
10K) suggests that it should be amenable to formal verification. seL4, an embedded
microkernel for ARM processors based on L4 has been mathematically verified for
correctness [27]. A guest OS requires considerable changes to be ported to L4. This
may not be a viable solution for commodity OSes such as Windows. Also, the seL4
microkernel has been verified only on the ARM architecture and the verification process
would reportedly take around 10 person years if done again [27]. Thus, it is unclear
whether the verification approach is viable on a much more complex architecture such
as x86.

SecVisor is a hypervisor which provides lifetime OS kernel code integrity. It is a
pass-through hypervisor and does not virtualize system devices or resources. Instead,
it manipulates page protections to ensure that only approved kernel-code can execute
during runtime [39]. The SecVisor architecture is simple and its code base is very small
(around 8000 SLOC). It has been formally verified for correctness [14].

7 Related Work

Karger discusses hypervisor requirements for multi-level secure (MLS) systems [25].
He argues that hypervisors are conceptually divided into Pure Isolation and Sharing
hypervisors, with Pure Isolation hypervisors only being practical on extremely expen-
sive hardware. Karger’s discussion is largely centered on systems that have received
some type of security evaluation, e.g., Common Criteria [24]. Implicit in the ability of
a hypervisor to receive such certification is that hypervisor’s ability to protect its own
integrity, which is the focus of the present work.

Roscoe et al. argue that virtualization research today is clouded by commercial ap-
plicability, and has not been sufficiently bold in exploring fundamentally new OS and
virtualization designs [33]. They also argue that one of the things enabled by hardware
virtualization support today is for research systems to become usable for “real work”
much more quickly than was previously possible. While the current paper is guilty of
not breaking fundamentally new ground, we feel that it is important to explore the limi-
tations of current hardware so that future researchers are not lulled into a false sense of
security.

Bratus et al. argue for a significant architectural change to the MMU in today’s sys-
tems to better enable integrity measurements to reflect the true state of an executing
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system, and not just that system’s load-time state [9]. Their primary concern is to ad-
dress the time-of-check, time-of-use (TOCTOU) vulnerability inherent in today’s TPM-
based integrity measurement solutions. We agree that this is a significant limitation, and
believe that solutions to such limitations should be complimentary to secure hypervisor
designs.

8 Conclusions

We explored the low-level details of x86 hardware virtualization and established rules
that an integrity-protected hypervisor must follow. In the process, we identified a num-
ber of discrepancies between specification and practice that can potentially compromise
a hypervisor’s integrity on these platforms. We conclude that while in theory the latest
x86 hardware contains sufficient support to integrity-protect a hypervisor, in practice an
integrity-protected hypervisor cannot be realized on today’s x86 hardware platforms. As
an example, System Management Mode (SMM) code that exists on all x86 platforms
runs at a higher privilege than the hypervisor itself. Current x86 platforms do not pro-
vide adequate hardware support to isolate such SMM code. We also conclude that an
integrity-protected hypervisor will be unable to support arbitrarily many legacy guests.
Sharing devices and data between multiple guests coupled with guest BIOS invoca-
tions significantly complicates the hypervisor, which can result in vulnerabilities that
compromise hypervisor integrity. Also, in constructing a system that truly protects hy-
pervisor integrity, hardware must be selected with great care, as numerous devices that
exist in the wild fail to adhere to relevant specifications.

We believe the rules presented in this paper represent a strong first approximation
of what is necessary to realize an integrity-protected hypervisor. Such a hypervisor will
be capable of maintaining its own integrity and preventing mutually distrusting guests
from compromising each other’s or the hypervisor’s integrity. However, we have not
discussed mechanisms required to create a trusted path to the user or administrator of a
system equipped with an integrity-protected hypervisor. Further work is also required to
provide protection of guests’ secrets in a virtualized environment. Recent research [31]
reveals that the days of ignoring side channels and timing channels are behind us, as
these represent very real and practical threats. We hope that this paper will serve as a
solid starting point and a call to action for additional investigation into these significant
challenges.
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Abstract. Direct anonymous attestation (DAA) is an attractive crypto-
graphic primitive, that is not only because it provides a balance between
user authentication and privacy in an elegant way, but also because it is
a part of the trusted computing technology from the Trusted Comput-
ing Group (TCG). However, in the TCG related community, DAA has
a bad reputation of its cost for the Trusted Platform Module (TPM) re-
sources. Researchers have recently worked out a number of DAA schemes,
which require much less TPM resources than the one used by TCG. Our
contribution in this paper is a new DAA scheme that makes use of an
efficient batch proof and verification scheme to reduce the TPM compu-
tational workload. In our scheme, for the DAA Signing operation, the
TPM needs only to perform one exponentiation (when linkability is not
required) and two exponentiations (when linkability is required). This
operation requires at least three exponentiations in the existing DAA
schemes that provide the same functionality.

Keywords: direct anonymous attestation, batch proof and verification.

1 Introduction

Direct anonymous attestation (DAA) is a special digital signature primitive,
which provides a balance between signer authentication and privacy in a rea-
sonable and an elegant way. A DAA scheme involves a set of issuers, signers,
and verifiers. An issuer is in charge of verifying the legitimation of signers and
of issuing a DAA credential (also called a DAA membership credential) to each
signer. A signer can prove the membership to a verifier by providing a DAA
signature without revealing the identity of the signer.

A DAA scheme can be seen as a modified group signature scheme, which
provides a number of different degrees of privacy for the signer. More specifi-
cally, DAA does not have the feature of opening the signer’s identity from its
signature by the issuer. Interactions in DAA signing and verification are anony-
mous, that means the verifier, the issuer or both of them colluded cannot dis-
cover the signer’s identity from its DAA signature. Instead of full-traceability as
held in group signatures [2], DAA has user-controlled-traceability, that we mean
the DAA signer and verifier are able to decide whether the verifier enables to
determine if any two signatures have been produced by the same signer.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 166–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The concept and a concrete scheme of DAA were first introduced by Brickell,
Camenisch, and Chen [6] for remote anonymous authentication of a trusted
computing platform. Their DAA scheme was adopted by the Trusted Computing
Group (TCG) and specified in the TCG TPM Specification Version 1.2 [33].
This specification has recently been adopted by ISO/IEC as an international
standard [26]. A historical perspective on the development of DAA was provided
by the DAA authors in [7]. Since then, DAA has drawn a lot of attention from
both industry and cryptographic researchers, e.g. [10,28,32].

For the purpose of this paper, we are interested in a unique property of DAA:
The signer role is split between two entities, a principal signer with limited com-
putational and storage capability, e.g. a trusted platform module (TPM), and an
assistant signer with more computational power but less security tolerance, e.g.
an ordinary computer platform (namely the Host with the TPM embedded in).
It is well-known that the TPM resources are much more expensive, compared
with the Host’s, because the TPM is a small hardware device and the Host
presents the platform software. Therefore, any technique being able to reduce
the requirement on the TPM resources is valuable. In a DAA scheme, the TPM
is the real signer and holds the secret signing key, whereas the host helps the
TPM to compute the signature under the credential. In the condition that the
Host is not allowed to learn the secret signing key and to forge such a signature
without the TPM involvement, we try to move the workload from TPM to the
Host as much as possible.

The original DAA scheme [6] and another DAA scheme by Ge and Tate [23]
are based on the strong-RSA problem. We call them RSA-DAA for short. Re-
cently, researchers have been working on how to create DAA schemes with elliptic
curves and pairings. We call these DAA schemes ECC-DAA for short. Generally
speaking, ECC-DAA is more efficient in both computation and communication
than RSA-DAA. The TPM’s operation is much simpler and the key/signature
length is much shorter in ECC-DAA than in RSA-DAA.

To our best knowledge, there are eight ECC-DAA schemes in the literature.
The first one was proposed by Brickell, Chen and Li [8,9]. This scheme is based
on symmetric pairings. For the purpose of increasing implementation flexibil-
ity and efficiency, Chen, Morrissey and Smart proposed two extensions of this
scheme [17,18,19]. Their schemes are based on asymmetric pairings. A flaw in the
first one was pointed out by Li and further discussed in [16,19]. Recently, Chen,
Page and Smart [21] further improved the performance of the scheme of [19]. Se-
curity of these four DAA schemes are based on the LRSW problem [29] and DDH
problem. The other four DAA schemes were proposed by Chen and Feng [20],
Brickell and Li [11], Chen [14], and Brickell and Li [12], respectively. Security of
these four schemes are based on the q-SDH problem [4] and DDH problem.

Our main contribution in this paper is a new ECC-DAA scheme, which is
a modification of the Chen, Page and Smart scheme [21]. The most significant
advantage of the new scheme is that it requires less TPM resources to create a
DAA signature. We will compare the computational cost of the proposed scheme
with all the existing DAA schemes, which have the signer splitting property, and
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show that this new scheme has better performance than all the other schemes.
In particular, for the DAA Signing operation, the TPM only performs one ex-
ponentiation (when linkability is not required) and two exponentiations (when
linkability is required). This computational workload is equivalent to one or two
ordinary standard digital signatures, such as EC-DSA or EC-SDSA [27]. This
operation requires at least three exponentiations in the existing DAA schemes
that provide the same security level.

Our new DAA scheme benefits from the batch verification technology. The
original concept and some sample schemes of batch verification were proposed
by Bellare, Garay and Rabin [1]. They showed that a batch of similar claims,
such as a number of discrete logarithms in modular exponentiation and digital
signatures, can be verified in one go; the batch verification requires less cost than
that from verifying these claims separately. Since then, a number of researchers
published their analysis, improvement and various extensions of the Bellare et al.
work, for instance [5,25,30]. In particular, Peng, Boyd and Dawson [30] extended
this technique to batch zero-knowledge proof and verification and provided a
number of schemes. In this paper, we modify their scheme on proving equality
of logarithms with common exponent, and use it in our DAA scheme.

The rest of this paper is organized as follows. We, in the next section, first
describe a modified batch proof and verification scheme, which can prove and
verify equality of discrete logarithms in an efficient way. We then specify our
new DAA scheme in Section 3, including some security analysis and implemen-
tation consideration. We show computational efficiency comparison between this
scheme and the seven existing DAA schemes with the signer splitting property
in Section 4, which demonstrates the proposed scheme is the most efficient DAA
scheme so far in the aspect of the TPM computational cost for the signing op-
eration. We conclude the paper in Section 5.

2 Batch Proof and Verification

Throughout the paper, we will use some standard notation as follows. If S is a
set, we denote the act of sampling from S uniformly at random and assigning
the result to the variable x by x←S. We let {0, 1}∗ and {0, 1}t denote the
set of binary strings of arbitrary length and length t respectively. If A is an
algorithm, we denote the action of obtaining x by invoking A on inputs y1, . . . , yn

by x ← A(y1, . . . , yn). We denote concatenation of two date strings x and y as
x‖y. We denote a function of mapping a set X to another set Y as X 
→ Y .
For a general cyclic group G, we use gx ∈ G (or simply gx) to denote the
exponentiation of a group element g by some integer exponent x. For an elliptic
curve based cyclic group G, we use [x]P ∈ G (or simply [x]P ) to denote the
scalar multiplication of an elliptic curve point P by some integer x.

Our DAA scheme makes use of a batch proof and verification scheme, which
proves the discrete logarithm equality between two group elements y1 and y2 to
two bases g1 and g2 respectively, i.e., logg1

y1 = logg2
y2 in an efficient way. This

scheme is a modification of the batch verification scheme of equality of logarithms
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with common exponent by Peng, Boyd and Dawson [30]. We call their scheme
the PBD scheme. The target of the PBD scheme is given a security parameter
L, a prime p, a cyclic subgroup of Z∗

p, namely G, with the prime order q such
that |q| > L, and the 2n + 2 group elements g, y, gi, yi ∈ G for i = 1, 2, ..., n, to
prove logg y = loggi

yi. The PBD scheme works as follows:

1. The verifier randomly chooses and sends to the prover n integers ti←{0, 1}L.
2. The prover randomly chooses an integer r←Zq and sends the verifier two

elements z1←(
∏n

i=1 gti

i )r and z2←gr ∈ G.
3. The verifier randomly chooses and sends to the prover an integer c←{0, 1}L.
4. The prover calculates and sends the verifier an integer s←r−c · logg y mod q.
5. The verifier verifies that (

∏n
i=1 gti

i )s · (
∏n

i=1 yti

i )c = z1 and gs ·yc = z2. If any
of these two equations does not hold, the verifier outputs Reject; otherwise
outputs Accept.

In our DAA signing algorithm, the TPM is required to make a proof of discrete
logarithm equality of two group elements y1 and y2 to two bases g1 and g2
respectively. If we directly use the PBD scheme by selecting either y1 or y2 as
y, then we cannot get any benefit from the batch proof. For our purpose, we
modify the PBD scheme by omitting g, y and z2 but adding a condition that the
prover does not know the discrete logarithm between gi and gj , i.e. loggi

gj, for
any i, j = 1, 2, ..., n and i �= j. The modified scheme works as follows:

1. The prover randomly chooses an integer r←Zq and sends the verifier z←
(
∏n

i=1 gi)r .
2. The verifier randomly chooses and sends to the prover an integer c←{0, 1}L.
3. The prover calculates and sends the verifier an integer s←r − c · x mod q,

where x = loggi
yi.

4. The verifier verifies that (
∏n

i=1 gi)s · (
∏n

i=1 yi)c = z. If this equation does
not hold, the verifier outputs Reject; otherwise outputs Accept.

We further use a secure hash-function H : {0, 1}∗ 
→ Zq to generate the random
challenge c in order to change the zero-knowledge proof protocol to the Schnorr-
type signature [31] of proof of knowledge. With this change, the security of the
scheme is based on the random oracle model [3]. The final modification, which
will be used in our DAA scheme in the next section, works as follows:

1. The prover randomly chooses r←Zq and computes z←(
∏n

i=1 gi)r, c←H2(z)
and s←r− c ·x mod q, where x = loggi

yi for i = 1, 2, ..., n, and finally sends
the verifier the pair (c, s).

2. The verifier computes z′←(
∏n

i=1 gi)s · (
∏n

i=1 yi)c and then verifiers that c =
H2(z′). If this equation does not hold, the verifier outputs Reject; otherwise
outputs Accept.

Security of this proof and verification scheme is based on the following discrete
logarithm assumption.

Definition 1 (The discrete logarithm assumption). Given two elements
h1, h2 ∈ G, computing logh1

h2 is computationally infeasible.

We now address security of the scheme with the following theorem.
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Theorem 1. The above scheme prevents a malicious prover from persuading
a verifier to accept the proof if any equation loggi

yi �= loggj
yj for i �= j and

i, j = 1, 2, ..., n holds, under the discrete logarithm assumption.

Proof. We use the following reduction to prove this theorem: if there is a poly-
nomial adversary A, who is able to persuade a verifier to accept the proof if any
equation loggi

yi �= loggj
yj for i �= j and i, j = 1, 2, ..., n holds, then A can be

used by another algorithm B to solve the discrete logarithm problem.
Suppose the algorithm B has the target that given two elements h1, h2 ∈ G,

computing a = logh1
h2. B first setups the system parameters for n = 2, g1 = h1

and g2 = h2, then randomly chooses two different integers x1, x2 ∈ Z
∗
q and

computes y1 = gx1
1 and y2 = gx2

2 . B runs the above batch proof and verification
protocol with A, in which A, given the values g1, g2, y1, y2, x1, x2, plays the role of
the prover and B plays the role of the verifier. If A successfully makes B accepting
the proof, B rewinds A to extract the knowledge of the value x by forking on c.
Since x = (x1 + x2 · a)/(1 + a), B can compute a = (x1 − x)/(x− x2). B outputs
the value a as the result of the target. The theorem follows.

Note that if the two values x1 and x2 are chosen by the algorithm A instead
of B, the proof also works as long as B can obtain these two values from A. �

3 The Proposed DAA Scheme

As mentioned earlier, a DAA scheme involves a set of issuers, signers, and veri-
fiers. An Issuer is in charge of verifying the legitimacy of signers, and of issuing
a DAA credential to each signer. A signer, which due to the split role is a pair
of Host and associated TPM, can prove to a Verifier that the signer holds a
valid DAA credential by providing a DAA signature. The Verifier can verify the
DAA credential from the signature, but it cannot learn the identity of the signer.
Linkability of signatures issued by a Host TPM pair is controlled by an input
parameter bsn (standing for “base name”) which is passed to the signing opera-
tion. There is assumed to be a list RogueList which contains a list of TPM secret
keys which have been compromised. Based on this background information, the
rest of this section describes our ECC-DAA scheme.

Throughout the constituent protocols and algorithms, the following notation
is used. We let I, M, H and V denote the set of all Issuer, Host, TPM and Verifier
entities. The value of bsn will be used by the signer/verifier to link signatures,
if bsn =⊥ then this implies that signatures should be unlinkable.

Our new DAA scheme is based on asymmetric pairings. As discussed in [17],
it will avoid the poor security level scaling problem in symmetric pairings and
allow one to implement the DAA scheme efficiently at hight security levels. A
pairing is a bilinear map t̂ : G1 × G2→GT , where G1, G2 and GT are groups of
large prime exponent p ≈ 2t for security parameter t. All the three groups will
be written multiplicatively.

Before proceeding with the description of our scheme, we recall a general
issue that needs to be considered throughout. Specifically, every group element
received by any entity needs to be checked for validity, i.e., that it is within
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the correct group; in particular, it is important that the element does not lie in
some larger group which contains the group in question. This strict stipulation
avoids numerous attacks such as those related to small subgroups. We implicitly
assume that all transmitted group elements are elements of the specified groups:
within our scheme, the use of Type-III pairings [22] allows efficient methods
for checking subgroup membership as described by [15] and expanded upon
in [21].

3.1 The Setup Algorithm

To initialise the system, one needs to select parameters for each protocol as well
as the long term parameters for each Issuer and each TPM. On input of the
security parameter 1t, the Setup algorithm executes the following steps:

1. Generate the Commitment Parameters parC. In this step, three groups G1, G2
and GT , of sufficiently large prime order q, are selected. Two random genera-
tors are then selected such that G1 = 〈P1〉 and G2 = 〈P2〉 along with a pair-
ing t̂ : G1 ×G2 
→ GT . Next, two hash functions H1 : {0, 1}∗ 
→ Zq and H2 :
{0, 1}∗ 
→ Zq are selected and parC is set to (G1, G2, GT , t̂, P1, P2, q, H1, H2).
Note that in our scheme, as the same as in [21], the TPM operations are
strictly limited to G1. This allows a subset of parC, namely parT, to be set
to (G1, P1, q) and installed on the TPM in preference to parC.

2. Generate Signature and Verification Parameters parS. Three additional hash
functions are selected, namely H3 : {0, 1}∗ 
→ G1, H4 : {0, 1}∗ 
→ Zq and
H5 : {0, 1}∗ 
→ Zq, and parS is set to (H3, H4, H5).

3. Generate the Issuer Parameters parI. For each i ∈ I, the following steps are
performed. Two integers x, y←Zq are selected, and the Issuer private key isk
is set to (x, y). Next, the values X = [x]P2 ∈ G2 and Y = [y]P2 ∈ G2 are
computed; the Issuer public key ipk is set to (X, Y ). Then an Issuer value
KI is derived from the Issuer public values. Finally, parI is set to ({ipk, KI})
for each Issuer i ∈ I. In our scheme KI is a representation of parT

1.
4. Generate TPM Parameters. The TPM generates a public/private key pair

(PK, SK), which can be authenticated based on the associated endorsement
key. In addition, it generates the private secret value DAAseed. We assume
that the private key SK along with the secret DAAseed is embedded into the
TPM (e.g., in non-volatile memory) and that each Issuer has access to the
corresponding public endorsement key PK. We also assume either a public
key IND-CCA encryption/decryption scheme (ENC/DEC) along with a MAC
algorithm (MAC) or a digital signature/verification scheme (SIG/VER) has
been selected for use with the keys in order to achieve an authentic channel
between the TPM and Issuer.

5. Publish Public Parameters. Finally, the public system parameters par are set
to (parC, parS, parI, parT) and published.

1 If the same parT is used by multiple issuers, in order to limit KI to a single issuer,
the issuer value KI can be set by using both parT and a unique issuer name.
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Note that each TPM has a single DAAseed, but can create multiple DAA secret
keys, even associated with a single issuer. To allow this, a number cnt (standing
for ”counter value”) is used as an additional input to DAA secret key generation,
as described in the Join protocol of the next section.

3.2 The Join Protocol

This is a protocol between a given TPM m ∈ M, the corresponding Host h ∈ H
and an Issuer i ∈ I. The protocol is identical to either that of [21] if using an
encryption-based authentic channel or that of [19] if using a signature-based one.
Here we only give an overview of how a general Join protocol proceeds. For the
details, see these two papers. There are 4 main stages to a Join protocol.

1. The TPM m and Issuer i first establish an authentic channel, which allows
the Issuer to be sure that he only creates the DAA credential for a genuine
TPM. The authentic channel is built by using either the ENC/DEC algorithm
and MAC algorithm, or the SIG/VER algorithm under the key pair (SK, PK).

2. The TPM m generates a DAA secret key, skT←H1(DAAseed‖KI‖cnt) ∈ Zq,
then computes a commitment on this value, i.e. Q2 = [skT ]P1 ∈ G1, along
with a proof of possession of this value. The commitment and proof are sent
to the Issuer via the authentic channel.

3. The issuer performs some checks on the commitment and proof and, if these
correctly verify, computes a credential, cre = (A, B, C) ∈ G3

1, which is a
blindly signed CL signature [13] of skT via Q2, and then sends it to the host.

4. The Host with the help from the TPM by computing D = [skT ]B ∈ G1,
verifies the correctness of the credential.

3.3 The Sign/Verify Protocol

This is a protocol between a given TPM m ∈ M, Host h ∈ H and Verifier v ∈ V
as described in Figure 1. We give an overview of the protocol with the following
three steps:

1. The Host h and Verifier v first agree the content of the signed message msg
and the base name bsn.

2. The TPM m and Host h then work together to produce a DAA signature
on msg and associated with bsn. The signature should prove knowledge of
a discrete logarithm skT , knowledge of a valid credential cre and that this
credential was computed for the same value skT by a given Issuer i ∈ I. In
the signing procedure between the two parts of the signer, the TPM uses the
value of skT and the Host uses the value of cre. We note that the Host will
know a lot of the values needed in the computation and will be able to take
on a lot of the computational workload. However, if the TPM has not had
its secret skT published (i.e. it is not a rogue module) then the Host h will
not know skT and will be unable to compute the whole signature without
the aid of the TPM. Therefore, we say that the TPM is the real signer and
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TPM (m) Host (h) Verifier (v)

Host Sign

l←Zq

R←[l]A; S←[l]B

T←[l]C; W←[l]D

Agree bsn; msg Challenge

c←H4(R‖S‖ nV� nV ∈ {0, 1}t

T‖W‖nV )

If bsn 	=⊥, J←H3(bsn)

V ←S + J

Else J← ⊥, V ←S

TPM Sign m� m←(c, J, V, msg, bsn)

If bsn 	=⊥, K = [skT ]J

Else K← ⊥

nT ←{0, 1}t

r←Zq

U←[r]V

str←K‖U‖bsn‖msg

h←H5(c‖str‖nT )

s←r + h · skT mod q K, h, s, nT� σ←(R, S, T, W, K,

h, s, nV , nT ) σ � Verify

∀sk′T ∈ RogueList

if W = [sk′T ]S

return false

If t̂(R, Y )

	= t̂(S, P2)

or t̂(R + W, X)

	= t̂(T, P2)

return false

If bsn 	=⊥, J†←H3(bsn)

V †←S + J†

W †←W + K

Else V †←S, W †←W

U† = [s]V † − [h]W †

c†←H4(R‖S‖
T‖W‖nV )

str†←K‖U†‖bsn‖msg

h†←H5(c†‖str†‖nT )

If h† 	= h return false

Return true

Fig. 1. The Sign/Verify protocol

the Host is a helper. We also note that the four scalar multiplications in G1
by the Host are independent to the signed message msg or the base name
bsn, so they can be precomputed.

3. Upon the receipt of the DAA signature, the Verifier v checks the RogueList
first, then checks whether the agreed bsn was used correctly. After these
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two checks pass successfully, v verifies whether (R, S, T, W ) is a valid CL
signature on an unopened data string skT and this data string is used as a
private signing key to sign the agreed message msg and v’s fresh nonce nV .

There are two major differences between this version and the protocol in [21].
At first, the values of J and K are omitted when bsn =⊥, and the function
of checking the RogueList is done with the pair of (S, W ) rather than (J, K).
Secondly, it makes use of a new process of batch proof and verification to compute
the value U = [r]V , as opposed to the two values R1 = [r]J and R2 = [r]S. This
makes the total number of scalar multiplications in G1 by the TPM in the signing
algorithm from 3 to 1 if bsn =⊥ or to 2 if bsn �=⊥. This change comes at some
modification in the host signing process and verification side. However, the total
computational cost for the Host is not increased and the total computational
cost for the Verifier is reduced, from that of [21].

3.4 Security of the DAA Scheme

Instead of providing a formal security proof of the proposed DAA scheme, we
discuss the reason why the modification to the Sign/Verify protocol made in
this paper has no affect on the security proof from [19]. This discussion follows a
similar argument made in [21]. Let us take a look at the similarity and distinction
between the three DAA schemes respectively in [19,21] and this paper, from the
Verifier point of veiw. The similarity is that given a DAA signature σ and an
Issuer’s public key ipk, the Verifier (from any of the three DAA schemes) verifies
the following three things addressed within σ:

1. A DAA credential cre. It is a Camensich-Lysyanskaya signature [13] cre =
(A, B, C) under ipk, and the signed message skT is not revealed. The verifi-
cation tells that the value of skT was authorized by the Issuer to be a DAA
secret, and that this value is not listed in the RogueList.

2. A proof of knowledge of a discrete logarithm. This shows someone knows
the discrete logarithm of a group element K to a based J , which is specially
generated from a base name bsn �=⊥. By using the same bsn, two DAA
signatures show whether they were signed by the same signer or not.

3. A proof of connection between the above two items. This proves the value
skT hidden in cre is equal to logJ K. Therefore the owner of skT is uniquely
bound with (J, K, bsn).

The distinction is that the three DAA schemes have different approaches from
each other in order to deal with these three verifications.

– In [19], the three verifications are mixed together in a traditional method.
This DAA scheme has a formal security proof.

– In [21], the three verifications are performed in two distinct steps: (i) a
proof of the fact that the signature σ includes a valid cre on skT if and
only if skT = logS W for two group elements S and W , and (ii) a proof of
equality of two discrete logarithms, logS W = logJ K. As suggested in [21],
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this modification makes the overall protocol structure simpler to understand,
but has no affect on the security proof from [19].

– In this paper, the three verifications are performed in a virtually identical
way as in [21], except for the following two items: (a) The values of J and
K are omitted when bsn =⊥, and the function of checking the RogueList is
done with the pair of (S, W ) instead of (J, K); (b) The step (ii) is replaced
with a new process of batch proof and verification.

Based on the similarity and distinction of these three DAA schemes, we now
discuss the reasons why these two items (a) and (b) have no affect on the security
analysis from [19,21].

Regarding Item (a), in all the existing DAA schemes, the pair of (J, K) (al-
though which might be denoted by using different letters in different papers) offer
two functionalities: one is providing user-controlled-linkability and the other is
checking the RogueList. They provide evidence whether the linkage between two
signatures holds or not only if these two signatures use the same value of bsn and
this value is not ⊥. If bsn =⊥, the pair of (J, K) is redundant for the first func-
tionality and contribute to the second functionality only. In the schemes of [21]
and this paper, the second functionality, checking the RogueList, can be achieved
by using the pair of either (S, W ) or (J, K), since skT = logS W = logJ K. There-
fore, the modification addressed in Item (a) has no affect on the security of the
DAA scheme.

Regarding Item (b), we argue that as long as the batch proof and verification
process used in our proposed DAA scheme works correctly, the modification
addressed in Item (b) also has no affect on the security of the DAA scheme. The
correctness of the batch proof and verification scheme follows the discription in
Section 2. One point we need to discuss is that the batch proof and verification
scheme specified in Section 2 only works under the condition that the prover
does not know the discrete logarithms between gi and gj for each i �= j. In
the proposed DAA scheme, if a malicious signer is able to create a pair of S
and J , such that the signer knows the discrete logarithm from each other, i.e.
logJ S, then the signer is able to cheat to the verifier by computing K with a
different discrete logarithm to the base J from that of W to the base S, but still
makes the verifier accepting the signature. Therefore, the signer can make his
two signatures with the same bsn �=⊥ unlinked and so can break the property
of user-controlled-linkability. We argue that this condition holds in the proposed
scheme because of the following theorem.

Theorem 2. In the proposed DAA scheme, the signer is not able to create a pair
of S and J , such that the signer knows the discrete logarithm from each other,
under the discrete logarithm assumption and under the random oracle model.

Proof. If there is a polynomial adversary A, who is able to create a pair of S
and J , such that the adversary knows the discrete logarithm from each other,
i.e. logJ S, then the adversary A can be used by another algorithm B to solve
the discrete logarithm problem. See the following for the details.
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Suppose the algorithm B has the target that given two elements h1, h2 ∈ G,
computing a = logh2

h1. B first setups the system parameters by following the
Setup algorithm properly except one bit: letting P1 = [1/(r · y)]h1 for randomly
chosen r ∈ Zq and y ∈ Zq, where q is the order of G1. B runs the Join protocol and
the Sign/Verify protocol with A, in which A plays the role of the signer (both m
and h) and B plays the role of the issuer i and the verifier v respectively. B follows
these two protocol properly except another bit: B controls the hash-function H3
as a random oracle and lets J = H3(bsn) = h2 for a randomly selected query
H3(bsn). B lets the adversary A take B = [r · y]P1 = h1 together with J = h2.

If A successfully makes W = [x1]S = [l · x1]B, K = [x2]J and R = [x]V ,
then the equation x = (x1 · logJ S + x2)/(logJ S + 1) must hold. B rewinds A
in the TPM Sign algorithm to extract the knowledge of the value x by forking
on c. B also rewinds A in the TPM Join algorithm to extract the knowledge
of the value x1 by forking on v. Although B cannot rewinds A to extract the
knowledge of the values x2 and l, we allow B to have access to the adversary
A’s ephemeral secrets in computing K and randomizing cre, therefore B knows
these two values x2 and l. Following all of these assumptions, B can compute
logJ S = (x2 − x)/(x− x1) and then a = logh2

h1 = (1/l) · logJ S. B outputs the
value a as the result of the discrete logarithm problem. The theorem follows. �

Note that in the proof, B is allowed to have access to the adversaryA’s ephemeral
secrets in computing K and randomizing cre. This is reasonable because without
the possession of the value x2 the adversary is not able to compute the value
x and without the possession of the value l the adversary is not able to create
the valid set of (R, S, T, W ). But this is not perfect. We leave a more tightened
proof by removing this condition for an open issue.

3.5 Implementation Consideration

Since we follow the approach of [21], i.e. splitting the proof of equality of dis-
crete logarithms from the credential verification step, we enable the use of batch
pairing verification techniques as proposed in [21]. The following implementa-
tion information is a recall from [21]. In both the Join and Sign/Verify protocols,
verification of a blinded Camenisch-Lysyanskaya signature is required. Namely,
given A, B, C, D ∈ G1 (which are denoted by R, S, T, W ∈ G1 in the Sign/Verify
protocol) we need to verify whether both

t̂(A, Y ) = t̂(B, P2) and t̂(A + D, X) = t̂(C, P2).

To optimise this operation, we use an analogue of the small-exponent batch verifi-
cation techniques from [1]. Specifically, we select two small exponents e1, e2 ∈ Zq

whose bit length is half that of q. To verify the two pairing equations we then
verify whether

t̂([e1]A, Y ) · ([−e1]B, P2) · t̂([e2](A + D), X) · t̂([−e2]C, P2) = 1.

Thus the verification involving four pairing computations is replaced by one
product of four pairings, plus four (relatively short) multiplications in G1. As
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surveyed in [24], computing a “product of pairings” is less expensive than com-
puting the pairings independently; the methods improves verification of a blinded
Camenisch-Lysyanskaya signature by around 40%.

4 Performance Comparison

In this section, we compare computational efficiency of the proposed DAA scheme
with the seven existing DAA schemes, and show the result in Table 1. In the
comparison, we do not include the scheme of [17], since it has a number of secu-
rity problems as addressed in [16,19]. We do not include the schemes of [11,23]
either, since they do not split the signer role between the TPM and Host.

Table 1. Computational Cost of the Eight DAA Schemes

In Protocol TPM Host Issuer Verifier

BCC Join 3Gρ + 2G
3
N 1Gρ + 1G

2
N + Pv nGρ + 2GN

[6] +1G
4
N +

1G
2
ρ + Pc

Sig/Ver 3Gρ + 1G
3
N 1Gρ + 1GN + 1G

2
N

+2G
3
N + 1G

4
N 1G

2
ρ + 2G

4
N + 1G

6
N + nGρ

BCL Join 3G1 6P 2G1 + 2G
2
1

[8] Sig/Ver 3GT 3G1 + 1GT + 3P 1G
2
T + 1G

3
T + 5P + (n + 1)GT

CMS Join 3G1 4P 2G1 + 2G
2
1

[19] Sig/Ver 2G1 + 1GT 3G1 + 1P 1G
2
1 + 1G

2
T + 5P + nG1

CF Join 3G
2
1 + (2P ) (2P ) 1G

2
1 + 1G

3
1

[20] Sig/Ver 2G1 + 1G
2
T 1G1 + 2G

2
1 + 1G

3
1 + 1G

3
T 1G

2
1 + 2G

3
1 + 1G

5
T + 3P + nGT

Chen Join 2G1 1G1 + 2P 1G1 + 1G
2
1

[14] Sig/Ver 2G1 + 1GT 1G1 + 1G
3
T 1G

2
1 + 1G

2
2 + 1G

4
T + 1P + nG1

CPS Join 3G1 1P 4 2G1 + 2G
2
1

[21] Sig/Ver 3G1 4G1 2G
2
1 + 1P 4 + nG1

BL Join 2G1 1G1 + 2P 1G1 + 1G
2
1

[12] Sig/Ver 3G1 1G1 + 1G
2
1 + 1GT + 1P 1G

2
1 + 1G

2
2 + 1G

4
T + 1P + nG1

this Join 3G1 1P 4 2G1 + 2G
2
1

paper Sig/Ver 1G1/2G1 4G1 1G
2
1 + 1P 4 + nG1

For the computational cost, we consider the Join protocol and the Sign/Verify
protocol, with respect to each player. We do not specify the computational cost
of the Setup algorithm and its verification, since this is only run once and the
resulting parameters are only verified once by each part. We do not specify
the cost for the linking algorithm either, as it is closely related to that of the
verification algorithm. We also do not specify the cost for the RogueList check
in the Join protocol, since it is an optional process. In the table, we let n denote
the number of keys in the verifier’s rogue secret key list.

For the RSA-DAA scheme, we let GN denote the cost of an exponentiation
modulo N , and G

m
N denote the cost of a multiexponentiation of m values modulo
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N . Note, that a multiexponentiation with m exponents can often be performed
significantly faster than m separate exponentiations, which is why we separate
this out. We let Gρ denote the cost of an exponentiation modulo Γ (recall Gρ

is a subgroup of F∗
Γ ), and Gm

ρ denote the cost of a multiexponentiation of m
values modulo Γ . In addition we let Pc denote the cost of generating a prime
number of the required size and Pv the cost of verifying that a given number of
the required size is prime.

For the ECC-DAA schemes, we let Gi (i = {1, 2, T }) denote the cost of an ex-
ponentiation in the group Gi, and Gm

i denote the cost of a multiexponentiation
of m values in the group Gi. We also let P denote the cost of a pairing compu-
tation, and let Pm denote the cost of a batch pairing verification of m pairings,
as described in Section 3.5. In the signing process of our proposed DAA scheme,
if bsn =⊥, the TPM computes one scalar multiplication in G1; if bsn �=⊥, the
TPM computes two. We let 1G1/2G1 denote the cost of this computation.

We recall the following two observations made in [14]. In [20], the rogue rag-
ging operation is not defined in the Verify algorithm, but it can be easily added
in the same way as every existing DAA scheme does. So in Table 1, we add this
computation n · GT . Again in this scheme, the pairing computation in the Join
protocol can be done by the Host instead of the TPM, because it is expensive
to implement the pairing operation in TPMs. As the same as in [14], we mark
this change as (2P ) in Table 1.

When a DAA scheme is used in the trusted computing environment, as the
original design in [6], the most significant performance is a TPM’s computational
cost, particularly the TPM’s computational cost in the signing algorithm, since
obviously the join algorithm is performed only for obtaining the DAA credential,
so much less frequently than the signing algorithm is performed. As shown in
the table, our proposed DAA scheme has the most efficient computational cost
for the TPM in the Sign/Verify protocol. For each signing process, the TPM is
only required to compute one exponentiation in G1 if linkability is not required
and two exponentiations in G1 if linkability is required. But in the other DAA
schemes in the table, this cost is at least three exponentiations. Based on this
figure, our proposed scheme has the significant advantage compared with all the
other DAA schemes in the table.

We do not discuss the communication and storage cost in details. The con-
tribution made in this paper does not change the communication and storage
cost from the original scheme in [21] significantly, except a minor improvement
that we remove the value J from the signature, since it can be computed by the
verifier from the agreed value of bsn.

5 Conclusions

In this paper, we have introduced a new DAA scheme, which is more efficient
than all the existing DAA schemes in a particular aspect of reducing the TPM
computational cost in the DAA signing operation. This scheme benefits from an
efficient batch proof and verification protocol.
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Abstract. Direct Anonymous Attestation (DAA) is an anonymous sig-
nature scheme designed for anonymous attestation of a Trusted Platform
Module (TPM) while preserving the privacy of the device owner. Since
TPM has limited bandwidth and computational capability, one interest-
ing feature of DAA is to split the signer role between two entities: a TPM
and a host platform where the TPM is attached. Recently, Chen proposed
a new DAA scheme that is more efficient than previous DAA schemes. In
this paper, we construct a new DAA scheme requiring even fewer TPM
resources. Our DAA scheme is about 5 times more efficient than Chen’s
scheme for the TPM implementation using the Barreto-Naehrig curves.
In addition, our scheme requires much smaller size of software code that
needs to be implemented in the TPM. This makes our DAA scheme ideal
for the TPM implementation. Our DAA scheme is efficient and prov-
ably secure in the random oracle model under the strong Diffie-Hellman
assumption and the decisional Diffie-Hellman assumption.

1 Introduction

The concept and a concrete scheme of Direct Anonymous Attestation (DAA)
were first introduced by Brickell, Camenisch, and Chen [5] for remote anony-
mous authentication of a Trusted Platform Module (TPM). The DAA scheme
was adopted by the Trusted Computing Group (TCG) [20], an industry stan-
dardization body that aims to develop and promote an open industry stan-
dard for trusted computing hardware and software building blocks. The DAA
scheme was standardized in the TCG TPM Specification Version 1.2 [19] and has
recently been adopted by ISO/IEC as an international standard.

A DAA scheme involves three types of entities: an issuer, signers, and verifiers.
The issuer is in charge of verifying the legitimation of signers and of issuing a
membership credential to each signer. A signer can prove membership anony-
mously to a verifier by creating a DAA signature. The verifier can verify the
membership of the signer from the DAA signature but he cannot learn the iden-
tity of the signer. DAA scheme can be seen as a special group signature scheme
without the open feature, i.e., a DAA signature cannot be opened by anyone
including the issuer to find out the identity of the signer.

One interesting feature of DAA is that the signer role of DAA is split between
two entities: a TPM and a host where the TPM is attached. The TPM is the

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 181–195, 2010.
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main signer but has limited bandwidth, computational capability, and storage.
The host is a helper with more computational power but is less trusted. The
TPM is the real signer and has the private signing key. The host helps the TPM
to compute DAA signatures, but is not allowed to learn the private signing key
or forge a DAA signature without the involvement from the TPM.

After DAA was first introduced, it has drawn a lot of attention from both
industry and cryptographic community, e.g., in [10,17,1,8,6,12,11], to list a few.
The original DAA scheme [5] is based on the strong RSA assumption. Recently
several groups of researchers have constructed pairing-based DAA schemes to
achieve better efficiency. The first pairing-based DAA scheme was proposed by
Brickell, Chen, and Li [6,7]. Chen, Morrissey, and Smart improved the BCL-
DAA scheme using asymmetric pairing [12,13]. These DAA schemes are based
on the LRSW assumption [18].

Brickell and Li proposed an extension of DAA called Enhanced Privacy ID
(EPID) [8] and presented a concrete EPID scheme based on the q-SDH assump-
tion [9]. The EPID schemes focus on the revocation capabilities and treat the
signer as a single entity instead of combination of a TPM and a host. Indepen-
dently Chen and Feng proposed a DAA scheme [15] using q-SDH assumption.
Recently, Chen builds a new DAA scheme [11] on top of the EPID scheme [9]
by reducing the size of the private signing key. As compared in [11], q-SDH
based DAA schemes [15,9,11] are more efficient than LRSW-based DAA schemes
[6,7,12,13], especially in the efficiency of the signature verification algorithm.

To the best of our knowledge, Chen’s DAA scheme [11] is the most efficient
DAA scheme and it requires least amount of TPM resources1. In this paper, we
give a simple improvement to Chen’s DAA scheme. Our DAA scheme is about
5 times more efficient for the TPM implementation using the Barreto-Naehrig
curves [2]. In addition, our scheme requires much smaller size of software code
that needs to be implemented in the TPM. This makes our DAA scheme ideal
for the TPM implementation. More specifically, let e : G1 × G2 → GT be a
bilinear map function. The DAA scheme in [11] requires two exponentiations
in G1 and one exponentiation in GT . Whereas our DAA scheme in this paper
requires only three exponentiations in G1. Our improvement seems to be small,
but has significant impact to TPM for the following two reasons:

– Usually operations in G1 are more efficient than the operations in GT . Ac-
cording to the arguments in [13], exponentiation in G1 is about 1/4 the cost
of exponentiation in GT for symmetric pairing. For highly efficient curve
choices such as Barreto-Naehrig curves [2] with 128-bit security, G1 is an
elliptic curve group over Fq while GT is a subgroup of Fq12 . Exponentiation
in G1 is about 14 times more efficient than the one in GT . Thus the compu-
tation needed for TPM in our scheme is about 5 times more efficient than
the one in DAA scheme [11] using the Barreto-Naehrig curves.

1 The original CMS-DAA scheme [12] requires lesser TPM resources. However, there
was a security flaw in their DAA scheme. The patched version [13] has the same
computational complexity for TPM as in Chen’s DAA scheme [11].



A Pairing-Based DAA Scheme Further Reducing TPM Resources 183

– In our scheme TPM only requires to implement G1 while the other DAA
schemes [13,11,15] require TPM to implement both G1 and GT . For small
hardware devices such as TPM, more software code means larger firmware
image, larger flash storage needed, and more software validation required.
Note that if TPM has already implemented EC-DSA or other ECC primitives
for other purposes, the additional software code needed for implementing our
DAA scheme is very minimum.

Rest of this paper is organized as follows. We first review the formal specification
and security requirements of DAA in Section 2. We then review the definition of
pairing and related security assumptions in Section 3. We present our DAA scheme
in Section 4 and give the security proof in Section 5. We compare our scheme with
the existing DAA schemes in Section 6 and conclude our paper in Section 7.

2 Review Security Model of DAA

In this section, we review the specification and security model of DAA proposed
in [7]. The security model in [7] is simpler than the original DAA definition [5]
and easier to understand the security properties of DAA. There are four types
of players in a DAA scheme: an issuer I, a TPM Mi, a host Hi and a verifier
Vj . Mi and Hi form a platform in the trusted computing environment and
share the role of a DAA signer. A DAA scheme has three polynomial-algorithms
(Setup, Verify, Link) and two interactive protocols (Join, Sign):

Setup : On input of a security parameter 1k, I uses this randomized algorithm
to produce a pair (gpk, isk), where isk is the issuer’s secret key, and gpk is
the public key including the global public parameters.

Join : This randomized algorithm consists of two sub-algorithms Joint and Joini.
Mi uses Joint to produce a pair (ski, commi), where ski is the TPM’s secret
key and commi is a commitment of ski. On input of commi and isk, I uses
Joini to produce crei, which is a DAA credential associated with ski. Note
that the value crei is given to both Mi and Hi, but the value ski is known
to Mi only.

Sign : On input of ski, crei, a basename bsnj (the name string of Vj or a special
symbol ⊥), and a message m that includes the data to be signed and the
verifier’s nonce nV for freshness, Mi and Hi use this randomized algorithm
to produce a signature σ on m under (ski, crei) associated with bsnj . The
basename bsnj is used for controlling the linkability.

Verify : On input of m, bsnj , a candidate signature σ for m, and a set of revoked
secret keys RL, Vj uses this deterministic algorithm to return either 1 (accept)
or 0 (reject). How to build the revocation list is out the scope of the DAA
scheme.

Link : On input of two signatures σ0 and σ1, Vj uses this deterministic algorithm
to return 1 (linked), 0 (unlinked) or ⊥ (invalid signatures). Link will output
⊥ if, by using an empty RL, either Verify(σ0) = 0 or Verify(σ1) = 0 holds.
Otherwise, Link will output 1 if signatures can be linked or 0 if the signatures
cannot be linked.
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A DAA scheme is secure if it is correct, user-controlled-anonymous, and user-
controlled-traceable.

Correctness. If both the signer and verifier are honest, that implies ski �∈ RL,
the signatures and their links generated by the signer will be accepted by the
verifier with overwhelming probability. This means that the DAA scheme must
meet the following consistency requirement.

(gpk, isk) ← Setup(1k), (ski, crei) ← Join(isk, gpk),
(mb, σb) ← Sign(mb, bsnj , ski, crei, gpk)|b={0,1},
=⇒ 1 ← Verify(mb, bsnj , σb, gpk, RL)|b={0,1} ∧ 1 ← Link(σ0, σ1, gpk)|bsnj 	=⊥.

User-Controlled-Anonymity. A DAA scheme is user-controlled-anonymous if no
probabilistic polynomial-time adversary can win the following game between a
challenger C and an adversary A as follows:

– Initial: C runs Setup(1k) and gives the resulting isk and gpk to A.
– Phase 1: C is probed by A who makes the following queries:

• Sign. A submits a signer’s identity S, a basename bsn (either ⊥ or a
data string) and a message m of his choice to C, who runs Sign to get a
signature σ and responds with σ.

• Join. A submits a signer’s identity S of his choice to C, who runs Joint

with A to create sk and to obtain cre from A. C verifies the validation
of cre and keeps sk secret.

• Corrupt. A submits a signer’s identity S of his choice to C, who responds
with the value sk of the signer.

– Challenge: At the end of Phase 1, A chooses two signers’ identities S0 and
S1, a message m and a basename bsn of his choice to C. A must not have
made any Corrupt query on either S0 or S1, and not have made the Sign
query with the same bsn if bsn �= ⊥ with either S0 or S1. To make the
challenge, C chooses a bit b uniformly at random, signs m associated with
bsn under (skb, creb) to get a signature σ and returns σ to A.

– Phase 2: A continues to probe C with the same type of queries that it made
in Phase 1. Again, it is not allowed to corrupt any signer with the identity
either S0 or S1, and not allowed to make any Sign query with bsn if bsn �= ⊥
with either S0 or S1.

– Response: A returns a bit b′. The adversary wins the game if b = b′.

Definition 1. Let A denote an adversary that plays the game above. We de-
note by Adv[Aanon

DAA] = |Pr[b′ = b] − 1/2| the advantage of A in breaking the
user-controlled-anonymity game. We say that a DAA scheme is user-controlled-
anonymous if for any probabilistic polynomial-time adversary A, Adv[Aanon

DAA] is
negligible.

User-Controlled-Traceability. A DAA scheme is user-controlled-traceable if no
probabilistic polynomial-time adversary can win the following game between a
challenger C and an adversary A as follows:
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– Initial: C executes Setup(1k) and gives the resulting gpk to A. It keeps isk
secret.

– Probing: C is probed by A who makes the following queries:
• Sign. The same as in the game of user-controlled-anonymity.
• Semi-sign. A submits a signer’s identity S along with the data transmit-

ted from Hi to Mi in Sign of his choice to C, who acts as Mi in Sign and
responds with the data transmitted from Mi to Hi in the Sign protocol.

• Join. There are two cases of this query. Case 1: A submits a signer’s
identity S of his choice to C, who runs Join to create sk and cre for
the signer. Case 2: A submits a signer’s identity S with a sk value of
his choice to C, who runs Joini to create cre for the signer and puts the
given sk into RL. C responds the query with cre. Suppose that A does
not use a single S for both of the cases.

• Corrupt. This is the same as in the game of user-controlled-anonymity,
except that at the end C puts the revealed sk into the list of RL.

– Forge: A returns a signer’s identity S, a signature σ, its signed message m
and the associated basename bsn. We say that the adversary wins the game
if
1. Verify(m, bsn, σ, gpk, RL) = 1 (accepted), but σ is neither a response of

the existing Sign queries nor a response of the existing Semi-sign queries
(partially); and/or

2. In the case of bsn �= ⊥, there exists another signature σ′ associated with
the same identity and bsn, and the output of Link(σ, σ′) is 0 (unlinked).

Definition 2. Let A be an adversary that plays the game above. Let Adv[Atrace
DAA]

= Pr[A wins] denote the advantage that A breaks the user-controlled-traceability
game. We say that a DAA scheme is user-controlled-traceable if for any proba-
bilistic polynomial-time adversary A, Adv[Atrace

DAA] is negligible.

3 Pairings and Complexity Assumptions

3.1 Background on Bilinear Maps

Our DAA scheme use bilinear maps as a fundamental building block. We follow
the notation of Boneh, Boyen, and Shacham [4] to review some background on
pairings. Let G1 and G2 to two multiplicative cyclic groups of prime order p. Let
g1 be a generator of G1 and g2 be a generator of G2. We say e : G1 × G2 → GT

is an admissible bilinear map, if it satisfies the following properties:

1. Bilinear. For all u ∈ G1, v ∈ G2, and for all a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degenerate. e(g1, g2) �= 1 and is a generator of GT .
3. Computable. There exists an efficient algorithm for computing e(u, v) for

any u ∈ G1, v ∈ G2.

We call the two groups (G1, G2) in the above a bilinear group pair. In the rest
of this paper, we consider bilinear maps e : G1 × G2 → GT where G1, G2, and
GT are multiplicative groups of prime order p.
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3.2 Strong Diffie-Hellman Assumption

The security of our DAA scheme is related to the hardness of the q-SDH problem
introduced by Boneh and Boyen [3]. Let G1 and G2 be two cyclic groups of prime
order p, respectively, generated by g1 and g2. The q-Strong Diffie-Hellman (q-
SDH) problem in (G1, G2) is defined as follows: Given a (q+3)-tuple of elements
(g1, g

γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) as input, output a pair (g1/(γ+x)

1 , x) where x ∈ Z∗
p. An

algorithm A has advantage ε in solving q-SDH problem in (G1, G2) if

Pr
[
A(g1, g

γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) = (g1/(γ+x)

1 , x)
]
≥ ε

where the probability is over the random choice of γ and the random bits of A.

3.3 Decisional Diffie-Hellman Assumption

Let G, generated by g, be a cyclic group of prime order p. The Decisional Diffie-
Hellman (DDH) problem in G is defined as follows: Given a tuple of elements
(g, ga, gb, gc) as input, output 1 if c = ab and 0 otherwise. An algorithm A has
advantage ε in solving DDH problem in G if

|Pr
[
g ← G, a, b ← Zp : A(g, ga, gb, gab) = 1

]
− Pr

[
g ← G, a, b, c ← Zp : A(g, ga, gb, gc) = 1

]
| ≥ ε

where the probability is over the random choice of the parameters to A and over
the random bits of A.

Let (G1, G2) be a bilinear group pair. Our DAA scheme requires the DDH
problem for G1 to be hard. The DDH assumption on G1 is often known as
the External Diffie-Hellman (XDH) assumption. This assumption is also used in
Chen’s DAA scheme [11].

4 The Proposed DAA Scheme

In this section, we present our construction of DAA scheme from bilinear maps.
Our construction builds on top of the recent pairing-based EPID scheme [9] and
Chen’s DAA scheme [11]. The DAA scheme has three algorithms Setup, Verify,
Link and two interactive protocols Join and Sign which are defined as follows.

4.1 Setup Algorithm

The setup algorithm is exactly the same as the one in [11]. On input of the
security parameters 1t, the setup algorithm takes the following steps:

1. Choose an asymmetric bilinear group pair (G1, G2) of prime order p and a
pairing function e : G1 × G2 → GT . Let g1 and g2 be the generators of G1
and G2, respectively.

2. Choose h1, h2 ← G1, γ ← Z∗
p, and compute w := gγ

2 .
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3. Select five hash functions H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Zp, H3 :
{0, 1}∗ → G1, H4 : {0, 1}∗ → Zp, H5 : {0, 1}∗ → Zp.

4. Compute T1 = e(g1, g2), T2 = e(h1, g2), T3 = e(h2, g2), and T4 = e(h2, w).
5. Output the DAA public key and the issuer’s private key

gpk := ((G1, G2, GT , p, e, g1, h1, h2, g2, w, H1, H2, H3, H4, H5, T1, T2, T3, T4)
isk := γ

Note that T1, T2, T3, and T4 are optional in gpk, as they can be computed
from g1, h1, h2, g2, w by the signers and verifiers. Also note that, in the actual
implementation, we can choose the same hash function for H1, H2, H4, and H5.
We use different hash functions in order to prove the security.

4.2 Join Protocol

The join protocol is the same as in [11] as well. This protocol is performed
by a TPM M, the corresponding host H, and an issuer I. Assume M and I
have already established a secure authenticated channel using M’s endorsement
key [19]. Let DAAseed be M’s internal secret seed. Let KI be I’s long term
public key. In the join protocol, M chooses a unique secret key sk = f and then
obtains a credential cre = (A, x) from I such that A = (g1 ·hf

1 )1/(x+γ). The join
protocol takes the following steps.

1. I chooses a nonce nI ∈ {0, 1}t and sends nI as a challenge to M.
2. M computes f := H1(DAAseed‖cnt‖KI), where cnt is a count value. M sets

its secret key sk := f . The purpose of using KI and cnt can be found in the
original DAA scheme [5].

3. M chooses at random rf ← Zp and computes F := hf
1 and R := h

rf

1 .
4. M computes c := H2(gpk‖nI‖F‖R) and sf := rf + c · f (mod p).
5. M sets comm := (F, c, sf , nI) and sends comm to I.
6. I verifies the value of nI and checks F against the revocation list.
7. I computes R̂ := h

sf

1 ·F−c and verifies that c = H2(gpk‖nI‖F‖R̂). If verifi-
cation fails, then abort.

8. I chooses at random x ← Zp and computes A := (g1 · F )1/(x+γ).
9. I sets the DAA credential cre := (A, x) and sends cre to M.

10. M forwards F and cre to H.
11. H verifies that e(A, wgx

2 ) = e(g1F, g2). If verification fails, then abort.

Note that the TPM M and the host H have a DAA signing key (A, x, f) such
that e(A, wgx

2 ) = e(g1h
f
1 , g2). In the DAA schemes [9,15], the signing key is

(A, x, y, f) such that e(A, wgx
2 ) = e(g1h

f
1hy

2, g2). Therefore our scheme has a
smaller signing key.

4.3 Sign Protocol

This join protocol is performed by a TPM M and a host H, where M has the
secret key f and H has the credential (A, x). The other input of the protocol is
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the DAA public key gpk, a message m to be signed, and a basename bsn and
a nonce nV from the verifier. In this protocol, the signer chooses B ∈ G1 and
computes K := Bf , then uses zero-knowledge proof to prove

PK{(A, x, f) : e(A, wgx
2 ) = e(g1h

f
1 , g2) ∧ K = Bf}

As in most of DAA schemes, the (B, K) pair is used for revocation check. To
prove e(A, wgx

2 ) = e(g1h
f
1 , g2) holds, the signer first computes T = A · ha

2 where
a is randomly chosen, then proves the following equation

e(T, g2)−x · e(h1, g2)f · e(h2, g2)ax · e(h2, w)a = e(T, w)/e(g1, g2).

The overall approach here is the same as in [11]. The main difference between
our scheme and Chen’s DAA scheme [11] is on how we divide the computation
between M and H in a secure way. The sign protocol takes the following steps:

1. If bsn = ⊥, M chooses B ← G1, otherwise, M computes B := H3(bsn).
2. M chooses at random rf ← Zp and computes

K := Bf , R1 := Brf , R2t := h
rf

1 .

3. M sends (B, K, R1, R2t) to H.
4. H chooses a ← Zp, computes b := a · x (mod p), and T := A · ha

2 .
5. H randomly picks

rx ← Zp, ra ← Zp, rb ← Zp.

6. H computes

R2 := e(T, g2)−rx · e(h1, g2)rf · e(h2, g2)rb · e(h2, w)ra ,

:= e(R2t · T−rx · hrb
2 , g2) · T ra

4 .

7. H computes ch := H4(gpk‖B‖K‖T ‖R1‖R2‖nV ) and sends ch to M.
8. M chooses a random nonce nT ← {0, 1}t and computes c := H5(ch‖nT ‖m).
9. M computes in sf := rf + c · f (mod p).

10. M sends (c, nT , sf ) to H. M erases rf after sending this message.
11. H computes

sx := rx + c · x (mod p), sa := ra + c · a (mod p), sb := rb + c · b (mod p).

12. H outputs σ := (B, K, T, c, nT , sf , sx, sa, sb).

Note that the signing protocol is a three-message protocol: In the first message,
M sends (B, K, R1, R2t) to H. In the second message, H sends ch to M. In the
third message, M sends (c, nT , sf) to H. The way we divide the computation
between the TPM and the host is similar to the one in the original DAA paper [5].
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4.4 Verify Algorithm

On input of a message m, a basename bsn, a nonce nV , a signature (B, K, T, c,
nT , sf , sx, sa, sb), the public key gpk, and the revocation list RL (a list of revoked
secret keys), the verification algorithm takes the following steps:

1. Verify that B, K, T ∈ G1 and sf , sx, sa, sb ∈ Zp.
2. Compute R̂1 := Bsf · K−c.
3. Compute

R̂2 := e(T, g2)−sx · e(h1, g2)sf · e(h2, g2)sb · e(h2, w)sa · (e(g1, g2)/e(T, w))c.

:= e(T, g−sx
2 · w−c) · T c

1 · T sf

2 · T sb
3 · T sa

4

4. Verify that c
?= H5(H4(gpk‖B‖K‖T ‖R̂1‖R̂2‖nV )‖nT ‖m).

5. For each f ′ ∈ RL, if K = Bf ′
, output 0 (reject).

6. If any of the above verifications fails, output 0 (reject), otherwise, output 1
(accept).

4.5 Link Algorithm

On input of two message-signature pairs (m0, σ0) and (m1, σ1), a basename bsn,
and the public key gpk, the link algorithm performs the following steps:

1. For each signature σb where b ∈ {0, 1}, run the verify algorithm Verify(σb, mb,
bsn, gpk). If either of two verifications returns 0 (reject), output ⊥.

2. If (B, K) ∈ σ0 are the same as (B, K) ∈ σ1, return 1 (linked), otherwise
return 0 (unlinked).

5 Security Proof

In this section, we prove our DAA scheme is secure under the security definitions
stated in Section 2. We show that our DAA scheme is correct, user-controlled-
anonymous, and user-controlled-traceable. The security of the DAA scheme based
on the q-SDH assumption and G1-DDH assumption defined in Section 3.

Theorem 1. The DAA scheme in Section 4 is correct.

Proof. To show the DAA scheme is correct, we prove that a signature created
by a valid and unrevoked signer can be successfully verified by any verifier. In
order to have a success signature verification, R̂1, R̂2 in the verify algorithm
must be equal to R1, R2 in the sign protocol, respectively. We prove R̂1 = R1
and R̂2 = R2 as follows.

R̂1 = Bsf · K−c = Brf · Bcf · (Bf )−c = Brf = R1

R̂2 = e(T, g2)−sx · e(h1, g2)sf · e(h2, g2)sb · e(h2, w)sa · (e(g1, g2)/e(T, w))c

= R2 · e(T, g2)−cx · e(h1, g2)cf · e(h2, g2)cb · e(h2, w)ca · (e(g1, g2)/e(T, w))c

= R2 · (e(g1, g2) · e(h1, g2)f · e(h2, g2)b · e(h2, w)a · e(T, g2)−x · e(T, w)−1)c

= R2 · (e(g1, g2) · e(h1, g2)f · e(h2, g2)ax · e(h2, w)a · e(T, gx
2w)−1)c

= R2 · (e(g1h
f
1 , g2) · e(ha

2 , g
x
2w) · e(A, gx

2w)−1 · e(ha
2 , g

x
2w)−1)c = R2
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The last equation holds because for a valid private key (A, x, f), e(A, gx
2w) =

e(g1h
f
1 , g2) holds. We now show that two signatures created by a single signer

using a basename bsn �= ⊥ can be linked. This is obvious from the description
of the DAA scheme, as two signatures will have the same (B, K) pair if the
signatures are created using the same private key f .

Theorem 2. Under the G1-DDH assumption, the DAA scheme in Section 4
is user-controlled-anonymous. More specifically, if there is an adversary A that
succeeds with a non-negligible probability to break the user-controlled-anonymity
game, then there is a polynomial-time algorithm B that solves the G1-DDH
problem with a non-negligible probability.

Proof. Suppose an algorithm A breaks the user-controlled-anonymity game of
the DAA scheme with non-negligible probability. We can build a polynomial-
time simulator B that breaks the G1-DDH problem as follows. B is given as
input a tuple (u, ua, ub, z) where u ← G1, a, b ← Zp, and either z = uab or z is
a random element in G1. B decides which z was given by interacting with A as
follows.

We first give an overview of the proof. B first creates a special signer S∗ where
its secret key f = a, however B does not know the secret key. B creates rest of
the signers by running the join protocol with A. To respond to a sign query
for signer S∗, B simulates the signature using the (u, ua) pair. In the challenge
phase, if S∗ is selected as one of the (S0, S1) pair, B picks S∗ for creating a
signature by simulating the signature using the (ub, z) pair, i.e., simulates using
the secret key f = logub z. If z = uab, then logu(ua) = logub(z), A has non-
negligible advantage guessing the random bit b correctly. If z �= uab, A does not
have any advantage guessing b or A may abort the game. B can use the output
of A to decide whether z = uab.

Setup. Let (G1, G2) be a bilinear group pair of prime order p with generator g1
and g2, respectively. B chooses a random γ ← Z∗

p as isk and sets the public
key gpk = (G1, G2, GT , p, e, g1, h1 := u, h2, g2, w := gγ

2 , H1, H2, H3, H4, H5,
T1, T2, T3, T4) by running the setup algorithm. B sends isk and gpk to A.

Hash Queries. We model the hash functions H2, H3, and H5 as three random
oracles. B responds to the hash queries for H2, H3, and H5 as follows.
– H2(m): If m has not been queried before, B chooses H2(m) uniformly at

random from Z∗
p and returns it to A, otherwise B returns the previously

queried result on m to ensure consistency.
– H3(m): Let qh be the expected number of unique H3 queries. B chooses

a random i ← {1, . . . , qh}. If m has been queried before, B returns the
previously queried result on m to ensure consistency. Otherwise, if m is
the i-th unique query on H3, B chooses chooses a random r ← Z

∗
p and

sets H3(m) := (ub)r. For rest of the queries, B chooses a random r ← Z∗
p

and sets H3(m) := ur. We use bsn∗ to denote the i-th unique query.
– H5(m): B chooses H5(m) uniformly at random from Z∗

p while ensuring
consistency.
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Join Queries. A requests for creating a new signer S. Let qj be the expected
number of join requests from A. B chooses a random i ← {1, . . . , qj}. There
are two cases for B to respond:
– If the query is the i-th join query: B sets F := ua without knowing the se-

cret key f = a = logu(ua), and then forges rest of the join protocol as fol-
lows: it chooses randomly c, sf ← Zp and computes R = h

sf

1 ·F−c. It then
patches the oracle by setting H2(gpk‖nI‖F‖R) := c. If H2(gpk‖nI‖F‖R)
has been queried before, B quites and outputs “abortion 0”. B receives
a credential from A. We use S∗ to denote the identity of this signer.

– If the query is not the i-th join query: B chooses a random f ← Z∗
p,

computes F := hf
1 . If F = ua, B quites and outputs “abortion 0”. B

runs the rest of the join protocol as the signer with A as the issuer, and
obtains a credential cre = (A, x). B verifies cre and stores (S, f, A, x)
in its log.

Sign Queries. Given a signer’s identity S, a message m to be signed, a nonce
nV from A, a basename bsn, B responds with a signature σ as follows:
Assuming the signer S has already joined, if S is not S∗, B finds the corre-
sponding secret key and credential (f, A, x) associated with S, runs the sign
protocol, and outputs σ to A. If S = S∗, B needs to forge a signature as
follows:
1. If bsn = ⊥, B chooses r ← Zp and sets B := ur and K := (ua)r.
2. If bsn = bsn∗, B quits and outputs “abortion 1”.
3. If bsn �= {⊥, bsn∗}, B searches the log of H3 queries and retrieves r

where H3(bsn) = ur. B sets B := ur and computes K := (ua)r.
4. B chooses T ← G1, nT ← {0, 1}t, and c, sf , sx, sa, sb ← Zp.
5. B computes R1 := Bsf · K−c.
6. B computes

R2 := e(T, g2)−sx ·e(h1, g2)sf ·e(h2, g2)sb ·e(h2, w)sa ·(e(g1, g2)/e(T, w))c.

7. B patches the oracle H5 by setting H5(H4(gpk‖B‖K‖T ‖R1‖R2‖nV )‖nT

‖m) := c. If H5(H4(gpk‖ B‖K‖T ‖R1‖R2‖nV )‖nT ‖m) has been queried
before, B quites and outputs “abortion 0”.

8. B outputs the signature σ := (B, K, T, c, nT , sf , sx, sa, sb).
Corrupt Queries. If a corrupt query is for a signer S �= S∗, then B responds

with the secret key corresponding to S. Otherwise, B quits and outputs
“abortion 2”.

Challenge. In the challenge, A outputs a message m, a basename bsn, and two
signer’s identity S0 and S1. If S∗ �∈ {S0, S1} or bsn �∈ {⊥, bsn∗}, then B
quits and outputs “abortion 3”. Otherwise, B picks b ∈ {0, 1} such that
Sb = S∗, and generates a signature σ∗ for m as follows:
1. If bsn = ⊥, B chooses r ← Zp and sets B := (ub)r and K := zr.
2. If bsn = bsn∗, B searches the log of H3 queries and retrieves r where

H3(bsn∗) = (ub)r. B sets B := (ub)r and computes K := zr.
3. The rest of the sign algorithm follows the sign queries above.
B sends the resulting σ∗ to A.
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Output. In the end, A outputs b′ ∈ {0, 1} as the guess for b or aborts without
any output. If b = b′, then B outputs 1, which means that z = uab. Otherwise
B outputs 0, which means that z is a random element in G1.

We now discuss the probability that algorithm B does not abort in the above
game. There are four cases where B can abort. We study each case as follows:

1. Abortion 0. The chance of this type of abortion is O(1/p). Since p is a large
prime, the probability of this abortion is negligible.

2. Abortion 1. Recall that A cannot use the same non-empty bsn in the sign
query and challenge query for signers S0 and S1. In other words, A cannot
query all possible bsn for S∗ in the sign queries. The probability that B does
not abort in this case is at least 1/qh.

3. Abortion 2. As A cannot corrupt all the signers, the probability that B does
not abort is at least 1/qj.

4. Abortion 3. B does not abort in this case if A selects S∗ and bsn∗ in the
challenge query. Thus the probability that B does not abort in this case is
1/(qh · qj).

B does not abort if (1) bsn∗ was not chosen in the sign queries for S∗, (2) S∗

was not chosen in the corrupt queries, and (3) S∗ and bsn∗ were chosen in the
challenge query. The probability that B does not abort the above game is roughly
1/(qh · qj).

Let ε be the probability that A succeeds in breaking the user-controlled-
anonymity game. Suppose B does not abort during the above simulation. If z =
uab, then logu(ua) = logub(z), B simulates the game perfectly, i.e., Pr [b = b′] >
1
2 +ε. If z is a random element in G1, then σ∗ in the challenge query is simulated
using the (ub, z) pair. In other words, the secret key used in generated σ∗ is
different from either secret key of S0 or S1. Observe that B in this case does not
simulate the game perfectly, especially in the challenge query. A could abort the
game. If A does not abort the game, A does not have any advantage guessing
b. It follows that Pr [b = b′] = 1

2 . Therefore, assuming B does not abort, it has
probability at least ε/2 in solving the DDH problem in G1.

Theorem 3. Under the q-SDH assumption, the DAA scheme in Section 4 is
user-controlled-traceable. More specifically, if there is an adversary A that suc-
ceeds with a non-negligible probability to break the user-controlled-traceability
game, then there is a polynomial-time algorithm B that solves the q-SDH prob-
lem with a non-negligible probability.

The proof of this theorem is similar to the user-controlled-traceability proof in
Chen’s DAA scheme [11]. Due to the space limit, we omit the details.

6 Comparisons with Existing DAA Schemes

In this section, we compare our DAA scheme with several existing pairing-based
DAA schemes [6,13,15,11]. Note that we do not include the original CMS-DAA
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scheme [12] in the comparisons, as it is not secure, instead we compare ours
with the patched version [13]. We also do not include the pairing-based EPID
scheme [9] in the comparison, because EPID does not have the feature of splitting
computation between a TPM and a host.

We compare the credential and signature sizes of our scheme with other DAA
schemes in the following table. We use Zq to denote the size of an element in Zq,
h to denote the size of a hash result, G1 to denote the size of an element in G1,
and GT to denote the size of an element in GT . For bilinear maps with 128-bit
security, GT needs to be around 3072 bits [16]. Our DAA scheme has the same
credential and signature sizes as in Chen’s DAA scheme [11]. The credential and
signature sizes in our scheme are smaller than other DAA schemes [6,13,15].

DAA Scheme Credential Size Signature Size
Scheme of [6] 3G1 2Zq + 3G1 + 2GT + 1h

Scheme of [13] 3G1 1Zq + 5G1 + 1h

Scheme of [15] 2Zq + 1G1 6Zq + 2G1 + 2GT + 1h

Scheme of [11] 1Zq + 1G1 4Zq + 3G1 + 1h

Our Scheme 1Zq + 1G1 4Zq + 3G1 + 1h

We compare the efficiency of signing and verification algorithms of our scheme
with other DAA schemes in the following table. We use P to denote a pairing
operation, G1 to denote an exponentiation operation in G1, G2

1 to denote a
multi-exponentiation operation, and so on. A multi-exponentiation is slightly
more expensive than an exponentiation. As we mentioned earlier in Section 1,
operations in G1 are much more efficient than ones in GT . Therefore, our DAA
scheme has significant advantage for computationally weak device such as TPM.
The efficiency of the sign protocol for our scheme is approximately 5 times more
efficient than the rest of pairing-based DAA schemes [6,13,15,11] using Barreto-
Naehrig curves.

DAA Scheme TPM Sign Host Sign Verify
Scheme of [7] 3GT 3G1 + 1GT + 3P 1G2

T + 1G3
T + 5P + (n + 1)GT

Scheme of [13] 2G1 + 1GT 3G1 + 1P 1G2
T + 1G2

T + 5P + nG1

Scheme of [15] 2G1 + 1G2
T 1G1 + 2G2

1 + 1G3
1 + 1G3

T 1G2
1 + 2G3

1 + 1G5
T + 3P + nGT

Scheme of [11] 2G1 + 1GT 1G1 + 1G3
T 1G2

1 + 1G2
2 + 1G4

T + 1P + nG1

Our Scheme 3G1 1G1 + 1G2
1 + 1GT + 1P 1G2

1 + 1G2
2 + 1G4

T + 1P + nG1

Observe that the efficiency we gain in TPM comes with a price – the host
needs to perform an additional pairing. The total efficiency of the sign protocol
is 4G1+1G2

1+1GT +1P in our scheme, whereas it is 3G1+1GT +3G3
T in Chen’s

DAA scheme [11]. Note that TPM is much slower than the host platform, e.g.,
probably 100 times slower or more. Based on the performance simulation by
Chen, Page, and Smart [14], a pairing operation on a host takes less than 15
millie-seconds for a 64-bit 2.4 GHz Intel Core 2 processor, while 2G1 + 1GT



194 E. Brickell and J. Li

operation takes more than 3 seconds for a 32-bit 33 MHz simulated TPM. Using
these performance data, we estimate that the overall sign protocol will take less
than 1 second in our scheme, whereas the sign protocol in [11,13] will take more
than 3 seconds.

We did not compare the efficiency of the join protocol because the join pro-
tocol is executed much less frequently than the sign protocol or the verification
algorithm. Besides the join protocol in our DAA scheme is the same as the one
in Chen’s DAA scheme [11], thus has the same efficiency.

7 Conclusions

In this paper, we proposed an efficient DAA scheme from bilinear maps. Our
new DAA scheme takes much less resources for TPM implementation (both
computation and software code size) compared to the existing DAA schemes.
We believe our DAA scheme is a good candidate for the next generation of TPM
initiated by the TCG TPM working group, assuming that a TPM can support
multiple DAA algorithms.

Acknowledgement

We thank Liqun Chen for her helpful discussions and feedback. We also thank
the anonymous reviewers for their useful comments.

References

1. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: Proceed-
ings of IEEE Symposium on Security and Privacy, pp. 202–215. IEEE Computer
Society, Los Alamitos (2008)

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, pp.
132–145. ACM Press, New York (2004)

6. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

7. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. International Journal of Information
Security 8(5), 315–330 (2009)



A Pairing-Based DAA Scheme Further Reducing TPM Resources 195

8. Brickell, E., Li, J.: Enhanced Privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 6th ACM Workshop
on Privacy in the Electronic Society, October 2007, pp. 21–30. ACM Press, New
York (2007)

9. Brickell, E., Li, J.: Enhanced Privacy ID from bilinear pairing. Cryptology ePrint
Archive, Report 2009/095 (2009), http://eprint.iacr.org/

10. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

11. Chen, L.: A DAA scheme requiring less TPM resources. In: Proceedings of the 5th
China International Conference on Information Security and Cryptology, LNCS.
Springer, Heidelberg (2009)

12. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer,
Heidelberg (2008)

13. Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols.
Cryptology ePrint Archive, Report 2009/198 (2009), http://eprint.iacr.org/

14. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
DAA scheme. In: Proceedings of the 9th Smart Card Research and Advanced
Application IFIP Conference. Springer, Heidelberg (2010)

15. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. Jour-
nal of Computers 3(12), 43–50 (2008)

16. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

17. Leung, A., Mitchell, C.J.: Ninja: Non identity based, privacy preserving authenti-
cation for ubiquitous environments. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 73–90. Springer, Heidelberg
(2007)

18. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

19. Trusted Computing Group. TCG TPM specification 1.2 (2003),
http://www.trustedcomputinggroup.org

20. Trusted Computing Group website, http://www.trustedcomputinggroup.org

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org


An Anonymous Attestation Scheme with
Optional Traceability

Jiangtao Li and Anand Rajan

Intel Labs, Intel Corporation
jiangtao.li@intel.com, anand.rajan@intel.com

Abstract. Direct Anonymous Attestation (DAA) is a cryptographic
scheme designed for anonymous attestation of a hardware device while
preserving the privacy of the device owner. Signatures created by a DAA
signer are anonymous and untraceable, i.e., cannot be opened to find
out the identity of the signer. To prevent abuse of privacy, DAA has a
feature called user-controlled-traceability in which the signer and ver-
ifier can negotiate whether or not the signatures from the signer can
linked. This feature is a preventive mechanism against corrupted DAA
signers because they can be prevented from making multiple anonymous
authentications. However, it is not a proactive deterrent against such
activity as nobody is able to identify the corrupted signer. In this paper,
we introduce a new cryptographic scheme called Optionally Traceable
Anonymous Attestation (OTAA), in which the signer and verifier can
negotiate whether signatures from the signer are traceable to the issuer
instead of just being linkable. In the OTAA scheme, if a corrupted signer
has produced a traceable signature or published his private key widely,
the issuer can identify the signer and effectively revoke him using the
verifier-local revocation. We give a construction of an OTAA scheme
from bilinear pairing. Our OTAA scheme is efficient and provably secure
in the random oracle model under the strong Diffie-Hellman assumption
and the external Diffie-Hellman assumption.

1 Introduction

The concept and a concrete scheme of Direct Anonymous Attestation (DAA)
were first introduced by Brickell, Camenisch, and Chen [9] for remote anonymous
authentication of a hardware module, called Trusted Platform Module (TPM).
The DAA scheme was adopted by the Trusted Computing Group (TCG) [31],
an industry standardization body that aims to develop and promote an open
industry standard for trusted computing hardware and software building blocks.
The DAA scheme was standardized in the TCG TPM Specification Version
1.2 [30] and has recently been adopted by ISO/IEC as an international standard.
After DAA was first introduced, it has drawn a lot of attention from the industry
in general and cryptographic community in particular, e.g., [17,29,10,25,24] are
some of the relevant references in this regard.

A DAA scheme involves three types of entities: an issuer, signers, and veri-
fiers. The issuer is in charge of verifying the legitimacy of signers and of issuing

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 196–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a membership credential to each signer. A signer can prove membership anony-
mously to a verifier by creating a DAA signature. The verifier can verify the
membership of the signer from the DAA signature but cannot learn the identity
of the signer. DAA scheme can be seen as a group signature scheme without the
traceability feature, i.e., nobody (not even the issuer) can open a DAA signature
to find out the identity of the signer.

DAA signatures can be created using one of the two options: random base
option and name base option. In the random base option, DAA signatures are
unlinkable. In the name base option, two DAA signatures produced by a signer
(using one verifier’s basename) are linkable. Yet signatures created by a signer
using two different basenames are unlinkable. This feature is later referred as
user-controlled-traceability [11] (probably user-controlled-linkability is more ap-
propriate), as the signer and verifier can negotiate whether the signatures from
the signer can be linked by choosing the appropriate options. This feature can
be used to prevent abuse of privacy by a corrupted signer. For example, if a pro-
visioning server wants to issue a key to each valid signer, the server can mandate
the name base option to make sure each signer can only get one key at most.

The user-controlled-traceability feature in DAA is a preventive mechanism
against corrupted signers but not a proactive one, as a corrupted signer can be
prevented from making multiple anonymous authentications to a verifier but he
cannot be identified or revoked per the definition of DAA. Brickell and Li have
proposed an extension of DAA called Enhanced Privacy ID (EPID) in which
the issuer can revoke signatures from corrupted signers without knowing their
private keys or identities [12,14]. Tsang et al. proposed a similar revocation
mechanism in [32]. However, such a revocation mechanism requires the signer
to perform zero-knowledge proof for each revoked signature. This could be too
computationally demanding for small hardware devices such as TPM.

In practice, we can separate the use of anonymous attestation into two cate-
gories: high-value transactions and low-value transactions. For high-value trans-
actions, such as downloading key materials or accessing medical information, the
ability to trace and effectively revoke corrupted signers is required. However, for
low-value transactions, such as accessing digital library or proving older than
certain age, privacy carries more weight than traceability and revocability. End
user may feel more comfortable if his anonymous signatures are untraceable most
of the time during his day-to-day transactions, but traceable occasionally for the
high-value transactions.

In this paper, we propose a new cryptographic scheme called Optionally Trace-
able Anonymous Attestation (OTAA) with a concrete construction from bilinear
maps. OTAA provides the right balance between privacy and traceability. The
difference from DAA is that the signer in OTAA can choose whether or not sig-
natures are traceable instead of linkable. The OTAA scheme has the following
features:

1. OTAA signatures are anonymous and unlinkable to the verifiers. However the
signer and verifier can negotiate whether or not the signatures are traceable
to the issuer.
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2. The issuer can open a traceable signature and identify the signer. Further-
more, the issuer can revoke the signer in an efficient way. In addition, if a
corrupted signer publishes his private key widely, the issuer can revoke the
signer as well. Both revocation checks are performed locally by the verifier.
This revocation model is known in the literature as verifier-local revocation.

OTAA can be used in trusted computing as an alternative mechanism for
anonymous attestation besides DAA. One of the biggest advantages of OTAA
is the revocation method: it is more capable than the original definition of
DAA [9,11] and is more efficient than the signature based revocation in EPID [12].
We believe OTAA has wider application beyond the TPM usage, such as in e-
commerce, digital content protection, and identity card. Our OTAA construction
is very efficient. It has similar efficiency as the DAA schemes [14,24]. Our OTAA
scheme becomes a group signature scheme if all the signatures are traceable. We
show in Section 6 that our OTAA is more efficient than existing pairing-based
group signature schemes [7,20,8,27].

Rest of this paper is organized as follows. We first discuss the related work in
Section 2. We then give a formal specification of OTAA and present the security
requirements in Section 3. We review the definition of pairing and related security
assumptions in Section 4. Next we describe the construction of our OTAA scheme
in Section 5. We compare our OTAA scheme with several group signature and
DAA schemes in Section 6. We conclude our paper and discuss the future work
in Section 7.

2 Related Work

OTAA can be seen as a variant of DAA [9,17,29,3,12,11,25,24]. Many concepts
of OTAA borrow from DAA, such as negotiation of different privacy level and
revocation if a private key gets revealed publicly. In fact, our construction of
OTAA builds on top of the recent pairing-based DAA schemes [14,24]. As we
mentioned earlier, DAA signatures cannot be opened. Thus a corrupted signer
will not be revoked unless he publishes his private key on the Internet. Such
revocation capability in the original definition of DAA [9,11] is limited. OTAA
provides a better revocation capability without comprising the efficiency.

OTAA is a special group signatures scheme with the optional traceability
feature. In group signature definition [5] and constructions [23,22,1,7,27], all the
group signatures are traceable. In most of the group signature schemes, the signer
encrypts his identity using the tracing manager’s public key in a way that the
encryption can be verified by the verifier. To open a group signature, the tracing
manager uses his private key to decrypt and find the identity of the signer. Thus,
it is not difficult to make a group signature scheme optionally traceable, i.e., the
signer can choose whether to encrypt his identity. OTAA is unique in that the
issuer not only can open a traceable signature but can also revoke the signer
using efficient verifier-local revocation.

Boneh and Shacham proposed an efficient verifier-local revocation group sig-
nature scheme [8]. It is not difficult to convert their group signature scheme
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into an optionally traceable group signature scheme. To make a group signature
untraceable in their scheme, the signer simply chooses u and v randomly from
G1 instead of choosing û and v̂ from G2. However, such untraceable signatures
cannot be revoked in any scenarios, e.g., even if the private key is revealed and
widely distributed. Besides, our OTAA scheme is more efficient than the BS
group signatures scheme in signature signing, verification, and the revocation
check. The revocation check in the BS group signatures scheme requires two
pairing operations per revoked key instead of one exponentiation in our OTAA
scheme. A pairing operation is about 10 times more expensive than an exponen-
tiation operation. The revocation check in our scheme is fix-base exponentiation
which can be further optimized using fast exponentiation technique [16]. Thus
the revocation check in our scheme is about two orders of magnitude more effi-
cient than the BS group signatures scheme.

Our OTAA scheme uses verifier-local revocation, a revocation model used
widely in all the DAA schemes as well as in some group signature schemes [2,8].
We believe that this revocation model is a practical model, as the revocation lists
are only sent to the verifiers. After all, it is in the verifiers’ interest to perform
the revocation check. This is similar to the revocation model we currently have
in the public key infrastructure. Observe that this model adds no burden to the
signers. In our OTAA scheme, the revocation check takes n fix-base exponenti-
ations, where n is the size of the revocation list. Using the fast exponentiation
technique [16], a verifier can easily process a few thousands revocation checks
within one second. Another popular revocation model in the group signatures is
to use dynamic accumulators [19,18]. Although dynamic accumulators are very
efficient, a limitation of this approach is the infrastructure overhead. Each signer
needs to constantly connect to the issuer and update his credentials. This seems
to not be practical in the TPM implementation.

3 Specification and Security Requirements of OTAA

In the rest of this paper, we use the following standard notations. Let S be a
finite set, x ← S denotes that x is chosen uniformly at random from S. Let
b ← A(a) denote an algorithm A that is given input a and outputs b. Let
〈c, d〉 ← PA,B〈a, b〉 denote an interactive protocol between A and B, where A
inputs a and B inputs b, in the end A obtains c and B obtains d.

3.1 Specification of OTAA

An OTAA scheme involves three types of entities: an issuer I, platforms P , and
verifiers V . There are the following four polynomial-time algorithms Setup, Sign,
Verify, and Open, and one interactive protocol Join.

Setup : This setup algorithm for the issuer I takes a security parameter 1k as
input and outputs a group public key gpk and the issuer’s private key isk.
The public key gpk includes the global public parameters for the system.

(gpk, isk) ← Setup(1k)
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Join : This join protocol is an interactive protocol between the issuer I and a
platform Pi and consists of two randomized algorithms: Joint and Joini. The
platform Pi uses Joint to produce a pair (ski, commi), where ski is platform’s
secret key and commi is a commitment of ski.

(ski, commi) ← Joint(gpk)

On input of a commitment commi, the group public key gpk, the issuer’s pri-
vate key isk, the issuer I uses Joini to produce crei, a membership credential
associated with ski. The crei includes a unique tracing key tki. Pi receives
crei while I updates its tracing database dbase by inserting a record of Pi’s
identity idi and the tracing key tki.

(crei, dbase) ← Joini(gpk, isk, dbase, commi)

The join protocol can be formulated as

〈dbase, (ski, crei)〉 ← JoinI,P〈(gpk, isk, dbase), gpk〉

Sign : On input of gpk, ski, crei, a boolean value tr, and a message m, the
probabilistic signing algorithm outputs a signature σ. If tr = 1, σ is a
traceable signature, otherwise, σ is a non-traceable signature. We often times
call (ski, crei) the signing key of Pi.

σ ← Sign(gpk, ski, crei, tr, m)

Verify : On input of gpk, a message m, a traceable or a non-traceable signature
σ, a list of revoked secret keys sRL (the revocation list for non-traceable
signatures), and a list of revoked tracing keys tRL (the revocation list for
traceable signatures), this verification algorithm outputs valid, revoked,
or invalid. We shall discuss how to build the revocation lists in the later
sections.

valid/revoked/invalid← Verify(gpk, m, σ, sRL, tRL)

Open : On input of gpk, a message m, a signature σ, and the tracing database
dbase, the deterministic tracing algorithm outputs invalid if the signature
is not valid, untraceable if the signature is not traceable, or (idi, tki), the
identity and tracing key of the signer.

invalid/untraceable/(idi, tki) ← Open(gpk, m, σ, dbase)

Observe that the revocation lists are only sent to the verifiers. This revocation
method is known in the literature as verifier-local revocation [8] and has been
used in most of the DAA schemes [9,12,10,25,24]. One implication of verifier-
local revocation is the signature is selfless-anonymous, i.e., a platform can tell
whether he generated a particular signature σ, but if he did not he learns nothing
else about the signer of σ.
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3.2 Security Requirements of OTAA

A secure OTAA scheme needs to satisfy the following three requirements: cor-
rectness, user-controlled-anonymity, and user-controlled-traceability. We borrow
the terms “user-controlled-anonymity” and “user-controlled-traceability” from
the definition of DAA [11], as the platform and verifier in OTAA can negotiate
the privacy level of a signature, i.e., whether the signatures can be traced. How-
ever, the security requirements of OTAA are different from those in DAA [9,11].
Roughly speaking, user-controlled-anonymity guarantees that only the issuer is
able to identify the actual signer of a traceable signature and nobody can iden-
tify the actual signer of a non-traceable signature, except that if the signer is
revoked. User-controlled-traceability guarantees that no one except the issuer is
able to successfully add a new platform to the group. Our security requirements
follow the framework of Bellare et al. definition of group signatures for dynamic
groups [5] and Boneh and Shacham’s definition of verifier-local revocation group
signatures [8].

Correctness. The correctness requirement states that every signature, no mat-
ter traceable or not, generated by a platform can be verified as valid, except
when the platform is revoked. It can be formally stated as follows

(gpk, isk) ← Setup(1k)
〈dbase, (ski, crei)〉 ← JoinI,P〈(gpk, isk, dbase), gpk〉
σ ← Sign(gpk, ski, crei, tr, m)
Verify(gpk, m, σ, sRL, tRL) = true ⇐⇒

((tr = 1) ∧ (tki �∈ tRL)) ∨ ((tr = 0) ∧ (ski �∈ sRL))

User-Controlled-Anonymity. An OTAA scheme satisfies the user-controlled-
anonymity property if no polynomial-time adversary can win the anonymity
games. In the anonymity game, the goal of the adversary is to determine which
one of two platforms was used in generating a signature. As mentioned earlier,
given a signature and a signing key, the adversary could determine whether the
signature was generated using the signing key. If the signature is a traceable
signature, then the adversary should not be given access to the tracing key
of either platform. Otherwise if the signature is non-traceable, the adversary
should be given the secret keys of the platforms. The anonymity game between
a challenger C and an adversary A is defined as follows.

1. Setup. C runs (gpk, isk) ← Setup(1k) and sends gpk and isk to A.
2. Queries. A can make the following queries to C.

(a) Join. A requests for creating a new platform P by choosing one of the
following two types:
i. C runs the join protocol as the platform P by interacting with A as

the issuer. In the end, C obtains the signing key (sk, cre), while A
only learns the credential cre.

ii. C runs the join protocol locally and generates a signing key (sk, cre).
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(b) Sign. A requests a signature on a message m with a traceability option
tr for a platform P . C finds P ’s signing key (sk, cre) and computes
σ ← Sign(gpk, sk, cre, tr, m). C returns σ to A.

(c) Corrupt. A requests the signing key of a platform P . C responds with
(sk, cre) of P to A.

3. Challenge. A outputs a message m, a traceability option tr, and two plat-
forms P0 and P1. A must have not made a corruption query on either P0 or
P1. If A has a membership credential of either P0 or P1, the requesting tr
must be 0, i.e., A can only request a non-traceable signature. C chooses a ran-
dom bit b ← {0, 1}, computes a signature σ ← Sign(gpk, skb, creb, tr, m),
where (skb, creb) is the signing key for Pb, and sends σ to A.

4. Restricted Queries. After the challenge phase, A can make additional queries
to C, restricted as follows.
(a) Join. A can make join queries as before.
(b) Sign. A can make sign queries as before.
(c) Corrupt. As before, but A cannot make corrupt queries at P0 and P1.

5. Output. Finally, A outputs a bit b′. The adversary wins if b′ = b.

Definition 1. Let A be the adversary. We use Adv[AAn
OTAA] = |Pr [b = b′]−1/2|

to denote the advantage of A in breaking the user-controlled-anonymity game.
The probability is taken over the coin tosses of A, of the randomized setup, join,
and sign algorithms, and over the choice of b. We say that an OTAA scheme
is user-controlled-anonymity if for any probabilistic polynomial-time adversary,
Adv[AAn

OTAA] is negligible.

User-Controlled-Traceability. We say that an OTAA scheme satisfies the
user-controlled-traceability property if no adversary can win the following trace-
ability game. In the user-controlled-traceability game, the adversary’s goal is to
forge a valid non-traceable signature given that all private keys known to the
adversary have been revoked or to create a traceable signature that cannot be
opened properly. The traceability game between a challenger C and an adversary
A is defined as follows.

1. Setup. C runs (gpk, isk) ← Setup(1k) and sends gpk to A. C sets empty
revocation lists sRL and tRL.

2. Queries. A can make the following queries to C.
(a) Join. A requests for creating a new platform P by choosing one of the

following two types:
i. C runs the join protocol as the issuer with A as the platform P . In

the end, C outputs cre while A outputs the signing key (sk, cre). C
appends tk in cre to revocation list tRL.

ii. C runs the join protocol locally and generates a signing key (sk, cre).
(b) Sign. A requests a signature on a message m with a traceability option

tr for a platform P . C finds P ’s signing key (sk, cre) and computes
σ ← Sign(gpk, sk, cre, tr, m). C returns σ to A.
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(c) Corrupt. A requests the signing key of a platform P . C responds with
(sk, cre) of P to A. C also appends sk to sRL and tk from cre to tRL.

3. Response. Finally, A outputs a message m and a signature σ.

Assuming that A did not obtain σ by making a sign query on m.

1. If σ is a traceable signature, A wins if Verify(gpk, σ, m, sRL, tRL) = valid.
2. If σ is a non-traceable signature, A wins if Verify(gpk, σ, m, sRL, tRL) =

valid and A has never made any type (i) join query.

Note that if A has made a type (i) join query, it obtained a signing key (sk, cre)
such that only the tracing key in cre is known to C. Since C does not know sk,
A can produce a valid non-traceable signature using the signing key. Thus, if A
outputs a non-traceable signature in the final response, A wins only if it has not
made any type (i) join query.

Definition 2. Let A denote an adversary that plays the traceability game above.
We use Adv[ATr

OTAA] = Pr [A wins] to denote the advantage that A breaks the
traceability game. We say that an OTAA scheme is user-controlled-traceability
if for any probabilistic polynomial-time adversary, Adv[ATr

OTAA] is negligible.

4 Pairings and Complexity Assumptions

In this section, we first review the concept of pairings and then discuss some
complexity assumptions related to our scheme.

Background on Bilinear Maps. Our OTAA scheme in this paper is based on
asymmetric pairings. We follow the notation of Boneh, Boyen, and Shacham [7]
to review some background on pairings. Let G1 and G2 to two multiplicative
cyclic groups of prime order p. Let g1 be a generator of G1 and g2 be a generator
of G2. We say e : G1 ×G2 → GT is an admissible bilinear map, if it satisfies the
following properties:

1. Bilinear. For all u ∈ G1, v ∈ G2, and for all a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degenerate. e(g1, g2) �= 1 and is a generator of GT .
3. Computable. There exists an efficient algorithm for computing e(u, v) for

any u ∈ G1, v ∈ G2.

We call the two groups (G1, G2) in the above a bilinear group pair. In the rest
of this paper, we consider bilinear maps e : G1 × G2 → GT where G1, G2, and
GT are multiplicative groups of prime order p.

Strong Diffie-Hellman Assumption. The security of our DAA scheme is related
to the hardness of the q-SDH problem introduced by Boneh and Boyen [6]. Let
G1 and G2 be two cyclic groups of prime order p, respectively, generated by g1
and g2. The q-Strong Diffie-Hellman (q-SDH) problem in (G1, G2) is defined as
follows: Given a (q+3)-tuple of elements (g1, g

γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) as input, output
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a pair (g1/(γ+x)
1 , x) where x ∈ Z∗

p. An algorithm A has advantage ε in solving

q-SDH problem in (G1, G2) if Pr[A(g1, g
γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) = (g1/(γ+x)

1 , x)] ≥ ε
where the probability is over the random choice of γ and the random bits of A.

Definition 3. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no
t-time algorithm has advantage at least ε in solving the q-SDH problem.

External Diffie-Hellman Assumption. Let G, generated by g, be a cyclic group
of prime order p. The Decisional Diffie-Hellman (DDH) problem in G is defined
as follows: Given a tuple of elements (g, ga, gb, gc) as input, output 1 if c = ab
and 0 otherwise.

Definition 4. We say that the (t, ε)-DDH assumption holds in G if no t-time
algorithm has advantage at least ε in solving the DDH problem in G.

Let (G1, G2) be a bilinear group pair. Our proposed OTAA scheme requires the
DDH problem for G1 to be hard. The DDH assumption on G1 is often known
as the External Diffie-Hellman (XDH) assumption.

5 The Proposed OTAA Scheme

In this section, we first present our construction of an OTAA scheme from bi-
linear maps. Our construction builds on top of the recent pairing-based EPID
scheme [14] and Chen’s DAA scheme [24], and Furukawa and Imai group signa-
tures scheme [27].

5.1 Our OTAA Scheme

The OTAA scheme has the following algorithms Setup, Sign, Verify, and Open
and one interactive protocol Join which are defined as follows.

Setup : The setup algorithm takes the following steps:
1. On input of 1k, it chooses an asymmetric bilinear group pair (G1, G2) of

prime order p and a pairing function e : G1 × G2 → GT . Let g1 and g2
be the generators of G1 and G2, respectively.

2. It selects a collision resistant hash function H : {0, 1}∗ → Zp.
3. It chooses h1, h2 ← G1, γ ← Z∗

p, and computes w := gγ
2 .

4. It computes T1 = e(g1, g2), T2 = e(h1, g2), T3 = e(h2, g2), T4 = e(h1, w),
and T5 = e(h2, w).

5. It outputs the group public key and private key

(gpk, isk) := ((G1, G2, GT , e, p, g1, g2, h1, h2, w, H, T1, T2, T3, T4, T5), γ)

Note that T1, T2, T3, T4, and T5 are optional in gpk, as they can be computed
from g1, g2, h1, h2, w.
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Join : The join protocol is performed by a platform P and the issuer I. P takes
gpk as input and I has gpk, isk, and dbase as input. The protocol has the
following steps:
1. I sends a nonce nI ∈ {0, 1}t as a challenge to P .
2. P chooses at random f ← Zp and computes F := hf

1 .
3. P sets sk := f and idP := F as its identity.
4. P chooses at random rf ← Zp and computes R := h

rf

1 .
5. P computes c := H(gpk‖F‖R‖nI) and sf := rf + c · f (mod p).
6. P sets comm := (F, c, sf ) as a commitment of its sk, and sends comm to

I.
7. I computes R̂ := h

sf

1 ·F−c and verifies sf ∈ Zp and c = H(gpk‖F‖R̂‖nI).
8. I chooses at random x, y ← Zp and computes A := (g1 · F · hy

2)
1/(x+γ).

9. I sets tk := y and cre := (A, x, y) and sends cre to P .
10. I updates its tracing database dbase by appending (idP , tk) := (F, y).
11. P verifies e(A, wgx

2 ) = e(g1h
f
1hy

2 , g2)andoutputs (sk, cre) := (f, (A, x, y)).
As in many DAA schemes [9,10,13,24], the above join protocol needs to be
executed in a sequential manner, as comm is a proof of knowledge of the
discrete logarithm of the value F . To support concurrent join, we could use
verifiable encryption [21] of the f value or use the concurrent join technique
described in [28] with some loss of efficiency.

Sign : On input of gpk, sk = f , cre = (A, x, y), a tracing option tr ∈ {0, 1}, a
message m ∈ {0, 1}∗, this signing algorithm takes the following steps:
1. If tr = 0, the algorithm outputs a non-traceable signature on m as

follows:
(a) It chooses B ← G1 and computes K := Bf .
(b) It chooses a ← Zp, computes b := y + ax (mod p) and T := A · ha

2 .
(c) It randomly picks

rx ← Zp, rf ← Zp, ra ← Zp, rb ← Zp.

(d) It computes

R1 := Brf ,

R2 := e(T, g2)−rx · e(h1, g2)rf · e(h2, g2)rb · e(h2, w)ra

= e(A, g2)−rx · e(ha
2 , g2)−rx · e(h1, g2)rf · e(h2, g2)rb · e(h2, w)ra

= e(A, g2)−rx · T rf

2 · T rb−arx

3 · T ra

5 .

(e) It then computes

c := H(gpk‖B‖K‖T ‖R1‖R2‖m).

(f) It computes in Zp

sx := rx + cx, s := rf + cf, sa := ra + ca, sb := rb + cb.
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2. If tr = 1, the algorithm outputs a traceable signature on m as follows:
(a) It chooses B ← G1 and computes K := By.
(b) It chooses a ← Zp, computes b := f + ax (mod p) and T := A · ha

1
(c) It randomly picks

rx ← Zp, ry ← Zp, ra ← Zp, rb ← Zp.

(d) It computes

R1 := Bry ,

R2 := e(T, g2)−rx · e(h2, g2)ry · e(h1, g2)rb · e(h1, w)ra

= e(A, g2)−rx · e(ha
1 , g2)−rx · e(h2, g2)ry · e(h1, g2)rb · e(h1, w)ra

= e(A, g2)−rx · T ry

3 · T rb−arx

2 · T ra
4 .

(e) It then computes

c := H(gpk‖B‖K‖T ‖R1‖R2‖m).

(f) It computes in Zp

sx := rx + cx, s := ry + cy, sa := ra + ca, sb := rb + cb.

3. It outputs σ := (tr, B, K, T, c, sx, s, sa, sb).
Note that e(A, g2) in the computation of R2 can be pre-computed and re-
used. Also observe that the traceable and non-traceable signatures have the
same size and format. The signature generations for both signature types
have the same complexity as well.

Verify : On input of gpk, a messagem, a signatureσ = (tr, B, K, T, c, sx, s, sa, sb),
a list of revoked secret keys sRL, and a list of revoked tracing keys tRL, the
verifying algorithm has the following steps:
1. It verifies that B, K, T ∈ G1 and sx, s, sa, sb ∈ Zp.
2. It computes R1 := Bs · K−c.
3. If tr = 0, it computes

R̂2 := e(T, g2)−sx · e(h1, g2)s · e(h2, g2)sb · e(h2, w)sa · (e(g1, g2)/e(T, w))c

:= e(T, g−sx
2 · w−c) · T c

1 · T s
2 · T sb

3 · T sa
5 ,

otherwise, it computes

R̂2 := e(T, g2)−sx · e(h2, g2)s · e(h1, g2)sb · e(h1, w)sa · (e(g1, g2)/e(T, w))c

:= e(T, g−sx
2 · w−c) · T c

1 · T s
3 · T sb

2 · T sa
4 .

4. It verifies that
c

?= H(gpk‖B‖K‖T ‖R̂1‖R̂2‖m).

5. If any of the above steps fails, it quits and outputs invalid.
6. If tr = 0, for each f ′ ∈ sRL, if K = Bf ′

, it quits and outputs revoked,
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7. If tr = 1, for each y′ ∈ tRL, if K = By′
, it quits and outputs revoked.

8. If none of the above steps fails, it outputs valid.
Open : On input of gpk, a message m, a signature σ = (tr, B, K, T, c, sx, s, sa, sb),

a tracing database dbase, the open algorithm has the following steps:
1. If Verify(gpk, m, σ, ∅, ∅) = invalid, it quits and outputs invalid.
2. If tr = 0, it quites and outputs untraceable.
3. For each entry (id, tk) in dbase, it computes K ′ = Btk. If K = K ′, it

quits and outputs (id, tk).
4. If none of the entry in dbase matches, it outputs untraceable.

The above OTAA scheme is secure under the OTAA definition in Section 3.
It is correct, user-controlled-anonymous under the XDH assumption, and user-
controlled-traceable under the q-SDH assumption. Due to the space limit, the
security proof will be given in the full version of this paper.

5.2 Efficiency of Our Scheme

The signing key of the above scheme comprises three elements in Zp and one
element in G1. The signature of the above scheme takes one boolean variable,
three elements in G1, and five elements in Zp. Let p be a 256-bit prime number.
Using 256-bit Barreto-Naehrig curves [4], security is approximately 128-bit and
is about the same as a standard 3072-bit RSA signature. Each element in G1 is
257-bit. Thus the signing key is only 1025-bit and the signature is 2052-bit in
the above scheme. Using 170-bit MNT curves with approximate 80-bit security,
the signing key is 681-bit and the signature is 1364-bit.

The signature generation requires three exponentiations in G1 and one multi-
exponentiation in GT . The signature verification algorithm requires one multi-
exponentiation in G1, G2, and GT , respectively, one pairing operation, and n
exponentiations in G1, where n is the size of the revocation list. The open algo-
rithm includes one signature verification and m exponentiations in G1, where m
is the total number of platforms issued by the issuer.

6 Comparisons with Group Signature and DAA Schemes

As we mentioned earlier, our OTAA scheme becomes a group signature scheme
if all the signatures are traceable. Note that the group signature scheme derived
from our OTAA scheme does not have the non-frameability property, as the
issuer has the tracing keys for all the platforms and can frame any platforms.

We now show that our OTAA scheme is more efficient than the existing group
signature schemes [7,20,8,27] in the following table. The BS group signature
scheme [8] has a slightly smaller signature size than our OTAA scheme, but is
less inefficient. In particular, the revocation check in [8] requires two pairings per
revocation item and is much inefficient than our scheme. The FI group signature
scheme [27] is more efficient than BBS scheme [7] and CL scheme [20]. The FI
scheme is still inefficient than our OTAA scheme. In addition, the FI scheme
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Table 1. A comparison between our OTAA scheme and pairing-based group signature
schemes and DAA schemes with 80-bit security level, where EXP denotes a exponen-
tiation or a scaler multiplication operation and P denotes a pairing operation.

sign verify signature size
Our OTAA scheme 7 EXP 8 EXP + 1 P 1364-bit
BS Group Signatures [8] 8 EXP + 2 P 9 EXP + 3 P 1192-bit
BBS Group Signatures [7] 14 EXP 17 EXP + 1 P 2057-bit
CL Group Signatures [20] 16 EXP 13 EXP + 5 P 5296-bit
FI Group Signatures [27] 11 EXP 12 EXP + 1 P 1711-bit
BCL DAA scheme [11] 6 EXP + 3 P 5 EXP + 5 P 3063-bit
CMS DAA scheme [26] 5 EXP + 1 P 4 EXP + 5 P 1355-bit
Chen DAA scheme [24] 7 EXP 8 EXP + 1 P 1363-bit
BL DAA scheme [15] 7 EXP + 1 P 8 EXP + 1 P 1363-bit

itself does not support any revocation mechanisms. Revocation could be added
to the FI scheme, but with an additional cost.

Our OTAA scheme is efficient than many pairing-based DAA schemes
[11,26,15]. It has almost the same complexity as Chen’s DAA scheme [24]. Note
that in DAA schemes, the sign algorithm is split between a TPM and a host. In
the comparison below, we sum up all the computations of the TPM and host.

7 Conclusion and Future Work

In this paper, we have presented a new cryptographic primitive called Option-
ally Traceable Anonymous Attestation (OTAA). OTAA can be used in trusted
computing, content protection, e-commerce, identity cards, and beyond. OTAA
is more capable at revocation than DAA, with relatively minimal compromise of
privacy to the issuer, e.g., when a platform creates traceable signatures. In most
of the transactions, the platform can use non-traceable signatures to safeguard
his privacy. We provided an efficient construction of OTAA from bilinear map.
The security model and OTAA scheme developed in this paper is a merely first
step. There is room for improvement in the following areas.

1. In many group signature schemes such as in [1,27], there is a feature called
non-frameability, in which the issuer cannot frame a honest signer for creat-
ing a group signature. OTAA does not have this feature. In fact, our OTAA
construction is frameable, as the issuer has the tracing keys for all the plat-
forms and can forge a signature using any platform’s tracing key. It may be
interesting to formally define non-frameability in OTAA and give a corre-
sponding construction.

2. There are features in DAA that can be added to OTAA, such as (1) the
signer and verifier can negotiate whether the signature is linkable, and (2)
the signer computation can be split between a weak TPM as the main signer
and a host. Adding those features to the OTAA scheme is not difficult, but it
is a challenge to build a simple security model that captures all the features.
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Abstract. We introduce a new mechanism for rooting trust in a cloud 
computing environment called the Trusted Virtual Environment Module 
(TVEM). The TVEM helps solve the core security challenge of cloud 
computing by enabling parties to establish trust relationships where an 
information owner creates and runs a virtual environment on a platform owned 
by a separate service provider. The TVEM is a software appliance that provides 
enhanced features for cloud virtual environments over existing Trusted Platform 
Module virtualization techniques, which includes an improved application 
program interface, cryptographic algorithm flexibility, and a configurable 
modular architecture. We define a unique Trusted Environment Key that 
combines trust from the information owner and the service provider to create a 
dual root of trust for the TVEM that is distinct for every virtual environment 
and separate from the platform’s trust. This paper presents the requirements, 
design, and architecture of our approach. 

Keywords: cloud computing, trust, security, virtualization, TPM. 

1   Introduction 

Cloud computing is changing the landscape of corporate computing. As companies 
turn to cloud services to reduce costs compared to their internally managed 
Information Technology (IT) systems, a fundamental shift is occurring in the way IT 
and computing services are delivered and purchased [1]. With this shift towards utility 
computing [2], new trust relationships arise that force the parties to reconsider the 
way we handle and manage information in the cloud. 

Krautheim, et al. [3] define the Private Virtual Infrastructure (PVI) cloud trust 
model describing the unique trust relationships that occur in Infrastructure as a 
Service (IaaS) [4] cloud computing environments. This paper applies the PVI cloud 
trust model to IaaS clouds with our new Trusted Virtual Environment Module 
(TVEM) and Virtual Trust Network (VTN). 
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In IaaS cloud computing, an information owner, or client, rents virtual computing 
resources in the form of a Virtual Machine (VM) on a host platform operated by a 
second party service provider. The information owner wishes to protect private and 
sensitive data that are processed in the virtual environment on the rented VM. The 
virtual environment is the entity that is controlled by the information owner and 
consists of all software components, from the Operating System (OS) to the 
applications, that execute on the VM. To assure the information is protected, the 
client needs to verify the trustworthiness of the host platform and virtual environment. 
The TVEM and VTN provide the mechanisms to verify the host platform and virtual 
environment within an IaaS cloud and report the results back to an information owner. 
No current capability exists to perform these functions. 

A current means for establishing trust in computing platforms is the Trusted 
Platform Module (TPM), a core component of the root of trust for the platform. A 
root of trust is a component of a computing platform that is implicitly trusted to 
provide a specified set of controlled functions to measure and pass control to other 
platform components [5]. TPMs are designed to support a single OS on a single 
platform and typically do not scale well when virtualization is introduced to the 
platform [6]. Support for multiple virtual environments that simultaneously access 
TPM resources is required. A Virtual TPM (VTPM) that replicates the physical 
resources of a TPM in software is one method of virtualizing the TPM functions for 
sharing among multiple virtual environments. 

Krautheim’s Locater Bot (LoBot) [3, 7] uses the VTPM to root trust for a virtual 
environment in a PVI; however, the VTPM implementation has several issues that 
make it problematic to use as a root of trust for cloud virtual environments. Three 
major shortcomings of the VTPM are: the VTPM’s trust is rooted to the physical 
platform on which it is operating, which is typically not owned by the information 
owner; a VTPM must follow the TPM specification [8], which includes extraneous 
functionality that is not useful for virtual environments; and a VTPM has non-
persistent storage, meaning that it loses all keys, settings, and non-volatile storage 
upon termination. The TVEM solves these problems through application of the PVI 
cloud trust model, providing a modular and extensible architecture that allows 
algorithm and function flexibility, and providing persistent storage for keys, non-
volatile memory and settings. 

The core challenge in cloud computing that TVEM solves is establishing trust that 
is distinct for the virtual environment and separate from the hosting platform. Virtual 
environment trust is defined as trust in the virtual environment that is a combination 
of trust in the service provider’s platform and trust from the information owner’s 
domain. Virtual environment trust is necessary to convey ownership and protect 
information in the cloud. To implement this virtual environment trust, a Trusted 
Environment Key (TEK) is defined and used as the Endorsement Key (EK) for the 
TVEM. The TEK, like the EK, is a unique value used as the Root of Trust for 
Reporting (RTR) to identify the TVEM and attest the virtual environment. The TEK is 
generated by the virtual environment owner and secured with the service provider’s 
platform storage key creating a compound trust distinct and separate from the 
platform. 

The TVEM is a software appliance that is implemented as a helper, or stub, VM. 
The TVEM is protected by hardware enforced memory and process isolation via 
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Intel’s Virtualization Technology for Directed I/O (VT-d) [9] and Trusted eXecution 
Technology (TXT) [10]. The TVEM provides attestation support and trusted storage 
for the virtual environment similar to functionality provided by VTPM; however, the 
TVEM does not have to conform to the TPM specification enabling the TVEM to be 
extensible through functional and cryptographic algorithm flexibility in a configurable 
modular architecture. The TVEM has multiple interfaces, including an Application 
Program Interface (API), which moves the Trusted Software Stack (TSS) into  
the TVEM eliminating the burden on the virtual environment to implement the TSS. 
The API provides for hardened and lightweight environments and reduces the 
opportunities of implementation errors. These capabilities allow system designers to 
customize the TVEM and virtual environment to meet their information 
confidentiality and integrity requirements. 

TVEMs are not stand alone devices; they are part of a system to implement trust in 
cloud computing. The system includes: the TVEM; a TVEM manager in the host 
hypervisor for host platform TPM access and TVEM provisioning; a VTN control 
plane that provides system management and support for persistent storage; and a 
TVEM Factory (TF) to manufacture TVEMs, manage keys, and provision TVEMs 
securely on host platforms. 

2   Motivation 

Utility cloud computing can provide many benefits to companies wishing to reduce 
their IT expenses and overhead. Security of information in the cloud and the 
trustworthiness of the cloud environment is a major concern with IaaS clouds. We 
describe an example IaaS cloud computing application: a cloud web server. This 
application benefits from using the TVEM and VTN to manage trust. 

A virtual web server in the cloud has many benefits over maintaining a web server 
locally, a significant advantage being increased availability. The cloud’s always-on 
presence and location flexibility enhance the availability of a web server by providing 
scalability, migratability, and redundancy. If a server is overwhelmed with requests, it 
can be migrated to a platform that has increased capacity, or new instances of the 
server can be instantiated to handle the increased load. Migration and failure restart 
can be used if host hardware fails or Internet service becomes unavailable. 

A server certificate is a critical piece of data on the web server that authenticates 
its owner. If a company wants to prove that it is the owner of web server, it would 
obtain an Extended Validation (EV) certificate and a Secure Socket Layer (SSL) 
certificate from a certificate authority. The EV and SSL certificates have a public and 
private key portion that a guest may use to verify the server owner and establish an 
encrypted SSL session with a server. In a cloud environment, the identity of the web 
server owner and the service provider needs to be differentiated, which is 
accomplished via the certificates. The certificates should be accessible only by the 
web server owner and must be protected from the service provider and other users of 
the cloud service. If the private portions of the keys are disclosed, anyone who gains 
access to the private keys can purport to be a valid web server for the information 
owner. If the private key is stored on a public cloud service, anyone with access to the 
system could possibly access the key; therefore, the owner of the certificate needs to 
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keep the private key protected from compromise by the service provider, other cloud 
users, and attackers on the Internet. TVEM protects SSL certificates on a cloud web 
server by encrypting the certificate such that is accessible only by the TVEM and 
decrypted inside the host platform’s TPM ensuring the plaintext key cannot be 
observed. 

 

Fig. 1. Trust relationships in a cloud computing environment consist of inferred trust (social 
trust) and inherited trust (technical trust). The TVEM’s virtual trust is a combination of the 
information owner’s trust and host platform trust. 

3   Trust in the Cloud 

Trust in cloud computing is more complex than in a traditional IT scenario where the 
information owner owns his own computers. Fig. 1 shows the trust relationships in an 
IasS cloud as defined by the PVI cloud trust model. The trust chain combines trust 
from the information owner’s domain (or PVI) and trust from the service provider’s 
platform into the virtual environment trust. The information owner has an inferred 
trust in the platform from a social trust relationship with the service providers. The 
information owner root of trust is established in the TF and is the core root of trust for 
the entire PVI. The TF needs to inherit trust from the host platform root of trust 
measurements to ensure that the PVI is being implemented on a trustworthy platform. 
The PVI combines the inherited platform trust and information owner trust in a TEK 
and places it in the TVEM. The TVEM trust is provisioned on the host platform such 
that it is bound to the platform root of trust, creating the dual rooted virtual 
environment trust. If either root of trust is revoked, the virtual environment trust is 
invalidated. 
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3.1   Social Trust 

Social trust is a trust that arises between two entities based upon social relationships. 
Social trust is established based upon reputations, previous interactions, and 
contractual obligations. There are two critical social trust relationships that must be 
established in cloud computing from the perspective of the information owner: service 
provider trust and cloud user trust. Social trust cannot be measured, but is important 
to build confidence that an entity is holding up its end of a contract. 

Service provider trust lies in the relationship between customer and vendor. If the 
provider has a good reputation, then there is sufficient reason for customers to trust 
the provider. A vendor that has questionable service or ethics would not be as 
trustworthy as a vendor with excellent service and ethics. 

Cloud user trust is the amount of trust the user places in the services delivered via 
the cloud. The user has to be confident that the system is going to protect their data, 
transactions, and privacy. The user’s trust is a social trust in the information owner. 
The information owner must assure that the services being provided meet the user’s 
expectations. 

3.2   Technical Trust 

In a cloud computing environment, multiple entities must trust the cloud services: the 
user of the cloud service or information owner, the provider of the cloud service, and 
third parties. PVI defined a new paradigm of cloud computing that separates the 
security responsibility between the service provider and information owner and 
accounted for third parties. A third party is an outside entity that is providing service 
to or receiving services from either the user or service provider. 

The cloud trust model is based on transitive trust, which is the notion that if entity 
A trusts entity B and entity B trusts entity C, then entity A trusts entity C. This 
property allows a chain of trust to be built from a single root of trust. 

Information owner trust is the foundation of trust that the information owner places 
in the PVI. Information owner trust is implemented by the TF. Since the information 
owner has physical control of the TF, the configuration of the TF is a known quantity 
and can be used as the root of trust for the PVI. As long as the information owner 
maintains trust in the TF, trust can be established in the PVI and used to build trust 
chains with cloud host platforms. 

Host platform trust lies in the hardware trust of the platform and is measurable. 
Trustworthiness starts with Core Root of Trust for Measurement (CRTM) of the 
platform. The CRTM is the core set of instructions run at boot or reset that are 
responsible for establishing trust in the system by measuring the BIOS, and then 
passing control to the measured BIOS and rest of the Trusted Computing Base (TCB) 
of the platform. The TCB consists of all measured components that provide the 
foundation of trust in the platform. Platform trustworthiness is determined by an 
outside entity via attestation from the TPM, which is the Root of Trust for Reporting 
(RTR) on the hosting platform. The TPM also serves as the Root of Trust of Storage 
(RTS) of the platform that is implicitly trusted to store information securely. The 
attestation from the TPM provides evidence of the state of the platform, from which 
other entities can decide whether to trust the platform. 
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Cloud virtual environment trust is the amount of trust placed in the virtual 
environments created in the cloud. Virtual environment trust is measureable, but there 
are complications in a cloud environment where the information owner’s 
requirements are different than the platform owner’s. 

4   Related Work 

There are many issues that must be solved to virtualize a TPM. The limited resources 
of the TPM must be either shared or replicated for each virtualized TPM. Specifically, 
resources that cannot be shared on the TPM are the EK, Platform Configuration 
Registers (PCRs), and non-volatile storage. These resources must be replicated by 
every VTPM implementation. 

A common approach to virtualizing the TPM has been to emulate the TPM in 
software and provide an instance for each virtual environment. The VTPM can be 
bound to a physical TPM for additional security. Berger, et al., [11] took this 
approach for their vTPM implementation along with an additional approach of using 
an IBM 4758 Cryptographic Coprocessor to implement the vTPMs. Scarlata [6] 
followed with a framework for TPM virtualization, which described a VTPM 
framework for emulating TPMs in software. 

England [12] took a different approach to TPM virtualization with paravirtualized 
TPM sharing. Paravirtualization is a technique used by the Xen hypervisor [13] to 
present a software interface to the VM that is similar to the underlying hardware and 
requires the OS to be modified. This method uses the hypervisor to mediate access to 
a single hardware TPM. The hypervisor shadows the PCRs for each virtual 
environment thus overcoming the PCR limitation. This design reduces the ability for 
migration since the virtualization is done in the hypervisor and uses physical TPM 
resources that are not transferrable to other platforms. 

Another unique approach is property-based TPM virtualization by Sadeghi [14]. 
This technique uses a different methodology to measure the platform’s state and 
generate keys. Properties are measured for reporting the state of the platform, which 
are less susceptible to changes in software configuration updates and patches, and 
makes migration easier. 

The Berlios TPM emulator [15] is a form of TPM virtualization, providing a 
software emulation of a hardware TPM. The TPM emulator can provide TPM 
services to virtual environments, but does not have any binding to the hardware, 
limiting its ability for operational use. Consequently, the Berlios TPM emulator is 
useful for development purposes only. 

5   Design Considerations 

We explain our design considerations for the TVEM in this section. We considered 
multiple approaches to implementing a trust module for virtual environments and 
realized the best way to ensure that each virtual environment has a trust module is for 
the module to be implemented in software. 

By implementing the TVEM in software, we do not have cost, physical, or 
resource restrictions. The TVEM design is bound by memory and computation 
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restrictions, which are much less restrictive than physical restrictions. On a typical 
host platform, we can provide multiple fully functional, uncompromised TVEMs for 
many virtual machines at the same time. 

There are several advantages to implementing a trust module in software versus 
hardware. A software platform can be changed to accommodate vulnerabilities that 
are discovered after release (e.g., SHA1 collision attacks [16]). A software module 
can also support different algorithms for different applications and locations, which is 
important in cloud environments. Export controls on cryptographic algorithms may 
dictate that a certain algorithm may not be used in certain countries. With the 
worldwide presence of the cloud, algorithm flexibility is essential. A cloud 
environment in a restricted country will need an algorithm allowed to be exported, 
while a stronger algorithm may be used on a system in another country where more 
security is permitted. An advantage to a modular software design of the TVEM is 
flexibility to use algorithms that are compatible with the current TPM specification or 
use new algorithms for future applications and enhanced security. This flexibility 
allows the TVEM to be used in applications where features of TPM.Next are required, 
but the hardware does not support TPM.Next. 

5.1   Threat Model 

The TVEM must protect data and operations from attack. Since the TVEM will be 
implemented in software, there are multiple attack vectors. Potentially any code 
running on the host platform could attack the TVEM. We assume VT-d and TXT 
hardware isolation are in place, which protects the module from attack by entities 
with access to the platform. The entities that have access to the platform include the 
following: the service provider, who has root access to the platform; other cloud users 
on the same system or within the same cloud environment; and outside attackers that 
access the system via the Internet. 

A malicious program may gain access to private data, including keys, inside of the 
TVEM. The malicious program can then modify and substitute data, to include 
replacing keys, modifying hashes, and state information. The code of the TVEM 
could be modified by replacing strong cryptographic algorithms with weaker ones. An 
attacker could also reduce the entropy of the random number generator (RNG) thus 
reducing the effectiveness of the keys. The state could also be modified to a known or 
predetermined state to weaken cryptographic results. 

The TVEM’s main defense against attacks is robust isolation and state verification. 
Features of the trusted platform can be used to protect against many attacks including: 
software modification, malicious code, key exposure and modification, and VM 
isolation and containment attacks, without detection. 

The TVEM cannot defend against hardware attacks since it is a software module. 
A sophisticated attacker with control over hardware would be able to circumvent the 
TVEMs security, gain access to protected information in the TVEM, and modify state 
and/or instructions inside the TVEM to alter outcomes of the TVEM’s operations. 

5.2   Deployment Model 

The deployment model for the TVEM is to build and maintain TVEMs on the TF in a 
secure location that is under the information owner’s full physical control. The TF 
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should be isolated and physically separated from the service provider’s facility to 
ensure that it cannot be compromised. 

Fully self contained TVEMs images are configured and built in the TF. The 
TVEM image is provisioned on the service provider’s platform through the secure 
provisioning protocol described in [3] that ensures the TVEM is loaded on the correct 
host without modification and launched securely. The protocol ensures that the code 
launched was exactly the code configured by the TF so that the TVEM will operate as 
intended by its owner. 

The service provider needs to accommodate the deployment of TVEMs by 
providing a TVEM Manager that is accessible by the customer for interfacing with the 
host TPM. The TPM access can be provided by delegating the customer certain 
privileged operations to configure the TVEM and interface with the TPM. 

6   TVEM System Architecture 

The TVEM is a software trust module for providing trust services to a VM or virtual 
environment in an IaaS cloud computing environment. The TVEM is the protection 
module and root of trust for a virtual environment that is in a remote location and the 
virtual environment has the ability to migrate to other platforms; therefore, it is not 
possible to implement a TVEM in hardware. Thus, a software implementation is the 
only solution for the TVEM. 

Because the TVEM is a cryptographic module and data confidentiality is of utmost 
importance; we chose for the TVEM to be a self-contained virtual appliance that is 
implemented in a helper VM or stub domain. 

Fig. 2 shows the configuration of a Host Platform (HP) with multiple virtual 
environments that require a TVEM. The virtual environment may be an entire 
virtualized OS that supports many applications or a special purpose virtual 
environment that performs a single application. The TVEM lies between the 
hypervisor and its associated VM. The hypervisor must be aware of TVEMs and 
provide support via a TVEM manager. The TVEM manager provides mediation for 
TPM services from each TVEM and other processes that require TPM services. The 
host platform must provide the TVEM manager and allow access for TVEMs. 

The host platform’s TPM is used as the RTS to secure the TVEM’s private 
information on the HP. A transitive trust chain is built from the TPM through the 
hypervisor and TVEM manager to the TVEM ensuring trust in the TVEM is rooted in 
the hardware trust of the platform. 

To ensure that data within the TVEM remains private, several security 
mechanisms need to be in place on the host platform. An isolating hypervisor such as 
sHype [17] can be used along with Intel VT-d and TXT to provide additional 
protection through hardware isolation. 

6.1   TVEM Manager 

The TVEM manager is the hub for the VTN on the host platform. The TVEM 
manager is responsible for routing VTN communications between the TF and VTEMs 
and for arbitrating all access between TVEMs on the platform and the host TPM. The 
TF communicates with host platforms through the TVEM Managers. 
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Fig. 2. The host platform has a single TPM, hypervisor, and TVEM manager supporting 
multiple virtual environments each in its own tightly coupled TVEM 

 
Each host must have a TVEM manager that provides an interface to the host TPM. 

The TVEM manager must be placed in the hypervisor on the host platform so that it 
may have access to the host TPM and provide provisioning functions required to 
support TVEMs. Host TPM access is required for reading the platform PCRs and 
SRK so that TVEMs may be bound to the host TPM. 

Importantly, the TVEM manager is part of the host platform, it is owned by the 
service provider and is not part of the information owner’s domain (see Fig. 2); 
therefore, the TVEM manager must be a trusted component and part of the measured 
configuration on the host platform. 

A TVEM manager on a host platform may support multiple VTNs from the same 
information owner or VTNs from other information owners simultaneously. The 
TVEM manager must be able to isolate communication from multiple VTNs and 
allow access only to TVEMs associated with the proper VTN. 
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6.2   Trusted Environment Key 

The Trusted Environment Key (TEK) is critical in providing security and trust for the 
TVEM. It prevents cloning of the TVEM and protects the contents of the TVEM from 
the platform owner and other processes on the platform. The TEK is a unique key 
generated for a TVEM. The TEK is the TVEM’s endorsement key and serves the 
same purpose as a TPM’s EK. The TEK is generated from the VTN root certificate in 
the TVEM Factory (TF). 

The TF generates a VTN certificate, which is the parent for the all TVEM TEKs in 
a VTN. The VTN certificate is defined as: 

 

The TF’s TPM generates a unique VTN certificate for each VTN protecting it with 
the TPM’s SRK. The VTN key is a Migratable Storage Key (MSK) that can be 
transferred to other TPMs. The TEK is then generated as a child of the VTN key and 
is thus a MSK as well. Both keys are transferred to the Host Platform’s (HP) through 
the key migration process. The TEK is defined as: 

 

The TF migrates the TEK and VTN key to the HP binding the TEK and VTN to the 
HP’s SRK. The TEK is stored in the TVEM, which is a protected partition on the HP, 
thus it can be unencrypted only by the TVEM using the HP’s TPM. The TEK will be 
protected in the TVEM and exposed on the HP only when requested by the TVEM for 
necessary operations. 

The TEK is effectively “dual rooted” in both the host platform SRK and VTN root. 
This means that the TVEM cannot be cloned by copying its contents to another 
machine because the TEK is locked by the host’s TPM. The TF maintains the VTN 
key and TEK root certificates and can revoke the VTN key or TEK at any time 
effectively removing privileges from TVEMs on rogue hosts. 

TVEM migration is achieved by performing a TEK key migration from the current 
host platform to the new target platform. The TVEM migration is not direct to the 
target platform; it must go through the TF and verify that the target environment has 
the same level or greater trustworthiness than does the current host. Once the 
trustworthiness is determined, the TEK can be migrated to the new host by 
rewrapping the TEK with the new host’s SRK. The TVEM and associated virtual 
machine can then be migrated to the new host without losing any information sealed 
by the TVEM. 

6.3   Key Hierarchy and Management 

The highest level key in a VTN is the master VTN key. All TEKs in the VTN are 
rooted and secured with the master VTN key. A master VTN key and certificate is 
generated for each VTN that the factory is responsible for managing. The VTN key is 
protected and stored with the TF platform’s physical TPM SRK. The VTN root 
certificate along with the host platform SRK are used to generate all TEKs in the 
VTN. 
 



 Introducing the Trusted Virtual Environment Module 221 

The TF becomes the root authority for all VTNs under it auspices. TVEMs can be 
verified by checking their TEK certificates with the TF VTN authority. Since the TF 
is the root authority, it must maintain a key list of valid and revoked keys for each 
VTN. Once the VTN is deactivated, the VTN key is destroyed and all keys for that 
VTN must be revoked. A record of the revoked TEK should be kept to ensure that it 
will never be used again. 

7   TVEM Design 

The TVEM design is a set of functions grouped into five categories: legacy TPM 
functions, TVEM specific functions, storage functions, virtual environment interface, 
and user interface. Fig. 3 shows a block diagram of the high-level TVEM functions. 

7.1   Legacy TPM Functions 

The TVEM implements the following TPM functions per the TPM specification [8]: 
PCRs (as shadow registers), AIK, SRK, public key engine, secure hash, monotonic 
counter, and RNG. 

The PCRs from the TPM are shadowed so that the virtual environment has the 
ability to read the configuration of the host platform. The virtual environment cannot 
modify the PCRs because it does not own the TPM. This is an important distinction 
for cloud computing environments. PCRs are written and modified by the hypervisor 
and host OS when virtual environments are launched. The configuration of the virtual 
environment is maintained separately in the Virtual Environment Configuration 
Registers (VECRs). 

The RNG is an important construct for the virtual environment. Since virtual 
environments have limited ability to generate entropy, an external source for entropy 
is required. However, the TVEM itself is a virtual environment; therefore, it must also 
use an external source for entropy. The RNG for the TVEM needs to use the RNG on 
the host platform TPM to obtain the entropy required to generate encryption keys and 
nonces. The TPM’s hardware based RNG generates sufficient entropy which the 
TVEM can use for the virtual environment. The latest Linux kernels (2.6.29 and 
above) support the TPM RNG, which can interface to a TVEM RNG in a VM. 

The TPM hash function is implemented in the TVEM as a software module. Since 
the SHA-1 hash functions will be phased out in 2010 [18], another hash algorithm 
such as SHA-256 can be easily substituted. 

The Attestation Identity Key (AIK) and proof is used to provide evidence that an 
entity is a valid TPM. The AIK is generated in conjunction with a trusted third party 
privacy authority in a manner that verifying the AIK established that the TPM is valid 
without revealing which specific TPM is validated. The AIK process can easily be 
converted to provide proof of a valid TVEM by simply adding the VTN factory’s root 
certificate to the privacy authority’s list. 

There are also several TPM functions which may not be required at all.  
These include physical presence, physical maintenance commands (e.g., field upgrade 
and set redirection) and other functions that are not needed for a software 
implementation. 
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Fig. 3. The TVEM functional block diagram shows legacy TPM functions supported, the new 
TVEM functions, non-volatile storage, and host and platform interfaces 

7.2   New TVEM Functions 

Several new TVEM functions have been created to enhance the capability of the 
TVEM for virtual environments. These new functions include VECRs, the TEK, the 
State Certification Register (SCR), and a symmetric encryption engine. 

VECRs are equivalent to PCRs, and store configuration information of the virtual 
environment. There are 28 256 bit VECRs to support SHA-1; however, the VECRs 
can be configured up to 512 bits to support SHA-256. The VECRs are used for the 
virtual environment exactly as the PCR’s for the physical platform. When a virtual 
environment is configured, the VECRs store configuration information about the 
virtual environment. The PCRs from the TPM are used; however, they are shadowed 
and only used for the purpose of determining the configuration of the host platform. 
The two sets of registers provide the ability to obtain configuration information about 
the platform and maintain a fine-grain detail about the configuration of the virtual 
environment. This enhanced view of both environments gives the virtual environment 
owner the ability to understand the security posture of the cloud. 

The TEK is the endorsement key for the TVEM. The TEK functions exactly as the 
EK on a TPM, providing the master key for all TVEM functions and rooting all other  
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keys. The TEK’s dual trust root is essential to establishing trust in a virtual 
environment on a machine that is not owned by the information owner. Since the key 
is rooted both in the VTN and host platform, the key can be revoked by a change in 
configuration on either side thus invalidating the trust in the virtual environment. 

A new register called the state certification register is used to verify that the state 
of the TVEM has not been modified. This feature will be described in a future paper 
that provides details on state medication and rollback prevention. 

Another new feature of the TVEM compared to the VTPM is the addition of a 
symmetric data encryption engine. Cost is not a limiting factor and symmetric engines 
are very efficient in software; therefore, we can add an encryption engine and offload 
encryption tasks for small virtual environments. Providing an encryption engine 
allows smaller, hardened environments instead of bloated OSes. Additionally, export 
controls are not a major concern with a TVEM. If a TVEM is to be exported outside 
of its originating country, the encryption engine can be easily removed or swapped 
with an engine without export controls. Finally, the encryption engine can provide 
enhanced security by ensuring that correct and verified implementations are used. 

7.3   Non-volatile Storage 

To support operation of the TVEM across multiple sessions and migration, the 
information placed in the non-volatile storage of the TVEM must be persistent. To 
make the non-volatile memory persistent, the contents of the memory are backed up 
to the TF where they are stored until the TF is terminated. Each TVEM’s non-volatile 
memory image must be maintained until the TVEM is terminated. 

To maintain the image of each TVEM’s non-volatile memory, every time the non-
volatile memory in the TVEM is updated the TF updates its backup image. The 
update is done by sending a message with the contents to the TF over the host 
platform secure storage interface. When the TF receives the message, it updates its 
backup image for the specified TVM instance accordingly. 

An additional benefit of keeping the backup image of the non-volatile memory is 
the ability to verify the local TVEM image. The TVEM may send the full contents of 
the TF at any point to request a verification of the content. The TF can compare the 
sent image with its backup image and verify that both are identical. If the content of 
the TVEM’s memory were tampered, the comparison would be different. 

7.4   Virtual Environment Interfaces 

One of the biggest differences between a VTPM and a TVEM is the virtual 
environment interfaces. TVEM virtual environment interfaces on the VM side of the 
TVEM are designed to accommodate the many types of virtual environments that 
may need TVEM services. Not all environments will have a full TSS or cryptographic 
API; therefore, an API on the TVEM provides the cryptographic services for the 
virtual environment. 

The TVEM has three unique interfaces to the virtual environment as shown in  
Fig. 3: a Xen back-end driver, a TVEM API, and a standard TPM interface for 
compatibility with TPM 1.2. Each virtual environment that requires a TVEM service 
has the option to choose the interface it will use. A virtual environment may use 
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multiple interfaces if desired. For example, the OS may use the Xen driver in the 
kernel and an application may use the TVEM API. 

7.5   TPM Interface 

The TPM interface will work with any program written to support a TPM 1.2. This 
interface provides backward compatibility for the TVEM where applications are 
expecting a TPM or VTPM. The TVEM can appear to be a valid TPM and operate as 
a TPM replacement. 

Note that when accessing a TVEM as a TPM, the VECRs are accessed instead of 
the PCRs. The VECRs represent the state of the virtual environment, which is the 
context that the guest is operating. 

TVEM API. The TVEM API provides applications a direct interface to the TVEM 
through a set of function calls. This interface allows OSes and applications without a 
full TSS or cryptographic library the ability to use the TVEM easily. 

The API provides access to extended TVEM functions including the symmetric 
encryption engine and PCR shadow registers. The interface can also be extended to 
connect with additional cryptographic hardware such as smartcards and biometrics as 
well. 

Xen Backend Driver. The Xen back-end driver will interface directly to a Xen kernel 
front-end driver [19]. This capability enables any virtual environment running on a 
Xen hypervisor the ability to interface to TVEM with the simple addition of the front-
end driver to the virtual environment. The Xen interface is an extension of the API 
and provides a seamless interface for the virtual environment. 

7.6   Host Platform Interfaces 

The host platform interfaces are to the host platform side of the TVEM. The TVEM 
interfaces to the host platform differently than a VTPM. The TVEM uses the TPM 
and host platform as a service to provide functions required for secure operation. The 
TVEM uses the host interfaces for host TPM services, communicating with the VTN, 
and for storing non-volatile information. 

Host TPM Interface. The TVEM communicates with the host TPM via the TVEM 
manager. The TVEM manager is responsible for arbitrating access to the TPM. All 
requests that require host TPM access use this interface including the reading of the 
TPM’s PCRs, storing and retrieving keys to the TPM, and accessing the RNG. 

VTN Interface. The VTN interface is used to manage keys and communicate with 
the TF over the encrypted VTN. 

Secure Storage Interface. The secure storage interface is a VTN interface used by 
the TVEM to store non-volatile memory securely. The secure storage interface uses 
the VTN to send all non-volatile writes to the TF for backup storage. On provisioning 
of a TVEM, the secure storage interface is used to populate the non-volatile storage 
areas on the TVEM from the backup image. The secure storage interface is also used 
to verify the contents of the non-volatile memory with the backup on the TF. 
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8   Discussion 

The TVEM provides many advantages over a VTPM in a cloud computing 
environment. The management of TVEM from the TVEM factory provides the ability 
to control and monitor TVEMs in a VTN and provides enhanced situational 
awareness to the information owner. The TVEM also provides system designers and 
information owners support for everything from simple single purpose applications to 
full OSes. The virtual environment specific functions enable ease of use, and the 
modular design enables flexibility for deployment. TVEMs provide strong 
cryptographic support for securing a virtual environment on a cloud host platform. 
The unique dual rooted key structure provides flexibility to maintain trust in the 
virtual environment and allows information owners to control the confidentiality of 
their data on the host platforms. 

TVEM configurability is another advantage over VTPMs. By allowing information 
owners to customize their protection requirements, they have flexibility to use cloud 
computing services that were previously unavailable. 

TVEM improves security in our example web server application by ensuring that 
the environment is executing on a trustworthy platform and is correctly configured. 
As the RTS, the TVEM protects the server SSL and EV certificates by encrypting the 
keys with a unique SRK and storing them in persistent non-volatile memory. For 
stronger protection, the TVEM can bind the keys to the configuration of the host 
platform and/or virtual environment. TVEM also provides a high entropy source for 
random number generation for SSL sessions. 

It is important to remember that TVEMs are not designed to defend against 
hardware based attack. TVEMs are software devices and any attacker with access to 
certain ports (e.g., PCI, IEEE 1394 FireWire), hardware monitoring devices, 
emulation and debug equipment, or memory inspection equipment can circumvent the 
TVEM’s security. Since hardware attacks cannot be detected or defended against, 
physical security of cloud datacenters is of utmost importance. 

Another type of attack that TVEM cannot defend against is a dishonest host or 
service provider. The information owner is at the mercy of the service provider to 
provide the services agreed upon in a service agreement. If the host platform lies and 
falsely reports its attestation values to the TF, the TF has no basis for challenging the 
integrity of the platform. To prevent the dishonest host, social trust must be used as it 
is likely that once it is detected that the host is falsely reporting, word of the 
dishonesty will be spread through the community and the service provider’s 
reputation will diminish. 

9   Conclusion 

TVEM is a new and unique concept for rooting trust in the cloud. The TVEM solves 
the problem of rooting trust in IaaS cloud computing where a service provider owns 
the platform on which an information owner’s virtual environment is operating. 
TVEM enhances security by allowing for trust in the virtual environment that is 
distinct and separate from the hosting platform. The TVEM protects information and 
conveys ownership in the cloud through the TEK generation process, which creates a 
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dual rooted trust for the virtual environment. This dual rooted trust is necessary to 
accommodate the unique relationships that occur in cloud computing. 

The TVEM gives information owners control of their sensitive and private data in 
the cloud by providing assurance that their environments are correctly configured and 
data are kept confidential. The TVEM provides management control of trust through 
the centralized TVEM factory control facility, key hierarchy, and modular 
configurable architecture. 

This paper introduces the high level system architecture and design concepts of a 
necessarily somewhat complex TVEM system. The definitions of the TVEM, TVN, 
and TEK provided here are strong building blocks to continue developing the details 
of the sub-modules and components. To ensure the TVEM meets the needs of the 
cloud computing users, the TVEM system should go through a formal specification 
development cycle with representatives from many stakeholders, including providers, 
customers, trusted computing experts, and cloud computing researchers. With proper 
vetting and industry support, the TVEM can be a valuable security component for 
IaaS cloud computing, enabling a higher adoption rate and a more secure cloud. 

The TVEM provides information owners the ability to control their information in 
the cloud and to realize the savings and benefits that come from the economies of 
scale that the cloud provides. When combined with other cloud computing security 
technologies such as Private Virtual Infrastructure and Locator Bots, TVEMs enable a 
powerful solution to protecting information in cloud computing. 
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Abstract. The TPM is a fairly passive entity. As a result, it can be dif-
ficult to involve the TPM in measurements of software trustworthiness
beyond simple load-time hashing of static program code. We suggest an
approach to dynamic, runtime measurement of software trustworthiness
properties as they relate to code-data owernship relationships. We out-
line a system, SegSlice, that actively involves the TPM in fine-grained
labeling and measurement of code slices and the data that these slices
operate on. SegSlice requires no changes to x86 hardware, and it relies on
the relatively underused x86 segmentation mechanism to mediate access
to data events.

1 Introduction

Measuring and enforcing the trustworthiness of a piece of running software is a
non-trivial problem to which few satisfactory solutions exist. Being assured that
software is behaving as expected (one plausible definition of “trustworthy”) faces
the central technical problem of defining what behavioral features to measure
(and how often to measure them, not to mention the problem of communicat-
ing such results to the user in an understandable fashion). Although the TPM
provides a tempting, tamper-resistant, high-assurance resource for verifying pe-
riodic measurements of system state, to date it has largely been used to verify
hashes of static program code at load time.

Assuring that the dynamic properties of a running process are within a par-
ticular behavioral envelope presents a much more daunting challenge, and it is
unclear how the TPM might be pressed into service to such an end. In this pa-
per, we suggest an architecture for doing so that does not require changes to the
TPM or changes to the underlying machine architecture (in this case, x86). We
are able to take advantage of the x86 segmentation mechanism, the flexibility of
the ELF binary format specification, and small modifications to the Linux kernel
to provide a general framework for efficiently measuring and enforcing code-data
ownership properties in a running program.

Periodic measurements of program state that are open to TOCTOU attacks;
as a result, one closely related piece of prior work suggests an architecture for
supplying selective memory immutability [1] as a new secure programming prim-
itive for a TCG platform. We propose a new family of runtime primitives that
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are intended to build on the same programmer intuitions, and of which selective
memory immutability [1] design is strictly a specific case.

1.1 Background and Previous Work

Bratus et al. [1] point out one inherent weakness in the TCG approach to soft-
ware trustworthiness: namely, its lack of OS and hardware support for using the
TPM – itself a passive security primitive, for programmers to avail themselves
of – to enforce dynamic security policies that require preservation of attestable
properties (say, integrity of a particular memory region containing a set of crit-
ical data structures) throughout a program’s runtime. The paper showed that
this weakness presents multiple opportunities for TOCTOU attacks.

In order to address this weakness the authors proposed a broad approach to
creating TCG architecture-based runtime policies, which was to complement the
TPM’s software measurement support (that is, for cryptographic checksumming
of certain memory regions where the software was loaded) with a memory trap-
ping functionality that would cause a trap at memory events that threatened the
integrity of the measured software. The trap handler would take advantage of the
(passive) TPM to re-measure software and thus eliminate a potential TOCTOU
attack.

Thus a TCG platform with the proposed trapping architecture would go be-
yond assuming that trustworthiness of software equals its measurement on load-
ing, and become capable of enforcing dynamic properties of software, such as
selective imutability of memory regions, by making sure that all relevant mem-
ory events – in particular, those dealing with page table management and virtual
address mapping – are mediated by appropriate, TPM-aware handler logic.

The authors based their prototype implementation on the memory trapping
(in particular, page table management mediation) functionality of the Xen, but
noted that similar results could be achieved with other general or dedicated
hypervisers, or, better yet, with specialized MMU support.

These ideas were developed further in subsequent position papers [2,3], outlin-
ing the prospects and promise of how an MMU enhanced with logic for trapping
flexibility can bring within reach broad new classes of security policies that can-
not be efficiently enforced on modern hardware, but that would allow software
developers to express policy-critical properties of the software just like they ex-
press correctness-critical properties while debugging with the modern tools such
as DTrace, Pin, SystemTap, etc., at modest hardware and OS support costs.

We believe that the future of trustworthy computing will belong to platforms
that support Boolean logic-enhanced, object-granular, and developer-friendly
expression of trappable conditions. It may, however, be years until hardware
vendors develop and deploy such hardware support. In the meanwhile, we set
out to distill the best trustworthiness-related programming practices – especially
from such trust- and security-conscious communities as BSD kernel programmers
– to the point at which they could be implemented on a modern x86 MMU, albeit
with some loss of efficiency.
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We propose to extract, allow the developers to specify, and then
to enforce at runtime the “ownership” relationships between units of
data and code (a.k.a. “slices”). We point out that these relationships are
already present in the ELF binary format, between its standard code and data
sections, and that their violations are tell-tale signs of attacks. We also describe
a mechanism for developers to specify their own code and data units such that
their relationships will be enforced throughout runtime, and their violations
would be trapped and processed by the TPM-aware handler in a similar manner
to [1].

Code–data relationships extend selective immutability. In fact, selective
immutability in the sense of [1] can be considered an almost-trivial subcase of a
code–data relationship. Namely, selective immutability merely says that no code
is allowed to write the data other than in select circumstances, thus being, in
essence, a simple write-ownership policy with an empty set of owners for the
selectively immutable data segment.

We explain the rationale for our proposal in the next section, and then describe
the prototype implementation in Section 3.

2 Code–Data Relationships and Trustworthiness

Privileges. Trustworthiness of software (and, more generally, the trust we put
in software) is ultimately described is terms of its behavior being aligned with
our expectations. We point to the arguments in [2,3] noting that debugging
and testing can be seen as trust-related activities – because they are essentially
procedures to establish a connection between the expected and the actual behaviors
of a program.

Of course, without a definition of what behaviors are relevant to security ex-
pectations, such considerations remain theoretical. Classic works define such be-
haviors as operations on certain systems objects, and formulate expectations in
terms of privileges to perform these operations. Security models are then equated
with privilege management schemes (such as “least” or “role-based” privilege).

However, we believe that such view – despite having worked well in the past,
and still working well in environments where security goals can be expressed in
terms of read or write access to files – is quite limiting. For example, this view
perfectly suited MLS goals (“no read-up, no write-down”), but cannot account
for the emerging attacker maxim of “Code running in userspace can always run
as Ring0”1 (implying that the kernel reference monitor itself is in danger if
arbitrary code execution can be achieved within a user process), because in fact
none of the behaviors characterising the phases of exploitation leading
to the code execution achievement can be described in terms of file
access privileges.
1 See, e.g., DailyDave posting http://lists.immunitysec.com/pipermail/

dailydave/2010-January/006000.html , as based on the recent Linux kernel NULL
pointer vulnerability discovered by Tavis Ormandy, e.g.,
http://blog.cr0.org/2009/08/linux-null-pointer-dereference-due-to.html

http://lists.immunitysec.com/pipermail/dailydave/2010-January/006000.html
http://lists.immunitysec.com/pipermail/dailydave/2010-January/006000.html
http://blog.cr0.org/2009/08/linux-null-pointer-dereference-due-to.html
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In particular, these exploitation steps mostly happen outside of the filesystem
namespace, but rather on with the kinds of runtime objects dealt with linkers
and loaders, such as such as segments mapped and allocated in the process’
virtual memory space.

Even though the underlying OS manages them (e.g., when creating the process
from an ELF binary file), it has no system of privileges granular enough to
describe “privileges” of operations on them, such as memory mapping operations.
We attach crucial significance to this observation, and posit that to
improve trustworthiness, we will need to enforce at runtime known
exclusive access relationships between data and code units (“slices”)
of a program.

Code–data relations reflected in standard ELF structure. The modern
usage of the ELF format as used by GNU/Linux and OpenSolaris makes many
fine semantic distinctions between the components of a binary (see, e.g., [4]).

For example, a typical ELF format executable on a modern GNU/Linux sys-
tem contains about 30 memory sections, which correspond to semantically dif-
ferent contents of contiguous areas of memory to be interpreted by the runtime
toolchain (such as GNU binutils, the OS loader, and the dynamic linker). Fun-
damental shared objects such as /lib/libc.so.6 may contain upward of 70 (!)
sections. This semantic diversity, even though not recognized by every runtime
tool (which typically requires only one of its facets as represented by the sections’
properties for its operation), testified to the granularity of information the OS
could be using at runtime.

Notably, the relationships between these semantic units are explicitly ex-
pressed in the ELF section and segment header tables (specifically, their Info
and Link fields). Some of these relationships are “metadata-to-data”, specifying
that a particular section shall be used to interpret and transform another sec-
tion, e.g., by way of relocation (say, .rel.text to .text), whereas others are
strictly code–data ownership, such as the executable .init and .fini to their
respective driving data .ctors and .dtors.

Ultimately, these relationships arise from the programmers’ efforts to con-
trol program complexity such as decomposition of functionality into generic,
toolchain-provided, well-tested standard logic (such as .plt dynamic linking
stubs and .init) constructor stubs, and their program-specific parametrizations
(such as, respectively, .got and .ctors). The very same techniques are used to
increase the programs’ trustworthiness – of which complexity is arguably the
worst enemy, and good complexity management is arguably the best cure.

It is no surprise, therefore, that violations of these code–data relationships
signal exploitation, from the direct destructor pointer replacement2 to heap
boundary tag manipulation.3

2 E.g., http://www.packetstormsecurity.org/papers/unix/
manipulating.dtors.txt,
http://www.securiteam.com/unixfocus/6H00I150LE.html

3 http://www.phrack.com/issues.html?issue=57&id=8 ,
http://www.phrack.com/issues.html?issue=57&id=9

http://www.packetstormsecurity.org/papers/unix/manipulating.dtors.txt
http://www.packetstormsecurity.org/papers/unix/manipulating.dtors.txt
http://www.securiteam.com/unixfocus/6H00I150LE.html
http://www.phrack.com/issues.html?issue=57&id=8
http://www.phrack.com/issues.html?issue=57&id=9
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2.1 Developer Ways of Keeping Systems Tractable

We further note that the (static) expression of code–data ownership relations
has become indispensable to large C projects, in particular, to operating systems
kernels. In particular, the use of file-local symbols (both variables and functions)
has been steadily growing in the Linux kernel as shown in Table 1.

Table 1. File-scoped symbol declarations in the Linux kernel

2.0.1 2.2.0 2.4.0 2.6.0
# 736 1833 3336 6675

total
lines 512,825 1,205,990 2,241,755 3,853,242
% .114 .152 .149 .173

We note that the underlying separation is merely static and can only be de-
tected during the build process, not the runtime. We argue, however, that had
the kernel runtime permitted it, the enforcement of the same access restric-
tions would describe a security property of the code’s behavior, that is, a useful
trustworthiness property, analogous to the “least privilege” at the kernel object
level.

We note that one of the earliest Linux kernel explotation techniques was based
on patching kernels in such ways that subverted or bypassed loadable kernel mod-
ule support, or imitated it in case when it was purposefuly disabled.4 Further-
more, subsequent advanced attacks were based on manipulating virtual memory
translation mechanisms through kernel code units that were never meant to af-
fect it, such as, e.g., [5] – which succeeded specifically against an MLS-hardened
system. A history sketch of these exploits can be found in [6].

3 Implementation

How can we provide the ability to partition applications at a very fine-grained
level, where each “slice” of an application is dynamically defined by the collection
of data it “owns”? Slices can cross thread boundaries: we define them to be the
elements (instructions, control statements) of a program concerned with the
manipulation of a certain exclusive set of data structures and variables. We
would like to perform this partitioning without requiring any hardware changes,
even though the enforcement of such fine-grained access control seems to entail
hardware support that is not currently present in IA-32 or x86 64. Nevertheless,
we turn to x86 segmentation for our prototype implementation.

4 http://vxheavens.com/lib/vsc07.html,
http://www.phrack.com/issues.html?issue=58&id=7 ,
http://www.phrack.com/issues.html?issue=58&id=8

http://vxheavens.com/lib/vsc07.html
http://www.phrack.com/issues.html?issue=58&id=7
http://www.phrack.com/issues.html?issue=58&id=8
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3.1 Isn’t x86 Segmentation Dead?

While preparing this paper, we received the following comment that very suc-
cinctly summarizes the reasons why x86 segments as they exist today are subop-
timal for implementing policy mechanisms [7]:

– segmentation makes all memory references slower: using non-flat segments
cost a least a cycle on AMD CPUs;

– not all x86 64 CPUs have segmentation support;
– reloading a segment takes a trap/syscall and GDT access;
– only 4 segments (DS, ES, FS, GE) can be accessed at the same time
– only 8K different variables can be protected;
– running with CPL = 2 is tricky, as paging assumes superuser privileges in

that case;
– the mechanism should guard against attack code loading a flat segment and

overwriting the kernel with it;
– wrong error codes in the page fault handler.

We readily agree that the x86 segments would need to change if they were to
allow efficient policy enforcement and that their current state does not allow a
clean implementation free of ad-hoc fixes. However, we believe that segments
are still the closest we have to a more expressive MMU trapping of memory
events in x86, and it would probably be good for the security of the platform
if the segmentation mechanism were re-optimized to reduce the performance
hits and the need for special case band-aids. The example of x86 virtualization,
which arguably started out in a worse state, and – having demonstrated its utility
with less-than-perfect prototypes, received great hardware and developer support
– gives us hope that segmentation may also be similarly restored and reinvented.

The paging mechanism might seem to be more appropriate for implementing
memory protections within the MMU. However, we believe that a conceptual
separation of the MMU’s functionality into that supporting security primitives
and that focusing on performance is desirable. We also note that natural gran-
ularity requirements for strong security isolation and multi-level storage per-
formance optimization differ substantially, and therefore the paging mechanism
should not be overloaded with security functions, as a matter of separating secu-
rity and performance concerns. The segmentation mechanism appears to offer a
more natural expression of any protections granularity required by existing code–
data relationships, whereas the size of a page should be determined primarily by
performance considerations.

3.2 Prototype Internals

The purpose of this implementation is to augment the Linux kernel’s ability
to execute 32-bit ELF binaries with a way to automatically wrap individual
variables and data structures in their own x86 segment and restrict access to
them without hardware modification. We seek to provide a way of mimicking
a variable number of “privilege rings” (in IA-32 there are only 4 such rings,
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limited by the two DPL bits in the segment descriptor and two CPL bits in the
CPU). While we could conceptually add a full register for keeping track of these
bits, and thus provide 232 possible privilege rings (rather: non-monotonic levels
of access), we cannot do this to pre-existing commodity hardware (unless we
emulate it in software such as Bochs or QEMU).

Instead, we can modify the OS kernel. The key insight is that if every variable
is in its own segment, and we change the DPL bits in the corresponding segment
descriptors to be at the privilege level 2 (rather than the normal 3 of user-space),
we can trap to the kernel for validation along with a great deal of flexibility
to place variables in separate containers. While we cannot directly create new
privilege ring levels, we use privilege ring level 2 as a layer of indirection to
force a trap and then a subsequent check in the kernel software on whether or
not this instruction should be in fact allowed to access the requested data (in
essence, we are checking whether the instruction belongs to the “slice” owning
that particular data). Thus, we can define per-data instruction slices (a fairly
high number of them, limited only by the maximum number of segments on x86
roughly about 8000).

3.3 Segmentation in x86 Linux

Linux’s use of segmentation on a 32-bit machine is limited. There are four main
segments utilized by the operating system, two for a user and kernel code seg-
ment and two for a user and kernel data segment. These entries are contained
in the Global Descriptor Table (GDT). In order to keep track of what code

Fig. 1. The x86 segment selectors and tables
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and data segments are currently being used by the operating system there is a
code and data segment register. These registers contain segment selectors that
point to entries inside either the GDT or the Local Descriptor Table (LDT). We
summarize this system in Figure 1.

The LDT is a separate descriptor table that is mostly used to hold segments
used locally by a particular process. These can be custom segments created by
the programming through the system call modify ldt. The modify ldt system call
provided with a user desc struct, which is comprised of information about the
segment descriptor, creates a new entry in the LDT.

3.4 The Anatomy of the Mechanism

The goal of SegSlice is to protect important variables by having them reside at
a privilege level of two instead of the conventional level of three (user land). A
check is made by way of a custom system call (for experimental purposes) for the
validity of instructions modifying protected variables. This system call will also
be responsible for returning the user land process to the default level of three.
We recognize that having a custom system call is not the optimal way to handle
this, but is most likely the cleanest to experiment with. Other options could be
using a hardware exception, taking advantage of certain policies of segmentation
and getting the trap for “free”, or possibly having a virtual device in /dev to
handle the accesses of protected variables.

Each guarded variable will be provided with its own data segment that encap-
sulates only itself. These custom segments will be contained inside of the Local
Descriptor Table (LDT) of the current process. The system call modify ldt will
be used to write these descriptors to the table. In order to allow these segments
to reside at ring two, a field in the user desc struct (used by modify ldt to write
the LDT entry) had to be created to allow for the modification of the privilege
level (by default it is set to three).

Before each attempt to modify the protected variables, a few things have to
happen. Eax has to be pushed onto the stack for restoration at a later point.
This register is used to hold the segment selector that will be loaded into the
data segment register (DS). This is because a direct mov to segment registers is
not allowed. Then, the custom system call must be called. The segment selector
that is used to access the variable has to be passed as the single, lone parameter.

The custom system call is responsible for performing the check to certify the
potentially modifying instruction. There are two ways to perform this check.
The first is to see if the instruction in question is in a special hash table in the
kernel. The table contains instruction addresses and the corresponding segment
selector in the LDT for that particular code segment slice. This table represents
code slices that have already proven to be valid. If the instruction is present in
the hash table, the corresponding segment selector will be used to overwrite the
CS value saved on the stack.

The other check is to see if the instruction is inside the .text section of the
corresponding ELF. This check only occurs if an entry cannot be found in the
hash table for the instruction. In order to perform this check, a modification of
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the loading of ELFs needs to be made. Inside of the load elf binary function, each
section of the ELF is loaded into memory one at a time. When the .text section
is loaded, it is copied into a newly added field in the task struct of the process.
Then the exception handler will have access to a list of all valid instructions. In
order to search the .text section in an efficient way, we use the value saved from
EIP of the faulting instruction and begin searching there for the instruction we
want to validate. If the .text section contains the instruction, a new LDT entry
is created and an entry is placed in the hash table.

If the instruction is proven to be valid, the process of altering the stack to
return to the process at ring two begins. We overwrite the old value of DS on
the stack with the value that was passed as a parameter to the system call.
From the hash table of instructions and their corresponding segment selectors,
the appropriate value is used to overwrite the old CS value on the stack. By
overwriting these values, this forces the kernel to perform its normal return to
the calling process, but instead of loading the default user land CS and DS,
loading our custom segment selectors allowing for execution at ring two.

After the system call is done overwriting DS and CS, we return back to the user
land process. After the instructions are finished modifying the now unguarded
variable, we make a call to the system call once again. We pass it a special
parameter (0 or another value that will not be used as a segment selector) and
the system call consequently overwrites CS and DS on the stack (which are
now pointing to ring two descriptors) with the default user land selectors for
ring three. Returning back to the process after this second call re-armors the
variables.

Each protected variables segment has a base of its own address, so some binary
rewriting is needed to correct the offsets in the ELF. Originally, the compiler
produces and offset from address 0 (the base of the normal data segment). If we
leave the original offset in place, it will try to calculate the position of the variable
as [the variable’s address + the original offset] which will undoubtedly lead to
a segmentation fault or other unknown results. For beginning experiments, the
binary can simply be sifted through for these instructions, and have the offset
changed to 0. For a more automated approach, a binary rewriting tool such as
Diablo can possibly be used.

Integration with the TCG platforms. The above segmentation-based design pro-
vides the trapping framework for capturing and mediating events of code–data
accesses of interest, either between the elements of a platform’s ELF ABI or
between the programmer-defined units.

This SegSlice framework provides a way for measuring related dynamic prop-
erties of a process throughout its runtime. As mentioned above, the measurement
will be invoked by a trapped event, in the corresponding trap handler function.

A TCG platform can take advantage of these measurements in several ways:

1. reset the TPM’s PCRs in the trap handler if the measurement suggests
violation of the program’s desired trustworthiness properties,

2. seal a runtime memory object to the TPM’s state, e.g., allowing relinking or
re-keying of the program only in trustworthy states, and
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3. otherwise maintain a (limited) state record of an application to ensure ful-
fulment of temporal properties (e.g., enforcing a requirement on the order of
certain events).

In all of these cases, the handler will either call on the TPM as a provider of cryp-
tographic services for a TCG-side of a trustworthiness-related multi-step secure
computation, or simply signal to the TPM that the trustworthiness property has
been irrevocably lost.

3.5 Future Work

Once a working prototype is established for testing, much can be done to im-
prove the project. To move to a more unified mechanism across all machines,
a change will have to be made in how the instruction validation is performed.
Using a custom system call does not allow for consistency across various sys-
tems. Using existing mechanisms in x86 protected mode is an option to allow
for a “free” trap to the kernel. The attempt to load a data segment register
with a DPL that is lower than the current CPL of the code segment register
results in a general protection fault (GPF). This fault is handled by the han-
dler do general protection where it is possible to intercept the special cases that
are caused by SegSlice and handle them appropriately. The clean up process to
return to user land is more complicated than a simple system call because the
kernel never intends to return from a GPF. For this reason, a custom system
call will be used for experimental purposes.

Ideally, this entire process should be transparent to programmers. A dynamic
way of identifying particular code slices and important variables through au-
tomated binary rewriting would be optimal. Most likely, this would involve a
custom binary rewriter that would search through the binary to identify par-
ticular code slices that touch important variables in the program. The rewriter
would then insert the instructions to encase the to-be guarded variables inside
their own segments and also instructions to handle the trap to the kernel and
restoration of ring three after the trap.

4 Related Work

We owe our approach to a large quantity of related work. The intuitions on what
constitutes an efficient, developer-friendly secure programming primitive tend to
travel around a lot, and, before they settle into a successful, productive form of
their own, they often make appearances as useful peripheral features of other
projects. Thus their full and fair attribution would require a broad survey that
is unfortunately beyond the scope of this paper.

We separate this section into two parts: in the first, we discuss the projects
that we consider most closely related to ours in either their use of the x86
segmentation or in their emphasis on code and data units in a process. In the
second part, we discuss the general trends in related work that we believe support
our approach.
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4.1 Projects Most Closely Related to SegSlice

We trace the idea of using the program’s natural separation into modules as
a means of also partitioning it into security-related contexts to [8], in which
the authors presented a mechanism to enforce principles of modularity while
protecting client code from library code. This is accomplished by two designs:
protected libraries and context specific libraries. When accessing a library routine,
through a defined access point, access to the client code is revoked and upon
exiting the routine is reinstated. Context-specific libraries (CSL) allow for various
sharing policies between client and library code. A CSL may share data with
multiple clients, so that each client sees the same data at the same location. CSL’s
may also share data with a client and service such that the actual contents of
the shared region may be associated with either the calling (client) or the called
(service) region.

In [9], leading the comparatively recent re-examination of security advantages
of segmentation, the authors take advantage of protection mechanisms in seg-
mentation and paging to protection core programs from their extensions, both
at the user and kernel level. In the kernel level, kernel service or module’s exten-
sions are kept at a privilege level of one, instead of the default level of zero for
kernel routines. This protects the kernel services from the extensions, but not
vice versa. In order to change the context between the two, a call gate is used
which takes advantage of their inter-segment or inter-privilege level procedure
calls.

For the user level protection, a combination of segment and paging protection
is used. User level applications reside at a privilege level of two from the virtual
address space of 0–3GB and have a page protection level (PPL) of zero (more
privileged than the other level of one). Extensions are marked with a privilege
level of three and a PPL of 1 so that they cannot access the code or data of
the original application. In order to have shared code or data, another section is
marked to have a privilege level of two but a PPL of one so in order to access
it, the software extension must promote itself to privilege level two first.

In the previous sections we consdered the criticism that the x86 segmentation
is a relic of the past, and has in fact been substantially deoptimized by CPU
makers, who are ready to completely abandon it. While we agree that the danger
of such abandonment is real – and believe that it would be griveous to the state
of platform security – we do not believe that this mechanism is less than useful,
and point to the following work as supporting evidence.

The recent Vx32 [10] is a robust and efficient sandboxing mechanism that
utilizes segmentation in the x86 architecture to run guest code safely on top of
the host software. No kernel extensions or special privileges are used by vx32.
The vx32 sandbox runs standard x86 instruction so any language may be used.
Because it is run completely in user land, it cannot rely on the kernel privilege
checking mechanism to make sure the guest does not infect the host, so it must
translate all operations to “safe” operations at the loss of performance. The
guest software is also limited by a restricted system call API. The host decides
for each guest what is considered safe and allowed system calls.
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The use of segmentation allows each guest to be isolated inside its own seg-
ment. Each guest’s segment address appears to be at the address of 0 and cannot
access beyond its segment (the segment limit). Vx32 uses other data segment
registers (FS or GS) to contain the segment selectors for the guests’ individual
data segments. On 32-bit systems, the code segment register is never changed.
When guest code execution begins, it simply jumps to the fragment of code inside
the default code segment that contains the guest code. This is safe because vx32
handles any jumps outside of the guest’s code, whether it be to other translated
code fragments or back to vx32 for operations such as system calls.

Vx32 provides a sandboxing mechanism that can support one or more guest
plug-ins, each local to their own specific segments. The control over each guest’s
system call API provides an extra layer of protection to ensure the host remains
isolated. By using x86 architecture to isolate memory accesses and translating
instructions to “safe” operations, the authors maintain that vx32 is a lightweight,
efficient sandboxing mechanism for the x86 architecture.

The Nooks project [11] makes use of the x86 segmentation system to improve
OS reliability through isolation of driver code and data in the kernel, recognizing
the fact that driver instability is the leading cause of modern commodity OS
instability (as well as of security vulnerabilities). We note that Nooks combines
both the idea of code and data isolation and transparent trapping of related
(driver) failures, and makes use of the x86 segmentation to achieve this goal.

4.2 Other Related Work

Systems like Valgrind [12] and Pin [13] have recently emerged that enable a
programmer or software tester to interweave complex programmatic instrumen-
tation at runtime into an existing software system. These systems use dynamic
binary rewriting and do not require access to the source code. Similar environ-
ments include the Rio architecture [14] and Dyninst [15].

Program shepherding [16] focuses on ensuring that control flow transfers of
a process remain within the bounds of some policy. For example, the technique
uses the Rio [14] system to ensure that code in library routines is only accessed
via the entry point of the particular library function. Control Flow Integrity
(CFI) [17] is a similar idea in which a program’s static control flow graph acts
like a policy for the runtime behavior of the system.

In what we believe to be a seminal call to action for the operating systems
research community, Roscoe et al. [18] argue that current OS research utilizing
hypervisors should move away from endlessly refining traditional approaches
aimed at Unix/Windows ABI model compatibility. In essence, the hypervisor
presents a useful backwards-compatible interface, and Roscoe’s paper argues
that the problems that we currently tackle at the VMM level (such as inter-
VM communication, resource sharing among VMs, VM isolation) have all been
solved at the OS-level, and adding more functionality in the VMM is largely
wasted effort. Furthermore, adding needless functionality to the VMM simply
increases the size of the trusted computing base (TCB), and hence it becomes
harder to prove VMM correctness or security properties. The size and nature
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of this complexity are discussed in an article by Karger and Safford [19]; they
make many of the same points (and ably illustrate the various interactions) we
do with respect to the complexity of VMM I/O systems.

Finally, the object oriented programming discipline is largely concerned with
expressing some types of code-data relationships (typically composition and in-
heritance rules that help govern visibility of data members of classes). Such
relationships are typically expressed through the class heirarchy mechanism and
the corresponding rules derived from type-checking these relationships at com-
pile time (and in the case of interpreted languages [20], at runtime. Such runtime
checking, however, does not incorporate the use of a TPM or other mechanism to
provide assurance that the structure and layout of both code objects (methods)
and data objects (variables, class instances) remain unmodified by malicious
attack (or even random errors [21]).

5 Security Properties of “Slices”

The intention of slices as a programming primitive is to help the programmer
decompose the program’s code and data units into groups (that is, “slices”)
of different sensitivity with respect to the programmer’s security goals, and to
explicitly specify relationships between these groups to be enforced at runtime.
When combined with the TCG architecture’s measurements, these relationships
will constitute an attestable property of the system.

In this regard SegSlice can claim descent from a few tried-and-true security
primitives, as we explain below.

5.1 UNIX Kernel–Userland Separation

Most importantly, most of UNIX’s security and reliability properties ultimately
rely on the separation of execution contexts into userland and kernel, with the
kernel data being directly accessible only to the trusted kernel code. It is this
isolation and the resulting trust in the integrity of kernel data that fueled the
subsequent development of UNIX security policy enforcement mechanisms, up
to and including SELinux.

“Trustworthy data” became synonymous with “data held by kernel”. How-
ever, developing new kernel interfaces for each new kind of trust-related data
is cumbersome, does not agree with existing application programming practices
– essentially, it would imply developing a dedicated companion kernel module
for each trusted application, requiring the programmers to become proficient
with kernel as well as userland programming environments at the same time.
By comparison, SELinux merely requires developers to specify the kernel-loaded
companion list of the application’s allowed file operations – a sort of a companion
program which describes access-focused behaviors of the main program – and
even this task has been an obstacle to developers, who had trouble adapting to
the specialized language and environment of type/domain specifications.

At the same time, designing a general enough kernel interface for both safe-
keeping and application-specific trusted operations on generic application data
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that would fit a majority of application programming needs appears to be a very
hard task – imagine unifying several large ioctl(2) and setsockopt(2) interfaces
into a semblance of coherence!

5.2 Privilege Drop

SegSlice can claim descent from UNIX system calls that allow a process to drop
privileges. In particular, such a system call demarcates code that interacts with
certain high-integrity data from the code that is known to have no such need, and
allows the OS to enforce this separation of code into units by access behaviors.

Moreover, an attempt by the process to perform a privileged operation after
the privilege drop – that is, a violation of the explicit code boundary set by the
call – indicates that the process has entered an untrustworthy state. We also
note that the boundary is essentially static.

Unfortunately, even though extremely useful (and widely accepted as a de
facto requirement for Internet-facing daemons), such privilege demarcation of
code units only lends itself naturally to designs in which the set of privileges
“monotonously” shrinks. However, units of code may have other natural sets of
privileges than those that nest neatly as subsets of larger sets, and managing
them does not fall neatly into the “drop” paradigm.

Even allowing for recovery of privileges (e.g., for temporary drops) opens a can
of worms (e.g., [22]), and requires extra care by the programmer that defeats
the intuitiveness and ease-of-use (see, e.g., [23], for discussion and proposed
solutions). Mechanisms such as privilege bracketing5 aim to solve this problem.

By reformulating “privilege” as code units’ enforceable relationship with data
units, “slices” offer a model that accommodates non-nesting data access priv-
ileges. Slice definitions are contained within the program itself, and thus do
not require external configuration of new user accounts with corresponding
rights, avoiding additional burden on system administrators (but, as a down-
side, they are not transparent to the system administrator, unlike user and group
definitions).

6 Two Sides of the Same Coin: Slices and
Return-Oriented Programming

The formulation of SegSlice presented in this paper (segments denoting code slice
ownership of specific data backed by TPM-supported checking of code prove-
nance) is most directly applicable to preventing either foreign injected code
or inappropriately re-tasked existing code (a la return-oriented programming)
from accessing data and variables that it does not own. In this sense, Segslice
provides an automated, finer-grained isolation mechanism supporting legitimate
code slices as a defensive technique.

5 See http://docs.sun.com/app/docs/doc/816-1042/6m7g4ma52 in Trusted Solaris
Developer’s Guide

http://docs.sun.com/app/docs/doc/816-1042/6m7g4ma52
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In contrast, the dynamically composed sequences of executing instructions
employed by return-oriented programming (ROP) attacks represent inappropri-
ate or illegitimate “slices” of code functionality: slices which ultimately seek to
access or modify data that does not belong to any such slice. Thus, Segslice
seeks to enable programmers to define slices of program execution in terms of
legitimate data access, whereas ROP-style attacks seek to dynamically compose
substrings of existing slices to effect a “malicious computation.”

Exploit programming relies on using elements of the target execution envi-
ronment to accomplish a “malicious computation” (see [24], [25] for discussion
of the term) deemed impossible or improbable under the target’s trust model.

We found that it helps to think about exploits as programs written in “weird
instructions” – fragments of standard mechanisms present in the runtime en-
vironment, such as libraries, parts of the ABI or calling conventions, dynamic
linking logic handling the Global Offset Table (GOT) and Procedure Linkage
Table (PLT), compiler-supplied pre-entry and post-exit wrappers for a program,
and many other kinds – that are accessible for “off-label” uses unanticipated by
the trust model, and accomplish specific tasks, possibly with many side-effects.

The effects of these weird instructions could range from overwriting a word
at an address controlled vie the input with an integer from a library function’s
state (e.g., [26,27]) or given by a neighboring word (e.g., [28,29]), to loading and
linking an entire missing library via jumping to a part of the dynamic linker code
(e.g., [30]). Typically, practical exploits mix and match such “meta-instructions”
to both achieve the computation and mitigate its side-effects.

The nature of exploit programming tends to be mischaracterized. The most
famous example is probably the historically common association of exploits with
introduction of “malicious code” into the system, one way or another. This mis-
leading association turned out to be quite tenacious (cf. [24,25]). In fact, the idea
that such a computation could be accomplished, with sufficient generality and
flexibility, without introducing any new executable code into the target can be
traced back at least to the 1997 hacker publications [31,32] and the subsequent
series of Phrack articles [33,30], and reached its full impact in academic research
with [34] (cf. [25], etc.)

We note that a (and, possibly, the) hallmark of exploit programming is viola-
tion of expected code–data relationships involved in trustworthiness
assumptions. Each “weird instruction” essentially depends on such violation
(or, from the exploit programmer’s point of view, creates a new and unantici-
pated one). It is evident in all examples quoted above. For example, in the case
of “double free”-based overrides, heap manager/allocator code writes outside
the heap area; “return-to-library”’s sequential calling of the crafted frame chain
almost certainly involves some function’s code manipulating another function’s
stack frame, and so do “return-oriented” gadgets.

Our proposed “slice”-based view of trustworthiness acknowledges this hall-
mark. We recognize that many exploit programming primitives require too gran-
ular analysis of the code and data units involved (e.g., at the level of stack
frames), which makes their relationships impractical to describe and enforce with
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SegSlice. “Slicing” is certainly not a silver bullet that can prevent a malicious
computation from happening.

However, SegSlice may provide a programmer with a means of isolating a ma-
licious computation, and an indication that the process within which a violation
of the SegSlice-enforced properties has occurred is no longer trustworthy.

In a word, slices as a security primitive are informed by exploit programming
primitives such as ROP and are, in a sense, dual to them. To summarize,

– ROP gadgets, other “weird instructions” and slices are two sides of the same
“programming technique” coin: in one sense, they are all sequences of code
units.

– Slices provide a defensive technique that helps define legitimate sequences of
code access to specific data, whereas ROP is an attack technique aimed at
stitching together sequences of existing “slices” to gain illegitimate access.
ROP is possible because programmer-intended code-data relationships (i.e.,
“slices”) are not defined or enforced in current commodity software.

– SegSlice attempts to help define and enforce slice boundaries to frustrate such
attacks, and backing them with a TPM is a practical method of measuring
and attesting the runtime preservation of the dynamic code–data relationship
properties expressed by the programmer via the programming primitive of
slices.

7 Conclusion

We define a new class of runtime-measured software trustworthiness properties,
based on intended, exclusive relationships between the program’s code and data
units (“slices”). We describe SegSlice, a trapping framework that supports its
measurement and enforcement through using the x86 segmentation system in
a “segment virtualization” technique. These units can be defined by the pro-
grammer by way of using SegSlice API, or – at a loss of granularity, but still
sufficient to capture fairly general kinds of attacks – taken from the semantics
of ELF ABI elements. This framework extends the previously proposed TCG
platform dynamic secure programming primitive of selective immutability, and
provide the TCG with a broader class of trustworthiness properties to be mea-
sured throughout the lifetime of a process.

Acknowledgments

Bratus was supported in part by the National Science Foundation, under grant
CNS-0524695 and by the U.S. Department of Homeland Security, under grant
DHS 2006-CS-001-000001. The views and conclusions do not necessarily rep-
resent those of the sponsors. Locasto is supported in part by grant 2006-CS-
001-000001 from the U.S. Department of Homeland Security under the auspices
of the I3P research program. The I3P is managed by Dartmouth College. The
opinions expressed in this paper should not be taken as the view of the authors’
institutions, the DHS, or the I3P.



244 S. Bratus, M.E. Locasto, and B. Schulte

References

1. Bratus, S., D’Cunha, N., Sparks, E., Smith, S.: TOCTOU, Traps, and Trusted
Computing. In: Proceedings of the TRUST 2008 Conference, Villach, Austria
(March 2008)

2. Bratus, S., Locasto, M.E., Ramaswamy, A., Smith, S.W.: New Directions for
Hardware-assisted Trusted Computing Policies (Position Paper). In: Gawrock, D.,
Reimer, H., Sadeghi, A.-R., Vishik, C. (eds.) Future of Trust in Computing, p.
30. Vieweg+Teubner Verlag, GWV Fachverlage GmbH, Wiesbaden (2009), ISBN
978-3-8348-0794-6

3. Bratus, S., Locasto, M.E., Ramaswamy, A., Smith, S.W.: Traps, events, emulation,
and enforcement: managing the yin and yang of virtualization-based security. In:
VMSec 2008: Proceedings of the 1st ACM workshop on Virtual machine security,
pp. 49–58. ACM, New York (2008)

4. Levine, J.: Linkers & Loaders. Morgan Kaufmann/Academic (2000)
5. Last Stage of Delirium Research Group: Kernel Level Vulnerabilities: Behind the

Scenes of the 5th Argus Hacking Challenge. Black Hat Briefings, Amsterdam
(November 2001),
http://www.blackhat.com/presentations/bh-europe-01/LSD/

bh-europe-01-lsd.ppt

6. Arce, I.: The kernel craze. IEEE Security and Privacy 2, 79–81 (2004)
7. Kauer, B.: Private Communication
8. Banerji, A., Tracey, J.M., Cohn, D.L.: Protected shared libraries: a new approach

to modularity and sharing. In: ATEC 1997: Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, Berkeley, CA, USA, p. 5. USENIX
Association (1997)

9. Chiueh, T.C., Venkitachalam, G., Pradhan, P.: Integrating segmentation and pag-
ing protection for safe, efficient and transparent software extensions. SIGOPS Oper.
Syst. Rev. 33(5), 140–153 (1999)

10. Ford, B., Cox, R.: Vx32: lightweight user-level sandboxing on the x86. In: ATC
2008: USENIX 2008 Annual Technical Conference on Annual Technical Conference,
Berkeley, CA, USA, pp. 293–306. USENIX Association (2008)

11. Swift, M.M., Martin, S., Levy, H.M., Eggers, S.J.: Nooks: an architecture for reli-
able device drivers. In: EW 10: Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, pp. 102–107. ACM, New York (2002)

12. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: Proceedings of ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation (PLDI 2007) (June 2007)

13. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood., K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: Proceedings of Programming Language Design
and Implementation (PLDI) (June 2005)

14. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. In: Proceedings of the International Symposium on Code Gen-
eration and Optimization, pp. 265–275 (2003)

15. Buck, B., Hollingsworth, J.K.: An API for Runtime Code Patching. The Interna-
tional Journal of High Performance Computing Applications 14(4), 317–329 (Win-
ter 2000)

16. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure Execution Via Program Shep-
herding. In: Proceedings of the 11th USENIX Security Symposium (August 2002)

http://www.blackhat.com/presentations/bh-europe-01/LSD/bh-europe-01-lsd.ppt
http://www.blackhat.com/presentations/bh-europe-01/LSD/bh-europe-01-lsd.ppt


SegSlice: Towards a New Class of Secure Programming Primitives 245

17. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow Integrity: Princi-
ples, Implementations, and Applications. In: Proceedings of the ACM Conference
on Computer and Communications Security, CCS (2005)

18. Roscoe, T., Elphinstone, K., Heiser, G.: Hype and Virtue. In: Proceedings of the
11th Workshop on Hot Topics in Operating Systems (HOTOS XI) (May 2007)

19. Karger, P.A., Safford, D.R.: Security and Performance Trade-Offs in I/O Opera-
tions for Virtual Machine Monitors. In: IBM Research Technical Report RC24500
(W0802-069) (February 2008)

20. Gosling, J., Joy, B., Steele Jr., G.L., Bracha, G.: The Java Language Specification,
3rd edn. Addison Wesley, Reading (2005)

21. Appel, A., Govindavajhala, S.: Using Memory Errors to Attack a Virtual Machine.
In: IEEE Symposium on Security and Privacy (2003)

22. Chen, H., Wagner, D., Dean, D.: Setuid demystified. In: Proceedings of the 11th
USENIX Security Symposium, Berkeley, CA, USA, pp. 171–190. USENIX Associ-
ation (2002)

23. Tsafrir, D., Silva, D.D., Wagner, D.: The murky issue of changing process identity:
revising “setuid demystified”. In: USENIX; login: (June 2008)

24. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: Generalizing return-oriented programming to RISC. In: Syverson, P., Jha, S.
(eds.) Proceedings of CCS 2008, October 2008, pp. 27–38. ACM Press, New York
(2008)

25. Hund, R., Holz, T., Freiling, F.: Return-Oriented Rootkits: Bypassing Kernel Code
Integrity Protection Mechanisms. In: Proceedings of the 18th USENIX Security
Symposium (2009)

26. scut / team teso: Exploiting format string vulnerabilities, Version 1.0 (March 2001)
27. gera, riq: Exploiting Format String Vulnerabilities. Phrack 59(7) (July 2002)
28. anonymous author: Once upon a free. Phrack 57(9) (August 2001)
29. MaXX: Vudo malloc tricks. Phrack 57(8) (August 2001)
30. Durden, T.: Bypassing PaX ASLR protection. Phrack 59(5) (July 2002)
31. Designer, S.: Getting around non-executable stack (and fix). Bugtraq mailing list

(August 1997)
32. Wojtczuk, R.: Defeating solar designer non-executable stack patch. Bugtraq mail-

ing list (1998)
33. nergal: Advanced return-into-lib(c) exploits (PaX case study). Phrack 58(4) (De-

cember 2001)
34. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In: De Capitani di Vimercati, S., Syverson, P. (eds.)
Proceedings of CCS 2007, October 2007, pp. 552–561. ACM Press, New York (2007)
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1 Introduction

1.1 Privacy vs. Security

As computers continue to permeate all aspects of our lives, there is a growing
tension between the requirements of societal security and individual privacy.
Societal security encompasses all ways in which we try to make the world more
secure, including transport security, financial security, infrastructure security,
etc. A prime mechanism for achieving this security involves collecting quantities
of data about individuals, for example via ISP logs, mobile phone logs, ticketing
systems, and banking systems. As a result, massive databases about every aspect
of our lives are being collected by organisations in all the major industrial sectors
(financial, transport, retail, telecom, internet, and health care).

These data collection has an impact on individual privacy. The unprecedented
longevity, searchability, and especially the composability from different
sources of these records imply a radical reduction in the level of individual pri-
vacy we can expect to enjoy over the coming decades. Numerous reports have
documented this impact and its detrimental consequences to society’s well-being
(e.g., in the UK, [3,2]).

There is no easy solution to this problem, because the security uses of the data
are too important to be denied. Their use in crime detection is an example. About
440,000 requests by the police, local authorities and other permitted organisa-
tions to monitor telephone calls, emails and text messages were made in a 15
month period in 2005-06 in the UK [3, pp.32-33]. The “Intercept Modernisation
Programme” is a UK Government initiative to centralise electronic communica-
tions traffic data in the UK in a single database [5,8]. In another example, the
UK intelligence agencies MI5 and MI6 have have sought full automated access
to Transport for London’s ‘Oyster’ smartcard database [10]. Debate about bal-
ancing security and privacy is taking place at all levels of society [9,3,2,4,1,7],
and will likely continue for many more years.

1.2 Escrowed Data

We propose escrowed data as an approach that may be capable of providing an
appropriate balance between the requirements of individual privacy and societal
security. Roughly speaking, data that is collected is held in escrow for a certain
period. During that period, the data may be accessed by an authority in order
to provide societal security, e.g., for the purposes of crime investigation. It is
expected that a minority of the data needs to be accessed in this way, since most
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people don’t commit crime. After the escrow period is over, the data can be
destroyed.

Various kinds of conditions can be put on when and whether the data held
in escrow can be accessed by the authorities. Such conditions are likely to vary
considerably according to the nature of the data, and we don’t consider them
in this paper. Instead, we propose a mechanism under which, at the end of the
escrow period, the subject of the data can obtain unforgeable evidence about
whether the data has been accessed or not. We assume that this fact is sufficient
to prevent the authority making unnecessary accesses.

Numerous technical problems need to be solved in order to make this work,
including adaptation of the mechanisms by which data is collected and stored,
and the ways in which it is used. The core of such a solution needs to provide
the following properties:

– Data held in escrow can be accessed by the authority at any time during
the escrow period. No cooperation by the subject of the data is required,
and the subject is unable to detect whether an access has been made or not,
until the end of the escrow period.

– At the end of the escrow period, the subject of the data is able to obtain
evidence that says either that the data has been accessed; or that the data
has not been accessed, and has now been destroyed.

This arrangement gives the authority all the power it needs in order to guarantee
societal security, while at the same time giving individuals guarantees about their
privacy most of the time.

Example 1. In transport charging (for example, London Oyster card, or road
usage charging), the data about journeys is held in escrow for a period. In most
circumstances, it is never accessed, but under given conditions law enforcement
officers can open up data about individual journeys without alerting the indi-
viduals involved. After some time-window, still unopened data can no longer be
opened, and individuals obtain verifiable evidence about what data has been
opened up about them, and what data has been destroyed.

1.3 This Paper: The Digital Envelope

In order to escrow data in the physical world, one can store it in a sealed tamper-
evident envelope such that it can be opened, but once opened, cannot be resealed.
In this paper we present the concept of the digital envelope which provides a
digital analogue of the envelope in the physical world.

The digital envelope allows Alice to provide digital data to Bob in such a way
that Bob has only one of two possible actions available to him:

– He can access the data without any further action from Alice.
– Alternatively, he can revoke his right to access the data, and in this case he

is able to prove to Alice that he did not and cannot (any longer) access the
data.
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Intuitively, it is not possible to achieve this effect using cryptography alone. Alice
can encrypt the data and send the ciphertext to Bob. But if she does not send
the key as well, then Bob can’t unprotect the data without further cooperation
from Alice. If she does send the key at the same time as sending the data, then
Bob is not ever able to demonstrate that he has not decrypted it. Even if he
“returns” the ciphertext to Alice, she has no guarantee that he has not decrypted
another copy.

In this paper, we present three mechanisms for achieving the digital enve-
lope in a trusted computing context, and compare them. Section 2 is devoted
to background information about trusted computing and the TPM. Section 3
contains our three implementations, and the comparisons. Section 4 considers
some modifications of the TPM, and we draw conclusions in Section 5.

2 Background

The Trusted Platform Module (TPM) is a commodity chip present on most high-
end laptops currently shipped by all the major manufacturers. Through over 100
function calls, it provides protected cryptographic operations to general purpose
software that runs on the platform.

In this short version of the paper, we assume readers are knowledgeable about
TPM functionality, including platform configuration registers, creation and man-
agement of encryption keys, attestation, measurement, identity, monotonic coun-
ters, and encrypted transport sessions. A description of all this functionality
is available in the longer version of the paper available on the author’s web
page.

3 Three Implementations of the Digital Envelope Using
the TPM

We present three different possible solutions for a digital envelope by using func-
tionality of the Trusted Platform Module. Each solution assumes Bob has a
“recipient” computer (his own or a server) containing a functioning TPM. The
solutions have varying levels of requirements and thus, a varying level of limi-
tations in usability and functionality. They each have advantages and disadvan-
tages compared to the others. No single solution is clearly superior.

3.1 No Software Required

Somewhat surprisingly, the digital envelope can be implemented directly using
the functionality of the TPM, without any trusted software. However, the im-
plementation has some limitations. The idea is to bind the data using a TPM
key locked to specific PCR values.
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Implementation

Sealing the envelope. Alice creates an encrypted transport session with Bob’s
TPM and uses it to extend a given PCR with a random nonce n that she has
created. She keeps the value of n secret. The transport session is then closed.

Alice or Bob reads the value of the given PCR, finding it to be p, say, and
creates a TPM KEY BIND key (sk, pk) on Bob’s TPM, locked to the PCR value
SHA1(p||1). This means that the key can be used only if the value 1 is first
extended into the PCR.

Alice encrypts her data with pk, and sends it to Bob. This protocol is illus-
trated in Figure 1.

Opening the envelope. Bob can use TPM Extend to extend 1 into the relevant
PCR. He can then use TPM Unbind to decrypt the datagram sent to him by
Alice, in order to obtain the data.

Alice Bob

create nonce n

encrypted session

extend(n)

pcr = p pcr = p

create bind key (sk, pk)
locked to SHA1(p|1)

wrapped key (sk, pk)

{data}pk

Fig. 1. Solution 1 (no software required): Alice sends envelope

Returning the envelope. Alternatively, Bob can demonstrate that he has given
up that possibility. To do that, he extends an agreed value, say 2, into the
TPM. Alice may obtain a PCR quote to see that the value of the PCR is now
SHA1(p||2). This assures her that Bob can never use the key (sk, pk) to decrypt
the datagram. This protocol is illustrated in Figure 2.

Advantages and Limitations. The greatest advantage to this solution is it
can be implemented on TPM platforms without requiring any trusted code on
Bob’s computer. It could be run on a user’s personal system or a server system.
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Alice Bob

extend(2)
Quote pcr

Fig. 2. Solution 1 (no software required): Bob returns envelope

Because the TPM controls access to the encrypted data, no application code
requires trust or attestation.

The major disadvantage in using PCRs is that they maintain a volatile state
which is lost when the TPM is reset, so this solution can only provide guarantees
until the machine is rebooted (including after a crash). Once the system reboots,
the PCRs will be reset to their default values and Bob will have lost both his
ability to read the encrypted data as well as his ability to prove to Alice that he
did not.

3.2 Attestation of Envelope Server Code

Using the TPM and monotonic counters, a digital envelope mechanism can be
created that can still be used when the system reboots. However, because mono-
tonic counters are not used to seal the data, all of the code (including the oper-
ating system) processing the digital envelope must be attested to by the TPM
so it can be trusted by Alice.

To reduce the complexity of the problem, we present a solution that is designed
for a limited environment where it runs on a dedicated system. We assume that
the system has a TPM and TCG-enabled BIOS and boot loader, and that the
application runs native on the hardware with no operating system or virtual
machine support. The digital envelope server is capable of processing only one
envelope at a time. In addition to these specific assumptions about the platform,
some way of obtaining PCR values for various makes and models of hardware
platforms is also required.

Implementation. To use the digital envelope server, Alice will create a blob
containing the message that can only be opened by a TPM-verified digital en-
velope server. The procedure she will follow is:

– Request an envelope which includes a TPM-protected key tied to a mono-
tonic counter value.

– Verify the envelope has been created by an authentic TPM running a prop-
erly installed and configured digital envelope server application.

– Tie the message to this key (i. e., insert the message into the envelope).
– Send the envelope to Bob.



Escrowed Data and the Digital Envelope 251

Then, Bob can, at a time of his choosing, use the digital envelope server to open
the envelope or obtain proof that he did not open it and forfeit his ability to
ever open it. The act of opening or refusing the message increments the counter
so neither operation can be repeated nor can the other operation be performed
later.

The digital envelope server runs in two states: initialisation and service. The
initialisation state, State 0, starts the service, creates or unwraps keys and data,
and prepares to begin servicing envelope requests. The service state, State 1, is
the “normal” operational state of the application.

State 0: initialisation. State 0 initialises the environment in which the digital
envelope server will run with the following steps:

– Unseal or create the initialisation blob containing the digital envelope server’s
AIK. If just created, seal the initialisation blob against current PCR values
set by State 0.

– Load the digital envelope server AIK into the TPM, and advance to State 1
by extending a particular PCR.

The digital envelope server’s sealing key can only be loaded during State 0 since
it is sealed against the PCR values at the time the application is first executed.
The sealing key requires no TPM AuthData because it is stored in a blob which
was sealed against PCR values and is only accessible to a measurement-verified
digital envelope server in State 0.

State 1: service. In State 1, the digital envelope server waits to provide one of
these services upon request:

– Create a new (empty) envelope, or
– Open an existing envelope and return the data, or
– Return proof of refusal to open an existing envelope.

When creating a new empty envelope, the digital envelope server returns the
new public encryption key for the digital envelope, counter information, public
digital envelope server AIK and certificate, and signed counter information to
the envelope requestor.

Because the initialisation information is sealed against the PCRs at the time
the system boots, once the digital envelope server has loaded its data, it extends
a particular PCR to enter State 1 to guarantee that no other process may then
access the initialisation information.

Operation. When the system boots, the chain of trust is followed all the way to
the digital envelope server. The first time the digital envelope server executes,
it creates a sealing key using the command TPM CreateWrapKey (with null Au-
thData) which will be used to seal the state information blob to State 0 (the
current state). It also creates an AIK and random AuthData to be used with all
envelope encryption keys using the TPM command TPM GetRandom. The digital
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Alice Envelope Server
controlled by Bob

Bob

envelope request

envelope

envelope containing message

open envelope
or return envelope

decrypted message
or return token

return token

Fig. 3. Solution 2 (monotonic counter): the protocol

envelope server has the TPM sign a digest of PCA information to bind it to the
public part of its AIK and submits this with its public EK to the PCA to obtain
its AIK certificate. Lastly, the digital envelope server seals a blob containing
its AIK, certificate, and a chosen monotonic counter name to the PCR value
defining State 0. At this point, it can generate a TPM Quote of PCR state signed
with the digital envelope server AIK and then extend a particular PCR by 1 to
advance to State 1.

Subsequent runs of the digital envelope server need only to restore the state,
which will only succeed from State 0. This requires loading the digital envelope
server sealing key, unsealing the initialisation state blob, loading the digital en-
velope server AIK into the TPM, generating a signed TPM Quote of the PCR
state, and extending a particular PCR to advance to State 1.

An envelope encryption key is created in State 1, so it is not protected by seal-
ing against PCRs reflecting State 0. The envelope encryption key is protected
by a random AuthData value created by the digital envelope server during ini-
tialisation and stored in the initialisation state blob. Because the initialisation
state is protected by sealing against PCRs reflecting State 0, the AuthData is
inaccessible to any other application at any other time. The AuthData for all
envelope encryption keys is known only to the digital envelope server.

When Alice needs to send Bob data in a digital envelope, she generates a
random nonce and sends the digital envelope server a request for a new envelope
with the nonce.

The digital envelope server returns an “empty” digital envelope to Alice con-
sisting of the digital envelope server AIK and certificate, the TPM Quote of PCR
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values signed with the digital envelope server AIK, the name and new value of
the incremented TPM monotonic counter, the public part of a new envelope
encryption key (with AuthData known only to the digital envelope server), and
her original nonce.

When Alice has verified the envelope and her nonce, she is ready to send her
data to Bob. To do so, she will generate a random symmetric key and encrypt
her message with it. She will then use the public part of the envelope encryption
key to encrypt the symmetric key and the other parts of the digital envelope.
Alice can now send this data to Bob because only the digital envelope server
can decrypt the contents of the digital envelope and will only do so if the named
counter still has the specified value. Figure 3 shows the generic protocol for the
digital envelope server.

Bob can now submit the digital envelope to the server for one of two purposes:
to acquire the information sealed in the envelope or to obtain a token proving he
has revoked his access. The digital envelope server validates the request, creates
the response, increments the monotonic counter, and sends the response back to
Bob. The digital envelope is no longer useful and Bob has either the data from
Alice or a token he can send her to prove he did not and can no longer access it.
The token may include Alice’s nonce signed by the digital envelope server or a
signed transport session showing the monotonic counter being incremented past
the valid envelope value.

Advantages and Limitations. The main advantage of this implementation
over the previous one is that it can save the envelope state across reboots of the
platform. This comes at the cost of requiring trust in a small amount of software
that manages the envelope software. Attestation is used to ensure the integrity
of the software. No operating system is present.

The main limitation is that the platform is dedicated to providing the envelope
service. Another disadvantage is the digital envelope server can only store and
service one envelope at any time. Since each envelope requires its own counter
and the TPM only allows the use of a single monotonic counter at any one time,
virtual monotonic counters must be implemented to support multiple envelopes.

3.3 Flicker Module

Flicker [6] is an infrastructure for executing TPM-attested code in isolation,
while allowing a general purpose untrusted operating system with application
software to run alongside it. Flicker is able to guarantee the attestation even if
the BIOS, the operating system, and DMA-enabled devices are all untrusted.
This is achieved by using hardware support for late launch DRTM, which fea-
tures on high-end processors from AMD and Intel. Flicker works by causing the
processor to temporally suspend the operating system, and to enter an attested
configuration state where a small kernel, called a Flicker piece of application
logic (PAL) is executed. The PAL is intended to run for a brief period, and
return control to the operating system. It is hoped that the suspension time is
short enough not to cause any unrecoverable disruption to the operating sys-
tem. Before the end of its execution, the PAL is expected to save its state using
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the TPM’s sealing functionality, and to recover its state at the beginning of the
next execution. Flicker avoids replay attacks (in which the untrusted environ-
ment reverts to an old state of the PAL) by incorporating the current value of a
monotonic counter into the saved PAL state, similarly to the way it is done in
the previous subsection.

Implementation. The Flicker implementation follows the pattern described
for Flicker PALs that save state [6, §6.2]. The pattern focuses on maintaining
the integrity of the PAL’s state while the untrusted OS operates. To achieve this,
the very first invocation of the PAL generates a 160-bit symmetric key based on
randomness obtained from the TPM and uses the TPM to seal the key so that
no other code can access it. It then performs application specific work. Before
yielding control back to the untrusted OS, the PAL computes a cryptographic
MAC (HMAC) over its current state. Each subsequent invocation of the PAL
unseals the symmetric key and checks the MAC on its state before beginning
application-specific work. When the PAL finally finishes its work unit, it extends
the results into PCR 17 and exits.

The envelope-specific details are as described in the previous subsection
(section 3.2).

Advantages and Limitations. The advantage over the previous implementa-
tion (section 3.2) is that the platform does not have to be dedicated to providing
the envelope server. It can run a general purpose OS and applications. The cost
of this is that the quantity of attested software is greater than that for the
previous implementation, because Flicker adds a small additional overhead.

On the negative side, Flicker is currently experimental and has onerous soft-
ware and hardware requirements, as well as dependency on the underlying pro-
cessor architecture. These disadvantages can be expected to reduce over time, if
continued development of the hardware technologies and of Flicker are made.

4 Suggested TPM Enhancement: Sealing to Monotonic
Counters

The ability to seal data to monotonic counters (as well as to PCR values) would
allow a significantly improved solution having the simplicity of our first solution
(section 3.1) and the flexibility of our second (section 3.2). Such a solution could
allow untrusted software to save the envelope state, and the TPM could detect
replays that attempt to revert to a previous state.

4.1 New TPM Commands

This can be achieved by providing the following proposed TPM commands.

– TPM SealByCounter (key, authdata, data-to-be-sealed, counter-name,
counter-value, increment-on-unseal )
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Here, counter-name, counter-value and increment-on-unseal may be repre-
sented in a TPM COUNTER INFO structure, analogous to the TPM PCR INFO
structure used in the existing seal and unseal operations. This command
seals arbitrary data with the specified key against a counter name and value
just as TPM Seal seals against one or more PCR values. The increment-on-
unseal is a boolean value which specifies whether or not the specified counter
should be incremented when the data is unsealed.

– TPM UnsealByCounter ( key, authdata, data-to-be-unsealed )
This command obtains the counter name and value from the blob and com-
pares them to the current value of the named TPM counter. If they match,
the TPM unseals the data. Upon successful unsealing of the data, but before
it is returned to the caller, the named counter is incremented if increment-
on-unseal was set to TRUE when the data was sealed.

4.2 No Software Required, v.2

Using these proposed new TPM commands, the digital envelope could be de-
signed in a much more straightforward manner and could run within an unmea-
sured and untrusted application under any operating system.

Alice could request an envelope from the desired destination and receive the
AIK and certificate as before, a signed log of a transport session proving the
current monotonic counter and newly incremented value, two public parts of
RSA key pairs, a signed log of a transport session showing these keys being
created and sealed against the current monotonic counter (with increment-on-
unseal = TRUE), and a TPM-signed copy of her nonce.

Alice can verify the envelope and that the keys were sealed properly against
the proper counter value. She then encrypts her symmetric key with one public
key and a refusal token with the other, encrypts her message with her symmetric
key, and sends it all to Bob.

Using TPM UnsealByCounter, Bob can ask his TPM to unseal either of the
two envelope keys, but not both. Unsealing either the symmetric key for the
message or the refusal token will cause the TPM to increment the monotonic
counter which will eliminate the option to ever unseal the other.

5 Conclusion

We have presented the idea of a digital envelope that can provide data escrow in
such a way that parties can obtain evidence about whether the data was accessed
or not. This idea is expected to have applications in privacy management, and in
particular to balancing the often conflicting requirements of individual privacy
with societal security.

The Trusted Platform Module provides the primitives necessary to implement
a digital envelope in a variety of ways. But the more straightforward the imple-
mentation, the more restrictive the functionality. As functionality is expanded
to improve usability, security complications increase dramatically.
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Due to the rigours of platform attestation, even the simplest solution quickly
becomes complex. An additional capability like Flicker significantly minimises
the impact of these additional issues.

It has also been shown that a much more straightforward solution could be
achieved if the TPM provided a sealing operation using a monotonic counter
analogous to the sealing operation it currently provides using Platform Configu-
ration Registers. Therefore, two new TPM commands were proposed for addition
to the TPM specification. If the TPM provided these commands in a future ver-
sion, the measurement and attestation requirement would be eliminated and the
digital envelope could easily be implemented in unmeasured code running on
any operating system.
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Abstract. Web services require complex middleware in order to com-
municate using XML standards. However, this software increases vul-
nerability to runtime attack and makes remote attestation difficult. We
propose to solve this problem by dividing services onto two platforms,
an untrusted front-end, implementing the middleware, and a trustworthy
back-end with a minimal trusted computing base.

1 Introduction

Web services are a popular way of implementing component-based systems. They
have a number of potential advantages, offering higher reliability and integrity
due to component reuse and dynamic selection. However, some have significant
security concerns, such as those in healthcare and financial scenarios. To fulfil
these security requirements, mechanisms are needed to gain assurance in the
platforms hosting these services.

One method for assessing a platform is attestation, part of the functionality
provided by Trusted Computing. This allows a remote party to find out the
exact software configuration being used. If all the software running at a service
is well known and trustworthy, then the user can potentially trust it. However,
web services use a great deal of complicated software, and little of it may be
considered trustworthy. Runtime attacks also remain possible, making remote
attestation an impractical solution [1].

The complexity of service middleware, and its position in the trusted com-
puting base (TCB) of a web service, is a significant part of the problem. Service
providers require the middleware to provide features such as load balancing and
monitoring, along with parsers for complex languages like SOAP. All the libraries
that implement these features are of little interest to the end user, but are still
part of the TCB and must be attested. This makes it impossible to guarantee
the integrity of the service, or the confidentiality of data sent to it, as it all relies
on untrustworthy middleware.

The solution we propose is to divide the web service middleware and logic onto
different platforms. The middleware platform is then free to implement function-
ality that the service provider cares about, but remains untrusted by the end user.
The integrity of the service application is guaranteedby the second platform, which
has a much smaller trusted computing base and is less vulnerable to runtime at-
tack. This makes the service more trustworthy and attestation more practical.
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1.1 Trusted Computing

Trusted computing is a paradigm developed by the Trusted Computing Group [2].
It aims to enforce trustworthy behaviour of computing platforms by securely
identifying all hardware and software that it uses. If a platform owner can find
out what software and hardware is in use, they should be able to recognise and
eliminate malware.

The technologies proposed by the TCG are centred around the Trusted Plat-
form Module (TPM). In a basic server implementation, the TPM is a chip
connected to the CPU. It provides isolated storage of RSA keys and Platform
Configuration Registers (PCRs). These PCRs can be used to hold integrity mea-
surements, in the form of 20 byte SHA-1 hash values. They can only be written
to in one way: through the extend command. This appends the current register
value to the supplied input, hashes it, and stores the result in the PCR. In order
to work out what individual inputs have been added to a PCR, a separate log
is kept. When this log is replayed, by rehashing every entry in order, the final
result should match the value in the PCR.

The limited functionality offered by the TPM can be used to record the boot
process. Starting from the BIOS, every piece of code is hashed and extended
(‘measured’) into a PCR by the preceding piece of code. This principle is known
as measure before load and must be followed by all applications. If so, no program
can be executed before being measured, and because the PCRs cannot be erased,
this means that no program can conceal its execution from the TPM. A platform
is said to support authenticated boot when it follows this process.

1.2 Remote Attestation

The TPM allows a platform to report integrity measurements through remote
attestation. When challenged, the TPM can create a signed copy of its PCRs.
This is used by a remote party to verify the platform’s measurement log. PCRs
are signed using a key held by the TPM, guaranteeing its confidentiality. This
Attestation Identity Key (AIK) is certified by an authority (a ‘Privacy CA’) [2].

The software running at the platform can be identified by matching the hash
values in the measurement log with reference data. This requires a list of ref-
erence integrity measurements (RIMs) contained within a Reference Manifest
Database [2].

1.3 Protecting Data and Keys

The TPM can be used to encrypt data and only allow decryption when PCRs
are in a predefined state. TPM RSA keys can be created so that they are bound
to PCR values through the CreateWrapKey command. The private half is then
always held securely in the TPM. When it needs to be used, a request (‘unbind’)
is made to apply the private key to the encrypted data. The TPM will only
complete the request when the PCRs are in the state defined upon key creation.
A credential for the bound key, certifying that the private-half of it is held in the
TPM and restricted to certain PCRs, can be generated (using an AIK) through
the TPM’s CertifyKey operation.
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1.4 Why Are Web Services Difficult to Measure and Attest?

Attesting a web service is difficult in practice. The amount of software to measure
is surprisingly large – in recent work [3], we found that a typical web service
made around 300 integrity measurements, and that, on average, 35 new RIMs
were required for updates every month. This is a potentially impractical quantity
of software to test and evaluate.

The large TCB is partly due to functional and interoperability requirements.
High-level communication protocols [4] used by services require complicated soft-
ware to process. Servers also have many sophisticated features dedicated to in-
ternal requirements such as auditing and management. These are important to
the service provider, but not the requester, and yet all must be reported in an
attestation. Most operating systems are also guilty of having a large code base,
and provide relatively weak isolation. This makes the system error-prone and
vulnerable to compromise. Attestation is therefore less valuable, as the chance
that a successful runtime attack has been performed is high. Minimizing the
trusted computing base appears to be essential.

One component to minimize is middleware. In our experiments, removing it
resulted in a 30% fewer integrity measurements [3]. The popular Glassfish ap-
plication server has around 300 modules (some optional) totalling nearly 100
megabytes of compressed bytecode. Furthermore, middleware is responsible for
parsing complex data structures and processing input, obvious targets for at-
tack. Removing it would also reduce the number of features that the operating
system has to support, potentially improving efforts to minimize the OS runtime
footprint. We believe that this makes a compelling case for removing middleware
from the trusted platform. However, middleware provides essential functionality,
and it cannot be removed altogether. The next section discusses how to move it
away from the TCB without losing any functionality.

2 Removing Web Service Middleware from the Trusted
Computing Base

We propose that web services can be deployed so that they support heavyweight
protocols and features but have a small TCB. This is achieved by divided them
into two components, one trusted and one not. The untrusted component acts
as a proxy, and is the perceived endpoint for all web service interactions. It
communicates with the outside world through SOAP and XML and performs
management functions such as load balancing and auditing. The trusted back-
end server provides all the real functionality and logic. In a data processing
scenario, the back-end platform could either be a data store, or be responsible
for contacting it and forming queries. Communication between the front and
back-end is through a simple protocol that requires a less-complex parser, such
as Java RMI. Figure 1 illustrates this system.

The advantage of this architecture is that the back-end can attest to a sim-
ple configuration. It can also use a minimal operating system, perhaps even a
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Fig. 1. The split service architecture. Lines show message flow.

bytecode processor. Furthermore, it only needs to parse input from one protocol,
and XML does not need to be interpreted. Attestation should therefore be ap-
propriate. Of course, the back-end server has been intentionally designed to not
require a web service stack, and therefore attestations must be proxied by the
front-end. The rest of this section discusses additional steps and modifications
required to realise this proposal.

2.1 Establishing a Secure Channel

Assuming the back-end service is trusted, the next step is to guarantee a secure
channel. This is a challenge, as the front-end is proxying all traffic. A platform
in the middle attack [5] must be avoided, so that the platform that originally
attested is the same one that we are then sending requests to. Solutions using
transport-level encryption have been discussed before [6], but in our scenario
we cannot use TLS with a key held on the back-end, as this would prevent the
front-end platform from translating and forwarding requests. Instead, we use
message-level cryptography [7]. To do this, the back-end can publish a public
key, along with a certificate generated by the TPM’s CertifyKey command. If
the same AIK were used for the attestation process, this establishes that the key
belongs to the attested platform. Furthermore, if the key is bound to known-good
PCR values, this key can guarantee platform state.

An initial request for a service’s public key can follow the WS-Trust specifica-
tion. The protocol below shows the user (U), credential repository (C), service
(S), service public key (Spub) and service AIK (Saik). Line 1 is a request for a
service’s public, bound TPM key, and line 2 is the response, containing a service
key and TPM credential, signed by service’s AIK. These steps must be performed
in a transport session with a known, trustworthy credential repository:

U → C : RequestSecurityToken, S (1)

C → U : Spub , Saik , {Spub, TPM CertifyInfo}Saik (2)

Service requesters can use this public key to encrypt messages without fear of
loss of confidentiality. Furthermore, any reply message generated by the endpoint
can be signed, proving the source of the reply. We propose the following protocol,
with the service front- and back- ends denoted as F and S respectively, using
an encrypted session key:
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U → F : Method( {nonceU , arg1, arg2...}K ), {K}Spub (SOAP) (3)

F → S : Method( {nonceU , arg1, arg2...}K ), {K}Spub (RMI) (4)

S → F : Reply, HMAC(nonceU , reply )Spub (RMI) (5)

F → U : Reply, HMAC(nonceU , reply )Spub (SOAP) (6)

Line 3 is the SOAP method invocation with session key K applied to all field,
which is then translated and forwarded via RMI in line 4. The reply is generated
in line 5 and translated again to conform to WS standards in line 6. If the TPM
key Spriv is not bound to PCR values, then an additional WS-Attestation step
is required first, which also must be proxied by the front-end.

2.2 Preserving Integrity and Confidentiality

The messages described in lines 3 to 6 of Section 2.1 is simplified in terms of
signatures and encryption. Decryption of incoming messages, and signing of the
result, must be performed on the back-end, as only it has access to the Spriv key.
However, this means that only individual fields can be encrypted, not complex
XML structures, as the back-end cannot process XML. An attacker now has the
opportunity to re-order fields, as nothing binds the content of the field to its
location in the document. If the encryption is just of the field itself, then it will
also be vulnerable to replay, as no freshness information is present. The same is
true for the signed response message from the back-end platform.

To provide both freshness and structure to the elements, without breaking
web service standards, fields must be added to the internal methods and the
response. The response should contain a hash of the original input, result and a
nonce. To avoid the endpoint from needing to process XML, we suggest that a
set of identifiers be included internally, linking the expected XML structure to
the internal fields. The identifier-result structure is then signed by the endpoint,
and included in the response. The example in part 4 of Figure 2 demonstrates
this. The verifying party can then compare the request and result against the
arguments and result the endpoint believes it has used and computed. We have
used XPATHS as IDs, noting that these should be predictable and easy for the
verifier to process.

3 Security Analysis

Demchenko et al. [8] and Bhalla and Kazerooni [9] identify threats to XML
services. These include misuse of user credentials, unencrypted SOAP messages,
maliciously formed input, XML parsers exploits, WSDL enumeration, poor site
configuration and error handling. Our proposals reduce the impact of some of
these issues, in comparison to a standard Web Service endpoint that also uses
message-level encryption.

Threats from SOAP parsers are eliminated in this architecture, as they can
only compromise the front-end. These threats are significant as several attacks
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2) Encrypted SOAP Request
<soap:Header>
<wsse:Security><xenc:EncryptedKey>

<ds:KeyInfo ... >
<ds:KeyName>PubKey X</ds:KeyName>

    </ds:KeyInfo>
<CipherData><CipherValue>

[Encrypted Symm Key]
</CipherValue></CipherData>
<ReferenceList>

<DataReference URI='#content'/> 
<DataReference URI='#name'/>

</ReferenceList>
<CarriedKeyName>EndpointKey
</CarriedKeyName>

</xenc:EncryptedKey></wsse:Security>
</soap:Header>
<soap:Body><m:Entry>
<m:from>
<xenc:EncryptedData Id="name">
<xenc:CipherData><xenc:CipherValue>

[Encrypted Name]
  </xenc:CipherValue></xenc:CipherData>

</xenc:EncryptedData>
</m:from>
<m:content>

<xenc:EncryptedData Id="content">
...[Encrypted Content]...

</xenc:EncryptedData>
</m:content>
<m:nonce>36829463846238</m:nonce>

</m:Entry></soap:Body>

1) Original SOAP Request
<soap:body ... >
<m:Entry>
<m:from>Joe Bloggs</m:from>
<m:content>...</m:content>
<m:nonce>36829463846238</m:nonce>

</m:Entry>
</soap:body>

3) RMI Request
response = endpoint.submit(

[encSymmKey],     // enc. session key
"Pub Key X",      // TPM key ID
[Enc Name],[Enc. Content], //fields
36829463846238 ); // nonce

4) ASN.1 style response structure
messageInfo MessageInfo ::= {

input {
encrypted-symm-key  [encSymmKey],
pub-key-id           Pub Key X ,
variables {

{ field-xpath  //m:Entry/m:from ,
field-value [Encrypted Name] },

{ field-xpath  //m:Entry/m:content 
field-value [Encrypted Content] },

{ field-xpath  //m:Entry/m:nonce ,
field-value 36829463846238 }},

result {
{ field-xpath  //m:Response/m:Success,

field-value  1 }}}

5) RMI Response
return new MessageResponse ( 

result,
messageInfo,
SHA1( messageInfo ), 
Sign( SHA1( messageInfo ) ) 
// signed with endpoint private key );

6) SOAP Response
<soap:Header> ...

<Signature ... >
<ds:Signature ... >
<ds:SignedInfo>
<ds:Reference URI="#MsgVerification">
<ds:DigestValue>[SHA(messageInfo)]
</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
[Sign( SHA1( messageInfo ) )]

</ds:SignatureValue>
</ds:Signature>

</Signature>
</soap:Header>
<soap:Body ... >

<m:Response>
<m:Success>1</m:Success>
<m:Verification id="MsgVerification">
[messageInfo]

</m:Verification>
</m:Response>

</soap:Body>

Fig. 2. Service request and response transformations

have been published on XML parsers1. Of course, vulnerabilities in the parser
used to communicate between front and back-end components would still have
an impact, but the protocol is less complex, and few vulnerabilities in Java
RMI (for example) have been published. Similarly, vulnerabilities in application
servers, such as Glassfish and Apache Axis 2, would have a much smaller impact
in our system.

Use of poorly-configured services can be avoided through use of remote at-
testation. This is true of any attestation-enabled platform, but our architecture
reduces the number of components to report upon, thus reducing complexity and
making it easier for a verifier to establish the properties required. Long-term cre-
dentials can also be stored safely using a TPM, reducing this vulnerability.

However, though the front-end service may be untrusted, it can still impact
availability, resulting in a denial of service attack. As we have only split the

1 For example, Secunia Advisories SA22333 and SA10398.
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service into two components, rather than increasing the amount of software, this
is no worse than before our modifications. The same is true of error handling.

4 Performance

The proposed architecture will have a performance overhead due to additional
RMI requests and TPM operations. Gray [10] provides a performance compari-
son of RMI and Web Services. His figures show that RMI invocations take around
1ms and are therefore an order of magnitude faster than most WS-Security en-
abled web services. We would therefore expect the additional RMI step to have
a negligible impact on round-trip time. Furthermore, should the front- and back-
end services be hosted on the same platform (such as in Figure 1) then we can
be even more optimistic.

The impact of using the TPM is more significant. For each message, the TPM
must decrypt a symmetric key using a key bound to the TPM, and then sign a
digest using another bound key. With an Infineon 1.2 TPM, these operations take
400ms each, addding 800ms to the round trip time. A faster alternative would
be to use the same session key repeatedly for the service, which would eliminate
subsequent unseal operation on messages received from the same client. The
session key could also be re-used for signing, meaning only one TPM operation
in total. The disadvantage to doing this is that the key is stored in unprotected
memory for a significant period of time. Further optimisation may be possible
with virtual TPMs, operating mostly in software.

5 Related Work

Wei et al. [11] split web service middleware into trusted and untrusted parts.
Sensitive information in incoming messages is intercepted by a ‘message splicer’
and only given to the trusted module. This is similar to our solution, but we take
the proposals further, allowing users to attest, rather than just hardening the
internal structure. Our proposals solve the problem of trusting the server-side
message splicer.

Similarly, Jiang et al. [12] mitigate the threat from malicious insiders by using
an IBM 4758 secure co-processor. This ‘guardian’ is responsible for some impor-
tant functions, and users can establish a secure session directly with it. Our
approach expands on this is two ways: allowing conformance with service stan-
dards and using a low-cost Trusted Platform Module. Furthermore, our system
is designed to minimise threats from both outside and insider attackers.

Watanabe et al. [4] have an alternative approach, separating the communica-
tions component - the ‘Secure Message Router’ - from the application itself. This
SMR is a trusted component. This is the opposite of our proposal, and focuses
on establishing guaranteed secure communications, rather than service integrity.
This might be a way to implement composite services, which our architecture
does not allow.



264 J. Lyle and A. Martin

6 Conclusion

We have shown that web service middleware is a significant limiting factor in
attestation and establishing trustworthiness. Our proposal is to remove it from
the trusted computing base of the service, solving both problems and increasing
resilience to runtime attack. The back-end platform can then be used to run
verified services with critical functionality. We have also outlined a method for
establishing a secure session without sacrificing web service standards. From
analysis of security benefits against performance overhead, we believe that this
architecture is worth considering for any web service with known, high security
requirements.
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Abstract. Modern Trusted Computing platforms offer the basic hard-
ware building blocks to allow effective enforcement of software integrity.
In this paper we present a practical software system architecture which
uses Intel’s late launch mechanism to boot a known-good configuration.
We restrict the access to data and execution of services to trusted plat-
form configurations, enforcing the integrity of contained applications as
specified by the platform operator. Further, we also describe a set of
operational procedures to allow flexible and dynamic configuration man-
agement. We present our prototype implementation which integrates well
with established Linux distributions.

1 Introduction

The concept of Trusted Computing extends the standard PC architecture with
trust anchors such as the Trusted Platform Module (TPM) [18] and CPU instruc-
tions [6] to dynamically switch into a trusted hardware state. These hardware
primitives can be used to determine the software configuration of a system.

In this short paper we present a practical software architecture which leverages
these mechanisms found in commodity hardware to restrict the execution of a
security critical software platform to trustworthy platform configurations. We
also describe a set of operational procedures which help us retain flexibility
in the face of configuration changes. Our implementation integrates well with
established Linux distributions.

The components presented here are a part of the hypervisor-layer in the
acTvSM virtualization platform we sketched in [14]. It further extends the es-
tablished trust to any commodity software.

Outline. The remainder of this paper is organized as follows: Section 2 provides
an introduction to Trusted Computing and Trusted Execution technologies as
well as related work. Section 3 presents our system platform architecture and
the process of booting it. We also discuss basic platform operations. Section 4
details the prototype implementation. The paper concludes in Section 5.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 265–272, 2010.
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2 Background

2.1 TCG’s Trusted Computing

Trusted Computing as it is available today is based on specifications of the Trusted
Computing Group (TCG). The core hardware component is the Trusted Platform
Module (TPM) [18]. Similarly to a smart card the TPM features tamper-resilient
cryptographic primitives, but is physically bound to its host device. The TPM
helps to guarantee the integrity of measurements of software components by offer-
ing a set of Platform Configuration Registers (PCRs), which can only be written
to via the one-way extend operation. PCRs are reset to defined values at platform
boot. A PCR with index i, i ≥ 0 in state t may then be extended with input x by
setting PCRt+1

i = SHA-1(PCRt
i||x). PCRs can be used to exactly document the

software executed on a machine by implementing the transitive trust model, where
each software component is responsible to measure the following component be-
fore invoking it. Ultimately, a chain of trust is established where the full Trusted
Computing Base (TCB) and configuration of the platform is mapped to PCR val-
ues. If such a PCR configuration fulfills the given security or policy requirements,
we refer to the system state as a trusted state.

The TPM can also bind data to the platform by encrypting it with a non-
migratable key, which never leaves the TPM’s protection. An extension to this is
sealing, where a key may only be used with a specific PCR configuration. Thus,
decryption of sealed data can be restricted to a trusted state of the platform.

2.2 Dynamic Switch to Trusted State

Modern platforms from AMD [1] and Intel [6] extend the basic TCG model of
a static chain-of-trust anchored in a hardware reboot. They provide the option
of a dynamic switch to a trusted system state. In this paper we focus on Intel’s
Trusted Execution Technology (TXT), which we build our implementation on.

A so-called late launch is initiated by the special Intel TXT CPU instruction
GETSEC[SENTER]. It stops all processing cores except one. The chipset locks all
memory to prevent outside modification by DMA devices and resets PCRs 17
to 22. A special Intel-provided and cryptographically signed Authenticated Code
Module (ACM) starts a fresh chain-of-trust after setting the platform into a
well-defined state. Subsequently, a Measured Launch Environment (MLE) [9] is
first measured and then executed. Piece-by-piece the MLE decides which system
resources to unlock and thus cautiously restores normal platform operation. The
ACM is also capable of enforcing specific Launch Control Policies (LCPs). Here,
the ACM measures the MLE and compares it with the trusted LCP stored in the
non-volatile memory of the TPM. Changes to the LCP can only be authorized
by the TPM owner. Any other, not authorized software configuration, is not
allowed to continue; the ACM will reset the platform.

A late launch is the only way on a TXT platform to initialize the TPM PCR
registers 17-22 to all zeros (0x00), as opposed to a standard platform power-on
or reboot (0xFF). This allows to seal data to a chain-of-trust which must be
anchored in a TXT launch sequence.
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2.3 Related Work

An early example of extending the trust from dedicated hardware security mod-
ules into applications is given in the Dyad System [19]. AEGIS [2] is an early
mechanism to support secure boot on PC platforms assuming a trusted BIOS.
The Enforcer platform [11] and IBM’s Integrity Measurement Architecture [16]
show how to integrate TCG-style static measurements into the Linux environ-
ment. While this collects precise information, it does not always allow to identify
a limited number of possibly good configurations. Instead of individual files, file
system images have been used to transport user software and data with Soul-
Pads [3] or Secure Virtual Disk Images in grid services [5] between platforms.

Recently, x86 architectures have been extended to provide the option of a
dynamic switch to a trusted system state. BIND [17] uses AMD’s Secure Virtual
Machine (SVM) [1] protection features to collect fine grained measurements on
both input and the code modules that operate on it so that the computation
results can be attested to. Flicker [12] isolates sensitive code by halting the main
OS, switching into AMD SVM, and executing with a minimal TCB small, short-
lived pieces of application logic (PALs). PALs may use the TPM to document
their execution and handle results. OSLO [10] is an OS loader module which
implements a dynamic switch to a measured state in the OS bootchain on AMD
SVM systems, whereas tboot (Trusted Boot) [8] is a loader which achieves this
on Intel TXT platforms. LaLa [4] performs a late launch from an instant-on
application to boot a fully fledged OS in the background.

3 Dynamically Enforcing the Integrity of a Platform

We believe that the recent advances allow to turn commodity, off-the-shelf PC
systems into versatile platforms which are able to enforce the integrity of soft-
ware services. Our architecture is built for flexible operation and allows for the
practical protection of commodity software. First, we present the security goals
we want to achieve and the leitmotifs we want our architecture to follow.

The main objective of our platform is to guarantee that well-defined software
configurations are executed. We can achieve this by constructing a chain-of-
trust by measuring all components into PCRs. For a deterministic result the
measurements must be stable, the number of measurements finite, and their
order constant. We believe that for measurements a file-system granularity is
sufficient. Of course, also all components involved earlier in the boot process
must be accounted for. TXT eases this task, as for instance the BIOS is no
longer a link of the chain of trust. We calculate the expected PCR values a
priori and can then seal data and the desired executable code to this future
trusted state.

Of course, a security sensitive application and its working data should never be
stored on platform storage media in plaintext. Instead, we encrypt the file system
by default, and only when the platform attains the good running configuration
defined by the system administrator, access and modifications are possible. As
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unsealing can only occur at runtime, this prevents off-line attacks as well as
attacks by running maliciously modified software.

We believe that appropriate usability is needed for practical applications and
so we target professional system administrators. We do not want to restrict
the choice of software the platform administrator may execute. Our platform
should allow to install any application and define it as trusted. The overhead to
maintain configuration integrity and to perform updates should be reasonable.
Mechanisms to back-up applications and data must exist.

3.1 Integrity Guaranteeing Boot Process

To initialize the system to a predefined configuration, close cooperation of hard-
ware and software is required. We use Intel TXT as physical platform. SINIT is
Intel’s implementation of an ACM, while tboot is Intel’s prototype implemen-
tation of an MLE (see Section 2.2). Upon power-on, the platform performs a
conventional boot, but does not start an operating system; instead, the MLE
is prepared and a TXT late launch is performed. The precise, desired software
configuration is specified by the administrator in the form of policies stored in
the TPM. The LCP is evaluated by SINIT and specifies which MLE is allowed
to be executed. tboot’s policy is called Verified Launch Policy (VLP), it con-
tains known-good values for measurements of the following Linux kernel and its
initial ramdisk file system initramfs. A secure boot is performed into a hard-
ware guaranteed state and the chain of trust is extended over the kernel and
initramfs. If the measurements do not match the expected values provided by
the VLP, tboot will shut the platform down.

Our start-up code in the initramfs unseals the cryptographic keys needed
to mount the platform’s file system It also ensures an unbroken chain-of-trust;
it measures the filesystem image into a PCR before it is mounted.

To support deterministic PCR measurements, the platform’s file system must
remain read-only. An overlaid temporary file system provides the needed read-
write storage during platform operation. These temporary changes do not survive
a reboot of the platform - except by explicit patching or system update (see
Section 3.2). This ensures robustness of the system platform image to malicious
modifications.

The system platform is a customized Linux operating system. Note that the
exact configuration of the software image can be configured freely to the needs
of the applications and services it runs.

3.2 Operating the Platform

The basic platform operations which allow the initialization and long-term main-
tenance of our setup begin with the Installation. In order to start from an initial
trusted state the software needs to be distributed on a trusted medium. This
can be ensured by read-only media such as CD-ROM. Once booted from it, the
installation routine wipes the system’s harddisk(s) and installs a default con-
figuration of the platform. Immediately, the measurement values for tboot, the
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platform’s filesystem, kernel and initial ramdisk are calculated and appropri-
ate policies are stored in the TPM. Already in this early stage, the platform is
ready to do its first reboot into trusted mode. After a successful late launch, the
platform runs in Update Mode, where it waits for maintenance commands.

In Update Mode the platform is capable of upgrading software packages. At
the end of this process, the same procedure is triggered that was run during in-
stallation: The fresh system platform image is assembled, compressed and linked
in the bootloader menu. As all file system decryption keys are sealed to the
old platform state, they must be resealed to the new one. If the kernel or its
initramfs was updated, a new VLP is written into the TPM. This also applies
to a tboot update, where a new LCP needs to be written.

The full update procedure outlined in the previous paragraph may be cumber-
some for minor configuration changes such as a change of a static IP address in
some configuration file. Instead, a “patch” facility allows the remote administra-
tor to provide a patch file on a separate partition. The authenticity of the patch is
guaranteed by a cryptographic signature by administrator - the certificate to do
so is contained within the platform image. Upon next full system update these
patches are automatically integrated into the system. This mechanism allows
for easy distribution of pre-configured system platform images in homogeneous
datacenters, where machines only vary in small configuration details.

Administrators can reboot the platform with the functions provided by Intel
Active Management Technology (AMT) [7] and also access the platform via SSH.
Remember that a policy update process requires the TPM owner password.
Before the administrator provides this password, she a) must confirm that she
is connected to the right platform and b) that the platform is in the correct
Update Mode configuration. The first constraint demands that the client must
verify that the server always presents the same trusted public key. Second, we
seal the SSH daemon’s private key to Update Mode. If no external log-in attempt
is received, the platform switches into Application Mode. This is performed as
follows. The SSH daemon is stopped and its private key is removed, and the
PCRs are extented to document the state transition and prevent further access
to the TPM sealed blobs. Finally, applications are started.

4 Implementation

Obscuring implementation details does not aid the design of cryptographic sys-
tems. Only the ability to check the blueprints of a platform gives interested
parties the opportunity to evaluate and eventually certify the security level of
the architecture. To allow evaluation from the widest possible audience, we base
our platform on open-source components. In theory, any Linux distribution can
be customized for our architecture. In practise, a large number of patches and
changes was needed to assemble a working prototype. We use packages from the
x86 64 Debian Linux lenny1 release for the host platform. To support current
Trusted Computing hardware we need to add selected packages from the Debian
1 http://www.debian.org/releases/lenny/

http://www.debian.org/releases/lenny/
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Fig. 1. The writeable platform root file system is merged at boot time from a read-only
static image and an in-memory file system. An authentic configuration patch for minor
adjustments is integrated.

testing tree. Scripts for installation, initial ramdisk management and rebuilding
of the system image are customized to our needs. The system bootstrap scripts
for creation of distributable and bootable CDs for initial installation are taken
from GRML Linux2, a distribution specialized for system administrators.

Bootloading is accomplished by using a standard bootloader (GRUB3) along
with SINIT and tboot [8] to perform a late launch. 64-bit ports of the tools
from IBM’s TPM-utils [15] add the PCR extend and unsealing capabilities in
the initial ramdisk environment. The more complex operations such as sealing,
unsealing or the policy creation and storing in TPM NV-RAM are performed by
custom scripts using jTpmTools and jTSS from IAIK’s “Trusted Computing for
Java“ project [13]. Computers from the HP dc7900 series serve as our reference
hardware platform.

Our platform devides the system harddisk into two partitions. The first par-
tition contains a read-write filesystem hosting all the components necessary for
the platform boot process. This encompasses the bootloader, tboot, SINIT and
Linux kernel plus associated initramfs images. The remainder of the harddisk
storage is allocated as a Logical Volume Manager (LVM)4 dynamically managed
space which is assigned to a single LVM volume group. The individual volumes
are transparently encrypted by the Linux kernel’s dm-crypt subsystem, using
Linux Unified Key Setup (LUKS) for key management.

2 http://grml.org/
3 http://www.gnu.org/software/grub/
4 http://sourceware.org/lvm2/

http://grml.org/
http://www.gnu.org/software/grub/
http://sourceware.org/lvm2/
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As a running Linux system requires some writable file system, the root ”/“
file system of the platform is assembled from multiple layers via aufs5. Figure 1
illustrates this process which is performed at boot time. The logical volume
BASELV contains a compressed read-only squashfs image with binaries and
configuration files of the system platform. The boot code in the initramfs mea-
sures the logical volume and merges via aufs this squashfs with an in-memory
tmpfs to provide writable, but ephemeral storage. In addition, we copy adminis-
trator signed configuration patches, stored on the unencrypted filesystem, after
validation of the signature. Thus, we create a read-write file system which is
based on authenticated images with robust and deterministic hash values. In
Update Mode, we can even (re)create these images and pre-calculate their ex-
pected measurement values in situ.

5 Conclusion

In this paper we present a practical architecture which uses Trusted Computing
to offer integrity guarantees to a software platform, the applications and the
services it hosts. We enforce any trusted configuration the administrator defined
or updated in situ. To overcome the challenge of complexity, we take advantage
of Intel TXT to shorten the chain-of-trust and measure at file system granularity.
We empower administrators to easily customize and update the platform offered.
Our prototype implementation suggests that commodity Linux can be adapted
this way.
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Abstract. In this paper, we proposed an improved memory integrity
protection scheme to provide real-time protection service. In addition, we
for the first time propose a provably secure scheme that takes advantage
of the “error inheritance” property, which can minimize the costly check
process that is normally required before every access. The security of the
proposed scheme is rigorously analyzed and the performance is measured.
The peak performance of the new scheme can be improved by up to a
factor of 5 over a previously proposed scheme based on Merkle Trees.

1 Introduction

Integrity is a necessary condition for an entity to be trusted. A compromise of
memory integrity can cause a wide range of problems ranging from cheating in
games to financial fraud. Many memory integrity protection schemes have been
proposed in the past [2,3,6]. However, the efficiency of these schemes is still not
good enough for practical applications. The main problem is the overhead in-
troduced by the cryptographic functions. Furthermore, what differentiates the
memory integrity protection problem from other security applications that re-
quire integrity checks are the so-called replay attacks. Extra measures must be
taken to prevent replay attacks.

The scheme we propose in this paper is based on an earlier memory authen-
tication scheme introduced in [6]. For easy reference we name this scheme as
the HHS scheme in the rest of the paper. In this paper, we proposed an im-
provement over the HHS scheme which reduces the overhead while retaining the
security level. We also propose taking advantage of the so-called “error inheri-
tance” property which allows our scheme to detect earlier attacks without the
need to check the integrity before each individual memory access. This feature
brings real-time memory integrity protection one step closer to practical reality.

2 Objective

Before introducing our scheme, we will clarify the attacker model and outline
some assumptions.
� This work is supported in part by a gift from Intel Corperation.
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The memory in our model is divided into two parts:

– Protected memory. This part of memory is protected by higher level of
trust service providers.1. It is assumed to be secure in this paper. The pro-
tected memory is used to store critical data such as the code, the root of the
Merkle Tree and the keys. It can also provide a secure cache for the schemes.
Our goal is to make this piece of memory as small as possible.

– Unprotected memory. This part of memory will be protected by our
scheme. The tags, seeds and randomizers used in our protection scheme
will also be stored here. Any ordinary process that want to use our integrity
protection service must call the Read and Update (Write) functions provided
by our scheme to access the memory.

The attacker in our model can perform any operations that an authorized user
can and he can also view and modify the data in the memory directly at any
time. Here ’directly’ means that the attacker can also access the memory without
the participation of the protection scheme. The goal of the attacker is to modify
the data directly without being detected by our scheme. The depiction of our
model is presented in Figure 1.

Protected
Memory

Unprotected
Memory

Consumption of
Unprotected

Memory

Critical Data

Codes

DATA

Alice
(Victim)

Eve
(Attacker)

Read; Update

Direct Access

Fig. 1. Outline of the attack model
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+

Fig. 2. Outline of the new scheme

The goal of our scheme is to provide real-time integrity protection of the
unprotected memory. When an attacker has once modified the data directly in
the unprotected memory, the scheme should be able to detect this violation with
a high probability even after a few other operations (some Read and Update calls
from the victim process, etc.) Even if the attacker reverses his modification after
the victim process has accessed that piece of data at least once (otherwise the
attack will be meaningless), this modification should also be detectable by the
scheme.

In addition, we assume that the functions of the scheme are treated as atomic
such that the attacker cannot perform attacks while the authentication scheme
is executing. Also, if an attack is detected by the scheme, an alarm is raised
1 Such as the ARM TrustZone or trusted OS extensions. Some Intel or AMD CPUs

provide instructions such as GETSEC[SENTER] on Intel TXT to help performing a
measured launch of the operation system with the help of the TPM.
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and all the keys are flushed so that the attacker cannot exploit the scheme by
repeating the attacks [9].

3 The HHS Scheme

In this section, we will introduce the HHS scheme very briefly. A more detailed
introduction can be found in the full version of this paper and it is fully discussed
in [6].

The HHS scheme is a combination of the Merkle Tree and the universal hash
function family. To prevent replay attacks, the HHS scheme chains the tags
together using a Merkle Tree structure [1]. The universal hash function family is a
collection of functions that map data to digests. The HHS scheme uses a universal
hash function family NH which was proposed for use in the UMAC scheme [4].
It exhibits excellent performance in software [5]. Also, Toeplitz technique [7] [8]
is used to strengthen the security.

Tags used in the Merkle tree are generated by adding masks to the hash re-
sults. The masks are generated by encrypting a random seed using a block cipher.
For this task the AES block cipher is employed. The seeds are randomly gener-
ated and saved in the unprotected memory in plaintext alongside the produced
tags. This scheme is called the basic scheme in [6]. We will refer this scheme as
the HHS Basic Scheme later.

As also mentioned in [6], caches and parallelism can be used to improve the
efficiency. In this paper, our new scheme will also take advantage of the caches
and the parallelism and improve the efficiency even greater.

4 Proposed Improvements

In this part, some other techniques that can help improve the efficiency of the
scheme will be discussed. They can work together to reduce the overhead to a
lower level.

4.1 Error Inheritance

One problem of the HHS scheme, as well as other similar authentication schemes
is that the data need a check before every access. For example, if the data is
not checked before every access, the attacker can reverse the modification after
the read operation however before the next check. In this way, the system will
never be able to detect that it has read forged data. However, we can use the
error inheritance property to eliminate this check. This property was firstly
mentioned in [6] but not discussed in detail. In this paper, we will discuss the
error inheritance property and make use of this property to improve the scheme.
With this property, any injected error that occurs within the execution will carry
forward to the future values of the tag. Even if the tags are checked after a large
number of cycles it is still possible to detect the injection of an error at one point
in time with high probability. Thus, we only need a check before every critical
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operations instead of before every access. However, if the attacker can control
or predict the data, he can compromise the protection scheme. Details of this
attack can be found in the full version.

To solve this problem, we keep random masks called randomizers for every
piece of data. The randomizers can be generated either by a hardware random
source or a PRNG. For each update of the Merkle Tree, instead of the data,
the sum of the data and the corresponding randomizer is treated as the leaf of
the tree. In addition, the randomizers will also change for each update. If the
randomizers are changing randomly, the sum of the randomizer and the data
should be unpredictable. In this way, the error inheritance property works.

The protection scheme introduced in [3] also eliminate the checks before each
access by using multiset hashing to ensure that data retrieved is same as data
saved last time. However, our scheme integrates such protection into the Merkle
Tree and the NH we used can reach a higher speed.

4.2 Better Parallelism

Higher levels of the Merkle Tree depend on the results of lower levels. This
dependence forms a slow path as the tree grows large and other costly compu-
tations are pre-computed. In our scheme, the seed instead of the tags serve as
the data for the higher level of the tree. Since the seeds are randomly generated,
each level of the Merkle Tree can start updating without waiting for the result
of the lower level. Thus parallel computation of the Merkle Tree can be em-
ployed. Furthermore, the operations related to the randomizers can be executed
in parallel.

4.3 An Alternative Caching Scheme

In the HHS scheme, the masks are cached in a secure cache. In this paper, we
make it better by caching the hash result. In this case, no costly AES operation
is needed as long as the hash result does not leave the cache. In addition, the
incremental update of the hash result and the encryption by the one-time-pad
mask are both achieved by addition. Thus, one can actually update the tags
without even unmasking the tags. It is not secure to perform such operations
in the HHS scheme. However, with a hash cache, this operation becomes secure
because the attacker can neither view nor change the tags in the caches. This
property can help the scheme to achieve a good peak performance by delaying
the costly AES operations to idle times.

5 Putting It All Together

By combining the methods introduced above we can achieve great performance
improvements. First of all, the hash results need to be cached to improve the
efficiency of the scheme and the new masks are pre-computed or computed in
parallel. Let us assume that the masks can be prepared in parallel. The tags of
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the higher level of the Merkle Tree are calculated by hashing the seeds of the
lower level and caches are also used to further improve the efficiency.

The data needs to be randomized to keep the error inheritance property.
However, randomizers for every single byte of data will introduce a 100 percent
overhead on storing space. The solution is only using randomizers for the fre-
quently updated data. Each data block is associated with a randomizer when
entering the cache, the randomizer is only assigned when the tag of that block
of data is loaded into the cache. Though a large amount of computation has
to be done when there is a cache miss, including a check of the data and the
randomizers, the average speed will still be fast with a high cache hit rate.

The higher levels of the Merkle Tree are built similarly using the seeds as data.
They do not need such randomizers to maintain the error inheritance property
because the seeds are essentially random values which are unpredictable. The
resulting scheme is depicted in Figure 2. The detailed algorithm of the scheme
may be found in the full version.

6 Security Analysis

The security analysis of the HHS basic scheme is provided in [6]. Here we will
discuss the security implications of the proposed improvements.

6.1 Analysis for the Tree of Seeds

In the HHS scheme the Merkle Tree is formed by hashing tags. In the proposed
modification the Merkle Tree is formed by seeds.

Theorem 1. Let A be any adversary who has access to q tuples (M1
i , M2

i , Ri, τi),
where q is a polynomial in w. Here we have τi = NHK1(M1

i )|NHK2(M2
i ) +

AESKe(Ri) where the addition is computed modulo 22w separately on each of
the two parts of the AESKe(Ri), | is the string concatenation operator, and
K1, K2, M

1
i , M2

i ∈ {0, 1}2w such that K2 is the shifted version of K1. Ke, Ri, τi ∈
{0, 1}k where we have set k = 4w. For such an adversary we define PA to be the
probability of A finding M1, M2 and τ where M1 �= M1

j and M2 �= M2
j such that

τ = NHK1(M1)|NHK2(M2) + AESKe(R) and R = Rj for some j ∈ [1, . . . , q].
Given the above, PA is bounded by PA ≤ q(2−2w + AdvAES

A (4w))

Proof is omitted in this short version. It can be found in the full version of this
paper.

6.2 Analysis of Error Inheritance

If the attacker targets the masked hash result, the security level will rely on the
strength of AES as shown in the previous section. Alternatively, the attacker may
attack the incremental hash process. For an attacker to successfully compromise
the incremental update from M to M ′′ by changing the M to M ′, he needs to
find some valid M ′′′ so thatNH(M ′′′) − NH(M) = NH(M ′′) − NH(M ′).
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Theorem 2. Let A be any attacker to the incremental update. With a suc-
cessful attack A will have: NHK1(M1

1 )|NHK2(M2
1 ) − NHK1(M1

2 )|NHK21(M2
2 ) =

NHK1(R1)|NHK2(R2)−NHK1(M1
3 )|NHK2(M2

3 ) where the addition is done mod-
ulo 22w separately on each of the two parts, | is the string concatenation opera-
tor, and K1, K2, M

1
i , M2

i , R1, R2 ∈ {0, 1}2w such that K2 is the shifted version
of K1. R1, R2 are random numbers being generated after M1

2 , M2
2 , M1

3 , M2
3 are

chosen. For such an adversary we define PA to be the probability of A finding
M1

1 , M2
1 , M1

2 , M2
2 , M1

3 , M2
3 where M1

2 �= M1
3 and M2

2 �= M2
3 such that the above

equation is satisfied. Given the above, PA is bounded by PA ≤ 2−2w.

Proof is omitted in this short version. It can be found in the full version of this
paper.

6.3 Birthday Attacks

The tag in our scheme is computed by adding the mask to the hash result. To
perform a birthday attack on our scheme. The attacker may either try to find
any two messages that map to the same hash result or try to find two messages
that map to the same tag. If the attacker chooses to attack the hash result, since
the hash result is protected by one-time-pad, the attacker cannot even check for
a collision. In the case that the attacker want to find a collision over the tags, the
birthday attack applies. However, the collision probability will be no larger than
the hash function. Thus the birthday attack will not provide a more efficient
way to compromise the scheme than trying to find collisions of the NH directly.

7 Performance

7.1 Performance Analysis

Since this is a short paper, we will only give out the results. The derivation can
be found in the full version. The speed of the outlined schemes when caches
are employed are calculated and listed in Table 1. The space demands is listed
in Table 3. We can see clearly from the tables a significant peak performance
improvement in the scheme with randomizers. However, the unprotected memory
needed for the scheme with randomizers is huge due to the extra demand for
storing randomizers. However, in practice the cache will be much smaller in
practice(consider 2MB CPU L2 cache for GB s of memory) than our assumption.
If only one percent of the hash results will be cached instead of twenty percent in
the derivation, the unprotected memory demand will drop significantly to about
240 MB.

The estimation for the basic scheme and SHA-1 based Merkle Tree is also
present in Tables 2 and 3 for comparison. Note from the tables that on one hand
the SHA-1 based scheme has a low unprotected memory requirement and an
almost negligible protected memory requirement. On the other hand, it is much
slower than our scheme.
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Table 1. Speed Comparison (cycles)

Full HHS Scheme Using hash cache Scheme with randomizers
l tcheck&up tcheck tpeak

check&up tcheck&up tcheck tpeak
check&up tcheck&up tcheck tpeak

check&up

2 743155 889938 741455 890320 889939 741455 446489 1483102 400
3 36068 40862 32768 41301 40862 32768 23584 67077 400
4 11789 8835 6889 9284 8835 6889 6530 14346 400
5 9202 3616 2702 4068 3616 2702 3712 5778 400

Table 2. Speed Comparison II (cycles)

SHA-1 Basic Scheme Scheme with randomizers
l tcheck&up tcheck tpeak

check&up tcheck&up tcheck tpeak
check&up tcheck&up tcheck tpeak

check&up

2 7034100 7034100 7034100 1485378 1483870 1485378 446489 1483102 400
3 431200 431200 431200 103140 100224 103140 23584 67077 400
4 116200 116200 116200 34758 30434 34758 6530 14346 400
5 55700 55700 55700 23084 17352 23084 3712 5778 400

Table 3. Space Demand (MB if not specified)

SHA-1 Basic Scheme Full HHS Scheme Using hash cache With randomizers
l Mp Mu Mp Mu Mp Mu Mp Mu Mp Mu

2 20 B 0.3 35.4 KB 0.71 0.42 0.71 0.42 0.71 0.50 819.9
3 20 B 7.2 15.7 KB 16.0 1.62 16.0 1.62 16.0 3.22 835.2
4 20 B 35.8 3.32 KB 76.8 7.69 76.8 7.69 76.8 15.4 896.0
5 20 B 94.6 1.32 KB 198.7 19.9 198.7 19.9 198.7 39.7 1017.9

7.2 Implementation Results

To evaluate the performance we implemented the proposed schemes on an Intel
Core 2 machine with a processor speed of 1.67 G Hz. We developed a simple two
level Merkle Tree with combinations of the improvements we proposed. The size
of memory to be protected was 32KB. In our experiments, we used a block size
of 1KB and a tag size of 256-bit (32B). The cache size is four tags and AES are
computed in parallel. We also simulated the HHS Basic Scheme and a SHA-1
based Merkle Tree for comparison.

To evaluate the performance of the schemes in different situations, we mea-
sure the speed of our scheme with different cache hit rates. Figure 3 shows the
overhead in cycles of the final scheme, the scheme with a hash cache, the scheme
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with a mask cache, the HHS basic scheme and the SHA-1 based Merkle Tree.
For each scheme, the speed of an Update, a Check and the practical cases (an
Update for the new scheme; a Check followed by an Update for other schemes) is
provided. As shown in the figure, the scheme with randomizers performs better
in the practical cases.

We also measure the average case performance for different cache hit rates.
This is achieved by letting the application access memory locations every several
words. When this stride, i.e. the number of words, grows the cache efficiency will
get worse. Figure 4 shows the performance of each scheme vs. this stride. We
can see clearly from the figure that the performance of the new schemes depends
heavily on the cache hit rate. However, in most practical cases such as the RAM
integrated in a PC, the hit rate should be quite satisfactory considering the CPU
cache hit rate.

8 Conclusion and Future Work

In this work we proposed a number of improvements for the dynamic memory
protection scheme proposed in [6]. The new scheme can achieve better perfor-
mance via more efficient caches and better use of parallelism as well as the
error inheritance property. When the proposed techniques are simultaneously
implemented, the overall performance can be improved significantly. Our imple-
mentations show that the peak speed is increased by up to a factor of 5 over
the scheme proposed in [6], at the expense of more protected and unprotected
memory used to maintain the caches.

We set the integration of the proposed memory integrity protection scheme
in a real life application as future work.
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Abstract. Practical software hardening schemes, as well as practical
encryption schemes, e.g., AES, are heuristic and do not rely on provable
security. One technique to enhance security is robust combiners. An algo-
rithm C is a robust combiner for specification S, e.g., privacy, if for any
two implementations X and Y , of a cryptographic scheme, the combined
scheme C(X, Y ) satisfies S provided either X or Y satisfy S.

We present the first robust combiners for software hardening, specif-
ically for White-Box Remote Program Execution (WBRPE) [10]. WBRPE
is a software hardening technique that is employed to protect execution
of programs in remote, hostile environment. WBRPE provides a software
only platform allowing secure execution of programs on untrusted, re-
mote hosts, ensuring privacy of the program, and of the inputs to the
program, as well as privacy and integrity of the result of the computation.

Robust combiners are particularly important for software hardening,
where there is no standard whose security is established. In addition,
robust combiners for software hardening are interesting from software
engineering perspective since they introduce new techniques of reductions
and code manipulation.

Keywords: White-box security, software hardening, robust combiners,
cryptographic protocols.

1 Introduction

Many applications rely on secure execution of programs in untrusted, potentially
hostile, environments. White-box security, refers to ensuring security of programs
running in such untrusted environments. Over the last two decades there is a
growing interest in white-box security for distributed network applications, e.g.,
on-line software distribution and licensing, mobile agents, grid computing.

In white-box security the software is at full control of the platform execut-
ing the software. The originator loses all control over her software, which is
completely exposed to the hosting environment, and the entity controlling the
execution environment obtains full access to the program, and can observe and
manipulate the execution, code and data. White box security stands in contrast
to traditional cryptography, which assumes a trusted platform, i.e., a black-box,
on which secrets, e.g., private keys, can be stored. In black-box security all
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the computations are performed inside a trusted black-box, and secrets (keys)
never leave its boundaries. Attackers can only observe the input/output be-
haviour, but cannot access the code or data, or observe the execution inside the
black-box.

Although provably secure software hardening techniques exist for many ap-
plications, e.g., [3], they are highly inefficient for practical applications, and due
to efficiency considerations, software hardening techniques employed in practice
do not have a proof of security. Heuristic implementations, e.g., obfuscation (see
[4, 5]), are a typical choice in practice, and often implementations gain reason-
able security reputation as a result of failed efforts to cryptanalyse them, and
as a result of build-break-fix1 paradigm. Same approach is also taken in black-
box cryptography, e.g., instead of implementing schemes with provable security,
cryptanalysis secure standards, such as AES [6], are employed, resulting in effi-
cient and practical implementations.

When security of the cryptographic primitive is not proven, robust combiner
is a safe choice, to ensure that the overall security of the cryptosystem will be
as that of the most secure underlying primitive. In this work we focus on robust
combiners for software hardening techniques, and present a robust combiner for
White-Box Remote Program Execution (WBRPE) schemes, [10] (see Section 2).
The authors suggest to apply a build-break-fix cycle to produce efficient, heuris-
tic WBRPE constructions. This process may result in multiple, incomparable
candidate practical and efficient schemes. A robust combiner can combine such
candidate schemes, and assure security provided at least one of the candidates
is secure. Our approach and constructions may constitute a methodology for
future heuristic white-box primitives. Robust combiners ensure that the scheme
is at least as secure as the stronger one of the underlying candidates. Robust
combiners are employed for practical constructions to provide security when the
security of the underlying primitives is not known, e.g., the primitive is believed
to be secure due to failed crypt-analysis. Robust combiners are especially im-
portant in white-box security, where mostly heuristic or cryptanalysis secure
solutions are employed, since provably secure solutions are inefficient for practi-
cal purposes.

1.1 White Box Remote Program Execution (WBRPE)

In Remote Program Execution, programs are sent by a local host (a.k.a. the orig-
inator) for execution on a remote host, and possibly use some data available to
the remote host. The local and the remote hosts may be with conflicting inter-
ests, therefore the related security issues need to be dealt with. Those include
confidentiality and integrity of input programs supplied by the local host and
confidentiality of inputs provided by the remote host.

1 A software implementation is published for public scrutiny and undergoes extensive
efforts to cryptanalyse it. If a weakness is found, it is being fixed, and the software
is tested again for security. Eventually, a software implementation is believed to be
cryptanalysis secure, due to failed efforts to cryptanalyse it.
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We illustrate the WBRPE scheme in Figure 1. White-box remote program
execution (WBRPE) schemes are designed to ensure confidentiality of the input
program P and of the output (P (a)), and integrity of the output. In addition,
WBRPE ensures that the local host does not learn anything about the remote
input a, beyond the result of the program applied to it (P (a)). All these proper-
ties are ensured using software only. The WBRPE is comprised of two phases, the
generation phase, run by an offline trusted third party, and the protocol execu-
tion phase, run by and between the local and the remote hosts. The trusted third
party generates the parameters of the scheme, i.e. the hardening key hk which
is sent to local host, and the obfuscated virtual machine (ovm), a ‘hardened’
program, which is transfered to the remote host. The ovm emulates a trusted
(software only) platform, and executes the input programs supplied by the local
host in a secure manner. The local host uses the hardening key hk to harden
programs P , and sends the ‘hardened program’ Hhk(P ) to the remote host for
execution. The remote host provides the hardened program and optionally local
(‘auxiliary’) input a into the ovm and returns the hardened result to the local
host. The local unhardens with secret key uk: Uuk(P (a)) and obtains P (a).

WBRPE can be employed to facilitate a variety of distributed applications,
that are sent to remote host for execution, e.g., network gaming, online trading
center, voice over IP, and more. In these applications the goal not only to protect
the program but also the result of the program, to ensure privacy and to prevent
tampering and meaningful modification of the result.

1.2 Our Contribution: Robust Combiner for WBRPE Schemes

We present robust combiners for software hardening, specifically for White-Box
Remote Program Execution (WBRPE) [10]. WBRPE cascade combiner is (1,2)-
robust; it receives two WBRPE schemes, and produces a third WBRPE scheme
that is secure if one of the underlying schemes is secure. In fact, cascade is a ro-
bust combiner independently for the confidentiality (indistinguishability) and in-
tegrity (unforgeability) properties of WBRPE schems. By cascading two WBRPE
schemes, as in Figure 2, if one of the two provides indistinguishability (unforge-
ability), then the cascade is a WBRPE scheme that provides indistinguishability
(unforgeability, respectively).

The combiners we present introduce an additional overhead, since the result-
ing complexity is the multiple of the complexities of the candidate schemes.
Hence when the combiner is applied repeatedly to combine n schemes, the com-
plexity would be exponential in n (although in practice we expect to combine
only very few schemes, e.g., two). We leave it as an open question, to investigate
more efficient constructions, or to prove lower bounds. In practice, programs are
often run (or emulated) inside other programs, i.e., emulators. The basic idea of
the WBRPE combiner is the same, the ovm is executed inside another ovm.

1.3 Robust Combiners

The security of cryptographic constructions often depends on unproven hard-
ness assumptions, or on the security of primitives that withstood cryptanalysis
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Fig. 1. WBRPE scheme is comprised of three parties the software originator, i.e., local
host, the evaluator, i.e., the remote host, and the trusted third party. The trusted party
is used during the offline generation phase, to produce the ovm and the hardening key
hk. The local host obtains the hardening key hk which it uses to harden programs
for execution on remote host. The local host applies the hardening algorithm on the
program which results in a one time unhardening key uk and a hardened program
Hhk(P ), which it sends to the remote. The remote host obtains the ovm from the
trusted party and uses it to evaluate hardened programs which it receives from the
local host. Intuitively, ovm evaluates the program on the input of the remote host, and
outputs the result. ovm can be implemented without decoding the result and this is
just an abstract, simplified representation.

Fig. 2. Cascade WBRPE scheme W , constructed by combining two WBRPE schemes
W ′ and W ′′, and running input programs inside two ovm’s. Thus if the outer (resp.
inner) ovm is insecure the program is protected by the inner (resp. outer) ovm.
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attacks. A common approach employed to enhance security is to construct ro-
bust combiners, by combining two or more cryptographic primitives into one,
s.t. the resulting construction is secure even when only some of the candidates
are secure. Robust combiners can also be applied to ensure the correctness of
the resulting combined scheme and to prevent erroneous implementations or de-
sign bugs. Robust combiners for various cryptographic primitives were shown,
and alternately, an impossibility of achieving robust constructions for others was
presented. The most well-known combiner is the cascade combiner, which is a
sequential application of two cryptographic primitives. [7] showed that cascade
is a robust combiners of block ciphers, against message recovery attacks. Cas-
cade, and other basic robust combiners, were studied by [11], for encryption,
MAC, signature and commitment schemes. Robust combiners were also studied
for other primitives, e.g. hash functions [8, 2], private information retrieval (PIR)
[12] and oblivious transfer [9].

Robust combiners are especially important in the context of white-box se-
curity, where security of practical candidates is not proven. Furthermore, the
existing provably secure white-box primitives are either restricted to a limited
class of functions or inefficient and as a result not applicable to practical im-
plementations. Therefore, practitioners have to use heuristic constructions, and
currently there isn’t even a candidate whose security is sufficiently established;
therefore robust combining of candidates is highly desirable.

1.4 Software Only vs. Hardware Based Execution Platforms

In white-box security the attacker obtains full access to the implementation.
This is in contrast to traditional cryptography where a black-box (such as trusted
hardware) is assumed to exist, on which secrets can be stored, see [13]. Attacker
cannot access this black-box but can only observe the input-output behavior of
the cryptographic implementation, e.g. a server performing signature computa-
tions on request. The inherent distinction in the attacker’s abilities between the
two models implies that traditional cryptographic tools are not applicable to
remote environments, since they rely on the fact that the secrets used by the
software do not reside on the same execution platform as the malicious host, and
are not accessible to the attacker.

To support execution in untrusted environment, an additional tamper-resistant
hardwaremodule, e.g., a trusted server as in [1], or a smartcard (see [14]) is used, on
which the secret data can be stored and the computations involving it performed.
In contrast, white box security does not assume a trusted module, and relies on
software hardening techniques, rather than depending on (specialized) hardware.
In particular, the software is hardened in order to prevent undetected tampering
or exposure of secret information, by providing integrity and confidentiality of the
execution and of the computations performed.

Although applications that employ hardware benefit from high security
promises, there are disadvantages, e.g., high cost, vulnerability to side channel
attacks, unreliability and inflexibility of the hardware. In addition the security
completely depends on the trust relationship with the additional hardware, thus
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making it inapplicable to many useful scenarios. Furthermore, in practice hard-
ware alone is often not enough, since even hardware based solutions rely on
software to accomplish the overall security. Therefore in order to enable a vari-
ety of practical applications secure software only techniques should be provided.
In addition to practical importance, understanding the level of security that can
be attained by employing software only techniques is intriguing on its own, es-
pecially due to prevailing belief that it is difficult to achieve a reasonable level
of security by employing software only approach, let alone a level of security
comparable to the one that can be accomplished with hardware.

2 Cascade Combiner for WBRPE Schemes

In this section, we present a ‘cascade’ combiner for WBRPE scheme, and formally
define cascade for WBRPE in Definition 1.

Definition 1 (Cascade of WBRPE schemes). Let T (·) and L(·) be two poly-
nomials. Given two candidate WBRPE schemes W ′ and W ′′, where W ′′ =
(G′′,H′′,U ′′) and W ′ = (G′,H′,U ′), we denote their cascade by W = W ′ ◦ W ′′,
where W = (G,H,U) with L(·) bounding its output length and T (·) bounding its
running time, and (G,H,U) are PPT algorithms, presented in Algorithm 1.

We include the t and l parameters in the construction, in order to prevent the
adversary from distinguishing the input programs by their running times or
output length. The t and l specified by the remote host are the bounds on the
running time and output length of the input program P .

2.1 The WBRPE Cascade Combiner Construction

The construction is presented in Algorithm 1. Given two candidate WBRPE
schemes W ′ and W ′′, we combine them into one WBRPE scheme W = W ′ ◦W ′′,
see illustration in Figure 2. The main idea behind the combiner is that even if one
of the schemes is insecure, e.g., one of the ovm’s does not protect the memory
contents, or if one of the schemes is incorrect, e.g., exposes the secret input
program, then the overall construction will pertain security and correctness.
Namely, the resultant scheme preserves indistinguishability, if one of the input
candidates preserve indistinguishability. This holds since the inner ovm’ is hidden
by an outer ovm”. Therefore, even if the outer ovm” is not secure, i.e., does not
‘hide’ the programs that it executes, the combined scheme is secure, since the
attacker cannot inspect the original input and output. Alternately, if the inner
ovm’ is not secure, the outer ovm” protects the computations. Similarly, the
combined scheme preserves unforgeability of program and output, if one of the
candidates ensures unforgeability of program and output, respectively.

The generation procedure G of W = W ′ ◦ W ′′, in Algorithm 1, is performed
by a trusted third party, and generates the parameters of WBRPE by applying
the generation procedures of both candidates (G′ of W ′ and G′′ of W ′′). The
createOVM and createPrg macros are functions that encode programs as strings,
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Algorithm 1. The cascade WBRPE combiner (G,H,U) with createOV M and
createPrg macros, creating the ovm of the cascade WBRPE and the external pro-
gram P ′ supplied as input to H′′, respectively. Macros return the code (program) after
incorporating their parameters.

G(1k) {
〈hk′, OV M ′ 〉 R← G′(1k)
〈hk′′, OV M ′′ 〉 R← G′′(1k)
hk = 〈hk′, hk′′, OV M ′〉
OV M ← createOV M(OV M ′′, k)
return 〈hk, OV M〉
}

H〈hk′,hk′′,OV M′〉(P ) {
(c′, uk′) ← H′

hk′(P )
P ′ ← createPrg(c′, OV M ′)
(c, uk′′) ← H′′

hk′′(P ′)
uk = 〈uk′, uk′′, P, P ′〉
return 〈c, uk〉
}

U(uk=〈uk′,uk′′〉)(ω, P, t) {
〈y, P ∗, t∗〉 ← U ′

uk′(U ′′
uk′′(ω))

if ((P = P ∗) ∧ (t = t∗)) return y
else return ⊥
}

createOV M(OVM”,k) {
return ”OV M(c, a, t, l)

t′ = T ′(t, l,k) + 2
l′ = L′(l,k)
a′ = (a, t, l)
return OVM”(c, a′, t′, l′)”

}
createPrg(c’,OVM’) {

return ”P ′(a′)
(a, t, l) ← a′

return OVM’(c’, a, t, l)”
}

in order to transfer them securely to remote host for execution. The createOVM
receives an ovm” and a security parameter k. It then generates and returns an
encoding of the ovm program which will be executed on the remote host (the
ovm program is encoded as a string). Similarly, the createPrg generates a string
encoding the program P ′.

The hardening procedure, H of W = W ′ ◦W ′′, in Algorithm 1, applies H′ and
then H′′. This ensures that the overall construction will still protect the input
programs even if one of the schemes is insecure. The unhardening procedure U
of W = W ′ ◦W ′′, in Algorithm 1, receives the ephemeral unhardening keys, i.e.
uk = 〈uk′, uk′′〉, and applies U ′ and U ′′, of the given candidates, and recovers
the result of the computation of P on a. If the input program P , and the number
of computations steps t are provided, the local host can also validate the result.
Both validations by U ′ and by U ′′ ensure robustness in case one of the candidates
is erroneous.

2.2 Security Analysis

We formally state security in Theorem 1, and show that cascade is a (1,2)-robust
combiner for the security specifications of WBRPE. Namely, if one of the candi-
dates satisfies the security specifications of WBRPE, then the cascade satisfies
the security specifications of WBRPE, i.e. indistinguishability and unforgeability
of the program and result. We use ϕ = PK to indicate public key scheme, and
ϕ = SK to define private key scheme.
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Theorem 1 (Cascade is a Robust Combiner for WBRPE Schemes). Let
W ′ and W ′′ be WBRPE schemes. For ϕ ∈ {PK, SK}, the combined WBRPE
scheme W = W ′′ ◦ W ′, is:

– WB− IND−CPA−ϕ secure if at least one of W ′ or W ′′ is WB− IND−
CPA − ϕ secure.

– UNF − ϕ secure if at least one of W ′ or W ′′ is UNF − ϕ secure.

The proof of Theorem 1 is in full version of the paper.
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Abstract. Physical Uncloneable Functions (PUF) are systems whose physical
behavior to different inputs can be measured reliably, yet cannot be cloned in a
physical replica. Existing designs propose to derive uncloneability from an as-
sumed practical impossibility of exactly replicating inherent manufacturing vari-
ations, e.g., between individual chipset instances. The PUF promise has drawn
significant attention lately and numerous researchers have proposed to use PUFs
for various security assurances ranging from authentication to software licensing.

In this paper we survey the history of PUFs as well as the existing body of
research proposing applications thereof.

1 Introduction

The idea to build secure cryptographic schemes, using tamper-proof hardware instead
of relying on unproven number-theoretic assumptions, has been around for a long time
[2, 20]. Research in this area has become more intensive recently, when Pappu [23]
introduced the concept of Physical Uncloneable Functions (PUF) (also called “phys-
ical one-way functions”). A PUF is implemented by a physical device which can be
seen as a source of randomness and due to uncontrollable manufacturing variations, is
impossible to clone physically [4, 6]. The inputs to such a function are usually called
challenges and specify measurements to be applied to the device. The outputs of a PUF
are the corresponding measurement outcomes and are usually referred to as responses.
Furthermore, the response to a challenge that has not been queried (i.e., the particu-
lar measurement has not been performed) should hard to guess. The nature of PUFs
suggests making use of them in device authentication, key-agreement, and secure key-
storage. For illustration purposes consider a simple authentication protocol in which
case Bob, holding the device, wants to convince Alice about it: Alice queries a set of
challenges, gets the responses, and stores all these challenge-response pairs (CRP).
Then she sends the device to Bob, and Bob announces his response to Alice. If the
response matches Alice’s key, Alice accepts, otherwise she rejects. Since the device is
assumed to be uncloneable, an adversary cannot learn the responses, unless it manages
to measure the device original. This could possibly happen before Bob receives the de-
vice. Nevertheless, if the adversary is limited in the number of CRPs it can measure, it is
unlikely to guess the exact set of Alice’s challenges, before it is announced. Moreover,
the responses of the PUF can be used to generate a secret key in order to use PUFs in
key-agreement protocols.

Since several PUF-based challenge-response authentication protocols with PUF im-
plementations have been proposed in [32, 8, 3, 16], the authors in [5] noted that cur-
rent PUF-based authentication only prevents the impersonation of the client and do not
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prevent impersonation of the server in the context of physical attacks. To solve this
problem, one needs a mechanism that allows the client to distinguish between chal-
lenges selected by the server in the enrollment step and an attacker. Another interesting
application of PUFs is protecting software that runs on embedded systems. Instead of
building functionality entirely in hardware, many vendors utilize standard computing
equipment and differentiate through software. Unfortunately, software can easily be
copied and reverse-engineered which is a real problem in professional product piracy,
where software is copied from one legitimate device, and installed on many other (unau-
thorized) products. Many vendors thus want to bind software against a specific hardware
platform or even to a specific instance. The latter can be achieved by PUFs as shown
by Simpson and Schaumont [26]. The basic idea is to include a mutual authentica-
tion protocol between the provider’s software (also called Intellectual Property) and the
hardware platform. In this scenario, the PUF is part of an FPGA and it is used for hard-
ware authentication and key generation. The FPGA bitstream is distributed in encrypted
form, where the key is derived from a response to a specific PUF challenge. Thus, the
bitstream cannot be decrypted and run on a FPGA that it has not been personalized for.

2 How Did PUFs Come About

Pappu introduced PUFs in [23] where a Physical Uncloneable Function is realized as a
physical system, which is easy to evaluate, but assumed hard to characterize. When a
PUF is exposed to a physical stimulus, it answers with a response. The way the stimulus
is applied to the PUF is specified (usually digitally) in the form of a challenge, while
the response is measured and appropriately digitized. For a “secure” PUF, predicting the
output of the physical system is intractable without actually having physical access to
the device. Moreover, PUFs exploit natural manufacturing variations which make them
uncloneable: even with highly complex manufacturing equipment it is (assumed to be)
impossible to create a second, completely identical device with the same challenge-
response behavior – this holds even for the manufacturer of the original device. Thus,
PUFs can be used to produce unique and uncloneable objects without having to trust
the manufacturer.

Note, since the responses of PUFs are noisy by nature the output of a PUF cannot
directly be used in applications that require noise-free output with a perfectly uniform
distribution (such as cryptographic keys). To deal with this problem, fuzzy extractors of
Dodis et al. are applied – a secure form of error correction that enables a reliable extrac-
tion of an uniform key from a noisy non-uniform input [7]. Since almost all known PUF
implementations produce noisy outputs, PUF implementations will have to be com-
plemented with fuzzy extractors and helper data. Some errors can also be avoided by
employing a calibration operation, which is driven by PUF CRPs, as described in [35].

2.1 The First Idea – Optical PUFs

As a first way of implementing PUFs, Pappu proposed an optical approach. An “optical
PUF” consists of a transparent material, where many light scattering particles are added
in a random way during production. Such a device causes a random speckle pattern
when shining a laser beam onto it; here, the position and angle of the laser (and, we
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believe, possibly other parameters such as amplitude and wave-length) represent the
challenge, while the speckle pattern is recorded, quantized and encoded to form the
PUF response. In the original work, the author uses these challenge-response pairs to
identify specific devices or to extract cryptographic keys [23, 24]. To this end, the PUF
is measured right after production on a few random challenges (this step is referred to
as “enrollment”) to obtain a database of valid challenge-response pairs (CRPs) for a
particular device. A device can subsequently be identified once it is placed in the field,
by measuring the response for one of the challenges selected during enrollment (this
process is called “verification”). If the response matches the expected, pre-recorded
response, the device is authenticated and the response can be used to derive keys.

Naturally, a PUF should support a large number of CRPs in order to make it infeasi-
ble to learn responses to challenges that were not yet issued. In [33] the authors estimate
the entropy of an optical PUF (≥ 4 · 106 per 5cm2) and the information contained in
one CRP. Based on this data, the authors calculate the corresponding number of inde-
pendent CRPs (≥ 3 · 104 per 5cm2), which turns out to be much lower than the number
of all possible (not necessarily independent) challenges (∼ 1010). As the number of
independent CRPs is rather low and they can all be pre-recorded by an attacker who
has unlimited physical access to the PUF once, optical PUFs do not offer security in
the information-theoretic sense. However, in [33] the authors claim that interpolation of
the PUF’s behavior is computationally costly and therefore, a lot more challenges need
to be measured to successfully predict the response for a fresh challenge. To prevent the
attacker from exhaustively reading out all the CRPs (meaning, not only the indepen-
dent ones), a method for decreasing the measurement-rate is proposed. For instance,
if 10ms are required to measure one challenge, the attacker can measure about 1

100 of
all challenges (∼ 108) in a week of uninterrupted access to the optical PUF [33]. As a
drawback, developing a reliable measurement apparatus for optical PUFs is a complex
problem, which requires costly high-precision mechanics and thus limits their usage.

Due to the internal structure of the PUF it is very difficult to produce a physical
clone because it requires a difficult and costly process (e.g. put the particles in the
right position). Furthermore, modeling the PUF is very hard since the scattering of the
PUF response is very complex. Note, that there are many papers that investigate this
topic [23, 24, 33, 35, 17], the effect of changing measurement conditions [35] or the
secrecy rate of optical PUFs more in details [17].

2.2 IC-Based Implementations – Silicon, Arbiter, and Ring Oscillator PUFs

Gassend et al. proposed a new instantiation of PUFs that uses silicon technology [12].
Based on the approach of [30], where it is shown that uncontrollable process variations
during chip production make chips measurably different, Silicon Physical Uncloneable
Functions (SPUF) exploit inherent variations in integrated circuits (IC) – that exist even
for chips that were produced with identical layout masks [9, 11]. An important advan-
tage of silicon PUFs is that their production does not require any special devices on top
of classic chip manufacturing equipment.

Based on the observation that the timing behavior of chips differs [12], Lim et al. in-
troduced Arbiter Physical Uncloneable Functions (APUF) [22, 21, 19, 10]. Arbiter
PUFs consist of a number of switch delay elements, which are connected in series.
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Every element has two inputs and uses a two-to-one multiplexer1 to swap its inputs
depending on one challenge bit: If the challenge bit is 0 both signals go straight trough
the element. Otherwise, the top and bottom signals are switched. To compute the out-
put for a specific challenge, a rising signal is given to the two inputs at the same time.
Both signals race through the device; at the end, an arbiter circuit determines which
signal passed the device faster. Thus, the challenge of the PUF still determines the path
that both signals take through the device, while the response will now be a single bit
r ∈ {0, 1}. Since each delay element doubles the number of paths the signals can pos-
sibly take, an APUF with n elements can produce 2n delay paths. To obtain an m-bit
response, one can either duplicate the circuit m times or evaluate the device consecu-
tively on m different challenges and paste the results together.

All PUF implementations that are based on delay characteristics in ICs are not pro-
tected against environmentally induced noise. Consequently, a PUF produces different
measurements for the same stimulus. Furthermore, if the variations of the PUF mea-
surements are to high and the measurement variations are not adequately improvable
a PUF may not be uniquely identified. Lim et al. handle the problem of environmen-
tally induced noise by analyzing the coherence between environmental variations and
circuit delays such as temperature and power supply [22, 21]. Firstly, the authors mea-
sured an inter-chip variation which states how many bits of two responses measured by
two different PUFs for the same challenge are diverse. The average inter-chip variation
of a PUF should be close to 50% whereas the bits of a PUF response are uniformly
distributed and independent. Subsequently, the authors analyze the environmental vari-
ation which states how many bits of PUF responses will change if they are measured
from the same PUF (the noise of the PUF response). The average environmental vari-
ation of a PUF should be ideally 0%. For an arbiter PUFs, the authors obtained the
average inter-chip variation of 23% and an environmental variation of ≈ 4, 82%, if
the temperature increases greater than 40◦C from 27◦C, respectively ≈ 3, 74%, if
the voltage variation increases ±2%. This shows that an arbiter-based PUF reduces
the environmental variations well enough below the average inter-chip variation of
23%.

Concerning the security of PUFs, it was shown in [22] that the response of an IC-
based PUF circuit can be represented as a linear function of a challenge. If an attacker
knows all delays of each element of a path through the circuit it can derive (predict) a re-
sponse for a given challenge by calculating the sum of the delays of each element. Since
measuring the delays at each element is a hard problem, an attacker can use machine-
learning-techniques to build a software circuit that models the PUF circuit. With this
model, the attacker can simulate the PUF and can predict a response for a random chal-
lenge. Note, that using the linear delay model implies that the PUF response is ideally
statistical distributed. In reality, however, this is not the case due to measurement or en-
vironmental variations. Nevertheless, Lim generalized this model to a probabilistic one
to model all the environmental variations. The author also suggests methods to modify
the arbiter PUF such that the above mentioned model is no longer possible [22].

1 A multiplexer is a device that selects one of many analog or digital input signals and forwards
the selected input into a single line.
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Adapted from arbiter PUFs, Suh and Devadas look for a higher reliability and an
easier way of implementing PUFs on Application-Specific Integrated Circuits (ASIC)
and Field-Programmable Gate Arrays (FPGA) [27]. Based on the “self-oscillating” ap-
proach in [12], the authors introduce Ring Oscillator Physical Uncloneable Functions
(ROPUF). These PUFs are based on delay loops, which are commonly used to generate
random bit strings. A delay loop, or ring oscillator, is a simple circuit that oscillates
with a frequency influenced by manufacturing variations and thus cannot be predicted,
yet can easily be determined by a counter. The PUF construction uses n such circuits
and compares the frequency of two selected ones: depending on which oscillator is
faster, an output of 1 or 0 is produced. To produce an output of several bits, one picks
randomly a set of such oscillators according to the challenge; comparing each pair pro-
duces one output bit. In this way, one can generate Θ(n log n) bits of entropy out of n
oscillators. Suh et al. subsequently used their PUF in the development of the AEGIS
processor [29, 28], which can resist both software and physical attacks. In particular,
they use the PUF to store secrets in a secure, uncloneable and cost effective way.

Although ring oscillator PUFs are more reliable and easier to implement on both
ASICs and FPGAs, arbiter PUFs are faster, smaller and consume less power. Thus,
arbiter PUFs are better suitable for resource constrained platforms such as RFIDs, in
which context they are also commercially available [36, 37].

2.3 Flip-Flop-Based implementations – SRAM and Butterfly PUFs

As mentioned in the Introduction 1, protecting software that runs on embedded sys-
tems is a problem of growing importance. Guajardo et al. [14] revisited the results
and improvements by Simpson and Schaumont [26] and instead of treating the PUF
as a black-box, they propose a FPGA based IP protection mechanism, which relies on
SRAM-based Physical Uncloneable Functions (SRAM stands for “static random access
memory”) [14, 15]. These PUFs consist of a number of memory cells, involving two
cross-coupled2 inverters, having two stable states, commonly denoted by 0 and 1. After
power up, cells will randomly end up in state 0 or 1; the state that a specific memory
cell will reach is mainly dependent on the production process, yet relatively constant
per instance. A challenge is represented by a subset of the memory cells to be read-out
after power-up; the response is their respective power-up state.

Moreover, the authors analyze how many secret bits can be extracted from the re-
sponse in SRAM-based PUFs. The secrecy rate is 0.76 bits per SRAM memory cell
[14]. Note, currently available ICs can incorporate ∼ 106 to 107 SRAM cells. Yet,
without any additional mechanism for decreasing the read-out rate, SRAM PUFs are
vulnerable to an exhaustive read-out attack.

Since not all FPGAs support uninitialized SRAM memory, Guajardo et al. [18] en-
hanced the concept of SRAM-based PUFs to Butterfly Physical Uncloneable Functions
(BPUF). These PUFs provide a new way of exploiting circuit delays. Butterfly PUFs use
unstable cross-coupled circuits, just like SRAM PUFs. While SRAM-cells are based on
cross-coupled inverters, in butterfly-cells inverters are replaced by latches or flip-flops.
Latches are circuits which store information and can be cleared (turns output to 0) or

2 The output of the first inverter is connected to the input of the second one, and in the other way
around.
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preset (turns output to 1). Like SRAM cells, butterfly cells have only two stable states.
To read out the PUF, one of the latches is cleared and simultaneously the other one is
preset. This brings the BPUF into an unstable condition. The butterfly-cell falls back
into one of the stable states depending on the circuit delays, which are were determined
by the manufacturing process. Thus, BPUFs are very similar to SRAM PUFs beside the
fact that they do not need any power-up for evaluation. Unlike SRAM PUFs, BPUFs
are suitable for all types of FPGAs. Similarly, Gora et al. [13] and Atallah et al. [1]
proposed the use of PUFs in binding software against specific hardware.

2.4 Tamper-Evidence – Coating PUFs

Another approach to obtain a stronger PUF is an “active coating” – a covering that is ap-
plied to the surface of an object. Posch [25] suggests to protect a device by embedding
a unique signature into the coating material used in smart cards. Tuyls et al. [31, 34]
apply this idea to PUFs and introduce the concept of Coating Physical Uncloneable
Functions (COPUF). A coating PUF employs a protective coating, covering an inte-
grated circuit. The opaque coating material is doped with dielectric particles, having
random properties concerning their size, shape, and location. Below the coating layer,
a comb structure of metal wire sensors is used to measure the local capacitance of the
coating. The measured values, which are random due to the randomness present in the
coating, form the responses to challenges, each of them specified by a voltage of a
certain frequency and amplitude, applied to a region of the sensor array.

Because of the coating the PUF is physically uncloneable since it is very hard to pro-
duce a second PUF where all sensors produce the same measurements as the original
PUF. However, the coating PUF is unfortunately easy to be modeled and supports only a
limited number of CRPs. Since the characterization of the coating is very difficult, coat-
ing PUFs can be used e.g. for RFID-tags or key extraction. As for key extraction, [31]
succeed to generate on the average 45 uniformly distributed bits by using 30 sensors.

The advantage of coating PUFs is that their production price is very low. Moreover,
a benefit of coating PUF is that they are suitable for detecting a certain level of physical
tampering. If a device is physically attacked, its response behavior is likely to change;
thus, tampering can be uncovered by measuring the PUF with specific challenges. Due
to tampering, the responses usually change only locally, which could even allow the
determination of specific attack positions on the chip surface.

3 Conclusion

In this paper, we have summarized the history of PUFs by studying PUF approaches
in literature. Many constructions have been called Physical Unloneable Function, how-
ever, it is difficult to come up with a consistent definition. Indeed, we can deduce some
“requirements” for PUFs, such as unclonability or unpredictability, but in the end the
question “what a PUF is”, remains difficult. Even the question ”which PUF is more
suited”, is not easy to answer. Current constructions depend heavily on their applica-
tion and thus follow different, and sometimes contradicting goals (see Section 2.2). In
conclusion, Physical Uncloneable Functions are a young research area where many
interesting problems are open. We believe that PUFs are a promising technology that
benefit from many applications.
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[35] Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical unclonable functions.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–
422. Springer, Heidelberg (2005)

[36] Verayo, http://www.verayo.com
[37] IntrinsicID, http://www.intrinsic-id.com

http://www.verayo.com
http://www.intrinsic-id.com


 

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 298–307, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Privacy Requirements Engineering for Trustworthy  
e-Government Services 

Nikos Vrakas1, Christos Kalloniatis2, Aggeliki Tsohou3,  
and Costas Lambrinoudakis1  

1 Dept. of Digital Systems, University of Piraeus, Piraeus GR-18532, Greece 
{nvra,clam}@unipi.gr  

2 Dept. of Cultural Technology and Communication, 
University of the Aegean, Lesvos GR-81100, Greece 

ch.kalloniatis@ct.aegean.gr 
3 Dept. of Information and Communication Systems Engineering, 

University of the Aegean, Samos GR-83200, Greece 
agt@aegean.gr  

Abstract. Several research studies have applied information systems 
acceptance theories in order to examine issues related to the acceptance of e-
services by users. Their application in the e-government systems has revealed 
that trust is a prerequisite for their usage. Moreover, it has been proved that 
privacy concerns are a main antecedent of trust in e-government systems 
intention of use. Therefore, information systems that are not privacy aware are 
not trusted and thus not accepted by users. Currently there are many different 
attacks that can be realized by malicious users for compromising the 
confidentiality of private data and thus putting at stake the trustworthiness of 
the systems. The conventional way for preventing such attacks is mainly the 
employment of Privacy Enhancing Technologies (PETs). However, PETs are 
employed as ad hoc technical solutions that are independent from the 
organizational context in which the system will operate. We argue that we need 
privacy requirements engineering methods for capturing the context dependent 
privacy requirements and for selecting the appropriate technical, organizational 
and procedural countermeasures which will help building privacy aware 
systems that can offer electronic services which users can trust. 

Keywords: Privacy Requirements Engineering Methods, Trust, Privacy 
Attacks, Privacy Enhancing Technologies. 

1   Introduction 

There are many alternative definitions for the e-government concept [1-2]. E-
government has been defined as the utilization of the Internet and the World-Wide-
Web for delivering government information and services to citizens [3]. Means and 
Schneider in [4] define e-government as the relationship between governments, their 
customers (businesses, other governments, and citizens), and their suppliers (again, 
businesses, other governments, and citizens) by the use of electronic means. Despite 
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the deviations of the various definitions, there are some common characteristics of the 
e-government concept: a) it is electronic and not paper based, b) it is available 24 
hours per day, 7 days per week, and c) it facilitates the provision of information and 
delivery of services [5]. Several challenges of e-government provision have been 
recorded during recent years. Gil-García and Pardo in [6] indicate that the primary 
challenges of e-government include issues of a) information and data sharing, b) 
information technology usability and ease of use, c) organizational and managerial 
issues, d) legal and regulatory challenges, and e) institutional and environmental 
aspects that relate to the institutional framework and policy environment in which 
government organizations operate. Security and privacy challenges are among these, 
and specifically belong to the information technology and the legal and regulatory 
challenges’ categories. 

Therefore, despite the major effects that e-government solutions may provide to 
public administration and citizens’ service, a major challenge lies on investigating 
types and conditions of e-government services that are readily acceptable to the public 
[7]. Thus, a crucial consideration regards the factors that citizens, business or other 
government institutions consider when they decide to use such a service. The 
examination of the issues related to user acceptance for a system or an electronic 
service can be accomplished through the application of information systems 
acceptance theories, such as theory of reasoned action [8], theory of planned behavior 
[9], motivational theory [10] or innovation diffusion theory [11], and technology 
acceptance model [12]. Several authors have used these theories in order explore the 
factors influencing intention to use e-government services and have concluded that 
trust issues are quite significant in e-government services’ acceptance [13-16]. In 
addition, Lean et al. in [17] conclude that privacy concerns are a main antecedent of 
trust in e-government systems intention of use. This is also in line with surveys [18] 
revealing that citizens believe that e-government has the potential to improve the way 
government operates, but they have concerns about sharing personal information over 
the internet, fearing that the data will be misused and their privacy diminished. 

Trust is defined by [19] as the “willingness of a party to be vulnerable to the 
actions of another party based on the expectation that the other will perform a 
particular action important to the trustor, irrespective of the ability to monitor or 
control that other party”. Two main types of trust can be recognized: institutional trust 
and interpersonal trust. Institutional trust deals with third party guarantors that 
provide certification about the trustworthiness and expected behavior and escrows 
that guarantee expected outcome of the interaction [20]. Interpersonal trust relates to 
the consumer’s impression, drawn from previous experience or gathered from outside 
sources of information [21].  

Taking into account the findings of the researchers that have highlighted the 
importance of trust for e-government services’ adoption, and also the notice of [22] 
that “the variable most universally accepted as a basis of any human interaction or 
exchange is trust” we can conclude that trustworthiness is crucial for the effectiveness 
of e-government systems. In this paper we address the question of ‘how can we design 
privacy aware systems in order to raise trustworthiness of e-government 
environments?” 
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The structure of the paper is as follows. In section 2 a number of well-known 
attacks that threaten users’ trust are presented while in section 3 the contribution of 
privacy requirements engineering in designing and implementing trustworthy e-
government systems is presented. The paper conclusions can be found in section 4.  

2   Direct or Indirect Security Attacks and Privacy Breaches 

In e-government environments, the privacy of a user can be compromised through 
various attacks that in fact take advantage of the vulnerabilities of the deployed 
protocols. Considering, for instance, the fact that a citizen is able to cast a vote 
through low resource enabled mobile devices (e.g. smart phones), we assume that the 
security mechanisms for this type of e-government services should be lightweight. 
There are documented research results [23-26] highlighting malicious behavior 
against IP [27] and TCP [28] that are inevitably inherited by the system of reference 
as described hereafter. Furthermore, the employment of databases and protocols from 
the application layer (e.g. SIP), introduces many more vulnerabilities [29-31] that a 
malicious user could exploit in order to disclose private or/and confidential 
information. It is therefore evident that privacy concerns are raised and that these 
concerns can deter a user form participating in such e-government procedures. 

2.1   Code Injection 

A point of crucial importance is clearly the database that holds users’ subscriptions 
and votes. Every database infrastructure that utilizes the SQL language can suffer 
from SQL injection attacks [29, 32]. Such malicious behavior could lead to 
confidential information disclosure. 

An SQL statement can be injected in a normal query by exploiting the punctuation 
marks that are responsible for code delimitation and execution according to SQL 
syntax. More specifically, a statement that could expose the vote of a user “nvra” is 
the following:  

SELECT vote FROM users WHERE name='nvra';                           (1) 

In this example, the attacker can obtain from the table “users” what the user with 
name “nvra” has voted.  

In an e-government architecture there are at least two cases where SQL code could 
be injected. Firstly, in any text form that a user can enter information by adding the 
quotation mark “'” in the text form and concatenating the malicious code shown in 
(1). During the parsing of the text form, the code until the end of the statement (in 
SQL is denoted with the interrogation mark “;”) will be executed.   

Another case for SQL injection attacks is in SIP signaling messages whenever a 
procedure (like the voting procedure) is initiated through a mobile device. The code 
can be injected in the authorization header field of a message during the session 
establishment or the registration procedure. This is described in detail in [30]. Thus, 
this malicious act could threaten the required unlinkability between users and votes 
towards a privacy oriented system.   
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SQL injection can be extremely harmful in cases where the credentials of a user are 
stored unprotected in a database. A malicious user can inject the SQL code in the SIP 
message or in the web form “SELECT password FROM users WHERE 
name='nvra';”, in order to obtain the password from the user with name “nvra” which 
is stored in the table “users”.  This act can allow a malicious user to access a 
legitimate users’ profile, breaking the authentication requirements and thus invading 
their privacy. 

2.2   Man in the Middle 

A Man in the Middle (MitM) attack can result in linking users with their personal data 
(i.e. votes) and disclose the private data of a session. The malicious user acts as an 
intermediate between the server and the user. This can be achieved through the 
utilization of the DNS cache poisoning procedure [33].  

Firstly, the attacker modifies the binding between the legitimate domain name and 
the IP, with his own IP in the DNS list. When the legitimate user tries to access the 
page in order to accomplish the voting procedure, the poisoned DNS returns the IP of 
the malicious server. Thus, the communication session is established between the 
attacker and the victim. Afterwards, the malicious server gathers all the requests and 
by impersonating the user sends them to the real server. The real server responds to 
the malicious server while the former forwards these messages to the legitimate user. 
The legitimate user is not able to suspect the faked server while the former can 
reproduce an exact copy of the real web page. The employment of digital certificates 
could discourage such behaviors but low resource enabled mobile devices cannot 
utilize them. Under this context, private information such as vote and user’s profile 
can be obtained illegally by a third party (attacker) breaking the unlinkability and 
authentication requirements correspondingly. 

2.3   Replay Attacks 

A user’s private information can be also disclosed through replay attacks. In this 
scenario, the malicious entity exploits vulnerabilities in cryptographic protocols to 
gain access to user’s account. In this case, not only the vote but the entire user’s 
profile is being exposed. 

Such an attack can be launched by a malicious user who firstly monitors, in a 
passive way, the communication between a user and the web server until the reception 
of the authentication vector. Afterwards, he incorporates the gathered authentication 
vectors in his message in order to be authenticated by the server and consequently to 
gain access to victim’s profile. A commonly used message authentication protocol in 
web applications is the HTTP Digest [34]. The attacker can reuse the captured 
authentication string to launch a replay attack before the expiration of the nonce (a 
pseudo-random value that is utilized to prevent the reuse of an authentication string). 
The specific authentication protocol is also adopted when a user casts a vote from a 
mobile device that cannot employ stronger and consequently heavyweight 
authentication schemes. Thus, a malicious user by hijacking the users’ profile is able 
to force disclosure of private data breaking the unlinkability and authentication 
requirements as described previously. 
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2.4   Passive Eavesdropping 

The most direct threat to a users’ privacy is the eavesdropping attack. An attacker can 
passively eavesdrop the message transmissions among the communicating entities in 
order to obtain information that could link a user with an action, preference, address, 
identity etc. Thus, by eavesdropping the session establishment procedure, a malicious 
user can determine whether a specific user tries to communicate with the server, for 
instance the web voting form, breaking one of the most important requirements in 
such environments: the unobservability. Furthermore, the identity of a user can be 
disclosed while the former communicates with the server either from a mobile device 
or not. The transmitted signaling messages, which also contain the user’s identity, are-
up to a point-in clear text so the anonymity is also violated.  

When the session is initiated from a mobile device, the signaling messages are 
completely unprotected. Furthermore, the attacker can link the pseudonym of a user 
with his IP address and identity (the ID value from SIP signaling messages): The 
username of a user is included in the header that is responsible for the authentication 
(Authorization header field). Authentication is required when the user tries to access 
the provided services. The server challenges the user while the former responds with a 
valid authentication string that includes (at least) a hashed concatenation of the user’s 
password, realm and the nonce obtained from the servers’ challenge. In this response, 
the authorization header also includes in clear text the user’s username.  

An example of the headers in HTTP digest authentication is depicted in Fig. 1. On 
the left the users access a source from a web browser while on the right the same user 
accomplishes authentication from a mobile device utilizing SIP. It’s clear how an 
attacker is able to link the user with username “nvra” with a specific action (the 
request of the e-vote.htm webpage) with his IP address (192.168.2.53) and his private 
ID (nvra_private@unipi.gr). 

 
GET /e-vote.html HTTP/1.1 
Host: localhost 

Authorization: 
Digest username="nvra", 
realm="unipi.gr", 
nonce=" 1fe69e629903f", 
uri="/e-vote.html", 
qop=auth,auth-int, 
response="b97bb34ff31319bb8" 
… 

REGISTER sip:unipi.gr SIP/2.0 
From:<sip:nvra_private@unipi.gr> 
Contact:192.168.2.53 
Call-ID:ak5fj49fhujDUuf0 
Max-Forwards: 30 
CSeq: 1 REGISTER 
Authorization: 
Digest username="nvra", 
realm="unipi.gr", 
nonce=" 1fe69e629903f", 
qop=auth,auth-int, 
response="97bb34ff31319bb8" 

Fig. 1. User's IP, ID, username exposure in HTTP authentication scheme 

An eavesdropping attack can provide to the malicious user, not only the signaling 
parameters but also all the data transmitted between the communicating entities. 
Whenever a session lacks encryption, the exchanged data and also the media streams are 
exposed to third parties namely the eavesdroppers. Overall, the eavesdroppers could 
greatly threaten users’ privacy while they are able to violate nearly all fundamental 
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requirements of privacy oriented architectures: unobservability, anonymity, 
unlinkability, pseudonymity and confidentiality. The four threat categories that can 
potentially violate users’ privacy are listed in Table 1.  

Table 1. Attacks and how they affect fundamental Privacy Requirements 

Threat Category Effect 
Privacy 

Requirements 
Affected 

Authentication Vector / Credential Retrieval Authentication Code Injection 
Vote Disclosure Unlinkability 

MitM Vote and User Profile Disclosure Unlinkability 
Authentication 

Replay Vote and User Profile Disclosure Unlinkability 
Authentication 

Session Parameters Disclosure Unobservability 

Identity Disclosure 
Anonymity 
Unlinkability 
Pseudonymity 

Data Session Disclosure 

Passive 
Eavesdropping 

Media stream Disclosure 
Confidentiality 

3   Privacy Requirements Engineering 

Research efforts aiming to the protection of user privacy fall in two main categories: 
security-oriented requirement engineering methodologies and privacy enhancing 
technologies (PETs). The former focus on methods and techniques for considering 
security issues (including privacy) during the early stages of system development and 
the latter describe technological solutions for assuring user privacy during system 
implementation. PETs are usually addressed either directly at the implementation 
stage of the system development process or as an add-on long after the system is used 
by individuals. However, PETs focus on the software implementation alone, 
irrespective of the organizational context in which the system will be incorporated. 

Developers and information system specialists must consider privacy as a main 
technical concern which has to be considered early in the system development 
lifecycle as a separate design criterion. As a result, privacy as a design criterion has 
received much attention in recent years by researchers and practitioners alike. 
Initially, privacy protection efforts have focused on technological solutions for 
assuring user privacy during software implementation (PETs). However, as it was 
mentioned before, focusing on software solutions independently from the 
organizational context in which the system will operate makes it difficult to determine 
which software solution best fits the organizational needs. Understanding the 
relationship between user needs and the capabilities of the supporting software 
systems is of critical importance. This has led to the development of a number of 
security-oriented requirement engineering methodologies which consider security 
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issues (including privacy) during the early stages of system development, an issue that 
has also been stated from the Canadian Privacy Commissioner Dr. Ann Cavoukian in 
the 90s [35].  

Based on the privacy threats, mentioned in the previous section, that jeopardize 
users trustworthiness on the respective system it is understood that privacy-related 
issues are many and varied, as privacy itself is a multifaceted concept. Privacy comes 
in many forms, relating to what one wishes to keep private. Review of current 
research, highlights the path for user privacy protection in terms of eight privacy 
requirements namely authentication, authorization, identification, data protection, 
anonymity, pseudonymity, unlinkability and unobservability [36-38]. The first three 
requirements are mainly security requirements but they are included due to their key 
role in the privacy protection. By addressing these requirements one aims to minimize 
or eliminate the collection of user identifiable data. Depending on the intended system 
usage and user needs, one or more of the aforementioned requirements are considered 
during system development. 

The majority of IS development methods manage privacy as one of the system’s 
non-functional requirements. No specific techniques are proposed especially for 
identifying and implementing privacy requirements. However, the increasing 
importance of system security in general and user privacy in particular, has resulted in 
a number of methods that adopt concepts from the field of IS security engineering and 
use them in order to explicitly represent security requirements (which also include 
privacy requirements) and they define the way that these requirements can be 
transformed in specific policies for the system under construction. Methods like the 
NFR (Non-Functional Requirement Framework), the i* method, the Tropos method, 
the KAOS method, the GBRAM (Goal-Based Requirements Analysis Method) 
method, the RBAC (Role-Based Access Control) method, the M-N (Mofett-Nuseibeh 
Framework) method, the B-S (Bellotti-Sellen Framework) method, the STRAP 
(STRuctured Analysis for Privacy) method and the PriS (Privacy Safeguard) method 
are well-known belong to the above-mentioned category. A description of these 
methods along with a detailed comparative review can be found in [39]. However, the 
tendency for a holistic confrontation of security and privacy requirements from the 
early stages of system design through its implementation phase is expressed in the 
latest research methods (e.g. PriS, SecureTropos [40-43]). 

Specifically, these methods transform the threats identified in section 3 as specific 
privacy requirements that need to be satisfied in order to protect users’ privacy. 
Furthermore they support the analysis of how these requirements constrain the 
functionality of the system as well as the examination of specific techniques (mainly 
PETS) for addressing these requirements. Thus, a privacy-oriented system is realized 
taking into account both the users’ and the organizations’ privacy concerns. By 
applying privacy oriented requirements engineering methods the mapping of users’ 
privacy concerns on the developing system is ensured thus leading to the development 
of privacy aware systems that users can trust. 
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4   Conclusions 

One of the main criteria that determine users’ trust in electronic services is the way 
that their privacy is protected. This is becoming really crucial, since the greater 
collection and storage of personal data, the lower the trust of users using the specific 
applications. Privacy as a social and legal issue, has traditionally, been the concern of 
social scientists, philosophers and lawyers. However, the extended use of various 
software applications in the context of basic e-services sets additional technology-
related requirements for protecting the electronic privacy of individuals. Most e-
services rely on stored data for identifying customers, their preferences and previous 
record of transactions.   

In this paper we argue that in order to build privacy aware systems it is necessary 
to take into account the peculiarities of the organization that offers the electronic 
services.  To this respect we should utilize privacy requirements engineering methods. 
Currently we are applying such a requirements engineering methodology to an e-
voting service, identifying the privacy requirements and the appropriate privacy 
enhancing technologies.  Our aim is to compare the results that we will get, in terms 
of the protection mechanisms that will be considered necessary and the degree to 
which the privacy requirements will be satisfied, with the ad hoc PETs that are 
usually employed when no systematic method for eliciting the requirements is used. 
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Abstract. The interdependent nature of security on the Internet causes
a negative externality that results in under-investment in technology-
based defences. Previous research suggests that, in such an environment,
cyber-insurance may serve as an important tool not only to manage risks
but also to improve the incentives for investment in security. This paper
investigates how competitive cyber-insurers affect network security and
user welfare. We utilize a general setting, where the network is populated
by identical users with arbitrary risk-aversion and network security is
costly for the users. In our model, a user’s probability to incur damage
(from being attacked) depends on both his security and the network
security.

First, we consider cyber-insurers who cannot observe (and thus, af-
fect) individual user security. This asymmetric information causes moral
hazard. If an equilibrium exists, network security is always worse rela-
tive to the no-insurance equilibrium. Though user utility may rise due
to a coverage of risks, total costs to society go up due to higher network
insecurity.

Second, we consider insurers with full information about their users’
security. Here, user security is perfectly enforceable (zero cost). Each
insurance contract stipulates the required user security and covers the
entire user damage. Still, for a significant range of parameters, network
security worsens relative to the no-insurance equilibrium. Thus, although
cyber-insurance improves user welfare, in general, competitive cyber-
insurers may fail to improve network security.

1 Introduction

Today, the Internet serves as the primary communication platform for both
individuals and businesses. At present, due to the nearly universal connectivity,
a huge amount of wealth is accessible online and the Internet has become a
preferred destination for criminals. However, the Internet, which was originally
conceived to be an academic network, has failed to address many of these security
problems. Due to the ease of accessibility and programmability, unwary end
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users’ computers are routinely infected with malware. These infected computers
could be employed for future crimes, resulting in an interdependent security
environment.

Technology-based defense and enforcement solutions are available, but a con-
sensus among security researchers [1] is that the existing security problems can-
not be solved by technological means alone. Indeed, these security problems
primarily result from misaligned incentives of the networked parties with re-
spect to their security. Users under-invest in security since they do not bear the
true societal costs of their actions, which causes a negative externality.

Existing research [2,3,4,5,6,7] indicates that risk management in general and
cyber-insurance in particular are potentially valuable tools for security manage-
ment.1 This paper focuses on the effects of cyber-insurers on network security
and user welfare, in a general setting with interdependent security and asym-
metric information between users and insurers. We believe that these features
of the environment induce socially suboptimal network security, and complicate
the management of security risks.

In our model, all users are identical. Their wealth is identical and they suffer
identical damage if cyber-attack on them is successful. The user’s probability of
being attacked depends on both the user security level and the network security
level, which individual users take as given. Thus, there is an externality causing
individually optimal user security level to be lower than the socially optimal one.

First, we investigate the effects of information asymmetry in the setting with
interdependent security. Though our model allows to study both moral hazard
(when insurers are not aware of user security levels) and adverse selection (when
insurers cannot distinguish different user types), in this paper, we address only
moral hazard (see [22] for analysis of adverse selection). We find that cyber-
insurance fails to improve the network security level though it may improve user
utility, if an equilibrium exists. Second, we assume no information asymmetry
between the insurers and the users. We demonstrate that user utility is higher
with insurance, but surprisingly, even in this case, the network security level is
not necessarily higher. On reverse, for a substantial range of parameters, network
security worsens with insurers.

Our assumption of identical users is simplistic, and does not hold in the actual
Internet. But, we argue that adding user and insurer heterogeneity to our set-
ting only increases informational asymmetries. If insurers could separate users
of different types, our results hold for every class of user types in such a hetero-
geneous environment. If insurers are unable to distinguish between users with
different types, the problem of adverse selection arises due to which missing
markets are likely, as [23] demonstrate. Finally, the presence of different insurer
types also brings the “lemon problem” [24], another manifestation of adverse
selection, which also lead to missing markets. Hence, our results will continue to
hold in a heterogeneous environment as well.2

1 Other papers in this field are [2,8,9,10,11,3,12,13,14,15,16,17,18,15,19,20] For an
overview of the related literature, the interested reader is referred to [21].

2 See [22] where we extend our model to address moral hazard.
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The paper is organized as follows. In Section 2, we propose and analyze the
base model. In Section 3, we add competitive insurers to our base model, and
consider two cases: with non-contractible individual security levels, and with
required individual security level included into user’s insurance contract. In Sec-
tion 4, summarize our findings and conclude. The technical details are relegated
to Appendix.

2 Model

We consider a network populated by N homogeneous (i.e., identical) users, each
of whom possesses a wealth W > 0. In the absence of network security problems,
user i utility Ui is:

Ui = f(W ),

where the function f is increasing and concave (f ′ > 0, and f ′′ ≤ 0), reflecting
that user wealth W has a positive but decreasing marginal benefit for the user.

In the presence of network security problems, we assume that a user i incurs
a monetary damage D ∈ (0, W ) when he is successfully attacked, and we let pi

denote the probability of successful attack. We assume that the probability pi

depends on two factors: the security level si ∈ [0, 1] chosen by user i and the
network security level s̄ ∈ [0, 1], which depends on the security choices of all
network users. We define the network security level s̄ as the average security
level in the network:

s̄ =
1
N

∑
i=1,...N

si.

Further, we assume N to be large, i.e., each user has a negligible effect on s̄ and
takes the network security level as given. Then, we define the probability pi of
a successful attack on user i as

pi = (1 − si)(1 − s̄),

where the second term (1 − s̄) can be viewed as the probability of an attack
in the network and the first term (1 − si) can be viewed as the probability of
success of such an attack on user i.

We assume that, for any user i, achieving individual security si entails a cost
h(si). We let h be an increasing convex function (h′, h′′ ≥ 0), with h(0) = 0
representing a completely insecure user and h(1) = ∞ characterizing the costs
required to maintain a “perfectly secure” system. The intuition is that user
security costs increase with security, and that improving security level imposes an
increasing marginal cost on the user. Additionally, for expositional convenience,
we impose h′(0) = 0, to ensure positive user investments si > 0. We assume that
the user cannot modify his D by changing his investment h, i.e., users do not
self-insure their damages. For e.g., users may backup their data to prevent loss
of information. Such self-insurance does not have an externality effect on other
users since the advantages of that investment are observed by the user alone [12].
One can also view our D as the residual damages after self-insurance.
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Thus, the expected user utility can be expressed as

Ui = (1 − pi) · f(W ) + pi · f(W − D) − h(si). (1)

To simplify the exposition, we introduce the vulnerability of player i, vi = 1− si

and the network vulnerability level v̄ = 1 − s̄. Then, the expected utility of user
i is:

Ui = (1 − viv̄) · f(W ) + viv̄ · f(W − D) − g(vi), (2)

where g(vi) = h(1 − vi). This gives us: g′ ≤ 0, g′′ ≥ 0, and g(1) = 0, g′(1) = 0
and g(0) = ∞.

2.1 Social Optimum

We define the social optimum as a level at which aggregate user utility is maxi-
mized. In Appendix, we show that the socially optimal security level is identical
for all users: vi = v. Then, v̄ = v, and from (2), we have:

Usoc = (1 − v2) · f(W ) + v2 · f(W − D) − g(v). (3)

In any social optimum, ∂Usoc

∂v = 0, from which we have:

2vsoc [f(W ) − f(W − D)] = −g′(vsoc), (4)

and since ∂2Usoc

∂v2 < 0, the socially optimal vulnerability level is unique.

2.2 Nash Equilibrium

We assume that all parameters are known to users. As discussed above, a user
takes the network vulnerability v̄ as given and chooses his vulnerability vi to
maximize his utility given by (2). Taking the partial derivative of (2) with respect
to vi, and equating to zero, ∂Ui

∂vi
= 0, we obtain:

v̄ [f(W ) − f(W − D)] = −g′(vi). (5)

From the properties of the function g, the solution of equation (5) is unique,
from which vulnerability choice is identical for all users. Hence, in equilibrium,
all users have identical security (vulnerability) level, which we denote by v∗.
Then, v̄ = v∗ and the following holds:

v∗ [f(W ) − f(W − D)] = −g′(v∗). (6)

As in the case of social optimum, equilibrium vulnerability level is unique. Thus,
in equilibrium, user security investments are identical and positive. Optimal
investment increases when the damage D increases relative to wealth W . From
(2) and (6), the equilibrium expected utility is:

U∗ = f(W ) + v∗g′(v∗) − g(v∗). (7)

Comparing (4) and (6), we observe that since the LHS in (4) grows twice as
fast as in (6) (see Fig. 1), we must have the following proposition:
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Proposition 1. Individually optimal user security is strictly positive, and it is
strictly lower than the socially optimal one (vsoc < v∗ or ssoc > s∗).

The expected per user loss due to network insecurity is:

(v∗)2D,

which is higher than the expected per user loss in the social optimum: (vsoc)2D.
Thus, in our model, users under-invest in security relative to a socially optimal
level and this negative externality results in higher losses to society. In the next
section, we will add competitive cyber-insurers to our base model and study how
the presence of cyber-insurer affects network security.

soc

Fig. 1. Nash Equilibrium Vs Social Optimum

3 Insurance

Equilibrium is defined in a way similar to [23], where insurance equilibrium is
examined in the markets with adverse selection. Each insurer offers a single in-
surance contract in a class of admissible contracts, or does nothing. A Nash
equilibrium is defined as a set of admissible contracts such that: i) all contracts
offered at least break even; ii) taking as given the contracts offered by incum-
bent insurers (those offering contracts) there is no additional contract which an
entrant-insurer (one not offering a contract) can offer and make a strictly positive
profit; and iii) taking as given the set of contracts offered by other incumbent
insurers, no incumbent can increase its profits by altering his offered contract.

The literature referred to such contracts as “competitive,” because entry and
exit are free, and because no barrier to entry or scale economies are present. Thus,
we will consider insurance firms (insurers), who are risk neutral and compete with
each other. In addition to these equilibrium conditions, we assume that individual
insurers cannot affect the network vulnerability, and thus, take it as given.

Let ρ be the premium charged to a user and L be the amount of loss covered
by the insurer. Let user vulnerability be v and network vulnerability be v̄. The
user pays the premium both when he is attacked and when he is not, but is
covered a loss L when the attack occurs successfully. Thus, with probability vv̄,
the user is successfully attacked and receives utility

[
f(W − D + L − ρ)− g(v)

]
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and with probability (1 − vv̄), he obtains utility
[
f(W − ρ) − g(v)

]
. Denoting

U(v, v̄, ρ, L) as the corresponding expected user utility,

U(v, v̄, ρ, L) = (1 − vv̄) · f(W̃ ) + vv̄ · f(W̃ − D̃) − g(v), (8)

where
W̃ = W − ρ and D̃ = D − L.

The utility in (8) coincides with the no-insurance case if ρ = 0, L = 0. When v
is identical for all users, we have v̄ = v, and:

U(v, v, ρ, L) = (1 − v2) · f(W̃ ) + v2 · f(W̃ − D̃) − g(v). (9)

3.1 Non-contractible User Security

In this subsection, we assume that insurers do not know, and have no control over
user security level. This occurs when it is impossible (too costly) for the insurers
to monitor the users’ vulnerability v. Hence, the contract offered by an insurer
will be of the form (ρ, L), i.e., the insurer sets the premium and the amount of
coverage, and stipulates that no additional coverage can be purchased.

Note that the user is free to choose his required vulnerability here. Hence, users
will choose the vulnerability level to maximize their utility, given the network
security level. Thus, in the presence of competitive insurers, users choose which
contract to buy, if any, and the corresponding vulnerability that maximizes their
utility. In equilibrium, no user wishes to deviate from his equilibrium contract
to any other contract or to not buying any insurance. We denote the equilibrium
values in this non-contractible security case by the superscript †.

Social Planner. We assume that the social planner’s objective is to maximize
aggregate user utility with the constraint that the equilibrium contracts must not
be loss-making. When social planner offers some contract(s), the users optimal
choices could be described as if they play a game as in Section 2.2, but with
wealth W̃ = W −ρ and damage D̃ = D−L. In Appendix, we show that a social
planner will offer a single contract (ρ, L) only. Then, user optimal choice is given
by (6):

v†soc
[
f(W̃ ) − f(W̃ − D̃)

]
= −g′(v†soc). (10)

To maximize aggregate user utility, the social planner’s contract must solve the
following optimization problem:

max
ρ,L

U(v†soc, v†soc, ρ, L),

subject to (10) and budget constraint ρ − (v†soc)2L ≥ 0. In Appendix, we show
that all users buy this insurance. No user deviates to not buying, when other
users have bought the insurance.

With the insurance provided by a social planner, user utility is higher, but,
the vulnerability v†soc is also higher than in the no-insurance Nash equilibrium:

v†soc > v∗. (11)
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Competitive Insurance. Insurers offer contracts (ρ, L), and users maximize
their utility by choosing the contracts and a corresponding preferred security
levels, given the network security. In Appendix, we show that in any equilibrium,
the following proposition holds:

Proposition 2. With competitive insurers present, and non-contractible user
security, in equilibrium, the security is always worse than the security in the
no-insurance Nash equilibrium (v̄† > v∗ or s̄† < s∗).

Thus, we demonstrated that although insurers may allow users to reach a higher
utility, the network security is strictly lower with insurers. The favorable effect of
insurers on user utility is not free of cost for the society. The presence of insurers
negatively impacts network security level, which increase the losses from network
insecurity. Expected per user loss due to the insurers’ presence increases relative
to the no-insurance Nash equilibrium by Δ† given by:

Δ† =
[
(v̄†)2 − (v∗)2

]
D.

This is what one expects when insurers cannot monitor user security level. Since
user risk is covered, users tend to under-invest in security. Next, we study the
case where the insurer has perfect information about, and can perfectly enforce
the security of his insured users.

3.2 Contractible User Security

Here, we assume that the insurers can monitor their insured users’ vulnerability
v at zero cost. Thus, we permit the contracts that specify user’s required v. Let
(v, ρ, L) be a contract that sets the premium ρ, the coverage L, and requires
user vulnerability to be at most v. We denote the equilibrium values in this
contractible security case by the superscript ‡.

Social Planner. We assume that the social planner’s objective is to maximize
aggregate user utility with the constraint that the equilibrium contracts must
not be loss-making. In Appendix, we demonstrate that the social planner offers
a single contract (v, ρ, L) only. Thus, v̄ = v, and to maximize total utility,
the contract offered by the social planner must be a solution to the following
optimization problem:

max
v,ρ,L

U(v, v, ρ, L), s.t. v2L ≤ ρ.

In Appendix, we show that the solution (v‡soc, ρ‡soc, L‡soc) is unique and satisfies:

(v‡soc)2L‡soc = ρ‡soc

L‡soc = D

2v‡socDf ′(W − (v‡soc)2D) = −g′(v‡soc). (12)

Thus, the optimal contract makes no profit and offers full coverage. The social
planner choice v‡soc is given by (12).
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Competitive Insurance. In this case, insurers offer contracts (v, ρ, L). In equi-
librium, if the network vulnerability is v̄, then all equilibrium contracts must
yield equal utility U(v, v̄, ρ, L) for the user. If there exists a contract (v, ρ, L)
that an insurer can offer and improve this user utility, it is preferred by the
users and users will deviate and buy that contract. Hence, in equilibrium, the
contracts chosen by the insurers must maximize U(v, v̄, ρ, L). In Appendix, we
prove the following proposition:

Proposition 3. With competitive insurers present, and security level contractible,
in equilibrium, profits are zero (v‡2L‡ = ρ‡), and full coverage is offered (L‡ = D).
The equilibrium contract is unique and in this equilibrium, the security is always
worse than what will be chosen with a socially optimum insurance (v‡ > v‡soc).
Also, compared to the no-insurance equilibrium, security is worse (v‡ > v∗) except
when the damage D is a small fraction of the wealth W . Users are strictly better off
with insurers than when no insurers are present (U ‡ > U∗).

When security level is observable by the insurers, insurer presence allows to im-
prove user welfare, but not necessarily the network security. Unless the damage is
a small fraction of the wealth, with cyber-insurance, expected per user loss from
network insecurity increases compared to the no-insurance Nash equilibrium by
Δ‡, where:

Δ‡ =
[
(v̄‡)2 − (v∗)2

]
D.

Thus, for a significant range of parameters, the losses to society may increase
when insurance is available.

4 Conclusion

In this paper, we investigate the effects of competitive cyber-insurers on network
security and welfare. We highlight the impact of asymmetric information in
the presence of network externalities and address the effects of interdependent
security on the market for cyber-risks. The existing literature attributes cyber-
insurance a significant role in cyber-risk management; it especially emphasizes
positive effects of cyber-insurance market on security incentives. We find that,
on reverse, the presence of competitive cyber-insurers, in general, weakens user
incentives to improve security.

Though insurance improves the utility for risk-averse users, it does not serve
as an incentive device for improving security practices. Indeed, insurance is a
tool for risk management and redistribution, not necessarily a tool for risk re-
duction. To sum up, we argue that a combination of interdependent security and
information asymmetries hinder cyber-insurance from performing the function
of a catalyst for improvement of network security.
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Appendix

Social Optimum with No Insurance

In the social optimum, the goal is to maximize aggregate user utility given by

Uagg =
∑

i=1...N

[(1 − viv̄)f(W ) + viv̄f(W − D) − g(vi)],

where v̄ =

∑
i=1...N

vi

N . To optimize this expression, we take the partial derivative
w.r.t. vj for some j ∈ 1, . . . , N and equate to zero:

∂Uagg

∂vj
= 0

∑
i=1...N

[ vi

N
{f(W − D) − f(W )}

]
+ . . .

. . . v̄{f(W − D) − f(W )} − g′(vj) = 0
2v̄{f(W ) − f(W − D)} = −g′(vj). (13)

Since (13) is identical for all j, all users must be assigned an identical vulnera-
bility to maximize the aggregate utility.

Proposition 2

Social Planner. First, we show that the social planner will offer a single con-
tract in equilibrium only. Assume the reverse, and let there exist an equilibrium
with network security v̄, and at least two equilibrium contracts (ρ1, L1) and
(ρ2, L2). Without loss of generality, let v1 > v̄ > v2.

Then, for any user with contract (ρ1, L1) optimal v1 is the same as in the base
model with W̃1 = W −ρ1 and D̃1 = D−L1, and thus v1 is identical for all users
with contract (ρ1, L1) and is given from (5):

v̄
[
f(W̃1) − f(W̃1 − D̃1)

]
= −g′(v1). (14)

Using (5), all these users’ utility U1 can be written as

U1 = f(W̃1) + v1g
′(v1) − g(v1), (15)

www.eecs.berkeley.edu/~nikhils/EconSec.pdf
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Similarly, for all users with contract (ρ2, L2) we have:

U2 = f(W̃2) + v2g
′(v2) − g(v2).

Taking the derivative of vg′(v) − g(v) w.r.t. v, we get

g′(v) − g′(v) + vg′′ = vg′′ ≥ 0, (16)

which implies that vg′(v) − g(v) increases with v.
Now, consider instead a single contract (ρ, L1) such that optimal user vulner-

ability in the base model with W̃ = W − ρ and D̃1 = D − L1 is v1, i.e., from
(6),

v1

[
f(W̃ ) − f(W̃ − D̃1)

]
= −g′(v1). (17)

Comparing the LHS of (14) and (17), we infer that, since v1 > v̄, W̃ > W̃1 and
hence ρ < ρ1. Comparing the user utility with this single contract (ρ, L1) with
(15), we have

U = f(W − ρ) + v1g
′(v1) − g(v1) > U1 = U2,

since ρ < ρ1. Thus, this single contract (ρ, L1) permits the social planner to
achieve higher user utility and will be preferred to the two contracts (ρ1, L1)
and (ρ2, L2). Hence, we have proven that only a single contract will be offered
in the social planner optimum.

Second, we demonstrate that the network vulnerability with the optimal con-
tract (ρ†soc, L†soc) is higher than in the no-insurance Nash equilibrium, i.e.,
v†soc ≥ v∗. We know that U †soc must be higher than U∗ since U∗ can always be
reached by the planner offering the contract (ρ, L) = (0, 0) :

U †soc ≥ U∗.

Next, for any contract (ρ, L) with optimal vulnerability v, similar to (15), the
user’s utility can be written as

U = f(W − ρ) + vg′(v) − g(v). (18)

From ρ > 0, the monotonicity of vg′ − g from (16), (18) and (7), we infer that
U †soc ≥ U∗ holds only if

v†soc > v∗.

Last, we show that all users purchase this insurance. If a user i deviates to no-
insurance, she obtains U(vi, v

†soc, 0, 0), which is highest for vi = ṽ determined
from ∂U(vi,v

†soc,0,0)
∂vi

= 0, which gives:

v†soc [f(W ) − f(W − D)] = −g′(ṽ). (19)

Since v†soc ≥ v∗, comparing the LHS of (19) and (6), we have

ṽ ≤ v∗ ≤ v†soc.
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(a) Nash Equilibrium Vs Social Op-
timum
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(b) Deviation v1

Fig. 2. Competitive Non-contractible Insurance

Next, we write U(ṽ, v†soc, 0, 0) using (19):

U(ṽ, v†soc, 0, 0) = f(W ) + ṽg′(ṽ) − g(ṽ). (20)

Comparing with (7) using the monotonicity of vg′−g derived in (16), we conclude
that, since ṽ ≤ v∗, the user utility from deviation U(ṽ, v†soc, 0, 0) must be lower
than U∗. Therefore,

U(ṽ, v†soc, 0, 0) ≤ U∗ ≤ U †soc,

giving us the required result that no user will deviate and not buy insurance.

Competitive Insurers. In the case of competing insurers, there may exist
multiple contracts in equilibrium. However, the resulting network vulnerability
v̄† will not be lower than the vulnerability in the Nash equilibrium v∗. Indeed,
assume the reverse: v̄† < v∗. Let (ρ1, L1) be some contract adopted by a non-zero
fraction of users in this equilibrium.

From (5), replacing W by W̃1 = W − ρ1 and D by D̃1 = D − L1, we get
an expression for the vulnerability v1 chosen by users who adopt the contract
(ρ1, L1):

v̄†
[
f(W̃1) − f(W̃1 − D̃1)

]
= −g′(v1). (21)

Note that ρ1 ≤ L1, i.e., the premium must be lower than the coverage, else
deviating from this contract to no-insurance gives higher utility to the users.
Hence,

[
f(W̃1) − f(W̃1 − D̃1)

]
≤ [f(W ) − f(W − D)].

From our assumption that v̄† ≤ v∗, we observe that the LHS of (21) is lesser
than the LHS of (6) which implies that v1 ≥ v∗. (See Fig. 2(b).) However, the
choice of (ρ1, L1) was arbitrary among all the contracts in equilibrium. Hence,
the user adopting any contract in equilibrium will choose vulnerability not lower
than v∗. This gives us v̄† ≥ v∗, which contradicts our assumption. Hence, v̄† ≥ v∗

in the competitive equilibrium as well.
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Proposition 3

Social Planner. First, we show that a social planner will offer a single contract
in equilibrium only. Indeed, assume the reverse. Let the social planner offer two
contracts (The proof for more contracts is similar.) (v1, ρ1, L1) and (v2, ρ2, L2)
to a fraction α and (1 − α) of the population respectively. Thus,

v̄ = αv1 + (1 − α)v2.

From the budget constraint, we have

αρ1 + (1 − α)ρ2 ≥ αv1v̄L1 + (1 − α)v2v̄L2.

From (8), we observe that the contracts with L1 = L2 = D offer users a higher
utility. Hence, we will only focus on the contracts (v1, ρ1, D) and (v2, ρ2, D) for
the rest of the proof. In this case, the budget constraint becomes

αρ1 + (1 − α)ρ2 ≥ αv1v̄D + (1 − α)v2v̄D = v̄2D. (22)

From (8), the aggregate utility with the contracts (v1, ρ1, D) and (v2, ρ2, D) will
be:

Uagg = α[f(W − ρ1) − g(v1)] + (1 − α)[f(W − ρ2) − g(v2)].

Since both f and (−g) are concave functions (and f ′ > 0),

Uagg < f(W − {αρ1 + (1 − α)ρ2}) − g(v̄)
≤ f(W − v̄2D) − g(v̄),

where the second inequality comes from (22).
f(W − v̄2D)− g(v̄) is the utility obtained from the contract (v̄, v̄2D, D). Hence,
there exists the single contract (v̄, v̄2D, D) which always provides a higher ag-
gregate user utility than all contracts (v1, ρ1, L1) and (v2, ρ2, L2).

Thus, the social planner offers only a single contract. This contract must be
a solution to the following optimization problem:

max
v,ρ,L

U(v, v, ρ, L)

s.t. v2L ≤ ρ and v ≤ 1.

One can solve this optimization problem to obtain

−g′(v) = 2vDf ′(W − v2D). (23)

The details are relegated to [21].

Competitive Insurers. First, we notice that in any equilibrium, due to com-
petition, for any insurer, profit is zero, i.e. ρ = vv̄L for any equilibrium contract
(v, ρ, L). If ρ > vv̄L, some entrant insurer could offer a contract (v, ρ̃, L) s.t.
ρ > ρ̃ > vv̄L. From (8), the contract with a lower premium and same L, v and
v̄ improves user utility.
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Fig. 3. Competitive Equilibrium with Contractible Security

Second, full coverage, i.e. L = D will be offered due to competition. Indeed,
the contract (v, vv̄D, D) offers users the highest utility. To see this, consider the
family of contracts (v, vv̄L, L) for L ≤ D. From (9), the utility U(v, v̄, vv̄L, L)
will be (1−p)f(W−pL)+pf(W−pL−D+L)−g(v), where p = vv̄. Differentiating
w.r.t. L, and equating to 0, we get

p(1 − p)f ′(W − pL) = p(1 − p)f(W − pL − D + L).

If p �= 0 or 1, then L = D, which gives the required result. Henceforth, we
restrict our analysis to contracts (v, vv̄D, D) only.

Third, in any equilibrium, user utility from deviation to no-insurance gives
user a strictly lower utility. Indeed, assume the reverse. Consider a contract
(v1, v1v̄D, D) that has a non-zero number of users adopting it in equilibrium.
If a customer of this contract prefers to deviate to vi with no insurance, then
his utility without insurance must be greater than the utility with insurance
contract, i.e., U(vi, v̄, 0, 0) ≥ U(v1, v̄, v1v̄D, D). Consider an entrant insurer who
offers a contract (vi, viv̄D, D) (full coverage at actuarially fair price). Adopting
this contract improves user utility, which conflicts our equilibrium assumptions.
Therefore, the utility from deviation to no-contract must be strictly lower than
with a contract, and thus, all users strictly prefer to buy insurance.

Fourth, we prove that equilibrium contract is unique. Consider an equilibrium
with network security v̄. An entrant insurer could offer a contract (ṽ, ṽv̄D, D)
that maximizes U(ṽ, v̄, ṽv̄D, D) = f(W − ṽv̄D)− g(ṽ). To determine ṽ at which
user utility is the highest we differentiate

∂

∂ṽ
U(ṽ, v̄, ṽv̄D, D) =

∂

∂ṽ

(
f(W − ṽv̄D) − g(ṽ)

)
= 0,

f ′(W − ṽv̄D)(−v̄D) − g′(ṽ) = 0,

and since the second derivative is always negative:

f ′′(W − ṽv̄D)(v̄D)2 − g′′(ṽ) < 0,
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user utility reaches its maximum at a single point ṽ only, which is exactly the
contract offered in equilibrium. Thus, we have ṽ = v̄ = v†, and in any equilib-
rium, all users buy an identical contract (v‡, (v‡)2D, D), determined from

−g′(v‡) = v‡Df ′(W − (v‡)2D). (24)

The unique v‡ is strictly less than 1 since f ′(W − D) > 0. (If f ′(W − D) = 0,
then f(W ) = f(W −D) and insurance does not improve user utility and is hence
redundant.) Since the RHS of (23) is twice the RHS of (24), we conclude that
v‡ ≥ v‡soc, i.e., the equilibrium security under competitive insurers is worse than
under a social planner.

Next, we determine how v‡ compares to v∗. We rewrite (24) as

−g′(v‡)
v‡

= Df ′(W − (v‡)2D), (25)

and compare with the Nash equilibrium by rewriting (6) as:

−g′(v∗)
v∗

= f(W ) − f(W − D). (26)

Note that, from f ′′ ≤ 0, we have f ′(W ) ≤ f(W )−f(W−D)
D ≤ f ′(W − D). Also,

f ′(W − v2D) is an increasing function of v, and −g′(v)
v is decreasing. Hence, if

Df ′(W − v∗2D) < f(W ) − f(W − D) then v‡ > v∗ else v‡ ≤ v∗. Thus, if the
marginal benefit from full coverage offered at v∗ is lower than the average loss
of benefit per unit damage, insurance does not improve the security level.

Figure 3 depicts the solution of (25). From the figure, it is clear that only when
D becomes small, the network security level in the equilibrium with insurers
exceeds security level of no-insurance equilibrium. Note that when D is small,
v∗ is also large. Thus, competitive insurers improve network security only when
equilibrium vulnerability in no-insurance equilibrium is high.
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1 Introduction

Unlike earlier worms and viruses that inflicted substantial and immediately no-
ticeable harm on users’ network experience and data security, nowadays most
malicious software covers its tracks and avoids activities impacting hosts’ per-
formance. As a result, users develop limited incentives to upgrade their security
software and to remove unwanted code. In economic terms, it is individually
rational to ‘shirk’ or ‘freeride’ [33]. However, compromised machines lumped
together in botnets represent a ‘public bad’, which is to the detriment of the
collective welfare of all network stakeholders. Moreover, the eventual victims of
botnet-mediated attacks have little recourse, since the attackers, hiding behind
a veil of anonymity or jurisdictional ambiguity, are largely beyond the reach of
law enforcement authorities.

This misalignment of incentives in computer security was first highlighted by
Anderson, who observed that “where the party who is in a position to protect
� We thank the anonymous reviewers for their helpful comments to an earlier version

of this paper. This work is supported in part by a University of California MICRO
project grant in collaboration with DoCoMo USA Labs. This paper is an extended
version of a prior abstract contribution [19].

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 323–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

jensg@princeton.edu
sradosavac@docomolabs-usa.com
cardenas@fla.fujitsu.com
chuang@ischool.berkeley.edu


324 J. Grossklags et al.

a system is not the party who would suffer the results of security failures, then
problems may be expected” [3]. And Varian suggests that liability needs to be
assigned to the right parties “so that those who are best positioned to control
the risks have appropriate incentives to do so” [32].

Yet, it is far from obvious how to motivate appropriate security efforts or to
assign liability to large, dispersed populations of individual consumers, many of
whom are unaware of and ill-equipped to deal with technical problems. Trust
between different network participants is hard to justify, due both to negative
externalities and lack of participant expertise. As such, external incentive mech-
anisms must be designed to restore faith in other players following appropriate
behavior.

2 IT Security Obstacles

In particular, intermediaries such as Internet Service Providers (ISP) would find
it desirable if end users pay more attention to security problems and secure their
resources since alternative solution and mitigation approaches are not always
within reach [4].1

For one, cyber-insurance has been proposed as a market-based solution to ad-
dress the collective security risk. However, the uptake of cyber-insurance policies
has been limited. First, the traditional assumption of independent and uncor-
related risks does not apply to the Internet, where security is highly interde-
pendent, and therefore risks can be highly correlated [7]. Second, there is a lack
of historical actuarial data or reliable models for cyber-risk evaluation causing
high-priced premiums. Finally, those seeking insurance must undergo a series of
often invasive security evaluation procedures, revealing not just their IT infras-
tructures and policies, but also their business activities and partners [5]. Taken
together, cyber-insurers and re-insurers are progressing at a “frustratingly slow
pace, with major obstacles preventing development into a full-fledged industry”
[13].

A similar assessment can be made about the deployment of novel network-
based countermeasures [3]. Significant hurdles arise due to the various interde-
pendencies and the associated positive and negative externalities between the
different stakeholders of Internet communications [8]. ISPs are generally (tech-
nically) capable of undertaking some actions from the physical infrastructure
level up to the application layer, but only within their domains. And, typically,
a service provider does not have purview and control over an entire end-to-end
path [10]. Accordingly, the benefit that providers can derive from a deployment

1 An ISP has strong motivations to improve the security of its subscribers’ machines
[30]. If infected, it may be used to launch attacks across the network, leading to abuse
notifications from other network operators, and increasing the risk of blacklisting [9].
Further, malware infections might motivate customer service calls that can easily
wipe out the profit margin for the customer for the month. It has been estimated
that the cost of incoming (outgoing) customer calls to (from) customer service centers
is about 8 (16) Euros per call [30].
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of new technology may depend on the number of other entities taking the same
measure (including the sharing of security information [12]).

Finally, organizations and businesses that provide network access to their
users (i.e., employees or students) frequently install security client software that
monitors and controls network access.2 However, the majority of consumer-
oriented ISPs shy away from direct technical intervention involving access to
the users’ home resources. We are only aware of one US consumer ISP exper-
imentally testing a similar approach.3 However, several ISPs utilize redirection
and quarantining techniques to encourage users to engage in clean-up efforts
[21].

ISPs reluctance for active end user management can be partly explained with
the fact that securing network communications is a complex task [26], that needs
to be managed in a cost-effective manner. Higher-tier ISPs can limit their in-
volvement by exercising market power to delegate security diligence to lower
level ISPs [23]. Therefore, ISPs who find themselves lower in the pecking order
may find it necessary to police their networks when they are facing disconnection
threats, higher transit rates, or a projected shortage of (last-mile) connection ca-
pacities. Our work addresses the needs of such service providers by considering
different avenues to impact users’ decision processes to secure their resources.

3 Understanding Consumer Incentives

A major source of complexity for ISP decision making is the diversity of sub-
scribers. While some providers may be exclusively focused on residential end
users, others have a customer base that is a mixture of individual residences,
small businesses, and large corporations [9]. In practice, these different sub-
scriber types are subject to different threats and interdependencies, and respond
differently to economic incentives.

First, enterprise and residential subscribers are subject to different security
interdependencies. Enterprise subscribers (i.e., businesses and content providers
that are connected to the ISP) usually deploy their own sub-networks with a
perimeter defense to shield the interior of the network from scrutiny by com-
petitors and criminals. However, a breach of the perimeter will often cause corre-
lated damages in the interior of the network. Residential end users, on the other
hand, are subject to different interdependencies. Their security efforts (or lack
thereof) contributes to the general hygiene and cumulative defense readiness of
the network. For example, if more users invest in spam reduction efforts, install
firewalls or anti-malware software, and regularly apply system patches, the over-
all level of harm to all users can be reduced. Fig. 1 shows a typical ISP with a
mixture of residential and enterprise subscribers.

2 For example, some organizations utilize the Cisco Clean Access network admission
control software.

3 Comcast customers in one service area will receive pop-up notices on their desktop
informing them about security problems [22].



326 J. Grossklags et al.

ISP

Fig. 1. ISP with residential and enterprise subscribers

Second, enterprise and residential subscribers face different incentives to invest
in security. An enterprise can better quantify the monetary impact of a security
breach that leads to business disruption or data compromise. At the same time,
it is also a more attractive target because a single breach of the perimeter can
often yield a number of compromised machines that can then be used by the
attacker to commit further crimes. Consequently, enterprises are more likely to
respond to intrusions, and to incentives to invest in security. Individual residen-
tial subscribers, in contrast, often fail to pay attention to security. Consequently,
they may also be less aware of, and less responsive to, changes in incentives and
the legal/technical environment concerning security [2,6].

3.1 Basic Model

We now describe a model for evaluation of different security-enhancing proposals
that an ISP may consider undertaking. We are building on our security games
framework proposed and formally analyzed in previous work [16,17,18].

We consider an ISP with N ∈ N users connected to its network. Facing a
variety of attacks, end users undertake two different types of security precautions.

Table 1. Parameters for consumer incentives model

Parameter Interpretation
V Value from network participation (V ≥ 0)
b Cost of protection (b ≥ 0)
c Cost of self-insurance (c ≥ 0)
p Probability of attack (0 ≤ p ≤ 1)
L Loss from security breach (L ≥ 0)
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On the one hand, a subscriber i may choose a self-insurance level 0 ≤ si ≤
1, for example, by purchasing and utilizing a backup solution. On the other
hand, each user selects a protection level 0 ≤ ei ≤ 1 by adopting different
preemptive technologies such as firewalls, intrusion detection systems, and anti-
malware software [33]. Table 1 summarizes important parameters of the game.
The utility function of each subscriber has the following structure [16]:

Ui = V − pL(1 − si)(1 − H(ei, e−i)) − bei − csi, (1)

where the security contribution function, H(ei, e−i), is used to capture differ-
ent security interdependencies. It characterizes the effective security level given
agent’s i investment in protection ei, subject to the protection levels chosen (con-
tributed) by all other players e−i. We require that H be defined for all values
over [0, 1]N ; in particular, H : [0, 1]N → [0, 1].

In the earlier part of this section, we introduced two important types of se-
curity interdependencies that are relevant in the ISP context, i.e., perimeter
defense and cumulative security. Below we match these problem scenarios to
mathematical formulations introduced in prior work (see also Fig. 2) [16].

Tightly-Coupled
Dependencies

Perimeter
defense

Weakest Link
Interdependency

Cumulative
defense

Total Effort
Interdependency

Fig. 2. Overview of security interdependencies

3.2 Perimeter Defense and Cumulative Defense

In Fig. 1 the enterprise subscriber utilizes a perimeter defense that separates its
subnetwork from the rest of the ISP network. A perimeter defense is vulnerable if
an attacker can identify a weakness that leads to its circumvention. Subsequently,
hosts behind the common defense are left defenseless after a breach occurs.
This tightly coupled dependency (i.e., in which a single breach can lead to the
compromise of the complete subnetwork [11]) can be modeled by considering
the minimum effort of any agent to be decisive for the success of the perimeter
defense (H(ei, e−i) = min(ei, e−i)) [16].

End users are subject to cumulative interdependencies. Consider, for example,
a share of users that under-utilize options for protection, or act carelessly by re-
sponding to spam messages. Then all users in the network will suffer incrementally
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from the clogging of bandwidth, increased spam activity, etc. This effect can be
modeled with the total effort security contribution function (H = 1

N

∑
k ek) [16].

A complete economic analysis of the base case (i.e., with homogeneous end
users and an exogenous attacker) for these two interdependency scenarios is
available in our previous work [16]. Our technical analysis showed that several
key obstacles may prevent network participants from providing high security
efforts:

Strategic uncertainty: In both interdependency scenarios, there is a multi-
plicity of equilibria for protective and self-insurance actions. For example, in the
weakest link security game, agents may choose between full self-insurance and
various protection equilibria if b < pL, c < pL and b < c. The co-existence of
these types of equilibria may cause coordination failures if a single agent deviates
from a protection strategy to select self-insurance.

Rational underprotection: The ISP would prefer that all agents invest fully in
protection; however, agents may rationally decide otherwise. For example, in the
weakest link security game, agents have no reliable rational basis to differentiate
between a zero-effort strategy (passivity) and a high effort level (protection)
given b < c. Similarly, in the total effort game, users consider the value of
their contributions relative to the size of the network, i.e., they only consider
protection if bN < pL.

Security passivity: End users rationally select a zero-effort level for both pro-
tection and mitigation if they perceive the security costs to be too high. The
consequences of lax security are: increased security compromises, service calls,
and abuse notifications to the ISP.

4 Shaping Consumer Incentives

In this section, we discuss economically-motivated strategies that an ISP may
use to influence customer behavior and to respond to the key obstacles outlined
above. More specifically, we attempt to analyze strategies and mechanisms ISPs
may utilize to allocate additional security investments for achieving a significant
improvement in overall system security, while taking into account given user
interdependencies and incentives.

Our attention is focused on lightweight approaches that carry only a moderate
cost to ISPs and will not seriously impact the economic well-being of end users.
For example, in practice ISPs may attempt to influence users with educational
measures about computer security risks and prevention technologies. Similarly,
service providers may encourage the installation of certain security packages to
impact the status quo of end user risk mitigation.

Recently, researchers in psychology and economics have proposed the concept
of nudges to influence consumer behavior. Such interventions create a choice ar-
chitecture that impacts user behavior in predictable ways without dramatically
changing economic incentives (e.g., without excluding certain options) [28]. In
particular, security problems that are related to difficult to value goods such
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as private information or personal data (i.e., photos, diary entries) pose signifi-
cant decision making problems for individuals who could benefit from a helping
hand [1].

We believe that nudging techniques may be of great benefit to end user secu-
rity problems. In the following, we want to explore two canonical approaches to
influence consumer decision making. While we are working within a framework
of rationally acting agents we suggest that our results can be used to determine
subtle nudges that are more powerful because they are respectful of economic
incentives. For example, if we want to steer individuals towards an easier to use
security product one should make sure that the usage will create the largest
possible benefit to the consumer and to overall network security.

4.1 Rebates and Penalties: Pay for Outcome

Pay for outcome represents a situation where an ISP offers a flat rebate to users
who agree to being subject to a monetary or non-monetary penalty, P , when
security compromises occur. Similary, an ISP may deliver a bonus, B, to users
for positive security outcomes (i.e., a breach is not occuring).

Mathematically, we can express these policies in the following way. First, let
us consider an additional penalty in the case of a security breach:

Ui = VP − pL(1 − si)(1 − H(ei, e−i)) − pP (1 − H(ei, e−i)) − bei − csi

= VP − pL(1 − si + P/L)(1 − H(ei, e−i)) − bei − csi

For the bonus payment we get:

Ui = VB − pL(1 − si)(1 − H(ei, e−i)) + pBH(ei, e−i) − bei − csi

= VB − pL[(1 − si) − H(ei, e−i)(1 − si + B/L)] − bei − csi

The penalty, P , can be implemented, for example, in the form of a reduction of
network throughput or a quarantine [21], while the fee remission can take the
form of a monetary benefit, or reduced subscription costs. Such a policy needs
to be well-balanced since most users are not inclined towards penalty-based sys-
tems. The recent protests (that even included the involvement of politicians)
against plans to (re-)introduce usage-based pricing systems may serve as evi-
dence [25].

4.2 Cost Subsidies: Pay for Effort

We now look at the problem of subscriber incentives from a different perspective
by considering the opportunities of network operators to offer security prod-
ucts to its subscribers at a chosen cost or to subsidize alternative security tools
and software. Currently the impact of such practices is limited. A 2008 survey
suggests that only 19% of Internet users in the United States and 12% in Eu-
rope acquired their most recent security software product from their ISPs [24].4

4 The survey polled 1500 consumers in the United States, France, Germany and the
United Kingdom.
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Further, only few ISPs offer services that fall into the category of self-insurance
(such as online backups or replication).5

Cost subsidies (or even increases) may affect protection and self-insurance
investments. In the presence of pay for effort policies, the utility function changes
to:

Ui = (VF ) − pL(1 − si)(1 − H(ei, e−i)) − (b + E)ei − (c + S)si

We denote as E the cost modificator for protection, and as S the influencing
factor for self-insurance cost.

4.3 Numerical Sensitivity Analysis

We defer a full analytic discussion of these two policies to future work, and
instead present selected results from a numerical sensitivity analysis. In particu-
lar, we study the impact of small nudges (i.e., positive and negative) on selected
security relevant variables in the two interdependency scenarios.

First, let us consider the perimeter defense scenario. From prior work we
know that security contributions in the weakest-link interdependency are highly
fragile, and the defection of a single individual (to a lower protection level) can
severly impact overall system security [16,31]. We also found that a threshold
value (emin = pL−c

pL−b ) exists that determines the lowest security contribution that
a rationally acting defector may consider. The higher the threshold level the less
damage we would expect to overall system security.

In Figures 3 and 4 we present the expected influence of the two nudging
policies on the protection investment threshold value. On the y-axis we plot
the protection threshold level, and on the x-axis the strength of the nudging
policy. In particular, we use a common scale for pay for outcome and pay for
effort strategies by an ISP. Our approach is to use similar sized intervention
investments to influence either a baseline loss with a pay for outcome policy, or
to influence a baseline protection cost with a pay for effort policy. The nudges can
be either positive or negative to represent bonuses and penalties, respectively.
For brevity, we do not plot the impact of pay for effort nudges directed at self-
insurance costs. A negative value on the x-axis corresponds to a reduction in cost
(pay for effort bonus) or a positive pay for outcome intervention, respectively.

Our numeric examples include a scenario with small attack probability paired
with large maximum loss (Figures 3.a and 4.a), and a situation with a relatively
large attack probability paired with low maximum loss (Figures 3.b and 4.b).
We find that this distinction has relatively little impact. However, the graphs
show that pay for effort nudging is fruitful in the presence of comparatively low

5 For example, Earthlink discontinued its Weblife service that included an online
backup process in early 2008. See, for example, http://www.dslreports.com/forum/
r19475297-EarthLink-WebLife-will-be-Discontinued-January-7-2008 for the
shut-down announcement. Several non-ISP alternatives have emerged such as of-
ferings by security companies (e.g., Symantec’s SwapDrive), information storage
companies (e.g., EMC’s Mozy) and electronic commerce and content providers (e.g.,
Amazon Simple Storage Service).

http://www.dslreports.com/forum/r19475297-EarthLink-WebLife-will-be-Discontinued-January-7-2008
http://www.dslreports.com/forum/r19475297-EarthLink-WebLife-will-be-Discontinued-January-7-2008
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Fig. 3. Perimeter defense with an expensive self-insurance option: Worst case
security effort that represents a rational strategy for individual subscribers when pro-
tection cost are significantly lower than self-insurance cost (Baseline protection cost
b=0.25, fixed self-insurance cost c=0.8, Value of connection V=1)
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Fig. 4. Perimeter defense with a less costly self-insurance option: Worst case
security effort that represents a rational strategy for individual subscribers when pro-
tection cost are only somewhat lower than self-insurance cost (Baseline protection cost
b=0.25, fixed self-insurance cost c=0.5, Value of connection V=1)

self-insurance costs (see Figure 4). In general, pay for outcome interventions can
be more effective than pay of effort, however our graphical analysis does not
reveal any high impact scenarios.

In the cumulative security example we are mostly concerned with the de-
creasing incentives to invest in protection when the network grows in size [16].
Users evaluate bN < pL to decide whether a protection investment is benefi-
cial. Whereas an ISP would prefer that individuals simply calculate b < pL,
individual users have the incentives to free-ride on others’ protection efforts. A
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rebate/penalty policy can contribute to the betterment of the security outcome.
However, it is immediately obvious that a penalty would need to be in proportion
with the size of the network to have a noticeable impact.

Therefore, we observe that a moderately sized pay for outcome intervention
has little impact on the maximum number of agents that would willingly con-
tribute to security in a network. Similarly, pay for effort interventions only work
at the margin, when a cost subsidy essentially provides security products free of
charge (see Figure 5).
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Fig. 5. Cumulative security: Maximum size of the network so that all agents are
still willing to contribute to protection (Baseline protection cost b=0.25, fixed self-
insurance cost c=0.5, attack probability p=0.1, baseline maximum loss L=10, Value of
connection V=1)

5 Discussion and Implementation

We find that pay for effort and pay for outcome policies can influence the basic
security trade-offs in the perimeter defense case. The major obstacle for a
penalizing policy is that users who are located behind a perimeter are usually
not in direct contact with the ISP. However, a homogeneous penalty can be
applied with selective throttling or temporary disconnection of the subnetwork.
Several technologies exist to conduct such traffic management. For example,
network operators frequently employ tools to throttle the spread of propagated
threats [29]. Similarly, tools can be used to rate-limit certain application flows
to implement (approximate) differentiated policies even if the exact individual is
unknown to the ISP. However, users may deploy evasive utilities in the presence
of such policies. For example, P2P applications trying to avoid rate limitations
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spread their communication flows over thousands of TCP ports, challenging sim-
ple penalty policies that employ port-based identification [14]. The next steps in
the arms race are deep-packet inspection (DPI) mechanisms which are, however,
met with user resistance. Recently, a major UK ISP stopped the deployment of
an advertisement-enabling DPI technology [35].

ISPs may wish to influence, more directly, users located behind a perime-
ter. A practical approach is to leverage Service Level Agreements (SLA) to
manage a variety of rebate/penalty and cost subsidy policies with their insti-
tutional subscribers [34].6 In this way, ISPs can advice corporate customers on
security management, and corporate and institutional customers can implement
policies in the most suitable manner. For example, they may enforce certain se-
curity standards with clearly stated consequences that have evolved within the
organization.7

In the cumulative security scenario, the impact of simple policies is severly
limited when the number of users increases. That is, the penalty needs to be
proportional to the damages caused in the whole network [33]. In theory, this
penalty would never be paid since agents would rationally infer that full protec-
tion is the optimal strategy. In practice, it is unlikely that a user would be willing
to accept such a risk. Consider the current struggle concerning 3-strikes rules
threatening residential users with disconnection if their account is repeatedly
used for copyright-infringing activities.8

From a behavioral perspective, penalties only have to be large enough to
influence consumer sentiment. In fact, in laboratory experiments it has been
shown that quite subtle changes can often lead to dramatically different outcomes
[15].

Two policies remain relatively effective but may be unattractive for the ISP.
First, offering protection at zero cost overcomes the disincentive caused by the
network dimensions. Second, a network operator may choose to tackle the prob-
lem by compartmentalizing the network into smaller chunks. Several technical
solutions exist, e.g., one physical network may be separated into several smaller
logical domains (i.e., virtual subnetworks or local area networks). Virtual net-
works can also be used to separate ports (and therefore groups of applications)
which indirectly impacts network size.

So far we discussed how ISPs can encourage protection investments; however,
the effectiveness of the policies is unclear if individuals suffer from strategic
uncertainty. In particular, in both interdependency scenarios users may have
some reverberant (and fully rational) doubt about others’ willingness to cooper-
ate instead of choosing to shirk, or to select self-insurance [31]. In the perimeter
defense scenario, the provision of ‘free’ security technologies alone cannot reli-

6 Currently, some security service companies draft SLAs to manage security expecta-
tions, e.g., http://www.isp-planet.com/technology/mssp/2003/mssp2a.html.

7 See, for example, the University of Pennsylvania’s Disconnection Policy: http://

www.upenn.edu/computing/policy/disconnect.html
8 The currently proposed version of the French 3 strikes law allows sanctioning of users

including prison sentences.

http://www.isp-planet.com/technology/mssp/2003/mssp2a.html
http://www.upenn.edu/computing/policy/disconnect.html
http://www.upenn.edu/computing/policy/disconnect.html
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ably overcome coordination uncertainty. But, increasing the penalty or reducing
the gap between the security investment costs removes the incentives for users
to haphazardly coordinate on a lower level of protection. Hamman et al. study
a similar penalty strategy in an experiment and find that it elicits higher ef-
fort levels [20]. However, not all subject groups responded to the penalty when
facing the weakest link interdependency, and the effect disappeared almost im-
mediately after the removal of the penalty. Therefore, if the economic incentives
cannot be made permanent, then the policy should be associated with a method-
ology to raise awareness and to instill an intrinsic motivation for effective security
practices [27].

Finally, when studying the numerical results it is immediately apparent that
the two scenarios may call for different interventions. ISPs that have a user base
consisting of both residential and institutional customers may find it therefore
difficult to overcome strategic difficulties caused by the multiplicity of equilib-
ria. To effectively address this problems ISPs may be forced to segment their
customer groups into different virtual or physical networks. Separating commer-
cial customers constitutes a feasible technique since they often require dedicated
lines and services.

With our analysis we have started a discussion about the opportunities and
limitations of simple intervention mechanisms that do not necessitate the dif-
ferential treatment of customers and the associated implementation obstacles.
We believe that such easy-to-deploy policies may help overcoming the impasse
between the apparent lack of effective protection investments in interdependent
networks and the financial viability of cyber-insurance.
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Abstract. Botnets pose a growing threat to the nation’s critical digital infra-
structure and general level of cybersecurity. Several strategies for reducing the 
threat of botnets have been outlined in the cyber security literature. These 
strategies typically call for both Internet Service Providers (ISPs) and home 
Internet users to adopt a greater share of the responsibility for overall security. 
However, to date no study has attempted to determine how accepting the public 
would be of these strategies. This study takes the first step in filling that gap. 
The results of this pilot survey suggest that, in general, individuals would be 
willing to spend additional time each month meeting security requirements set 
by their ISPs. The results also suggest that although only 50% of respondents 
would be willing to pay their ISP more per month to protect themselves from 
cyber threats, more people would be willing to do so if they perceived ISPs as 
being effective or very effective at reducing such threats. The findings provide 
important guidance for policy makers and ISPs seeking to gain support for such 
strategies. 

Keywords: Botnets, cybersecurity, digital infrastructure, economic incentives, 
Internet Services Providers, threat reduction strategies. 

1   Introduction 

In recent years, cybersecurity threats have been growing in terms of economic impor-
tance. Prior to the 1990s, the damage inflicted by malicious software programs (mal-
ware) was restricted by the fact that data were primarily exchanged through mediums 
such as floppy diskettes. As a result, installing malware typically required some form 
of physical access to a target computer. Over the past 20 years, however, the Internet 
has dramatically increased the ease and potential damage of cyber attacks. 

Recent estimates suggest that sophisticated hackers are stealing hundreds of mil-
lions of dollars each year. In 2009, $560 million in losses was reported to the FBI-
backed Internet Crime Complaint Center [1], and most experts put the total impact on 
businesses (including inefficiency costs) and individuals (e.g., identity theft) as being 
much higher. A 2005 FBI survey estimated total annual losses of $67.2 billion per 
year to U.S. organizations [2]. 

In May 2009, President Barack Obama released a 60-day, comprehensive,  
“clean-slate” review to assess U.S. cybersecurity policies and structures. This review 



338 B. Rowe, D. Wood, and D. Reeves 

concluded that “the architecture of the Nation’s digital infrastructure, based largely 
upon the Internet, is not secure or resilient. Without major advances in the security of 
these systems or significant change in how they are constructed or operated, it is 
doubtful that the United States can protect itself from the growing threat of cyber-
crime and state-sponsored intrusions and operations (p. i)” [3]. 

One of the most significant cybersecurity threats today is the growth in botnets—
collections of compromised computers that are used by hackers to attack critical in-
frastructure enterprises, steal personal information (e.g., social security numbers and 
bank account information), and spread spam, as well as conduct other illegal activi-
ties. Botnets are growing both in size and complexity, and at the same time automated 
techniques are allowing their operators to acquire and use their resources much  
more efficiently. As a result, botnets have been identified by network operators and 
cybersecurity industry leaders as one of the greatest anticipated threats in the near 
term [4], [5].  

Economists, computer scientists, and legal experts have suggested a variety of ac-
tions to be taken by individuals and organizations to reduce the threat of botnets. In 
particular, Anderson et al. [6], Lichtman and Posner [7], and others suggest that Inter-
net service providers (ISPs) could significantly reduce the proliferation of botnets by 
taking certain actions to better secure their customers. However, no study has been 
conducted that attempts to determine how the public would react to these strategies if 
implemented. Given that these actions might reduce ISPs’ profits, various private and 
public (subsidies) payment structures must be considered. It is also important to un-
derstand the public’s response to these payment structures in order to help private 
stakeholders (e.g., ISPs) and public stakeholders (e.g., policy makers) determine how 
to adequately pay for certain strategies.  

This report presents the results of a survey administered to a convenience sample 
of 20 home Internet users. The survey was conducted as a pilot test of a survey in-
strument being designed for a study funded by the Institute for Homeland Security 
Solutions (IHSS), a consortium supported by the Department of Homeland Security. 
This pilot survey and the larger ongoing survey effort are designed to provide initial 
insights into how the public would react to particular cybersecurity strategies. Spe-
cifically, this report focuses on strategies that ISPs could take to help reduce the pro-
liferation of botnets, as suggested by Anderson et al. [6], Lichtman and Posner [7], 
and others. The lessons learned in this analysis will provide the intellectual basis for a 
nationally representative survey that will be conducted later in 2010.  

2   The Growing Threat of Botnets 

Botnets are vast collections of computers (known individually as bots) that have been 
infected with malicious software allowing them to be controlled remotely by indi-
viduals known as “bot masters.” Typically, individual bots are personal computers 
owned by home Internet users that are unaware their computers are being remotely 
controlled.  

Botnets can be used to conduct a variety of illegal activities. Among the most poten-
tially disruptive (and costly) of these activities are Distributed Denial of Service 
(DDOS) attacks, where hundreds to thousands of bots attempt to access a single Internet 
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system or service causing it to become busy and deny service to legitimate users.  
DDOS attacks can be used to make public websites inaccessible and can also affect  
e-mail connectivity, Internet-based telephone systems, and other operationally signifi-
cant functions [8]. 

Although typically DDOS attacks are associated in the media with attacks on popu-
lar media and social network sites, such as Twitter [9], DDOS attacks pose a more 
worrisome threat to critical digital infrastructure enterprises. In 2010, McAfee re-
leased a commissioned report on the threat that cyber attacks pose to critical digital 
infrastructure [8]. Based on a survey of 600 information technology (IT) and security 
executives from critical infrastructure enterprises spread across the United States  
and 13 other countries, this study found that approximately 30% of U.S. enterprises 
surveyed reported large-scale DDOS attacks on a monthly or more frequent basis. 
Additionally, the consequences of these attacks can be dramatic. Among the 600 
executives surveyed, nearly two-thirds indicated that large-scale DDOS attacks had 
impacted their operations in some way. Specifically, among respondents, 

• 26% reported that the attack had a serious or sustained impact on IT 
networks with some effect on operations; 

• 23% reported that the attack had effects on operations, causing  
reputational damage or service interruption; 

• 12% reported that the attack had a serious sustained effect on opera-
tions, such as environmental damage, floods, etc; and  

• 4% reported that the attack caused a “critical breakdown” in  
operations.  

McAfee attempted to quantify the costs of cyber attacks by asking respondents to 
estimate the losses they would incur from the downtime following a major cyber 
attack. Respondents estimated that 24 hours of downtime resulting from a major at-
tack would cost their own organization, on average, $6.3 million.  

In addition to DDOS attacks on critical infrastructure enterprises, botnets can also 
be used to carry out a variety of other illegal activities, such as collecting personal 
information from unsuspecting users or spreading spam that is either annoying or 
malicious in nature. According to online security vendor MessageLabs (now owned 
by Symantec), one single botnet, called Cutwail, was responsible for 29% of all spam 
sent between April and November 2009 [10].  

According to recent estimates, approximately 9.4 million computers around the 
world are infected with bot software [11]. According to the 2009 Arbor Worldwide 
Infrastructure Security report, which surveyed 132 ISP network operators around the 
globe, these botnets and the DDOS attacks that they can be used to conduct are con-
sidered the largest anticipated threat over the next 12 months. And the threat they 
pose is only expected to increase with time as botnets become more sophisticated.  

Botnets are becoming both easier to create and harder detect. According to a 2009 
MessageLabs report, botnets are evolving to become more autonomous and intelli-
gent—with each node containing built-in, self-sufficient code allowing it to coordi-
nate with the bot master and extend its own survival [10]. Another more worrisome 
trend is that botnets are also becoming easier to access: the cyber security markets are 
becoming so efficient that it is possible to rent botnets [12].  
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To both limit economic damage and prevent more catastrophic results, for example 
to critical digital infrastructure, U.S. policy makers are considering a variety of direct 
(regulations) and indirect (research and development spending) methods to improve 
the cybersecurity of the United States. As part of this process, U.S. policy makers 
need a detailed understanding of the stakeholders involved with providing cybersecu-
rity and their incentives for providing security against botnets.  

3   Stakeholder Incentives for Providing Security Against Botnets 

Three primary stakeholders are in a position to take action to reduce the threat of 
botnets1: targets of botnet activities, who can improve their defenses; home Internet 
users, who can take steps to prevent themselves from becoming bots; and ISPs, who 
grant home users access to the Internet. These stakeholders could take a more active 
role in improving cybersecurity. 

It seems intuitive that the first avenue for reducing the threat of botnets is for indi-
viduals or organizations that are the target of botnet attacks to protect themselves 
sufficiently from such an attack. Inasmuch as these stakeholders bear the full cost of 
these attacks, they therefore have the most incentive to either prevent them or mitigate 
their impact on day-to-day operations. For example, these organizations could miti-
gate a DDOS attack by purchasing bandwidth larger than the attack itself or using 
packet filters to weed out the bad traffic [13]; and individuals could use spam filters 
and otherwise improve their host-level security to prevent their personal data from 
being stolen. 

However, because target organizations have the most incentive to protect them-
selves against attack, it would seem reasonable to suspect that these same individuals 
and organizations have already made many of the most cost-effective investments 
(given the information they have and their budget constraints) in defensive technolo-
gies; yet the problem of botnets remains. Even if further investments are made, it is 
doubtful that the most robust defenses will be enough to protect against all attacks. A 
2006 iDefense Security Report concluded that “ultimately, many defenses, once em-
ployed can later be circumvented by the attacker. It has always been and remains 
easier for an attacker to adapt their attack vectors or simply increase the number of 
attacking bots than it is for defenders to mitigate the attack, to increase resources, or 
to recover” [13].  

Further, legal recourse for organizations that are attacked by botnets is not well es-
tablished. Although successful efforts have been waged in U.S. courts and elsewhere 
to shut down botnets—for example, by Microsoft [14]—it is often difficult, impossi-
ble, or prohibitively time-consuming to determine who coordinated a botnet attack. In 
many cases, the perpetrator(s) are located outside of the United States. As such, the 
victims are often unable to utilize a primary government support mechanism, criminal 
prosecution, civil lawsuits, and the awarding of damages; thus, the costs can be more 

                                                           
1 Note that software vendors, among others, could also play a role in reducing the threat of 

botnets by improving software quality. However, this report only focuses on strategies that 
could more directly reduce the impact of botnets, such as strategies that would incentivize 
action by stakeholders that are both most affected by botnets and most able to make security 
improvements that could directly affect the proliferation of botnets.  
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significant. Moreover, if the perpetrators cannot be identified or they are located out-
side the United States, they may not face sufficient negative costs (e.g., fines or im-
prisonment) to incentivize them to change their activities. Consequently, if the threat 
of botnets is to be reduced, other stakeholders must take on some of the responsibility 
to improve cybersecurity. 

A second avenue for improving cybersecurity would be for home Internet users to 
take steps to prevent themselves from becoming bots. Specifically, home users can 
engage in good Internet use practices—such as being careful which e-mail attach-
ments are opened and which websites are visited—or by using a variety of up-to-date 
security software, hardware, and/or services.  

However, there are three principal reasons not to expect that home users will ade-
quately secure their computers on their own. First, home users typically do not experi-
ence the negative consequences of their own insecurity. Our research suggests that 
users are only interested in adopting security products or services if they believe they 
are being prevented from enjoying the Internet—for example, communicating (send 
and receive messages), shopping, being entertained, conducting financial activities, or 
conducting business activities. Although some botnets do mine the data (e.g., on finan-
cial activities) on bot computers and this can slow the performance of a bot computer, 
bots are primarily used to wage attacks against other organizations and/or groups of 
individuals. As a result, home users have minimal incentives for protecting themselves 
against becoming bots [6] or to simply assess the security level of their computers.  

Second, evidence is starting to accumulate that suggests that even if home users 
were more altruistic, they do not have the proper understanding of how botnets work 
to adequately protect themselves. Specifically, according to Wash [15], the mental 
models home Internet users have for understanding how cyberattacks work leaves 
them ill-equipped to deal with the dangers of botnets. Wash states that the extent to 
which home users pursue various security activities will depend on the way in which 
they conceive security threats. For example, individuals that view viruses as simply 
being “bad” (i.e., spam wastes people’s time but is generally harmless) and/or that 
hackers only pursue “big fish” (e.g., large companies, financial institutions) are 
unlikely to expend significant resources on substantive security measures.  

Lastly, even if home users were more knowledgeable of cybersecurity threats, they 
still may underinvest from a private perspective and, even more likely, from a social 
perspective because they may not know who to trust when seeking security advice or 
considering the purchase/adoption of various security products or services. Measures 
of effectiveness are particularly elusive in the area of cybersecurity. Although security 
vendors and ISPs providing security services offer products and services that espouse 
certain security benefits or features, no objective effectiveness metrics currently exist 
for users to facilitate making security investment decisions. Thus, the complexity of 
making cybersecurity decisions may cause many home Internet users to simply not 
adopt any solutions. 

Without objective metrics to compare security solutions, it is unclear how vendors 
and ISPs can most effectively earn or create trust among customers or potential cus-
tomers. For example, attempting to increase fear as a mechanism to earn trust could 
be problematic. One ISP interviewed for this study2 indicated that only 50% of their 

                                                           
2 Participation by this ISP required that their name be kept confidential. 
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customers have downloaded a security software package that is free with their sub-
scription. Although the customers would almost certainly be more secure if they 
downloaded and used this software,3 the ISP was hesitant to push customers to adopt 
the software, as they are concerned that this might cause customers to become more 
fearful of cybersecurity in general, which could result in a decrease in Internet usage 
by their customer base and thus a decrease in the ISP’s revenue. Note that this ISP felt 
that the cost of the security software package (reported as approximately $1 per li-
cense download fee paid by the ISP to the software vendor) was more than justified 
by the resulting benefits, including increased customer retention and improved net-
work performance (additional bandwidth). 

If home Internet users are to take a more active role in protecting their computers 
from botnets, they likely will need to receive a stronger incentive to care about this 
threat and to trust vendors offering various security products and/or services. Beaute-
ment and Sasse [16] found that in organizational settings, users are more compliant 
with security policies when they understand the reasons behind them. Education, 
training, and technical assistance are likely to be important, but security vendors and 
the government need to be circumspect about pushing out marketing or education 
campaigns that increase the fear of cybersecurity, which could decrease the use of, 
and thus the overall value of, the Internet. 

The final avenue for improving security against botnets that will be considered 
here is for ISPs to take a more active role in reducing the threat of botnets. Specifi-
cally, because ISPs provide home users with access to the Internet, they can observe 
traffic flowing into and out of their networks. As a result, they are in a prime position 
to observe (either with or without looking within users packets) traffic spikes or atypi-
cal Internet behavior that could be associated with malicious traffic cause by bots, 
with or without looking within users’ packets. A number of automated tools and 
products exist to make this process relatively efficient and scalable. ISPs can respond 
to signs of infection or misbehavior by cutting off Internet access to infected users or 
quarantining them until their machines have been repaired (e.g., [6], [17], [18], [19]).  

However, currently most ISPs do not take such an active role in securing their cus-
tomers. Although there has been an upward trend in the number of ISPs that actively 
try to improve the security of their customers, according to the 2009 Worldwide In-
frastructure Security report, only 28% of the ISPs surveyed said that they use auto-
mated techniques for quarantining infected or malicious subscribers [4]. The majority 
of ISPs do not currently use these automated systems because they have insufficient 
incentive for fighting botnets that operate across multiple networks. As noted by 
Lichtman and Posner, ISPs are currently immune from any liability for the damages 
caused by their subscribers [7]. Therefore, if more ISPs are expected to take an active 
role in reducing the threat of botnets, they will need to receive an additional incentive 
for doing so. 

4   Improving Incentives for Providing Security against Botnets 

The previous discussion makes it clear that improving incentives for home Internet 
users and ISPs to stop bots could significantly impact the general level of cybersecurity. 

                                                           
3 Unless customers already use another security software package. 
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One prevalent strategy discussed throughout the cybersecurity literature is to hold ISPs 
accountable for their role in the propagation of botnets. Specifically, ISPs are currently 
immune from any liability for the damages caused by their subscribers that are unwit-
tingly being used as part of a botnet. Lichtman and Posner [7] suggest that courts hold 
ISPs accountable by explicitly assigning them some share of the responsibility in the 
damages caused by botnets operating over their networks.  

However, in a commissioned report for the European Network and Information Se-
curity Agency, Anderson et al. [6] suggest that there are serious difficulties with the 
approach of imposing liability on ISPs. Specifically, they cite several stumbling 
blocks, such as the potentially high transaction cost of lawsuits and the difficulty of 
valuing the monetary losses associated with individual events. Instead, they recom-
mended that ISPs be charged a fixed-penalty charge if they do not quarantine infected 
individuals in a timely manner once they have been notified of their activities.  

In either case, imposing financial costs on ISPs for allowing botnets to operate over 
their networks would certainly provide an incentive to step up their efforts to quaran-
tine infected or malicious subscribers. In addition, Lichtman and Posner suggest that 
once ISPs are held accountable for the traffic traveling across their networks, they 
will take a more active role in ensuring their subscribers protect themselves from 
becoming bots. Specifically, they note that “ISPs have a direct contractual relation-
ship with their subscribers and so surely a liable ISP will require each of its subscrib-
ers to adopt rudimentary precautions…[b]etter still, these contract terms can be  
enforced by technology, which is to say that an ISP can block any subscriber whose 
virus definitions are horribly out of date or whose firewall is malfunctioning” [7].  

If the U.S government were to impose some version of a penalty on ISPs for not 
reacting to botnets on their networks, and if in response, ISPs set security require-
ments for their customers, as Lichtman and Posner predict, it would be a significant 
step forward in solving the three obstacles that currently face home users in terms of 
providing more security. First, this creates a clear incentive for home users to keep 
their computers secure. Second, this will provide home users with access to the 
knowledgeable technical assistance they need to be fully informed about cybersecu-
rity threats. Third, these requirements will help improve home users security decisions 
by providing them with information on trusted security solutions.  

Although these strategies have been discussed extensively in the literature, no 
study has been conducted to determine how the general public will react to such poli-
cies. For example, it might be expected that individual users would be upset if their 
Internet connection was unexpectedly disrupted because they were identified as a 
possible bot. Similarly they may be unwilling to spend the extra time or money that 
ISPs adopting these policies might impose on home users. 

Thus, the present study aims to take the first step in filling this gap in the literature. 
The following section describes a small survey that was conducted to better understand 
the public’s reaction to these various strategies for reducing the threat of botnets.  

5   Survey of Public Reaction to Strategies to Reduce the Threat of 
Botnets 

In February 2010, we administered a pilot survey to a convenience sample of 20 home 
Internet users. The survey was designed to gain an initial understanding of how the 
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public would react to four specific strategies for reducing the threat of botnets that are 
based on the existing cybersecurity literature, as described above. Specifically, we 
asked respondents if they would be willing to 

1. pay an additional monthly fee to fund ISP efforts to reduce cyberse-
curity threats to their computer; 

2. pay an additional monthly fee to fund ISP efforts to prevent their 
computer from being used, without their knowledge, to send spam or 
to attack other computers;  

3. spend time each month complying with ISP-determined security re-
quirements (participating in online security training, updating secu-
rity software, etc.); and 

4. allow ISPs to disconnect them from the Internet if it appeared that 
their computer was infected with malicious software. 

This survey aimed to better understand individuals’ perceptions of these security and 
potential ISP-based security solutions. The lessons learned from this pilot will be used 
to create a more robust survey that will be fielded to a nationally representative sam-
ple of U.S. Internet users between May and July 2010. This full sample survey will 
use a more sophisticated methodology than the one utilized in the pilot survey. Spe-
cifically, we will use stated preference discrete choice experiments to measure indi-
viduals’ responses to these and other ISP security strategies, and to quantify their 
willingness to accept the costs (in terms of time, money, etc.) associated with these 
strategies. Similar approaches have been used in numerous security-related research 
projects, including one recently completed by Robinson et al. [20]. 

5.1   Summary Statistics 

A summary of responses to the scenarios presented above are reported in Table 1. If 
respondents said yes that they were willing to spend more time or money to improve 
cybersecurity, we asked them (in an open-ended format) to estimate how much time 
or money they would be willing to spend. A summary of the valuations made by re-
sponses is provided in Table 2.  

As the data in Tables 1 and 2 indicate, 70% of respondents indicated that they 
would be willing to spend additional time each month participating in online training, 
updating security software, etc., making this the most popular strategy proposed. On 
average, respondents indicated that they would be willing to spend 20 minutes each 
month complying with these standards.  

The second most popular strategy proposed was paying an additional fee each 
month to fund ISP efforts to reduce cybersecurity threats to their customers. Among 
the respondents, 50% said they would be willing to pay this fee. Specifically, they 
said they would be willing to pay, on average, $8.40 per month to fund these efforts.  

The remaining two strategies, paying an additional fee to fund ISP efforts to pre-
vent one’s home computer from being recruited into a botnet and allowing ISPs to 
disconnect them from the Internet, were approximately equal in popularity, garnering 
support from 45% of the respondents. Respondents that said they would be willing to 
fund ISP efforts that prevented their computers from being used as bots by paying, on 
average, $3.80 per month for this service.  
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Table 1. Summary results of public reception to cybersecurity strategies (N=20) 

Question Yes No 
No 

answer Total 
Would you be willing to pay an additional fee each 
month to fund ISP efforts to reduce cybersecurity 
threats to your computer? 

50% 50% 0% 100% 

Would you be willing to pay an additional fee each 
month to prevent your computer from being used, 
without your knowledge, to send spam or to attack other 
computers? 

45% 55% 0% 100% 

Would you be willing to spend additional time 
participating in online security training and following 
your ISP’s instructions for securing your computer (e.g., 
updating your security software) if your ISP required 
you do to do so in order to continue to receive Internet 
service? 

70% 30% 0% 100% 

Would you be willing to allow ISPs to prevent you from 
accessing the Internet, if it appeared your computer was 
being controlled by another person to send spam or 
attack other computers? 

45% 50% 5% 100% 

Table 2. Quantifying willingness to pay for reductions in cybersecurity threats and willingness 
to spend time complying with ISP-determined security requirements 

 Median Mean 
Standard Error 

of Mean N 
Additional fee respondent said they would 
be willing to pay each month to fund ISP
efforts to reduce cybersecurity threats to
their computers. 

$5.00 per 
month 

$8.40 per 
month 

3.3 8 

Additional fee respondents said they would
be willing to pay each month to prevent
their computer from being used, without
your knowledge, to send spam or to attack
other computers. 

$2.00 per 
month 

$3.80 per 
month 

1.7 5 

Additional time respondents said they would
be willing to spend to participate in online secu-
rity training and comply with ISP’s
instructions for securing their computers.  

27.5  
minutes per 

month 

20.4  
minutes per 

month 

3.2 12 

Note: Not all respondents who indicated they supported a particular strategy were willing to 
provide estimates of how much time or money they would be willing to spend if such a strategy 
was pursued.  

5.2   Impact of ISP Trust on Support for Strategies 

Although ISPs and policy makers may be interested in discovering which strategies 
are most popular among home Internet users, information on what factors influence 
support for a given strategy may be particularly useful. One of the most obvious  
factors that may potentially influence support for these strategies is how effective 
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respondents believe these strategies will be. Specifically, respondents may be less 
willing to spend their time and money on strategies they do not believe will be effec-
tive. Therefore, as part of this survey, we asked respondents to report how effective 
they believed each of the cybersecurity strategies would be at reducing cybersecurity 
threats. A contingency table comparing respondent’s answers to these two questions 
is provided in Table 3.  

Table 3. Comparison of support for each strategy with perceived strategy effectiveness 

 

Strategy 1.  
Willing to pay an 
additional fee each 
month to fund ISP 
efforts to reduce 
cybersecurity 
threats to their 
computer. 

Strategy 2.  
Willing to pay an 
additional fee each 
month to prevent 
their computer 
from being used, 
without their 
knowledge, to send 
spam or to attack 
other computers. 

Strategy 3. 
Willingness to 
spend additional 
time complying 
with ISP-
determined 
security  
requirements. 

Strategy 4. Willing 
to allow ISPs to 
prevent them from 
accessing the  
Internet, if it  
appeared their  
computer was being 
controlled by  
another person to 
send spam or attack 
other computers. 

 Yes No Total Yes No Total Yes No Total Yes No Total 
Effective 5 1 6 2 4 6 9 2 11 5 3 8 
Ineffective 1 7 8 3 5 8 4 3 7 3 3 6 
Total 6 8 14 5 9 14 13 5 18 8 6 14 

Note: To obtain a better understanding of the influence that perceived effectiveness has on an 
individual’s willingness to accept a given strategy, we have removed individuals that did not 
know how effective they believed these strategies would be at reducing cybersecurity threats.  

 
 
As this table illustrates, 5 of the 6 people (83%) that said they support Strategy 1 also 

thought that ISPs would be very or somewhat effective at reducing such threats. How-
ever, only 2 of the 5 (40%) individuals that said they support Strategy 2 thought ISP 
efforts would be effective. Among respondents, 9 of the 13 (69%) of the individuals that 
said they supported Strategy 3 thought this strategy would be effective; and 5 of the 8 
people that supported Strategy 4 (63%) thought this strategy would be effective.  

These results suggest that the more individuals trust that Strategies 1, 3, and 4 will 
be effective, the more willing they are to support them. Ideally, we would test this 
hypothesis using regression analysis, but because the sample size for this pilot survey 
was only 20 respondents, we cannot expect statistically significant results. Instead, we 
tested to see whether these variables are independent of each of other or not by using 
the Exact Test for Independence (as described in Marasculio and McSweeny [21]).  

To illustrate how this test was conducted for this study, we describe our calcula-
tions for Strategy 1. First, we outline the hypothesis we wish to test: 

H0: the willingness to pay an additional fee each month to fund ISP efforts to  
reduce cybersecurity threats to their computer is independent of the perceived  
effectiveness of these efforts. 

H1: H0 is false. 
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Next, we define the variable of interest. First, suppose that X10 was the number of 
people that answered yes they would be willing to pay an additional fee to ISPs for 
protection from cyberthreats to their computer (6) and that X01 was the number of 
people that indicated ISPs are effective at reducing cybersecurity threats (6). Then the 
number we are most interested in for the purposes of this test is X11 or the intersection 
of these two groups of people (5).  

Lastly, we construct the probability distribution we use for hypothesis testing. Be-
cause X01 equals 6, X11 could take any one of these possible values when performing 
the exact test: {0, 1, 2, 3, 4, 5, 6}. The exact probabilities for each of these values of 
X11 were computed using the hypergeometric formula; the results are illustrated in 
Figure 1.  
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Fig. 1. Probabilities for X11  

Table 4. Results of exact test of independence by strategy 

 
Right-tail  
P-value 

Two-tail 
P-value 

Willing to pay an additional fee each month to fund ISP efforts to 
reduce cybersecurity threats to their computer. 

1.6% 2.6% 

Willing to pay an additional fee each month to prevent their computer 
from being used, without their knowledge, to send spam or to attack 
other computers. 

76.2% 100.0% 

Willingness to spend additional time complying with ISP-determined 
security requirements. 

27.2% 32.6% 

Willing to allow ISPs to prevent them from accessing the Internet, if 
it appeared their computer was being controlled by another person to 
send spam or attack other computers. 

52.9% 100% 
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As Figure 1 indicates, the probability that X11 could be greater than or equal to 5 is 
less than 2%. Therefore, we reject the null hypothesis that these two variables are 
independent. Similar right-tail and two-tail P-values for all four strategies are pre-
sented in Table 4. Looking at these values, we can see that we can only reject the null 
hypothesis for Strategy 1. We cannot reject the null hypothesis that the willingness to 
accept any other strategies is independent of their perceived effectiveness for any of 
the three remaining strategies. This could suggest that effectiveness is unrelated to 
support for Strategies 2 through 4; however, further data collection and analysis are 
required before definitive conclusions can be drawn. 

5.3   Lessons Learned 

The findings from this pilot study suggest that whether individuals trust that ISP 
strategies are effective can significantly impact their support for these strategies. This 
raises several important questions that will be explored in the full sample survey. 
First, we intend to investigate what factors influence individuals’ perceptions of ISP 
strategy effectiveness. For example, does providing more information about security 
threats or strategies used to reduce them influence the amount that individuals trust 
these strategies? And how does this affect their willingness to pay for or spend time 
on ISP strategies? This issue will be explored by fielding several versions of the sur-
vey, each with different preamble information that explains the issues and risks to 
respondents in different ways. Survey results will be analyzed to see if this influences 
individuals’ responses. 

Second, we will explore how individuals’ trust varies among groups that could af-
fect their cybersecurity—e.g., ISPs, operating system vendors (Microsoft, Apple, 
etc.), security software vendors, other software vendors, banks, and other websites. 
Understanding who Internet users trust and why could help to better determine how to 
increase trust of ISPs as security providers. We will analyze the variance in levels of 
trust by asking several questions regarding individuals’ feelings toward these various 
stakeholder groups.  

In addition to the results presented earlier, the pilot study has provided other insights 
that will be used to improve the larger survey. Specifically, we found that users can be 
relatively ignorant of what security tools are currently on their computers and to what 
threats they may be vulnerable. This finding is consistent with results from other sur-
veys, such as the National Cyber Security Alliance’s 2009 study [22]. We plan to use 
these lessons to simplify the survey and focus on issues that are most familiar to indi-
viduals: their perceptions of cybersecurity versus their actual cybersecurity.  

6   Conclusion and Next Steps 

Botnets pose a growing threat to the nation’s critical digital infrastructure and general 
level of cybersecurity. This study takes the first step in filling a gap in the existing 
literature by using data from a pilot survey of 20 home Internet users to evaluate how 
the public will react to various policies that have been proposed as means of reducing 
the threat of botnets and what factors influence their support for these strategies.  
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The principal factor evaluated in this study was whether support for a particular 
strategy was influenced by how effective individuals perceived each strategy to be. 
The evidence suggests that if home Internet users trust that ISPs are effective at re-
ducing cybersecurity threats, they will be more willing to pay additional fees to ISPs 
to fund efforts to reduce such threats to their computers. Specifically, respondents that 
supported this strategy were willing to pay, on average, an additional $8.40 per month 
to their ISPs. However, more data needs to be collected before definitive conclusions 
can be drawn.  

If the results of the pilot survey are confirmed with further study, this will provide 
ISPs and policy makers with a clearer guidance for building support for funding ISP 
efforts to reduce threats and other cybersecurity strategies. Specifically, our evidence 
suggests that ISPs and policy makers will need to devote resources to building trust 
among home Internet users that these are effective strategies.  

In the next steps of this study, we will collect data from a nationally representative 
sample of home Internet users and use more sophisticated valuation methods (such as 
discrete choice experiments) for determining which factors influence public support 
for these policies. We anticipate that the results of the larger study will provide impor-
tant input for both private stakeholders (ISPs and security vendors) and public stake-
holders (the U.S. government) concerning what personal characteristics and what 
educational and marketing strategies will motivate home Internet users to spend more 
of their time and their monetary resources to protect themselves (and others) from 
cybersecurity threats. 
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Abstract. Academic discourse on trust is fractured along disciplinary
lines. Security theorists routinely use a definition of trust which, ap-
parently, has little in common with any of the definitions of trust that
appear in the sociological and psychological literature. In this essay, we
extend a recently-proposed framework for the technical analysis of se-
cure systems, so that its notion of trust is roughly congruent with the
sociological theories of Parsons, Luhmann, Barber, Lewis and Weigert.
This congruent extension suggests some ways in which a computerised
system might, appropriately, inspire trust in its non-technical users.
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1 Introduction: Two Types of Trust

My recently-proposed security framework [1] provides terminological and def-
initional support for security analysts in diverse subfields, retaining the com-
mon elements of their modelling approaches in the framework while excluding
the subfield-specific detail. The definitions and taxonomic classifications in the
framework are, for the most part, cross-products of dichotomised variables. For
example, the four concepts of security, functionality, trust, and distrust are quad-
rants in the two-dimensional space defined by two binary variables: feedback and
assessment. Functionality and trust involve positive feedback to the owner of a
system, whereas security and distrust involve negative feedback. Trust and dis-
trust, as defined by Luhmann [2] and others, are not based on assessment –
instead they are characterised by an uncertainty or lack of information about
some (presumed, relied-upon) “good” or “bad” contingency. Functionality and
security, by contrast, are an owner’s assessments of likely future positive or neg-
ative feedbacks from their system.

Our approach to the understanding of trust can be viewed as a harshly simpli-
fied version of a functional, cybernetic sociological theory. As such, it cannot offer
any startling new insights to sociologists, but our reductions and simplifications
may be helpful in clarifying the definitions and distinctions made in the concep-
tual models developed by Luhmann, Barber, and others. However the main goal
of this essay is not to contribute to the sociology of trust, but instead to offer
support for interdisciplinary discussions of the nature and functions of trust.
Technologists can gain useful insights about trust, we argue, from the prominent
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sociologists of the latter part of the twentieth century. We also suggest, from our
technological perspective, some experimentation that sociologists and psycholo-
gists might conduct, if they wish to elucidate the structural foundations of trust
and the primary factors in an individual’s trusting decisions.

We start our exposition by distinguishing two subtypes of trust within our
framework. This distinction will allow us to discuss the most important mode of
secure-systems analysis, wherein some range of system behaviour is proved to be
impossible. Such security proofs are rigorous deductions on a set of axioms, where
each axiom constrains the behaviour of the “trusted” elements of the system.
Theorems are of the following form: no matter how the untrusted elements of a
system (mis)behave, the system will still have some desirable security property.
In the context of such proofs, “trust” is thus an axiomatic property, one which
is ascribed to certain elements of a system by its modeller. In order to reconcile
this notion of trust with our framework, we must define two subtypes of trust.

Behavioural trust statements are either made by, or ascribed to, a set of ac-
tors in a model. Such statements are confident (but still somewhat uncertain)
descriptions or predictions, by a trust analyst, of some desirable behaviour by
one or more actors in the model.

Axiomatic trust statements are axioms of a system model, defining the desired
behaviour (as judged by the owner of the system) of one or more actors in the
system. Axioms are uttered, or assented to, by a trust modeller who is, at least
notionally, external to the model defined by the axioms.

We have identified four ways in which an actor in a modelled system may
gain the externality required to act as trust modellers within their own system.
The modeller who created their system may have provided an oracle which
provides axiomatic advice to actors in a model, in some language that can be
interpreted by these actors. Any actor in a system may construct a subsystem
along axiomatic lines. Any actor in a system may adopt an induced axiom by
uttering or assenting to statement which they hold to be true beyond reasonable
doubt. If an apparent contradiction arises, the contrary evidence is investigated
carefully before the axiom itself is questioned. An example of an inductive axiom
is E = mc2. Finally, an actor may derive some deduced axioms, i.e. lemmas or
theorems, from their current set of axioms by a process of logical deduction.

We note that axiomatic trust statements are formally correct. Their validity
is questioned only when a set of axioms is discovered to be logically inconsistent
by a novel deduction, or when a novel set of observations (e.g. of the behaviour of
photons near the Sun) clearly invalidates an induced axiom such as Newton’s law
of gravitation. By contrast, the validity of every behavioural trust statement is
formally uncertain – it is directly contingent on future observations. This is Luh-
mann’s distinction between “confidence” and “trust” [3]. Luhmann also defines
the meta-axiomatic concept of “familiarity”, in order to discuss the language in
which the modeller expresses her axioms. The modeller has “confidence” in the
validity of their axioms; anyone who formally analyses this modeller must base
their analysis on axioms which describe the modeller’s “familiar” language. We
do not adopt Luhmann’s triad of definitions because they are more detailed than
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we require for our discussion, and because we have already defined trust in a
broader way: as the system owner’s unassessed expectation of positive feedback
from their system.

We distinguish distrust from trust, by considering the difference between the
fears and desires of the owner of the system. Although this essay is devoted to
an exploration of trust, we define, in passing, an axiomatic distrust statement as
an anti-requirement on a system, specifying what it shall not do. A behavioural
distrust statement is the expectation of an system analyst, regarding the likely
“bad” behaviour of one or more actors in that system. Clearly: an analyst who
distrusts some behavioural aspect of an actor will endeavour to avoid depending
on that actor in the relevant contexts. Such active avoidance, when enacted,
becomes a security provision, that is, a system modification whose expense or
inconvenience is justified by the owner’s assessment of a reduction in harm.
As such, a distrusting decision is clearly distinguishable from the functional
motivation of a trusting decision, and is deserving of a separate analysis. Later
in this essay, we will return to the issue of decision-making with respect to
security (costs or other harms), functionality (benefits), trust (uncertainty about
benefits), and distrusts (uncertainty about harms).

We define a model to be any simplification of a real-world system which is
too complex for a direct analysis. A competent modeller will search for radical
simplifications which make their model maximally analysable, while doing as
little damage as possible to the accuracy and precision of the model predictions.
A logically-inclined modeller defines a model by constructing its axioms. An ex-
perimentalist defines a model by constructing it from the material at hand, that
is, from the malleable elements of the system in which the experimentalist is an
actor. We imagine that almost all of the models people use in their everyday
lives are of the experimental variety: they are incompletely axiomatised. How-
ever every model, as defined here, has a purpose of simplified representation;
so we argue that every modeller has uttered at least one (perhaps only vaguely
apprehended or understandable) axiom when constructing their model.

Luhmann asserts that everyone in our ever-more-complex modern world is,
increasingly, engaging in such a process of model-making and analysis, because
such analytic simplifications are required to thrive and perhaps even to survive:

We are now in a position to formulate the problem of trust as a gamble,
a risky investment. The world is being dissipated into an uncontrollable
complexity; so much so that at any given time people are able to choose
freely between very different actions. Nevertheless, I have to act here and
now. There is only a brief moment of time in which it is possible for me
to see what others do, and consciously adapt myself to it. In just that
moment only a little complexity can be envisaged and processed, thus
only a little gain in rationality is possible. Additional chances of a more
complex rationality would arise if I were to place my trust in a given
future course of action of others (or for that matter in a contemporary
or past course of action, if I can only establish it in the future). If I can
trust in sharing the proceeds, I can allow myself forms of co-operation
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which do not pay off immediately and which are not directly visible as
beneficial. If I depend on the fact that others are acting, or are failing to
act, in harmony with me, I can pursue my own interests more rationally—
driving more smoothly in traffic, for example [2].

We do not attempt to express all of Luhmann’s theory of trust in our frame-
work, however we have adopted what we see as the primary elements of his
theory. In particular, we do not insist that the primary motivation for every
behavioural trust statement is the Luhmannian purpose of uncertainty reduc-
tion during decision-making. Such an insistence would limit the scope of our
modelling to actors who are sentient and purposeful entities. We see no analytic
advantage – and we see some disadvantages – in ascribing a purpose to a com-
puterised actor which is making predictions about future events. We survey a
few other theories below, regarding the purpose or function of trust.

In Parsons’ AGIL theory [4], every group has a primary functional impera-
tive of pattern maintenance. If the axioms of Parson’s theory are adopted (as
axiomatic trust statements) in a model within our framework, then a social
group’s self-descriptions are behavioural trust statements about itself. These
self-descriptions are an emergent behaviour of the group, and are developed by
intersubjective processes. Every group is expected, by a Parsonian analyst (in
our radically simplified model of Parsonian theory!), to mount a spirited defense
if the validity of a self-descriptive statement is questioned or threatened.

In a game-theoretic analysis, a behavioural trust statement is a confident
description of an player’s current tactics and strategy. The rules of the game
itself are axiomatic trust statements. If the analyst is acting as a player in the
game, then their behavioural trust statements have a clear Luhmannian pur-
pose of uncertainty-reduction. However if the analyst has some other motiva-
tion for their analysis, for example intellectual curiosity or a desire to help a
player improve their game-playing abilities, then the Luhmannian purpose of
uncertainty-reduction seems an insufficient motivation for the analysis.

In some computer-mediated economic markets such as eBay, behavioural
statements are automatically generated to express the market-controller’s radi-
cally simplified estimate of the “reputation” of a vendor or buyer. Participants in
such markets are encouraged to rely on such statements, when deciding whether
or not to take the risk of closing a transaction. The primary purpose for eBay’s
utterance might be profit-expansion rather than uncertainty-reduction, but until
a teleological system is specified, such speculation is pointless.

A modelling framework must be agnostic on disputed axioms, if it is to aid
communication between modellers who have different belief structures or goals.
For this reason, we do not presume that a axiomatic trust statement must be
consciously constructed by an analyst before it is used by an actor in some
model. Instead, the analyst may construct the axioms describing a model of an
actor (or a set of actors) on the basis of their prior behaviours.

Similarly, we do not insist that an analysis must be conducted along rational
lines. Depending on the axioms in the model, the analysis might be conducted
along emotive or faith-based lines. Furthermore, the analysis might, or might
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not, be conducted by a single person. A psychological analysis of trust requires
a model whose axioms support an analysis of individual actor’s trusts. A valid
sociological analysis of trust, even if is axiomatised, requires an intersubjective
process to develop and interpret the axioms.

We now review the theoretical frameworks of a few prominent sociologists,
not in the hope of finding an undisputed set of axioms for a system analysis, but
in order to discover whether our framework can help elucidate and harmonise
these theories, and whether we can discover any inconsistencies or limitations.

2 Barber’s Subtypes of Trust

Barber, in his influential monograph, identified three fundamental forms of trust
statements [5]. His “general and comprehensive definition of trust” includes an
“expectation of the persistence of the moral social order.” He also offers “two
more specific meanings [of trust], each of which is important for the understand-
ing of social relationships and social systems”: an expectation of technically
competent role performance, and an expectation of fiduciary obligation and re-
sponsibility.

We note that Barber’s general definition is an axiomatic trust, under the pre-
sumption that a general collapse of the moral and social order is just about
unthinkable. His specific meanings are behavioural trusts, because they are re-
liances on specific individuals or organisations. It seems possible for an individ-
ual to place axiomatic trust in an institution such as the Catholic Church, even
though they distrust the moral and social order of their immediate environment.
Thus Barber’s theory of trust seems questionable as a psychology of trust, but
his general definition seems an appropriate axiomatisation of a societal trust,
and his specific definitions are a subtyping of our behavioural trust.

We now briefly describe the structural (morphological) aspects of our frame-
work, for this is necessary before we can describe how our framework supports
a Barberian analysis of a trustworthy profession.

In our framework, a system model consists of a set of actors A in a network
of pairwise relationships R between actors. That is, every model is a graph with
vertices A and edges R. If an analyst wants to employ our framework to perform
a Barberian analysis of the trusting behaviours of a particular political system, a
profession, or a family, they should start their modelling procedure by identifying
a representative set of actors and relationships.

Only three types of relationships are defined in our framework. An actor is
superior to another actor, when the analyst wants to express the power that
the first actor has to observe and control the second actor. An actor is a peer
of another actor, when the analyst wants to model the friendly conversations
and consensual agreements which can be made between actors who – at least
in this context – have no great imbalance of power. Finally, an actor is an alias
of another actor, when the analyst wants to model either the multiple role-
playing abilities of a person, or the multiple aspects of a subsystem (whether it
be mechanised, in whole or in part) depending on its observer and the context.
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An adequate model of a complex social arrangement, of the sort diagrammed
by Granovetter, has multiple aliases for each person who is represented in the
model: one alias for each of their interpersonal relationships.

We consider a specific example to illustrate the modelling process. An ide-
alised professional society can be modelled as a set of peers who, collectively,
enforce some membership criteria. Any peer who has been found to violate these
criteria can be expelled, or they may be chastised (perhaps only in private con-
versation within the peerage) and allowed to retain their membership. It is in
the collective self-interest of the professionals to be considered, by the general
public, to be trustworthy. The professionals may regulate themselves effectively;
they may have a laissez-faire attitude; and they may be a solidary group which
actively defends any member against an ethical complaint raised by one of their
clients. Since a client is not able to monitor the conversations among the profes-
sional peerage, they have no way of knowing, for certain, whether the peerage
is effectively enforcing any fiduciary responsibilities or technical competencies.
However if a potential client trusts the professional peerage to enforce these
two Barberian “specific meanings” of trust, then (if they follow the Barberian
axioms when making their trusting decision) this client will confidently accept
professional services from any member of the peerage.

Formally, a profession is a system with at least two sets of actors: the pro-
fessionals P and their potential clients C. Barber’s analysis of trust in the pro-
fessions includes a third type of actor, a government with jurisdiction over the
professionals and clients. When modelled in our framework, a government is an
actor that is superior to each professional and client. Because the professionals
are not acting as functionaries in the government, we introduce aliases for the
professionals and clients so that we can represent the type of power (possibly
only an informational advantage) that is wielded by a professional over their
client.

Our complete model is shown in Figure 1. The professionals (p, q) and client
c, each have a primary alias (p0, q0, c0) that has power over itself – these arcs
represent the self-control and self-reflection abilities of any sentient individual.
We indicate that c is accepting professional services from p by introducing aliases
cp and pc, with pc being a superior to cp. Conflicts of interest may arise in any
aliased relationship. For example, pc may give advice to cp which c0 is not happy
to accept; and cp’s relationship with pc may put pc (the professional persona of
p) into conflict with p0’s self-interest.

The professional society is modeled as a peerage (on aliases pp and qp) in our
framework. The line connecting the peers is intended to suggest a communication
network, such that anyone on the network can send messages to anyone else
on the network. Peerages, if they organise themselves, can develop a way to
form a collective opinion, possibly using some subsidiary actor or device (drawn
below the network) to collect the votes. In the case of Figure 1, the peers have
collectively hired a Lobbyist, who is under the control of the peers and transmits
messages on their behalf to an alias G′ of the government. The Lobbyist in this
Figure is apparently insentient, for it has no self-control arc – it is may be just
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Fig. 1. A client, two professionals, a lobbyist, and a government. The professional
peerage consists of actors pp, qp, and the Lobbyist. The governmental system is a
hierarchy, with cg , pg, and qg as inferior actors. Some amount of self-control, i.e. some
form of free will, is possessed by the personal actors c0, p0, q0, and the group actor
Gov’t. The Gov’t may accept advice from the Lobbyist, and the client cp may accept
advice from the professional pc.

an email-forwarding system. Alternatively, the modeller may be simplifying an
already complex system by suppressing the alias representing the self-interest of
the Lobbyist, because it is not relevant to the modelled situation.

In our framework, peers have no direct power over each other, aside from
ostracism from their peerage. In the system of Figure 1, peers have some indirect
power over each other, because they can lodge a complaint against a peer to the
Government through their citizen alias pg or qg. Also, peers might petition the
government for an intervention via their Lobbyist – if the other peers do not
prevent the transmission of this petition via their (partial, shared) control over
the Lobbyist.

We are now ready to discuss Barber’s analysis. He points out that a client’s
trust in the fiduciary or technical behaviour of the profession P is increasingly
problematic, for several reasons. For example, the Lobbyist for the professional
society may exert inappropriate control over the government G, through some
branch G′ of the government that is effectively under the control of the Lobbyist.
The governmental branch G′ in Figure 1 is thus a distrusted actor, from the
perspective of the client c; but it might be highly trusted by the peers.

Barber argues that “trust alone is not enough to ensure [the professionals’]
effective performance in the public welfare.” In terms of Figure 1, Barber is
arguing that the client must, somehow, be assured that the Lobbyist is not ef-
fectively in control of the government, and that their government is competently
discharging a fiduciary responsibility by regulating the peerage. Barber indicates,
by example, some ways in which these assurances can be made. It is impossible
to do justice to his essay in this brief summary. However, roughly speaking, his



Axiomatic and Behavioural Trust 359

general prescription is for professional groups to accept governmental regulation
as a counterbalance to professional self-interest. In a revision to Figure 1, we
might follow Barber’s advice by adding a Regulator that is inferior to the Gov’t.
This Regulator, to be effective, must have at least some observational power over
the peerage. If a peer misbehaves, then the government can punish the guilty
citizen (pg or qg). The Regulator may, in addition, have some direct control over
the decisions of the peerage. The Regulator can be given full observation rights
by granting them a non-voting membership in the peerage; and the Regulator
can be given veto rights over the Lobbyist by making the Lobbyist an inferior of
the Regulator rather than an inferior of the peerage (as in Figure 1). However
if the Regulator has any observation or control power, the professionals must
trust the Regulator not to abuse this power, for example by inappropriately ve-
toing a proposed action of the peerage, or by inappropriately revealing a peer’s
confidential information to Government (and potentially to the general public
through the Government’s control over the citizenry). Barber argues that pro-
fessions will enjoy an increased level of trust from their clients by a well-crafted
governmental regulation, if it is openly and fairly administered. Clients may be
expected to seek (and to follow) professional advice much more readily if its
source is trusted.

We conclude that our framework is adequate to capture the main line of Bar-
ber’s discussion about trust in the professions, and that our structural diagrams
may be used to clarify the ways in which a governmental Regulator could monitor
or control a profession.

Our framework provides only marginal support for Barber’s three types of
trust. His general and comprehensive definition of trust is roughly congruent to
our axiomatic trust, but seems problematic (as a “general and comprehensive”
definition) in any case where an individual places little trust in the moral and
social order, but does trust specific individuals or institutions. Barber’s “two
more specific meanings” roughly fit within our definition of behavioural trust,
with expected behaviours of technical competency being in one of Barber’s sub-
categories, and expected behaviours of fiduciary obligation and responsibility
being in the other.

Inferiors must trust superiors not to abuse their power. Barber’s subtyping
suggests that one form of abuse can be ascribed to an inappropriate control of
a superior’s other aliases (especially their self-interest persona, e.g. p0 of the
professional p in Figure 1) over the actions taken by their superior-role persona
(e.g. pc). The other type of abuse (insufficient technical competency) can be
ascribed to an inadequately provisioned superior-role persona.

Peers must trust each other. Barber’s typology will help us distinguish con-
flicts of interest (where a peer’s duty to a peerage is contrary to their self-interest
or other responsibilities, i.e. to their government) from the functional inadequacy
of a peer.

Individuals must trust themselves. Barber’s typology is a sociological the-
ory rather than a psychological one, so some difficulties may be expected in
this extension of his theory. Even so: Barber’s distinction suggests the following
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psychological analysis. An individual’s trust in their personal competency (e.g.
as determined by p0 in the case of our professional p of Figure 1) can be dis-
tinguished from their trust in their management of their conflicts of interest (as
determined by all the other aliases of p in Figure 1). When the self-trust in
competency is violated, an individual is unable to help themselves (or to refrain
from hurting themselves) due to some personal inadequacy. When the conflict-
of-interest self-trust is violated, an individual is in the painful position of being
expected (by external controllers and observers) to harm themselves (or neglect-
ing to help themselves) in order to discharge their responsibilities to others. This
is the fundamental conflict of humanist psychology, but as far as we know, it has
not been previously identified as arising in Barber’s theory of trust.

We conclude that Barber’s subtyping distinctions can be made in our frame-
work, if the axiomatic system of the model clearly distinguishes an individual’s
responsibility to themselves from their responsibilities to others, and if personal
inadequacy can be distinguished from externally-imposed constraints. The latter
distinction is commonly made but problematic, in the highly reduced context of
human-computer interaction. An unpleasant incident must be attributed to ei-
ther operator error or to a poorly-designed (or buggy) program, before operator
training or program revision can be chosen as the more appropriate resolution.

3 Emotional and Rational Trust

Lewis and Weigert argue that trust has “distinct cognitive, emotional, and be-
havioral dimensions which are merged into a unitary social experience” [6]. In
this essay, we have argued that the behavioural dimension of trust is a primary
consideration in a framework, such as ours, which prescribes a structural ap-
proach to modelling. However we note that the antithesis of behavioural trust
is the axiomatic trust required, in the observer of another actor’s behaviour,
to ascribe any meaning to, or consequential implication of, this behaviour. Our
axiomatic trust is essentially an attribute of the observer, and our behavioural
trust is an attribute of the observed. The dichotomising variable is the viewpoint:
observer versus observed.

The cognitive and emotional dimensions of trust, as defined by Lewis and
Weigert, are complementary. They demonstrate this complemantarity by impos-
ing a three-level scale on each of these two dimensions, forming the 9-category
cross-product of Table 1.

We would recommend this table to any technologist who is trying to persuade
a non-technical person to use a system. In our experience, technologists tend
to operate in the top row of this table, although some will bristle if they are
“accused” of having an ideological trust in their analytic methodology or results.
By contrast, anyone who is unable to understand a technical analysis is limited to
the bottom row of the table, whenever they consider using a technically-complex
system. A technologist is likely, in my experience, to adopt a strategy of cognitive
argument: essentially attempting to educate the potential user so that they can
operate in the second row in Table 1. Education is certainly appropriate, if
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Table 1. Nine types of trust, classified by emotionality and rationality [6]

�����������Rationality
Emotionality

High Low Virtually Absent

High Ideological Cognitive Rational
Trust Trust Prediction

Low Emotional Mundane, Probable
Trust Routine Anticipation

Trust
Virtually Absent Faith Fate Uncertainty,

Panic

the system is not sufficiently foolproof to be used safely by a complete novice.
However, if the technologist operates in a requirements-elicitation frame, rather
than in a strictly educative frame, then the potential user’s desires and fears
may reveal some novel requirements for their system and especially for its user
interface.

The sociology of distrust has received much less attention than the sociology of
trust, even though many theorists have argued that it is best treated as a separate
topic. We note that Lewis and Weigert have characterised the near-absence of
both cognitive and emotional trust as “uncertainty, panic”. We hypothesise that
the level of distrust is what distinguishes a state of uncertainty from a state of
panic. If the prospect of continued inaction is distrusted intensely, and none of
our options for purposeful action are trusted, then energetic but unpurposeful
behaviour is the best option under a cognitive analysis, and a state of panic seems
the most likely emotional response. However, in a situation where inaction is not
distrusted, a lack of trusted options for the next action is not a cognitive stress.
The emotional status of our hypothetical individual seems underdetermined, but
one possibility is that they are taking a serene step on their path to Nirvana.
We conclude that Lewis and Wiegert’s intriguing table offers fertile ground for
future experimentation regarding the interactions of trust and distrust, in their
cognitive and emotional manifestations.

4 Trust, Distrust, and Decision-Making

In this section, we state and explore a hypothesis about the psychology of a
human decision. This hypothesis is grounded in the taxonomic theory of our
framework, as extended here. We invite correspondence from sociologists, psy-
chologists, and market researchers who can point us at any article in which some
variant of our hypothesis has been validated or invalidated.

Within our framework, it is natural to model rational decision-making as oc-
curring on three dimensions. On the economic dimension, the decision-maker
will assess whether the expected benefit of an option exceeds its expected cost.
On the optimistic dimension, the decision-maker will assess whether their confi-
dence (a behavioural trust statement) in the favourable outcome of an option is
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sufficient to overcome their fundamental uncertainty about this favourability. Fi-
nally, on the pessimistic dimension, the decision-maker will assess whether their
sense of control over their expected future status exceeds their level of distrust
about this expected status, for each of their options.

We hypothesise that options are considered serially, with a binary go/no-go
decision taken on each. There may be multiple rounds of decision-making before
a visible action is taken, depending on the perceived urgency and importance
of the decision. Experimentally, it will be simplest to work with single-round
(i.e. urgent or unimportant) decision-making before attempting to unravel the
complexities of a multiple-round decision.

Any option with an expected net benefit, which is sufficiently trusted, and
whose analysable downsides are sufficiently controlled, would (we presume) pro-
voke a “go” decision. By contrast, if an action has a poor benefit, is insufficiently
trusted, and has many uncontrolled downsides, then it seems a clear “no-go”.

If there is any disagreement on the three dimensions, then two of the three
assessments must agree. We postulate that a decision that is unfavourable on
two dimensions would never be taken, except when the decision-maker is in a
state of panic. We would define this state to arise when the prospect of inaction
is highly distrusted. A panicked individual will, we presume, take the first option
for action unless it is even more distrusted than the status quo.

If there is only one argument against taking an action, and the status quo is
not distrusted, we would expect some humans to take the action. The outcome
would depend, we presume, on a personality type. Economists will weight the
first dimension most heavily; Optimists will pay most attention to their attrac-
tions; and Pessimists will pay most attention to their fears. We doubt that this
personality typology is novel, since it seems rather obvious; but we are not aware
of the relevant experimental literature.

To illustrate a possible use of our hypothesis, we imagine that we are advis-
ing a technologist who has designed a system which they firmly believe would
be beneficial for most people to use. The technologist seeks our help in under-
standing why so few people are using their wonderful system. We would advise
this technologist to offer twenty-five randomly-selected people a chance to use
the technology, and to classify their responses into five categories. Under our
decision-making hypothesis, we would expect the classification to be unambigu-
ous except in a few cases where the prospective user expresses multiple reasons
for deciding against using the system.

Category -1: The prospective user refuses to use the system, and the technologist
is unable to classify their reason for refusing.

Category 0: The prospective user decides to use the system.

Category 1: The prospective user decides against using the system, because they
see no expected net benefit in using the system.

Category 2: The prospective user decides against using the system, because they
have insufficient trust in the system.
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Category 3: The prospective user decides against using the system, because they
distrust it.

If category -1 is frequent, we would advise the technologist to engage a more
emotionally-communicative interviewer. We would also question the validity of
our theory of decision-making, as well as the efficacy of our instructions to the
technologist.

If category 0 is frequent, we would advise the technologist to review their
advertising campaign. The current advertisements may be insufficiently dis-
tributed; they may be much less effective than the direct-sales approach (as
conducted by the technologist); and they may be targeted at an audience that
differs significantly from the population the technologist interviewed.

If category 1 is frequent, the technologist should attempt to improve the eco-
nomic performance of the system, and they should look for ways to communicate
this performance to their prospective but non-expert users.

If category 2 is frequent, the technologist should attempt to develop a radical
simplification in the user interface of our system, so that the prospective user is
not faced with a difficult task when developing their own behavioural trust state-
ments about the system. As noted by Luhmann and many others, statements
of the form “trust me” or “trust my system” unlikely to increase trust, for they
tend to call trust into question. Trust is fundamentally non-assessed. Descrip-
tions of how well the system will respond under adverse conditions (malfunctions
or attacks) are arguments against distrust, not arguments for trust.

If category 3 is frequent, the user’s distrust is the key variable. If the fears are
articulated sufficiently clearly that the relevant system behaviours can be un-
derstood by the technologist, then the technologist can look for ways to demon-
strate that the system is foolproof in these respects. If the system is not already
foolproof against such malfunctions, then improving the design in this respect
should be a high priority. If the technologist’s search for a clearly-demonstrable
architectural control proves infeasible, then economic, social, or legal safeguards
should be explored. It will be important to know, at this juncture, whether our
prospective users are, generally, trustful of architectures, economies, legalities, or
societies. A user’s distrust will not be lessened if we point out that the behaviour
they fear can be controlled by a power they distrust!

5 Individual, Institutional, and Social Controls

We close this essay with a brief exploration of a taxonomic categorisation de-
veloped recently by Riegelsberger et al. [7]. After surveying a broad range of
sociological enquiry, these authors propose a unifying framework. They consider
one trusting relationship at a time. Accordingly, their framework has just two
actors: a trustor and a trustee. The trustee has some power to harm or help the
trustor, which we would represent in our framework by a directed arc from the
trustee to the trustor.

The Riegelsberger framework defines trust as a three step process. In the first
step, the trustor and the trustee exchange some information regarding the nature
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of the possible trusting relationship. Of particular interest in the framework
are the “trustworthiness” signals from the trustee, which are dichotomised into
symbols (pure information, uttered by the trustee) and symptoms (observations,
either direct or indirect, by the trustor of the trustee’s non-verbal behaviour).

In the second step, the trustor either withdraws or engages with the trustee.
In the third step, the trustee either fulfills the trustor’s expectations, or it

does not fulfill them. Riegelsberger’s framework is focussed on the trustee’s mo-
tivations for fulfilling or non-fulfilling. These motivations would be the result of
security controls on the trustee in our framework, and fall into three categories.

The first category of security controls on the trustee’s behaviour are relational
controls. We do not adopt Riegelsberger’s label of “temporal” for this category,
because (as argued below) the temporal dimension of control in our framework
dichotomises all three of Riegelsberger’s categories. Relational controls arise be-
cause a trustor may maintain a record of their prior relations with the trustee.
The retrospective form of this control is expressed if a trustor decides to withdraw
because of their prior experience with the trustee. The prospective form of this
control is expressed if the trustee’s current decision is affected by the trustor’s
(presumed) record-keeping ability. The trustee may fear that the trustor will
withdraw in the future, and the trustee may desire future engagements with
the trustor. The commercial importance of relational controls is demonstrated
by the prevalence of customer relation management (CRM) systems in modern
enterprises. Gartner’s estimated revenues for the global CRM market in 2008
was USD $9.15 billion.

Riegelsberger’s second category are the social controls on a trustee. These con-
trols arise because a trustor may be a member of a social group: a peerage in our
framework. A peer may share their impressions of a trustee within the peerage.
A trustee would thereby gain a reputation within the peerage for trustworthiness
in certain respects, and they may also gain a reputation for untrustworthiness
in some respects. The retrospective form of social control arises when the peer-
age defines and enforces (by solidary action) a normative control through their
shared communications, mutual trust, and collective power to decide whether
to engage with the trustee. The prospective form of this control arises when the
trustor’s behaviour is affected by their fear or desire for their relationship with
the trustee’s peers. The prospective form also arises when the peer group has
formed a reputational estimate of the trustee, by a process analogous to the
pricing of goods in an idealised free market, and when the prospective trustor
uses this reputational information in their decision.

The third form of control on the trustworthiness of a trustee are the insti-
tutional controls. These controls arise when the trustee is subject to control by
a hierarchy. The prospective form of these controls are architectural in nature:
these arise when the trustee is effectively unable, due to a prior control ex-
erted by the hierarchy, to refrain from fulfilling the trustor’s expectations. In
our framework, architectural controls may be the axioms of an intentional sys-
tem design, the unintentional consequences of an unaxiomatised design, or (in
a model with theological axioms) laws of nature, random constraints arising in
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a randomly-defined system, or a god’s decrees. The retrospective form of these
controls arise when the trustee is subject to legal or regulatory sanctions. Any
trustee who restricts their actions because of a behavioural trust in their hier-
arch’s institutional control has transformed that hierarch’s retrospective control
into a prior restraint, i.e. an architectural control.

We conclude that the broad outlines, as described above, of Riegelsberger’s
framework are highly congruent with our framework. Before conducting this
analysis, we were unaware of the importance of each actor’s self-control arc
in a security analysis, and our taxonomy of control did not clearly cover the
individual controls. These can be considered a subcase of the architectural and
legal controls, in that they are exerted by a hierarch who rules only himself.
However we now believe individual controls are important enough, and easily
enough to overlook, to deserve the following elaboration in our framework.

A trustor may have individual trust in their ability to engage with trustworthy
trustees; this ability is dependent on their memory and judgement. A trustor
may have social trust in the beneficial influence of their peerages’ reputation
system on trustees, and also in their ability to use the reputation system to
select trustworthy trustees. Finally, a trustor may have institutional trust in
the beneficial influence, on trustees, of a government, corporation, or any other
system or organisation that can control (via rewards, punishments, enablements,
and disablements) the trustee’s actions.

Three types of distrust are also possible. An individual may mistrust their
ability to avoid untrustworthy trustees, they may mistrust their peerages’ repu-
tation systems, and they may mistrust their legal systems and other hierarchical
controls.

Our analysis of Riegelsberger’s framework suggests the following hypothesis
about social capital. Any sufficiently uniform population, i.e. a society such as
a functional nation, will (we suspect) be biased in their decision-making toward
considerations of individual, social, or institutional trust. Assessments of trust
as a form of social capital may thus be misleading, unless these three types of
trust are taken into consideration in the assessment. We are not conversant with
the relevant literature, and would welcome pointers.

We briefly consider two limitations of Riegelsberger’s framework. The three-
step trust process does not include a dispute resolution mechanism, or any other
explicit method for handling the cases in which a trustee’s perception of a non-
fulfillment disagrees with a trustor’s perception of a fulfillment. Riegelsberger’s
framework is silent on this question, however dispute-avoidance and dispute-
resolution issues are very important considerations in the practical design of
trusted systems. In our framework, trustworthiness cannot be judged in any
model that lacks axioms defining trustworthiness; and if the underlying ethic
is deontological or consequentialist, then the axioms must establish the ground
truth of a fulfillment. Anyone observing a real-world system may use a different
set of axioms when constructing a model of that system; and this difference will
generally result in a different ground truth for each model. In a trustor-centric
model, the ground truth of a trustor’s trustworthiness might be established by
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an ethic, by polling the trustors, or by requiring every trusting relationship to
have a trusted third party who, in case of dispute, establishes the ground truth
regarding fulfullment. In a trustee-centric model, either an ethic or trusted third
party is required.

Riegelsberger’s framework is based on sociological research, so it is under-
standably sparse in its characterisation of technical requirements on designed
systems. These have been studied extensively, see e.g. [8]. The “quality in use”
concept of ISO 27000 is, essentially, a trustor-centric definition of trustworthi-
ness ability that was developed by an intersubjective process involving hundreds
(possibly thousands) of active contributors. A trustworthiness motivation may
be demonstrated by an ISO 9000 accreditation.

6 Our Hopes

We hope that this essay will inspire technologists to consider a broader range
of trust-enhancement strategies, when they attempt to develop trustworthy sys-
tems which actually inspire trust. We hope our essay will provoke sociologists,
psychologists, and market researchers to consider how their theories and experi-
mental results on trust and decision-making might be expressed in a sufficiently
reduced fashion to be both understandable and useful to technologists. We also
have a fond hope that our technologically-inspired, and highly reductionist, mus-
ings on the fundamental nature of trust will help to clarify future sociological or
psychological studies.
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Abstract. This paper takes an interpretative approach to study trust in a hybrid 
online/offline community, based on exploratory research on the case of 
Couchsurfing.org, a hospitality exchange network that enables travelers to 
locate locals who would offer them free accommodation or tips regarding the 
country traveled. The theoretical framework used was Möllering’s idea of 
“suspension” and the leap of faith [1], which looks at trust in terms of dealing 
with irreducible vulnerability and uncertainty. Qualitative data was collected by 
doing participant observation and interviewing 15 Couchsurfers about their 
views on trust. Möllering’s theoretical framework is found to be useful to 
transcend the idiosyncrasies of observing online profiles. It is also demonstrated 
through understanding the interpretations of the actors within the system, rich 
insights are yielded about the context of trust and the actors’ reactions.  

Keywords: Trust, Leap of faith, Couchsurfing.org, online/offline community. 

1   Introduction 

Given the prevalence of new media and information communication technology, the 
issue of trust in computer-mediated communication has garnered a fair amount of 
interest from multiple disciplines. From a holistic level, trust is viewed as 
fundamental to human society, to increase cooperation and reduce complexities [2], 
and to build social capital [3], among other important functions. In the current 
globalized setting, the issue of trust becomes progressively complicated as 
relationships and networks are increasingly diversified across different contexts. New 
media facilitates interactions and exchanges with the mediation of technology, 
transcending physical and cultural boundaries, creating new horizons and contextual 
situations for trust research.  

Corritore et al. suggests that there are generally two approaches to study online 
trust, i.e. individual-to-individual trust mediated by technology, and technology as the 
object of trust [4]. Most researchers study the latter, typically in the interest of 
informational or transactional websites [4][5]. This paper chooses to focus on the 
former, examining the manner of how trust is formed between people who are often 
separated in spatial and temporal dimensions, relying on textual information with 
limited nonverbal cues. Specifically, I intend to use a theoretical framework of Guido 
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Möllering’s idea of “suspension” and the leap of faith as a guide to study online 
profiles as the avenue of trust and trustworthiness, focusing on the actors who 
construct and evaluate these profiles [1].   

Couchsurfing.org is used as a case study to collect data and apply the theoretical 
framework. Couchsurfing.org enables travelers to utilize the network to locate 
interested locals who would offer them spare couches or beds in their homes as free 
accommodation, usually for a period of a few days. As the largest hospitality exchange 
network in the world, it has about 1.8 million members worldwide, spanning across 
236 countries and 70,588 cities as of April 2010. Further statistics show that 
Couchsurfing.org has created about 2 million friendships and about 1.9 million 
successful hosting/surfing experiences. 1Couchsurfing.org was chosen as a case study 
because it relies upon trust as the core of its existence, given the immense amount of 
trust needed to admit a stranger to one’s home or to enter into a foreign territory.  

At a methodological level, this study answers Möllering’s call for more 
interpretative and qualitative studies on trust. Möllering argues, and I agree, that the 
methodological strategy employed by trust researchers requires “a process 
perspective, obtaining a rich (typically qualitative) picture of actual trust experiences, 
understanding the embeddedness of the relationships under investigation and taking 
into account the reflexivity not only in trust development as such but also in the 
research interaction itself. The general orientation should be to get away from 
measuring predefined variables and get closer to the respondents’ idiosyncratic 
experiences and interpretations.” ([1], p.152, emphasis in original) Also, the 
significance of the study lies in its focus on a research area much neglected by 
contemporary research on trust online, i.e. the interpersonal interaction through 
computer mediation. Much of the research to date look at trust in terms of e-
commerce, which are important in their own right, but I argue that the advent of Web 
2.0 and increased interaction among users through social network sites and other 
avenues justify more scholastic attention on interpersonal relationships online.  

The analysis done within this paper is preliminary, as an initial part of a larger study 
on trust in transnational hybrid communities crossing virtual and real worlds of the 
actors. The literature review covers some background on studies on trust and trust-
related concepts, Möllering’s theoretical framework to be applied, and some past 
research on Couchsurfing.org. For this pilot study, 15 Couchsurfers were hosted at the 
researcher’s apartment as a form of participant observation, and also to collect insider 
perspectives by in-depth interviews. Most data drawn for this paper is from the in-
depth interviews, and covers open-ended research questions to discover the 
respondents’ self-definition of trust, the manner in which online profiles are assessed, 
and their world views with regards to trust and Couchsurfing.org. Through interviews 
with the actors, rich insights are discovered on the motivation to trust and the 
situational context which breeds trusting behaviour. The exploratory nature of this 
study is meant to yield initial insights of the case study for further research to build 
upon. 

                                                           
1 Statistics accessed online from the homepage of Couchsurfing.org (http://www. Couchsurfing. 

org) on April 1, 2010. 
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2   Literature Review and Background 

2.1   Trust, Offline and Online 

Rousseau et al. in a widely accepted definition explains that trust is “a psychological 
state comprising the intention to accept vulnerability based upon positive expectations 
of the intentions or behaviour of another.” [6] The critical components here are 
“positive expectations” and “the intention to accept vulnerability”. Möllering goes on 
to refine the understanding of “accepting vulnerability” as stated by Rousseau et al., 
explaining that accepting vulnerability does not mean that trustors are willing to be 
hurt. Instead, trustors have “highly optimistic expectations that vulnerability is not a 
problem and no harm will be done” [1]. 

Bhattacharya, Devinney and Pillutla outline key themes of how trust is viewed, 
which is useful to further concretize the concept [7]. Firstly, trust exists in an uncertain 
and risky environment, without which the concept would be trivial. Secondly, trust 
reflects expectancy, a prediction of the trustee’s behaviour. Thirdly, they argue that any 
definition of trust must account for the strength and importance of trust. Fourthly, trust 
is situation and person specific, in other words, context must be taken into account. 
Lastly, the expected outcome of trusting behaviour is generally positive or 
nonnegative. They then conclude with another definition of their own, i.e. “Trust is an 
expectancy of positive (or nonnegative) outcomes that one can receive based on the 
expected action of another party in an interaction characterized by uncertainty.”  

Researchers have provided useful angles to dissect the multiple dimensions of the 
complex concept of trust, summarized by Corritore et al. to cover generality, kind, 
degree, and stage [4]. Generality is a continuum from general to specific trust, i.e. to 
have overall trust in another entity; or to have trust that the entity would act in a 
certain way in a certain situation. Kinds of trust include slow and swift trust, as well 
as cognitive and emotional trust. Slow trust is built over a long term relationship 
whereas swift trust exists in relationships quickly built and quickly ceasing to exist, 
such as ad-hoc collaborations. Cognitive trust is trust based on rational reasoning, and 
emotional trust is driven by positive feelings towards the object of trust. The degree 
of trust refers to the depth of trust, whether it is basic, guarded or extended trust. 
Basic trust is “the underlying, background form of trust that is a precondition of social 
life”; guarded trust looks at trust “protected by formal contracts, agreements and 
promises”; and extended trust is trust based on openness, “given in relationships that 
are so deep that formal contracts are unnecessary” (ibid, p.744). It is argued that trust 
is developmental, therefore there are different stages of trust, progressing from 
deterrence-based (initial trust maintained by contracts and laws), knowledge-based 
(having knowledge of object of trust and its predicted behaviour), and finally shared 
identification-based (similar to the idea of extended trust elaborated above).  

The literature on trust over the last few decades is extensive, but more recent 
studies on online trust are more in line with the purpose of this paper. The studies on 
online trust naturally build upon studies of trust in the offline world, like how 
communications online extend that of the offline, in terms of facilitating exchanges 
and social interactions [4]. Many works equate online trust with e-commerce, 
typically a B2C framework [8][4][5]. For instance, Wang and Emurian claim that in 
the context of online trust, “the trustor is typically a consumer who is browsing an  
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e-commerce website, and the trustee is the e-commerce website, or more specifically, 
the merchant that the website represents”[5]. This perspective is getting increasingly 
outdated with the advent of Web 2.0, which emphasizes upon participation, 
collaboration, information sharing and ultimately, communication among end-users of 
the Internet. Examples of platforms of this paradigm shift include Social Network 
Sites, blogs, wikis and etc.  

Therefore, I see a need for studies of trust that bridge the gap between users of a 
system. Previous studies inclined towards e-commerce would still hold valuable 
perspectives to build upon, on underlying principles that would foster trust across web 
systems regardless of function. One such example is the guidelines provided by 
Schneiderman to foster trust in online applications such as e-commerce, e-services, 
online communities and other websites [9]. These guidelines include providing vital 
information for users within the system, such as patterns of past performance, 
references from past and current users, third party certifications and clear privacy and 
security policies. The responsibilities and obligations of all entities within the system 
should also be clarified, with clear specifications of guarantees and compensation 
policies (if any) and support for dispute resolution and mediation services. In other 
words, Schneiderman argues for open and transparent governance in web systems to 
build trust.  Elsewhere, Ba argues that the uncertainty of the online environment and 
information asymmetry are two major barriers to online trust, which is true for all 
online systems [10].  

2.2   “Suspension”, the Leap of Faith 

According to Möllering, current literature on trust can be categorized into three major 
branches, i.e. reason, routine and reflexivity [1]. Reason is the rationalist paradigm 
that people trust by judging the trustworthiness of the other party. Routine is the 
“taken-for-grantedness” of trust, its source being presumably reliable institutions. The 
reflexivity approach taken by some researchers adopts a process view of trust-
building, where actors work together to build trust gradually.  

Möllering’s thesis is that although these studies have attempted to explain trust, 
they have somehow missed the point. Firstly, if trust is viewed as a matter of rational 
choice, there will be a paradox of the element of trust being superfluous, if trust can 
be entirely explained by reason. Secondly, if trust is something that is taken-for-
granted, based on existing institutions, where did that trust come from? And thirdly, if 
trust is an ongoing reflexive process in which trust is built eventually, this element of 
certainty that trust will be built would also render the idea of trust redundant. 
Therefore, Möllering believes that there is a missing element in the picture, which is 
“suspension”, also known as the leap of faith.  

“’Suspension’ is the process that enables actors to deal with irreducible 
uncertainty and vulnerability. Suspension is the essence of trust, because 
trust as a state of positive expectation of others can only be reached when 
reason, routine and reflexivity are combined with suspension.” (p.110) 

It is suspension that links reason, routine and reflexivity to trust, and trust thrives in 
an environment where there is irreducible uncertainty and vulnerability. Actors of 
trust have to take a leap of faith knowing that there is risk involved. Möllering 
suggests three major ways to come to terms with suspension. The first is “trust as 
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fiction”, suggesting that the trustor and trustee work together to create fiction in the 
trustor’s mind, to enable him to trust. The second is what he terms as “bracketing”, 
i.e. actors manage to live with the fact that there are gaps and missing pieces, and 
make the leap of faith anyway. The third, “the will to believe”, posits that the actor 
exercises agency through his will to either suspend uncertainty and vulnerability or 
not. 

Other scholars have found Möllering’s model to be useful (e.g. [11]), and his book 
on trust was also critically acclaimed by various researchers [12][13]. This will be the 
theoretical framework used loosely to guide this exploratory study. I will base the 
actions of the actors on the assumption of irreducible uncertainty, to explore the 
interpretations of the actors within the system. 

2.3   The Case: Couchsurfing.org 

Background. Couchsurfing.org is a social network site, fulfilling the criteria set by 
boyd and Ellison [14], i.e. “web-based services that allow individuals to (1) construct 
a public or semi-public profile within a bounded system, (2) articulate a list of other 
users with whom they share a connection, and (3) view and traverse their list of 
connections and those made by others within the system.” It falls under a subset 
known as hospitality exchange networks. Hospitality exchange networks are not a 
new phenomenon – the oldest such network is Servas International, founded in 1949 
by an American named Bob Luitweiler. With the tagline “With every true friendship 
we build the basis for World Peace”, Servas International set a common theme also 
used by newer hospitality exchange networks, to promote intercultural understanding 
and to reduce intolerance among people of different cultural backgrounds [15]. Other 
networks include Hospitality Club (founded in 2000, with about 330,000 members); 
GlobalFreeloaders.com (founded in 2005, with about 60,000 members). Hospitality 
exchange is grounded on reciprocity, negotiating thin lines between “guest” and 
“parasite”, hospitality and home [16]. 

Couchsurfing.org is registered under CouchSurfing International Inc, a non-profit 
organization registered in New Hampshire, USA. It was founded by Casey Fenton, 
who was inspired to build the website after a successful attempt to stay in a stranger’s 
place for free while travelling to Iceland. Before leaving for his weekend trip to 
Iceland, he randomly emailed 1,500 students in the University of Iceland to search for 
potential hosts, getting 50-100 favourable responses as a result. Two years after the 
inception of the website, Couchsurfing.org experienced a severe database loss, and 
Casey Fenton announced the closure of the website. However, with the help of 
volunteers, the website was rebuilt and maintained to date, with Couchsurfing.org 
serving about 1.8 million members as of April 2010.  

How it Works. To use the services provided by Couchsurfing.org, one becomes a 
member or a “Couchsurfer” by registering an account in the system. No identification 
details (such as passport numbers etc.) are solicited, and the closest piece of 
information for identification that the user provides is her email. The user then 
personalizes her profile to include particulars such as demographic details or auxiliary 
information such as personal philosophy, interests, taste in music and etc. As with 
other SNSs, the profile is the virtual face of the user and makes the first impression on 
her online identity.  
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One can choose to be a host (offering hospitality) or a guest/surfer (receiving 
hospitality). There are different shades of hospitality that a host can provide, such as 
offering free accommodation for a few nights, showing a surfer around town or 
answering questions on tourist attractions. The modus operandi for a surfer to locate  
a host is through using the CouchSearch function in the website, filtering the hosts 
according to characteristics such as couch availability, location and etc. A request is 
then sent to the host, establishing initial contact, containing some self-introduction 
and information of when the surfer intends to visit. The host then visits the profile 
page of the surfer, and after some further communication, makes the decision to 
accept or reject the request. Similar to other SNSs, Couchsurfers can “add friends”, 
i.e. make a connection with another user within the system, and also give testimonials. 
It is strongly encouraged by Couchsurfing.org that friend connections and 
testimonials should only be given to other users that one has met face to face.  

Trust is the essential ingredient to the success of Couchsurfing.org, therefore 
several measures are taken to build that trust. In the website, touted under “Safety 
Features”, are three major ways that trust is built through the system – verification, 
vouching and references. The verification process is optional, and begins when 
Couchsurfers submit their name and address into the system, along with a small 
donation through their credit card. The submitted name and address of the user will be 
verified with the credit card details, and a postcard sent to the user’s address with a 
verification code which the user needs to key into the system. With that, the identity 
and location of the user are authenticated. Vouching is an interesting concept whereby 
a core group of presumably trustworthy people within the system “vouch for” people 
that they believe are trustworthy. A user can only vouch for another after she has been 
vouched for at least three times. With that, the network of trust is expanded slowly to 
the periphery. References, a mechanism often used in SNSs and other online sites in 
general, supports giving feedback regarding another user within the system after there 
is face-to-face contact. The system also relies on general reciprocity, i.e. direct 
reciprocation of hospitality from a guest to his host is not required. 

Empirical State of Trust. A small survey held by Heesakkers with a sample size of 
101 provides a rough indication of how surfers judge the trustworthiness of their hosts 
– the most important indicator appears to be positive references, followed by contact 
through email and the number of friend connections [15]. The result of the survey is 
congruent with the statistics mentioned above, that only a minority of the 
Couchsurfers are verified (5.9%) or vouched for (7%), suggesting that users may have 
to rely on other means of trust mechanisms. Further analysis on vouching patterns 
show that connections that are vouched can be best predicted by direct interaction 
between two individuals, from their friendship degree, followed by the overall 
couchsurfing experience between the individuals, and also how the individuals met 
[17]. It was also found out that vouches are highly reciprocated, in 74.6% of the cases 
– which may reflect mutual trust, or simply the pressure to reciprocate.  

Bialski’s study of friendships based on Couchsurfing brings up an interesting 
point relating trust and space [18]. Based on Actor Network Theory which argues that 
inanimate objects have agency created by meaningful interpretation, Bialski explains 
that space becomes an actor, instead of being only a setting for action to take place. In 
the Couchsurfing framework, where time spent together is typically limited, space is 
the factor that builds trust. In her ethnographic study, she elaborates: 
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“Just as [Actor Network Theory] suggests, this apartment was now a space of 
meaning, an actor which allowed me to behave in a certain way, and having a 
close, intimate discussion with a relative stranger made me in no way feel 
awkward because I was already intimately acquainted with an actor (her 
apartment) who she was intimately acquainted with, quite similarly to a 
triadic system of trust, where I would feel closer to a friend-of-a-friend than 
with a complete stranger. In Sara’s case, the apartment was that friend-of-a-
friend whom I had already met.” (ibid, p. 58) 

Space also creates a context for expected behaviour – the host expects the guest to act 
a certain way in her area of control, and the guest honours the trust and respects the 
host’s ownership and control of the space; both trust each other not to harm 
themselves within the space. With both actors behaving in a predictable manner, trust 
is then able to be built and accumulated in a relatively short time span. To expand on 
her point, Bialski draws upon the Couchsurfing database, showing that Couchsurfers 
who met through hosting/surfing activities tend to have higher trust on each other, 
compared to Couchsurfers who met through activities or gatherings in public spaces. 
To this she attributes the importance of the meeting being held at a meaningful space, 
i.e. the host’s home and personal territory. 

3   Research Methodology 

The broad research questions asked in this exploratory study are aimed to understand 
the perspectives of the actors, firstly to confirm the basic assumption made about the 
existence of trust within their actions, secondly to understand their world views about 
trust and the contextual situation of Couchsurfing.org, and thirdly to discover the 
strategies used in the assessment of trustworthiness through online profiles.  

Data collection was conducted over a three-month period (November 2009 – 
January 2010), within which the researcher hosted 15 Couchsurfers from all over the 
world. To keep the sample random, I did not talk to any of the Couchsurfers that I 
already knew, but chose to interview only the Couchsurfers who requested to stay 
with me, after reading my online profile. It was specifically stated on my profile that I 
was doing research on Couchsurfing, so that participants knew that they were going to 
participate in my research project. This was done with the intention of gaining trust of 
potential respondents and to ensure compliance with ethical requirements of non-
deception. I tried to accommodate all that I could, and only turned down requests 
when I was already hosting someone else at the time, therefore the sample selection 
was relatively free of bias.  

From the 15 respondents, 7 were female and 8 were male. The age range was 18-34, 
average age being 27. Most of the respondents were educated to tertiary level, and 
most were individual travelers, though sometimes there were overlaps in their periods 
of stay, resulting in up to two surfers at my living room simultaneously at times. Only 
in one case I had a party of three Couchsurfers staying over, and the interview was 
conducted in a focus group style to save time. The countries represented within the 
sample are Singapore, Indonesia, Taiwan, Switzerland (2), Slovakia, Estonia, 
Germany, Poland (3), USA, Brazil, Nigeria, Australia. In the interest of protecting 
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respondent anonymity, no names are mentioned in this study. Respondents are referred 
to by their nationality, gender and age.  

The Researcher and the Research Settings. To provide a clearer context, I will 
provide some details about myself and my “couch”, which is actually a spare mattress 
(or two) on the floor of my living room. I am 27, female, and Malaysian. Travelling is 
my passion and I discovered Couchsurfing about two years ago when I was travelling 
and hitchhiking around New Zealand. I have couchsurfed six times in various 
countries: New Zealand, Malaysia, India and the United States. I have hosted about 
25 people to date in my rented two-room apartment in Singapore, which I share with a 
flatmate (Taiwanese male, 30 years old). Our living room has a large floor space that 
is able to accommodate at least three people comfortably. My flatmate owns a large 
screen LCD television and a Play Station 3, which he keeps in the living room. We do 
not have a spare key to give to the guests, though they are free to leave the flat 
anytime they want (even when we are not in the flat) because the main door locks 
automatically upon closing. Apart from interviews, often an hour or two in length, 
research participants were hosted in the same way as I would host other Couchsurfers 
who were not part of the sample (who came after the data collection period had 
ended). The average number of nights stayed is 3 nights.  

I recognize that, by acting as a host to my research participants, I may be 
subjecting them to a situation of power imbalance, as they rely on my hospitality and 
free accommodation. This is addressed by giving them an informed consent form, 
where the participants are briefed about their rights as research subjects, such as 
issues of confidentiality and the ability to terminate the interview at any time that they 
please with no ramifications. Participant observation appears to be the most effective 
way to gain an insider’s point of view, yielding contextual and nuanced insights that 
quantitative surveys are unable to depict. Constant self-reflexivity and caution were 
exercised to ensure that data collection would be done as mindfully and unobtrusively 
as possible. 

4   Findings and Analysis 

4.1   Trust as Defined by the Subjects 

“For you to be able to go in and close your eyes and sleep with a stranger in 
your house, man, it’s trust.”  - (Nigerian male, 34) 

It was unanimously agreed that doing Couchsurfing involves a lot of trust. This 
question was asked to confirm that the participants interpreted their acts as acts of 
trust. When asked to elaborate about trust, responses were varied and hesitant, as most 
respondents had not thought about what trust actually meant to them. Here are some 
of the responses:  

“I guess trust means that, you're allowed to be vulnerable with somebody. 
[...] So you have allowed yourself to be put into a position where the other 
person can hurt you, whether that's mentally, physically, financially, 
whatever. But you do it anyway, knowing that they could potentially hurt 
you, and I think that's trust.” (American male, 26) 
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“Trust, it means that I can share everything with another person, and I can 
be free, I can just do and say whatever I want, and I can count on him or her. 
I know that he or she can do whatever he wants, and I won't feel bad about 
anything. It's like freedom. [...] It's knowing the other person and to have the 
security to do whatever I want and I know that I won't disappoint the other 
person.” (Estonian male, 21) 

“I guess it's the feeling of being safe, and the feeling that you don't have to 
worry, safe as in your well-being, and I guess your possessions also, not to 
have worries that you're going to lose something or something like that.” 
(Indonesian female, 32) 

“Trust is feeling safe, and feeling safe enough to open yourself to other 
people, other things, like, new people, new experiences, new cultures, new 
way of life, to feel safe enough and comfy enough. To be yourself. Yeah, I 
think it’s about feeling safe, it’s very important. Where no one will harass 
you any way, and you will feel comfy and peaceful.” (Polish female, 26) 

Most interpretations of trust appear to stem from the feeling of security. From the 
responses, it can be seen that trust is defined in relation to what the respondents prize, 
be it relationships, value systems, personal well-being, and etc. The importance of 
trust is explicitly or implicitly expressed. It is generally regarded that trust is 
something good, as some incorporate trust as part of their identity, as being trusting as 
a person; a catalyst to certain acts such as giving out the house keys; as basis to a 
relationship and etc. Trust is also discerning, not “blind” (Slovakian male, 26); it is 
something dynamic and contextual. It is noteworthy that Couchsurfers appear to be 
clear that the trust in operation within the context of Couchsurfing does not apply 
elsewhere, because “not everybody is a Couchsurfer” (Polish male, 28). It is also 
specific to the act of surfing or hosting, and does not extend further to lending money, 
for example.  

4.2   The Idiosyncrasies of Trust in Online Profiles 

Given that Couchsurfers have no prior knowledge of their hosts, the online profiles 
and the message correspondences are the only ways of establishing initial trust. From 
the interviews, it seems that trustworthiness is assumed to exist in other members of 
the community. When asked about how they assess profiles, the filtering that usually 
happens is based on the consideration about whether they might like the other person, 
or the level that they think they might “click”. Therefore demographic factors are 
mentioned, especially age, and occasionally gender.  

It is interesting to observe that trust is so intrinsic in the system that in some cases 
the Couchsurfers don’t think about it. An example would be the 21 year old Estonian 
male Couchsurfer, saying that “I don’t really worry about security or the safety, 
because it seems like, so natural that, the person is trustworthy somehow. I haven’t 
thought about it. I don’t worry about it, I guess.” In comparison, female Couchsurfers 
are more likely to think about personal safety, being more vulnerable to attacks, 
especially of a sexual nature. Therefore most make the choice to surf with only other 
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females, couples or families instead of surfing with males. After eliminating the most 
obvious fear factor, female Couchsurfers do not differ with their male counterparts in 
reading profiles.  

Profiles contain personal photos and descriptions, as well as trust mechanisms such 
as references from previous encounters, and whether the user is verified or vouched or 
not. It is found that the manner of which profiles are read is extremely idiosyncratic. 
Every Couchsurfer has his/her own way of making judgments about trustworthiness. 
References are most widely referred to; even so, a Couchsurfer has admitted that he 
occasionally “forgets” to read the references, after going through the personal 
description and pictures. Some put pictures as a must for profiles, some do not look at 
pictures. Some read the entire profile diligently, some just skim through and prefer to 
leave their judgment to the face-to-face encounter. There are bits of information 
considered as important by individual Couchsurfers, such as humour, perceived 
friendliness, and etc. Elements of reason, routine and reflexivity (as discussed in the 
literature review) can be traced within their thought processes, but it is clear that they 
are unable to form a coherent picture of trust.  

4.3   Making the Leap of Faith 

 To rise above the idiosyncrasies of profile reading, Möllering’s idea of suspension is 
useful to guide the observation of how different people have different strategies of 
coming to terms with irreducible vulnerability and uncertainty. For Couchsurfers who 
put a high emphasis on profile reading, they are able to rely on references left on the 
profile by previous encounters to form an image in their minds about that person, 
aiding them to make the decision to trust. To illustrate the point is the quote below: 

 “An empty profile is like a nobody. It’s like, I don’t know this person. 
Even if it’s a filled profile, it could be all invented, it could be all like, fake. I 
don’t know who wrote it. I mean, ok, this person at least made the effort to 
write it, that’s a good thing, but if nobody else is talking about this person, I 
can’t say who it is. And I’m not sure if it’s true what this person said.” 
(Swiss male, 26) 

However, as mentioned before, there are other respondents who are content with 
reading the personal description to form the image, helped instead by the profile 
owner to create the fiction needed for acting “as if” the profile owner is trustworthy. 
Whether he/she is trustworthy or not is of course another matter. Another situation is 
demonstrated by the following quote:  

“It’s up to how I trust myself, and you know, that’s the point. If I know 
like, I have my backpack here, I’m 80 kilos, I’m a sportsman, I know who I 
am, I know how to talk, I know this and that, and I know how to find my 
way, it’s like I’m really confident about my personality, what I can do and 
what I can’t do. I know myself pretty well, then I’ll be able to trust. But if I 
don’t feel confident, if I don’t know who I am, I don’t know like, where to 
go, I’m lost with my personality, then I will not be able to trust. So it’s really 
up to my personality. More than to a picture or anything, in a profile. So I 
would trust you and I would trust a person who has a picture with tattoos 
with a mad face or something. No difference.” (Swiss male, 23) 
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This quote demonstrates the second strategy to make the leap of faith, where the actor 
“bracket out irreducible social vulnerability and uncertainty as if they were favourably 
resolved” (Möllering, 2006, p.115). In the eyes of this Couchsurfer, he is aware of the 
potential risks but he chooses to focus on himself as being able to handle it, and 
performs the act of trust. Another example would be the Nigerian male Couchsurfer 
(34) who was confident that he would be safe, because “God is watching over him”.  

The third type of strategy offered by Möllering is when the actor has the will to 
believe. This is especially evident in a community where many identify themselves as 
being trustful people. Many of the respondents expressed that they were very trusting, 
quoting remarks from friends and family. An interesting example is this case of a 
German female respondent (25) who expressed that her biggest fear would be when 
someone broke her trust, she would lose her ability to trust like how she does now, 
and hence lose a part of who she is. With this strong identification towards being a 
trustful person, she has a great will to trust and to maintain that trust.  

From the interviews, there is one interesting case that shows interplay of these 
different strategies of handling suspension. One of the respondents, a Brazilian female 
Couchsurfer (33) disclosed that she had been held at gunpoint and kidnapped 12 years 
ago. She described herself as a trustful person, which I infer to mean that she has the 
will to trust – but her traumatic experience makes it difficult for her to create 
trustworthy images in her mind about the people that she has to trust. In order to do 
Couchsurfing, she then has to negotiate within herself whether to take the leap or not. 
At the beginning of her stay with me, she mentioned that her next host was a man; but 
after talking about potential risks through the interview, she then informed me that 
she had changed her mind about staying with that man – i.e. she decided not to take 
the leap after all.  

4.4   Safety – in Terms of What? 

This study had commenced with a strong focus on personal safety in terms of risk, 
therefore the orientation of the questions asked was directed towards that. Further on 
in data collection, it became apparent that the risk of being robbed, kidnapped or etc. 
was not the only concern on Couchsurfers’ minds, and in some cases it was not even 
the most important.  

It was observed that “open-mindedness” cropped up in virtually all the interviews 
in terms of being an important characteristic of the Couchsurfer’s own identity, a 
welcomed trait in a potential host, and an underlying attribute of the self-selected 
community of Couchsurfers. Some Couchsurfers described reading profiles and 
looking for manifestations of open-mindedness, such as having travelled widely, 
hosted people of different nationalities and getting references about being open to 
other cultures. In the meanwhile, it was also observed that most Couchsurfers did not 
regard themselves as “typical” of their nationality. A link can be established between 
both phenomena – that Couchsurfers feel somewhat alienated from their home culture 
and seek acceptance from an online/offline community.  

Intrigued, I questioned one of the respondents about “open-mindedness” and its 
importance to her in terms of trust, when she mentioned the concept. Her answer is 
quoted as follows:  
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“I want to trust that people won’t judge me. And that not only that I will be 
physically safe with them, that they will be friendly to me and nice to me, 
and not make me feel bad about who I am and what I am doing. That’s why 
open-mindedness is so important. But that’s it, that’s the other half of trust I 
guess [the first half being personal safety]. It’s both physical safety and 
psychologically feeling comfortable.” (Australian female, 31) 

The Nigerian male Couchsurfer (34) had similar concerns about being prejudiced 
against because of his skin colour, therefore “open-mindedness” was a distinct 
element looked for when he was reading profiles of potential hosts.   

Aristarkhova, cited by Molz [16], argues that online communities are united by a 
“principle of homogeneity” whereby certain similarities among members of the 
community work to cancel out individual differences, to bind the community together. 
She believes that community focuses on difference in order to eliminate or assimilate 
it, i.e. to differentiate between “us” and “them”. Molz argues that since the 
fundamental themes of hospitality networks reflect a “cosmopolitan desire for and 
openness to difference” (p.75), the communities do not reject difference per se, but 
filters the “right” kind of difference from the “wrong”. Qualities perceived to be 
desirable include the ability to reciprocate in kind, a verifiable identity and a clean 
profile, as well as a certain attitude, that of a “cosmopolitan disposition to the world” 
(p. 76). Undesirable qualities would be freeloading attitude or strangers who 
“threatens rather than serves the cosmopolitan fantasy” (p.77). Said “cosmopolitan 
fantasy” reflects the cosmopolitan as a highly mobile, curious, open-minded and 
reflexive subject who sees utility in difference and celebrates it.  

The cosmopolitanism mentioned by Molz corresponds with the in vivo concept of 
“open-mindedness”, and the online profile may be viewed as a curriculum vitae of 
sorts, to showcase the open-mindedness or cosmopolitan disposition of its owner. 
During Couchsurfing interactions, people try to present themselves as being open-
minded, and check themselves when they appear to be racist – therefore racism, or 
other forms of discrimination is now a taboo. An example is provided:  

“But well, I think it’s good to see that somebody was there before and when I 
look for Jakarta for travel, I am checking if there is European people writing. 
I didn’t know about Jakarta at all, and if there were only Indonesian people 
writing, I don’t know like, if I can tru—well, it’s just like, an imaginary 
thing. If it might be a plan to rob, or something. It will be really clever 
though, if you want to rob somebody, just invite him to your place, and you 
can have his backpack and his camera and everything. I didn’t know at all 
about Jakarta, Jakarta’s a huge city, that’s why I checked, and if there’s this 
Italian dude saying, he’s very nice or she’s very nice, blablabla, then it’s ok. 
Just one, it’s enough.” (Swiss male, 23) 

In the above conversation about reading profiles, the European Couchsurfer checked 
himself when he thought he might be making a racist remark, from saying “I don’t 
know if I can trust opinions of Indonesian people” to being rather apologetic and 
saying something more neutral.  
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5   Conclusion 

Möllering’s idea of suspension for trust is useful as a guiding framework to enable the 
researcher to rise above the idiosyncrasies of trust in reading online profiles, to link 
dealing with irreducible vulnerability to the matter of trust, instead of explaining it 
away with reason, routine and reflexivity. Through “suspension”, the actions of the 
Couchsurfers can be better understood, by means of understanding the strategies used 
to make the leap of faith, and how the Couchsurfer can decide not to make the leap, 
hence withdrawing trust.  

The interpretative approach taken to handle the subject of trust is important in 
allowing the actors of trust to articulate what trust means to them. It was found that 
actors define trust as having security based on what they prize, and further probing 
revealed that trust within the system did not only involve physical safety, but also the 
feeling of being accepted as part of the larger, open-minded community. This 
demonstrates an important lesson of focusing on the actors’ interpretation of the 
social reality that they live in, especially in studying concepts as elusive and abstract 
as trust. An ethnocentric and positivist approach would typically focus on the obvious 
(in this case, personal safety), thus missing out on subtle but essential nuances of the 
meanings attributed by the actors to the contextual situation. It is sufficient to study 
the guest in this exploratory study, and continuing research will address the 
corresponding dyad of the host in terms of trust invested in the system.  

This study is also interesting to facilitate further study on trust issues on hybrid 
online/offline communities, because actors negotiate trust through online profiles and 
then renegotiate it through face-to-face encounters, and after the encounter they are 
able to leave references in the online world, thus reinforcing trust in the community. 
Through identifying what is regarded as important trait within the online/offline 
community, i.e. “open-mindedness” in this case of a transnational community, I can 
then further research on trust and the manifestations of “open-mindedness” as a form 
of cultural capital within the actors’ social reality of online profiles and offline 
interactions. 
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Abstract. We analyze empirical data of Germany’s largest online social lending
platform Smava.de to exemplarily study the contribution of unstructured, ambigu-
ous, or unverified information to trust building in online communities. After con-
trolling for the influence of hard information, we find that textual statements that
appeal to social behavior actually affect trust building. However, the evidence is
less clear for voluntarily disclosed personal data. Lenders generally seem to give
more weight to hard information so that disclosing personal data promises little
benefit while potentially exposing borrowers to privacy risks.
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1 Introduction

It is widely accepted that trust between people can be established through interper-
sonal communication and interaction over time. Computer-mediated communication is
characterized by a lack of physical presence and consequently a reduced exchange of
social and contextual cues. This makes it particularly challenging to build up trust in
online communities and online social networks. Understanding how trust is developed
between members of online communities, and which factors influence trust building in
these settings, is subject to ongoing research [BOG+02, HDR04, SGGG09].

Our contribution here is to draw on empirical data from online social lending, an
instance of online communities, in order to study the role of different types of infor-
mation in trust building. Online social lending, also known as peer-to-peer lending, has
grown rapidly after the launch of the first commercial platform, UK-based Zopa.com,
in 2005. The idea of social lending is to provide a marketplace for unsecured personal
loans. An online platform lets borrowers advertise credit projects to individual lenders,
who decide independently in which project they invest. Credit risk is shared in project-
specific pools of lenders; each member funds a small share of the financed amount.
As a compensation for taking risk, interest is paid to the lenders, whereas platform
operators typically charge fixed (i. e., risk-free) fees. The exact market mechanism dif-
fers between platforms and has recently been subject to research in mechanism design
[CGL09]. Independent of the specific mechanism, matching borrowers’ demand with
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lenders’ supply online sidesteps the traditional role of banks as intermediaries in credit
markets. This has a plethora of consequences, which we largely disregard in this study.

Our main interest in this new way of organizing credit markets is that it offers an
excellent research opportunity to empirically and quantitatively analyze the role of soft
information, such as personal data and statements appealing to social behavior, on trust
building. In online social lending, the level of trust can be approximated by credit con-
ditions, a measurable dependent variable absent or at least problematic in many al-
ternative approaches. In addition, credit project descriptions contain different types of
information, which allows us to disentangle the specific influence of so-called ‘hard’
and ‘soft’ information. After some necessary theoretical background in the following
subsections, the focus of this paper is to present and discuss evidence from data col-
lected on Smava.de, the largest social lending platform serving residents of Germany.
Using publicly available field data is not only convenient, but also promises high exter-
nal validity, in contrast to artificial environments of typical laboratory experiments.

1.1 Social Factors in Online Social Lending

Unlike assumed in classical economic theory, which is potentially applicable to busi-
nesses and banks, it is broadly accepted that individuals’ behavior is not only moti-
vated by the rational economic consideration of profit-maximization. According to Gra-
novetter’s theory of social embeddedness, individuals’ actions are neither determined
by completely rational decisions nor by solely following social norms. Rather, social
relationships between people form the basis for interpersonal trust and thereby influ-
ence individuals’ actions [Gra85]. Likewise, participants in online social lending do not
adhere to strictly objective principles for risk assessment and they do not (only) seek
to maximize their expected financial wealth. Anecdotal evidence suggests that online
social lenders exhibit pro-social and even altruistic behavior. For instance, the not-for-
profit platform Kiva.org allows individuals to invest capital in small and medium-sized
businesses (SMB) operating in developing countries. Although lenders receive zero in-
terest on their investment, the platform counts 675.000 members who have invested
about US$ 120 million between fall 2005 and February 2010 [Kiv]. This example high-
lights the presence of investors’ social motivations on this micro-finance market.

Pro-social behaviors, such as helping others, showing compassion, being honest,
trustworthy, and reliable, are believed to be the basis for good social relations and to
form the ‘glue’ of a society. It is important to stress that pro-social behavior need not be
completely altruistic; it may also be motivated by expectations of general reciprocity.
This refers to the social phenomenon that individuals tend to help others when those re-
ciprocate such behavior, i. e., also help others in general [Kol00]. Tangible or intangible
– whatever kind of reward lenders expect, borrowers will usually ‘pay’ it later. There-
fore trust in borrowers’ reliability and their future behavior is vital for online social
lending. Trust is defined, for instance, by Schlenker et al. [SHT73] as

“a reliance upon information received from another person about uncertain en-
vironmental states and their accompanying outcomes in a risky situation.”

In the case of online social lending, trust can be built by providing information about
borrowers and their envisaged credit projects. Observe that such information has a dual
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nature. First, taking the economic perspective, in credit markets with imperfect infor-
mation, information asymmetries preclude lenders from distinguishing between good
and bad risks [Ake70]. Detailed information on borrowers and their credit projects help
to reduce uncertainty and thus to establish a trust relationship between lenders and bor-
rowers. Second, from a social-psychological point of view, by communicating personal
data, it is possible to convey interpersonal cues. These cues may also influence trust
building positively, since they allow a potential lender to infer the social background of
a borrower and the social proximity between lender and borrower. Both can be used to
form expectations about the norms that guide a borrower’s future behavior [RSM05].

It remains to be discussed what constitutes ‘soft’ information. In an essay specific
to information on (traditional) credit markets, Petersen distinguishes soft information
from hard information by its difficulty “to completely summarize in a numeric score”
[Pet04], that is, by its subjectivity, ambiguity, and incomparability. He also acknowl-
edges that it is impossible to draw a sharp line and therefore the concepts ‘hard’ and
‘soft’ rather represent end points of a continuous scale than binary categories. Petersen’s
definition is general enough to subsume alternative distinctions, e. g., by the nature of
semantic encoding (hard information corresponds to structured and soft information to
unstructured data), or by the verifiability of information (unverified information is dif-
ficult to summarize in a valid score, hence it counts as soft information). According
to this definition, and due to the aforementioned ambiguity of social cues, any such
expression shall be treated as soft information and is therefore relevant to this study.

1.2 Related Work on Online Social Lending

Online social lending has recently attracted the interest of scholars in economics and
social sciences. Unless otherwise stated, all prior empirical work is based on data of
Prosper.com, the major online social lending platform serving US residents.

Ravina [Rav07] as well as Pope and Syndor [PS08] look at discrimination in credit
decisions made on social lending platforms. They report effects of race, age, gen-
der, and weight on credit conditions, though not always statistically significant. Credit
conditions were operationalized by the (inverse) interest rate, or the probability of
(full) funding success. The predictors were either extracted from structured data of the
project description or manually assigned by evaluating text or pictures. Herzenstein et
al. [HADL08] measured the level of detail of the project description on a 3-step ordinal
scale and found it to be a major influencing factor for funding success after controlling
for fundamental financial parameters, such as amount, starting interest rate in an auction
market, and the (endogenous) duration of the listing. In terms of predictive power, the
researchers distinguished between demographic factors (e. g., gender), financial factors
(e. g., credit score), and effort measures (e. g., length of project description). The first
category was found to have only very little effect on funding success, whereas the latter
two categories were found to be influential.

The closest predecessor of our study is Greiner and Wang’s interpretation of trust
building in online social lending [GW07]. Our study differs from their work in the data
source (Smava.de instead of Prosper.com) and the focus on soft information. By con-
trast, Greiner and Wang consider the inclusion of genuinely hard information, such as
possession of a bank account, credit score, home ownership, group membership, or the
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availability of pictures, as indicators of institutional-based trust, respectively economic
or social cues. These factors appear as control variable in our setup. Greiner and Wang
derive eleven hypotheses for specific predictors and find support for seven of them. In a
follow-up study [GW09], the problem has been reframed in the theory of social capital
(see Sobel for a survey [Sob02]) to derive five hypotheses on the influence of the bor-
rower’s interaction with other members of the online community around Prosper.com.
While the results are less clear-cut (indicators of social capital seem to matter most for
borrowers with bad creditworthiness, and are generally unstable over time), this study
fits well into research bringing together online social lending and social network theory.

Several authors try to identify decision pattern and peer-influence within the social
network of registered users of a social lending platform. An early study found that en-
dorsement by group leaders – typically lenders – has the most positive effect on both
funding success and total number of bids [RRW07]. This indicates that a personal rec-
ommendation can be more important than hard facts, such as credit scores. This finding
was confirmed by Berger and Gleisner [BG09], who analyzed the role of group leaders
as new “financial intermediaries.” Freedman and Jin [FJ08] as well as Herrero-Lopez
[HL09] analyzed whether the social network between borrowers can contribute to re-
ducing information asymmetries and thus is helpful for making good investments. The
authors report empirical evidence that a borrower’s affiliation with a reputed group in-
creases the chance of full funding and results in lower interest rates. When looking at
the realized default rates, however, the picture becomes more complicated: according
to a study by Everett, mere group membership tends to increase default rates [Eve08].
Only when distinguishing between groups with supposedly strong and weak interper-
sonal relations (alumni of one school versus mere profession), a positive outcome (i. e.,
lower default rate) is observable for groups with strong interpersonal relations. Everett
interprets this as evidence for social sanctions [BC95].

Brinceno Ortega and Bell [BOB08] take the platform Zopa.com as a case study for
a sociological discussion in the context of structuration theory. They argue that the
platform as an intermediary between borrowers and lenders empowers its members
not only to share information, but to construct “their own financial identities” through
collaboration between borrowers and lenders. However, the authors do not underpin
their theory with empirical evidence from the analysis of user-generated content, such
as profiles, credit project descriptions, and forum messages, on Zopa.com.

A first empirical study of online social lending on Smava.de from a privacy angle
is reported by Böhme and Pötzsch [BP10]. Since voluntarily disclosed personal data
constitute soft information, we will update our preliminary results of [BP10] with a
meanwhile extended data set and briefly discuss privacy implications in this paper, too.

2 Hypotheses and Data

It is generally accepted that trust reduces transaction costs in arbitrary economic rela-
tionships (see for example Dyer and Chu for empirical cross-country evidence [DC03]).
Applied to the case of online social lending, this means borrowers who appear more
trustworthy to lenders can expect better chances to get their projects funded, and if so at
better conditions. In order to demonstrate their trustworthiness, borrowers can introduce
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themselves by providing personal data in their credit project description and explaining
their envisaged project. We hypothesize accordingly:

H1. Borrowers who disclose more personal data pay lower interest rates.

As pointed out in Sect. 1.1 above, aside from economic motivations, social behaviors
also do play a role in online social lending. Therefore we will study whether emotional
statements, direct appeals for help, and the indication of general reciprocity (i. e., state-
ments of the borrower that he also has helped others in the past or will do so in the
future) influence lenders’ investment decision. Our second hypothesis is:

H2. Borrowers who explicitly appeal to the social behavior of lenders pay
lower interest rates.

Testing these hypotheses is impeded by the conceptual and practical challenge to ex-
tract the independent variables, namely disclosure of personal data and appeals to social
behavior, from the borrowers’ credit project descriptions. Moreover, the effect of such
soft information on credit conditions is small compared to the influence of hard infor-
mation, like credit score and maturity. So effort is required to control for as much hard
information as possible to make subtle effects of soft information observable.

2.1 Data on Credit Projects

Our raw data consists of 1530 credit projects advertised on the largest German social
lending platform Smava.de between 01 November 2008 and 31 October 2009, repre-
senting a total credit amount of 13 million euro (US$ 18 million). This is about 50 % of
all loans arranged on the platform from its launch in March 2007 until March 2010.

We have limited the time range to obtain a densely populated sample and avoid sin-
gularities in the data during the long launch phase of Smava.de. It also helps to avoid
heterogeneity before and after the collapse of Lehman Brothers in September 2008, the
climax and turning point of the financial crisis. Aside from language issues, homogene-
ity over time was a major reason for preferring Smava.de as data source over the much
larger US-based platform Prosper.com (loans of US$ 190 million since February 2006).
Data of the latter exhibit breaks and instability over time due to several business inter-
ruptions, rule changes, and lawsuits with financial supervisors between fall 2008 and
spring 2009 [Eis09].

Of our 1530 credit projects, 79 (5 %) were not fully financed and excluded from the
analysis to make interest rates – the dependent variable in this paper – better comparable
between projects. Note that this ratio is as high as 78 % for Prosper.com [RRW07], so
studies based on this data source cannot exclude partially funded projects without intro-
ducing a substantial bias. In our study, we further excluded another 228 projects which
got fully funded within the first two minutes after the creation of the credit project. This
can happen because Smava.de began to offer so-called instant loans in July 2009. In
these cases, lenders’ decisions are automated and hence do not take into account any
soft information.

Smava.de implements the following market mechanism: the platform lets potential
borrowers propose credit conditions (amount, interest rate, and maturity of three or five
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years), checks their identity, and publishes on its website verified demographic infor-
mation (age, gender, state) along with a credit score and a rough debt service-to-income
ratio (so-called KDF indicator), as well as a user-provided project description and op-
tional pictures. Lenders can review this information and contribute to its funding in step
sizes of 250 euro. When the project is fully funded or after two weeks, whatever is ear-
lier, the (partial) loan is granted via a commercial bank, who partners with Smava.de
to comply with the German financial supervision regulations. Apparently the bank has
no say in the credit decision and immediately securitizes the loan, thereby transferring
credit risk to the pool of borrowers. The platform also partners with SCHUFA, the lead-
ing German credit bureau, which provides the credit scores, and with a debt collection
agency to handle distressed debt. Borrowers can revise the interest rate upwards if their
initial offer receives little response.

Borrowers and lenders can appear on the platform under self-chosen nick names,
however their full identity is known to and verified by Smava.de using the Postident
procedure. For this service, employees at post offices identify natural persons by their
passport or national identity card before relaying a certified document to the recipient.
Postident is offered throughout Germany and it is the standard procedure to sign up for
online-only bank accounts or online auction sites. In fact, 81.5 % of all borrowers on
Smava.de appear under fantasy nick names, whereas only 4 % voluntarily chose a nick
name that resembles a combination of a first and last name.1 The remaining borrowers
use a nick name that either reveals a common first (10.8 %) or last (3.6 %) name.

Smava.de arranges both non-commercial and commercial credit projects. However,
due to a cap of the loan amount at 25,000 euro (US$ 34,000) and the fact that no collat-
eral is provided, all credit projects classified as commercial originate from small non-
incorporated businesses. The trustworthiness of these entrepreneurs is most likely as-
sessed by the standards of private persons rather than by checking the financial strength
based on corporate balance sheets. Hence we include both types of projects in our anal-
ysis and estimate an indicator variable to capture potential differences.

2.2 Content Analysis

We conducted a content analysis [Hol69] to measure the amount of personal data and
the occurrence of appeals to social behavior in credit project descriptions. Variation in
personal data disclosure can be found in the textual project descriptions, the optional
categories of the borrower profile page, and possibly associated pictures. Appeals to so-
cial behavior were measured by flagging the occurrence of precisely defined arguments
in the textual descriptions. The categories include:

– emotional statements, such as arousing pity about the borrower’s situation;
– helping tendency, i. e., direct appeals for help; and
– remarks on (general) reciprocity, such as claims that the borrower has helped others

in the past or will help others in the future.

We further coded for each credit project whether it contains a reference to alternative
funding by commercial banks and whether the costs were already incurred, e. g., when
the Smava.de credit is requested for the conversion of other liabilities.

1 Of course, we were unable to verify whether these nick names correspond to the actual names,
but we see little indication to believe the contrary.
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Two trained coders independently rated the textual descriptions and assigned it to
categories without knowing our hypotheses. The underlying code book distinguishes
between ten categories of personal data, namely the borrower’s name, contact infor-
mation (address, phone, e-mail, etc.), financial situation, education, profession, further
special skills or knowledge, housing situation, health, hobbies, and information about
close relatives (children or partner). Each category has several sub-categories that en-
code in which detail borrowers disclose personal data of the respective category. The
coders also rated on a 7-point scale whether their overall perception of a borrower based
on all available information was positive, neutral or negative; and how credible they
found the whole credit project. Due to resource constraints, 125 of the available credit
projects were not coded in full detail. This explains the differences in the number of
cases as indicated in the result tables. Nonetheless, a subset of projects has been coded
by both coders to calculate the intercoder reliability. Calculated according to the popular
formula by Holsti [Hol69], our overall reliability of 90 % is reasonably good.

2.3 Auxiliary Data

To control for fluctuations in the broader economic environment, we have added
monthly data on the average effective interest rates charged by German commercial
banks for consumer credit of comparable maturity (Bundesbank time series code:
SUD114). Since this indicator alone could barely explain the time-dependent fluctu-
ations in the level of interest rates on Smava.de, we decided to include monthly fixed
effects. We further created three dummy variables to capture fundamental changes on
Smava.de. First, the platform increased fees for both borrowers and lenders in February
2009. The second intervention was the extension of the bidding assistant in May 2009.
The bidding assistant places bids on behalf of a lender and distributes a given amount
of investment capital on several credit projects. The new assistant allows lenders to de-
fine a fine-grained loan portfolio in which they wish to invest. Note that a new credit
project can only receive up to 50 % funding from lenders’ bidding assistants. The rest
of the total amount needs to be invested by manual bids. The third change during the
period of our study was the introduction of instant loans (in German: “Schnellkredit”)
in July 2009. Such projects can be fully financed by bidding assistants and the plat-
form suggests an interest rate so that supply matches demand. Although these projects
were excluded from our data set, we use the dummy variable to control for a potential
influence of this new service on the overall market environment.

3 Results

To study the effects of personal data and appeals to social behavior, a set of predictors
representing both hard and soft information in credit project descriptions is regressed
on the final interest rate of all fully funded projects. Table 1 shows two specifications of
the regression model along with estimates and statistical significance tests. Model 1 is
estimated with predictors for hard information only and model 2 extends it by predictors
reflecting soft information. The overall goodness-of-fit measured by the adjusted R2

statistic is very high – also in comparison to similar analyses in the literature, e. g.,
[GW07]. However, the additional variance explained by soft information is marginal.
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3.1 Hard Information: Financial Key Indicators and Economic Environment

Not surprisingly, the credit score turned out to be the most influential predictor. Since
the models are fitted without intercept, the estimates for SCHUFA grades can be directly
interpreted as average interest rates for the respective grades. Due to the linear regres-
sion model, the estimated coefficients are additive contributions to the final interest rate.
For example, the baseline interest rate of 8.2 % p. a. for average borrowers of SCHUFA
grade D is further significantly revised upwards by on average 0.3 percentage points
for debt service-to-income ratios above 40 %. To protect borrowers and lenders alike,
Smava.de does not arrange credit projects from borrowers with debt service-to-income
ratios above 67 %.

Table 1. Regression models for interest rate p. a.

Predictor Model 1 Model 2

Credit score
SCHUFA grade A (good) 5.90 *** (0.813) 6.16 *** (0.821)

SCHUFA grade B 6.68 *** (0.813) 6.96 *** (0.821)

SCHUFA grade C 7.71 *** (0.811) 7.99 *** (0.819)

SCHUFA grade D 8.22 *** (0.810) 8.47 *** (0.817)

SCHUFA grade E 9.36 *** (0.819) 9.59 *** (0.827)

SCHUFA grade F 10.09 *** (0.815) 10.38 *** (0.824)

SCHUFA grade G 11.93 *** (0.811) 12.18 *** (0.819)

SCHUFA grade H (bad) 13.33 *** (0.815) 13.62 *** (0.824)

Ratio of debt service over net income
20–40 % 0.21 (0.138) 0.21 (0.138)

40–60 % 0.30 ** (0.132) 0.27 ** (0.132)

60–67 % 0.63 *** (0.133) 0.61 *** (0.133)

Time-dependent factors
Average commercial bank rate 0.55 (1.130) 0.40 (1.142)

Dummy for fee raise (1 Feb 2009) 0.76 (0.704) 0.57 (0.707)

Dummy for bidding assistant (6 May 2009) −0.65 ** (0.299) −0.70 ** (0.300)

Dummy for instant loans (16 July 2009) −0.36 * (0.187) −0.32 * (0.187)

Fixed effect: Nov 2008 1.19 (1.101) 1.18 (1.113)

Dez 2008 1.04 (0.893) 0.98 (0.903)

Jan 2009 0.22 (0.868) 0.11 (0.876)

Feb 2009 −0.24 (0.288) −0.20 (0.289)

Mar 2009 0.72 ** (0.364) 0.81 ** (0.367)

May 2009 −0.01 (0.302) 0.04 (0.301)

June 2009 −0.46 (0.460) −0.43 (0.466)

July 2009 −1.55 *** (0.475) −1.45 *** (0.476)

Aug 2009 −2.18 ** (0.917) −2.06 ** (0.922)

Sep 2009 −1.42 *** (0.408) −1.39 *** (0.408)

Oct 2009 −1.70 *** (0.395) −1.66 *** (0.395)

. . . table to be continued on the following page . . .
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Table 1. (continued)

Predictor Model 1 Model 2

Properties of the credit project
Maturity (dummy for 5 instead of 3 years) 0.49 *** (0.082) 0.47 *** (0.082)

Amount (multiples of 250 euro) 0.01 *** (0.002) 0.01 *** (0.002)

Average bid (steps of 250 euro) −0.14 *** (0.049) −0.14 *** (0.049)

Commercial loan (i.e., SMB) −0.00 (0.103) 0.06 (0.108)

Revision of initial interest rate −0.09 (0.090) −0.06 (0.090)

Project-specific picture −0.18 ** (0.090) −0.15 * (0.091)

Picture in borrower profile 0.11 (0.124) 0.10 (0.132)

Borrower demographics
Self-employed 0.13 (0.097) 0.18 * (0.097)

Age (absolute deviation from median) 0.02 *** (0.004) 0.02 *** (0.005)

Gender (female) −0.00 (0.078) −0.02 (0.080)

Soft Information
Voluntary disclosure of personal data

Borrower profile completed 0.12 (0.112)

Name and contact information [0..20] 0.00 (0.038)

Financial situation [0..13] 0.00 (0.029)

Profession and qualifications [0..23] −0.05 *** (0.016)

Housing situation [0..4] −0.02 (0.032)

Health [0..5] −0.00 (0.067)

Hobbies [0..4] 0.02 (0.043)

Partner, family members [0..19] −0.00 (0.018)

Argument style
Statements that arouse pity 0.42 ** (0.188)

Direct appeal for help −0.22 * (0.122)

Reference to own helpfulness (reciprocity) −0.09 (0.177)

Claimed eligibility for bank loan (competition) −0.22 * (0.128)

Costs already incurred (necessity) 0.16 * (0.082)

Model fit: adjusted R2 (number of cases) 98.72 (1098) 98.74 (1098)

Standard errors in round brackets; significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Controlling for changes on the platform over time, the results indicate that the av-
erage interest rate decreased after the modification of the bidding assistant, as did the
introduction of instant loans. The fee rise caused no measurable change in interest rates,
but cautious interpretation is advisable since the true effect size might be suppressed by
a confounded monthly fixed effect. With regard to all monthly fixed effects, observe
the spike in March 2009 and the declining rates in the last four months of the sample
period. The latter can be explained by two reasons. First, the monetary easing in the af-
termath of the financial crisis has increasingly been passed on to consumers (although
it is somewhat surprising that this development is not captured by the official statistic).
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Second, increased media coverage presenting social lending in general (and Smava.de
in particular) as investment alternative may have led to over-supply of credit.

Regarding the properties of credit projects, we found evidence that higher rates are
charged for higher amounts and longer maturities, whereas upward revisions of the ini-
tial interest rate are not penalized. Corroborating the literature (e. g., [GW07, HADL08]),
credit conditions were found to improve significantly if project descriptions are illus-
trated with borrower-provided pictures. However, pictures in the borrower profile, albeit
only one click further apart, have no significant effect. Projects attracting higher average
bids are associated with lower interest rates, even though this should not be interpreted
as causal relationship since bid statistics are partly endogenous.2

In the demographics section, we find evidence for discrimination by age in the pre-
dictable direction: very young and very old borrowers have to pay higher rates. The age
coefficient is estimated for the absolute deviation in years from the sample median of 43
years. No evidence is found for discrimination by gender, whereas being self-employed
tends to be associated with higher interest rates.

3.2 Soft Information: Personal Data Disclosure and Appeals to Social Behavior

Voluntarily disclosed personal data was measured for different categories and sub-
categories, as indicated in Table 1 (numbers of subcategories in square brackets). In
contrast to our hypothesis H1, the data suggests that disclosure of personal data is barely
influential. Interest rates decline marginally, but statistically significantly, if borrowers
disclose detailed personal data about their education, profession, and qualifications.
Disclosure of personal data belonging to other categories has no influence on the aver-
age interest rate. Hence, H1 is not supported in its generality by our results.

In order to test H2, we precisely coded the argument style of borrowers and in-
cluded these variable as predictors in model 2. We found more significant effects than
for the predictors associated with H1, however not always in the expected direction.
For example, emotional statements arousing pity are penalized with higher interest
rates. Lenders seem to expect that borrowers who happen to maneuver themselves
into pitiful situations might not show exceptional effort when it comes to repaying
their debt. Conversely and in line with H2, interest rates tend to decline when di-
rect appeals for help appear in the project description and – to a much lesser extend
and statistically indistinguishable from random fluctuations – when references to (gen-
eral) reciprocity are made. Similar to H1, H2 is not supported in its generality by our
results.

The effect of two additional pieces of soft information not covered by specific hy-
potheses is measurable and turns out to be in line with (common sense) expectations.
Borrowers who claim to be eligible for a bank loan, and thus convey that they appear
trustworthy to a financial institution, are charged lower interest rates. Conversely, re-
vealing the fact that the costs were already incurred, thus admitting an unfavorable
bargaining position, is penalized with tighter credit conditions.

2 We have included this predictor nonetheless in order to remove heterogeneity from the data.
To rule out that this variable unduly proxies soft information on project quality, we removed
this predictor in a separate analysis without observing noteworthy changes in the results.
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3.3 Discussion of Results and Plausibility Checks

The lack of clear support for our hypotheses about the effect of soft information on
credit conditions in online social lending suggests some reflection on potential measure-
ment issues. While we are not too surprised by the measurable effects (though partly in
the opposite direction) for variables associated with H2, we were initially concerned by
the apparent irrelevance of personal data disclosure in six out of seven categories and
decided to conduct plausibility checks for the predictors associated with H1.

For example, we tabulated our coders’ overall perception of borrowers (based on all
available information from the borrower’s profile and the project description) against
voluntary disclosure of any personal data. Table 2 shows that the overall perception
is positive for the majority of credit project descriptions that contain personal data.
Whereas, if no personal data is disclosed, the impression is only neutral on average. Ta-
ble 3 shows a similar analysis for a credibility rating: 79 % of the credit project descrip-
tions that contain any voluntarily disclosed personal data are rated as credible by our
coders. This ratio is only 40 % if no personal data is provided. Contingency tests indi-
cate that the difference between borrowers who do not disclose personal data and those
who do is highly significant for both tables. Hence, disclosing personal data seems to
improve credibility and leads to a more positive perception. Therefore one would expect
that the so-increased trustworthiness should be rewarded with better credit conditions.

An alternative explanation for the marginal effect of soft information, notably disclo-
sure of personal data, is a general change of conventions on the Smava.de marketplace
over large parts of our sample period. All three indicators displayed in Figure 1 (a) wit-
ness a development towards vanishing selectivity in individual credit decisions: loans

Table 2. Overall perception of borrowers (variable coded for 790 cases)

Voluntary data disclosure in project description?
Overall perception no (n = 163) yes (n = 627)

positive 19.02 % 66.03 %
neutral 52.15 % 28.55 %

negative 28.83 % 5.42 %

Contingency test χ2(2)=141.47, p < 0.001.

Table 3. Credibility of credit project descriptions (variable coded for 1096 cases)

Voluntary data disclosure in project description?
Credibility no (n = 186) yes (n = 910)

(Very) credible 40.32 % 79.45 %
neutral 40.32 % 13.96 %

(Very) incredible 19.35 % 6.59 %

Contingency test χ2(2)=119.44, p < 0.001.
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Fr
ac

tio
n

of
cr

ed
it

pr
oj

ec
ts

(i
n

%
)

D J F M A M J J A S O N D J F M A M J J A S O N D
2008 2009 2010

0

25

50

75

100
granted in two days or less
short project description (in 1st quantile)
not fully financed

(a) indicators of market conventions

E
ur

o
×

10
00

D J F M A M J J A S O N D J F M A M J J A S O N D
2008 2009 2010

0

2.5

5

7.5

10

0

25

50

75

100

average financed amount (LHS)
% of projects in ‘investment’ grades (A–D, RHS)

(b) credit volume and quality

Fig. 1. Change of conventions on the Smava.de marketplace: scrutiny on loan approval declines
(a) while credit quality remains flat and alloted volumes grow (b); time series of selected indica-
tors, aggregated per month from all approved projects

are approved at ever faster pace, almost every project gets fully financed in the second
half of 2009, and, most remarkably, credit project descriptions appear to have declined
in relevance so much that many borrowers do not bother anymore to elaborate them.
Whereas less than 10 % of project descriptions were classified as “short” according to
our indicator in December 2008, this ratio rose to almost 50 % one year later. All this
would not be remarkable if it occurred as a result of a general change of the type of
credit projects arranged on the platform towards less risky, smaller loans as the grow-
ing platform attracts larger parts of the population. However, indicators in Figure 1 (b)
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prove the contrary: average loan amounts actually rose and credit quality did not im-
prove substantially. This calls for more scrutiny in credit decisions rather than less!
Without deeper analysis, we can only speculate about the reasons behind this develop-
ment (e. g., supply exceeding demand, impact of the bidding assistant and instant loans,
externalities incentivizing indiscriminate approval of risky projects, etc.). It is evident,
however, that one or more factors create a dynamic that marginalizes the influence of
soft information on Smava.de. While this might be good news for privacy advocates,
who can safely advise borrowers and urge platform operators minimize the disclose of
personal data, it remains to be seen how this development affects trust between the par-
ticipants in online social lending and long-term trust in the specific platform and the
business model as a whole.

Of course, our results suffer from the usual limitations of empirical field research.
Explorative data analysis suggests that there is still some unexplained heterogeneity,
and we might have overlooked a third variable that changes the picture. Moreover, our
indicators of soft information are, by definition, approximations at best and – despite
internally reliable – not necessarily valid for the concepts we are trying to quantify.

4 Concluding Remarks

Trust building in online communities and online social networks is challenging due to
the lack of interpersonal interaction and a very limited exchange of interpersonal cues.
In this paper we drew on empirical data of the largest German social lending platform
Smava.de to study the role of soft information as supporting factor in trust building be-
tween borrowers and lenders. From a purely economic point of view, it is not overly
surprising that hard information strongly influences credit decisions in online social
lending, as already shown by other authors (see Sect. 1.2). Our study differs from re-
lated work in its focus on soft information, the quantification of which involved an
extensive manual content analysis with categories so far unexplored for online social
lending. Following Granovetter’s ideas of social embeddedness, we analyzed in partic-
ular, whether borrowers who disclose personal data or write appeals to social behavior
in their credit project descriptions are rewarded with lower interest rates.

Our results indicate that communicating personal data indeed supports a positive
and trustworthy overall perception of the borrower, but the impact on credit conditions
is marginal: only data in the category education, profession, and qualifications show a
small and significant effect. Appeals to social behavior create stronger effect in varying
direction. On the one hand, lenders reward direct appeals for help. This can be inter-
preted as evidence for pro-social behavior. On the other hand, if borrowers overdo and
try to arouse pity or admit a weak bargaining position, they are penalized with even
higher interest rates. Further, claims of borrowers to be trusted by banks seem to im-
prove their trustworthiness and lead to significantly better credit conditions.

To conclude, besides hard economic facts, lenders on Smava.de do consider soft in-
formation in their evaluation of their borrowers’ trustworthiness, though to a limited
extent and apparently with decreasing weight over time. In particular, voluntarily dis-
closed personal data is less honored than thought. This calls for a deeper analysis on the
relation between trust and privacy. Other directions for future work include the refine-
ment of our measurement methods, the collection of data to evaluate social proximity as
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a factor in trust building, and the replication of our study in contexts that are less suscep-
tible to the increasingly indiscriminate credit decisions observable in Fig. 1 (e. g., other
platforms, sample periods, subsets of credit projects). It also remains relevant to study
the role of soft information in trust building for other applications. If our results can
be confirmed, this may provide insights on how technical systems for trust propagation
and trust computation should be designed to mimic trust building between people.
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1 Motivation

We discuss the growing trend of electronic evidence, created automatically by
autonomously running software, being used in both civil and criminal court
cases. We discuss trustworthiness requirements that we believe should be applied
to such software and platforms it runs on. We show that courts tend to regard
computer-generated materials as inherently trustworthy evidence, ignoring many
software and platform trustworthiness problems well known to computer security
researchers. We outline the technical challenges in making evidence-generating
software trustworthy and the role Trusted Computing can play in addressing
them.

This paper is structured as follows: Part I is a case study of electronic evidence
in a “file sharing” copyright infringement case, potential trustworthiness issues
involved, and ways we believe they should be addressed with state-of-the-art
computing practices. Part II is a legal analysis of issues and practices surrounding
the use of software-generated evidence by courts.

Part I: The Case Study and Technical Challenges

2 Introduction

Recently the first author was asked to serve as an expert witness in a civil lawsuit,
in which the plaintiffs alleged violation of their copyrights by the defendant by
way of a peer-to-peer network. Mavis Roy, of Hudson, New Hampshire, had
been charged by four record labels with downloading and distributing hundreds
of songs from the Internet.

The principal kind of evidence that the plaintiffs provided to the defendant’s
counsel (the second author), and which, judging by their expert witness’ report,
they planned to use in court to prove their version of events that implied the
defendant’s guilt, was a long print-out of a computer program.

Furthermore, the timing pattern of the computer program’s recorded actions
led us to believe that the program produced the print-outs in an automatic
fashion rather than as a result of a human operating it interactively via a human-
computer interface with the operator selecting appropriate actions, stopping to
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c© Springer-Verlag Berlin Heidelberg 2010
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inspect the results, making determinations, forming hypotheses, and planning
further actions.1

Thus it appears that the only entity to “witness” the alleged violations and to
produce an account of them for the court – in the form of a series of print-outs –
was in fact an autonomous piece of software, programmed by a company acting
on behalf of the plaintiffs and RIAA, and running on a computer controlled by
this company.

A Sci-Fi writer might say that the program in question was acting as an
autonomous “robotic investigator” (or a “robotic witness”), selecting targets
for its investigation and recording its investigative actions in the print-outs as
evidence to be used in court. We understand that such evidence has already
made appearance in many so-called P2P file sharing cases filed by the Recording
Industry Association of America (RIAA) across the US.2

Clearly, software entrusted with such an important function must be
held to special, higher standards of trustworthiness. As any computer
scientist (and, indeed, any programmer) knows, bugs and misconfigurations are
inherent in software, including – despite the programmers’ vigorous efforts to
the contrary – in mission-critical software, and can be deadly.3 Defining such
standards in a way consistent with the state-of-the-art knowledge of the techni-
cal, legal, and social aspects of the problem poses a multi-disciplinary research
challenge. In particular, the following aspects — at least — must be considered:

– Software trustworthiness. How much can the software be relied on to be
error-free and to operate as expected? Such questions are central to Com-
puter Science in general, and to Computer Security in particular, and an
acceptable answer should involve a consensus by computer security experts.

– Trier-of-fact perceptions. There is a certain common expectation of pre-
cision and impartiality associated with computer systems by non-specialists.
However, computer practitioners themselves joke that “computers make very
fast, very accurate mistakes”, and exchange cautionary stories of ubiquitous
computer “bugs”.4 This phenomenon of human trust and the potential trier-
of-fact bias should be investigated by legal scholars and sociologists.

– Software as a witness? Witnesses in court make their statements under
oath, with severe consequences of deviating from the truth in their testimony.
Witnesses are then cross-examined in order to expose any biases or conflicts
of interest they might have. Computer-generated evidence comes from an

1 As a forensic examiner would do when analyzing a hard drive’s contents with soft-
ware like Encase or a network packet trace with software like Wireshark that makes
no judgments or determinations of its own but merely presents information to the
human expert.

2 For information and defense attorney perspective on these cases see, e.g., http://
recordingindustryvspeople.blogspot.com/

3 E.g., the RISKS Digest http://catless.ncl.ac.uk/risks abounds with dramatic
examples.

4 The above-mentioned RISKS Digest is recommended reading in the Computer Se-
curity course at Dartmouth College and other leading higher education institutions.

http://recordingindustryvspeople.blogspot.com/
http://recordingindustryvspeople.blogspot.com/
http://catless.ncl.ac.uk/risks
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entity that cannot take an oath ensuring its intent of providing the truth
(only programmers directly responsible for creating that entity can do so),
nor receive an adversarial examination (which would reasonably apply only
to the code and function of the software). Ensuring equal responsibilities for
“direct” human witnesses and those who are responsible for the creation of
the computer-generated evidence requires research by legal scholars.

In this case study we consider the technical aspects of what we believe it should
take computer science experts to deem the output of autonomously operating
software trustworthy, considering both the extreme malleability of such outputs
and the need for mitigating the effects of unintended bugs and misconfigurations.

The structure of this case study is as follows. We subdivide and consider
the questions posed above, using our experience with the plaintiff’s computer-
generated evidence in the above-mentioned “file sharing” case, expert opinions
of computer scientists in similar previous cases, and other court decisions. Then
we explain the connection of the desired trustworthiness properties with the
concepts of Trusted Computing (TC) and sketch a design of how TC techniques
can help achieve the stated trustworthiness goals.

3 Summary of the Roy Case

Mavis Roy, of Hudson, New Hampshire, had been charged by four record labels
with downloading and distributing hundreds of songs from the Internet. The four
members of the Recording Industry Association of America (RIAA) brought
a case against Roy in U.S. District Court, following a letter from the record
companies’ attorneys that directed her to a web site where she could pay by
credit card to settle the case. Since she did not have a computer in her house at
the time she was alleged to have downloaded the music, she ignored the request,
thinking it was a scam.5

3.1 Case Materials

The subpoena. Ms. Roy’s ISP received a subpoena issued by the plaintiff’s
lawyers. The ISP was asked to identify the subscriber based on an IP address
and a moment in time (date, hour, minute, and second). The ISP disclosed the
subscriber account information, including name, phone number, and mailing
address.

Basis for the subpoena and lawsuit. The materials received by Ms. Roy defense
lawyer included, besides the subpoena, printouts of several kinds of software-
generated logs and the plaintiff’s expert witness report6 that contained an in-
terpretation of these logs.
5 See the press release of the Franklin Pierce Law Center’s Consumer and Commer-

cial Law and Intellectual Property and Transaction Clinics, http://www.piercelaw.
edu/news/posts/2009-06-18-victory-in-downloading-case.php

6 Declaration and Expert Report by Dr. Doug Jacobson from January 29, 2009.

http://www.piercelaw.edu/news/posts/2009-06-18-victory-in-downloading-case.php
http://www.piercelaw.edu/news/posts/2009-06-18-victory-in-downloading-case.php
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The latter report contained statements that the computer with the IP address
in question was “registered” to Ms. Roy and engaged in file sharing. The basis
for this expression was unclear, since the defendant, as far as we know, never had
to register her computer or any specific computer with her ISP (which typically
only requires the customer to register the MAC address of the cable modem at
service activation time), and no MAC addresses at all were present in either the
ISP response to the subpoena or any other case documents. Many other statements
and conclusions of this and similar plaintiff’s expert witness reports have been
disputed by expert witnesses7, but their analysis is beyond the scope of this paper,
in which we focus on the content and presentation of the evidence itself.

All logs (titled “Evidence for <number>” were provided as text files in PDF
format, summarized in Table 1. The filenames followed the common pattern of
RoyMNH0xxx.PDF; the first column of the table contains the unique (xxx) part of
the filename. Samples from these files are shown in Figures 1– 9.

The choice of format, especially for representing packets as ASCII printouts of
their (printable) bytes, complicated analysis of data and introduced additional
ambiguity. For example, one can only guess what actual bytes corresponded to
non-printable characters, rendered in printouts as a thick black dot; checksum-
ming or cryptographic hashing of such packet captures is impossible, and, as far
as we know, was not performed. The most voluminous log (785 pages long, and
over 83% of the total submitted pages) contained no relevant information about
packets other than their length and was thus of little help for cross-validating
other logs.

In particular, the IP addresses contained in such packets – a crucial part of
the subpoena – could not be readily verified, nor could other relevant TCP/IP
information, such as the Time-To-Live (TTL) values, which could have helped
to validate the network path, be readily extracted.

In all of these documents, the assumption that decoding of such information
by the generating software was performed without error was apparent. Yet, at
least in the case of the document that apparently purported to contain the
traced route to the IP in the subpoena, the software obviously failed to operate
correctly, as can be see in Figure 7. The reason for this could have been either
internal code faults or network configuration faults, or both; we discuss this
further in Section 5.2.

7 A selection of such arguments can be found in

1. Expert witness report by Dr. J.A. Pouwelse in UMG Recording Inc., et al.
v.Lindor, available from http://www.ilrweb.com/viewILRPDF.asp?filename=

umg lindor 080215ExpertWitnessReportPouwelse

2. Declaration of Jason E. Street in Arista Records, LLC, et al. v.Does 1–11, avail-
able from http://www.ilrweb.com/viewILRPDF.asp?filename=arista does1-11

070806DeclarationJaysonStreet

3. Expert witness report by Dr. Yongdae Kim in Capitol v. Thomas, available from
http://beckermanlegal.com/pdf/?file=/Lawyer_Copyright_Internet_Law/

virgin_thomas_090303DeftsExpertWitnessReport.pdf

http://www.ilrweb.com/viewILRPDF.asp?filename=umg_lindor_080215ExpertWitnessReportPouwelse
http://www.ilrweb.com/viewILRPDF.asp?filename=umg_lindor_080215ExpertWitnessReportPouwelse
http://www.ilrweb.com/viewILRPDF.asp?filename=arista_does1-11_070806DeclarationJaysonStreet
http://www.ilrweb.com/viewILRPDF.asp?filename=arista_does1-11_070806DeclarationJaysonStreet
http://beckermanlegal.com/pdf/?file=/Lawyer_Copyright_Internet_Law/virgin_thomas_090303DeftsExpertWitnessReport.pdf
http://beckermanlegal.com/pdf/?file=/Lawyer_Copyright_Internet_Law/virgin_thomas_090303DeftsExpertWitnessReport.pdf
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Table 1. Evidence materials in Roy case

xxx: Purport Description Page count

054 “Download Info For <filename>” ASCII printout of IP packets with
IP addresses decoded

124

178 “IP byte log for user at address
<IP> for <filename>”

One line per packet: “timestamp,
StartByte, %d, EndByte, %d, Total-
Bytes %d”

785

963 “Shared file matches for user at ad-
dress <IP:port>”

Filename, length, checksum 1

964 “RECEIVED PACKET
<timestamp>”

ASCII printout of IP packet 9

973 “Initializing analysis of user
<IP:port>”

Log of actions such as “Attempting
to match files”, “Choosing files to
download”, “Initiating download of
<filename>”

4

977 “Tracing route to <IP>”, “DNS
Lookup for <IP>”

Failed traceroute 1

978 “Log for User at address <IP> gen-
erated on <timestamp>”

File name and SHA1 11

989 “Total Recognized Files Being Dis-
tributed”

File name and size 8

Fig. 1. Sample of RoyMNH054

Fig. 2. Sample of RoyMNH0178

3.2 Case Outcome

The case was settled in June 2009. Under the terms of settlement, the case is
dismissed with prejudice and neither side is paying the other any money.
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Fig. 3. Sample of RoyMNH0963

Fig. 4. Sample of RoyMNH0964

Fig. 5. Sample of RoyMNH0973

Fig. 6. Sample of RoyMNH0973-1
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Fig. 7. Excerpt from RoyMNH977: failed trace route

Fig. 8. Sample of RoyMNH0978

4 Witness Trustworthiness: Human vs. “Machine”

Humans’ testimony not assumed to be impartial. When human witnesses take
the stand, the triers-of-fact are expected to generally consider the possibility that
they, despite the oath, may render an untruthful or factually incorrect account
of events and circumstances due to a conflict of interest or bias. A possibility
of bias may also exist despite the witnesses’ genuine desire to render a truthful
testimony. Similar considerations apply to expert witnesses.
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Fig. 9. Sample of RoyMNH0989

In short, a human witness’ testimony is not automatically assumed to be
trustworthy. Specific court procedures such as cross-examination and deposition
by the opposing lawyers have evolved for challenging such testimony, in particu-
lar, for exposing any potential conflicts of interest to triers-of-fact who, based on
their experiences, may or may not consider them significant enough to distrust
the testimony.

Biases and conflicts of interest become particularly important in the case of
expert witnesses, where triers-of-fact do not have direct and specific knowledge
of the subject matter and must therefore rely on the impartiality of the ex-
pert’s representations, or, in the very least, weigh the relative credibilities of the
opposing expert witnesses, as exposed by cross-examination.
The illusion of “machine” impartiality. However, when computer-generated data
is introduced as evidence in court, there appears to be a strong assumption that
such evidence is somehow impartial and as such more trustworthy than testimony
given by a human witness or an expert witness.

For example, in the UMG vs. Lindor case, similar to the Roy case we stud-
ied, the court seems to have assumed that the discovery request for software,
source code, and algorithm were sought solely to address selection of Lindor as a
defendant and not whether the software-generated output could be distrusted or
doubted as a complete and objective testimony of events “observed” or caused by
the software.

In particular, the court concluded that “the software, source code, or algo-
rithm that MediaSentry uses to obtain screen shots is irrelevant to the question
of whether the screen shots accurately depict copyright violations that allegedly
took place on defendant’s internet account.”8. The court referred to MediaSentry
materials as “objective data” and seems to have assumed that “the screen shots
attached to the complaint fairly and accurately represent what was on a com-
puter that allegedly was using defendant’s internet account at the time of the
interception”9 – essentially because the evidence was generated and presented
in a computer format!

It may be inferred that the court assumed that the software and algorithm were
infallible and therefore fairly and accurately represented what was on [Lindor’s]
computer.
8 UMG Recordings, Inc. v. Lindor, U.S. Dist. Court, E.D.N.Y., Docket No. 05-CV-

1095 (May 16, 2008 Order on defendant’s motion to compel) (“Lindor Order”)
9 Lindor Order at 5. See also Part II for discussion of Lindor.
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We can only hypothesize that this comes from the perceived properties of
the nature of a “machine” as something that repeatedly and reliably performs
mechanical actions, or “computer” as an “idiot savant”, in the public mind, as
well as from daily experience with commodity electronic devices. As a society,
we have been persuaded to trust machines and to rely on them, and thus to
view them – despite occasional breakdowns and errors, even dramatic ones – as
inherently trustworthy, all things considered.

This attitude ignores the crucial fact that computer software and
systems can be and have been programmed and configured to incor-
porate biases and malfeasant logic that skewed their functionality and
reporting output to suit the interests of their programmer or vendor.
In other words, putting a bias or an expression of an ulterior motive into the
form of a computer program is not unthinkable; it is not even very hard (but,
as we will show, much harder to detect than to commit).

A computer scientist understands that the language of a computer program
does not somehow make it impossible for the speaker to “tell a lie”, intention-
ally or unintentionally, but, on the contrary, is as open to malfeasance or honest
error (such as programmers’ overconfidence) as any other kind of human expres-
sion. However, the public perception appears to be that computer technology
inherently adds trustworthiness to human activities, by making it harder for the
humans involved to distort reality and fall to deception or self-deception.

However, there are dramatic examples to the contrary. For example, according
to news reports, the programmer of red light traffic cameras in Italy conspired
“with 63 municipal police, 39 local government officials, and the managers of
seven different companies in order to rig the system so that it would turn from
yellow to red quicker, therefore catching more motorists.”10. The intentional,
strong bias programmed into the system was only discovered because the un-
usually high number of reported fines drew an official’s suspicion; had the bias
been less pronounced, it might have not been detected at all.

Moreover, a bias or deviation from trustworthy behavior need not be malicious
or intentional. Programmers and operators may genuinely believe that their
systems are operating correctly and as intended, whereas in reality they may
be subject to subtle or catastrophic errors. We discuss examples of such errors
in the next section.

4.1 The Need for Code Examination

We take the position that the code of the software must be made available
for detailed examination by experts, especially in such cases as Roy, where
reliability of software-generated evidence cannot be checked or increased by using
alternative resources (e.g., by using competing products for re-testing the same
forensic sample, see discussion of the reliability of repeatable vs unrepeatable
tests by courts in Part II.).

10 http://arstechnica.com/tech-policy/news/2009/02/

italian-red-light-cameras-rigged-with-shorter-yellow-lights.ars

http://arstechnica.com/tech-policy/news/2009/02/italian-red-light-cameras-rigged-with-shorter-yellow-lights.ars
http://arstechnica.com/tech-policy/news/2009/02/italian-red-light-cameras-rigged-with-shorter-yellow-lights.ars
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One important consideration in such cases that involve transient events cap-
tured only by a single instance of software (and all the more so when the software
is plaintiff’s) is that the defendants are foreclosed from exonerating themselves
by providing independent sources of evidence or causing independent tests to
be performed (such as with exonerating DNA evidence). Thus we believe that
special-purpose “witness” software that produces a record of transient events
must itself be captured in an attestable form tied to the produced output, and
its source code examined as explained below.

In cases where a possible conflict of interest is involved (e.g., when the software
vendor might profit from a false positive bias or “overdetection” of violations)
the code examination must be conducted in great detail to exclude the possibility
of subtle bugs resulting in such bias. Although not easy or cheap, such analysis is
effective and can be effectively taught (cf. “Hack-the-vote” project [1], in which
students at Rice University competed in introducing and detecting such biases
into e-voting software).

The Daubert criteria connection to trustworthiness examination of code. Federal
courts apply the “Daubert standards” (discussed in Part II) to admissibility
of expert testimony. Considering that autonomous evidence-producing software
includes and represents an expression of expert domain knowledge, an analogy
can be drawn between the goals of these standards and of code examination for
trustworthiness.

Namely, this trustworthiness examination of software should establish:

– absence of bias, as discussed above;
– competence of the programmers – which can only be conclusively judged via

a source code review, the long “invisibility” and subsequent impact of flaws
left in legacy binaries by less that competent programmers being notorious;

– methodology’s reliability – even if competently programmed, the program’s
algorithms themselves may be flawed.

We briefly discuss the second and third items in the following section, to show
that even in the absence of any malicious intent or negligence the trustworthiness
of software is not assured. We note that courts have ordered code review in
several cases, e.g., State vs. Chun, as discussed in Part II.

4.2 Reasons to Distrust Computer Programs

Many researchers have struggled to come up with techniques for answering the
following two questions.

1. Can a computer program be trusted to behave in the desired way?
2. Did a certain computer program produce a certain output?

There are several reasons these problems are hard.
First, programs frequently contain bugs that are hard to find through code

inspection (and that may not be detectable without code inspection). An array
of techniques and tools have been designed to automatically inspect source code
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of programs. These techniques and tools range from checkers that detect sim-
ple known problems (such as the UNIX utility lint, which, among other things,
checks C code for “=” used instead of “==”) to model checkers, such as SPIN [2],
designed for the purpose of detecting concurrency problems when multiple pro-
cesses interact.

Although these checkers are very useful in detecting certain sets of problems,
manual code inspection remains the only way that can, in theory, check for all
possible failures. In practice, however, such an exhaustive inspection typically has
prohibitive time costs and is likely to overlook the more complicated problems.
Many bugs in open source software have existed for months or years, despite
examination by the open source community. Complicated attacks on compli-
cated algorithms are generally unpredictable (since, if they were predictable,
they would not have been ignored when the algorithms were designed).

Second, the programmers may have made implicit (and incorrect) assump-
tions about the environment in which the program would be run. Cases where
such assumptions led to real-world failures are described in nearly every issue of
RISKS digest.

Third, the program may have either been malicious from the start or subverted
by an attacker. If the program was modified or replaced, code examination would
be of little use in deciding on its trustworthiness.

Finally, code inspection may be of no use if the compiler, the interpreter, or
the OS itself is suspect, as Ken Thompson, one of the original developers of
UNIX, pointed out in his Turing award lecture [3]. As a demonstration of this
idea, Ken Thompson suggested building a compiler that would take source code
of a legitimate program and compile it, adding a backdoor. If someone attempted
to replace the malicious compiler, he would have to compile the new compiler
using the malicious compiler, and the malicious compiler would turn the new
compiler malicious as well.

The above considerations suggest that the question of whether a program can
be trusted can not be answered lightly.

4.3 Beyond Code Examination

Further, we believe that code examination alone does not by itself assure the
trustworthiness of an output presented as evidence. At least the following addi-
tional conditions must be assured:

1. the correctness of external inputs of interest at the time of the output’s gen-
eration, such as the wall clock time needed to establish the events’ timeline,
can be attested, in particular,

2. the configuration of the platform, the operating systems, and of supporting
software can be attested, and

3. the specific version of the code must be linkable with the particular eviden-
tiary output.

We believe that the platform on which such software is to be run must be able to
attest the above properties. In particular, it must be able to attest the platform’s
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configuration at the time of the evidence generation, as well as measure the
running version of the software at that time.

5 The Need for Attesting Configuration

In this section we discuss the two fundamental challenges of ensuring the trust-
worthiness of the evidence-generating system at the time when autonomous soft-
ware generates evidence, a point important for legal analysis. We argue that
on a Trusted Computing platform, this issue can and should be addressed by
attestation of the system’s configuration.

Broadly speaking, such attestation is necessary to argue that the channels over
which the system receives external, trustworthiness-critical inputs are themselves
not compromised or misconfigured, and are not a source of errors introduced into
the software’s operation.

5.1 Ensuring Accurate Wall Clock Time

An accurate timeline is critical to many kinds of both criminal and civil cases.
Prosecution’s versions of the timeline are routinely contested by the defense.
Forensic specialists, in particular, are advised to keep accurate, timed records of
their activities.

Computer-generated evidence will almost certainly contain timestamps; in the
Roy case, the timestamp of the alleged filesharing activities was one of the two
principal elements of the subpoena that directed the ISP to name the defendant
and thus subject her to a considerable invasion of privacy and other hardships.

Thus, a natural question to ask is, “How trustworthy are computer-
generated timestamps?” The answer is common wisdom among computer
scientists: not very trustworthy, unless either a rigorous clock synchronization
mechanism is in place or the system has the benefit of a high-precision external
clock (which may synchronize with the true wall clock time by its own means
such as GPS or the atomic clock time signal).

It should be noted that when – as it was in the Roy case – electronic evidence
involves correlation of events by two clock readings (e.g., that of the evidence-
generating software/platform and of an ISP’s DHCP log server), both clocks
should be held to the same trustworthiness standards. In this article we con-
centrate on the requirements to the former, but it should be understood that
the latter may also be the source of disastrous timeline errors. For example in-
nocent customers’ homes have been reportedly raided by the police due to an
ISP’s timestamp handling errors “blamed on confusion ... over international time
zones”11, mostly likely due to a software error.12
11 http://www.theregister.co.uk/2009/07/23/intercept_commisisoner/
12 Whereas the article quotes a UK government official as saying that “better checks

and balances have been put in place”, the fault appears to be with the algorithm
or process for handling and correlating the timing data, rather than with actual or
potential abuse of power.

http://www.theregister.co.uk/2009/07/23/intercept_commisisoner/
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Clock synchronization is a research problem. Clock time synchronization in
computers across networks is an important practical and research problem and
should not be taken for granted. Dedicated network protocols such as the Net-
work Time Protocol (NTP)13 are used to synchronize computer system time
with dedicated time servers trusted to have the accurate time (maintained, e.g.,
by the US NIST). Network security professionals stress the importance of correct
network time synchronization.14

The problem of time synchronization is far from trivial. An MIT’s Media
Lab 1999 survey of NTP network time servers concluded that “only 28% of the
Internet based stratum 1 clocks actually appears to be useful”, and over a third
had deviations of over 10 seconds, and some deviated by hours, days, and even
years.15

Even though network time keeping practices have improved over the years,
the issue still attracts attention of researchers and practitioners: the original
survey quoted above was followed by at least five since.16

Trustworthiness of timestamps must be attested. The above considerations sug-
gest that special steps must be taken to assure the correctness of timestamps
on a platform where an evidence-producing software runs, at the time it runs.
Since commodity platforms possess neither high quality clocks nor built-in means
of synchronization with superior clocks, the actual source of correct time for a
commodity platform must be external.

This external clock can be either a directly connected device, or a network-
accessible time authority (e.g., via NTP). In either case, the means of synchro-
nization must be configured as a part of the OS configuration process,
and the configuration active at the point of evidence generation must
be attested.

These requirements, which become self-evident after the above consideration,
can be viewed as a design guideline for Trusted Computing platforms and soft-
ware stacks, one that these architectures should be well-equipped to handle.

5.2 Ensuring Correct View of the Network

Whenever software-generated evidence involves data derived from its network
connections – be it the primary subject-matter of its reports, or simply its NTP
functionality – the trustworthiness of a system running this software crucially
depends on the correctness of its network configuration.

This can be seen from the fact that mapping out and compromising the tar-
get systems’ trust relationships is the methodological foundation of network se-
curity assessment and penetration testing (and constitutes core functionality
of classic network security tools as Nmap, Nessus, and Core Impact). More-
over, man-in-the-middle attacks on these relationship are the mainstay of attack
13 http://www.ntp.org
14 http://www.linuxdevcenter.com/pub/a/linux/2003/01/02/ntp.html
15 Nelson Minar, A Survey of the NTP Network, http://www.eecis.udel.edu/~mills/

database/reports/ntp-survey99-minar.pdf
16 See, e.g., http://www.ntpsurvey.arauc.br/globecom-ntp-paper.pdf

http://www.ntp.org
http://www.linuxdevcenter.com/pub/a/linux/2003/01/02/ntp.html
http://www.eecis.udel.edu/~mills/database/reports/ntp-survey99-minar.pdf
http://www.eecis.udel.edu/~mills/database/reports/ntp-survey99-minar.pdf
http://www.ntpsurvey.arauc.br/globecom-ntp-paper.pdf
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trees and the reason why vulnerabilities in protocols used to establish network
trust such as DNS attract great attention and scrutiny among computer security
practitioners.17

In the Roy evidence, the evidence-generating system apparently attempted to
test the network path taken by the packets, by performing a standard “tracer-
oute” action. However, the results shown in Figure 7 cannot be considered realis-
tic – they neither contain any IP addresses or host names of intermediate hops,
nor show realistic hop timings even if we assume that the per-hop tests were
actually performed, as it is entirely unrealistic to expect uniform 20ms times on
each hop.

This raises the question of whether other actions of the software suffered from
whatever caused the apparent failure of the route tracing. This illustrates our
point that full, attested network configuration is necessary for judging the
evidence-generating system’s trustworthiness.

6 Conclusion and Challenges

Even though software-generated evidence tends to be regarded as inherently
trustworthy by courts, we argue that a number of hard technical problems must
be solved in order for such evidence to actually become trustworthy. We be-
lieve that the research community must rise to the challenge presented by these
inter-related technical, legal, and sociological issues, and develop the – currently
lacking – trustworthiness criteria based on the state-of-the-art trustworthy com-
puting approaches.

Part II: Software and Hardware as Witnesses in Trial

7 The Law’s Approach to Machines, Software, and Their
Reports as Witnesses

A constitutional, country-wide, specific rule has yet to be clearly established in
the United States on the issue of the admissibility of, reliability of, and cross-
examination of the validity of the underlying theory or algorithm contained in
software used as evidence, the machine used to create a report, the source code
used on the machine, or the humans operating, maintaining, and otherwise in
contact with the machine and source code. However, it can be concluded that, by
and large, defendants in the United States will have to demonstrate their need
to obtain pre-trial records and testimony on these people, things, and topics
and may bear the initial burden in challenging their admission into evidence
at trial. A review of cases admitting evidence and expert testimony based on
evidence reveals that distrust of the machines used to create evidence and the
software running on these machines is a fairly rare commodity, despite technical
challenges to accuracy of such machines and their source code.
17 E.g., Dan Kaminsky’s report of a vulnerability in DNS at BlackHat 2007.
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Defendants in criminal cases benefit from rights under the Bill of Rights of the
U.S. Constitution, including, relevant to this discussion, the Sixth Amendment
right to confront witnesses against them, known as the Confrontation Clause.
The Sixth Amendment provides in relevant part as follows: “In all criminal
prosecutions, the accused shall enjoy the right . . . to be confronted with the
witnesses against him.” U.S. Const., Amend. VI. This constitutional right is
available whether the defendant in a criminal case is in state or federal court18.
The Confrontation Clause - which requires the production of the witness against
a defendant at the trial on the criminal matter so that that witness may be cross-
examined – represents one of many ways to test the reliability of evidence, but
it is the only method guaranteed to defendants. In short, if the Confrontation
Clause is implicated, the defendant’s task in challenging the evidence is made
easier than if the defendant must rely on the rules of evidence, discussed infra.

If the Confrontation Clause is triggered, the prosecution must produce at
trial19 the witness who made the out-of-court statement so that that witness
may be cross-examined by the defendant. Failure to do so renders the out-of-
court statement inadmissible.20 The Crawford case provides an example of ex-
clusion of an out-of-court statement. Michael Crawford stabbed a man named
Kenneth Lee who allegedly tried to rape Mr. Crawford’s wife Sylvia earlier that
night. Michael Crawford was convicted of assault with a deadly weapon after
the prosecution played for the jury a tape-recorded statement by Mrs. Craw-
ford, recorded immediately after the incident during police interrogation, which
discredited Mr. Crawford’s argument that he acted in self-defense. Before the
case came to the U.S. Supreme Court, the Washington Supreme Court upheld
Mr. Crawford’s conviction and had determined that the recorded statement was
reliable.21 Due to the marital privilege, Mrs. Crawford was unavailable to testify
at trial and unavailable to be cross-examined by the defendant outside of trial.
The U.S. Supreme Court held that the recorded statement of Mrs. Crawford,
made out-of-court, should not have been admitted as evidence since it was a
testimonial statement22 and Mr. Crawford would not have an opportunity to

18 See Melendez-Diaz v. Massachusetts, U.S. , 129 S.Ct. 2527 (2009) (citing
Pointer v. Texas, 380 U.S. 400, 403 (1965) for the proposition that the Sixth Amend-
ment is applicable to the States via the Fourteenth Amendment).

19 If the prosecution cannot produce at trial the testimonial witness against the de-
fendant, the out-of-court statement by that witness is inadmissible unless - gen-
erally speaking – the prosecution establishes that the witness is unavailable to
testify and the defendant has had an opportunity to cross-examine the witness.
Crawford v. Washington, 541 U.S. 36, 5457 (2004).

20 See prior footnote.
21 State v. Crawford, 54 P.3d 656, 663 (2002) (overturning the lower court’s deci-

sion that the statement was unreliable, State v. Crawford, 107 Wash.App. 1025
(Wash.App. Div. 2 2001)).

22 The out-of-court testimonial statement may be either a sworn document or unsworn
and will still invoke the Confrontation Clause requirement. Crawford v. Washington,
541 U.S. 36, 52, n.3 (2004).
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cross-examine Mrs. Crawford during trial, in violation of his constitutional right
under the Confrontation Clause.

Citing an 1828 dictionary to bolster the U.S. Constitution’s framer’ intent in
light of a series of English cases, U.S. Supreme Court Justice Antonin Scalia,
writing the majority opinion in Crawford v. Washington, 541 U.S. 36 (2004),
equated the meaning of “witnesses” to be those who “bear testimony.”23 Trig-
gering of the Confrontation Clause is determined based on whether an out-of-
court statement is testimonial or non-testimonial. “Testimony” was defined in
the 1828 dictionary as follows: “’[a] solemn declaration or affirmation made for
the purpose of establishing or proving some fact.’ “24

Being a human being providing a statement during police interrogation, Sylvia
Crawford was easy to identify as a witness bearing testimony, generating a con-
stitutional requirement that she, in essence, be produced as a witness at trial.
Whether that constitutional requirement applies to machines, operators of ma-
chines, and/or the makers of the machines and their source code remains an
open question.

The recent U.S. Supreme Court case Melendez-Diaz v. Massachusetts, the
majority opinion for which was also written by Justice Scalia, held that the an-
alyst in the state forensic crime lab who provided a certificate that a particular
substance was cocaine must be brought to trial by prosecutors (to enable cross-
examination by the defendant) in order to render his certificate of the substance
admissible. Under prior law, such lab technician certificates were considered re-
liable, and therefore not subject to the method of testing that reliability found
in the Confrontation Clause, namely, cross-examination of the human signing
the certificate presumably reporting results following the use of lab equipment
that need be calibrated, operated correctly, possibly with a series of repeated
tests, and possibly confirmed with a alternative test method reflecting an alter-
native underlying principle or algorithm to test for cocaine. See id. at 2537-38
(speculation as to the lab technician’s method and techniques in reaching the
reported conclusion). The analyst’s actions, choice of equipment and tests to use,
and methodology were unknown in this case, because none of that information
had been admitted; merely the certificate stating the substance was cocaine was
admitted in the trial court.

The Melendez-Diaz court eschewed the contrary views that reliability of such
lab results need not be tested. Citing a 2009 report prepared by the National
Academy of Sciences for a number of error-provoking factors present with such
testing, the court found that “[f]orensic evidence is not uniquely immune from
the risk of manipulation.” Id. at 2536 (citing National Research Council of the
National Academies, Strengthening Forensic Science in the United States: A
Path Forward (Prepublication Copy Feb. 2009)). Some of the findings of the
report were that labs are not neutral, but administered by law enforcement
personnel, providing incentive to alter evidence and that the “[f]orensic science

23 Crawford v. Washington, 541 U.S. 36, 51 (2004) (citing 2 N. Webster,
An American Dictionary of the English Language (1828)).

24 Id.
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system . . . has serious problems.” The latter problem involves lack of competency
or failure to exercise sound judgment by the analyst. The court cited a study
of wrongful, overturned convictions which “concluded that invalid forensic testi-
mony contributed to convictions in 60% of cases.” Id. at 2537 (citing Garrett &
Neufeld, Invalid Forensic Science Testimony and Wrongful Convictions, 95 Va.
L.Rev. 1, 14 (2009)). The court also cited the National Academy of Sciences
report for the proposition that, among other information crucial to creating
reliable results, sound methodologies in published material are lacking across
forensic science disciplines, resulting in, among other problems, unreliability in
even commonly used forensic tests such as fingerprinting and firearms analysis.
Id. at 2538. The National Academy of Sciences report suggests that the devel-
opment of a sound methodology would require published material leading to a
general acceptability of the methodology, with published material available to
analysis with regard to techniques, research, and types and numbers of potential
errors. Id.

In the case U.S. v. Washington, 498 F.3d 225 (4th Cir. 2007), cert. den’d., 129
S. Ct. 2856 (200925), the Fourth Circuit declined to determine that data generated
by a lab machine was testimonial. The machinery consisted of a Hewlett Packard
chromatograph and a computer using Hewlett Packard ChemStation software.
The Fourth Circuit upheld the prosecution’s presentation at trial of the supervis-
ing director of the lab to interpret the machine’s data report and neither the three
lab technicians who used the machinery and software nor the machines themselves
(not discussing the possibility to cross-examine Hewlett Packard’s software engi-
neers). The court pointed out that the Confrontation Clause’s cross-examination
requirement applies to “(human) ’witnesses.”’ Id. at 230, n.1.

There appears to be no right under the Confrontation Clause for a defendant
in a criminal case to cross-examine the software developers or machine designers.
See, e.g. U.S. v. Washington, discussed supra (and cases cited therein holding,
respectively, that time stamp on fax print out, header on print out of Inter-
net images, and computerized telephone trace report are not testimonial state-
ments); see also State v. Chun, 943 A.2d 114, 148 (NJ 2008) (determining that
the print-out from a breath alcohol measurement device and associated software
and hardware is not a testimonial statement). However, recent U.S. Supreme
Court precedent acknowledges defendants’ constitutional right to cross-examine
analysts using devices and software. It is unclear whether such a right can be
extended to software programmers and, if so, under what circumstances.

Once the realm of constitutional protections is left, the burdens on the de-
fendant to find evidence bearing on the reliability of the evidence increase. For
example, while a prosecutor bears the burden to prove the chain of custody for
evidence, he need not prove every step in the chain of custody, and any lacking
evidence merely goes to the weight that may be given to the evidence, not to
the admissibility of the evidence.

25 The U.S. Supreme Court denied certiorari, declining to review the Fourth
Circuit’s decision in this case, four days after it issued its opinion in
Melendez-Diaz v. Massachusetts, U.S. , 129 S. Ct. 2527 (2009).
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One of the gatekeeping tools available to defendants to prevent unreliable
evidence from becoming admissible is the hearsay rule found in the rules of evi-
dence.26 “’Hearsay’ is a statement, other than one made by the declarant while
testifying at the trial or hearing, offered in evidence to prove the truth of the
matter asserted.” Fed. R. of Ev. Rule 801(c). “A ’declarant’ is a person . . .”
Fed. R. of Ev. Rule 801(b). Generally speaking, hearsay is inadmissible. Fed.
R. of Ev. Rule 802. Excepted from the hearsay rule are records made in the
regular course of business, Rule 803(6) and reports prepared by public offices
pursuant to a duty to so report except for law enforcement personnel reports for
criminal cases, Rule 803(8). Also excepted from the hearsay rule are statements
containing material facts which may not otherwise be procured through reason-
able efforts and have equivalent circumstantial guarantees of trustworthiness.
Rule 807. Data reports - so long as they may not be considered “testimonial” –
are often sought to be admitted into evidence under the business records excep-
tion (and sometimes other exceptions) to the hearsay rule. State v. Chun, 943
A.2d 114, 166 (NJ 2008) (also indicating that machines do not have an intent to
generate a false positive); see Thomas v. U.S., 914 A.2d 1, 13 (D.C. 2006); see
also Crawford v. Washington, 541 U.S. 36 (2004).

Given the possible interplay between the Confrontation Clause and the busi-
ness records exception to the hearsay rule, prosecutors should separate testimo-
nial (i.e. a solemn affirmation made for the purpose of establishing or proving
a fact) statements, which are inadmissible in criminal cases without the de-
fendant’s ability to cross-examine the witness, from data logs prepared in the
ordinary course of business which are designed to render a conclusion at the time
the data is generated. A continuum of types of reports and logs could be envi-
sioned which leads to a difficulty to deciding at what point a piece of evidence
is a data log and at what point it is a testimonial statement. This struggle is
apparent in the cases, and yet a review of the cases fails to illuminate where the
line dividing the two will gel.

Also, data logs prepared in anticipation or in preparation for litigation gener-
ally do not fall within an exception to the hearsay rule, see Thomas v. U.S., 914
A.2d 1, 13 (D.C. 2006). Consequently, defendants may subpoena witnesses to
testify on the facts surrounding production of the data logs so long as the defen-
dant establishes a lack of reliability justifying the subpoena. See State v. Chun,

26 Each court has its own rules governing admissibility of evidence into trial. Federal
courts follow the Federal Rules of Evidence and state courts are free to adopt their
own rules of evidence. Generally speaking, however, state rules of evidence closely
follow the Federal Rules of Evidence. Much of the discussion about admissibility of
evidence revolves around the interpretation of the rules of evidence, in particular,
interpretation of the hearsay rule and expert testimony rule. Although state courts
may use federal decisions interpreting the Federal Rules of Evidence as guidance for
interpreting their state rules of evidence, see, e.g., N.H. Rules of Ev., Rule 102, their
decision - except where rights granted by the U.S. Constitution control - need not
follow the federal decision. See, e.g., Alice B. Lustre, J.D., Post-Daubert Standards
for Admissibility of Scientific and Other Expert Evidence in State Courts, 90 ALR5th
453 (2001).
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943 A.2d 114, 166 (NJ 2008). This shift of burden can be difficult to overcome.
See UMG Recordings, Inc. v. Lindor, U.S. Dist. Court, E.D.N.Y., Docket No.
05-CV-1095 (May 16, 2008 Order preliminarily denying defendant’s motion to
compel production of source code by MediaSentry in allegedly detecting allegedly
unlawful copyright infringement).

In the area of source code and hardware design matters, defendants bear
the additional difficulty of needing to overcome the creator’s allegations that
the code/design is proprietary and consequent unwillingness to produce the
code/design. In both State v. Chun and UMG v. Lindor, the source code de-
veloper initially fought discovery of source code due to the allegedly proprietary
nature of the code. In Chun, a case involving source code used in Alcotest, a
device and software used to detect blood alcohol level for use in driving while
intoxicated cases, the German code developer did produce the code, which was
subsequently evaluated by defendants’ experts, resulting eventually in a require-
ment to modify the code to correct errors. By contrast, the software code used
to allegedly detect and allegedly produce accurate screen shots of the defen-
dant’s computer was not produced in the Lindor case. Even if it had been, the
code involved would have been subject to a confidentiality restriction, such that
evaluation of the code had to occur on an (expensive, time-consuming, and in-
efficient) defendant-by-defendant, case-by-case basis. Unlike the code evaluation
conducted by experts in the public eye in the Chun case, the code used in the
Lindor case - if the court had compelled its discovery, which it did not – could
not be tested for reliability in such a way that subsequent defendants could use
it.

When determining whether expert testimony is admissible, reliability of the
methodology used by the expert is crucial to the decision. See Daubert v. Merrell
Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993). One of the key ways to deter-
mine whether a new technology’s methodology is reliable is whether it is gener-
ally accepted after an opportunity for peer review and has reliable results. See
id. If no duplication of the forensic testing by another methodology is possible
(such as is the case in the alleged detection of peer-to-peer network sharing of
copyrightable works, which occurs at a specific instant in time and in the case
of deterioration of samples, such as blood alcohol content samples and autop-
sies (which may not be repeated)27), reliability of methodology is difficult to
determine.

Despite these concerns, some courts have admitted computer forensic evi-
dence. See, e.g., UMG Recordings, Inc. v. Lindor, 531 F.Supp.2d 453 (2007)
(admitting opinion of plaintiff’s expert on facts bearing on copyright infringe-
ment claim despite failure of the methodology to comport with Daubert factors in
light of expert’s own testimony that others in the industry would
interpret the data the same and court’s conclusion that data relied upon by
expert was “objective data” provided by plaintiffs’ private investigator and ISP
records); Galaxy Computer Servs., Inc. v. Baker, 325 B.R. 544 (E.D. Va. 2005)
(admitting expert testimony that former officers of corporation deleted files from

27 Crawford, at n.5.
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computer after conspiracy and other claims were brought against them following
specially-educated and seasoned computer forensic specialist’s analysis of hard
drives); see also Marjorie A. Shields, J.D., Admissibility of Computer Forensic
Testimony, 40 ALR6th 355 (2008) (describing eight cases where the computer
forensic testimony was admitted and only one where the testimony was not ad-
mitted; in the case where the testimony was not admitted, the alleged expert
was unable to even open the AVI files that he was supposedly hired to opine
did not exist and were not pornographic (this inability to open the files fol-
lowing his initial inability to locate the files on the computer)). This suggests
that in practice there is a low threshold for computer forensic evidence, which
places significant burdens on defendants to challenge reliability of this evidence.
See also David L. Faigman, David H. Kaye, Michael J. Saks, Joseph Sanders,
5 Modern Scientific Evidence: The Law and Science of Expert Testimony 41:13
(Nov. 2009) (citing State v. Bastos, 985 So.2d 37 (Fla. Dist. Ct. App. 3d Dist.
2008), in which the court refused to order a turnover of source code absent a
particularized showing of discrepancy; People v. Robinson, 53 A.D.3d 63, 860
N.Y.S.2d 159 (2d Dept. 2008) (similar); State v. Underdahl, 749 N.W.2d 117
(Minn. Ct. App. 2008) (similar)); but see State v. Chun, supra (allowing thor-
ough evaluation of source code); but see House v. Com, 2008 WL 162212 (Ky.
Ct. App. 2008) (ordering disclosure of source code).

In conclusion, while the recent expansion of rights to defendants in criminal
cases to require prosecutors to bring lab analysts into court for cross-examination
and to produce documents establishing the proper calibration of machines and
training of operators of machines is a positive step in the testing of reliabil-
ity of computer-aided forensic evidence and resulting expert testimony, these
rights have yet to gain much benefit for defendants in civil cases faced with the
admissibility of evidence and expert opinion that very possibly lack peer-tested
methodologies, trustworthiness, and/or competency. A survey of civil court cases
suggests a lenience toward admitting evidence and opinions and allowing the jury
to sort out the weight to be afforded, which can unfavorable prejudice defendants
in civil cases. When a defendant in a civil case can end up with a verdict of $1.92
million28 for sharing 24 copyrighted songs on a peer-to-peer network, civil cases
begin to look as if they should require the reliability and confrontation standards
available to defendants in criminal cases.
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Abstract. Secure outsourcing of computation to an untrusted (cloud)
service provider is becoming more and more important. Pure crypto-
graphic solutions based on fully homomorphic and verifiable encryption,
recently proposed, are promising but suffer from very high latency. Other
proposals perform the whole computation on tamper-proof hardware and
usually suffer from the the same problem. Trusted computing (TC) is
another promising approach that uses trusted software and hardware
components on computing platforms to provide useful mechanisms such
as attestation allowing the data owner to verify the integrity of the cloud
and its computation. However, on the one hand these solutions require
trust in hardware (CPU, trusted computing modules) that are under the
physical control of the cloud provider, and on the other hand they still
have to face the challenge of run-time attestation.

In this paper we focus on applications where the latency of the com-
putation should be minimized, i.e., the time from submitting the query
until receiving the outcome of the computation should be as small as
possible. To achieve this we show how to combine a trusted hardware
token (e.g., a cryptographic coprocessor or provided by the customer)
with Secure Function Evaluation (SFE) to compute arbitrary functions
on secret (encrypted) data where the computation leaks no information
and is verifiable. The token is used in the setup phase only whereas in the
time-critical online phase the cloud computes the encrypted function on
encrypted data using symmetric encryption primitives only and without
any interaction with other entities.

Keywords: Cloud Computing, Hardware Token, Outsourcing.

1 Introduction

Enterprises and other organizations often have to store and operate on a huge
amount of data. Cloud computing offers infrastructure and computational ser-
vices on demand for various customers on shared resources. Services that are of-
fered range from infrastructure services such as Amazon EC2 (computation) [1]
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or S3 (storage) [2], over platform services such as Google App Engine [13] or Mi-
crosoft’s database service SQL Azure [21], to software services such as outsourced
customer relationship management applications by Salesforce.com.

While sharing IT infrastructure in cloud computing is cost-efficient and pro-
vides more flexibility for the clients, it introduces security risks organizations
have to deal with in order to isolate their data from other cloud clients and
to fulfill confidentiality and integrity demands. Moreover, since the IT infras-
tructure is now under control of the cloud provider, the customer has not only
to trust the security mechanisms and configuration of the cloud provider, but
also the cloud provider itself. When data and computation is outsourced to the
cloud, prominent security risks are: malicious code that is running on the cloud
infrastructure could manipulate computation and force wrong results or steal
data; personnel of the cloud provider could misuse their capabilities and leak
data; and vulnerabilities in the shared resources could lead to data leakage or
manipulated computation [8]. In general, important requirements of cloud clients
are that their data is processed in a confidential way (confidentiality), and that
their data and computation was processed in the expected way and has not been
tampered with (integrity and verifiability).

Secure outsourcing of arbitrary computation and data storage is particularly
difficult to fulfill if a cloud client does not trust the cloud provider at all. There
are proposals for cryptographic methods which allow to perform specific com-
putations on encrypted data [3], or to securely and verifiably outsource stor-
age [18]. Arbitrary computation on confidential data can be achieved with fully
homomorphic encryption [12], in combination with garbled circuits [30] for ver-
ifiability [11]. While this cryptographic scheme can fulfill the aforementioned
requirements, it is currently not usable in practice due to its low efficiency as we
discuss later in §4.2.

Another line of works tries to solve these problems by establishing trusted exe-
cution environments where the cloud client can verify the integrity of the software
and the configuration of the cloud provider’s hardware platform. This requires,
however, secure software such as secure hypervisors for policy enforcement and
attestation mechanisms for integrity verification. The use of trusted computing-
based remote attestation in the cloud scenario was recently discussed in [7].
Trusted Virtual Domains [5,6] are one approach that combines trusted comput-
ing, secure hypervisors, and policy enforcement of information flow within and
between domains of virtual machines. However, those approaches require trust
in a non-negligible amount of hardware (e.g., CPU, Trusted Platform Module
(TPM) [29]) which are under the physical control of the cloud provider. Ac-
cording to the specification of the Trusted Computing Group, the TPM is not
designed to protect against hardware attacks, but provides a shielded location
to protect keys. However, the TPM cannot perform arbitrary secure computa-
tions on data. It can protect cryptographic keys and perform only pre-defined
cryptographic operations like encryption, decryption, and signature creation. In
particular, if data should be encrypted it must be provided in plaintext to the
TPM, and if data should be decrypted it will be given in plaintext as output.
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Unfortunately, the TPM cannot be instructed to decrypt data internally, perform
computations on the data, and encrypt it again before returning the output. A
virtualized TPM [4] that is executed in software could be enhanced with addi-
tional functionality (see, e.g., [25]). However, such software running on the CPU
has access to unencrypted data at some point to compute on it. Hence, if the
cloud provider is malicious and uses specifically manipulated hardware, confi-
dentiality and verifiability cannot be guaranteed by using trusted computing.

A hardware token which is tamper-proof against physical attacks but can
perform arbitrary computations would enable the cloud client to perform con-
fidential and verifiable computation on the cloud provider’s site, given that the
client trust the manufacturer of the token that it does not leak any information
to the provider. For example, secure coprocessors [27,31] are tamper-proof ac-
tive programmable devices that are attached to an untrusted computer in order
to perform security-critical operations or to allow to establish a trusted channel
through untrusted networks and hardware devices to a trusted software program
running inside the secure coprocessor. This can be used to protect sensitive com-
putation from insider attacks at the cloud provider [17]. If cloud providers offer
such tokens produced by trustworthy third-party manufacturers, or offer inter-
faces to attach hardware tokens provided by clients to their infrastructure (and
by assuming hardware is really tamper-proof), cloud clients could perform their
sensitive computations inside those tokens. Data can be stored encrypted outside
the token in cloud storage while decryption keys are stored in shielded locations
of the trusted tokens.

The token based approach is reasonable because both, cryptographic copro-
cessors and standardized interfaces (e.g., smartcard readers or PCI extension
boards) exist that can be used for such tokens. Of course, for trust reasons, the
token vendor should not be the same as the cloud provider. However, the whole
security-critical computation takes place in the token. Hence, such computation
is not really outsourced to the cloud because the function is computed within
the token. Some applications, however, require fast replies to queries which can-
not be computed online within the tamper-proof token. For example, queries in
personal health records or payroll databases may occur not very frequently, but
need to be processed very fast while privacy of the data should be preserved.

In this paper, we focus on cloud application scenarios where private queries
to the outsourced data have to be processed and answered with low latency.

Our Contributions and Outline. First we introduce our model for secure
verifiable outsourcing of data and arbitrary computations thereon in §2.1. Cryp-
tographic primitives and preliminaries are given in §3. In §4 we present archi-
tectures to instantiate our model: The first architecture computes the function
within a tamper-proof hardware token (§4.1) and the second architecture is based
on fully homomorphic encryption (§4.2).

The main technical contribution of our paper is a third architecture (§4.3)
that combines the advantages of the previous architectures and overcomes their
respective disadvantages. Our solution deploys a resource constrained tamper-
proof hardware token in the setup pre-processing phase. Then, in the online
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phase only symmetric cryptographic operations are performed in parallel within
the cloud without further interaction with the token.

In particular, we adopt the embedded secure function evaluation protocol of
[16] to the large-scale cloud-computing scenario.

Finally, in §5 we compare the performance of all three proposed architec-
tures and show that our scheme allows secure verifiable outsourcing of data and
arbitrary computations thereon with low latency.

2 Model for Secure Outsourcing of Data and Arbitrary
Computations

We consider the model shown in Fig. 1 that allows a client C to verifiably and
securely outsource a database D and computations thereon to an untrusted
(cloud) service provider S.

A client C (e.g., a company) wants to securely outsource data D and compu-
tation of a function f (represented as a boolean circuit) thereon to an untrusted
service provider S who offers access to (cloud) storage services and to (cloud)
computation services. Example applications include outsourcing of medical data,
log files or payrolls and computing arbitrary statistics or searches on the out-
sourced data. In addition, the evaluation of f can depend on a session-specific
private query xi of C resulting in the response yi = f(xi, D). However, S should
be prevented from learning or modifying D or xi (confidentiality and integrity)
or to compute f incorrectly (verifiability).1 Any cheating attempts of a mali-
cious S who tries to deviate from the protocol should be detected by C with
overwhelming probability where C outputs the special failure symbol ⊥.2

While this scenario can be easily solved for a restricted class of functions (e.g.,
private search of a keyword xi using searchable encryption [18]), we consider
the general case of arbitrary functions f . Due to the large size of D (e.g., a
database) and/or the computational complexity of f , it is not possible to securely
outsource D to S only and let C compute f after retrieving D from S. Instead,
the confidentiality and integrity of the outsourced data D has to be protected
while at the same time secure computations on D need to be performed at S
without interaction with C.

2.1 Tamper-Proof Hardware Token T

To improve the efficiency of the secure computation, our model additionally
allows that C uses a tamper-proof hardware token T , integrated into the infras-
tructure of S, that is capable of performing computations on behalf of C within a
shielded environment, i.e., must be guaranteed not to leak any information to S.
1 S might attempt to cheat to save storage or computing resources or simply manip-

ulate the result.
2 As detailed in [11] it is necessary that S does not learn whether C detected an error

or not to avoid that S can use this single bit of information to construct a decryption
or verification oracle.
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As T needs to be built tamper-proof and cost-effective, it will have a restricted
amount of memory only. In many cases the available memory within T will not
be sufficient to store D or intermediate values during evaluation of f . If needed,
T might resort to additional (slow) secure external memory (e.g., [10]).

The token T could be instantiated with a cryptographic coprocessor built
by a third-party manufacturer whom C trusts in a way that T does not leak
any information to S. A possible candidate would be the IBM Cryptographic
Coprocessor 4758 or its successor 4764 which is certified under FIPS PUB 140-
2 [27,15]. Such cryptographic coprocessors allow to generate secret keys internally
and securely transport them to C or to another token for migration purposes,
and authentication to verify that the intended software is executed within the
shielded environment. (For details on migrating a state (key) between two trusted
environments (cryptographic coprocessors) we refer to [4,25].) As such tokens
based on cryptographic coprocessors can be used for multiple users in parallel,
their costs amortize for service provider and users.

For extremely security critical applications where C does not want to trust
the manufacturer of cryptographic coprocessors offered by S, C can choose his
own hardware manufacturer to produce the tamper-proof hardware token T and
ship this to S for integration into his infrastructure. We note that this approach
is similar to “server hosting” which assumes outsourcing during long periods;
this somewhat contradicts the highly dynamic cloud computing paradigm where
service providers can be changed easily.

3 Preliminaries

In this section we introduce the cryptographic building blocks used in the archi-
tectures presented afterwards in §4.

3.1 Encryption and Authentication

Confidentiality and authenticity of messages can be guaranteed either symmet-
rically (using one key) or asymmetrically (using two keys).

The symmetric case can be instantiated with a combination of symmetric en-
cryption (e.g., AES [22]) and a message authentication code (e.g., AES-CMAC
[28] or HMAC [20]). These schemes use a respective symmetric key for encryp-
tion/authentication and the same key for decryption/verification.

Alternatively, public-key cryptography (e.g., RSA or elliptic curves) allows
usage of separate keys for encryption/authentication and other keys for decryp-
tion/verification. This could be used for example to construct an outsourced
database to which new entries can be appended by multiple parties without
using shared symmetric keys (cf. Fig. 1).

Notation. x̂ denotes authenticated and x encrypted and authenticated data x.

3.2 Fully Homomorphic Encryption

Fully homomorphic encryption is semantically secure public-key encryption that
additionally allows computing an arbitrary function on encrypted data using
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Service Provider S

Token T

Computation
Cloud

Storage Cloud

outsourced
data D

Client C
private query xi

yi =

{
f(xi, D)

⊥

confidentiality

verifiability

latency

Properties

& integrity {

Fig. 1. Model for Secure Outsourcing of Data and Computation

the public-key only, i.e., given a ciphertext �x�, a function f and the public-key
pk, it is possible to compute �y� = EVALpk(f, �x�) = �f(x)�. Constructing a
homomorphic encryption scheme with polynomial overhead was a longstanding
open problem. Recently, there are several proposals starting with [12] and sub-
sequent extensions and improvements of [9,26]. Still, all these schemes employ
computationally expensive public-key operations for each gate of the evaluated
function and hence are capable of evaluating only very small functions on to-
day’s hardware. Recent implementation results of [26] show that even for small
parameters where the multiplicative depth of the evaluated circuit is d = 2.5,
i.e., at most two multiplications, encrypting a single bit takes 3.7s on 2.4GHz
Intel Core2 (6600) CPU.

Notation. We write �x� for homomorphically encrypted data x.

3.3 Garbled Circuit (GC)

The most efficient method for secure computation of arbitrary functions known
today is based on Yao’s garbled circuits (GC) [30]. Compared to fully homo-
morphic encryption, GCs are highly efficient as they are based on symmetric
cryptographic primitives only but require helper information to evaluate non-
XOR gates as described below.

The main idea of GCs as shown in Fig. 2 is that the constructor generates
an encrypted version of the function f (represented as boolean circuit), called
garbled circuit f̃ . For this, he assigns to each wire Wi of f two randomly chosen
garbled values w̃0

i , w̃1
i that correspond to the respective values 0 and 1. Note that

w̃j
i does not reveal any information about its plain value j as both keys look ran-

dom. Then, for each gate of f , the constructor creates helper information in form
of a garbled table T̃i that allows to decrypt only the output key from the gate’s
input keys (details below). The garbled circuit f̃ consists of the garbled tables
of all gates. Later, the evaluator obtains the garbled values x̃ corresponding to
the inputs x of the function and evaluates the garbled circuit f̃ by evaluating
the garbled gates one-by-one using their garbled tables. Finally, evaluator obtains
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the corresponding garbled output values ỹ which allow the constructor to decrypt
them into the corresponding plain output y = f(x).

Notation. We write x̃ for the garbled value corresponding to x and f̃ for the
garbled circuit of function f . Evaluation of f̃ on garbled input x̃ is written as
ỹ = f̃(x̃).

Security and Verifiability of GCs. GCs are secure even against malicious evalu-
ator (cf. [14]) and demonstration of valid output keys implicitly proves that the
computation was performed correctly (cf. [11]). A fundamental property of GCs
is that they can be evaluated only once, i.e., for each evaluation a new GC must
be generated.

constructor

y = f(x) verify and decrypt

function f

gate Gi

W1W2

W3

∧

garbled circuit f̃

garbled table T̃i

w̃1 w̃2

w̃3

∧

create GC

evaluator

f̃

ỹ = f̃(x̃)

evaluate GCx̃

Fig. 2. Overview of Garbled Circuits

Efficient GC construction. The efficient GC construction of [19] provides “free
XOR” gates, i.e., XOR gates have no garbled table and negligible cost for eval-
uation. For each 2-input non-XOR gate the garbled table has size 4t bits, where
t is the symmetric security parameter; its creation requires 4 invocations of a
cryptographic hash function (e.g., SHA-256 [23]) and 1 invocation for evaluation.
The construction is provably secure in the random-oracle model.

Efficient creation of GCs in hardware. As shown in [16], GCs can be generated
within a low-cost tamper-proof hardware token. The token requires only a con-
stant amount of memory (independent of the size of the evaluated function) and
performs only symmetric cryptographic operations (SHA-256 and AES). Gen-
eration of the GC for the aforementioned AES functionality took 84ms on a
66MHz FPGA neglecting the delay for communicating with the token [16].

Efficient evaluation of GCs in software. The implementation results of [24] show
that GCs can be evaluated efficiently on today’s hardware. Evaluation of the GC
for the reasonably large AES functionality (22, 546 XOR and 11, 334 non-XOR
gates) took 2s on an Intel Core 2 Duo with 3.0GHz and 4GB RAM [24].
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4 Architectures for Secure Outsourcing of Data and
Arbitrary Computation

In this section we present several architectures for our model of §2.

4.1 Token Computes

A first approach, also used in [17], is to let the token T compute f as shown in
Fig. 3. For this, C and T share symmetric keys for encryption and verification.
The encrypted and authenticated database D and the authenticated function
f̂ is stored within the storage cloud of service provider S. In the online phase,
C sends the encrypted and authenticated query xi to T and the storage cloud
provides D and f̂ one-by-one. T decrypts and verifies these inputs and evaluates
yi = f(xi, D) using secure external memory. If T detects any inconsistencies,
it continues evaluation substituting the inconsistent value with a random value,
and finally sets yi to the failure symbol ⊥. Finally, T sends the authenticated and
encrypted response yi back to C who decrypts, verifies and obtains the output yi.

Storage CloudToken T
Client C Service Provider S

xi

f̂ , D

xi f̂ , D

yi = f(xi, D)
yi

decrypt+verify

Fig. 3. Architecture: Token Computes [17]

Performance. In this approach, the latency of the online phase, i.e., the time from
sending the query xi to receiving the response yi, depends on the performance
of T (in particular on the performance of secure external memory) and cannot
be improved by using the computation cloud services offered by S.

4.2 Cloud Computes

The approach of [11] shown in Fig. 4 does not require a trusted HW token but
combines garbled circuits for verifiability with fully homomorphic encryption for
confidentiality of the outsourced data and computations. The main idea is to
evaluate the same garbled circuit f̃ under fully homomorphic encryption and
use the resulting homomorphically encrypted garbled output values to verify
that the computation was performed correctly:

During setup, C generates a garbled circuit f̃ and encrypts its garbled tables
with the fully homomorphic encryption scheme resulting in �f̃� which is sent to S
and stored in the storage cloud. To outsource the database D, the corresponding
garbled values D̃ are encrypted with the fully homomorphic encryption scheme
and �D̃� is stored in S’s storage cloud as well.
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In the online phase, C sends the homomorphically encrypted garbled query
�x̃i� to S who evaluates the homomorphically encrypted garbled circuit �f̃� on
�x̃i� and �D̃� using the homomorphic properties of the fully homomorphic en-
cryption scheme. As result, S obtains �ỹi� = �f̃(x̃i, D̃)� and sends this back to
C. After decryption, C obtains ỹi and can verify whether the computation was
performed correctly. Otherwise, C outputs the failure symbol ⊥.

Client C Service Provider S
xi

�x̃i�

�ỹi�

Storage CloudComputation Cloud

�f̃�, �D̃�
�f̃�, �D̃�

�ỹi� = �f̃�(�x̃i�, �D̃�)

Fig. 4. Architecture: Cloud Computes [11]

Performance. The advantage of this approach is that it does not require any
trusted hardware and hence can be computed in parallel in the computation
cloud. However, the performance of today’s fully homomorphic encryption
schemes (in addition to the overhead caused by evaluating a garbled circuit
under fully homomorphic encryption) is not sufficient that this approach can be
used for practical applications in the near future (see §3.2).

4.3 Token Sets Up and Cloud Computes

Our approach combines a tamper-proof hardware token T used in the setup
phase only with efficient computations performed in parallel in the computation
cloud as shown in Fig. 5. The basic idea is that T generates a garbled circuit
during the setup phase and in the time-critical online phase the garbled circuit
is evaluated in parallel by the computation cloud.

In detail, our architecture consists of the following three phases:
During System Initialization, client C and the tamper-proof hardware token

T agree on a symmetric (long-term) key k (cf. §2.1). Additionally, C provides
S with the authenticated function f̂ (represented as boolean circuit) and the
authenticated and encrypted data D who stores them in the storage cloud.

In the Setup Phase, T generates for protocol invocation i an internal session
key ki derived from the key k and i. Using ki, T generates a garbled circuit f̃i

from the function f̂ and a corresponding garbled re-encryption D̃i of the database
D which are stored in the storage cloud: According to the construction of [16], the
GC can be generated gate-by-gate using a constant amount of memory only. For
each gate of f̂ , S provides T with the description of the gate. T uses the session
key ki to derive the gate’s garbled input values and the garbled output value
and returns the corresponding garbled table to S. In parallel, T accumulates
a hash of the gates requested for so far (e.g., by successively updating hi =
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H(hi−1||Gi) where H is a cryptographic hash function and Gi is the description
of the i-th gate) which is finally used to verify authenticity of f̂ (see [16] for
details). Similarly, T can convert the authenticated and encrypted database D

into its garbled equivalent D̃i using constant memory only: For each element
d in D, T decrypts and verifies d and uses the session key ki to derive the
corresponding garbled value d̃i of D̃i. Finally, T provides S with an encrypted
and authenticated OK message OKi that contains the session id and whether
the verification of f̂ and all elements in D were successful (OKi = 〈i,�〉) or not
(OKi = 〈i,⊥〉).

In the Online Phase, C derives the session key ki and uses this to create the
garbled query x̃i which is sent to S. Now, the computation cloud evaluates the
pre-computed garbled circuit f̃i in parallel using the garbled query and the pre-
computed garbled data D̃i as inputs. The resulting garbled output ỹi is sent back
to C together with the OK message OKi. Finally, C verifies that both phases have
been performed correctly, i.e., OKi for the setup phase (OKi = 〈i,�〉) and valid
garbled output keys ỹi for the online phase.

Storage Cloud

f̂ , D
f̃i, D̃i,OKi f̃i, D̃i,OKi

f̃i, D̃i,OKi

f̂ , D

Client C Service Provider S
k, xi Token T

create GC,
re-encrypt D

x̃i

ỹi,OKi

Computation Cloud

ỹi = f̃i(x̃i, D̃i)

Setup
Phase

Online
Phase

k

Fig. 5. Our Architecture: Token Sets Up and Cloud Computes

Performance. Our entire architecture is based solely on symmetric cryptographic
primitives and hence is very efficient. When T has access to a hardware accel-
erator for GC creation (i.e., hardware accelerators for AES and SHA-256), the
performance of the setup phase depends mostly on the speed of the interface
between the token T and the storage cloud [16]. The size of f̃i and D̃i is ap-
proximately t times larger than the size of f̂ and D, where t is a symmetric
security parameter (e.g., t = 128). To evaluate the GC in the online phase, one
invocation of SHA-256 is needed for each non-XOR gate while XOR gates are
“free” as described in §3.3. GC evaluation can be easily parallelized for many
practical functions that usually perform the same operations independently on
every entry of the database, e.g., computing statistics or complex search queries.

Extensions. Our architecture can be naturally extended in several ways: To
further speed up the setup phase, multiple tokens can be used, that in parallel
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Table 1. Complexity Comparison

Architecture T Computes Cloud Computes T Sets Up and
(§4.1) (§4.2) Cloud Computes (§4.3)

Computation by C O(|xi| + |yi|) O(|xi| + |yi|) O(|xi| + |yi|)
Communication C ↔ S O(|xi| + |yi|) O(|xi| + |yi|) O(|xi| + |yi|)
Storage in Cloud O(|f | + |D|) O(|f | + |D|) O(|f | + |D|)
Computation by T O(|f |) (Online) none O(|f |) (Setup)
Computation by Cloud none O(|f |) (Online) O(|f |) (Online)
Online Latency T evaluates f Cloud evaluates �f̃� Cloud evaluates f̃

create garbled circuits and re-encrypt the database for multiple or even the
same session. The function and the database can be updated dynamically when
an additional monotonic revision number is used. Such updates can even be
performed by multiple clients Ci by using public key encryption and signatures
as described in §3.1.

5 Conclusion

Summary. We discussed a model and several possible architectures for outsourc-
ing data and arbitrary computations that provide confidentiality, integrity, and
verifiability. The first architecture is based on a tamper-proof hardware token,
the second on evaluation of a garbled circuit under fully homomorphic encryp-
tion, and the third is a combination of both approaches.

Comparison. We conclude the paper with a qualitative performance comparison
of the proposed architectures and leave a prototype implementation for their
quantitative performance comparison as future work.

As summarized in Table 1, the asymptotic complexity of the presented archi-
tectures is the same: the client C performs work linear in the size of the inputs
xi and the outputs yi, the storage cloud stores data linear in the size of the eval-
uated function f and the outsourced data D and the computation performed by
the token T respectively the computation cloud is linear in the size of f . Hence,
all three schemes are equally efficient from a complexity-theoretical point of view.

However, the online latency, i.e., the time between C submitting the encrypted
query xi to the service provider S until obtaining the result yi differs substan-
tially in practice.

For the token-based architecture of §4.1, the online latency depends on the
performance of the token T that evaluates f and hence is hard to parallelize and
might become a bottleneck in particular when f is large and T must resort to
secure external memory in the storage cloud.

The homomorphic encryption-based architecture of §4.2 does not use a token
and hence can exploit the parallelism offered by the computation cloud. How-
ever, this architecture is not ready for deployment in practical applications yet,
as fully homomorphic encryption schemes are not yet sufficiently fast enough for
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evaluating a large functionality such as a garbled circuit under fully homomor-
phic encryption.

Our proposed architecture of §4.3 achieves low online latency by combining
both approaches: T is used in the setup phase only to generate a garbled cir-
cuit and re-encrypt the database. In the online phase, the garbled circuit f̃ is
evaluated in parallel by the computation cloud.

Acknowledgements. We thank the anonymous reviewers of the Workshop on
Trust in the Cloud held as part of TRUST 2010 for their helpful comments.
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Abstract. Oblivious transfer (OT) is a simple, but powerful cryptographic prim-
itive, on the basis of which secure two-party computation and several other cryp-
tographic protocols can be realized. In this paper, we show how OT can be
implemented by Strong Physical Unclonable Functions (PUFs). Special atten-
tion is thereby devoted to a recent subclass of Strong PUFs known as SHIC
PUFs. Our results show that the cryptographic potential of these PUFs is perhaps
surprisingly large, and goes beyond the usual identification and key exchange
protocols.

1 Introduction

Motivation and Background. Electronic devices are becoming increasingly mobile,
cross-linked and pervasive, which makes them a well-accessible target for adversaries.
Mathematical cryptography offers several measures against the resulting security and
privacy problems, but they all rest on the concept of a secret binary key: They presup-
pose that the devices can contain a piece of information that is, and remains, unknown
to an adversary. This requirement can be difficult to uphold in practice: Invasive, semi-
invasive, or side-channel attacks, as well as various software attacks including viruses,
can lead to key exposure and full security breaks.

The described situation was one motivation that led to the development of Physical
Unclonable Functions (PUFs) [1]. A PUF is a (partly) disordered physical system S
that can be challenged with so-called external stimuli or challenges Ci, upon which it
reacts with corresponding responses Ri. Contrary to standard digital systems, a PUF’s
responses shall depend on the nanoscale structural disorder present in it. It is assumed
that this disorder cannot be cloned or reproduced exactly, not even by the PUF’s original
manufacturer, and that it is unique to each PUF.

Due to their complex internal structure, PUFs can often avoid some of the shortcom-
ings associated with digital keys. It is usually harder to read out, predict, or derive their
responses than to obtain the values of digital keys stored in non-volatile memory. This
fact has been exploited for various PUF-based security protocols, for example schemes
for identification [1] and key exchange [2].
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Oblivious Transfer. Oblivious transfer (OT) is a two-player cryptographic primitive
which was originally introduced by [3] [4]. Several variants exist, which are reducible
to each other [5] [31]. The version considered in this paper is a one-out-of-two obliv-
ious transfer or

(2
1

)
-OT [5]. This is a protocol with the following properties: At the

beginning of the protocol, one party Alice (the “sender”) holds two secret bits b0 and
b1 as private input, and another party Bob (the “receiver”) holds a secret choice bit c
as private input. After execution of the protocol, the following conditions must be met:
(i) Bob has learned the bit bc, i.e. those of the two bits b0 and b1 that was selected by
his choice bit c. (ii) Even an actively cheating Bob cannot derive any information about
the other bit bc⊕1 as long as Alice follows the protocol. (iii) Even an actively cheating
Alice cannot learn c if Bob follows the protocol.

Since its introduction, a large class of cryptographic schemes has been realized on
the basis of OT, including bit-commitment, zero-knowledge proofs, and general secure
multi-party computation [6] [7] [8] [9] [10]. This makes OT a very versatile and uni-
versal primitive. The fact that OT can be realized within a certain cryptographic model
is often seen as an indication of the model’s large cryptographic potential. For these
reasons, the feasibility of OT in the context of quantum cryptography [11] [12], within
the Bounded Storage Model (BSM) [14] [15], or in noise-based cryptography [16] [17],
has been well-investigated in earlier publications.

Our Contribution. In this extended abstract, we describe a protocol that implements
oblivious transfer on the basis of two types of Physical Unclonable Functions: So-called
Strong PUFs and SHIC PUFs (see Section 2). The protocol seems to indicate the large
potential of these PUFs beyond the known schemes for identification [1] and key ex-
change [2].

The protocol can be executed between two players Alice and Bob under the fol-
lowing prerequisites: (i) Bob had previous access to the Strong PUF/SHIC PUF in a
pre-setting phase. During this phase, he established a list of challenge-response-pairs
(CRPs) of the PUF, which is unknown to Alice. (ii) At the time of protocol execution,
the Strong PUF/SHIC PUF has been transfered to Alice. Only Alice has access to it and
can measure CRPs of the PUF.

Since it is known from other publications that OT is a symmetric primitive [31],
our technique allows OT in both directions under the above provisions, without re-
transferring the PUF from Alice to Bob (see Sec. 3.3).

Organization of the Paper. In Section 2, we give some background on the two specific
PUF types which are relevant for this paper (i.e., Strong PUFs and SHIC PUFs). We also
briefly discuss their implementation. In Section 3 we describe and analyze our protocol
for oblivious transfer. We conclude the paper in Section 4.

2 Background on PUFs

We now give some background on the two PUF types relevant for this paper. Since
SHIC PUFs are a special form of Strong PUFs, we start with an explanation of the
latter.
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2.1 Strong PUFs

A Strong PUF 1 [18] is a (partly) disordered physical system S, which can be excited
with a finite number of external stimuli or challenges Ci, upon which it reacts with
corresponding responses RCi

2. The pairs (Ci, RCi) are usually called the challenge-
response pairs (CRPs) of the PUF. Three security relevant properties of a Strong PUF
S are the following:

(i) Due to the disordered microstructure of S, it must be practically infeasible to fab-
ricate a physical clone S′ of S, which has the same challenge-response behavior
as S. This restriction shall even hold for the original manufacturer of S.

(ii) Due to the large number of possible challenges that can be applied to S, it must
be practically infeasible to exhaustively measure all CRPs of S within a limited
time frame on the order of weeks, months, or even years.

(iii) Due to the complicated internal interactions of S, it must be practically infeasible
to devise a computer program that correctly predicts the response of S to a ran-
domly chosen, previously unknown challenge with high probability. This should
hold even if many other challenge-response pairs of S are known.

Together, conditions (i) to (iii) imply that the responses RCi of S can be determined
correctly (with high probability) only by someone who has got direct physical access to
the single, unique PUF S. Implementation examples of Strong PUFs include complex
optical scatterers [1] or integrated circuits whose outputs depend on their internal, indi-
vidual runtimes delays [21] [22] [23]. Also analog cellular arrays have been proposed
recently [24].

It has been realized relatively early, however, that machine learning techniques are
a natural and powerful tool that can potentially challenge the above security condition
(iii). Successful attacks on several Strong PUF candidates have indeed been reported
in [20] [21] [25] [26]. To rule out a potential susceptibility to algorithmic modeling
attacks, SHIC PUFs have been introduced.

2.2 SHIC PUFs

SHIC PUFs are pronounced as “chique PUFs” and have been suggested in [27] [28]
[29]. The acronym “SHIC” stands for Super High Information Content. They are Strong
PUF (i.e. they possess the above properties (i) to (iii)) and have the following additional
features:

(iv) They contain an extraordinarily high amount of response-relevant random infor-
mation and have a very high information density.

1 Strong PUFs also have been referred to simply as PUFs [19], as Physical Random Functions
[19] [21] [22] , or, almost equivalently, as Physical One-Way Functions [1].

2 Please note that the terminology “RCi” slightly deviates from the standard terminology “Ri”
for PUFs. The new terminology is introduced here in order to make the description of Protocol
2 less ambiguous.
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(v) Their read-out speed (i.e. the frequency by which they produce responses) is lim-
ited to low values. This limitation should not be enforced by an artificially slow
access module or the like, which could potentially be circumvented or cut off
by suitable invasive means. Rather, it must be an inherent property of the PUF’s
design and its physical properties.

(vi) The CRPs of a SHIC PUF are mutually independent. The pairwise mutual infor-
mation of any two responses of theirs is zero.

SHIC PUFs can be imagined as a huge read-only memory with a very high random
information content and an intrinsically slow read-out speed. A challenge Ci to a SHIC
PUF is the analogue to the address in a classical memory, and the corresponding re-
sponse RCi is similar to the bit-value stored under that address. A possible realization
with concrete numbers for information content, information density and read-out speed
will be discussed in Section 2.3.

Strong PUFs vs. SHIC PUFs. As emphasized earlier, all SHIC PUFs are Strong PUFs,
but they possess the further properties (iv) to (vi) above. SHIC PUFs thus have the ad-
vantage that their security does not depend on the computational power and the machine
learning capabilities of the attacker. As all their CRPs are independent of each other,
they withstand prediction even by attackers with unlimited computational power until
a complete read-out has been accomplished. Their security only depends on the CRPs
known to an adversary vs. the overall number of CRPs of the PUF.

2.3 Realization of SHIC PUFs

Even though this is not the main topic of this manuscript, we will briefly discuss the
practical realization of the theoretical concept of a SHIC PUF. One potential candidate
are ALILE-based Crossbar PUFs, which have been introduced in [27] [28] [29]. We
will only provide a short overview of this approach; much further detail can be found
in [27] [28] [29].

Generating Randomness by the ALILE Process. Any SHIC PUF must contain a
very large random information content. There are many physical processes that generate
large entropy in solid-state systems, but one example that can eventually lead to inte-
grated electrical realizations of SHIC PUFs is a process known as ALuminum-Induded
Layer Exchange (ALILE) [27] [28] [29]. It is a simple, crystallization-based method
that employs only inexpensive starting materials (amorphous silicon and aluminum). It
result in polycrystalline films with p-type conduction, which exhibit a very large level
of disorder and randomness (see Fig. 1 a). By adjusting the process parameters, the size,
number and density of the crystallites can be tuned as desired. The randomness causes
individual electrical properties in different subregions of the surface.

Crossbar-based Read-Out. One method that was investigated in [27] [28] [29] is to
read out the information from ALILE structures by so-called crossbar architectures.
Slightly simplifying, a crossbar consists of two sets of parallel wires, which are at-
tached to the top and to the bottom of the crystallized structure. The bottom set of wires
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is arranged in a 90◦ angle to the top set, as shown in Figure 1. If source and drain
voltages are applied at exactly one top and one bottom wire, current flows through the
polycrystalline film area at the virtual crossing of the two wires. I(V ) curves with a
strongly rectifying behavior [29] are observed, which depend on the individual, random
configuration in the polycrystalline substrate at the crossing. They can be converted into
a few bits of individual information per crossing [27] [28].

Crossbar architectures are among the simplest functional nano devices and possess
a very regular geometry. They can hence be fabricated with very small inter-wire dis-
tances, leading to high information densities. Concrete realization parameters we tried
to make plausible by measurement on single diodes and by crossbar simulations in
[28] are 105 top wires and 105 bottom wires, which leads to an information of around
1010 bits per cm2. This assumes that the footprint of one crossing is 100 nm × 100
nm [28]. A single CRP of such a structure would have a length of around around
1 + 2 · log2 105 ≈ 35 bits.

Top crossbar wires

Randomly

Crystallized

Surface

(shown as

transparent)

Bottom

crossbar

wires

b)a)

Fig. 1. a) A polycrystalline film resulting from the ALILE process, illustrating the high entropy
and disorder in the structure. The green areas are silicon crystallites, possessing a random distri-
bution and strongly irregular shape. b) The schematics of the crossbar read-out circuitry.

Inherently Slow Read-Out Speed. Up to now, we have mainly described a memory-
like structure with a high information content and density. Also large arrays of SRAM
cells or Butterfly PUFs could fulfill these criteria, albeit presumably at lower informa-
tion densities. The perhaps most unusual characteristic of Crossbar PUFs is that they
promise to guarantee an inherently slow read-out speed [28]. To achieve this property,
the Crossbar PUF must be built in one large, monolithic block, not from separate blocks
as modern semiconductor memories. The wires are intentionally designed to have only
a low, limited current-carrying capacity. Simulations conducted in [28] showed that
in such large blocks, depending on the fabrication parameters, several milliseconds
must elapse before the sense current/voltage stabilizes. This leads to read-out speeds
of around 100 bits/sec [28].

The two apparent strategies to accelerate read-out would be to increase the sense cur-
rent/voltage, or to conduct a parallel read-out at several crossings. But both approaches
lead to a higher current load in the monolithic crossbar, which is proportional to the



Oblivious Transfer Based on PUFs 435

achieved speed up. They therefore quickly overload and destroy the limited wires [28].
Removing the original wires of the crossbar, which very densely cover the whole crys-
tallized system, and replacing them with a faster read-out mechanism seems practically
infeasible without destroying the PUF’s structure and current-voltage characteristics.
This makes the PUF’s original responses unreadable [28].

3 The Protocol

We now provide a protocol for
(2
1

)
-OT on the basis of Strong PUFs, which is inspired

by techniques originally presented in [14]. Since SHIC PUFs are a subclass of Strong
PUFs, the protocol works for both PUF types interchangeably — using SHIC PUFs
only causes some small advantages in the resulting security features (see section 3.3).
As a subprotocol, we employ interactive hashing [13] [14].

3.1 Interactive Hashing

In a nutshell, interactive hashing [13] is a cryptographic two-player protocol, in which
Alice has no input, and Bob’s initial input is an m-bit string S. At the end of the proto-
col, Alice knows two m-bit strings U1 and U2, with the properties that (i) Ub = S for
some bit b ∈ {0, 1}, but Alice does not know the value of b, and that (ii) the other string
Ub⊕1 is an essentially random bitstring of length m, which neither Alice nor Bob can
determine alone. A protocol for interactive hashing can be constructed as follows.

Protocol 1: INTERACTIVE HASHING

Prerequisites:

1. Alice holds no input, Bob holds an m-bit string S as input.
2. Let G be the following class of 2-universal hash functions:

G = {g(x) = a ∗ x | a is an element of the set {0, 1}m} ,

where ∗ denotes the scalar product between the vectors a and x.

Protocol:

The protocol consists of m − 1 rounds. In the j-th round, for j = 1, . . . , m − 1, Alice
executes the following steps:

1. Alice chooses a function gj uniformly at random from the set G. Let the m-
ary binary vector aj be the description of G. If aj is linearly dependent on the
a1, . . . , am−1, then Alice repeats step 1 until aj is linearly independent.

2. Alice announces gj to Bob.
3. Bob computes bj = gj(S) = aj ∗ S and sends bj to Alice.

At the end of the protocol, Alice knows m − 1 linear equations satisfied by S. Since
the aj’s are linearly independent, there are exactly two different m-bit strings U1 and
U2 that satisfy the system of equations set up by Bob. These solutions can be found by
Alice via standard linear algebra. U1 and U2 have the property that exactly one of them
is equal to S, but obviously Alice has no chance in telling which one it is. For further
details see [13] [14].
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3.2 Oblivious Transfer

Protocol 2:
(2
1

)
-OBLIVIOUS TRANSFER BY STRONG PUFS

Prerequisites:

1. Bob holds a Strong PUF S. We assume without loss of generality that the responses
RS

C of S consist of a single bit. 3

2. Alice and Bob have agreed on an encoding scheme E(·) with the following
properties:

(a) E(·) efficiently encodes finite tuples of PUF-challenges Ci of the form T =
(C1, . . . , Ck) as finite binary strings.

(b) E(·) is reversed by a decoding scheme D(·), such that E(D(T )) = T for all
tuples T of the form T = (C1, . . . , Ck) (with the Ci being challenges of S).

(c) D(·) uniquely associates a tuple T = D(x) with any finite binary string x.

Similar encoding schemes can be found, for example, in [32] or [14].
3. Alice holds two bits b0 and b1, which are unknown to Bob.
4. Bob holds a choice bit c, which is unknown to Alice.

Protocol:

1. Bob chooses a tuple of challenges T = (C1, . . . , Cn) uniformly at random, and
determines the corresponding responses RC1 , . . . , RCn .

2. Bob sends or transfers the Strong PUF S to Alice.
3. Alice and Bob get engaged in an interactive hashing protocol, where Bob’s input is

E(T ).
4. The output of this interactive hashing protocol, which is both known to Alice and

Bob, are two strings U0 and U1. One of these strings U0, U1 is equal to E(T ). Let
us call the index of that string i0, i.e. Ui0 = E(T ).

Note: Bob knows i0, since he knows both U0, U1 and E(T ).

5. Bob sets the bit c′ = i0 ⊕ c, and sends c′ to Alice.
6. Alice determines by measurement on the PUF S the values

RZ1 , . . . , RZn ,

where the Zi are the elements of the tuple D(Uc ′) (which, by the properties of
D(·), are all challenges of S). Furthermore, she determines by measurement on S
the values

RZ1 ′ , . . . , RZn
′ ,

where the Zi
′ are the elements of the set D(Uc ′⊕1).

3 If a response consists of multiple bits b1 · · · bk, we can, for example, take the XOR of all these
bits, or employ fuzzy extractors.
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Note: At this point of the protocol, Alice has chosen two sets of PUF-responses
RZ1 , . . . , RZn and RZ1 ′ , . . . , RZn

′ . Bob knows exactly one of these sets, namely
the one that is equal to RC1 , . . . , RCn . The other set is unknown to Bob. Further-
more, Alice does not know which of the two sets of responses is known to Bob.

7. Alice forms the two strings s0 and s1 according to the following rules:

s0 = b0 + RZ1 + . . . + RZn mod 2,

and

s1 = b1 + RZ1 ′ + . . . + RZn
′ mod 2.

8. Alice sends s0 and s1 to Bob.
9. Bob obtains the bit bc he selected through his choice bit c as

bc = sc + RC1 + . . . + RCn mod 2.

3.3 Discussion

Security. The security of the protocol depends on the fact that Bob does not know
both sets RZ1 , . . . , RZn and RZ1 ′ , . . . , RZn

′ in step 7. If he did, then he could learn
both bits b0 and b1. This is where property (iii) (see page 432) of Strong PUFs and
SHIC PUFs becomes relevant. Due to this property, Bob cannot know all CRPs of
the Strong PUF/SHIC PUF, but only a fraction γ with 0 < γ < 1. Since one of the
sets RZ1 , . . . , RZn and RZ1 ′ , . . . , RZn

′ is chosen at random in the interactive hashing
protocol, the probability that Bob knows the corresponding CRPs is γn, i.e. it is expo-
nentially low in the security parameter n of the protocol. The fact that Alice does not
learn Bob’s choice bit c stems from the security properties of the interactive hashing
protocol, which prevents that Alice learns which of the two strings U1 or U2 is equal to
Bob’s private input S [13] [14].

The security difference in using Strong PUFs and SHIC PUFs in Protocol 2 is that by
its definition and property (vi), a secure SHIC PUF would fulfill the essential require-
ment (iii) (see page 432) independent of the computational power of the adversary.
Secure SHIC PUFs hence could guarantee the protocol’s security also against cheating
parties with unlimited computational potential.

Practicality. The communication and storage requirements are mild: Bob must store
only n CRPs, and the protocol has around m rounds for the interactive hashing. The
latter can be reduced to a constant the techniques described in [15].

In order to cope with potential noise in the PUF responses, presumably standard PUF
error correction such as helper data (see [2] [27] and references therein) could be used.
In that case, a few steps of the protocol should be adjusted. Firstly, Bob measures and
stores noisy data RCi in Step 1. Alice likewise obtains noisy responses RZi and RZi

′

in Step 6 of the protocol, and extracts helper data WZi and WZi
′ , together with secrets

SZi and SZi
′ . In Step 7, Alice uses the secrets SZi and SZi

′ (instead of the values RZi

and RZi
′ ) to “encrypt” the bits b0 and b1. In Step 8, she transmits the corresponding



438 U. Rührmair

helper data WZi and WZi
′ together with the strings s0 and s1. Of these two sets of

helper data, Bob uses the one that matches his data set RCi . He derives identical secrets
as Alice from the RCi , and uncovers the bit bc from si0⊕c.

Symmetry. Oblivious transfer is known to be a symmetric primitive [31]: Given an
OT protocol where Alice is the sender and Bob is the receiver, one can construct the
“reverse” OT protocol where Alice acts as receiver and Bob as sender. The construction
of [31] is generic, and independent of the concrete implementation of the OT.

Therefore, Protocol 2 can also be used to implement OT in the other direction, i.e.
from Bob to Alice, without re-transferring the PUF from Alice to Bob. This is an im-
portant practicality asset: In many applications, the physical transfer of the PUF in one
direction is executed naturally (e.g. in a hardware shipped from a manufacturer to a
customer, or on a bank card carried to an automated teller machine (ATM) by a cus-
tomer). Once accomplished, this allows oblivious transfer in both directions and secure
two-party computations, e.g. between the manufacturer and the hardware.

4 Summary

We discussed a protocol for oblivious transfer on the basis of Strong PUFs and SHIC
PUFs. It allows OT and secure two-party computation between two players, provided
that (i) Player A had previous access to the PUF, and (ii) only Player B holds physical
possession of the PUF at the time of the protocol execution. These circumstances occur
frequently in practice, for example between a central authority on the one hand and
mobile hardware systems, decentral terminals, or security tokens (including bank cards,
ID cards, access cards, and the like) on the other hand. The protocol does not use any
computational assumptions other than the security of the PUF.
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